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1 Introduction 

 

1.1 Cancer 

The lifetime risk of being diagnosed with cancer is about 40-50% in developed countries like 

Great Britain or the United States of America (Ahmad et al., 2015; Howlader et al., 2016). In 

2014 more than 200,000 people died from cancer in Germany, making the disease the second 

most common cause of mortality (Statistisches Bundesamt, 2015). Research on cancer 

treatment is one of the fastest growing branches of medicine, consequently survival-rates 

significantly improved over the past years. In the USA, for example, five-year-survival for all 

cancer types improved from approximately 49% in the late 1970s to 67% in 2012 (Howlader 

et al., 2016). 

Albeit the term cancer comprises a broad variety of entities, they all have distinct 

characteristics in common. Tumorigenesis is based on various changes in the cells occurring 

stepwise over a longer time period. Transformed cells employ different mechanisms to achieve 

their essential characteristics. For growth self-sufficiency, cells use autocrine and paracrine 

growth factor stimulation, e.g. the production of platelet-derived growth factor (PDGF) and 

transforming growth factor alpha (TGFα). Cancer cells may also employ altered growth signal 

receptors and pathways, resulting in hyperactivated and deregulated responses, like Human 

epidermal growth factor receptor 2 (HER2/Neu) overexpression. The insensitivity to growth-

suppressors represents the second characteristic of transformed cells. The cell cycle 

gatekeeper circuits, regulated by retinoblastoma protein (pRb) and tumor protein 53 (p53), are 

often disrupted. Transformed cells are also able to circumvent tumor suppressor effects and 

the inhibitory effects of transforming growth factor beta (TGFβ) and cell-cell-contact on cell 

growth. The third hallmark is the resistance to cell death. Again, p53 plays a central role 

through the induction of apoptosis after deoxyribonucleic acid (DNA) damage. p53 loss-of-

function mutations mediate insensitivity to DNA damage. Furthermore, anti-apoptotic B-cell 

lymphoma 2 (Bcl-2), involved in mitochondrial death signaling, is often altered in transformed 

cells. To achieve the fourth characteristic, replicative immortality, cells have to overcome 

senescence and to conserve telomeres. While mechanisms of the former are not completely 

understood yet, the latter is promoted by telomerase expression in about 90% of malignant 

cells. As the supply of oxygen and nutrient limits tissue expansion, the induction of 

angiogenesis is another necessary characteristic. Possible trigger factors are the increased 

expression of vascular endothelial growth factor (VEGF) or fibroblast growth factor (FGF), 

downregulation of angiogenesis inhibitors and immune cell caused inflammation, leading to a 

formation of abnormal vessels. Further characteristics of transformed cells include genome 

instability, deregulation of the metabolism, tumor-promoting inflammation and evasion of 
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immune destruction. The last characteristic comprises invasion and metastasis, the main 

reasons for dying from cancer. These processes require complex changes in cell-environment 

interactions and cell motility and can be promoted by the alteration of adherence proteins, for 

example by the loss of E-cadherin or the permutation of integrins, the increased expression of 

proteases and the epithelial-mesenchymal transition. Even provided with all characteristics, 

the great majority of resulting transformed cells die. But analogously to evolutionary processes, 

single cell clones survive, start a massive and invasive cell proliferation and bypass control 

mechanisms (Hanahan and Weinberg, 2000; Hanahan and Weinberg 2011). 

 

1.2 Oncogenes 

1.2.1 Role in cancer 

Oncogenes are genes that arise from altered proto-oncogenes. The gene products of wild type 

(WT) proto-oncogenes affect proliferation, differentiation, angiogenesis and cell death. Thus, 

they play a crucial role in the development of tissues, organogenesis, embryogenesis and 

growth. After termination of these processes, proto-oncogenes are physiologically turned off 

or down-regulated. Proto-oncogenes include membrane receptors for growth factors, e.g. 

Epidermal growth factor receptor (EGFR) and Kinase insert domain receptor (KDR), and 

proteins downstream the signaling pathway of these receptors, e.g. Kirsten rat sarcoma viral 

oncogene homolog (KRAS) and Harvey rat sarcoma viral oncogene homolog (HRAS). 

Moreover, some cell cycle regulators as cyclin D1 (CCND1) and cyclin E1 (CCNE1) are 

classified as proto-oncogenes. Mechanisms of the proto-oncogene into oncogene 

transformation comprise various mutations on gene and chromosome level, namely point 

mutations, deletions, insertions, inversions, gene amplifications and chromosomal 

translocations. The mutations can either directly affect the coding regions of the gene or the 

regulating elements like the promoter. As a result, the former proto-oncogene, now oncogene, 

shows an increased expression, is translated into a hyperactivated gene product and/or into a 

fusion protein. Furthermore, these alterations lead to the circumvention of regulation 

processes and in the end to an uncontrolled proliferation. Taken together these consequences 

of unregulated oncogene expression play a key role in achieving the hallmarks of cancer 

mentioned above (Chial, 2008). 

Studies in human cancer cell lines, as well as clinical trials, show evidence for cancer cells 

being dependent on the expression of distinct oncogenes. Targeted therapies that inhibit the 

products of these genes lead to loss of the malignant phenotype. These findings are the basis 

for the “oncogene addiction theory” (Weinstein, 2002).  

In recent years, big sets of cancer types have been analyzed with next generation sequencing 

(NGS), uncovering certain patterns. Solid tumors harbor numerous DNA changes, 
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consequently altering the protein product of 33 to 66 genes per tumor in average. Only two to 

eight mutations per tumor are driver mutations, driving the initial cell transformation and 

providing a growth advantage, whereas the others are supposed to be passenger mutations 

and do not confer growth advantage. The vast majority of driver mutations are point mutations 

that either activate oncogenes or inactivate tumor suppressor genes. Comprising all types of 

solid tumors, more than 50 genes, involved in 12 signaling pathways, have been identified to 

harbor activating driver mutations. Furthermore, about 70 genes have been discovered to 

contain inactivating driver mutations. However, the discrimination between driver and 

passenger mutations is mainly based on in silico analysis, namely the analysis of mutation 

patterns and frequencies (Vogelstein et al., 2013).  

Taken together, “[genetic] mutations are a hallmark of cancer development, and more than 

140 cancer driver genes have been described to date ([Kandoth et al., 2013; Vogelstein et al., 

2013]). [But although identification] of all mutations in an actual tumor of a patient by 

whole-genome sequencing is rapidly emerging as the method of choice for precision 

diagnostics ([Dewey et al., 2014]) […], detailed knowledge of the functional roles and relevance 

of most mutations arising during tumorigenesis [is] still lacking.” (Gebler et al., 2017) 

 

1.2.2 Targeted therapies 

Mutational status of a tumor does not only influence a patient’s prognosis but therapeutic 

strategies as well. Based on genetic alterations, monoclonal antibodies and small molecule 

inhibitors targeting these alterations show good efficacy. Next to cytotoxic chemotherapy and 

hormonal therapy, the targeted therapy has become the third keystone in pharmacological 

cancer treatment with the number of available drugs continuously increasing (Stuart and 

Sellers, 2009).  

As targeted therapies are selective against their targets – the altered proteins in cancer cells 

(Supplementary Table 1) – they do not affect healthy tissue. Consequently, the molecular 

diagnostics of cancer tissue becomes more and more important in personalized cancer 

treatment. For instance, only non-small-cell lung carcinoma (NSCLC) patients with mutated 

EGFR show a positive clinical response to EGFR tyrosine kinase inhibitor gefitinib, but not the 

patients with WT EGFR (Paez et al., 2004). 
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Supplementary Table 1: Targeted therapies. 
Examples of diseases with available targeted therapies and corresponding genetic alterations 

(Stuart and Sellers, 2009; Zhao and Adjei, 2014). 

PDGFA – Platelet-derived growth factor, alpha polypeptide; KIT – V-Kit Hardy-Zuckerman 4 

Feline Sarcoma Viral Oncogene Homolog; PML – Inducer of Acute Promyelocytic Leukemia; 

RAR – Retinoic acid receptor; BRAF – V-Raf murine sarcoma viral oncogene homolog B1 

Disease Genetic 
alteration Target Drug(s) Category 

Gastric cancer HER2/Neu 
overexpression HER2/Neu Trastuzumab Antibody 

Breast cancer HER2/Neu 
overexpression HER2/Neu Trastuzumab Antibody 

Colorectal cancer EGFR 
amplification EGFR Cetuximab Antibody 

Squamous cell carcinoma of 
the head and neck 

EGFR 
amplification EGFR Cetuximab Antibody 

Lung cancer EGFR 
mutation EGFR Erlotinib, 

Gefitinib 
Kinase 
inhibitor 

Gastrointestinal stromal 
tumors 

PDGFA 
mutation PDGF-R Imatinib Kinase 

inhibitor 

 KIT mutation c-kit Imatinib Kinase 
inhibitor 

Chronic myelogenous 
leukemia 

BCR-ABL 
(t9;22) abl Imatinib Kinase 

inhibitor 

Melanoma BRAF mutation B-Raf Vemurafenib Kinase 
inhibitor 

Acute promyelocytic 
leukemia 

PML–RAR 
(t15;17) unknown All-trans-

retinoic acid Other 

 

Escape mechanisms from targeted therapies have been reported, often through the 

reactivation of a particular oncogene or pathway, thus emphasizing the dependency of cancer 

cells on that pathway (Weinstein, 2002). One mechanism of cancer cell resistance is caused 

by additional mutations in the target protein, producing proteins insensitive to inhibitors or 

antibodies. For instance, additional BCR-ABL (fusion gene of Breakpoint cluster region and 

Abelson murine leukemia viral oncogene homolog 1) and EGFR mutations cause imatinib and 

gefitinib resistance, respectively (Gorre et al., 2001). Another mechanism includes alterations 

of proteins downstream the target pathway. The resistance to gefitinib in NSCLC is mediated 

through Hepatocyte growth factor receptor (MET) amplification, rescuing Phosphatidylinositol-

3-kinase-Protein-kinase-B-Mechanistic-target-of-rapamycin (PI3K-AKT-mTOR) pathway 
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(Turke et al., 2010). Those alterations are present in pre-treatment cancer cell populations and 

cells harboring them expand during treatment (Pao et al., 2005). 

Only about 30 of the identified oncogenic driver genes can theoretically be targeted by 

inhibiting kinase domain or by small molecules. Some of the existing drugs specifically target 

the altered protein, like Vemurafenib inhibits only B-RafV600E. Other drugs inhibit the WT and 

mutant protein, like the currently existing PIK3CA inhibitors, and therefore also affect healthy 

tissue to a certain extent. For the remaining oncogenes without a targetable enzymatic activity, 

e.g. for the potential oncogene NPM1, targeted therapeutic strategies need to be yet 

established (Lee et al., 2010; Vogelstein et al., 2013; Fritsch et al., 2014).  

The majority of mutations occurring in cancer cells is presently not studied in respect to their 

function in tumorigenesis or only partially understood, like the role of NPM1 mutations. Hence, 

a huge amount of data about cancer genomics has the potential to be converted into 

personalized medicine (Grisendi et al., 2006; Chin et al., 2011). 

