
TECHNISCHE UNIVERSITÄT DRESDEN

DOCTORAL THESIS

LEARNING SAMPLING-BASED

6D OBJECT POSE ESTIMATION

Author:

ALEXANDER KRULL

Born on 22 December 1982 in Aachen

Supervisor and First Referee:

Prof. PhD. ROTHER

Second Referee:

Prof. Ing. PhD. MATAS

Advisor:

Prof. Dr. GUMHOLD

Submitted:

20 November 2017
Defended:

16 January 2018

A thesis submitted in fulfillment of the requirements

for the degree of DOCTOR RERUM NATURALIUM (DR. RER. NAT.)

in the

CHAIR OF IMAGE PROCESSING

INSTITUTE OF ARTIFICIAL INTELLIGENCE

iii

Declaration of Authorship

I hereby certify that I have authored this Dissertation entitled “Learning Sampling-

Based 6D Object Pose Estimation” independently and without undue assistance from

third parties. No other than the resources and references indicated in this thesis

have been used. I have marked both literal and accordingly adopted quotations as

such. There were no additional persons involved in the intellectual preparation of the

present thesis. I am aware that violations of this declaration may lead to subsequent

withdrawal of the degree.

ALEXANDER KRULL

v

“Nature laughs at the difficulties of integration.”

–Pierre-Simon Laplace

vii

Abstract

The task of 6D object pose estimation, i.e. of estimating an object’s position (three de-

grees of freedom) and orientation (three degrees of freedom) from images is an es-

sential building block of many modern applications, such as robotic grasping, au-

tonomous driving, or augmented reality. Automatic pose estimation systems have to

overcome a variety of visual ambiguities, including texture-less objects, clutter, and

occlusion. Since many applications demand real time performance the efficient use of

computational resources is an additional challenge.

In this thesis, we will take a probabilistic stance on trying to overcome said is-

sues. We build on a highly successful automatic pose estimation framework based

on predicting pixel-wise correspondences between the camera coordinate system and

the local coordinate system of the object. These dense correspondences are used to

generate a pool of hypotheses, which in turn serve as a starting point in a final search

procedure. We will present three systems that each use probabilistic modeling and

sampling to improve upon different aspects of the framework.

The goal of the first system, System I, is to enable pose tracking, i.e. estimating

the pose of an object in a sequence of frames instead of a single image. By including

information from previous frames tracking systems can resolve many visual ambi-

guities and reduce computation time. System I is a particle filter (PF) approach. The

PF represents its belief about the pose in each frame by propagating a set of samples

through time. Our system uses the process of hypothesis generation from the original

framework as part of a proposal distribution that efficiently concentrates samples in

the appropriate areas.

In System II, we focus on the problem of evaluating the quality of pose hypotheses.

This task plays an essential role in the final search procedure of the original frame-

work. We use a convolutional neural network (CNN) to assess the quality of an hypothe-

sis by comparing rendered and observed images. To train the CNN we view it as part

of an energy-based probability distribution in pose space. This probabilistic perspec-

tive allows us to train the system under the maximum likelihood paradigm. We use a

sampling approach to approximate the required gradients. The resulting system for

pose estimation yields superior results in particular for highly occluded objects.

viii

In System III, we take the idea of machine learning a step further. Instead of learn-

ing to predict an hypothesis quality measure, to be used in a search procedure, we

present a way of learning the search procedure itself. We train a reinforcement learn-

ing (RL) agent, termed PoseAgent, to steer the search process and make optimal use

of a given computational budget. PoseAgent dynamically decides which hypothesis

should be refined next, and which one should ultimately be output as the system’s es-

timate. Since the search procedure includes discrete non-differentiable choices, train-

ing of the system via gradient descent is not easily possible. To solve the problem,

we model PoseAgent’s behavior as non-deterministic stochastic policy, which is ulti-

mately governed by a CNN. This allows us to use a sampling-based stochastic policy

gradient training procedure.

We believe that some of the ideas developed in this thesis, such as the sampling-

driven probabilistically motivated training of a CNN for the comparison of images or

the search procedure implemented by PoseAgent have the potential to be applied in

fields beyond pose estimation as well.

ix

Acknowledgements

First of all, I would like to thank my supervisors. I want to thank Carsten Rother for

his introduction and guidance in the world of computer vision research, but also for

creating the wonderful work environment that was his research group in Dresden. I

want to thank Stefan Gumhold for his much appreciated feedback and the discussions

we had, especially on the problems of differential geometry. I also want to thank my

previous supervisors Iva Tolić and Uwe Petersohn, who guided me during my first

publication and played an important role in my decision to be a PhD student.

In the last year, I was able to spend some time as a visitor at Microsoft Research in

Cambridge. I want to thank Sebastian Nowozin and Jamie Shotton, but also again

Carsten Rother, for making this awesome and intellectually simulating experience

possible. I sincerely enjoyed Sebastian’s and Jamie’s supervision and collaboration

during this time.

I owe gratitude to many of the people I met at during my time as a student in

Dresden. My fellow PhD students and office mates Frank Michel and Eric Brachmann

contributed a lot in making my research possible. I am thankful for all their input,

discussions, and the good times we had at the office. Remembering my time as a

diploma student, I am thankful to Dimitrij Schlesinger and Boris Flach who helped to

spark my interest in probabilistic methods. I also have to thank Joachim Staib, for his

much appreciated help with the problems of software rendering, Linux, and the CGV

software framework.

Finally, I want to express the deepest gratitude for the help, support, and love I

have received from my family and friends. I want to thank my girlfriend Dorit for all

her patience and encouragement through busy times and also for her help in proof-

reading. I want to thank my dear friend Peter for reading part of the thesis and for

being a true friend. I want to thank Eva and Achim for their sympathy and advice.

I want to thank my brother Cornelius for his comments, discussion, and counsel, as

well as for being a brother in the best sense imaginable. Last but certainly not least, I

want to thank my mother and father for their continuous and unconditional support.

xi

List of Publications

During my thesis I present the methods from the following previously published

papers:

• PoseAgent: Budget-Constrained 6D Object Pose Estimation via

Reinforcement Learning

Alexander Krull, Eric Brachmann, Sebastian Nowozin, Frank Michel,

Jamie Shotton, Carsten Rother

CVPR 2017

• Learning Analysis-by-Synthesis for 6D Pose Estimation in RGB-D Images

Alexander Krull, Eric Brachmann, Frank Michel, Michael Ying Yang,

Stefan Gumhold, Carsten Rother

ICCV 2015

• 6-DOF Model-Based Tracking via Object Coordinate Regression

Alexander Krull, Frank Michel, Eric Brachmann, Stefan Gumhold,

Stephan Ihrke, Carsten Rother

ACCV 2014

I additionally contributed to the following papers on similar topics during the work

on the thesis. They are however not explicitly discussed in the thesis.

• DSAC - Differentiable RANSAC for Camera Localization

Eric Brachmann, Alexander Krull, Sebastian Nowozin, Jamie Shotton,

Frank Michel, Stefan Gumhold, Carsten Rother

CVPR 2017

• Global Hypothesis Generation for 6D Object Pose Estimation

Frank Michel, Alexander Kirillov, Eric Brachmann, Alexander Krull,

Stefan Gumhold, Bogdan Savchynskyy, Carsten Rother

CVPR 2017

xii

• Random Forests versus Neural Networks - What’s Best for Camera Relocalization?

Daniela Massiceti, Alexander Krull, Eric Brachmann, Carsten Rother,

Philip H.S. Torr

ICRA 2017

• Uncertainty-Driven 6D Pose Estimation of Objects and Scenes from a Single

RGB Image

Eric Brachmann, Frank Michel, Alexander Krull, Michael Ying Yang,

Stefan Gumhold, Carsten Rother

CVPR 2016

• Pose Estimation of Kinematic Chain Instances via Object Coordinate Regression

Frank Michel, Alexander Krull, Eric Brachmann, Michael Ying Yang,

Stefan Gumhold, Carsten Rother

BMVC 2015

• Learning 6D Object Pose Estimation using 3D Object Coordinates Eric Brachmann,

Alexander Krull, Frank Michel, Stefan Gumhold, Jamie Shotton, Carsten Rother

ECCV 2014

xiii

Contents

1 Introduction 1

1.1 Different Tasks of 6D Object Pose Estimation 5

1.1.1 One-Shot Pose Estimation . 5

1.1.2 Pose Tracking . 6

1.1.3 Pose Estimation and Object Detection 7

1.1.4 Camera Pose Estimation . 7

1.2 Challenges . 8

1.2.1 Similar Appearance of Different Poses 9

Texture-less Objects . 9

Symmetric Objects . 9

1.2.2 Variable Appearance under a Fixed Pose 9

Lighting . 9

Difficult Materials . 10

1.2.3 Combined Challenges . 10

Cluttered Background . 10

Occlusion . 11

1.2.4 Efficient Use of Computational Resources 11

1.3 Related Work . 11

1.3.1 Sparse Key-Point-Based Methods 12

1.3.2 Template-Based Methods . 13

1.3.3 Voting Methods . 14

1.3.4 Dense Correspondence-Based Methods 15

1.3.5 Direct Regression Methods . 17

1.4 Thesis Overview . 17

1.4.1 System I: Pose Tracking . 17

1.4.2 System II: Learning Analysis-By-Synthesis 19

1.4.3 System III: Pose Estimation on a Budget 19

1.5 Contributions . 20

1.6 Structure of the Thesis . 20

2 Pose Estimation Framework 23

xiv

2.1 Random Forest . 24

2.2 Hypothesis Generation . 25

2.3 Search Procedure . 25

2.3.1 Refinement . 26

2.4 Scoring Function . 27

2.4.1 Depth Component . 27

2.4.2 Object Component . 28

2.4.3 Coordinate Component . 28

2.5 Simplified Notation . 28

3 Probability Distributions in Pose Space 31

3.1 Rotations . 32

3.1.1 Representing Rotations . 32

Matrix Representation . 32

Euler Angles . 33

Axis-Angle and Euler Vector . 34

3.1.2 Lie Group of Rotations . 35

SO(3) as Group . 35

SO(3) as Manifold . 35

Tangent Space at the Identity Element 36

Exponential Map and Logarithmic Map 37

Tangent Spaces at Other Locations 38

3.1.3 Averaging Rotations . 38

3.1.4 Probability Distributions over Rotations 39

Probability Distributions in Tangent Space 40

UARS distributions . 42

3.2 A Probability Distribution over Poses . 44

4 System I: Pose Tracking 47

4.1 Introduction . 47

4.1.1 Contributions . 49

4.2 Related Work . 49

4.3 Method . 50

4.3.1 Bayes Filter . 51

4.3.2 PF for Pose Tracking . 52

4.3.3 Our Motion Model . 53

4.3.4 Our Observation Likelihood . 55

4.3.5 Our Proposal Distribution . 55

Prior Knowledge . 56

Local Estimate . 57

xv

Global Estimate . 57

4.4 Experiments . 57

Dataset of Choi and Christensen [127] 58

Our dataset . 59

4.5 Conclusion . 62

5 System II: Learning Analysis-By-Synthesis 63

5.1 Introduction . 64

5.1.1 Contributions . 65

5.2 Related Work . 65

5.2.1 CNNs . 66

5.2.2 Analysis-by-synthesis . 66

5.3 Method . 67

5.3.1 The Pose Estimation Task . 67

5.3.2 Probabilistic Model . 68

5.3.3 Convolutional Neural Network 69

5.3.4 Maximum Likelihood Training . 70

Sampling . 70

Proposal Distribution . 71

Initialization and Burn-in-phase 72

5.3.5 Inference Procedure . 72

5.4 Experiments . 72

5.4.1 Datasets, Evaluation Protocol, Competitors 72

Datasets . 72

Evaluation Protocol . 73

Competitors . 73

5.4.2 Random Forests . 74

5.4.3 CNN Training Procedure . 74

5.4.4 Comparison . 74

Occlusion Dataset from [31] and [14] 74

Dataset of Krull et al. 74

5.4.5 Discussion of Failure Cases . 75

5.5 Conclusion . 75

6 System III: Pose Estimation on a Budget 79

6.1 Introduction . 80

6.1.1 Contributions . 81

6.2 Related Work . 81

6.2.1 Relation to System II . 82

6.2.2 Reinforcement Learning in Similar Tasks 82

xvi

6.3 Method . 83

6.3.1 PoseAgent . 83

State Space . 84

Policy . 85

CNN Architecture . 85

6.3.2 Policy Gradient Training . 86

Efficient Gradient Calculation . 87

6.4 Experiments . 89

6.4.1 Training and Validation Procedure 90

6.4.2 Additional Baselines . 91

6.4.3 Testing Conditions . 91

6.4.4 Results . 92

6.4.5 Efficiency of the Training Algorithm 93

6.5 Conclusion . 93

7 Discussion and Future Work 95

7.1 Pose Domain versus Hypothesis Domain 95

7.2 Maximum Likelihood versus Reward Maximization 96

7.3 Particle Filer and Learned Posteriors . 97

7.4 Particle Filer and Reinforcement Learning 98

7.5 Conclusion . 99

Appendices 101

Appendix A Derivations Regarding SO(3) 103

A.1 Derivation of the Density Factor Between Tangent Spaces in SO(3) . . . 103

A.1.1 Definition of the Problem . 103

A.1.2 Derivation . 104

A.2 Derivation of UARS Density in Tangent Space 105

Appendix B Further Details on System I 109

B.1 Details on Fitting the Continuous Distribution 109

B.2 Hypothesis Generation . 109

B.3 List of Parameters . 110

B.4 Approximate UARS Density . 111

Appendix C Further Details on System II 113

C.1 Further Details on our Training Procedure 113

C.2 Detailed Experimental Results . 114

Dataset by Hinterstoisser [14] and Brachmann [31] 114

C.2.1 Dataset by Krull [48] . 114

xvii

C.3 Details on the Calculation of Occlusion 115

C.4 Additional Qualitative Results . 115

Appendix D List of Abbreviations 121

Appendix E List of Symbols 123

Bibliography 127

1

Chapter 1

Introduction

Contents

1.1 Different Tasks of 6D Object Pose Estimation 5

1.1.1 One-Shot Pose Estimation . 5

1.1.2 Pose Tracking . 6

1.1.3 Pose Estimation and Object Detection 7

1.1.4 Camera Pose Estimation . 7

1.2 Challenges . 8

1.2.1 Similar Appearance of Different Poses 9

1.2.2 Variable Appearance under a Fixed Pose 9

1.2.3 Combined Challenges . 10

1.2.4 Efficient Use of Computational Resources 11

1.3 Related Work . 11

1.3.1 Sparse Key-Point-Based Methods 12

1.3.2 Template-Based Methods . 13

1.3.3 Voting Methods . 14

1.3.4 Dense Correspondence-Based Methods 15

1.3.5 Direct Regression Methods 17

1.4 Thesis Overview . 17

1.4.1 System I: Pose Tracking . 17

1.4.2 System II: Learning Analysis-By-Synthesis 19

1.4.3 System III: Pose Estimation on a Budget 19

1.5 Contributions . 20

1.6 Structure of the Thesis . 20

The idea of solving difficult numerical problems through computerized random sam-

pling goes back roughly 70 years. Stanislaw Ulam, Nicholas Metropolis, and John von

Neumann first applied the technique during their work in the Manhattan project [1].

In their 1949 paper [2] Metropolis and Ulam already argued for application of this idea

2 Chapter 1. Introduction

for problems as diverse as the solving integrals in high dimensional space, inference in

probabilistic models, and studying the penetration of cosmic rays in the atmosphere.

The technique has since become known as the Monte Carlo method. The development

of the Metropolis algorithm [3] in 1953, which allowed Monte Carlo sampling from dif-

ficult distributions lead to an enormous success of the approach.

Nowadays, the Monte Carlo method is applied in a variety of fields [4] such as as-

tronomy [5], biology [6], chemistry [7], geology [8], electrical engineering [9], medicine

[10], finance [11], or even archeology [12]. Likewise, it is widely used in the field of

artificial intelligence and computer vision. Here, it has become an essential tool for

taming complex probabilistic models [13], allowing us to perform inference, where it

would otherwise be infeasible.

Figure includes images and models from the dataset by Hinterstoisser et al. [14], published in 2012 under a CC BY 4.0 Licence.

FIGURE 1.1: The 6D object pose estimation task: Given an RGB-D image and an object of
interest, we want to estimate the position and orientation (the pose) of the object.

During this thesis we will examine the computer vision problem of 6D object pose

estimation (Figure 1.1), the task of finding an object’s position and orientation (the pose)

from a visual input.1 Any automatic system trying to solve this task has to address a

multitude of uncertainties and visual ambiguities, arising from clutter, occlusion, or

similar problems. In this thesis we will demonstrate that probabilistic models can help

to cope with these uncertainties and that the Monte Carlo method is the right tool for

their implementation.

To appreciate the potential impact of automatic pose estimation systems, it is worth

considering the importance of the human brain’s ability in this regard. Pose estima-

tion is deeply tied to our skill in grasping objects with our hands. This process of

manual grasping and manipulation is known as prehension. While humans are gener-

ally capable of blind prehension, we usually rely on visual information to first assess

the pose of the object we want to grasp [15, 16]. In fact, it is a widely accepted hy-

pothesis in neuroscience that the human brain contains two separate visual systems

[17–19]. While one, termed ventral system, provides us with information to construct a

1The pose of an object has six degrees of freedom, three for the position and three for the orientation.
we will use the term object pose estimation synonymously.

Chapter 1. Introduction 3

conscious model of our environment, the second dorsal system is profoundly connected

to our motor skills at an non-conscious level. When we attempt to grasp an object, it

is the dorsal system that provides the assessments of the object’s position, orientation,

and shape required for a skillful grasp.

Although humans are not the only animals with the ability for dexterous prehen-

sion, the role it played for human cultural and technological development can hardly

be overestimated [20]. This ability is an essential requirement for handling basic tools,

be it a stone, a handaxe, or a screwdriver. It enabled us to arrange rocks, timber, and

bricks into buildings, and later allowed us to produce the goods we consume and to

assemble the machinery we rely on to sustain our life style.

Nowadays, many production processes have been automated and tasks previously

done by the human hand and visual systems are now executed by robots. For the

most part however, these robots operate in the controlled environment of a factory

and perform only highly specialized and repetitive tasks that do not require a much

flexibility. As a result the human brain’s ability for prehension and pose estimation is

still essential to the economic processes of our world. For instance, the manufacturing

of products or the construction of buildings still relies on our manual skills and the

use of basic hand held tools. Beyond this, very basic and even mindless tasks are

also still performed by humans: For example, workers are still required to manually

pick items from a shelf to place them in the delivery packages of the online retailers

and supermarkets [21, 22]. Sometimes they work in warehouses where almost all

other processes are completely automated and designed around the human ability of

prehension, which robotic systems don not yet posses reliably enough.

Prehension is of course not the only human ability relying on our brain’s capacity

for pose estimation. We require pose estimation on a larger scale whenever we drive

a car, ride a bicycle through traffic, or when we navigate as a pedestrian across a busy

street. In such a situation our brain has to estimate the position and orientation of

vehicles. It furthermore has to assess their movement and speed, in real-time to allow

a safe participation in traffic [23, 24].

In order to allow robotic systems to carry out tasks involving prehension or navi-

gation in traffic, we need to equip them with a capacity for pose estimation compara-

ble to our own. Automatic pose estimation becomes a key building block in enabling

robotic systems to interact with our complex material world. Robotic systems require

this skill to execute mindless tasks as the filling of packages for delivery [25], but

also to collaborate with us by handing us objects or receiving them from us [26]. Au-

tonomous vehicles are already at the verge of revolutionizing the way we travel and

transport goods. They navigate busy traffic with pose estimation playing an important

role [27–29].

4 Chapter 1. Introduction

Another important application for pose estimation comes from a different realm,

summarized under the term augmented reality (AR). AR is the real-time composition

of real and computer generated images to create the illusion of a modified reality.AR

systems such as HoloLens [30] can be used for different purposes: They can combine

our visual reality with elements of a computer game for entertainment, or annotate

real world objects with additional useful information in a professional setting. In order

to create a believable AR experience, the virtual content must be rendered under the

correct perspective. Thus, to modify the appearance of a real object, its pose relative

to the viewer has to be estimated first.

Current automatic pose estimation systems function well in some settings. They

however still have to overcome a number of challenges before approaching the human

level of robustness and reliability. Automatic pose estimation most importantly has to

address said visual ambiguities such as clutter or occlusion. Considering that many

applications require real-time performance an automatic pose estimation system has

to additionally cope with its potentially limited computational resources.

We believe that probabilistic approaches can be the next step towards resolving

these challenges. In this thesis, we will use probabilistic models to address the prob-

lems of visual ambiguity and the distribution of computational resources. We will

use machine learning to train said models and rely on Monte Carlo methods to make

training and inference feasible.

Our methods will build upon on the multi step pose estimation framework intro-

duced by Brachmann et al. [31]. This framework will serve as our starting point for

exploring different sampling-based approaches. Sampling will allow us to cope with

the uncertainties and visual ambiguities of the task, and it will help us to train a sys-

tem to make optimal use of a computational budget. We believe that the techniques

we develop in this thesis are not restricted to the problem of pose estimation, but can

be useful in other areas as well.

We will present these techniques in three systems, each focusing on different com-

ponents of the original framework and each addressing different challenges of the

pose estimation problem.

The first system (System I) we will present, is an adaption of the framework from

[31], which processes one image at a time, for real-time pose tracking, i.e. for process-

ing a sequence of images. Tracking methods have a potential advantage over methods

that process single images as they can make assumptions about the motion of an ob-

ject between frames and resolve ambiguities over time. We use a particle filter (PF) [32]

approach that represents uncertainty in every video frame as a set of samples, propa-

gated through time.

1.1. Different Tasks of 6D Object Pose Estimation 5

In our second system (System II), we will focus on the problem of assessing the

quality of pose hypotheses. This is especially challenging when the object is strongly

occluded. We propose a convolutional neural network (CNN) that compares rendered

and observed images to solve this task. To train the CNN, we use a probabilistically

motivated sampling procedure.

Finally, in our third system (System III) we will replace a static search procedure

in [31] with a dynamic reinforcement learning (RL) [33] -based system that is trained to

optimally distribute a limited computational budget. Training of this system becomes

possible through a sampling-based approach.

We will now continue this chapter by describing the different variants of the pose

estimation task in Section 1.1. In the following Section 1.2 we will discuss the most

important challenges for a pose estimation system. In Section 1.3 we will provide a

survey of the related work on the topic. In Section 1.4 we will give an brief overview of

the three systems we will present in this thesis. Finally, We will conclude the chapter

by summarizing our main contributions, in Section 1.5, and outlining the structure of

the remaining thesis in Section 1.6.

1.1 Different Tasks of 6D Object Pose Estimation

In literature the term pose estimation is used to a refer to variety of different tasks.

In the course of this thesis we will focus on two specific formulations, the tasks of

one-shot pose estimation and online pose tracking.

One-shot pose estimation is the problem of finding an object’s position and ori-

entation in a single image. Pose tracking on the other hand is the task of estimating

position and orientation of an object in an image sequence. In the following sections

we will start by providing a definition for these tasks (Sections 1.1.1 and 1.1.2). We

will then go on to discuss the related problems of object detection (Section 1.1.3) and

camera pose estimation (Section 1.1.4).

1.1.1 One-Shot Pose Estimation

One-shot pose estimation describes the problem of estimating an object’s pose from a

single image, as opposed to a sequence. Many methods, e.g. [14, 31, 34, 35], focus on

this problem, as it is the foundation for many other tasks.

In this thesis we will use the term to refer to the following specific problem: Given

an input RGB-D input image x, our goal is find an estimate Ĥ of the pose of a partic-

ular object c relative to the camera. We make the following assumptions:

• Exactly one instance of the object is present in the image.

6 Chapter 1. Introduction

• A 3D model of the object is known.

• All internal camera parameters are known.

We consider our image x = (I,d) to consist of an RGB component I = (I1 . . . In)

and a depth component d = (d1 . . . dn). With n denoting the number of pixels in the

image.

The terms Ii and di shall denote the color and depth information for a particular

pixel i. We will use di when referring to the 3D coordinates of the pixel in the co-

ordinate system of the camera, as opposed to di when referring to the 1D depth vale

information. The 1D depth value di is equal to the negative z-coordinate of the camera

coordinates di. Since, all internal camera parameters are known, we can calculate di

from di.

During this thesis, we will often rely on additional features computed on x as

a type of preprocessing. To allow a simplified notation, we summarize the original

image x and such precomputed features as observation, denoted by z.

Let us now consider the pose H = (R,v). It consists of a rotational component,

in matrix description 2 R and a translational component described as a 3D vector v.

Together, they describe a transformation that maps a point yi from the local coordinate

system of the object to its representation in the coordinate system of the camera. This

transformation is defined as the application of the rotation followed by the application

of the translation. It will be denoted as

H(yi) = v +Ryi. (1.1)

Such transformations are known as rigid body transformations. They will receive a

more thorough discussion in Chapter 3.

1.1.2 Pose Tracking

We can define the pose estimation problem for a sequence of images, as opposed to a

single image. This kind of task will be referred to as pose tracking.

In a situation where a sequence of images is available as input, tracking an object

can have a number of advantages compared to doing repeated one-shot pose estima-

tion for each image separately. By making assumptions about the movement of an

object, a tracking system can help to resolve many ambiguities. Even when an ob-

ject is fully occluded, a tracking system can still provide a sensible estimation for the

object’s pose, by assuming that the object moves smoothly and with a limited speed.

Tracking problems can be formulated as an offline or as an online task.

2We will give a discussion of rotation matrices in Section 3.1.1

1.1. Different Tasks of 6D Object Pose Estimation 7

In the offline formulation of pose tracking we are given a sequence of observations

z1 . . . zT and our task is to find estimates Ĥ1 . . . ĤT of the corresponding poses. Mak-

ing assumptions about the motion of the objects in between frames can help us to find

a joint estimate, which is superior to separate estimates done frame by frame.

In this thesis we will focus on the online formulation of pose tracking (see e.g. [36–

39]). Here, we are not given the entire sequence of observations, but only observations

up the current point in time t. Our task is now to find an estimate Ĥt of the current

pose while making use of all previous observations z1 . . . zt.

This kind of formulation is used in systems, where new observations come in se-

quentially and have to be processed in real-time to create an updated estimate for

every time step. Consider for example an augmented reality application adjusting the

perspective of virtual elements to react to the movements of a real object, or a robot

attempting to grasp an object handed to it by a human.

1.1.3 Pose Estimation and Object Detection

The term object detection often refers to the problem of finding the 2D bounding boxes

that contain different objects, e.g. [40, 41]. Many methods in literature combine the

tasks of object pose estimation and object detection. They essentially drop the as-

sumption we made in Section 1.1.1 that the object is present exactly once. Such a task

is studied e.g. in [14, 36, 38, 42].

While we see this task as highly practically relevant, we will not consider this

problem during this thesis. Instead, we will focus on the task from Section 1.1.1 and

the online tracking task from Section 1.1.2.

1.1.4 Camera Pose Estimation

Camera pose estimation is the task of finding the position and orientation of the cam-

era from an observed image taken in a known scene (see e.g. [43–46]). The problem is

structurally identical to the problem of object pose estimation.

In both tasks–object pose estimation and camera pose estimation–we want to find

the rigid body transformation between two coordinate systems. To make the equiva-

lence clear, we can view the entire environment as the object we are interested in.

In practice there are however some differences to be considered. The most impor-

tant one in our opinion is the following: In camera pose estimation, every pixel in the

image belongs to the object, i.e. the scene, and potentially contains information about

the pose we are interested in. On the other hand, in object pose estimation often only

a small subset of pixels is part of the object while the vast majority will belong to an

uninformative background.

Camera pose estimation will not play an explicit role in this thesis.

8 Chapter 1. Introduction

1.2 Challenges

a) b) c)

FIGURE 1.2: Visual ambiguities in pose estimation: a): Different poses can have a similar
appearance. Top: Texture-less objects make it difficult to distinguish between different
poses. Bottom: Some objects appear symmetric when viewed from a certain perspective.
This can make it impossible to estimate the correct pose. b): An object can have variable
appearance even under the same pose. Top: Lighting conditions can drastically change
the appearance of an object. Bottom: Reflective and transparent materials can change the
object’s appearance depending on background, and perspective. c): Sometimes a combi-
nation of a) and b) can occur. Top: A cluttered background can have a highly variable ap-
pearance, but can also contain elements that look similar to the object of interest, making
it difficult to distinguish between different possible positions. Bottom: Occlusion changes
the appearance of an object, but it also reduces available information and can make it hard
to distinguish different poses.

An automatic pose estimation system has to face a number of different challenges

when it is used in a non-controlled real life environment. Here, we want to attempt a

categorization. Most challenges have to do with visual ambiguity of some kind. We

want to distinguish the following three categories of visual ambiguity:

• Some objects have a similar or identical appearance when viewed under different

poses. Texture-less objects and symmetric or seemingly symmetric objects fall

into this category.

• Sometimes a single object can have a highly variable appearance even when viewed

from the same perspective. We see lighting as well as transparent or reflective

materials as factors that can make the appearance of an object highly variable.

• Sometimes both said issues occur jointly and have a common origin. We will

argue that clutter and occlusion are such combined challenges.

1.2. Challenges 9

Finally, we will discuss a challenge that we see as critical, but that does not arise from

visual ambiguity, namely the efficient use of computational resources.

1.2.1 Similar Appearance of Different Poses

Texture-less Objects

Texture-less objects are challenging (see Figure 1.2 a, top). It is difficult to distinguish

between the different perspectives of an object without texture.

Especially many traditional methods for pose estimation rely on detecting key-

points-based on texture [14]. Texture-less objects are however quite common in real

life scenes. The systems we will present in this thesis do not require the detection of

interest points, and are thus not as susceptible to the issue.

Recently Hodaň et al. [47] published a benchmark dataset specialized on the prob-

lem of texture-less objects. We have not yet evaluated the methods presented in this

thesis on this dataset. However, the datasets [14, 31, 48] we use in this thesis include

many objects without, or with very little texture.

Symmetric Objects

Objects can be symmetric in a variety of different ways. Some objects are continuously

rotationally symmetric around one axis. Consider for example a plate or a vase. Other

objects exhibit more complex discrete symmetries, such as a cube (see Figure 1.3). For

some objects these symmetries are nearly perfect, for other objects there are small hints

that break the symmetry. For the former it is impossible to determine the precise 6D

pose, because there are multiple correct answers. For the latter it is very challenging.

The dataset from [47] includes a variety of such symmetries and self similarities.

Sometimes objects only appear be symmetric when viewed from a certain perspec-

tive. Consider for example a cylindrical coffee mug viewed from a perspective that is

hiding its handle (see Figure 1.2 a, bottom). When viewed from such a perspective it

is impossible to pinpoint a single correct 6D pose, as long as the handle is not visible.

Recently Hodaň et al. [49] argued that one should consider this fact when measur-

ing the error of a pose estimation system. They suggest to use a novel error measure,

termed visual surface discrepancy to punish only visible errors.

