
Testing Self-Adaptive Systems: A Model-based Approach to Resilience

Testing Self-Adaptive Systems

A Model-based Approach to Resilience

Dissertation

zur Erlangung des akademischen Grades Doktoringenieur (Dr.-Ing.)

vorgelegt an der
Technischen Universität Dresden

Fakultät Informatik

eingereicht von
Dipl.-Inf. Georg Püschel

geboren am 15. Mai 1985 in Dippoldiswalde

Erster Gutachter: Prof. Dr.-Ing. Thomas Schlegel
Zweiter Gutachter: Univ.-Prof. Dr.-Ing. habil. Matthias Riebisch

Tag der Verteidigung: 05. Juni 2018

Dresden im Juni 2018

Statement of Authorship

I hereby certify that I have authored this thesis independently and without undue assistance
from third parties. No other than the resources and references indicated in this thesis have been
used. I have marked both literal and accordingly adopted quotations as such. There were no
additional persons involved in the intellectual preparation of the present thesis. I am aware that
violations of this declaration may lead to subsequent withdrawal of the degree.

Dresden, June 28, 2018

Dipl.-Inf. Georg Püschel

v

Abstract

Autonomy is the most demanded yet hard-to-achieve feature of recent and future software sys-
tems. Self-driving cars, mail-delivering drones, automated guided vehicles in production sites,
and housekeeping robots need to decide autonomously during most of their operation time. As
soon as human intervention becomes necessary, the cost of ownership increases, and this must
be avoided. Although the algorithms controlling autonomous systems become more and more
intelligent, their hardest opponent is their in�exibility. The more environmental situations such
a system is confronted with, the more complexity the control of the autonomous system will
have to master. To cope with this challenge, engineers have approached a system design, which
adopts feedback loops from nature. The resulting architectural principle, which they call self-
adaptive systems, follows the idea of iteratively gathering sensor data, analyzing it, planning new
adaptations of the system, and �nally executing the plan. Often, adaptation means to alter the
system setup, re-wire components, or even exchange control algorithms to keep meeting goals
and requirements in the newly appeared situation.
Although self-adaptivity helps engineers to organize the vast amount of information in a self-

deciding system, it remains hard to deal with the variety of contexts, which involve both environ-
mental in�uences and knowledge about the system's internals. This challenge not only holds for
the construction phase but also for veri�cation and validation, including software test. To assure
su�cient quality of a system, it must be tested under an enormous and, thus, unmanageable,
number of di�erent contextual situations and manual test-cases.
This thesis proposes a novel set of methods and model types, which help test engineers to

specify precisely what they expect from a self-adaptive system under test. The formal nature of
the introduced artifacts allows for automatically generating test-suites or running simulations in
the loop so that a qualitative verdict on the system's correctness can be gained. Additional to
these conceptional contributions, the thesis describes a model-based adaptivity test environment,
which test engineers can use for testing actual self-adaptive systems. The implementation in-
cludes comprehensive tooling for creating the introduced types of models, generating test-cases,
simulating them in the loop, automating tests, and reporting. Composing all enabling com-
ponents for these tasks constitutes a reference architecture of integrated test environments for
self-adaptive systems. We demonstrate the completeness and accuracy of the technical approach
together with the underlying concepts by evaluating them in an experimental case study where
an autonomous robot interacts with human co-workers.
In summary, this thesis proposes concepts for automatically and, thus, e�ciently testing self-

adaptive systems. The quality, which is fostered by this novel approach, is resilience: the ability
of a system to maintain its promises while facing changing environments.

vii

Publications

This doctoral thesis is based on the following peer-reviewed publications:

• Georg Püschel, Ronny Seiger, Thomas Schlegel (2012). Test Modeling for Context-Aware
Ubiquitous Applications with Feature Petri Nets. In Modiquitous Workshop, pp. 1-4, 2012.

• Georg Püschel, Testmodellierung für mobile Anwendungen. In Proceedings of Innovations-
forum Open4Innovation, pp. 65-69, 2012.

• Georg Püschel, Christian Piechnick, Sebastian Götz, Christoph Seidl, Sebastian Richly,
Uwe Aÿmann, A Black Box Validation Strategy for Self-Adaptive Systems. In Proceedings
of ADAPTIVE 2014, The Sixth International Conference on Adaptive and Self-Adaptive
Systems and Applications, pp. 111-116, 2014.

• Georg Püschel, Sebastian Götz, Claas Wilke, Christian Piechnick, Uwe Aÿmann. Testing
Self-Adaptive Software: Requirement Analysis and Solution Scheme. International Journal
on Advances in Software, ISSN 1942-2628, 7(1&2), pp. 88-100, 2014.

• Georg Püschel, Christian Piechnick, Sebastian Götz, Christoph Seidl, Sebastian Richly,
Thomas Schlegel, Uwe Aÿmann, A Combined Simulation and Test Case Generation Strat-
egy for Self-Adaptive Systems. International Journal On Advances in Software, 7(3&4), pp.
686-696, 2014.

Further publications related to the thesis:

• Georg Püschel, Test Modeling of Dynamic Variable Systems Using Feature Petri Nets.
Technische Universität Dresden, Fakultät Informatik. ISSN 1430-211X, TUD-Fl13-01-Sept.
2013. Technical Report, 2013.

• Georg Püschel, Christian Piechnick, Uwe Aÿmann, Generative und simulative Softwaretests
für selbstadaptive, cyber-physikalische Systeme. In Proceedings of the Multiconference Soft-
ware Engineering and Management 2015, Koellen-Verlag, 2015.

ix

Contents

1 Introduction 1
1.1 Problem Description . 1
1.2 Overview of Adopted Methods . 3
1.3 Hypothesis and Main Contributions . 4
1.4 Organization of This Thesis . 5

I Foundations 7

2 Background 9
2.1 Self-adaptive Software and Autonomic Computing 9

2.1.1 Common Principles and Components of SAS 10
2.1.2 Concrete Implementations and Applications of SAS 12

2.2 Model-based Testing . 13
2.2.1 Testing for Dependability . 14
2.2.2 The Basics of Testing . 15
2.2.3 Automated Test Design . 18

2.3 Dynamic Variability Management . 22
2.3.1 Software Product Lines . 23
2.3.2 Dynamic Software Product Lines . 25

3 Related Work: Existing Research on Testing Self-Adaptive Systems 29
3.1 Testing Context-Aware Applications . 30
3.2 The SimSOTA Project . 31
3.3 Dynamic Variability in Complex Adaptive Systems (DiVA) 33
3.4 Other Early-Stage Research . 34
3.5 Taxonomy of Requirements of Model-based SAS Testing 36

II Methods 39

4 Model-driven SAS Testing 41
4.1 Problem/Solution Fit . 41
4.2 Example: Surveillance Drone . 43
4.3 Concepts and Models for Testing Self-Adaptive Systems 44

4.3.1 Test Case Generation vs. Simulation in the Loop 44
4.3.2 Incremental Modeling Process . 45

xi

4.3.3 Basic Representation Format: Petri Nets 46
4.3.4 Context Variation . 50
4.3.5 Modeling Adaptive Behavior . 53
4.3.6 Dynamic Context Change . 57
4.3.7 Interfacing Context from Behavioral Representation 62
4.3.8 Adaptation Mode Variation . 64
4.3.9 Context-Dependent Recon�guration . 67

4.4 Adequacy Criteria for SAS Test Models . 71
4.5 Discussion on the Viability of the Employed Models 71
4.6 Comparison to Related Work . 73
4.7 Summary and Discussion . 74

5 Model-based Adaptivity Test Environment 75

5.1 Technological Foundation . 76
5.2 MATE Base Components . 77
5.3 Metamodel Implementation . 78

5.3.1 Feature-based Variability Model . 79
5.3.2 Abstract and Concrete Syntax for Textual Notations 80
5.3.3 Adaptive Petri Nets . 86
5.3.4 Stimulus and Recon�guration Automata 87
5.3.5 Test Suite and Report Model . 87

5.4 Test Generation Framework . 87
5.5 Test Automation Framework . 91
5.6 MATE Tooling and the SAS Test Process . 93

5.6.1 Test Modeling . 94
5.6.2 Test Case Generation . 95
5.6.3 Test Case Execution and Test Reporting 96
5.6.4 Interactive Simulation Frontend . 96

5.7 Summary and Discussion . 97

III Evaluation 99

6 Experimental Study: Self-Adaptive Co-Working Robots 101

6.1 Robot Teaching and Co-Working with WEIR . 103
6.1.1 WEIR Hardware Components . 104
6.1.2 WEIR Software Infrastructure . 105
6.1.3 KUKA LBR iiwa as WEIR Manipulator 106
6.1.4 Self-Adaptation Capabilities of WEIR . 107

6.2 Cinderella as Testable Co-Working Application 109
6.2.1 Cinderella Setup and Basic Functionality 109
6.2.2 Co-Working with Cinderella . 110

6.3 Testing Cinderella with MATE . 112
6.3.1 Automating Test Execution . 112
6.3.2 Modeling Cinderella in MATE . 113
6.3.3 Testing Cinderella in the Loop . 121

6.4 Evaluation Verdict and Summary . 123

7 Summary and Discussion 125

7.1 Summary of Contributions . 126
7.2 Open Research Questions . 127

xii

Bibliography 129

Appendices 137

Appendix Cinderella De�nitions 139
1 Cinderella Adaptation Bounds . 139
2 Cinderella Self-adaptive Work�ow . 140

xiii

List of Figures

1.1 The state space of an SAS . 2
1.2 Thesis outline . 5

2.1 The control loop structure of SAS [IBM06] . 11
2.2 The causality chain of faults, errors, and failures (redrawn from [ALRL04]) 14
2.3 The V-Modell (redrawn from [Gre10]) . 16
2.4 Dynamic test process (redrawn from [IEE13a]) 16
2.5 The MBT Process [UL07] . 19
2.6 Sample �nite state machine for a simple webshop 22
2.7 Example of the original feature tree notation (taken from [KCH+90]) 24

3.1 Taxonomy of requirements of model-based SAS testing. 36

4.1 Problem/Solution �t . 42
4.2 The conceptional process of SAS testing . 45
4.3 Petri net for the drone example . 47
4.4 Petri net reachability graph . 48
4.5 Usage of the Petri net in simulation and test-case generation 49
4.6 Context variability model . 52
4.7 Adaptive Petri net modeling adaptive behavior 54
4.8 Usage of the variability model in simulation and test-case generation 56
4.9 Di�erent types of change models. 58
4.10 Variant manipulation and its e�ect on the de�nition of expected behavior 59
4.11 Virtually timed change models . 60
4.12 Integration of stimulus models in simulation and generation 62
4.13 Adaptive Petri net with timer transitions . 63
4.14 Generation and simulation infrastructure with timer-transition-based synchroniza-

tion . 65
4.15 Explicit representation of adaptation modes . 66
4.16 Stimulus models with event production . 69
4.17 Causal chain of stimulus and recon�guration . 69
4.18 Generation and simulation infrastructure including recon�guration and explicit

adaptation modes . 70
4.19 Comparison of the proposed approach to related work 73

5.1 Layers and components of MATE . 77
5.2 Packages of the MATE metamodel with dependencies 79
5.3 Feature-based variability metamodel (package features) 80

xv

5.4 Classes and relations of the abstract syntax for variability constraints (package
constraints) . 81

5.5 Abstract syntax of functions language (package functions) 82
5.6 The abstract syntax of the term language (package terms) 84
5.7 The abstract syntax of the test action language (package actions) 85
5.8 Metamodel for adaptive Petri nets (package petri) 86
5.9 Common metamodel for automaton-based stimulus models recon�guration au-

tomata (package reconfiguration) . 88
5.10 Metamodel for test-suites (package test) . 88
5.11 Classes and relations of the generator framework (package generator) 89
5.12 Metamodel for test-automation (package automation) 92
5.13 The process of SAS testing with MATE . 94
5.14 A running simulation in MATEs . 96

6.1 Functional modes of the DLR co-worker, redrawn from [HSF+11] 102
6.2 WEIR hardware . 104
6.3 WEIR software components . 105
6.4 WEIR-controlled KUKA LBR iiwa . 107
6.5 Adaptation bounds, movables, and state machine for collision detection 108
6.6 Example WEIR adaptive work�ow . 109
6.7 Cinderella setup . 111
6.8 Cinderella co-working behavior . 111
6.9 Variability model for Cinderella . 113
6.10 Event �ow through the Cinderella test model . 114
6.11 Spatial context stimulus model for Cinderella . 115
6.12 Model of movement of body parts for Cinderella 116
6.13 Recon�guration automaton for one Cinderella picking box 118
6.14 Cobotics recon�guration automaton for Cinderella 119
6.15 Adaptive Petri net for Cinderella . 120
6.16 Running Cinderella test . 122
6.17 Representation of proposed concepts in Cinderella 123

xvi

1. Introduction

Imagine robots that build our houses, organize our household, and manage our everyday prob-
lems. Others transport us to our job or holiday location, or wherever we need to go. Such
systems, however, are not anymore bound to a single, controlled location, such as industry work-
stations or a living room's carpet. Consequently, they have to cope with the dynamics of real
environments, just like humans do. Such intelligence requires a new kind of software to take
control and to determine at run-time how the whole system should adapt to newly explored
surroundings. Software engineering characterizes such kind of system as self-adaptive.
Self-adaptive software or�to a greater extent�a self-adaptive system (SAS) observes proper-

ties of itself and its environment�or more precisely its context�and automatically adapts itself
at run-time to a set of goals [Lad97]. The loop-wise execution of this process allows SAS for
autonomously adhering to the goals, that is without manual intervention. Vice versa, auton-
omy in physical, mostly uncontrollable environments demands such a self-adaptive mechanism.
Recent and future cyber-physical systems, self-steering cars, unmanned air vehicles, and many
other applications of autonomy will bene�t from recent �ndings of SAS research.
From the perspective of quality assurance, failures in self-adaptive applications can be highly

critical. Self-adaptivity unavoidably leads to systems that interact autonomously with other sys-
tems or people and their property with the risk of severely damaging them. Thus, the functional
correctness and the quality of SAS has to be veri�ed and validated extensively before delivery.
Software engineering processes employ validation and veri�cation (V&V) on di�erent abstrac-

tion layers and at di�erent points in time during the product lifecycle. Testing, as the most
widely adopted method of V&V, is based on code, components, interfaces, and requirement
speci�cations, each with increasing level of abstraction. This thesis focuses on testing the func-
tional correctness of SAS, performed on the abstract level of interfaces and requirements, which
we call black-box testing because it neglects internal structures of the system under test (SUT).

1.1. Problem Description

Despite the severe need to test SAS, their complexity does not comply well with traditional test
approaches. Changes in the environment, in the adaptation of behavior, and the adaptation
of the SUT's structural appearance, as well as the causality in between, are not considered in
standard testing. Jean-Claude Laprie summarizes the quality of SAS to be dependent on external
in�uences as resilience:

De�nition 1 (Resilience) �The persistence of service delivery that can justi�ably be
trusted, when facing changes." [Lap08] 2

1

1. Introduction

(a) Context states (C) combine with system states (S).
The resulting state must adhere to models M (re-
drawn from [CdLG+09]).

(b) The behavior additionally depends on
history. Hence, a third time dimension
t is considered.

Figure 1.1.: The state space of an SAS.

Testing SAS is challenging and unique because the bandwidth of conditions in context and
adaptation generates structural and behavioral variability that by far exceeds those of traditional
systems. This variability can be described as a highly complex state space, as already recognized
by Cheng et al. [CdLG+09]. According to them, each state is a compound of context and system
conditions. When one of the two changes, a completely new situation constitutes. This relation
is illustrated in Figure 1.1a. The illustration shows the con�guration spaces of the context C
and the system S, 1which are combined in sense of the propositions that hold at a certain point
in time. Having 100 context states and 100 system states gives 100 ∗ 100 = 10000 possible
con�gurations. Additionally, the system adapts itself or, in other words, it changes its operation
mode j. Thus, adaptation further in�ates the state space. Of course, the speci�cation does not
allow all of those combinations; the state space is segregated in a valid and an invalid subset.
V&V is in charge to assure that the risk of trespassing this line of segregation remains low during
the productive operation phase.
The speci�cation of permitted behavior de�nes properties P t

ji
, which can be tested for certain

transitions and others Pj that are expected to hold for a complete adaptation mode. All these
expectations must be re�ected by models for states Mji and models for transitions mji .
In black-box testing�as investigated in this thesis�, another e�ect is the incomplete knowl-

edge of the inner processes of the SUT. Testers can never be sure about eventually changed states
so that only a strict history of sequences actions guarantees the reproduction of a targeted state.
This e�ect is illustrated in Figure 1.1b. Not only context, system, and adaptation mode in�uence
the assumed state but also the history of performed test actions, which here is represented by
the time dimension t.
To consider all these e�ects, validation methods usually implement three di�erent mechanisms

for checking given expectations: (1) a mechanism to enforce a particular state, (2) an oracle
that anticipates the expected properties, and (3) a mechanism for comparing those expected
properties with measured ones. Standard test-cases incorporate all three�they enforce a state
based on action sequences and test data, query for results and compare them to given values
de�ned in a test data repository. However, in traditional testing, the tester manually provides
all these ingredients, which is ine�cient in the face of an SAS' highly variable behavior. The
combinatorial e�ects cause test-case explosion, which is the multiplication of the number of test-
cases caused by each additional variable to be considered. Similarly, the notion of state space
explosion describes the combinatorial e�ects on the operational and parameter space, which must
be covered by those test-cases. Whereas test-case and state space explosion are already hard to
manage when testing traditional systems, testers are lost in SAS testing.

2

1.2. Overview of Adopted Methods

Another misconception is the assumption that all states of an SAS under test (SASuT) are
explicitly known to designers and testers. The autonomy fostered by SAS also requires an
algorithmic design in which recon�guration is automatically decided based on rules, heuristic
methods, or even arti�cial intelligence, including machine learning approaches. Similarly, the
physical environment of autonomous applications cannot be controlled with the same precision as
for virtual environments. Instead, the e�ects of physical manipulation can often only be measured
and the system's reaction be veri�ed based on this measurement. Here, so-called stigmergy (i.e.,
information transfer by physical manipulation [KFH15]) and external environment dynamics
a�ect the real context state. Consequently, manual testing faces the problem that the test
designer is not able to explicitly pre-de�ne all states that will be reached during processing.
Thus, much more information is implicit and must be investigated and checked with the means
of software testing.
Some past research proposed to built-in mechanisms of self-testing into SAS [KACC11]. In

this approach, components of SAS are equipped with test-cases or templates that are executed
at adaptation time. Such mechanisms even allow for testing unanticipated change where com-
ponents are integrated at run-time without that a designer could have anticipated the reached
con�guration. This thesis neglects such methods as they fall short in classical software quality
assurance. In contrast, products have to be provided in an acceptable quality at the moment
when they are shipped to the customer.
In consequence, the manufacturer must perform tests in advance and systematically so that

engineers can subordinate SAS testing to the standard processes of V&V. However, due to the
lack of su�cient SAS test methods, no e�ective tooling yet exists. Such tooling should incorporate
support for all test process steps: test design, automation, execution, and reporting. To cope
with the special requirements of SAS, each of these steps must be enriched with new technical
concepts.
In summary, the concrete vision of this thesis is an e�cient set of models and methods for

systematic a-priori testing SAS together with a ready-to-use realization. Consequently, the
following major problems arise:

(P1) Vast expansion of the state space of SAS: SAS monitor changing properties of their
context and react at run-time by changing their con�guration in the form of structural
composition, parameterization, and service behavior. To assure the system's quality ade-
quately, a wide variety of contextual situations have to be enforced and the reaction veri�ed.
Furthermore, not only the current situation may play a role but the past situations as well.
All these factors introduce multiply variation points, which produce a much larger state
space than in traditional computing. In consequence, overlooking this state space and
testing paths through it for veri�cation is highly demanding for test experts.

(P2) Missing tooling for testing SAS: Test engineers lack an integrated environment, which
allows for performing tests on SAS. This lack includes tools for test design, automation,
execution, and reporting. Respective solutions should incorporate support for all these
process steps and leverage standards of test tooling to SAS-speci�c requirements.

1.2. Overview of Adopted Methods

The problems enumerated in Section 1.1 shall be tackled by di�erent concepts, which combine
to an overall conceptional and technical solution. The foundations of this solution are outlined
in the following.

Model-based Testing The necessity of abstraction of context and system behavior by a valida-
tion model was already recognized by Cheng et al. in [CdLG+09]. Against this background and
with the focus on testing, the foundation of this thesis is model-based testing (MBT). MBT puts

3

1. Introduction

models in place of test-cases; more precisely, the �rst generates the latter [UL07]. Thus, a test
engineer no longer writes test-cases as sequences of actions and assertions but instead de�nes a
formal model from which test-cases are produced automatically. A test model de�nes structural
and behavioral expectations to the SASuT and is searched for sequences that enforce certain
system states. Also, the model speci�es properties for each state, which are then veri�ed against
measurements from the real SASuT. Thus, testing of systems with a lot of variations gets much
more e�cient because testers are freed from the need to specify a high number of test-cases by
hand.

Dynamic Variability Modeling State-of-the-art MBT applies to standard, non-adaptive sys-
tems. To leverage MBT methodology for SAS, it must be extended for the problems that are
speci�c to self-adaptation. As introduced in Problem (P1), new dimensions of variability arise
from run-time adaptation to dynamic environments. Dynamic change in properties of the moni-
tored environment and the SASuT itself are causally connected, which has to be tackled by novel
MBT methods. Furthermore, both context and the resulting adaptation depends on the history
of the system. To tackle these challenges, this thesis integrates MBT with dynamic variability
modeling. The latter provides means to abstract and organize commonalities and di�erences of
con�gurations of both context and SAS. For representing the dynamics and the causality be-
tween context and system variability, re-con�guration at run-time shall be described by dynamic
variability models.

Duality of Test Generation and Simulation Almost all concepts that are proposed in this
thesis can be used within a classic MBT process and simulative validation. Classic MBT means
to generate a �xed set of test-cases from the model and later execute the generated sequential test-
cases. In contrast, simulative validation executes the model directly while applying the modeled
actions on a real parallel-running SASuT, which is further observed and its state and outputs
veri�ed against the model. Such an approach is often referred to as �in the loop" (ITL) simulation
and is bene�cial in situations where certain situations cannot be modeled with su�cient precision.
As the decision logic, which is resolved during test generation, is still accessible in simulation,
observed environment data can be embedded in the model. Such an update mechanism was
already claimed to be bene�cial by Cheng et al.:

�On one side the model must be e�ciently updated to re�ect the system changes, on the
other it should still re�ect an accurate representation of reality�

[CdLG+09, p. 19]

Only based on the updated information from ITL observations, test oracle's can generate
correct expectations. Both test generation and simulation shall be performed on almost the
same models and tools to gain more reuse.

1.3. Hypothesis and Main Contributions

This thesis employs a model-based approach to cope with conceptional problems arising from a
complex state space and implicit information within the tested black-box. The approach claims
to improve SAS' testability and that the used models provide appropriate expressiveness to
enforce and verify parts of the state space, which could only be tested before with enormous
e�ort. Thus, the following hypothesis can be stated:

4

1.4. Organization of This Thesis

The proposed conceptual and formal models, together with the process that puts those
models in use, solve the automation of testing the dynamics of self-adaptive systems to a
novel extent of the contextual and behavioral state space.

This hypothesis promises certain contributions that reach from conceptional approaches to
implementations:

(C1) Model-driven methods for testing before non-covered regions of an SAS' state space
based on generated test-cases or simulation in the loop

(C2) A comprehensive formalization in the form of metamodels that implement all as-
pects of the SAS test methods

(C3) A reference architecture for an integrated test environment (MATE) that realizes
the proposed models and allows for employing them along a standard dynamic test
process

Besides these main contributions, several minor ones are elaborated during the chapters ahead.
We list them in the thesis' summary where they can be understood in detail.
Based on MATE, a later evaluation shall demonstrate the correctness of the hypothesis as

well as the adequacy of the above-listed contributions. Hence, an experimental study has been
performed and documented in the evaluation part of this thesis.

1.4. Organization of This Thesis

The thesis' parts are outlined in Figure 1.2. Part I introduces several research domains, which
created the foundations this thesis' contributions shall rely on. First, the background is discussed
and, second, related work is presented. In Part II, the modeling concepts are described, including
examples and formalization. Subsequently, MATE is presented as an implementation of the
introduced models and the dynamic test process for SAS. In Part III, an experimental study is
elaborated, which validates the proposed concepts in a robotic scenario. Finally, a summarization
of this thesis, including open research questions, follows.

Figure 1.2.: Thesis outline.

5

Part I.

Foundations

2. Background

As argued in this thesis, Model-based testing (MBT) of SAS relies on a tremendous body of
knowledge in numerous research directions. Not only that SAS has been identi�ed in separate
communities as the next generation of software system., Even more, the bandwidth of solutions
that claim to solve SAS-inherent challenges is quite heterogeneous.
Similarly, in test research, several model-based techniques have been found. Some approaches

generate from design artifacts; others introduce entirely new formalisms and notations for testing.
The level of expressiveness of an MBT concept determines the level the automation of test design,
which this thesis aims to improve with the particular focus on SAS.
As brie�y discussed in Section 1.2, variability modeling is an appropriate match to connect

both SAS and MBT. Research on software variability evolved primarily in the �eld of software
product line engineering (SPLE), which is a necessary preliminary for understanding the moti-
vation behind variability management. For at-run-time adaptive systems, the SPLE community
developed the concept of dynamic variability modeling, which shall be adopted in this thesis.
Because of this bandwidth of background topics, this chapter follows coarse-granular segmen-

tation of the introduced body of knowledge. The theoretical foundations of self-adaptivity are
presented in Section 2.1, model-based testing in Section 2.2, and dynamic variability manage-
ment in Section 2.3. Commonly accepted de�nitions are recited as well as related work that
establishes a basis for comprehending the contributions of this thesis.

2.1. Self-adaptive Software and Autonomic Computing

The history of SAS research is brief in comparison to the time span researchers spend with
software engineering. As the term self-adaptivity suggests, there are two crucial factors that make
out an SAS: �rstly, it provides mechanisms to adapt itself and, secondly, it decides automatically
to adapt at run-time. Software is a formal artifact and, thus, adaptation decisions rely on
objective criteria�for instance on an observed quality, which is guaranteed by the system and
drops below a given threshold. To navigate itself out of this situation, a system should be
self-aware, which is a necessary precondition for the decision making in SAS.
Before the background of above intuitive understandings of SAS, software researchers have

outlined the notion of SAS more precisely. One of the �rst de�nitions by DARPA engineer
Robert Laddaga circumscribed SAS as follows:

�Self Adaptive Software evaluates its behavior and change behavior when the evaluation
indicates that it is not accomplishing what the software is intended to do, or when better
functionality or performance is possible." [Lad97]

9

2. Background

Furthermore, Laddaga explicitly distinguishes SAS from systems explicitly relying on neural
networks or genetic programming, which he sees as potential reasoning techniques. Instead, he
aims to build systems that explicitly know about their structure, functionality, and performance
and automatically reason on this knowledge with the goal to act more intelligently.
Later, in 1999, Oreizy et al. recognized the strong relationship between SAS and autonomic

computing [OGT+99]. The authors derived the demand for SAS from the necessity to reuse ar-
chitectural components in di�erent applications. As a solution to this requirement, they proposed
automated reasoning and adaptation. From their perspective, the main challenges of SAS engi-
neering are planning, coordination, monitoring, evaluation, and the implementation of seamless
adaptation by means of software architecture.
Autonomic computing as distinct research domain gained interest in software engineering since

IBM claimed several challenges and proposed respective architectural components after the mil-
lennium [Hor01][KC03][IBM06]. The IBM engineers' initial desire was to shift responsibilities in
managing complex heterogeneous systems from humans to automated solutions. According to
them, creators of business applications face a complexity crisis. They have to integrate various
heterogeneous, often networked components that ful�ll a common task. Test concerning con�-
guration, deployment, and maintenance can no longer be understood and managed by humans
e�ectively and e�ciently. Additionally, modern business applications evolve constantly while
they are productively used. These factors cause the total cost of ownership (TCO) to increase,
which has to be counteracted.
To remedy these problems, management tasks should be delegated to automated decision

mechanisms. Thus, the human administrators can better focus on problems with a higher value
to the actual business. Low-value tasks are performed by intelligent computing systems so that
the TCO is decreased.
The task delegation is performed during run-time by administrators. In this process, the task

has to be formulated as a policy, which is assembled from goals that de�ne what the automated
system is expected to achieve and constraints that restrict the means the system is permitted to
use. After con�guring the system with goals and constraints, the autonomic computing system
has to compute necessary actions on its own (i.e., autonomic). The process runs periodically in
a control loop, which reasons on input and decides adaptations.
Both bodies of knowledge developed in SAS research and autonomic computing intersect

strongly, whereas the application domains are quite di�erent. At DARPA, typically military
applications were considered, including automated target recognition, signal and image process-
ing, and robotics. Besides such military domains, SAS plays a vital role in civil applications like
autonomous cars, drones, and home robotics. In contrast, autonomous computing focused on
improving processes in business applications and automating periodically recurring tasks of such
software.

2.1.1. Common Principles and Components of SAS

IBM engineers Je�rey O. Kephart and David M. Chess encouraged their vision [KC03] of self-
adaptive and autonomic computing and published ideas about concepts and principles to be
standardized in the form of an architectural blueprint [IBM06]. In this section, starting with
IBM's notion, the commonly accepted principles and components of SAS and autonomic com-
puting are presented. Thus, a common understanding of self-adaptivity shall be reached that is
the premise of the generality of the proposed test approach.

Concerns of Adaptation: Self-* Properties

SAS and autonomic computing employ control loops that collect environment observations.
Based on the gathered data, quality measures are investigated and reasoned about to derive

10

2.1. Self-adaptive Software and Autonomic Computing

Monitor Execute
Knowledge

Analyze Plan

Change
Request

Change
PlanSymptom

Figure 2.1.: The control loop structure of SAS [IBM06]. Sensor and otherwise input is monitored
and fused to symptoms, which later are analyzed for the need of change. Potential
change requests are computed in the plan phase resulting in a change plan, which is
�nally executed. Required information to reason about is stored to and taken from
knowledge sources.

adaptation actions. Several qualities can be considered during the adaptation process. In [KC03],
four di�erent categories of control loops are distinguished:

• Self-con�guring: Adapt dynamically at run-time to changes of the environment using
policies that are provided by IT professionals. Thus, a continuous operation should be
ensured.

• Self-healing: The system uses correction policies to react to detected malfunctions. Thus,
the system's resilience is improved.

• Self-optimizing: Tune the system's resources in response to dynamically changing work-
loads. The quality of service is steered towards the requested requirements of the users.

• Self-protecting: Find behaviors that threaten the system's security and privacy and react
by corrective actions. Thus, the security and privacy policies are enforced even during
attacks.

All categories of control loops have a common structure originating from business processes
for the control of incident, problem, and change management. As each role of such a process has
power on a speci�c scope, in an autonomic system an autonomic manager controls a particular
scope as well. Therefore, the system must be able to automatically con�gure, heal, optimize,
and protect itself using a set of knowledge sources.
Later, the four types of control loops were adopted as self-* properties. In [ST09], Salehie and

Tavildari classify these properties as major levels of adaptation and hierarchically arrange them
below the general level of self-adaptiveness. Furthermore, self-awareness and context-awareness
constitute a most primitive layer in this hierarchy.

Process of Adaptation: Components and Feedback Loops

The named blueprint [IBM06] also proposes a standard architecture for autonomic computing.
On the lowest level, several hardware (e.g., CPU, storage) and software (e.g., databases, services)
resources are situated. The resource management is performed using standard interfaces called
touchpoints, managers, and orchestration of these independent agent-like constituents.
Adaptation mangers of di�erent scope use the concept of control loops, which are structured

as depicted in Fig. 2.1. The �rst function is Monitor by which details on the managed resources
are collected. The gathered information is aggregated, correlated, or �ltered. The result is
a set of symptoms, which are handed over to the Analyze function. The latter function is in
charge to perform a data analysis (e.g., prediction) and determine whether a change is required.

11

2. Background

For instance, policies are used for this purpose and matched with the observed situation. The
analysis may result in a change request. The Plan component derives change plans, which
comprise actions that de�ne the reorganization tasks for ful�lling the new policy. There may be
only a single action or even a complex work�ow necessary to alter the system. These actions are
scheduled and performed by the Execute function.
The complete control loop is supported by a knowledge base. Knowledge can be provided

by knowledge sources of di�erent types. Firstly, the policy is passed directly to an autonomic
manager and is stored as another element of the knowledge base. Secondly, external sources
can support the decision making. For instance, symptom descriptions or historical data can
be stored to analyze later and compare them with recently monitored events. The third type
of knowledge sources encompasses information that is created by the autonomic manager itself.
Thus, monitored sensor data, created plans, and execution results can be stored. For this purpose,
each function may also have the ability to alter stored knowledge.
Loop-wise computation of observed data and derivation of adaptation decisions is the most

referred concept of SAS and incorporates much variability, which was investigated by Andersson
et al. in [ADLMW09]. The authors enumerate a multitude of dimensions of di�erent categories.
These dimensions include properties and qualities of goals to achieve, the change that causes
adaptation, and mechanisms to adapt and e�ects adaptation. Along the process, a control loop
runs, which instantiates all these parameters.

2.1.2. Concrete Implementations and Applications of SAS

For all adaptation concerns, a multitude of SAS frameworks has been implemented. A good
overview is given by Salehie and Tahvildari in [ST09]. Whereas researchers mostly aimed at
developing generic approaches for SAS, such as architectural frameworks, engineers implement
solutions to concrete domain problems. For both directions, several works are discussed in the
following.
From an architectural perspective, di�erent topological variants have been proposed. For in-

stance, IBM's blueprint describes a strongly layered architecture for SAS [IBM06]. On the lowest
layer, resources, such as servers, storage, and network, are managed. On the next level, each
resource is instrumented by a so-called touchpoint, which is a uniform resource management
interface. Furthermore, touchpoints are controlled by autonomic managers, which run a local
control loop. Globally, touchpoint managers are orchestrated by more generic autonomic man-
agers. On the highest level, manual intervention is possible for tasks that were not automated
yet. IBM's blueprint can be understood as a reference architecture for SAS, and many later
proposals refer to it as such.
Alternatively, Garlan et al. constructed their Rainbow system, which performs an architecture-

based self-adaptation approach [GCH+04][GSC09]. In Rainbow, a model of the system's archi-
tecture is maintained at run-time on an architecture layer, whereas resources, e�ectors, and
probes for measurement are bundled on a separate system layer. Both layers are connected via
a translation infrastructure, which mediates information exchange. Based on the architectural
model, reasoning is performed to determine when and how to adapt.
For the evaluation of the Rainbow framework, the authors introduced the self-adaptive web

framework ZNN.com, which provides news and adapts to load spikes [ASP13b]. The goal quality
is response time, which may become unacceptable due to high request frequency. In reaction,
the system adapts by enlisting new servers or switching to text-only content delivery. Also,
adaptation strategy considers user-de�ned goals, such as costs to be minimized or prioritization
of the user experience of multimedia content before response time.
In contrast to these layered architectures, Raibulet et al. propose in [RAM+06] to separate a

networked system into views for resource structures, the topology of connections, and resource
location. Based on these views, the system re�ects itself and knowing the quality of service
(QoS) that can be delivered in a speci�c setting. For each query to the service, the required QoS

12

2.2. Model-based Testing

is evaluated so that necessary adaptations can be derived. The concrete adaptation strategy
strongly depends on the application domain so that only an abstract framework for strategy
de�nition is provided.
Furthermore, a relevant project is Managing Distributed Adaptation of Mobile Applications

(MADAM [AHPE07]), where adaptation decisions are based on utility functions on provided and
required QoS properties, which are annotated to components. MADAM runs a control loop that
monitors environment properties and manages adaptation autonomously.
The Autonomia framework by Al-Nashif et al. provides another elaborate approach for con-

structing SAS [ANKH+08]. The proposed architecture comprises two components: (1) the
component run-time managers (CRM), which actively executes the control loop, and (2) the
component management interface (CMI), which allows for de�ning adaptation policies and other
to necessary speci�cations. Further, the CMI connects to sensors and actuators as well as rules
that de�ne adaptation actions. Autonomia also implements the orchestration aspect as discussed
by the above mentioned IBM blueprint in the form of compound components and CRMs. The
authors present a multitude of applications in the domains of consumer, military, �nancial, and
scienti�c computing. Especially grid computing and network security (e.g., intrusion detection)
have been tackled in their work.
Alternatively, peer-to-peer topologies are constituted of widely independent entities. Adap-

tation in such decentralized systems can be enabled for instance by the architecture proposed
by Baresi et al. in [BGT08]. Here, supervised elements (SE, i.e., sensor and actuators) and
supervisors are distinguished. Supervisors run a subscription/noti�cation protocol that they
can be connected to the supervised elements of interest. Furthermore, the supervisors monitor
their subscriptions and run adaptation of di�erent granularity (in a federation of supervisors or
clusters of SEs). One remarkable specialty of this approach is that supervisors are connected
to SE via aspect-oriented programming (AOP) because adaptation is considered a cross-cutting
concern.
Engineers apply SAS principles in situations where autonomy is needed to decrease manual

workload and, thus, the TCO, or to cope with many in�uence factors at run-time. For the
aeronautics domain, Mahadevan et al. built an SAS that monitors the health state of the air
data inertial reference unit (ADIRU) and adapts by performing mitigation actions [MDK11].
The authors call their approach software health management and classify it as advanced fault
tolerance technique.
Self-organization is frequently desired in robotic cooperative scenarios. An instance of such

a system was constructed by Zhong et al. in [ZD11]. The authors employ a model of goals,
capabilities, and roles. Without using explicit reorganization rules, the system can assign robots
with appropriate capabilities to roles that are necessary to reach a certain goal. Another self-
organizing robotic scenario is shown in [NG15] by Niemczyk and Gheis. Here, not the actual task
of a robot entity but information sharing is focused. The approach is rather generic and allows
developers for creating robot teams with cooperative information processing, which is adapted
to optimize qualities like transfer time.
In summary, most implementations of SAS principles are, on the one hand, academic but, on

the other hand, quite heterogeneous in the appearance, nomenclature, and employed techniques.
However, each of them employs a control loop as the central mechanism, which is, therefore,
the unifying element in SAS engineering and, consequently, must be taken into account in this
thesis' e�orts to tackle the SAS test challenge.

2.2. Model-based Testing

Dependable software requires a proper application of quality assurance methods during planning,
development, and use. Testers are in charge to ensure that customers experience a �awless
product after deployment. Otherwise, post-delivery failures are not only very costly and e�ect

13

2. Background

fault error

failurefault…

…
activation

propagation

causation

Figure 2.2.: The causality chain of faults, errors, and failures (redrawn from [ALRL04]).

the image of the software manufacturer, but also potentially cause severe damage to people
or property. Thus, software and, more general, systems have to be tested exhaustively before
delivery according to a hopefully correct requirements speci�cation.

2.2.1. Testing for Dependability

Testing is the most-adopted method of fault avoidance. On a more general level, fault avoidance is
a category of means for dependability besides fault tolerance, fault removal, and fault forecasting.
In [ALRL04], Aviºienis et al. give a broad overview of failure-related glossary and de�nitions in
the �eld of dependent information systems. These notions shall be discussed in the following.
Information systems consist of a set of interacting entities, of which some may be designed,

and others are established at run-time. For instance, a search engine comprises components, such
as crawlers, a web interface, a database, and an indexing mechanism, but all data is gained later,
after development. During actions for fault avoidance, only the search engine itself, but not all
the searched data, can be considered. However, the system is expected to cope with potentially
harmful in�uences from such external sources, which cannot be �xed by quality assurance. The
frontier between the environment and the system is de�ned as system boundary, which has to be
adequately designed by engineers.
Each system has a certain function, which is de�ned by a functional speci�cation comprising

de�nitions of the system's functionality and performance. To implement this speci�cation, a
system has a certain behavior. Behavior can be described by a sequence of states. Whereas single
components may span isolated state spaces, the total state of the system comprises the complete
set of states of computation, communication, stored information, interconnections, and physical
conditions.
Furthermore, information systems only make sense when they interact with a human being or

a technical counterpart. The interaction is provided as a service, which is the behavior that is
perceived by a user. The user may not only be a human but also another system that receives
the service from its provider.
The service is delivered at a service interface. Due to potential information hiding at this

interface, the counterpart of the service only perceives a limited behavior viewed as external
states, whereas internal states cannot be observed directly. Finding or avoiding malfunctions
during the service delivery is the crucial interest of quality assurance. Such a malfunction can
be de�ned as an event of deviation from the correct service.
A service failure, abbreviated failure, is caused by �aws during development, interaction, or

due to physical conditions. The user perceives the failure as a deviation of the observed external
state from the expectations that are de�ned in the system's speci�cation. The failure-underlying
state is called error and its cause fault. In summary, faults, errors, and failures span a causal
chain. As depicted in Figure 2.2, a fault can activate an error, which further can propagate a
failure. The transition from failure to another system part's fault is called causation. It must
be mentioned, that the error activation, in particular, is optional. A fault may also be dormant
so that no errors are produced because the functionality is not used or the fault is covered by a
compensating part of the system.

14

2.2. Model-based Testing

As means for fault avoidance, testing checks information systems for the existence of failures.
While debugging, an engineer investigates the error at the moment of failure occurrence and
tries to identify the fault. However, due to the step-wise construction of software systems from
requirements along design to implementation, the search for failures must be performed on dif-
ferent levels of abstraction. To improve the understanding of these di�erent perspectives, the
next section covers aspects of the test process and test methodology.