 

1.2.3 NPM1 

Nucleophosmin/nucleoplasmin family member 1 (NPM1) encodes the 294-amino acid 

phosphoprotein nucleophosmin, located in the nucleolus (Chan et al., 1989). Nucleophosmin 

has various functions and contains several functional protein domains. The oligomerization 

domain is required to form pentamers and decamers. The resulting complex acts as a histone 

chaperone. Furthermore, it contains a domain for binding nucleic acids. Nucleophosmin is 

active in centrosome duplication during mitosis, in ribosome biogenesis as well as in the repair, 

replication and transcription of DNA. Two nuclear export signals (NES), two nuclear 

localization signals (NLS) and one nucleolar localization signals (NoLS) in nucleophosmin 

reflect the ability of nucleophosmin to shuttle between cytoplasm, nucleoplasm and nucleolus 

during cell cycle (Federici and Falini, 2013). Besides interactions with many other proteins, 

nucleophosmin activates p53 together with Alternate reading frame tumor suppressor (ARF). 

Genetic alterations of NPM1, as translocations, mutations and deletions, occur in cancer cells 

and hematological diseases. Considering its multiple interactions, NPM1 is thought to either 

be a proto-oncogene or a tumor suppressor, depending on circumstances (Grisendi et al., 

2006). NPM1 is found to be mutated and localized in the cytoplasm in about 35% of adult 

primary acute myeloid leukemia (AML) patients’ samples, particularly in normal karyotype 

AML. NPM1 mutations lead to frameshifts in the nucleic acid binding domain, whereby 

nucleophosmin gains an additional NES and loses NoLS (tryptophan 288 and 290), crucial for 

nucleolar localization. The most frequent NPM1 mutation is type A (c.863_864insTCTG). In 

heterozygous mutated cells, mutated nucleophosmin interacts with WT nucleophosmin in a 



Introduction 
__________________________________________________________________________________________ 

 

6 
 

dominant-negative way, resulting in WT and mutant protein being translocated into cytoplasm 

together (Falini et al., 2005; Falini et al., 2006). 

Currently, there is no nucleophosmin inhibitor approved for the treatment of patients, but 

research is being conducted on several drugs. Knock-down with small interfering ribonucleic 

acid (siRNA) specific for mutated NPM1 inhibits growth of AML cell lines, indicating oncogenic 

potential of NPM1 in AML. Deguelin is a rotenoid showing anti-cancer effects. Although 

detailed interactions and target molecules are a current topic of research, compared to WT 

cells, deguelin significantly enhances apoptosis in NPM1 mutant OCI-AML3 cells and 

selectively diminishes mutant nucleophosmin expression (Yi et al., 2015). Another potential 

nucleophosmin targeting drug, NSC348884, disrupts the oligomerization of WT and mutated 

nucleophosmin. In the OCI-AML3 cell line, it induces apoptosis at lower concentrations than 

in WT cell lines (Qi et al., 2008). 

 

1.2.4 BRAF 

The BRAF gene encodes a 651-amino acid serine/threonine kinase from Rapidly accelerated 

fibrosarcoma (Raf) kinase family (Sithanandam et al., 1990). As part of Ras-Raf-MEK pathway 

(MEK – Mitogen-activated protein kinase kinase), the gene product B-Raf plays a role in the 

regulation of cell proliferation. BRAF is known to be a proto-oncogene in human cells and is 

mutated in many types of cancer with the highest frequencies in melanoma. The substitution 

c.1799T>A (p.V600E) is the most common mutation in BRAF, generating higher kinase activity 

and increasing malignant transformation of cells (Davies et al., 2002). As this mutation 

changes conformation in the activation loop, imitating activating phosphorylation, B-Raf 

becomes constitutively active and promotes proliferation (Wan et al., 2004). The role of 

BRAFV600E mutation in melanoma has been confirmed by RNA interference (RNAi) 

experiments. Lentiviral delivery of BRAFV600E specific siRNA inhibits melanoma cell 

proliferation, increases cell death and decreases invasion in vitro. Furthermore, it reduces 

tumorigenicity in vivo, rendering BRAF a putative target for molecular treatment (Sumimoto et 

al., 2004). 

Targeted therapy of BRAF has first been established with Vemurafenib (PLX4032), a selective 

B-RafV600E inhibitor, showing therapeutic effects only in melanoma with mutated BRAF (Lee et 

al., 2010; Chapman et al., 2011). More B-RafV600E inhibitors are being currently tested in clinical 

trials. 

In colorectal cancer (CRC), BRAFV600E mutation is found as well. In contrast to melanoma, 

inhibition of only mutated B-Raf reduces cell viability and tumor growth, but does not induce 

apoptosis. Rather a combination of B-RafV600E and PI3K/mTOR inhibition is needed to avoid 
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compensational PI3K-AKT-mTOR over-activation. Under this treatment, apoptosis is 

enhanced and tumor size is reduced in vivo (Coffee et al., 2013). 

 

1.2.5 PIK3CA 

Class I PI3K are heterodimeric protein complexes and contain regulatory p85 and catalytic 

p110 subunit. In the case of the latter, three isoforms (α, β and δ) exist. Phosphatidylinositol 

3-kinase, catalytic alpha (PIK3CA) gene encodes for p110α subunit (Carpenter et al., 1990; 

Volinia et al., 1994). This isoform promotes proliferation, survival, and metabolism via 

PI3K-AKT-mTOR pathway. Tumor suppressor Phosphatase and tensin homolog (PTEN) 

inhibits these effects (Li et al., 2014). Mutations and gene amplifications of PIK3CA occur with 

high frequencies in many types of cancer. In fact, PIK3CA is the most common mutated 

oncogene with an average of 17.8% across all cancer entities (Kandoth et al., 2013). Hot spot 

mutation c.3140A>G (p.H1047R) is located in the kinase domain close to activation loop, thus 

changing interaction with the substrate phosphatidylinositide. As a result, lipid kinase activity 

of p100α is enhanced (Huang et al., 2007). PIK3CAH1047R mutation leads to tumor 

transformation in vivo, emphasizing its role as an oncogene (Bader et al., 2006). 

As downstream component in tyrosine kinase signaling pathway, PIK3CA has been proposed 

as a therapeutic target (Whyte and Holbeck, 2006). Unlike pan-PI3K inhibitors, PI3Kα inhibitors 

like NVP-BYL719 show specific activity against this PI3K isoform. Cell lines from a cancer 

panel harboring PIK3CA mutations or amplifications are more sensitive to this drug than WT 

cell lines are (Fritsch et al., 2014). This drug is currently under clinical evaluation with breast 

cancer patients with first results indicating a better clinical response in PIK3CA mutant patients 

(Fritsch et al., 2014; Mayer et al., 2017). 

 

1.3 CRISPR/Cas-system 

Bacteria and archaea employ a defense mechanism against phages and plasmids, analogous 

to the adaptive immune system of higher animals, called the CRISPR/Cas-system (CRISPR - 

Clustered regularly interspaced short palindromic repeats; Cas - CRISPR associated proteins). 

It consists of repetitive sequences in the prokaryotic genome with 24-48 base pairs (bp) in 

length, separated by spacers of similar length. Spacer sequences match phage DNA 

sequences and new spacers are integrated into the genome during the infection with phages, 

thus permitting adaptive defense (Barrangou et al., 2007). A guide RNA (gRNA), transcribed 

from spacers and repeats, complexes with Cas endonuclease and binds to a sequence of 

complementary phage DNA, the protospacer. If a protospacer adjacent motif (PAM), a short 

DNA sequence specific for each species’ CRISPR/Cas-system, is present downstream of the 

protospacer, the endonuclease generates double strand breaks (DSB) in the phage DNA, 
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which is degraded afterwards (Supplementary Figure 1). Today, the most utilized Cas 

endonuclease is class 2, type II Streptococcus pyogenes Cas9 (SpCas9). The target sequence 

for the corresponding gRNA is 20 bp in length, followed by 5’-NGG-3’ PAM (N stands for any 

nucleotide). A blunt DSB is generated 3 bp upstream the PAM. The type II Cas9 proteins 

require a trans-activating crRNA (tracrRNA) to first process the CRISPR RNA (crRNA), which 

contains the sequence complementary to the protospacer. Second, both crRNA and tracrRNA 

stay complexed with the Cas9 for the DNA binding and cleavage. For the use as genome 

editing tool, crRNA and tracrRNA have been fused to a chimeric single gRNA (sgRNA) (Jinek 

et al., 2012).  

Numerous alternatives for SpCas9 can bypass limits of SpCas9. Cas9 orthologues from 

different bacteria species, such as from Neisseria meningitidis (NmCas9), Campylobacter 

jejuni (CjCas9) or Staphylococcus aureus (SaCas9), have been discovered. They extend the 

spectrum of targetable sites. Their protospacers are about 20 bp long, similar to SpCas9. 

However, their PAM sequences vary in length and sequence, SaCas9, NmCas9 and CjCas9 

recognize 5’-NNGRRT-3’, 5’-NNGATT-3’ and 5’-NNNNRYAC-3’ PAMs, respectively (R stands 

for purine, Y stands for pyrimidine). Furthermore, these orthologue Cas9 proteins are about 

300 amino acids shorter compared to SpCas9, thus allowing delivery applications with size 

limitations, e.g. the use of adeno-associated viruses (AAV) as vectors (Esvelt et al., 2013; Ran 

et al., 2015; Kim et al., 2017). Most recently, two SpCas9 recognizing the PAMs 5’-NGA-3’ and 

5’-NAG-3’, have been engineered by directed evolution and thereby also expanding the 

number of targets (Kleinstiver et al., 2015).  

Centromere and Promoter Factor 1 (Cpf1) are class 2, type V Cas proteins found in many 

species, showing several differences to SpCas9. They do not require a tracrRNA, but only 

crRNA and they recognize T-rich PAMs. Different than type II Cas9 proteins, they create DSB 

with overhangs, thus facilitating many applications, for instance gene insertions (Zetsche et 

al., 2015). 

In mammalian cells, DSB are mainly repaired by non-homologous end joining (NHEJ) and 

homology-directed repair (HDR) (Supplementary Figure 1). The former process joins DNA 

ends back together, often leading to small insertions or deletions and consequently frame shifts 

in coding regions. The latter uses a homologous donor, phsysiologically the homolog 

chromosome, as a template and restores the original DNA sequence completely (Iliakis et al., 

2004).  

Re-engineered CRISPR/Cas-systems are used as programmable genome editing tools in 

numerous organisms. The targets are chosen by designing the sequence of sgRNA. The first 

application in human cells was shown in 2013. Furthermore, multiple site editing is feasible 

(Cong et al., 2013; Mali et al., 2013). Artificial sgRNAs can be delivered as synthesized RNA 

or via plasmids, Cas endonucleases as proteins, messenger RNA (mRNA) or plasmids. Other 
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purposes of CRISPR/Cas-system include deleting genomic regions, repairing mutated genes, 

delivering transgenes and modifying transcription via nuclease-inactivated Cas coupled to 

transcription factors or inhibitors (Ran et al., 2013a). 

