
Faculty of Computer Science Chair of Computer Networks

On-Demand Composition of

Smart Service Systems in

Decentralized Environments

The RoleDiSCo Approach

Markus Wutzler, M.Sc.

Dissertation

submitted to

Technische Universität Dresden, Faculty of Computer Science

in partial fulfillment of the requirements in order to obtain the academic degree

Doktor-Ingenieur (Dr.-Ing.)

Dresden, June 2018

Faculty of Computer Science Chair of Computer Networks

On-Demand Composition of

Smart Service Systems in

Decentralized Environments

The RoleDiSCo Approach

Markus Wutzler, M.Sc.

born on January 3, 1991 in Freital, Germany

Dissertation

submitted to

Technische Universität Dresden, Faculty of Computer Science

in partial fulfillment of the requirements in order to obtain the academic degree

Doktor-Ingenieur (Dr.-Ing.)

Prof. Dr. rer. nat. habil. Dr. h. c. Alexander Schill first reviewer

Technische Universität Dresden, Germany

Prof. Dr. rer. nat. Markus Endler second reviewer

Pontifícia Universidade Católica do Rio de Janeiro, Brazil

Prof. Dr.-Ing. Thomas Schlegel advisor

Hochschule Karlsruhe – Technik und Wirtschaft, Germany

Date of Submission Date of Defense

November 17, 2017 April 4, 2018

Für meinen Opa.
To my Grandpa.

The most profound technologies are those that disappear.
They weave themselves into the fabric of everyday life

until they are indistinguishable from it.

—Mark Weiser

Abstract

The increasing number of smart systems inevitably leads to a huge number of systems
that potentially provide independently designed, autonomously operating services.
In near-future smart computing systems, such as smart cities, smart grids or smart
mobility, independently developed and heterogeneous services need to be dynamically
interconnected in order to develop their full potential in a rather complex collaboration
with others. Since the services are developed independently, it is challenging to integrate
them on-the-fly at run time. Due to the increasing degree of distribution, such systems
operate in a decentralized and volatile environment, where central management is infea-
sible. Conversely, the increasing computational power of such systems also supersedes
the need for central management. The four identified key problems of adaptable, collab-
orative Smart Service Systems are on-demand composition of complex service structures
in decentralized environments, the absence of a comprehensive, serendipity-aware
specification, a discontinuity from design-time specification to run-time execution, and
the lack of a development methodology that separates the development of a service
from that of its role essential to a collaboration.

This approach utilizes role-based models, which have a collaborative nature, for auto-
mated, on-demand service composition. A rigorous two-phase development method-
ology is proposed in order to demarcate the development of the services from that
of their role essential to a collaboration. Therein, a collaboration designer specifies
the collaboration including its abstract functionality using the proposed role-based
collaboration specification for Smart Service Systems. Thereof, a partial implementation
is derived, which is complemented by services developed in the second phase. The
proposed middleware architecture provides run-time support and bridges the gap
between design and run time. It implements a protocol for coordinated, role-based
composition and adaptation of Smart Service Systems. The approach is quantitatively
and qualitatively evaluated by means of a case study and a performance evaluation in
order to identify limitations of complex service structures and the trade-off of employing
the concept of roles for composition and adaptation of Smart Service Systems.

vii

Acknowledgements

Though receiving a doctor’s degree has been a dream since many years even before I
started my studies in computer science, I never imagined that I would get the opportu-
nity to realize that dream. In this regard, I particularly want to express my profound
gratitude to my supervisor Prof. Dr. Alexander Schill for regularly providing feedback
and advice as well as always keeping his eye on the schedule and encouraging me to
meet the deadlines. Likewise, I want to expressmy thanks to the German Research Foun-
dation (DFG) for funding the RoSI Research Training Group, in which I was involved
during the past three years. It was a great pleasure to work within this large group and
to solely focus on my PhD work. In that sense I also want to thank all the members
of the RoSI Research Training group for many interesting and lively discussions, the
valuable feedback to my work, and of course the pleasant work atmosphere.

Moreover, I want to express my profound gratitude to Martin Weißbach for not only
being a colleague over the past eight years, but also for being a friend and a teammate
one can always rely on; to Thomas Springer for acting as a mentor in the day-to-day
academic life; and to Nguonly Taing for enriching my mind with perspectives from
a different country and culture, thereby, enlightening us to esteem the situation and
society we are living in. Thanks for all the valuable, sometimes controversial but
eventually always constructive discussions and criticism, the feedback, support and the
collective efforts enhancing my papers and presentations.

Additionally, Iwant to thank themembers of theChair of ComputerNetworks, especially
Marius Feldmann for initially teaching me how to write scientific theses, Christin Groba
for discussing the academic aspects of my thesis, as well as Iris Braun, Tenshi Hara
and Philipp Grubitzsch for the encouraging conversations about the difficulties and
challenges of doing a PhD.

I also want to express my great gratitude to my friends and family. Ivonne Wittig, who
proofread my thesis entirely in terms of grammar and orthography, and Sarah Hiller
greatly supported me throughout my entire studies. They were always interested in
what I am doing and even if they could rarely contribute to the topic of my work, we

ix

Acknowledgements

also had a lot of valuable discussions. Their moral support was what kept me going on
and finishing this thesis. Of course, I want to thank my parents Ines and Mario as well
as my grandfather’s life partner Brigitte for the constant interest in my work and their
great moral support, too.

Eventually, I want to express my most profound gratitude to my grandfather Dieter
Prengel himself for supporting me throughout my entire life and believing in whatever
I am doing. Though he neither expected me to study nor to do a PhD afterwards, it was
his engineer’s mind which impressed me and had a lasting effect on me and eventually
led me to become who I am today.

Thank you.

Markus Wutzler
Dresden, June 2018

x

List of Publications

The following peer-reviewed publications cover the main contributions of this thesis:

[MW1] MarkusWutzler. “Composing Adaptive Software Systems in Decentralized Infrastruc-
tures”. In: Proceedings of MobiSys 2016 PhD Forum (Singapore, Singapore). MobiSys
Ph.D. Forum ’16. New York, NY, USA: ACM, 2016, pp. 15–16. isbn: 978-1-4503-4331-2.
doi: 10.1145/2930056.2933325.

[MW2] Markus Wutzler. “Exploring On-Demand Composition of Pervasive Collaborations
in Smart Computing Environments”. In: On the Move to Meaningful Internet Systems:
OTM 2016 Workshops. Ed. by Ioana Ciuciu, Christophe Debruyne, Herve Panetto, et al.
Cham: Springer International Publishing, 2016, pp. 1–10. isbn: 978-3-319-55961-2. doi:
10.1007/978-3-319-55961-2_31.

[MW3] Markus Wutzler, Thomas Springer, and Alexander Schill. “Coordinated Composition
of Continuous Service Collaborations in Decentralized Smart Computing Environ-
ments”. In: Proceedings of the Symposium on Applied Computing. Symposium on Applied
Computing (Pau, France, Apr. 9–13, 2018). SAC’18. Apr. 2018. doi: 10.1145/3167132.
3167145.

[MW4] Markus Wutzler, Thomas Springer, and Alexander Schill. “RoleDiSCo: A Middleware
Architecture and Implementation for Coordinated On-Demand Composition of Smart
Service Systems in Decentralized Environments”. In: 2017 IEEE 2nd International Work-
shops on Foundations and Applications of Self* Systems. 2nd Workshop on Engineering
Collective Adaptive Systems (eCAS) (Tucson, AZ, USA, Sept. 18–22, 2017). FAS*W.
Sept. 2017. doi: 10.1109/FAS-W.2017.118.

[MW5] Markus Wutzler, Thomas Springer, and Alexander Schill. “Utilizing Role-based Mod-
els for On-Demand Composition of Smart Service Systems”. In: Companion to the First
International Conference on the Art, Science and Engineering of Programming (Brussels,
Belgium, Apr. 3–6, 2017). Programming ’17. New York, NY, USA: ACM, 2017, 13:1–
13:6. isbn: 978-1-4503-4836-2. doi: 10.1145/3079368.3079390.

[MW6] Markus Wutzler, Martin Weißbach, and Thomas Springer. “Role-Based Models for
Building Adaptable Collaborative Smart Service Systems”. In: 2017 IEEE International
Conference on Smart Computing (SMARTCOMP). Second IEEE Workshop on Smart
Service Systems (SmartSys 2017) (Hong Kong, China, May 29–31, 2017). IEEE, May
2017, pp. 1–6. isbn: 978-1-5090-6517-2. doi: 10.1109/SMARTCOMP.2017.7947041.

xi

https://doi.org/10.1145/2930056.2933325
https://doi.org/10.1007/978-3-319-55961-2_31
https://doi.org/10.1145/3167132.3167145
https://doi.org/10.1145/3167132.3167145
https://doi.org/10.1109/FAS-W.2017.118
https://doi.org/10.1145/3079368.3079390
https://doi.org/10.1109/SMARTCOMP.2017.7947041

List of Publications

The following peer-reviewed publications are closely related to the content of this thesis,
but serve rather as a foundation for or a prospective application of the contributions
presented in this thesis, and thus are not contained herein:

[MW7] Nguonly Taing, Markus Wutzler, Thomas Springer, Nicolás Cardozo, and Alexander
Schill. “Consistent Unanticipated Adaptation for Context-Dependent Applications”.
In: COP’16: Proceedings of the 8th International Workshop on Context-Oriented Program-
ming (Rome, Italy). New York, NY, USA: ACM Press, 2016, pp. 33–38.

[MW8] Martin Weißbach, Nguonly Taing, Markus Wutzler, Thomas Springer, Alexander
Schill, and Siobhán Clarke. “Decentralized Coordination of Dynamic Software Up-
dates in the Internet of Things”. In: 2016 IEEE 3rd World Forum on Internet of Things
(WF-IoT) (Reston, USA, Dec. 12–14, 2016). Dec. 2016, pp. 171–176. doi: 10.1109/WF-
IoT.2016.7845450.

xii

https://doi.org/10.1109/WF-IoT.2016.7845450
https://doi.org/10.1109/WF-IoT.2016.7845450

Contents

Abstract vii

Acknowledgements ix

List of Publications xi

Acronyms xvii

1 Introduction 1
1.1 Motivation . 2
1.2 Terminology . 3
1.3 Problem Statement . 5
1.4 Requirements Analysis . 9
1.5 Research Questions and Hypothesis . 10
1.6 Focus and Limitations . 11
1.7 Outline . 12

2 The Role Concept in Computer Science 13
2.1 What is a Role in Computer Science? . 13
2.2 Roles in RoleDiSCo . 16

3 State of the Art & Related Work 19
3.1 Role-based Modeling Abstractions for Software Systems 19

3.1.1 Classification . 19
3.1.2 Approaches . 21
3.1.3 Summary . 26

3.2 Role-based Run-Time Systems . 28
3.2.1 Classification . 28
3.2.2 Approaches . 30
3.2.3 Summary . 35

3.3 Spontaneously Collaborating Run-Time Systems 36
3.3.1 Classification . 36
3.3.2 Approaches . 36
3.3.3 Summary . 41

3.4 Summary . 42

xiii

Contents

4 On-Demand Composition and Adaptation of Smart Service Systems 45
4.1 RoleDiSCo Development Methodology 46

4.1.1 Role-based Collaboration Specification for Smart Service Systems 46
4.1.2 Derived Partial Implementation 53
4.1.3 Player & Context Provision . 55

4.2 RoleDiSCo Middleware Architecture for Smart Service Systems 57
4.2.1 Infrastructure Abstraction Layer 58
4.2.2 Context Management . 59
4.2.3 Local Repositories & Knowledge 60
4.2.4 Discovery . 61
4.2.5 Dispatcher . 62

4.3 Coordinated Composition and Subsequent Adaptation 64
4.3.1 Initialization and Planning . 66
4.3.2 Composition: Coordinating Subsystem 67
4.3.3 Composition: Non-Coordinating Subsystem 72
4.3.4 Competing Collaborations & Negotiation 74
4.3.5 Subsequent Adaptation . 76
4.3.6 Terminating a Pervasive Collaboration 79

4.4 Summary . 79

5 Implementing RoleDiSCo 83
5.1 RoleDiSCo Development Support . 83
5.2 RoleDiSCo Middleware . 87

5.2.1 Infrastructure Abstraction Layer 87
5.2.2 Knowledge Repositories and Local Class Discovery 89
5.2.3 Planner . 89

6 Evaluation 91
6.1 Case Study: Distributed Slideshow . 92

6.1.1 Scenario . 92
6.1.2 Phase 1: Collaboration Design 93
6.1.3 Phase 2: Player Complementation 97
6.1.4 Coordinated Composition and Adaptation at Run Time 103

6.2 Runtime Evaluation . 113
6.2.1 General Testbed Setup and Scenarios 114
6.2.2 Discovery Time . 115
6.2.3 Composition Time . 117
6.2.4 Discussion . 120

6.3 The ›Role‹ of Roles . 122
6.4 Summary . 124

7 Conclusion 127
7.1 Summary . 127
7.2 Research Results . 128
7.3 Future Work . 131

xiv

Contents

Bibliography 135

List of Figures 141

List of Tables 143

List of Listings 144

A Supplementary Figures & Tables 145

B Code Listings 149
B.1 Concept . 149
B.2 Implementation . 150
B.3 Evaluation . 153

xv

Acronyms

SASS Self-Adaptive Software System

SOSS Self-Organizing Software System

SOA Service-Oriented Architecture

EBCS Ensemble-based Component System

NLP Network Level Protocol

UPnP Universal Plug ’n’ Play

SSDP Simple Service Discovery

IoT Internet of Things

SLA Service Level Agreement

PCC Pervasive Collaboration Coordinator

DSL Domain-Specific Language

CROM Compartment-Role-Object Model

WS-CDL Web Services Choreography Description Language

BPEL Business Process Execution Language

BPMN Business Process Modeling Notation

YAWL Yet Another Workflow Language

WSDL Web Services Description Language

xvii

The most profound technologies are those that
disappear. They weave themselves into the fabric of
everyday life until they are indistinguishable from it.

Mark Weiser, [81]1 Introduction

In 1991, Mark Weiser presented his vision of »The Computer for the 21st Century« [81], in
which small devices, called tabs and pads, are wirelessly interconnected with each other
and other parts of the infrastructure. He envisioned that such devices are integrated
seamlessly and users are not aware of their underlying technology and infrastructure
anymore. The increasing number of smart devices [27, 31, 32] indicates that within
three decades many of his predictions became true. Besides smartphones, physical
things, such as heaters, fridges, or TV sets, got interconnected through the Internet of
Things (IoT), which makes them accessible from other connected devices.

The real power of the [application] concept comes not from any one of these
devices; it emerges from the interaction of all of them. (Mark Weiser, [81])

Systems utilize their functionality in collaboration with other devices. Within home
networks, for instance, simple collaborations are established using low-level network
protocols to connect a smart phone and a smart TV. Beyond closed infrastructures,
such collaborations are established through services. However, in prospective smart
computing environments, such as smart home, smart mobility, smart grid or pervasive
health, it is almost infeasible to foresee all possible service collaborations. Instead, inde-
pendently designed services are dynamically interconnected to Smart Service Systems,
more precisely smart systems of smart services, in order to create synergies. Hence,
they collaborate on-demand, but the collaboration’s structure might change over time
because of participants who join and leave.

Collaborations are one foundation of the Concept of Roles [9], which already found its
way to distributed systems to some extent. According to Boella and Steimann, a role
encapsulates an abstract functionality that will be utilized in its collaboration with other
roles. A collaboration is defined as “a structure of collaborating roles.” [9] The actual
performance of the role is delegated to its dynamically bound player. This binding,
denoted as fills relation, can be annotated with requirements for respective players in
order to gain flexibility at run time. Thanks to the dynamic fills relation, roles are a
promising concept to ease composition and reconfiguration, especially at run time.

1

1 Introduction

1.1 Motivation

While in the past the need for collaboration of systems or applications has been enforced
along with their distribution, nowadays, the increasing number of smart systems and
their services is not a result of traditional reasons for distribution, such as separation of
concerns, load-balancing, security, or performance, all of which cause a rather static
distribution. The increasing number of smart systems in the domestic sector [27, 31] is
due to people replacing devices, consumer electronics, appliances, etc., with smart ones.
In other areas, such as in smart cities or smart factories, introducing smart systemsmight
be driven by improved monitoring and automation which lead to cost optimizations.
Consequently, those systems come along with independently developed services, which
eventually desire a utilization within a collaboration with other services.

Although more and more devices become smart, their ability to collaborate remains
rather limited. At current state of practice, collaborations between smart systems are
often vendor-specific, which means that only devices of the same manufacturer are able
to collaborate, or collaborations are restricted to simple relationships, e.g., low-level
network protocols connecting a smart phone to a smart TV to stream some media.

Future smart computing environments, such as smart homes, smart mobility, smart grid
or pervasive health, will heavily rely on the spontaneous collaboration of independently
designed services which are dynamically interconnected to Smart Service Systems at run
time. Though the systems and their services are intended to work independently, their
participation within a collaboration of many such services will result in a synergy of
the single services and, thus, yields their overall utilization to more than the only sum
of the individual parts. Gartner expects that a single family home contains more than
500 smart systems by 2022 [32] and presents theConnected Home as one of the current key
technology trends [33]. In order to realize such an intelligent smart home environment,
all these more than 500 systems must be highly interconnected in order to develop the
systems’ full potential. In the domain of smart mobility, car-to-x systems [38], in which
connected cars communicate with various entities in their environment in order to
detect obstacles or to safely pass roadworks, also require continuous, context-aware
collaborations of systems and mechanisms to dynamically interconnect their parts at
run time. Consequently, the increasing number of smart systems holds a high potential
for complex interactions among them, which has not been fully explored yet.

A single smart home, however, is only a very small subset of the IoT. Considering
the number of smart homes comprised in a smart city, it is in evidence that fully

2

1.2 Terminology

centralizedmanagement becomes infeasible for such large-scale operating environments.
Conversely, the systems’ increasing computing power supersedes the need for central
management, as for instance in edge-centric [30] or fog computing [77], the computing
load is shifted from the core of the network to its edge, e.g., computing on devices and
systems close to the user. This eventually leads to a distributed system in a decentralized
environment, in which no statically predefined central coordinator is available.

Apart from spontaneous collaborations, future smart computing environments are
faced with contextual changes in both their computational environment and the user’s
situation. Such challenges are tackled by Self-Adaptive Software Systems (SASSs) [70],
more precisely by decentralized SASSs, which are an essential field of research [83].
SASSs with decentralized control, however, are still underrepresented [53].

1.2 Terminology

A first definition of the term Smart Service Systemswas provided by Barile and Polese [6]
in 2010. Therein, smart service systems are defined “as service systems designed for a
wise and interacting management of their assets and goals”. Such systems are based
on interaction (among services) and are able to reconfigure themselves. Furthermore,
they have to respect the users’ situation as well as the computational environment,
which means that they have to be context-aware. The definition’s background is a rather
economical one, which is why certain technological aspects are missing. It is, however,
quite interesting to see that – from the users’ perspective – this definition perfectly
matches the motivation presented precedingly. This thesis picks up the definition by
Barile and Polese and specifies additional, engineering-related aspects.

In this thesis, Smart Service Systems are considered a class of systems in which indepen-
dently developed and autonomously operating services are interconnected on-the-fly
in order to develop their full potential. In contrast to common approaches, such as
Service-Oriented Architectures (SOAs), composition within Smart Service Systems hap-
pens spontaneously, for instance, because of an event triggered in response to changes
in the user’s situation or the system’s computational environment, or in response to a
user’s action, similar to Self-Organizing Software Systems (SOSSs). Such a composition
results either in a goal-oriented service collaboration, which has a predefined workflow
and is completed as soon as the goal is reached, such as calling an ambulance in case of
emergency [16], or in a continuous service collaboration, such as a lecture in terms of a
tech-enhanced classroom environment. In contrast to SOSSs, Smart Service Systems

3

1 Introduction

form a complex, and continuous service collaboration, which is defined below. Apart from
that, a key feature of Smart Service Systems is serendipity [15, 16], which is the ability to
integrate unforeseen resources, such as new systems, new functionality, or new services,
at run time. Another crucial feature is context-awareness, i.e., to cope with changes in
the computational environment or the user’s situation.

A B A

B1

B2

B3

A

B1 B2 B3

C1 C2 C3

simple reconfigurable complex

Figure 1.1: Simple, Reconfigurable, and Complex Service Structures.

The complex service collaboration refers to the structure of the composition. Figure 1.1
illustrates different types of service structures. Simple service structures are considered
to have rather static, predefined bindings between services. Reconfigurable service
structures allow for run-time reconfiguration of bindings, e.g., to adapt themselves
in response to changing SLAs, but still are unable to bind multiple, similar service
instances at the same time. A complex service structure additionally can incorporate
multiple services with similar capabilities simultaneously, i.e., a service can bindmultiple
instances of another type simultaneously, which is challenging in a decentralized envi-
ronment. Hence, it is assumed to support relationships other than simply one-to-one as
well as multiplicities, constraints and meshed relationships, i.e., services are mutually
interconnected. A capability denotes an abstract functionality, such as displaying pictures,
without further specifying its concrete performance.

In contrast to SOSSs, Smart Service Systems do not have a specific goal that can be
described by a sequential order of steps in order to be achieved, which means that
no predefined control flow can be assumed. Instead, the collaboration is considered
continuous, or ongoing, until it is terminated explicitly. Thus, communication and
interaction between services are asynchronous and bidirectional. The term service
collaboration emphasizes that services are aware of each other and actively collaborate
within a complex service structure independent of an external mediator.

Finally, a Pervasive Collaboration denotes a complex, continuous service collaboration
at run time, and is defined as a dynamic set of distributed, loosely coupled, on-demand
collaborating systems whose main goal is to combine the capabilities of the individual

4

1.3 Problem Statement

subsystems in order to create a complex collective system. Pervasive Collaborations
are adaptable in the sense of structural reconfiguration and are considered to operate
in environments, where no statically predefined central coordinator can be assumed.
In other words, a pervasive collaboration is an instantiated and running complex, con-
tinuous service collaboration, which in turn comprises a complex service structure, and is
considered one approach realizing Smart Service Systems. Within a Smart Service Sys-
tem, multiple pervasive collaborations may operate simultaneously and autonomous
services may participate in several of them. More specifically, an autonomous service
may also participate in the very same pervasive collaboration several times. Finally,
an autonomous service may be a Smart Service System itself, which enables to realize
systems-of-systems on-demand.

1.3 Problem Statement

Future smart computing environments will heavily rely on the spontaneous collabora-
tion of independently designed and autonomously operating services in order to create
synergies and to develop their full potential. How such complex service collabora-
tions can be composed on-the-fly at run time in decentralized environments, where no
statically predefined central coordinator is available, is a question yet to be answered.

Smart Service Systems, operating in computing environments such as those mentioned
earlier, face three major challenges, which cannot be ›solved‹ but have to be considered
throughout this work: heterogeneity – the services to be interconnected on-the-fly to form
complex service collaborations providing the desired functionalities are independently
developed and operate autonomously; context-awareness – such a service collaboration
will have to adapt to changes in the user’s situation or its surrounding computational
environment; and decentralization – all the aforementioned operating environments are
coined by a high degree of distribution and decentralization, thus, statically centralized
control of the service composition and subsequent adaptation is infeasible.

Hereinafter, the four key problems of engineering, i.e., developing and running, Smart
Service Systems are discussed. These comprise a missing specification for complex, con-
text-aware, continuous service collaborations, the intertwined development processes
of the service and its role essential to a collaboration, a discontinuity from design-time
specification to run-time composition and adaptation, and eventually the on-demand
composition of the desired systems in decentralized environments. For the sake of
a better understanding the last two problems are discussed in reverse order as the

5

1 Introduction

discontinuity becomes evident after discussing the design-time specification and the
run-time composition as well as adaptation individually.

Missing Specification for Complex, Context-Aware, Continuous Service Collaborations

A collaborative system requires a holistic specification in order to capture the system’s
overall structure. Thus, a specification for Smart Service Systems needs to cope with
collaborations, but above all with context-awareness and serendipity. Existing ap-
proaches to specify service collaborations, such as WS-CDL [79], BPEL [78], BPMN [14]
or YAWL [1], focus on theworkflow and its individual, ordered process steps. This is not
applicable for continuous service collaboration, such as in Smart Service Systems, which
require a rather structural than process-oriented system specification. Additionally,
neither serendipity nor context-awareness are addressed by any of those specifications.