2.2.2. The Basics of Testing

Testing can be performed for an integrated software system or just some of its parts. The
particular approach depends on the point in the software life cycle, the availability of interfaces
and completed components, and the level of abstraction to be considered. A canonical impression
on the relation between abstraction, construction step, and test methodology is delivered by the
German V-Modell, which is discussed in the following section.

V-Modell: Levels of Testing

Depending on the knowledge, interfaces, and budget a tester is equipped with, testing can be per-
formed on di�erent levels of abstraction. The more detailed single components are investigated,
the more precisely their preliminaries have to be speci�ed. As software engineering processes
target on re�ning initial knowledge over time, potential veri�cation methods do as well. For
instance, the speci�cation of the German V-Modell [Gre10, p. 375] includes a visualization of
relations between testing and design, as depicted in Figure 2.3. The process starts from the
left upper corner of the V with an exploratory collection of information on the system to be
developed. After a certain time, organizational plans and requirements can be speci�ed. In the
following phases, the system is constructed according to these requirements with an increasing
level of detail. The process starts with a rather abstract product design, which is followed by
a more detailed design and later implementation of code. After the �nal implementation step
is concluded, each level has to be veri�ed or validated based on the artifacts that were created
during the design phase on the respective level of abstraction. In contrast to the de�nition of
veri�cation and validation in the context of dependable systems (cf., Section 2.2.1), veri�cation
is understood as building the system conforming to the speci�cations of the previous phase and
validation as building the system appropriate to its indicated purpose. Thus, veri�cation takes
place on the lower levels, where formal or informal design speci�cations are available; validation
on the upper levels, where the system can be checked against a user's needs.
The most implementation-near test level is unit testing where single modules of the system's

code are directly stressed with input data and checked against pre-de�ned output data. After-
wards, the modules and components are increasingly integrated and tested for correct interaction
and performance (integration test). The complete integrated system can be analyzed in the sys-
tem test phase. An examination whether the constructed product matches its desired design
is done during the acceptance test phase. The conformance of the system is checked above the
baseline of requirements and can be �nished by concept validation.
Whereas the V-Modell includes a description of test activities, a more focused model was

launched by ISO, IEC, and IEEE and standardized under the reference 29119. It describes the
test process as an isolated engineering discipline.

A Standard Process of Software Testing: ISO/IEC/IEEE 29119

�It is generally accepted that it is not possible to create perfect software.� [IEE13a]

Besides its role in the V-Modell, testing is essential to all accepted software development life
cycles. To unify the understanding of test concepts, software testing has been standardized in

15

2. Background

Validation
Test

Exploratory
conceptional

Plans &
Requirements

Requirements
Baseline

Product
Design

Detailed
Design

Code UnitTest

Integration &
System Test

Acceptance Test

Installation
OT & E

Usage &
Support

Validation

Verification

Product
Design Verification

Program
Design

Verification

Requ.
Validation

Design
Validation

Concept Validation

Figure 2.3.: The V-Modell (redrawn from [Gre10]).

Test Design &
Implementation

Test
Execution

Test Environment
Set-up &

Maintenance

Test Incident
Reporting

Test
Environment
Requirements

Test
Specification

Test Environment
Readiness Report

Test
Results

Incident
Report

[Issue Noticed OR
Retest Result]

[No Issues
Noticed]

Figure 2.4.: Dynamic test process (redrawn from [IEE13a]).

ISO/IEC/IEEE 29119. The standard is organized along three aspects of testing, which have been
published yet: (1) concepts and de�nitions [IEE13a], (2) test processes [IEE13b], and (3) test
documentation [IEE13c]. The most signi�cant statements of ISO/IEC/IEEE 29119 are discussed
in this section for later reference.
The standard proposes to separate the process of testing in three sub-processes.

1. Organizational Test Process: The highest level of organizational test management
includes test speci�cations, such as an Organizational Test Policy and Organizational Test
Strategy.

2. Test Management Process: Test management including project management (planning,
monitoring, and controlling) and type test management.

3. Dynamic Test Process: Lowest-level test activities like designing and implementing
tests, executing them, and reporting the outcomes.

All three sub-processes interact by the interchange of certain artifacts, such as policies and
speci�cations. Depending on the type of testing, artifacts from requirement engineering (ac-

16

2.2. Model-based Testing

ceptance testing), architectural design (system and integration testing), and from the detailed
design (unit testing) are processed.
As this thesis discusses a speci�c test practice�model-based testing�for a speci�c category

of test objects�SAS�, the dynamic test process is of particular importance. Activities and
communicated artifacts of the dynamic test process are depicted in Figure 2.4. The �rst activity
test design & implementation aims at the creation of test speci�cation consisting of test-cases and
test procedures. During this sub-process, it is also necessary to specify test coverage measures
and test completion criteria. Furthermore, it may be the case that the speci�cation activity has
to be re-entered due to re-plan or to identify additional test conditions.
Besides the test speci�cation, in test design, requirements of the test environment are derived.

These requirements constitute a set of conditions that the test environment must conform to.
The subsequent activity test environment setup & maintenance involves building the environment
according to the conditions and maintaining it. Here, software and hardware are assembled
appropriately so that test-cases can be run and test data can be applied as de�ned in the
test speci�cation. The test environment readiness report contains all information on how this
environment can be used and con�gured.
During test execution, test-cases are assembled in the test speci�cation and run in the test

environment. Running means applying the actions of the test-cases, while the SUT is deployed
in the environment, and comparing the outcome of the application with expected test results.
This procedure includes comparing results between di�erent re-tests (e.g., after regressions). Test
execution is recorded in a log along with all information to trace back failures to a certain point
of execution. The test results contain passed and failed test instances and those, whose execution
involved something unusual or unexpected.
Tests that were not passed can result in an issue which must be handled in the test incident

reporting activity, which involves analyzing the test results and creating or updating an incident
report.

Test Methods, Practices, and Techniques

The extent of testing depends on whether the system artifacts are analyzed with or without
execution. The latter case is, called static testing and involves manual approaches (e.g., reviews)
as well as tool-based approaches (e.g., static program analysis). In contrast, dynamic testing
executes the SUT with a set of test-cases. Whereas static testing is a method of veri�cation,
dynamic test approaches additionally perform validation.
In dynamic testing, software and system engineers perform di�erent practices depending on

the types of requirements and level of insight into the SUT. The latter distinction separates
testing in three classes: In white-box testing, the internal structures of the SUT are exposed and
investigated. Test inputs are selected to cover speci�c paths through the space of inner states
of the tested execution logic. In contrast, black-box testing relies on a speci�cation, from which
testers construct test-cases, and an API for applying the actions in those test-cases against the
SUT. Afterwards, they compare outputs with given expectations to gain a verdict about the
SUT's correctness. Between those extremes, grey-box testing is performed against black-boxes,
whereas grey-box test design uses information on system internals.
Especially in black-box testing, expected data must be speci�ed to determine a test execution's

correctness. For this purpose, test oracles provide a function that maps input data to expected
outputs. An oracle may provide di�erent characteristics, which, for instance, includes complete-
ness and accuracy [Hof98]. However, no matter how powerful an oracle is, most real systems
are so complex, that only a very restricted, carefully chosen subset of input and output data
pairs can be tested. It is subject to an adequacy criterion, when a tester is allowed for qualifying
an SUT as correct under the given conditions. In test projects, a usual way to systematically
select representatives of data to be tested is to divide the domains of relevant input values into
equivalence classes and perform a boundary value analysis. In this approach, predominantly val-

17

2. Background

ues on the edge of the found equivalence classes are selected for the test set because, especially,
problematic cases are covered in this way.
Furthermore, the speci�c quality or type of tested requirement plays an important role. Besides

functional correctness (i.e., if the system does what it is made for), non-functional requirements
target on manifold qualities. Both types have been documented in ISO/IEC 25010:2011 [ISO16].
According to this widely-adopted standard, non-functional characteristics are reliability, usabil-
ity, e�ciency, maintainability, and portability. Each of them is further structured in sub-qualities,
which all can be tested by di�erent techniques. For instance, e�ciency is investigated by software
performance testing, whereas conformance testing targets on maintainability and portability.
Crosscutting to the mentioned types and approaches of testing, certain actions of this discipline

can be automated. Test automation traditionally focuses on how to execute test input and
compare test output without human intervention. Whereas manual testing requires long lists of
test-cases with human-readable actions, test data, and a lot of repetitive work, automated tests
bene�t from homogeneous, completely reproducible outcomes. In this manner, many more test-
cases can be executed in shorter time spans, because actions are scripted in executable formats,
and comparisons of test results are delegated to an algorithm as well. Due to the capability
of automatically interacting with an SUT, not only functional testing of large systems but also
performance testing bene�ts from automation.
Additionally, automating test execution supports quickly repeating tests for new versions of

the SUT. Such repetitions become necessary due to regression, which means that the quality of
the SUT potentially decreases with the new versions. This common approach is consequently
called regression testing and enables test engineers to keep quality over long-term development
cycles [Mye79].
However, test execution is only one end of test-automation. Another elaborate step is the

creation of test-cases from a speci�cation. The necessary e�ort can further be lowered by au-
tomating the test design, which is discussed in the following section.

2.2.3. Automated Test Design

Managing test data, test-cases, and test con�gurations can become cumbersome for complex
systems. In design and implementation, engineers found methods that help to automate parts
of recurring re�nement tasks using model-driven software development (MDSD). The recent
research adopts MDSD and proposes so-called model-based testing (MBT) as a generative ap-
proach that is appropriate for decreasing test design e�orts. According to Utting and Legegard,
MBT can be de�ned as follows:

�Model-based testing is the automation of the design of black-box tests.�

[UL07, p. 8]

The authors explicitly distinguish MBT from test approaches that only automate test-case
execution. Thus, MBT can be understood as an approach to improve the test process e�ciency
by design automation. In consequence, MBT is especially bene�cial if a service accepts a large
variety of inputs and calls. This relation is, in turn, a perfect match with the requirements of
context-dependence and self-adaptive software service.
MBT can be employed at all levels of testing (cf., Section 2.2.2), whereas it is not compatible

with all test techniques, such as white box testing. The latter derives test-cases from design
and implementation artifacts (e.g., symbolic execution [Kin76]), whereas MBT only checks the
external state of the exposed service. For this purpose, the expected behavior of the system is
speci�ed in the form of models, which are later used for automatically generating test-cases. The
overall process of MBT is described in the next section.

18

2.2. Model-based Testing

ModelRequire-
ments Test

Cases
Test

Cases A
da

pt
or

SUT

Test
Results

Requirements
Traceability

Matrix

Model
Coverage

Test
Plan

1. Model 2. Generate 3. Concretize 4. Execute

5. Analyze

Test Case
Generator

Test Script
Generator

Te
st

 E
xe

cu
tio

n
To

ol

Figure 2.5.: The MBT Process [UL07].

The MBT Process

Automating test design involves certain activities, for which a tool chain must be provided. Fig-
ure 2.5 depicts the overall process including necessary tools and artifacts. The process comprises
the following steps:

1. Model: In the �rst step, an engineer creates a model. Because MBT is a black-box
method, the model has to re�ect the requirements of the SUT. Furthermore, the model is
more abstract than the real system. For instance, in comparison to MDSD, we can qualify
the model as platform-independent if it omits details on technical execution. Additionally,
it should be precisely annotated, which model elements refer to which requirements to
integrate trace information. The e�ort and level of granularity that is modeled can be
controlled by a formal or informal test plan.

2. Generate: From the model, a test case generator automatically derives test-cases on
the same abstraction level as the input model. Each test-case consists of a sequence of
operations that can be applied with the SUT. As the majority of systems can run without
termination (i.e., that interaction can be executed in�nitely), the number of test-cases is
in�nite, as well. Therefore, the test engineer has to provide a test selection or test adequacy
criterion that allows for terminating the generation at a speci�c point.

Besides test-cases, the generator may produce a requirements traceability matrix and model
coverage report. These artifacts relate test-cases to requirements. After test execution, this
mapping can be used to determine violated requirements.

3. Concretize: Abstract operations of each test-case have to be mapped to concrete, ex-
ecutable ones. Typically, this step is performed using templates or any other form of
transformation mechanism. Alternatively, an adapter can map abstract operations to the
SUT's technical interface operations at run-time. Both transformation and adaptation may
be realized for di�erent SUT implementations so that the abstract test-cases can be reused.

4. Execute: In this step, the generated concrete tests are executed in the SUT. A test
execution tool schedules and executes all test-cases sequentially. During execution, failures
are recorded as well as passed test-cases. The test results report this outcome.

5. Analyze: Finally, test results can now be interpreted by an analyst. Her/his task is to
investigate, which faults caused the failures, and to report them to the developers, who �x
them.

19

2. Background

The central di�erence between traditional test processes to MBT is modeling and the gen-
eration of test-cases from the models. Without MBT, test-cases are basically derived from an
informal or even mental model. With MBT, test engineers bene�t from explicit formal de�nitions
that unify the understanding of a system as well as the method how test-cases are created.

Potential Types of Test Models, Metamodels, and Notations

There is a variety of metamodels that are used for generating test-cases. First of all, Utting and
Legeard distinguish between four basic approaches [UL07, p. 7]:

1. Generation of test input from a domain model: De�ne value domains of necessary
input variables and combine them to generate appropriate test input. As the combination
of all input domains may be very large, algorithms, such as pairwise testing [CDPP96] can
be employed to restrict the considered number of combinations.

2. Generation of test-cases from an environment model: De�ne sequences of environ-
ment changes, which are input to the SUT. The generation of sequences can be controlled
by a dedicated model, e.g., a statistical one. The advantage is that potentially all states of
the SUT can be reached. Still, there are no means for evaluating whether the reaction (i.e.,
the output) of the system was correct. The only observable reaction is a system crash.

3. Generation of test-cases with oracles from a behavior model: In this approach, the
model has to include information on the expected reaction or output of the system. Thus,
the model is taken as an oracle implementation.

4. Generation of test scripts from abstract tests: Map implementation-independent test-
cases to actual API calls of SUT functionality. This task is identical with step 3 of the
MBT process described above.

As it turns out, approach (3) is the most challenging because it demands the largest amount
of information; both environment behavior and the SUT's reaction have to be integrated into an
appropriate model. However, this approach allows for automating tests to the greatest extent.
Another question is, from which development artifacts the test model is built from [UL07,

p. 31f]. The �rst approach would be to reuse design models from system developers. For testers,
this would be bene�cial because these models involve a lot of de�nitions, which are relevant
for test design. However, there are several disadvantages. First of all, design models such as
structural class diagrams are mostly not detailed enough to describe the exact behavior of the
system.
Furthermore, the details that describe the system behavior in more �ne-granular design models

are too implementation-speci�c so that this approach can be compared to white-box testing.
When the code has been generated from the same design models that should be reused in testing,
faults manifest in the resulting test-cases, as well. In consequence, taking design artifacts as the
only resource in testing is often questionable and, thus, not a satisfactory approach.
Notably, though, a completely new test model would create the maximum independence from

design knowledge. The fundamental resource in this approach is a requirements document.
Furthermore, it is possible to enrich (e.g., annotate) high-level design artifacts with test-speci�c
information. This approach would create a compromise between complete reuse of design models
and the de�nition of test models from scratch.
A bandwidth of metamodels and notations can be used to represent the input to a test-case

generator. Utting and Legeard classify those model types as follows [UL07, p. 62�.]:

Pre/post (or) state-based notations Each operation is de�ned together with a precondition
and a postcondition. For instance, the object constraint language1 (OCL) together with

1Object Management Group: Object Constraint Language 2.4, http://www.omg.org/spec/OCL/2.4

20

http://www.omg.org/spec/OCL/2.4

2.2. Model-based Testing

the uni�ed modeling language2 (UML) can be used for this purpose. From preconditions,
the generator can determine test inputs that are applicable in a certain run-time state and
postconditions that are used to decide whether to produce data or if a reached state is
correct.

Transition-based notations Test operations are de�ned as transitions between system states.
For instance, �nite state machines (FSM) and UML statecharts are graph-based models.
Each transition can be labeled with concrete actions (e.g., retrieving input or verifying an
assertion) that are applied in the presumed state.

History-based notations For instance, in message-sequence charts (MSCs) or UML sequence
charts permitted traces of a system's behavior or time can be de�ned.

Functional notations Describe a system by a set of algebraic formulas and generate test-cases
from these speci�cations. An example can be found in [Mar95].

Operational notations De�ne a system as collection of parallel executed processes. Example
notations are Communicating Sequential Processes (CSPs, [Hoa78]), the Calculus of com-
municating systems (CCS, [Mil80]), and Petri nets [Pet62].

Statistical notations If distributions of possible events and input data values have to be de�ned,
statistical models like Markov chains are appropriate. Those model types can be used
together with deterministic ones that describe the reaction of the system.

Data-�ow notations Instead of control �ow, the �ow of data through the system is modeled.
An example is Lustre [MA00].

To improve the understanding of how test-cases can be generated from a model, in the following
an example is provided. Figure 2.6 depicts a �nite state machine (FSM), which speci�es the
expected behavior of a simple web shop. More precisely, the FSM is a Mealy machine, which
translates sequences of input symbols to sequences of output symbols. State Start is the initial
state, which is denoted by the incoming edge from the black pseudo element. Input symbols
AUTH_VALID and AUTH_INVALID abstract from correct or incorrect login data submitted by the
user. All other input items symbolize buttons, which have to be pressed to advance to the next
shop window. We also abstract from the fact that certain data has to be entered (e.g., while
registration), and that it is necessary to select a speci�c item to be bought because only the
SUT's work�ow is tested.
To generate test-cases from this automaton, valid sequences of input and output pairs are

derived. Because in this speci�c example, no terminal state was de�ned, all lengths of test-cases
are acceptable. A sample instance is the following:

Example:

AUTH_INVALID/�Login failed" → REGISTER/�Enter registration"
→ OK/�Welcome" → BUY_ITEM/�Added to basket"
→ PAY/�Please con�rm" → OK/�Please con�rm"
→ OK/�Continue shopping"

Although the FSM is deterministic, in�nitely many of such sequences can be generated. A
tester is in charge to decide which of them are more important and which can be ignored. To
formalize this decision and steer an automatic generator algorithm, modelers specify selection
criteria.
2Object Management Group: Uni�ed Modeling Language 2.4.1, http://www.omg.org/spec/UML/2.4.1

21

http://www.omg.org/spec/UML/2.4.1

2. Background

Start

Catalogue

Enter
Registration

View
Basket

Confirm
Payment

Confirm
Shipping

AUTH_VALID/“Welcome“

AUTH_INVALID/
“Login failed“

BUY_ITEM/“Added to basket“

BASKET/“Your basket“

PAY/“Please confirm“

OK/“Please confirm“

OK/“Continue shopping“

REGISTER/
“Enter registration“

OK/
“Welcome“

Figure 2.6.: Sample �nite state machine for a simple webshop.

Test Selection Criteria

Test suites generated from speci�cations potentially grow to an enormous size. The combinations
of test data domains and paths through behavioral speci�cation creates a so-called test-case ex-
plosion, which is an exponential or combinatorial growth of the number of potentially executable,
valid test-cases. In white-box testing, where code is known to engineers, selection criteria have
been found that help to distinguish which parts of the control �ow should be examined and
which should not. The basic ones are function coverage, statement coverage, branch coverage,
and condition coverage [Rei05]. Each criterion can be used for two di�erent purposes:

1. Measure how much of a program is covered and determine if this coverage is adequate to
the expectations of quality assurance.

2. Determine when to stop testing or when to stop test-case generation.

However, in model-based testing, the appropriateness of a criterion depends on the type of
the used model. For the FSM given above (cf. Fig. 2.6) state or transition coverage �t well.
Depending on a risk estimation, a tester could decide to reach 50% state coverage. In the
�rst case, test-cases are generated until half of all states of the FSM are reached at least once.
For other models, it may be bene�cial to de�ne coverage by their speci�c entities. For textual
models, statement coverage is applicable, data �ows require criteria based on defs and uses, and
object-oriented descriptions work well, for instance, with class attribute coverage.

2.3. Dynamic Variability Management

Despite the discussed techniques for modeling and decision making in SAS, the research �eld of
software product lines (SPLs) has developed means to reason on dynamic adaptation, as well.
If variation points of a product are modi�able during run-time, the SPL is called a dynamic

22

2.3. Dynamic Variability Management

software product line (DSPL). Such a notion of variability is a useful foundation for black-box
abstraction of SAS and, thus, for a potential test modeling tool.
In this section, background on (D)SPLs is given. Firstly, the idea of SPL engineering (SPLE)

is presented. Secondly, the widely-used formalism of feature models is introduced. Finally, the
last part of this section presents how the pre-execution means of SPLE and features can be used
to represent structure, constraints, and behavior of a dynamic SAS.

2.3.1. Software Product Lines

A central motivation of software engineering methodology is reuse. Divide-and-conquer, abstrac-
tions, and inheritance are available in most modern programming languages and metamodels.
However, reuse can be lifted up even on the most abstract view of software systems where busi-
ness strategy or requirements are considered. For instance, when several customers of a software
manufacturer demand a product for the same domain but with partly di�erent functional or
non-functional expectations than investigated in past projects, it is likely that a subset of the
developed artifacts can be reused. Other assets of the system may be changed or even devel-
oped newly but should work together with the reusable and shared ones. David L. Parnas even
assumed that the commonality in software is predominant in comparison to di�erence. In con-
sequence, he proposed to refer to such systems as software families [Par76]. From this idea, the
notions of SPLs and features have been developed.

�A software product line is a set of software-intensive systems sharing a common, managed
set of features that satisfy the speci�c needs of a particular market segment [...] and that
are developed from a common set of core assets in a prescribed way.� [CN01, pgs. 25f.]

�A feature is a distinguishable characteristic of a concept (e.g., system, component, and
so on) that is relevant to some stakeholder of the concept.� [CE00]

Because the de�nition of a feature is highly related to the interest of a certain stakeholder,
it relates to a speci�c set of requirements, as well. In consequence, an SPL spans concepts
between both the problem space and the solution space of the system [CE00]. Basically, in
the problem space, requirements are grouped as features, whereas the solution space contains
reusable implementation artifacts.
The process of developing an SPL consists of two subprocesses: In domain engineering, the

common and variable assets of the resulting SPL are developed. Thereby, a complete software
engineering process should be performed including domain requirements engineering, domain
design, domain realization and domain testing. In this subprocess, the software manufacturer has
to keep track of market requirements by performing su�cient product management. Afterwards,
during application engineering, the requirements of an individual customer are taken into account,
and a specialized application is derived from the existing SPL.
In an SPL, features in problem space and artifacts in solution space have to be related by

a mapping. Some of these artifacts may be alternatives, incompatible with each other, or the
business strategy prohibits the combination of certain features. To manage such dependencies,
various variability metamodels can be used. Foremost, the feature model representation as pro-
posed by Kang et al. is the most widely adopted and extended representation format [KCH+90].
Consequently, Kang's notion of feature models is described in the following and adopted as the
fundamental variability model in this thesis.

Feature Models

Kang et al. proposed their feature-oriented domain analysis (FODA) methodology in the early
1990s [KCH+90]. According to the authors, a feature analysis has to be performed to capture a

23

2. Background

Car

Air conditioningHorsepowerTransmission

Manual Automatic

Rationale:
Manual more fuel efficient

Composition rule:
Air conditioning requires Horsepower > 100

Mandatory
Optional

And
XOR

Legend:

Figure 2.7.: Example of the original feature tree notation (taken from [KCH+90]).

model of the end-user's understanding of the general capabilities of an application in its domain.
In FODA, the feature model is represented as a feature tree. An example of this notation is shown
in Figure 2.7. Each node of the tree is related to a speci�c attribute of the system that directly
a�ects the end-users. The tree structure decomposes the possible attributes of the modeled
family of systems along a consists-of relation (logical And). In the depicted example, a Car may
consist of Transmission, Horsepower, and Air conditioning. Furthermore, Transmission
can consist of the features Manual or Automatic. Both latter features are mutually exclusive
(XOR), which is denoted by a segment-covering arc between the branches. If a connection ends
with an empty circle, the corresponding feature is optional (i.e., it may be part of a valid system).
Kang et al. provide certain additional information to the tree model. The rational denotes

that variants with manual transmission are more e�cient than those with automatic ones. Based
on this information, system instances can be compared to each other quantitatively, or the infor-
mation can be used for choosing an optimal system. Furthermore, a composition rule is de�ned
in the example. It prohibits systems with Air conditioning and a Horsepower value lower or
equal to 100. Such de�nitions have been called cross-tree constraints in later publications.
A feature tree spans a variability space from which several products for the modeled domain

can be derived, and others are prohibited. For instance, selecting the features

{Car, Transmission,Manual,Horsepower = 100}

forms a valid product, while
{Car,Air conditioning}

does not because the mandatory feature Horsepower is missing. For automated validation of a
product or to generate valid ones, a feature tree can be mapped to expressions of propositional
logic, which can be reasoned on by a satis�ability solver or constraint solver [Bat05]. In this
way, it can be automatically decided whether a variant (i.e., a product) is valid w.r.t. the logic
relations within a feature model. Alternatively, the solver can be used for automatically deriving
valid variants from the formal speci�cation. Thus, in a broader sense, feature models can be
understood as graphic notations to express logic and numeric constraints within a variability
space.

Variability Realization

Features in the problem space have to be linked to implementation artifacts in the solution space
to specify their con�guration impact. Preliminary, the implementation has to be variable, so
that options can be selected from the related features. In [SVGB05], Svahnberg et al. catego-
rize available realization techniques proposed in the literature. The approach to be preferred

24

2.3. Dynamic Variability Management

depends on the binding time, which may be one of the phases during derivation of the products'
architecture, compilation, linking, or at run-time. Another dimension is the granularity of the
considered artifact: components, classes, or lines of code. Regarding components, for instance,
optional replacements can be speci�ed with the architecture description or as binaries during
linking. During run-time, components can be replaced by re-organizing the infrastructure. Hav-
ing an object-oriented language, class de�nitions incorporate the possibility of variation within
inheritance hierarchies, which can be rearranged within all possible binding times.
On the level of models, for instance, Heidenreich et al. proposed an approach where features

within a tree can be linked to arbitrary elements of design models of a target system [HKW08].
This method assumes that the software is developed based on model-driven principles. Feature
models and target models are speci�ed under a common metamodel. The mapping is itself a
model instance of a mapping metamodel so that the designer stays in the technology space.
On the �ne-granular level of code, features can be adopted as �rst-class citizen as done in
feature-oriented programming [Pre97], where features are implemented as an extension to object-
orientation and integrated by special compiler.
In summary, the concrete binding time of variation point determines the technology space (e.g.,

a certain programming language or executable format) that has to be used for implementing its
activation. Hence, this realization technique has to be compatible to the concrete modeling
process of the SPL.

2.3.2. Dynamic Software Product Lines

A product is assembled from an SPL variability space initially before execution time, that is at the
time of compiling, linking, or deployment. Di�erent variability mechanisms allow for combining
features during these phases [BFG+02], whereas the resulting con�guration is static and not
thought to be changing at run-time. Dynamic software product lines (DSPL) overcome this
restriction. The abstractions used in classical SPLE are leveraged to run-time for recon�guring
the product. DSPLs are, thus, strongly related to SAS.
In 2006, Hallsteinsen et al. proposed to build adaptive systems based on SPL techniques

[HSSF06]. At this point in time, they worked on the MADAM project and investigated that
variability modeling could help to describe context and adaptation based on the concepts of SPLs.
First, they concentrated on building the adequate architecture to enable the system to adapt
and manage all information in appropriately-tailored models. Later on, in 2008, Hallsteinsen et
al.'s concepts were developed further resulting in the following de�nition of DSPLs:

�DSPLs bind variation points at runtime, initially when software is launched to adapt to the
current environment, as well as during operation to adapt to changes in the environment.
[...] In DSPLs, monitoring the current situation and controlling the adaptation are thus
central tasks.� [HHPS08]

Conversely, it is apparent that DSPLs have a very similar intent as systems researched in the
SAS community. However, they focus on a speci�c variability management technique, which is
adopted from classical SPLE. In comparison to its static ancestors, the role of market-�t of pro-
duced variants loses relevance. Instead, DSPLs adapt themselves according to the environment,
respectively context, in the same sense as the MAPE-K loop proposes. Further comparison shows
that SAS especially focus on architectures that enable adaptation, whereas DSPL concepts target
on reasoning on requirements [ASP13a]. In consequence, both research directions crosscut, but
look at problems from di�erent perspectives.
Since that initial proposal, the body of knowledge on DSPLs matured. Bencomo, Hallsteinsen,

and de Almeida provide an overview of this development in [BHA12]. The authors present the
conceptional model of DSPLs as two interacting MAPE-K loops, whereas one adapts a single
product according to environmental changes and the other evolves the whole DSPL. As in (static)

25

2. Background

SPLs, problem and solution space are separated and have to be handled by interacting adaptation
loops. Besides this architectural concept, it has to be answered how to organize the information
on both sides and how to relate them. In the following, appropriate concepts from software
research are discussed.

Potential DSPL Models and Mechanisms

In DSPL engineering, additional modeling concepts are required that built on existing SPL ideas
but also permit the description of adaptation. Some models that were proposed for this purpose
are tailor-made as in [FDB+08]. Fleurey et al. introduce a metamodel, which incorporates
concepts for context, variant description, and rules. The context hereby consists of variables
with boolean or multi-value domains. Variants of the system map to aspects that can be woven
into the system and may be composed by a planner. A rule is triggered by an arbitrary context
change and has a condition of the context state as well as an e�ect speci�cation that activates
or deactivates variants. To guarantee consistency, additional constraints, including invariants,
de�ne conditions on variants that are allowed for being composed.
However, as the most widely adopted formalism of SPLE, feature models are utilized in the

majority of DSPL approaches. Early publications proposed to map features to software compo-
nents with interfaces that enable dynamic activation and deactivation [TRCPB07]. Over time,
researchers found lacks within this understanding and focus shifted towards the question of how
the mapping could be enriched. For instance, Cetina et al. combined features and autonomic
computing [CGFP09]. Their feature model is mapped to elements of a model at run-time (MRT,
[BBF09][ABCF11]) and describes devices, services, and channels of a smart home system. The
mapping operator is called superimposition and directly relates a feature to a set of entities
within the MRT. The authors also claim that their architecture comprises algorithms able to
create recon�guration plans based on the selected features and mapped solution space proper-
ties.
In contrast, several approaches propose to mark certain features as dynamic so that they

can be distinguished from static variability [DMFM10]. Such distinction leads to di�erent �xed
binding times of features. For instance, Lee and Kang bundle sets of features in binding units,
which have certain binding times [LK06]. Features to be put into a single unit are determined
by their dependencies within the feature tree. A deeper analysis how to relate features to certain
binding times reached Rosenmüller et al. in [RSPA11]. They de�ne a comprehensive strategy
how feature binding units can be derived from a feature model and mapped to di�erent binding
times.
In [ACF+09] and [ACL+11], Acher et al. propose another DSPL system, which again uses

feature models as basic formalism. Both context variability and system variability are described
in this format. They form two initially independent SPLs. Whereas each context variant (i.e.,
a valid feature con�guration derived from the respective feature model) describes a potential
environment state, each system variant represents a potential adaptation mode. In this sense, a
context change corresponds to the recon�guration of the context SPL, i.e., the selection of an-
other context variant. In consequence of such change, a new system variant has to be con�gured.
To specify, which system variant is appropriate for a certain context state, constraint-based rules
are de�ned by the designer. A rule consists of a left-hand side (LHS), which selects context vari-
ants and a right-hand side (RHS), where the respective system variants are selected. Both sides
are speci�ed in propositional logic in the same manner as in composition rules in FODA (cf. Sec-
tion 2.3.1). Each rule is an expression of the form LHS implies RHS. Hence, the context can
be monitored for context states where a LHS is matched. If so, the RHS evaluated, and the new
system variant is deployed. In this way, the complete causal connection between context change
and adaptation decision can be modeled with feature and constraint context within a common
language family.
However, constraint-based rules inherit several problems. Firstly, they have to be prioritized

26

2.3. Dynamic Variability Management

as multiple of them could be triggered by a single context change and may have con�icting
consequences concerning the adaptation result. Secondly, there is no state that permits to
execute the rules in arbitrary situations. This lack of expressiveness misses the fact that certain
con�guration decisions are potentially only accessible in a speci�c operation phase. Thirdly,
no technique for solution space mappings has been proposed so that they have to be speci�ed
externally. To overcome all these problems, Helvensteijn introduced a Mealy-machine-based
formalism to organize recon�guration of DSPLs [Hel12a]. The concept is named delta modeling
as both recon�guration and change are de�ned in the form of incremental delta operators. In
delta modeling, the separation between context and system variability space is based on di�erent
notions. Again, a feature model de�nes valid and invalid combinations of features that are
allowed for setting up a speci�c variant (i.e., product). Rules associate the conditions in the form
of modi�cations on the active feature selection with recon�guration operations in the solution
space. Within the Mealy machine, each state denotes a valid con�guration and transitions are
guarded by the given rules. In this way, the DSPL becomes stateful, and no precedence of rules
is required anymore.
In conclusion, the body of knowledge of DSPL engineering crosscuts with the one of SAS.

Several architectural solutions and approaches that organize the variability within the operational
space of DSPLs are useful additions to SAS principles as the MAPE-K loop.

27

3. Related Work: Existing Research

on Testing Self-Adaptive Systems

Testing, as brie�y introduced, is the most-adopted method of quality assurance. The systems
engineering discipline put much research e�ort in the question �How to make systems dependent?"
and has produced a large body of knowledge in this domain. However, like in other domains
of engineering, SAS research predominantly develops design concepts �rst. In consequence,
literature covering quality assurance, and testing, in particular, is underrepresented.
Two of the �rst researchers, who aimed at �lling this gap, are da Silva and de Lemos. They

proposed to use work�ows for generating integration test plans for SAS [dSdL11]. In their
system, instances of an SAS are assembled from components at run-time. Each time a new
component has to be integrated into the already running con�guration, the SAS executes a set
of integration test-cases. The latter are bundled with the component to be deployed. The authors
focus on the construction of work�ows that represent test plans, which involves the de�nition
of the correct order of tests to be executed and the generation of stubs. Despite this approach
uses test-cases to determine correct integration, it can be characterized as a technique of fault
tolerance because it avoids the integration of con�icting components and, thus, keeps the system
consistent. There is no overall test plan, which contains information on components to be tested
in prede�ned con�gurations. Consequently, this approach lacks reproducibility and applicability
as a technique of quality assurance before delivery.
As in da Silva's method of at-run-time testing, many proposals avoid the challenge of SAS test

complexity. However, despite the rareness of actual pre-delivery test approaches in this body
of knowledge, SAS engineering is not an isolated domain so that several related domains can
contribute concepts to be reused for the SAS test problem. On the one hand, context-aware
applications are an ancestors of SAS, and some problems that respective engineers were faced
are transferable. On the other hand, the domain of DSPLE (cf. Section 2.3.2) was initially only
loosely coupled with SAS research so that some approaches were discussed out of the sight of
the SAS research community. In summary, we identify three di�erent research domains to be
considered as relevant:

1. Context-aware applications: A research domain that developed already during the
1990s and aimed at constructing mobile applications that react to changes in the device's
location, connectivity, and the pro�le of the user in control.

2. Self-adaptive software: This domain developed in the previous decade (2000-2010).
Testing was only considered rarely until now in this area.

3. Dynamic software product lines (DSPLs): Initially, SPL research only considered
how an implementation could be con�gured for di�erent customers based on individual

29

3. Related Work: Existing Research on Testing Self-Adaptive Systems

and shared requirements as well as related features. Lifting this problem to run-time,
required to advance the found principles to a more dynamic view and resulted in DSPLs.
Thus, DSPLs can be seen as a special form of SAS, where the models and implementation
means from SPL research are adopted.

In the following, several projects and publications from the named research domains are dis-
cussed in detail.

3.1. Testing Context-Aware Applications

Context awareness means that an application can alter its behavior not only in reaction to
explicit inputs but, additionally, to its situation in a certain physical or computation-related
environment. Initially, this approach was especially seen as means for better adhering to a user's
needs [LS00]. In contrast to SAS, the principle of context involvement is not conceptualized to
the degree as, for instance, control loops in SAS are, and, thus, the focus lies on how to integrate
context into applications.
Early, it was recognized that due to the involvement of di�erent context sources, verifying an

adaptive application requires additional e�ort. Thus, the simulation of context events was of
special interest. One of the �rst approaches to this challenge has been proposed by Broens et
al. [BH06]. The authors developed SimuContext, a simulation engine that mocks context data
based on an explicit context speci�cation. In this way, real context sources can be replaced
by simulated ones so that the e�ects of enforced context change can be observed in the SUT.
SimuContext comes with an explicit model of events that can be extended by developers so that
the framework can be employed in di�erent application domains. In principle, SimuContext is
a straight-forward approach for testing context-aware applications because it adopts the idea of
providing mocks for inputs from traditional testing. Based on this concept, contextual test data
can be exactly speci�ed and variants of it generated. Also, the infrastructure allows for enforcing
this data as input of SUT so that the expected behavior can be veri�ed.
A comprehensive project on SAS and context awareness is MUSIC. It contributes design meth-

ods, a system architecture, a middleware platform, and a simulation environment for context-
adaptive systems, including respective tooling and prototypes.
In MUSIC, adaptation incorporates the interchange of components and change of parameter-

ization. All possible adaptations are speci�ed in composition plans, whereas an optimization
component selects variants based on utility functions. A utility function gives a measure how
bene�cial an adaption is in a certain context situation. Context data is contributed by context
clients to a context manager. The data �ows in as an event stream, which is organized by the
MUSIC middleware and interpreted continuously.
To verify expected behavior, MUSIC also incorporates a context simulation tool, which inter-

cepts the event �ow [KPPR10]. Simulation scripts produce invocations on services and context
events in a timely order and trigger adaptations, which can be monitored for veri�cation pur-
poses.
Context-aware applications are expected to collect data from their environment and derive

a context model, which is used to adapt services according to the recognized situation. In the
technical realization, gathering context data for subsequent reasoning requires the integration of
sensors, abstraction, a common data model, and appropriate reasoning mechanisms. To unify and
ease the development of context-aware systems, several context middleware frameworks have been
implemented. Components of the middleware provide a common interface to explicit or implicit
(i.e., computed) contextual information. Thus, context-aware applications can be developed by
using this interface and without the need to deal with the heterogeneous hardware devices of the
sensor equipment.

30

3.2. The SimSOTA Project

Discussion. Context-aware applications are a predecessor of SAS. Consequently, there exist
characteristical requirements of testing context awareness, which are also relevant to SAS testing:

• Enforcing context: to verify a system against requirements and to �nd failures, the test
should be able to change context willingly to a di�erent state, under which the SUT should
to be tested. This ability allows for step-wise investigation of how the system behaves under
di�erent conditions. In SimuContext, conditions are enforced based on a speci�cation,
whereas MUSIC provides this functionality based on scripts.

• Generative creation of context variants: In contrast to MUSIC's simulation scripts, the
authors of SimuContext proposed to automatically derive variants from speci�cations.
With this approach, the authors target on avoiding manual and, thus, very costly de�ni-
tion of a multitude of context situations. Instead, they prefer automated generation from
declarative formats, which is a reasonable method to avoid dealing with adaptation-related
complexity.

• Stateful context change: MUSIC simulation scripts introduce an explicit order, in which
the context events occur. For systems that react to changes it can be enormously important
if, for instance, a context value increases or decreases over time. Thus, one requirement for
SAS testing, it the ability to enforce not only situations but also their order of occurrence.

Parts of these requirements were already claimed by Wang et al. in [WER07]. According to
them, it has to be identi�ed where and which context situations interfere with the actual system
behavior. Furthermore, they recognize that the variety of possible interactions between di�erent
context values and the system behavior can be enormously large and has to be dealt with in test
generation.

3.2. The SimSOTA Project

Within the SAS research �eld, the state of the a�airs (SOTA) project [ABZ12] by Abeywickrama
et al. o�ers a more comprehensive simulation and validation toolset, named SimSOTA [AHZ13].
The approach's central paradigm is to model feedback loops explicitly as �rst-class entities. Thus,
di�erent patterns of self-adaptive control �ows can be constructed.
This fundamental assumption of SOTA is that all adaptable parameters of a system can be

described as property dimensions of a value space. These properties constitute an n-dimensional
state space, in which the system's execution navigates. A system is self-aware if it can au-
tonomously locate itself and track its movement inside this state space. Furthermore, the system
is self-adaptive if it can dynamically direct its trajectory through the state space. Hence, the
direction capability can be implemented using feedback loops.
The constraints that de�ne under which conditions the system is expected to operate are

modeled as n-dimensional regions within the state space. Similarly, goals de�ne a region, to
which the system aims at to direct its trajectory through state space. New goals are activated
as soon as a certain speci�ed region is entered. Each goal is considered as post-condition, which
the system approximates to by adaptation. During this process, the software adheres to another
class of constraints, the so-called utilities, which provide heuristics that guide the navigation.
Feedback loops are in charge to control the state space trajectory by deducing parameter

changes from monitored sensor data and apply manipulations using e�ectors. In SOTA, feed-
back loops do not have to be monolithic. Instead, multiple cooperating loops can be modeled.
Each feedback loop manages at least one service component according to an associated goal set.
Additionally, several service components may share a set of common goals and, thus, form a
service component ensemble.