The ability of designed sgRNAs to induce DSB together with Cas9 varies between different 

targets. The factors influencing sgRNA activity are not completely understood yet, but the 

sequence of the sgRNA target, as well as the sequences upstream and downstream of it, play 

a crucial role. Based on large screens, several prediction algorithms of SpCas9 sgRNA activity 

have been developed (Doench et al., 2014; Chari et al., 2015; Moreno-Mateos et al., 2015; 

Doench et al., 2016). Testing sgRNA activity can either be conducted by deep sequencing, 

with a red- and green-fluorescent-protein-reporter (RFP-GFP-reporter) or with endonuclease 

assays, the latter detecting small insertions or deletions as the result of DSB (Ran et al., 2013a; 

Karimova et al., 2015). 

 

 
Supplementary Figure 1: Overview of CRISPR/Cas-system.  
In a Streptococcus pyogenes CRISPR/Cas-system, a single Cas9 protein is guided by two 

RNA molecules, activating tracrRNA and protospacer binding crRNA. Cas9-gRNA-complex 

binds PAMs in DNA. If the DNA sequence upstream the PAM matches the crRNA, Cas9 

cleaves DNA 3 bp upstream the PAM. After cleavage, DNA is repaired. Mammalian cells 

normally fix double strand breaks mainly via error-prone NHEJ in contrast to more precise 

HDR. 
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1.4 Aim and motivation 

“We set out to test whether the CRISPR/Cas9 system ([Jinek et al., 2012]) can aid the 

functional investigation of mutations detected in cancer cells.” (Gebler et al., 2017) 

Considering the increasing number of therapies targeting oncogene products, the 

differentiation between the few driver mutations and the numerous passenger mutations 

occurring in cancer cells is of growing therapeutic interest. Previous gene knock-out methods 

require great efforts or, in the case of siRNA, show only a temporary and incomplete knock 

down. Thus, it has been a major purpose of this work to demonstrate CRISPR/Cas-system-

driven DNA cleavage as a feasible and fast forward functional investigation tool for cancer 

mutations.  

If used as an oncogene knock-out tool, the important condition, which CRIPS/Cas-system must 

fulfill, is successful discrimination between mutated and WT oncogenes. In the case of point 

mutations, this difference is only a single base bond between DNA and sgRNA. Therefore, a 

system measuring the activity of sgRNAs towards oncogenes in comparison to WT alleles of 

the corresponding proto-oncogenes had to be established first. 

The next step would then be to verify the oncogene inactivation on genomic and protein 

expression level and to investigate the phenotypic effects of this inactivation. To procure proof 

of concept, two already known oncogenes, BRAF and PIK3CA, and one potential oncogene, 

NPM1, have been inactivated with CRISPR/Cas-system in cancer cells lines. 

It has been my motivation to work on this topic to pave out the way for advanced, combined 

targeted therapies and a more personalized cancer treatment.  
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2 Material and Methods 

 

2.1 Design of sgRNAs 

“Using a complete set of somatic mutations reported by Kandoth et al. ([Kandoth et al., 2013]) 

we designed sgRNAs targeting the mutations employing bedtools ver. 2.17.0 using hg19 as a 

reference genome assembly. Each mutation site was flanked by 30 bp on both sides. The 

sequences were then subjected to an sgRNA search and scoring script, an in-house 

programmed implementation of an algorithm proposed by Doench et al. ([Doench et al., 2014; 

Doench et al., 2016]). An off-target search for obtained 20-bp long sgRNAs was done using 

an exhaustive short sequence aligner GEM ver. 1.376 ([Marco-Sola et al., 2012]), with 

parameters set to report all alignments with up to 4 mismatches. All alignments not followed 

by a PAM sequence (NGG) were filtered out using a trivial Python script and all sgRNAs with 

a perfect match in a wild-type hg19 genome were discarded from further analysis steps. The 

13 mutations analyzed with the traffic light reporter assay were searched for in the Catalogue 

of somatic mutations in cancer (COSMIC) to cover different mutation types (insertions, 

deletions, point mutations) and several cancer types. Furthermore the selection was biased 

towards frequently mutated genes that are common in cancer cells. Another criterion for 

inclusion was presence of a PAM sequence close to the mutation, so that sgRNAs span the 

mutation site.“ (Gebler et al., 2017) 

 

2.2 Plasmids 

“Streptococcus pyogenes Cas9 was expressed from pSpCas9(BB)-2A-Puro (PX459, ([Ran et 

al., 2013a]) V2.0 from the CAG promoter and sgRNAs were expressed from the human U6 

pol III promoter. Protospacers for each target were cloned into PX459 by cloning 

complementary oligonucleotides into the vector. If necessary an additional G on the 5’-end 

was added. Oligos (Metabion, Planegg/Steinkirchen, Germany) were annealed, 

phosphorylated and ligated into PX459 using BbsI sites.  

Neisseria meningitidis Cas9 was expressed from pSimpleII-U6-tracr-U6-BsmBI-NLS-

NmCas9-HA-NLS(s) (Addgene plasmid # 47868, ([Hou et al., 2013]) from the EF1a promoter 

and sgRNA from the human U6 pol III promoter. The protospacer for the FLT3-ITD [FMS-

related tyrosine kinase 3 internal tandem duplication] target was cloned into pSimpleII-U6-

tracr-U6-BsmBI-NLS-NmCas9-HA-NLS(s) with an additional G on the 5’-end using BsmBI 

sites.  

RFP-GFP traffic light reporter plasmids were constructed based on pRG-HBV-S Karimova et 

al. ([Karimova et al., 2015]). Wildtype and oncogenic targets of 13 genes were cloned into 
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pRG-HBV-S via EcoRI and BamHI sites. In-frame stop codons within target sites were 

anticipated by changing orientation or shifting target inserts.  

For expression of Cas9 and sgRNAs from lentiviral plasmids the pL-CRISPR.EFS.GFP was 

used (Addgene plasmid # 57818, ([Heckl et al., 2014]). Streptococcus pyogenes Cas9 and 

eGFP are linked via P2A and expressed from the EFS promoter, whereas the sgRNAs were 

again expressed from the human U6 pol III promoter. Protospacers, either targeting NPM1 

mutation or non-targeting, were cloned into pL-CRISPR.EFS.GFP using BsmBI sites, analog 

to cloning into PX459.“ (Gebler et al., 2017) 

Furthermore, sgRNAs either targeting BRAF or PIK3CA mutation where cloned into 

pL-CRISPR.EFS.GFP using BsmBI sites.  

For simultaneous expression of sgRNAs targeting BRAF and PIK3CA mutations, a second 

sgRNA expression cassette with H1 promoter was cloned into pL-CRISPR.EFS.GFP, using 

the PrecisionXTM Multiplex gRNA Cloning Kit (System Biosciences, Palo Alto, CA). Therefore, 

an overhang polymerase chain reaction (PCR) was performed with H1 promoter and RNA 

scaffold as template. The forward and reverse primer sequences were 

5’-AAAGGACGAAACACCGTAGCTACAGAGAAATCTCGAGTTTTAGAGCTAGAAATAGCA

AG-3’ and 5’-TTCTAGCTCTAAAACCCATGACGTGCATCATTCATGGATCCAAGGTGTCT 

CATAC-3’, containing the BRAF and PIK3CA protospacer sequences, respectively 

(Metabion). Then, the PCR product was used for insertion into BsmBI digested 

pL-CRISPR.EFS.GFP plasmid by fusion, following the manufacturer’s instructions. 

 

2.3 Cell culture 

“HeLa and HEK293 cells were kept in DMEM (high glucose, GlutaMAXTM, pyruvate, Gibco, 

Carlsbad, CA) with 10% (v/v) FBS (Gibco) and antibiotics (100 U/mL penicillin, 100 μg/mL 

Streptomycin, Gibco). For the RFP-GFP traffic light reporter assays HeLa cells were plated at 

a density of 2.6 x 104 cells per well in 24-well dishes. After 24 h cells were co-transfected with 

200 ng of plasmid DNA (100 ng of px459-sgRNA and 100 ng of corresponding RFP-GFP-

reporter) using Effectene transfection reagent according to manufacturer’s instructions (1.6 μL 

Enhancer and 2 μL Effectene per well, Qiagen, Hilden, Germany). For the FLT3-ITD target 

and Neisseria meningitidis Cas9 the total amount of co-transfected DNA was 250 μg (200 ng 

of pSimpleII-U6-tracr-U6-BsmBI-NLS-NmCas9-HA-NLS(s)-gRNA and 50 ng of corresponding 

RFP-GFP-reporter). Cells were analyzed by flow cytometry at 48 h post transfection. 

Lentiviral particles were produced in HEK293 cells, plated at a density of 6 x 106 cells in a 

10 cm cell culture dish. After 24 h cells were transfected with 2 μg of pMD2.G, 6 μg of psPAX2 

(Addgene plasmids # 12259 and # 12260) and 10 μg of pL-CRISPR.EFS.GFP-sgRNA using 

45 μL PEI (1 mg/ml in 1x PBS, sterile-filtered, Sigma-Aldrich, St. Louis, MO) per dish. Fresh 
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medium was added 24 h post transfection and viral supernatant were collected 48 h post 

transfection, passed through 0.22 μm filters (Merck Millipore, Darmstadt, Germany) and 

centrifuged for 2 h at 50,000 g and 4 ºC. Supernatants were decanted and viral pellets were 

resuspended in 300 mL PBS at 4 ºC overnight.  

OCI-AML3 cells (carrying the c.863_864insTCTG mutation) were kept in αMEM (Biochrom, 

Berlin, Germany), supplemented with 20% (v/v) heat inactivated FBS (Gibco), antibiotics (100 

U/mL penicillin, 100 μg/mL Streptomycin, Gibco) and 2 mM L-Glutamine (Sigma-Aldrich). 

MV4-11 cells were kept in RPMI 1640 (L-Glutamine, Gibco), supplemented with 10% (v/v) heat 

inactivated FBS (Gibco), antibiotics (100 U/mL penicillin, 100 μg/mL Streptomycin, Gibco) and 

2 mM L-Glutamine (Sigma-Aldrich). 

Prior to transduction 24 well plates were coated with RetroNectin® (Takara Clontech, Mountain 

View, CA) following the manufacturer’s protocol. 1x106 of OCI-AML3 and MV4-11 cells were 

transduced with 500 μL of 117-fold concentrated viral supernatant in the presence of 100 μL 

protamine sulfate (5 mg/mL, Sigma-Aldrich) in 1 mL total volume and spinoculated for 1 h at 

1,000 g and 37 ºC. Transduced OCI-AML3 and MV4-11 were sorted for GFP expression 96 h 

post transduction using a BD AriaTM system and FACSDivaTM software (Becton Dickinson, 

Heidelberg, Germany). One fraction of sorted cells was mixed 1:1 with non-transduced cells. 

Another fraction was expanded for further 96 h and used for immunostaining, deep 

sequencing, RT-qPCR and cell cycle analysis. To inhibit NHEJ, 5 M of the DNA ligase IV 

inhibitor SCR7 (Sigma-Aldrich) was added to the culture media.“ (Gebler et al., 2017) 

A-375, SK-MEL-28, HCT116 and RKO cells were kept in DMEM (high glucose, GlutaMAXTM, 

pyruvate, Gibco) with 10% (v/v) FBS (Gibco) and antibiotics (100 U/mL penicillin, 100 μg/mL 

Streptomycin, Gibco). 