Haesevoets, Weyns, and Holvoet [41] propose a rigorous approach to model complex,
dynamic collaborations of distributed services using a notion of roles. Therefore, busi-
ness processes are functionally decomposed into smaller units to improve modularity
and reusability. Their notion of roles is an abstraction of underlying systems to comply
with the business process. However, the decomposed business processes enforce a con-
trol flow, which contradicts the continuity of a service collaboration as well. Hennicker
and Klarl [42] propose a formal foundation for modeling distributed systems using a
notion of roles as well. In their approach, roles are teamed up into ensembles, which
are “groups of active entities that collaborate to perform a certain task.” [42] Players
in their approach have no intrinsic behavior by definition. Hence, different players do
not perform a role differently. In other words, exchanging a player does not result in a
different performance of a role, thus, serendipity cannot be achieved. Bucchiarone, Cic-
chetti, and Sanctis [11] as well as Birdsey, Szabo, and Falkner [8] propose specifications
for collective adaptive systems. While Bucchiarone et al. use a notion of roles similar
to that of Hennicker et al., the approach by Birdsey et al. relies on agents. Equally to
the aforementioned approaches, systems are completely specified, thereby, prohibiting
serendipity. Though collaborations are captured to some extent in both approaches,
they lack support for context-awareness.

Problem Existing specifications for service collaborations support rather complex
service structures but lack serendipity and context-awareness

Goal A specification for Smart Service Systems must capture the context-depen-
dent and collaborative nature of such and needs to preserve the services’
independence by allowing for serendipity.

6

1.3 Problem Statement

Intertwined Development Processes of Services and Their Collaborations

An essential feature of Smart Service Systems is that the services to be integrated in
a collaboration are both independently developed and autonomously operating. Although
service developers are assumed to be interested in integrating their services into collab-
orations, their sole focus will be on the autonomous service’s development but not on
that of the collaboration. Service collaborations, however, are considered to be reusable
and to integrate autonomous services providing the required functionality on-demand.

In many cases a system is specified in a way that imposes dependencies and leads
to a distributed but rather monolithic system since it is only dynamic within its own
boundaries. Decoupling the development processes of the autonomous service and its
role essential to the collaboration is a fundamental step in order to address serendipity
and heterogeneity. In the past, this was addressed twofold: On the one hand, device
models with respective interface implementations, such as in the smart home domain,
when two smart devices interact with each other using low-level network protocols,
e.g., UPnP [63], are limited to collaborations between two systems. On the other hand,
holistic service descriptions, such as WSDL [80] in conjunction with BPEL [78], utilized
in business processes, require centralized infrastructures.

Problem Intertwined development processes conflict with desired autonomy of an
autonomous service and its role essential to a collaboration.

Goal The development processes of the autonomous service and its role essential
to a collaboration must be decoupled in order to achieve serendipity.

On-DemandCompositionofComplex,Context-Aware,ContinuousServiceCollaborations

On-demand composition of service systems with respect to predefined application
structures or workflows received a lot of attention in the past, especially in centralized
environments. The challenges of Smart Service Systems with respect to on-demand
composition of complex, context-aware, and continuous service collaborations are above
all the system’s decentralization and the complex service structure itself.

The decentralized environment prohibits a statically predefined central management
of composition and adaptation. Required management components, e.g., directory or
discovery services, cannot be centrally provided. Moreover, fully decentralized decision-
making, i.e., to agree on a complete system configuration, is another challenging task in
decentralized environments [84] as it requires negotiation among all involved systems.

7

1 Introduction

SOSSs [24] deal with the composition of dependent service systems out of many au-
tonomous services and address reconfiguration, e.g., based on utility functions [16].
Their overall structure emerges from internal constraints or mechanisms and is intrinsic
to the system. Collective behavior emerges without central control by matching pro-
vided and required service ports based on commonnaming schemes or ontologies. How-
ever, SOSSs lack the design-time specification of complex, context-aware service struc-
tures. While SOSSs address the challenges of decentralized environments, their compo-
sition mechanisms have certain limitations at run time, as it is, for instance, not possible
to bind a service tomultiple instances of another service type simultaneously. Thus, com-
positions mostly result in a chain of services, which perfectly matches the goal-oriented
nature of SOSSs, but is unsuitable for complex, continuous service collaborations.

Problem Current composition techniques for SOSSs solely rely on simple dependen-
cies, thus, do not allow for composition of complex service collaborations.

Goal A protocol for coordinated composition of complex service collaborations is
required which ideally avoids a fully decentralized decision-making process.

Discontinuity from Specification to Composition and Adaptation

The specification of rather complex service structures as well as their composition
and adaptation have been approached in isolation which implies certain limitations,
such as those described for SOSSs. Keznikl et al. [49] tackled this gap and proposed an
Ensemble-based Component System (EBCS), calledDEECo. The definition of ensembles
confers to that of Hennicker and Klarl [42]. DEECo addresses both service composition
and reconfiguration based on autonomous components. These solely operate on a local
knowledge base, which is shared using a common middleware. Hence, there is no
active interaction, i.e., collaboration, between autonomous components. Additionally,
the system structure is predefined to be a one-to-many relationship and serendipity
cannot be achieved as components need to adopt specific interfaces.

Problem Design-time specification of service systems as well as their run-time com-
position and adaptation have been approached in isolation, leading to a
discontinuity in the application’s life cycle.

Goal Bridge the gap between design-time specification and automated run-time
composition and adaptation in order to achieve a holistic, continuous engi-
neering and operation approach.

8

1.4 Requirements Analysis

Summary

Evidently, the individual problems have been approached almost in isolation: SOSSs
achieve dynamic composition and adaptation but lack the specification of complex
service structures at design time. Haesevoets, Weyns, and Holvoet [41] as well as
Hennicker and Klarl [42] cover this aspect but lack serendipity and context-awareness
and thereby dynamic composition and adaptation as well. Keznikl et al. [49] address
this gap, but their services do not actively collaborate, the system’s structure is rather
predefined and serendipity cannot be achieved, all of which hinders the utilization of
the approach in Smart Service Systems. Conclusively, the approach to be developed
is required to focus on a specification for complex, context-aware, continuous service
collaborations, to decouple the development processes, to solve the discontinuity be-
tween design-time specification and run-time composition as well as adaptation, and
eventually to achieve on-demand composition of Smart Service Systems.

1.4 Requirements Analysis

The central goal of this thesis is to achieve an automated on-demand composition
with subsequent adaptation of Smart Service Systems in decentralized environments.
Table 1.1 shows the requirements that are posed to the approachwhich is to be developed
within this thesis and which will comprise a development methodology as well as a
specification and run-time support for Smart Service Systems.

RQ 1 Smart Service Systems

1.1 Complex Service Structures
1.2 Collaborative Nature
1.3 Serendipity
1.4 Context-Awareness

RQ 2 Demarcated Development Processes

RQ 3 Run-Time Support for Smart Service Systems

3.1 Automated Discovery
3.2 Automated Composition & Adaptation
3.3 Decentralization & Generic Infrastructure Abstraction

RQ 4 Coordinated Composition and Adaptation of Smart Service Systems

Table 1.1:Overview of the Requirements.

9

1 Introduction

RQ 1 addresses the requirements posed by the features of Smart Service Systems, ex-
plained in Section 1.2. In order to achieve a spontaneous collaboration of independently devel-
oped services, the development processes of the services must be separated from those of
potential collaborations, addressed by RQ 2. RQ 3 aims at solving the discontinuity be-
tween design and run time in order to eventually achieve a coordinated on-demand com-
position and adaptation of Smart Service Systems (RQ 4) in decentralized environments.
Therefore, deriving discovery information and composition as well as adaptation plans
must be automated. The run-time support for Smart Service Systems also needs to tackle
the challenges of decentralization by providing a generic infrastructure abstraction. RQ 4,
finally, is above all concernedwith the coordinated composition and adaptation of Smart
Service Systems, i.e., complex, context-aware, and continuous service collaborations.

1.5 Research Questions and Hypothesis

Based on the initial question, how complex service structures can be composed on-the-
fly in decentralized environments, the following research questions are derived:

1. What is a proper abstraction to specify complex service collaborations in order to realize
on-demand composition and subsequent adaptation of Smart Service Systems at run time?

2. How can these abstractions be supported throughout the application life cycle (i.e., development
and operation phase) in a way which preserves the autonomy of both the autonomous service
designer and the Smart Service System designer?

3. What are limitations of enforcing complex service structures in decentralized environments?

Chapter 2 will justify the Concept of Roles being an intuitive abstraction that perfectly
matches the collaborative nature of Smart Service Systems and thereby a promising
concept for easing composition and adaptation of such systems. Hence, the approach is
based on the hypothesis that role-based abstractions allow to specify Smart Service Systems
at design time and subsequently enable on-demand composition and adaptation of such systems
in decentralized environments at run time. Thereof, a fourth question can be derived:

4. What is the trade-off of applying the concept of roles to on-demand composition and adaptation
of Smart Service Systems? What are limitations?

The research questions will be answered comprehensively in Chapter 7.

10

1.6 Focus and Limitations

1.6 Focus and Limitations

The focus of this thesis is on engineering and operation of Smart Service Systems
in decentralized environments. This comprises a specification, code generation, and
methodologies at design time as well as run-time support for composition and adapta-
tion. Hence, the contributions with respect to the research questions comprise:

A Role-based Specification for Smart Service Systems
Roles and collaborations are an intuitive abstraction that perfectly matches the col-
laborative nature of Smart Service Systems. The clear separation of roles and their
players inherently enables serendipity. Hence, role-based modeling approaches are
utilized to specify Smart Service Systems at design time. A role-based collaboration
specification allows to describe the Smart Service System as a self-contained collabo-
ration. The roles therein represent the abstract functionality an autonomous service
should provide to the collaboration. The autonomous service, in turn, acts as the
player of the role and provides the concrete performance. [MW5, MW6]

A Two-Phase Development Methodology for Engineering Smart Service Systems
With respect to RQ 2, the RoleDiSCo Development Methodology, a rigorous two-
phase development methodology, demarcates the development of the service from
that of its role essential to a collaboration: First, a collaboration designer specifies
the overall collaboration including its abstract functionality using the role-based
collaboration specification. Thereof, a partial implementation is derived, which is
later complemented with its concrete performance by several other developers in a
second phase. This preserves the autonomous development of the service separated
from its role essential to a service collaboration. [MW5]

A Middleware Architecture and Implementation for On-Demand Composition and Subse-
quent Adaptation of Smart Service Systems in Decentralized Environments
The artifacts resulting from the development methodology are designed to be used
by the RoleDiSCo Middleware, thereby eliminating the existing discontinuity between
design and run time (RQ 3), and supporting the Concept of Roles throughout the entire
application life cycle. Additionally, it provides a decentralized discovery mechanism
and the foundations for on-demand composition and subsequent adaptation of Smart
Service Systems. The resulting research prototype is used to evaluate the RoleDiSCo
approach with respect to the research questions. [MW1, MW2, MW4]

A Protocol for Coordinated Composition of Role-based Smart Service Systems
Though the concept of roles is beneficial for automated composition and adaptation,

11

1 Introduction

it poses additional requirements on composition and adaptation processes. Thus, a
protocol for coordinated composition of Smart Service Systems is proposed, which
above all addresses the challenges of complex service structures (RQ 4). [MW3]

Though these contributions cover many aspects of engineering Smart Service Systems,
some aspects are explicitly excluded from the scope of this thesis, such as context
reasoning and inference in order to holistically determine context. Additionally, mecha-
nisms for reliably performing distributed adaptations in decentralized environments
are assumed to exist. As several pervasive collaborations might operate simultaneously,
a competitive situation requiring negotiation is conceivable. Such techniques are not
investigated in detail within the scope of this thesis. Finally, autonomous services could
be implemented using role-based runtimes. This thesis, however, will not cover any
contributions concerning local role-based runtimes as those already exist [43, 60, 76].

1.7 Outline

The remainder of this thesis continues with a comprehensive view on theConcept of Roles
in Chapter 2, in which the perspective on and the understanding of roles used through-
out this thesis is explained as well. Subsequently, related state-of-the-art approaches
are subject to further discussion in Chapter 3, including role-based modeling abstrac-
tions, role-based run-time systems, and approaches that enable distributed systems to
collaborate spontaneously. Seeing the aforementioned problem statements confirmed,
Chapter 4 presents in detail the RoleDiSCo approach, which tackles the challenges of
Smart Service Systems in decentralized environments. First, Section 4.1 introduces the
RoleDiSCo Development Methodology, a two-phase development methodology, which
demarcates the development processes and includes a role-based specification for Smart
Service Systems. Next, Section 4.2 presents the RoleDiSCo Middleware Architecture
in order to achieve run-time support for Smart Service Systems in decentralized envi-
ronments. Eventually, Section 4.3 explains the protocol for coordinated composition
and adaptation of Smart Service Systems. Chapter 5 provides insights into the imple-
mentation of two research prototypes, which were implemented in order to evaluate
the overall RoleDiSCo approach. Chapter 6 qualitatively and quantitatively evaluates
the approach by means of a case study and a performance analysis, both relying on the
research prototypes. Finally, Chapter 7 concludes this thesis.

12

2 The Role Concept in Computer Science

In Chapter 1, the Concept of Roles was promoted as an intuitive abstraction for engineer-
ing Smart Service Systems as its dynamic fills relation should ease composition and
reconfiguration. This chapter justifies the intuitiveness of the concept of roles by explor-
ing what a role in computer science is and how it is defined or described in literature.
Eventually, the terminology concerning roles, collaborations, and players is defined.

2.1 What is a Role in Computer Science?

In the past, several attempts were made to push the concept of roles into computer
science. Roles in this domain were mentioned first by Bachman and Daya [4] in the
domain of data modeling to distinguish physical entities, e.g., persons or companies,
from their role they may play, e.g., customer and supplier. However, a general definition
of roles does not exist and this thesis will not attempt to provide one but show where
roles appear(ed) in computer science in the past and today.

int age = 42;

The above line of code shows a variable declaration and, thus, the arguably smallest kind
of a role. The value 42 is simply a series of bits (101010), which receives its semantics
because of the data type and the name of the variable. 101010, however, could also be
the amount of items in a stock, or a character as it represents the * (asterisk) in ASCII code.

This can be easily lifted to the level of object-oriented programming and modeling
languages. There, roles appear in associations between types to denote the association’s

Person
children
*

parents
2

Figure 2.1: Roles as Names of Associations in UML Diagrams.

13

2 The Role Concept in Computer Science

⟨1⟩ Roles have properties and behaviors. (M1, M0)
⟨2⟩ Roles depend on relationships. (M1)
⟨3⟩ Objects may play different roles simultaneously. (M1, M0)
⟨4⟩ Objects may play the same role (type) several times. (M0)
⟨5⟩ Objects may acquire and abandon roles dynamically. (M0)
⟨6⟩ The sequence of role acquisition and removal may be restricted. (M1, M0)
⟨7⟩ Unrelated objects can play the same role. (M1)
⟨8⟩ Roles can play roles. (M1, M0)
⟨9⟩ Roles can be transferred between objects. (M0)
⟨10⟩ The state of an object can be role-specific. (M0)
⟨11⟩ Features of an object can be role-specific. (M1)
⟨12⟩ Roles restrict access. (M0)
⟨13⟩ Different roles may share structure and behavior. (M1)
⟨14⟩ An object and its roles share identity. (M0)
⟨15⟩ An object and its roles have different identities. (M0)

Table 2.1: Steimann’s 15 Classifying Features. (extracted from [73] by Kühn et al. in [58])

end in a relationship [74]. This is exemplified in Figure 2.1, which expresses that a type
Person has an arbitrary number of children and exactly two parents. These relationships
are realized as attributes, each a collection of Person but with different names repre-
senting their role. Hence, Person has different roles depending on the way an object is
accessed. In this notion, roles are simply labels denoting an actually semantic meaning,
similar to the notion of roles in role-based access control or multi-agent systems.

Roles in common sense, however, intuitively imply certain behavior that is intrinsic
rather to the role than to its actual player, like the role of being a parent changes the way
of communication compared to the role of being a supervisor in a company while still
relying on the core communication skills of the person acting in this role.

In 2000, Steimann derived a list of 15 classifying features of roles from the then current
state of the art of roles in computer science. These features are depicted in Table 2.1
and explained in detail in [73]. It is to be seen as a summary of features found in then
available approaches rather than a list of requirements in order to denote something
as a role. Kühn et al. [58] annotated these features with their corresponding modeling
level, i.e., M0 referring to instance-level entities, such as objects, and M1 referring to
modeling elements, such as classes or types.

Later, Boella and Steimann [9] covered the behavioral nature of roles in their charac-
terization of roles in the context of computer science: a role encapsulates an abstract
functionality which will be utilized in collaboration with other roles. A collaboration is
defined as “a structure of collaborating roles, each performing a specialized function,
which collectively accomplish some desired functionality. […] [Thus,] a collaboration

14

2.1 What is a Role in Computer Science?

Player 1

R1

R2

R3

Role 1

Organization as a Network of Roles

Role 2

P1 P2

Player-centric Perspective Organization-centric Perspective

Figure 2.2: Player-centric and Organization-centric Perspectives on Roles. [cf. 20, Figure 1]

structure constitutes a graph where the nodes are roles and the edges are the message
interaction paths.” [9] The actual performance of the role’s abstract functionality is
delegated to the role’s player, which is bound dynamically. This binding is denoted as
plays or fills relation, i.e., a player plays or fills a role. This fills relation may also define
requirements, such as class types, required methods or contextual properties, which
allows to dynamically select players and bind them to roles at run time.

Colman and Han [20] identified two perspectives on roles, depicted in Figure 2.2:
player-centric and organization-centric, respectively. In the player-centric view, which
addresses the behavioral nature, roles are attached to a player, which is the stable
core object, in order to add, remove or manipulate the player’s behavior. Roles are
carriers of role-specific or context-dependent state and behavior but cannot exist on their
own. The organization-centric view addresses more the collaborative nature of roles.
The role’s identity and existence depends on the organization defining the role and its
associations to other roles but not on the existence of the player. Players complement the
roles’ abstract behavior and start exposing the behavior when joining in an organization
that requires the respective role. The organization-centric perspective of roles follows
more the characteristics of roles in human organizations, such as a company. The
role itself defines an abstract functionality and the player is responsible for executing
this functionality. Colman et al. denote this pattern as player-as-executor, which also
corresponds to the preceding characterization of roles by Boella and Steimann [9].

Riehle and Gross [69] address the relational nature of roles and propose four types
of constraints restricting relationships between roles. For a pair of role types (A, B),
role-dontcare imposes no restriction at all; role-implication (A → B) requires an object
playing A to play role B as well; role-equivalence (A↔ B) obliges an object playing A to
play role B and vice versa; and role-prohibition (A B) prohibits an object to play roles
A and B simultaneously.

15

2 The Role Concept in Computer Science

⟨16⟩ Relationships between roles can be constrained. (M1)
⟨17⟩ There may be constraints between relationships. (M1)
⟨18⟩ Roles can be grouped and constrained together. (M1)
⟨19⟩ Roles depend on compartments. (M1, M0)
⟨20⟩ Compartments have properties and behaviors. (M1, M0)
⟨21⟩ A role can be part of several compartments. (M1, M0)
⟨22⟩ Compartments may play roles like objects. (M1, M0)
⟨23⟩ Compartments may play roles which are part of themselves. (M1, M0)
⟨24⟩ Compartments can contain other compartments. (M1, M0)
⟨25⟩ Different compartments may share structure and behavior. (M1)
⟨26⟩ Compartments have their own identity. (M0)

Table 2.2:Kühn’s Additional Classifying Features of Roles. [58]

Kühn et al. [58] extended Steimann’s classification to cover the collaborative (referred
to as context-dependent) nature of roles. The additional 11 classifying features, derived
from literature, are listed in Table 2.2. Kühn et al. introduced the term Compartment as a
generalization of different terminologies defining groups of collaborating roles. A Com-
partment denotes “an objectified collaboration with a limited number of participating
roles and a fixed scope.” [58] Hereinafter, the numbers in ⟨. . .⟩ refer to the respective
features listed in Tables 2.1 and 2.2.

2.2 Roles in RoleDiSCo

By definition, the two perspectives on roles are incompatible with each other. Consider-
ing, for instance, the interaction, which takes place between players in the player-centric
and between roles in the organization-centric perspective it seems impossible to inte-
grate them in one solution. However, applying them on different levels abstraction,
both perspectives conceptually complement each other, as illustrated in Figure 2.3.
The organization-centric perspective is considered on the level of distributed systems

Role A Role B

Organization

Role A Role BPlayer 1 Player 2

distributed system
local system 2local system 1

Figure 2.3:Conceptually Complemented Perspective on Roles.

16

2.2 Roles in RoleDiSCo

and the player-centric perspective on the level of local runtimes, respectively. Hence,
intra-system interaction may take place between players (depending on a concrete
local runtime implementation) and inter-system interaction will happen between roles.
Complementing the two perspectives allows for a certain degree of heterogeneity as
two local runtimes may be different as long as they agree on a common role concept
on the level of the organizational perspective.

The perspective adopted in this thesis conforms to the characterization given by Boella
and Steimann [9] and follows the organization-centric perspective, defined by Colman
and Han [20]. Both consider roles to capture an abstract functionality, the performance
of which is delegated to a dynamically bound player. Additionally, both emphasize the
collaborative nature and organizational structure of roles. Evidently, the organization-
centric perspective on roles perfectly matches the organizational structure of Smart
Service Systems, in which the organization maps to the collaboration of autonomous
services. Thereby, complex service structures can easily be covered. Roles inherently
enable serendipity, since the role and its player are disjoint entities, and different players
may perform a role differently. The role is considered the part of the autonomous
service essential to its participation within a collaboration. The player, consequently, is
the autonomous service itself, at least from the collaboration’s perspective. Within the
autonomous service, the player may be only a part of the whole service. Hereinafter,
the following terminology is used throughout the remainder of this thesis:

Collaboration
Collaborations were already introduced in Section 1.2. In order to streamline those
definitionswith the terminology of roles, a collaboration is considered a self-contained
set of collaborating roles and thereby defines a valid system configuration by means
of roles and their relationships, including multiplicities and constraints. It is similar
to the objectified collaboration, or Compartment, described by Kühn et al. [58]. A role
thereby is considered to depend on a specific collaboration ⟨16⟩ . With respect to
pervasive collaborations also the role features ⟨20⟩ , ⟨22⟩ , and ⟨26⟩ are addressed.

Role
A role encapsulates an abstract functionality, i.e., method interface and partial imple-
mentation, and thereby is required to have behavior and state ⟨1⟩ . Thus, it provides
the interface essential to the collaboration, i.e., the part accessible by other roles within
the same collaboration. The role type refers to the specification of the role within
the specification of the collaboration, whereas the role instance refers to the instance
bound to a player at run time.

17

2 The Role Concept in Computer Science

Relationship
Roles are linked through relationships, which thereby define the collaboration’s
structure and the potential paths of interaction. These relationships are charac-
terized by multiplicities, i.e., one-to-one or one-to-many, and the aforementioned
constraints ⟨16⟩ . Relationships are important in order to semantically structure the
application, e.g., to enforce that two roles are not played by the same player or, with
respect to Smart Service Systems, are not provided by the same subsystem within
the same collaboration.

Player
A player provides the actual performance of a role by means of complementing the
partial implementation of the role’s behavior. In order to participate in several per-
vasive collaborations, the role features ⟨3⟩ , ⟨4⟩ , and ⟨5⟩ must be addressed by a local
role-based runtime, the development of which is not within the scope of this thesis.

Context
Context with respect to literature related to the concept of roles has several meanings.
Some approaches consider context a collaboration or a team, while some others con-
sider context a discrete situation. That is why Kühn et al. introduced the notion of
Compartments [58] in order to capture those various kinds of context. Context with
respect to context-awareness of Smart Service Systems refers to the user’s situation or
the computational environment. Hence, context exists as a separate entity orthogonal
to the collaboration and the roles themselves. Thereby it is considered an additional
state property of the collaboration or the role reflecting the user’s situation or the
computational environment. For instance, a collaboration that invites participants
based on their current location would require role with a context property providing
the location information. A more technical understanding of how context is treated
in this thesis is provided in Sections 4.1.1 and 4.2.2.

Adaptive (Sub-)System
A pervasive collaboration is considered an adaptive system because its structure can
be recomposed at run time. The subsystem refers to a runtime providing one or more
players (and respective role instances) which is adaptive because it could acquire
new or drop existing roles. The terms subsystem and node are used interchangeably
throughout this thesis. Subsystem, however, usually refers to an entity part of a
pervasive collaboration while node refers to entities in the (network) infrastructure
not necessarily part of a pervasive collaboration.

18

3 State of the Art & Related Work

The previous chapter justified the Concept of Roles being an intuitive abstraction for
the specification of Smart Service Systems and thereby a promising concept for easing
composition and adaptation of such. This chapter analyzes role-based modeling ap-
proaches, role-based run-time systems, and approaches for spontaneous collaborations
of systems for their utilization to engineer Smart Service Systems.

3.1 Role-based Modeling Abstractions for Software Systems

Steimann [73] and Kühn et al. [58] provided not only the aforementioned lists of in
total 26 classifying features of roles but also applied them to role-based modeling and
programming languages. As this thesis follows the organization-centric perspective
on roles, the extended classification of Kühn et al. is of special interest due to their
notion of Compartments and serves as a starting point for the subsequent analysis. In
order to analyze the current state of practice, a set of classification criteria for role-based
modeling abstractions, based on the provided classifying features, is derived from
the requirements posed by Smart Service Systems. Subsequently, the current state of
practice is analyzed. Conclusively, the findings are summarized and open research
gaps as well as remaining challenges are derived.