31

3. Related Work: Existing Research on Testing Self-Adaptive Systems

For the interaction of feedback loops, either inter-loop or intra-loop coordination can be ap-
plied. For inter-loop, multiple sub-loops implement the various phases of MAPE-K. For intra-
loop coordination, di�erent mechanisms can be applied by autonomic managers: (1) hierarchy
means an outer loop is directly controlling an inner loop, (2) stigmergy where a shared subsys-
tem is manipulated by multiple loops, and (3) direct interaction, which incorporates mangers
communicating peer-wise; typically in to control a common resource.
The SOTA model is well-suited for constructing arbitrary MAPE-K systems and for describ-

ing their feedback-driven behavior. To allow engineers for modeling and simulate SAS based on
SOTA, the SimSOTA environment has been developed. It provides capabilities for modeling,
execution, and debugging-like validation of SAS. Here, modeling founds on UML 2.2 so that
feedback loops are represented by activity, sequence, and composite diagrams. The single phases
of MAPE-K are encapsulated as packages within a common super package. Using the synchro-
nization mechanisms, the interaction between multiple feedback loops can be modeled. Each
phase may save information to or query information from a knowledge model.
It is possible to attach breakpoints to the model so that its execution can be debugged. The

user can execute the model stepwise, suspend the execution, or resume it. During this process,
the execution state is visualized and, thus, can be inspected in detail. Depending on how formal
the model is de�ned or which information is available at run-time, the user may provide data
by using a run-time prompting feature (i.e., a dialog). With the help of this tooling, SimSOTA
models and simulates a complete SAS and allows for observing and debugging so that errors can
be diagnosed and traced to the original fault.

Discussion. According to the authors, SimSOTA provides a general-purpose simulation plat-
form for SAS, which can be instantiated application-independently. Furthermore, the approach
can be stated quite powerful due to the comprehensive tool support for modeling, simulation,
and validation.
The SimSOTAmodeling environment enables to observe how a detailed model reacts to context

changes in the loop. However, in contrast to the features of test approaches for context-aware
systems (cf. Section 3.1), it lacks expressiveness for means for de�ning di�erent variants of context
and enforcing situations in a speci�c order or generate variants from a model.
In contrast, SimSOTA copes with di�erent characteristic requirements of testing self-adaptation:

• Parametric adaption: The test speci�cation, which is input to the simulator, allows for
de�ning how parameter values in the SimSOTA state space change in reaction to context
change.

• Behavioral adaptation: By explicitly modeling control loops with the expressiveness of
UML, the behavioral �ow of the simulated system can also be de�ned in dependency to
observed context �ow.

• Stateful adaption: Due to the composition of multiple control loops, expected adaption
can be made dependent on its history. Consequently, an adaption to the equal context
�ows must not be equal if there are di�erent histories, which can be veri�ed.

Abeywickrama et al.'s work [AHZ13] claims that explicitly modeling feedback loops is bene�-
cial for designing and analyzing MAPE-K-based SAS. Hence, a monolithic model is not desirable
because the system can incorporate a signi�cant number of and context property dimensions, for
which an SAS adapts, can be manifold. For this reason, single components only access partial
information so that their models can be decoupled. Additionally, the behavior of SAS incorpo-
rates a set of complex uncertainties originating in events where certain environment conditions
cannot be anticipated in their function or their timing.
Unless SimSOTA provides a debugging-based validation method for SAS, it cannot replace

testing. The major drawback is that environment situations that have to be validated cannot

32

3.3. Dynamic Variability in Complex Adaptive Systems (DiVA)

be systematically enforced as there is no description method for such a requirement, which also
hinders reproducibility.

3.3. Dynamic Variability in Complex Adaptive Systems (DiVA)

The DiVA project aimed at providing design methods and a technical framework for building
and running self-adaptive software. Therefore, several variants of the system can be de�ned
using a variability model. The variation points within this model are related to aspects that can
be woven together to con�gure the system. Decision-making reasons on quality of service (QoS)
properties of the system's context and goals, which have to be explicitly modeled by the user.
In the DiVA project, the authors also target on �nding appropriate means to validate the

constructed SAS applications. The results of this research were mainly published in the project
deliverable D4.3 [MBS10]. DiVA's validation approach is separated into two phases. The �rst
one is called early validation. This phase utilizes design space artifacts, which are subject to a
simulation. Such artifacts comprise adaptation rules, a context model, and several variability
models.
The second phase is an operational validation. Hereby, the system is executed and examined

at run-time against adaptation rules and speci�c context instances. Details of both validation
parts are described in the following.

Early Validation Only design models are used for validating the software so that the engi-
neer can discover faults without actually executing the system. The employed models comprise
the adaptation logic, structure, and the context model of the validated application. From the
adaptation logic, adequate environmental data is deduced. The validation is then performed
by simulating the system under such scenarios of environment change. During the simulation,
the adaptation logic is used to compute a set of system con�gurations according to the current
environment situation. The correctness of a con�guration can be determined by providing a
manual oracle.
The example, which is outlined in [MBS10], encompasses a robot application that aims at

exploring and mapping a given room. For this purpose, an agent application, which is running
on the robot, delivers the gathered information from several sensors to a server. The self-adaptive
software is in charge to recon�gure the system according to relevant context input. Both the
context's and system's variability are represented as feature tree (cf. Section 2.3.1) plus respective
constraints on the features in this tree. In DiVA, there are additional adaptation constraints,
which establish conditional relations between multiple feature trees. Thus, it can be formally
de�ned that speci�c system variants require certain states of the monitored context. In this way,
it is possible to de�ne that, for instance, that the robot software can only activate its Bluetooth
feature when a Bluetooth signal is available in the context.
Variability models limit the set of allowed combinations between context states and system

con�gurations. However, those models are not su�cient to express which system con�guration
will be chosen by the adaptation mechanism. Instead, this decision must be implemented by a
�xed set of rules or, alternatively, by an optimization algorithm that selects the best solution
from the set of valid ones. For design-time simulation, the DiVA authors propose to determine
the correctness of such decisions by using a manual (i.e., human) oracle.
Another issue is the combinatorial explosion of possible context variants that have to be

tested. As soon as the model exceeds a certain limit, the number of valid con�gurations become
unmanageable, which is a well-known problem in testing, as it always occurs when multiple
input variables with huge domains have to be combined. The problem then constitutes typi-
cally in the form of test-case explosion. To avoid this problem, so-called adequacy criteria are
used, which de�ne an exact measure that determines when a test-case generation should be can-
celed (cf. Section 2.2.2). DiVA proposes several of adequacy criteria, such as simple, pair-wise,

33

3. Related Work: Existing Research on Testing Self-Adaptive Systems

and dependency-based coverage over selected contextual features.

Operational Validation In contrast to early validation, the operational phase also takes run-
time information into account. Thus, faults in the system's implementation and especially the
decision maker's implementation should be uncovered. For this purpose, again context variants
are provided to the system to validate the resulting adaptation decision. As the implementations
of the run-time employed reasoners are not modeled, they appear as black-boxes to the testers.
Furthermore, inside a black box, a certain state can be established that impacts decisions di�er-
ently after each request. In consequence, a central point of operational validation in DiVA is an
additional temporal test dimension.
In the operational validation phase, coverage is approached by so-called multi-dimensional

coverage arrays (MDCA). The latter are sequences of con�gurations, where each step sets a
certain variant for a variability dimension within the SUT's context. In this way, also a temporal
order of variants is modeled. MDCAs are generated automatically to minimize the number of
test-cases when many feature interactions have to be considered.

Discussion. DiVA manages variability in context and system con�guration by feature models
and constraints. Context variants are modeled explicitly, whereas the order of the application is
created in a generative process. However, the DiVA publications mainly focus on special coverage
criteria for SAS so that a direct comparison to the before discussed approached is ine�ective . In
consequence, the challenges of de�ning expected adaptation, no matter if it should be parametric,
behavioral, or stateful, are not tackled. Despite this gap, DiVA recognizes the complexity of SAS
state spaces as a serious problem in testing:

�The exponentially growing size of the context space stresses the need to select a limited, but
representative number of environments, and test the behavior of an adaptive system against
them. This may allow developers for ensuring the correctness of the decision-making process
and prevent future incidents. "[MBS10, p. 57].

To overcome this problem, it is necessary that the concepts and tools provided by a speci�c
approach incorporate model-inherent means for limiting state space. In DiVA, this task is
approached by, �rstly, adaptation constraints between context and system variability space and,
secondly, by specially designed adequacy criteria.

3.4. Other Early-Stage Research

Despite the discussed, already �nished, projects, several research groups published statements
on ongoing work in the �eld of SAS testing. In 2013, Nehring and Liggesmeyer outlined a test
framework on component level [NL13]. In their concept, they focus on transactional changes
in the structure of software components. For this purpose, they perform six veri�cation steps:
In step (1), a system model is derived, and a representative workload has to be prepared by
developers or system engineers. Step (2) is to verify if the structural recon�guration is performed
correctly. This task is performed by a system architect, who is in charge to check the correct
order of con�guration actions, the validity of the recon�guration end state and the a�ected
quality of service properties. In step (3), data integrity is checked while increasing load stresses
the system. Step (4) considers that components that are replaced during recon�guration have to
correctly transfer their state to the substituting component. In step (5), the interaction between
system transactions and the adaptation itself is checked for failures. Finally, in step (6) , the
non-substituted components are examined for identity. For the complete work�ow, the detailed
technical and conceptional descriptions are still missing so that it is not possible to compare it
directly to the previous approaches. However, throughout the work of Nehring and Liggesmeyer,

34

3.4. Other Early-Stage Research

several requirements for grey-box level tests are recognized. Especially, identity, state transfer,
and the order of recon�guration are named.
Another on-going work has been published by Eberhardinger et al. in [ESKR14]. They aim at

testing a self-organizing system, whose behavior is so complex that it cannot be explicitly speci�ed
at design-time. The test concept is based on a Corridor Enforcing Infrastructure (CEI), which
monitors and veri�es prede�ned constraints on system properties during testing. Such a corridor
is called Corridor of Correct Behavior (CCB) and can be generated semi-automatically or even
completely automatically from requirement documents. To stress the SUT, environment data
can also be generated from requirements and state machines. The result is a set of Environment
Variation Scenarios (EVS). Eberhardinger et al. propose to run these EVS for single agents of the
composed SAS, whereas scenarios for interaction agents should be generated from communication
protocols. The approach, thus, covers all stages of software testing, that is unit, integration, and
system level.
Finally, Wang et al. utilize code fragments in context-aware applications that access the mid-

dleware's interface [WER07]. From these so-called context-aware program points (CAPPS),
test-cases can be generated. The prerequisite of using a middleware states a general assumption.
However, the test generation concepts are independent of a speci�c middleware implementation.
Prerequisites to the generation processes is a context-aware program P and an initial test-suite

T comprising test-cases t ∈ T . The approach aims at enhancing T by inserting context manipu-
lations. A component named CAPPS Identifier takes P as input as well as a set of signatures
that de�ne API methods of the employed context middleware. The authors' example middleware
is designed in form of an observer-subscriber architecture. The context-aware program registers
at the middleware and is noti�ed about context changes. An application may also be registered
with multiple handling threads so that the middleware potentially provides shared data objects
between these threads. Context data is then delivered through the CAPPS (i.e., the statements
where the API signatures are accessed) and is expected to be further used by the application.
The CAPPs themselves are statements of one of two di�erent types: statements dependent on
reading or writing on 1) context data objects, and 2) inferred objects shared between handler
threads. CAPPs of type 1) are found by utilizing side-e�ect analysis [LLH05], whereas type 2)
is found using escape analysis [RH04].
During analysis, the CAPPs Identifier produces control �ow graphs (CFG) for all handler

threads. Each of the parallel executed CFGs includes several nodes, which directly relate to
CAPPs. As the CAPPs are context-dependent, the CFG can branch to re�ect di�erent behavioral
consequences of a context evaluation.
The CFGs are input to the Context Driver Generator, which traverses them and produces a

set of drivers D. A driver is a sequence of nodes of operations that drive the later test execution.
Due to the parallel execution of context handlers, drivers that run across multiple threads are in
particular important to be covered.
In the next step, the Program Instrumentor adds certain method calls to the code of program

P to encapsulate the handling of each CAPP. These method calls notify a scheduler component
(that is included in the code base) on the entry and exit of a CAPP execution with parameters
on the current thread, CAPP identi�er, and a driver identi�cation. The entry call waits until
the currently executed driver reaches the respective CAPP so that both driver and the tested
program run synchronously. A CAPP is marked as successfully executed when the exit method
of the scheduler is called. The resulting instrumented version of program P is called P ′.
The last required component is the Context Manipulator. It runs test-cases t ∈ T against the

program P ′. The execution of a test-case runs in parallel to the execution of a context driver so
that di�erent test outcomes may be generated. As soon as a test-case directs the program to an
instrumented code location, the driver is awaited to manipulate the context situation. Thus, it
is possible to drive each test-case through an adequate set of CAPPs (according to a prede�ned
context adequacy criterion on CAPPs). In this process, the control �ow may as well be directed

35

3. Related Work: Existing Research on Testing Self-Adaptive Systems

1. Context 2. Adaptation

SimuContext
MUSIC

SimSOTA

DiVA

+
+

+
-

-
+

- - -

+ + ?

-
+

-
?

-
?

+ + +

+ - -

-
-

-

+

Fulfilled
Fulfilled w. restrictions

Not mentioned

+
?
-

Requirements of SAS testing

Figure 3.1.: Taxonomy of requirements of model-based SAS testing.

to points where certain CAPPs cannot be reached anymore. In this situation, feedback is handed
out to the driver generator, which then generates re-scheduled, more appropriate drivers. The
result of the process is a measure of the reached coverage and test-cases that have been enriched
with interleaved context manipulations.
However, although Wang et al.'s approach produces a test-suite, the user is required to run

the system for deriving test-cases so that only real behavior is detected leaving out behavior that
is expected according to a speci�cation. Consequently, the method is adequate for regression
testing but not in general for black-box testing.

3.5. Taxonomy of Requirements of Model-based SAS Testing

Due to lack of attention for testing in SAS research, also a general categorization of test ap-
proaches is still missing. However, in the previous chapter, several characteristic requirements
appeared. Figure 3.1 organizes these requirements in a classi�cation tree. We distinguish be-
tween three general taxonomic categories of requirements, which are context testing, adaptation
testing, and limiting the state space of the test.
All approaches, which have been discussed in detail in this chapter, are put in relation to

the extracted requirements. Those projects, which stem from context-aware computing, provide
mostly features on the context side. SimuContext enforces situations, which are generated from
a speci�cation. MUSIC uses manually written scripts, which do the enforcement job by stating
concrete commands of context change and could, with some e�ort, even create a stateful coverage
of context. On the level of modeling expected adaptions, the authors of SimuContext do not
provide information, whereas MUSIC test scripts can check for certain properties and�with
restrictions�also behavioral and stateful adaptation. However, due to the missing modeling
capabilities of scripting, the e�ectiveness of this concept is questionable. Finally, none of the
named approaches provides any means for limiting the state space to be tested.
SimSOTA's character is quite di�erent to context-aware testing. The approach does not pro-

pose how to generate contexts, but models expected adaptation in detail. It provides methods
to change parameters of the SUT and to check behavioral changes by modeling feedback loops,
which also establish a state space of adaptation. Despite this feature richness, functionality for
limiting state space is again missing.

36

3.5. Taxonomy of Requirements of Model-based SAS Testing

Apparently, DiVA provides the most advanced techniques for SAS testing because parts of the
state space of context and adaptation can be modeled together. A drawback is that the stateful
construction of context is driven by heuristics so that the user does not have a direct in�uence
on the generated sequences. Also, DiVA has no explicit model of adaptive behavior nor state of
adaptation. The focus of DiVA obviously was on coverage and limiting state space, for which,
consequently, it performs best.
Each discussed test approach has several pros and cons. Because this thesis aims at �nding a

generic approach and framework for model-based testing SAS, it has to completely implement
the, possibly generalized, capabilities as the existing approaches. In the following part of this
thesis, the named challenges are tackled in a conceptional manner and, later, by providing a test
environment, which realizes those concepts in a reference architecture and implementation.

37

Part II.

Methods

4. Model-driven SAS Testing

This chapter is based on the following publications:

• Georg Püschel, Ronny Seiger, Thomas Schlegel (2012). Test Modeling for Context-
aware Ubiquitous Applications with Feature Petri Nets. In Proceedings of Modiquitous
workshop, pp. 1�4, 2012.

• Georg Püschel, Testmodellierung für mobile Anwendungen. In Proceedings of Innova-
tionsforum Open4Innovation, pp. 65â��-69, 2012.

• Georg Püschel, Test Modeling of Dynamic Variable Systems Using Feature Petri Nets.
Technische Universität Dresden, Fakultät Informatik. ISSN 1430-211X, TUD-Fl13-01-
Sept. 2013. Technical Report, 2013.

• Georg Püschel, Christian Piechnick, Sebastian Götz, Christoph Seidl, Sebastian Richly,
Uwe Aÿmann, A Black Box Validation Strategy for Self-Adaptive Systems. In Pro-
ceedings of ADAPTIVE 2014, The Sixth International Conference on Adaptive and
Self-Adaptive Systems and Applications, pp. 111-â��116, 2014.

• Georg Püschel, Sebastian Götz, Claas Wilke, Christian Piechnick, Uwe Aÿmann. Test-
ing Self-Adaptive Software: Requirement Analysis and Solution Scheme. International
Journal on Advances in Software, ISSN 1942-2628, 7(1&2), pp. 88â��-100, 2014.

• Georg Püschel, Christian Piechnick, Sebastian Götz, Christoph Seidl, Sebastian Richly,
Thomas Schlegel, Uwe Aÿmann, A Combined Simulation and Test Case Generation
Strategy for Self-Adaptive Systems. Journal on Advances in Software, 7(3&4), pp. 686-
â��696, 2014.

As introduced in the previous chapters, enabling testers to �nd failures in SAS is a complex
task. In related work, we have shown both that there are open problems that not have been
su�ciently solved by state-of-the-art research and that none of the existing solutions covers the
complete set of requirements. This thesis' goal is to overcome this research gap.

4.1. Problem/Solution Fit

The major theme in SAS testing is the engineer's need for a mature approach that supports
her/him to lower e�ort and to keep the overview of the complex conditions within the validated
behavioral space. Consequently, the proposed solution shall be built on automation of tasks that
have to be performed to design and execute SAS tests.

41

4. Model-driven SAS Testing

Legend

1. Context 2. Adaptation

Context Variation

Verifiable Adaptative Behavior

Dynamic Context Change

Context‐Dependent
Reconfiguration

Adaptation Mode Variation

Context VM

Adaptive Petri Nets

Stimulus Models

Reconfiguration
Model

Adaptation VM

Concepts Model Types

Timer Transitions

features

supports

VM … Variability Model

Requirements of SAS testing

Figure 4.1.: Problem/Solution �t. The upper of part of the �gure shows the previously found
requirements of SAS testing, whereas the left side lists the proposed solution concepts.
Both requirements and solutions are related by an entry denoting that the concept
directly features the requirement or, otherwise, supports its solution. Each concept is
implemented by one or more model types, which are denoted on the right side.

As discussed in previous chapters, test approaches for SAS have several requirements, which are
not yet su�ciently met by existing works. To �ll this gap, this chapter shall propose a solution,
which is fostered by concepts that stem from the traditions of model-based testing, simulation,
and variability management. Each concept features one or more requirements, which have been
elaborated in Section 3.5. The proposed solution suggests a set of concepts and corresponding
model types, which facilitate the required expressiveness for each concept. With this background,
the overall solution is �exible in a sense that a model type can be replaced with another one as
long their requirements for expressiveness are still met.
Figure 4.1 shows the relation between requirements, concepts, and model types. A concept can

also support state space limitation without be directly designed for this purposes. The model
type, which is proposed to be used along with a concept, is denoted on the right side of the
illustration.
The �rst concept copes with the necessity to enforce di�erent variants of context. To automat-

ically generate di�erent contextual situations from a formal speci�cation, variability modeling
shall be applied in this thesis. The respective model type, which we put hereby into place, shall
be named context variability model (context VM). It speci�es the classes and decision points,
which can be used to generate context situations. Due to its built-in abstraction capabilities, it
also enables for classi�cation of contextual situations.
Adaptation not only incorporates the change of system properties and composition of its

components, but also the change of service behavior that a system provides. From a black-box
perspective, the protocol of such services is relevant. Adaptive Petri nets cope with the challenge
of modeling adaptive behavior. This model type extends classic Petri nets using constraints
about the recent variant at run-time.
Change in contextual conditions is the central motivation behind self-adaptivity. Whether

the SASuT behaves correctly can only be decided, if it is examined under an adequate set of
dynamic change scenarios. For this purpose, the proposal equips testers with stimulus models,
which describe how contextual dynamics can be established. Stimulus models are fundamental

42

4.2. Example: Surveillance Drone

to the de�nition of stateful dynamic contexts.
As done for contexts, we can use variability modeling and equivalence class modeling for

organizing potential system states that refer to adaptation. In the following, such states are
called modes and the respective representation is called adaptation VM. Based on such a model,
also parametric adaption can be speci�ed e�ciently.
Between context change and dynamic adaptation, a causal connection has to be established.

In this thesis, such a connection is created by the use of symptom events, which are produced
within stimulus models and consumed in recon�guration models. The latter two de�ne the explicit
adaptation behavior and, thus, allow for modeling stateful adaptation. The problem of de�ning
which contexts should be enforced in which adaptation modes is tackled by timer transitions.
These are an extension to Petri nets and enable them to take control of the context variation
at certain points in their execution. For this purpose, timer transitions de�ne the production
of certain portions of discrete time controlling stimulus models. Thus, context changes are
controlled in a quantitative manner, and a reverse control �ow is established, which also features
the limitation of state space.

This chapter contributes the following proposals coping with the SAS test challenges:

• Model-driven methods for testing before non-covered regions of an SAS' state space
based on generated test-cases or simulation in the loop

• A comprehensive formalization in the form of metamodels that implement all aspects
of the SAS test methods

• Timer transitions as novel concept for communicating between models in a quantitative
manner

• A conceptional infrastructure to foster the dual use of test-case generation and simula-
tion in the loop

• A step-wise extension starting from Petri nets, which allows for employing above con-
cepts and customizing them for the required level of coverage

The chapter starts with an example application for drone-based surveillance in Section 4.2. The
example shall be modeled and extended in the following conceptual sections to illustrate the used
models and their interactions. Subsequently, in Section 4.3, basic concepts, including Petri nets
as a formalism for behavioral modeling, are introduced, followed by a discussion of the complete
list of concepts in the order presented in Figure 4.1. In Section 4.4, di�erent adequacy criteria
for test selection are discussed, which can be used with the proposed model stack. Furthermore,
in Section 4.5, the adequacy of the employed models is discussed. Finally, Sections 4.6 and 4.7
demarcate the approach from related work, summarize, and elaborate further side issues.

4.2. Example: Surveillance Drone

For the illustration of the proposed concepts and models, we introduce an example of an auto-
nomic system. The system consists of an unmanned air drone, equipped with a camera, a height
sensor, and a satellite-based navigation system.
The drone is intended to �y, starting from a home position, along a prede�ned path; spot for

remarkable situations and record them. Depending on the battery state, the light and weather
conditions, the inferred level of threats, or other parameters, a control loop may decide to leave
the planned track or even �y back to the drone's home station. The control loop algorithm is
executed on-board, which allows the drone for adapting itself and operate autonomously.
The range of applications of such an autonomic and self-adaptive system is manifold: For

instance, catastrophe areas can be continuously inspected [MCMO10] and lost people searched

43

4. Model-driven SAS Testing

for [GGC+16]. With the goal of complete automation in execution and�later on�testing, the
example shall incorporate no human interaction so that it is possible to automate test execution
completely. Moreover, it is assumed that a battery loading procedure is performed without
manual intervention. Precise models for this example SAS are step-by-step extended in the
following sections.

4.3. Concepts and Models for Testing Self-Adaptive Systems

Only concepts that integrate with ease assemble an e�ective overall solution to the general
problem of testing SAS. The consistency of the proposed models shall hereby be established by
formalizations of the exact syntax and semantics of all solution artifacts. Moreover, this section
shall explain why the single concepts leave gaps that each is dealt with in the follow-up section.

4.3.1. Test Case Generation vs. Simulation in the Loop

Generating test-cases from models in traditional MBT is a systematic process, which leads to
repeatable regression tests and reproducible results. However, in some setups, the SUT's context
involves entities that cannot be controlled by test data and predicted with su�cient precision.
If these entities in�uence the outcome of testing, their properties must be observed and used for
determining the correctness, respectively deriving expected reactions, at the time when the test
models is interpreted. Typical examples are:

• Physical objects in�uenced by interfering, non-modeled factors or with chaotic behavior.
Mocking such objects may not be su�cient for checking the behavior because the assump-
tions that the mock involves miss reality by far. For instance, a robot's exact movements
are often hard to specify due to the impact of friction or collisions.

• Safety-critical properties whose behavior cannot be completely enforced. Mechanisms of
test drivers may have some control on these properties, but the tester prefers not to risk
an erroneous con�guration and avoid harming the SUT or test environment.

• Technical devices with complex, state-dependent behavior. If all physical e�ects can be
idealized, a technical device may operate conforming to an exact speci�cation. However, if
the design of this speci�cation is complex, it may be too expensive to transform it into a
test model and to execute in a simulation.

• Non-accessible properties of technical devices. Sometimes, real test data can only be gath-
ered by connecting the SUT with productive or remote service where the tester is not in
control.

In general, a system may incorporate certain details that cannot be speci�ed within the test
model and may have an impact on test outcome. As a remedy, the tester should be enabled to
gather these details from additional observation from the physical world or the SASuT's interface
and make testing dependent on the received information. In simulation, this information can be
taken into account by accessing the respective information sources in-the-loop (ITL). For this
purpose, the test model is executed with certain operations that query data from the interface.
This data is then used for controlling the simulation.
However, for generated test-cases a more di�cult hurdle constitutes. A test-case assembles

a sequence of test steps, and each test step is atomic. Nothing contextualizes it except the
execution order within the sequence. Stimulus models and recon�guration automata are no longer
available so that steps, where context manipulation is performed, cannot be shifted anymore. In
comparison, simulation has a much larger potential to consider externally detected properties at
certain points in the interpretation.

44

4.3. Concepts and Models for Testing Self-Adaptive Systems

analyze/refine variability
(system and environment)

fix/change system

Model expected behavior

Model

Run & Verify

<<start here>>

Figure 4.2.: The conceptional process of SAS testing. The process starts by modeling the SASuT's
behavior. Resulting models are run to verify the speci�ed expectations. Failures
are reported and bugs are �xed. Next, variability is analyzed or re�ned and the
test process restarts until the quality reaches the demanded level or resources are
exhausted.

In this chapter, test-case generation and simulation in the loop shall be treated as alternatives,
which are fed from the same modeling concepts but are used in di�erent situations. If absolute
reproducibility is required, generation should be chosen to create a �xed set of test-cases. Oth-
erwise, if the SAS' correctness should be investigated in an exploratory fashion, simulation is
more appropriate because it allows the tester for interacting with the SASuT and manipulating
the situation at test run-time.

4.3.2. Incremental Modeling Process

From the perspective of regression testing and test-driven design [Bec03], a system version must
be tested before the next one is developed. Thus, the process of designing and testing has an
iterative character.

In Figure 4.2, this principle is related to the concepts, which are adopted in this thesis. We
start with a standard MBT approach: a model of the expected behavior is speci�ed, executed,
and the result is reported. During the �rst iteration, a tester can focus on veri�able properties
that are not adaption-related and remain unchanged no matter how the context appears.

During the Run&Verify phase, the model is executed, which involves test case generation
or, respectively simulation, sending generated input to the SASuT, and comparing its outputs
with expected ones. After �xing failures, which were found during the model execution, the test
designer may distinguish coarse-grained variants of the context, adaptation modes, and respective
e�ects on the expected behavior and outputs. With each iteration, the variants are more closely
looked at and further distinguished to span a tree-like variability model. As soon as the e�ort
for looking more deeply into variation exceeds the threshold of available computing resources or
project budget, the process must be terminated.

This core process leads to step-wise re�nement of the model artifacts, including its incorporated
knowledge about the SAS' inherent variability. Before making use of this knowledge, in the
following, the Petri net formalism is described as a base model. Later on, the Petri nets' syntax
and semantics are extended to be varied by the decision points, which are derived from the found
variability.

45

4. Model-driven SAS Testing

4.3.3. Basic Representation Format: Petri Nets

In software engineering, modeling concepts of di�erent abstraction levels and degrees of formality
are used. Because SAS testers face the challenge of automating test design, the executability
of the underlying model types is a crucial requirement. Hence, all elements, which the model
incorporates, must be completely formalized. Furthermore, because concepts of test modeling
should be adopted for a broad range of implementation technologies, an adequate abstraction of
these formalizations is presumed.

The majority of MDSD approaches employs MOF, UML, and OCL; the same holds for model-
based test approaches. UML can be used for specifying structures of systems (component and
class diagrams) and behaviors (sequence message charts, state charts, and activity diagrams).
In this sense, UML is a general-purpose modeling language for object-oriented systems. But,
although UML is considered a modeling standard, it is not that consistent as it would be necessary
for a straight, unambiguous execution [WD11]. For instance, according to [ZH14], the exact
interpretation of UML state machines is still arguable. The reason is that UML was initially
designed as a more visual and conceptional language for improving the communication between
engineers. To solve this inconsistency, derivatives like OCL4X [JZM07] have been proposed,
which restrict UML's syntax and provide exact semantics for the remaining concepts.

Being a general-purpose language, an executable version of UML could be used for describ-
ing test models. Additional requirements as stated in this thesis�especially those, which con-
cern veri�cation�could only be added with UML pro�les, as done in the UML testing pro�le
(UTP, [BDG+07]). This shows that concise, comprehensible and problem-focused modeling with
general-purpose languages requires additional e�ort. Introducing means for easing the descrip-
tion of self-adaption would require more extensions to UML and, thus, additionally bloat the
model.

To overcome this problem, a more concise description format shall be adopted. The basis for
describing the behavior that is expected from any system is a behavioral model. In the �rst
place, the test engineer needs means for specifying how the SASuT's interface should be used for
enforcing behavioral states in which certain properties are veri�ed. As the prerequisite of this
thesis does not assume white-box knowledge on the test object, the behavioral states identify
certain points in the interaction protocol of the system, as seen from a functionality-exposing
interface. Interactions may operate on a technical level (e.g., protocols) or on the level of dialogs
controlled by a human being. To describe the outer-world interactions of SAS, this thesis employs
Petri nets.

Petri nets have been �rst described by Carl Adam Petri in 1962 [Pet62] and are capable
of modeling discrete processes in distributed systems. As syntax and semantics of Petri nets
are very concise, veri�cations on behavioral properties like deadlock-freeness and liveness can
be performed easily. Furthermore, based on this formalism, a range of extensions have been
described, and each of them allows for modeling aspects of systems more e�ciently but, on the
other side, increase the behavioral complexity of the modeled system so that veri�cation becomes
more expensive. As Petri nets are completely formalized, their execution and, thus, test-case
generation can be performed based on clear semantics. To provide modeling concepts for our
speci�c SAS test requirements, in the following sections, extensions to Petri nets are described
in detail and formalized.

These extensions will step by step be elaborated in order of the brie�y announced concepts
matching the SAS-speci�c test requirements. Each addition will follow a certain structure: (1)
the introduction of a solution together with an illustrative example, (2) the formal de�nition of
the required model elements, and�if appropriate� (3) its usage in generation and simulation
to propose how the newly introduced capabilities are employed in the generation or simulation
process.

46

4.3. Concepts and Models for Testing Self-Adaptive Systems

provideWaypoint();

waitForBatteryLoading();
assertTrue(batteryFull());

setup(); waitForDrone();
assertTrue(tookPhotos());tearDown();

A B
E

C

D

2
V

W

X

Y

Z

1 1 1

1

1

1

1

1

1

1

Figure 4.3.: Petri net for the drone example. Circles are places whereas rectangular boxes are
transitions. Both are connected by arcs. Dots represent tokens. Tokens are dis-
tributed in places, and each possible distribution constitutes a marking, which is a
distributed state. Transitions consume tokens from incoming arcs and produce tokens
along outgoing arcs. By executing a transition, the code that labels it is executed.

Solution Concept and Example

Petri nets come with a concise graphic notation. Figure 4.3 depicts an example net, which
describes the basic behavior of the introduced drone application. Informally, there are three
di�erent types of syntactic elements:

• Circles represent places: These elements allow for storing one or multiple tokens (rep-
resented by black dots). Each place is labeled with a letter A . . . E for later reference.
Furthermore, a place may be labeled with a capacity that denotes the maximal number of
tokens that are allowed to be stored in the place (only done for place E).

• Rectangular boxes represent transitions: Each transition is labeled by a letter V . . . Z.
Interactions are expressed by labeling the boxes with interface calls. Such operations are
denoted�in this example�in a C-like fashion (i.e., operation names are followed by a
number of arguments in brackets).

• Arrows represent arcs: Each of them either connects a place with a transition or vice
versa, but never two elements of the same type. An arc can have a weight property; in the
presented net the weight value of all arcs is 1.

Storing tokens in di�erent places at the same time enables for modeling parallel processes
with Petri nets. A state is represented by a marking, which relates each place with a number of
tokens. More formally, a multiset can be used that is constituted by elements denoting tokens by
the name of the marked place. For instance, {E,E,D} denotes that place E contains 2 tokens
and D contains 1 token while all other places are empty. The multiset can also be written in
a shorter format: {E,E,D} = 2E + D. A Petri net can have an initial marking, which in this
example is {A} = 1A = A.
Each transition has an input set, which consists of all places connected by an incoming arc to

the respective transition. In the same way, the output set of a transition consists of all places
connected by outgoing arcs. For reaching the next state, tokens from the input set are consumed
as the weights of the incoming arcs prescribe, and new tokens are produced in the output set as
the outgoing arcs' weights prescribe.
The Petri net's behavior is illustrated in Figure 4.4: The depicted graph represents the reach-

ability tree of the given Petri net. In this tree, each node is a marking and children are reachable

47

4. Model-driven SAS Testing

1A 1B 1C+1E 1D+1E 1B+1E

1E

1C+2E 1D+2E 1B+2E 2E

setup(); provideWaypoint();

waitForDrone();
assertTrue(tookPhotos());

tearDown();

provideWaypoint();

waitForBatteryLoading();
assertTrue(batteryFull());

tearDown();

waitForDrone();
assertTrue(tookPhotos());

waitForBatteryLoading();
assertTrue(batteryFull());

1E

tearDown();

Figure 4.4.: Petri net reachability graph. Starting from an initial marking, which is written
as multi-set {A} = 1A, the set up transition is activated. From marking 1B, two
di�erent states can be reached. Each step incorporates the execution of the respective
transition's labeled code.

markings from their respective parent. Arcs connecting parents with child nodes can be associ-
ated with transitions and, respectively, with operation labels. Due to the capacity limit of place
E, the size of the reachability graph is very restricted. The tree can be constructed by searching
the Petri net's state space from its initial marking, which is the root of the tree.
Execution starts with the initial marking. First, transition V is executed and the setup()

procedure is called to initialize the drone. Second, in transition W, a waypoint is entered
(provideWaypoint()), which has to be visited. Third, the drone starts to �y, and the model
execution is paused by calling waitForDrone() in transition X so that the model state is
synchronized with the physical SASuT. When the procedure terminates, it must be tested
whether the observation data has actually been collected. For this purpose, the assertion
assertTrue(tookPhotos()) is evaluated. Fourthly, in the transition Y , the procedure waitFor
BatteryLoading() synchronizes the model execution again with a battery signal. The result
of the loading process is subsequently veri�ed by another assertion via the boolean function
batteryFull(). Finally, a state is reached, from which the process can be restarted. Before
each new assignment of a waypoint, the execution can be terminated by calling tearDown()

from transition Z. Also, the net terminates if place E is marked by two tokens; this situation
constitutes exactly after two iterations.
As illustrated in above example, Petri nets describe discrete behavior in a very concise manner.

The exact syntax and semantics are de�ned in following.

De�nition 4.1 (Finite Capacity Labeled Petri Net): Formally, a Finite Capacity Labeled
Petri Net is a tuple (P, T, F,A, L,C,W,m0) with the following components:

• A �nite set of places P and a �nite set of transitions T with P ∩ T = ∅,

• a �ow relation F ⊆ (P × T) ∪ (T × P),

• and �nite set of action names A,

• a mapping L : T → A ∪ {ε} where ε is an empty action,

• a capacity function C : P → N,

• a weight relation W : F → N,

• and an initial marking m0 : P → N0.

In general, each marking m is a function P → N and can be expressed as a multi-set For
the purpose of describing the execution semantics, we de�ne the input set of a transition t as

48

4.3. Concepts and Models for Testing Self-Adaptive Systems

reflects
assumptions
on

Black Box
SASuT

In
te

rfa
ce

Test CasesGenerator searches
reachability graph

Executor performs
test actions

Simulator performs
test actions

State

State

of runtime
instance of

of runtime
instance of

reflects
assumptions
on

Figure 4.5.: Usage of the Petri net in simulation and test-case generation. A generator compo-
nent searches the model and produces test-cases, which can later be executed against
the black-box interface. In contrary, a simulator may directly interpret the net and
perform actions of a single trajectory against the interface. The test-case executor,
as well as the simulator, maintain a state that re�ects the assumptions on the SASuT
at run-time.

•t = {x|(x, y) ∈ F} and its output set t• = {y|(x, y) ∈ F}. A transition t ∈ T is called active in
a certain marking m if it holds the following conditions:

∀pin ∈ •t : 0 ≤ m(pin)−W (pin, t) (activation)
∀pout ∈ t• : m′(pout) = m(pin)−W (pout, t) +W (t, pout) (computing)
∀p ∈ P : m′(p) ≤ C(p) (capacity satisfaction)

Hereby, the marking m′ is one of the subsequent states of m. The execution of a transition t
from one to another marking can be written as m →t m′. A marking, for which no transition
holds all three conditions, is called terminal. In the given example (cf. Figure 4.4), the reachable,
terminal markings are 2E and 1E. All paths through the reachability graph from the net's initial
marking m0 to a terminal marking represent possible behavioral trajectories. Considering the la-
bels of the transitions along one of these trajectories sequentially results in a test-case. Therefore,
the algorithmic solution to the problem of producing test-cases from Petri nets is a depth-�rst
search through its state space.

�

Usage in Test Generation and Simulation

The presented Petri net model provides a completely formalized view on a black-box system's be-
havior. Based on its precise semantics, we can execute it automatically. As Figure 4.5 illustrates,
the net can be employed for both test case generation and simulation in the loop.
In the tradition of MBT, a test modeler could automatically generate test-cases from the

model. Hence, a Generator must be able to read the model's syntax and interpret its semantics
accordingly. As a result, the reachability graph is generated, and the complete set of its paths
(or, alternatively, a coverage-controlled subset) are saved as test-cases. Each test-case can be

49

4. Model-driven SAS Testing

executed by a further component, the Executor (i.e., a test runner). This component manages
the state of the currently executed test-case and runs the test actions (i.e., the transitions' labels)
against the actual system's interface. The state represents an assumption or expectation about
the real system. Output values and verdicts, which occur during test execution, are stored in
test reports.
Alternatively, the model may be executed directly so that the labels of its transition labels are

immediately interpreted as interface operations against the black-box' interface. In this process,
an interpreter plays the role of a Simulator. If a transition is executed, the simulator has to wait
for the execution of the interpreted action. If the action succeeds (i.e., in terms of the verdict
PASS), the simulation is continued; otherwise, it is canceled. Again, output values can be stored
within a report. As in test-case execution, the simulation manages a state, which represents the
execution of the model (i.e., its marking) and, at the same time, represents an assumption on
the SUT's inner state.
Conceptually, both generation and simulation come with equal veri�cation power in this basic

setup�both approach will �nd the same set of failures. However, test-case generation may be
better suited in regression testing while simulation can be leveraged for interaction and more
exploratory testing because a tester may take control over the trajectory through the Petri net's
reachability tree at run-time.
In summary, Petri nets with labels and capacity-limited places can be employed to test any

black-box system with relatively low e�ort. However, testing an SAS only within a single en-
vironment scenario under �xed conditions is insu�cient. Instead, it is more bene�cial to cover
several contextual con�gurations and let the SASuT run against them. Appropriate means for
tackling this issue are discussed in the next section.

4.3.4. Context Variation

Context variation addresses the requirements of providing su�cient expressiveness for en-
forcing and generating context.

Correctly functioning in di�erent contexts is the most crucial requirement for SAS and au-
tonomous applications. To delegate more tasks to autonomic systems, software engineers must
assure the systems' quality in a large variety of situations that previously only humans could
manage. Hereby, a context characterizes the situation of the system�most signi�cantly its
place, surrounding objects, and interacting persons [Dey01]. For instance, robots�including
drones�and their software have to be made robust against all likely in�uences of their working
environment. To su�ciently test an SAS, scenarios of these in�uences have to be varied and the
system's reaction veri�ed.
In case of the introduced application example, relevant in�uences are, for instance, weather

conditions. From a technical perspective, such conditions are observed via sensors, which deliver
streams of parameter values (e.g., temperature, humidity, brightness). The large combinatorial
space of the di�erent parameter value ranges is typically managed by employing classi�cation
and boundary analysis. Consequently, test data only covers an adequate set of combinations of
representatives from each numeric range.
Besides numeric parameters, there are structural properties, such as the existence of di�erent

physical obstacles or the layout of a spatial environment, for which a set of representative sce-
narios have to be de�ned as well. Both numeric and structural properties have in common that a
high number of combinations have to be examined. Due to the high number of variation points,
the generative production of such combinatorial variants from models is desirable.
For representing contexts by models, a variety of approaches exist [SLP04]. These approaches

can be classi�ed as key-value models [SAW94], markup scheme models [WAP], graphical mo-
dels [HIR03], object-oriented models [SBG99], logic-based models [McC93], and ontology-based

50

4.3. Concepts and Models for Testing Self-Adaptive Systems

models [ÖA97]. All these representation forms are di�erent in their level of expressiveness and,
thus, the formalisms vary in the way how they support modelers to concretely analyze and design
contextual concepts. In sense of SPLE (cf. Section 2.3.1), those model types belong to solution
space. An additional variability model would allow for abstracting, which is always desirable in
testing to classify situations to be tested by fewer representatives. Consequently, in this thesis,
the modeling of context is built on concepts that stem from variability management.
In the body of knowledge of variability modeling, tree-based representations are most widely

adopted. They are intuitively understood by engineers and also combine well with classi�cation
trees in testing [OMSM09]. For instance, a feature tree describes how a set of symbolic features
can be combined to a valid con�guration. In this way, the number of con�gurations can be
restricted to a reasonable subset. Using certain variability mechanisms (e.g., feature-oriented
programming [TKB+14]), abstract features from the problem space are mapped to the solution
space so that feature selection decisions e�ect the con�guration of the actual system. Another
advantage is that trees are much easier to handle than con�guration scripts. Due to these
bene�cial features, variability modeling for SAS testing shall rely on feature trees in this thesis.