For lentiviral transduction of A-375 and SK-MEL-28, 1.3x105 cells were seeded in 6 well plates 

and transduced with a multiplicity of infection (MOI) of approximately 0.5 in the presence of 

1% polybrene (4 mg/mL, Sigma-Aldrich) and 1% HEPES (1 M, pH 7.25, Carl Roth, Karlsruhe, 

Germany) in 2.5 mL total volume. Subsequently, cells were spinoculated for 30 minutes at 

2,500 rpm and 37 ºC and sorted for GFP expression 6 days post transduction using a BD 

AriaTM system and FACSDivaTM software (Becton Dickinson). One fraction of the sorted cells 

were mixed 1:1 with non-transduced cells, another fraction was used for the T7 assay. 

3x105 of HEK293, HCT116 and RKO cells were seeded in 6 well plates and transduced with 

25 μL of 117-fold concentrated viral supernatant in the presence of 25 μL protamine sulfate 

(5 mg/mL, Sigma-Aldrich) in 2.5 mL total volume and spinoculated for 30 minutes at 2,500 rpm 

and 37º C. Transduced cells were sorted for GFP expression 48 h post transduction using a 

BD AriaTM system and FACSDivaTM software (Becton Dickinson). One fraction of sorted cells 

was mixed 1:1 with non-transduced cells. Another fraction was expanded for further 5 days 

and used for deep sequencing. 
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2.4 FACS analysis 

“For the traffic light reporter assay, HeLa cells were transfected and analyzed for percentage 

of RFP and GFP using a BD FACSCanto II (Becton Dickinson) and FlowJO software. Assays 

were performed in [technical] triplicates. OCI-AML3 and MV4-11 cells in 1:1 mixture of 

transduced and non-transduced cells were analyzed for GFP expression every 48 h by flow 

cytometry, using a MACS Quant® Analyzer (Miltenyi Biotech, Bergisch Gladbach, Germany) 

and FlowJO software.“ (Gebler et al., 2017) 

A-375, SK-MEL-28, HEK293, HCT116 and RKO cells in 1:1 mixture of transduced and non-

transduced cells were analyzed for GFP expression every 48 to 72 h by flow cytometry, using 

a BD FACSCalibur (Becton Dickinson) and FlowJO software. 

 

2.5 T7 assay 

A-375 and SK-MEL-28 cells were collected in PBS prior to genomic DNA extraction using the 

QIAamp DNA Blood Mini Kit, following the manufacturer’s protocol (Qiagen). The genomic 

DNA was used as a template for PCR analysis, following the Phusion High-Fidelity DNA 

Polymerase protocol with GC buffer (New England Biolab, Ipswich, MA), using the PCR 

program (Supplementary Table 2) with BRAF specific primers (Supplementary Table 3).  

Subsequently, the PCR products were purified using a GeneJET PCR purification Kit (Thermo 

Scientific), following the manufacturer’s protocol. 400 ng purified PCR product, 1 μl NEBuffer 2 

(New England Biolabs) and water were mixed to a total volume of 10 μl. PCR products were 

hybridized in a thermocycler with the protocol shown (Supplementary Table 4).  
1 μl T7 Endonuclease (New England Biolabs), 1 μL NEBuffer 2 and 8 μL water were added to 

the reaction and incubated at 37 ˚C for 20 min. Subsequently, 10 μL of the reaction mix was 

mixed with 2 μL of 6x NEB orange loading dye (New England Biolabs), loaded on a 2% agarose 

gel and run for 30 min at 90 V. 

 

Supplementary Table 2: PCR program for the T7 assay of BRAF locus. 

 Temperature Time Cycles 

Lid 98°C ∞  

Denaturation 98°C 30 seconds 1x 

Denaturation 98°C 10 seconds 
 
35x Annealing 66°C 30 seconds 

Elongation 72°C 30 seconds 
Elongation 72°C 8 minutes 1x 
Storage 8°C ∞ 1x 
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Supplementary Table 3: Primer list for the T7 assay of BRAF locus.  

Primer Sequence 

BRAF - Forward 5’-CCTTCAATGACTTTCTAGTAACTCAGC-3’ 

BRAF - Reverse 5’-CCAATGAAGAGCCTTTACTGCTC-3’ 
 

Supplementary Table 4: Hybridization program for the T7 assay of BRAF locus. 

 Temperature Time 

Lid 110°C ∞ 

Denaturation 95°C 5 minutes 

Ramp 95-85°C -2°C/second 
Ramp 85-25°C -0.1°C/second 
Storage 4°C ∞ 

 

2.6 Cell cycle analysis  

“OCI-AML3 and MV4-11 cells were collected at day 8 post transduction and fixed with ethanol. 

Cells were washed with PBS and resuspended in PI staining solution (0.1 % Triton X-100, 

Serva, 10 μg/mL PI, Molecular Probes, Carlsbad, CA, 100 μg/mL DNase-free RNase A, 

Invitrogen, Carlsbad, CA, in 1x PBS). FACS analysis was performed using a BD FACSCalibur 

(Becton Dickinson) and FlowJO software.“ (Gebler et al., 2017) 

 

2.7 Immunostaining 

“Microscopy slides were coated with poly-L-lysine P8920 (Sigma-Aldrich), following the 

manufacturer’s protocol. OCI-AML3 and MV4-11 cells were collected in PBS at day 8 post 

transduction and were spun on poly-L-lysine coated coverslips at room temperature. 

Afterwards cells were fixed with 4 % PFA and again centrifuged at 800 rpm for 8 min. Slides 

were washed twice with 30 mM glycine (Sigma-Aldrich) in PBS. Cells were then permeabilized 

with 0.3% Triton X-100 (Sigma-Aldrich) in PBS for 5-10 min at room temperature, followed by 

two washes with 30mM glycine in 1x PBS. Subsequently cells were blocked in blocking 

solution (1x PBS, 0.2% fish skin gelatin Sigma-Aldrich) for 15-30 min at room temperature. 

Primary antibodies were diluted 1:150 in blocking solution and incubated over night at 4 ºC 

(mouse anti-NPM1, Abcam, Cambridge, UK). Cells were washed 3 times for 10 min each in 

blocking solution followed by 1 h incubation at room temperature with secondary antibodies in 

the presence of DAPI (1:1000, 1 g/ml, Sigma-Aldrich), diluted in blocking solution. As 

secondary antibodies fluorescently labeled donkey anti mouse-IgG antibodies (1:500, Life 

Technologies, Carlsbad, CA, AlexaFluor ® 594) were used. After 3 final washes for 5 min each 
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in blocking solution slides were mounted using ProLong® Gold Antifade Mountant (Thermo-

Fisher, Carlsbad, CA). Images were acquired using a Delta Vision Elite microscopy system 

(GE Healthcare, Little Chalfont, UK) and finally processed in Fiji.“ (Gebler et al., 2017) 

 

2.8 Apoptosis assay 

“RKO cells were transfected with plasmids encoding S. Pyogenes Cas9 and a [sgRNA] for the 

mutated gene BRAF (1799 T>A) or a mock control plasmid (empty) using Effectene (Qiagen) 

following the manufacturer’s instructions. Cells were harvested 24 hours post-transfection and 

the number of apoptotic cells was determined by measuring phosphotidylserine exposure 

utilizing an Annexin V-FITC kit (Miltenyi Biotec) according to manufacturer’s instructions. The 

percentage of Annexin V positive and propidium-iodide negative cells was normalized to the 

percentage of mock transfected control cells.“ (Gebler et al., 2017) 

 

2.9 Quantification of mutant NPM1 transcripts 

“RNA-expression of mutant NPM1 was measured as described ([Shayegi et al., 2013]). Briefly, 

total RNA was extracted, reverse transcribed and subjected to quantitative PCR using primers 

specific for NPM1-mutation A and a generic probe. Quantitation was performed using a dilution 

of cloned mutant fragments. Results are expressed as %mutant NPM1-molecules compared 

to the ABL1-reference gene.“ (Gebler et al., 2017) 

 

2.10 Deep sequencing  

“The [OCI-AML3] cells were collected in PBS prior to genomic DNA extraction using the 

QIAamp DNA Blood Mini Kit, following the manufacturer’s protocol (Qiagen). The genomic 

DNA was used as a template for PCR analysis, following the NEB Phusion Polymerase Q5 

protocol using the PCR program depicted below employing NPM1 specific primers [(Table 

1,Table 2)]. Subsequently, the PCR products were purified using a GeneJET PCR purification 

Kit (Thermo Scientific), following the manufacturer’s protocol.  

100 ng of each PCR amplicon were applied for end repair, following the Ion Plus Fragment Kit 

(Life Technologies). The end-repaired PCR amplicons were purified using the Agencourt 

AMPure Kit (Beckman Coulter). Next, adapters and barcodes were ligated to the amplicons, 

followed by a nick repair using the Ion Plus Fragment Library and Ion Xpress™ Barcode 

Adapters Kit (Life Technologies). The adapter ligated and nick translated DNA was purified 

using the Agencourt AMPure Kit (Beckman Coulter, Brea, CA). Samples were pooled into a 

1.5 ml Eppendorf LoBind tube and amplified following the Ion Plus Fragment Library Kit (Life 

Technologies). The Ion Library Quantification Kit (Life Technologies) was used to quantify the 

library. Subsequently, template-positive ion PGM template OT2 200 ion sphere particles were 
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established and enriched, following the Ion PGM Template OT2 Kit (Life Technologies). 

Samples were sequenced with the Ion PGM Sequencing 200 Kit v2 (Life Technologies) on an 

Ion 318 v2 Chip using the Ion Personal Genome Machine (PGM) system following the 

manufacturer’s protocol. 

To limit the analysis to sequencing reads fully enclosing the NPM1 mutation site, only reads 

containing the following flanking sequences were considered: GTGTTGTGGTTCCTTAACCA 

and ATGCAGAGTGAGAACTTTCC. This in-silico amplification procedure was performed with 

an aid of PatMaN sequence aligner ver. 1.2.2, allowing up to 2 mismatches in each flanking 

sequence. Parts of reads enclosed by the flanks were aligned to the reference amplicon using 

needleall tool from EMBOSS package, ver. 6.6.0. Analysis of the reported multiple pairwise 

alignments was done with a Python script developed to detect insertions and deletions 

spanning the mutation site. Visualization of the results was done with R ver. 3.2.1, using a 

ggplot2 package.“(Gebler et al., 2017) 

For deep sequencing of HEK293, HCT116 and RKO cells, cells were predominantly processed 

in the same way as OCI-AML3 cells. BRAF and PIK3CA specific primers were employed as 

listed in Supplementary Table 5, the PCR program is shown in Supplementary Table 6. 

Only reads including the flanking sequences for BRAF and PIK3CA were considered: 

5’-AGCATCTCAGGGCCAAAAAT-3’, 5’-CATTTTCCTATCAGAGCAAGCA-3’ (BRAF), and 

5’-ATGATGCTTGGCTCTGGAAT-3’, 5’-CAGCATGCATTGAACTGAAA-3’ (PIK3CA). 

 

Table 1: Primer List [for the deep sequencing of NPM1 and DNMT3A loci.]  
The primer design was performed using the Primer3 online tool (Version 4.0.0.) 