3.1.1 Classification

The classification criteria for role-based modeling approaches are derived from re-
quirement RQ 1, i.e., the engineering aspects of Smart Service Systems, including the
definition of complex service structures, the collaborative nature, as well as serendipity and
context-awareness, as discussed in Section 1.4. As the concept of roles perfectly matches
the nature of Smart Service Systems, the requirements can be mapped to some of the
classifying role features listed in Tables 2.1 and 2.2, to which the numbers in ⟨. . .⟩ refer.

19

3 State of the Art & Related Work

A Smart Service System, first of all, is considered a collaboration of autonomous services.
The collaboration denotes a self-contained unit of interacting roles, which conforms to
the notion of Compartment, defined by Kühn et al. [58], and the characterization by
Boella and Steimann [9]. As an autonomous service should play the role essential to a
collaboration in order to participate in that, ⟨19⟩ , i.e., roles depend on compartments,
of the classification of Kühn et al. can be applied directly. Thus, a role type is known
to belong to a specific collaboration type and the collaboration thereby becomes a self-
contained entity. More precisely, a collaboration type defines its role types, which in
turn are only part of that specific collaboration type. Additionally, the requirement to
capture contextual information requires that collaborations have state information ⟨20⟩ .
The potentially recursive structure, mentioned in Section 1.2, relates to collaborations
playing roles like players ⟨22⟩ , which in turn implies that collaborations have behavior
as well ⟨20⟩ , since this is required for players, as stated below.

MA 1 Collaborations
1. Collaborations are self-contained units. ⟨19⟩
2. Collaborations have behavior and state. ⟨20⟩
3. Collaborations may act as players for roles. ⟨22⟩

As mentioned, the role encapsulates the autonomous service’s abstract functionality
essential to the role’s enclosing collaboration and thereby is required to have state and
behavior ⟨1⟩ . State, here, also captures contextual information. The collaborative nature
of Smart Service Systems additionally requires that services interact directly with each
other, which is covered by the concept of roles in general since interaction (within the
collaboration) happens conceptually between roles. A specific role feature denoting
this requirement does not exist. Role constraints, such as those proposed by Riehle and
Gross [69], allow to specify complex service structures in a fine-grained way. Hence,
constraining relationships between roles ⟨16⟩ is at least a soft requirement in order to
weigh approaches which only differ in this particular criterion.

MA 2 Roles
1. Roles have behavior and state. ⟨1⟩
2. Roles define the player’s part essential to its participation

within a collaboration, hence, depend on collaborations. ⟨19⟩
3. Interaction between roles, not between players. (Collaborative Nature)
4. Relationships between roles can be constrained. ⟨16⟩

Concerning the autonomous service itself, which is considered the player, Steimann [73]
refers to it asObject. Already at design time, the service’s independence needs to be con-

20

3.1 Role-based Modeling Abstractions for Software Systems

sidered and respected, which is not specifically mentioned by Steimann. The autonomy
of the player relates to data and functionality owned by the service, i.e., the player has
state and behavior as well. Additionally, in order to achieve variability and flexibility, a
role’s and player’s behavior need to intertwine. Presumably, this was taken for granted,
but here it is specifically mentioned as the player’s behavior provides autonomy, flexibil-
ity and variability to the overall performance of the Smart Service System and thereby
addresses serendipity. Roles may define requirements for their players through the fills
relation, mentioned earlier. In order to achieve variability, players need to be described
rather by their shape, i.e.,method signatures or contextual properties, than by their type.

Features applying to the modeling level (M1) but not explicitly mentioned afore are nei-
ther required nor prohibited. Apart from requirements on the level of conceptual model-
ing elements, a processable specification, such as a Domain-Specific Language (DSL), is
required, as it is an essential prerequisite in order to bridge the gap between design-time
specification and run-time execution.

MA 3 Players
1. Players have own state and behavior.
2. Behavior of role and player may intertwine.
3. Player’s independence can be preserved. (Serendipity, no type restrictions)

MA 4 Processable Specification

Hereinafter, the following symbols indicate the degree of fulfilling a requirement, i.e., ■
denotes complete fulfillment, ⊞ denotes partial fulfillment, and □ denotes no fulfillment.

3.1.2 Approaches

The survey conducted by Kühn et al. [58] serves as a basis for the subsequent state-of-
the-art analysis and is extended by other role-based modeling abstractions appeared
later or not covered afore. Approaches not following the organizational perspective [20],
i.e., not fully supporting ⟨19⟩ with respect to Kühn’s classification, are not covered below
since MA1 is the most essential requirement for specifying Smart Service Systems.

With respect to this exclusion criterion, the remaining approaches surveyed by Kühn
et al. comprise the Metamodel for Roles, the Integrated Networking Model, Data Context
Interaction, and the Helena Approach [42]. Additionally, Macodo [41] and the Combined
Formal Model for Relational Context-dependent Roles [56] is included. Since, the run-time
aspects of the Helena Approach and Macodo will be discussed in Section 3.2 once again,
analysis below is limited to their contributions regarding modeling abstractions.

21

3 State of the Art & Related Work

Metamodel for Roles

Genovese [34] aims to provide a flexible formal model for roles, which is able to capture
the basic primitives behind the different roles’ notions. He introduces players, roles, and
contexts each denoting a subset of a domain of classes or objects on the modeling and
instance level, respectively. Classes may have attributes and operations, hence, players,
roles, and contexts all have both state and behavior. Players and roles having both state
and behavior is a prerequisite for different levels of autonomy of roles. Contexts, i.e.,
collaborations, with state, behavior, and the possibility to play roles, enable recursive
structures of Smart Service Systems. Additionally, Genovese introduces constraints, i.e.,
any kind of logical rules in order to model different role notions. On the modeling level,
players are linked to roles and roles are linked to contexts, hence, the binding is fixed
on a level of types. Though the approach provides all required role features, it does not
provide a processable specification of an application. Due to the strict linking of players,
roles, and context on the modeling level, the open-world semantics is restricted.

MA1 MA2 MA3 MA4

Metamodel for Roles ■ ■ ⊞ □

Information Networking Model

Liu and Hu [61] propose the Information Networking Model, which addresses the missing
context-dependent nature of roles in the domain of data modeling. Therefore, the
concept of Contexts was introduced in order to group Roles. In the field of data mod-
eling, however, interactions are of no concern. Hence, player, role and context only
have attributes but no behavior, which generally limits the approach’s applicability to
serve as abstraction for engineering class of systems with a high demand of interaction.
Consequently, a processable specification is not provided.

MA1 MA2 MA3 MA4

Information Networking Model ⊞ ⊞ □ □

Data Context Interaction

Reenskaug and Coplien [68] propose the Data Context Interaction (DCI) paradigm to
point out that Data plays a Role in Interactions encapsulated in Contexts. Objects serve as

22

3.1 Role-based Modeling Abstractions for Software Systems

data containers, implying that objects do not have any behavior. Their behavior is solely
defined in roles that, in turn, are part of a certain context. The context manages the
binding of role instances to data objects as well as their interaction, which takes place
between roles. Evidently, this limits a role’s autonomy not to delegate any behavior to
its player. DCI is rather a methodological paradigm than a modeling abstraction, hence,
it does neither provide a graphical nor textual model to specify a system. Consequently,
it does not provide a processable specification at all.

MA1 MA2 MA3 MA4

Data Context Interaction ⊞ ⊞ □ □

Helena Approach

The Helena Approach [42] provides a formal foundation for modeling distributed sys-
tems by teaming up roles into ensembles. Ensembles are considered “groups of active
entities that collaborate to perform a certain task.” [42] The structure of such a collab-
oration is specified by an ensemble structure, which consists of a set of roles constrained
by multiplicities, and a set of role connectors defining the concrete interaction between
roles. Hence, ensembles are treated as self-contained units defining a collaboration.
Ensemble structures also specify the interaction between roles explicitly, which enforces
a specific control flow. Ensembles, however, do neither have behavior nor state in terms
of methods and attributes, respectively.

In the Helena Approach, Components are considered the player of a role. A component
provides basic information usable in all roles the component can play. Though, compo-
nent types have attributes and operations [42], the latter were never utilized in conjunc-
tion with role’s operations. The component is only a data container [50], which is why
players in the Helena Approach are considered to have no behavior. Roles in the Helena
Approach provide the component’s functionality essential to an ensemble. A role (more
precisely, its type) defines role-specific attributes and operations which are required to
store data that are relevant for performing the role, and to fulfill the responsibilities of the
role, respectively. Additionally, it defines which component types can contribute the de-
sired functionality to the collaboration and enhances themwith role-specific capabilities.
Hence, players of a role are restricted based on their type, i.e., the role specifies the com-
ponent types of entities which are able to play this particular role. Conclusively, the He-
lena Approach provides HelenaText [51], which is a DSL to specify ensemble structures.

23

3 State of the Art & Related Work

Bucchiarone, Cicchetti, and Sanctis [11] aswell as Birdsey, Szabo, and Falkner [8] propose
specifications for collective adaptive systems. While Bucchiarone et al. use a notion of
roles similar to that of Hennicker et al., the approach by Birdsey et al. relies on agents.
Similar to the Helena Approach, systems are completely specified, thereby, prohibiting
serendipity. Since both approaches are similar to theHelena Approachwith respect to the
requirements posed in the beginning of this section, they are not discussed separately.

MA1 MA2 MA3 MA4

Helena Approach ⊞ ■ □ ■

Macodo

Haesevoets, Weyns, and Holvoet [41] propose Macodo, a conceptual model for dynamic
collaborations of distributed service-oriented architectures. In Macodo, business pro-
cesses are functionally decomposed into smaller units in order to improve modularity
and reusability of a distributed, service-oriented system.

Collaboration

Role Interaction

Capability

Actor

Behavior
◀ between

requires ▼

provides ▲

▲
participates in

▲
executes

plays ▲

*
*

*
*

*

*

*

*

* *
*

1

1

1

2..*

0..1

2..*

Figure 3.1:Key Concepts of Macodo and their relations. [cf. 41, Figure 2]

Macodo follows the organizational perspective of roles. Its conceptual model, depicted
in Figure 3.1, relies on collaborations, which are considered a controlled process among
a group of actors working towards a common goal. A collaboration has an arbitrary
number of both roles, representing the different actors and their responsibilities, and
interactions between the actors of these roles. An actor is the core entity, i.e., the player,
which is capable of participating in collaborations by playing roles. In a concrete system,
actors are considered business entities, software agents, services, or even people. A

24

3.1 Role-based Modeling Abstractions for Software Systems

role defines an actor’s responsibilities essential to its participation within a specific
collaboration. The additional link between actor and interaction in Figure 3.1 indicates
that a role not solely depends on the collaboration but also on the actor’s participation
in a collaboration. This contradicts the organizational perspective, in which a role’s
existence does not depend on its player’s existence. Consequently, this also imposes
restrictions on the requirement of serendipity.

Haesevoets, Weyns, and Holvoet [41] additionally define three architectural views each
modeling different aspects of the complete system in order to improve modularity and
reusability. The collaboration view models reusable types of collaborations and their
general structure. The structure shows how collaborations are modularized into, e.g.,
roles, behaviors, and interactions. The collaboration & actor view models how collabo-
rations are actually used, i.e., which collaborations are active in the system and which
actor is playing which role. The role & interaction view models how a collaboration
works in detail, i.e., it allows to specify the concrete role and interaction instances in a
collaboration, the active behaviors of roles, and how roles delegate the participation in
interactions to behaviors. Within these views the overall system is modeled by means
of business process modeling, thus, enforcing at least a semi-structured control flow.

Macodo is a design-time approach aiming to improve modularity and reusability rather
than addressing variability and flexibility at run time. Collaborations are translated
to BPEL processes, actors’ and roles’ interfaces are described using WSDLs, hence, a
processable specification is available but split into several parts and including probably
irrelevant information for specifying Smart Service Systems.

MA1 MA2 MA3 MA4

Macodo ■ ■ ⊞ ⊞

formalCROM: A Combined Formal Model for Relational Context-dependent Roles

Kühn et al. [56, 57] propose a Combined Formal Model for Relational Context-dependent
Roles, which aims to integrate the relational and context-dependent (i.e., organizational)
in a single, combined model including the ability to constrain role relationships. It is
a formally founded descendant of the Compartment-Role-Object Model (CROM) [58].

The core entities in their approach are Natural Type (e.g., physical, real-world entity),
Role Type, Compartment Type, and Relationship Type. Players are considered a unification
of natural types and compartment types, i.e., both physical entities and objectified

25

3 State of the Art & Related Work

collaborations can play roles. Their definition of the fills relation implies a strict binding
on the level of types, enforcing players to be of several but specific types. A formal
definition of the types is not provided, however, at least natural types, role types, and
compartment types are assumed to have attributes and methods. However, this strict
typing does not allow for serendipity.

The approach strongly follows the 26 classifying features. Though, it does not support
all of them, an in-depth analysis reveals that the required role features ⟨1⟩ , ⟨16⟩ , ⟨19⟩ ,
⟨20⟩ are supported. Concerning the intertwining behavior of roles and players, their
formal model covers some run-time aspects with respect to the fills relation but does not
provide a statement how behavior can be intertwined. The formal definition reveals that
roles are connected using relationships, hence, interaction takes place between roles.

Recently, a corresponding modeling tool was developed [55], which provides graph-
ical modeling support for their formal model and source code generation limited to
SCROLL [60], a local run-time for role-based programs, and a python implementa-
tion [54] for validating formalCROM models. A processable specification is missing.

MA1 MA2 MA3 MA4

formalCROM ■ ■ ⊞ □

3.1.3 Summary

Table 3.1 on the next page displays the full comparison chart with respect to the re-
quirements MA1 to MA4. All selected approaches supported at least the notion of
collaborations as self-contained units and roles in each approach are dependent on such.
The Information Networking Model [61] and the Data Context Interaction paradigm [68]
primarily address data modeling or capture the context-dependent nature of data in
computer programs, respectively. Data, however, do not provide intrinsic behavior, lead-
ing to rather static players, which is unsuitable with respect to the posed requirements.
The Metamodel for Roles [34] and formalCROM [56, 57] aim for generalizing or unifying
different notions of roles within a common metamodel. This allows to formally specify
the overall system using also the perspective on roles of this thesis, presented in Sec-
tion 2.2, except that players are statically linked on the level of types instead of specifying
their shape. Additionally, both approaches do not provide a processable specification.

The Helena Approach [42] and Macodo [41] are the two most promising approaches. The
Helena Approach, however, limits players to be a sole data container, not providing any

26

3.1 Role-based Modeling Abstractions for Software Systems

M
et

am
od

el
fo

rR
ol

es
[3
4]

In
fo

rm
at

io
n

N
et

w
or

ki
ng

M
od

el
[6
1]

D
at

a
C

on
te

xt
In

te
ra

ct
io

n
[6
8]

H
el

en
a

A
pp

ro
ac

h
[4
2]

M
ac

od
o

[4
1]

fo
rm

al
C

R
O

M
[5
6,

57
]

Collaborations MA1 ■ ⊞ ⊞ ⊞ ■ ■

1. self-contained units ■ ■ ■ ■ ■ ■
2. behavior and state ■ □ ⊞ □ ■ ■
3. act as players for roles ■ ⊞ □ □ ⊞ ■

Roles MA2 ■ ⊞ ⊞ ■ ■ ■

1. have behavior and state ■ □ ■ ■ ■ ■
2. depend on collaborations ■ ■ ■ ■ ■ ■
3. interaction between roles ■ � ⊞ ■ ⊞ ■
4. constrainable relationships ■ □ □ □ □ ■

Players MA3 ⊞ □ □ □ ⊞ ⊞

1. have own state and behavior ■ □ ⊞ □ ■ ■
2. intertwining behavior � � □ □ ■ �
3. preservable autonomy □ � � � □ □

Processable Specification MA4 □ □ □ ■ ⊞ □

■ yes/provided, ⊞ partially/possible, □ not possible, � not applicable

Table 3.1:Detailed Comparison of Role-based Modeling Abstractions for Software Systems.

27

3 State of the Art & Related Work

behavior that can intertwine with a role’s behavior. This aspect is covered in Macodo,
in which players, referred to as Actors, have behavior and are responsible for executing
the role’s behavior. These actors, however, are predefined, limiting the variability and
flexibility at run time. Macodo additionally enforces a partial workflow and utilizes
business process models to model the overall system, the latter of which leads to a
scattered system specification comprising BPEL processes and WSDL descriptions.

Evidently, none of the presented approaches provides a sufficient abstraction including
a respective processable specification to specify Smart Service Systems. All approaches
limit the autonomy of roles’ players to be of a specific type or to have no individual
behavior, contradicting the heterogeneous nature of Smart Service Systems. Extending
existing approaches would be conceivable for the Helena Approach or for Macodo. In
theHelenaApproach, behavior and state are ought to be introduced for both players and
collaborations. Additionally, the role connectors need to consider the player’s behavior in
order to realize an intertwined behavior. This, however, would contradict the main goal
of the Helena Approach as it would violate the underlying formal model. Concerning
Macodo, the strict coupling between Roles, Interactions, and Actors as players of roles
within interactions, needs to be dissolved. This would affect the set ofArchitectural Views,
which, in turn, would have to be redesigned as well. Finally, this must be reflected in
the system specification, which still would be scattered into several parts.

3.2 Role-based Run-Time Systems

The preceding section discussed role-based modeling abstractions to specify Smart
Service Systems. The Concept of Roles, however, already found its way to run-time
systems and even to distributed systems. In this section, role-based run-time systems are
analyzed for their utilization to engineer adaptable, collaborative Smart Service Systems.
First, a scheme to classify existing approaches is developed, which is subsequently
applied to existing role-based approaches including a discussion of their potential
utilization within Smart Service Systems. Conclusively, the findings are summarized
and open research gaps as well as remaining challenges are derived.

3.2.1 Classification

The requirements posed in Section 3.1.1 have to be extended by run-time aspects of Smart
Service Systems derived from the definitions and requirements given in Sections 1.2

28

3.2 Role-based Run-Time Systems

and 1.4. In this section, only approaches claiming to rely on a notion of roles are
considered. The full scheme is displayed in Figure 3.2 and explained below. The
properties highlighted in bold indicate requirements of Smart Service Systems whereas
the faded ones, such as non-distributed systems, indicate exclusion criteria.

Role-based
Run-Time Systems Composition

□ None
⊞ Local
■ Distributed

Discovery

□ None
⊞ Central
■ Distributed

Adaptivity □ None
⊞ Local
■ Distributed

Role
Abstraction

None□
Partial⊞

Full■

Role
Perspective

Organization⊞
Player⊡
Both■

DistributionNone□
Static⊞

Dynamic■

Type of Interaction
□ None
⊞ Passive
■ Active

Serendipity
No□

Possible⊞
Yes■

Figure 3.2:Classification Scheme for Role-based Run-Time Systems.

The Role Perspective refers to the approaches’ perspective on roles [20], i.e., player-centric,
organization-centric, or both. The Role Abstraction denotes the approaches’ support of
required role features. In addition to the requirements in Section 3.1.1, following role
features that are only applicable at run time are needed: players may play different
roles simultaneously ⟨3⟩ , players may play the same role several times ⟨4⟩ , roles are
acquired and abandoned dynamically ⟨5⟩ , unrelated players may play the same role
⟨7⟩ , and collaborations have their own identity ⟨26⟩ . The Role Perspective and Abstraction
jointly capture the support for complex service structures.

Since Smart Service Systems are distributed systems in volatile environments, ap-
proaches are distinguished with respect to their degree of distribution, which is either no
distribution, static distribution, or dynamic distribution, the latter of which is required
for Smart Service Systems. Furthermore, in order to achieve automated composition
in decentralized environments, individual parts of the system are required to find each
other. Hence, the approaches are analyzed whether they provide a discoverymechanism,
and if so whether it is based on a central directory service or discovery knowledge is ob-
tained locally on each of the distributed nodes. Composition, here, has a twofold meaning:
composition is considered local if the system is not distributed, but the application con-
sists of modular units at run time; distributed if the system is distributed and consists of

29

3 State of the Art & Related Work

modular units at run time, such as SOAs. If the approach does not allow for modularity
at run time, composition is not available. In this thesis, adaptivity is considered the possi-
bility to reconfigure a system subsequent to its composition. Therefore, it must consist of
modular units at run time. If adaptivity is supported, it is to be distinguished into local
adaptations and distributed adaptations. Local adaptations operate on a local knowledge
and happen within the boundary of a single system, whereas distributed adaptations
affect multiple systems simultaneously. Finally, the type of interaction is distinguished as
follows: services interact with each other actively, or passively through a mediator, or not
at all. In the former case, a service will invoke a functionality on another service directly,
whereas in the latter case a third party will retrieve events or data from a Service A and
forward it to a Service B. Consequently, passively interacting services are not aware of
being connected to each other. Finally, the approaches are analyzed concerning their
support for serendipity, i.e., to integrate unforeseen entities into the running system.
As mentioned, this relates to MA3-3, i.e., preserving the independence of the player,
as the autonomous services are to be developed as independently as possible. A strictly
typed relation between the role and its player evidently limits serendipity.

3.2.2 Approaches

Subsequently, various approaches utilizing the concept of roles and dealing with com-
position, adaptation, or modularity are discussed. Earlier said, Smart Service Systems
are volatile, distributed systems, which is why non-distributed approaches [43, 60, 76]
are generally excluded from further investigation, even if they support an organization-
centric perspective. Nevertheless, non-distributed approaches could be considered a
potential local, role-based runtime of an autonomous service.

Since both the Helena Approach [42] and Macodo [41] were already discussed in Sec-
tion 3.1.2, only their run-time aspects are addressed herein. Additional approaches
included in this investigation comprise Smart Application Grids [66], Role Oriented Adap-
tive Design [18, 20, 21], and Distributed Emerging Ensembles of Components [13, 12, 49].

Smart Application Grids

Piechnick et al. [65, 66] propose a software architecture, denoted as Smart ApplicationGrid
(SMAG), in which applications are composed of many small, distributed applications
that link to each other dynamically. Dynamically, here, refers to an explicit, extrinsic
adaptation based on descriptions similar to event-condition-action rules. The linking

30

3.2 Role-based Run-Time Systems

of physically distributed systems, i.e., the process of interconnecting several SMAG
runtimes, must be done manually. Hence, distribution is rather static. Components,
such as car computer and radio, are stateful, self-contained software modules that denote
basic functional elements in SMAGs. Components are described by ComponentTypes
specifying the component’s functional interface by grouping several PortTypes. The port
type represents an interface description that can be offered or required by a component,
and is implemented by one or several Ports. Each port type has a unique name and
specifies the services of a component providing this interface. Ports are stored in
repositories, so that they can be retrieved and integrated at run time.

Role-based modeling is utilized to describe the adaptable structure of SMAG applica-
tions at run time as follows: PortTypes correspond to role types, hence, Ports map onto
role instances. The ComponentType relates to a class and the Component to an object.
A collaboration is derived from a pair of provided and required port types, e.g., the
car computer component requires a radio controller, which is provided by the radio.
Different collaborations consequently provide different ports for the same port types,
which leads to variability at run time, such as a different channel list per driver. At run
time, a Component instance may play roles, i.e., Ports, thereby changing its behavior.

Collaborations capture the three differentCompositionOperators [66, Sec. IV-C], which are
bind, filter, and adapt, and denote the collaboration’s general structure. These predefined
structures restrict the variety of collaborations and incorporate solely two components.
Though, Boella and Steimann [9] and Kühn et al. [58] do not explicitly mention how
many interacting roles shape a collaboration, predefined collaboration types as the
Composition Operators are clearly restricting the flexibility of the desired role abstraction.
Hence, the SMAG approach does not support complex service structures as a whole.
The adaptation is based on event-condition-action rules, which explicitly describe the
adaptation (structural recomposition) to be performed. [65]

SMAG’s notion of distribution maps onto component-based software, where compo-
nents are distributed but not necessarily across several computational units. With
respect to the proof-of-concept implementation, which relies on Object Teams [43], an
organization-centric programming language and runtime, the SMAG approach is con-
sidered a rather local approach with manual (static) distribution. Hence, composition
and adaptivity are limited to the boundary of a single SMAG runtime.

Smart Application Grids [65, 66]

Role Perspective ⊞ Distribution ⊞ Composition ⊞ Type of Interaction ■

Role Abstraction ⊞ Discovery □ Adaptivity ⊞ Serendipity □

31

3 State of the Art & Related Work

Role Oriented Adaptive Design

Colman [18] proposes a Role-Oriented Adaptive Design (ROAD) to realize adaptive soft-
ware systems. ROAD strongly follows the organization-centric perspective of roles and
complies more with the characteristics of roles in human organizations, such as a busi-
ness. Hence, organizations are self-managed composites, consisting of one organizer
role and an arbitrary number of functional roles. Organizational roles reconfigure and
manage the composite whereas functional roles contain the actual functionality part of
the organization’s process. The role defines an abstract process, which is to be executed
by a player, following the player-as-executor pattern.