Solution Concept and Example

Whereas features only represent binary (yes or no) decisions, contextual information may involve
properties with numeric or otherwise multi-value domains. For the example application, several
contextual parameters�especially weather parameters�a�ect the test outcome. Figure 4.6 de-
picts parameters, a feature tree (cf. Section 2.3.1), and classi�cation trees for each numeric value
domain. For instance, the parameter illumnination can be set to values of domain ILLUM,
which permits percentual values 0 . . . 100. The classi�cation tree of this domain distinguishes
two equivalence classes ILLUM_L (low illumination) and ILLUM_H (high illumination). Both classes
provide non-intersecting value ranges and are associated with several representatives that should
be tested.
The feature tree represents con�guration options of the spatial test scenario. The �gure shows

a 4× 4 grid, where the southern lines are optional, and each line can host a prede�ned obstacle,
which is optional as well.
Test con�gurations are derived by combining variants of all parametric contextual properties

and variants of the given feature tree. A valid context con�guration involves selected values for
illumination (in percent, %), wind (in Beaufort, B), and rainfall (in millimeters per minute,
mm/min) plus a feature con�guration, which is valid against the constraints that the feature tree
prescribes. Exact syntax and semantics of this contextual model are introduced in the following.

De�nition 4.2 (Context Variability Model): Feature models have been formalized in dif-
ferent representation formats [Bat05][CK05], each designed with appropriate properties for a
certain use case. In the following, the format of Mennicke et al. is employed and, partially,
simpli�ed [MLSW14].
As brie�y introduced, variants de�ne both properties in form of numeric parameter assignments

to values from a given domain plus a feature con�guration. Thus, the formal de�nition of the
model and its con�gurations has to consider those two ingredients as well. We de�ne a context
variability model as

CVM = (F, P, V,≺,�,M,Φ)

consisting of the following components:

• A �nite set of features F , properties P , value sets V ,

• a decomposition relation ≺⊆ F × F with ∀(fi, fj), (fk, fl) ∈≺: fj = fl ⇒ fi = fk (there is
only one parent per feature),

• a function � : P → V mapping properties to value sets,

51

4. Model-driven SAS Testing

?

?

?

Context

Line_1

Line_2

Line_3

Line_4

Obstacle L1

Obstacle L2

Obstacle L3

Obstacle L4

@rainfall:RAIN

@wind:FORCE

@illumination:ILLUM

Parameteters in problem space

Equivalence classes as types and representatives (discrete integer domains)

Concrete configuration in solution space

ILLUM:[0..100] % FORCE:[0..12] B RAIN:[0..20] mm/min

ILLUM_L:[0..30]
0, 15, 30

ILLUM_H:[31..100]
31, 60, 100

FORCE_L:[0..3]
0, 3

FORCE_M:[4..5]
4, 5

FORCE_H:[6..12]
6, 8, 12

RAIN_0:[0]
0

RAIN_X:[1..20]
1, 10, 20

Abstract variability in problem space

Figure 4.6.: Context variability model. The left side depicts a set of properties for weather con-
ditions and a feature model for terrain layout. Feature and property values can be
mapped to concrete mock-up or actually arranged context conditions in the real en-
vironment illustrated on the right. The lower part shows how the property domains
are further distinguished in equivalence classes with representatives to be combined
in a concrete test-case.

• a mandatory subset of features M ∈ F ,

• and a set of propositional formulas Φ over facts (atomic propositions) being features f ∈ F
or assignments (p = v) with p ∈ P and v ∈ �(p).

The context variability model's semantics can be de�ned by mapping these components to logic
propositions. For this purpose, we de�ne the model semantically as the set of propositional
formulas ΦT (CVM) with the same fact set as Φ and derived from the following rules:

• ∀(fi, fj) ∈≺: (fj ⇒ fi) ∈ ΦT (CVM),

• ∀fm ∈M : ∀(fi, fm) ∈≺: (fi ⇒ fm) ∈ ΦT (CVM), and

• ∀p ∈ P :
∨

vi∈�(p)(p = vi) ∈ ΦT (CVM).

The set of valid context variants is de�ned as:

C(CVM) = CCVM = {ci|ci |= Φ ∪ ΦT (CVM)}
�

The test process can make use of such a context variability model by automatically or manually
deriving a valid con�guration at test setup (e.g., during the execution of the setup() procedure).
For instance, the following set represents a basic valid variant:

52

4.3. Concepts and Models for Testing Self-Adaptive Systems

Example:

{(illumination = 15) ∧ (wind = 3) ∧ (rainfall = 0)

∧ Context ∧ Line_1 ∧ Line_2 ∧ObstacleL1}

The derivation process may additionally be restricted, e.g., to constrain coverage, by de�ning
further propositional formulas. For instance, the proposition

Example:
(rainfall = 0)→ ¬(Line_3 ∨ Line_4)

would only allow for deriving variants where spatial con�gurations with one of the two southern
grid lines are tested with a non-zero value for the rain property.
Test cases, which have been produced from the previously de�ned Petri net, could be executed

under each of the derived variability con�gurations. However, in this way, we only verify whether
the SAS is robust enough to handle di�erent environment situations. Besides this insight, the test
engineer cannot examine whether the behavior of the system adapts as expected. Hence, he could
produce di�erent behavioral models, one for each con�guration. However, such an approach is
quite expensive regarding design e�ort. Alternatively, in the next section, an appropriate Petri
net extension is proposed, which allows for modeling behavioral adaption more e�ciently.

4.3.5. Modeling Adaptive Behavior

In this section, adaptive Petri nets are introduced, which address the requirement of express-
ing behavioral adaptation in test models.

When testing SAS in a black-box setting, structural and parametric adaptation cannot always
be observed. During the test process, the SUT's service interface is utilized, and the test driver
depends on the resulting data �ow to determine an operation's correctness. Already without
contextual adaption, a system's service can be stateful�hereby the veri�cation depends on the
operations that were performed in advance. With contextual adaptation, the veri�cation outcome
additionally depends on the contextual situation. Consequently, the number of variants of context
further multiplies the state space. To take this dependency into account, several extensions to
the previously introduced Petri net are required.

Solution Concept and Example

To avoid risky situations, physical SAS should adapt its behavior appropriately. For instance, in
case of the drone system, we expect it not to deploy or to immediately land, if potentially harmful
circumstances occur, such as inappropriate weather. This expected behavioral adaption must be
speci�ed within the test model. Figure 4.7 illustrates a solution to this problem. The presented
extension is based on Feature Petri Nets (FPN) by Mueschevici et al. [MCP10][MC11], who
introduced application conditions as an annotation to transitions. Application conditions de�ne
logic expressions over features and their evaluation result a�ects the set of activated transitions
as an addition to Petri net's operational semantics.
In the proposed model, we use a similar approach, where application conditions are logic

expressions with propositions, which are de�ned as externalized logic functions. Thus, FPNs

53

4. Model-driven SAS Testing

provideWaypoint();

waitForBatteryLoading();
assertTrue(batteryFull());

setup(); tearDown();

A B

E

C

2

assertTrue(onGround());
tearDown();

endangered()
assertTrue(onGround());

tearDown();

endangered()

waitForDrone();
assertTrue(tookPhotos());

not endangered()

waitForDrone();
assertTrue(tookPhotos());

not endangered()

DV

Y

Z

X

W

U

Figure 4.7.: Adaptive Petri net modeling adaptive behavior. Additional application conditions
limit the activation of transitions to situations where a certain logic function (here:
endangered()) evaluates to true. These functions depend on the currently selected
contextual variant. Arc weights are all set to one and, thus, omitted in the illustra-
tion.

become more �exible because designers are enabled to externalize parts of the de�nition from
the graphical notation. In Figure 4.7, both transitions U and X consume from place C and are
annotated with an application condition. The expression restricts the activation of a transition
to states (i.e, markings) where the logic function endangered() evaluates to true, respectively
to false. By de�ning this function as a proposition over contextual features, the control �ow can
be steered depending on the selected context variant. To perform such a selection and con�gure
the environment, we assume that the setup() procedure in transition V selects an initial variant.
During Petri net interpretation, the selected variant is taken as fact set for the evaluation of

application conditions. For instance, the logic function could be de�ned as follows:

Example:
endangered() 7→(wind = w), (rainfall = r) ∈ C(CVM)

∧ w 6∈ FORCE_L ∨ r ∈ RAIN_X

In other words, endangered() evaluates to true if there are assignments to the properties
rainfall and rain with values not in equivalence class Force_L, respectively values in class
RAIN_X. In this way, logic functions on the current context variant can be speci�ed and behavior
can be de�ned based on these functions. Depending on the test method, the evaluation of
application conditions may happen synchronous to the execution of the SASuT (i.e., during
simulation) or at a completely di�erent time (i.e., at generation time of test-cases).
In the given model, the adaption is static because it is performed during setup() before the

actual operation starts. The procedure expects one single valid environment situation to be
selected from the modeled variant space. An adaptation that is performed by the SASuT cannot
be directly investigated from outside the black-box. The test system observes its behavioral
e�ects and veri�es them by inspecting outputs of the service interface.
For FPNs, two alternative semantic formalizations are provided by Muschevici et al. [MCP10]

One is based on projecting the net on transitions that are still applicable after con�guring a

54

4.3. Concepts and Models for Testing Self-Adaptive Systems

certain variant. This solution can only be used if the con�guration is not considered to be
changed during the net's run-time. The second formalization is based on operational semantics,
which lets the syntactic structure of the net untouched but de�nes the execution of a transition
dependent on the evaluation of its application condition. Thus, also a dynamically altered
con�guration state can be considered. As recon�guration establishes the actual power of self-
adaptivity, the latter semantics variant is the only reasonable alternative for test-modeling SAS.
Based on the operational semantics, in the following, a formalization is given, which extends
FPN by additional functions over context variants. In this thesis, the resulting model shall be
named adaptive Petri net.

De�nition 4.3 (Adaptive Petri Net): As prerequisite, we de�ne the following components:

• A context variability model CVM = (F, P, V,≺,�,M,Φ),

• its variant space CCVM = {ci|ci |= Φ ∪ ΦT (CVM)},

• the set of all possible logic functions over variants Λ = CCVM → {>,⊥},

• a grammar for application conditions

g ::= f | λ | h | g and g | g or g | not g

h ::= a == va | a > va | a < va

where f ∈ F , λ ∈ Λ, a ∈ A, va ∈ �(a), and G is the set of all possible application
conditions,

• the Finite Capacity Labeled Petri Net PN = (P, T, F,A, L,C,W,m0),

• and, �nally, a relation between transitions and application conditions Σ ⊆ T ×G.

The resulting adaptive Petri Net is a tuple V PN = (PN,CVM,Σ). As for �nite capacity
labeled Petri nets, adaptive Petri nets also require a de�nition of semantics. Here again, we
need a prerequisite�the de�nition of the satisfaction of application conditions. We de�ne that a
variant ci ∈ CCVM satis�es an application condition g in the following cases (ci |= g):

ci |= f i� f ∈ ci
ci |= λ i� λ(ci) = >
ci |= g1 and g2 i� ci |= g1andci |= g2
ci |= g1 or g2 i� ci |= g1orci |= g2
ci |= not g i� ci 2 g
ci |= a == v i� a = v ∈ ci
ci |= a > v i� ∃v = b ∈ ci : b < a
ci |= a < v i� ∃v = b ∈ ci : b > a

Furthermore, to complete the de�nition of a adaptive Petri net's semantics, we add the fol-
lowing condition besides the already stated ones (activation, computing, capacity satisfaction; cf.,
De�nition 4.1):

Σ(t) |= ci (application condition satisfaction)
�

Based on the proposed model, testers can model an SASuT's expected behavior depending on a
contextual variant, which is established before testing. To leverage these capabilities to a point,
where dynamic adaptation is available to test modeling, the next step is to de�ne permitted
context changes to be tested.

55

4. Model-driven SAS Testing

In
te

rfa
ce

Test Cases
including variant

definition

Generator searches
reachability graph

Executor configures
SASuT and performs

test actions

Simulator
performs test

actions

Context Generator
produces variants

Active
variant

interprets net according to

interprets net
according to

V
NV1

Configurator selects
a variant and

configures SASuT

Black
Box

SASuT

Context
variability
model

Figure 4.8.: Usage of the variability model in simulation and test-case generation. From the vari-
ability model, several context variants are derived automatically or manually. At the
beginning, the con�gurator selects one of these variants. Subsequently, the adaptive
Petri net is executed according to the propositions of this active con�guration.

Usage in Test Generation and Simulation

The integration of the context variability model and the adaptive Petri net into the proposed
test infrastructure is depicted in Figure 4.8. An extra Context Generator produces variants
from the given context variability model. Alternatively, a test engineer may manually pre-de�ne
some variants, which can be validated against the variability model. In contrast, the automated
derivation requires the mapping of the variability model to propositional logic statements or
constraints, which are input to a satis�ability (SAT) or constraint solver. Each found solution
is a variant V1 . . . VN, which consists of features and value assignments.
Another component is the Configurator, which selects one of the produced variants so that

the Generator, or, respectively, the Simulator can interpret the adaptive Petri net according
to this con�guration. This process can be performed multiple times to generate or simulate new
scenarios. For each variant, a new simulation may be initialized, or a new test-suite with di�erent
context-dependent test-cases is generated.
However, it is not su�cient to just set the context state for model execution. The selected

variant must also be con�gured in the physical test bed. Either respective mock-ups must be
employed to virtually simulate another situation, or the environment is manually or, if possible,
automatically adapted for the selected variant. In such a case, an interpretation of the variant
(i.e., a mapping to solution space) must be performed by using test-automation. For our example,
we assume that a technical component exists, which can translate the variant propositions to
respective set-up operations on the test bed.
The point in time, when the context variant is con�gured, di�ers in test-case generation and

simulation. Whereas in the latter case the selected variant can directly be deployed�hence, we
use the setup() procedure�in generated test-cases it has to be performed just before executing
a test-suite. In consequence, the variant that was input to the generator has to be persisted with
the associated test-cases. Before starting test-case execution, the Executor deploys this formally
associated variant. For both simulation and generation, the test report should be contextualized

56

4.3. Concepts and Models for Testing Self-Adaptive Systems

with the active variant as well; otherwise, important information for the later evaluation is lost.
In summary, variability management for a tested context space can be integrated with the

behavioral de�nition by extending the Petri net's formalism. But still, only those SAS can
be exhaustively tested, which solely adapt at deployment-time. To overcome this hurdle, the
following sections present concepts for controlled manipulation and veri�cation of adaptation at
run-time.

4.3.6. Dynamic Context Change

Modeling dynamic context change addresses the requirement of expressing the stateful
change of context.

SAS outperform traditional systems because they continue working properly even when environ-
ment conditions fundamentally change. Of course, this claim has to be veri�ed by testing the
SAS under forcefully changed contexts. In the sense of the concepts provided in the previous
chapters, this can be reached by altering the variant derived from the context variability model.
The basic principle is to derive a set of variants and change between them during the Petri net's
execution time.
This task requires for additional expressiveness within the employed context model. The tester

must be equipped with concepts to de�ne when and how a context variant is switched to another.
Di�erent scenarios are possible how to specify this dynamic change: lists of variants, recon�gu-
ration rules, or even full-�edged operational logic. Depending on the concrete appearance of the
tested system, one solution might be more e�cient than another. Consequently, the following
proposal shall not introduce a concrete model but concepts and an interface, which concrete
models of contextual change can adhere to.

Solution Concept and Example

The decision, which variant follows another in testing, could be random, heuristic, or statistic
as done in DiVA [MBS10]. However, whereas such discriminators are indeed capable of creating
a reasonable coverage on traditional systems' test models, they are not su�cient for exhaustive
testing of SAS because they miss some adaptation-speci�c requirements, which were discussed
brie�y. Firstly, the adaptations of the system can be stateful, i.e., one adaptation mode depends
on the previous ones. For instance, the drone system may observe weather values over a longer
timespan and may be designed to adapt when a value's (e.g., an increasing rainfall) tendency
aims at a critical value. To test this scenario, the selected context variants should be enforced
in the correct order. Another example is a hysteresis, such as a built-in control loop of electrical
systems. Furthermore, there may also exist software or other technical systems that maintain
an inner state, which cannot be reset each time of recon�guration.
Secondly, testers may want to con�gure more representative than untypical scenarios in testing,

as the likelihood of being confronted with latter ones is lower and, thus, not that signi�cant for
the user' acceptance. For instance, the drone system is exhaustively tested at daylight, but only
a minor set of test-cases will be produced for night conditions to verify that the drone denies
�ying without su�cient light conditions.
Especially for contexts with a large state space, a more e�ective mechanism for controlling

context change is needed. To create meaningful change scenarios through the variety of context
states, in this thesis, the usage of di�erent domain-speci�c models is proposed. Figure 4.9
illustrates this concept. Based on the context variability model, the considered con�guration
space is de�ned (upper part). Sub-trees of the feature model in combination with representatives
of property's value classes can specify variability in certain distinguishable domains. For the
drone scenario, these may be landscape properties, weather conditions, and any urgency level.

57

4. Model-driven SAS Testing

Domain CDomain BDomain A

Va
ria

bi
lit

y
de

fin
iti

on
C

ha
ng

e
de

fin
iti

on

Context Variability Space

Data series
Sequences of
predefined variants Graph logic

Numeric equivalence classes
or parts of feature trees or
both combined

Representation forms that define the
order of switched variants

Figure 4.9.: Di�erent types of change models.. Dynamic contexts can be represented in di�er-
ent forms. Parts of the variability space may be covered by data series, others the
prede�ned sequences, or graph logic.

Each of these domain-speci�c con�guration properties changes di�erently. So, for instance,
weather values change continuously, whereas the change in technical systems is triggered by
events.
A variety of representation forms for such change de�nitions exist. For interactive systems,

which the SAS communicates with, and which contribute to its context, a �nite state machine
may be the model of choice. For physical and numeric properties, data graphs that represent data
series or a numeric function are useful. Others could rely on a �xed set of prede�ned scenarios.
For spatial dynamic variability, a movement pro�le could be provided.
In consequence of this heterogeneity, it is di�cult to provide test modelers a �x and generic

toolset for de�ning representations for their speci�c domain, which work with our previously
provided concepts. To overcome this problem, in the following, only prescriptions on the interface
of such models are given. This interface shall allow for specifying which inputs and outputs a
model must be able to consume or produce without limiting its exact appearance. The uni�ed
usage of such models requires the following premises concerning their interface.

Context Variant Manipulation Actions The adaptive context model has to be capable of
changing the active context variant to another. Hence, its semantics must be formalized as
manipulations on the context variant within the given variant space. There are several options
how to achieve that. Firstly, the model could switch between a pre-computed set of variants.
Because the set only contains validated variants, this approach is safe because no invalid variants
can be reached. Secondly, special actions could be employed, which change the active variant to
reach another. Here, the problem constitutes that modelers are enabled to manipulate a variant
and reach an invalid one. This inconsistency can be handled by either checking the test model
for all reachable variants and notify the engineer if he made such a mistake, or, alternatively,
the interpreter semantics can be de�ned in a way so that the execution is canceled as soon an
invalid variant is reached. The latter method is questionable as it requires either the complete
pre-computation of all valid variants (potentially extremely ine�cient) or checking the validity
of each reached variant at execution time (which potentially lowers the simulation performance).
However, in this thesis, we make use of the concept of change actions because they provide

maximal �exibility for describing recon�guration. As the context variability model provides only
two fundamental concepts�features and property value assignments�only change actions for

58

4.3. Concepts and Models for Testing Self-Adaptive Systems

provideWaypoint();

waitForBatteryLoading();
assertTrue(batteryFull());

tearDown();

B

E

C

2

assertTrue(onGround());

endangered()

assertTrue(onGround());

endangered()

waitForDrone();
assertTrue(tookPhotos());

not endangered()

waitForDrone();
assertTrue(tookPhotos());

not endangered()

D
F 5

Z

W

X

U

Y

A

B

/@wind := 0

/@wind := 3

C

D

/@wind := 12

/@wind := 0

/@wind := 5
/@wind := 0

Figure 4.10.: Variant manipulation and its e�ect on the de�nition of expected behavior. The
model on the upper left manipulates the wind property value which in�uences the
evaluation result of endangered(). In this way, the adaptive Petri net's behavior
is a�ected. A produced test-case is a sequence of di�erent interleavings of context
manipulations and Petri net traces.

those two have to be de�ned. In case of features, actions must be provided, which add or remove
them from a variant; for properties, a reassignment action is required. For instance, in the
drone case, obstacles may be added or removed during test execution or the brightness value
may be reassigned. Based on these three actions types, the change of the active variant and the
expectations to the SASuT can be speci�ed completely.
Figure 4.10 shows an example. The Petri net has slightly changed so that the transition for U is

connected to place C in both directions. Because there is a new place F with a maximal capacity
of 5, no more than �ve such checks will be performed during the complete execution. To change
the outcome of the functions' evaluation, a �nite state machine is introduced, which performs
reassignments when its transitions are executed. The initial variant has a wind property value
of 0 and is eventually set to 3 at a later point in time. In the latter situation, endangered() will
evaluate to false, which changes the execution of the adaptive Petri net.
The approach allows for changing the variant in parallel (i.e., interleaved) to the actual be-

havioral test model and in�uences the latter one's execution. In this way, the tester can model
dynamic contextual change and its expected e�ects on an SASuT's behavior. Due to the inter-
leavings, the state space grows combinatorially if no further restrictions are applied. Despite this
growth, the model limits the variant space, because not every representative of the prede�ned
equivalence classes may be reached. For instance, in the given wind-related state machine, the
value 4 (of equivalence class FORCE_M , cf. Figure 4.6) is never assigned.
For the representation of the dynamic change of wind measures, a state machine is used in

the given example. Potentially it could switch and produce test data in�nitely many times.
Another important characteristic is that it must be initialized by setting the modeled initial
state A. In this way, also all other dynamic context models could contribute to an initial context
variant. Potentially, their order of activation could play a role if we allow for manipulating them
intersecting portions of the variability space. Another option would be to de�ne a static, initial
variant, which is considered before any activation of any dynamic context variant.

59

4. Model-driven SAS Testing

(a) A circular mapping of vir-
tual time to values of the il-
lumination value space.

(b) This model represents how to set the
wind value based on virtual time con-
trol within a state machine.

Figure 4.11.: Virtually timed change models.

Budgets of Virtual Time as Control Mechanism The introduced modeling concept for de�ning
context dynamics are open to be used with di�erent representation forms, such as data series,
state machines, and movement pro�les. The heterogeneity resulting from this �exibility raises
the question of how a test modeler should control the interleaving, order, and timing of context
changes with each other and with steps stemming from a contextualized adaptive Petri net. For
this purpose, we introduce a uniform model control by discrete budgets of virtual time. The
source of control shall be a clock for now, which is external from the actual stimulus model.
For instance, two possible virtually-timed models are depicted in Figure 4.11. In Figure 4.11a,

a model for the illumination property is shown. It is a circular graph, which can produce
potentially in�nite-long scenarios. In consequence, after 24 time steps, a new day begins and each
day gives the same values. Alternatively, there could be a mechanism in the model's semantics,
which resets the time after each day or the property value remains complete untouched (i.e.,
constant) after one single day.
In Figure 4.11b, the previously introduced �nite state machine for wind is extended with

triggers of time budgets, whereas the initial setup is executed immediately. Thus, the initial
assignment is activated without waiting while all other transitions accept a speci�c amount of
virtual time. When the terminal state is reached, the property value of wind is not altered
anymore.
Whereas the circular model is completely deterministic, the given state machine is not. Hereby,

the non-determinism resulting from the usage of virtual timing exceeds those resulting from
transitions. Assuming state D is reached and an additional time budget of 4 is added, both
transitions from D become executable. Whereas the transition to the �nal state would completely
consume the provided budget, the transition the A would not. The latter behavior depends on
the precise semantics of the stimulus model, what is done with the remaining budget�it could
either be neglected or accumulate and added to the next incoming budget. Viewing stimulus
models as real-world representations of processes in the environment, the latter solution promises
more consistency. Thus, budgets are accumulated over time and each transition with a lower or
equal accepted time value than this accumulation can be activated. For models that consume
all budgets immediately (as the illumination model does), a reservoir of accumulated time has
to be maintained.
Furthermore, it may also be the case, that a time budget is produced, which exceeds multiple

executable transitions' budgets so that one of them has to be chosen. Even after the execution
of a transition, there may be enough remaining accumulated budget to execute a next one. For
instance, if we give 16 portions while being in state A, a whole round back to A is performed and
still 1 portion of time is left. Another e�ect is that due to the optional execution of a transition

60

4.3. Concepts and Models for Testing Self-Adaptive Systems

after its time budget is available, it also may never be executed. As this behavior produces a vast
expansion of the whole model's state space, the e�ect should be avoided by de�ning semantics in
which always the maximal budget-consuming transition is activated as soon as possible, which
we assume hereby.
Another considerable point is that time budgets of di�erent change models must be normed

against each other. If it can be assumed that the model for illumination takes hours as input,
this does not have to be valid for the wind model.
Based on virtual time, all domain-speci�c models can be controlled in a universal manner.

The de�nition of how virtual time progresses can be steered from a prede�ned clock, which is
started with the simulation process.

Re�ecting Changes of the Test Model by Respective Actions on Test Bed Synchronously
to variant recon�guration, the model has to de�ne test actions that update the SASuT's actual
context in parallel to the model state to enforce the respective situation. As the active variant
re�ects this context state, both must be changed in parallel. There are several options how to do
that. For instance, in dynamic delta modeling [Hel12b], each manipulation of a system (i.e., a
delta) is related to respective features. In this approach, the dynamic recon�guration is de�ned
by an automaton where states are variants and transitions carry guards (application conditions)
about features, as well as deltas on the real product. Hence, it is necessary to explicitly de�ne
variants and, thus, to pre-compute these. To avoid the e�ort of this computation, the proposed
model uses a certain set of interface actions that manipulate the context via a test driver.
Models complying to all of these three presumptions shall be called stimulus models because

they not only manipulate the variant considered by the model interpreter but also stimulate the
actual test environment to keep it synchronized with the interpreter's assumptions.

De�nition 4.4 (Stimulus Model Interface): In conclusion, there is a set of alternatives how
contextual change can be described. The requirements for these alternative models as de�ned above
can be formalized as a common interface. Hence, we de�ne a set of possible change operations
on the variant model. With CVM = (F,A, V,≺,�,M,Φ) being a feature model, the language
Σo consists of the following literals:

• Activation operations +f with f ∈ F ,

• deactivation operations −f with f ∈ F , and

• assignment operations ai := v with ai ∈ A and v ∈ v(ai).

Each context stimulus model over the variability model CVM has to de�ne a relation of the
following type:

λCVM ⊆ V× N× N× Σ∗o = {(Vs, tc, ta, wo)|Vs ∈ CCVM ∧ tc, ta ∈ N ∧ wo ∈ Σ∗o}

The tuple component Vs is an initial variant, tc is a budget to be consumed, ta the accumulated
budget after the operation and wo a word of change operations.

The introduced relation maps to actions instead of to resulting variants so that concurring,
interleaving changes from multiple stimulus models are avoided. The semantics of a change
operation is de�ned as follows:

vi
+f−−→ vj i� vj = vi ∪ {f} ∧ vi, vj ∈ CCVM

vi
−f−−→ vj i� vj = vi\{f} ∧ vi, vj ∈ CCVM

vi
a:=valj−−−−−→ vj i� vj = {a = valj} ∪ vi\{a = vali} ∧ vi, vj ∈ CCVM

�

61

4. Model-driven SAS Testing

In
te

rfa
ce

Test Cases
including variant

definition

Generator searches
reachability graph

Executor configures
SASuT and performs

test actions

Simulator
performs test

actions

interprets net according to

interprets net
according to

Black
Box

SASuT

Validator
validates against
variability models

Stimulator
selects ctx. variants,
reconfigures env.,
produces events

Active
variant

0

20

40

60

80

100
1

2
3

4

5

6

7

8

9

10

11
12

13
14

15

16

17

18

19

20

21

22

23
24

Stimulus
models

Cloc
k

Figure 4.12.: Integration of stimulus models in simulation and generation. Instead of just per-
forming a con�guration at a single point in time, the stimulator interprets the given
stimulus models, controlled by an external clock, and, thus, changes the active vari-
ant. In this process, also operations at the test bed's interface are performed to
manipulate the actual test environment.

Usage in Test Generation and Simulation

Stimulus models can be integrated into the simulation, respectively generation, infrastructure by
leveraging the con�guration component to a run-time Stimulator as presented in Figure 4.12.
The stimulator manages and controls the active variant based on the operations that the stimulus
models de�ne. To trigger such a contextual recon�guration, an external clock has to employed
for producing virtual time, which is consumed by the stimulus models. As each triggered recon-
�guration potentially maps to a manipulation action on the context management interface, these
actions have to be propagated at run-time as well. When using recon�guration actions to reach
a new variant, we replace the context generator component by the Validator, which checks the
reached variant at run-time. If the validation fails, the models are incorrect, and the relevant
path will be discarded in generation or, respectively, the simulation stops.

4.3.7. Interfacing Context from Behavioral Representation

Interfacing and synchronizing stimulus models and adaptive Petri nets tackles the require-
ment of expressing stateful change of context with a special focus on state space lim-
itation.

In its current form, the generation and simulation infrastructure maintains two partially inde-
pendent control �ows. Firstly, the adaptive Petri net is searched for paths, which depends on the
selected context variant. Secondly, context change works on its own, only driven by an external
clock. This setup results in an in�nite number of possible interleavings between context changes
and Petri-net-controlled, behavioral steps because each behavioral state would potentially be
tested in any reachable context variant.

62

4.3. Concepts and Models for Testing Self-Adaptive Systems

provideWaypoint();

waitForBatteryLoading();
assertTrue(batteryFull());

tearDown();

A

E

C

2

assertTrue(onGround());

endangered()

assertTrue(onGround());

endangered()

waitForDrone();
assertTrue(tookPhotos());

not endangered()

D

F 5

+20
*

+20
*

B W

X

U
Z

Y

+5
wind

+5
wind

Timer transition

T1

T2

Figure 4.13.: Adaptive Petri net with timer transitions. Each timer transition comes with a
de�nition of the time budget to be produced plus a list of stimulus models (or a
wildcard targeting all models) to be triggered.

In contrast, testing aims at reducing state space and only verify correctness in risky situations
because in most systems no complete coverage is possible. Hence, in this section, new elements
are introduced, which enable the test modeler to backward-synchronize adaptive behavior with
context change. Such synchronization operates against the actual direction of the control loop,
outgoing from an adaptive Petri net as the behavioral description to context dynamics. The core
bene�t of this approach is that it allows the test designer for de�ning in which behavioral states
new contexts should be tested. Thus, the number of possible interleavings can be drastically
reduced to a manageable amount.

Solution Concept and Example

For backward-synchronizing adaptive Petri nets with stimulus models, we construct a new type
of transition� a so-called timer transitions�, which can deal as a model-inherent clock without
actually changing the adaptive Petri net's operational semantics. To take control outgoing from
the Petri net, those timer transitions produce amounts of virtual time in the moment of their
execution. The production has to be atomic so that no ambiguous interference with the execution
of another transition constitutes.
The principle of how timer transitions behave is illustrated in Figure 4.13. Between place

A and B, the new timer transition (denoted by an hourglass) T1 adds 20 units of time to be
consumed by stimulus models. Besides the numeric de�nition of time budgets, each transition of
this type points to one or multiple stimulus models, which are fed from this point of operation.
Whereas transition T1, which is marked with a wildcard (*), triggers all de�ned stimulus models,
transition T2 only triggers the stimulus model for the wind variable. If multiple stimulus models
should be triggered, we assume that they change the contextual state in order of their de�nition,
which avoids non-determinism. In an adaptive Petri net that incorporates timer transitions,
context change actions and context recon�gurations are aligned with the Petri net's control �ow.

63

4. Model-driven SAS Testing

De�nition 4.5 (Timer Transition): Additional to De�nition 4.3 of adaptive Petri nets, we
de�ne timer transitions syntactically by altering the the label mapping L to

LT ime : T 7→ A ∪ {ε} ∪ (N× SM∗)

where SM = {λCVM
i |i ∈ N} is the set of known stimulus models (represented as their transition

relations under the feature model CVM) and SM∗ words (i.e., lists) of stimulus models, which
determines the order of their execution. Besides actions and empty labels, now pairs of time
budgets and subsets of known stimulus models are permitted. Only, transitions that are labeled
with such a pair are classi�ed as timer transitions. Consequently, a �nite capacity labeled Petri
net with timer transitions has the format

PNT ime = (P, T, F,A, LT ime, C,W,m0)

and, respectively, an adaptive Petri with timer transitions has the format

V PNT ime = (PNT ime, CVM,Σ)

.
When a timer transition is activated, the stimulus models are operated in the order of their

de�nition and according to the semantics of de�nition 4.4. Whereas labels that only contain
operations on the test system are uncritical for the semantics of the Petri net, a timer transition
alters the contextual state and, thus, in�uences the further execution.

�

Usage in Test Generation and Simulation

In the last version of test infrastructure, an external clock was necessary to operate stimulus in
parallel to adaptive Petri nets. This clock is now replaced by the mechanism that timer transitions
provide. Figure 4.14 depicts the changed control �ow. During the execution of the behavioral
model by the generator or simulation engine, time budgets are delegated to the context simulator,
which then alters the context respective to the relevant stimulus models. After a recon�guration
has been performed, the next execution step of the execution of the adaptive Petri net potentially
operates in a new context so that a causal loop is established. Within this loop, the Petri net's
representation is the central point of control and its included timer transitions align its progress
with the contextual simulation.
With the given infrastructure, concepts, and models up to this section, all points in the declared

SAS state space can be tested. However, still, there is no explicit means for adaptation modes.
Instead, as Figure 4.14 illustrates, an adaptation mode is an implicit state during interpretation,
whereas the relation between context and adaptive behavior is direct. To gain a better separation
between the state of context and the state of adaptation, in the next section, an extra variant
space is introduced.

4.3.8. Adaptation Mode Variation

The in the following elaborated approach to explicitly vary adaptation modes addresses the
requirement of parametric adaptation.

Making not only the context variant but also the adaptation mode explicit creates additional
reuse. In the previous chapters, we assumed that only the context's state is modeled explicitly
within stimulus models, but not which system variant that is selected during the resulting re-
con�guration. In stimulus models, actions are used to enforce that a certain state is reached
and to verify that the SASuT behaves correctly. However, it is not completely appropriate that

64

4.3. Concepts and Models for Testing Self-Adaptive Systems

In
te

rfa
ce

Test Cases
including variant

definition

Generator searches
reachability graph

interprets net according to

interprets net
according to

Black
Box

SASuT

Validator
validates against
variability models

Stimulator
selects ctx. variants,
reconfigures env.,
produces events

Active
variant

Simulator
performs test

actions

Executor configures
SASuT and performs

test actions

timing

timing

Figure 4.14.: Generation and simulation infrastructure with timer-transition-based synchroniza-
tion. Instead of using an external clock, the time budgets are now generated from
the adaptive Petri net models. Thus, the contextual change can be controlled from
the central Petri net speci�cation.

system behavior is de�ned directly dependent on context situations. With a closer look at the
concept of SAS adaptation loops, the causal chain between context analysis and adaption can be
separated in di�erent model artifacts. In this manner, we model context and its e�ects on the
SAS's adaptation mode, on which the tested behavior depends. Thus, a separate consideration
of context and the resulting SAS adaptation mode is bene�cial to decouple both better and to
de�ne their causal connection explicitly.
Basically, both context variant and adaptation mode re�ect variability in two di�erent dimen-

sions of the SASuT. In SPL design, it has been discovered that it can be bene�cial to model
certain dimensions of variability in isolation. In [LK10], Lee and Kang distinguish three such
dimensions: (1) variability of usage context (UC) de�ning contextual settings in which a product
is deployed or used, (2) variability of quality attributes (QA), which a product must satisfy, and
(3) variability among product features (PF) describing a set of capabilities that can be provided
by the product. These dimensions are independent but can be mapped to each other for all
three combinations (UC-QA, UC-PF, QA-PF). An UC-QA mapping relates feature sets of the
UC domain to the QA domain. Subsequently, weighed mappings (from ++ to −−) between
QA features and product features can be established depending on how much e�ect a quality
attribute has on the adequacy of a product feature. Direct mappings form UC to PF state which
product features are required or excluded in relation to a UC feature.
A more comprehensive model is proposed by Rosenmüller et al. in [RSTS11]. Their Velvet

system supports language concepts for the de�nition of multiple independent variability models,
which can be composed by inheritance, superimposition, and aggregation. Inheritance allows the
extension of one variant by another with additional features and constraints. With superimposi-
tion, separate dimensions of one concept can be integrated and, �nally, aggregation can be used
to combine multiple instances of a variability model (i.e., concrete con�gurations).
However, with some abstraction, all composition mechanisms for feature models are based on

65

4. Model-driven SAS Testing

Cautious Unbound
Cautious Emergency
Unbound Emergency

ShortExposure LongExposure

Line_1

Line_2

Line_3

Line_4

Obstacle L1

Obstacle L2

Obstacle L3

Obstacle L4

@rainfall
@wind
@illumination

Adaptation
Mode
Variability

Safety

CameraProfile

Cautious
Unbound

ShortExposure
LongExposure

4 < @wind < 8 and 20 < @rainfall < 60 ⇒ Cautious
8 ≤ @wind and 60 ≤ @rainfall ⇒ Emergency
@illumination < 60 ⇒ LongExposure

Context
Variability

Emergency

Figure 4.15.: Explicit representation of adaptation modes. For context and adaptation now sepa-
rate variability spaces are de�ned. The adaptation mode variability model describes
which adaptations may be con�gured depending on context situations. Mutual ex-
clusions are modeled as negated equivalences. Both trees are causally connected by
cross-tree constraints on the bottom.

propositional logic as features themselves are considered as symbols without inherent semantics.
In contrast to Rosenmüller et al.'s work, testing against interfaces does not require for com-
position semantics regarding object-orientation. Thus, for the hereby presented concept, it is
su�cient to de�ne the causal relation of both context variability and adaption mode variability
by propositional logic constraints.

Solution Concept and Example

Employing propositional logic constraints, as used for extending context variability models, is also
a reasonable approach for interconnecting context with adaptation modes. The major di�erence
is that now the variability space of the context is separated from a second adaptation-mode-
speci�c variability space. As Figure 4.15 shows, both spaces are again represented by feature
trees plus numeric contextual variables. In the newly de�ned feature tree for adaptation modes,
we distinguish between the variability dimension Safety, which either may be Emergency, Cau-
tious or Normal, and the CameraProfile, which either can be re�ned to ShortExposure or
LongExposure. For formal simplicity, we model mutual exclusions as negated equivalence con-
ditions.
In a next step, the forward directed causal connection from context variant to adaptation

mode can be denoted in the form of implication constraints (Figure 4.15, lower part). Those
constraints are based on the semantics we de�ned beforehand in the de�nition of context varia-
bility models (cf. Section 4.3.4). The �rst two constraints de�ne in which value ranges we expect
the drone two work in Cautious or Emergency modes, whereas the latter constraint de�nes
under which illumination condition the camera requires the LongExposure mode. Using such
constraints, the test modeler can restrict the variability space so that only variants are valid, in
which context state and adaptation mode are correctly combined.

De�nition 4.6 (Joint Context/Adaptation Variability Space): The major di�erence to
the previously introduced usage of variability de�nition is that now there may be multiple. To
connect both, it can be assumed that the feature spaces are con�gured together. In consequence,
a con�guration incorporates the selection of features from both spaces under the consideration of
all feature-model-speci�c constraints and all cross-tree constraints. Formally, this can be de�ned

66

4.3. Concepts and Models for Testing Self-Adaptive Systems

as follows:

• Given are a context variability model CVM ,

• an adaptation mode variability model AVM ,

• and a set of cross-tree formulas ΦCross over the feature sets of CVM and AVM .

• Valid con�gurations are C(CVM,AVM) = CCVM+AVM = {ci|ci |= ΦC∪ΦA∪ΦT (CVM)∪
ΦT (AVM) ∪ ΦCross}

In summary, all con�guration must be valid under all constraints of both trees and all addi-
tionally given, connecting conditions.

�

Usage in Test Generation and Simulation

Putting the composite variability space into action only requires to add the adaptation mode
model and cross-tree constraints and to consider all together during validation. For this purpose,
the Validator component now checks the composite variant of context and adaptation mode
as a whole. Hence, stimulus models are equipped for recon�guring the adaptation mode variant
synchronously to the context variant. Consequently, the Petri net's application conditions can
be de�ned over both variability spaces.

4.3.9. Context-Dependent Recon�guration

Context-dependent recon�guration addresses the requirement of expressing stateful
adaptation. With this concept, adaptation cannot only be modeled as direct e�ect of
context situations but also dependent on previous adaptations.