Primer Sequence 

NPM1 - Forward 5’-TGTCTATGAAGTGTTGTGGTTCC-3’ 

NPM1 - Reverse 5’-AACACGGTAGGGAAAGTTCTCA-3’ 

DNMT3A – Forward 5’-CCATGTCCCTTACACACACG-3’ 

DNMT3A – Reverse 5’-TCCTGCTGTGTGGTTAGACG-3’ 
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Table 2: PCR program [for the deep sequencing of NPM1 and DNMT3A loci.] 

 Temperature Time Cycles 

Lid 98°C ∞  

Denaturation 98°C 3 minutes 1x 

Denaturation 98°C 30 seconds 
 
35x Annealing 66°C 30 seconds 

Elongation 72°C 30 seconds 
Elongation 72°C 8 minutes 1x 
Storage 8°C ∞ 1x 

 

Supplementary Table 5: Primer List for the deep sequencing of BRAF and PIK3CA loci.  
The primer design was performed using the Primer3 online tool (Version 4.0.0.) 

Primer Sequence 

BRAF - Forward 5’-AGCATCTCAGGGCCAAAAAT-3’ 

BRAF - Reverse 5’-TGCTTGCTCTGATAGGAAAATG-3’ 

PIK3CA – Forward 5’-ATGATGCTTGGCTCTGGAAT-3’ 

PIK3CA – Reverse 5’-TTTCAGTTCAATGCATGCTG-3’ 
 

Supplementary Table 6: PCR program for the deep sequencing of BRAF and PIK3CA 
loci. 

 Temperature Time Cycles 

Lid 98°C ∞  

Denaturation 98°C 30 seconds 1x 

Denaturation 98°C 10 seconds 
 
40x Annealing 63°C 30 seconds 

Elongation 72°C 15 seconds 
Elongation 72°C 5 minutes 1x 
Storage 8°C ∞ 1x 
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2.11 Statistical Analysis 

“To assess biological statistical significance of differences between observed cleavages of 

sgRNAs targeting wild type or mutated sequences in the "traffic light" reporter assay, we 

performed double-sided Student's t-tests without an assumption of equal variances (Welch's 

t-test). Correlations between sgRNA activity predictions and measured effects were calculated 

using Pearson's method. A P-value of less than 0.05 was considered statistically significant.“ 

(Gebler et al., 2017) 
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3 Results  

 

3.1 Design of sgRNAs targeting oncogenes 

“To first investigate how many cancer mutations could theoretically be targeted by 

Streptococcus pyogenes (sp)Cas9, we performed a comprehensive bioinformatics analysis of 

published cancer mutations ([Kandoth et al., 2013]). From the reported 608 671 unique 

mutations, we were able to design 1 909 172 sgRNAs that cover 554 069 mutations (91.0%) 

and 20 756 out of 20 948 mutated genes. We then performed an analysis to avoid off-target 

cleavage and discarded all sgRNAs having additional perfect matches to sequences in the 

reference genome, in addition to prioritizing sgRNAs with the highest divergence to 

homologous sequences elsewhere in the genome ([Hsu et al., 2013]). Based on these criteria, 

we nominated 1 701 813 sgRNAs that could theoretically target 535 327 (88.0%) of known 

cancer mutations encompassing 10 349 (85.0%) of known cancer driver mutations ([Table 3, 

Figure 1A]).” (Gebler et al., 2017) 

 

Table 3: Design of cancer mutation targeting sgRNAs.  
[Table 3 is available on the compact disc and at the following website:] 

http://www.buchholzlab.org/index.php/supplementary-data/ 

Abbreviations used in the table 

Gene HGNC symbol of a gene affected by the mutation 
Chromosome 
Start Position 

Genomic coordinates of the mutation (GRCh37/hg19 
genome version) 

Variant Classification Classification of a mutation according to Kandoth et al. 
Reference Allele Refeference genome sequence 
Variant Allele Mutated sequence 
Transcript ID Ensembl ID of an affected transcript (database version 69) 
AA Change Amino acid change 
Frequently mutated gene 
(FMG) 

"Yes" if the gene belongs to a list of frequently mutated 
genes 

FMG & More than 1 sample 
mutated 

"Yes" if the mutation was also identified in more than one 
sample 

# Tumor Samples Count of samples with the mutation 
Tumor Samples List of samples with the mutation (from Kandoth et al.) 
Designed sgRNAs Count of designed sgRNAs 

[Doench] Score ≥ .75 sgRNAs with a score (according to [Doench] et al.) above 
0.75 

[Doench] Score ≥ .5 sgRNAs with a score (according to [Doench] et al.) 
between 0.5 and 0.75 

[Doench] Score ≥ .25 sgRNAs with a score (according to [Doench] et al.) 
between 0.25 and 0.5 

[Doench] Score < .25 sgRNAs with a score (according to [Doench] et al.) lower 
than 0.25 



 

21
 

 

 



 

22
 

 Fi
gu

re
 1

: s
gR

N
A 

de
si

gn
 a

nd
 e

va
lu

at
io

n 
of

 s
gR

N
A 

ef
fic

ac
y 

an
d 

se
le

ct
iv

ity
 

A
) B

io
in

fo
rm

at
ic

s 
an

al
ys

is
 a

nd
 s

gR
N

A 
de

si
gn

 fo
r c

an
ce

r m
ut

at
io

ns
. A

 p
ie

 c
ha

rt 
fo

r r
ep

or
te

d 
ca

nc
er

 m
ut

at
io

ns
 a

nd
 fo

r c
an

ce
r d

riv
er

 m
ut

at
io

ns
 fo

r 

S
tre

pt
oc

oc
cu

s 
py

og
en

es
 s

gR
N

As
 i

s 
sh

ow
n.

 B
) 

O
ve

rv
ie

w
 o

f 
“tr

af
fic

 l
ig

ht
” 

re
po

rte
r 

as
sa

y.
 I

m
po

rta
nt

 e
le

m
en

ts
 a

re
 i

nd
ic

at
ed

. 
R

ep
re

se
nt

at
iv

e 

ex
am

pl
es

 o
f f

lu
or

es
ce

nc
e-

ac
tiv

at
ed

 c
el

l s
or

tin
g 

pl
ot

s 
an

d 
m

ic
ro

sc
op

y 
im

ag
es

 a
re

 s
ho

w
n 

(s
ca

le
 b

ar
s 

= 
40

0 
m

m
). 

C
) 

A
ct

iv
ity

 a
nd

 s
el

ec
tiv

ity
 o

f 

em
pl

oy
ed

 s
gR

N
A

s.
 T

he
 ta

rg
et

ed
 m

ut
at

io
ns

 a
re

 in
di

ca
te

d 
ab

ov
e 

ea
ch

 g
ra

ph
, w

ith
 th

e 
w

ild
-ty

pe
, m

ut
an

t, 
an

d 
pr

ot
os

pa
ce

r s
eq

ue
nc

es
 il

lu
st

ra
te

d 

be
lo

w
 e

ac
h 

gr
ap

h.
 E

rr
or

 b
ar

s 
re

pr
es

en
t [

st
an

da
rd

 d
ev

ia
tio

n 
(S

D
)] 

fro
m

 e
xp

er
im

en
ts

 p
er

fo
rm

ed
 in

 [t
ec

hn
ic

al
] t

rip
lic

at
es

. T
w

o-
si

de
d 

S
tu

de
nt

’s
 t 

te
st

 

*P
<.

05
; *

*P
<.

01
; *

**
P

<.
00

1.
 m

ut
 –

 m
ut

an
t; 

ps
 –

 p
ro

to
sp

ac
er

; W
T 

– 
w

ild
-ty

pe
. 

[C
EB

PA
 

– 
C

C
AA

T/
En

ha
nc

er
-B

in
di

ng
 

Pr
ot

ei
n,

 
Al

ph
a;

 
D

N
M

T3
A 

– 
D

N
A 

M
et

hy
ltr

an
sf

er
as

e 
3A

; 
ID

H
1 

– 
Is

oc
itr

at
e 

de
hy

dr
og

en
as

e 
1;

 

N
F2

 –
 N

eu
ro

fib
ro

m
in

 2
; P

TP
N

11
 –

 P
ro

te
in

-T
yr

os
in

e 
P

ho
sp

ha
ta

se
, N

on
re

ce
pt

or
-T

yp
e,

 1
1;

 S
R

C
 –

 V
-S

rc
 A

vi
an

 S
ar

co
m

a 
(S

ch
m

id
t-R

up
pi

n 
A

-2
) 

Vi
ra

l O
nc

og
en

e;
 U

2A
F1

 –
 U

2 
S

m
al

l N
uc

le
ar

 R
N

A
 A

ux
ilia

ry
 F

ac
to

r 2
; W

T1
 –

 W
ilm

s 
tu

m
or

 g
en

e]
 



Results 
__________________________________________________________________________________________ 

 

23 
 

3.2 Evaluation of sgRNA efficacy and selectivity 

“We next established a “traffic-light” reporter system ([Karimova et al., 2015]), where Cas9 

cleavage activates GFP expression in transiently transfected mammalian cells in culture to 

rapidly evaluate efficacy and selectivity of designed sgRNAs (Figure 1B). Sequences bearing 

13 different cancer mutations or the corresponding WT sequences were cloned into the 

reporter construct and subsequently cotransfected into HeLa cells with a Cas9 expression 

plasmid ([Ran et al., 2013a]) that also expressed the cancer mutation–specific sgRNA (Figure 

1, B and C). Efficient cleavage was observed for most constructs bearing cancer mutations, 

with 10 out of 13 sgRNAs also showing a higher than 4-fold target site selectivity over the wild-

type (WT) sequence, with the remaining three still showing 2.7- to 3.8-fold selectivity of mutant 

over WT. In particular, insertion and deletion mutations reported in the genes KIT, NPM1, 

CEBPA, EGFR, and WT1 showed little to no appearance of green cells when combined with 

the WT reporters (Figure 1C), reflecting that the WT sequences were not cleaved efficiently. 

In contrast, 10% to 25% of GFP-positive cells were detected when the cancer mutation 

reporters were used in combination with matching sgRNAs. Hence, these sgRNAs created 

indels in the reporter plasmids that brought the GFP sequence into the correct reading frame, 

demonstrating their potency to cleave the cancer mutation sequence. Overall, we observed a 

descent correlation between the sgRNA prediction score and the actual activity in the traffic 

light reporter assay. However, we detected considerable differences in cleavage efficacy for 

some sgRNAs targeting the identical cancer mutation, despite the fact that their prediction 

scores ([Doench et al., 2014; Doench et al., 2016]) were similar ([Table 4]). For instance, 

sgRNA#1 with a score of 0.42 for the EGFR 2235_2249del15 mutation only produced 0.5% 

(+/-0.1%) of GFP-positive cells, whereas the related sgRNA#2 with a score of 0.33 that is only 

shifted by one base pair was highly efficient and resulted in more than 17.4% (+/-1.5%) of 

GFP-positive cells. […] 

Remarkably, many point mutations, such as the DNMT3A c.2645G>A mutation, were 

efficiently cleaved by the cancer mutation sgRNA (21.9% [+/-0.8%] GFP-positive cells) without 

appreciably cleaving the WT sequence (3% [+/-0.2%] GFP-positive cells), demonstrating that 

the CRISPR/Cas9 system can be sensitive enough to distinguish single base pair alterations.” 