1.2.2 Variable Appearance under a Fixed Pose

Lighting

The same object can appear radically different under different illumination (see Fig-

ure 1.2 b, top). Illumination can include arbitrarily complex patterns and is difficult

to estimate. As a result many systems try to deal with the problem by using features

10 Chapter 1. Introduction

Image by Zumthie, published 2009 on German Wikipedia, public domain.

FIGURE 1.3: The Platonic solids exhibit many discrete symmetries.

that are invariant to light conditions, e.g. [14, 31]. A system that can rely on depth

sensor has a big advantage in this respect, as depth sensors can produce a mostly il-

lumination invariant image of the object. In [31] Brachmann et al. present a dataset

specialized on difficult light conditions. It is however quite unrealistic with respect to

background variability or clutter. We will not focus on difficult lighting in this thesis.

Difficult Materials

Certain materials can make pose estimation challenging (see Figure 1.2 b, bottom)

[50]. Apart from few exceptions, e.g. [51, 52], the vast majority of pose estimation

methods has focused on objects made from opaque and approximately Lambertian

materials. The appearance of such materials is largely independent of the perspective

and their surroundings. Reflective and transparent materials however, can change

their appearance drastically depending on their surroundings and the relative position

of the camera. To complicate things further, depth sensors are often not able to provide

reliable estimates for such materials.

In this thesis, we will not explicitly examine the problem of difficult materials. We

see it however as an important problem for future research.

1.2.3 Combined Challenges

Cluttered Background

Scenes with a large amount of clutter are challenging (see Figure 1.2 c, top) [14]. It can

be argued that the problem of clutter creates both kinds of ambiguities we mentioned.

On the one hand, different poses of an object in a cluttered scene may have a similar

appearance: If the scene contains an object that is visually similar to the object we are

interested in, a pose estimation system might confuse the positions of the two. The

appearance would be similar if the two objects were switched.

On the other hand, a cluttered scene can lead to a highly variable appearance of an

object under the same pose: Since the clutter itself is highly variable the same object

under the same pose can result in highly variable images.

1.3. Related Work 11

The datasets [14, 31, 48] we will use during this thesis reflect this challenge well.

Occlusion

The potential occlusion of objects (see Figure 1.2 c, bottom) is especially challenging

[31]. It also introduces both kinds of ambiguity.

On the one hand, different poses of an occluded object will have a similar appear-

ance, whenever important features of the object are hidden. The more of an object is

hidden the more similar will be its appearance under different poses. Considering the

extreme case, if an object is fully occluded, all different orientations of the object will

produce identical images.

On the other hand, occlusions can occur in a countless number of ways. The same

object under the same pose can appear very differently depending on which part of

the object is occluded and what is the appearance of the occluding object.

For some depth sensors occlusions will cause a depth shadow artifact around the

borders of an occluding object. This can make pose estimation even more challenging.

In general, methods which make use of local information, such as local feature de-

scriptors or predicted correspondences are at an advantage here, compared to meth-

ods that rely on the appearance of the object in its entirety.

Occlusion will be one of the challenges we focus on. We will evaluate our methods

on datasets [14, 31, 48] featuring heavy occlusion.

1.2.4 Efficient Use of Computational Resources

Finally, we would like to mention the challenge of making efficient use of limited com-

putational resources. In pose estimation as in many other problems, there is a trade-off

between computation time and the quality of the results. Spending more computation

time to find the pose of an object in a cluttered scene will increase the chance of finding

it. In situations however, where computation time is limited or costly, the designer of

a pose estimation system has to account for this. This is especially true for real-time

tracking systems [53]. A system that spends to much time computing the pose in a

particular frame, might miss the next frame coming from the camera and potentially

loose the object altogether if it is moving quickly. In other words inefficient use of the

computational resources at one point in time, can lead to the reduced accuracy in later

time points.

1.3 Related Work

In this section we will provide a general overview of approaches for the problem of

6D pose estimation and camera pose estimation. At this point, we do not include

12 Chapter 1. Introduction

the work that is methodologically related to the specific systems presented in Chap-

ters 4, 5,and 6. Such overviews can be found in Sections 4.2, 5.2, and 6.2, respectively.

A variety of different approaches can be found in literature. We divide the methods

into five major categories:

• Sparse key-point-based methods first detect significant key-points in the image.

They compute descriptors for the region around these key-points and match

them to previously determined points on the surface of the object.

• Template-based methods create a set of appearance templates for different discrete

perspectives. The templates are then compared with different parts of the image,

usually in a sliding window scheme.

• Voting methods aggregate local information by allowing pixels or image patches

to vote for pose hypotheses.

• Dense correspondence-based methods use a trained discriminative function to pre-

dict pixel-wise correspondences between the coordinate system of the object and

the coordinate system of the camera. The information of multiple pixels is then

combined to create pose hypotheses. This is the approach we will follow.

• Direct regression methods use machine learning to directly predict the pose from

an observed image.

1.3.1 Sparse Key-Point-Based Methods

Such methods consist of two major steps: First, the system detects a set of key-points

in the image and calculates descriptors for their local neighborhoods. Then, these

descriptors are matched with descriptors on sparse 3D model, which has been con-

structed beforehand. Often a RANSAC [54] search is used to find sets of correspon-

dences to produce pose hypotheses.

The so called SIFT (scale-invariant feature transform) features, introduced by Lowe

in [55] provide arguably the most widely known algorithm to detect and describe such

local key-points. Following a similar method by Rothganger et al. [56], Gordon and

Lowe [57] describe a sparse key-point-based method for object pose estimation using

SIFT features.

The basic approach was the foundation of multiple more efficient systems such as

[58] or [59].

A major advantage of sparse key-point-based methods is their robustness to clutter

as well as to partial occlusion. The major drawback of the approach is its reliance on

the texture of the object. When dealing with texture-less objects, key-points can often

only be found along the edge of an object. This is highly problematic because such

points can drastically change their appearance, when the object is slightly rotated.

1.3. Related Work 13

1.3.2 Template-Based Methods

Template-based methods can be a solution when dealing with texture-less objects.

Such methods store descriptors, called templates, for the appearance of the entire ob-

ject under different orientations. Even if the object is texture-less the shape of the

object’s silhouette as a whole can be informative enough to identify a template. Often,

these methods use a sliding window approach to compare their templates to different

image locations. If a well fitting template is found the accordant orientation can be

used together with the location in the image to give an estimate of the pose.

A downside of this approach is that the exhaustive sliding window search can be

computationally expensive. However, a number of solutions has been suggested to

address this issue. A second more severe issue is that partially occluded objects often

fail to be matched with their template.

Sliding window template matching has been used for a long time to localize 2D

patterns in images [60]. In such methods the template was often a small image patch

and the system would calculated simple distance measures as between the pixel in-

tensities in the image and in a template.

More recently Hinterstoisser et al. [14] presented an extremely successful template

matching system for 6D pose estimation. Hinterstoisser et al. create templates by ren-

dering the object under different perspectives. Instead of storing images for each tem-

plate they calculate gradient-based discretized descriptors, which allow them to do

extremely efficient comparisons. While their sliding window matching algorithm is

in principle linear in complexity with the number of templates, Hinterstoisser et al.

achieved impressive speeds by using a highly efficient implementation.

More recently Kehl et al. [61] build on the system from [14] and achieve a sublinear

complexity in the number of templates by using a hash function to reduce the number

of required comparisons. In [62] Konishi et al. use a hierarchical tree system to improve

the scalability of the matching procedure.

Other authors focus on developing learned template descriptors for pose estima-

tion. In [35] Rios-Cabrera and Tuytelaars use the general pipeline from [14] but train

their templates in a discriminative way to increase accuracy. A modified cascaded

scheme for template matching allows them to greatly speed up their system. In [63]

Wohlhart and Lepetit use a CNN to map image patches to a descriptor space, where

they perform a nearest neighbor search among templates to find an approximate pose.

The system is trained to ensure that images of similar pose are mapped to similar po-

sitions in the pose space. Once the CNN is trained it can be used with unseen objects

as well.

Note that some methods combine the idea of templates with a voting scheme. We

will discuss them in Section 1.3.3.

14 Chapter 1. Introduction

All in all, template-based methods have achieved impressive results and compu-

tation times. They deal well with texture-less or symmetric objects and cluttered back-

grounds, but still struggle with occlusion.

1.3.3 Voting Methods

Voting methods allow image regions or even individual pixels to cast votes for plausi-

ble pose estimates. Similarly to key-point-based methods, voting methods aggregate

information from multiple local sources. This makes them inherently more stable with

respect to occlusion.

The idea of voting goes back to Hough voting schemes [64] introduced by Duda

and Hart to estimate the position and orientation of 2D lines. In their scheme every

pixel casts votes in a discretized 2D parameter space. The local maxima in this space

are later used to identify lines. In [65] Ballard showed how to generalize the idea to

arbitrary shapes.

More recently Sun et al. [66] and Gall et al. [67] applied the same general approach

for the detection and coarse pose estimation of real world objects.

In [34] Tejani et al. use Hough voting for 6D pose estimation. They use a random for-

est [68] to process the image and cast votes for the position of the object. The rotational

component is found in a second step.

Doumanoglou et al. [69] train an autoencoder system to map sampled image patches

to a descriptor space. In a second step, they use a random forest, which ultimately

casts votes directly into the 6D pose space.

Some modern methods combine the idea of voting in combination with templates

(see Section 1.3.2). In such methods, a patch usually directly votes for a template-

based on its similarity. The multi stage pipeline presented by Hodaň et al. in [42] uses

a voting scheme to perform template-matching-based on the template construction

from [14]. The method achieves sublinear complexity.

Another example is [70] by Kehl et al.. Like [69], they use an autoencoder method

to learn a mapping from image patches to a descriptor space. During test time they

sample patches from the image and allow them to distribute votes based on the simi-

larity to a set of templates.

Drost et al. [71] use voting in a geometrically driven approach to find the pose

of an object from a 3D point cloud. They select reference points and pair each of

them with all other points. Then, they calculate features on these point pairs and use

them in a voting scheme. Votes for each reference point are cast in its own discrete

voting array, which is only 2D. The voting scheme accomplishes two things: (i) It

finds a correspondence between the reference point and a point on the surface of the

3D Model of the object, this coincides with one dimension of the array. (ii) It finds

1.3. Related Work 15

the 1D rotation angle of the point around its normal. When combined, these two

parameters allow the direct calculation of a pose hypothesis. In [71] this hypothesis

generation is followed by a clustering operation in pose space.

Hinterstoisser et al. [72] build on this system and increase its performance and

speed by streamlining the pairing and voting process.

Voting methods are able to cope well with occlusion and most other said chal-

lenges. We see voting as a promising approach for future systems.

1.3.4 Dense Correspondence-Based Methods

The systems we will present in this thesis all fall into the category of dense

correspondence-based methods. Such methods use a trained function to predict corre-

spondences between the pixels of the image and positions in the local coordinate sys-

tem of the object. Similarly to the key-point-based methods, multiple correspondences

are selected in a RANSAC like fashion and combined to generate pose hypotheses.

The general idea of densely predicting correspondences was first introduced for

the problem human body pose estimation. In the Virtuvian Manifold [73] Taylor et al.

address this problem by predicting each pixel’s position on the surface of the human

body, before finally fitting a parametric model.

Following this work, Shotton et al. describe a similar system for camera pose esti-

mation in known scenes. They predict each pixel’s position in the coordinate system

of the scene and use it as stepping stone for their final estimate.

Inspired by this approach, Brachmann et al. [31] published a method for 6D object

pose estimation. This method will provide the framework for the systems we will

present in this thesis. We will give a description of the framework in Chapter 2. An

overview is provided in Figure 1.4.

The method from [31] uses a random forest to jointly predict whether or not a pixel

is part of the object and where it is located in the object’s local coordinate system, in

case it is part of the object. The former prediction is referred to as object probabilities,

the latter prediction as object coordinates.

Brachmann et al. use a RANSAC-based sampling scheme to generate a pool of

pose hypotheses, which serve as starting point for a search procedure. During this

procedure, pose hypotheses are evaluated via a scoring function, based on analysis-

by-synthesis: The function uses a 3D model of the object to render images under the

pose hypothesis and then does a pixel-wise comparison against observed images.

The framework from [31] unifies a number of advantages: (i) The predicted cor-

respondences can be trained to be invariant against lighting changes. (ii) By using

16 Chapter 1. Introduction

densely predicted correspondences, the method is able to combine some inherent ro-

bustness against occlusion, as found in sparse key-point-based methods, with an abil-

ity to handle texture-less objects. (iii) They perform well in cluttered scenes, as their

hypothesis-based search and analysis-by-synthesis-based scoring allows them to ef-

fectively tell similar looking objects apart. The systems presented in this thesis will

build on [31] to benefit from these advantages.

We see the biggest limitation of [31] in its handling of occluded objects. Even

though dense predictions bring inherent robustness to occlusion, the simple analysis-

by-synthesis approach struggles, when applied with occluded objects, which can have

a dramatically different appearance compared to an unoccluded rendered 3D model.

In System II we will present a machine learning-based way to improve this scoring

function.

While Brachmann et al. also use sampling to generate hypotheses, their view on

sampling differs significantly from the one we will take in this thesis. The RANSAC-

based sampling procedure in [31] functions as a black box, producing hypotheses. The

systems, we will present in this thesis will include this procedure as well. However,

they will additionally introduce different Monte Carlo sampling schemes in the vari-

ous parts of the framework.

In Contrast to [31], we will always view sampling as a way to represent various

probability distributions we are interested in. In Systems I and II sampling is used to

represent a posterior distribution over poses that ultimately coincides with our knowl-

edge of the pose. In Systems III we use samples to describe a probability distribution,

governing the behavior of an RL agent.

Apart from the systems to be presented in this thesis, multiple other works have

successfully build upon [31]. In [74] Michel et al. extend the method for objects, which

are not rigid, but include moving parts, such laptop computers or cupboards with

drawers and doors. In [75] Mund et al. adapt the system for the use with a LiDAR

sensor to improve airfield safety. In [45] the system is modified to work without depth

information and applied to camera pose estimation. Finally, in [46] Brachmann et al.

replace the random forest with a CNN and find an RL inspired perspective to allow

end-to-end training.

The approach from [46] is related to System III, which we will present in Chap-

ter 6. Both systems use RL to learn a pose estimation pipeline including discrete

choices. However, Brachmann et al. learn only a single discrete choice at the end of

their pipeline, namely which of the hypotheses is to be selected as final estimate. This

enables them to learn the prediction of object coordinates at an earlier stage of the

pipeline in an end-to-end fashion. In contrast, we will describe how to train an iter-

ative system to dynamically make repeated discrete choices with the goal of making

best use of a restricted budget.

1.4. Thesis Overview 17

1.3.5 Direct Regression Methods

Finally, we want to mention methods that attempt to directly regress the pose from an

observed image. This is a difficult task and the approach has until recently not been

very influential with respect to object pose estimation. It remains to be seen whether

this will change in the future.

Direct regression has been applied with limited success to the task of camera pose

estimation [43, 76].

In [77], Mahendran et al. apply the method to extract the pose of an object from an

RGB image. They assume that the bounding box of the object is known and use a CNN

to process this patch and to do a regression of the 3D object orientation. Doumanoglou

et al. [78] follow a similar approach, using the network to regress only the orientation

of the object.

Very recently however, Xiang et al. [79] have proposed a state-of-the-art system

that uses a CNN to directly predict a semantic segmentation of an image as well as

the full 6D pose of objects. We believe that this line of research could bear a significant

potential for the future.

1.4 Thesis Overview

In this section we want to provide a brief overview over the most important elements

of the thesis. At the center of this thesis we will present three systems. All of them use

probabilistic models and sampling techniques in different ways to address different

aspects of the pose estimation problem. All three systems are based on the common

framework presented by Brachmann et al. in [31]. Figure 1.4 provides an illustration

and introduces the framework’s main components. A more detailed description can

be found in the following Chapter 2.

The thesis will address the online tracking task from Section 1.1.2 (System I) and

the one-shot pose estimation task defined in Section 1.1.1 (System II and System III).

In System I, we will present a real-time PF-based system that uses a set of samples

in pose space to represent and propagate uncertainty over time. In System II we use

a CNN to assess the quality of pose hypotheses, using a probabilistic sampling-based

approach during training. Finally, in System III, we attempt to directly learn an optimal

search procedure that makes best use of a restricted computational budget. We will

now give a brief summary of the these three systems.

1.4.1 System I: Pose Tracking

System I is a PF-based [32] adaptation of the one-shot pose estimation framework (see

Figure 1.4) for 6D pose tracking.

18 Chapter 1. Introduction

Figure includes images and models from the dataset by Hinterstoisser et al. [14], published in 2012 under a CC BY 4.0 Licence.

FIGURE 1.4: The pose estimation framework from [31]. The important components are
shown as colored boxes. a): The system takes an RGB-D image as input. b): A random
forest processes each pixel in the image by looking at the surrounding patch. c): It predicts
two labels for every pixel. Top: Object probabilities, indicating whether the pixel is part
of the object. Bottom: The position of the pixel in the local coordinate system of the
object, termed object coordinates. Here, the predicted coordinates are mapped to the RGB
cube for visualization. d): A sampling procedure uses the predictions to generate pose
hypotheses. e): These hypotheses are summarized in a hypothesis pool. f): A search
procedure takes the hypothesis pool as starting point and attempts to optimize a scoring
function to find a good pose estimate. g): The scoring function judges the quality of a
pose by comparing rendered and observed images. h): The highest scoring pose that was
found is chosen as final estimate.

The PF is an established tracking approach. It models the knowledge about the

pose at any point in time as probability distribution, represented by a set of samples

in its state space. These samples are termed particles. In our case the state space cor-

responds to the 6D pose space. Whenever a new frame is processed the samples are

updated to account for the newly made observation and a possible motion of the ob-

ject that might have occurred in the mean time.

The PF is based on a probabilistic model consisting of two components: An ob-

servation model that describes the probability of observing a particular image, given a

1.4. Thesis Overview 19

particular state and a motion model that probabilistically describes the expected motion

of the object. We use a variant of the scoring function from [31] (Figure 1.4 g) as basis

of our observation model and combine it with a simple motion model, based on the

assumption of smooth movements.

The fact that the pose space is 6D is challenging because high dimensional do-

mains require a large number of samples to be covered adequately. It is common

practice in PFs to reduce the number of required particles through an adequate pro-

posal distribution. Proposal distributions are a part of the sampling scheme that can

help to concentrate particles in the relevant areas. We follow this approach and use

a specialized proposal distribution that is based on the hypothesis generation scheme

(Figure 1.4 d) from [31].

1.4.2 System II: Learning Analysis-By-Synthesis

In System II we address the one-shot pose estimation problem. Again we use the

framework from [31] as a starting point. We focus on improving the scoring function

(Figure 1.4 g) of [31] to gain additional robustness with respect to occlusion.

The framework already provides some inherent stability in this respect because

it is based on dense pixel-wise correspondences. Even when a part of the object is

occluded the correspondences of the remaining visible part can still be used to create

valid pose hypotheses.

The analysis-by-synthesis scoring function (Figure 1.4 g) used to assess the quality

of the pose hypotheses is however vulnerable to occlusion. It performs a simple pixel-

wise comparison of the observed images and images created by rendering a 3D model

under a particular pose hypothesis.

We propose to replace this pixel-wise comparison with a CNN that takes rendered

and observed images as input and outputs a score. Training such a system in a super-

vised fashion is not straightforward, since we have no ground truth scores available.

Instead, we take a probabilistic approach and interpret the CNN as the energy function

in an energy-based probabilistic model. Training our CNN as part of the energy-based

model requires integration over pose space. We approximate the integral via a Monte

Carlo sampling technique.

The final system is able to outperform the original approach from [31], in particular

in images with high levels of occlusion.

1.4.3 System III: Pose Estimation on a Budget

In System III we go a step further. Instead of learning only a function to score hypothe-

ses we propose to directly learn the search process (Figure 1.4 f) to find the correct pose

while making optimal use of a computational budget.

20 Chapter 1. Introduction

The method from [31] uses a fixed algorithm to search for the correct pose. It

refines the highest ranking hypotheses and then outputs the single highest ranking

among the refined ones. Instead, we propose to train a system to dynamically dis-

tribute a predefined budget of refinement steps among hypotheses. The system works

iteratively, choosing a new hypothesis for refinement in every step until its budget is

exhausted. Training such a system in a principled end-to-end fashion is not trivial

because choosing the next hypothesis from the pool for refinement is a discrete non-

differentiable operation.

We find that a stochastic policy gradient method [80] from the field of RL can pro-

vide an adequate answer to this problem. The core idea is to think of discrete choices

as non-deterministic and governed by probability distributions. During training, we

can optimize the expected number of correctly classified poses using gradient descent

over the parameters of said probability distributions.

1.5 Contributions

Here, we want to give a short summary of the main contributions presented in this

thesis. In this work, we present three major contributions:

• We present a PF method for real-time 6D pose tracking-based on the framework

of [31].

• We present a probabilistically motivated system that learns to compare rendered

and observed images to assess the quality of a pose hypothesis. When we use

it in the framework of [31], we are able to significantly improve accuracy, in

particular for highly occluded objects.

• We present an RL-based procedure that learns to dynamically distribute a com-

putational budget in a search for the correct pose. The procedure includes non-

differentiable discrete choices that can be trained via stochastic policy gradient.

1.6 Structure of the Thesis

This work is structured into seven chapters. The following two chapters contain dif-

ferent preliminary considerations. In Chapter 2 we will give a detailed description

of the framework from [31], which is the foundation of the systems we will present

afterwards. In Chapter 3 we will take a closer look at the 6D pose space. We will

in particular discuss the mathematical peculiarities which are to be considered when

working with probability distributions in pose space.

The Chapters 4 to 6 will present our main contributions: In Chapter 4 we will

describe System I (published in [48]), the PF-based real-time pose tracking system. In

1.6. Structure of the Thesis 21

Chapter 5 (published in [81]), we will discuss System II, the replacement of the simple

scoring function (Figure 1.4 g) from [31] with a learned function, implemented by a

CNN and trained using a probabilistic perspective. In Chapter 6 (published in [82])

we will go a step further and describe System III, an RL-based method replacing not

only the scoring function, but the entire search procedure (Figure 1.4 f).

Finally, in Chapter 7 will conclude with a discussion and an outlook into possible

directions of future research.

23

Chapter 2

Pose Estimation Framework

Contents

2.1 Random Forest . 24

2.2 Hypothesis Generation . 25

2.3 Search Procedure . 25

2.3.1 Refinement . 26

2.4 Scoring Function . 27

2.4.1 Depth Component . 27

2.4.2 Object Component . 28

2.4.3 Coordinate Component . 28

2.5 Simplified Notation . 28

In this chapter, we will give a description of the pose estimation framework from [31],

which provides the background for the systems we will present in Chapters 4, 5, and 6.

The framework addresses the one-shot pose estimation problem as described on Sec-

tion 1.1.1. It takes an RGB-D image x as input and outputs an estimated pose Ĥ for a

known object c ∈ C, which is part of a set of known objects C. Let us remember the

general scheme, depicted in Figure 1.4, with its four major components:

• In a first step, the image is processed by a random forest, which provides pixel-

wise predictions for two things: (i) The object probabilities, i.e. an estimated

probability that the pixel belongs to the particular object c. (ii) The object coor-

dinates, i.e. the position of the pixel in the local coordinate system of the object.

• In a second step, a sampling procedure uses the forest prediction to generate a pool

of pose hypotheses H = (H1, . . . , HN).

• Then, a search procedure takes the hypothesis pool as starting point.

• The goal of the search is to optimize a scoring function, assessing the quality of

pose hypotheses. The best scoring pose is output as the final estimate Ĥ .

24 Chapter 2. Pose Estimation Framework

In the following sections we will take a closer look at each of these components.

We will conclude the chapter by introducing a simplified notation in the context of

this framework that will be used in the remaining part of the thesis.

2.1 Random Forest

The authors use a random forest [68], denoted by T . It consists of |T | = 3 trees. Each

tree j independently processes each pixel i. At every split node, the tree performs a

feature test on a patch surrounding the pixel. Depending on the outcome, the pixel

is routed to the left or right child node. The authors apply the basic feature tests

from [83]. These tests use two pixel offsets relative the central pixel of the patch and

calculate the difference in the depth and color intensities at the two corresponding

locations. If the difference lies below or above a threshold, the test result is positive or

negative, respectively. As in [83], the authors use the depth value at the central pixel

to adjust the offsets accordingly, using larger offsets for close pixels and smaller offsets

for pixels that are further away.

The trees can be trained using recorded images or rendered images of the object.

Training images are annotated with the true segmentation of the object and the ground

truth object coordinates for every pixel. Additionally generic training images contain-

ing no object from C are used to represent the appearance of the background.

Training is done in a two step procedure. First, the authors train the structure and

feature tests at each node via a proxy classification problem. They discretize the space

of object coordinates for each object c ∈ C into 5 × 5 × 5 = 125 regular bins and

add an additional bin for background pixels. This allows for the use of the standard

information gain target over the resulting 125× |C|+ 1 classes. The authors combine

it with the randomized training procedure from [84].

In a second step, after the training of the tree structure is completed, the authors

again feed training pixels from all objects and from the background images through

the trees and store the ground truth object coordinates at every leaf. For every object c

and at every leaf, they then perform mean-shift clustering [85] on the ground truth ob-

ject coordinates, using an isotropic Gaussian kernel with standard deviation of 25mm.

They store the positions of the largest mode of every object at each leaf together with

the empirical distribution over the objects, i.e. the percentage of training pixels at that

leaf which belong to the object c.

During testing, each pixel i is processed by each tree j. The pixel is routed through

the tree’s nodes and ultimately ends up in one of the tree’s leaf nodes. The tree then

outputs the information about the object stored at the leaf: The position y
j
i,c of the

largest mode of object coordinates and the empirical probability pji,c that the pixel be-

longs to the object. The predicted probabilities from all trees are combined to a single

2.2. Hypothesis Generation 25

object probability pc,i using

pc,i =

∏|T |
j=1 p

j
i,c

(

∑

c′∈C

∏|T |
j=1 p

j
i,c′

)

+
∏|T |
j=1 p

j
i,bg

, (2.1)

were pji,bg = 1 −∑c∈C p
j
i,c is the empirical probability predicted by tree j that pixel i

belongs to the background.

2.2 Hypothesis Generation

The authors use a RANSAC-like system to generate a hypothesis pool H from sam-

pled pixels. To find a pose hypothesis they sample three pixels. Each pixel provides

a 3D-3D correspondence between the camera coordinates di and the predicted coor-

dinates y
j
i,c in the local coordinate system of the object. The 3D-3D correspondences

from all three pixels are then combined to generate a pose hypothesis.

Let us now take a look at this procedure in detail. To generate a pose hypothesis,

the authors start by sampling a pixel i1. The pixel is drawn from a probability dis-

tribution with probability mass function proportional to pc,i. Thus, pixels with higher

probability of belonging to the object have a higher probability of being selected. Then,

they draw two additional pixels i2 and i3 again using a probability mass function pro-

portional to pc,i. This time however, they consider only pixels in a square window

around the original pixel i1. The rationale being that pixels, which are too far apart

can impossibly belong to the same object. The window size is calculated as fδc/di1 ,

where f is the focal length of the camera and δc is the diameter of the object.

After determining three pixels i1,i2,i3, the authors randomly select tree indexes

j1,j2,j3 to obtain the correspondences (di1 ,y
j1
i1,c

), (di2 ,y
j2
i2,c

), and (di3 ,y
j3
i3,c

). Then,

based on said correspondences, a pose hypothesis H is found via the Kabsch algorithm

[86], a well established closed form technique to estimate a pose from a set of 3D-3D

correspondences.

The hypothesis H is accepted and included in the hypothesis pool H if the Eu-

clidean distances between the observed camera coordinates di1 , di2 , di3 and the trans-

formed predicted object coordinates H(yj1i1,c), H(yj2i2,c), H(yj3i3,c) are below 5% of the

object diameter. The process is repeated until a pool size of N = 210 is reached.

2.3 Search Procedure

The framework uses a simple search procedure starting from the generated hypoth-

esis pool H and trying to optimize the scoring function (see next Section 2.4). The

procedure begins by calculating the score for each of the hypotheses in the pool. The

26 Chapter 2. Pose Estimation Framework

25 best hypotheses are then subject to the refinement procedure, described in Sec-

tion 2.3.1. After the refinement is complete, each hypothesis is again processed by the

scoring function. The hypothesis with the best score is returned as final estimate Ĥ .

The entire procedure is depicted in Figure 2.1.

FIGURE 2.1: The search procedure used in [31]: The procedure takes the hypothesis pool
as starting point and finds a pose estimate Ĥ through a process of scoring and refinement.
See Section 2.3.

2.3.1 Refinement

The refinement procedure is an iterative process similar to the hypothesis generation

described in the previous Section 2.2. Given a particular pose H that is to be refined,

the object is rendered under the pose to obtain a mask Mc(H), which is the set of

pixels belonging to the rendered object, excluding pixels with no valid recorded depth

information d. The procedure now evaluates each pixel i ∈ Mc(H) and calculates the

minimum of Euclidean errors

ei = min
j∈{1...|T |}

(

|H(yji,c)− di|
)

(2.2)

between the transformed object coordinate and the recorded depth information. If ei
is below a threshold of 20mm, the pixel i is counted as inlier pixel and the correspon-

dence (di,y
j̃
i,c) is added to a set of correspondences. Here j̃ is the tree that led to the

lowest Euclidean error |H(yj̃i,c) − di|. The set of correspondences is then used to de-

rive an updated hypothesis via the Kabsch algorithm. After every iteration the scoring

function is applied again. The entire process is repeated iteratively until the scoring

function of the updated pose is no longer improving.

2.4. Scoring Function 27

2.4 Scoring Function

The scoring function plays an important role, as it is the objective function the system

attempts to optimize. To assess the quality of a pose hypotheses H the function ren-

ders the object under the pose to compare the results with the observed depth values,

as well as with the predicted object coordinates and object probabilities. The function

is a weighted sum of three components:

E(H) = λdepthEdepth(H) + λobjEobj(H) + λcoordEcoord(H) (2.3)

The function Edepth(H) compares a rendered depth image with the observed depth

image d. The function Eobj(H) compares a rendered mask with the predicted object

probabilities pji,c. Finally, the function Ecoord(H) compares a rendered image of object

coordinates with the predicted object coordinates y
j
i,c. The parameters λdepth, λobj,

and λcoord control the importance of the different components. Let us now examine

the components in detail.

Figure includes images and models from the dataset by Hinterstoisser et al. [14], published in 2012 under a CC BY 4.0 Licence.

FIGURE 2.2: The scoring function as it is used in [31]: To assess the quality of a pose
hypothesisH the function renders the 3D model of the object underH and then compares
rendered and observed images. The final value is a weighted sum of three pixel-wise
distance functions.