In the previous section, we discussed how context can be mapped to adaptation mode variants of
a separate variability space. With stimulus models, contextual change can be de�ned stateful�a
context switch depends on the previous situation. Similarly, adaptation may appear stateful if
the determined adaptation mode not only depends on the context variant but the previous mode
as well. For instance, if the system speci�cation prescribes that a drone never directly switches
from emergency mode to normal mode but instead �rst goes for a time in cautious mode, there
must be a de�nition of this inter-mode dependency. Another example is if the drone is expected
to ignore squall (sharp increases in wind speed) for a while, instead of immediately adapting to
it. Similarly, an adaption to decreasing speeds could also be suspended until a speci�c level of
certainty is reached. For this purpose, a history of past wind measurements has to maintained
and the resulting function forms a hysteresis. Thus, a mere mapping from context to adaptation
mode variant is not su�cient.

Solution Concept and Example

State machines are not only appropriate to express the complex logic of several context dynamics
but also for modes of adaptation. Because switching between modes is triggered by contextual
change, the description of the change between has to be causally coupled to stimulus models.
State machines can communicate by events that are consumed during the execution of a tran-
sition (acceptor automaton) or produced (transducer). As the causal connection for adaptation
appears unidirectional from context to adaptation mode, events that should be produced have
to be de�ned within stimulus models and be accepted by automata that de�ne the dynamics
of adaptation modes. In consequence, the designer of a stimulus model is expected to provide
events carrying information on the executed change.

67

4. Model-driven SAS Testing

Due to the heterogeneity of stimulus models, the mechanism of event production would be
heterogeneous as well. Examples are depicted in Figure 4.16. For instance, the previously used
circular graphs could be split in value ranges where each entry in a range produces a speci�c event,
which is illustrated in both Figure 4.16a and 4.16b. Each range is annotated by an event to be
produced (indicated by an exclamation mark). In Figure 4.16c, the wind-related state machine
is extended with events at each transition. When the context changes, not only the context
is altered, but an event is produced as well. Similarly, for movement pro�les, in Figure 4.16d,
event production can be implemented with spatial zones that throw events when entered. In the
illustration, the area layout is separated in a northern and southern zone, whereas, according to
variably de�nition (cf. Figure 4.6), the latter could contain obstacles, which should be reacted to
during a drone �ight. All those model types are event sources, but implement this feature with
di�erent approaches.
Another requirement to cope with appears when the production of certain events depends on

multiple contextual aspects. For this purpose, the usage of event processors, which aggregate
events and produce derived ones, is required. However, instead of providing a bandwidth of
multiple concepts, hereby a single generic one based on a transducer automaton is proposed.
The mechanism is presented in Figure 4.17a. The automaton accepts for each transition di�erent
events (indicated by a question mark) and produces one (again indicated by an exclamation
mark). Only one of the de�ned input events must occur to trigger the transition. The automaton
translates between events and introduces another layer of the state space.
The acceptor automata in Figure 4.17b describe how an SASuT is expected to recon�gure

depending on those translated events. Each state represents a certain variant of the adaptation
mode variability model. In the following, an automaton with adaptation modes as states is called
recon�guration automaton. There are multiple possibilities how con�guration can be speci�ed
within such automata. Firstly, a single universal automaton could be de�ned which manages a
global adaptation mode. In this case, each state has to relate to a variant which is valid against
the adaptation mode variability model. Secondly, single aspects of the adaptation mode may
be de�ned within separate automata. This mechanism follows the same principle as stimulus
models, which each is de�ned for an individual context variability dimension. Hereby, again,
transitions may be annotated with recon�guration actions so that states only implicitly refer to
variants, whose validity may be checked at run-time. To recon�gure to valid variants, each feature
activation must be processed with the deactivation of potentially mutually excluded features.
Thus, the semantics of the entry operations within the automata is that the validity of the reached
variant cannot be checked before all actions are completely executed. In consequence, these
action sequences must be considered as atomic operations. This method gives the modeler more
�exibility while, at the same time, additional non-determinism due to potentially concurrently
accepted events constitutes. However, for the hereby presented concept, the latter method is
proposed to be used because it already has been employed for stimulus models.
Recon�guration automata are based on communicating transducers. Hereby, it is bene�cial to

let designers sometimes mix-up recon�guration automata with stimulus models. Applications of
this concept become relevant when the production of events partly depends on external in�uence,
which would be controlled by timing, and other parts by internal events of the constructed model
stack. For instance, the emergency mode of the drone may be triggered by context, whereas an
internal condition of its logic could cause it �ying home without respecting the inappropriate
weather conditions.

De�nition 4.7 (Recon�guration Automaton): Formally, a recon�guration automaton can
be expressed as a seven-tuple (Q,Σ,Γ, q0, δ, ω, λ). Assuming that Σ0 is the set of possible variant
manipulations (cf. De�nition 4.4), an the components of this structure are the following:

• A �nite, non-empty set of symbolic states Q,

• the �nite, non-empty input alphabet Σ,

68

4.3. Concepts and Models for Testing Self-Adaptive Systems

(a) Circular graphs are annotated with value
range, whose entry triggers an event for il-
lumination.

(b) Circular graphs are annotated with value
range, whose entry triggers an event for
rainfall.

(c) In state machines, event can be appended
to the de�nition of a transition's logic.

(d) In a spatial layout, spatial zones may be
labeled withe events to be produced

Figure 4.16.: Stimulus models with event production.

(a) Transducer automation translating from a set of input
events to other events.

(b) Recon�guration automate control the
variant of adaptation mode depending
on incoming events.

Figure 4.17.: Causal chain of stimulus and recon�guration.

69

4. Model-driven SAS Testing

In
te

rfa
ce

Test Cases
including variant

definition

Generator searches
reachability graph

interprets net
according to

interprets net
according to

Black
Box

SASuT

Validator
validates against
variability models

Stimulator
selects ctx. variants,
reconfigures env.,
produces events

Active
variant

Simulator
performs test

actions

Executor configures
SASuT and performs

test actions

timing

timing

Reconfigurator
accepts events

and selects
adaptation mode

Active
adaptation

mode

Reconfiguration automata

Figure 4.18.: Generation and simulation infrastructure including recon�guration and explicit
adaptation modes. A separate adaptation mode is maintained and altered by events
that �ow from context simulation to the Reconfigurator. The latter takes recon-
�guration automata as input.

• the �nite, non-empty output alphabet Γ,

• an initial state q0 ∈ Q,

• a transition function δ : Q× (Σ ∪ N)→ 2Q,

• an output function ω : Q× Σ×Q 7→ Γ∗,

• and a state labeling function λ : Q × Σ∗0, which maps each state to a word of the action
operation alphabet Σ∗0.

For the semantics, we assume that all instances of recon�guration automata are initially in
their initial state. With e0 ∈ Σ being the �rst input event in queue (i.e., we assume a �rst-in-
�rst-out semantic), qi the current state, and cAi the current adaptation mode variant, the set of
reachable adaptation modes CAj are all cAj ∈ CAj with cAi →a0 · · · →an cAj and λ(sj) = a0 . . . an
and sj ∈ δ(si, e1). The transition algorithm is processed for all inputs in queue as long as events
are available.

�

Usage in Test Generation and Simulation

The decoupling of the variability spaces is visualized in Figure 4.18. Additionally, to the Stim-

ulator, a Reconfigurator is introduced, which maintains the adaptation mode and its change
based on the recon�guration automata. Both components communicate by an event queue. The
variant for context and adaptation mode can be validated separately by the Validator and the
interpretation of the adaptive Petri net is executed according to the con�gured adaptation mode
variant.

70

4.4. Adequacy Criteria for SAS Test Models

4.4. Adequacy Criteria for SAS Test Models

Although the presented formalization shows that the introduced model types integrate well,
�nding an adequacy criterion that spans the complete stack is di�cult. Using heterogeneous
models also leads to using di�erent means for formalizing a criterion that determines when an
interpreter, respectively search algorithm, is expected to terminate test-case generation. This
challenge especially holds for stimulus models because the introduced interfaces do not �x as-
sumptions on the inner structure of the concrete model type so that de�ning general criteria is
not possible. However, for every single type of model, which was used in this chapter, adequacy
was approached in literature:

• Petri nets: The single conceptional elements of a Petri net can be used to de�ne adequacy
criteria. For instance, in [ZH00], Zhu et al. propose de�nitions for transition and state
coverage, combinations of them, and others based on traces through the reachability graph.

• Feature models: Because feature models stem from the body of knowledge of software
product lines, relevant criteria should also be adopted from this area. Features are decision
points of which elements should be incorporated in a concrete software variant. Conse-
quently, combinatorics of the feature space must be considered by adequacy criteria. For
instance, Johansen et al. discuss in [JHF11], how to apply combinatorial testing in the
form of a feature-pair-wise criterion. They also discuss that a good design of the feature
models is important for later test selection.

• Finite state machines: State machines are the most widely-used operational model for test
generation. The most common are state, transition, and branch coverage.

All those criteria can be used in combination by de�ning one for each component of the test
model. In case of the �nite-capacity labeled Petri net, the restriction of each place element to
a maximum number of tokens allows further precise control on the generation. Additionally,
de�ning an overall k-boundedness criterion can limit the Petri net execution to a manageable
size of state space.
Furthermore, adequacy criteria interact with the conceptional complexity reduction, which is

inherent to presented approach. In the beginning of Section 4.3, we discussed the process of
iteratively expanding variability to examine further the SASuT's reacting to context variation.
The decision when to terminate this iterative process depends on the remaining state space,
which is reachable under the given adequacy criterion. This interaction should consequently be
considered when advancing towards more detailed context and adaption mode variability models.

4.5. Discussion on the Viability of the Employed Models

The above-introduced formalisms constitute a model ensemble that has certain qualities, func-
tions, and a purpose. Model theory discusses these and other aspects of models with the goal to
evaluate their viability and to compare with alternative approaches for the problems, which had
to be solved when designing the models. In [Tha13], Thalheim summarizes the concerns that
can be investigated for models in general. For this consideration, a de�nition of the notion of a
model is necessary, of which many exist. However, the most recited one has been proposed by
Stachowiak in [Sta73], who lists three important ingredients of models:

1. Mapping property: A model is based on the mapping to a certain origin, which may be a
real or virtual object that is represented.

2. Truncation property: The model abstracts from its origin by leaving out details, which are
not considered as relevant for the purpose of the model.

71

4. Model-driven SAS Testing

Mapping origin Truncations

Context VM Contextual situations of the SASuT and
their measurable attributes

Only relevant attributes, structural fea-
tures, classes of values and representa-
tives

Stimulus Model Behavior of the context and operational
logic of environment change

Scenarios are de�ned without the ne-
cessity to describe complete behavioral
logic of the context

Adaptation
VM

Classes of adaptation (modes) Classes that symbolize complex adapta-
tion modes

Recon�guration
automata

Operational logic of adaptation modes
in consequence of context change

Represent only behavior that is relevant
for de�ned context scenarios

Adaptive Petri
nets

Business logic of the SASuT Considers context change only at certain
states (cf. timer transitions), only test-
relevant behavior is modeled

Table 4.1.: Model types and their qualities according to the de�nition of the notions of models
by Stachowiak [Sta73].

3. Pragmatic property: Models are not exclusively associated with their origins. Each model
has a certain substitution function for users, tools, or a phase of time.

Pragmatism for the introduced model ensemble as a whole is given by the task of creating a
test and simulation model for generating adequate test-cases or running discrete ITL simulations.
For both the mapping and truncation property, Table 4.1 depicts the respective o�erings of the
single model types. Each type has a certain origin reaching from contextual situations, their
behavior, adaptation modes including operations in the business logic, which is represented by
adaptive Petri nets. In all representations, some features of the tested black-box are subject
to truncation. For instance, the contextual behavior may only be described in a scenario-like
fashion without the necessity to re-create the complete situational state space of reality.
Another considerable aspect that Thalheim emphasizes is the model's purpose. To match

criteria of purpose, the impact of the overall test model is its goal to de�ne the relevant behavioral
space of an SASuT. To reach this goal, structural and behavioral concerns of the SAS are modeled
so that automated composition, search, and generation can be performed based on the given
semantics. Simulation and generation are the speci�c function of the model that is novel in its
appearance as a combination of known models and principles from existing research. A crucial
restriction is that the proposed model is not adequate for tests, where real-time is a major issue.
Furthermore, according to Thalheim, a model cannot exist without a general model frame.

One pillar of that frame is the founding concepts of the model, including the body of knowledge
in SAS engineering, model-based testing, and dynamic variability management (cf. Chapter 2).
A second pillar is structural and behavioral character of the model, which is, in case of the
introduced model ensemble, based on graphs (�nite state machines, Petri nets) and decision
trees (feature models). Pillar three encompasses the application domain, which is the general
case of testing an SAS that runs a control loop for monitoring, analyzing, planning and execution.
Finally, a fourth pillar is the model's purpose to deal as a metamodel for the creation of test
model instances.
Finally, Thalheim refers to the notion of the �tness of a model, which was originally introduced

in [Hal07] by Halloun. The test model for SAS can be said to be �t if it is (a) useful, which we
have support for as it allows for generation of test-cases and ITL simulation, (b) has potential
to ful�l its purpose (models are executable and precise enough for the description of discretly-
timed test-cases), (c) if the model is e�cient (there are no extra parts, which de�ne more than
necessary for generation and simulation), and, �nally, (d) if it does not lack generality, which
is the case because a test model of the proposed appearance can be employed for SAS without
being restricted to a certain architectural singularity from real-world implementations.

72

4.6. Comparison to Related Work

1. Context 2. Adaptation

SimuContext
MUSIC

SimSOTA

DiVA

+
+

+
-

-
+

- - -

+ + ?

-
+

-
?

-
?

+ + +

+ - -

-
-

-

+

Fulfilled
Fulfilled w. restrictions

Not mentioned

+
?
-

This thesis + + + + + + +

Requirements of SAS testing

Figure 4.19.: Comparison of the proposed approach to related work.

In summary, the investigation of the discussed model properties shows that the artifacts that
are targeted to be used for test modeling SAS are indeed viable for their purpose. However,
another question is how they relate to existing work, which is the subject of the next section.

4.6. Comparison to Related Work

The concepts proposed in this thesis have been designed to provide a full-�edged and integrated
solution for model-based testing of SAS. Thus, all requirements, which were explored in the
previous part are covered as Figure 4.19 suggests.

In comparison to the test approaches in the domain of context-aware computing, the concepts
that are proposed in this thesis allow for enforcing pre-designed contexts in a stateful manner.
For this purpose, we use context variability models, from which context-dependent test-cases are
generated, which is the central capability that is required to cope with the potentially enormous
number of relevant states to be covered. Also, in contrast to DiVA, the stateful generation can
be controlled by the use of stimulus models.

On the adaption side, the proposed concepts' bandwidth is comparable with SimSOTA and,
thus, outperforms the remaining ones. Parametric adaptation, which is expected under a certain
context situation, can be de�ned in the adaptation mode variability models, adaptive behavior
in adaptive Petri nets and recon�guration automata allow for a describing stateful adaptivity. A
further similarity to SimSOTA is the ability to compose certain aspects of adaptation. Whereas
SimSOTA tackles this challenge by hierarchy, stigmergy, and direct interaction of explicitly
modeled control loops, the proposal of this thesis is to wire di�erent recon�guration automata
by event �ow.

Finally, state space limitation is supported by the ability to de�ne variability constraints and
especially timer transitions in adaptive Petri nets as restriction of when context changes are
tested in relation to service behavior. Additionally, adaptive Petri nets provide boundedness
constraints as a useful control mechanism for state space exploration.

73

4. Model-driven SAS Testing

4.7. Summary and Discussion

In this chapter, an integrated modeling approach has been presented, which allows for specifying
test models for self-adaptive systems. Each type of model has a formalized syntax and semantics
so that their exact interaction can be understood. Also, the data �ow and processing in the case
of test-case generation or ITL simulation has been discussed step-wise with each newly introduced
concept. A tester can make use of these concepts up to the level, which is appropriate for his or
her required software quality and the maturity of the concrete SASuT.
Starting with a Petri-net-based representation, even a system with parallel processes can be

test-modeled. The global context, whose variability is represented as feature model, connects all
parts of a potentially distributed system, which also can be a restriction of the overall modeling
power in this approach. Context variation is modeled in stimulus models, which can be de�ned
freely as long as the concrete models adhere to the introduced stimulus model interface. By
using the concepts adopted from FPN, we de�ne behavioral adaption depending on the selected
context variant. Stimulus models manipulate this current variant and are operated from budgets
of virtual time, which is produced from an external clock or, in an advanced approach, from
timer transitions within Petri nets. Additionally, stimulus models can be equipped with more
powerful operation logic by wiring them via the exchange of events.
In summary, the presented concepts are designed to match the requirements, which were

introduced in the previous chapter and, thus, allow for investigating much deeper the correctness
of expectations to self-adaptive systems than the approaches presented in related work.

74

5. Model-based Adaptivity Test

Environment

This chapter is based on the following publications:

• Georg Püschel, Test Modeling of Dynamic Variable Systems Using Feature Petri Nets.
Technische Universität Dresden, Fakultät Informatik. ISSN 1430-211X, TUD-Fl13-01-
Sept. 2013. Technical Report, 2013.

• Georg Püschel, Christian Piechnick, Sebastian Götz, Christoph Seidl, Sebastian Richly,
Thomas Schlegel, Uwe Aÿmann, A Combined Simulation and Test Case Generation
Strategy for Self-Adaptive Systems. Journal On Advances in Software, 7(3&4), pp.
686-â��696, 2014.

• Georg Püschel, Christian Piechnick, Uwe Aÿmann, Generative und simulative Soft-
waretests für selbstadaptive, cyber-physikalische Systeme. In Proceedings of the Multi-
conference Software Engineering and Management 2015, Koellen-Verlag, 2015.

The applicability of the models and methods that were proposed in the previous chapters is
demonstrated in the following in the form a reference implementation named Model-Based Adap-
tivity Test Environment (MATE). MATE aims at making test engineers capable of performing
a complete dynamic test of self-adaptive systems, which incorporates test design, environment
setup, test execution, and reporting.
Convenient test environments support engineers with all these tasks by providing an appropri-

ate and homogeneous toolset. However, to implement the introduced SAS test concepts, MATE
focuses on creating and executing the respective test models. As discussed in Section 2.2, in
MBT, test models substitute manual test speci�cations. In consequence, the test design and
implementation process are of special importance within the MATE toolchain.
For executing the modeled actions within a given technological space, MATE also requires

components for creating test drivers. These components are called test-automation connectors
in MATE. The test environment provides a framework to create these connectors and supports
engineers with attaching MATE to an SUT.
In test-execution, we distinguish between running generated test-cases and interpreting the

test models directly within a simulation while communicating with a connected environment in
the loop. For both approaches, MATE is equipped with a model interpreter and algorithms for
searching the state space. Both test generation and simulation have to be able to make use of
the test-automation connectors. While execution, MATE is expected to record the results in an
appropriate report format, which contains information for re�ecting which expectations failed

75

5. Model-based Adaptivity Test Environment

under which conditions. Within such a report, incidents are reported as intended by the standard
test process.

This chapter contributes the following proposals coping with the SAS test challenges:

• A reference architecture for an integrated test environment (MATE) that realizes
the proposed models and allows for employing them along a standard dynamic test
process

• A tooling environment, which enables testers to perform all tasks of a standard process
of dynamic testing based on the introduced models and architecture

• Outgoing from the mathematical formalization in Chapter 4, a re-formalization as
object-oriented metamodels

• A �exible operator-based framework for extending the models or specifying new stim-
ulus models.

• A test-automation framework for SAS testing

• An interactive user interface for step-wise simulation of SAS

In the following, these contributions are presented in detail. In Section 5.1, the technological
foundation of MATE is discussed. In Section 5.2, the overall structure of the complete test
framework is outlined. Afterwards, Section 5.3 presents the implementation of the conceptional
model within MATE. The next Section 5.4 describes how a generator framework implements
the semantics of these models. Section 5.5 discusses the test-automation framework for building
technology adapters. Afterwards, in Section 5.6, the top layer consisting of user interface and
tooling is shown, which support users in complying with the standard process of testing.

5.1. Technological Foundation

This chapter shall de�ne a reference implementation and reference architecture of the presented
approach so that a concrete technological foundation had to be found. However, whereas the
details of the hereby described realization may be special to the chosen technology, in principle,
all given models can be translated to arbitrary object-oriented platforms as well as algorithms.
For the hereby introduced solution, we chose Java as representative of this category of possible
technology spaces. Also, editors and newly de�ned textual languages do not depend on a concrete
base technology but only on the availability of a parser framework.
All components of MATE are implemented based on the Eclipse Rich Client Platform1 (RCP).

RCP has been the basis for di�erent integrated development environments (IDEs) with a special
focus on Java. The components that are provided by Eclipse are called plug-ins and are deployed
as bundles on Equinox, an implementation of the Open Services Gateway Initiative (OSGI)
standard2. Equinox allows for dynamically loading bundles (i.e., at run-time and on demand)
and resolving dependencies. Graphical user interfaces are built based on the Standard Widget
Toolkit (SWT), which is an essential part of RCP instances.
Additionally, the Eclipse Modeling Framework (EMF) includes Ecore, an implementation of

OMG's Essential Meta Object Facility, a metamodel together with sophisticated tooling, which
includes textual editors and code generators. These features allow developers for creating their
domain-speci�c metamodels and generating Java code and editors from them. For MATE, this
capability is used for realizing its SAS test metamodel

1http://www.eclipse.org
2http://www.osgi.org

76

http://www.eclipse.org
http://www.osgi.org

5.2. MATE Base Components

Model Editors

Generation Framework Automation
Framework

Interactive Simulation Frontend

M
ak

es
us

e
of

EMF-based Metamodel

Executor
ValidatorValidator
Simulator

ReconfiguratorReconfigurator
GeneratorGenerator

Figure 5.1.: Layers and components of MATE. Based on EMF, the MATE metamodel implements
the introduced formalisms. The generator framework contains the metamodels' se-
mantics and a set of algorithms for exploring the models' state space. Consequently,
the generation component also incorporates all functionality of the context valida-
tor, recon�gurator, simulator, and generator, which were introduced in the previous
chapter. Furthermore, the test-automation framework allows for building technology
bridges, which map test actions to code. The resulting adapters are test executors,
which can be reused for the given technology space. Testers are equipped with an inter-
active simulation frontend to control and observe the simulation and test-automation
process step by step.

Graphical models are created in editors based on the Graphical Editing Framework (GEF), an-
other project of the Eclipse community. The framework contains an API and several abstractions
that help to map EMF models to graphical entities and vice versa.
Besides graphical representations, the introduced models incorporate several textual notations.

To parse these notations, the jparsec framework is used. jparsec3 is a parser combinator frame-
work and allows for building lexers and parsers directly from a Java-based con�guration even at
runtime.
Another technology that is used by MATE is Sat4J4, a Java reasoning framework. This

component is required to solve propositional logic and constraints within the introduced models.
Finally, MATE provides extension points, which can be �lled with scripts that are programmed

with the Scala5 language. Scala is an object-oriented, functional language, which directly com-
piles to Java bytecode and, thus, can be executed directly in a Java runtime environment. This
feature supports the test modeler with co-evolving test drivers with the model and introducing
more complex functions that are evaluated during simulation or test-case generation.
All these third-party technologies provide the lowest layer of MATE and are instrumented by it.

The next section outlines MATE's coarse-grained layers that realize the announced contributions.

5.2. MATE Base Components

MATE organizes its components in layers. This overall hierarchy is depicted in Figure 5.1. Black
boxes denote where the conceptional components from the previous chapter are realized. The
metamodel is the foundation of all other framework parts. Engineers design and edit instances
of the metamodel by the use of the graphical textual model editors and test-cases, which can be
generated with a generator framework.
The generation framework provides an implementation of the metamodel's semantics. Re-

spectively, it comprises components that perform the interpretation of the adaptive Petri net,

3https://github.com/jparsec/jparsec
4http://www.sat4j.org/
5https://www.scala-lang.org/

77

https://github.com/jparsec/jparsec
http://www.sat4j.org/
https://www.scala-lang.org/

5. Model-based Adaptivity Test Environment

the simulation of stimulus models, and the recon�guration driving by recon�guration automata.
Furthermore, the generator can reason about the current state and its validity to model-inherent
constraints. Thus, propositional logic, which is derived from feature trees, can be checked as well
as satis�ability problems from custom stimulus models if required.
The generation framework supports the production of test-cases using a traversal strategy,

which is speci�ed within the toolchain. These test-cases comprise executable sequences of actions,
which are stored as instances of another metamodel. To support SAS test-case execution, MATE
provides a test-automation framework, which consists of an API and templates. Both support
building test executors that adapt the model for certain technology spaces.
On top of MATE, a simulation frontend is introduced to execute test models in the loop.

Testers can directly interact with it so that they are able to intervene the models' interpretation
and steer test-automation step by step. Alternatively, the simulator can perform the execution
automatically (depending on whether test actions are completely automated) and visualize the
state of execution within the model editors. Both executed test-cases and simulation result in
test reports, which are also based on the metamodel.
The framework is designed to be extensible and reusable. This means that new metamodel

elements, including syntax and semantics as well as additional target systems, can be adopted
with low e�ort and all included elements are generic in the sense of the domain of the SASuT.
The single components of MATE are described in detail in the following sections.

5.3. Metamodel Implementation

MATE's foundation is a strictly formalized metamodel, which implements the introduced for-
malisms, including graphical and textual notations. Graphical representations are feature mo-
dels (cf. Section 4.3.4), adaptive Petri nets (cf. Sections 4.3.3, 4.3.5, and 4.3.7), stimulus mo-
dels (cf. Section 4.3.6), and recon�guration automata (cf. Section 4.3.9). Additionally, we dis-
tinguish four components for the textual representations:

• Variability constraints model application conditions for FPN transitions, which are logic
propositions on the selected variant.

• Functions extend variability constraints so that certain propositions can be externalized
from the graphical models.

• Terms are abstract syntax trees (ASTs) for representing expressions in form of C-like
function calls. These expressions are used as a �exible format for transition labels to be
interpreted by the test-automation connector.

• Test actions are commands, which are written on Petri net labels and are used for mo-
deling the change of environment conditions or con�gurations as well as veri�cations. In
contrast to term-based actions, they have special semantics, which is implemented in MATE
and not in the test-automation connector.

Furthermore, metamodels for test-suites and test reports are added. All these formalizations
are based on EMF/Ecore, which allows for homogeneously processing all artifacts.
Textual notations are reused in multiple representations so that several model dependencies

are established. These relations are illustrated in Figure 5.2. Each model part is implemented
in an EMF package, which is denoted in brackets in each of the elements. Adaptive Petri nets,
stimulus models, and recon�guration automata use textual constraints and functions to de�ne
conditions as well as actions and terms to enforce a certain state. All de�nitions of conditions
and variability mechanisms depend on the current feature-based variant. Furthermore, test-suites
consist of test-cases, which are sequences of steps. A step may incorporate a certain action. An

78

5.3. Metamodel Implementation

Stimulus and
Reconfiguration Automata

(reconfiguration)

Features-based
Variability Model

(features)

Adaptive
Petri Nets

(petri)

Variability
Constraints
(constraints)

Functions
(functions)

Test Actions
(actions)

Terms
(terms)

Test Suite
and Report

Model
(test)

Abstract Syntax

Graph-
based

Figure 5.2.: Packages of the MATE metamodel with dependencies. Variability and con�gurations
are de�ned within the feature-based variability model. For all textual notations (con-
straints, functions, terms, and actions), parsing relies on a metamodel of abstract
syntax, which depends on de�nitions of features and attributes. Petri nets, stimulus,
and recon�guration models incorporate elements, which make use of textual language
elements. The same holds for test-suites and reports, both containing test steps and,
respectively, actions.

action is modeled within a respective abstract syntax. In the same manner, reports contain
actions to document which failures have been observed after certain test steps.
Each part of the presented metamodel is directly related to the concepts and models presented

in the previous chapter. In the following, the models are leveraged to a concrete implementation
and discussed in detail.

5.3.1. Feature-based Variability Model

In the proposed test metamodel, abstract variability (i.e., context variability and adaptation
modes) is de�ned as feature tree. Figure 5.3 depicts the structure of this metamodel. A Feature

has a unique name and represents a general standalone variability abstraction, whereas the
metamodel also introduces TreeFeatures that is specializes to a tree-shaped structure. Within
a FeatureTree, instances of TreeFeature span a hierarchical structure, whereas a feature can
be mandatory or not and may have several child features. The FeatureTree deals as a top-level
entity to make the complete structure referable.
Usually, in testing, equivalence classes of input or output data are speci�ed. Each of those

classes may be associated with one or multiple representatives. Thus, testers avoid combining
all possible values of the relevant equivalence classes and minimize e�ort. To support the design
of such equivalence structures and representatives, the type DataClass is provided, which can
contain children that are instances of literal elements of type DataValue or NumergicDataEle-
ments. Both classes are specializations of DataElement, which implements the composite pat-
tern [GHJV94]. All elements of this type constitute a �nite value space. Classes for numeric
elements of super-type NumericDataElement span a similar composite structure, incorporating
the types NumericValue and a NumericRange. The latter saves speci�cation e�ort and is auto-
matically expanded at deployment time to single values.
A Configuration that builds up a concrete technical setup, context situation, or adaptation

mode is composed of features and DataBindings that assign DataElements to DataValues.

79

5. Model-based Adaptivity Test Environment

Figure 5.3.: Feature-based variability metamodel (package features). Features can be de�ned
standalone or in trees; properties are de�ned within �nite domains. Selections of
features and assignments of property values constitute con�gurations.

The feature-based variability model implements all concepts as proposed in Section 4.3.4 and
adds several convenience elements, such as data ranges. Based on this model, the test modeler
is enabled to specify the complete con�guration space as well as individual con�gurations of the
context situation and adaptation model variability.

5.3.2. Abstract and Concrete Syntax for Textual Notations

Graphical representations for the proposed metamodel can be supported by textual notations,
which require an abstract syntax. As brie�y introduced in Section 5.3, syntax shall be provided
for variability constraints, functions, terms, and test actions. In the following, the syntax of
these notations is introduced and elaborated by example.

Variability Constraints

A FeatureAtom evaluates to true if the referenced feature is selected by the current con�guration.
Similarly, DataAtom evaluates to true if the referenced DataLeaf is bound to the referenced
DataElement by a con�gured DataBinding. Both types of atoms su�ce to represent simple
application conditions. For instance, the following listing shows some valid expressions:

1 Obstacle_L1 and wind = 60

2 (Obstacle_L4 or Obstacle_L2) and not illumination = 0

3 [illumination > 0] or Obstacle_L3

Listing 5.1: Examples of application conditions.

80

5.3. Metamodel Implementation

Figure 5.4.: Classes and relations of the abstract syntax for variability constraints (package con-
straints). Di�erent predicates can be de�ned: atoms on data assignment and fea-
ture selection. Unary and binary operators enable to build complex logic expressions.
During interpretation, the state is stored in form of atoms specifying tokens, time,
events, instructions, and evaluation results of logic functions.

Whereas the �rst expression conjuncts a feature atom and a data atom, the second line illus-
trates the use of bracket expressions and logic negation. On the third line, the left operand is
an instance of logic function atom, which is written in square brackets.
Despite the constraint metamodel being an abstract syntax, it includes several additional atoms

for representing the state of interpretation. For these cases, no concrete syntax is needed because
the respective objects are not intended to be represented visually. For instance, the TokenAtom

represents the marking of a certain Petri net place with a given number of tokens. Furthermore,
the TimeAtom represents the amount of virtual time, which was produced by timer transitions,
and can be consumed by a speci�c stimulus model referred to by the consumer attribute. In the
same manner, the current event queue state is saved as EventQueueAtom. The next action to be
executed with a transition label is indicated by an instance of InstructionPointerAtom. Finally,
a LogicFunctionAtoms can contain a logic function (cf. next section) and stores whether the
function evaluated to true in the respective interpretation step. All these logic primitives permit
a uni�ed maintenance of state during generation or simulation and, thus, ease the extension of
the model for custom concepts.

Functions

During the generation of test-cases or simulation, the state of the interpreter represents knowl-
edge that can be used to check predicates or to produce test steps according to the current
state. Besides explicit information conveyed by instances of Atom, a deduction mechanism over
logic functions can be introduced to externalize knowledge from the graphic notations. This
mechanism makes knowledge available that is computed at run-time and, afterward, can also be
subject to constraint checking and control �ow determination.
Logical functions are speci�ed by instances of ILogicFunction as presented in Figure 5.5.

Several types of logic functions exist. The ArithmetricLogicBinaryFunction checks for equal-
ity (EqualFunction) or inequality (LargerThanFunction, LowerThanFunction) of two numeric
values. These values can be computed from instances of IArithmeticFunction, which are binary

81

5. Model-based Adaptivity Test Environment

Figure 5.5.: Abstract syntax of functions language (package functions). Logic functions evaluate
equality or inequality of numeric function results or literal data values. Both are
automatically transformed into each other.

82

5.3. Metamodel Implementation

(BinaryFunctions as division, minus, plus, and multiplication) ore primitive (i.e., non-ary) for
the de�nition of �oat, int, or long values. Furthermore, the type ArithmeticSubFunction for
the de�nition of bracket expressions exists.
A certain DataElement can be referenced by DataValueFunction and the assigned value of

an attribute is accessible by AttributeValueFunction. As data classes contain literal values
(DataValue), further functions for their comparison are introduced as sub-classes of DataVal-
ueFunction. For the purpose of equivalence class testing, a special class InClassFunction is
introduced. It evaluates to true if a literal or typed data element was de�ned in the sub-tree of
a given equivalence class (DataClass).
All di�erent types of functions inherit from the IFunction interface. Based on LogicConver-

sationFunction logic results from arithmetic evaluation (zero is mapped to false, all other to
true) and data values (by their name or numeric value) can be mapped to truth values. Similarly,
ArithmeticConversation speci�es a mapping to the numeric space. Non-successful mappings
lead to run-time errors, which the modeler must handle.
The following listing contains two valid de�nitions of standalone functions. The �rst is parsed

to a LargerThenFunction with operands of type AttributeValueFunction and PlusFunction.
The second line represents an example of the InClassFunction.

1 function foo = illumination > (60 + wind)

2 function bar = illumination in L

Listing 5.2: Examples of function to be used in MATE.

In MATE, functions are tools to compute logic propositions from information that is available
at run-time. They can be part of a constraint about a feature tree or may be used in application
conditions in adaptive Petri nets. For this purpose functions can be wrapped as a predicate (cf.
LogicFunctionAtom in Figure 5.4). Functions may not only occur in a single transition's ap-
plication condition but can also be reused among multiple transitions (c.f. Section 4.3.5). The
classes FunctionReference and StandaloneFunction implement this principle. The �rst refer-
ences the latter by its name. A standalone function is a container for an arbitrary function and
allows for externalization of its textual speci�cation. The following listing illustrates function
usage. Whereas the �rst line de�nes a function with parameters, in the second one makes use of
the same by calling it with respective arguments.

1 function foo(x) = illumination > x

2 function bar = &foo (60)

Listing 5.3: Examples of parameterized functions.

However, the functional language provided with the introduced abstract syntax is by far not
general purpose. Consequently, a Scala-based interfaced shall be provided to allow for de�ning
functions, which can be called from within a model instance. An example is the following Scala
listing:

1 def MATE_foo(ctx:MATEContext ,rs:ResourceSet ,x) =

ctx.getValue("illumination") > x;

Listing 5.4: Example of a Scala-based external function.

Each Scala-de�ned function must start with the MATE_ pre�x to be recognized. The code is
compiled to Java class �les and automatically recognized by the MATE tooling, which creates
respective model elements of type ExternalFunction. The MATEContext ctx, which is provided
as �rst the parameter, allows for accessing the current interpretation state, whereas the Re-

sourceSet rs allows for introspecting the EMF model structure. In this way, the Scala-based
evaluation provides great expressiveness in application conditions and feature constraints.

83

5. Model-based Adaptivity Test Environment

Figure 5.6.: The abstract syntax of the term language (package terms). Besides primitives like
strings, booleans, and numbers, complex terms like lists, and function calls with pa-
rameters can be expressed. Terms containing functions allow for de�ning templates,
which are evaluated at execution time.

Terms

The term sub-language allows for expressing C-like operation calls, which deal for a universal
notation to be interpreted during test-automation. Figure 5.6 depicts all classes that are neces-
sary to built such expressions. The most general class is Term, which generalizes primitive and
complex term types. Primitives are BoolTerm for boolean expressions (true, false), StringTerm
for strings, and NumberTerm for expressing �oat, integer, and long numeric values.
FunctorTerm allows for listing parameters and have a functor name so that a function or

procedure call is expressed. In this manner, tree-structures (i.e., composites) are established.
The following listing shows some valid term expressions:

1 true

2 42

3 "foo bar"

4 foo(bar ,42,"foobar")

5 bar(&foo)

Listing 5.5: Examples of di�erent types of terms to be used in MATE.

Lines 1 to 3 illustrate the use of primitive terms, whereas Line 4 illustrates to use of a composite
FunctorTerm. Finally, in Line 5, a FunctionTerm is wrapped by another functor term. The
concrete syntax needs to escape from the term language by the use of escape sign &.
Function terms are part of the introduced variability mechanisms that available in adaptive

Petri nets. In the next section, actions are introduced which encapsulate terms or manipulate
the selected variant.

Test Actions

Term-based actions are not the only type of command that can be executed by transitions and
other model elements. Especially in context stimulation models, attribute values and selected
features are altered, which is implemented in a single abstract metamodel, which is presented in
Figure 5.7.
The most general model element is Action. We distinguish between actions that the mod-

eler writes in the models and the generator or simulator interprets, and PostGenerationAc-

84

5.3. Metamodel Implementation

Figure 5.7.: The abstract syntax of the test action language (package actions). Pre-generation
actions are speci�ed within a textual notation and are translated to post-generation
actions, which involves recon�guration or template execution with terms. Depen-
dent actions are computed on the basis of sensed input values from the in-the-loop
interface.

tions, which are ready for test-automation. All instances, which do not implement the interface
PostGenerationAction, have to be transformed to the latter type before test-automation. Ac-
tionSequence and PostGenerationActionSequence built blocks of actions, which are executed
sequentially.
The reason for a transformation can be either the necessity to execute a certain variability

mechanism or to run a recon�guration. In this sense, the UnresolvedTermAction contains a Term
which may contain a function, whose evaluation result is embedded as a template expression.
The interpreter evaluates at run-time encapsulated term templates and creates a completely
resolved TermAction that can be applied against the SASuT.
ReconfigurationActions recon�gure the context or adaptation mode variant by activating

(ActivateFeatureAction) or deactivating (DeactivateFeatureAction) features, or by setting
data value assignments (SetDataAction). For recon�guration actions, no transformation targets
exist because they do not a�ect the real test object.
Furthermore, several instances of InTheLoopAction can be speci�ed. Both sub-classes GetAt-

tributeValueAction and GetFeatureStateAction enable the interpreter to change the simula-
tion state depending on the conditions sensed from physical conditions. This mechanism allows
for implementing model-in-the-loop testing.
An instance of FailAction enforces an abortion of the simulation with verdict FAIL, which a

tester might specify within a transition to denote a point in the model's state space that should
never be reached by the SASuT.
The following listing illustrates the concrete syntax of actions:

1 do(sth);

2 +Obstacle_L4;-Obstacle_L3;

3 wind := L;

4 &get illumination ;&get value wind;

5 &fail;

85

5. Model-based Adaptivity Test Environment

Figure 5.8.: Metamodel for adaptive Petri nets (package petri). Adaptive Petri nets comprise
arcs with weights and nodes of di�erent sub-types. The latter can be places or transi-
tions, whereas condition action transitions implement FPN semantics. Additionally,
timer transitions comprise a duration and a consumer to be steered from the gener-
ated time portions.

Listing 5.6: Code example for using di�erent types of test actions in MATE.

The parser creates a single ActionSequence from this code. In Line 1, a TermAction list
denoted. Lines 2 and 3 list recon�guration actions. Line 4 contains a GetFeatureStateAction

and a GetAttributeValueAction. Finally, in Line 5, the use of FailActions is shown.
Modelers can employ the action language in stimulus automata for manipulating the selected

variant or within Petri net labels. Th graphical representations of the test metamodel are de�ned
in the next sections.

5.3.3. Adaptive Petri Nets

The metamodel of adaptive Petri nets o�ers syntactical elements for implementing FPN semantics
and generating virtual time that further steers stimulus models. Figure 5.8 depicts all necessary
model elements. Instances of PetriNet aggregate Arcs and Nodes. Additionally, an invariant

of the type Predicate (from package constraints) can be de�ned, which allows for exactly
specifying the variability constraint that has to be adhered to at all times.
An arc has a source and a target. The types of both must be di�erent (i.e., either Transition

or Place), which is speci�ed by an additional constraint. The StandardArc has a weight for
specifying how many tokens are consumed or produced during the execution of a target transition
or, respectively, source transition.
A Place has an attribute to de�ne the number of initial tokens. Additionally, a value maxTo-

kens can be de�ned, which re�ects the boundedness constraint of a place. A transition generalizes
two di�erent classes. First, the ConditionActionTransition implements the FPN-speci�c ap-
plication condition as Predicate and the label as Action. Second, the class TimerTransition
introduces the syntax that is necessary for steering stimulus models from the adaptive Petri

86

5.4. Test Generation Framework

net. Hereby, a duration is speci�ed. At execution time, this duration is added to the values of
TimerAtoms (cf. Figure 5.4) and later consumed by the stimulus models. The latter are described
in the next section.