(Gebler et al., 2017)  

As a small fraction of cancer mutations lack neighboring NGG-PAMs, we tested the 

applicability of the traffic-light reporter for orthogonal CRISPR/Cas-systems. A gRNA targeting 

FLT3-ITD was cloned into a NmCas9 expressing plasmid and co-transfected with the reporter 

construct into HeLa cells. The measured activity revealed 2.3% GFP-positive cells and was 

lower than the activity of any tested SpCas9 sgRNA. The specificity was comparable to 

SpCas9 with no GFP-positive cells detectable (Figure 3). 
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Figure 2: Evaluation of sgRNA prediction score.  
Both scatter plots show relationships between predicted (according to Doench 2014 and 

Doench 2016 scoring systems) and measured activities of sgRNAs (depicted as circles with 

numbers corresponding to identifiers from [Table 4]). Linear regression lines (dark gray) and 

surrounding 95% confidence interval areas (light gray) represent correlations between 

predicted and measured activities of selected sgRNAs (shown as black-filled circles). White-

filled circles represent sgRNAs excluded from the regression analysis due to minimal 

measured activity (sgRNAs: #4 and #15). Corresponding Pearson's correlation coefficients are 

indicated below, with numbers in brackets showing r-values based on all sgRNAs (black- and 

white-filled circles). 

 
Figure 3: Inactivation of cancer mutation with an orthogonal CRISPR/Cas-system.  
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Efficiency and selectivity utilizing the Neisseria meningitidis CRISPR/Cas-system on the FLT3-

ITD mutation is shown. The wild type (WT), mutant (mut) and protospacer (ps) sequences are 

illustrated. The PAM sequence is underlined. [Error bars represent SD from experiments 

performed in technical triplicates.] Two-sided Student’s t-test, **P = 0.008. 

 

3.3 Effects of oncogene knock-out in cancer cell lines 

3.3.1 Targeting NPM1 in AML cells 

“We next investigated the functional relevance of [three] common cancer mutations in tumor 

cells. The nucleophosmin gene (NPM1) is mutated in about 30% of patients suffering from 

acute myeloid leukemia (AML) ([Falini et al., 2005]). Mutant NPM1 is thought to play an 

important role in AML proliferation, indicating that a direct way to inactivate the mutation could 

affect malignant growth ([Federici and Falini, 2013]).  

We cloned the tested sgRNA sequence targeting mutant NPM1 (Figure 1C) into a lentiviral 

vector ([Heckl et al., 2014]) expressing Cas9 in conjunction with EGFP and transduced NPM1 

mutant OCI-AML3 cells and NPM1 WT MV4-11 cells with the virus. Efficient cleavage of mutant 

NPM1 in OCI-AML3 cells was evident in employing multiple assays ([Figure 4]). Strikingly, 

transduced OCI-AML3, but not the MV4-11 cells, were successively depleted over time 

([Figure 4C]), signifying that the mutant NPM1 protein is required for efficient cell proliferation 

in OCI-AML3. Cell cycle analyses revealed that OCI-AML3 cells treated with the NPM1 sgRNA 

arrested in G1 without markedly altering the subG1 fraction ([Figure 4D]), suggesting that 

mutant NPM1 expression in these cells is required for cell cycle progression. To investigate 

the mutational spectrum at the site of cleavage, we performed deep sequencing of the NPM1 

locus in control- and sgNPM1-treated cells. As expected, cells treated with a control sgRNA 

revealed a 50:50 ratio for the WT and mutant allele, reflecting the heterozygous nature of the 

NPM1 mutation. In contrast, cells treated with the sgRNA-targeting mutant NPM1 showed 

efficient cleavage and repair of the mutant allele. Remarkably, the WT:NPM1 ratio in this 

sample increased to around 70:30, indicating that a substantial fraction (34.2%) of the cells 

had repaired the mutation back to the WT sequence ([Figure 4E]), likely through homologous 

recombination utilizing the WT allele as a template. The fraction of indel mutations was further 

reduced (from 62.8% to 55.7%) when the cells were treated with the DNA ligase IV inhibitor 

SCR7 ([Srivastava et al., 2012]), indicating that enhanced HR-mediated repair can be achieved 

when the NHEJ pathway is inhibited.” (Gebler et al., 2017) 

Consequently, the mutant allele was almost completely inactivated, either by indel mutations 

(62.8%) leading to frameshifts and inactivation, or by WT recovery (34.2%). 
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3.3.2 Targeting BRAF in melanoma cells 

Single BRAF inactivation with Vemurafenib showed an anti-proliferative effect in melanoma 

cell lines (Lee et al., 2010). Therefore, we used the lentivirus, expressing the BRAF targeting 

sgRNA, to transduce the homozygous mutated A-375 and SK-MEL-28 cell lines. Even after 15 

days of follow-up, GFP positive cells expressing the sgRNA did not diminish in comparison to 

mock treatment (Supplementary Figure 2A), although indels could be detected in the T7 assay 

(Supplementary Figure 3). 

 

 
Supplementary Figure 2: Effects of mutant BRAF and PIK3CA inactivation on relative 
abundance of cells. 

(A) Melanoma cell lines A-375 and SK-MEL-28 cells (both BRAFV600E homozygous), were 

transduced with lentiviruses containing SpCas9 and either a sgRNA targeting mutant BRAF or 

a mock sgRNA. GFP expressing cell fraction was measured by FACS analysis over time.  

(B) HCT116 (BRAFWT and PIK3CAH1047R/WT), HEK293 (BRAFWT and PIK3CAWT) and RKO cells 

(BRAFV600E/V600E/WT and PIK3CAH1047R/WT) were transduced with lentiviruses containing Cas9 

and either sgRNA targeting mutant BRAF, PIK3CA, both or a mock sgRNA. GFP expressing 

cell fraction was measured by FACS analysis over time. Error bars show SD from experiments 

performed in technical triplicates. 
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Supplementary Figure 3: T7 assay of BRAF locus in melanoma.  
A-375 and SK-MEL-28 cells were transduced with lentivirus containing either a mock sgRNA 

or a sgRNA targeting BRAFV600E. The arrow points to the cleavage product. 

 

3.3.3 Targeting BRAF and PIK3CA in colorectal carcinoma cells 

As in the melanoma cell line the BRAFV600E knock-out did not show anti-proliferative effects, 

we infected the heterozygous mutated RKO cell line, originated from CRC, with the lentivirus 

containing BRAFV600E sgRNA. The sgRNA expressing cell populations were depleted over time 

and apoptosis increased 1.4-fold (Figure 5, B and C). 

Previous investigations emphasized a concomitant inhibition of B-Raf and PI3K/mTOR as 

more efficient to reduce tumor size (Coffee et al., 2013). To achieve a high PIK3CAH1047R 

inactivation, we tested two different sgRNAs targeting PIK3CAH1047R and chose sgRNA#2 to 

target the mutation in CRC cells, albeit we observed a lower target specificity than for sgRNA#1 

(Supplementary Figure 4). Next, we transduced RKO, HCT116 and HEK293 cells with 

lentiviruses harboring either BRAF or PIK3CA sgRNA or both sgRNAs. Toxicity was not 

observed in any of the cell lines after transduction. In double WT HEK293 cells, the lentivirus 

expressing cell fractions were depleted over time with no difference between mock and sgRNA 

lentiviruses. In PIK3CAH1047R heterozygous HCT116 cells, only the fraction with stable sgRNA 

expression targeting mutant PIK3CA, was reduced to 54.4% after 9 days. In double mutant 

RKO cells, the mock lentivirus cell population remained constant, whereas all sgRNA 

expressing cell populations were depleted over time. However, no difference could be detected 

between single sgRNA and double sgRNA expressing population (Supplementary Figure 2B).  

The cleavage of PIK3CA and BRAF in HEK293, HCT116 and RKO cells was further analyzed 

on genome level by deep sequencing. Confirming the results of the RFP-GFP-reporter system, 

the sgRNA targeting BRAFV600E induced very little DSB in BRAF WT HEK293 and HCT116 

cells. RKO cells harbor a triplication of BRAF (Kleivi et al., 2004). Deep sequencing results 

showed a WT to mutated allele ratio of 32:68 without sgRNA treatment, what concurs with the 
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triplication. With single BRAF sgRNA expression, the ratio shifted to 51:49. 14.8% of the 

mutated allele was altered by indels, 27.0% was replaced by the WT allele. Confirming the 

RFP-GFP-reporter results of sgRNA#2 targeting PIK3CAH1047R, 7.8% DSB occurred in PIK3CA 

WT HEK293 cells. The ratio of PIK3CA WT to mutated allele was 50:50 in HCT116 and RKO 

samples, confirming the heterozygosity of the mutation. In RKO cells, 48.6% of the mutated 

allele was altered by indels after sgRNA treatment, and 31.1% in HCT116 cells. After single 

PIK3CA sgRNA treatment, the PIK3CA WT allele fraction increased slightly and replaced 

10.2% and 12.2% of the mutated allele in RKO and HCT116 cells, respectively, thus also 

indicating homologous donor repair with the WT allele as template. The combination of two 

sgRNAs did not induce DSB as efficiently as single sgRNA treatment. For double knock-out in 

RKO cells, the ratio of BRAF WT:mut was 42:58 compared to 51:49 after single sgRNA 

treatment and the induction of indels dropped to 7.2% compared to 14.7% after single sgRNA 

treatment. For PIK3CA, the double knock-out was even less efficient. The ratio of WT:mut 

allele did not shift in HCT116 nor in RKO cells. The indel alteration in the mutant allele dropped 

to 12.8% and 12.5% in HCT116 and RKO cells, respectively (Supplementary Figure 5). 
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Figure 5: CRISPR-Cas9 mediated inactivation of mutant BRAF in RKO cells.  
A) T7 Surveyor assay to investigate cleavage of the sgRNA targeting the mutant form of BRAF. 

The arrow points to the cleavage product. B) Quantification of Annexin positive cells treated 

with indicated sgRNAs. Error bars show SD from experiments performed in [technical] 

triplicates. C) Relative abundance of cells treated with indicated sgRNAs in HCT116 (no BRAF 

mutation; BRAF +/+) and RKO (carrying 2 BRAF mutant alleles and one BRAF WT allele; 

BRAF +/-/-) over time. Error bars show SD from experiments performed in [technical] 

triplicates. D) Graphical representation of BRAF sequencing reads under indicated conditions. 

Size of deletions and insertions are indicated in white and [dark blue], respectively.  
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Supplementary Figure 4: Activity and selectivity of sgRNAs targeting PIK3CA. 