2.4.1 Depth Component

This component compares the observed depth image d and the rendered depth image

d̂(H). It is defined as the sum

Edepth(H) =

∑

i∈Mc(H) f
(

di, d́i(H)
)

|Mc(H)| (2.4)

28 Chapter 2. Pose Estimation Framework

over the set of pixels Mc(H) that are part of the object in the rendered images. The

pixels for which no depth information is provided by the sensor are additionally ex-

cluded. The function

f
(

di, d́i(H)
)

= min
(

|di − d́i(H)|, τd
)

/τd (2.5)

is the normalized and truncated Euclidean distance between the rendered and ob-

served camera coordinates at the pixel.

2.4.2 Object Component

The object component is again a sum over the pixels in Mc(H). It is defined as

Eobj(H) =

∑

i∈Mc(H)

∑|T |
j=1− log(pji,c)

|Mc(H)| . (2.6)

2.4.3 Coordinate Component

The component compares the predicted object coordinates y
j
i,c and rendered object

coordinates ýi,c(H). It is defined as

Ecoord(H) =

∑

i∈ML
c (H)

∑|T |
j=1 g

(

y
j
i,c, ýi(H)

)

|ML
c (H)| . (2.7)

Note that a different mask ML
c (H) is used here. It is identical to Mc(H), except for

additionally excluding pixels where pc,i < τpc. The reason is that pixels with predicted

pc,i below the threshold τpc are found to have unreliable object coordinate predictions.

The function

g
(

yi,j , ýi(H)
)

= min
(

|yi,j − ýi(H)|, τy
)

/τy (2.8)

performs a robust comparison of the rendered and predicted object coordinates at a

pixel i.

2.5 Simplified Notation

In the remaining part of the thesis we will use a notation that is simplified in two

respects:

(i) The three systems we will present are only concerned with one object c at a

time. We will omit the reference to the object c to improve readability.

2.5. Simplified Notation 29

(ii) The focus of the three systems lies not on the prediction of object coordinates

and object probabilities, but on later parts of the framework. We will thus see the ap-

plication of the forest as a kind of preprocessing and summarize all forest predictions

together with the original image x as observation and denote it as z.

31

Chapter 3

Probability Distributions in

Pose Space

Contents

3.1 Rotations . 32

3.1.1 Representing Rotations . 32

3.1.2 Lie Group of Rotations . 35

3.1.3 Averaging Rotations . 38

3.1.4 Probability Distributions over Rotations 39

3.2 A Probability Distribution over Poses 44

In this chapter we will take a closer look at the mathematical peculiarities of the pose

space. Since we follow a probabilistic sampling-based approach we will focus in par-

ticular on the problem of defining probability distributions over poses.

Let us remember the definition of a pose we gave in Section 1.1.1: A pose is a pair

H = (R,v), (3.1)

of a rotation R and a translation v. We consider R to be a 3× 3 rotation matrix 1 and v

as to be a simple 3D vector. Together, R and v describe a transformation

H(yi) = v +Ryi, (3.2)

mapping a point yi in the local coordinate system of the object to its representation

in the coordinate system of the camera. This kind of transformation is generally re-

ferred to as proper rigid transformation, as it preserves the distance between any two

transformed points. The pose space is also referred to as the space of proper rigid

transformations and is often denoted by SE(3). This space has a particular mathe-

matical structure known as Lie group [87].

1We will give a discussion of rotation matrices in Section 3.1.1

32 Chapter 3. Probability Distributions in Pose Space

In the course of this chapter we will not consider the structure of SE(3) directly.

Instead, we will address the rotation and translation components separately, as done

e.g. in [88]. The parametric distributions we will use in this thesis, will all model

rotation and translation as independent variables. This allows us to describe a joint

probability density as the product of two distributions over rotation and translation.

The space of translations is a vector space and identical to the 3D Euclidean space

R
3. Here, we can define probability distributions without any additional considera-

tions. The space of rotations on the other hand is not handled as easily. Defining a

probability distribution over rotation matrices is not a trivial task. Similarly to SE(3)

itself, the space of rotations has the internal structure of a Lie group. It is denoted by

SO(3).

In the following Section 3.1 we will discuss the space of rotations and how to con-

struct probability distributions in it. Finally, in Section 3.2 we will address the pose

space itself and describe a class of joint probability distributions over rotations and

translations, modeled as a product.

3.1 Rotations

In this section, we will take a look at rotations in 3D space. We will start by exploring

the different ways to represent rotations and then discuss the internal structure of

SO(3) as a Lie group. We will briefly consider the problem of averaging in the Lie

group SO(3). and finally, discuss probability distributions over SO(3).

3.1.1 Representing Rotations

Rotations in 3D Euclidean space can be represented in different ways, each of them

having a number of advantages and disadvantages. Here, we will discuss only the

most important representations with respect to this thesis. A survey on this topic can

be found in [89]. In [90] Shuster gives a more in depth discussion.

Matrix Representation

It is possible to describe any 3D rotation as a 3× 3 orthogonal matrix R with determi-

nant det(R) = 1. Such a matrix will be referred to as rotation matrix. We can construct

matrices for rotations of arbitrary angles around the three standard axes in the follow-

ing way:

Rx(α) =

1 0 0

0 cos(α) − sin(α)

0 sin(α) cos(α)

, Ry(β) =

cos(β) 0 sin(β)

0 1 0

− sin(β) 0 cos(β)

, Rz(γ) =

cos(γ) − sin(γ) 0

sin(γ) cos(γ) 0

0 0 1

.

(3.3)

3.1. Rotations 33

Rotation matrices have a number of advantages:

• The representation is unique in the sense that every rotation is represented by

exactly one rotation matrix.

• A rotation, represented as matrix, can be applied to a vector by simple vector-

matrix multiplication.

• Two rotations can be combined, as if being executed subsequently, by simple

matrix multiplication.

• The direction of a rotation can be inverted by inverting the matrix. Since rotation

matrices are orthogonal, this is equivalent to transposing the matrix R−1 = R⊺.

• We can calculate the angle of a rotation as R as

ψ = arccos

(

1

2
(tr(R)− 1)

)

, (3.4)

where tr(R) is the trace of the matrix R

• We can calculate the difference rotation between two rotation matrices R0 and R1

as R0R
−1
1 .

• We can define a meaningful distance metric between rotations R0 and R1 as

ψR0,R1
= ψR1,R0

= arccos

(

1

2

(

tr(R−1
0 R1)− 1

)

)

. (3.5)

The resulting ψR0,R1
is the angle of the difference rotation between R0 and R1.

On the other hand rotation matrices also come with some disadvantages: They

require nine parameters even though rotations have only three degrees of freedom.

Additionally, it is not straightforward to define probability distributions over rotation

matrices.

Nevertheless, due to their numerous advantages, we will use rotation matrices as

our standard representation during this thesis.

Euler Angles

Euler angles describe any rotation in 3D as a sequence of three rotations around differ-

ent axes. Any 3D rotation can be represented by a 3-tuple of such angles. Different

conventions about the particular order of axes and rotations exist [89]. One approach

is to use angles γ, β, α to parametrize subsequent rotations around the three axes z, y, x

in this order.

34 Chapter 3. Probability Distributions in Pose Space

We can convert the Euler angles, described above, into matrix representation by

multiplying the matrices from Eq. 3.3,

R = Rx(α)Ry(β)Rz(γ), (3.6)

thus sequentially executing rotations around the three axes.

A big advantages of the Euler angle representation is that it requires only three

parameters and that all possible configurations of these parameters describe valid ro-

tations.

The downside of Euler angles lies in the interdependence of the parameters. In

an extreme case, when two of the three rotation axes align the so-called gimbal lock

occurs. In such a case changing any of the two corresponding angles has an identical

effect. Euler angles are not unique, as multiple sets of angles can represent the same

3D rotation.

In this thesis, we will not use Euler angles directly to represent rotations. We will

however make use of the idea and Eq. 3.6.

Axis-Angle and Euler Vector

It is possible to describe any element of SO(3) as a rotation around a single axis. The

axis angle representation consists of a unit vector defining a rotation axis and a scalar

value describing the angle of the rotation.

The Euler vector, also known as rotation vector is a condensed form of this represen-

tation. It describes a rotation using a single 3D vector ω. The orientation of this vector

corresponds to the axis of rotation. The Euclidean length of the vector |ω| corresponds

to the angle of the rotation.

The Euler vector combines two major advantages: First, it consists of only three

parameters and as with the Euler angles each possible combination of the values cor-

responds to a valid rotation. It is thus possible to define probability distributions over

the parameter space. Second, even though the Euler vector is not unique, we can

achieve a unique one to one representation by restricting the range of allowed param-

eters. Since the length of the vector |ω| corresponds to the angle of rotation, the same

rotation can be represented by multiple vectors. We can add or subtract any integer

multiple of 2π to the length a vector, and it will still represent the same rotation. In-

deed we require only the set of vectors with |ω| < π 2 to represent all possible rotations

[91]. Any rotation by a larger angle can equally be represented, by a rotation in the

opposite direction.

2Strictly speaking the rotations with an angle of exactly π or 180 degrees are not covered in the volume
|ω| < π. We will not address this issue, because the probability of encountering a rotation of this exact
angle is zero for any probabilistic model we will consider in this thesis.

3.1. Rotations 35

Euler vectors are deeply connected with the matrix representation, we will address

this connection explicitly in Section 3.1.2. In this thesis, Euler vectors will play an

important role for the definition of probability distributions over rotations.

3.1.2 Lie Group of Rotations

The set of 3D rotations has a mathematical structure referred to as Lie group. The

particular Lie group of 3D rotations is called the special orthogonal group, denoted as

SO(3). Gallier and Quaintance [87] give thorough introduction and discussion on the

topic of Lie groups including SO(3). A very concise summary on the use of SO(3) for

computer vision can be found in [92].

Lie groups are groups that are at the same time differentiable manifolds [87]. We will

first discuss SO(3) as a group and then look at its property as a manifold.

SO(3) as Group

Let us first discuss the property of being a group with respect to SO(3). A group

consists of a set of elementsG and a group operation a·b that can be applied to any two

of the elements a, b ∈ G. In the case of SO(3) the elements correspond to 3D rotations.

The group operation corresponds to the successive application of the rotations. A

group has to fulfill the following requirements [93]:

• Closure: A group has to be closed with respect to its group operation. This

means that every group element a combined with any other group element b via

the group operation a·b, will result in another member of the group. Considering

SO(3), this requirement is fulfilled because any successive application of two

rotations will result in another rotation.

• Associativity: For any group elements a, b, c it has to hold that (a ·b) ·c = a ·(b ·c).
This is true for the successive application of rotations.

• Identity element: There has to be an identity element e, such that e ·a = a = a ·e
for any element a. There is such an element in the SO(3). Namely, a rotation of

angle zero represented as identity matrix.

• Inverse elements: For every element a, there has to exist an inverse element b,

such that a · b = e = b · a. In the group of 3D rotations such an element can be

found for each rotation by inverting the direction of rotation.

SO(3) as Manifold

Let us now look at the properties of SO(3) as a smooth manifold. Smooth manifolds

are spaces that are locally similar to the Euclidean space R
n and allow for the use of

36 Chapter 3. Probability Distributions in Pose Space

calculus [94]. Intuitive examples of smooth manifolds would be the curved surfaces

in 3D Euclidean space, or curved lines in the plane. We will use the sphere in R
3

as an example illustrate the points we will make about the manifold SO(3). As the

2D surface of the sphere is embedded in the 3D Euclidean space, the 3D manifold of

rotation matrices SO(3) is embedded in the 9D space of 3×3 real valued matrices [95].

In both cases the surface of the manifold is curved. This makes it difficult to perform

operations like interpolation and averaging. It also makes it hard to define probability

distributions directly on the manifold.

There is however a tool that can help with these issues. In the case of the sphere as

well as for SO(3) it is possible to define tangent spaces. A tangent space is a real valued

vector space of the same dimension as the manifold. It will allow us to locally perform

vector arithmetic, like the addition and subtraction of vectors. A tangent space can be

attached at any point on the manifold. Using the example of the sphere in R
3, a tangent

space coincides with the 2D Euclidean space R
2. Figure 3.1 provides an illustration.

Each point in the tangent space can be mapped to a point on the manifold. In the

context of this thesis we will consider tangent spaces that use a particular kind of

map, called the exponential map for this connection.

a) b)
Flag of the United Nations taken from Wikipedia, public domain.

FIGURE 3.1: Manifolds and tangent spaces: a): A tangent space of the sphere in R
3 at its

north pole. The sphere is a manifold. Its tangent space is a vector space corresponding
to R

2. Each point in the tangent space can be mapped to a point on the manifold. The
map from this particular tangent space to the manifold is called exponential map. The
origin of the tangent space is mapped to the north pole. If one were to move away from
the origin in a straight line this would coincide with moving south on the sphere. Note
that the south pole of the sphere corresponds to a circle in the tangent space. b): The
flag of the united nations is based on an azimuthal equidistant projection of the earth, which
corresponds to the exponential map [96].

Tangent Space at the Identity Element

We will now describe how to construct a tangent space for the Lie group SO(3). First,

we will consider a tangent space at the identity rotation. The tangent space at the

3.1. Rotations 37

identity element of a Lie group is called Lie algebra [87]. The Lie algebra of SO(3) is

denoted by so(3).

We can represent the identity rotation as the 3 × 3 identity matrix. The basis vec-

tors of the tangent space at this location are given by the derivatives of the matrix

with respect to rotations around the three standard axis of the coordinates system [87,

92]. This corresponds to the derivatives of the Euler Angle parametrization given in

Equation 3.6 with respect to the three angles at the position α = 0, β = 0, γ = 0. The

resulting basis of our tangent space consists of three matrices:

G1 =

0 0 0

0 0 −1
0 1 0

, G2 =

0 0 1

0 0 0

−1 0 0

, G3 =

0 −1 0

1 0 0

0 0 0

. (3.7)

Any point ω× in the tangent space can now be expressed as a linear combination

resulting in a skew symmetric matrix

ω× = ω1G1 + ω2G2 + ω3G3 =

0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

. (3.8)

We can now represent any rotation as a 3D vector ω = (ω1, ω2, ω3)
⊺ of coefficients.

Interestingly, this vector coincides exactly with the Euler vector discussed in Sec-

tion 3.1.1 [92, 97]. To simplify notation, we will refer to both, the skew symmetric

matrix ω× and the corresponding Euler vector ω, as elements of the tangent space.

Exponential Map and Logarithmic Map

Let us now consider the mappings between the tangent space and the manifold, i.e.

between the Lie algebra so(3) and the Lie group SO(3). Since the vector ω of coeffi-

cients is equivalent to the Euler vector, these maps will also describe the conversion

between Euler vector representation and matrix representation.

To map an element ω× of the Lie algebra to the Lie group, we can use the following

equation [87, 92]. It is called the exponential map of SO(3):

R = exp(ω×) = I+
sin(ψ)

ψ
ω× +

1− cos(ψ)

ψ2
ω2

×, (3.9)

where ψ = |ω| is the angle of rotation, equal to the vector norm of the Euler vector.

The inverted mapping of an element R from the Lie group to the Lie algebra is

called the logarithmic map. It can be performed [87, 92] by first finding the angle ψ of

rotation via Eq. 3.4. If ψ 6= 0 we can proceed to calculate the skew symmetric matrix

38 Chapter 3. Probability Distributions in Pose Space

as

ω× = log(R) =
ψ

2 sin(ψ)
(R−R⊺) . (3.10)

We will use the following simplified notation with respect to the exponential and

logarithmic map: Since the Euler vector ω can be trivially derived from the corre-

sponding skew symmetric matrix ω× and vice versa through Eq. 3.8, we will use the

same expressions log(·) and exp(·) to refer to the maps with respect to skew symmetric

matrices and with respect to the Euler vector representation.

Tangent Spaces at Other Locations

Let us now consider how to use a tangent space at a general location R0 other than the

identity element. We will follow [98] 3 in their definition of functions for the exponen-

tial and logarithmic map corresponding to the tangent space at particular elements.

We will use ωR0
to denote an element of the tangent space at a particular location

R0 on SO(3). To map ωR0
to the corresponding element R on the manifold SO(3) we

can use the function

R = expR0
(ωR0

) = exp(ωR0
)R0. (3.11)

To map an element R of SO(3) to the corresponding element ωR0
of the tangent

space at location R0, we can use

ωR0
= logR0

(R) = log(RR−1
0). (3.12)

By combining Eq. 3.11 and Eq. 3.12 we can define a function fR0→R1
(ωR0

) that

maps an element from one tangent space at R0 to the corresponding element in an-

other tangent space at a different location R1:

ωR1
= fR0→R1

(ωR0
) = log

(

exp(ωR0
)R0R1

−1
)

. (3.13)

Note that as long as we consider only elements |ωR0
| < π, the map fR0tR1

is a one-to-

one mapping and invertible as

ωR0
= f−1

R0→R1
(ωR1

) = fR1→R0
(ωR1

) = log
(

exp(ωR1
)R1R0

−1
)

. (3.14)

3.1.3 Averaging Rotations

Considering the manifold structure of SO(3) averaging is not trivial. Rotations can be

averaged in a variety of different ways.

3Note that the definition in [98] uses a multiplication on the left in the exponential map while we use
a multiplication on the right. This difference leads to tangent spaces that are rotated around their origin,
but otherwise identical [92].

3.1. Rotations 39

An overview on the topic can be found e.g. in [95, 99, 100]. A rotation average can

be found by calculating the matrix mean and projecting it back onto the manifold [99].

Other methods find an average by iteratively solving a minimization problem [95].

In this thesis we will always use an approximate solution to the following matrix-

based mean as described in [100]. Given a set of rotation matrices R = {R1, . . . R|R|},
the mean rotation is defined as

Rmean = argmin
R

|R|
∑

i=1

ψ2
R,Ri

, (3.15)

with the angular distanceψR,Ri defined according to Eq. 3.5. The approximate solution

to Eq. 3.16 can be found via Singular Value Decomposition (SVD), by calculating UDV =
∑|R|

i=1Ri and

Rmean ≈ USV, where S =

1 0 0

0 1 0

0 0 det(U)det(V)

. (3.16)

3.1.4 Probability Distributions over Rotations

There exists a variety of different approaches of modeling probability distributions

over Lie groups. A straightforward approach with respect to the generation of sam-

ples, is the definition of probability densities in the tangent spaces, e.g. [92, 101, 102].

Many techniques however, such as importance sampling, additionally require the

evaluation and comparison of probability densities. It is not trivial to achieve this

in a way, doing justice to the Lie group structure of SO(3). Many authors take a mea-

sure theoretic approach [91, 103–105], and define probability distributions directly on

the manifold. Densities can be defined with respect to the Haar measure [106], which

acts as "uniform distribution" on SO(3) [91].

In the subsequent sections, we will take the following approach: We will begin

by describing distributions as density functions in the tangent spaces of SO(3). Ad-

ditionally, we will take special precautions when comparing two densities defined in

different tangent spaces. Following this approach, we will introduce a useful class of

probability distributions on SO(3), called uniform axis random spin (UARS) distribu-

tions [91]. Finally, our approach will coincide with the measure theoretic perspective

and will lead us to equivalent equations for the comparison of UARS densities, as the

Haar measure does.

40 Chapter 3. Probability Distributions in Pose Space

Probability Distributions in Tangent Space

One of the important applications of the Lie algebra so(3) its ability to easily define

probability distributions over rotations. Since so(3) is a vector space, we can handle

distributions just as we would normally do in R
3. By using the exponential map from

Eq. 3.9, the elements sampled from a distribution in a tangent space can be mapped

to SO(3), thus indirectly defining a distribution over rotations. It would be possible

to define all probability distributions we require in the tangent space at the identity

element. This was effectively done in [102].

A problem with this approach is that a distribution defined in the tangent space

at the identity will be distorted as it is mapped to the manifold via the exponential

map. The situation is comparable to the inevitable distortions in a 2D map of planet

earth. Consider the map in Figure 3.1 b). Imagine drawing a circle of a specified radius

on the map and consider then the corresponding shape on a 3D globe. The resulting

shape on the globe depends on the position of the circle. A circle drawn around the

center of the map corresponds to a circular shape on the globe. If we draw a circle

of equal radius shifted towards the map’s edge, e.g. in Antarctica, the corresponding

shape on the globe will become smaller and distorted.

Similarly, if we define a distribution in so(3), it will undergo a deformation when

mapped to SO(3). This distortion will be less severe for distributions centered close

to the origin and more extreme for distributions that are centered further away from

the origin. A visualization of the effect is shown in Figure 3.2. Note that the distorted

distributions (in the top row) are more compact, as it would be the case for the circles

drawn on the map.

A solution to this problem is to always define a distribution in the tangent space

located at the distribution center. This is the approach of most literature, e.g. [92, 101,

104], and we will follow it in this thesis as well.

There are however some pitfalls when using probability distributions defined in

different tangent spaces. While generally unproblematic with respect to sampling,

special care has to be taken for the comparison of probability densities defined in dif-

ferent tangent spaces.

Consider the following problem: Two probability distributions, with density

paR0
(ωR0

) and pbR1
(ωR1

), are defined in tangent spaces at the positions R0 and R1 re-

spectively. We assume that the support of the distributions is limited to the volume

|ωR0
| < π, |ωR1

| < π, thus covering all possible rotations once. We are now interested

in comparing the probability densities for a particular location R on the manifold, i.e.

we want to find the ratio of the two densities at R. Such a computation is required e.g.

for the importance sampling techniques, as the one we will use in Chapter 4.

Note that we cannot simply use Eq. 3.12 and compare paR0
(logR0

(R)) with

3.1. Rotations 41

std.= 0.05π std.= 0.1π std.= 0.15π

FIGURE 3.2: Probability distributions over rotations, visualized by transforming an arrow
on the surface of a sphere according to sampled rotations: Defining distributions in the
wrong tangent space can lead heavy to distortions. We use isotropic 3D normal distribu-
tions with three different standard deviations to sample points in different tangent spaces
of SO(3). Top: We define the distribution in the tangent space at the identity. The center
of the distribution lies at (0, π, 0)⊺. We map the sampled points to SO(3) via Eq. 3.9. This
procedure leads to distorted distributions on SO(3). Bottom: We define the distributions
in the tangent space at the center of the distribution and map the sampled points to SO(3)
via Eq. 3.11. This procedure resolves the distortion. Note that we use the same standard
deviations in the top and bottom row.

pbR1
(logR1

(R)) as one might expect because the two distributions are defined in dif-

ferent tangent spaces. They are thus essentially distributions of different random

variables. Instead, if we want to do a meaningful comparison, we have to compare

probability densities in the same tangent space. We propose to do the comparison of

densities in the tangent space at R, i.e. at the very location we are interested in. 4

We can use Eq. 3.13 to map elements from the tangent spaces at R0 and R1 to their

representation in the tangent space at R. The elements sampled from paR0
(ωR0

) and

pbR1
(ωR1

) will follow a different distribution when mapped to their representation in

the tangent space atR, where they should be compared. We will denote the probability

density functions of these distributions as pbR(ωR) and paR(ωR).

Remembering Eq. 3.12, we can see that the location R, we are interested in will

be represented at the origin of the tangent space at R. Thus we have to compare the

4We choose to do this location purely for convenience. In principle, the comparison can be done in any
tangent space: If we were to represent the location R in a different tangent space, the densities of both
distributions would change by a common factor. The ratio of densities would thus remain unchanged.

42 Chapter 3. Probability Distributions in Pose Space

probability densities pbR(ωR) and paR(ωR) at the origin ωR = (0, 0, 0)⊺. Our goal is now

to calculate the ratio
paR (ωR = (0, 0, 0)⊺)

pbR (ωR = (0, 0, 0)⊺)
. (3.17)

We can calculate the individual densities as

paR (ωR = (0, 0, 0)⊺) = paR0

(

ωR0
= logR0

(R)
)

φ(ψR0,R). (3.18)

The calculation for pbR (ωR = (0, 0, 0)⊺) can be done correspondingly. Based on the

assumption |ωR0
| < π, we can calculate the key factor as

φ(ψR0,R) =
ψ2
R0,R

2(1− cosψR0,R)
. (3.19)

It is a function of the angle ψR0,R between the two tangent space locations R0 and R

as defined in Eq. 3.5. A derivation of φ(ψR0,R) can be found in section A.1. 5 We can

now proceed to calculate the ratio of probability densities as

paR (ωR = (0, 0, 0)⊺)

pbR (ωR = (0, 0, 0)⊺)
=
paR0

(

ωR0
= logR0

(R)
)

φ(ψR0,R)

pbR1

(

ωR1
= logR1

(R)
)

φ(ψR1,R)
. (3.20)

In summary, we have discussed probability distributions in the tangent spaces

of SO(3) and how to compare them. In order to avoid distortions, it is sensible to

define distributions in the tangent space at the distribution center. We can compare

the probability densities of two distributions defined in different tangent spaces by

multiplying a factor (see Eq. 3.20). In order for this method to be applicable, we require

the probability densities to be restricted to the volume |ωR0
| < π and |ωR1

| < π. In

the following section, we will discuss a useful class of distributions that fulfills this

requirement.

UARS distributions

We will now take a look at a particular class of probability distributions in SO(3)

termed uniform axis random spin (UARS) [91].

In [105] Qiu provides an introduction to the class and an overview of the many well

studied distributions on SO(3) that fall into this category. This includes the isotropic

matrix version of the von Mises-Fisher distribution [108, 109], Bunge’s Gaussian distribu-

tion [110], and the isotropic normal distribution on SO(3) [111, 112] UARS distributions

will play an important role in Chapter 4, where we will use them as part of the PF

framework.
5A different derivation of the same factor is given by Vvedensky in [107].

3.1. Rotations 43

We will introduce UARS distributions by describing the corresponding sampling

process and then discuss how to define and compare their densities in tangent spaces

in the sense of Eq. 3.20. Finally, we will see that this procedure is equivalent to using

the density with respect to the Haar measure provided in [91].

UARS distributions describe a random perturbation around a specified rotation

R0. They take R0 as staring point and apply a rotation of a randomly selected angle

around a uniformly selected random axis.

They are defined through the following sampling process: First, a random, uni-

formly distributed rotation axis is drawn. This can be achieved by sampling a point

from a 3D isotropic, zero centered Gaussian distribution and normalizing it to create

a random unit vector û. Then, a rotation angle ψ is drawn from a circular distribution

with density C(ψ;κ) over the interval (−π, pi]. The parameter κ is a concentration

parameter determining how far C(ψ;κ) is spread out.

The distribution C(ψ;κ) is required to be symmetric about 0. Depending on the

particular choice of C(ψ;κ), UARS can be shown to be equivalent to other classes of

distributions. In [105] Qui gives a summary of these correspondences for different

C(ψ;κ).

The angle, sampled from C(ψ;κ), and the axis û are combined

ωR0
= ψû (3.21)

and interpreted as a point in the tangent space at R0. Finally, the point is mapped to

SO(3) via Eq. 3.11.

We can express UARS distributions as probability density in the tangent space at

R0:

pUARS
R0

(ωR0
;R0, κ) =

C(ψ = |ωR0
|;κ)

2π|ωR0
|2

. (3.22)

A derivation of Eq. 3.22 can be found in the Appendix in Section A.2. Note that since

C(ψ;κ) is limited to (−π, pi], Eq. 3.22 is limited to the domain where |ω| < π. This

is exactly the requirement we made for the use of Eq. 3.20. We can thus compare

the densities of two UARS distributions with parameters (κa, R0) and (κb, R1), at a

particular rotation R by calculating:

pUARS
R (ωR = (0, 0, 0)⊺ ;κa, R0)

pUARS
R (ωR = (0, 0, 0)⊺ ;κb, R1)

=
pUARS
R0

(

ωR0
= logR0

(R);κa, R0

)

φ(ψR0,R)

pUARS
R1

(

ωR1
= logR1

(R);κb, R1

)

φ(ψR1,R)
, (3.23)

44 Chapter 3. Probability Distributions in Pose Space

where the individual densities in the numerator and denominator can be expressed as

pUARS
R (ωR = (0, 0, 0)⊺ ;κa, R0) (3.24)

= pUARS
R0

(

ωR0
= logR0

(R);κa, R0

)

φ(ψR0,R) (3.25)

=
C(ψ = |ωR0

|;κ)
4π (1− cos(|ωR0

|)) (3.26)

The calculation for pUARS
R (ωR = (0, 0, 0)⊺ ;κb, R1) can be done correspondingly.

Note that Eq. 3.26 is proportional to the measure theoretic density with respect to

the Haar measure, given in [91]:

fUARS(R;R0, κ) =
4π

3− tr(R−1
0 R)

C

(

arccos

(

1

2
(tr(R−1

0 R)− 1)

)

;κ

)

. (3.27)

The proportionality becomes clear by using |ωR0
| = ψ(R,R0) =

arccos
(

1
2(tr(R

−1
0 R)− 1)

)

. It is thus equivalent to compare two UARS distribu-

tions through Eqs. 3.23 and 3.26 or to compare them by using the density with respect

to the Haar measure given in Eq. 3.27.

In summary, the class of UARS distributions provides a useful tool, to model sym-

metric probability distributions over rotations. Since their probability density function

in the tangent space is limited to |ωR0
| < π we can directly apply our mathematical

tools from Section 3.1.4 and compare the probability densities in a meaningful way.

The comparison is equivalent to using the densities with respect to the Haar measure

as given in [91] (Eq. 3.27). We can apply UARS distributions in the context of im-

portance sampling methods, or other procedures requiring comparison of probability

densities.

3.2 A Probability Distribution over Poses

Let us finally consider the problem of defining a local parametric distribution over

poses. We would like to define a distribution over poses H = (R,v) that is, similarly

to a normal distribution or a UARS distribution, concentrated around a center pose

H0 = (R0,v0). We will refer to this distribution as UARS-Normal distribution.

To achieve this, we will consider rotation R and translation v to be two indepen-

dent random variables. We model the translational part as a 3D multivariate normal

distribution fN (v; Σ,v0) over R3, centered at v0 and with covariance Σ. The rotational

part is modeled as UARS distribution fUARS(R;R0, κ). Even though UARS distribu-

tions can be defined based on any symmetric circular distribution C(ψ;κ), we will

assume ψ to follow a von Mises distribution (see [113]). The von Mises distribution has

3.2. A Probability Distribution over Poses 45

a density function that can be feasibly evaluated, and it is a close approximation of the

wrapped normal distribution [114].

Since rotation and translation are independent, we can sample from it by generat-

ing R and v separately. We define a probability density as the product

fUARS−N(H;H0,Σ, κ) = fN (v; Σ,v0)fUARS(R;R0, κ). (3.28)

We will refer to this kind of distribution as a UARS-Normal distribution. Even

though this class of distribution is somewhat limited, as it assumes independence be-

tween rotation and translation, it will be an important building block in the systems

described in the following Chapters 4 and 5.