5.3.4. Stimulus and Recon�guration Automata

The structures and representations of potential stimulus models are manifold, as we only de�ned
an interface, which all of them have to adhere to, in Section 4.3.6. The restrictions of this
interface prescribe that stimulus models de�ne change controlled by portions of virtual time, use
recon�guration actions, and produce events to be consumed by recon�guration automata.
However, MATE provides a basic implementation of automaton-based stimulus. The only

di�erence of such a stimulus automaton to a recon�guration automaton is that the �rst one
produces events, whereas the second one consumes them. In consequence, it is e�cient to specify
their syntactical elements within common metamodel, which is presented in Figure 5.9.
A ReconfigurationAutomaton comprises several states and a start state to indicate the initial

condition. Furthermore, instances of type ReconfigurationArc relate always states. Arcs are
conditioned and can specify an action to be performed.
For stimulus models, TimedArcs are used; they de�ne a duration how much portions of time

are consumed. Otherwise, for recon�guration automata, the EventArc class enables to specify
an event name, which triggers the transition.

5.3.5. Test Suite and Report Model

In MBT, it is appropriate to store the result of test-case generation and test-case execution as
instances of a metamodel to foster a more convenient test-automation or, respectively, evaluation.
The structure of MATE's test metamodel is illustrated in Figure 5.10.
TestCases are a sequences of TestSteps and aggregated by a TestSuite. These three concepts

are generated from the given operational input models, including Petri nets, stimulus models,
recon�guration automata. A step contains an action of type PostGenerationAction. During
generation, all recon�guration actions and term templates have been resolved beforehand.
After test execution, for each TestSuite a TestReport is created, which contains TestRuns

relating each to one speci�c TestCase. Respectively, the result of executing a TestStep is a
TestStepRun. Each of the latter has a Verdict with a given name (e.g., PASS or FAIL) and,
optionally, a comment. Furthermore, a verdict stores the state after the step's execution in
form of an array of instances of Atom to allow for tracing failures more exactly.

5.4. Test Generation Framework

Whereas the metamodel implements the syntax of the formal concepts, the components of the
generator realize the semantics. An additional requirement is that engineers should be enabled to
build in semantics of custom stimulus. Based on the stimulus model interface (cf. Section 4.3.6),
the basic syntax can be extended by custom elements. In case of additional semantics, the
interpretation mechanism must be designed in a similar, �exible approach.
The proposed solution to this challenge is illustrated in Figure 5.11. The top-level type is

an instance of Interpretor, which is an iterator over InterpretorStates. The latter type
maintains a queue of instances of State. Queued states are those, which have already been
discovered and whose children have to be computed to further traverse the state space.
Each state knows its parent and assembles a set of Atoms (cf. Figure 5.4). In this way, each

detail of a state is de�ned completely in the form of simple propositions on feature activation,
value assignment, etc. Furthermore, a state can store an entryAction to indicate which com-
munication has taken place when it was reached.

87

5. Model-based Adaptivity Test Environment

Figure 5.9.: Common metamodel for automaton-based stimulus models recon�guration automata
(package reconfiguration). An automaton aggregates several states including a
start state. Arcs are constraint by conditions and perform actions. In stimulus
models, time-controlled arcs are used; in recon�guration models event-controlled ones.

Figure 5.10.: Metamodel for test-suites (package test). A test-suite is a set of test-cases, which
are sequences of test steps de�ning a certain action. The results of test execution
are test reports, which are sets of test runs, which are sequences of step runs. The
latter additional contains a verdict including the reached state after execution. Each
report element points to the executed test-suite element. All elements of test-suites
and reports inherit from the test executable class, which allows a uniform handling
in test replay.

88

5.4. Test Generation Framework

Figure 5.11.: Classes and relations of the generator framework (package generator). The se-
mantics of actions, Petri net transitions, and recon�guration automata are each
implemented in speci�c operators. Operators can be �exibly combined or ordered
by combinatorial and precedence operators. An operator generates child states from
a single parent state, whereas each state is composed of atoms and has an entry
action. The interpreter iterates over interpreter states. A traversal type de�nes the
exploration strategy through the state space.

89

5. Model-based Adaptivity Test Environment

States are reached from each other by letting operators change certain propositions. For this
purpose, di�erent semantics are implemented in speci�c operators, whereas each operator inherits
from class AbstractOperator. In the framework, operators for actions (ActionOperator), Petri
net transitions (TransitionOperator), recon�guration automata (ReconfigurationOperator)
are included. Having an abstract operator and multiple specializations that can be exchanged
spans a strategy pattern [GHJV94], which allows for �exible designing a custom generator for
newly introduced model parts.
The latter two operators' constructors accept arguments for setting speci�c parameters in their

semantics. For Petri nets, the modeler can set a k-boundedness constraint, which restricts the
state space. Furthermore, the constructor of ReconfigurationOperator accepts a parameter
that de�nes whether the stimulus model semantics or recon�guration semantics should be used.
CircularDataOperator provides a second stimulus operator example for interpreting the wind

and illumination model as introduced in Section 4.3.6. The designer of a custom stimulus model
is free to provide additional operator implementations.
During interpretation, several operators reason on the basis of atoms that comprise the current

state. For this purpose, operators can be built, which check satis�ability or constraint problems
from the treated model part, which are compiled together with the given atoms and handed to
Sat4J to be solved. For instance, TransitionOperator builds an SAT problem from adaptive
Petri net's application conditions as well as an SAT problem from the net's structure and To-

kenAtoms to derive which transitions can be executed next. Furthermore, in the same way, a
satis�ability problem is derived from the de�ned feature tree, which can be checked after each
operation step. Thus, the user of the generator can cut the execution sequence as soon as invalid
variants are reached.
Two methods are required in each operator implementation: (1) contributeToInitial-

State(...) gives a model-speci�c operator the chance to derive atoms for an initial state
from the given models. For instance, from Petri nets TokenAtoms and TimeAtoms are derived.
(2) operate(...) performs the actual transition from one state to a set of child states.
Besides model-speci�c operators, the framework user is additionally equipped with two opera-

tors that help to de�ne the interpretation work�ow. CombinatorialOperator composes multiple
operators so that they operate on the identical state and their results are aggregated. Based on
this procedure, for instance, several di�erent operators for stimulus models can be treated with
equal precedence. To de�ne a di�erent rule of precedence, the class PrecedenceOperator can
be used. Its semantics is as follows: First, the primary operator is executed. If it returns a
non-empty set of child states, the operation is done. Otherwise, the alternative operator is ex-
ecuted. The approach gives the possibility to chain operators. For instance, the framework user
can decide to consume all produced events before producing new ones so that stimulus models
are given a higher precedence. Basically, these two pseudo-operators structure a chain of respon-
sibility and can be created via a �uent interface by the methods AbstractOperator.or(...)

and AbstractOperator.else(...). The following listing shows an example con�guration (Java
code):

1 public AbstractOperator createOperatorChain (){

2 return new ActionOperator ().else(new ReconfigurationOperator(false))

3 .else(new ReconfiugrationOperator(true).or(new CircularDataOperator ()))

4 .else(new TransitionOperator ());

5 }

Listing 5.7: Using the �uent interface for chaining generator operators.

In this example, the con�guration prescribes that actions have to be treated before all other
syntactic elements. Next, recon�guration automata are executed with the goal to consume events
in the queue. Afterwards, both stimulus operators are combined. In this step, potentially new
events are generated. Finally, the interpreter shall execute Petri net transitions.

90

5.5. Test Automation Framework

For simulation and generation, the interpreter determines, which trajectories through the
operator-generated state space are relevant. In simulation, only one trajectory is considered
as the real system state is taken in the loop and its real state is re�ected. In generation,
di�erent coverage strategies may be implemented. Here, the heterogeneity of the employed
models makes it hard to de�ne a single appropriate strategy. Thus, the MATE framework avoids
to solve this question for arbitrary model types and only provides an interface and some default
implementations. For this purpose, the class AbstractTraversalType prescribes two crucial
operations. At initialization, there may be a set of feature con�gurations given, from which
one should be selected. This task solves determineInitialConfig(...). During state space
exploration, method determineNext(...) is in charge to select the next state to be further
expanded by the operator chain.
Potential traversal strategies that are speci�c to a concrete SASuT can be implemented based

on this interface. As a generic strategy, a FIFOTraveral type is built in, which selects states
always by their order in the interpretation queue. Alternatively, RandomTraversal selects a ran-
dom state to continue with from the already explored ones. When the Interpretor is initialized,
a user-selected traversal type has to be provided.

5.5. Test Automation Framework

MATE requires technology-speci�c connectors to adapt simulation and test-cases to a speci�c
SASuT. To foster the technological independence of the test environment, a connector framework
is provided that equips test engineers with hooks and interfaces for automating test execution.
The class diagram in Figure 5.12 depicts the automation framework's components. Technology-

speci�c implementations of AbstractionConnectorType are aggregated by the singleton class
ConnectionManager, which provides a method register(...) for adding new test-automation
connectors. Each type further aggregates a set of Connectors, each representing a connection to
an individual SASuT. The automation process can reset(...) or terminate(...) a connec-
tion. An action can be passed to the method automate(...), where the connector translates it to
technology-speci�c commands. Furthermore, an instance of Responder is required. For actions,
where the simulation state is manipulated depending on sensed information (i.e., in instances of
InTheLoopAction) this responder methods assign values to properties (method setData(...))
and to (de-)activate features (method setFeatureState(...)). Another option to retrieve in-
formation from the SASuT is the method event(...), which allows for inducing events from the
test-automation connector. These events can then be consumed by recon�guration automata.
The framework provides two generic implementations of automation connectors in package

automation.basic. Both are typed by the singleton class BasicConnectorType. The most
general implementation is ManualConnector. When connected, it performs all actions by show-
ing dialog windows where the tester con�rms TermActions or selects values for instances of
InTheLoopAction. In the case of GetAttributeValueAction, only values of the domain of the
attribute are accepted. For GetFeatureStateActions, the user is asked to determine whether
the respective feature is currently active or not. When connecting to a RandomAutomation,
value input is created by selecting a random value from the domain and feature state is de-
termined randomly, whereas all TermActions are con�rmed without interpreting them. Both
implementations allow for testing a model without connecting to a real SASuT but instead to an
automatically created mock. All connector implementations can inherit from ManualAutomation

so that actions that cannot be interpreted are delegated to a manual (i.e., human) interaction.
The illustration also shows an implementation of a connector for the drone system. An extra

ConnectorType implementation is introduced as well as a Connector, which adapts test actions
to the drone's remote service interface. Although the depicted classes are based on Java, MATE
enables testers to load connector implementations from Scala �les, which have several advantages.
Firstly, Scala has features of functional programming and is, thus, well-equipped for evaluating

91

5. Model-based Adaptivity Test Environment

Figure 5.12.: Metamodel for test-automation (package automation). A connection manager ag-
gregates technology-speci�c automation types, which further aggregate connectors for
types of SASuTs. The connector interprets actions and manipulates the simulation
state via a responder. Basic implementations for manual and random interaction
are built in. For the drone example, a new connector hooks into the framework.

92

5.6. MATE Tooling and the SAS Test Process

messages and trees of terms. Secondly, and even more important, it can be compiled when the
test model is loaded into the interpreter and, thus, also be changed with the test model. This
feature allows for co-evolving the test model and the test driver so that test-automation actions,
which the tester misses at the time of modeling, can be implemented on the �y without the need
for a new MATE plug-in.
The automation framework is, besides the generator, another component in the intermediate

layer of MATE. On this level, also the model editors are provided. All editors in MATE are
graphical or, in case of the variability model, tree-based. Together with the interactive simulator,
editors enable the test designer to run a systematic test process. This process and the utilization
of MATE within it are discussed in the next section.

5.6. MATE Tooling and the SAS Test Process

MATE provides tooling in a homogeneous technical space along the complete dynamic test
process. According to standard ISO/IEC/IEEE 29119, dynamic testing incorporates four crucial
sub-processes, which are requirements to the MATE toolchain:

Standard processes of dynamic testing according to ISO/IEC/IEEE 29119:

1. Test Design & Implementation Process: A test speci�cation is derived, which
contains test-cases and adequacy criteria. Test cases to be executed for a speci�c
objective are assembled to test procedures. Furthermore, test environment requirements
are de�ned.

2. Test Environment Set-up & Maintenance Process: The test environment (i.e.,
test bed) is established and later maintained, which results in a test environment readi-
ness report or, respectively, a test environment update.

3. Test Execution Process: The speci�ed test procedures are run in the established
environment. The actual results are recorded in this process and compared to the
expected ones. The outcome of this procedure is reported in form a test execution log.

4. Test Incident Reporting Process: After analyzing the test results for failures, an
incident report is generated as feedback to all responsible stakeholders.

Each component of MATE ful�lls a certain step within this standard process. Because MATE
performs MBT, step (1), test design, is leveraged to the modeling of context variability, stimulus,
behavior, and adaptation. Also, test-case generation can be understood as part of test design,
which is, however, automated at this point. To support step (2), test environment setup and
maintenance, MATE provides its automation framework. Step (3), test execution, means to run
tests and observe the outcome. Depending on the concrete scenario, in these tasks covered by
executing generated test-cases or interactive simulation. Finally, for step (4), MATE generates
reports that give an answer about the quantitative relation of passed or failed test and all recorded
information including traceability information.
From the modeler's perspective, MATE's overall work�ow specializes the iterative process from

the previous chapter (cf. Section 4.3.2), which is illustrated in Figure 5.13. Depending on the
concrete setup, the entry point to this process can vary. For instance, the test modeler may
start with modeling the general behavior of the SASuT by a Petri net without considering any
context. In another scenario, it could be bene�cial to �rst build a test driver to gain knowledge
about what actions can be tested run-timeively from the test model.
However, because the test process is designed in an iterative fashion, its steps can be reached

independently from the concrete entry point. As an extension to the conceptional process,
the modeling phase incorporates the speci�cation of the proposed model types: adaptive Petri

93

5. Model-based Adaptivity Test Environment

analyze/refine variability
(system and environment)

define environment
within stimulus models

define adaptation
as reconfiguration automata

run simulation and
report outcome

fix/change system

perform test
automation

define Petri net

run tests and
report outcome

generate tests

Run & Verify

Model

<<start here>>

Figure 5.13.: The process of SAS testing with MATE. Firstly, variability models are de�ned. Sec-
ondly, the behavioral models are set up: Petri net, stimulus, and recon�guration.
Thirdly, a test-automation adapter is built. Fourthly, tests are generated or simula-
tion is performed. Based on the test or simulation outcome, the system can be �xed.
For regression and re�nement, modeling can be iterated as often as necessary.

nets, stimulus models, and recon�guration automata. During the the Run&Verify phase, test-
automation, and simulation, respectively generation and test execution, is performed.
The presented process requires tool support, including a user interface for modeling and re-

porting, implementations of the metamodel as well as algorithms that implement the generation
and simulation functionality. In the following, these components are discussed in detail.

5.6.1. Test Modeling

Initially, the test modeler is required to analyze the test object and its environment. All informa-
tion assembled from this analysis has to be speci�ed as model instances of the MATE metamodel.
For this purpose, editors for tree-like structures and graphical editors are provided, depending
on the targeted model type.
EMF generates tree-based editors automatically so that the modeler only has to put the

minimal additional e�ort in this task. This especially holds for the feature-based variability
model for context and adaptation modes. Furthermore, test-suite and report models are tree-
structured, and so their creation and editing are performed within tree-editors.
Graphical editors �t well for graph-based models, such as recon�guration automata and Petri

nets. This editor type is based on GEF but customized for the speci�c notation. All textual
elements of the graphically designed model instances are given to a jParsec implementation of
the concrete syntax, which creates instances of the abstract syntax. The environment signalizes
failed parsing to the user by coloring red the a�ected model elements. Thus, graphical and
textual modeling seamlessly integrate within a common interface.
Besides adhering to a certain concrete syntax, some additional validations on the model can

94

5.6. MATE Tooling and the SAS Test Process

be performed. For instance, is has to be checked whether all name properties are correctly set
and all automaton-based models haven a start state. For this purpose, modelers de�ne rules,
which analyze the complete model instance after each editing step. The editors give feedback
again by coloring the corrupted elements red.
For the purpose of creating custom stimulus models, the test engineer has to provide a notation

and an editor as well. The generation of tree editors produces the least e�ort within EMF,
whereas graphical editors must be programmed manually and laboriously.

5.6.2. Test Case Generation

After the successful validation of the designed model instances, the generator is ready to produce
test-cases. For this purpose, an Interpreter instance is factorized and parameterized with the
set of all models to be considered. The interpreter's operator chain may contain certain oper-
ators with model-speci�c settings to restrict the search-able state space (e.g., a k-boundedness
constraint for the Petri net TransitionOperator). Additionally, a TraversalStrategy and a
maximum number of test-cases is de�ned to direct and constrain the generation process.
In the beginning, the generator collects all prede�ned con�gurations and selects one of them by

utilizing the traversal strategy. After producing all test-cases for this con�guration, the generator
restarts the process with next variant.
During generation, the interpreter iterates over the state space; the precedence of the states to

be considered next is controlled by the given traversal strategy. As soon as one state is quali�ed
�nal (i.e., no child state can be derived), the path to this state is back-traced along the parent
attribute and entry actions are sequentially compiled to a test-case. The following listing shows
the complete generation process as Java code:

1 public void generateTestCases(AbstractTraversalStrategy ts , int

maxCases){

2 Interpreter i = new Interpreter ();

3 i.setOperator(createOperatorChain ());

4 i.setTraversalStrategy(ts);

5

6 while(i.hasNext ()){

7 InterpretorState is = i.next();

8 State s = i.getTraversalStrategy ().determineNext(i.getQueue ());

9 State [] next = i.getOperator ().operate(s);

10

11 if(next.length == 0){

12 produceTestCase(s); // backtrace parents and store steps

13 if(--maxCases == 0) return;

14 } else {

15 for(State n:next){

16 i.enqueue(n); // store derived states

17 }

18 }

19 }

20 }

Listing 5.8: Strategy-based algorithm for generating test-cases.

After setting up the Interpreter instance, the iteration loops starts and utilizes the constructed
operator chain to produce children from each found state. If no next states are found, a test-
case is generated. Otherwise, the all children are enqueued and considered later. The parameter
maxCases restricts the generation process to the maximum number of test-cases to be produced.
The result is a tree-structure of test-suites, each associated with an initial con�guration, test-

cases, and test steps. The complete structure can now be executed by a test-automation con-

95

5. Model-based Adaptivity Test Environment

Figure 5.14.: A running simulation in MATEs. In the simulation view, the user selects a test-
automation connector and a traversal strategy. The explored state space is presented
as a tree. The executed path within the tree is colored in blue as well as the model
state in the graphical editors. Detailed information as trace links, the entry action,
and set propositions are shown right in the outline. Simulation can be paused,
restarted, and reset at any time.

nector against the SASuT's interface.

5.6.3. Test Case Execution and Test Reporting

In test execution, steps are executed against the test-automation connector. For this purpose,
each test step is simply passed to the automate(...) method of the provided connector. As
Responder, a null object is passed because ITL testing is only possible in simulation.
After the action was performed, the test step is mapped to an equivalent TestStepRun by

cloning the action for reporting. Furthermore, the executor adds a verdict, which contains a
copy of the current state. Step runs constitute a test-case run, which further constitutes test
reports.
Not only test-suites but also test reports can be executed to enable replaying tests. In this

manner, the tester can periodically execute tests to uncover regression.
Finally, a statistical analysis is performed by measuring the relation between di�erent verdict

types like PASS and FAIL. To support this evaluation, bar charts are shown, which illustrate
test success and, thus, indicate the degree of correctness of the system.

5.6.4. Interactive Simulation Frontend

In comparison to test generation, the simulator only executes one single trajectory through the
state space. In this process, the last-executed state represents assumptions on the real state

96

5.7. Summary and Discussion

of the SASuT at the same point in time, which allows for exchanging information between the
simulator and the real test object and, thus, ITL testing.
The simulation process is interactive because the user may take direct manual control on

it. Figure 5.14 shows MATE's user interface, which provides the necessary control for this
interaction. The simulation view allows for parameterizing and directing the simulation. The user
selects a test-automation connector and a traversal strategy. Setting these parameters enables
to completely automate the simulation without further user interaction. Alternatively, the tester
himself can take control of the traversal. For this purpose, he uses a tree-based representation
of the state space. When clicking on one state node, the set-up operator is instrumented in the
background, and the node's children are expanded. The outline on the right presents properties
of a selected state in detail. This presentation includes trace links, the state's entry action, and
the currently valid propositions (i.e., atoms). In parallel, these propositions are distributed to all
opened editors, which may enrich the shown models to indicate the selected state. For instance,
in the shown �gure, the Petri net's places are colored in blue and labeled with the number of
tokens within the given marking.
The user can execute one path within the state space tree. In this process, he double-clicks one

node, which is immediately executed by the selected test-automation connector. The executed
nodes are colored blue. Nodes that are not in the subtree of the last executed node cannot be run
anymore from this moment, whereas they are still expandable. If manual execution is selected,
the user will see several dialogs, which ask him to perform certain test actions and give feedback
as well as the verdict to be returned.
If a traversal strategy is set up, the tree view determines, expands and executes automatically

one path. The user may pause, re-start or reset the simulation at any point in time.
Interactive simulation as provided by MATE not only enables for ITL testing but also is a

very helpful tool to avoid test-case explosion. For test modelers, the execution times that are
caused by complex models can only be foreseen partially so that combinatorial execution times
are often missed. The resulting problem is that the test-case generator produces a multitude of
child states at single points which either slow down the generation process or prevent termination
completely. To avoid this problem, the user can use the simulation view to step by step walk
through the state space and �nd these problematic expansions. Afterwards, the modeler may
decide to change the test model or re-design the traversal strategy accordingly.

5.7. Summary and Discussion

In this chapter, MATE has been described as a reference architecture that implements the
proposed concepts and metamodels for SAS testing, including respective generation, simulation,
and test-automation frameworks. Additionally, MATE provides a tool landscape, which equips
the test engineer with editors and graphical control elements for performing a dynamic test
process. The concrete modeling and veri�cation process of MATE can be performed in an
iterative manner, which leads to a growing level of detail concerning the considered variability.
The metamodel's implementation splits the introduced formalization into a set of graphical mo-

dels, tree-structured models, and abstract syntax. Graphical models are especially adaptive Petri
nets and recon�guration automata. The latter metamodel additionally works as an automaton-
based implementation of the introduced stimulus interface. Variability models for context and
adaptation modes, as well as test-suites and reports, are tree-based. Abstract syntax models de-
scribe all concepts for textual notations, which include variability constraints, functions, terms,
and test actions.
The operational semantics of the metamodel is implemented by operators, which hook into the

generation framework. Operators span a chain of responsibility to organize the interpretation
process. The interpreter itself iterators over the state space and traverses through it. Hereby, it
is directed by a given traversal strategy.

97

5. Model-based Adaptivity Test Environment

The test-automation framework enables to run produced test actions against a real SASuT.
Test engineers can instrument this framework and register custom connectors, which adapt to
di�erent technological spaces.
All those components support MATE with adhering to a complete standard dynamic test pro-

cess. The task of specifying test-cases is replaced by modeling, which takes place in appropriate
editors. The generation algorithm is then run, and test-cases are produced. These test-cases
can be executed based on the previously programmed test-automation connector. Alternatively,
simulation allows for interactively discovering the state space of the SASuT and ITL testing.
MATE supports this process by visualizing the reachability tree, which can be explored by the
tester step by step.
Both test-case generation and simulation are performed within a homogeneous infrastructure.

Generator and simulator basically execute the identical algorithms. The only di�erence is that
the simulator only executes one path instead of producing test-cases from all reachable path.
This duality creates a high degree of reuse in all editing, interpretation, and test-automation
components.
The complete structure of MATE framework fosters extensibility. Not only new test-automation

connectors can be registered and, thus, new technical interfaces adopted, but also the engineer is
equipped with an interface and a framework to build custom stimulus models. The restriction in
the process is the need to adhere to the stimulus model interface. After de�ning a new metamodel
and notation, new operator implementations can be introduced that interpret the newly added
concepts. Even new adequacy strategies for these domain-speci�c models can be hooked-in based
on implementations of the traversal strategy interface. As a default, a k-boundedness constraint
is available in the Petri net transition operator for limiting state space exploration.
One drawback of the reference implementation is that parallelism is not supported. Test

case generation on a multi-core system can run faster if the interpreter's iterator pattern is
extended and certain trajectories are explored in parallel. However, MATE ful�lls all discussed
requirements and, thus, is quite powerful in comparison with the tools developed in related
scienti�c work.

98

Part III.

Evaluation

6. Experimental Study:

Self-Adaptive Co-Working Robots

A central aspect of SAS is their capability to decide autonomously, which is a valuable feature in
service and industrial robotics. For the latter application area, autonomy is especially relevant
in automated production sites, where part of the work is performed by humans and other parts
by robots. However, nowadays factory automation processes are quite in�exible and conservative
regarding context-awareness, safety, and the strict separation of human and robotic workplaces.
More �exibility in factory automation is a declared goal of the Industry 4.0 paradigm [Sch16].

Besides mass-customization, robot co-working is an important key point. This vision of Industry
4.0 foresees that human workers directly cooperate with autonomous manipulators, for instance,
by jointly processing wrought products, helping each other with heavyweights, measurement, or
passing parts between work stations. Instead of nowadays robots working behind safety fences
to avoid any human contact and injuries, new robotic devices o�er the capabilities that allow for
co-working with humans in the near future.
Lately, company and industrial research came up with �rst exemplars of sensitive robots. For

instance, the KUKA LBR iiwa's motors include sensors that measure torque and, thus, can react
to detected obstacles1. This industry-ready robot arm is based on the DLR Lightweight Robot,
which is a result of the research of Haddadin et al. [HSF+11]. According to the authors, sensor-
based reaction mechanisms are a fundamental ingredient of robots that are capable of directly
co-working with human beings. Before this background, concepts, in which all robot decisions
are controlled by a pre-designed environment model, are insu�cient in co-working scenarios.
Instead, the information that is gathered by sensors at run-time should be taken into account
and analyzed by intelligent autonomous decision algorithms. In this way, the robotic application
gets much safer, works with fewer errors, and is more �exible regarding adaptivity to changing
contextual situations.
The DLR group also de�nes a set of global functional modes, which can deal as a basic concept

of self-adaptation. The modes that the automation de�nes are switched based on the sensor input
as Figure 6.1 illustrates. With humans absent, the robot operates in autonomous mode. As soon
as the human is in perception of the robot's senors, one of the interaction modes is activated.
Here, the authors distinguish between a collaborative mode, where the robot directly interacts
with the human co-worker, and the human-friendly mode, in which further autonomous operation
takes place in the presence of a human. In this mode, the e�ciency of the application (e.g., its
operation speed) must be decreased to lower the risk of severe injuries.
Furthermore, when a fault condition occurs, the fault reaction mode is activated, where the

fault must be handled. This is especially the case if the perception of the human is lost and

1http://www.kuka-lbr-iiwa.com/

101

http://www.kuka-lbr-iiwa.com/

6. Experimental Study: Self-Adaptive Co-Working Robots

iP … in perception iHF … in human-friendly mode

oP … out of perception CF … confirm

iCM … in collaborative
mode

FC … Fault condition

Legend

AutonomousMode

FaultReactionMode

CollaborativeMode HumanFriendlyMode

oP oP

iP & CF & wasCM ip & CF & wasHF

iP & HFiP & iCM

IP | FC lP | FC

Interaction
concept

FC CF & wasAM

iHF

iCM

Figure 6.1.: Functional modes of the DLR co-worker, redrawn from [HSF+11]. Four modes are
distinguished, depending on the whether the human co-worker is in the perception
of robot's sensors. If so, the robot switches from an autonomous mode to one of
the interaction concepts, which let the robot either act collaboratively or with special
(human-friendly) sensitiveness. Faults lead to a fault mode where safety is focused.

the collision avoidance cannot work properly anymore. In the automaton, as it is depicted
in [HSF+11], the fault mode can only be left with a con�rmation.
Haddadin et al. discuss several solutions for each functional mode, such as trajectory scaling,

path deformations, and soft-robotics based grasping as well as strategies for visual interaction.
Besides those research questions, another challenge is to equip the robots with a set of sensors to
recognize human presence and posture. For instance, optical tracking with stereo cameras or laser
scanners are potential approaches. Alternatively, the project WEarable Interaction with Robots
(WEIR) provides a solution, where body parts' positions are precisely monitored by intelligent
clothing, which is equipped with inertial motion units (IMUs). The gathered orientation data
of body parts is mapped to a human body model, which can be reasoned on to compute safe
reactions to human movement. In comparison to optical tracking, WEIR has certain advantages:
�rstly, no visual overlapping occurs and, secondly, the system is completely mobile as it does not
have to be installed in a �xed position within the factory building.
Originally, the WEIR system was built to record human movements and map them to a robot's

kinematics. In this manner, automation processes should be prototyped quickly without any need
for programming. The robot operator captures her/his movements and later replays them via
a kinematic mapping on the robotic system. For a more complex use, the captured sequences
can be assembled to an automated work�ow, whose execution depends on the spatial location of
physical system parts.
The work�ow functionality of WEIR also provides a foundation for self-adaptivity. Force

limits, speed, and autonomous behavior can be adapted to postures of humans and the robot
itself. However, safety is critical in this kind of system, and the work�ow designer should test it
with caution. Consequently, in this chapter, a MATE-based test model for a WEIR-based case
study shall demonstrate the applicability of the presented methods and realizations in a realistic
scenario. The experiment shall incorporate a self-adaptive robotic system that uses the software
and devices of the WEIR project to implement the behavior as proposed for the DLR co-worker.
In comparison to the drone example from Chapter 4.3, the hereby elaborated setup is quite more

102

6.1. Robot Teaching and Co-Working with WEIR

complex so that only excerpts of the complete test model can be shown. Despite this increased
level of di�culty, the industrial robot requires being tested under the same requirements than
the drone example, which provides strong support for the accuracy of MATE and its concepts.

The chapter starts with a more detailed introduction to WEIR in Section 6.1 and to its
adaptation features. A WEIR-based application named Cinderella is discussed in Section 6.2.
Afterwards, in Section 6.3, the required test models for this application are described. Finally,
in Section 6.4, the study is put into relation to the problem set of this thesis.

6.1. Robot Teaching and Co-Working with WEIR

Controlling robots from manually written code is quite hard because movements have to be
expressed in coordinates, motor control commands, or other hardware-related parameters. To
avoid putting a disproportional e�ort into try-and-error programming, robots can be taught from
human guidance.

Several methods have been approached for that purpose. One possibility is to guide the
robot by direct manipulation. Recently, lightweight robots are equipped with torque sensors
within their axes' motors so that they can measure externally applied force and navigate to
coordinates where a human operator shifts the joints manually. However, this direct guidance
approach works only for robotic applications that are accessible to direct human interaction.
This approach neglects applications in hazardous, critical, or inconvenient environments like in
chemical, nuclear, or semi-conductor industry. Furthermore, direct human to robot interaction
is not well suited for heavy-weight robots due to the unacceptable risk of injuries.

Another method is teaching from human movements, which means that body postures are
mapped to the robot's joint positions, motor angles, or translations. Using such a method
allows operating robots from remote places, independently from their weight class and without
any physical risk to the operator. Most approaches that implemented such human-body-based
control make use of optical tracking, which is quite immobile and hard to set up. Cameras for
body tracking must be installed in a �xed location or be calibrated very precisely.

To overcome the problems of direct manipulation and optical tracking, the chair of software
technology at Technische Universität Dresden designed the WEIR system, which tracks human
movements from wearable-mounted sensors and guides the robot from the gathered information.
The WEIR system consists of a jacket and a glove, which contain IMUs and measure the orien-
tation of multiple body parts. The captured human kinematics are mapped to robot kinematics
by algorithmic components of WEIR software stack. Movements can be recorded and replayed
so that teaching is only a matter of minutes. Thus, the WEIR system has a multitude of advan-
tages in comparison to optical tracking, which includes minimal setup time, very low cost, and
independence from environmental disturbances.

After recording, positions and movements are available as data sets, which can be composed
to a work�ow. A work�ow consists of tasks, which each represent one recorded data set. Tasks
are connected by arcs, which are conditioned by system states. WEIR's included work�ow
mechanism allows for quickly building prototypes of automation processes without programming.

Even more, work�ows, the parameters of robot control, and the software infrastructure are
adaptable due to the features of an adaptation plug-in. This component allows the de�nition
of robot behavior dependent on the interaction with certain spatial regions with robot parts
or human body parts. The plug-in's adaptation capabilities match well with the requirements
tackled by MATE and, thus, are well suited to be tested by the use of the concepts proposed in
this thesis.

103

6. Experimental Study: Self-Adaptive Co-Working Robots

Figure 6.2.: WEIR hardware. Jacket and glove mount IMUs. Each part of the clothing contains a
microcomputer, which collects data from the IMUs and connects via BLE. The central
node within the jacket connects via WIFI to a server, where the WEIR software
processes the data.

6.1.1. WEIR Hardware Components

In the WEIR system, inputs are generated from a jacket and a glove, both equipped with sensors,
microcomputers, and connectivity modules. Wearables and hardware components are depicted
in Figure 6.2. The jacket hosts an Intel Edison module, which mediates the data �ow between
all nodes. Via a Bluetooth Low Energy (BLE) module, the Edison microcomputer connects to
the glove and other potential clients. BLE o�ers a bidirectional data stream for interchanging
measured sensor values as well as commands to the clients. Also, it consumes very few power
so that the battery within each wearable component can supply the system for a whole working
day.
The jacket also mounts three IMUs, which are all wired to the Edison board. One IMU is

located close to the board itself to measure the orientation of the body's center in relation to an
initially calibrated direction. Thus, a robot can not only work in the restricted operation space
of the human arm but also next to and behind that workspace as soon as the human operator
turns the direction of his torso.
Both the jacket's upper and lower arm contain each an additional IMU. The sensors are

connected to the Edison node via solid cables within the jacket's lining. By fusing all three
orientations (i.e., body center, upper arm, lower arm), and the �x lengths the body parts, the
exact position of the wrist is computed.
The WEIR system uses the glove to determine the direction and state of a tool, which is

attached to the actuator. In the experimental setup, this tool is a linear gripper, which can be
used to pick objects and grasp them with a given force. The direction, where the tool is expected
to point to, is derived from orientation data. For this purpose, the glove also mounts an IMU,
which is cable-connected to a Flora Arduino board. This microcomputer was designed to be
integrated into clothing and eases the use of conductive thread and the creation of washable
electronics. Furthermore, a BLE module is connected to the board to allow for exchanging data
with the Edison node. Besides the IMU, one �nger (in other prototypes three �ngers) holds a
bendable resistor, a so-called FlexSensor. It measures the bending of the index �nger, which is
later mapped to the opening degree of the controlled gripper.

104

6.1. Robot Teaching and Co-Working with WEIR

Figure 6.3.: WEIR software components. The WearableService component receives data from
the clothing, from which ForwardKinematics computes a human body model. The
GoalMapper maps the model to a target point to be approached and InverseKinemat-

ics computes the robot arm's joint angles. Via the IIWAService, this information
is forwarded to the actuator. The AdaptationEngine is responsible for adapting
parameters and cooperates with the WorkflowEngine, which can run recorded steps
autonomously. A work�ow's steps are positions that were beforehand recorded by the
ActuatorRecorder. Similarly, human movements can be recorded and replayed by
the WearableRecorder.

All IMUs deliver a measure of orientation so that a body model of the involved body parts can
be computed. To correct this body model by an initially measured state, the human operator is
expected to take a speci�c pose and calibrate before taking control of the robot. Afterwards, the
gained model's location and orientation is absolute (i.e., all dimensions are aligned with those of
the robot) and can be processed by the WEIR software.

6.1.2. WEIR Software Infrastructure

All mapping tasks besides other functionality can be decomposed in a set of software components
as depicted in Figure 6.3. Because all the presented software components run on a central server,
they have to connect to the wearables and as well to the robot. This task is performed by
WearableService and IIWAService, whereas the latter is a connector named by the concrete
actuator used in this setup.
The WearableService receives raw sensor data from the IMUs via WiFi. As a second step, the

ForwaredKinematics component creates a body model from this data, which comprises three-
dimensional vectors of the current posture of the human co-worker. From this vector model, the
position and orientation of the hand palm can be derived and mapped to position and orientation
(i.e., a goal) in the robot's coordinate system via the GoalMapper component. As a �nal mapping
task, InverseKinematics computes the angles of the robot's axes that corresponds to the derived
goal.
The data that is sent via the IIWAService contains angles for all joint axes and can be recorded

by the ActuatorRecorder component to a RecordDatabase for later replay. A single robot
posture or a sequence of postures (i.e., a motion) is the basis for tasks within a Workflow. The

105

6. Experimental Study: Self-Adaptive Co-Working Robots

WorkflowEngine executes the work�ow step-by-step under consideration of adaptation-relevant
events.
Besides robot postures, also those of the human can be stored and replayed later on. For this

purpose, the WearableRecorder connects to the ForwardKinematics component. Instances of
the human model, which have been generated during mapping, can be serialized within another
RecordDatabase and used for analysis.
To permit self-adaptation, the AdaptationEngine alters several parameters depending on mea-

sured positions of so-called Movables. The latter are virtual representatives of physical objects
that are located in a common coordinate system. In the experimental setup, the system is con-
�gured to inject position of all human body parts (computed by forward kinematics) and of the
gripper. Because the WEIR data only delivers spatial coordinates in relation to the body itself,
an API function allows inserting the assumed position of the body center within the robot's
coordinate system. Thus, each body part can be located exactly in relation to the robot. For
the gripper, IIWAService provides two movable instances: one is constructed by the measured
state of the real gripper, and another one re�ects the goal position where it is expected to navi-
gate to. The AdaptationDescription de�nes three-dimensional bounds that change their state
after a Movable enters or leaves the bounds. Based on this state, the work�ow may react or the
parameters of the GoalMapper are altered.
Besides the presented algorithmic components, WEIR additionally provides a dashboard for

monitoring and con�guration. The dashboard not only visualizes the recent spatial models of the
robot and human worker, but also displays data rates of the communication channels between
the server, the wearables, and the robot, including the gripper. Furthermore, certain actions,
such as calibration and starting or stopping the recorder can be triggered from the dashboard
user interface.
The architecture of the WEIR software can be classi�ed component-based and event-driven

because each component creates new event data that may be processed in isolation. Connec-
tions between components are established by an Observer pattern�each listening component
registers at its data source [GHJV94]. The wearables produce events approximately every 100
milliseconds and, consequently, the robotic control acts in the same frequency. Due to its event-
and component-based nature, the functionality of WEAR can easily be exchanged by replacing
components or registering new observers.

6.1.3. KUKA LBR iiwa as WEIR Manipulator

In the presented experimental setup, the KUKA LBR iiwa 14 R820 is used as the actuator
of choice, together with a linear gripper by Schunk. The robot arm is designed for tasks, in
which objects up to 14kg have to be moved. Within this limit, the robot arm works with ca.
40mm/sec operation speed and 0.15mm repetition accuracy, which is well-suited for a broad
range of industrial applications. The arm has seven joints, which each can rotate around their
axes with di�erent maximum and minimum angles. Depending on the concrete joint, the angles
range from at least −120 . . . 120 up to −175 . . . 175 degrees. Because there is one more axis as
required for full three-dimensional freedom of movement, the gaps within the joint's angle ranges
are compensated�otherwise, the robot could not reach all points within its workspace. Using
torque sensors, the LBR iiwa also supports sensitive reaction to externally applied forces. For
instance, the robot arm can detect collisions with humans or objects or apply a limited force to
a fragile workpiece.
The robot is installed on a rack (product name KUKA �exFellow), which contains a server, an

air conditioning system, and energy supply. Di�erent APIs allow monitoring and operating the
robot. Provided programming languages are Java and C++, whereas the latter should be used if
very little latency is required. The software system provides a real-time path planner that allows
for performing inverse kinematics with guaranteed deadlines. The WEIR system does not make
use of this capability to permit more parameterization of the algorithm. To communicate with

106

6.1. Robot Teaching and Co-Working with WEIR

Figure 6.4.: WEIR-controlled KUKA LBR iiwa. The hand palm's position and direction is
mapped to the robot tool's coordinates, and the index �nger controls the gripper's
brackets.

external systems, including WEIR, an Ethernet connection is available.
Another functionality, which the KUKA's software stack provides, is the capability to set up

safety zones. Before starting any application, a set of immutable bounds is installed in the robot
controller. As soon as an operation drives any part of the robot into those safety zones, the robot
immediately stops all movements and activates its physical brakes. This safety feature prevents
collisions with �xed objects within the robot's workspace due to wrong programming or manual
control.
Because the robot has much more joints than the human worker, body parts are not individu-

ally mapped to the robot model. As depicted in Figure 6.4, the robot mimics the human hand's
position and direction in relation to the body center. Furthermore, the brackets of the gripper
tool are controlled by the bending value of the index �nger. In this way, the human worker can
navigate the robot to points within its workspace and let him grasp for objects. The software
records these postures and movements to the database.

6.1.4. Self-Adaptation Capabilities of WEIR

The WEIR adaptation plug-in supports both parametric and behavioral adaptation. The mon-
itored context results from two sensor inputs, which are (1) absolute positions of objects in
relation to the robot's coordinate origin and (2) locations of certain movables (i.e., parts of the
robot or human body). This spatial information is mapped to a common coordinate system,
whose origin is a vertical axis through the robot's center. Whereas robot parts are already lo-
cated in this coordinate system, human body parts are mapped there by using the functionality
of the GoalMapper component (cf. Section 6.1.2).
Based on this contextual information, the adaptation rules are de�ned within three-dimensional

bounds. Those bounds allow for adapting parameters of the software and are also the basis for
behavioral adaptation. Both adaptation levels are described in the following.

Adaptation Bounds and Parametric Adaptation

The introduced co-working mechanism derives adaptations for robotic control from spatial rela-
tions between human workers and the robot itself. In WEIR, such relations can be recognized
by checking whether two or more movables locate in the same three-dimensional space or not.