The wild type (WT), mutant (mut), and protospacer (ps) sequences are illustrated below the 

graph. Error bars represent SD from experiments performed in technical triplicates. Two-sided 

Student’s t test **P<.01; ***P<.001.  
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Supplementary Figure 5: Graphical representation of BRAF and PIK3CA sequencing 
reads after sgRNA treatment. 
HCT116 (BRAFWT and PIK3CAH1047R/WT), HEK293 (BRAFWT and PIK3CAWT) and RKO cells 

(BRAFV600E/V600E/WT and PIK3CAH1047R/WT) were transduced with lentiviruses containing Cas9 

and either sgRNA targeting mutant BRAF, PIK3CA, both or a mock sgRNA. Deep sequencing 

was performed on genomic DNA isolated seven days after sgRNA treatment. WT – wild type; 
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Mut – mutations; Indel – insertions or deletions. Proportions with less than 1.0% not labelled. 

One biological replicate each.
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4 Discussion 

 

4.1 The design of sgRNAs is possible for most cancer mutations 

“With the spCas9, we were able to design sgRNAs for 88% of reported cancer mutations. 

Orthogonal CRISPR/Cas9 systems ([Esvelt et al., 2013]) and/or the engineering of Cas9 

proteins to recognize alternative PAMs ([Kleinstiver et al., 2015]) will increase the spectrum of 

cancer mutations that can be targeted ([Figure 3]). By generating cell line–specific sgRNA 

libraries, it might be possible to rapidly identify the most important driver mutations in this 

setting. […] 

Limitations to our study include that even with additional orthogonal CRISPR/Cas systems it 

will be impossible to design unique sgRNAs for every cancer mutation.” (Gebler et al., 2017) 

Furthermore, we observed anti-proliferative results in cancer cell lines only for heterozygous 

mutation state (see 4.3.2 BRAF in melanoma cells). Further investigations in cell lines with 

homozygous mutations are required to evaluate the efficiency of the CRISPR/Cas-system in 

these cases. 

 

4.2 sgRNAs targeting oncogenes have to be tested  

Although we observed a correlation between the prediction scores and the measured sgRNA 

activity, we had two outlier sgRNA with almost no activity despite a good prediction score.  

“Hence, the current prediction algorithms provide a guideline for the design of efficient 

sgRNAs, but experimental testing of the actual sequences seems recommendable ([Figure 2]). 

Interestingly, it was recently shown that nucleosome occupancy impedes Cas9 function 

([Horlbeck et al., 2016]), possibly explaining the discrepancy between score and activity for 

some sgRNAs. […] 

Taken together, these results show that the CRISPR/Cas9 traffic-light reporter system is a 

valuable method to classify efficient and selective sgRNAs that can cleave cancer mutations.” 

(Gebler et al., 2017) 

 

4.3 Oncogenes can be knocked out with the CRISPR/Cas-system 

4.3.1 NPM1 in AML cells 

Although the role of mutant NPM1 in AML is not completely understood yet, some results 

support the oncogene theory. Former investigations showed, that a knock-down of wild type 

nucleophosmin with siRNA decreased the colony growth, reduced mRNA expression and in 

consequence cytosolic nucleophosmin levels and lead to a G1 arrest in OCI-AML3 cells 

(Balusu et al., 2011). Confirming these results, we observed a strong growth inhibition, lower 
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mRNA expression levels and a depletion of cytosolic nucleophosmin in some OCI-AML3 cells 

after transduction with lentivirus expressing Cas9 and sgRNA targeting mutant NPM1. 

Although the baseline fractions of cells in each cell cycle phase were different in our 

experiments, we could also observe an increase in G1 phase and a decrease in S phase. 

Remarkably, the mutated allele was almost completely replaced by either inactivating indels 

or the WT allele. The fraction of HDR was higher than expected, as NHEJ is the main DSB 

repair mechanism in mammalian cells (Iliakis et al., 2004). 

“Hence, expression of a cancer-specific sgRNA can act in a gene drive fashion to push 

selection toward the WT sequence.” (Gebler et al., 2017) 

 

4.3.2 BRAF in melanoma cells 

Previous studies emphasized the dependency of BRAF mutant melanoma cells on this 

oncogene. BRAF inactivation with Vemurafenib selectively inhibits proliferation in mutant, but 

not in WT melanoma cell lines in vitro (Lee et al., 2010). Confirming these results, a shRNA 

mediated knock-down showed good anti-proliferative and apoptotic effects in several 

melanoma cell lines, particularly with a shRNA targeting the mRNA region around the V600E 

mutation (Hingorani et al., 2003). Therefore, it was surprising that the CRISPR/Cas9 driven 

knock-out of BRAFV600E did not show anti-proliferative results, although indels could be 

detected after sgRNA treatment. One explanation could be the homozygous BRAFV600E status 

of the examined cell lines A-375 and SK-MEL-28. The permanent expression of Cas9 and 

sgRNA continuously cleaves BRAFV600E, until the sequence is altered and the sgRNA fails to 

bind. In case of HDR, the second mutant allele is the template for repair. Consequently, the 

WT allele cannot be restored, but only the mutant allele. In the case of NHEJ, the indels may 

cause mutations in BRAF gene, which have unpredictable effects on the protein activity, even 

a stronger self-activation of B-Raf is imaginable.  

 

4.3.3 BRAF and PIK3CA in CRC cells 

In former studies, a shRNA mediated inactivation of WT BRAF mRNA decreased proliferation 

in BRAFV600E heterozygous RKO cells, but not in BRAFWT HCT116 cells (Preto et al., 2008). 

These results were confirmed with the selective BRAFV600E inhibitor GDC-0879, which reduces 

cell viability in vitro and tumor growth in vivo in nude mice. Apoptosis was slightly, but not 

significantly enhanced by GDC-0879 (Coffee et al., 2013). In concordance with these results, 

me and my colleagues showed that CRISPR/Cas9 mediated knock-out of BRAFV600E inhibits 

cell growth only in the BRAF mutant cell line RKO, but not in WT cell lines. Furthermore, the 

induction of apoptosis was similarly enhanced as with GDC-0879, although we used a different 

apoptosis assay. 



Discussion 
__________________________________________________________________________________________ 

 

39 
 

The deep sequencing in RKO cells revealed 27.0% repair of the mutant BRAF allele back to 

the WT allele. Compared with the NPM1 knockout, “[similar] results were obtained targeting a 

second common cancer mutation (BRAF c.1799T>A) in the colon carcinoma cell line RKO 

([Figure 5]), demonstrating that the approach can pinpoint cancer mutation dependencies in 

cell lines of different origins.” (Gebler et al., 2017) 

Previous studies showed that a silencing of p100α with siRNA or shRNA resulted in cell viability 

and growth reduction, independent on the PIK3CA mutation status (Fernandes et al., 2016). 

Currently, there is no PIK3CAH1047R specific p100α inhibitor. The existing ones are either dual 

p100α/mTor inhibitors (e.g. NVP-BEZ235) or single p100α inhibitors (e.g. GDC0941, 

NVP-BKM120) with effects on WT as well as mutant p100α, thus producing growth inhibition 

in PIK3CAWT and PIK3CAH1047R cell lines (Kong et al., 2014). Another p100α specific inhibitor, 

NVP-BYL719, is more likely to inhibit mutant PIK3CA cell lines from different tissues, but its 

half maximal inhibitory concentration (IC50) on WT and mutant p100α is the same (Fritsch et 

al., 2014). Therefore, a comparison with the data from my PIK3CAH1047R specific knock-out is 

limited, although an anti-proliferative effect was observed as well. 

In contrast to NPM1 and BRAF knock-out, the deep sequencing results revealed a high fraction 

of NHEJ and less HDR of the mutant PIK3CA allele. Nevertheless, PIK3CA sgRNA expression 

decreased RKO and HCT116 growth in my experiments. NHEJ might result in activating 

mutations of PIK3CA, but more probably many of the frameshift indels will inactivate and knock 

out the mutant PIK3CA allele. Indeed, the tested PIK3CA sgRNA also leads to DSB in the wild 

type allele, what limits conclusions on mutant specific PIK3CAH1047R knock-out.  

There are results indicating a combined BRAF and p100α inhibition have synergistic effects in 

CRC treatment in xenograft experiments (Mao et al., 2013). My results did not show a stronger 

growth inhibition after a double knock-out of BRAFV600E and PIK3CAH1047R in double mutant 

RKO cells and deep sequencing results revealed a less effective DSB induction for both, 

BRAFV600E and PIK3CAH1047R locus. There are several possible explanations for this result. The 

sgRNAs in the double knock-out experiment were expressed from the same lentiviral vector, 

which has only a single Cas9 gene. Therefore, the stoichiometry of Cas9 and sgRNA is 

different than in single sgRNA expression from this vector. This problem could be solved by 

the transduction with two lentiviruses, each containing Cas9 gene and sgRNA expression 

cassette. The PIK3CA sgRNA cassette has a H1 promoter. Compared to the hU6 promoter, 

H1 promoter induces less sgRNA transcription (Ranganathan et al., 2014). In addition, the 

transcription start site from the H1 promoter is more variable, resulting in production of sgRNAs 

of different lengths (Ma et al., 2014). These prolongated sgRNAs are less active and less 

specific than 20 bp long sgRNAs (Ran et al., 2013b). Furthermore, multiplex sgRNA targeting 

seems to be less effective than single sgRNA targeting (Sakuma et al., 2014). These findings 
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together could explain the difference of my work to the former described synergistic effect of 

PIK3CA and BRAF inhibition.  

 

4.4 Advantages and disadvantages to target oncogenes with the CRISPR/Cas-system  

A disadvantage of targeting drugs is the presence of escape mechanisms, for instance through 

additional mutations. Attacking oncogenic driver mutations before they are expressed into 

gene products could help to prevent those escape mechanisms. This goal could be achieved 

with gene knock-out, for example upstream of a mutated and constitutively activated domain, 

causing a loss-of-function mutation. With the development of effective delivery possibilities, 

gene therapy of cancer might be a future goal of cancer research. 

However, there are certain disadvantages of gene editing in general. Due to the observed HDR 

effects after DSB induction and the statistical smaller chance to cleave two alleles than one, 

gene therapy in homozygous mutant or aneuploid cells is supposed to be less efficient than in 

heterozygous mutant cells. But if the knock-out or correction works, it is permanent and 

inheritable to the daughter cells. Another disadvantage is the use of HDR only in proliferating 

cells, whereas resting cells employ NHEJ to fix a DSB (Unniyampurath et al., 2016).  

“Furthermore, control over the repair mechanism after Cas9-mediated DNA cleavage is limited. 

It is therefore likely that sgRNA-resistant clones may emerge that maintain the oncogenic 

phenotype. In addition, off-target cleavage has to be considered a potential risk factor in a 

therapeutic setting.” (Gebler et al., 2017)  

However, former studies, employing siRNA or shRNA for the silencing of oncogenes, showed 

high off-target effects. The off-target potential of the CRISPR/Cas-system in human cells might 

be lower compared to siRNA and shRNA and improvements promise a further reduction 

(Unniyampurath et al., 2016). Nevertheless, off-target activity of the CRIPSR/Cas-system is 

detectable at sites with up to four base mismatches between sgRNA and DNA, particularly 

with mismatches at the 5’-end of the protospacer, and to a smaller extent at sites with single 

base insertion and deletion mismatches, thus increasing the number of potential off-targets 

exponentially (Hsu et al., 2013; Doench et al., 2016). 