47

Chapter 4

System I: Pose Tracking

Contents

4.1 Introduction . 47

4.1.1 Contributions . 49

4.2 Related Work . 49

4.3 Method . 50

4.3.1 Bayes Filter . 51

4.3.2 PF for Pose Tracking . 52

4.3.3 Our Motion Model . 53

4.3.4 Our Observation Likelihood 55

4.3.5 Our Proposal Distribution . 55

4.4 Experiments . 57

4.5 Conclusion . 62

In this chapter we use the one-shot pose estimation framework (see Section 2) as a

starting point to develop a system for online pose tracking (see Section 1.1.2). The

system uses sampling to represent and to reason with uncertainties. Note that the

system has been published in [48].

4.1 Introduction

Many applications for object pose estimation require not a single estimated pose, but

rather a stream of pose estimates produced in real-time from a stream of visual input:

In AR systems [30] a new frame is rendered multiple times per second and might

require updated pose estimates. An autonomous vehicle [27–29] can benefit from a

constant flow of new pose estimates for itself and other traffic participants. A robotic

system that attempts to grasp an object [26] handed to it by a human can readjust its

movements by making use of real-time pose estimates.

One way to approach this problem is to simply run a fast one-shot pose estimation

system repeatedly for every frame. There are two reasons this solution is sub-optimal:

48 Chapter 4. System I: Pose Tracking

First, the system would not make use of all available information, as it disregards

everything observed in previous frames. This could lead to extreme error in individual

difficult frames, showing e.g. a partially occluded object. Second, such a system would

waste resources by starting a new search from scratch in every frame, even though the

object is likely to be in the vicinity of the last estimated position.

We could mitigate these issues by modifying the system to only perform a local

search centered around the last estimate. Such an approach would greatly reduce

computation time and can even improve performance, as extreme outlier estimates

become impossible. Indeed many successful tracking applications use this idea of a

fixed search window or radius, e.g. [115, 116].

Note that the key ingredient to these improvements is an assumption we make

about the possible movements of the object. We can only restrict ourself to the local

search by assuming that the object cannot do arbitrary motions between two frames,

but will stay in the vicinity of its last pose. Upon closer inspection, we find that there

is an additional assumption at the core of this approach: In every new frame, we make

the assumption that our last estimate was, at least approximately, correct. If this is not

the case, we will search in the wrong area and are doomed to fail.

The tracking system we will present in this chapter is based on reconsidering the

two assumptions by using probability theory. This idea is called Bayes filtering [117].

Instead of making the hard assumption that the object cannot move out of a certain

window around the last pose, we use a probability distribution to describe the motion

we expect between two frames. Instead of making the commitment that our last esti-

mate was approximately correct, we use another probability distribution to describe

our belief about the object’s pose in the last frame.

When we observe a new frame, this latter probability distribution is updated to

account for the newly observed information and for the fact that object might have

moved in the mean time. There are different algorithms implementing Bayes filtering.

The arguably most famous being the Kalman filter [118], which models said distribu-

tions as Gaussian. This approach however has some limitations, such as the fact that

a Gaussian representation is uni-modal and quite restrictive. Since then, many exten-

sions of the Kalman filter have been proposed to overcome these issues [119].

We will take a different path. The system we will present is based on a different

implementation of the Bayes filter, namely the PF [32]. PF methods represent their

belief about the current state by using a set of samples, referred to as particles. This

is a much more flexible representation compared to the Gaussian one. In this chap-

ter we will present a pose tracking method based on the online tracking formulation

from 1.1.2. We will construct this system based on the PF recipe, but rely on many of

the well-tried pose estimation ingredients from the one-shot framework by [31] (see

Chapter 2).

4.2. Related Work 49

One of the key ingredients for any PF-based system is its observation model. In our

case, it describes the likelihood of observing a particular image, given the object is in

a particular pose. We will use the scoring function from [31] in this context, as it can

make use of the robust predictions made by the random forest.

The fact that the pose space is 6D, is potentially problematic for a PF system. The

higher the dimensionality of the state space–in our case the 6D pose space–the more

particles are required to adequately represent a probability distribution. To reduce

the number of required particles one often uses a data-driven proposal distribution to

distribute particles efficiently [117]. We make use of the hypotheses generation proce-

dure from [31] to construct an effective proposal distribution. We evaluate our system

on two datasets and are able to achieve superior results compared to a competitor and

the one-shot system from [31].

4.1.1 Contributions

In summary, the main contributions presented in this chapter are:

• A new 6D pose tracking framework, based on the concept of predicting 3D ob-

ject coordinates, which helps to generalize better to real-world settings of fast-

moving objects and occlusions.

• A novel proposal distribution, based on object coordinate regression.

• A system that exceeds previous state-of-the-art results on 6D model-based track-

ing.

The rest of the chapter is structured as follows: We will start with a survey of the

related work (Section 4.2) followed by a description of the system itself (Section 4.3).

We will then continue to describe the experiments (Section 4.4) and end with a short

conclusion (Section 4.5).

4.2 Related Work

Almost two decades ago the PF has been introduced for 2D visual tracking by Isard

and Blake [120]. Based on a statistical observation model and a motion model the PF

approximates the posterior distribution of the object’s position in a non parametric

form, using a set of samples. Ten years later Pupilli et al. [121] adapted the framework

to 6-DOF camera tracking using edge features. Shortly later Klein et al. [101] presented

an implementation that utilized the GPU for the evaluation of its observation model,

which usually is the bottleneck in PF applications. The GPU implementation enabled

them to deal with hidden edges while allowing a speedup [101].

50 Chapter 4. System I: Pose Tracking

The number of necessary particles and therefore the runtime can be reduced by

guiding particle sampling with a proposal distribution. Ideally the proposal distribu-

tion is very close to the posterior distribution. Furthermore, it needs to exploit both the

observation model and the motion model in order to improve over the standard PF as

well as over one shot pose estimation. Bray et al. [122] improved hand pose tracking

with a proposal distribution, which was defined as the mixture of two distributions

both represented as a particle ensemble. The first particle ensemble is constructed

in the default manner by applying the motion model to the sampled posterior dis-

tribution of the previous frame. The second ensemble is constructed by moving the

resulting particles further to local optima and using them as centers of a mixture of

normal distributions. Teuliere et al.[123] used a similar approach to edge-based track-

ing of simple objects from luminance images. Corresponding approaches for 3D pose

tracking from RGB-D videos can be found in [37, 38, 124].

A PF that has to operate on the 6D Euclidean group SE(3) brings some theoretical

challenges. The definition of probability distributions and calculation of average rota-

tions is not straightforward. A theoretical analysis of these issues can be found in [125]

and [104]. In this work we will consider the rotational and translational components

of SE(3) separately (see Chapter 3).

The question of the best image features for the observation model has sparked

recent research. Stückler et al. [126] use RGB-D images to learn 3D surfel maps of

objects and use them in a PF operating on RGB-D. Choi et al. [127] present in their

recent work a highly optimized GPU implementation that uses a traditional mesh

representation. Their observation model is based on comparing rendered images and

observations using color as well as depth features.

In this work we build a PF tracking system using the scoring function of [31] (see

Figure 1.4 g or Section 2.4). We carefully design a proposal distribution that intelli-

gently exploits the input RGB-D image as well as the output of the trained random

forest.

In this way we combine the robustness of the forest with respect to changes in

illumination and the robustness of the PF framework with respect to occlusions and

other visual ambiguities. Finally, our approach also uses GPU rendering to efficiently

evaluate the observation model.

4.3 Method

The Method Section of this chapter is structured as follows: In Section 4.3.1 we will

reiterate the online tracking task and describe the Bayes filtering framework for our

setting. Then, in Section 4.3.2, we will describe our PF system. We will continue with

4.3. Method 51

a description of our motion model (Section 4.3.3) and our definition of the observa-

tion likelihood (Section 4.3.4). Finally, in Section 4.3.5 we will describe how we adapt

sampling of particles according to a proposal distribution which concentrates on ar-

eas where high particle likelihood is expected. This is a main component to facilitate

efficient and robust pose tracking.

4.3.1 Bayes Filter

Our system addresses the online tracking problem as defined in Section 1.1.2. Given a

stream of observations z1 . . . zt of a moving object, our goal is to find an estimated ob-

ject pose Ĥt = (R̂t, v̂t) for each frame t, while making use of all previous information

z1 . . . zt.

We assume our observations zt to be the combination of a recorded RGB-D image

x and the forest predictions, which are computed in a preprocessing step as described

in Section 2.1.

To solve this task, our Bayes filter approach assumes an underlying probabilistic

model called Hidden Markov Model (HMM) [128]. The HMM describes a probability

distribution over a discrete time series of two variables:

• The states (X1 . . . ,Xt). In our setting we define the state Xt as combination

Xt = (Ht, v̇t, ω̇t), (4.1)

of the poseHt and two 3D velocity vectors v̇t and ω̇t, describing the translational

and rotational motion of the object between the current and previous frame.

• The observations zt, as discussed above.

Based on the probabilistic framework of the HMM, we are mainly interested in the

posterior distribution p(Xt|z1:t) of the state Xt at time t conditioned on all previous

observations z1:t = z1 . . . zt. This posterior corresponds to the system’s belief about

the current state. It will be the foundation of our pose estimates Ĥt.

Bayes filters maintain a representation of the posterior and update it with every

new observation. For this, they rely on the following property of the HMM: By com-

bining the posterior distribution p(Xt|z1:t) at time t with a new observation zt+1, we

can recursively calculate the posterior p(Xt+1|z1:t+1) for the new frame

p(Xt+1|z1:t+1) ∝ p(zt+1|Xt+1)p(Xt+1|z1:t) (4.2)

= p(zt+1|Xt+1)

∫

p(Xt+1|Xt)p(Xt|z1:t)dXt, (4.3)

where p(zt+1|Xt+1) is referred to as the observation model and p(Xt+1|Xt) as the motion

model.

52 Chapter 4. System I: Pose Tracking

The observation model describes the likelihood of an observation zt+1 given a state

Xt+1. Since our observations do not depend on the velocity of the object, we will define

our observation model p(zt+1|Ht+1) = p(zt+1|Xt+1) as purely depended on the pose.

We will discuss our observation model in Section 4.3.4.

The motion model describes the probability of a state Xt+1, given the previous

state Xt. It is a probabilistic model for the object motion we expect to see between two

frames. Since the velocity vectors are calculated deterministically from the previous

motion, we will describe only the probability p(Ht+1|Xt = (Ht, v̇t, ω̇t)) of the new

pose instead of p(Xt+1|Xt). We will discuss our motion model in Section 4.3.3.

4.3.2 PF for Pose Tracking

PFs approximate the posterior as a set of samples. Following this approach, we

describe the current posterior distribution p(Xt|z1:t) as a set of samples Pt =

{H1
t , . . . , H

K
t }, with velocity vectors v̇kt and ω̇kt attached to each Hk

t . These samples

will be referred to as particles. We use K to denote the number of particles, which is

fixed over time.

With each new frame t+ 1 a new set of particles Pt+1 is found in three steps:

1. Sampling: For each particle Hk
t an intermediate particle H̃k

t+1 =
(

ṽkt+1, R̃
k
t+1

)

is

sampled according to the motion model p(H̃k
t+1|Hk

t , v̇
k
t , ω̇

k
t). New velocities are

calculated as

v̇kt+1 = ṽkt+1 − vkt and ω̇kt+1 = log
(

R̃kt+1R
k
t

−1
)

, (4.4)

where log(·) is the logarithmic map as defined in Section 3.1.2.

2. Weighting: Each intermediate particle is assigned a weight wkt+1, which is pro-

portional to the likelihood p(zt+1|H̃k
t+1) of the observed data given the pose

H̃k
t+1.

3. Resampling: Finally, the set Pt+1 = {H1
t+1, . . . , H

K
t+1} of unweighted particles

(with their attached velocities), is randomly drawn from {H̃1
t+1, . . . , H̃

K
t+1} using

probabilities proportional to the weights wkt+1.

After each new iteration of the PF we calculate our pose estimate Ĥt by separately av-

eraging the translational and rotational (see Eq. 3.1.3) components of all particles Hk
t .

The number of particles required to approximate the 6D posterior distribution can

be drastically reduced if the sampling is concentrated in areas where one expects the

true pose of the object. This is done using a proposal distribution q(Ht+1|Ht, v̇t, ω̇t)

in the sampling step instead of the original motion model. To compensate for the

4.3. Method 53

FIGURE 4.1: Our tracking pipeline. For each frame t the RGB-D image (a) is processed
by the forest to predict object probabilities and local object coordinates (b). We use the
observed depth from the original image, the forest predictions and the particles from the
last frame together with our motion model (d) to construct our proposal distribution (c).
Particles are sampled (e) according to the proposal distribution, then weighted (f) and
resampled (g). Our final pose estimate is calculated as mean of the resampled particles
(h).

fact that we sample from a different distribution, the calculation of weights has to be

adjusted according to Eq. 19 in [129]:

wkt+1 ∝ p(zt+1|H̃k
t+1)

p(H̃k
t+1|Hk

t , v̇
k
t , ω̇

k
t)

q(H̃k
t+1|Hk

t , v̇
k
t , ω̇

k
t)
. (4.5)

This procedure of sampling from a proposal distribution and using the ratio of prob-

ability densities to compensate this, is known as importance sampling. Note that as

opposed to the basic particle filter scheme described above, importance sampling re-

quires the explicit calculation of probability densities in pose space (at least up to a

common factor).

In the following we describe the specifics of our implementation of the PF frame-

work: the motion model, the observation likelihood, and finally, our main contri-

bution, the construction of our proposal distribution. An overview of our tracking

pipeline can be found in Figure 4.1.

4.3.3 Our Motion Model

The motion model describes which movements of the object are plausible between

two frames. Generally speaking, we assume our object roughly continues its previ-

ous motion, followed by an additional random normally distributed translation and a

random rotation around the center of the object. We assume that the translational and

rotational motion to be independent and describe them separately.

Given a translational component vt, we assume new translational component at

the time point t+ 1 to be generated from a normal distribution

vt+1 ∼ N
(

v
pred
t ,Σmm

)

(4.6)

54 Chapter 4. System I: Pose Tracking

centered at the predicted translational component

v
pred
t = vt + λvv̇t, (4.7)

extrapolated from the last position vt and the translational velocity v̇t. The term λv

stands for a damping parameter. It determines how much the previous translation,

described by the velocity vector v̇t is continued. The covariance matrix is of the form

Σmm = Iσ2v.

We assume a similar process for the generation of the new rotational component,

but here special care has to be taken because of the internal structure of the Lie group

SO(3) (see Section 3.1).

Given the current rotational component Rt, we assume a new rotational compo-

nent at the time point t+ 1 to be generated according to a UARS distribution (see Sec-

tion 3.1.4), centered at the predicted rotational component that is extrapolated from

the previous rotation Rt and the rotational velocity ω̇t:

Rpred
t = expRt(λRω̇t), (4.8)

where expRt(·) is the exponential map at Rt as defined in Eq. 3.11, and λR is again a

damping parameter controlling how strongly the previous rotation is continued. The

new rotational component is found according to the UARS procedure described in

Section 3.1.4. A rotation angle 0 < ψ < π with standard deviation σmm
R is sampled

from a wrapped normal distribution and combined with a uniformly chosen rotation

axis to create an Euler vector ω
R

pred
t

. The new rotation is then computed as

Rt+1 = exp
R

pred
t

(ω
R

pred
t

). (4.9)

Based on the sampling procedure above, we can describe our motion model as a

UARS-Normal distribution (see Section 3.2) with density

p(Ht+1|Ht, v̇t, ω̇t) ≈ fUARS−N(Ht+1;H
pred
t ,Σmm, κmm) (4.10)

as defined in Eq. 3.28. 1

This UARS-Normal distribution is centered at the predicted pose Hpred
t =

(Rpred
t ,vpred

t), which is found by extrapolating previous motion given by the veloc-

ity vectors v̇t and ω̇t as described in Eqs. 4.8 and 4.7. The probability distribution

is additionally parametrized on the variance in the translational component through

Σmm = Iσmm
v

2 and the variance of the rotational component through κmm = 1/σmm
R

2.

1Note that Eq. 4.10 is only an approximate equality, since the UARS-Normal distribution uses a von
Mises circular distribution, and our sampling process is defined on a wrapped normal distribution.

4.3. Method 55

FIGURE 4.2: To construct our proposal distribution we first calculate a continuous rep-
resentation of the prior distribution for the pose at the current frame (a-d). Next we de-
termine two pose estimates H local

t+1 (light gray) and Hglobal
t+1 (dark gray). The local estimate

is calculated based on a local search on propagated solutions via the motion model (k-j).
The global estimate is based on the pose sampling scheme from [31] (e-l). We choose the
particle with the lower score and use it as starting point for a final optimization (n). Our
final proposal distribution q(Hk

t+1|Hk
t) for particle Hk

t is a mixture of two components
(o): one centered on Hk

t and one on the newly found particle in (n). This figure represents
component (c) of Figure 4.1.

4.3.4 Our Observation Likelihood

We use a likelihood formulation based on the scoring function E(H) from [31] (see

Section 2.4):

p(zt+1|Ht+1) ∝ exp(−λlikeE(Ht+1)) (4.11)

where λlike is a control parameter determining how harshly larger values should be

punished. The scoring function is a weighted sum of three components Edepth(H),

Ecoord(H) andEobj(H). In contrast to [31], we use a simple modification of theEdepth(H)

term that copes better with occlusion. Depth values that lie in front of the object can

be explained by occlusion. This is not the case for depth values that lie behind the

object. Our depth term accounts for this using a modified version of the depth error

in Eq. 2.5. It uses a separate threshold τd for recorded depth values in front of the

rendered object.

focc

(

dk, d̃k(H)
)

=

min
(

||dk, d̂k(H)||, τd
)

/τd if dk < d̂k(H)

min
(

||dk, d̂k(H)||, τoccd

)

/τd else
(4.12)

4.3.5 Our Proposal Distribution

Our proposal distribution allows our method to cope with unexpected motion and

occlusion, while maintaining high accuracy. It allows us to approximate the posterior

56 Chapter 4. System I: Pose Tracking

distribution p(Ht|z1:t) more accurately with a small number of particles. The con-

struction of our proposal distribution is described in the following, and subsumed in

Figure 4.2.

A proposal distribution describes the sampling of a new particle H̃k
t+1 on the basis

of an old particle Hk
t . We define the proposal distribution q(Ht+1|Ht, v̇t, ω̇t) for the

particle Hk
t as a mixture of two parts (Figure 4.2 o):

q(Hk
t+1|Hk

t , v̇
k
t , ω̇

k
t) = (1− αprop)fUARS−N(H

k
t+1;H

k,pred
t ,Σprop, κprop)

+αpropfUARS−N(H
k
t+1;H

est
t+1,Σ

prop, κprop)
(4.13)

The mixture is governed by the weight αprop. Both parts are based on UARS-

Normal distributions defined in Eq. 3.28 with variance parameters Σprop and κprop.

The first part of Eq. (4.13) is centered on Hk,pred
t = (Rk,predt ,vk,predt), which is the ex-

trapolation of the current particle Hk
t according to our motion model as described

in Eqs. 4.8 and 4.7. Hence, Hk,pred
t differs for each particle Hk

t . The second part of

Eq. (4.13) is centered on a preliminary estimate Hest
t+1 which is found based on the out-

put of the random forest (Section 2.1). It does not depend on Hk
t , but is shared among

all particles.

Regarding Hest
t+1, we will discuss two different ways to quickly obtain a good es-

timate: One way finds a local estimate H local
t+1 , the other way finds a global estimate

Hglobal
t+1 . While a proposal distribution based on a local estimate is sufficient in most

cases, it may fail in situations with fast unexpected motion. The global estimate on the

other hand depends on the quality of the discriminative prediction and may at times

give noisy results. As a consequence, we apply a combination of the two approaches:

Hest
t+1 = argminH∈HE

′(H);H = {H local, Hglobal} (4.14)

The scoring function E′(H) will be defined below. The preliminary estimate Hest
t+1 is

optimized (Figure 4.2 n) using a general purpose optimizer. 2

The remainder of this section is concerned with the calculation ofH local
t+1 andHglobal

t+1 .

First, however, we discuss how we represent prior knowledge used in both estimates.

Prior Knowledge

The proposal distribution should be an estimate of the posterior p(Ht+1|z1:t+1). Both

of our estimates should thus include not only knowledge taken from the current ob-

servation k.e. the likelihood and results from the discriminative function, but also in-

formation from the previous particle set k.e. the prior. To include the prior we perform

the following preparatory steps. We take the last set of particles Pt = {H1
t , . . . , H

K
t }

2We use the Constrained Optimization BY Linear Approximations (COBYLA) algorithm by Powell [130]
in an implementation from the NLopt library [131].

4.4. Experiments 57

and move each particle according to the motion model (Figure 4.2 a-c). The result is

an extrapolated set of particles P̄t+1 = {H̄1
t+1, . . . , H̄

K
t+1}. In order to obtain a para-

metric representation we again use a UARS-Normal distribution from Eq. 3.28. We

fit fUARS−N(H;Hcenter,Σ, κ) to the particle set P̄t+1 (Figure 4.2 d). The resulting pa-

rameters are H̄center, Σ̄, κ̄. For details on the fitting procedure, please refer to the Ap-

pendix (Section B.1). The distribution fUARS−N(H; H̄center, Σ̄, κ̄) is a representation of

the knowledge we have about the pose at the current time t + 1 without considering

the current observation zt+1. It is a representation of the prior.

Local Estimate

To findH local
t+1 , we use H̄center (Figure 4.2 k) as starting point for refinement as described

in [31] (Figure 4.2 j). This refinement is done by repeatedly finding inlier pixels. Their

predicted object coordinates together with the observed depth values enable a rough

but quick optimization using the Kabsch algorithm. In order to include prior knowl-

edge in the refinement we change the objective function to:

E′(H) = λlikeE(H)− ln fUARS−N(H; H̄center, Σ̄, κ̄) (4.15)

Because of this adjustment of the objective function the resultingH local
t+1 becomes a local

maximum a posteriori (MAP) estimate.

Global Estimate

Calculation of the global estimate Hglobal
t+1 is based on a sampling scheme similar to

the one in [31]. We sample a set of m hypotheses Ȟk (Figure 4.2 e-g). Details can be

found in the Appendix (Section B.2). Then, the hypotheses Ȟk are weighted using

the distribution fUARS−N(H; H̄center, Σ̄, κ̄) (Figure 4.2 h). Finally, their weighted mean

is calculated (Figure 4.2 k) and used as initialization for the refinement (Figure 4.2 l),

again using E′(H) from Eq. (4.15) as objective function. This yields Hglobal
t+1 .

4.4 Experiments

Some RGB-D object tracking datasets have been published in recent years. For exam-

ple, Fanelli et al. [132] recorded a dataset to track human head poses using a Kinect

camera. Song and Xiao [133] used a Kinect camera to record 100 RGB-D video se-

quences of arbitrary objects but do only provide 2D bounding boxes as ground truth.

For our purpose, we found only one relevant dataset from Choi and Christensen [127].

It consists of 3D object models and synthetic test sequences. For further evaluation,

we recorded a new more challenging and realistic dataset on which we compared our

58 Chapter 4. System I: Pose Tracking

approach. Additionally, we conduct experiments to demonstrate that our proposal

distribution achieves superior results when unexpected object motion occurs.

Note that the experiments described in this section, were conducted using an ap-

proximate UARS density function, as described in the Appendix in Section B.4.

Kinect Box Milk Orange Juice Tide

Images from the dataset by Choin and Christensen [127], published in 2013.

FIGURE 4.3: Example images of the dataset provided by Choi and Christensen [127].

Dataset of Choi and Christensen [127]

The dataset of Choi and Christensen [127] provides four textured 3D models and four

synthetic test sequences (1000 RGB-D frames). To generate the test sequences, each of

the four objects was placed in a static texture-less 3D scene and the camera was slowly

moved around the object. The authors provide the ground truth camera trajectory

which is error-free since it was generated through rendering. Figure 4.3 shows one

image of each sequence.

To gather the training data for our random forest we rendered RGB-D images of

each model. We sampled the full view sphere of the model regularly with fixed dis-

tance and including in-plane rotation. For the background set we used renderings

from multiple 3D scenes from Google warehouse. We trained three decision trees

with a maximum feature patch size of 20 pixel meter and 125 discrete labels per ob-

ject. We trained the trees for all 4 objects jointly. For each testing sequence the object

to be tracked is assumed to be known, and predictions are only made for this object.

Our PF uses 70 particles. The complete list of parameters is included in the Appendix

in Section B.3.

While testing we follow the evaluation protocol of Choi and Christensen [127] and

compute the Root Mean Square Error (RMSE) of the translation parameters X,Y and Z

and the rotation parameters Roll, Pitch and Yaw. We average the translational RMSE

over three test runs, the coordinates (X,Y and Z), as well as over the four objects to

obtain one translational error measure. We do the same for rotational RMSE. We com-

pare to the numbers provided in [127] which also include results for the tracking im-

plementation of the Point Cloud Library (PCL) [134]. We base our comparison on the

results in [127] achieved with 12800 particles, for which the lowest error is reported.

4.4. Experiments 59

3

2.5

2

1.5

1

0.5

0

Choi and Christensen Our approach

mean translational

error (mm)

mean rotational

error (deg)

FIGURE 4.4: Averaged translation and
rotation RMSE on the dataset of [127].

FIGURE 4.5: Reconstructed motion tra-
jectory (green) for one sequence of our
dataset (Cat, sequence 1). Ground truth
is depicted blue for comparison. The po-
sitions are given in mm.

Our method results in an average translational RMSE of 0.83 mm compared to 1.36

mm for [127], k.e. we achieve a 38% lower translational error (PCL: 18.7 mm). For the

average rotational RMSE we report 1.38 deg compared to 2.45 deg in [127], which is

43% lower (PCL: 29.6 deg). We achieve these results while keeping the computation

time on our system3 comparable to the one reported in [127]. Figure 4.4 depicts the

average RMSE over all objects. Detailed results including run-times can be found in

Table 4.1.

Objects Tracker RMSE
X (mm) Y (mm) Z (mm) Roll (deg) Pitch (deg) Yaw (deg) Time (ms)

PCL 43.99 42.51 55.89 7.62 1.87 8.31 4539
Kinect Box Choi and Christensen 1.84 2.23 1.36 6.41 0.76 6.32 166

Our 0.83 1.67 0.79 1.11 0.55 1.04 143

PCL 13.38 31.45 26.09 59.37 19.58 75.03 2205
Milk Choi and Christensen 0.93 1.94 1.09 3.83 1.41 3.26 134

Our 0.51 1.27 0.62 2.19 1.44 1.90 135
PCL 2.53 2.20 1.91 85.81 42.12 46.37 1637

Orange Juice Choi and Christensen 0.96 1.44 1.17 1.32 0.75 1.39 117

Our 0.52 0.74 0.63 1.28 1.08 1.20 129
PCL 1.46 2.25 0.92 5.15 2.13 2.98 2762

Tide Choi and Christensen 0.83 1.37 1.20 1.78 1.09 1.13 111

Our 0.69 0.81 0.81 2.10 1.38 1.27 116

TABLE 4.1: Comparison of the translation error (X,Y,Z), rotation error (Roll, Pitch, Yaw)
and computation time on the synthetic dataset of Choi and Christensen [127] with results
from our method, [127] and the PCL.

Our dataset

The dataset which was provided by [127] is problematic for several reasons: testing

sequences are generated synthetically without camera noise, and without occlusion.

The objects are placed in a texture-less and static environment. In a static scene, a

3Intel Core k7-3820 CPU @ 3.6GHz with a Nvidia GTX 550 TI GPU

60 Chapter 4. System I: Pose Tracking

(a) (b) (c)

(d) (e)

(f) (g)

FIGURE 4.6: (a)-(c) Our objects from left to right Cat, Toolbox, Samurai. (d) color frame
and (e) depth frame recorded with the commercially available Kinect camera.(f) Prob-
ability map and (g) predicted 3D object coordinates from a single tree mapped to the
RGB-cube for the object Cat.

tracking method can in theory use the entire image to estimate the motion of the cam-

era instead of estimating the motion of the object. Furthermore, the camera is moved

around the object. The statistics of object motion when the camera is moved are very

different from a situation where the camera is static and the object is moved. e.g., a

complete vertical flip of the object is unlikely in the first scenario.

FIGURE 4.7: Example images from our dataset. Blue object silhouettes depict ground truth
and green silhouettes depict the estimated poses. The first four columns show correctly
estimated poses and the last column missed poses.

To address these issues we introduce our own dataset, which will be referred to as

the dataset by Krull et al.. in the remainder of this thesis. The dataset consists of three

objects. The objects were scanned in using Kinect, and six RGB-D testing sequences

were recorded (350+ frames each). The objects are moved quickly in front of a static

4.4. Experiments 61

camera and are at times strongly occluded. Ground truth poses were manually la-

beled by hand annotation followed by ICP. In Figure 4.7 five images of each object are

shown. For our dataset we trained decision trees as discussed in the previous section,

but with renderings of our scanned-in objects, and a set of arbitrary RGB-D office im-

ages as background set. We keep all other training parameters as in the previously

described experiment. We compare our approach to the one shot pose estimation

Objects Sequence

Ratio
of

frames
used

Method
Our Approach Brachmann et al.

full proposal
distribution

local proposal
distribution

Accuracy Accuracy Accuracy

Cat
1

100% 100% 89% 90.5%
33% 91.5% 90.4%

2
100% 99.4% 100% 44%
33% 94.9% 87.8%

Samurai
1

100% 96.3% 96.7% 71.29%
33% 68.6% 52.4%

2
100% 92.3% 98.1% 35.5%
33% 55.4% 29.1%

Toolbox
1

100% 88.8% 88.5% 55%
33% 81.2% 68.2%

2
100% 100% 100% 60.9%
33 % 89.9% 34.5%

TABLE 4.2: Accuracy measured on our dataset. Comparison of our full proposal distribu-
tion to the local proposal distribution and to [31]. Evaluation is done based on all frames
and on every third frame of the image sequences.

from [31]. We exactly adhere to their training setup and parameters (3 trees, maxi-

mum patch size 20 pixel meter, 210 hypotheses per frame, Gaussian noise on training

data). We measure accuracy as in [31] as the fraction of frames where the object pose

was estimated correctly.

While our approach achieves 96.2% accuracy on average over all sequences the

approach of [31] only estimates 59.5% 4 of the poses correctly. Even though [31] is

inherently robust to occlusion, the heavy occlusions in our dataset still cause it to fail.

In contrast, our approach is able to estimate most poses correctly by using informa-

tion from previous frames. The distribution of errors for one sequence is depicted in

Figure 4.8. The plots again show the large number of outlier estimations of [31] (right-

most bins). The plots also reveal that concerning correct poses, our approach leads to

much more precise estimations.

4We re-ran the baseline of [31] for this dataset, as there was a typo in one of the originally published
results. The re-run gave the average accuracy of 59.5%. The original number published in [48] was
58.9%. The results of the re-run are reported in Table 4.2.