107

6. Experimental Study: Self-Adaptive Co-Working Robots

(a) The WEIR dashboard
component visualizes
a box-shaped adapta-
tion bound with mov-
ables that represent
body parts and the
targeted gripper loca-
tion.

(b) enter and exit events of speci�c movables control a state machine,
whose transitions trigger changes on parameters of the system.

Figure 6.5.: Adaptation bounds, movables, and state machine for collision detection.

Such spaces are de�ned in the form of adaptation bounds, which either are rectangular boxes or
spheres. Figure 6.5a shows a dashboard screenshot, where a single adaptation bound is visual-
ized. In the depicted case, only one box shape is installed, and the green points indicate current
positions of movables, whose names indicate the locations of body part (arm1 and arm2 for up-
per and lower arm, center for body center, and hand for the glove). The spatial information for
those movables is generated by the wearable devices. Furthermore, a GripperTarget is visible,
which is the virtual position indicating where the gripper is expected to navigate to. Designers of
adaptive behavior can upload �les with spatial de�nitions to the WEIR server and, thus, install
new spatial bounds for the design of adaptations at run-time.
Each adaptation bound relates to a state machine de�nition, whose transitions are triggered

by either an entry event or an exit event of a speci�c movable. For instance, bounds can de�ne
a part of the robot's workspace, and the state machine allows for re�ecting whether the robot
operates in the same space as its human co-worker. For this purpose, the designer would declare a
respective state machine with four states as depicted in Figure 6.5b: init (no movable entered),
gripper (only gripper entered), body (only body entered), and collision (both entered). For
all transitions that lead to the collision state, an action can be attached, which decreases the
speed parameter of the robot driver; all outgoing transitions do the opposite.
A bound de�nition can also be understood as Event-Condition-Action (ECA) rule [BM09],

where events are enter or exit signals, conditions are states of the bounds-related state machine,
and actions are parametric adaptations. Additional to adaptation bounds and to reach to the
complete expressiveness that MATE can test and simulate, a behavioral adaptation mechanism
is required, which shall be described in the following.

Adaptive Work�ows with Behavioral Adaptation

Whereas adaptation bounds provide a mechanism to de�ne parametric adaptation, adaptive
business logic can be de�ned in the form of work�ows. The WEIR adaptation plug-in includes
a work�ow metamodel, in which transitions between work�ow states are guarded by expressions
over states of adaptation bounds.
The concrete appearance of a work�ow is illustrated in Figure 6.6. Each work�ow state has

a name (A . . .D) and plays a record from the record database. In the depicted example, the
work�ow starts with playing fast.js and repeats this operation as long as adaptation bound
boundA remains in state gripper. Otherwise, the robot manipulator is retracted (state C, record

108

6.2. Cinderella as Testable Co-Working Application

A:
fast.js

B:
slow.js

[steppable]
D:

reinit.js

boundA=gripper

C:
retract.js

boundA=gripper

boundA!=collision

boundA=!gripper boundA=!body

boundA=bodyboundA=body

boundA=collision

[steppable]

Figure 6.6.: Example WEIR adaptive work�ow. Work�ow states play records from the record
database and may be steppable for debugging. Transition monitor adaptation bounds
and are activated if the annotated expressions evaluate to true.

retract.js). If state collision is not active, the robot is re-initiated (state D) and advances
with either fast operation for conditions with no humans involved or slow (state B). If a collision
is detected in state D, the retraction is performed again.
The metamodel of work�ows implements adaptive behavior. Expressions can also be formu-

lated as conjunctions over multiple adaptation bounds to de�ne more complex decision logic.
While a work�ow is run autonomously by the built-in work�ow engine of WEIR, the adaptation
bounds are monitored. After playing a record, the bounds' state is evaluated to determine the
next task. In this way, both parametric and behavioral adaptation operate independently.

6.2. Cinderella as Testable Co-Working Application

Picking and placing objects with robots is an often demanded task in industrial automation and,
thus, would bene�t from being adopted in co-working approaches. The crucial challenge is to
pick products from a factory line, transport them, and place them in new locations with high
precision and in as little time as possible. In this section, a respective application is presented,
which extends this task by self-adaptive robotic co-working. The task's work�ow is taught and
executed by using the WEIR system and its features targeting self-adaptation. In the �rst step,
the robot is expected to pick objects from one of two source boxes. Second, the object's quality
is classi�ed and, depending on the verdict, the work�ow chooses from one of two target boxes,
where the objects will be initially placed, and put them into one of two other boxes depending
on the quality of the respective object. Referring to the literary character Cinderella, who was
in charge of performing this task manually, the application is named after her. In the following,
the detailed setup of the Cinderella case study shall be discussed.

6.2.1. Cinderella Setup and Basic Functionality

Cinderella uses an experimental setup that allows for investigating its behavioral properties in
an isolated test environment. Figure 6.7 depicts the robot and further equipment. The WEIR
system is installed under the previously described conditions: the KUKA LBR iiwa combines
with a two-bracket Schunk gripper, and the WEIR software runs externally on a notebook, which
also hosts the dashboard. In front of the LBR's cabinet, a table is placed. On top of this table,
within the robot arm's workspace, four boxes of equal size (ca. 30cm × 30cm × 20cm) are put.
The boxes represent the positions where the objects, which the robot would move in a production
site, are located.
The two outer boxes (light gray) are the sources, from where the robot picks, whereas the

inner boxes indicate two sink positions for su�cient (green) and insu�cient (dark gray) quality.

109

6. Experimental Study: Self-Adaptive Co-Working Robots

The basic functionality is to pick from the sources with alternating order and place it in one of
the sinks depending on an externally provided signal that indicates the quality.
In the presented test environment, several properties are simulated, including the quality

veri�cation signal, the exact grasping of physical objects, and the relative position of the human
co-worker's body center. This functionality permits repeatability of the test-setup on the level
of integration testing. Consequently, the test process can completely be automated and the co-
working functionality is tested in isolation from other sources of failures, such as wrong grasping,
insu�cient object recognition, or erroneous factory logistics. All those features are neglected
hereby to focus on testing self-adaptation in Cinderella.

6.2.2. Co-Working with Cinderella

Cinderella uses the features for self-adaptation of WEIR to behave accordingly to the human
co-worker's position and movement. Figure 6.8a illustrates the self-adaptation and how it is set
up. Without the presence of a human co-worker, the previously described sorting procedure
is performed completely autonomously; otherwise, Cinderella adapts its speed and behavior to
minimize the risk of potentially harmful physical contact. All functional modes of Cinderella
directly map to those, which were de�ned by the DLR co-worker state machine (cf. Figure 6.1).
To implement the required behavior, several adaptation bounds are con�gured. The �rst self-

adaptation aspect comprises a change of the robot's working speed as soon as the co-worker
enters an awareness bound, which wraps the robot in a virtual safety zone. This adaptation
bound is triggered when the human co-worker approaches. In this state, the robot moves with
30% of its maximum speed, whereas in all other cases adaptation the operation takes place with
90% speed. We name this behavioral requirement /R1/. The adaption of the robot's speed
implements the transitions between autonomous mode to human-friendly mode (cf. Figure 6.1).
Being inside the box triggers further parametric and behavioral adaptations. From a human co-
worker's perspective, the robot reacts according to the following behavioral requirements, which
are referred to in Figure 6.8a:

/R2/ If a human body part enters a box, in which the robot is currently operating, the robot
movement is immediately stopped. This behavior implements a fault mode, which must
be resolved before the operation continues.

/R3/ At the moment, when the body part leaves the box, the operation is continued as planned.
The fault mode is left and the human-friendly or collaborative mode is entered.

/R4/ If the human co-worker enters one of the source boxes, the robot chooses another box for
the operation, so that both the human and the robot can work in a collaborative mode
under reduced risk of collision.

To con�gure the WEIR system for the described behavior, several adaptation bounds are
de�ned. Figure 6.8b shows a dashboard screenshot, which visualizes those adaptation bounds.
One virtual box (srcA, good, bad, srcB) each wraps a physical one. For safety reasons�because
computation and pausation need time�, a virtual box is larger than its physical counterpart.
Consequently, their maximum point in the z dimension (i.e., the height) is 65mm above the
physical one and also all other dimensions are slightly larger. In this way, the robot is given
some more time for stopping. All these single boxes are wrapped inside the awareness box,
which marks the area, where the human-friendly mode is activated.
Adaptation bounds are con�gured with JSON; the Cinderella-speci�c de�nition is listed in

Appendix 1. The root object is an array of bounds. Each box-shaped bound speci�es its spatial
location and size as minPoint and maxPoint properties. The state machine consists of an array of
transitions with source (from) and target (to) states, whereas a state is represented as integer
value. The initial state is stored in the currentState property. Furthermore, a transition refers

110

6.2. Cinderella as Testable Co-Working Application

Figure 6.7.: Cinderella setup. The robotic arm picks objects from the outer boxes and puts them
in into one of the inner ones, depending on the object's quality: green for good, dark
grey for non-acceptable.

(a) /R1/ robot stops operation on collision, /R2/ continuation
after the collision is resolved, /R3/ robot avoids human co-
worker by using the alternative source box.

(b) Each source or sink box is
encapsulated in a respec-
tive adaptation bound def-
inition; an outer (hidden)
awareness box is in charge
to determine whether the
co-worker is in vicinity.

Figure 6.8.: Cinderella co-working behavior.

111

6. Experimental Study: Self-Adaptive Co-Working Robots

to a movable, which triggers the state change. The property isEnter determines whether the
enter or exit event of the referred movable is expected.
Similarly, the adaptive work�ow is speci�ed in JSON, which is listed in Appendix 2. In

di�erence to state machines of adaptation bounds, the work�ow consists of tasks, which perform
actions. Each task de�nes a record (posture) to be played and whether it is steppable. For
internal mappings, a task is referred to by its position within the task array so that the initial
task current is 0. Besides tasks, there are edges, which connect a source (from) and a target
(to) task. A condition is a logic expression. Each proposition refers to the examined adaptation
bound (boundsRef) and the states, which is expected. This proposition can also be a negation.
Optionally, a conjunction may be added to specify a more complex expression.
Bounds con�guration and work�ow can be loaded at run-time so that it is even possible to

exchange or alter running processes. A user can pause a work�ow and resume it at any time.
These capabilities make it possible to test Cinderella in a reproducible manner.

6.3. Testing Cinderella with MATE

Both parametric and behavioral adaptation, as Cinderella performs them, are testable properties.
However, the stateful self-adaptation, which depends on contextual properties, creates a highly
complex state space. The number of reachable states results from the combination of the current
work�ow state, the position of the human co-worker, her/his body posture, and the timely order
of the occurrence of these signals.
MATE allows for modeling each of these aspects of Cinderella's self-adaptation. For this

purpose, we adhere to the test process as de�ned in Section 5.6. The concrete entry point of the
Cinderella setup into the test process is test-automation step. Afterwards, the variability model
and the test model are created.

6.3.1. Automating Test Execution

Cinderella executes the installed work�ow autonomously, which allows for completely automat-
ing test execution. As described in Section 5.5, MATE provides a framework for creating test-
automation connectors. Both classes AbstractConnectorType and Connector have to be ex-
tended for this purpose in the form of a Scala-based implementation, which interprets the mod-
eled actions and applies them in the SUT. The connector communicates via a WebSocket, which
triggers actions within the running Cinderella instance. Available actions are the following:

• set $human = ?: Set the position of the human co-worker within the robot's coordinate
system.

• play(file): Play a previously recorded body movement from the RecordDatabase of the
WearableRecorder.

• calibrate: Calibrate the recent body posture as the neutral (upright standing, hands on
hip) viewing direction along the robots forward axis.

• installBounds(file): Install adaptation bounds from a provided �le.

• startWorkflow(file): Start the work�ow, which is de�ned in the provided �le.

• stopWorkflow: Stop the current work�ow.

• assertSpeedMax(speed): Verify whether a maximum speed is not violated.

• assertSpeedMin(speed): Verify whether a minimum speed is not violated.

• assertPause: Verify that the robot stopped completely.

112

6.3. Testing Cinderella with MATE

Figure 6.9.: Variability model for Cinderella. The feature-modeled variability space de�nes po-
tential properties of situations. It de�nes adaptation modes and situations when a
certain movable entered a speci�c bound.

• assertEnter(boundsExpression): Verify that the provided adaptation bounds will be
entered next by the robot gripper. Sends a step to WEIR and blocks until the veri�cation
passes or fails. A bounds expression is either a certain bound name or a disjunction of
expressions denotes as o(boundsExpression1, . . . , boundsExpressionN), where o stands
for inclusive or.

Using these actions, MATE is capable of simulating the co-working process and interactions
with Cinderella. Speed, stopping, and order of actions (i.e., when a speci�c bound is entered)
were chosen as the most important properties, which are relevant to verify whether safe co-
working is ensured by the system. In the following, the Cinderella test models are discussed as
well as how they make use of the connector's actions.
The driver also provides special functionality for ITL testing. For this purpose, events are

produced by the driver as soon as the gripper enters a certain adaptation bound. Such an event
is fed via the Responder (cf. Section 5.5) to the model at run-time. This functionality makes the
test control �ow dependent on the actual physical conditions and can only be used with MATE's
ITL simulation, but not for generating sequential test-cases.

6.3.2. Modeling Cinderella in MATE

Despite Cinderella lets designers de�ne self-adaptive behavior in the form of models, testers
should re-model expected behavior of an SASuT from a black-box perspective. This allows for
abstracting, de�ning scenarios, and searching for failures. The respective test models are derived
from the requirements, which were de�ned in Section 6.2.2. In the following, all MATE-based
test models for Cinderella are described.

Variability Model

In a �rst step, the variability in Cinderella is modeled within a context variability model. Whereas
the application does not require static variability (e.g., product con�guration before run-time),
the tester should use feature trees to distinguish situations and adaptation modes. The result
is the variability model as depicted in Figure 6.9. The root feature contains a modes feature,
whose children represent all global adaptation modes of the co-worker automaton. Further
children of root are sources and sinks, which contain for each type of box an individual sub-
tree. Leaf features humanIn* and gripperIn* classify situations of human to robot interaction.

113

6. Experimental Study: Self-Adaptive Co-Working Robots

Spatial
model

Body parts
movement Box model

Cobotics
reconfiguration

outOfPerception
inPerception
nearBy

collided
endCollab
startCollab

humanEnters*
humanLeaves

outOfPerception
inPerception

Box modelBox modelBox model

timed timed

Figure 6.10.: Event �ow through the Cinderella test model. Spatial and body movement models
are controlled by budgets of virtual time; whereas box models and the robotic co-
worker's recon�guration is controlled by events.

The dynamic selection of variants resulting from this variability model is managed by context
stimulus models and recon�guration automata, which are presented in the following.

Stimulus Models: Absolute Spatial Movements

Context stimulus models are used to generate actions for manipulating the physical environment
and the selected context variant virtually. In MATE, context stimulus models are controlled by
budgets of virtual time and communicate with each other, or respectively, with recon�guration
automata, by producing or accepting events. As illustrated in Figure 6.10, four types of stimulus
and recon�guration models are created for Cinderella: �rstly, a spatial model describes the
movement scenarios of the whole body through the robot's coordinate system, and, secondly,
the body part movement model de�nes scenarios of changes to the arm, hand, and the torso's
rotation. These model instances de�ne the context stimulus and are primarily controlled by
time budgets. However, the body part model is partially controlled by events that are generated
from the spatial model. Thirdly, each of the four Cinderella boxes is represented by a model of
individual adaptation bounds. Fourthly, the robotic co-worker's recon�guration is described as
an automaton, which accepts events from the spatial model and the box models.
To decompose Cinderella's context parameters and enforce behavioral change, several events

are prede�ned. The spatial model generates signals (outOfPerception, inPerception, and
nearBy) that indicate where the simulated human co-worker is located. These signal events are
consumed by the robotic co-worker's recon�guration model to distinguish between autonomous
mode, fault mode, and interaction modes. Furthermore, these events also cause changes in body
parts movement model as certain human poses do no longer play a role when the awareness zone
is left.
Additional events are produced during the change of poses in the body parts movements

model. The events humanEnterSrcA, humanEnterSrcB, humanEnterSrcGood, and humanEnterBad

(in Figure 6.10 summarized by a wildcard sign) indicate whether a certain adaptation bound has
been entered and humanLeaves whether one has been left. The box models' output are events of
type collided, endCollab, and startCollab, which trigger the co-worker automaton to either
change in fault mode or between the two interaction modes.
Both the spatial and the body-part movement model adhere to a common interface as described

in Section 4.3.6. However, they fundamentally di�er in their graphical representation. The spatial
representation has been developed to appropriately support modeling two-dimensional movement

114

6.3. Testing Cinderella with MATE

…

…

…
(a) Rectangles de�ne spatial properties of adaptation bounds;

edges are timed and de�ne potential movements.

…

…

…

(b) Equivalence class tree gen-
erated from the spatial
model.

Figure 6.11.: Spatial context stimulus model for Cinderella.

pro�les. Figure 6.11a depicts the respective spatial model for Cinderella. Each rectangle de�nes a
zone within the robot's coordinate system. Concrete zones are AwarenessSpace, which represents
the adaptation to decreased speed (according to /R1/), RobotMount and Root, which set up the
location of the robot and its mount, and one zone for each box. All these zones directly re�ect
adaptation bounds that are installed in Cinderella. Other, smaller zones are anonymous and
represent areas, from which points in movement scenarios are generated.
Edges that connect some zones de�ne potential movements with each a budget of virtual time.

The most right zone represents the initial location (indicated by the green frame), whereas a
location variable is set to when to model is loaded. For instance, with a budget of 1, this zone
can be left and another zone inside the AwarenessSpace should be reached. From which location
either the location right in front of the robot can be reached with a time budget of 1 or the
simulated user is sent back to the origin with a budget of 4.
The model is parameterized by values for the scale and the shift in relation to its origin. Thus,

the experiment's physical layout can directly be described by the spatial model and simulated
during veri�cation. Additionally, the modeler can de�ne a stepping value, which is used to
generate an equivalence class tree from the spatial model. The produced classes re�ect the
hierarchical structure of the two-dimensional zones and the leafs represent tuples of coordinates
that can be set as the value of a location attribute. An excerpt of the tree, which is generated
from the given model, is depicted in Figure 6.11b. The complete considered space is re�ected by
an equivalence class humanScen_domain and is the root of the tree. Each rectangle is mapped
to a child class (e.g., AwarenessSpace_domain) in an equivalence class tree. Building such a
structure from the spatial model requires all two-dimensional zones of one layer to be completely
free of intersections. The leafs of the tree are coordinates that can be assigned to a variable
$human. The coordinates are representatives of the equivalence class tree and have a minimum
distance according to the set stepping value.
Entering a zone not only sets the $human variable to a representative value, but also may cause

an event. For this purpose, the modeler can assign one or multiple event types to a spatial zone
within the editor. Whereas the zone out of AwarenessSpace is assigned to the outOfPerception
event, all zones inside AwarenessSpace are assigned to the event inPerception. An exception is
the anonymous node right in front of the boxes, where a nearBy event should be signaled. These

115

6. Experimental Study: Self-Adaptive Co-Working Robots

Figure 6.12.: Model of movement of body parts for Cinderella. The initial green-framed node
calibrates Cinderella. Nodes play records and produce events. Some transitions are
controlled by virtual time, others by events from the spatial model.

events are consumed by other behavioral models to de�ne dependent adaptation or situational
scenarios.
Based on the structure of the spatial model, the tester can design movement pro�les. In the

editor, paths are drawn between multiple spatial zones, which also may have branches. The
generator is equipped with an operator that performs a depth-�rst search along those designed
paths. From each spatial zone that is a node of the path, a representative is selected as coordinate.
A found path of such coordinates results in a movement pro�le. Because the path elements can be
parameterized with a budget of virtual time, the movement can be controlled by virtual time from
timer transitions within an adaptive Petri net. Furthermore, it is possible to check whether the
simulated user is located inside a certain zone by using the InClass function (cf. Section 5.3.2)
within application conditions.

Stimulus Models: Movement of Body Parts

In contrast to spatial movements, the movements of body parts are much more complex and,
thus, have to be abstracted in the Cinderella test model. For this purpose, the play(file) action
is used. Body part movements are represented in a �nite state machine, which mixes concepts
of stimulus models and recon�guration automata because it plays the role of an intermediate.
Figure 6.12 illustrates this approach. The green-framed node is initially activated and its actions
load and run calib.js. This record sets up positions of all body parts for calibration and
triggers the calibration. Starting from the resulting state, two nodes can be reached, where the
simulated body either interacts with source A (action play("interA.js")) or source B (action
play("interB.js")). Afterwards, a respective event humanEnterssrc* is signaled. The posture
is left by playing the "calib.js" record and signaling humanLeaves. From this state, also the
sinks can be reached (play("interBad.js") and play("interGood.js")). Each of the named
records was captured beforehand to deal as test data. The necessary time budget for entering a
box is always 1, whereas for leaving a box a budget of 3 is required. Consequently, the simulator
will always generate scenarios that contain more simulation steps with interaction than without.
From each of the described nodes, an event-triggered edge ends at the calibration node, which can
be understood as adaptation pause. The latter is always activated if the spatial model produces

116

6.3. Testing Cinderella with MATE

an inPerception or outOfPerception event. In these cases, the simulated body is not placed
right in front of the robot and does not interact. As soon as the interaction position is taken,
the spatial movement model produces a nearBy event, and new body movements are generated.
Events synchronize spatial and body part movement models, so that body motions are pro-

duced within the simulated scenarios only in relevant situations. Events are broadcast to the
complete set of models, which also includes the recon�guration automata.

Recon�guration Automata: Cinderella Boxes

For each Cinderella source or sink box, a recon�guration automaton is provided. Figure 6.13
shows the respective instance for source box A. The initial bold-framed node deactivates the
complete feature subtree (cf. Figure 6.9), which removes any information on the movables in the
box from the con�guration.
As soon as the gripper movable, respectively any human movable, enters the box�which is in-

dicated by one of the events humanEnterssrcA or gripperEnterssrcA�the automaton switches
its state. In case of the human movable, a new event startCollab is produced to signal that
requirement /R4/ is now taken into account. In this condition, the robot is expected to collab-
orate with its human counterpart by using the alternative source box. If both types of movables
enter the identical box, a collided event signals a dangerous condition, which must be reacted
by stopping the robot's motion.
States can be left as soon as any event indicates that the human co-worker completely leaves

the scene (humanLeaves) or the movable enters any other box (i.e., in case of the source A all
events that end by -entersBad, -entersGood, or -enterssrcB). If the initial state is reached,
the event endCollab is produced to signal the end of the collaboration.
Within this automaton, states incorporate entry actions for recon�guration, more precisely,

they activate or deactivate features, which indicate situations of movables. Whereas these sit-
uations are examined by the adaptive Petri net, produced events are consumed by another
recon�guration automation that re�ects the adaptation mode of the robotic co-worker.

Recon�guration Automaton: Cobotics

One more automaton is de�ned to directly re�ect the robotic co-workers' adaptation modes as
proposed in Figure 6.1 for the DLR co-worker. Figure 6.14 illustrates that the conceptional
automation is directly mapped to states of MATE-based recon�guration automaton. Each state
recon�gures the feature-represented adaptation mode by �rst deactivating the complete mode
sub-tree and, secondly, activating the respective mode feature.
The autonomous mode is considered to be the initial state of adaptation. When a human

worker enters the awareness zone (event inPerception), one of the interaction modes is activated.
Vice versa, if the human leaves the awareness zone (event outOfPerception), the automaton
switches back to autonomous mode. More elaborate interaction is performed in collaborative
mode if the startCollab event is signaled. As soon as event endCollab is detected, the co-
worker falls back to human-friendly mode. Finally, each occurrence of collided leads to the
activation of the fault mode, which is expected to halt the robot. This state can only be left
by letting the simulated human leave the position in front of the robot, indicated by either the
event inPerception or outOfPerception.
The coworker's recon�guration automaton is the �nal sink for all events and determines the

adaptation mode. This global state is used in the adaptive Petri net to decide which requirements
should be asserted in a speci�c situation.

Adaptive Petri Net

Cinderella's application logic is re�ected by the adaptive Petri net, which is depicted in Fig-
ure 6.15. Transition names are denoted at the bottom of each transition box. Initially, place

117

6. Experimental Study: Self-Adaptive Co-Working Robots

Figure 6.13.: Recon�guration automaton for one Cinderella picking box. Initially, no movables
are inside the box. Events from body part movement trigger transitions. Entering
a node causes feature selections that indicate the recent situation. Newly produced
events are sent to the robotic co-worker's automaton.

118

6.3. Testing Cinderella with MATE

Figure 6.14.: Cobotics recon�guration automaton for Cinderella. Event-based edges switch be-
tween recon�guration nodes. Each node activates a respective feature to indicate to
current adaptation mode.

init contains one token, so that transition initialization is activated. Additionally, there is
one token in A, which re�ects the assumption that the autonomous process always starts picking
from source A.
Besides the presence of a token in init, the transition initializing is unconditioned because

its application condition is always true. The �rst action stopWorkflow guarantees that no
work�ow is running and no interaction with previous test runs occurs. Afterwards, the correct
adaptation bounds are installed from �le bounds-cinderella.js as well as the autonomous
Cinderella work�ow from �le test.js (cf. Appendix 7.2). Finally, a token is placed in ready.
The Cinderella application runs completely in parallel to the test model. Synchronization is

reached by waiting for a re-entry of a certain situation (e.g., when the robot picks from source

A), which triggers a stepping action in the test-automation connector (cf. Section 6.3.1). In
that way, all actions of type assertEnter(...) will be activated and wait before an expected
physical action is performed. Thus, the test driver runs in debugging-like mode, where each
physical operation is �rst con�rmed before another (autonomous) one is started.
From the place ready, the token is consumed by a timer transition, which adds a budget of

virtual time of size 1 to all stimulus models (indicated by the wildcard sign *). Consequently, the
spatial and the movement model for body parts are triggered. The spatial model switches to a
position within the awareness zone and produces an inPerception event, which further activates
the human-friendly mode (cf. Figures 6.11 and 6.14). Although the body-part movement model
would now consume the time budget as well and play either actions that make the simulated
human interact with one of the sources, the inPerception event lets it switch to a neutral
position again (cf. Figure 6.12). Thus, in this situation, the body part movement model has
no direct e�ect on the context situation. In the second round of execution, the spatial model
reaches the nearBy position so that the movement model contributes to the context.
The next state establishes after storing a token in place pick. The activated transition depends

on both the current adaptation mode and the currently preferred source box. The latter is
determined by putting a token in either place srcA, which is the initial condition, or place srcB.
To model this distinction, transitions consume from one of these places and put one token in the

119

6. Experimental Study: Self-Adaptive Co-Working Robots

Figure 6.15.: Adaptive Petri net for Cinderella. The application logic is modeled depending on
the current adaptation mode. Thus, the active feature selection determines what is
asserted. Two timer transitions control the stimulus models.

120

6.3. Testing Cinderella with MATE

other box place, which creates the alternating behavior. Exceptions are the fault mode and the
collaborative mode, in which the source preference is ignored. Whereas in fault mode, no picking
happens at all, in the collaborative mode the source for the robotic co-worker is determined by
the current position of the human. This behavior is modeled by the application conditions of
both transitions collabA and collabB. Furthermore, the fault mode is re�ected by the transition
collided. It asserts that the robot movement is paused and sets back the net to a state before
executing the timer transition.
All other transitions that consume from the place pick perform assertions to verify the para-

metric adaptation in Cinderella. Firstly, the assertEnter(...) action is executed, which passes
as soon as the connector detects that the adaptation bound belonging to the respective box is
entered. If another adaptation bound is entered, the veri�cation fails, and the test is canceled.
Secondly, the events of type gripperEnters*, which are produced while waiting for the expected
gripper state, are applied to the model. For this purpose, the action synchronize is executed.
Thirdly, by running one of the actions assertSpeedMax(...) or assertSpeedMin(...), respec-
tive functions within the test-automation connector are triggered, where the received messages
are checked for the tolerated speed according to requirement /R1/. Finally, a token is produced
and put into place postPick.
The following timer transitions steer the body part movement model so that we can also

simulate another adaptation mode while placing the work piece into a sink. Outgoing from the
place place, either the transition collided sets back the state for fault mode or the parametric
adaptation is veri�ed. Because there is no behavioral di�erence between the two interaction
modes in the phase of placing an object to a sink, the respective branches of control mode
can be checked equally in the transition placeFriendly. For autonomous mode, the transition
placeAuto performs the veri�cation. Both transitions do not distinguish between the boxes good
and bad so that an or (i.e., o(...)) expression is provided as parameter of assertEnter(...).
Finally, the state is set back to ready to restart the control �ow.
The adaptive Petri net models a counterpart of the actual autonomous work�ow (i.e., the black-

box behavior) and is synchronized to it. Control-�ow synchronization is performed by waiting
for certain positions of the robot, followed by transferring recognized events into the model at
run-time. Both parametric (i.e., speed settings) and behavioral adaptation can be veri�ed by
determining concrete assertions depending on the robotic co-worker's adaptation mode. The
complete set of test models is executed within an interpreter and its actions are applied by the
provided test-automation connector, which is elaborated in the next section.

6.3.3. Testing Cinderella in the Loop

MATE interprets the introduced models in the loop so that the test can directly observe the
corresponding virtual and physical states. An impression of test model execution is given in
Figure 6.16. In Figure 6.16a, the robot is shown with the WEIR software running on a notebook.
WEIR's dashboard visualizes the software' state and connectivity metrics. MATE runs in the
background and communicates with the software. A beamer projects MATE's user interface
state to the wall in the background.
In Figure 6.16b, the user interface is depicted in more detail. On the bottom, the reachability

tree is unfolded. Each of the explored states can be mapped to the parts of the test model.
For this purpose, MATE colors the active elements in blue, respectively with a bold frame. For
instance, all places with tokens in the adaptive Petri net are marked as well as the current area
within the spatial model, the active states of stimulus, and the recon�guration automata.
Before starting the ITL simulation, the tester sets up the connector, which was programmed

in Scala to co-evolve it with the actual test model. Furthermore, to automatically traverse the
state space, a traversal strategy has to be provided. For this purpose, the default randomized
strategy can be used in Cinderella.
With these settings, MATE runs the test process without any human intervention and only

121

6. Experimental Study: Self-Adaptive Co-Working Robots

(a) The robot operates autonomously while MATE interprets the test model and veri�es movements.

(b) Zoomed-in MATE user interface. At the bottom, the reachability tree is explored according to a given
strategy. Blue-marked model elements with a bold frame indicate the current state of the execution.

Figure 6.16.: Running Cinderella test.

122

6.4. Evaluation Verdict and Summary

1. Context 2. Adaptation

Context VM

Adaptive Petri Nets

Stimulus Models

Reconfiguration
Model

Adaptation VM

Model Types

Timer Transitions

Spatial zones and interactions

Robot workflow

Body movement

Cobotics automation

Cobotics modes

Aspects in Cinderella, which
relate to the requirement

Legend

features

supports

VM … Variability Model

Requirements of SAS testing

Figure 6.17.: Representation of proposed concepts in Cinderella.

stops if an error occurs. In this way, a long-running test can be performed, and the application's
state space discovered deeply so that the designers reach a high con�dence in their code's quality
and safety.

6.4. Evaluation Verdict and Summary

The Cinderella application deals for an experimental study to demonstrate the e�ectiveness of
MATE and its conceptional foundation. Consequently, the models, which were designed for
testing the correctness of self-adaptive logic behind Cinderella, cover all proposed concepts from
Chapter 4.3, as Figure 6.17 suggests. The illustration corresponds to the problem-solution �t,
which was earlier discussed in Section 4.1, whereas conceptional solutions are now replaced by
concrete models of Cinderella. Each of these aspects has been modeled by one of MATE's model
types to demonstrate its e�ectiveness.
More precisely, the variability within spatial zones and interactions have been modeled as

context variability model. An adaptive Petri net speci�es, how the robot is expected to operate
its work�ow depending on the contextual situation. Using stimulus models, the mocked body
movement of the human co-worker is controlled from timer transitions that appear in the adap-
tive Petri net speci�cation. Furthermore, cobotic modes, as proposed by the DLR engineers,
have been directly mapped to features of the adaptation mode variability model. Finally, the
recon�guration automaton de�nes the expected switching behavior between those modes.
In summary, all model types that have been proposed by MATE are relevant to solve the

speci�c requirements of the cobot and self-adaptive application Cinderella. This �nding suggests
that the introduced concepts are e�ective and required for ensuring the quality of systems with
such degree of self-adaptivity.

123

7. Summary and Discussion

In this thesis, a model-driven solution to the problem of testing SAS has been proposed. Thus, the
overall quality management of autonomous applications, which typically employ self-adaptivity,
is simpli�ed. With the introduced concepts, models, and reference architecture in hand, test
engineers are equipped to tackle resilience more e�ently than with classic model-based testing
or plain manual test-case de�nition. In correspondence to the problems that were stated in
Section 1.1, the following solutions have been elaborated:

(S1) A set of modeling-related concepts and models have been described in Chapter 4
to overcome problem (P1) of state space explosion. The proposed models provide special
expressiveness, which allows for specifying a test generation tool set, respectively a simula-
tor, to explore this state space e�ciently. Known and necessary requirements of SAS test
approaches, which we worked out of related work in Chapter 3, are all met by this novel
approach.

(S2) With the reference architecture of MATE in Chapter 5, we have provided a solution to
problem (P2) about the need of appropriate tooling for SAS testing so that the conceptional
proposals of (S1) can be used technically.

The concepts proposed in this thesis are mainly based on models and, especially when consid-
ering test-case generation, the overall approach relates strongly to model-driven software devel-
opment. From this perspective, the automation of test design is fostered by de�ning adequate
models, which, on the one hand, convey all necessary information, and, on the other hand, are
concise enough for managing them e�ciently.
The richness of information of the used models has been demonstrated in examples and the

experimental study. The models' conciseness is an e�ect of the amount of automated reasoning
performed by the generator or, respectively, simulator. With traditional MBT approaches, a
tester would have been required to design a behavioral model of the system for each sequence of
contextual changes, which involves the explicit de�nition of these sequences, manually reasoning
about their consequences and de�ning the expected response of the SASuT. The new model
format leads, thus, to an enormous e�ciency gain in SAS testing.
However, on the other side, models that are composed and reasoned about automatically make

it hard for engineers to keep an overview of the e�ects of manual changes to the models. For
instance, when a test modeler alters the position of a timer transition within an adaptive Petri
net, completely di�erent interactions of the SASuT with the generated contexts may be observed.
Such correlations are sometimes hard to understand and must be compensated by the tooling
that allows for inspecting the results of a speci�c model change. With MATE, a respective tool
chain has been realized, which comprises components to foster such insights. For instance, the

125

7. Summary and Discussion

reachability tree can be manually explored, and the reached state of a model instance is visualized
right in the editors, where the models were conducted. These built-in mechanisms help engineers
to overcome the cognitive gap between modeling and test-case execution.
Static artifacts, namely variability models, mainly span the space of situations of both context

and adaptation modes, which relate to each other dynamically. For variability modeling, we found
on feature models, which are easy to manage and combine well with value-space classi�cation
and boundary analysis from traditional testing. The constraints that a feature tree inherits can
completely be mapped to propositional logic, which is used by the interpretation in MATE.
An alternative to this approach would be a more mature formalism, such as delta modeling,
which allows for further formalizing and thus, controlling, the dynamic change in the de�nition
of context and adaptation.
In conclusion, the introduced models and their implementations not only follow the natural

process of de�ning dynamic contextual in�uences and, afterward, their impact on a long-running
system, but also leverage the ideas from known approaches onto a new level. Instead of only
solving a subset of the requirements that authors found for testing SAS, this thesis proposes an
integrated method to match all known characteristics.
Furthermore, with the elaborated experimental study on Cinderella in Chapter 6, support

for the initially stated hypothesis (cf. Section 1.3) has been demonstrated. The experiment
con�rms that MATE, with its conceptional background, indeed provides a new, more compre-
hensive coverage of an SAS' dynamics and its behavioral state space, which now can be tested
in an automated fashion. Cinderella not only is an example of a long-running, cooperative, and
autonomous system, it also crosscuts the requirements that were found in related work. Both
context dynamics and history of the self-adaptive system is relevant for test execution, which
would require a large bandwidth of models or a single large model with classic MBT approaches.

7.1. Summary of Contributions

This thesis contributes to the �elds of self-adaptive software, to model-based testing research,
and variability modeling. Whereas many concepts as feature models, communicating automata,
dynamic software products lines, and test-case generation are considered as state of the art, the
integration of all those �ndings is novel. Furthermore, the transitions and the level of conditions
to transitions as extensions to Petri nets in combination with externalized functions and timer
transitions have not been discussed before in the literature before. Also, the complete modeling
process following the counter feedback loop principle is novel to SAS testing.
The brie�y announced main contributions of this thesis are:

(C1) Model-driven methods for testing before non-covered regions of an SAS' state space
based on generated test-cases or simulation in the loop

(C2) A comprehensive formalization in the form of metamodels that implement all aspects
of the SAS test methods

(C3) A reference architecture for an integrated test environment (MATE) that realizes the
proposed models and allows for employing them along a standard dynamic test process

Additional to these major ones, several minor contributions are listed in the following:

Minor Contributions in Chapter 4

• Regarding (C1) Model-based Testing

� A conceptional infrastructure to foster the dual use of test-case generation and simu-
lation in the loop

126

7.2. Open Research Questions

� Timer transitions as novel concept for communicating between models in a quantita-
tive manner

� A step-wise extension starting from Petri nets, which allows for employing the concepts
and customizing them for the required level of coverage

Minor Contributions in Chapter 5

• Regarding (C1) Model-Based Testing

� A tooling environment, which enables testers to perform all tasks of a standard process
of dynamic testing based on the introduced models and architecture

• Regarding (C2) Comprehensive Formalization

� Outgoing from the mathematical formalization in Chapter 4, a re-formalization as
object-oriented metamodels is contributed

• Regarding (C3) Integrated Test Environment

� A �exible operator-based framework for extending the models or specifying new stim-
ulus models

� A test-automation framework for SAS testing

� An interactive user interface for step-wise simulation of SAS

7.2. Open Research Questions

Despite MATE and its conceptional background provide a more e�ective solution than earlier
approaches, many open questions and future research challenges remain untouched.
One of those unsolved challenges is that future autonomous systems will most probably require

real-time features. Autonomous cars, mobile robots, and air vehicles must respond quickly to
changes in the environment such as newly detected obstacles, tra�c situations or other incidents.
The hereby proposed solutions do not provide such real-time mechanisms despite they have been
investigated for parts of the used model types, such as timed Petri nets.
For systems with real-time capabilities, also the hereby employed approaches concerning dis-

crete virtual time are insu�cient. Continuous sensor input requires a more comprehensive logic.
Another challenging trend is machine learning. Systems that learn do not always create re-

producible behavior, which can be tested in advance. On the other side, such learning systems
are more e�ective in unanticipated conditions, which we neglected in this thesis. However, even
with such a technology, it would be necessary to limit a respective system in certain behavioral
categories, because still person's health and property must be protected. In these cases, MATE
can be used to create a larger con�dence in an SAS' reliability.

§

127

Bibliography

[ABCF11] Uwe Aÿmann, Nelly Bencomo, Betty HC Cheng, and Robert B France. Models@
run.time (dagstuhl seminar 11481). Dagstuhl Reports, 1(11):91�123, 2011.

[ABZ12] Dhaminda B. Abeywickrama, Nicola Bicocchi, and Franco Zambonelli. SOTA:
Towards a General Model for Self-Adaptive Systems. In IEEE 21st International
Workshop on Enabling Technologies: Infrastructure for Collaborative Enterprises
(WETICE), 2012, pages 48�53. IEEE, 2012.

[ACF+09] Mathieu Acher, Philippe Collet, Franck Fleurey, Philippe Lahire, Sabine Moisan,
Jean-Paul Rigault, et al. Modeling Context and Dynamic Adaptations with Feature
Models. In Proceedings of the 4th International Workshop Models@ run.time, 2009.

[ACL+11] Mathieu Acher, Philippe Collet, Philippe Lahire, Sabine Moisan, and Jean-Paul
Rigault. Modeling Variability from Requirements to Runtime. 2011 16th IEEE
International Conference on Engineering of Complex Computer Systems, pages
77�86, April 2011.

[ADLMW09] Jesper Andersson, Rogerio De Lemos, Sam Malek, and Danny Weyns. Modeling
Dimensions of Self-adaptive Software Systems. In Software Engineering for Self-
Adaptive Systems, pages 27�47. Springer, 2009.

[AHPE07] Mourad Alia, Svein Hallsteinsen, Nearchos Paspallis, and Frank Eliassen. Mana-
ging Distributed Adaptation of Mobile Applications. In Distributed Applications
and Interoperable Systems, pages 104�118. Springer, 2007.

[AHZ13] Dhaminda B. Abeywickrama, Nicklas Hoch, and Franco Zambonelli. SimSOTA:
Engineering and Simulating Feedback Loops for Self-Adaptive Systems. In Pro-
ceedings of the International C* Conference on Computer Science and Software
Engineering, C3S2E '13, pages 67�76, New York, NY, USA, 2013. ACM.

[ALRL04] Algirdas Aviºienis, J-C Laprie, Brian Randell, and Carl Landwehr. Basic Concepts
and Taxonomy of Dependable and Secure Computing. IEEE Transactions on
Dependable and Secure Computing, 1(1):11�33, 2004.

[ANKH+08] Y. Al-Nashif, A.A. Kumar, S. Hariri, Guangzhi Qu, Yi Luo, and F. Szidarovsky.
Multi-Level Intrusion Detection System (ML-IDS). In International Conference
on Autonomic Computing (ICAC), pages 131�140, 2008.