Roles are interconnected using binary Contracts, which are managed by the composite’s
organizational role and capture relationships as well as functional and non-functional
requirements. The structure of these roles shapes the organizational structure. Advan-

Composite

IPlayer

Contract

Organizer RoleOrganizer Player

Functional Role
controls player bindings

and contracts

Figure 3.3:Conceptual Relationships in ROAD. [cf. 21, Figure 9]

tages of ROAD’s conceptual model, cf. Figure 3.3, are that functional roles and their
players are fully decoupled and that every Composite adopts a general IPlayer interface,
hence, the composite itself can act as a player for a functional role in another composite.

The role-based organization structure has two basic adaptation strategies: the first is
to restructure the relationships between the roles within the composite, and the he
second is to replace a player with an alternative one that better matches the contract
specifications. Exchanging players, however, is not achieved automatically but is a task
of the organizer role and its player, which are also in charge of evaluating the contracts.

Concerning distribution, web services can be considered players in ROAD. A fully
dynamic distribution, however, requires a discovery mechanism, which is of no concern
within the general concept of ROAD. [18, p. 214] Instead, discovery is ought to be
realized by an organizer role or player, respectively. [18, p. 167] Hence, distribution is
considered static as it requires manual intervention. In general, however, it is possible
to compose and adapt the system on a distributed level.

32

3.2 Role-based Run-Time Systems

Role Oriented Adaptive Design [18, 21]

Role Perspective ⊞ Distribution ⊞ Composition ■ Type of Interaction ■

Role Abstraction ■ Discovery □ Adaptivity ■ Serendipity ⊞

Helena Approach

The formal foundations of the Helena Approach [42] have been discussed in Section 3.1.2.
Though it follows the organization-centric perspective, players do not have behavior
and a predefined type, which does not allow for serendipity. Nevertheless, the Helena
Approach provides an ensemble specification to model distributed, role-based systems.
This specification, i.e., HelenaText, can be translated to executable code [51], by means
of generated classes representing roles, ensembles, and components.

At run time, the Helena Approach is only conceptually distributed as it maps onto a
component-based system architecture [50–52] similar to SMAGs. [66] A fully dynamic
distribution additionally requires a discoverymechanism, which is of no concern within
the general concept of the Helena Approach. Hence, distribution is considered static.
Conceptually, however, it is possible to compose and adapt the system on a distributed
level with respect to the restrictions on the desired role abstraction.

Helena Approach [42, 50–52]

Role Perspective ⊞ Distribution ⊞ Composition ■ Type of Interaction ■

Role Abstraction ⊞ Discovery □ Adaptivity ■ Serendipity □

Macodo

The design principles of Macodo [41] have been discussed in Section 3.1.2. Though it
follows the organization-centric perspective, it lacks certain required features, such as
the player’s autonomy, and provides the desired role abstraction only partially.

The decomposed business processes describe a distributed, service-oriented system.
The run-time architecture of Macodo, however, requires central management. [41,
p. 23] Macodo focuses on collaborations within a restricted environment, managed by a
trusted third party. [41, p. 32] Hence, support for collaborative applications without
central control is lacking. Adaptivity in Macodo refers to alternative configurations of
the complete system at design time rather than reconfiguring the system at run time.

33

3 State of the Art & Related Work

Macodo [41]

Role Perspective ⊞ Distribution ⊞ Composition ■ Type of Interaction ■

Role Abstraction ⊞ Discovery □ Adaptivity □ Serendipity □

Dependable Ensembles of Emerging Components

Initially, Dependable Ensembles of Emerging Components (DEECo) [49, 13] were considered
an approach for spontaneously collaborating systems, which are discussed in Section 3.3.
Recently they attempted to add a notion of roles [12], which is why DEECo was lifted
to this section. Bures et al. [13] categorize DEECo as an Ensemble-based Component
System (EBCS), which is defined as a “distributed [system] composed of components
that feature autonomic and (self-)adaptive behaviors and are organized into emergent
ensembles to achieve cooperation.” [13] The term ensemble confers to that defined by
Hennicker and Klarl [42] for the Helena Approach.

DEECo, basically, is a component-based system, similar to theHelenaApproach or to the
SMAGs approach. Components have knowledge, i.e., internal state and functionality, and
processes, which specify the execution of local functionality. Additionally, components
adopt Interfaces, which describe a partial view on a component’s knowledge.

Initially, interfaces solely defined a component’s shape by means of its attributes. [49]
Later, components explicitly had to adopt the interface [13], introducing a more strict
relation. More recently, a notion of roles was added [12]. However, roles are simply a
replacement for interfaces without gaining more power.

Ensemble Prescriptions define an ensemble’ structure. An ensemble consists of a single
coordinator andmultiplemember components. The ensemble prescription also specifies
how data is exchanged between the coordinator and the members. It is noteworthy that
a component may be a coordinator or member in several ensembles simultaneously.
[49, 13] Moreover, DEECo supports hierarchical structures [12] as ensembles can define
a parent-of or child-of relation to another ensemble (within the same prescription). The
ensemble structure, however, is predefined to be a one-to-many relationship.

Technologically, component communication and bindings are extracted from the compo-
nents’ implementation and implicitly specified in the ensemble prescription. A shared
middleware exchanges data among the autonomous components, which solely operate
on their local knowledge base. Hence, there is neither explicit interaction between the
components nor their roles since roles have no behavior. Components are considered to
operate autonomously though they are not designed independently from the ensemble.

34

3.2 Role-based Run-Time Systems

DEECo, however, supports rather complex service structures as components can join
and leave an ensemble at run time. Despite the required interface (or role) a component
must adopt, ensemble structures define membership constraints that must be fulfilled
by components when they join an ensemble at run time. Concerning distribution and
discovery, DEECo components base on OSGi [85] components and discovery relies on
OSGi service discovery [13]. The DEECo middleware supports communication among
several computational units. [13, Figure 8]

DEECo [13, 12, 49]

Role Perspective ⊞ Distribution ■ Composition ■ Type of Interaction ⊞

Role Abstraction ⊞ Discovery ■ Adaptivity ⊞ Serendipity □

3.2.3 Summary

This section discussed distributed, organization-centric, role-based runtime systems
as enabling technology for engineering, or at least operating, Smart Service Systems.
Table 3.2 summarizes the individual classifications of the presented approaches. Ev-

SM
A

G
s

[6
5,

66
]

R
O

A
D

[1
8,

20
,2

1]

H
el

en
a

A
pp

ro
ac

h
[4
2,

50
–5

2]

M
ac

od
o

[4
1]

D
EE

C
o

[1
3,

12
,4

9]

Role Perspective ⊞ ⊞ ⊞ ⊞ ⊞
Role Abstraction ⊞ ■ ⊞ ⊞ ⊞

Distribution ⊞ ⊞ ⊞ ⊞ ■
Discovery □ □ □ □ ■

Composition ⊞ ■ ■ ■ ■
Adaptivity ⊞ ■ ■ □ ⊞

Type of Interaction ■ ■ ■ ■ ⊞
Serendipity □ ⊞ □ □ □

Table 3.2:Comparison of Role-based Runtime Systems.

idently, no role-based approach provides a complete solution for engineering Smart
Service Systems. Besides distribution, discovery is another prerequisite in order to
dynamically compose and recompose such systems at run time. DEECo is the first
approach addressing all the key requirements of smart service systems, i.e., distribution,
discovery, and composition as well as supporting rather complex service structures.

35

3 State of the Art & Related Work

However, it is limited to passively interacting subsystems, which might be due to the
insufficient utilization of the role concept, and the service structure has a predefined
pattern. Components are essential building blocks of their overall system specification
and designed to operate autonomously. However, they are not independently designed
as autonomous services but strictly related to the ensemble.

3.3 Spontaneously Collaborating Run-Time Systems

So far, role-based modeling abstractions and runtimes were investigated concerning
their utilization for engineering Smart Service Systems. Heretofore, none of the pre-
sented approaches is capable to dynamically compose and adapt service systems in
decentralized environments. To a certain extent, however, smart systems already collab-
orate as of today, such as a smart phone which is streaming audio or video content to
other smart devices without installing specific software or requiring difficult configura-
tion. Whether this also applies to more sophisticated system structures and services,
is a question yet to be answered. In this section, the current state of practice for such
spontaneously collaborating systems is analyzed. Therefore, the previous scheme, de-
picted in Figure 3.2 on page 29, is slightly changed as explained below. Subsequently,
the approaches are discussed and classified according to that scheme.

3.3.1 Classification

Figure 3.4 depicts the slightly modified classification scheme for Spontaneously Collabo-
rating Systems. The Role Perspective and Abstractionwere replaced by the Service Structure,
explained in Section 1.2 and Figure 1.1. The Simple service structure, however, was
subdivided into run-time static and dynamic service structures. In contrast to static
service structures, dynamic service structures are composed on-the-fly at run time. The
remaining criteria are applied as defined in Section 3.2.1. Properties highlighted in
bold, again, represent a requirement, faded items are exclusion criteria.

3.3.2 Approaches

Compared to Section 3.1.2, stricter exclusion criteria are applied to approaches that
indeed realize spontaneous collaborations of loosely coupled systems at run time. The

36

3.3 Spontaneously Collaborating Run-Time Systems

Spontaneously
Collaborating

Systems
Composition

□ None
⊞ Local
■ Distributed

Discovery

□ None
⊞ Central
■ Distributed

Adaptivity □ None
⊞ Local
■ Distributed

Distribution
None□
Static⊞

Dynamic■

Service
Structure

Static□
Dynamic⊡

Reconfigurable⊞
Complex■

Type of
Interaction

None□
Passive⊞
Active■

Serendipity
No□

Possible⊞
Yes■

Figure 3.4:Classification Scheme for Spontaneously Collaborating Run-Time Systems.

following approaches have in common that they link at least two rather independently
developed systems at run time despite the need for exhaustive manual configuration.

Network Level Protocols

In the smart home, two devices can easily collaborate, such as a smart phone streams
audio or video content to a smart tv, or prints a document on a nearby printer. This
is achieved by low-level network protocols which all share the same goal of linking two
devices dynamically, i.e., a host device, e.g., a smart phone, a tablet, or a computer, is
bound to a slave device, e.g., a printer, a smart tv as display, or a radio as loudspeaker.

These protocols can be subdivided into two groups with different application areas. On
the one hand, there are protocols to set up multimedia streams, comprising Universal
Plug’n’Play [63], or proprietary protocols, such as Apple AirPlay [45] or Google Chrome-
cast [36]. On the other hand, protocols like Zeroconf [40] and its descendants Avahi[3]
and Bonjour [10], as well as Microsoft’s Simple Service Discovery Protocol [35], manage
and configure connections with peripheral devices, such as printers.

Both groups share a common basic concept: all devices describe themselves using a stan-
dardized device model. These specifications are continuously broadcast across the local
network. Additionally, all devices have to implement standardized interfaces, which al-
low platform- and vendor-independent collaboration. The user triggers the composition
process, e.g., by using the scanner and dynamically selecting the target computer or by
selecting a target device when playing music on a smart phone. Evidently, the service
structure is simple yet dynamic since it is composed at run-time. The limitation of two

37

3 State of the Art & Related Work

collaborating devices is, however, a severe restriction to the applicability of network-level
protocols to Smart Service Systems as complex service structures cannot be realized.

Network Level Protocols (NLP) [3, 10, 35, 36, 40, 45, 63]

Service
⊡

Distribution ■ Composition ■ Type of Interaction ■

Structure Discovery ■ Adaptivity □ Serendipity ⊞

Self-Organizing Software Systems

Self-Organizing Software Systems (SOSSs), occasionally referred to as Self-Assembling
Systems, focus on decentralization and emergent functionality, and usually consist of
many interacting subsystems that are either absolutely unaware of or have only partial
knowledge about the global system. [70] According to Di Marzo Serugendo et al. [24],
the system’s structure appears without explicit control or constraints from outside
the system. Instead, organization is intrinsic to the self-organizing system and results
from internal constraints or mechanisms. SOSSs achieve complex behavior through
interactions among individual, autonomous subsystems.

Krupitzer et al. [53] recently investigated the research landscape of Self-Adaptive Soft-
ware Systems (SASSs), a superset of SOSSs [70], but only a few approaches address
decentralized control. This corresponds to Weyns, Malek, and Andersson who con-
clude that “state-of-the-art self-adaptive frameworks lack support for a growing class
of systems in which central control is not an option.” [83]

The building blocks of SOSSs are typically services which offer and require functionality
through ports. The whole system, hence, is composed based on matching provided
and required ports, in other words the system’s structure is described through simple
service dependencies. Fulfilling such dependencies is usually limited to binding one
instance of a type to one instance of another type even if multiple instances are available.

MetaSelf Di Marzo Serugendo and Fitzgerald [23] propose MetaSelf, a software archi-
tecture and development method for engineering SOSSs. The development method
consists of four phases tackling requirements analysis, (application) design, implemen-
tation, and verification, respectively. The design phase is split into two parts: First, the
designer chooses architectural patterns, such as autonomic manager or observer/con-
troller architecture, and adaptation mechanisms, such as governing the interactions and

38

3.3 Spontaneously Collaborating Run-Time Systems

behavior of autonomous components, e.g., trust or gossip. Additionally, rules for self-or-
ganization, anddependability policies are specified. Second, the individual autonomous
components, e.g., services or agents, are designed, including necessary metadata and
policies. The implementation phase subsequently generates the run-time infrastructure.

Evidently, the development method is a self-contained process leading to a self-con-
tained run-time system that relies on self-describing components, services, or agents
and a coordination/adaptation service which is part of the MetaSelf architecture. The
system can only adapt within its designed boundaries but is not able to integrate compo-
nents specified outside the development process. Though parts of the derived run-time
architecture can be distributed, MetaSelf will not work in completely decentralized
environments. Moreover, it remains unclear how autonomous services are discovered
at run time. This would at least require replication of MetaSelf’s architectural units,
such as the coordination/adaptation service.

MetaSelf [24]

Service
⊞

Distribution ■ Composition � Type of Interaction ■

Structure Discovery ■ Adaptivity ■ Serendipity □

FlashMob Sykes, Magee, and Kramer [75] propose FlashMob, a formal, decentralized
algorithm for distributed self-assembly. Conceptually,Components of a certainComponent
Type are instances on certain Nodes in a distributed system. Nodes have State that
represents which component provisions will satisfy which requirements. State, hence,
describes a system configuration of multiple components.

FlashMob utilizes a gossip protocol [48], which aggregates and distributes state infor-
mation, to overcome limitations in terms of scalability in order to reach an agreement
on a particular system configuration in a logarithmic number of steps with respect to
the network size. Each node applies a set of rules after receiving new state information
from another node. This includes adding required dependencies, adding provisioned
dependencies based on information gathered earlier and evaluating the configuration
if it is complete, which means that it meets all the functional requirements specified.

FlashMob [75]

Service
⊞

Distribution ■ Composition ■ Type of Interaction �
Structure Discovery ■ Adaptivity � Serendipity □

39

3 State of the Art & Related Work

GoPrime Caporuscio et al. [16] propose GoPrime, a fully decentralized middleware
for utility-aware self-assembly of distributed services. It is an extended version of the
Prime middleware [15], utilizing a gossip protocol [47] similar to FlashMob [75]. It is
intended to manage distributed systems where a set of peers cooperatively works to ac-
complish specific tasks. In general, each peer offers services, but could require services
offered by other peers to carry out these tasks. The goal is to self-assemble the system
among the peers by matching required and provided services utilizing a decentralized
approach to network-aware service composition. [17] Services are abstractly described
using a joint ontology and implemented using REST [28] interfaces. Moreover, the
structure of a system is subject to non-functional requirements, such as performance,
dependability, or cost. Hence, GoPrime is able to adapt the systems it manages towards
the selection, among the set of functionally feasible peers, of an assembly that fulfills
global non-functional requirements. Consequently, this leads to a highly reconfigurable
and adaptable system, which is still not complex enough as it is not possible to bind
multiple service instances of the same type simultaneously.















h
H1

h
H2

h
H3

Hospital

A
AS1

A
AS2









Ambulance
Service

+
FA1

+
FA2

+
FA3

First Aid

HS
HS1

HS
HS2

HS
HS3

HS
HS4

Health Service


Doc


Doc






TA1


TA2


TA3

Technical Assistance


Tech


Tech

 


Patient



Ambient Things





Wearable Things

  

Figure 3.5:GoPrime’s Case Study: A Smart Health Scenario. [cf. 16, Figure 8]

Figure 3.5 shows the case study used to demonstrate GoPrime’s applicability [16]. The
limitation that is clearly visible is that only the best service out of a group (a framed box
in the figure), such as FA2 from first aid services, is actively participating in an assembly.

Despite this limitation, GoPrime allows for loose coupling, i.e., independently deployed
and executed resources; flexibility, i.e., resources can be added and removed into the
running application; dynamism, i.e., dynamically discoverable resources are bound into
the running application; and – other than all aforementioned approaches – serendipity,
i.e., unforeseen resources are integrated into the running application.

40

3.3 Spontaneously Collaborating Run-Time Systems

GoPrime [15–17]

Service
⊞

Distribution ■ Composition ■ Type of Interaction ■

Structure Discovery ■ Adaptivity ■ Serendipity ■

3.3.3 Summary

In this section, approaches that realize collaborations of systems on-the-fly at run time
were discussed. The approaches were selected on the basis that they interconnect at
least two rather independently developed systems at run time despite the need for
exhaustive manual configuration. The findings are summarized in Table 3.3, which, for
evident reason, also includes DEECo, discussed previously in Section 3.2.

Evidently, network level protocols are unsuitable to realize Smart Service Systems.
SOSSs provide a good run-time support to achieve spontaneously collaborating sys-
tems on-the-fly. GoPrime is the most promising approach out of the domain of SOSSs.
Generally speaking, a common limitation of SOSSs is the absence of holistic specifica-
tions capturing complex service structures. This is due to the emerging nature of SOSSs.

N
LP

[3
,1

0,
35

,
36

,4
0,

45
,

63
]

M
et

aS
el

f
[2
3]

Fl
as

hM
ob

[7
5]

G
oP

ri
m

e
[1
5–

17
]

D
EE

C
o

[1
3,

12
,4

9]

Service Structure ⊡ ⊞ ⊞ ⊞ ■
Distribution ■ ■ ■ ■ ■

Discovery ■ � ■ ■ ■
Composition ■ ■ ■ ■ ■

Adaptivity □ ■ � ■ ⊞
Type of Interaction ■ ■ � ■ ⊞

Serendipity ⊞ □ □ ■ □

Table 3.3:Comparison of Spontaneously Collaborating Run-Time Systems.

DEECo realizes a rather complex service structure at least due to its coordinator-member
relation, which is intended to be of the type one-to-many whereas GoPrime is limited
to one-to-one bindings. Conversely, GoPrime achieves serendipity, i.e., it is capable to
integrate unforeseen services, which is impossible in DEECo.

41

3 State of the Art & Related Work

3.4 Summary

This chapter discussed several approaches concerning their utilization to engineer, i.e., to
develop and to operate, Smart Service Systems. First, role-based modeling abstractions
were analyzed concerning their applicability to serve as modeling abstraction for Smart
Service Systems as well. In general, role-based modeling abstractions fulfill the posed
requirements. Consequently, the Concept of Roles is a proper abstraction to specify Smart
Service Systems. However, all investigated approaches impose restrictions on the player
entity, such as not to have behavior or state [42, 61, 68] which consequently does not
allow the role’s and player’s behavior to intertwine, or they restrict them based on their
type rather than on their shape [34, 41, 56, 57], which prevents serendipity at run time.
This is not a limitation of the role concept in general as Boella and Steimann emphasize:

One of the crucial points […] is the link between role and objects [i.e., the
players]. It [i.e., the link,] is annotated by select from; this signifies that
objects are dynamically selected from a set of relevant objects to play the
roles. Many different selection mechanisms can be used. These methods
dynamically select the appropriate player objects. In principle, the methods
should perform the selection on each call to ensure up-to-date mapping. [9]

Next, distributed, role-based run-time systemswere investigated as enabling technology
for Smart Service Systems. A classification scheme was developed, which captures the
design-time requirements discussed afore as well as additional requirements related
to run-time aspects of Smart Service Systems. Most approaches [41, 49, 51, 66] do not
comply with the desired role abstraction as they impose type restrictions. Only two
approaches, i.e., ROAD [18, 20, 21] and DEECo [13, 12, 49] provide support for rather
complex service structures and their composition. ROAD, however lacks dynamic distri-
bution and discovery whereasDEECo does not support serendipity and imposes restric-
tions on service structures mainly due to an insufficient utilization of the role concept.

Finally, non-role-based run-time systems and approaches were investigated that indeed
realize spontaneous collaboration of distributed systems at run time. The scheme used
afore was slightly change in order to replace the Role Perspective and Abstraction with
the support for Complex Service Structures. DEECo [13, 12, 49] was included once again
as it originally was not a role-based system but was added a notion of roles recently.

Network-level protocols [3, 10, 35, 36, 40, 45, 63] are limited to interactions between
two systems. Most approaches in the domain of SOSSs support neither serendipity nor
complex service structures as they constitute a mainly linear chain of services [24, 75].

42

3.4 Summary

The remaining approaches face the same issues as role-based run-time systems. DEECo
does not support serendipity, conversely, GoPrime [15–17] is limited to reconfigurable
service structures. An integration of both approaches is hindered by their contradicting
paradigms, i.e., DEECo is a component-based system and GoPrime utilizes stateless
REST interfaces for communication.

Though existing role-based modeling abstractions capture the collaborative nature of
Smart Service Systems, they do not preserve their autonomy but impose too many
restrictions or lack a processable specification at all. Role-based run-time systems using
such specifications close the gap between design and run time but face the same issues as
their specifications and consequently lack serendipity and context-awareness. Remain-
ing approaches lack support for complex service structures or discovery. Bottom-up
approaches achieving spontaneous collaborations of distributed, autonomous services
lack either support for complex service structures or serendipity due to the absence of a
specification defining such a complex structure. Thus, it appears that the gap between
design and run time and the lack of an autonomy-preserving developmentmethodology
are the major challenges for engineering adaptable, collaborative Smart Service Systems.

Conclusively, the key problems of engineering Smart Service Systems, as explained in
Section 1.3, can be confirmed. The approach to be developed is consequently required to
focus on a specification for complex, context-aware, continuous service collaborations,
to decouple the development processes, to solve the discontinuity between design-time
specification and run-time composition as well as adaptation, and eventually to achieve
on-demand composition of Smart Service Systems.

43

4 On-Demand Composition and Adaptation of
Smart Service Systems

This chapter is concerned with the concepts of the RoleDiSCo approach, which aims to
solve the problems stated in Section 1.3. The name RoleDiSCo thereby is inspired from
Role-based Distributed Service Composition.

Figure 4.1 on the following page provides an overview of the complete RoleDiSCo ap-
proach, comprising the development methodology in the upper part and the run-time
support in the lower part of the Figure. First, the RoleDiSCo Development Methodology
separates the development of the overall Smart Service System, i.e., the collaboration,
from that of the service and its role essential to the collaboration. The methodology
includes a Role-based Collaboration Specification to specify Smart Service Systems. Next,
the RoleDiSCo Middleware Architecture is designed to utilize the artifacts resulting from
the development methodology in order to achieve on-demand composition of Smart
Service Systems in decentralized environments. The middleware automatically derives
discovery information, provides a respective decentralized discovery mechanism and
abstracts concrete underlying network infrastructures. Finally, in order to compose and
adapt such systems coordinately, a protocol for coordinated on-demand composition and
subsequent adaptation is proposed.

In the remainder of this chapter, the following scenario is used in order to illustrate the
concepts: consider an interactive, tech-enhanced classroom setting in which both the
lecturer and its students have smart devices, e.g., smart phones or tablets. The lecturer
delivers the lecture using his or her smart device to present accompanying slides. The
students’ smart devices by contrast are only able to display the current slide and the
annotations the lecturer adds to the slides. The students, additionally, are able to give
feedback to the lecturer and also may ask questions by virtually raising their hand. A
projector in this scenario is considered only a second display attached to the lecture’s
host, i.e., the lecturer’s device. The lecturer is the head of the classroom collaboration
and keeps it alive, while students may join and leave during the collaboration.

45

4 On-Demand Composition and Adaptation of Smart Service Systems

Role-based Collaboration Specification

Partial
Implementation

Player
Provision

Automated
Discovery

On-demand
Composition

Independently
Developed
Service

generate

complement

derive

design time
run time

1

1 2

Figure 4.1: RoleDiSCo Development Methodology.

4.1 RoleDiSCo Development Methodology

The RoleDiSCo Development Methodology is a two-phase development methodology
which allows to demarcate the development processes of the collaboration and its roles,
from that of the services. Figure 4.1 depicts the overall process of the approach, which
comprises two major design phases of the development methodology.