62 Chapter 4. System I: Pose Tracking

To show that our full proposal distribution (Section 4.3.5) increases the robustness

of our method we conducted the following experiment: We define a simplified vari-

ant of the proposal distribution, which is based only on H local
t+1 to which we also apply

the final optimization. We term this variant local proposal distribution. We use it to-

gether with 120 particles since it needs less computation time. For this experiment,

0 1 2 3 4 5 6 7 8 9 >10
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Brachmann et al.

Our approach

mean rotational error (deg)

fr
e

q
u

e
n

c
y

0 2 4 6 8 10 12 14 16 18 >20
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Brachmann et al.

Our approach

mean translational error (mm)
fr

e
q

u
e

n
c

y

FIGURE 4.8: Histogram of rotational and translational errors for our approach in compar-
ison to [31], which is a single frame pose estimation framework.

we artificially increase motion in our test sequences by using only every third frame.

As before, we measure the number of correctly estimated poses. In this challenging

setup the full proposal distribution achieves 80.3% accuracy on average while the local

proposal distribution achieves only 60.4% accuracy.

Figure 4.5 shows the estimated object motion path for one sequence with fast mo-

tion. The plot illustrates precision and robustness of our approach.

4.5 Conclusion

We have introduced a novel method, applying the concept of predicted object coor-

dinates to the problem of 6D pose tracking. We have extended the framework from

[31] to allow probabilistic temporal reasoning in a HMM formulation. We utilize pre-

dicted object coordinates in a proposal distribution, making our method very robust

with regard to fast movements in combination with occlusion. We have evaluated our

method on the dataset by Coi and Christensen and demonstrated that it can produce

superior results. The method was additionally evaluated using a new dataset, spe-

cially designed for RGB-D 6D pose tracking. The dataset has been made available to

the community.

63

Chapter 5

System II:

Learning Analysis-By-Synthesis

Contents

5.1 Introduction . 64

5.1.1 Contributions . 65

5.2 Related Work . 65

5.2.1 CNNs . 66

5.2.2 Analysis-by-synthesis . 66

5.3 Method . 67

5.3.1 The Pose Estimation Task . 67

5.3.2 Probabilistic Model . 68

5.3.3 Convolutional Neural Network 69

5.3.4 Maximum Likelihood Training 70

5.3.5 Inference Procedure . 72

5.4 Experiments . 72

5.4.1 Datasets, Evaluation Protocol, Competitors 72

5.4.2 Random Forests . 74

5.4.3 CNN Training Procedure . 74

5.4.4 Comparison . 74

5.4.5 Discussion of Failure Cases 75

5.5 Conclusion . 75

In this chapter, we will leave the tracking task behind, and focus again on the one-

shot pose estimation task, as described in Section 1.1.1. We will present a CNN-based

system that learns to assess the quality of pose hypothesis, by comparing rendered

and observed images. The CNN will replace the simple pixel-wise distance function

(see Section 2.4) used in the framework from [31] and greatly improve the robustness

against occlusion. We use a sampling-driven probabilistic approach to train our sys-

tem. Note that the system has been published in [81].

64 Chapter 5. System II: Learning Analysis-By-Synthesis

5.1 Introduction

Figure includes images and models from the dataset by Hinterstoisser et al. [14], published in 2012 under a CC BY 4.0 Licence.

FIGURE 5.1: Three pose estimation results from the occlusion dataset from [31] and [14].
Arrows indicate the positions of estimated and ground truth poses. The green silhouette
indicates the ground truth pose, the blue silhouette corresponds to our estimated pose.
Red indicates the pose estimate from [31]. The marker board served only for ground truth
annotation.

Analysis-by-synthesis has been a successful approach for many tasks in computer

vision, such as object recognition [135], scene parsing [136], pose estimation, and track-

ing [137]. The basic idea is the following: First, a forward synthesis model generates

images from a set of hypotheses. Then, one finds an estimate by selecting the hypoth-

esis leading to the highest level of agreement with the measured visual evidence.

The framework from [31] implements this idea for the problem of object pose es-

timation, by rendering the object under different pose hypotheses and comparing the

results to observed images. While the comparison for depth images is normally quite

robust, comparing observed and rendered color images is more challenging, as the ap-

pearance of an object under identical pose can differ significantly due to light condi-

tions (see Section 1.2). In [31] this problem is alleviated by giving up this comparison

of the color channels, and instead comparing rendered and predicted object coordi-

nates, which are more robust to lighting changes.

The situation becomes more difficult as soon the object is partially occluded. We

see several reasons for this: (i) The simple pixel-wise comparison of depth channels

can fail for occluded objects. Since an object can be occluded in many different ways

and thus can appear very differently (see Section 1.2), the prediction of object coor-

dinates in the presence of occlusion is difficult as well. (ii) Falsely predicted object

coordinates resulting from occlusion are a second source of error in the comparison

of images. (iii) Additional problems result from faulty or missing depth information.

A depth sensor can fail to produce measurements due to multiple reasons, such as

poor infra red reflectance of the surface. Due to the internal mechanism of sensors like

kinect depth information is also often not provided for areas near an occlusion. While

5.2. Related Work 65

the dense predictions provide [31] with some inherent stability with respect to occlu-

sion, the framework from [31] struggles when used with occluded objects, due to the

points mentioned above.

In this chapter, we will present a trainable system to mitigate these problems. We

will replace the simple pixel-wise scoring function in [31] with a CNN-based energy

function that learns to compare rendered and observed images. We view the CNN as

part of an energy-based probability distribution. Training the CNN requires an inte-

gral of the pose space, which we approximate via Markov Chain Monte Carlo (MCMC)

sampling.

We empirically observe that the CNN does not specialize on the geometry or ap-

pearance of specific objects. It can be used with objects of vastly different shapes and

appearances, and in different backgrounds. We demonstrate a significant improve-

ment compared to [31] on two different datasets which include a total of eleven ob-

jects, cluttered background, and heavy occlusion.

5.1.1 Contributions

We present the following major contributions in this chapter:

• We achieve considerable improvements over previous state-of-the-art methods

of pose estimation in RGB-D images with heavy occlusion.

• To the best of our knowledge, this work is the first to utilize a CNN as a proba-

bilistic model to learn to compare rendered and observed images.

• We observe that the CNN does not specialize to the geometry or appearance of

specific objects, and it can be used with objects of vastly different shapes and

appearances, and in different backgrounds.

The remainder of this chapter is organized as follows. Section. 5.2 provides an

overview of related work. Our proposed approach is described in Section 5.3. In

Section. 5.4, we evaluate our method on two datasets and compare it to the framework

from [31], which was the state-of-the-art competitor. We will conclude the chapter in

Section. 5.5.

5.2 Related Work

A large body of work in computer vision has focused on the problem of object de-

tection and pose estimation. We provide a survey of the different approaches in

Section 1.3. Here, we will focus on techniques that specifically address CNNs and

analysis-by-synthesis.

66 Chapter 5. System II: Learning Analysis-By-Synthesis

5.2.1 CNNs

CNNs have been driving advances in computer vision in areas such as image clas-

sification [138], detection [139], recognition [140, 141], semantic segmentation [142],

and human pose estimation [143]. The success of CNNs is attributed to their abil-

ity to learn rich feature representations as opposed to hand-designed features used in

previous image classification methods.

In [144], rich image and depth feature representations have been learned with

CNNs to detect objects in RGB-D images. In [145], CNNs are used to generate an

RGB image given the set of 3D chair models, the chair type, viewpoint and color.

CNNs have been a part of complex pipelines. Recently Gupta et al. [146] presented

work that uses object instance segmentation output from [144] to infer the 3D object

pose in RGB-D images. Another CNN is used to predict the coarse pose of the object.

It is trained using pixel normals in images containing rendered synthetic objects. This

coarse pose is used to align a small number of prototypical models to the data, and

place the model that fits the best into the scene. In contrast to the above approaches,

we use a CNN to compare rendered and observed images and assess the quality of a

pose. The output of our CNN is a single energy value, while in [146] the output of the

CNN is the object pose.

In [147] Chopra et al. use a CNN to compare images and output a score. They learn,

a similarity metric. While their learning process uses a discriminative loss function,

ours is probabilistically motivated.

Chopra et al. use a siamese architecture is to map two faces to a feature space for

comparison. Similarly, in [63] Wohlhart and Lepetit train a CNN to map image patches

to a descriptor space, where pose estimation and object recognition is solved using the

nearest neighbor method. In contrast, we feed the images jointly into the CNN and do

a direct comparison.

Zbontar and LeCun [148] train a CNN to predict how well two image patches

match and use it to compute the stereo matching cost. The cost is minimized by cross-

based cost aggregation and semi-global matching, followed by a left-right consistency

check to eliminate errors in occluded regions. While in [148] the CNN is used for

comparing two image patches, our CNN is used to compare rendered and observed

images.

5.2.2 Analysis-by-synthesis

Analysis-by-synthesis has been a successful approach for many tasks in computer vi-

sion, such as object recognition [135], scene parsing [136], viewpoint synthesis [135],

material classification [149], and gaze estimation [150]. All these approaches use a

5.3. Method 67

forward model to synthesize some form of image, which is then compared to obser-

vations.

Many works learn a feature representation and compare in feature space. For in-

stance, in [135] the analysis-by-synthesis strategy has been used for recognizing and

reconstructing 3D objects in images. The forward model synthesizes visual templates

defined on invariant features. Gall et al. [137] propose an analysis-by-synthesis frame-

work for motion capture and tracking. It combines patch-based and region-based

matching to track body parts. Patch-based matching extracts correspondences be-

tween two successive frames for prediction as well as between the current image and

a synthesized image to avoid drift.

The framework by Brachmann et al. [31] (see Chapter 2) that our system is based

on, utilizes analysis-by-synthesis for 6D object pose estimation and achieved state-

of-the-art results. However, for the problem of 6D pose estimation, due to occlusion

or complicated sensor noise, it can be difficult to compare the observation with the

output of a rendered image of the object of interest in a particular pose.

In this chapter, we propose an improvement, which draws on recent successes of

CNNs. Different from aforementioned approaches, we model the posterior density

of the object pose with a CNN that compares rendered and observed images. The

network is trained with the maximum likelihood paradigm.

One of the most closely related works is [151]. They use a CNN as a part of proba-

bilistic model. Their CNN is fed in a sequential manner, first with the rendered image,

then with the observed image. This produces two feature vectors, which are compared

in the subsequent step, to give the probability of the observed image. Another major

difference is that our CNN is trained, while they use a pre-trained CNN as feature

extractor.

5.3 Method

We will first reiterate the pose estimation task. Then, we will describe our probabilistic

model. The heart of this model is a CNN, which will be discussed subsequently. This

is followed by a description of our maximum likelihood training procedure of the

probabilistic model. Finally, our inference procedure at test time is described. Fig. 5.2

gives an overview of our energy evaluation pipeline.

5.3.1 The Pose Estimation Task

In this system we address the one-shot pose estimation task as described in Section 1.1.1:

Given an observation z we want to find an estimate Ĥ of the true pose H∗. We take

68 Chapter 5. System II: Learning Analysis-By-Synthesis

an RGB-D image x as input. As in the previous chapter, the term observation z or ob-

served images will refer to two parts: (i) the forest predictions as described in [31], as

well as (ii) the recorded depth image d. The reason for this simplified view is that the

focus of the chapter lies on the modeling of the posterior density and not on aspects

of the random forest prediction.

Figure includes images and models from the dataset by Hinterstoisser et al. [14], published in 2012 under a CC BY 4.0 Licence.

FIGURE 5.2: Our pipeline for the calculation of the energy function E(H;θ): a): We use
the pose H to render the 3D model. b): We produce three rendered images: a rendered
depth image, rendered image of object coordinates, and rendered mask. c): We crop the
accordant image patches from the observed depth, object coordinate and object proba-
bility images. d): The images are processed by a CNN. e): The CNN has a single scalar
output. It is interpreted as the energy E(H;θ).

5.3.2 Probabilistic Model

We model the posterior distribution of the pose H given the observations z as an

energy-based distribution

p(H|z;θ) = exp
(

− E(H, z;θ)
)

∫

exp
(

− E(H ′, z;θ)
)

dH ′
, (5.1)

where E (H, z;θ) is the so-called energy function. The energy function is a mapping

from a pose H and the observed images z to a real number. It is parametrized by

the vector θ. Note that using a such a formulation to model the posterior is a com-

mon practice for conditional random fields (CRFs) [152]. However, the underlying

energies are quite different. While in a CRF the energy function is a sum of potential

functions, we implement it by using a CNN which directly outputs the energy value.

The parameter vector θ holds the weights of our CNN.

5.3. Method 69

5.3.3 Convolutional Neural Network

In order to implement the mapping from a pose H and the observed images z to an

energy value we first render the object in pose H to obtain rendered images ź(H).

Our CNN then compares z with ź(H) and outputs a value f
(

z, ź(H);θ
)

. We define

the energy function as

E(H, z;θ) = f
(

z, ź(H);θ
)

. (5.2)

Our network is trained to assign a low energy value when there is a large agreement

between observed images and renderings and a high energy value when there is little

agreement. To perform the comparison we use a simple architecture, in which we feed

all rendered and observed images jointly into the CNN.

Note that we consider only a square window around the center of the object with

pose H . The width of the window is adjusted according to the size and distance of the

object, as suggested by [31]. For performance reasons windows which are bigger than

100× 100 pixels are down sampled to this size. We use a total of six input channels for

our network. Note that Fig. 5.2 shows the images from which these six input channels

are derived. The channels are:

• One observed depth channel and one rendered depth channel that contain val-

ues in millimeters. They are normalized by subtracting the z component of the

object position according to H .

• One rendered mask channel of the object. Pixel values are either +1 for all pixels

belonging to the object or −1 otherwise.

• One depth mask channel indicating whether a depth value was measured in

the pixel. Again, pixel values are either +1 for all pixels where a depth was

measured or −1 otherwise.

• One probability channel holding the combined pixel-wise object probabilities

from all trees. The values are re-scaled to lie between −1 and +1.

• One object coordinate channel holding the pixel-wise Euclidean distances be-

tween the rendered object coordinates and the predicted object coordinates from

the tree, giving the highest object probability for the respective pixel. We divide

all values by the object diameter for normalization.

The tanh activation function is used after every convolution layer and after every

fully connected layer. The first convolution layer C1 consists 128 convolution ker-

nels of size 3 × 3 × 6. The second convolution layer C2 consists of 128 kernels of size

3 × 3 × 128, which is followed by a 2 × 2 max-pooling layer with stride 2 in each di-

rection. The third convolution layer C3 is identical to C2. The fourth convolution layer

70 Chapter 5. System II: Learning Analysis-By-Synthesis

C4 consists of 256 kernels of size 3 × 3 × 128. It is followed by a max-pooling oper-

ation over the remaining image size. The 256 channels are further processed by two

fully connected layers with 256 neurons each and finally forwarded to a single output

unit.

5.3.4 Maximum Likelihood Training

During training, we want to find an optimal set of parameters θ∗ based on labeled

training data L = (z1, H
∗
1) . . . (zn, H

∗
n), where zl shall denote observations of the l-th

training image and H∗
l the corresponding ground truth pose. We apply the maximum

likelihood paradigm and define

θ∗ = argmax
θ

n
∑

l=1

ln p(H∗
l |zl;θ). (5.3)

In order to solve this optimization task we use stochastic gradient descent [153], which

requires calculating the partial derivatives of the log likelihood for each training sam-

ple

∂

∂θj
ln p(H∗

l |zl;θ) = −
∂

∂θj
E (H∗

l , zl;θ) + Ep(H|zl;θ)

[

∂

∂θj
E (H, zl;θ)

]

(5.4)

with respect to each parameter θj . Here Ep(H|zl;θ) [·] stands for the expected value

according to the posterior distribution p(H|zl;θ), parametrized by θ. While the partial

derivatives of the energy function can be calculated by applying back propagation in

our CNN, the expected value cannot be found in closed form. Therefore, we use a

sampling approach to approximate it, as will be discussed next.

Sampling

The Monte Carlo method [2] allows us to approximate the expected value in Eq. (5.4)

through a set of pose samples

Ep(H|zl;θ)

[

∂

∂θj
E (H, zl;θ)

]

≈ 1

K

K
∑

k=1

∂

∂θj
E (Hk, zl;θ) , (5.5)

whereH1 . . . HN are pose-samples drawn independently from the posterior p(H|zl;θ)
with the current parameters θ.

However, the posterior defined in Eq. 5.1 cannot be easily evaluated, not to men-

tion sampled from. We use an MCMC method, namely the Metropolis algorithm [3] to

5.3. Method 71

generate the required samples. The Metropolis algorithm allows sampling from dis-

tributions with a density function that can be evaluated up to a constant factor. The

algorithm generates a sequence of samples Hk by repeating two steps:

1. Draw a new proposed sample H ′ according to a proposal distribution q(H ′|Hk).

2. Accept or reject the proposed sample according to an acceptance probability

A(H ′|Hk). If the proposed sample is accepted set Hk+1 = H ′. If it is rejected

set Hk+1 = Hk.

The proposal distribution q(H ′|Hk) has to be symmetric, i.e. q(H ′|Hk) = q(Hk|H ′).

Our particular proposal distribution will be described in detail in the next paragraph.

The acceptance probability is in our case defined as

A(H ′|Ht) = min

(

1,
p(H ′|zl;θ)
p(Hk|zl;θ)

)

, (5.6)

meaning that whenever the posterior density p(H ′|zl;θ) at the proposed sample is

greater than the posterior density p(Hk|zl;θ) at the current sample, the proposed sam-

ple will automatically be accepted. If this is not the case it will be accepted with the

probability p(H ′|zl;θ)/p(Hk|zl;θ). Considering Eq. 5.1, we can write the acceptance

probability as

A(H ′|Ht) = min

(

1,
exp

(

− E(H ′, zl;θ)
)

exp
(

− E(Hk, zl;θ)
)

)

, (5.7)

which can be feasibly evaluated.

Proposal Distribution

A common choice for the proposal distribution is a normal distribution centered at

the current sample. In our case this is not possible because the rotational component

of the pose lives on the manifold SO(3), i.e. the group of rotations (see Section 3.1).

We define q(H ′|Ht) implicitly by describing a sampling procedure and ensuring that

it is symmetric. Ultimately this procedure will amount to a type of UARS-Normal

distribution, as described in Section 3.2. 1

We sample the translational and rotational component independently. The trans-

lational component v′ of the proposed sample is directly drawn from a 3D isotropic

normal distribution v′ ∼ N (vk,Σv) centered at the translational component vk of the

current sampleHk. The rotational component is generated by drawing a random sam-

ple from a zero centered normal distribution ω′
Rk
∼ N ((0, 0, 0)⊺ ,ΣR) in the tangent

1Note that we do not require the calculation of a probability density for the application as proposal
distribution in the Metropolis algorithm. Therefore, the definition of the sampling procedure is sufficient.

72 Chapter 5. System II: Learning Analysis-By-Synthesis

space (see Section 3.1.4) at Rk. The new proposed rotation is then found by using

Eq. 3.11 to map the vector onto the manifold

R′ = expRk(ω
′
Rk

) = Rk exp(ω
′
Rk

), (5.8)

with exp(·) defined in Section 3.1.2.

Initialization and Burn-in-phase

When the Metropolis algorithm is initialized in an area with low density it requires

more iterations to provide a fair approximation of the expected value. To find a good

initialization we run our inference procedure (described in the next section) using the

current parameter set. We then perform the Metropolis algorithm for a total of 130

iterations, disregarding the samples from the first 30 iterations which are considered

as burn-in-phase.

5.3.5 Inference Procedure

During test time, we aim at finding the MAP estimate, i.e. the pose maximizing our

posterior density as given in Eq. (5.1). Since the denominator in Eq. (5.1) is constant

for any given observation z, finding the MAP estimate is equivalent to minimizing

our energy function. To achieve this, we closely follow the original framework from

[31] (see Chapter 2), but replace their scoring function with our energy, as described

in Section 5.3.3.

5.4 Experiments

In the following, we compare our approach to the original framework (see Chapter 2)

by Brachmann et al. for two different datasets. We first introduce the datasets. After

that we describe details of our training procedure, and finally present quantitative and

qualitative comparisons. We will see that we achieve considerable improvements for

both datasets. Additionally, we observe that our CNN generalizes from a single train-

ing object to a set of 11 test objects, with large variability in appearance and geometry.

5.4.1 Datasets, Evaluation Protocol, Competitors

Datasets

We use two datasets featuring heavy occlusion. The first dataset was created by Brach-

mann et al. [31] by annotating the ground truth poses for eight partially occluded ob-

jects in images taken from the dataset of Hinterstoisser et al. [14]. We will refer to

5.4. Experiments 73

this dataset as the occlusion dataset from [31] and [14]. It includes a total of 8992 test

cases (1214 images with multiple objects), which are used for testing. We choose this

dataset because it is more challenging than the original dataset from [14], on which

[31] already achieves an average of 98.3% correctly estimated poses.

The second dataset was compiled by our selfs during the work on System II and

published in [48] (see Section 4.4). We will refer to this dataset as dataset of Krull et al..

It provides six annotated RGB-D sequences of three different objects and consists

of a total of 3187 images. We use three of the sequences for training and the other three

(a total of 1715 test images) for testing.

Evaluation Protocol

We use the evaluation procedure as described in [31]. This means we calculate the

percentage of correctly predicted poses for each sequence. As in [14], we calculate

the average distance between the 3D model vertices under the estimated pose and

under the ground truth pose. A pose is considered correct when the average distance

is below 10% of the object diameter.

Competitors

We compare our method to the framework of [31] (see Chapter 2). Due to minor bugs

in the original implementation from [31], there is a slight discrepancy between the

results we obtained with a newer version and the originally published results. The

numbers our new implementation achieves are slightly superior. In the following,

we report two numbers, those of our fixed version and those of the method of [31],

reported in [31]. As additional baseline, we provide the numbers from LineMOD [14]

as reported in [31].

Figure includes images and models from the dataset by Hinterstoisser et al. [14], published in 2012 under a CC BY 4.0 Licence.

FIGURE 5.3: Images from one of our training-testing configurations: the Samurai_1 se-
quence is used for training, the Cat_1 for validation. Sequences of all objects are used for
testing. Note, the objects are of vastly different shape and appearance.

74 Chapter 5. System II: Learning Analysis-By-Synthesis

5.4.2 Random Forests

For training and testing on the dataset of Krull et al. we use the random forest from

[48] , previously used in System II (see Section 4.4). For the testing on the occlusion

dataset we used a forest trained in [31], provided to us by the authors.

5.4.3 CNN Training Procedure

We trained three CNNs, each time using only a single object from the dataset of Krull

et al.. The sequences Toolbox_1, Cat_1, and Samurai_1 served as training sets (see Fig-

ure 5.3). The first 100 frames from Samurai_1 were removed in order to obtain a high

percentage of frames with occlusion. Our validation set consists of 100 randomly se-

lected frames from the Cat_1 sequence, or the Samurai_1 sequence (in the case where

Cat_1 was used as training set). The weights of the CNN were randomly initialized.

Before training, the random weights of the last layer were multiplied by factor 1000,

in order to cover a greater range of possible energy values. After every 5th iteration

of stochastic gradient descent, we perform inference on the validation set and adjust

the learning rate. After training we pick the set of weights which achieved the highest

percentage of correctly estimates poses on the validation set. We use the criterion from

[14] to classify a pose as correct. One training cycle consisting of five steps of stochastic

gradient descent and validation took2 9min 46sec (2min 27sec + 7min 19sec). Further

details on our training procedure can be found in the Appendix (Section C.1).

5.4.4 Comparison

Occlusion Dataset from [31] and [14]

Quantitative results for this dataset are shown in Figure 5.4, for all individual test

and training objects. Considering the average over all objects we achieve an improve-

ment of up to 9.23% compared to our fixed version of [31] and 10.4% compared to the

reported values in [31]. Some qualitative results are illustrated in Figure 5.7. In Fig-

ure 5.5 we show another comparison of our method with respect to [31]. It illustrates

that we achieve the biggest gain for occlusions between 50% and 60%.

Dataset of Krull et al.

For this dataset we observe similar results as with the previous dataset. Since the

other sequences were used in training and validation, we evaluated only with the

Toolbox_2, Cat_2, and Samurai_2 sequences. When averaged over all objects we achieve

2We used an Intel(R) Core (TM) i7-3820 CPU at 3.60GHz with GeForce GTX 660 GPU. The Cat_1 se-
quence was used for training and 100 random frames from Samurai_1 for validation.

5.5. Conclusion 75

FIGURE 5.4: Quantitative comparison of our method against the results of [31] and
LineMOD [14] on the occlusion dataset from [31] and [14]. Circles, Squares, and Triangles
indicate the individual performance of CNNs trained with Tool Box, Cat, and Samurai re-
spectively. The green bars indicate the average result. Averaged over all test and training
objects we obtain the correct pose in 72.98% of cases, in contrast to 63.24% for [31] and
48.84% for LineMOD [14]. A table with the detailed numbers can be found in the Ap-
pendix (Section C.2)

an improvement of 10.97% compared to the results of [31]. The quantitative results can

be found in Figure 5.6, and a few qualitative results are shown in Figure 5.8.

5.4.5 Discussion of Failure Cases

The failure cases which are framed red in Figure 5.7 have to be considered as failure

of our learned energy function. However, the failure cases framed orange still exhibit

a lower energy at the ground truth pose than at the estimate. This indicates a failure

of the search procedure. It should be investigated in which cases the correct pose can

be found using an alternative search procedure. In the dataset introduced by Krull

et al. our accuracy for the Tool Box sequences is below the one of our competitor (see

Figure 5.6). We attribute this to the fact that the Tool Box is the biggest object and most

strongly affected by the down sampling schema described in Section 5.3.3.

5.5 Conclusion

We have presented a model for the posterior distribution in 6D pose estimation, which

uses a CNN to map rendered and observed images to an energy value. We train the

CNN-based on the maximum likelihood paradigm. It has been demonstrated that

training on a single object is sufficient and the CNN is able to generalize to differ-

ent objects and backgrounds. Our system has been evaluated on two datasets featur-

ing heavy occlusion. By using our energy as objective function for pose estimation,

76 Chapter 5. System II: Learning Analysis-By-Synthesis

FIGURE 5.5: The percentage of correctly estimated poses for all test cases of the occlusion
dataset from [31] and [14], as a function of the level of occlusion. For this we divided
the test cases into bins according to the amount of occlusion, using a bin width of 10%.
(See details of this procedure in the Appendix, in Section C.3.) We compare our method
(using the CNN trained with the Samurai object) to our fixed version of [31]. We achieve
improvements of over 20% for occlusion levels between 50% and 60%.

FIGURE 5.6: Comparison of our method on the dataset of Krull et al., against the results of
[31]. Circles, Squares, and Triangles indicate the individual performance of CNNs trained
with Tool Box, Cat, and Samurai respectively. The green bars indicate the average result.
We report 56.02%, 59.56%, and 54.65% correctly estimated poses for Tool Box, Cat, and
Samurai respectively. Averaged over all test and training objects we achieve 56.74%.

we were able to achieve considerable improvements compared to the best previously

published results.

Our approach is not restricted to the feature channels and even the application we

demonstrated. The architecture can in principle be applied to any kind of observed

and rendered image. We think it would be worth investigating if the approach could

be applied to other scenarios. An example could be pose estimation from pure RGB

without recorded depth image and a forest to calculate features. Pose estimation for

object classes could also benefit from our approach. Considering the recent success of

CNNs in recognition [140, 141] it might be possible for a CNN to learn to compare ob-

served images to renderings of an idealized model representing an object class instead

of an instance. Our approach is not limited to comparing images of the same kind, as

for example rendered and observed depth images. Instead, it could learn to assess the

5.5. Conclusion 77

plausibility of the shading in an observed RGB image by comparing it to a rendered

depth image, which can be more easily produced than a realistic RGB rendering.

Figure includes images and models from the dataset by Hinterstoisser et al. [14], published in 2012 under a CC BY 4.0 Licence.

FIGURE 5.7: Qualitative results of our method on the occlusion dataset from [31] and [14].
Here, green and blue silhouettes correspond to the ground truth and our estimate, respec-
tively. The test images depicted with a green frame show correct estimates. Images with
orange and red frame show incorrect estimates. The image with an orange frame shows
a case where the energy of the ground truth pose, according to Eq. (5.2), is lower than the
energy of the estimated pose. In this case a better pose may be found with an improved
optimization scheme.

78 Chapter 5. System II: Learning Analysis-By-Synthesis

FIGURE 5.8: Qualitative results of our method on the test cases from the dataset intro-
duced in [48]: Green frames correspond to correctly estimated poses according to the
criteria from [14]. Orange frames correspond to incorrectly estimated poses with a lower
energy at the ground truth than at the estimated pose.

79

Chapter 6

System III:

Pose Estimation on a Budget

Contents

6.1 Introduction . 80

6.1.1 Contributions . 81

6.2 Related Work . 81

6.2.1 Relation to System II . 82

6.2.2 Reinforcement Learning in Similar Tasks 82

6.3 Method . 83

6.3.1 PoseAgent . 83

6.3.2 Policy Gradient Training . 86

6.4 Experiments . 89

6.4.1 Training and Validation Procedure 90

6.4.2 Additional Baselines . 91

6.4.3 Testing Conditions . 91

6.4.4 Results . 92

6.4.5 Efficiency of the Training Algorithm 93

6.5 Conclusion . 93

In this chapter we will discuss how to replace the static search procedure (see Sec-

tion 2.3 and Figure 1.4 f) in the framework from [31] with a trained dynamic system

that can learn to make optimal use of a limited computational budget. While the

framework from [31] uses a fixed scheme to decide which hypotheses are to be refined

and which one is ultimately chosen as final output, we will develop a system, termed

PoseAgent, that iteratively decides which hypothesis should be refined next until a

budget is exhausted. The behavior of the system is non-deterministic and governed

by probability distributions. We train our system via sampling-based approach from

RL, which allows for the use of gradient descent even though the pipeline includes

non-differentiable steps. Note that the system was published in [82].

80 Chapter 6. System III: Pose Estimation on a Budget

6.1 Introduction

Many tasks in computer vision can be seen as learning a function, usually learning

to predict a desired output label given an input image. Advances in deep learning

have led to huge progress in solving such tasks. In particular, CNNs work well when

trained over large training sets using gradient descent methods to minimize the ex-

pected loss between the predictions and the ground truth labels.

However, important computer vision systems take the form of algorithms rather

than being a simple differentiable function. For example sliding window search, su-

perpixel partitioning, PFs, and classification cascades are algorithms realizing com-

plex non-continuous functions.

The algorithmic approach is especially useful in situations where computational bud-

get is limited: an algorithm can dynamically assign its budget to solving different as-

pects of the problem, for example, to take shortcuts in order to spend computation on

more promising solutions at the expense of less promising ones.

We would like to learn the algorithm. Unfortunately, the hard decisions taken in

most algorithmic approaches are non-differentiable, and this means that the structure

and parameters of these efficient algorithms cannot be easily learned from data.