129

Bibliography

[ASP13a] Konstantinos Angelopoulos, Vítor E. Silva Souza, and João Pimentel. Require-
ments and Architectural Approaches to Adaptive Software Systems: A Compar-
ative Study. In Proceedings of the 8th International Symposium on Software En-
gineering for Adaptive and Self-Managing Systems, SEAMS '13, pages 23�32, Pis-
cataway, NJ, USA, 2013. IEEE Press.

[ASP13b] Konstantinos Angelopoulos, Vítor E Silva Souza, and Joao Pimentel. Require-
ments and Architectural Approaches to Adaptive Software Systems: A Compara-
tive Study. In Proceedings of the 8th International Symposium on Software Engi-
neering for Adaptive and Self-Managing Systems, pages 23�32. IEEE Press, 2013.

[Bat05] Don Batory. Feature Models, Grammars, and Propositional Formulas. Springer,
2005.

[BBF09] Gordon Blair, Nelly Bencomo, and Robert B France. Models@ run.time. Computer,
42(10), 2009.

[BDG+07] Paul Baker, Zhen Ru Dai, Jens Grabowski, Oystein Haugen, Ina Schieferdecker,
and Clay Williams. Model-Driven Testing: Using the UML Testing Pro�le.
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2007.

[Bec03] Kent Beck. Test-Driven Development: By Example. Addison-Wesley Professional,
2003.

[BFG+02] Jan Bosch, Gert Florijn, Danny Greefhorst, Juha Kuusela, J Henk Obbink, and
Klaus Pohl. Variability Issues in Software Product Lines. In Software Product-
Family Engineering, pages 13�21. Springer, 2002.

[BGT08] Luciano Baresi, Sam Guinea, and Giordano Tamburrelli. Towards Decentralized
Self-adaptive Component-based Systems. In Proceedings of the 2008 Interna-
tional Workshop on Software Engineering for Adaptive and Self-managing Systems,
SEAMS '08, pages 57�64, New York, NY, USA, 2008. ACM.

[BH06] Tom Broens and Aart Van Halteren. SimuContext: Simply Simulate Context.
In International Conference on Autonomic and Autonomous Systems (ICAS'06),
pages 45�45, July 2006.

[BHA12] Nelly Bencomo, Svein Hallsteinsen, and Eduardo Almeida. A View of the Land-
scape of Dynamic Software Product Lines. Computer, 2012.

[BM09] Mikael Berndtsson and Jonas Mellin. Eca rules. In Encyclopedia of Database
Systems, pages 959�960, Boston, MA, 2009. Springer US.

[CdLG+09] BettyH.C. Cheng, Rogério de Lemos, Holger Giese, Paola Inverardi, Je� Magee,
Jesper Andersson, Basil Becker, Nelly Bencomo, Yuriy Brun, Bojan Cukic, Gio-
vanna Di Marzo Serugendo, Schahram Dustdar, Anthony Finkelstein, Cristina
Gacek, Kurt Geihs, Vincenzo Grassi, Gabor Karsai, HolgerM. Kienle, Je� Kramer,
Marin Litoiu, Sam Malek, Ra�aela Mirandola, HausiA. Müller, Sooyong Park,
Mary Shaw, Matthias Tichy, Massimo Tivoli, Danny Weyns, and Jon Whittle.
Software Engineering for Self-Adaptive Systems: A Research Roadmap. In Bet-
tyH.C. Cheng, Rogério de Lemos, Holger Giese, Paola Inverardi, and Je� Magee,
editors, Software Engineering for Self-Adaptive Systems, volume 5525 of Lecture
Notes in Computer Science, pages 1�26. Springer Berlin Heidelberg, 2009.

[CDPP96] David M Cohen, Siddhartha R Dalal, Jesse Parelius, and Gardner C Patton. The
Combinatorial Design Approach to Automatic Test Generation. IEEE Software,
13(5):83�88, 1996.

130

Bibliography

[CE00] Krzysztof Czarnecki and Ulrich W. Eisenecker. Generative Programming: Methods,
Tools, and Applications. ACM Press/Addison-Wesley Publishing Co., New York,
NY, USA, 2000.

[CGFP09] Carlos Cetina, Pau Giner, Joan Fons, and Vicente Pelechano. Autonomic Comput-
ing Through Reuse of Variability Models at Runtime: The Case of Smart Homes.
Computer, 42(10):37�43, 2009.

[CK05] Krzysztof Czarnecki and Chang Hwan Peter Kim. Cardinality-Based Feature Mo-
deling and Constraints : A Progress Report. In Proceedings of the International
Workshop on Software Factories, pages 16�20, 2005.

[CN01] Paul Clements and Linda Northrop. Software Product Lines: Practices and Pat-
terns. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2001.

[Dey01] A.K. Dey. Understanding and Using Context. Personal and Ubiquitous Computing,
5(1):4�7, 2001.

[DMFM10] Tom Dinkelaker, Ralf Mitschke, Karin Fetzer, and Mira Mezini. A Dynamic Soft-
ware Product Line approach Using Aspect Models at Runtime. In 5th Domain-
Speci�c Aspect Languages Workshop, 2010.

[dSdL11] Carlos Eduardo da Silva and Rogério de Lemos. Dynamic Plans for Integration
Testing of Self-Adaptive Software Systems. In Proceedings of the 6th international
Symposium on Software Engineering for Adaptive and Self-managing Systems -
SEAMS '11, page 148, New York, New York, USA, 2011. ACM Press.

[ESKR14] Benedikt Eberhardinger, Hella Seebach, Alexander Knapp, and Wolfgang Reif.
Towards Testing Self-Organizing, Adaptive Systems. In Testing Software and Sys-
tems, volume 8763 of Lecture Notes in Computer Science, pages 180�185. Springer
Berlin Heidelberg, 2014.

[FDB+08] Franck Fleurey, Vegard Dehlen, Nelly Bencomo, Brice Morin, and Jean-Marc
Jézéquel. Modeling and Validating Dynamic Adaptation. In Proceedings of the
International Conference on Model Driven Engineering Languages and Systems,
pages 97�108. Springer, 2008.

[GCH+04] David Garlan, Shang-Wen Cheng, An-Cheng Huang, Bradley Schmerl, and Peter
Steenkiste. Rainbow: Architecture-Based Self-Adaptation with Reusable Infras-
tructure. Computer, 37(10):46�54, 2004.

[GGC+16] A. Giusti, J. Guzzi, D. C. Cire?an, F. L. He, J. P. Rodríguez, F. Fontana,
M. Faessler, C. Forster, J. Schmidhuber, G. D. Caro, D. Scaramuzza, and L. M.
Gambardella. A Machine Learning Approach to Visual Perception of Forest Trails
for Mobile Robots. IEEE Robotics and Automation Letters, 1(2):661�667, July
2016.

[GHJV94] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Pat-
terns: Elements of Reusable Object-Oriented Software. Addison-Wesley Profes-
sional, 1994.

[Gre10] Thomas Grechenig. Softwaretechnik / Mit Fallbeispielen aus realen Entwick-
lungsprojekten. Pearson Studium, 2010.

[GSC09] David Garlan, Bradley Schmerl, and Shang-Wen Cheng. Software Architecture-
Based Self-Adaptation. In Autonomic Computing and Networking, pages 31�55.
Springer US, 2009.

131

Bibliography

[Hal07] Ibrahim A Halloun. Modeling Theory in Science Education, volume 24. Springer
Science & Business Media, 2007.

[Hel12a] Michiel Helvensteijn. Dynamic Delta Modeling. In Proceedings of the 16th Inter-
national Software Product Line Conference-Volume 2, pages 127�134. ACM, 2012.

[Hel12b] Michiel Helvensteijn. Dynamic Delta Modeling. In Proceedings of the 16th Inter-
national Software Product Line Conference-Volume 2, pages 127�134. ACM, 2012.

[HHPS08] S. Hallsteinsen, M. Hinchey, Sooyong Park, and K. Schmid. Dynamic Software
Product Lines. Computer, 41(4):93�95, April 2008.

[HIR03] Karen Henricksen, Jadwiga Indulska, and Andry Rakotonirainy. Generating Con-
text Management Infrastructure From High-Level Context Models. In In Proceed-
ings of the 4th International Conference on Mobile Data Management (MDM)-
Industrial Track, 2003.

[HKW08] Florian Heidenreich, Jan Kopcsek, and Christian Wende. FeatureMapper: Map-
ping Features to Models. In Companion of the 30th International Conference on
Software Engineering, ICSE Companion '08, pages 943�944, New York, NY, USA,
2008. ACM.

[Hoa78] Charles Antony Richard Hoare. Communicating Sequential Processes. In The
Origin of Concurrent Programming, pages 413�443. Springer, 1978.

[Hof98] Douglas Ho�man. A Taxonomy for Test Oracles. In Quality Week, volume 98,
pages 52�60, 1998.

[Hor01] Paul Horn. Autonomic computing: IBM's Perspective on the State of Information
Technology. 2001.

[HSF+11] Sami Haddadin, Michael Suppa, Stefan Fuchs, Tim Bodenmüller, Alin Albu-
Schä�er, and Gerd Hirzinger. Towards the Robotic Co-Worker. In Robotics Re-
search, pages 261�282. Springer, 2011.

[HSSF06] S. Hallsteinsen, E. Stav, A. Solberg, and J. Floch. Using Product Line Tech-
niques to Build Adaptive Systems. In Proceedings of the Software Product Line
Conference, 2006 10th International, pages 10 pp.�150, 2006.

[IBM06] IBM. An Architectural Blueprint for Autonomic Computing. IBM White Paper,
2006.

[IEE13a] Software and Systems Engineering, Software Testing Part 1: Concepts and De�-
nitions. ISO/IEC/IEEE 29119-1:2013(E), pages 1�64, Sept 2013.

[IEE13b] Software and Systems Engineering, Software Testing Part 2: Test Processes.
ISO/IEC/IEEE 29119-2:2013(E), pages 1�68, Sept 2013.

[IEE13c] Software and Systems Engineering, Software Testing Part 3: Test Documentation.
ISO/IEC/IEEE 29119-3:2013(E), pages 1�138, Sept 2013.

[ISO16] Systems and Software Engineering � Systems and Software Quality Requirements
and Evaluation (SQuaRE) � System and Software Quality Models. ISO/IEC
25010:2011, pages 1�34, 2016.

[JHF11] Martin Fagereng Johansen, Øystein Haugen, and Franck Fleurey. Properties of
Realistic Feature Models Make Combinatorial Testing of Product Lines Feasible,
pages 638�652. Springer Berlin Heidelberg, 2011.

132

Bibliography

[JZM07] Ke Jiang, Lei Zhang, and S. Miyake. OCL4X: An Action Semantics Language for
UML Model Execution. In Computer Software and Applications Conference, 2007.
COMPSAC 2007. 31st Annual International, volume 1, pages 633�636, July 2007.

[KACC11] Tariq M King, Andrew A Allen, Rodolfo Cruz, and Peter J Clarke. Safe Runtime
Validation of Behavioral Adaptations in Autonomic Software. In Autonomic and
Trusted Computing, pages 31�46. Springer, 2011.

[KC03] Je�rey O Kephart and David M Chess. The Vision of Autonomic Computing.
Computer, 36(1):41�50, 2003.

[KCH+90] Kyo C Kang, Sholom G Cohen, James A Hess, William E Novak, and A Spencer
Peterson. Feature-Oriented Domain Analysis (FODA) Feasibility Study. Technical
report, DTIC Document, 1990.

[KFH15] H. Kopetz, B. Fromel, and O. Hoftberger. Direct Versus Stigmergic Information
Flow in Systems-of-Systems. In 10th System of Systems Engineering Conference
(SoSE), 2015, pages 36�41, 2015.

[Kin76] James C King. Symbolic Execution and Program Testing. Communications of the
ACM, 19(7):385�394, 1976.

[KPPR10] Konstantinos Kakousis, Nearchos Paspallis, George Angelos Papadopoulos, and
Pedro Antonio Ruiz. ECEASST Testing Self-Adaptive applications with Simula-
tion of Context Events. Electronic Communications of the EASST, 28, 2010.

[Lad97] Robert Laddaga. Self Adaptive Software, DARPA Broad Agency An-
nouncement (BAA) 98-12 Proposer Information Pamphlet - Excerpt.
http://people.csail.mit.edu/rladdaga/BAA98-12excerpt.html, 1997.

[Lap08] Jean-Claude Laprie. From Dependability to Resilience. In 38th IEEE/IFIP Inter-
national Conference on Dependable Systems and Networks, pages G8�G9. Citeseer,
2008.

[LK06] Jaejoon Lee and K. C. Kang. A Feature-Oriented Approach to Developing Dynam-
ically Recon�gurable Products in Product Line Engineering. In Software Product
Line Conference, 2006 10th International, pages 10�140, 2006.

[LK10] Kwanwoo Lee and Kyo C Kang. Usage Context as Key Driver for Feature Selection.
In Software Product Lines: Going Beyond, pages 32�46. Springer, 2010.

[LLH05] Anatole Le, Ond°ej Lhoták, and Laurie Hendren. Using Inter-Procedural Side-
e�ect Information in JIT Optimizations. In Compiler Construction, pages 287�304.
Springer, 2005.

[LS00] Henry Lieberman and Ted Selker. Out of Context: Computer Systems that Adapt
to, and Learn from, Context. IBM Systems Journal, 39(3.4):617�632, 2000.

[MA00] Bruno Marre and Agnes Arnould. Test Sequences Generation from Lustre Descrip-
tions: Gatel. In Automated Software Engineering, 2000. Proceedings ASE 2000.
The Fifteenth IEEE International Conference on, pages 229�237. IEEE, 2000.

[Mar95] B. Marre. LOFT: A Tool for Assisting Selection of Test Data Sets from Algebraic
Speci�cations. In Theory and Practice of Software Development, pages 799�800.
Springer, 1995.

133

Bibliography

[MBS10] André Maaÿ, Danilo Beucho, and Arnor Solberg. Adaptation Model and Validation
Framework Final Version � (DiVA deliverable D4.3), 2010.

[MC11] Radu Muschevici and Dave Clarke. Modular Modelling of Software Product Lines
with Feature Nets. In SEFM 2001 proceedings, pages 318�333, 2011.

[McC93] John McCarthy. Notes on Formalizing Context. In Proceedings of the Thirteenth
International Joint Conference on Arti�cial Intelligence, pages 555�560. Morgan
Kaufmann, 1993.

[MCMO10] Luis Merino, Fernando Caballero, Ivan Maza, and Aníbal Ollero. Automatic Forest
Fire Monitoring and Measurement Using Unmanned Aerial vehicles. In Proceedings
of International Conference on Forest Fire Research. Citeseer, 2010.

[MCP10] Radu Muschevici, Dave Clarke, and J. Proenca. Feature Petri Nets. In Proceed-
ings of the 14th International Software Product Line Conference (SPLC 2010),
volume 2, 2010.

[MDK11] Nagabhushan Mahadevan, Abhishek Dubey, and Gabor Karsai. Application of
Software Health Management Techniques. In Proceedings of the 6th International
Symposium on Software Engineering for Adaptive and Self-Managing Systems,
SEAMS '11, pages 1�10, New York, NY, USA, 2011. ACM.

[Mil80] Robin Milner. A Calculus of Communicating Systems. Lecture Notes in Computer
Science, vol. 92, 1980.

[MLSW14] Stephan Mennicke, Malte Lochau, Julia Schroeter, and Tim Winkelmann. Au-
tomated Veri�cation of Feature Model Con�guration Processes Based on Work-
�ow Petri Nets. In Proceedings of the 18th International Software Product Line
Conference-Volume 1, pages 62�71. ACM, 2014.

[Mye79] Glenford J. Myers. The Art of Software Testing. John Wiley & Sons, Inc., New
York, NY, USA, 1979.

[NG15] Stefan Niemczyk and Kurt Geihs. Adaptive Run-Time Models for Groups of Au-
tonomous Robots. In 10th International Symposium on Software Engineering for
Adaptive and Self-Managing Systems (SEAMS), 2015 IEEE/ACM, pages 127�133.
IEEE, 2015.

[NL13] Kai Nehring and Peter Liggesmeyer. Testing the Recon�guration of Adaptive
Systems. In Proceedings of The Fifth International Conference on Adaptive and
Self-Adaptive Systems and Applications (ADAPTIVE), pages 14�19. XPS Press,
2013.

[ÖA97] Pinar Öztürk and Agnar Aamodt. Towards a Model of Context for Case-Based
Diagnostic Problem Solving. In Context-97; Proceedings of the Interdisciplinary
Conference on Modeling and Using Context, pages 198�208, 1997.

[OGT+99] Peyman Oreizy, Michael M Gorlick, Richard N Taylor, Dennis Heimbigner, Gre-
gory Johnson, Nenad Medvidovic, Alex Quilici, David S Rosenblum, and Alexan-
der L Wolf. An Architecture-Based Approach to Self-Adaptive Software. IEEE
Intelligent Systems, pages 54�62, 1999.

[OMSM09] Sebastian Oster, Florian Markert, Andy Schürr, and Werner Müller. Integrated
Modeling of Software Product Lines with Feature Models and Classi�cation Trees.
In Proceedings of the 1st International Workshop on Model-Driven Approaches in
Software Product Line Engineering (MAPLE 2009). CEUR, 2009.

134

Bibliography

[Par76] David Lorge Parnas. On the Design and Development of Program Families. IEEE
Transactions on Software Engineering, pages 1�9, 1976.

[Pet62] Carl Adam Petri. Kommunikation mit Automaten. Technische Hochschule Darm-
stadt, 1962.

[Pre97] Christian Prehofer. Feature-Oriented Programming: A Fresh Look at Objects. In
Proceedings of ECOOP'97 � Object-Oriented Programming: 11th European Con-
ference Jyväskylä, Finland, June 9�13, 1997 Proceedings, pages 419�443. Springer,
1997.

[RAM+06] Claudia Raibulet, Francesca Arcelli, Stefano Mussino, Mario Riva, Francesco Ti-
sato, and Luigi Ubezio. Components in an Adaptive and QoS-Based Architecture.
In Proceedings of the 2006 International Workshop on Self-Adaptation and Self-
Managing Systems, SEAMS '06, pages 65�71, New York, NY, USA, 2006. ACM.

[Rei05] Stuart Reid. The Art of Software Testing, Second Edition. Software Testing,
Veri�cation and Reliability, 15(2):136�137, 2005.

[RH04] Venkatesh Prasad Ranganath and John Hatcli�. Pruning Interference and Ready
Dependence for Slicing Concurrent Java Programs. In Compiler Construction,
pages 39�56. Springer, 2004.

[RSPA11] Marko Rosenmüller, Norbert Siegmund, Mario Pukall, and Sven Apel. Tailoring
Dynamic Software Product Lines. In ACM SIGPLAN Notices, volume 47, pages
3�12. ACM, 2011.

[RSTS11] Marko Rosenmüller, Norbert Siegmund, Thomas Thüm, and Gunter Saake. Multi-
Dimensional Variability Modeling. In Proceedings of the 5th Workshop on Varia-
bility Modeling of Software-Intensive Systems, pages 11�20. ACM, 2011.

[SAW94] Bill Schilit, Norman Adams, and Roy Want. Context-Aware Computing Applica-
tions. In Mobile Computing Systems and Applications, 1994. WMCSA 1994. First
Workshop on, pages 85�90. IEEE, 1994.

[SBG99] Albrecht Schmidt, Michael Beigl, and Hans-W Gellersen. There is More to Context
than Location. Computers & Graphics, 23(6):893�901, 1999.

[Sch16] Klaus Schwab. The Fourth Industrial Revolution. Crown Business, 2016.

[SLP04] Thomas Strang and Claudia Linnho�-Popien. A Context Modeling Survey. In
Workshop on Advanced Context Modelling, Reasoning and Management, UbiComp
- Sixth International Conference on Ubiquitous Computing, Nottingham/England,
2004.

[ST09] Mazeiar Salehie and Ladan Tahvildari. Self-adaptive Software: Landscape and
Research Challenges. ACM Transactions on Autonomous and Adaptive Systems,
4(2):1�42, May 2009.

[Sta73] Herbert Stachowiak. Allgemeine Modelltheorie, pages 131�133. Springer-Verlag,
Wien, 1973.

[SVGB05] Mikael Svahnberg, Jilles Van Gurp, and Jan Bosch. A Taxonomy of Variability
Realization Techniques. Software: Practice and Experience, 35(8):705�754, 2005.

[Tha13] Bernhard Thalheim. The Conception of the Model. In Business Information
Systems - 16th International Conference, BIS 2013, Pozna«, Poland, June 19-21,
2013. Proceedings, pages 113�124, 2013.

135

Bibliography

[TKB+14] Thomas Thuem, Christian Keastner, Fabian Benduhn, Jens Meinicke, Gunter
Saake, and Thomas Leich. FeatureIDE: An Extensible Framework for Feature-
Oriented Software Development. Science of Computer Programming, 79:70 � 85,
2014. Experimental Software and Toolkits (EST 4): A special issue of the Work-
shop on Academic Software Development Tools and Techniques (WASDeTT-3
2010).

[TRCPB07] Pablo Trinidad, Antonio Ruiz-Cortés, Joaquín Peña, and David Benavides. Map-
ping Feature Models onto Component Models to Build Dynamic Software Product
Lines. In 1st SPLC Workshop on Dynamic Software Product Line (DSPL), page
51�56, Kyoto, Japan, 2007.

[UL07] Mark Utting and Bruno Legeard. Practical Model-Based Testing: A Tools Ap-
proach. Morgan Kaufmann, 2007.

[WAP] WAPForum. User Agent Pro�le (UAProf). http://www.wapforum.org, last vi-
sisted 02/23/2015.

[WD11] Claas Wilke and Birgit Demuth. UML is Still Inconsistent! How to Improve OCL
Constraints in the UML 2.3 Superstructure. In Proceedings of the International
Workshop on OCL and Textual Modelling Colocated with TOOLS Europe 2011,
ICMT 2011, TAP 2011 and SC 2011, 2011.

[WER07] Zhimin Wang, Sebastian Elbaum, and David S Rosenblum. Automated Generation
of Context-aware Tests. In Proceedings of the 29th International Conference on
Software Engineering, 2007. ICSE 2007., pages 406�415. IEEE, 2007.

[ZD11] Christopher Zhong and Scott A. DeLoach. Runtime Models for Automatic Reor-
ganization of Multi-robot Systems. In Proceedings of the 6th International Sympo-
sium on Software Engineering for Adaptive and Self-Managing Systems, SEAMS
'11, pages 20�29, New York, NY, USA, 2011. ACM.

[ZH00] Hong Zhu and Xudong He. A Theory of Testing High Level Petri Nets. In Proceed-
ings of International Conference on Software in Theory and Practice, IFIP World
Computer Congress, pages 21�25. Citeseer, 2000.

[ZH14] Gefei Zhang and Matthias Hölzl. A Set of Metrics for States and Transitions
in UML State Machines. In Proceedings of the 2014 Workshop on Behaviour
Modelling-Foundations and Applications, BM-FA '14, pages 2:1�2:6, New York,
NY, USA, 2014. ACM.

136

APPENDICES

137

Cinderella De�nitions

1. Cinderella Adaptation Bounds

1 [

2 { "currentState": -1, "transitions": [

3 { "from": -1, "to": 0, "moveable": "GripperReal", "isEnter": true},

4 { "from": 0, "to": -1, "moveable": "GripperReal", "isEnter": false},

5 { "from": -1, "to": 1, "moveable": "hand", "isEnter": true},

6 { "from": 1, "to": -1, "moveable": "hand", "isEnter": false},

7 { "from": 0, "to": 2, "moveable": "hand", "isEnter": true},

8 { "from": 2, "to": 0, "moveable": "hand", "isEnter": false},

9 { "from": 1, "to": 2, "moveable": "GripperReal", "isEnter": true},

10 { "from": 2, "to": 1, "moveable": "GripperReal", "isEnter": false}

11] ,

12 "maxPoint": { "x": 1000.0 , "y": -250.0, "z": 300.0 },

13 "minPoint": { "x": 300.0, "y": -550.0, "z": -500.0 },

14 "name": "srcA"

15 },

16 { "currentState": -1, "transitions": [

17 { "from": -1, "to": 0, "moveable": "GripperReal", "isEnter": true},

18 { "from": 0, "to": -1, "moveable": "GripperReal", "isEnter": false},

19 { "from": -1, "to": 1, "moveable": "hand", "isEnter": true},

20 { "from": 1, "to": -1, "moveable": "hand", "isEnter": false},

21 { "from": 0, "to": 2, "moveable": "hand", "isEnter": true},

22 { "from": 2, "to": 0, "moveable": "hand", "isEnter": false},

23 { "from": 1, "to": 2, "moveable": "GripperReal", "isEnter": true},

24 { "from": 2, "to": 1, "moveable": "GripperReal", "isEnter": false}

25] ,

26 "maxPoint": { "x": 1000.0 , "y": 0.0, "z": 300.0 },

27 "minPoint": { "x": 300.0, "y": -250.0, "z": -500.0 },

28 "name": "good"

29 },

30 { "currentState": -1, "transitions": [

31 { "from": -1, "to": 0, "moveable": "GripperReal", "isEnter": true},

32 { "from": 0, "to": -1, "moveable": "GripperReal", "isEnter": false},

33 { "from": -1, "to": 1, "moveable": "hand", "isEnter": true},

34 { "from": 1, "to": -1, "moveable": "hand", "isEnter": false},

35 { "from": 0, "to": 2, "moveable": "hand", "isEnter": true},

36 { "from": 2, "to": 0, "moveable": "hand", "isEnter": false},

37 { "from": 1, "to": 2, "moveable": "GripperReal", "isEnter": true},

38 { "from": 2, "to": 1, "moveable": "GripperReal", "isEnter": false}

39] ,

40 "maxPoint": { "x": 1000.0 , "y": 250.0, "z": 300.0 },

41 "minPoint": { "x": 300.0, "y": 0.0, "z": -500.0 },

42 "name": "bad"

43 },

44 { "currentState": -1, "transitions": [

45 { "from": -1, "to": 0, "moveable": "GripperReal", "isEnter": true},

46 { "from": 0, "to": -1, "moveable": "GripperReal", "isEnter": false},

47 { "from": -1, "to": 1, "moveable": "hand", "isEnter": true},

48 { "from": 1, "to": -1, "moveable": "hand", "isEnter": false},

139

Cinderella De�nitions

49 { "from": 0, "to": 2, "moveable": "hand", "isEnter": true},

50 { "from": 2, "to": 0, "moveable": "hand", "isEnter": false},

51 { "from": 1, "to": 2, "moveable": "GripperReal", "isEnter": true},

52 { "from": 2, "to": 1, "moveable": "GripperReal", "isEnter": false}

53] ,

54 "maxPoint": { "x": 1000.0 , "y": 550.0, "z": 300.0 },

55 "minPoint": { "x": 300.0, "y": 250.0, "z": -500.0 },

56 "name": "srcB"

57 },

58 { "currentState": -1, "transitions": [

59 { "from": -1, "to": 0, "moveable": "center", "isEnter": true ,

60 "commands" [

61 { "type": "org.tud.inf.st.iotfog.adapt.SpeedCmd", "instance": { "speed": 0.3 } }

62] },

63 { "from": 0, "to": -1, "moveable": "center", "isEnter": false ,

64 "commands" [

65 { "type": "org.tud.inf.st.iotfog.adapt.SpeedCmd", "instance": { "speed": 1.0 } }

66] }

67] ,

68 "maxPoint": { "x": 3000.0 , "y": 1500.0 , "z": 1500.0 },

69 "minPoint": { "x": -400.0, "y": -1500.0, "z": -1500.0 },

70 "name": "awareness"

71 }

72]

Listing 1: bounds-cinderella.js

2. Cinderella Self-adaptive Work�ow

1 { "current": 0,

2 "tasks": [

3 { "name": "c0", "posture": "center.js", "steppable": false },

4 { "name": "c1", "posture": "centersrca.js", "steppable": false },

5 { "name": "c2", "posture": "center.js", "steppable": false },

6 { "name": "c3", "posture": "centersrca.js", "steppable": false },

7 { "name": "c4", "posture": "centersrcb.js", "steppable": false },

8 { "name": "c5", "posture": "center.js", "steppable": false },

9 { "name": "a0", "posture": "srca.js", "steppable": true },

10 { "name": "a1", "posture": "srca.js", "steppable": true },

11 { "name": "b0", "posture": "srcb.js", "steppable": true },

12 { "name": "b1", "posture": "srcb.js", "steppable": true },

13 { "name": "g0", "posture": "snka.js", "steppable": true },

14 { "name": "g1", "posture": "snka.js", "steppable": true },

15 { "name": "g2", "posture": "snka.js", "steppable": true },

16 { "name": "g3", "posture": "snka.js", "steppable": true },

17 { "name": "x0", "posture": "snkb.js", "steppable": true },

18 { "name": "x1", "posture": "snkb.js", "steppable": true },

19 { "name": "x2", "posture": "snkb.js", "steppable": true },

20 { "name": "x3", "posture": "snkb.js", "steppable": true }

21],

22

23 "edges": [

24 { "from": 0, "to": 6, "condition":

25 { "boundsRef": "srcA", "state": 1, "negation": true , "conjunction":

26 { "boundsRef": "srcA", "state": 2, "negation": true , "conjunction":

27 { "boundsRef": "srcB", "state": 2, "negation": true , "conjunction":

28 { "boundsRef": "good", "state": 2, "negation": true , "conjunction":

29 { "boundsRef": "bad", "state": 2, "negation": true } } } } } },

30 { "from": 6, "to": 1, "condition":

31 { "boundsRef": "srcA", "state": 2, "negation": true , "conjunction":

32 { "boundsRef": "srcB", "state": 2, "negation": true , "conjunction":

33 { "boundsRef": "good", "state": 2, "negation": true , "conjunction":

34 { "boundsRef": "bad", "state": 2, "negation": true } } } } },

35 { "from": 1, "to": 10, "condition":

36 { "boundsRef": "srcA", "state": 2, "negation": true , "conjunction":

37 { "boundsRef": "srcB", "state": 2, "negation": true , "conjunction":

38 { "boundsRef": "good", "state": 2, "negation": true , "conjunction":

39 { "boundsRef": "bad", "state": 2, "negation": true } } } } },

40 { "from": 1, "to": 14, "condition":

140

2. Cinderella Self-adaptive Work�ow

41 { "boundsRef": "srcA", "state": 2, "negation": true , "conjunction":

42 { "boundsRef": "srcB", "state": 2, "negation": true , "conjunction":

43 { "boundsRef": "good", "state": 2, "negation": true , "conjunction":

44 { "boundsRef": "bad", "state": 2, "negation": true } } } } },

45 { "from": 10, "to": 2, "condition":

46 { "boundsRef": "srcA", "state": 2, "negation": true , "conjunction":

47 { "boundsRef": "srcB", "state": 2, "negation": true , "conjunction":

48 { "boundsRef": "good", "state": 2, "negation": true , "conjunction":

49 { "boundsRef": "bad", "state": 2, "negation": true } } } } },

50 { "from": 14, "to": 2, "condition":

51 { "boundsRef": "srcA", "state": 2, "negation": true , "conjunction":

52 { "boundsRef": "srcB", "state": 2, "negation": true , "conjunction":

53 { "boundsRef": "good", "state": 2, "negation": true , "conjunction":

54 { "boundsRef": "bad", "state": 2, "negation": true } } } } },

55 { "from": 2, "to": 7, "condition":

56 { "boundsRef": "srcB", "state": 1, "negation": false , "conjunction":

57 { "boundsRef": "srcA", "state": 2, "negation": true , "conjunction":

58 { "boundsRef": "srcB", "state": 2, "negation": true , "conjunction":

59 { "boundsRef": "good", "state": 2, "negation": true , "conjunction":

60 { "boundsRef": "bad", "state": 2, "negation": true } } } } } },

61 { "from": 2, "to": 8, "condition":

62 { "boundsRef": "srcB", "state": 1, "negation": true , "conjunction":

63 { "boundsRef": "srcA", "state": 2, "negation": true , "conjunction":

64 { "boundsRef": "srcB", "state": 2, "negation": true , "conjunction":

65 { "boundsRef": "good", "state": 2, "negation": true , "conjunction":

66 { "boundsRef": "bad", "state": 2, "negation": true } } } } } },

67 { "from": 7, "to": 3, "condition":

68 { "boundsRef": "srcA", "state": 2, "negation": true , "conjunction":

69 { "boundsRef": "srcB", "state": 2, "negation": true , "conjunction":

70 { "boundsRef": "good", "state": 2, "negation": true , "conjunction":

71 { "boundsRef": "bad", "state": 2, "negation": true } } } } },

72 { "from": 3, "to": 11, "condition":

73 { "boundsRef": "srcA", "state": 2, "negation": true , "conjunction":

74 { "boundsRef": "srcB", "state": 2, "negation": true , "conjunction":

75 { "boundsRef": "good", "state": 2, "negation": true , "conjunction":

76 { "boundsRef": "bad", "state": 2, "negation": true } } } } },

77 { "from": 3, "to": 15, "condition":

78 { "boundsRef": "srcA", "state": 2, "negation": true , "conjunction":

79 { "boundsRef": "srcB", "state": 2, "negation": true , "conjunction":

80 { "boundsRef": "good", "state": 2, "negation": true , "conjunction":

81 { "boundsRef": "bad", "state": 2, "negation": true } } } } },

82 { "from": 11, "to": 2, "condition":

83 { "boundsRef": "srcA", "state": 2, "negation": true , "conjunction":

84 { "boundsRef": "srcB", "state": 2, "negation": true , "conjunction":

85 { "boundsRef": "good", "state": 2, "negation": true , "conjunction":

86 { "boundsRef": "bad", "state": 2, "negation": true } } } } },

87 { "from": 15, "to": 2, "condition":

88 { "boundsRef": "srcA", "state": 2, "negation": true , "conjunction":

89 { "boundsRef": "srcB", "state": 2, "negation": true , "conjunction":

90 { "boundsRef": "good", "state": 2, "negation": true , "conjunction":

91 { "boundsRef": "bad", "state": 2, "negation": true } } } } },

92 { "from": 8, "to": 5, "condition":

93 { "boundsRef": "srcA", "state": 2, "negation": true , "conjunction":

94 { "boundsRef": "srcB", "state": 2, "negation": true , "conjunction":

95 { "boundsRef": "good", "state": 2, "negation": true , "conjunction":

96 { "boundsRef": "bad", "state": 2, "negation": true } } } } },

97 { "from": 5, "to": 12, "condition":

98 { "boundsRef": "srcA", "state": 2, "negation": true , "conjunction":

99 { "boundsRef": "srcB", "state": 2, "negation": true , "conjunction":

100 { "boundsRef": "good", "state": 2, "negation": true , "conjunction":

101 { "boundsRef": "bad", "state": 2, "negation": true } } } } },

102 { "from": 5, "to": 16, "condition":

103 { "boundsRef": "srcA", "state": 2, "negation": true , "conjunction":

104 { "boundsRef": "srcB", "state": 2, "negation": true , "conjunction":

105 { "boundsRef": "good", "state": 2, "negation": true , "conjunction":

106 { "boundsRef": "bad", "state": 2, "negation": true } } } } },

107 { "from": 12, "to": 0, "condition":

108 { "boundsRef": "srcA", "state": 2, "negation": true , "conjunction":

109 { "boundsRef": "srcB", "state": 2, "negation": true , "conjunction":

110 { "boundsRef": "good", "state": 2, "negation": true , "conjunction":

111 { "boundsRef": "bad", "state": 2, "negation": true } } } } },

112 { "from": 16, "to": 0, "condition":

113 { "boundsRef": "srcA", "state": 2, "negation": true , "conjunction":

141

Cinderella De�nitions

114 { "boundsRef": "srcB", "state": 2, "negation": true , "conjunction":

115 { "boundsRef": "good", "state": 2, "negation": true , "conjunction":

116 { "boundsRef": "bad", "state": 2, "negation": true } } } } },

117 { "from": 0, "to": 9, "condition":

118 { "boundsRef": "srcA", "state": 1, "negation": false , "conjunction":

119 { "boundsRef": "srcA", "state": 2, "negation": true , "conjunction":

120 { "boundsRef": "srcB", "state": 2, "negation": true , "conjunction":

121 { "boundsRef": "good", "state": 2, "negation": true , "conjunction":

122 { "boundsRef": "bad", "state": 2, "negation": true } } } } } },

123 { "from": 9, "to": 4, "condition":

124 { "boundsRef": "srcA", "state": 2, "negation": true , "conjunction":

125 { "boundsRef": "srcB", "state": 2, "negation": true , "conjunction":

126 { "boundsRef": "good", "state": 2, "negation": true , "conjunction":

127 { "boundsRef": "bad", "state": 2, "negation": true } } } } },

128 { "from": 4, "to": 13, "condition":

129 { "boundsRef": "srcA", "state": 2, "negation": true , "conjunction":

130 { "boundsRef": "srcB", "state": 2, "negation": true , "conjunction":

131 { "boundsRef": "good", "state": 2, "negation": true , "conjunction":

132 { "boundsRef": "bad", "state": 2, "negation": true } } } } },

133 { "from": 4, "to": 17, "condition":

134 { "boundsRef": "srcA", "state": 2, "negation": true , "conjunction":

135 { "boundsRef": "srcB", "state": 2, "negation": true , "conjunction":

136 { "boundsRef": "good", "state": 2, "negation": true , "conjunction":

137 { "boundsRef": "bad", "state": 2, "negation": true } } } } },

138 { "from": 13, "to": 0, "condition":

139 { "boundsRef": "srcA", "state": 2, "negation": true , "conjunction":

140 { "boundsRef": "srcB", "state": 2, "negation": true , "conjunction":

141 { "boundsRef": "good", "state": 2, "negation": true , "conjunction":

142 { "boundsRef": "bad", "state": 2, "negation": true } } } } },

143 { "from": 17, "to": 0, "condition":

144 { "boundsRef": "srcA", "state": 2, "negation": true , "conjunction":

145 { "boundsRef": "srcB", "state": 2, "negation": true , "conjunction":

146 { "boundsRef": "good", "state": 2, "negation": true , "conjunction":

147 { "boundsRef": "bad", "state": 2, "negation": true } } } } }

148]

149 }

Listing 2: test.js

142

	Title page
	Contents
	1 Introduction
	1.1 Problem Description
	1.2 Overview of Adopted Methods
	1.3 Hypothesis and Main Contributions
	1.4 Organization of This Thesis

	I Foundations
	2 Background
	2.1 Self-adaptive Software and Autonomic Computing
	2.1.1 Common Principles and Components of SAS
	2.1.2 Concrete Implementations and Applications of SAS

	2.2 Model-based Testing
	2.2.1 Testing for Dependability
	2.2.2 The Basics of Testing
	2.2.3 Automated Test Design

	2.3 Dynamic Variability Management
	2.3.1 Software Product Lines
	2.3.2 Dynamic Software Product Lines

	3 Related Work: Existing Research on Testing Self-Adaptive Systems
	3.1 Testing Context-Aware Applications
	3.2 The SimSOTA Project
	3.3 Dynamic Variability in Complex Adaptive Systems (DiVA)
	3.4 Other Early-Stage Research
	3.5 Taxonomy of Requirements of Model-based SAS Testing

	II Methods
	4 Model-driven SAS Testing
	4.1 Problem/Solution Fit
	4.2 Example: Surveillance Drone
	4.3 Concepts and Models for Testing Self-Adaptive Systems
	4.3.1 Test Case Generation vs. Simulation in the Loop
	4.3.2 Incremental Modeling Process
	4.3.3 Basic Representation Format: Petri Nets
	4.3.4 Context Variation
	4.3.5 Modeling Adaptive Behavior
	4.3.6 Dynamic Context Change
	4.3.7 Interfacing Context from Behavioral Representation
	4.3.8 Adaptation Mode Variation
	4.3.9 Context-Dependent Reconfiguration

	4.4 Adequacy Criteria for SAS Test Models
	4.5 Discussion on the Viability of the Employed Models
	4.6 Comparison to Related Work
	4.7 Summary and Discussion

	5 Model-based Adaptivity Test Environment
	5.1 Technological Foundation
	5.2 MATE Base Components
	5.3 Metamodel Implementation
	5.3.1 Feature-based Variability Model
	5.3.2 Abstract and Concrete Syntax for Textual Notations
	5.3.3 Adaptive Petri Nets
	5.3.4 Stimulus and Reconfiguration Automata
	5.3.5 Test Suite and Report Model

	5.4 Test Generation Framework
	5.5 Test Automation Framework
	5.6 MATE Tooling and the SAS Test Process
	5.6.1 Test Modeling
	5.6.2 Test Case Generation
	5.6.3 Test Case Execution and Test Reporting
	5.6.4 Interactive Simulation Frontend

	5.7 Summary and Discussion

	III Evaluation
	6 Experimental Study: Self-Adaptive Co-Working Robots
	6.1 Robot Teaching and Co-Working with WEIR
	6.1.1 WEIR Hardware Components
	6.1.2 WEIR Software Infrastructure
	6.1.3 KUKA LBR iiwa as WEIR Manipulator
	6.1.4 Self-Adaptation Capabilities of WEIR

	6.2 Cinderella as Testable Co-Working Application
	6.2.1 Cinderella Setup and Basic Functionality
	6.2.2 Co-Working with Cinderella

	6.3 Testing Cinderella with MATE
	6.3.1 Automating Test Execution
	6.3.2 Modeling Cinderella in MATE
	6.3.3 Testing Cinderella in the Loop

	6.4 Evaluation Verdict and Summary

	7 Summary and Discussion
	7.1 Summary of Contributions
	7.2 Open Research Questions

	Bibliography
	Appendices
	Appendix Cinderella Definitions
	1 Cinderella Adaptation Bounds
	2 Cinderella Self-adaptive Workflow