“Nevertheless, considering current cancer treatment regimes employing DNA-damaging drugs 

and/or radiation, the CRISPR/Cas9 system is conceivable to be less genotoxic and cause less 

undesired DNA lesions in cells. Given the prominent gene drive effect we observed to repair 

the cancer mutation back to the WT sequence, installing the CRISPR/Cas9 system as a “tumor 

protection system” is also worth contemplating ([Figure 6]). This way, the system would act as 

a “cancer mutation immune system,” eliminating or repairing malignant lesions when they 

occur and before cells become cancerous.” (Gebler et al., 2017) 
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Figure 6: Model of a CRISPR/Cas9 tumor protection system.  
Important steps are highlighted. WT - wild type cells. 

 

4.5 Concluding remarks 

Besides investigations on the reversion of the BCR-ABL1-translocation and the removal of 

oncogenic viruses, there are few studies on oncogene knock-out utilizing the CRISPR/Cas-

system (Lekomtsev et al., 2016).  

Currently, this work is the first one to employ the CRISPR/Cas-system for the knock-out of 

oncogenes with gene mutations and moreover the first work using programmable nucleases 

on mutant NPM1, BRAF and PIK3CA. Our results indicate that a knock-out of oncogenes with 

differentiation between the WT and mutated allele is feasible and shows anti-proliferative 

effects only in cells with the correspondent mutation.  

“Overall, we conclude that mutant NPM1 and mutant BRAF are required for OCI-AML3 and 

RKO proliferation, respectively, and that the CRISPR/Cas9 system is a powerful tool to dissect 

the relevance of cancer mutations in tumor cells. […] 

Furthermore, we envision that this approach is transferable to primary patient samples ([Figure 

7]), and, in the long run, CRISPR/Cas9 could potentially be considered a therapeutic approach 

to target patient-specific mutations in affected individuals. Delivery of Cas9 and mutation-

specific sgRNAs into tumor cells by, eg, oncolytic viruses ([Kaufman et al., 2015]) could form 
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a potent, individualized therapy that could complement current treatment strategies. In 

particular, combination therapy, where two or more cancer mutations are targeted at the same 

time, is relatively straightforward in this setting, when several specific sgRNAs can be provided 

simultaneously ([Figure 7]).” (Gebler et al., 2017) 

 

 
Figure 7: Scheme for functional profiling of cancer mutations in individualized therapy.  
Important steps are highlighted. NGS - next generation sequencing.
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6 Summary 

 

Numerous mutations contribute to tumorigenesis of cancer cells. For most of them it remains 

unclear whether they are driver or passenger mutations. A classic knock-out to study their 

function in cancer cells used to take a lot of effort. The CRISPR/Cas-system can be used as a 

programmable “genome-editing” tool. In this work, oncogenes have been inactivated with the 

CRISPR/Cas-system.  

Considering off-targets, Streptococcus pyogenes sgRNAs can be designed for 88% of the 

known cancer mutations. The activity of 15 sgRNAs, targeting 13 mutations in proto-

oncogenes (deletions, insertions and point mutations), has been tested with a RFP-GFP-

reporter plasmid. For 13 sgRNAs, activity prediction scores correlated with measured activity. 

Furthermore, sgRNAs have shown preferential binding to mutated versions of targeted proto-

oncogene sequence and did not induce double strand breaks in the wild type sequence. For 

10 sgRNAs, the activity against their target sequence has been more than 4 times higher than 

against the wild type sequence. Most of those sgRNAs target insertions or deletions and fewer 

target point mutations. 

Permanent knock-out of three mutated proto-oncogenes NPM1, BRAF and PIK3CA has been 

achieved with a lentiviral expression of CRISPR/Cas. Accordingly, effects on proliferation and 

phenotype have been studied. 

Knock-out of NPM1 c.863_864insTCTG mutation has been studied in heterozygous mutated 

OCI-AML3 cell line. Proliferation was strongly inhibited by the corresponding sgRNA. Cells 

arrested in G0/1-phase of cell cycle (77%) compared to control cells (56%), although no 

difference was observed for sub-G1 phase, indicating no induction of apoptosis. Cells treated 

with NPM1 sgRNA had 88% reduced expression of NPM1 c.863_864insTCTG mRNA as well 

as less cytoplasmic localization of nucleophosmin as assessed by immunostaining. The 

activity of sgRNA has been confirmed by deep sequencing, showing a shift of wild type to 

mutated allele ratio from 51:49 to 68:32. This effect was enhanced by the additional treatment 

with the NHEJ inhibitor SCR7. 

A BRAFV600E sgRNA was tested in homozygously mutated melanoma cell lines A-375 and 

SK-MEL-28. No differences were detected in comparison to controls. However, in the CRC cell 

line RKO, heterozygous for BRAFV600E and PIK3CAH1047R, proliferation was inhibited through 

sgRNAs against either BRAF or PIK3CA. A combination of both had no synergistic effect on 

proliferation. Activity and specificity of the sgRNA targeting BRAF were confirmed by deep 

sequencing, while the PIK3CA sgRNA showed a moderate induction of double strand breaks 

also in the wild type allele. The relation of wild type to mutated allele of BRAF was changed 

from 32:68 before treatment to 51:49 afterwards. This effect can be explained by a 
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“re-mutation” to the wild type after DSB via HDR with wild type sister chromatid as template. 

This effect was observed for PIK3CA sgRNA to a lesser extent. 

In conclusion, these results show the applicability of the CRISPR/Cas-system for the 

inactivation of mutated proto-oncogenes. 
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7 Zusammenfassung 

 

In Krebszellen tritt eine Vielzahl von Mutationen auf. Für den Großteil der Mutationen ist 

ungeklärt, ob es sich um krebsverursachende oder passagere Mutationen handelt. Ein 

gezieltes Ausschalten (Knock-out) dieser Gene zur Untersuchung ihrer Funktion in 

Krebszellen war bisher mit großem Aufwand verbunden. Das CRISPR/Cas-System lässt sich 

als programmierbares „Genome-editing“ Werkzeug einsetzen und wurde in der vorliegenden 

Arbeit verwendet, um gezielt mutierte Protoonkogene zu inaktivieren.  

Für 88% der bekannten, in Krebszellen auftretenden Mutationen lassen sich, unter 

Berücksichtigung von off-targets, Streptococcus pyogenes sgRNAs entwerfen. Mit Hilfe eines 

RFP-GFP-Reporter-Plasmides wurde die Aktivität von 15 sgRNAs gegen 13 Mutationen 

(Deletionen, Insertionen und Punktmutationen) in Protoonkogenen überprüft. Für 13 der 

sgRNAs zeigte sich eine Aktivität, die mit der Vorhersage durch den Algorithmus korrelierte. 

Außerdem wurde gezeigt, dass die sgRNAs spezifisch genug binden, um zwar bei der 

mutierten Sequenz eines Protoonkogens, jedoch nicht bei der Wildtyp-Sequenz 

Doppelstrangbrüche zu erzeugen. Unter den sgRNAs waren 10 mit mehr als 4-fach höherer 

Aktivität bei komplett übereinstimmender Zielsequenz gegenüber der Wildtyp-Sequenz. Diese 

spezifischen sgRNAs waren vor allem gegen Insertions- oder Deletionsmutationen gerichtet, 

einige auch gegen Punktmutationen.  

Durch permanente, lentivirale Expression von CRISPR/Cas wurden die Effekte eines Knock-

out von drei mutierten Protoonkogenen, NPM1, BRAF und PIK3CA, auf das Wachstum und 

phänotypische Aspekte humaner Krebszelllinien untersucht. 

Ein Knock-out der NPM1 c.863_864insTCTG Mutation wurde in heterozygot mutierten 

OCI-AML3 Zellen untersucht, es zeigte sich eine starke Proliferationshemmung. In der 

Zellzyklusanalyse trat ein G0/1-Arrest dieser Zellen (77%) im Vergleich mit Kontroll-Zellen 

(56%) auf, jedoch keine Unterschiede in der sub-G1-Analyse, sodass nicht von einer 

vermehrten Apoptose auszugehen ist. Die mit sgRNA behandelten OCI-AML3 Zellen zeigten 

sowohl eine um 88% verminderte NPM1 c.863_864insTCTG mRNA-Expression als auch 

verminderte zytoplasmatische Sublokalisation des Nucleophosmins in der Immunfärbung. Die 

hohe Aktivität der gRNA gegen mutiertes NPM1 wurde durch Deep Sequencing bestätigt, 

außerdem hat sich das Verhältnis vom Wildtyp- zu mutiertem Allel von 51:49 zu 68:32 

verschoben. Dieser Effekt wurde durch Zugabe des NHEJ-Hemmstoffes SCR7 noch verstärkt.  

Die sgRNA gegen BRAFV600E wurde in den homozygot mutierten Melanom-Zelllinien A-375 

und SK-MEL-28 getestet. Bei Proliferationsversuchen zeigten sich keine Unterschiede im 

Vergleich zu Kontrollzellen. In der kolorektalen Krebszelllinie RKO, die heterozygot BRAFV600E 

und PIK3CAH1047R ist, zeigte sich bei der Testung von sgRNAs gegen BRAF, PIK3CA und 
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Kombination beider sgRNAs eine Wachstumshemmung. Jedoch lag kein synergistischer 

Effekt bei sgRNA-Kombination vor. Zudem bestätigten sich Aktivität und Spezifität der sgRNA 

gegen BRAF im Deep Sequencing, während die sgRNA gegen PIK3CA in mäßigem Umfang 

Doppelstrangbrüche im Wildtyp-Allel verursachte. Das Verhältnis vom Wildtyp- zu mutiertem 

BRAF-Allel verschob sich von 32:68 ohne sgRNA zu 51:49 nach sgRNA-Behandlung. Eine 

mögliche Erklärung dieser Beobachtung ist die Rückmutation zum Wildtyp-Allel nach 

Doppelstrangbruch mit Hilfe homologer Rekombination durch das Wildtyp-

Schwesterchromatid. Für PIK3CA konnte dieser Effekt in schwächerem Ausmaß ebenfalls 

beobachtet werden. 

Zusammengefasst zeigen diese Ergebnisse, dass das CRISPR/Cas-System zur Inaktivierung 

mutierter Protoonkogene genutzt werden kann.  
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Appendix 

Own Contribution 

I designed and conducted following experiments of the presented work on my own or in 

collaboration with members of the laboratory.  

For the traffic light reporter assay, I selected sgRNAs from the cancer mutation set. 

Subsequently I cloned sgRNA and reporter plasmids and tested the sgRNA activity by 

fluorescence-activated cell sorting in HeLa cells. Furthermore, I performed statistical analysis 

of the traffic light reporter results. 

For the knock-out of oncogenes, I cloned sgRNAs into the lentiviral vector system and infected 

the cancer cell lines. Then I conducted proliferation assays and cell cycle analysis by 

fluorescence activated cell sorting and I performed T7 assays. Moreover, I was involved in the 

sample preparation for the deep sequencing experiments. 

All original text from the publication (Gebler et al., 2017) is put in quotation marks. All original 

figures and tables from this publication are named Figure 1, 2, etc. and Table 1, 2, etc., 

respectively.  

Additional Figures and Tables, which are not originated from the publication, are named 

Supplementary Figure 1, 2, etc. and Supplementary Table 1, 2, etc., respectively.  
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