RL [33] offers a possible solution to learning algorithms. We view the algorithm

as the policy of an RL agent, i.e. a description of dynamic sequential behavior. Then

RL provides a framework to learn the parameters of such behavior with the goal of

maximizing an expected reward, for example, the accuracy of the algorithm output.

We apply this perspective on the problem of 6D object pose estimation and use

RL to learn the parameters of a deep algorithmic pipeline to provide the best possible

accuracy given a limited computational budget.

Many of the applications for pose estimation such as robotics and augmented real-

ity operate in a real-time setting and have to rely on a limited computational budget.

In this chapter, we will structure-wise build upon the previously discussed Sys-

tem II. While System II learns to assess the quality of pose hypotheses, it still relies

on the original engineered search procedure from [31] (see Section 2.3). The proce-

dure starts with a pool of hypotheses and then scores each of them. The subset of

high-scoring hypotheses is refined and ultimately the highest-scoring hypothesis is re-

turned as the pose estimate. Computationally the refinement step is quite expensive,

and there is a trade-off between the number of refinements allowed and the expected

quality of the result.

Ideally, one would train such state-of-the-art system end-to-end in order to learn

how to use the optimal number of refinements to maximize the expected success of

pose estimation. Unfortunately, treating the system as a black box with parameters to

optimize is impossible for two reasons: (i) each selection process is non-differentiable

6.2. Related Work 81

with respect to the scoring function; and (ii) the loss used to determine whether an

estimated pose is correct is also non-differentiable.

We recast pose estimation as an RL problem in order to overcome these difficulties.

We model the search procedure as an RL agent which we call PoseAgent. PoseAgent is

granted more flexibility than the original system: it is given a fixed budget of refine-

ment steps, and is allowed to manipulate its hypothesis pool by selecting individual

poses for refinement, until the budget is spent.

In our PoseAgent model each agent decision follows a probability distribution

over possible actions. This distribution is called the policy and we can differentiate and

optimize this continuous policy through the stochastic policy gradient approach [154].

As a result of this stochastic approach the final pose estimate becomes a random vari-

able, and each run of PoseAgent will produce a slightly different result.

This stochastic policy gradient approach is very general and does not require dif-

ferentiability of the used loss function. As a consequence we can directly take the

gradient with respect to the expected loss of interest, i.e. the number of correctly esti-

mated poses.

Training in stochastic policy gradient can be difficult due to the sampling induced

additional variance of the estimated gradients [154, 155].

To overcome this problem we propose an efficient training algorithm that radically

reduces the variance during training compared to a naïve technique.

We compare our approach to System II and achieve improvements in accuracy,

while using the same or a smaller average number of refinement steps.

6.1.1 Contributions

In summary, the main contributions presented in this chapter are:

• To the best of our knowledge, we are the first to apply a policy gradient approach

to the object pose estimation problem.

• Our approach allows the use of a non-differentiable reward function correspond-

ing to the original evaluation criterion.

• We present an efficient training algorithm that dramatically reduces the variance

during training.

6.2 Related Work

Below, we first discuss the relation between the previously discussed System II and

System III (the PoseAgent), which we are about to present. Then, we will provide a

short review of RL methods used in a setting similar to ours.

82 Chapter 6. System III: Pose Estimation on a Budget

6.2.1 Relation to System II

The system we will present in this chapter is closely related to System II. As System II,

we follow the general framework from [31] and only focus on a single component of

the pipeline. We now however, go a step further. System II has replaced the scoring

function (see Section 2.4 and Figure 1.4 g) with a learned probabilistically motivated

energy (see Section 5.3.3). An examination of the failure cases (Section 5.4.5) suggests

the results might be further improved by optimizing the search procedure (Section 2.3

and Figure 1.4 f). We will now describe a way to learn this search procedure.

The system we will present in this chapter is also methodologically similar to Sys-

tem II. Here, we use a similar CNN construction as in System II, feeding both rendered

and observed image patches into to a CNN. Also, in System II, as in the system we will

present now, the CNN output is interpreted as part of a probability distribution.

These distributions however fulfill a different function, and are trained differently.

The training process in System II is seen as learning the posterior distribution, which

is then maximized during testing using the fixed search procedure. In contrast, here

we will present a training process that directly modifies the behavior of the agent, in

order to maximize the number of correctly estimated poses.

6.2.2 Reinforcement Learning in Similar Tasks

RL has traditionally been successful in areas like robotics [156], control [157], adver-

tising [158], network routing [159], or playing games [160]. While the application of

RL seems natural for these tasks, RL is increasingly being successfully applied in com-

puter vision systems where the interpretation of the system as an agent interacting

with an environment is not always so intuitive. In [161] RL has been used to visually

parse pictures of building facades. Recent papers apply RL for 2D object detection and

recognition [162–165]. However, we are to our knowledge the first to apply RL for 6D

object pose estimation.

In [162, 163], an agent shifts its area of attention over the image until it makes

a final decision. Instead of moving a single 2D area of attention over search space

like [162, 163], we work with a pool of multiple 6D pose hypotheses. The agent in

[164] focuses its attention by moving a 2D fixation point, though operates on a set

of precomputed image regions to gather information and make a final decision. Our

agent instead manipulates its hypothesis pool by refining individual hypotheses.

Caicedo et al. [163] use Q-learning, in which the CNN predicts the quality of the

available state-action pairs. Mnih et al. [162] and Mathe et al. [164] use a different RL

approach based on stochastic policy gradient, in which the behaviour of the agent

is directly learned to maximize an expected reward. We follow [162, 163] in using

stochastic policy gradient.

6.3. Method 83

FIGURE 6.1: The PoseAgent search procedure: a): The initial pool of hypotheses is sam-
pled and handed to the agent. b): The agent selects a hypotheses Ht

at by sampling from
the policy π (at|St;θ). c): The selected hypothesis is refined until convergence, or until
the maximum number of iterations is exceeded. The budget is reduced accordingly. d):
If enough budget is left, the refinement phase continues. If the budget is exhausted a
final decision phase begins. e): The final selection is made by sampling from the policy
π
(

aT |ST ;θ
)

. f): The selected pose HT
aT is output as final pose estimate.

6.3 Method

In this chapter, we consider the one-shot pose estimation problem, as defined in Sec-

tion 1.1.1. We will start by describing PoseAgent, our RL agent. Then, we will discuss

how to train our agent, introducing our new, efficient training algorithm.

6.3.1 PoseAgent

We will now describe our RL agent, PoseAgent, and how it performs its search. An

overview of the process can be found in Figure 6.1. The agent operates in two phases:

(i) the refinement phase, in which the agent chooses individual hypotheses to undergo

refinement; and (ii) the final decision phase, in which it has to decide which pose

should be selected as final output. In the following, we will discuss both phases in

detail.

The search begins with the refinement phase. The pose agent starts with a pool

H0 = (H0
1 . . . H

0
N) of hypotheses which have been generated as described in Sec-

tion 2.2, and a fixed budget B0 of possible refinement steps.

84 Chapter 6. System III: Pose Estimation on a Budget

At each time step t, the agent chooses one hypothesis index at, which we call

an action. 1 The chosen hypothesis is refined and the next time step begins. We

limit the maximum number of times the agent may choose the same hypothesis for

refinement to τmax. Hence, over time, the pool of actions (resp. hypotheses) the

agent may choose for refinement decreases. We denote the set of possible actions

At = {a ∈ {1, . . . , N}|τ ta < τmax}, where τ ta denotes how many times hypothesis a

has been chosen for refinement before time t. Subsequently, the agent modifies the

hypothesis pool by refining hypothesis Ht+1
at

= g(Ht
at
), where g(·) is the refinement

function. All other hypotheses remain unchanged Ht+1
a = Ht

a ∀a 6= at.

We perform refinement as follows (see also Section 2.3.1): We render the object

in pose Ht
at

. Each pixel within the rendered mask is tested for being an inlier. All

inlier pixels are used to re-calculate the pose with the Kabsch algorithm. We repeat

this procedure multiple times for the single, chosen hypothesis until the number of

inlier pixels stops increasing or until the number mt of executed refinement steps ex-

ceeds a maximum mmax. The budget is decreased by the number of refinement steps

performed, Bt+1 = Bt − mt. The agent proceeds choosing refinement actions un-

til Bt < mmax, in which case further refinement may exceed the total budget B0 of

refinement steps.

When this point has been reached, the refinement phase terminates, and the agent

enters the final decision phase, in which the agent chooses a hypothesis as the final

output. We denote the final action as aT ∈ {1 . . . N} and the final pose estimate as

Ĥ = HT
aT

. The agent receives a reward of r = 1 in case the pose is correct or a negative

reward of r = −1 otherwise. As in Chapters 4 and 5, we use the pose correctness

criterion from [14].

In the following, we describe how the agent makes its decisions. During both, the

refinement phase and the final decision phase, the agent chooses from the hypoth-

esis pool. We describe the agent behavior by a probability distribution π
(

at|St;θ
)

referred to as policy. Given the current state St, which contains information about the

hypothesis pool and the observation z, the agent selects a hypothesis by drawing a

sample from the policy. The vector θ of learnable parameters consists of CNN weights

(described in Section 6.3.1). We will first give details on the state space St before

describing the policy π
(

at|St;θ
)

.

State Space

We model our state space in a way that allows us to use our new, efficient training

algorithm, described in Section 6.3.2. We assume that the current state St of the hy-

pothesis pool decomposes as St = (st1, . . . s
t
N), where sta will be called the state of

1Note that we use the upper index ·t to denote the algorithmic time steps in the search procedure as
opposed to the lower index notation ·t, used to indicate time in the tracking formulation of Section 1.1.2.

6.3. Method 85

hypothesis Ht
a, or simply the hypothesis state. The state of an hypothesis contains the

original input observation z, the pose hypothesis Ht
a, as well as a vector f ta of addi-

tional context features of the hypothesis (see Section 6.3.1). In summary, this gives

sta = (z, Ht
a,f

t
a).

Policy

Our agent makes its decisions using a softmax policy. The probability of choosing a

particular action at during the refinement phase is given by

π
(

at|St;θ
)

=
exp

(

−E(st
at
;θ)
)

∑

a∈At exp (−E(sta;θ))
, (6.1)

where E(sta;θ) will be called the energy of the state sta. We will abbreviate it as Eta =

E(sta;θ). The energy of a state in the softmax policy is a measure of how desirable it

is for the agent to refine the hypothesis. We use the same policy in the final decision

phase, but with a different energy E′(sta;θ) abbreviated by E′t
a. We use a CNN to

predict both energies, Eta and E′t
a. In the next section, we discuss the structure of the

CNN and how it governs the behavior of the agent.

CNN Architecture

We give an overview of the CNN architecture used in this work in Figure 6.2. As in

System II, the CNN compares rendered and observed images. We use the same six

input channels as in System II (see Section 5.3.3), namely: the rendered depth channel,

the observed depth channel, a rendered segmentation channel, the object probability

channel, a depth mask, and a single channel holding the difference between object

coordinates.

There are however two major differences in our CNN compared to the one used

in System II. Firstly, while System II predicts a single energy value of a pose, we jointly

predict two separate energy values: one energy Eta for the refinement phase and one

energy E′t
a for the final decision phase.

Secondly, we input additional features to the network by concatenating them to the

first fully connected layer. The features are: The number of times the hypothesis has

already been selected for refinement, The distance the hypothesis has moved during

its last refinement and the average distance of the hypothesis before refinement to all

other hypotheses in the original pool.

Our CNN consists of the following layers: 128 kernels of size 6× 3× 3, 256 kernels

of size 128×3×3, a 2×2 max-pooling layer, 512 kernels of size 256×3×3, a max-pooling

operation over the remaining size of the image, finally 3 fully connected layers. The

86 Chapter 6. System III: Pose Estimation on a Budget

Figure includes images and models from the dataset by Hinterstoisser et al. [14], published in 2012 under a CC BY 4.0 Licence.

FIGURE 6.2: CNN energy calculation: a): The system takes an hypothesis state sta as input.
It consists of a pose hypothesis Ht

a, the observed images z, and the additional features f t
a

encoding the context and history of the pose. b): We use the hypothesis to render the
object and to cut out patches in the observed images. c): The images are processed by
the CNN. After multiple convolutional layers the result is concatenated with the features
f t
a and further processed by fully connected layers. d): The network outputs two en-

ergy values: E(sta) to be used in the refinement phase and E′(sta) to be used in the final
decision.

features f ta are concatenated to the first fully connected layer, as shown in Figure 6.2.

Each layer, except the last is followed by a tanh operation.

6.3.2 Policy Gradient Training

We will now discuss the training procedure for our PoseAgent. First, we will give

a general introduction of policy gradient training, and then apply the approach to

the PoseAgent. Finally, we will introduce an efficient algorithm that greatly reduces

variance during training and makes training feasible.

The goal of the training is the maximization of the expected reward E [r]. This ex-

pected value depends on the environment as well as on the policy of our agent. In

stochastic policy gradient methods one attempts to approximate the gradient with re-

spect to the policy parameters θ. Note that since we are dealing with the expected

value it becomes possible calculate derivatives, even if the reward function itself is

non-differentiable. By making use of the general equality ∂
∂θj
p(x; θj) = p(x; θj)

∂
∂θj

ln p(x; θj),

we can write the derivative of the expected reward with respect to each parameter θj
in θ as

∂

∂θj
E [r] = E

[

r
∂

∂θj
ln p(s1:T , a1:T ;θ)

]

, (6.2)

6.3. Method 87

where p(s1:T , a1:T ;θ) is the probability of a particular sequence of states s1:T = (s1 . . . sT)

and actions a1:T = (a1 . . . aT) to occur.

Because of the Markov property of the environment, it is possible to decompose

the probability and rewrite it as

∂

∂θj
E [r] =E

[

r

T
∑

t=0

∂

∂θj
lnπ

(

at|St;θ
)

]

. (6.3)

Following the REINFORCE algorithm [80], we approximate Eq. 6.3 using sampled

sequences (S1:Tk
k , a1:Tkk), generated by running the agent, as described in Section 6.3.1,

on training images,

∂

∂θj
E [r] ≈ 1

K

K
∑

k=1

rk

Tk
∑

t=0

∂

∂θj
lnπ

(

atk|Stk;θ
)

, (6.4)

where Tk is the number of steps in the sequence and rk is the reward achieved in the

sequence.

Efficient Gradient Calculation

We will now introduce an algorithm (Algorithm 1), to dramatically reduce the vari-

ance of estimated gradients, by allowing us to use a higher number of sequences K,

in a given time. The basic idea is to make use of the special decomposable structure of

the state space and our policy. The advantage of our algorithm compared to the naïve

implementation is illustrated in Figure 6.4.

Starting from a hypothesis pool H0, only a finite number N · (τmax + 1) of differ-

ent hypothesis states sτa|a ∈ {1, . . . N}, τ ∈ {0, . . . τmax} can occur during a run of our

PoseAgent. Here, sτa = (Hτ
a ,f

τ
a) shall denote the state of hypothesis a after it has been

refined τ times.

The algorithm pre-computes all possibly occurring hypothesis states sτa, and pre-

dicts all corresponding energy values 2 Eτa in advance using the CNN.

While this comes with some computational expense, it allows us to rapidly sample

large numbers of sequences without having to re-evaluate the energy function.

To illustrate why this is possible, let us now reconsider the calculation of the deriva-

tives in Eq. 6.4. Using the chain rule, we can write them as

∂

∂θj
lnπ

(

at|St;θ
)

=
∑

a∈At

∂Eta
∂θj

∂

∂Eta
lnπ

(

at|St;θ
)

, (6.5)

2To improve readability, we will not differentiate between E
τ
a and E

′τ
a in this section.

88 Chapter 6. System III: Pose Estimation on a Budget

where
∂

∂Eta
lnπ

(

at|St;θ
)

=

π
(

at|St;θ
)

− 1 if a = at

π
(

at|St;θ
)

else
. (6.6)

We can now rearrange Eq. 6.4 as sum over possible hypothesis states

τmax
∑

τ=0

N
∑

a=1

∂Eτa
∂θj

1

K

K
∑

k=1

Tk
∑

t=1

1
(

τ ta,k = τ
) ∂

∂Eτa
lnπ

(

atk|Stk;θ
)

rk

´¹¹¸¹¹¶

D(a,τ)

. (6.7)

Here, 1
(

τ ta,k = τ
)

is the indicator function. It has the value 1 only when the hypothe-

sis a at time t in sequence k has been selected for refinement exactly τ ta,k = τ times. It

has the value 0 in any other case.

Our algorithm works by first calculating the inner sums in Eq. 6.7 and storing

the results in the entries D(a, τ) of a table D. We compute these sums with a single

iteration over all sequences k and all time steps t. The accumulation of these values is

computationally cheap, because it does not require any rendering or involvement of

the CNN.

This structure allows us to increase the number of sampled sequences K with-

out much computational cost. The algorithm can process an arbitrary amount of

sequences using only a single back propagation pass of the CNN for each possible

hypothesis state sta. In a naïve implementation, the number of required forward-

backward passes would increase linearly with the number of sampled sequences.

Let us look at the algorithm in detail. It consists of three parts:

• Initialization Phase: We generate the original hypothesis pool as described in

Section 2.2. Then, we refine all hypotheses τmax times and predict the energy

values Eτa for all of them using the CNN.

• Sampling Phase: We sample sequences (s1:Tk , a1:Tk) as described in Section 6.3.1,

using the precomputed energies. We observe the reward rk for each sequence.

Then, we calculate for each time t, each selected hypothesis atk and each possible

hypothesis a the derivative ∂
∂Eτa

lnπ
(

atk|Stk;θ
)

rk using Eq. 6.6. We accumulate

the results in the corresponding table entries D(a, τ ta,k). This corresponds to the

inner sums in Eq. 6.7.

• Gradient Update Phase: We once more process each of the hypothesis states sτa
with the CNN and use standard back propagation to calculate ∂Eτa

∂θj
. We multiply

the results with D(a, τ) and accumulate them up in another table G to obtain the

final gradients. This corresponds to the outer sums in Eq. 6.7.

6.4. Experiments 89

Algorithm 1: Efficient Gradient Calculation

Initialization Phase:

generate hypothesis pool H0;
refine each hypothesis τmax times;
calculate and store Eτ

a ;
initialize table entries D(a, τ)← 0 and G(j)← 0

Sampling Phase:

for k = 1 : K do

sample path (s1:Tk

k , a1:Tk

k) using Eτ
a ;

receive reward rk;
for t = 1 : Tk, a = 1 : N do

D(a, τa,k)←D(a, τa,k) +
∂

∂Eτ
a
lnπ (atk|St

k;θ) rk

end

end

Gradient Update Phase:

for τ = 0 : τmax , a = 1 : N do

calculate ∂Eτ
a

∂θj
via back propagation;

for all CNN parameters j do

G(j)← G(j) +
∂Eτ

a

∂θj

1
K
D(a, τ);

end

end

Output: G(j) ≈ ∂
∂θj

E [r];

6.4 Experiments

In the following we will describe the experiments to compare our method to the base-

line of System II. Our experiments confirm that our learned search procedure is able

to use its budget in a more efficient way, compared to System II. It outperforms the

baseline system, while using on average a smaller number refinement steps.

Additionally we will describe an experiment regarding the efficiency of our train-

ing algorithm compared to a naïve implementation of the REINFORCE algorithm. We

find that our algorithm can dramatically reduce the gradient variance during training.

We conducted our experiments on the dataset of Krull et al. (see Section 4.4) in-

troduced in [48]. It features six RGB-D sequences of hand held sometimes strongly

occluded objects.

We use the same division as in System II (see Section 5.4.3), reserving the sequences

samurai_1, cat_1 and toolbox_1 for training and validation, while testing on the remain-

ing samurai_2, cat_2 and toolbox_2 sequences.

90 Chapter 6. System III: Pose Estimation on a Budget

FIGURE 6.3: Visualization of PoseAgent behavior while processing a single image. Every
red dot corresponds to one hypothesis from the original pool. Every line corresponds to
the path of a hypothesis that has been refined by the agent. The bold line corresponds to
the path of the hypothesis that as been selected during the final decision phase. A high
negative energy for refinement−E(sta;θ) leads to a high probability of being selected dur-
ing the refinement phase. A high negative energy for the final decision −E′(sta;θ) leads
to a high probability of being selected during the final decision phase. Left: For most
hypotheses the negative energy for refinement first increases and at some point decreases
again, while the negative energy for final decision continues to increase. This allows the
agent to investigate different hypotheses, instead of focusing on a single promising candi-
date. Right: The agent successfully selects the hypotheses close to the ground truth. The
hypothesis closest to the ground has the highest negative energy for the final decision.

6.4.1 Training and Validation Procedure

We train our system on the samurai_1 sequence. As System II (see Section 5.4.3) we

omit the first 400 frames in the training sequence to achieve a higher percentage of

occluded images.

We train our system with two different parameter settings: Using a hypothesis

pool size of N = 210, which is the setting used in System II, and a larger pool size of

N = 420.

To determine the adequate size of the budget B of refinement steps, we ran Sys-

tem II on our validation set and determined the average number of refinement steps it

used. We set our budget during training to the resulting number B = 77.

During training we allow a hypothesis to be chosen τmax = 3 times for refinement.

We set the maximum number of refinement steps per iteration to mmax = 10.

Using stochastic gradient descent, we go through our training images in random

order and run Algorithm 1 to approximate the gradient. We sample K = 50k se-

quences for every image l, and use an additional 50k to estimates a baseline b. We

6.4. Experiments 91

perform a parameter update after every image. Starting with an initial learning rate

of λ0 = 25 · 10−4, we reduce it according to λl = λ0/(1 + lν), see [166], with ν = 0.01.

We use a fixed momentum of 0.9.

We skip all images in which none of the hypotheses from the pool leads to a correct

pose after being refined τmax times. The reason for this is that such an image will

always produce a reward of r = −1 and cannot provide meaningful information.

We also skip all images in which more than 10% of the hypotheses from the pool

lead to a correct pose. Such images contribute little, because they are easily solved. We

augment our training data, by randomly deciding for every image whether to mirror

the CNN input along the x- and y-axis.

We run the training procedure for 96 hours on an Intel E5-2450 2.10GHz with Nvidia

Tesla K20x GPU and save a snapshot every 50 training images. To avoid over-fitting,

we test these saved snapshots on our validation set and choose the model with the

highest accuracy.

In order to reduce the computational time during validation, we considered only

images in which the object was at least 5% occluded3.

6.4.2 Additional Baselines

Two demonstrate the advantage of dynamically distributing a given computational

budget, we implemented two cut-down versions of PoseAgent, which serve as ad-

ditional baselines. The baseline method abbreviated as RandRef randomly selects a

hypothesis to refine at every iteration. When the budget is exhausted, it chooses the

hypothesis with the best predicted final selection energy E′(sta;θ).

The baseline BestRef directly picks the hypothesis with the best E(sta;θ), refines

it until the budget is exhausted and outputs it as final decision. We used the best

performing settings when running the baselines: (τmax = 6, mmax = 5) for pool size N

= 210 and (τmax = 7, mmax = 4) for pool size N = 420.

6.4.3 Testing Conditions

We compared both versions of our model, using N = 210 and N = 420, against Sys-

tem II, using the corresponding pool size. In all experiments with the baseline method

System II, we use the identical CNN with the original weights trained as described in

Section 5.4.3.

Apart from the pool size, we used the identical testing conditions as in System II

(see Section 5.4), including the same random forest originally trained in [31]. To clas-

sify a pose in correct or false we use the same point-distance-based criterion used in

3see Appendix Section C.3

92 Chapter 6. System III: Pose Estimation on a Budget

System II. A pose is considered correct, when the average distance between the vertices

of the 3D model in the ground truth pose and the evaluated pose is below a threshold.

While the number of refinement steps in our setting is restricted, System II does not

provide any guarantees on how many refinement steps are used. To ensure a fair com-

parison, we first ran System II and recorded the average number of refinement steps

that it required on each test sequence. When running our method, we set the budget

for each sequence to this recorded value, making sure that PoseAgent could never use

more refinement steps than System II. The total average number of refinement steps

required by both methods can be found Table 6.1 and 6.2.

We evaluate our method using different parameters for τmax and mmax, so that

τmax · mmax ≈ 30. Meaning that a each pose can have an approximate maximum

of 30 refinement steps. A higher value of τmax (and lower value of mmax) means

that PoseAgent can make more fine grained decisions on where to spend its bud-

get. We use the following combinations for the two values: (τmax=3,mmax = 10),

(τmax = 5,mmax = 6), (τmax = 6,mmax = 5), (τmax = 7,mmax = 4).

6.4.4 Results

Ours
System II τmax=3 τmax=5 τmax=6 τmax=7 RandRef BestRef

Cat 2 63.05 67.81 68.61 71.52 68.74 45.17 49.27
Samurai 2 60.30 51.66 53.32 54.82 51.66 31.73 34.88
Toolbox 2 52.96 52.07 60.06 54.44 59.76 35.50 32.84
Total 60.06 58.94 61.47 62.18 60.88 38.47 40.88

Avg. ref. steps 68.71 62.94 65.91 66.60 67.20

TABLE 6.1: Percent correct poses using a hypothesis pool of N = 210

Ours
System II τmax=3 τmax=5 τmax=6 τmax=7 RandRef BestRef

Cat 2 72.98 74.70 74.97 76.29 78.01 54.17 56.03
Samurai 2 66.45 59.30 59.63 58.80 61.13 39.87 40.86
Toolbox 2 64.79 65.38 68.93 71.60 71.01 52.07 53.85
Total 68.03 67.37 68.32 69.14 70.62 48.67 50.21

Avg. ref. steps 71.12 65.00 68.04 68.66 69.39

TABLE 6.2: Percent correct poses using a hypothesis pool of N = 420

The results of our experiments can be seen in Table 6.1 and 6.2. PoseAgent is able

to improve the best published results on the dataset by a total of 10.56%. When we

compare our method only to the baseline working on the same hypothesis pool size

6.5. Conclusion 93

we are still able to outperform it. With the original pool size of N = 210 by 2.12% and

the increased pool size of N = 420 by 2.59%.

Note that the budget is set in a way that is extremely restrictive, ensuring that

PoseAgent can never use more refinement steps than System II uses on average.

In both settings (N = 210 andN = 420) there appears to be a trend that an increase

of τmax, which corresponds to a more fine grained control of PoseAgent, leads to an

improvement in accuracy. The only exception here is τmax = 7 in the N = 210 setting.

It should be noted that PoseAgent was trained with a different setting of τmax = 3 and

was able to generalize to the different settings used during testing.

We measured the average run time of the method (using CPU rendering) to be

between 17 (Samurai 2) and 34 (Cat 2) seconds per image on an Intel E5-2450 2.10GHz

with NVidia Tesla K20x GPU using a hypothesis pool of N = 420.

6.4.5 Efficiency of the Training Algorithm

In order to investigate the efficiency of out training algorithm compared to a naïve im-

plementation of the REINFORCE algorithm, we conducted the following experiment:

We ran our training algorithm as well as the naïve implementation up to 100 times

on a single training image without updating the network.

To estimate the variance of the gradient, we calculated the standard deviation of

1000 randomly selected elements from the resulting gradient vector of the CNN and

averaged them. We recorded the required computation time to process the image on

an Intel E5-2450 2.10GHz with Nvidia Tesla K20x GPU.

The process was repeated for K = 5, K = 50, K = 500, K = 5000 and K = 50000

sequences in case of the efficient algorithm. In case of the naïve implementation we

used K = 1, K = 2, K = 3 and K = 4 sequences. To keep the computation time in

reasonable limits we used a reduced setting with a hypothesis pool size of N = 21 for

both methods. As can be seen in Figure 6.4 our algorithm allows us to reduce variance

greatly with almost no increase in computation time.

6.5 Conclusion

We have demonstrated a method to learn the algorithmic search procedure in a pose

estimation system using a policy gradient method. Our system learns to make efficient

use of a given budget and is able to outperform the original system, while using on

average less computational resources. We have presented an efficient algorithm for

the gradient approximation during training. The algorithm is able to sharply reduce

gradient variance, without a significant increase in computation time.

94 Chapter 6. System III: Pose Estimation on a Budget

FIGURE 6.4: Observed gradient variance during training as a function of time: Our
method is able process dramatically more sequences with almost no increase in computa-
tion time compared to a naive implementation of the REINFORCE algorithm. The result
is a drastically reduced gradient variance

We see multiple interesting future directions of research based on PoseAgent. (i)

As sensible extension of the method could use a budget of computation time, instead

of refinement steps. (ii) One could investigate a soft version of PoseAgent, which is

not working with a fixed budget, but can instead decide what is the appropriate time

to stop. In such systems the used computational budget can be part of the reward

function. Such formulations have been used in the context of CNNs [167–169]. (iii)

The sequential structure of the current system does not allow simple parallelization,

but a PoseAgent that learns to do search, while making use of multiple computational

cores could be conceived.

95

Chapter 7

Discussion and Future Work

Contents

7.1 Pose Domain versus Hypothesis Domain 95

7.2 Maximum Likelihood versus Reward Maximization 96

7.3 Particle Filer and Learned Posteriors 97

7.4 Particle Filer and Reinforcement Learning 98

7.5 Conclusion . 99

In this final chapter we will take another look at different aspects of the presented sys-

tems. We will compare them under different perspectives, highlighting their method-

ological differences, and suggesting potential combinations as well as possible future

research topics.

7.1 Pose Domain versus Hypothesis Domain

The systems presented in this thesis operate in different domains. Systems I uses hy-

potheses as part of its proposal distribution, but ultimately operates directly on the

6D Pose space. Systems II models its posterior distribution in pose space, but performs

its estimation on the discrete hypothesis set. The agent in Systems III is trained and

operates only on the discrete set of pose hypotheses.

We see two advantages of using an hypotheses-based approach. First, by gener-

ating hypotheses from predicted correspondences, we make use of geometric knowl-

edge. We agree with the argument from [46] that such knowledge should be used,

when possible instead of attempting to learn it from data. Second, hypotheses provide

the ability for a direct comparison between alternatives. We assume it to be easier to

choose between a set of alternatives than to search directly in the 6D continuous pose

space. The underlying assumption here is of course that the refinement procedure can

find the correct pose, starting from the original hypothesis set. If this is not the case,

maybe due to extreme occlusion, Systems II and III must fail, while Systems I still has

a chance to succeed.

96 Chapter 7. Discussion and Future Work

A logical step to ensure than an hypothesis, close enough to the correct solution

is included, would be to learn the process of hypothesis generation as well. We think

that RL could again be an appropriate tool to achieve this.

The current hypothesis generation procedure (see Section 2.2) selects one pixel and

then two more in its vicinity to generate a hypothesis. The pixels are sampled using

the predicted object probabilities as guidance. One possibility would be to learn these

object probabilities in an end-to-end fashion. As a matter of fact, in [46] Brachmann

et al. present an RL-based system that can learn object coordinates in a similar way. It

would be a natural extension to learn the object probabilities as well.

Alternatively, one could go a step further and learn the sampling process itself.