In Phase 1 , a Collaboration Designer specifies the application as a self-contained collab-
oration of roles. Therefore, the designer uses the Role-based Collaboration Specification,
which will be explained in the subsequent section. Thereof, a Partial Implementation is
generated. In Phase 2 , potentially several developers complement this partial imple-
mentation by providing the concrete player implementation or connecting the generated
roles to their existing implementation, as explained later. The two phases already con-
tribute to the demarcation of the development processes (RQ 3) since the collaboration
designer and the developers of Phase 2 do not have to be the same. On the contrary,
developers of Phase 2 can and shall work independently of the collaboration designer
as well as of each other creating several individual player complementations.

4.1.1 Role-based Collaboration Specification for Smart Service Systems

The Role-based Collaboration Specification is the essential building block of Phase 1 . The
requirements posed to the specification are those used in Section 3.1.1 to classify existing
approaches. Essentially, the specification shall define a collaboration as a self-contained
unit, which in turn defines all the role types enclosed. The collaboration also includes
the relationships, i.e., multiplicities and constraints, between role types. The role (type)
is required to have state and behavior, i.e., attributes and methods, in order to capture

46

4.1 RoleDiSCo Development Methodology

an abstract functionality. The role’s methods should be able to intertwine with the role’s
player in order to achieve serendipity (RQ 1.3), which is discussed later as well as the
roles’ ability to interact with other roles. Additionally, the collaboration and its roles
must support context-awareness.

A collaboration is assumed to have a leader who keeps the collaboration alive. In the
Classroom collaboration, for instance, the Lecturer initiates the collaboration, which in
turn continues to operate as long as the Lecturer and at least one Student are available.
However, independent of the number of Students, the collaboration is terminated when
the Lecturer is not available anymore.

Collaboration
name
namespace

Abstract Role
name

Coordinator Role

Role

Feature
name

Method
player qualifier
collection of parameters
return type
method body

Attribute
type

Constraint

Multiplicity

*

1

1..*

*

*

*

2

Player Requirement

ContextContext Value 1 Context Feature *

defines*

Figure 4.2: Role-based Collaboration Specification’s Metamodel.

Figure 4.2 depicts a metamodel based on these requirements as foundation of the
specification. In contrast to role-based modeling abstractions presented in Section 3.1.2,
the fills relation is conceptually relaxed in order to loosen the relation between roles
and their players at design time.

Structural Specification

The Collaboration founds the core of the specification. Each collaboration must have a
unique name within a unique namespace as this will become an essential part of the dis-
covery information at run time. The Coordinator Role is distinguished from other Roles,
both of which are subclasses of Abstract Role, as it defines the leader of the collaboration,

47

4 On-Demand Composition and Adaptation of Smart Service Systems

which, in turn, has exactly one coordinating role. The coordinating role is responsible for
initializing the collaboration and keeping it alive. Thus, the role most essential to the col-
laboration should be chosen as the Coordinator Role because its subsystemwill be chosen
as the Pervasive Collaboration Coordinator, which is responsible for managing composition
and subsequent adaptation of the collaboration, as it will be discussed in Section 4.3
on page 64. Besides, at least one non-coordinating Role must be specified as well. Apart
from different names, both types of roles share behavior and structure, however, it is
required to distinguish both types in order to enforce that a collaboration specification
has exactly one coordinating role type while all others are non-coordinating.

In order to specify the overall structure of the Smart Service System, the roles must be
interconnected using Multiplicities. Multiplicities are specified as a set of typed pairs
containing the role types to be interconnected. The type denotes the multiplicity’s
kind and must be one of one-to-one or one-to-many. In the Classroom scenario, the
link between Lecturer and Student is specified as OneToMany(Lecturer, Student). All
relationships are considered to be bidirectional.

Role-playing can be restricted using Constraints, such as those introduced by Riehle
and Gross [69]. Constraints are specified as typed pairs as well and are applied for two
role types (A, B) as follows: role-dontcare has no effect on the collaboration at all; role-
implication (A→ B) requires a subsystem to play role B if it plays role A; role-equivalence
(A ↔ B) obliges a subsystem to play both roles A and B; and role-prohibition (A B)
enforces that roles A and B are provided by different subsystems. With respect to the
example, Lecturer Student would cause that a single subsystem never plays both roles
in the same pervasive collaboration.

Listing 4.1 on the facing page shows a basic grammar using an ANTLR-like syntax [64],
which does not provide a complete language but solely its basic structure. It builds the
foundation to derive a concrete programming or domain-specific language (DSL). By
intention, Attribute andMethod are not further specified as they depend on grammars of
concrete programming languages, which are assumed to provide respective definitions
for attributes and methods. Chapter 5 will justify that this is a valid assumption with
respect to the research prototype. Constraints and multiplicities are subject to a few
restrictions that are not captured by the grammar. The coordinating role exists only
once per collaboration, even at the instance level. Thus, the coordinating role cannot
be used as the target of a one-to-many relationship. Likewise, a role-implication or
role-equivalence resulting in such a relationship is prohibited either. This, however, has
to be handled by respective tool support and cannot be easily captured in the grammar.

48

4.1 RoleDiSCo Development Methodology

Listing 4.1: Basic Grammar of the Collaboration Specification.

1 CollaborationSpecification:
2 namespace = QualifiedName
3 collaboration = Collaboration;
4
5 Collaboration:
6 type = ValidName
7 features += Feature*
8 contextFeatures += Context*
9 roles += CoordinatorRole

10 roles += NonCoordinatorRole+
11 constraints += RoleConstraint*
12 multiplicities += Multiplicity*;
13
14 Feature: Attribute | Method;
15
16 Context: 'context' attribute = Attribute;
17
18 Role: CoordinatorRole | NonCoordinatorRole;
19
20 CoordinatorRole:
21 type = ValidName
22 contextFeatures += Context*
23 features += Feature*;
24
25 NonCoordinatorRole:
26 type = ValidName
27 contextFeatures += Context*
28 features += Feature*;
29
30 RoleConstraint:
31 from = [Role]
32 type = (RoleProhibition | RoleImplication | RoleEquivalence)
33 to = [Role];
34
35 RoleProhibition: '>-<';
36 RoleImplication: '-->';
37 RoleEquivalence: '<->';
38
39 Multiplicity:
40 from = [Role]
41 type = (OneToOne | OneToMany)
42 to = [Role];
43
44 OneToOne: ('one-to-one'|'to');
45 OneToMany: ('one-to-many');
46
47 QualifiedName: ValidName ('.' ValidName)*;
48 ValidName: ID;
49 ID: '^'? ('a'..'z'|'A'..'Z'|'$'|'_') ('a'..'z'|'A'..'Z'|'$'|'_'|'0'..'9')*;

49

4 On-Demand Composition and Adaptation of Smart Service Systems

Behavioral Specification

Earlier said, roles capture an abstract functionality. Therefore, roles (as well as their
surrounding collaboration) may have an arbitrary number of Features, i.e., Methods and
Attributes. Attributes consist of a name and a (data) type, such as integer, string, or
boolean, and are required in order to capture the internal state of a role or collaboration.
Methods consist of a name, a list of parameters and their types, a return type and
a method body containing expressions. A model that is able to capture operational
semantics of programming languages in order to describe types and expressions is
assumed to exist. For instance, Xbase [26] provides a metamodel that captures Java-
based languages. The Xtext framework [7, 86], of which Xbase is a part, allow the
development of DSLs that result in Java code. Additionally, it is possible to create
custom compilers that translate a given model to a particular language.

with qualifier without qualifier

method body w/ player reference partial/full delegation sole partial delegation

method body w/o player reference no or full delegation outboundmethod call

empty method body forced full delegation not allowed

Table 4.1: Player’s occurrence in a role’s method.

In order to incorporate the player’s behavior which complements the role’s abstract
functionality, it is required to specify which parts of the role’s functionality are actually
delegated to the player. Listing 4.2 shows an exemplary structure of a role’s method.

Listing 4.2: Sample Structure of a Role’s Method.

1 [player] op name(parameters*)[:return type] [{
2 ... // method body
3 player.doSomething()
4 }]

The player may appear as qualifier of a whole method in order to fully delegate the
behavior or as a receiver of a method invocation inside a role’s method body in order to
intertwine with the player’s behavior. An overview of the resulting behavior is given in
Table 4.1. The following cases are to be distinguished:

Forced Full Delegation
If no method body is given, like for an abstract method, and the qualifier is set, incom-
ing method calls (from other role instances) are fully delegated to the player, which

50

4.1 RoleDiSCo Development Methodology

must provide a complementing implementation. This allows to provide different
degrees of autonomy, explained by Colman and Han [19].

player op methodName(parameters*):return type

No or Full Delegation
If a method body without a call to the player is given, and the qualifier is set, incom-
ing method calls are fully delegated to the player if it provides a complementing
implementation. Otherwise the role’s abstract functionality is used as a default imple-
mentation that does not require customizations. Thereby, legacy systems that cannot
fully provide a concrete performance can be addressed.

player op methodName(parameters*):return type {
... // no player call

}

Sole Partial Delegation
If the method body contains a player reference and no qualifier is set, only calls to the
player inside themethod body are delegated to the player, for which a complementing
implementation must be provided as well.

op methodName(parameters*):return type {
...
player.doSomething(parameters*)
...
value = player.doSomethingElse(parameters*)
...

}

Partial/Full Delegation
If the qualifier is set and the method body contains references to the player, the whole
method is delegated to the player if it provides a complementing method. Otherwise
the role’s abstract functionality is used and only calls to the player inside the abstract
functionality are delegated to the player. Additionally, the role’s abstract functionality
will be used in case the fully delegated call results in a run-time error.

player op methodName(parameters*):return type {
...
player.doSomething(parameters*)
...
value = player.[return type]doSomethingElse(parameters*)
...

}

51

4 On-Demand Composition and Adaptation of Smart Service Systems

Outbound Method Calls
Finally, if no player reference occurs in the method body and the qualifier is not set,
the method is treated as an outboundmethod call. Hence, the role’s player can invoke
this method in order to communicate with other roles inside the collaboration.

op methodName(parameters*):return type {
AnotherRoleType.doSomething(parameters*)

}

The roles’ methods can be invoked by any other role within the collaboration if they
have a defined relationship. As depicted in Table 4.1, one case is prohibited: an empty
method without the qualifier, which would allow for customization through a player.

Dealing with Context & Participation

So far, the specification allows to describe the structure of a Smart Service System based
on role types, which allows for composition based on these role types at run time.
This, however, would lead to very large collaborations as all systems that provide a
certain role type would be integrated. Hence, it is required to restrict participation in
a collaboration in a more fine-grained way. As presented in Chapter 2, the concept of
roles includes that roles can define requirements for their players apart from method
interfaces, which may also include contextual properties. Context is a very generic term
that has many definitions, such as the well-known one given by Dey, who describes
context as “[…] any information that can be used to characterize the situation of an
entity. An entity is a person, place, or object that is considered relevant to the interaction
between a user and an application, including the user and applications themselves.” [22]

This definition, however, is too generic to be captured within the specification. Instead
of extending the metamodel to include a comprehensive context model which captures
a huge domain of context information, the specification allows to incorporate arbitrary
classes as context features. These classes can refer to simple types, such as strings
or numbers, as well as to more advanced, external context models. Concerning the
metamodel shown in Figure 4.2, a Context Feature captures the name and the type of a
context information whereas the Context Value refers to the concrete value at run time.
This allows to use any kind of context model and interpretation within a collaboration.
Context features are assumed to be comparable in order to determine whether they are
equal or not, in other words, whether two entities are in the same context. With respect
to the example in Listing 4.3, the LectureContext is a simple data type containing

52

4.1 RoleDiSCo Development Methodology

Listing 4.3:Collaboration Specification with Context Features.

1 collaboration Classroom {
2 context LectureContext lectureInformation
3 coordinator role Lecturer {
4 context LecturerContext lecturerPersonalInformation
5 ...
6 }
7 role Student {
8 context LectureContext studentLectureInterests
9 context StudentContext studentInformation

10 ...
11 }
12 }

information about a lecture. An exemplary implementation is provided in Listing B.1
on page 149. The collaboration’s lectureInformation represents the current lecture
of an operating collaboration. The student’s studentLectureInterests, in turn, rep-
resents the lecture the student wants to attend. In order to include the student in the
collaboration, the two lecture contexts have to be equal.

Additionally, context information is assumed to be serializable, at least in order to
determine whether two context features are equal, as described above. Serialized
context features will be part of the discovery process, explained later, whereas non-
serializable discovery informationwill be excluded. Please note that, a non-coordinating
role type is considered for joining a collaboration only if it is in the same context as
the collaboration. In the example, a student’s lecture context would have to match
that of the collaboration in order to join it. Hereby, only the LectureContext feature
is considered as it exist for both the Student role and the collaboration. Conceptually,
context may depend on the role; its value, however, always depends on the concrete
player as it is varying the role’s behavior and therefore must be provided by the player.

4.1.2 Derived Partial Implementation

As part of Phase 1 , a Partial Implementation is derived from the specification and
respective source code is generated. Figure 4.3 shows the generated classes for the
Classroom scenario. Abstract classes (dotted border) are not generated but part of the
RoleDiSCo Middleware, which will be discussed in Section 4.2. These super classes
act as common interfaces for all collaboration and role types. For each specified role
type, a separate role class, a role interface and its player’s optional interface definition

53

4 On-Demand Composition and Adaptation of Smart Service Systems

derived partial implementation

AbstractRole AbstractCoordinatorRole AbstractCollaboration

StudentRole

IStudentRole

IStudentRolePlayer

LecturerRole

ILecturerRole

ILecturerRolePlayer

ClassroomCollaboration

Figure 4.3:Generated Partial Implementation for the Classroom Scenario.

are derived as follows. Attributes inside a collaboration’s specification are translated
to attributes with respective accessor methods of the role or collaboration classes.
Methods are translated likewise. Their abstract functionality is translated to a partial
implementation, which must be processed more thoroughly as it affects both the role
class and its player’s interface depending on the cases shown in Table 4.1. In case of sole
partial and partial/full delegation, method calls inside the method body referencing the
player are added to the player’s interface. The original method call is replaced by calling
the middleware’s internal dispatch mechanism to delegate it to the actual player at run
time. In case of partial/full delegation, an additional check, if the player provides a full
replacement of thewholemethod, is added to themethod body’s beginning. In this case,
the method added to the player’s interface is optional and the method call is delegated
only if a player instance provides a replacement. In case of forced full delegation, the
method body is fully dispatched to the player. An outboundmethod call is translated to a
role-classmethodwhich is invokable by the role’s player instance through, for instance, a
role-based runtime’s or the middleware’s internal dispatch mechanism. Method calls to
other role types are redirected to the dispatcher, which delegates the call to the respective
instance(s). Please note that the derived player’s interface is provided for convenience
but does not need to be stated explicitly as implemented by the player as the dispatcher
will check the availability of methods and conditionally delegate method calls.

Crucially important is that multiplicities and constraints are included in the derived
collaboration class in order to recreate the collaboration specification at run time. This
is a prerequisite in order to achieve automated discovery and composition at run time.
One sophisticated way is to provide this information as meta data to the class, for
instance, by using annotations, as exemplified in Listing 4.4.

Finally, all generated classes are bundled and ought to be complemented by a developer
of Phase 2 , who does not need to provide corresponding implementations for all roles
but only for those of which the corresponding service provides a concrete functionality.

54

4.1 RoleDiSCo Development Methodology

Listing 4.4: Relationships in a Generated Collaboration Class.

1 @Constraint(
2 from = LecturerRole, to = StudentRole, constraint = ROLE_PROHIBITION)
3 @Multiplicity(
4 from = LecturerRole, to = StudentRole, multiplicity = ONE_TO_MANY)
5 class ClassroomCollaboration extends AbstractCollaboration { /* ... */ }

4.1.3 Player & Context Provision

In Phase 2 , potentially several developers complement the abstract functionality of
one or several roles and thus provide their concrete performance, i.e., the player(s). The
players’ optional interfaces technically represent the player requirements with respect to
method signatures. How a Phase 2 developer links the generated roles with existing
implementations is part of the case study discussed in Chapter 6. The remainder of
this Section explains how the contextual requirements are to be addressed by Phase 2
developers and how they provide the appropriate player for a certain context.

Context Provisioning

The necessity to provide context information was motivated previously. At run time,
roles initially may only exist as types as they are intended to be instantiated during
the composition process for a specific collaboration individually. Hence, they cannot
provide context information on their own easily as they only exist as types and therefore
could only provide static information that would already be part of the specification.
Conceptually, context should be provided by the prospective player, which is, at first,
the adaptive subsystem and therein a complementing class, core object, etc., which is
provided by the runtime. In order to streamline the context-player issue, context and
players are mapped to each other, as depicted in Figure 4.4. Every player might be

Context Player
defines exactly one

may have many

Figure 4.4:Context–Player Relation.

appropriate for several contexts and thus may provide multiple contexts, while each
context is mapped to exactly one player. The context provided to instantiate a player
and thereby the specified context features are assumed to be precise enough to result in

55

4 On-Demand Composition and Adaptation of Smart Service Systems

exactly one player type or instance. In order to delegate context provision to Phase 2
developers, they have to implement a Context Provider, matching the following interface:

getContext(role type [, feature]) : context or value
This method has to return the concrete context values for the role type’s features
specified in the collaboration specification’s context blocks, e.g., an instance of Stu-
dentContext for feature studentContext. Unless a concrete feature is specified, a
set including all feature-value pairs (i.e., context) is returned.

Player Provisioning

Though players and context are closely linked to each other, they need to remain loosely
coupled. Roles, especially the coordinating roles, do not necessarily have assigned
context features, which eliminates the need for a context provider. Thus, player provi-
sioning is a separate task for which the Phase 2 developer is asked to implement the
Player Provider interface in order to connect the derived role classes with an existing
player implementation, thereby addressing RQ 1.3, i.e., serendipity, and RQ 2, i.e., the
demarcated development processes:

hasPlayer(role type [, context]): boolean
Thismethod determineswhether a complementing player implementation is available
for a given role type and context. Context, here, refers to a set of all features specified
in both the role type’s specification and the collaboration’s specification.

getPlayer(role type [, context]): player type or instance
This method should provide either a complementing player instance or type that can
be instantiated on demand for the given role type and context.

56

4.2 RoleDiSCo Middleware Architecture for Smart Service Systems

4.2 RoleDiSCo Middleware Architecture
A Decentralized Middleware Architecture for Smart Service Systems

In the previous Section, the intertwined development processes of a service and its
role essential to a collaboration have been decoupled using the RoleDiSCo Development
Methodology. Therefore, a Role-based Collaboration Specification was introduced that
focuses on the key features of Smart Service Systems, i.e., complex service structures,
collaborative nature, serendipity, and context-awareness. This Section addresses the run-time
support for Smart Service Systems and thereby focuses on the discontinuity between
the design-time specification and the run-time composition and adaptation of Smart
Service Systems. In order to coordinately compose and subsequently adapt Smart
Service Systems in a decentralized environment, a middleware is required to provide
an automated, decentralized discovery mechanism (RQ 3.1) as well as mechanisms to
derive respective discovery and composition information in an automated way (RQ 3.2).

Figure 4.5 displays the top-level architecture of the RoleDiSCo middleware, which is
supposed to exist and run on every node in a decentralized environment. The dashed

Infrastructure Abstraction Layer

Discovery Coordination

Collaboration
Specifications

Discovery
Knowledge

Dispatch
Information

DispatcherContext
Manager

Application (Role-based) Runtime Adaptive
Subsystem

Figure 4.5:High-Level-Architecture of the RoleDiSCo Middleware.

line represents the system boundary of a single subsystem. Nodes communicate via the
Infrastructure Abstraction Layer, which is introduced in order to completely abstract from
concrete underlying protocols and infrastructures (RQ 3.3). The middleware has three
major repositories. The Collaboration Specification repository contains a representation of
locally available collaboration types, role types and their relations. The Discovery Knowl-
edge repository is supplied with discovery information, i.e., the collaboration types, the
role types and their respective context, as well as the subsystems the role types are
located on. These are obtained by theDiscovery module, which continuously distributes

57

4 On-Demand Composition and Adaptation of Smart Service Systems

such information via the infrastructure abstraction layer to other subsystems and collects
it from others, respectively. Additionally, the Context Manager obtains context features
that are specified in the collaboration specifications and required for fine-grained discov-
ery and composition. The Dispatch Information repository contains information regard-
ing instantiated collaborations, i.e., the role instances and their respective subsystems.
This information is obtained and used by the Coordination module, which comprises
the Composition Management and thereby is responsible for composition and adaptation.
The Dispatcher module builds the interface to the local, potentially role-based, runtime
in order to find andmanages collaboration types, role types, and respective players. The
remainder of this Section continues with a detailed discussion of each of the modules.

4.2.1 Infrastructure Abstraction Layer

In order to abstract from concrete network protocols and infrastructures, network
communication relies on the Infrastructure Abstraction Layer. Thereby, every node in the
infrastructure is assumed to be reachable via this layer, for instance by using a gossip-
based communication approach as proposed by Caporuscio et al. [16] or Sykes, Magee,
and Kramer [75], and the approach becomes independent of underlying technologies.
The infrastructure abstraction layer defines an interface, described below, for sending
and receiving messages to and from the infrastructure. The methods of which the
names are printed in italics have to be provided by a concrete implementation of the
interface as they depend on concrete network protocols and interfaces.

publish(message)
An implementation of this method must ensure that the message is sent to all nodes
within the infrastructure. It does not expect an immediate reply, thus, it is a non-
blocking operation.

send(target[s], message)
An implementation of this method must ensure that the message is sent to the target
node(s) within the infrastructure. It does not expect an immediate reply, thus, it is a
non-blocking operation.

dispatch(target[s], method, parameters [, return type [, callback]])
An implementation of this method must ensure that the method call is dispatched to
the target system(s) within the infrastructure. If a return type is specified, this method
expects the remote method to provide a return value, which is then returned to the
original caller. A callback may be passed, which is executed upon receiving the return
value, and results in a non-blocking method call.

58

4.2 RoleDiSCo Middleware Architecture for Smart Service Systems

receive(message)
The messages received through an underlying implementation should be forwarded
to the receive method, which will continue further processing. The default behavior
is to forward the message to its corresponding processor.

[add|remove]MessageProcessor(message type, message processor)
This method provides a default behavior to add or remove a message processor for a
certain type of messages.

At this point, messages are assumed to be delivered reliably. A concrete implementation
is asked to provide reliable messaging as well as request/response handling in order
to realize method calls with return values. The message types mentioned above will
be discussed individually in the remainder of this chapter, each within the section(s)
explaining the part(s) of the middleware they are relevant to. In order to send messages
to specific subsystems, they require unique addresses, which are generated within the
middleware. Therefore, each subsystem generates a unique identifier [59] the first time
it is started and keeps that during its lifetime. Thus, a concrete interface implementation
must provide some kind of address mapping to translate the unique identifiers used
within the middleware to physical addresses required for real network communication.

4.2.2 Context Management

As part of Phase 2 of the RoleDiSCo Development Methodology, developers have
to implement a Context Provider, as explained in Section 4.1.3. In order to manage
those providers and to use their information during discovery and composition, the
Context Manager is introduced, which is responsible for acquiring context information
defined in the collaboration specification. It comprises both a repository to cache context
information and a module, into which Phase 2 developers have to hook into in order
to register the context providers. Additionally, the context manager is used to collect
context information for broadcasting discovery information. The context manager
obtains the context features to be requested from the providers from the derived partial
implementation. Providers can also notify the context manager, whose interface is
described below, about changes using the update method.

[add|remove]ContextProvider(role type, context provider)
This method adds or removes a context provider for a certain role type. Context
providers have to be registered to the context manager for both pull- and push-based
context retrieval.

59

4 On-Demand Composition and Adaptation of Smart Service Systems

update(provider, role type [, feature])
Registered context providers may push context changes. The context manager will
retrieve the context values itself. This may also cause dependent modules, such as
the discovery module, to perform some tasks.

getContext(role type [, feature]): context or value
This method returns the cached context values for a given feature and a specific
player class or delegates the call to the corresponding context provider(s) if no values
are cached. If the feature is omitted, a set of key-value pairs is returned. It is used
by other modules, e.g., discovery, as context providers are not accessed directly.

4.2.3 Local Repositories & Knowledge

Each subsystem comprises three major repositories as well as a few other data struc-
tures to maintain knowledge for continuous operation. The Collaboration Specifications
repository contains all locally available collaboration specifications, comprising the
collaboration class, its role classes, and thereby also the relationships within the collab-
oration. Collaboration types can be added to and removed from the repository using
respective methods. In order to add a collaboration specification to the repository,
the collaboration’s type, the coordinating role’s type and all non-coordinating roles’
types have to be passed. Removing a collaboration from the repository only requires
the collaboration’s type. The repository is complemented with a relation containing
potential players for role types. This is equivalent to the fills relation at the modeling
level, however, here it is populated at run time.