There are trade-offs to be considered in the way the three pixels are selected. For

example, if the second and third pixels are in close proximity to the first one, they

are more likely to be part of the same object. However, since the prediction is noisy

the predicted pose will be more accurate if the pixels are further apart. It would be

desirable to try and understand this trade-off in an analytical way in terms describing

the expected error. We can also see how an RL agent could be trained to choose the

next pixel-based on the previously selected one or two.

We think it is also worth considering whether the hypotheses in the original pool

should really be generated independently of one another, as it is currently the case. It

seems that the chance of finding the correct pose could be increased if the hypothe-

ses were distributed more diversely, avoiding the creation of densely packed clusters.

There exists quite a body of work on the topic of generating diverse solutions and

hypotheses, e.g. [170–172]. An RL agent generating pose hypothesis could build on

such findings. It could prune the pool of hypotheses to avoid concentration by us-

ing determinantal point processes [170] or a similar model, or it could generate the pool

incrementally, considering the distance to previously found hypotheses in each step.

7.2 Maximum Likelihood versus Reward Maximization

Even though Systems II and III are structurally similar–both use a CNN to compare

rendered and observed images–they rely on radically different training paradigms.

System II is trained using the maximum likelihood approach. It is known that maxi-

mizing likelihood is equivalent to minimizing the Kullback–Leibler divergence [173]. We

ultimately adjust the parameters θ to align the distribution described by our CNN

with the distribution provided by our training data. This kind of approach to learning

is attractive because of its flexibility. When we are learning by matching probability

distributions we are not committed to a particular loss function during testing. Once

our probability distribution is trained we can use it for whatever purpose we choose.

We can find an estimate by maximizing an expected loss during test time, or we can

7.3. Particle Filer and Learned Posteriors 97

use the distribution as part of a larger probabilistic model and reason with it. One of

the core features of probability theory is, after all, the possibility of combining distri-

butions in a principled way. A HMM, as the one used in System I , can for example be

constructed with trained distributions for observation likelihood and motion.

The approach taken in System III on the other hand is not based on matching prob-

ability distributions. Instead, the RL agent is trained to simply optimize the expected

reward. This is very much akin to the empirical loss-based training of CNNs that was

so successful in recent years [40, 41, 174, 175]. In System III we have to specify the re-

ward function during training, and we ultimately train a specialized algorithm to per-

form exactly the task we specified through the reward. In this respect, the approach is

much less flexible, compared to the training of probability distributions. On the other

hand, loss-based RL allows for the end-to-end training of very complex algorithmic

procedures that can even include discrete decisions.

We think it is worth considering how to combine these two paradigms in a ben-

eficial way. A very common approach is to use a probabilistic model, but to train it

not by matching distributions, but by minimizing an expected loss calculated on the

final estimate. In methods such as [176–178] CRF models are trained through a differ-

entiable inference procedure. Their CNN-based potentials are tuned to minimize an

expected loss after inference. Discriminatively trained tracking systems in the HMM

framework are another example: In methods such as [179–181] the authors train prob-

abilistic models for tracking, by minimizing an expected loss of the tracking result.

We see another approach for combining the two philosophies. Instead of training

a probabilistic model with its inference procedure in a loss-based fashion, it is also

possible to train an RL agent as part of a probabilistic model. Recently, there has been

some work going in this direction. Systems such as [167–169] use CNNs to model

probability distributions over classes and consider RL to make efficient use of compu-

tational resources by dynamically deciding which part of a CNN should be activated

or deactivated, or how information should flow within the network. We see this as an

interesting line of research and will discuss a possible application in Section 7.4.

7.3 Particle Filer and Learned Posteriors

Here we would like to point out the possibility of combining a trained posterior dis-

tribution, as the one from System II, with the PF framework from System I or similar

probabilistic tracking systems.

98 Chapter 7. Discussion and Future Work

In [181] Burkhart et al. call attention to the fact that the filtering equation Eq. 4.3

can be reformulated as

p(Xt+1|z1:t+1) ∝ p(zt+1|Xt+1)

∫

p(Xt+1|Xt)p(Xt|z1:t)dXt (7.1)

∝ p(Xt+1|zt+1)

p(Xt+1)

∫

p(Xt+1|Xt)p(Xt|z1:t)dXt. (7.2)

The proportionality here is meant in the sense that the two terms are equal up to a

factor, depending only on the observation zt+1, but not on the state Xt+1. This has

implications for HMM-based tracking systems in general, as well as for our PF-based

System I. By additionally assuming a uniform prior p(Xt+1) over the pose, we can sub-

stitute the observation likelihood used in the computation of the weights in our parti-

cle filter with the trained unnormalized posterior p(Xt+1|zt+1) = exp
(

−E(Ht+1, z;θ)
)

(Eq. 5.1) distribution from System II. Note that a normalization is not required, as the

normalization constant would be identical for all particles.

Due to the computational effort required for the application of the CNN, it might

be problematic to apply this idea directly in a real-time system. However, we still think

that the general idea is worth considering for two reasons: First, it might be possible

to reduce the required amount of computation (see Section 7.4). Second, the approach

could also be applied for an offline tracking formulation, in which computation time

is not as essential.

As pointed out in [181], the training or construction of observation models is often

difficult. Many PF methods (e.g. [37, 38, 101, 102, 127], but also System I) use heuristi-

cally constructed observation models that are not motivated or trained in a meaningful

way. We would like to argue that training a model for the posterior and applying it

in a tracking framework is a more principled approach than the use of a heuristically

build observation model.

We think that the general scheme of training an energy-based model for the poste-

rior, as described in System II, to later use it in a HMM-based framework, is applicable

in settings beyond object pose estimation.

7.4 Particle Filer and Reinforcement Learning

In our opinion the combination of the PF tracking framework with the RL approach

bears an interesting potential. For online tracking systems the efficient use of com-

putational resources can be essential, as a missed frame due to slow computation can

lead to further errors at later points in time. RL could be a tool to help distribute com-

putational resources in a sensible way. In a particle filter often the evaluation of the

observation likelihood, especially in a formulation as described in Section 7.3, for all

7.5. Conclusion 99

particles is the computational bottleneck. Consequently, we believe that a PF system

could benefit by using RL-based techniques such as [167–169] to dynamically decide

how much computational effort should be spent on the computation of the observa-

tion likelihood of each individual particle. It might be possible to quickly assign a

low observation likelihood to some of the particles, while others might require more

attention.

The potential for improvement could be even greater, if we model not the com-

putation of observation likelihoods as an RL agent, but the PF as a whole. Instead

of individually deciding how much effort to spend on each particle, such an agent

could learn to iteratively distribute computational budget among particles. One could

go a step further and allow the dynamic adjustment of the number of particles or of

the proposal distribution itself. Such an approach could be seen as an extension of

the work on discriminative PF tracking [179–181], with the additional possibility of

learning discrete choices in the procedure.

7.5 Conclusion

In this thesis, we have taken a probabilistic stance on the problem of object pose esti-

mation, a task with enormous potential impact on the modern world. We have demon-

strated that a probabilistic perspective can help us to address the difficult challenges of

visual ambiguity and restricted computational resources, arising in this task. Building

on the state-of-the-art framework of [31], we developed and evaluated three systems,

each applying a different flavor of probabilistic modeling and sampling-based imple-

mentation to a different aspect of the original framework.

In System I we have shown how to convert the one-shot framework to a real-time

PF-based pose tracking system, build on a probabilistic model. The system includes

a novel proposal distribution to make sensible use of the different elements in the

original framework. In System II we have presented a CNN to evaluate the quality of

pose hypotheses by learning the comparison of rendered and observed images. We

have trained the CNN as part of a probability distribution. This approach potentially

allows for the use in a larger probabilistic model such as the tracking framework of

System I. In System III we constructed an RL agent that learns to make optimal use of

a restricted computational budget during the search for the correct pose. The agent’s

non-deterministic behavior allows for the training of an algorithmic search procedure

involving discrete choices.

The methods we presented have improved the state-of-the-art in object pose esti-

mation. Furthermore, we believe that they have the potential to be applied in prob-

lems beyond pose estimation as well.

101

Appendices

103

Appendix A

Derivations Regarding SO(3)

A.1 Derivation of the Density Factor Between Tangent Spaces

in SO(3)

We will now derive the factor φ(ψR0,R) from Eq. 3.19 that is to be applied when com-

paring probability densities defined in two different tangent spaces of SO(3). The

factor is depicted as a function of ψR0,R in Figure A.1. A differently motivated deriva-

tion of the factor can be found in [107].

A.1.1 Definition of the Problem

Let us assume we have a probability density pR0
(ωR0

) defined in the tangent space

at the location R0. Because of the symmetric structure of SO(3) we can, without loss

of generality, assume that R0 is the identity rotation. By using Eq. 3.13, we can map

elements ωR0
from the tangent space at R0 to the tangent space at a different location

R. The resulting elements in this space will be denoted by ωR = fR0→R(ωR0
), with

fR0→R defined in Eq. 3.13. By applying this mapping to elements distributed accord-

ing to pR0
(ωR0

), we can thus indirectly define a distribution with probability density

pR0→R(ωR) over the elements of the tangent space at R.

Let us assume now that we are interested in the probability density at the partic-

ular location ωR0
= logR0

(R) (see Eq. 3.12), i.e. at the location corresponding to R. By

definition, the corresponding representation of ωR0
in the tangent space at R will lie

at the origin: ωR = fR0→R(ωR0
) = (0, 0, 0)⊺.

We are now interested in calculating the ratio of probability densities at this loca-

tion

φ(ψR0,R) =
pR0→R(ωR)

pR0
(ωR0

)
=
pR0→R ((0, 0, 0)⊺)

pR0
(ωR0

)
. (A.1)

This factor will allow us to derive the density in the tangent space atR from the density

in the tangent space at R0 as

pR0→R (0, 0, 0)⊺ = pR0
(ωR0

)φ(ψR0,R). (A.2)

104 Appendix A. Derivations Regarding SO(3)

FIGURE A.1: The factor φ(ψR0,R) for the comparison of densities defined in different tan-
gent spaces. The red line is calculated according to Eq. 3.19. Black circles are the result
of a Monte Carlo approximation: We sampled 5000 points in the tangent space at R0 and
transformed (via Eq. 3.13) them to a tangent space at a location R. We then calculated the
ratio of the number of points that fall into spherical volumes (of diameter 10−5) located at
logR0

(R) in the tangent space at R0 and at the origin in the tangent space at R. We used
importance sampling with an isotropic normal proposal distribution centered at logR0

(R)
with a standard deviation of 2 · 10−5

Here, ψR0,R is the angle of the difference rotationRR−1
0 betweenR andR0 (see Eq. 3.5).

If we assume, as stated above, that R0 is the identity rotation then ψR0,R is simply the

angle of the rotation R. To simplify the notation in the following derivation, we will

denote it as ψ, with ψ = ψR0,R

A.1.2 Derivation

Note that, because of the symmetry of SO(3), the factor φ(ψ) depends only on the

angle ψ and not on the axis of the rotation nor its direction. Thus, we can assume

without loss of generality for R to be a rotation around the first axis with angle 0 <

ψ < π:

Rψ =

1 0 0

0 cos (ψ) − sin (ψ)

0 sin (ψ) cos (ψ)

. (A.3)

We will from now on view it as a function of ψ and denote it as Rψ to make this

explicit. By using the change of variables technique [182] the factor φ(ψ) can be derived

as
∣

∣

∣det
(

JfRψ→R0
(ωRψ)

)∣

∣

∣ , (A.4)

where JfRψ→R0
(ωRψ) is the Jacobian of the map fRψ→R0

(ωRψ) from the tangent space

atRψ to the tangent space atR0, i.e. the inverse of fR0→Rψ(ωR0
). Based on Eq. 3.14 and

A.2. Derivation of UARS Density in Tangent Space 105

on the assumption we made earlier that R0 is the identity rotation, we can calculate

ωR0
= fRψ→R0

(ωRψ) = log
(

exp(ωRψ)Rψ
)

, (A.5)

and proceed to calculate the Jacobian as

JfRψ→R0
(ωRψ) =

∂ω1
R0

∂ω1
Rψ

∂ω2
R0

∂ω1
Rψ

∂ω3
R0

∂ω1
Rψ

∂ω1
R0

∂ω2
Rψ

∂ω2
R0

∂ω2
Rψ

∂ω3
R0

∂ω2
Rψ

∂ω1
R0

∂ω3
Rψ

∂ω2
R0

∂ω3
Rψ

∂ω3
R0

∂ω3
Rψ

, (A.6)

where ω1
Rψ
, ω2

Rψ
, ω3

Rψ
and ω1

R0
, ω2

R0
, ω3

R0
shall denote the components of ωRψ and ωR0

respectively.

As stated in Section A.1.1, we need to determine the partial derivatives in Eq. A.6

at the origin of the tangent space ωRψ = (0, 0, 0)⊺. However, we find that they are not

defined at this location. Instead, we determine the limits of Eq. A.6, with ω1
Rψ
, ω2

Rψ
,

and ω3
Rψ

approaching zero. We find the following limits:

ĴfRψ→R0
(ωRψ) = lim

ωRψ
→(0,0,0)⊺

JfRψ→R0
(ωRψ) =

1 0 0

0 ψ(cos (ψ)+1)
2 sin (ψ)

ψ
2

0 −ψ
2

ψ(cos (ψ)+1)
2 sin (ψ)

. (A.7)

Finally, we calculate the determinant

φ(ψ) =
∣

∣

∣
det

(

ĴfRψ→R0
(ωRψ

)∣

∣

∣
=

(

ψ/2

sin(ψ/2)

)2

=
ψ2

2(1− cosψ)
. (A.8)

A.2 Derivation of UARS Density in Tangent Space

To derive the UARS density in tangent space given in Eq. 3.22, we start with the cor-

responding distribution in spherical coordinates. A uniform distribution of rotation

axis can be described by the joint distribution over azimuth−π < ϕ < π and elevation

0 < ϑ < π angles.

p(ϑ, ϕ) =
1

4π
sin(ϑ). (A.9)

Since the angle ψ is sampled independently, we can write the joint distribution of all

three variables as product. Making use of the fact that C(ψ;κ) is symmetric about 0,

106 Appendix A. Derivations Regarding SO(3)

we can restrict 0 < ψ < π by including the factor 2:

p(ϑ, ϕ, ψ;κ) =
1

2π
sin(ϑ)C(ψ|;κ). (A.10)

We now have to convert the density from spherical to Cartesian coordinates ωR0
=

(ω1
R0
, ω2

R0
, ω3

R0
)⊺. This can again be achieved by multiplying a factor φ̃(ψ), found via

the change of variables technique [182], similarly as in Section A.1.2. We can map

spherical coordinates to Cartesian coordinates as

ω1
R0

= ψ sin(ϑ) cos(ϕ) (A.11)

ω2
R0

= ψ sin(ϑ) cos(ϕ) (A.12)

ω3
R0

= ψ cos(ϑ). (A.13)

To find the conversion factor, we require the inverse map, which can be calculated as

ψ = |ωR0
| (A.14)

ϑ = arccos(ω3
R0
/|ωR0

|) (A.15)

ϕ = arctan((ω2
R0

)/ω1
R0

). (A.16)

Note that here we assume ω1
R0

> 0. We can do this without loss of generality because

of the symmetric nature of the problem. Since the final density is rotationally symmet-

ric, and will be identical for all ωR0
with |ωR0

| = ψ we can do all calculations at the

location

ω1
R0

= ψ, ω2
R0

= 0, ω3
R0

= 0. (A.17)

We now calculate the Jacobi matrix containing the derivatives of ψ, ϑ, ϕ in the di-

rections of (ω1
R0
, ω2

R0
, ω3

R0
). We do our calculation at the location given by Eq. A.17. We

find:

Jcart→sphere(ωR0
) =

1 0

0 0 − 1
ψ

0 1
ψ

0

(A.18)

The resulting factor is

φ̃(ψ) = |det (Jcart→sphere(ωR0
)) | = 1

ψ2
(A.19)

A.2. Derivation of UARS Density in Tangent Space 107

By multiplying Eq. A.10 with the factor, we obtain the following tangent space

density in Cartesian coordinates:

sin(ϑ)
C(ψ = |ωR0

|;κ)
2π(ψ = |ωR0

|)2
. (A.20)

By using Eq. A.15 we obtain ϑ = π
2 for the location chosen in Eq. A.17. As mentioned

above the density is identical for all ωR0
with |ωR0

| = ψ. We can thus calculate it as

pUARS
R0

(ωR0
;R0, κ) =

C(ψ = |ωR0
|;κ)

2π(ψ = |ωR0
|)2

. (A.21)

109

Appendix B

Further Details on System I

B.1 Details on Fitting the Continuous Distribution

During the construction of our proposal distribution we fit a continuous distribution

fUARS−N(H; H̃center, Σ̃, κ̃) to a set of extrapolated particles P̃t+1. We will now describe

the fitting process in detail.

To find H̃center = (R̃center, ṽcenter) We calculate the translational component ṽcenter

as the mean translation of P̃t+1, and the rotational component R̃center as the mean

rotation, (see Section 3.1.3).

We then use ṽcenter to calculate the covariance matrix Σ̃ of the translational com-

ponents of P̃t+1. To find our estimate κ̃ for the concentration parameter κ̃ we calculate

the difference angles ψR̃it+1,R̃
center (see Eq. 3.5) between R̃center and each rotation R̃it+1

in P̃t+1. Since we do not know the direction of the rotations we apply a random sign

to each ψR̃i,R̃center and finally compute κ̃ via Eq. 4 from [183]. Note that we add an

additional constant c = 10−4 to the denominator for numerical stability.

B.2 Hypothesis Generation

In the construction of our proposal distribution System I uses a sampling scheme sim-

ilar to the one in framework from [31] (see Section 2.2).

We will now describe in detail where our procedure differs. The sampling process

used in the framework draws the first random pixel i1 from the entire image according

to pc,i, followed by two more in its vicinity. We in contrast, consider only pixels inside a

square window around the projected center of Hcenter = (Rcenter,vcenter). We calculate

the width of the window as fδc/− vcenter
z , where vcenter

z is the z-coordinate of vcenter.

In the framework from [31] an error is calculated for each sampled hypothesis

by mapping the predicted object coordinates of the three pixels into camera space

using the generated hypothesis and comparing them with the observed 3D camera

coordinates. Hypotheses are accepted, if all errors are below 5% of the object diameter.

110 Appendix B. Further Details on System I

We use a different error measure, based on the assumption that the distance be-

tween two points in camera and object space should be identical. We calculate the

Euclidean distance between each possible pair of points out of the three. We do this

in camera and object space and for each pair compute the difference between the two.

Our error measure is defined as the maximum of these differences. We accept a hy-

pothesis whenever its error is smaller than the objects diameter.

While in the framework from [31] hypothesis generation is repeated until 210 hy-

potheses are accepted, we always sample 500 times. In cases where less than 5 hy-

potheses are accepted, we stop calculation of the global estimate and use only the

local estimate.

B.3 List of Parameters

The following parameters were used in all experiments:

Training Parameters
maximum feature offset: 20 pixel meters
number of features generated at each node: 1000
ratio of ‘da-d’ to ‘da-rgb’ features 0.5
number of trees: 3
random pixels per image to learn tree structure: 1000
random pixels per image to learn leaf distributions: 5000
stopping criterion: minimum number of pixels per node: 50

General Testing Parameters
number of particles K: 70
control parameter λlike: 20
depth comp. weight λdepth: 10
coordinate comp. weight λcoord: 2
object comp. weight λobj: 10
threshold τd used in Edepth(H): 50 mm
threshold τoccd used in Edepth(H): 30 mm
threshold τy used in Ecoord(H): (0.2 δc)

2

number of Hypothesis to be sampled: 500
threshold used during sampling of poses: 0.05 δc
inlier threshold used in refinement: 20 mm

Proposal Distribution Parameters
covariance matrix for prop. dist. Σprop: Iσprop

v

std of random translation in prop.dist. σprop
v

: 2 mm
std of random rotation in prop.dist. σprop

R = 1/
√
κprop: 0.01rad

maximum iterations for refinement of Hglobal
t+1 : 15

maximum iterations for refinement of Hglobal
t+1 : 15

maximum iterations for final optimization Hglobal
t+1 : 30

mixture weight in prop. αprop: 0.5

B.4. Approximate UARS Density 111

The following motion model parameters were used in all experiments performed

on the dataset of Choi and Christensen:

Motion Model Parameters (Dataset from Choi and Christensen)
damping parameter for translation λv : 0.7
damping parameter for translation λR: 0.6
std of random translation σmm

v
: 14 mm

std of random rotation in motion model σmm
R = 1/

√
κmm: 0.05rad

The following motion model parameters were used in all experiments performed

on the dataset of Krull et al.:

Motion Model Parameters (Dataset dataset of Krull et al.)
damping parameter for translation λv : 0.7
damping parameter for translation λR: 0.6
std of random translation σmm

v
: 20 mm

std of random rotation in motion model σmm
R = 1/

√
κmm: 0.15rad

B.4 Approximate UARS Density

Throughout the experiments described in Chapter 4, we used only an approximate

density to describe the UARS distribution. We effectively use

f̃UARS(R;R0, κ) = C

(

arccos

(

1

2
(tr(R−1

0 R)− 1)

)

;κ

)

. (B.1)

Compared to the correct density given in Eq. 3.27 we were thus lacking the factor

4π

3− tr(R−1
0 R)

. (B.2)

Only later considerations have led us to the Eqs. 3.26 and 3.27 The benefit of using

these equations remains to be evaluated in future experiments.

113

Appendix C

Further Details on System II

C.1 Further Details on our Training Procedure

We will now discuss the training procedure of our CNN. We use the Torch 7 framework

to implement our network. Our training procedure starts with a randomly initialized

set of network parameters. We use the random initialization provided by Torch 7. To

cover a greater range of possible energy values from the beginning, we multiply the

weights in the last layer by 1000 before training starts.

During training we repeat the following steps:

1. Randomly pick five training samples from the training set.

2. Perform a gradient step for each of the training samples:

(a) Calculate partial derivatives ∂
∂θj
E
(

Hl, zl;θ
l
)

of the energy at the ground

truth pose Hl using back propagation.

(b) Run the inference scheme as described in Section 5.3.5 on the training image

zl.

(c) Use the result as initialization for Metropolis sampling described in Sec-

tion 5.3.4.

(d) Calculate the partial derivatives ∂
∂θj
E
(

Hk, zl;θ
l
)

of the energy at each pose

sample Hk and average the results.

(e) Calculate the gradient of the log likelihood according to Eq. 5.4.

(f) Calculate the new parameter set θl+1 using the gradient and current learn-

ing rate.

3. Use the current set of parameters θl to perform inference on the validation set

and determine the number of correctly estimated poses.

4. Update the learning rate similar to [166] as:

λl = 10−5λ0/(1 + λ0νl)

114 Appendix C. Further Details on System II

In the end we pick the set of parameters which performed best on the validation set

according to the number of correctly estimated poses. In the case where two parameter

sets perform equally well, we pick the later one.

In our experiments we iterated the scheme described above 48 times and used the

parameters λ0 = 10 and ν = 0.1. For the proposal distribution in the Metropolis

sampling scheme we used the covariance matrix Σv = 25−1I3 to sample of the trans-

lational component and the covariance matrix ΣR = 0.01−1I3 to sample the rotational

components.

In order to increase the number of training samples we randomly decide in each

training step whether to rotate all images by 180deg.

C.2 Detailed Experimental Results

Dataset by Hinterstoisser [14] and Brachmann [31]

Here we provide a table with detailed results on the dataset by Hinterstoisser [14] and

Brachmann[31]. In Table C.1, we show the percentage of correctly estimated poses for

the different objects and the average percentage. The results correspond to Figure 5.4.

The best results for each object are printed in bold numbers.

Brachmann et al. [31] Fixed Version of Brachmann et al. System II

Ape 62.6% 64.1% 79.06%
Can 80.2% 79.95% 88.9%
Cat 50% 50.05% 56.84%

Driller 84.3% 83.43% 93.32%
Duck 67.6% 70.12% 73.4%

Egg Box 8.5% 11.17% 36.21%
Glue 62.8% 66.08% 66.08%

Hole P. 89.9% 90.33% 95.29%

Average 63.24% 64.4% 73.64%

TABLE C.1

C.2.1 Dataset by Krull [48]

Here we provide a table with detailed results on the dataset by Krull et al. [48]. In

Table C.2, we show the percentage of correctly estimated poses for the different se-

quences, the combined results for the three different objects, and the average over the

three objects. The results correspond to Figure 5.6. Again, the best results for each

sequence and object are printed in bold numbers.

C.3. Details on the Calculation of Occlusion 115

Brachmann et al. [31] System II

Cat 2 44.2% 62.78%

Samurai 2 33.7% 60.47%

Tool Box 1 54.7% 48.34%
Tool Box 2 59.4% 52.96%
Cat (total) 44.2% 62.78%

Samurai (total) 33.7% 60.47%

Tool Box (total) 56.71% 50.32%
Average 44.87% 57.85%

TABLE C.2

C.3 Details on the Calculation of Occlusion

The performance of the evaluated methods depends strongly on how much of the

object is visible in the image and how much is occluded. To analyse this dependency,

we calculated the percentage of occlusion for each object and image by rendering a

depth image of the object in ground truth pose and doing a pixel-wise comparison

to the recorded depth image. We count a pixel as occluded whenever the rendered

depth at the pixel is more than 50 mm behind the recorded depth, or when there is no

recorded depth value available for the pixel. To create Figure 5.5 we divided the test

images into bins according to their level of occlusion and calculated the percentage of

correctly estimated poses for each bin. We used a bin width of 10%.

C.4 Additional Qualitative Results

Here we provide qualitative results for four test cases. Two cases are taken from each

dataset. In Figure C.1 and Figure C.2 we show results for the can and cat object, respec-

tively. They belong to the dataset of [14] and [31] . In Figure C.3 and Figure C.4 we

show results for the samurai and tool box object, respectively. They belong to the dataset

from [48]. The upper four images in each figure show the RGB and depth channels as

well as the forest predictions. The lower six are rendered and cropped images which

are processed and fed into the CNN (see Figure 5.2(e-g)) to calculate an energy vale.

Object coordinates in all figures were mapped to the RGB cube for visualization.

116 Appendix C. Further Details on System II

a) b)

c) d)

e) f) g)

h) i) j)

Figure includes images and models from the dataset by Hinterstoisser et al. [14], published in 2012 under a CC BY 4.0 Licence.

FIGURE C.1: Qualitative results. a): RGB image with results: blue indicates our pose es-
timate, green indicates the ground truth pose; b): recorded depth image; c): object proba-
bilities predicted by the forest; d): object coordinates predicted by one tree from the forest;
e): rendered depth image; f): rendered mask; g): rendered object coordinates; h): cropped
observed depth image (values which are more than the object diameter behind or in front
of the object are shown as white or black respectively); i): cropped object probabilities; j):
cropped predicted object coordinates.

C.4. Additional Qualitative Results 117

a) b)

c) d)

e) f) g)

h) i) j)

Figure includes images and models from the dataset by Hinterstoisser et al. [14], published in 2012 under a CC BY 4.0 Licence.

FIGURE C.2: Qualitative results. a): RGB image with results: blue indicates our pose es-
timate, green indicates the ground truth pose; b): recorded depth image; c): object proba-
bilities predicted by the forest; d): object coordinates predicted by one tree from the forest;
e): rendered depth image; f): rendered mask; g): rendered object coordinates; h): cropped
observed depth image (values which are more than the object diameter behind or in front
of the object are shown as white or black respectively); i): cropped object probabilities; j):
cropped predicted object coordinates.

118 Appendix C. Further Details on System II

a) b)

c) d)

e) f) g)

h) i) j)

FIGURE C.3: Qualitative results. a): RGB image with results: blue indicates our pose es-
timate, green indicates the ground truth pose; b): recorded depth image; c): object proba-
bilities predicted by the forest; d): object coordinates predicted by one tree from the forest;
e): rendered depth image; f): rendered mask; g): rendered object coordinates; h): cropped
observed depth image (values which are more than the object diameter behind or in front
of the object are shown as white or black respectively); i): cropped object probabilities; j):
cropped predicted object coordinates.

C.4. Additional Qualitative Results 119

a) b)

c) d)

e) f) g)

h) i) j)

FIGURE C.4: Qualitative results. a): RGB image with results: blue indicates our pose es-
timate, green indicates the ground truth pose; b): recorded depth image; c): object proba-
bilities predicted by the forest; d): object coordinates predicted by one tree from the forest;
e): rendered depth image; f): rendered mask; g): rendered object coordinates; h): cropped
observed depth image (values which are more than the object diameter behind or in front
of the object are shown as white or black respectively); i): cropped object probabilities; j):
cropped predicted object coordinates.

121

Appendix D

List of Abbreviations

2D, 3D, 6D 2-, 3-, 6-Dimensional

AR Augmented Reality

CNN Convolutional Neural Network

COBYLA Constrained Optimization BY Linear Approximations

CRF Conditional Random Field

HMM Hidden Markov Model

MAP Maximum A Posteriori

MCMC Markov Chain Monte Carlo

PCL Point Cloud Library

PF Particle Filter

RANSAC RAndom SAmple Consensus [54]

RGB Red Green Blue

RGB-D Dred Green Blue - Depth

RL Reinforcement Learning

RMSE Root Mean Square Error

SE(3) Special Eucledian group

SIFT Scale-Invariant Feature Transform [55]

SO(3) Special Orthogonal group

SVD Singular Value Decomposition

UARS Uniform Axis Random Spin

123

Appendix E

List of Symbols

Here we provide a list of the used symbols. Symbols that are only used locally are not

included.

Latin Symbols:

A set of possible actions

A(·|·) acceptance probability

a PoseAgent action

Bt PoseAgent budget at time t

C set of known objects

C(·) density of circular distribution

c object of interest

D 2D table for accumulating derivatives

D(a, τ) table entry

d depth component of image x

di 3D camera coordinates of pixel i

di 1D depth information of pixel i

d́(H) rendered depth image using pose H

d́i(H) rendered 3D camera coordinates of pixel i from d́

E(H) scoring function, measuring the quality of pose H

Edepth(H) depth component of scoring function E(H)

Eobj(H) object component of scoring function E(H)

Ecoord(H) coordinate component of scoring function E(H)

E(H;θ) CNN-based energy function from System II

Eta = E(sta;θ) PoseAgent energy for refinement

E′t
a = E′(sta;θ) PoseAgent energy for final decision

f focal length of the camera

f ta additional features for a at time t

fUARS(·) density of UARS distribution

fUARS−N(·) density of UARS-Normal distribution

f
(

di, d́i(H)
)

distance measure on camera coordinates

124 Appendix E. List of Symbols

focc

(

di, d́i(H)
)

modified distance measure on camera coordinates

G 1D table for accumulating derivatives

G(j) table entry

g
(

yi,j , ýi(H)
)

distance measure on object coordinates

H pose hypothesis, H = (R,v)

Ĥ final pose estimate

Hk
t particle k at time t

H̃k
t , H̄k

t intermediate particle k at time t

Hest
t+1 preliminary pose estimate

H local
t+1 local preliminary pose estimate

Hglobal
t+1 global preliminary pose estimate

H∗ true pose of the object

H pose hypothesis pool

I RGB component of image x

i pixel index

i1, i2, i3 pixels indexes selected to generate a pose hypothesis

j tree index

j1, j2, j3 tree indexes selected to generate a pose hypothesis

K number of samples/particles

k index of sample/particle

L set of training data

l index of training iteration

Mc(H) rendered silhouette of the object c under H

ML
c (H) like Mc(H); additionally excluding pixels with low pc,i

mt number of refinement steps done at time t

mmax maximum number of allowed refinement steps

N size of hypothesis pool

n number of pixels in image x

Pt set of particles at time t

P̃t, P̄t set of intermediate particles at time t

pjc,i predicted object probability for object c at pixel i by tree j

pc,i combined predicted object probability for object c at pixel i

q(·|·) proposal distribution

R rotation matrix, element of SO(3)

R0, R1 rotation matrix, as base of tangent space

Rpred
t predicted rotational component at time t

r reward

SO(3) Lie group of 3D rotations

so(3) Lie algebra of SO(3)

Appendix E. List of Symbols 125

St PoseAgent state at time t

sta PoseAgent hyp. state of a at time t

sτa PoseAgent hyp. state after being chosen τ times

T random forest

|T | number of trees in random forest

T last time index

t time index

û uniformly distributed 3D unit vector

v translation component of a pose

v
pred
t predicted translational component at time t

v̇t translational velocity at time t

v̇kt translational velocity of particle k at time t

wkt weight of particle k at time t

Xt state at time t

x input image, x = (d, I)

y image of object coordinates

y
j
i,c the object coordinates predicted for object c at pixel i by tree j

yi 3D object coordinates of pixel i

ý(H) rendered object coordinate image using pose H

ýi(H) rendered object coordinates of pixel i from ý

z observations including x and precomputed features

zt observations at time t including xt and precomputed features

ź(H) set of images, rendered using pose H

126 Appendix E. List of Symbols

Greek Symbols:

α, β, γ rotation angles

αprop parameter controlling the proposal distribution in System I

δc diameter of the object c

θ vector of CNN parameters

θ∗ vector of optimal CNN parameters

θj individual CNN parameter with index j

κ concentration parameter for circular distribution

κprop concentration parameter of proposal distribution

λdepth weight of depth component in scoring function E(H)

λobj weight of object component in scoring function E(H)

λcoord weight of coordinate component in scoring function E(H)

λv damping parameter for translation

λR damping parameter for rotation

λlike parameter controlling harshness of obs. likelihood

λl learning rate at iteration l

ν learning rate decay parameter

π
(

at|St;θ
)

PoseAgent policy

Σv translation covariance matrix for porp. dist. in System II

ΣR rotation covariance matrix for porp. dist. in System II

Σmm covariance parameters of motion model in System I

Σprop covariance parameters of proposal dist. in System I

σmm
R = 1/

√
κmm standard deviation of rotation angles in motion model

σpropR = 1/
√
κprop standard deviation of rotation angles in proposal dist.

τd threshold parameter, part of f

τoccd additional threshold parameter, part of focc
τy threshold parameter, part of g

τ ta number of times a has been chosen at time t

τmax maximum number of times hypothesis can be chosen

ψ a rotation angle

φ(ψ) factor to compare densities in tangent spaces of SO(3)

ψR0,R angle of difference rotation between R0 and R

ω× element of so(3), as skew symmetric matrix

ω = (ω1, ω2, ω3)⊺ 3D Euler vector, corresponds to ω×

ωR 3D vector in the tangent space at R

ω̇t rotational velocity at time t

ω̇kt rotational velocity of particle k

127

Bibliography

1R. Eckhardt, “Stan Ulam, John von Neumann, and the Monte Carlo method”, Los

Alamos Science (1987).

2N. Metropolis and S. Ulam, The Monte Carlo method, 1949.

3N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller,

“Equation of State Calculations by Fast Computing Machines”, The Journal of Chem-

ical Physics 21, 1087–1092 (1953).

4W. R. Gilks, S. Richardson, and D. Spiegelhalter, Markov Chain Monte Carlo in practice

(CRC press, 1995).

5T.-P. Li and Y.-Q. Ma, “Analysis methods for results in gamma-ray astronomy”, The

Astrophysical Journal (1983).

6B. F. Manly, Randomization, bootstrap and Monte Carlo methods in biology (CRC Press,

2006).

7B. L. Hammond, W. A. Lester, and P. J. Reynolds, Monte Carlo methods in ab initio

quantum chemistry (World Scientific, 1994).

8D. S. Oliver, L. B. Cunha, and A. C. Reynolds, “Markov Chain Monte Carlo meth-

ods for conditioning a permeability field to pressure data”, Mathematical Geology

(1997).

9R. Burch, F. N. Najm, P. Yang, and T. N. Trick, “A Monte Carlo approach for power

estimation”, IEEE Transactions on Very Large Scale Integration (VLSI) Systems (1993).

10W. Schneider, T. Bortfeld, and W. Schlegel, “Correlation between CT numbers and

tissue parameters needed for Monte Carlo simulations of clinical dose distribu-

tions”, Physics in medicine and biology (2000).

11P. Jäckel, Monte Carlo methods in finance (J. Wiley, 2002).

12U. Halekoh and W. Vach, “A Bayesian approach to seriation problems in archaeol-

ogy”, Computational statistics & data analysis (2004).

13R. M. Neal, “Probabilistic inference using Markov Chain Monte Carlo methods”,

(1993).

128 BIBLIOGRAPHY

14S. Hinterstoisser, V. Lepetit, S. Ilic, S. Holzer, G. Bradski, K. Konolige, and N. Navab,

“Model based training, detection and pose estimation of texture-less 3D objects in

heavily cluttered scenes”, in ACCV (2012).
15P. Mamassian, “Prehension of objects oriented in three-dimensional space”, Exper-

imental Brain Research (1997).
16R. H. Cuijpers, J. B. Smeets, and E. Brenner, “On the relation between object shape

and grasping kinematics”, Journal of Neurophysiology (2004).
17M. A. Goodale and A. D. Milner, “Separate visual pathways for perception and

action”, Trends in neurosciences (1992).
18M. A. Goodale, “Transforming vision into action”, Vision research (2011).
19M. A. Goodale, “How (and why) the visual control of action differs from visual

perception”, in Proc. r. soc. b (The Royal Society, 2014).
20C. McGinn, Prehension: the hand and the emergence of humanity (MIT Press, 2015).
21P. K. Janert, J. J. Shakes, N. M. Hanssens, and D. R. Hodge, Time-based warehouse

movement maps, US Patent 7,243,001, 2007.
22E. H. Grosse, C. H. Glock, and W. P. Neumann, “Human factors in order picking:

a content analysis of the literature”, International Journal of Production Research

(2017).
23Y. Uchiyama, K. Ebe, A. Kozato, T. Okada, and N. Sadato, “The neural substrates of

driving at a safe distance: a functional MRI study”, Neuroscience Letters (2003).
24X. S. Zheng and G. W. McConkie, “Two visual systems in monitoring of dynamic

traffic: effects of visual disruption”, Accident Analysis & Prevention (2010).
25N. Correll, K. E. Bekris, D. Berenson, O. Brock, A. Causo, K. Hauser, K. Okada, A.

Rodriguez, J. M. Romano, and P. R. Wurman, “Lessons from the amazon picking

challenge”, arXiv (2016).
26A. Edsinger and C. C. Kemp, “Human-robot interaction for cooperative manipula-

tion: handing objects to one another”, in Robot and human interactive communica-

tion, international symposium on (2007).
27C.-C. Wang, C. Thorpe, and A. Suppe, “Ladar-based detection and tracking of mov-

ing objects from a ground vehicle at high speeds”, in Intelligent vehicles, sympo-

sium on (2003).
28C.-C. Wang, C. Thorpe, S. Thrun, M. Hebert, and H. Durrant-Whyte, “Simultaneous

localization, mapping and moving object tracking”, The International Journal of

Robotics Research (2007).
29D. I. Ferguson and D. Silver, Pose estimation using long range features, US Patent

9,062,979, 2015.

BIBLIOGRAPHY 129

30H. Chen, A. S. Lee, M. Swift, and J. C. Tang, “3D collaboration method over HoloLensTM

and SkypeTM end points”, in Proceedings of the 3rd international workshop on im-

mersive media experiences (2015).

31E. Brachmann, A. Krull, F. Michel, S. Gumhold, J. Shotton, and C. Rother, “Learning

6D object pose estimation using 3D object coordinates”, in ECCV (2014).

32N. J. Gordon, D. J. Salmond, and A. F. Smith, “Novel approach to nonlinear/non-

Gaussian Bayesian state estimation”, in Radar and signal processing (1993).

33R. S. Sutton and A. G. Barto, Reinforcement learning: an introduction (MIT press Cam-

bridge, 1998).

34A. Tejani, D. Tang, R. Kouskouridas, and T.-K. Kim, “Latent-class hough forests for

3D object detection and pose estimation”, in ECCV (2014).

35R. Rios-Cabrera and T. Tuytelaars, “Discriminatively trained templates for 3D object

detection: a real time scalable approach”, in CVPR (2013).

36Y. Park, V. Lepetit, and W. Woo, “Texture-less object tracking with online training

using an RGB-D camera”, in ISMAR (2011).

37C. Choi and H. I. Christensen, “Robust 3D visual tracking using particle filtering on

the se (3) group”, in ICRA (2011).

38C. Choi and H. I. Christensen, “3D textureless object detection and tracking: an

edge-based approach”, in IROS (2012).

39U. Asif, M. Bennamoun, and F. Sohel, “Real-time pose estimation of rigid objects

using RGB-D imagery”, in ICIEA (2013).

40J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: unified,

real-time object detection”, in CVPR (2016).

41J. Redmon and A. Farhadi, “Yolo9000: better, faster, stronger”, in CVPR (2017).

42T. Hodaň, X. Zabulis, M. Lourakis, Š. Obdržálek, and J. Matas, “Detection and fine

3D pose estimation of texture-less objects in RGB-D images”, in IROS (2015).

43A. Kendall, M. Grimes, and R. Cipolla, “Posenet: a convolutional network for real-

time 6-dof camera relocalization”, in ICCV (2015).

44A. Kendall and R. Cipolla, “Modelling uncertainty in deep learning for camera re-

localization”, in ICRA (2016).

45E. Brachmann, F. Michel, A. Krull, M. Y. Yang, S. Gumhold, and C. Rother, “Uncertainty-

driven 6D pose estimation of objects and scenes from a single RGB image”, in CVPR

(2015).

46E. Brachmann, A. Krull, S. Nowozin, J. Shotton, F. Michel, and C. Rother, “DSAC -

differentiable ransac for camera localization”, in CVPR (2017).

130 BIBLIOGRAPHY

47T. Hodaň, P. Haluza, Š. Obdržálek, J. Matas, M. Lourakis, and X. Zabulis, “T-LESS:

an RGB-D dataset for 6D pose estimation of texture-less objects”, in Wacv (2017).
48A. Krull, F. Michel, E. Brachmann, S. Gumhold, S. Ihrke, and C. Rother, “6-dof

model based tracking via object coordinate regression”, in ACCV (2014).
49T. Hodaň, J. Matas, and Š. Obdržálek, “On evaluation of 6d object pose estimation”,

in ECCV workshops (2016).
50B. Großmann, M. Siam, and V. Krüger, “Comparative evaluation of 3D pose esti-

mation of industrial objects in RGB pointclouds”, in International conference on

computer vision systems (2015).
51K. McHenry, J. Ponce, and D. Forsyth, “Finding glass”, in Computer vision and

pattern recognition, 2005. cvpr 2005. ieee computer society conference on (2005).
52C. J. Phillips, M. Lecce, and K. Daniilidis, “Seeing glassware: from edge detection to

pose estimation and shape recovery.”, in Robotics: science and systems (2016).
53R. Feng and H. Zhang, “Efficient monocular coarse-to-fine object pose estimation”,

in ICMA (2016).
54M. A. Fischler and R. C. Bolles, “Random sample consensus: a paradigm for model

fitting with applications to image analysis and automated cartography”, Commu-

nications of the ACM (1981).
55D. G. Lowe, “Object recognition from local scale-invariant features”, in ICCV (1999).
56F. Rothganger, S. Lazebnik, C. Schmid, and J. Ponce, “3D object modeling and recog-

nition using affine-invariant patches and multi-view spatial constraints”, in CVPR

(2003).
57I. Gordon and D. G. Lowe, “What and where: 3D object recognition with accu-

rate pose”, in Toward category-level object recognition. lecture notes in computer science,

edited by J. Ponce, M. Hebert, C. Schmid, and A. Zisserman (Springer Berlin Hei-

delberg, Berlin, Heidelberg, 2006).
58A. C. Romea, D. Berenson, S. Srinivasa, and D. Ferguson, “Object recognition and

full pose registration from a single image for robotic manipulation”, in ICRA (2009).
59M. Martinez Torres, A. Collet Romea, and S. Srinivasa, “MOPED: a scalable and low

latency object recognition and pose estimation system”, in ICRA (2010).
60D. P. Huttenlocher, G. A. Klanderman, and W. J. Rucklidge, “Comparing images

using the hausdorff distance”, TPAMI (1993).
61W. Kehl, F. Tombari, N. Navab, S. Ilic, and V. Lepetit, “Hashmod: a hashing method

for scalable 3D object detection”, in BMVC (2015).
62Y. Konishi, Y. Hanzawa, M. Kawade, and M. Hashimoto, “Fast 6D pose estimation

from a monocular image using hierarchical pose trees”, in ECCV (2016).

BIBLIOGRAPHY 131

63P. Wohlhart and V. Lepetit, “Learning descriptors for object recognition and 3D pose

estimation”, in CVPR (2015).

64R. O. Duda and P. E. Hart, “Use of the hough transformation to detect lines and

curves in pictures”, Communications of the ACM (1972).

65D. H. Ballard, “Generalizing the hough transform to detect arbitrary shapes”, Pat-

tern Recognition (1981).

66M. Sun, G. Bradski, B.-X. Xu, and S. Savarese, “Depth-encoded hough voting for

joint object detection and shape recovery”, in ECCV (2010).

67J. Gall, A. Yao, N. Razavi, L. Van Gool, and V. Lempitsky, “Hough forests for object

detection, tracking, and action recognition”, TPAMI (2011).

68L. Breiman, “Random forests”, Machine Learning 45, 5–32 (2001).

69A. Doumanoglou, R. Kouskouridas, S. Malassiotis, and T.-K. Kim, “Recovering 6d

object pose and predicting next-best-view in the crowd”, in CVPR (2016).

70W. Kehl, F. Milletari, F. Tombari, S. Ilic, and N. Navab, “Deep learning of local RGB-

D patches for 3D object detection and 6d pose estimation”, in ECCV (2016).

71B. Drost, M. Ulrich, N. Navab, and S. Ilic, “Model globally, match locally: efficient

and robust 3D object recognition.”, in CVPR (2010).

72S. Hinterstoisser, V. Lepetit, N. Rajkumar, and K. Konolige, “Going further with

point pair features”, in ECCV (2016).

73J. Taylor, J. Shotton, T. Sharp, and A. Fitzgibbon, “The vitruvian manifold: inferring

dense correspondences for one-shot human pose estimation”, in CVPR (2012).

74F. Michel, A. Krull, E. Brachmann, M. Y. Yang, S. Gumhold, and C. Rother, “Pose

estimation of kinematic chain instances via object coordinate regression”, in CVPR

(2015).

75J. Mund, F. Michel, F. Dieke-Meier, H. Fricke, L. Meyer, and C. Rother, “Introducing

lidar point cloud-based object classification for safer apron operations”, in ESAVS

(2016).

76A. Kendall and R. Cipolla, “Geometric loss functions for camera pose regression

with deep learning”, in CVPR (2017).

77S. Mahendran, H. Ali, and R. Vidal, “3D pose regression using convolutional neural

networks”, in ICCV workshops (2017).

78A. Doumanoglou, V. Balntas, R. Kouskouridas, and T.-K. Kim, “Siamese regression

networks with efficient mid-level feature extraction for 3D object pose estimation”,

in CoRR (2016).

132 BIBLIOGRAPHY

79Y. Xiang, T. Schmidt, V. Narayanan, and D. Fox, “Posecnn: a convolutional neural

network for 6D object pose estimation in cluttered scenes”, arXiv (2017).

80R. J. Williams, “Simple statistical gradient-following algorithms for connectionist

reinforcement learning”, Machine learning (1992).

81A. Krull, E. Brachmann, F. Michel, M. Ying Yang, S. Gumhold, and C. Rother, “Learn-

ing analysis-by-synthesis for 6D pose estimation in RGB-D images”, in ICCV (2015).

82A. Krull, E. Brachmann, S. Nowozin, F. Michel, J. Shotton, and C. Rother, “PoseAgent:

budget-constrained 6d object pose estimation via reinforcement learning”, in CVPR

(2017).

83J. Shotton, B. Glocker, C. Zach, S. Izadi, A. Criminisi, and A. W. Fitzgibbon, “Scene

coordinate regression forests for camera relocalization in RGB-D images”, in CVPR

(2013).

84A. Criminisi and J. Shotton, Decision forests for computer vision and medical image anal-

ysis (Springer Science & Business Media, 2013).

85Y. Cheng, “Mean shift, mode seeking, and clustering”, TPAMI (1995).

86W. Kabsch, “A solution for the best rotation to relate two sets of vectors”, Acta

Crystallographica Section A: Crystal Physics, Diffraction, Theoretical and General

Crystallography (1976).

87J. Gallier and J. Quaintance, Notes on differential geometry and Lie groups, 2017.

88R. Tron, R. Vidal, and A. Terzis, “Distributed pose averaging in camera networks

via consensus on se (3)”, in ICDSC (2008).

89J. Diebel, “Representing attitude: Euler angles, unit quaternions, and rotation vec-

tors”, Matrix (2006).

90M. D. Shuster, “A survey of attitude representations”, Navigation (1993).

91M. A. Bingham, D. J. Nordman, and S. B. Vardeman, “Modeling and inference for

measured crystal orientations and a tractable class of symmetric distributions for ro-

tations in three dimensions”, Journal of the American Statistical Association (2009).

92E. Eade, Lie groups for 2D and 3D transformations, 2013.

93S. Bosch, Algebra, Springer-Lehrbuch (Springer Berlin Heidelberg, 2009).

94J. M. Lee, Smooth manifolds (Springer, 2003).

95R. Hartley, J. Trumpf, Y. Dai, and H. Li, “Rotation averaging”, International journal

of computer vision (2013).

96J. Milnor, Geometry, Collected Papers Series (Publish or Perish, 1994).

97R. I. Hartley and A. Zisserman, Multiple view geometry in computer vision, Second

edition (Cambridge University Press, 2004).

BIBLIOGRAPHY 133

98K. Wilson, D. Bindel, and N. Snavely, “When is rotations averaging hard?”, in ECCV

(2016).

99M. Moakher, “Means and averaging in the group of rotations”, SIAM journal on

matrix analysis and applications (2002).

100C. Gramkow, “On averaging rotations”, Journal of Mathematical Imaging and Vi-

sion (2001).

101G. Klein and D. W. Murray, “Full-3D edge tracking with a particle filter”, in BMVC

(2006).

102P. Azad, D. Munch, T. Asfour, and R. Dillmann, “6-DoF model-based tracking of

arbitrarily shaped 3D objects”, in ICRA (2011).

103C. A. León, J.-C. Massé, and L.-P. Rivest, “A statistical model for random rotations”,

Journal of Multivariate Analysis (2006).

104J. Kwon, M. Choi, F. C. Park, and C. Chun, “Particle filtering on the Euclidean group:

framework and applications”, Robotica 25, 725–737 (2007).

105Y. Qiu, D. J. Nordman, and S. B. Vardeman, “A wrapped trivariate normal distribu-

tion and Bayes inference for 3D rotations”, Statistica Sinica (2014).

106A. Haar, “Der massbegriff in der theorie der kontinuierlichen gruppen”, Annals of

Mathematics 34, 147–169 (1933).

107D. Vvedensky, Lecture notes on group theory, 2001.

108T. D. Downs, “Orientation statistics”, Biometrika (1972).

109C. Khatri and K. Mardia, “The von Mises-Fisher matrix distribution in orientation

statistics”, Journal of the Royal Statistical Society. Series B (Methodological) (1977).

110H. Bunge, Texture analysis in materials science: mathematical methods (Butterworths,

1982).

111S Matthies, J Muller, and G. Vinel, “On the normal distribution in the orientation

space”, Texture, Stress, and Microstructure (1988).

112D. I. Nikolayev and T. I. Savyolov, “Normal distribution on the rotation group so

(3)”, Texture, Stress, and Microstructure (1997).

113K. V. Mardia and P. E. Jupp, Directional statistics (John Wiley & Sons, 2009).

114D Collett and T Lewis, “Discriminating between the von Mises and wrapped nor-

mal distributions”, Australian & New Zealand Journal of Statistics (1981).

115B. Babenko, M.-H. Yang, and S. Belongie, “Visual tracking with online multiple in-

stance learning”, in CVPR (2009).

116S. Hare, S. Golodetz, A. Saffari, V. Vineet, M.-M. Cheng, S. L. Hicks, and P. H. Torr,

“Struck: structured output tracking with kernels”, TPAMI (2016).

134 BIBLIOGRAPHY

117Z. Chen, “Bayesian filtering: from Kalman filters to particle filters, and beyond”,

Statistics (2003).

118R. E. Kalman, “A new approach to linear filtering and prediction problems”, Journal

of Basic Engineering (1960).

119S. J. Julier and J. K. Uhlmann, “A new extension of the Kalman filter to nonlinear

systems”, in Int. symp. aerospace/defense sensing, simul. and controls (1997).

120M. Isard and A. Blake, “Contour tracking by stochastic propagation of conditional

density”, in ECCV (1996).

121M. Pupilli and A. Calway, “Real-time camera tracking using known 3D models and

a particle filter”, in ICPR (2006).

122M. Bray, E. Koller-Meier, and L. Van Gool, “Smart particle filtering for 3D hand

tracking”, in Automatic face and gesture recognition, international conference on

(2004).

123C. Teuliere, E. Marchand, and L. Eck, “Using multiple hypothesis in model-based

tracking”, in ICRA (2010).

124M. McElhone, J. Stuckler, and S. Behnke, “Joint detection and pose tracking of multi-

resolution surfel models in RGB-D”, in ECMR (2013).

125A. Chiuso and S. Soatto, “Monte Carlo filtering on Lie groups”, in Conference on

Decision and Control (2000).

126J. Stückler and S. Behnke, “Multi-resolution surfel maps for efficient dense 3D mod-

eling and tracking”, en, Journal of Visual Communication and Image Representa-

tion 25, 137–147 (2014).

127C. Choi and H. I. Christensen, “RGB-D object tracking: a particle filter approach on

gpu”, in IROS (2013).

128L. Rabiner and B Juang, “An introduction to hidden markov models”, ASSP Maga-

zine (1986).

129A. Doucet, S. Godsill, and C. Andrieu, “On sequential Monte Carlo sampling meth-

ods for Bayesian filtering”, Statistics and Computing (2000).

130M. J. Powell, “A direct search optimization method that models the objective and

constraint functions by linear interpolation”, in Advances in Optimization and Nu-

merical Analysis (1994).

131S. Johnson, The nlopt nonlinear-optimization package.

132G. Fanelli, J. Gall, and L. Van Gool, “Real time head pose estimation with random

regression forests”, in CVPR (2011).

BIBLIOGRAPHY 135

133S. Song and J. Xiao, “Tracking revisited using RGBD camera: unified benchmark

and baselines”, in ICCV (2013).

134C. Bersch, D. Pangercic, S. Osentoski, K. Hausman, Z.-C. Marton, R. Ueda, K. Okada,

and M. Beetz, “Segmentation of textured and textureless objects through interactive

perception”, in Rss workshop on robots in clutter: manipulation, perception and

navigation in human environments (2012).

135M. Hejrati and D. Ramanan, “Analysis by synthesis: 3D object recognition by object

reconstruction”, in CVPR (2014).

136P. Isola and C. Liu, “Scene collaging: analysis and synthesis of natural images with

semantic layers”, in ICCV (2013).

137J. Gall, B. Rosenhahn, and H. Seidel, “Drift-free tracking of rigid and articulated

objects”, in CVPR (2008).

138A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep

convolutional neural networks”, in NIPS (2012).

139N. Zhang, J. Donahue, R. B. Girshick, and T. Darrell, “Part-based R-CNNs for fine-

grained category detection”, in ECCV (2014).

140P. Agrawal, R. B. Girshick, and J. Malik, “Analyzing the performance of multilayer

neural networks for object recognition”, in ECCV (2014).

141M. Oquab, L. Bottou, I. Laptev, and J. Sivic, “Learning and transferring mid-level

image representations using convolutional neural networks”, in CVPR (2014).

142J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for semantic

segmentation”, in CVPR (2015).

143A. Toshev and C. Szegedy, “DeepPose: human pose estimation via deep neural net-

works”, in CVPR (2014).

144S. Gupta, R. Girshick, P. Arbelaez, and J. Malik, “Learning rich features from RGB-D

images for object detection and segmentation”, in ECCV (2014).

145A.Dosovitskiy, J.T.Springenberg, and T.Brox, “Learning to generate chairs with con-

volutional neural networks”, in CVPR (2015).

146S. Gupta, P. Arbeláez, R. Girshick, and J. Malik, “Inferring 3D object pose in RGB-D

images”, in CVPR (2015).

147S. Chopra, R. Hadsell, and Y. LeCun, “Learning a similarity metric discriminatively,

with application to face verification”, in CVPR (2005).

148J. Zbontar and Y. LeCun, “Computing the stereo matching cost with a convolutional

neural network”, CoRR (2014).

136 BIBLIOGRAPHY

149M. Weinmann, J. Gall, and R. Klein, “Material classification based on training data

synthesized using a BTF database”, in ECCV (2014).

150Y. Sugano, Y. Matsushita, and Y. Sato, “Learning-by-synthesis for appearance-based

3D gaze estimation”, in CVPR (2014).

151T. Kulkarni, I. Yildirim, W. Freiwald, and J. Tenenbaum, “Deep generative vision as

approximate Bayesian computation”, in NIPS workshops (2014).

152J. Lafferty, A. McCallum, and F. Pereira, “Conditional random fields: probabilistic

models for segmenting and labeling sequence data”, in ICML (2001).

153L. Bottou, “Stochastic gradient learning in neural networks”, in Proceedings of

Neuro-Nımes (1991).

154R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour, “Policy gradient methods

for reinforcement learning with function approximation.”, in NIPS (1999).

155E. Greensmith, P. L. Bartlett, and J. Baxter, “Variance reduction techniques for gra-

dient estimates in reinforcement learning”, Journal of Machine Learning Research

(2004).

156W. D. Smart and L. P. Kaelbling, “Effective reinforcement learning for mobile robots”,

in ICRA (2002).

157P. Abbeel, A. Coates, M. Quigley, and A. Y. Ng, “An application of reinforcement

learning to aerobatic helicopter flight”, in NIPS (2007).

158E. M. Schwartz, E. T. Bradlow, and P. S. Fader, “Customer acquisition via display

advertising using multi-armed bandit experiments”, Marketing Science (2017).

159A. Ghaffari, “Real-time routing algorithm for mobile ad hoc networks using rein-

forcement learning and heuristic algorithms”, Wireless Networks (2017).

160V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A.

Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A.

Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis,

“Human-level control through deep reinforcement learning”, Nature (2015).

161O. Teboul, I. Kokkinos, L. Simon, P. Koutsourakis, and N. Paragios, “Shape gram-

mar parsing via reinforcement learning”, in CVPR (2011).

162V. Mnih, N. Heess, A. Graves, and K. Kavukcuoglu, “Recurrent models of visual

attention”, in NIPS (2014).

163J. C. Caicedo and S. Lazebnik, “Active object localization with deep reinforcement

learning”, in CVPR (2015).

164S. Mathe, A. Pirinen, and C. Sminchisescu, “Reinforcement learning for visual object

detection”, in CVPR (2016).

BIBLIOGRAPHY 137

165J. Ba, V. Mnih, and K. Kavukcuoglu, “Multiple object recognition with visual atten-

tion”, in ICLR (2015).

166L. Bottou, “Stochastic gradient tricks”, in Neural networks, tricks of the trade, reloaded

(2012).

167E. Bengio, P.-L. Bacon, J. Pineau, and D. Precup, “Conditional computation in neural

networks for faster models”, arXiv (2015).

168M. McGill and P. Perona, “Deciding how to decide: dynamic routing in artificial

neural networks”, arXiv (2017).

169V. Campos, B. Jou, X. Giró-i Nieto, J. Torres, and S.-F. Chang, “Skip RNN: learning

to skip state updates in recurrent neural networks”, arXiv (2017).

170A. Kulesza and B. Taskar, “Determinantal point processes for machine learning”,

Foundations and Trends in Machine Learning (2012).

171A. Kirillov, B. Savchynskyy, D. Schlesinger, D. Vetrov, and C. Rother, “Inferring

m-best diverse labelings in a single one”, in ICCV (2015).

172R. Kumar and D. Batra, “Pose tracking by efficiently exploiting global features”, in

WACV (2016).

173M. Meila, Lecture notes on statistical learning: modeling, prediction and computing, 2012.

174S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: towards real-time object

detection with region proposal networks”, in NIPS (2015).

175J. Johnson, A. Karpathy, and L. Fei-Fei, “Densecap: fully convolutional localization

networks for dense captioning”, in ICCV (2016).

176J. Domke, “Learning graphical model parameters with approximate marginal infer-

ence”, TPAMI (2013).

177Z. Liu, X. Li, P. Luo, C.-C. Loy, and X. Tang, “Semantic image segmentation via deep

parsing network”, in CVPR (2015).

178S. Ross, D. Munoz, M. Hebert, and J. A. Bagnell, “Learning message-passing infer-

ence machines for structured prediction”, in CVPR (2011).

179P. Abbeel, A. Coates, M. Montemerlo, A. Y. Ng, and S. Thrun, “Discriminative train-

ing of Kalman filters.”, in Robotics: Science and Systems (2005).

180R. Hess and A. Fern, “Discriminatively trained particle filters for complex multi-

object tracking”, in CVPR (2009).

181M. C. Burkhart, D. M. Brandman, C. E. Vargas-Irwin, and M. T. Harrison, “The

discriminative Kalman filter for nonlinear and non-Gaussian sequential Bayesian

filtering”, arXiv (2016).

138 BIBLIOGRAPHY

182M. Taboga, Lectures on probability theory and mathematical statistics (CreateSpace In-

dependent Pub., 2012).

183S. Sra, “A short note on parameter approximation for von Mises-Fisher distribu-

tions: and a fast implementation of I s (x)”, Computational Statistics (2012).