The Discovery Knowledge repository contains all role types available in the infrastructure
that have a corresponding player to perform that role, the respective subsystem the role
type is located on, and its associated context information. This repository, however, only
knows that the role type has a player on the respective subsystem, but not the implemen-
tation or class name of that. Moreover, the repository may contain multiple entries with
the same subsystem and the same role type but different contexts. This does not nec-
essarily imply multiple complementing player implementations for a certain role type,
instead, a role type might be applicable in several contexts. Context information, by
default, only includes context features that are part of both the collaboration and a non-
coordinating role type, except the specification contains more fine-grained participation
restrictions, causing all (serializable) context features to be contained here. The reposi-
tory is populated by theDiscoverymodule, which is explained in the subsequent section.

60

4.2 RoleDiSCo Middleware Architecture for Smart Service Systems

The Dispatch Information repository captures run-time information of a running per-
vasive collaboration (cf. Section 1.2 on page 3). Once a pervasive collaboration is
instantiated, which will be discussed in Section 4.3, all participating subsystems keep
track of that collaboration and its role instances. This allows to dispatch methods
between roles. Though only the Pervasive Collaboration Coordinator (PCC), i.e., the
initiating subsystem, is in charge of maintaining this information, it is replicated to all
subsystems participating in the collaboration. This allows to dispatch methods bypass-

AS1

Pervasive
Collaboration
Coordinator

AS2 AS3

method invocation

Figure 4.6:Direct Method Invocation, Bypassing the Coordinating Subsystem.

ing the coordinating role’s subsystem, depicted in Figure 4.6, in order not to produce
unnecessary (network) load. However, if a non-coordinating subsystem notices, for
instance, the absence of a required subsystem, it is able to queue the messages until the
coordinator orders that subsystem to do something different.

4.2.4 Discovery

The Discovery module is responsible for broadcasting and collecting discovery infor-
mation to and from the infrastructure. Discovery information comprises the role type,
as fully qualified name derived from the collaboration specification, the subsystem
that type is located on, and the respective context features. Only role types that have a
corresponding player are broadcast. Hence, the discovery module is subdivided into
local and remote discovery and therefore has to perform different tasks.

Since the derived partial implementation extends classes such as AbstractCollabora-
tion (cf. Figure 4.3), the runtime could be introspected in order to discover new col-
laboration and role types, thereby, populating the Collaboration Specifications repository.

The local player discovery scans the local subsystem in order to find complementing player
implementations for the role types locally available. Therefore, the Player Provider in-
terfaces provided by the Phase 2 developers are used at first. Assuming that the
subsystem’s runtime can be introspected and especially in the case of a role-based run-
time that it is possible to request complementing player types for role types, additional

61

4 On-Demand Composition and Adaptation of Smart Service Systems

mechanisms to find complementing players are provided: First, the local role-based run-
time (if available) is introspected and requested to provide the complementing player
implementations. In order to deal with heterogeneity and to include legacy systems,
a role-based runtime is not assumed to be available in general. Second, configuration
files containing pairs of role types and complementing player implementations are
processed. Finally, the (generic) runtime is introspected in order to analyze the classes
that are annotated as a player complementation. Those classes’ annotations also contain
the role type the player class can play.

Knowing the local role types that have a corresponding player is a prerequisite for
publishing locally available role types as only those are to be published that have a player.
Subsequently, the discovery information, described above, is broadcast to the infras-
tructure whenever the infrastructure, the collaboration specifications repository, or the
context associated to the role type changes, or a role type has no complementing player
implementation anymore, or a complementing player for a previously not playable
role type is available. Therefore, for each role type to be published and its respective
contexts a RoleAnnouncement message containing the role type, the context and the
unique identifier of the local subsystem (source address) is broadcast via the infrastruc-
ture abstraction layer to all other subsystems. Figure 4.7 shows the message’s structure
and an example for the Classroom scenario.

Source Destination Collaboration Type Role Type Context1 … Contextn

…3b90848e90a8 all …classroom.ClassroomCollaboration …classroom.StudentRole LectureContext{…}

Figure 4.7: Structure and Example of a RoleAnnouncement Message.

The remote role discovery is the counterpart of publishing discovery information, i.e.,
whenever a subsystem receives a role announcement message, it the content of that is
added to the local discovery knowledge repository if the local subsystem itself contains
the discovered role type in the collaboration specifications repository.

4.2.5 Dispatcher

The Dispatcher module mainly resolves method calls to remote roles and to local roles’
players. Moreover, it is responsible for resolving players for role types, as described for
the local player discovery before. Therefore, it has to manage the Player Providers and has
to integrate with the local runtime. Similar to the context manager, the dispatcher is
another module, into which Phase 2 developers can hook into. However, this needs to

62

4.2 RoleDiSCo Middleware Architecture for Smart Service Systems

be done only once per runtime, for instance, a specific implementation of the dispatcher
is required in order to integrate with a role-based runtime. A fallback implementation
is provided in case that no role-based runtime is available.

dispatchToPlayer(role instance, method name, parameters)
This method resolves a call from a remote role and delegates it to the local player. It
replaces the player references, originally specified in the collaboration specification,
in the derived partial implementation.

dispatchToRole(calling role instance, target role type,
method name, parameters[, callback])
This method resolves a call from a local role to a remote role. It is derived from
one-to-one relationships specified in the collaboration specification. The calling role
instance thereby is used to determine the collaboration and, thus, the target role
instances. As method calls may be dispatched in a non-blocking way, an optional
callback might be passed that expects the return value of the remote system as input.

dispatchToRoles(calling role instance, target role type,
method name, parameters[, callback])
In contrast to the method before, this method resolves a call from a local role instance
to several remote role instances, which are determined as before. It is derived from
one-to-many relationships specified in the collaboration specification. The callback
will be invoked for every received return value.

hasPlayer(role type[, context])
This method is mainly used within the discovery module in order to determine
whether a role type has a complementing player implementation. The fallback strat-
egy to answer this question was already explained within the local player discovery.
Additionally, it is used in the beginning of the composition process in order to double
check the availability of a player. In both cases, the Player Providers, described in
Section 4.1.3, are utilized for this task as well.

getPlayer(role type[, context])
This method asks the local runtime to return an instance of a complementing player
implementation for the given role type in an (optional) context. It is used for dis-
patching as well as binding and unbinding during the composition process. The
fallback strategy is to instantiate the complementing player implementation, which
was discovered as described afore. The Player Providers are utilized for this task
similarly to the previous method.

createRole(role type, context)
Thismethod instantiates a role within the given context during the composition phase.

63

4 On-Demand Composition and Adaptation of Smart Service Systems

[un]bind(role instance, player instance)
This method binds or unbinds a role in the composition phase. The fallback strategy
is to store the binding relation internally. A role-based runtime, however, might
choose more sophisticated strategies.

[de]activate(role instance)
This method finally activates a role in the composition phase. After that, method
calls are effectively dispatched to the player and to other roles. The fallback strategy
is to annotate the respective entry of the binding relation with an active flag.

4.3 Coordinated Composition and Subsequent Adaptation

The Concept Of Roles was clearly argued to be beneficial to the automated composition
and adaptation of Smart Service Systems. However, applying the concept of roles poses
some new requirements on the composition and adaptation process: in contrast to
service- or component-based approaches, in which the service or the component is
available and simply needs to be bound, roles can be instantiated several times in differ-
ent collaborations. Thus, roles initially appear as types, which have to be instantiated.
From the organizational perspective, thus, a role must be instantiated in a given context
(referring to that of the collaboration), bound to a player (that is able to play the role in
the given context), and eventually that binding must be activated in order to apply the
behavioral changes. According to Jäkel et al. [46], the following life cycle states of roles ex-
ist at run time: not existent, unbound, unbound player, unbound compartment, bound,
bound active, bound passive. Each operation that changes a local role’s state potentially
introduces failures, which has to be considered in the composition process as well.

Consequently, a protocol to achieve coordinated, role-based composition and subse-
quent adaptation of Pervasive Collaborations in decentralized environments is proposed.
The protocol’s overall procedure is depicted in Figure 4.8 and described below. The
color coding is used to highlight the focus, i.e., run-time monitoring and development
of a role-based runtime is not in the scope of this thesis while infrastructure abstrac-
tion, negotiation and planning are in partial scope. Hence, the focus is on discovery,
as already addressed, and coordinated composition. A detailed explanation of the
individual steps follows in the remainder of this section.

A pervasive collaboration’s composition process is triggered by an event 1 , the origin of
which is not further specified. This event is forwarded to theCompositionManagement 2 ,
which is responsible for providing composition plans, i.e., composition structures of

64

4.3 Coordinated Composition and Subsequent Adaptation

3

infrastructural
knowledge

Discovery

Monitoring

Role-based
Runtime

Infrastructure
Abstraction Layer

Coordination

Negotiation

Composition
Management Planner

Collaboration
Specifications

+

Composition
Structure

1

2

5

3

4

6

7

8

Figure 4.8: Protocol Overview for Coordinated Composition of Pervasive Collaborations.

pervasive collaborations. In Step 3 , the appropriate collaboration’s specification for
the given event is selected from the collaboration specifications’ repository and given
to the Planner component, which enriches the selected specification with infrastructure
knowledge obtained from the discovery module. Thereafter, the planner calculates
the composition structure 4 . The composition management returns the calculated
composition plan back 5 to the coordination component, which then is responsible for
the distributed, coordinated composition process 6 . This subroutine also includes the
handling of run-time failures, such as that a role type on a certain subsystem cannot be
instantiated. As long as a revised plan within 6 still satisfies the given specification, no
recalculation is required. In case of competing pervasive collaborations, a Negotiation
subroutine 7 is expected to find alternative plans or resources (in terms of subsystems).
However, disseminating competing collaborations from run-time failures is a research
challenge of its own. Hence, an in-depth analysis of negotiation is shifted to future work
and the respective subsystem is simply excluded from the collaboration. Thereafter,
the composition is set up initially and the subsystem processing the event and setting
up the composition gains the position of the PCC within the pervasive collaboration.
Step 8 , which denotes a change in discovery information, may lead to an adaptation
of a pervasive collaboration. This causes the Steps 2 through 6 to be repeated, except
that in Step 3 the collaboration specification is already given.

Figure 4.9 exemplifies the operational states of the RoleDiSCo middleware at run time.
In the Bootstrap phase, all components of the middleware are initialized and locally
available collaboration and role types are registered to the collaboration specifications
repository. It is succeeded by the Discovery phase in which the discovery module

65

4 On-Demand Composition and Adaptation of Smart Service Systems

Bootstrap

Discovery

Collaboration (operational)

Composition

time

Figure 4.9:Operational States of the Middleware at Run Time.

monitors the local role-based runtime and the infrastructure, e.g., for newly available
collaboration and role types, and populates the respective repositories. Each pervasive
collaboration is depicted as Collaboration phase, which is subdivided into Composition
and Operation. With respect to the Steps described above, Step 1 triggers the compo-
sition phase, which performs Steps 2 through 7 before the pervasive collaboration
segues into the operational phase, in which Step 8 may cause an adaptation.

4.3.1 Initialization and Planning

Figure 4.10 depicts the overall life cycle of a pervasive collaboration, including all
intermediate states, on the collaboration-initiating subsystem, i.e., the Pervasive Collab-
oration Coordinator. The coordination of a single pervasive collaboration is dynamically

Initializing Planning

Composition Operation

Negotiation Adaptation

includes
replanning

and recomposition

Terminating

event
received

information
collected

no
co
or
di
na

tin
g
ro
le
/p

la
ye
r valid composition plan computed

no
va
lid

pl
an

co
m
pu

ta
bl
e composition

successful
composition

failure

competing
collaborations

detected

agreement,
new plan

no agreement

change in
discovery

information

adaptation
successful

infrastructure
cannot satisfy
specification

PCC
term

inatescollaboration

Figure 4.10: Life Cycle of a Pervasive Collaboration.

66

4.3 Coordinated Composition and Subsequent Adaptation

centralized at run time but not statically predefined at design time. Thereby, decentral-
ized decision-making is avoided while still operating in a decentralized environment.

Once the collaboration has been initiated, it is situated in the Initializing state. Every
node participating in a collaboration is assumed to provide at least one role, which in
case of the PCC is the coordinating role of the collaboration. This role may have been
instantiated prior to that point, thereby, initiating the collaboration; otherwise it has to
be instantiated within this state and bound to a player. If it is not possible to bind the
coordinating role to a player, the composition process terminates immediately.

Within the initializing state, all required information for the planner is aggregated,
comprising the collaboration’s structure, dynamic context information available because
of the aforementioned instantiation, and discovery information, which includes remote
context information. Once all information is aggregated, it is handed over to the planner
and the life cycle segues into the Planning phase. At this point, a general-purpose
planner, which allows to match the collaboration specification with provided discovery
information in order to create a composition plan, is assumed to exist. The development
of such a generic planner was explicitly excluded from the scope of this thesis. If the
planner cannot match the provided information with the collaboration’s specification
and therefore no composition plan can be computed, the process terminates as well.
Otherwise, the planner is assumed to provide a composition plan CP ⊆ (RT×AS×Ctx),
comprising the role types RT, the subsystems AS the types should be instantiated on,
and the role type’s context information Ctx that was used by the planner andwhich will
be passed to the remote subsystem for further processing. Next, the life cycle turns over
to the Composition state, in which the distributed, coordinated composition takes place.

4.3.2 Distributed, Coordinated Composition: Coordinating Subsystem

For the sake of simplicity, the Composition state was abstracted in Figure 4.10 as it
comprises communicationwith remote systems. Figure 4.11 depicts a complete diagram
of the Composition state on the PCC’s subsystem ASPCC, which is coordinating the
distributed composition. Please note that, for the sake of clarity, Figure 4.11 does not
contain the Waiting states, which are actually entered whenever ASPCC sends messages
to other subsystems and waits for their responses. Additionally, the source and target
destinations of messages are omitted in the subsequent figures.

The distributed composition is subdivided into four steps, the first of which, i.e., the
Collaboration Initialization, requires the valid plan of the Planning phase and sends a

67

4 On-Demand Composition and Adaptation of Smart Service Systems

Collaboration
Initialization

Negotiation

Role
Instantiation

Role Bind
(passive)

Role Activate

Pre-Operation

Operation

Error
Compensation

Error
Compensation

Error
Compensation

Rollback

Terminate

su
cc
es
sf
ul

su
cc
es
sf
ul

su
cc
es
sf
ul

su
cc
es
sf
ul received all

RolesActivated
messages

send
CollaborationInvite

messages to nodes

send
InstantiateRoles
messages to nodes

send
BindRoles

messages to nodes

send
ActivateRoles
messages to nodes

CP′ ⊭ CS

calculate CP′ ⊂ CP

CP′ ⊭ CS

calculate CP′ ⊂ CP

CP′ ⊭ CS

calculate CP′ ⊂ CP

InstantiateRolesResponse
contains failure(s)

timeout

BindRolesResponse
contains failure(s)

timeout

timeout

CP′ ⊭ CS

cont
inue

with
rem

ainin
g

CP ←
CP′

cont
inue

with
rem

ainin
g

CP ←
CP′

cont
inue

with
remainin

g

CP ←
CP′

send
ActivateCollaboration
messages to nodes

send Rollbackmessages

received
InviteRefuse

calculate CP′

CP′ ⊨ CS ∧ CP ← CP′

revised plan

send Terminatemessages

Figure 4.11: Protocol Overview of the Distributed, Coordinated Composition on the PCC’s
Subsystem.

68

4.3 Coordinated Composition and Subsequent Adaptation

CollaborationInvitemessage (Figure 4.12) to all subsystems ASp ∈ CP. The message

Collaboration Type Collaboration Id Role Type1 Context1 … Role Typen Contextn

Figure 4.12: Structure of a CollaborationInvite Message.

contains the collaboration’s type and unique identifier in order to distinguish multiple
collaborations of the same type as well as the role types RT and their respective context
information Ctx they should be instantiated within. For each participating subsystem
ASp , this information is aggregated within one message and only one message is sent
to ASp . This applies to all subsequent message types as well.

The purpose of this message is to request the availability of ASp for the initiated per-
vasive collaboration, i.e., to check whether it is involved in another collaboration and
therefore the other collaboration might conflict with the one to be initialized, and to
check whether all role types, context information, and respective players can be sat-
isfied or provisioned. Subsequently, the receiving subsystem ASp knows which role
types RT in which contexts Ctx it will have to provide later. Thereby, the message
implicitly triggers the composition process on ASp , which is depicted in Figure 4.19 on
page 73. Since competing collaborations and negotiation are discussed later, this aspect
is skipped at this point assuming that if ASp is not able to collaborate, it replies with an
InviteRefuse message (Figure 4.20 on page 76), or with an InviteAcknowledgement
message (Figure 4.13) otherwise.

Collaboration Id Role Type1 Context1 … Role Typen Contextn

provisioning statement

Figure 4.13: Structure of an InviteAcknowledgement Message.

The InviteAcknowledgement message must contain a non-empty subset of the re-
quested role types and contexts as a provisioning statement. ASPCC waits until it receives
responses from all subsystems ASp . If the provisioning statement only contains a subset
of the requested role types, the planner is first asked to check whether this reduced
provision still satisfies the collaboration’s specification. If it does, the composition pro-
cess continues with the reduced composition plan CP′. Otherwise, or if the responses
contain at least one InviteRefusemessage (Figure 4.20 on page 76), theNegotiation state
will be entered, which is subject to further discussion in Section 4.3.4, but eventually
results in either a revised composition plan or a rollback of the composition process.

In the Role Instantiation state, the nodes ASp are triggered to instantiate the roles of
types RT within the respective contexts Ctx. Therefore, an InstantiateRolesmessage

69

4 On-Demand Composition and Adaptation of Smart Service Systems

Collaboration Id Role Type1 Context1 … Role Typen Contextn

role types to be instantiated

Figure 4.14: Structure of an InstantiateRoles Message.

(Figure 4.14), containing the role types and their respective contexts they should be
instantiated with, is sent to each subsystem ASp .

The subsystem ASp responds with an InstantiateRolesResponse message, whose
structure is depicted in Figure 4.15. It comprises both successfully instantiated roles and
unsuccessfully instantiated role types, as explained in the subsequent section. Given

Collaboration Id Role1 … Rolen Failure1 … Failuren

Context Role IDRole Type ContextRole Type Reason

successfully instantiated roles failures

Figure 4.15: Structure of an InstantiateRolesResponse Message.

that no failure is reported back, the composition process immediately segues into the
Role Binding state. Otherwise, if the InstantiateRolesResponse message contains at
least one failure case, the Error Compensation state is entered. Therein, the received
failures E ⊆ CP are processed and the role types that could not be instantiated are
temporarily removed from the composition plan CP, i.e., CP′ = CP\E. After that, the
planner is asked to analyze whether CP′ still satisfies the collaboration specification CS,
which is denoted as CP′ ⊨ CS. If CP′ does not satisfy the specification, i.e., CP′ ⊭ CS, the
composition process segues into the Rollback state causing all subsystems ASp to turn
into the rollback state as well in order to rigorously terminate the composition process.
Therefore, a Rollback message (Figure 4.16), containing the pervasive collaboration’s
unique identifier, is sent to all involved subsystems. Otherwise, if CP′ still satisfies the

Collaboration Id Role Type1 Context1 … Role Typen Contextn Role Id1 … Role Idn

optional

Figure 4.16: Structure of a Rollback Message.

collaboration specification, i.e., CP′ ⊨ CS, the temporary changes become permanent
(CP ← CP′) and only the failed subsystems are issued a Rollback message, which
includes the role types and their respective contexts in order to terminate the remote
composition process (at least for the particular role type).

70

4.3 Coordinated Composition and Subsequent Adaptation

In the Role Binding state, the subsystems ASp are requested to bind the roles to their
respective complementing player implementation. Thereby, the composition process
is able to detect and resolve run-time failures before the pervasive collaboration is
turning over to the Operation state. Therefore, they are issued a BindRoles message
(Figure 4.17). The subsequent failure handling and error compensation is equal to

Collaboration Id Role Id1 … Role Idn

Figure 4.17: Structure of a BindRoles Message.

that of the Role Instantiation state. The corresponding BindRolesResponse message is
depicted in Figure 4.18. Finally, the process segues into either the Role Activation or the
Rollback state, as described before.

Collaboration Id Role Id1 … Role Idm Role Id1 Reason1 … Role Idn Reasonn

successfully bound roles binding failures

Figure 4.18: Structure of a BindRolesResponse Message.

In the Role Activation state, the collaboration is assumed to be composed validly as all
run-time failures should have occurred before. This state is some kind of synchroniza-
tion point among all participating roles within a pervasive collaboration. With respect
to the life cycle states of roles at run time, the roles currently are in the bound passive state,
which means that they do not yet interfere with the player’s behavior. Subsequently, all
subsystems ASp are issued an ActivateRoles message which has to be replied with
a RolesActivated message in order to activate the roles and thereby the collaboration.

A missing RolesActivated response indicates that the respective subsystem left the
infrastructure. Please note that leaving the infrastructure and therefore the collabo-
ration or its composition process immediately terminates that subsystem’s process.
This also applies to previous states, so that after a certain timeout the respective Error
Compensation state is entered. The failure handling is similar to that explained before,
except that missing subsystems are not issued any messages. As reliable messaging
is assumed, the system that did not reply is evidently gone. Consequently, the composi-
tion plan is recalculated as described and checked whether it satisfies the collaboration’s
specification. If it does not, the composition process enters the Rollback state resulting
in the consequences mentioned afore.

Unless no RolesActivated response is missing, the ASPCC segues into the Pre-Opera-
tion state, in which a last ActivateCollaboration message is issued to all nodes ASp ,

71

4 On-Demand Composition and Adaptation of Smart Service Systems

including dedicated dispatch information for each ASp , which is required in order to
enable any ASp to invoke a method on another ASp directly, bypassing the ASPCC as
depicted in Figure 4.6 on page 61. Themessage itself also serves as an acknowledgement
to segue all ASp into their operational state. A lost subsystem in the Pre-Operation state
will be handled by a subsequent adaptation, discussed in Section 4.3.5. Eventually, the
composition process segues into the Operation state.

4.3.3 Distributed, Coordinated Composition: Non-Coordinating Subsystem

In this Section, the composition process is considered from the perspective of the non-
coordinating subsystem, in the preceding section often referred to as ASp . Figure 4.10
depicts the overall life cycle of a pervasive collaboration, including all intermediate
states, on the event-processing subsystem, i.e., the PCC. In Figure 4.19 on the facing
page, instead, the process is visualized from the perspective of a non-coordinating
subsystem. Please note that in case of network failures, such as a disconnect or network
isolation, the collaboration always reverts local changes or terminates its participation
within a pervasive collaboration. For the sake of clarity, these transitions have been
omitted. Additionally, in all waiting states (including the pre-operational state), a time-
out causes the process to be rolled back. A timeout may occur if the network connection
is lost or the ASPCC node is gone. The Wait states, moreover, respond to Rollback
messages (Figure 4.16 on page 70) segueing the systems into the Rollback state.

In the Remote Initialization state, the pervasive collaboration is instantiated locally. If
competing collaborations are detected or other reasons, such as limited resources or re-
source locks, prevent the local system from joining the collaboration, an InviteRefuse
message (Figure 4.20 on page 76) is sent back and theRollback state is entered. Otherwise,
an InviteAcknowlegdement message, including a concrete provision of role types and
respective contexts, is sent back to the ASPCC and waits until an InstantiateRoles
message is received before the system enters the Role Instantiation state.

In the Role Instantiation state, the previously explainedDispatcher triggers the role-based
runtime or the respective fallback mechanism, to instantiate the roles of the types given
in the InstantiateRoles message. Therefore, it uses the context Ctx assigned to each
role type RT during the Planning phase in order to find or create the right player im-
plementation on ASp . If no player is existent yet, it should be instantiated at this point
as well. Though only role types that have a complementing player should have been
considered for instantiation, roles without a complementing player implementation
locally available at this point should not even be instantiated.

72

4.3 Coordinated Composition and Subsequent Adaptation

Remote
Initialization

Role
Instantiation

Role Bind
(passive)

Wait

Wait

Wait

Role Activate Pre-Operation

Operation Terminate

Rollback

receive new CollaborationInvite

receive updated
CollaborationInvite

Rollback
received
timeout

Rollback
received
timeout

Rollback
received
timeout

timeout

send
InviteAcknowledgement

send
InstantiateRolesResponse

send
BindRolesResponse

send
RolesActivated

receive
InstantiateRoles

receive
BindRoles

receive
ActivateRoles

receive
ActivateCollaboration

send
InviteRefuse

no remaining local role types
to be instantiated

no remaining local role instances
to be activated

receive
Terminate

Figure 4.19: Life Cycle of a Pervasive Collaboration on a Non-Coordinating Subsystem.

73

4 On-Demand Composition and Adaptation of Smart Service Systems

The results of this step are accumulated and reported back to ASPCC within one In-
stantiateRolesResponse message. Provided that an instantiation was successful, the
instantiated role’s type, its respective context, and its unique identifier representing the
role instances are added to the message’s set comprising successfully instantiated roles.
If the instantiation was not successful, ASp is assumed to have made every effort in
order to instantiate the role but finally failed and any other attempt would fail as well. In
that case, the role types which failed to be instantiated, their respective contexts, and op-
tional reasons are added to the set failures, also part of the InstantiateRolesResponse
message. Consequently, a waiting state is entered until a BindRolesmessage is received,
or, if no other role types remain, the local system rolls back and terminates the process.

In the Role Bind state, the dispatcher is asked to bind the roles to their players. The
dispatcher delegates this task to the role-based runtime or uses the respective fallback
mechanism, i.e., the dispatcher instantiates the player and keeps a record of the binding.
Similar to the InstantiateRolesResponse message, the results are accumulated and
reported back within a single BindRolesResponse message. Therefore, the unique
identifiers of successfully and unsuccessfully bound roles are added to the message’s
set comprising the respective responses. The failure handling is equal to that before.

Finally, the Role Activate state is entered. The dispatcher is ordered to activate the roles,
so that they effectively interfere with their player’s behavior. This operation is assumed
to never fail locally, as it simply enables the dispatch between the role and its player
and vice versa. Furthermore, any failures related to the instantiation or binding of a
role and its player are assumed to having occurred before. Consequently, the activation
is reported back in a RolesActivated message, and the system segues into the Pre-
Operation state. As soon as all participating subsystems have activated their binding,
the ASPCC issues the ActivateCollaboration message, which also includes concrete
dispatch information, the local ASp needs in order to interact with other roles. Only a
timeout may cause the Pre-Operation state to roll back. Otherwise, it turns over to the
Operation state until the collaboration should terminate properly.

4.3.4 Competing Collaborations & Negotiation

In the preceding sections, the challenge of competing collaborations and how to resolve
them has been skipped. Two independent collaborations requiring the same resources
are considered competing collaborations. Resources in that context may be roles, their
players and especially resources on the subsystems acquired by the players. In Chapter 6,
a scenario of a Distributed Slideshow is introduced, in which a nearby device is used

74

4.3 Coordinated Composition and Subsequent Adaptation

spontaneously to display some pictures. Now imagine, a legacy projector was included,
which would only operate in one pervasive collaboration simultaneously. Hereinafter,
the basic negotiation process, part of the composition protocol, is outlined.

Negotiation is only necessary when at least one pervasive collaboration is in the process
of composition, i.e., it has not reached the Operation state yet. Consider two subsystems,
ASPCC , the initiating subsystem, and ASp , one of the participating subsystems. Initially,
the following cases have to be distinguished for ASp since ASPCC has definitely not
reached the Operation state yet:

i) ASp is not involved in any pervasive collaboration
ii) ASp is involved in a pervasive collaboration as a coordinating subsystem
iii) ASp is involved in a pervasive collaboration as a non-coordinating subsystem
iv) ASp is involved in the composition process as a coordinating subsystem
v) ASp is involved in the composition process as a non-coordinating subsystem

The first case obviously does not cause competing collaborations, as no other collabora-
tion is running or initiated. In the second and third case, the collaboration is already
operating, thus, if ASp cannot provide the requested resources, as in the example stated
earlier, an adaptation of the operating pervasive collaboration would be required. This,
in turn, requires a negotiation process between ASPCC and ASp in the second case or
between ASPCC and the PCC of ASp in the third case. According to Weyns et al. [84],
decision-making, i.e., negotiation, in decentralized environments is a challenging task
of its own. Moreover, sophisticated negotiation will also involve some reasoning tasks,
which makes it another research topic of its own. Consequently, these challenges cannot
be addressed entirely within the scope of this thesis. Thus, in the current approach,
negotiation in the second and third case simply returns an InviteRefuse message
and the composition process initialized remotely on ASp terminates. As a result, the
fourth and the fifth case are handled the same way, which means that ASp itself decides
whether it is able to provide the requested resources or not, and subsequently replies
with either an InviteAcknowledgement or an InviteRefuse message.

In a more sophisticated negotiation process, the fourth and fifth case may be decided
based on their respective composition’s progress. In the fourth case, ASPCC is definitely
in the Pervasive Collaboration Initialization phase whereas ASp may be in a state prior or
subsequent to that. The pervasive collaboration which progressed more precedes the
other one. In the fifth case, it is obviously the composition process on ASp that is more
progressed as it already must have received an invitation.

75

4 On-Demand Composition and Adaptation of Smart Service Systems

So far, two subsystems with each a single composition process were considered. A
subsystem, however, may participate in several pervasive collaborations. Therefore, the
results of the stepsmentioned afore have to be aggregated for all pervasive collaborations
and composition processes on ASp . The aggregated results have to be evaluated in
order to reply either with an InviteAcknowledgedment or an InviteRefuse message.
Moreover, several ASp may be part of the composition process of ASPCC. Thus, all
InviteRefuse messages are collected. In this approach, the participants contained
in these messages are removed from the composition plan. In general, a negotiation
process could be started among all the participants’ coordinating subsystems in order
to find the best suitable composition for all competing collaborations.

Collaboration Id

Figure 4.20: Structure of an InviteRefuse Message.

4.3.5 Subsequent Adaptation

In the current approach, adaptation is considered a structural reconfiguration of a
pervasive collaboration, which may occur whenever a new node joins the infrastructure,
a collaborating node leaves the infrastructure, or a role’s context changes. Whenever
such an event is detected, the collaboration’s state changes to Adaptation, in which the
adaptation is calculated and performed and no other adaptations are processed, i.e.,
changes in infrastructural knowledge during that time are kept and processed later.
Moreover, adaptation is a transition from a (valid) composition plan CP0 to a new,
valid composition plan CP1. It is, however, not a structural change in the specification.
Adaptations that may result from the events mentioned are the addition (CP1\CP0) and
removal (CP0\CP1) of role instances, with respect to Figure 4.21.

CP0 CP1

roles to be removed

roles to be added

Figure 4.21: Relation of the Composition Plan CP0 and its Adapted Version CP1.

The planner is assumed to calculate the composition plan CP1, Subsequently, the dif-
ferences between CP0 and CP1 can be derived. Thus, deriving an explicit migration
of roles between subsystems is conceivable. Weißbach and Springer [82] propose an

76

4.3 Coordinated Composition and Subsequent Adaptation

approach for fully decentralized execution of adaptations and use a notion of roles as
system abstraction. Their approach includes a migration of state and behavior, i.e., the
role, which would complement the ideas presented hereinafter. Though an integration
of both approaches was explored [MW6], the specification in the current approach does
not capture explicit instructions on when to migrate roles and when to only remove
a role and add it somewhere else.

An adaptation does not interrupt the operational state of the pervasive collaboration. In-
stead, it solely prevents the pervasive collaboration from processing several adaptations
simultaneously. Processing several adaptations simultaneously introduces conflicts, as
two adaptations may interfere with each other, thus, the adaptation may result in two
composition plans CP1a , CP1b that have to be merged, which is not possible if the two
plans conflict with each other. In order to avoid this situation in an anyhow challenging
environment, adaptations are performed sequentially in isolation. This, however, does
not imply that an adaptation always encompasses only the addition or removal of a
single role. Assuming that the network was partitioned, discovery information could be
batched, resulting in several role additions and removals comprised in one adaptation.

The Adaptation state depicted in Figure 4.10 on page 66 was abstracted for the sake of
clarity, similar to that of the Composition. Both the adaptation and the composition state
are quite similar but have subtle differences, as depicted in Figure 4.22 on the following
page. While the Composition state started with a fixed composition plan, the Adaptation
state has to compute a new plan CP1 in the Planning phase. If the new plan is equal
to the prior one, i.e., CP1 = CP0, no further action is required and the adaptation phase
terminates. In case that no composition plan CP1 ⊨ CS could be computed, meaning
that the infrastructure cannot satisfy the collaboration specification anymore, the perva-
sive collaboration segues into the Terminate state. At this point, CP0 evidently does not
satisfy the specification neither as it would have to be a subset of CP1 otherwise. For the
case that a valid composition plan CP1 could be computed, CollaborationInvitemes-
sages are sent to the subsystems ASp to be integrated, similar to the composition process.
If a subsystem ASp refuses to collaborate or does not reply, CP1 will be recomputed.
The subsequent process is similar to the composition process explained in Sections 4.3.2
and 4.3.3 for each the coordinating and the non-coordinating subsystem respectively.

There are, however, a few differences. The messages sent in the Invitation, Role Instantia-
tion, Role Binding, and Role Activate states are only sent to systems that will add a role to
the collaboration. CP1\CP0 denotes the roles to be created as they are not part of the orig-
inal composition plan CP0. The Error Compensation states calculate a composition plan
CP′1, which excludes roles failed to be created, from CP1. Though it may happen that

77

4 On-Demand Composition and Adaptation of Smart Service Systems

Planning Invitation

Terminate

Role
Instantiation

Role Bind
(passive)

Role Activate

Pre-Operation

Operation

Error
Compensation

Error
Compensation

Error
Compensation

Rollback

C
P 1

=
C

P 0

CP1 , CP0

received refusal
missing response

CP1 ⊭ CS

su
cc
es
s

su
cc
es
sf
ul

su
cc
es
sf
ul

su
cc
es
sf
ul received all

RolesActivated
messages

send CollaborationInvite
messages to nodes n

n ∈ CP1\CP0

send InstantiateRoles
messages to nodes n

n ∈ CP1\CP0

send BindRoles
messages to nodes n

n ∈ CP1\CP0

send ActivateRoles
messages to nodes n

n ∈ CP1\CP0

InstantiateRolesResponse
contains failure(s)

timeout

BindRolesResponse
contains failure(s)

timeout

timeout

CP′1 ⊭ CS

calculate CP′1 ⊂ CP1

CP′1 ⊭ CS

calculate CP′1 ⊂ CP1

CP′1 ⊭ CS

calculate CP′1 ⊂ CP1

con
tinu

e wi
th re

maini
ng

CP1
← CP′1

con
tinu

e wi
th re

maini
ng

CP1
← CP′1

cont
inue

with
rem

ainin
g

CP1
← CP′1

send ActivateCollaborationmessages to nodes n ∈ CP1\CP0

send Terminatemessages to nodes n ∈ CP0\CP1

send Rollback
messages

Figure 4.22:Complete View on the Adaptation State.

78

4.4 Summary

CP′1 cannot satisfy the collaboration specification (CP′1 ⊭ CS), it is uncertain that the in-
frastructure generally cannot satisfy the collaboration specification anymore. In contrast
to the case mentioned afore, in which CP1 did not satisfy the specification and therefore
neither did CP0, the initial plan created by the planner has been changed manually. The
planner intentionally may have excluded some some roles that were originally part CP0

so that CP0 1 CP1. The subsystems providing those roles, however, may still be avail-
able. Additionally, it is uncertain that CP0 is still valid with respect to the infrastructure.
In order to ensure a consistent adaptation or to terminate the pervasive collaboration, the
Rollback phase segues into another Planning phase, which results either in CP1 = CP0,
which means that CP0 is still valid and will be restored, CP1 , CP0, which means that
another composition plan CP1 could be computed resulting in another attempt to adapt,
or CP1 ⊭ CS, which means that no valid composition plan could be computed thus
terminating the collaboration. Provided that adaptation proceeds successfully to the
Pre-Operation state, ActivateCollaboration messages are sent to those systems that
should add a new role, i.e., CP1\CP0, and Terminate messages, containing the collabo-
ration’s and the respective roles’ identifiers, are sent to those that should drop a role, i.e.,
CP0\CP1. Since messages are assumed to be reliably transferred, no acknowledgement
of these instructions is required. Consequently, the pervasive collaboration segues back
into the Operation state, waiting for another adaptation or its proper termination.

4.3.6 Terminating a Pervasive Collaboration

The pervasive collaboration terminates either when the PCC leaves the collaboration or
an adaptation cannot result in a valid composition plan, i.e., CP1 ⊭ CS. In both cases,
the ASPCC sends a Terminate message to all participating subsystems, which will then
turn into a terminating state locally, as depicted in Figure 4.19 on page 73. The Terminate
states on both the coordinating subsystem and the non-coordinating subsystems, locally
clean up the dispatch tables, and thereby terminate the pervasive collaboration.

4.4 Summary

This chapter presented the RoleDiSCo approach in order to solve the problems stated in
Section 1.3. Table 4.2 summarizes which aspect of the RoleDiSCo approach addresses
which of the requirements posed in Section 1.4. The symbols denote a significant (■) or
partial (⊡) contribution of the approach’s aspect to the respective requirement.

79

4 On-Demand Composition and Adaptation of Smart Service Systems

The requirements posed by Smart Service Systems (RQ 1) were mainly addressed by
the Role-based Collaboration Specification, which is a part of the RoleDiSCo Development
Methodology. Though themain goal of themethodologywas to demarcate the individual
development processes (RQ 2), this demarcation significantly contributes to the feature
of serendipity. Since both the Collaboration Designer and the Phase 2 Developer do not
have to take care of each other’s work explicitly, serendipity is basically gained for free.

M
et
ho

do
lo
gy

Sp
ec

ifi
ca

tio
n

M
id

dl
ew

ar
e

Pr
ot
oc

ol

RQ 1 Smart Service Systems

Complex Service Structures ■ ■ ■
Collaborative Nature ■ ⊡
Serendipity ■ ■ ■
Context-Awareness ■ ■ ⊡

RQ 2 Demarcated Development Processes ■ ⊡ ⊡

RQ 3 Run-Time Support for Smart Service Systems

Automated Discovery ⊡ ■
Automated Composition & Adaptation ⊡ ■ ■
Decentralization & Infrastructure Abstraction ■

RQ 4 Coordinated Composition and Adaptation of Smart Service Systems

Complex Service Structures (■) ■ ■
Life Cycle States of Roles ⊡ ■

Table 4.2: Review of the Requirements.

The discontinuity between design and run time has been addressed by the RoleDiSCo
Middleware, which mainly addresses RQ 3, i.e., the run-time support for Smart Service
Systems. However, themiddleware also contributes to the requirements of Smart Service
Systems (RQ 1) in general. Thereby, the middleware especially has to realize the feature
of serendipity at run time and has to manage the context-awareness. Nevertheless, it is
responsible for deriving discovery information from the artifacts of Phase 1 and to per-
form a decentralized discovery, which is the prerequisite for composition and adaptation.
The middleware’s infrastructure abstraction layer enables the middleware to operate
in an arbitrary network infrastructure, especially in a decentralized environment.

80

4.4 Summary

In general, the requirements posed by Smart Service Systems have been addressed
by utilizing the Concept of Roles in the RoleDiSCo approach. It inherently supports
complex service structures and serendipity, thus, roles were not a requirement, but are
a significant and beneficial part of the solution. Thereby they pose the requirement to
deal with their run-time life cycle [46]. Consequently, the requirement RQ 4, i.e., the
coordinated composition and adaptation, was subdivided into the part concerning the
complex service structures and the part concerning the run-time life cycle of roles. These
requirements were addressed by the Protocol for Coordinated Composition and Adaptation
of Smart Service Systems, which is a part of the middleware in order to achieve automated
composition and adaptation of Smart Service Systems (RQ 3.2).

Conclusively, the contributions which are part of the RoleDiSCo Approach addressed
the four key problems of engineering Smart Service Systems, all with the challenges of
heterogeneity, context-awareness, and decentralization in mind: the missing specifi-
cation for complex, context-aware, continuous service collaborations; the intertwined
development processes; the discontinuity from design-time specification to run-time
composition and adaptation; and on-demand composition of the desired systems.

81

5 Implementing RoleDiSCo

In order to evaluate the RoleDiSCo approach, the presented concepts were implemented
in two research prototypes. The first comprises the RoleDiSCo Development Methodology
and generates the partial implementation, which is then to be complemented manually.
The resulting artifact can be used with the RoleDiSCo Middleware, which is the sec-
ond prototype. Instead of discussing every single line of code, this chapter gives some
important insights that are relevant to understand the evaluation presented in Chapter 6.

The code generation is specifically tailored to operate with the middleware although
the generated source code might be usable for other purposes. The middleware, in
turn, does not depend on the generated source code. Any existing code that adopts the
super classes and annotations required by the middleware can be used, which allows
to integrate the middleware with potential other role-based engineering approaches.

5.1 RoleDiSCo Development Support

A first step was to provide a role-based collaboration specification as the existing
specifications, discussed in Section 3.1 on page 19, are not suitable for Smart Service
Systems mainly due to their missing support for serendipity. Thus, a specification was
developed by means of a DSL. A common and rather easy approach for developing
DSLs as well as programming languages is the Xtext framework [7].

Xtext provides a powerful grammar language in order to define a DSL. The correspond-
ing toolchain [86] allows to deliver a full development support, including parser, linker,
typechecker, compiler as well as editing support for various development environments.
Additionally, Xtext comes along with Xbase [26], which allows to easily incorporate
programming language constructs into the Xtext grammar and provides a respective
compiler generating Java source code out of the DSL. Xbase provides all utilities to
easily create Java source code, but it is also possible to generate code in other languages.
This, however, requires much more manual work since a complete compiler has to be

83

5 Implementing RoleDiSCo

written for that language. Thus, the code generation will be limited to Java source code;
the underlying concepts, however, are not limited to that language.

The DSL can be created either by manually defining its grammar or by generating the
grammar from Ecore models [25] and manually adjusting it. Though the specification is
based on a metamodel, the models of Xtext and Xbase would have to be integrated into
that in order to receive a comprehensive model-based solution. In order not to interlink
the different metamodels, the grammar for the role-based collaboration specification
was defined manually, the complete version of which is listed in Listing B.2 on page 150.
The first 109 lines define the entire structure of the collaboration specification whereas
the remainder is solely required to interlink the specification’s grammar with that of
Xbase in order to detect the player references inside the method body and to prohibit
the usage of player for other purposes.

At this point, it is already possible to generate a partial toolchain comprising an editor
with syntax highlighting ans checking as well as partial type checking. The grammar is
internally transformed to an ECore model. A concrete instance of the specification, as
for example in Listing 6.1 on page 94, is parsed into an instance of such an ECore model.
In order to generate the desired source code from the specification, the IJvmModelIn-
ferrer interface must be implemented. The implementation technically follows the
process described in Section 4.1.2 on page 53: first, a collaboration class is generated
with the respective annotations, as later shown in Listing 6.2 on page 96; next, one
class is generated per role; finally, additional utility classes, such as the interfaces, are
generated. Internally, this requires two processing rounds: initially, the types, methods,
etc. are created in order to be able to reference them; then, the actual source code
is generated. Otherwise, for instance, the specified role types cannot be used when
creating the annotation within the collaboration class as these types would not exist yet.

Since Xbase is tailored to Java, it has a strong type system as well, which is challenging
in with respect to serendipity. The specification should be able to define partial behavior
by means of implementing methods which may delegate parts to the role’s player, as
described in Section 4.1.1 on page 51. The player should remain undefined in order to
achieve serendipity and to decouple the development process. In order to reference
a method within the specification, the player, however, must have a specific type that
provides the method. Therefore, the player interfaces are generated, which do not have
to be used by Phase 2 developers, but allow to implement a type-safe code generation.

The complete code generation of the player interfaces is shown in Listing B.3 on page 152.
Listing 5.1 shows the part thereof in which the player references are extracted from

84

5.1 RoleDiSCo Development Support

Listing 5.1:Deriving the Player References of a Role’s Method.

1 for(PlayerFeatureCall c : EcoreUtil2.getAllContentsOfType(feature?.body,
PlayerFeatureCall)) {

2 val node2 = NodeModelUtils.findNodesForFeature(c,XbasePackage.Literals.
XABSTRACT_FEATURE_CALL__FEATURE).head

3 val name = node2.text.trim
4 members += role.toMethod(name,if(c.explicitReturnType) c.returnType.type.typeRef

else Void.TYPE.typeRef) [
5 setDefault = false
6 setAbstract = true
7]
8 }

inside the role’s method body. As mentioned, the specification is interlinked with the
Xbase grammar. The PlayerFeatureCall represents a method call on the player and
allows to traverse the model instance of the specification in order to search for these
specific elements. Then, for each found method call, a method in the respective player’s
interface is created. Please note that each role has its own player interface.

Listing 5.2 on the next page shows how the role class’ syntax tree is generated. The
accept call registers the role as a class and thereby allows to reference the role type
elsewhere. In Lines 4–11, a private player attribute, whose type is the interface generated
in the preceding step, is injected into the role class. In the remainder, the role’s features,
comprising context, attributes, and methods are added as attributes and methods to the
role class. Thanks to the usage of Xbase, the statement in Line 27 is sufficient in order
to completely adopt the methods’ structure. This implementation does not generate
the source code but its syntax tree. The actual source code generation is achieved by
the compiler, which is provided by Xbase. In order to reference the role types, e.g.,
Student.doSomething(), they were added as attributes likewise.

After implementing the code generation process, using the model-driven approach
for the generation of the grammar was realized to be a better option than the one that
was chosen. The model-driven approach would allow to perform a model-to-model
transformation before the actual syntax tree is computed in order to add a transient
player attribute to each role type which will not be part of the syntax tree but only of its
abstracting model, i.e., the collaboration.

85

5 Implementing RoleDiSCo

Listing 5.2:Deriving the Role’s Implementation.

1 def dispatch void infer(Role role, IJvmDeclaredTypeAcceptor acceptor, boolean
isPreIndexingPhase, CollSpec collSpec){

2 acceptor.accept(role.toClass('''«collSpec.module.fullyQualifiedName».«role.
name»Role''')) [

3 documentation = role.documentation
4 if(!isPreIndexingPhase) {
5 superTypes += roleSuperType(role).typeRef
6 var playerRef = typesFactory.createJvmField()
7 playerRef.type = typeRef('''«collSpec.module.fullyQualifiedName».I«role.

name»RolePlayer''')
8 playerRef.simpleName = 'player'
9 playerRef.visibility = JvmVisibility.PRIVATE

10 members += playerRef
11 }
12 for(feature : role.features) {
13 switch feature {
14
15 Property : {
16 members += feature.toField(feature.name, feature.type)
17 members += feature.toGetter(feature.name, feature.type)
18 members += feature.toSetter(feature.name, feature.type)
19 }
20
21 Operation : {
22 members += feature.toMethod(feature.name, feature.type ?: Void.TYPE.typeRef

) [
23 documentation = feature.documentation
24 for(p : feature.params) {
25 parameters += p.toParameter(p.name, p.parameterType)
26 }
27 body = feature.body
28]
29 }
30 }
31 }
32]
33 }

86

5.2 RoleDiSCo Middleware

5.2 RoleDiSCo Middleware

The RoleDiSCo middleware implements the basic features in order to operate in a
decentralized environment as well as the coordinated composition and adaptation
process. In this section, implementational details that have a certain impact on the
evaluation in Chapter 6 are in focus. Either they contribute to the understanding of
how the middleware achieves discovery, composition, and adaptation, or they affect
the actual performance, discussed in Section 6.2 on page 113.

Themiddleware itself is implemented as a singleton class and is either started by a client,
usually an application that also owns an artifact comprising a collaboration, its roles, and
a complementing player implementation, or instantiated on its own. Once instantiated,
the bootstrapping processwill create a concrete infrastructure abstraction layer, establish
the knowledge repositories and start the discovery process. Dependency injection [29]
was utilized by means of Google Guice 4.1 [37], which allows to easily exchange parts of
the middleware’s implementation, even by third-party developers. In addition to that,
Google Guava 22.0 [39] is used, which is a set of utility libraries that includes additional
collection types, immutable collections, a graph library, and utilities for concurrency.

5.2.1 Infrastructure Abstraction Layer

An essential part of the middleware in order to operate in decentralized environments is
an implementation of the infrastructure abstraction layer that actually copes with such
environments. JGroups [5] is a library for reliable group messaging, written entirely
in Java. It is based on IP multicast, and extended by reliability and group membership.
Reliability in particular comprises that messages are retransmitted in case of message
loss, fragmented messages are reassembled on the receiver’s side, and the order of
messages is preserved. Group membership includes that members in a group are aware
of each other and are notified about changes. Consequently, JGroups (4.0.0) is used for
the infrastructure abstraction layer, thereby avoiding any static centralized servers.

Additionally, JGroups allows to send arbitrary data objects as long as they implement
Java’s Serializable interface. Thus, this interface was implemented in the Message
class, the super class of all message classes the modules of the middleware use for com-
municationwith other subsystems. Although this is a simple and quickly implementable
approach, it is a rather slow solution at run time since Java’s Serializable interface

87

5 Implementing RoleDiSCo

transforms the object into a byte array of its memory representation. Implementing a
customized serialization mechanism could result in lower encoding and decoding times.

JGroups’ documentation warns the developer of the issue of time-consuming message
decoding, which is why messages are decoded in a separate thread in order not to block
the inbound communication channel. Figure 5.1 shows a scatter plot of the message

0 10 20 30 40 50 60 70 80 90 100
0 s

1 s

2 s

3 s

1 s

3 s

Nodes

Figure 5.1:Message Processing Time.

processing time measured in one of the very early experiments evaluating scalability.
Therein, the time a node required to obtain and process all the discovery information
from other nodes was measured. In the scenario used in this particular experiment,
the 100th node, for instance, had to process 198 messages as two RoleAnnouncement
messages were sent from each other node. The experiment was repeated 100 times, thus,
10,000 data points were collected, each representing how much time was required to
process all the messages. The marks below 1 s represent the behavior as it was originally
expected, i.e., messages were processed basically instantaneously. However, starting
with 25 nodes, data points indicate a nearly constant processing time of 2 s with a few
outliers above 3 s at 80 to 100 nodes. The huge gap between the clusters indicates that the
reason for this behavior cannot be solely due to limited computing resources. The reason
for this issue is that JGroups silently drops messages if the number of threads cannot
satisfy the amount of incoming messages. Other mechanisms ensure that a message
is sent a second or even a third time which explains the huge, empty gap between
the clusters. Consequently, the implementation of JGroups was slightly adopted with
respect to the implementation of the RoleDiSComiddleware, i.e., the thread pool used by
JGroups was exchanged with an implementation that does not drop incoming messages.
This may slightly increase the overall average processing time, but the results in general
aremuch better sincemessages do not have to be resent due to a lack of available threads.

88

5.2 RoleDiSCo Middleware

5.2.2 Knowledge Repositories and Local Class Discovery

The knowledge repositories, such as those for discovery information or collaboration
specifications, are implemented as in-memory collections. The directory service, which
technically holds data obtained by the discovery module, uses Google Guava’s [39]
Multimaps, similar to a key-value storage except that values are again collections. De-
pending on the concrete request this can be a very fast or very slow data structure,
which has to be kept in mind for evaluating the performance. The collaboration’s type
was chosen the as the key, storing all the discovery information related to that type
within the respective collection. However, updating this data structure is already quite
challenging due to concurrency and the different types of changes, e.g., add, remove or
update. Keeping the data in memory is still the fastest viable option.

In order to populate the repository containing the collaboration specifications, the
generated classes were annotated during the code generation process. These annota-
tions are processed using the ClassIndex framework [67], which basically preprocesses
the annotations during compile time and creates an index which is static at run time.
The AbstractCollaboration class was annotated with @IndexSubclassed and the
@Collaboration annotation was annotated with @IndexAnnotated. Thereby, the col-
laboration classes can be easily indexed as shown in Listing 6.8 on page 104.

5.2.3 Planner

In order to compose a collaboration, a composition plan needs to be computed first.
Computing such a plan based on a collaboration’s specification and the discovery
information results in a constraint satisfaction problem, the solving ofwhich is a research
field of its own. Planners for such problems were assumed to exist.

OptaPlanner [72], for instance, is a constraint satisfaction solver including a lightweight,
embeddable planning engine. It allows to solve optimization problems efficiently,
as constraints can be applied on the level of plain domain objects and thereby reuse
existing code. The composition plan, hence, could be computed based on a composition
plan’s metamodel or derived from an adjusted code generation process providing a
specification tailored for OptaPlanner. Although OptaPlanner was initially investigated
for this purpose, this approach was not further pursued as the main focus of this thesis
is to achieve automated composition and not to provide an optimized composition plan.

89

5 Implementing RoleDiSCo

Consequently, a rather simple planning solution tailored to the collaboration’s structure
was implemented. Therefore, the kind attribute was added to the generated collab-
oration’s class annotations in order to easily determine the right planner at run time.
Since the structure is defined at design time, computing the collaboration’s structure
can be done during design time as well, thereby avoiding the necessity for doing such
computation at run time. As a general-purpose planner was initially assumed, this
property was not introduced in the conceptual part. The basic planner, implemented
as part of the research prototype, provides a greedy solution which takes all provided
discovery information and converts it into composition instructions as long as the role’s
types and contexts match those of the collaboration.

90

6 Evaluation

One of the main research goals of this thesis is to investigate the applicability of the
Concept of Roles for on-demand composition of Smart Service Systems. Smart Service
Systems, operating in smart computing environments, are a subset of distributed sys-
tems, which aim to unite the decentralized and emerging features of SOSSs with the
complex, predefined structures of other systems. They face three major challenges, i.e.,
heterogeneity, context-awareness, and decentralization. In order to overcome the key prob-
lems of engineering such systems, the RoleDiSCo Development Methodology and the
RoleDiSCo Middleware were proposed. This chapter evaluates the proposed solutions
against the problem statements and requirements, explained in Sections 1.3 and 1.4.

Composing several independent services, the development lanes of which are de-
marcated, is challenging, especially if the collaboration itself is another independent
development lane. Not to impose any dependencies was an important goal, which is
achieved by RoleDiSCo Development Methodology. It provided the missing specifi-
cation for complex, context-aware, continuous service collaborations and demarcated
the previously intertwined development processes in one go. A case study, presented
in Section 6.1, is used in order to demonstrate how the development processes were
separated and how this development methodology paves the way for on-demand com-
position, thereby building the foundation to bridge the gap between design and run
time. The RoleDiSCoMiddleware complements the development methodology in order
to completely eliminate the discontinuity between design and run time. In Section 6.2,
the middleware, including the protocol for coordinated composition and adaptation,
is evaluated based on the implemented research prototype, in order to provide some
metrics concerning the overall performance, scalability, and overhead.

The case study and the provided insights into the performance and scalability of the
middleware show that role-based composition solves the problems of on-demand com-
position of Smart Service Systems in decentralized environments. Lastly, the Concept
of Roles is taken up in Section 6.3 once more in order to discuss benefits and drawbacks
with respect to composition of Smart Service Systems.

91

6 Evaluation

6.1 Case Study: Distributed Slideshow

The first part of the evaluation focuses on the functional aspects of the proposed solu-
tions. The scenario below is used in order to stepwise explain how an application is
described using the proposed specification, how the generated partial implementation
looks like, how this implementation is to be complemented by Phase 2 developers, and,
eventually, how this results in on-demand composition and subsequent adaptation.

6.1.1 Scenario

The Classroom scenario introduced in Chapter 4 is a typical scenario in the domain
of role-based modeling. Though it is easy to motivate that a Student is played by a
Person and that there are multiple instances of a person who may play this role, it
is, however, hard to motivate that the Student role is played by different autonomous
services, thereby the need for flexibility becomes obsolete. Instead, a slightly different
example is used, which follows a similar structure, i.e., a one-to-many structure, but
acts in a different setting having a need for more flexibility: a distributed, on-demand
slideshow, depicted in Figure 6.1. Consider you are in a bar and want to share photos
with your friends. Instead handing around the smart phone, which invites other people
to snoop for photos they should not see, the photos should be displayed on devices
having the Viewer role. You, the Presenter, initiate the decentralized slideshow, i.e., you
activate an app, select pictures and basically create a session on demand. Smart devices
having the Viewer role can join and leave the collaboration over time. All devices are

 9:41RoleDiSCo

Presenter

Smart TV

Viewer

Projector

Viewer

 9:41RoleDiSCo

Viewer

 Join Request


waiting for
approval

 9:41RoleDiSCo

Viewer




9:41
RoleDiSCo



Viewer

Joint
Infrastructure

Figure 6.1: Scenario of the Distributed Slideshow.

92

6.1 Case Study: Distributed Slideshow

assumed to be attached to a joint network infrastructure. Between the Presenter role
and its corresponding Viewer roles, a one-to-many relationship exists. The environment
is decentralized and volatile as devices can (dis-)appear over time. Communication is
asynchronous and bidirectional as Viewers are able to give feedback to the Presenter.
Additionally, in a different environment, such as a smart home, other devices such as a
smart TV or even a legacy projector are conceivable to be incorporated.

In this scenario, it is more evident to motivate Presenter and Viewer as roles, as their
actual execution remains unclear at design time of the collaboration, i.e., it is not clear
whether the role will be played by a smart phone, a tv set, a legacy projector or even on
a device which has to preprocess pictures in order to provide them to their users. More-
over, it is easy to imagine that, for instance, the default photos application of a mobile
operating system provides plugin infrastructures, which enables third-party developers
to extend or use that application, and in this case enables Phase 2 developers to attach
the Presenter or Viewer roles to the default photos application. The case study was not
implemented on a real mobile platform, but as a generic Java application instead as
JGroups, the infrastructure abstraction layer of the RoleDiSCo middleware, is a Java
implementation and hence would require the Android [2] mobile platform but JGroups
is not tailored for Android. Moreover, Android is not a role-based mobile platform and
yet there is no role-based mobile platform available in general. Conclusively, there was
no benefit of developing a mobile application for Android compared to a pure Java one.

6.1.2 Phase 1 : Collaboration Design

In Phase 1 , the Collaboration Designer, specifies the distributed slideshow using the col-
laboration specification, as depicted in Listing 6.1 on the following page and discussed
below. Thereinafter, the derived partial implementation will be explained in detail in
order to show how it will contribute to on-demand composition eventually.

Scenario Specification

The declaration in Line 1 sets the namespace of the entire collaboration, thereby, en-
closing the collaboration and its roles. The fully qualified collaboration type results
from the namespace and the name given in Line 2: org.rosi.roledisco.samples.
ds.DistributedSlideshowCollaboration. The fully qualified role types are gener-
ated likewise, i.e., org.rosi.roledisco.samples.ds.PresenterRole and org.rosi.
roledisco.samples.ds.ViewerRole. Both the collaboration and the Viewer role have

93

6 Evaluation

Listing 6.1:Collaboration Specification of the Distributed Slideshow Scenario.

1 module org.rosi.roledisco.samples.ds
2 collaboration DistributedSlideshow {
3 context Session session
4 coordinator role Presenter {
5 player op receiveFeedback(String message)
6 op setPicture(Picture picture) {
7 val pictureBase64 = Utils.convertToBase64(picture)
8 Viewer.setPicture(pictureBase64)
9 }

10 }
11 role Viewer {
12 context Session session
13 op submitFeedback(String message) {
14 Presenter.receiveFeedback(message)
15 }
16 op setPicture(String pictureBase64) {
17 val picture = Utils.convertFromBase64(pictureBase64)
18 player.setPicture(picture)
19 }
20 }
21 multiplicities {
22 Presenter one-to-many Viewer
23 }
24 constraints {
25 Presenter >-< Viewer
26 }
27 }

a context attribute of type Session, named session, which refers to a common class
in the designated target language, which is Java as the prototypes were implemented
in Java. Session, hence, is a Java class, the source code of which is shown in Listing B.4
on page 153. This class is assumed to exist as a data structure and should be manually
provided by the collaboration designer. For the sake of simplicity, it holds a session
identifier, thereby representing a unique instance of a Distributed Slideshow collab-
oration at run time, so that others can join this particular session. Throughout the
remainder of this section, a simple string is used as identifier, which can be considered
as some kind of pre-shared key. In a real-world scenario, however, this context should
be derived from friendship relations, location, etc.

Next, starting with Line 4, the Presenter role is specified. The receiveFeedbackmethod
is declared to be fully delegated to a concrete player at run time, while the setPicture
method contains a partial implementation, which converts the given image to a Base64-
encoded string. This behavior is solely relevant to the collaboration but not to the
player. Subsequently, the encoded image string is passed to the setPicture method

94

6.1 Case Study: Distributed Slideshow

derived partial implementation

AbstractRole AbstractCoordinatorRole AbstractCollaboration

ViewerRole

IViewerRole

IViewerRolePlayer

PresenterRole

IPresenterRole

IPresenterRolePlayer

DistributedSlideshowCollaboration

Figure 6.2:Generated Partial Implementation for the Distributed Slideshow Scenario.

of the Viewer roles. Multiple Viewer roles are considered since Line 22 specifies a one-
to-many relationship between the Presenter role and the Viewer roles. Additionally, this
relationship is constrained, so that a Presenter role must not be located on the same
device as a Viewer role for a concrete instance of a collaboration.Lines 11 to 20 specify
the non-coordinating Viewer role. The submitFeedback method is a simple outbound
method call, which invokes the receiveFeedback method on the Presenter role. The
Viewer role’s setPicture method reverses the encoding before the setPicture method
is invoked on the player, which is determined at run time.

For the sake of completeness, the Picture class is a customized wrapper of Java’s native
File class and Utils is a utility class which encodes and decodes pictures to Base64
and vice versa. Both classes are created by the collaboration designer and are intended
to be part of the bundle which is also containing the derived partial implementation.

Derived Partial Implementation

This specification results in a partial implementation, shown in Figure 6.2. It comprises
one class for the collaboration, one class per role, and a set of utility classes, which are
intended to support the Phase 2 developer but are not required for later composition.

The generated DistributedSlideshowCollaboration class, shown in Listing 6.2 on
the following page, contains the structure of the collaboration and will be used at run
time in order to recreate the collaboration specification. Therefore, a set of annotations,
i.e., @Collaboration, @Constraint, and @Multiplicity, was generated, which addi-
tionally enables the middleware to find the annotated classes automatically. Please note
that @Collaboration#kind is a manually added property, explained in Section 5.2.3,
in order to specify the concrete planner already at design time. Here, the middleware
is instructed to use a planner for simple one-to-many collaborations.

95

6 Evaluation

Listing 6.2: Excerpt of the Generated Collaboration Class. (cf. Listing B.5 on page 154)

1 package org.rosi.roledisco.samples.ds;
2 /* ... */
3 @Collaboration(
4 coordinator = PresenterRole.class, roles = ViewerRole.class,
5 kind = Collaboration.Kind.ONE_TO_MANY)
6 @Constraint(
7 from = PresenterRole.class, to = ViewerRole.class,
8 value = RoleConstraint.ROLE_PROHIBITION)
9 @Multiplicity(

10 from = PresenterRole.class, to = ViewerRole.class,
11 value = RoleLink.ONE_TO_MANY)
12 public class DistributedSlideshowCollaboration extends AbstractCollaboration {
13 @Context Session session;
14
15 public DistributedSlideshowCollaboration(Session session) {
16 super();
17 this.session = session;
18 CompositionManagement.compose(this);
19 }
20 /* ... */
21 }

Line 13 refers to the Session context attribute, which is later utilized by the middleware
in order to match context properties as some kind of membership restrictions. The
constructor listed in Lines 15 to 19 sets the appropriate context when the collaboration
is instantiated and triggers the composition by calling the middleware’s composition
management. The context (session) is required to be passed to the constructor in order
to use it throughout the composition and thereby to select appropriate participants (role
types) for the collaboration. The coordinating role may be passed as another parameter
to the constructor (see Listing B.5), which then would be forwarded in conjunction with
the instantiated collaboration to the composition management.

Listing 6.3 shows the generated implementation of the non-coordinating Viewer role.
The code of the coordinating Presenter role is generated likewise, except for the context
property, as shown in Listing B.6 on page 155. The @Context annotation in Line 4
notifies the middleware’s context manager to search for appropriate context providers.
Since roles in RoleDiSCo are not instantiated as long as they are not participating in a
collaboration, they are not able to provide dynamic context as they only exist as types.

The subsequent method implementations are the respective generated methods of the
role methods in Listing 6.1 on page 94. Depending on the multiplicity of the target role,
a different call to the dispatcher is generated (see Listing B.6), which reduces the need of

96

6.1 Case Study: Distributed Slideshow

Listing 6.3:Generated Viewer Role.

1 package org.rosi.roledisco.samples.ds;
2 /* ... */
3 public class ViewerRole extends AbstractNonCoordinatorRole {
4
5 @Context Session session;
6
7 public void sendFeedback(String message) {
8 Dispatcher.getDispatcher().dispatchToRole(this, PresenterRole.class, "

receiveFeedback", msg);
9 }

10
11 public void setPicture(String pictureBase64) {
12 Picture picture = Utils.convertFromBase64(pictureBase64);
13 Dispatcher.getDispatcher().dispatchToPlayer(this, "setPicture", picture);
14 }
15 }

continuously evaluating the model at run time in order to decide whether one or several
instances have to be addressed. The dispatcher receives the current role instance (this),
the target role type, the method name and its parameters. Since a concrete role instance
always exclusively belongs to one concrete collaboration instance, that collaboration
instance can be determined automatically. The concrete collaboration is required in
order to find the appropriate corresponding role instance. Since the dispatcher also
acts as an interface between the middleware and a potential local role-based runtime,
the call to a concrete player instance is delegated to the dispatcher first.

6.1.3 Phase 2 : Player Complementation

In Phase 2 , potentially several developers complement the artifacts generated up to
this point, which includes to provide the desired performance of the role as well as
the corresponding context. Provided that all applications would entirely operate on
role-based runtimes, the role could simply be bound to the existing service, which then
acts as the player for that role. In reality, however, a huge variety of platforms and
runtimes exists which is why it needs more than simply binding the role to the service.
Thus, different approaches to use the derived partial implementation together with a
(potentially previously) existing service are discussed first in order to show that the
RoleDiSCo approach works with both role-based runtimes and non-role-based run-time
environments. Thereafter, the context provisioning is explained.

97

6 Evaluation

Providing the Concrete Performance

The two perspectives on the concept of roles are reflected in role-based runtimes to some
extent. For instance, LyRT [76] is a recent role-based runtime and is rather player-centric
than organization-centric. It provides a Dynamic Instance Binding mechanism in order
to bind role instances to core objects (i.e., players). Though LyRT supports the notion of
compartments, they do not necessarily form the strong shape of an objectified collabo-
ration as it would be required for an organization-centric approach. LyRT dynamically
resolves method calls from players to its roles and vice versa. Role instances are bound
programmatically to player instances. This is a very flexible approach as players can be
arbitrary objects, i.e., any player may play any role at run time, or more precisely, LyRT
as described in [76] does not even distinguish whether a given object is actually a player,
a role or a compartment. LyRT also supports loading new role types at run time as well
as reloading existing role types at run time without affecting existing instances. [MW7]

The role types generated as part of the RoleDiSCo methodology are self-contained
classes, similar to the role types in LyRT. The generated collaboration class can be used
as compartment in LyRT. Thereby it is possible to instantiate and distinguish multiple
collaboration instances and the respective roles inside. Since players in LyRT can be
arbitrary objects, there are no special considerations except that the player must provide
the required methods. Otherwise, method calls will result in a run-time exception.

By contrast, ObjectTeams (OT/J) [43] is an organization-centric runtime and relies on an
implicit binding based on a played-by relation, i.e., all player instances of a certain type
that can play a role, will play that role (when their encapsulating team is active). For the
sake of completeness, it should bementioned that amore fine-grained control of binding
roles can be achieved using guard predicates [44], which is a language construct of OT/J.
In OT/J, Teams, similar to collaborations in RoleDiSCo, found the building blocks of the
language. Roles are specified as parts of teams. However, they also remain part of their
team at run time, i.e., they are not translated to independent classes in between, which
does not match the generated code provide by the research prototype described in
Section 5.1. This would require a different approach to create code processable by OT/J.
Apart from that, providing a complementing player implementation can be achieved as
follows: assuming a DistributedSlideshowCollaboration team class containing the
PresenterRole and ViewerRole was generated (Listing 6.4:2–5), a Phase 2 developer
has to subclass the team class and replace the playedby relation with a concrete player
class as shown in Lines 8–11 of Listing 6.4 on the next page.

98

6.1 Case Study: Distributed Slideshow

Listing 6.4:Complementing Player Implementation exemplified in OT/J.

1 // derived partial implementation
2 public team class DistributedSlideshowCollaboration {
3 public class Presenter {/* ... */}
4 public class Viewer {/* ... */}
5 }
6
7 // complementing implementation
8 public team class AComplementedDistributedSlideshowCollaboration extends

DistributedSlideshowCollaboration {
9 public class Presenter playedBy APresenterPlayer {/*...*/}

10 /*...*/
11 }
12
13 // player class, i.e., original service implementation
14 public class APresenterPlayer {/* ... */}

Please note that all the classes shown in Listing 6.4 actually reside in separate class files.
At this point, the demarcation of the individual development lanes becomes clearly
visible: Lines 2–5 are the generated collaboration, Line 14 is the complementing player
whichmay have existed earlier, and Lines 8–11 show the actual task a Phase 2 developer
needs to do: bind the role to its player. In case of OT/J, the strong typing system may
limit the role-player interaction on the level of the generated collaboration to some extent.

Systems that do not run on top of a role-based runtime and hence cannot simply bind a
role, are denoted as legacy systems. Consider, for instance, the plain old projector that
should become able to join a collaboration. Assuming the projector’s internal system
to be able to run arbitrary applications, the runtime could not be replaced with a role-
based one. Additionally, this can be used for services or applications to be integrated
that cannot be shut down or changed in order to operate on top of a role-based runtime.
In this case, the complementing player implementation acts as an adapter between the
original implementation and the role, shown in Figure 6.3. Listing 6.5 illustrates how

Legacy Projector

OldProjectorViewer

ViewerRole

use bound

Figure 6.3: Legacy Player Implementation.

such a complementing implementation could be done in Java. The complementing
player class may use the player’s interface definition, which is useful in this particular

99

6 Evaluation

Listing 6.5: Legacy Player Implementation in Java.

1 class OldProjectorViewer /* implements IViewerRolePlayer */ {
2 private void setPicture(Image picture) {
3 ProjectorRuntime.getRuntime().setBackgroundImage(picture);
4 }
5 }

case, as it defines all the methods that have to be provided. Please note that the player
class does not extend any classes that are part of the metamodel or the middleware.

In fact, the case study hereinafter relies on the legacy option bymeans of the Distribut-
edSlideshow class, shown in Listing 6.6. Schütze and Castrillon [71] pointed out that
various role-based runtimes perform very differently at run time due to different dis-
patching mechanisms. This, however, has only small effects on the composition and
adaptation aspects this thesis is concerned with as this only triggers the instantiation
of a role. The DistributedSlideshow class, whose complete implementation is shown
in Listing B.7 on page 155, acts as a player for both the Presenter and Viewer role.

Listing 6.6: Excerpt of the DistributedSlideshow Class as Legacy Player.

1 package org.rosi.roledisco.samples.ds.ui;
2 /* import statements */
3 public class DistributedSlideshow {
4 private List<Picture> pictures;
5 private int imageIndex = 0;
6 private ViewerRole viewerRole;
7 private PresenterRole presenterRole;
8 /* ... */
9

10 /* Constructor for the Presenter Role. Instantiated manually. */
11 public DistributedSlideshow(String sessionName, List<Picture> pictures) {
12 PresenterPlayerProvider.getInstance().addPresenter(sessionName, this);
13 new DistributedSlideshowCollaboration(new Session(sessionName));
14 this.pictures = pictures;
15 image.setIcon(new ImageIcon(pictures.get(0).getAbsolutePath()));
16 nextButton.addActionListener(e -> {
17 int newImageIndex = (imageIndex + 1) % pictures.size();
18 if (presenterRole != null) {
19 presenterRole.setPicture(pictures.get(newImageIndex));
20 }
21 DistributedSlideshow.this.setPicture(pictures.get(newImageIndex));
22 imageIndex = newImageIndex;
23 });
24 previousButton.addActionListener(e -> {
25 /* ... */
26 });
27 }

100

6.1 Case Study: Distributed Slideshow

28
29 /* Constructor for the Viewer Role. Instantiated via ViewerPlayerProvider */
30 public DistributedSlideshow(String sessionName) {
31 /* ... */
32 feedback.addActionListener(e -> {
33 if (viewerRole != null) {
34 viewerRole.sendFeedback(feedback.getText());
35 feedback.setText("");
36 }
37 });
38 /* ... */
39 }
40
41 private void receiveFeedback(String message) {
42 comments.append(String.format("%s\n", message));
43 }
44
45 private void setPicture(Picture picture) {
46 image.setIcon(new ImageIcon(picture.getAbsolutePath()));
47 }
48
49 /* ... user interface setup ... */
50 }

Providing Player and Context to the Middleware

Another task of the Phase 2 developer is to provide the appropriate context informa-
tion for a player. Therefore, the Context Provider interface was introduced, which has
to be implemented for this purpose. Additionally, the middleware needs to be able to
choose the appropriate player for the provided context, which is achieved by imple-
menting the Player Provider. Listing 6.7 is a combined implementation of both interfaces
for the DistributedSlideshow player class and the Viewer role. The corresponding
implementation for the Presenter role is shown in Listing B.8 on page 157.

Listing 6.7:Combined Context & Player Provider for the Viewer Role.

1 package org.rosi.roledisco.samples.ds;
2 /* import statements */
3 public class ViewerPlayerProvider implements ContextProvider, PlayerProvider {
4 private static final ViewerPlayerProvider myInstance = new ViewerPlayerProvider();
5
6 static {
7 Dispatcher.getDispatcher().addPlayerProvider(ViewerRole.class, getInstance());
8 ContextManager.getContextManager().addContextProvider(ViewerRole.class,

getInstance());
9 }

10
11 private final Vector<String> sessions = new Vector<>();

101

6 Evaluation

12 private final Vector<Context> contexts = new Vector<>();
13
14 public static ViewerPlayerProvider getInstance() {
15 return myInstance;
16 }
17
18 @Override
19 public Collection<Context> getContext(Class<? extends AbstractRole> role) {
20 return contexts;
21 }
22
23 @Override
24 public boolean hasPlayer(Class<? extends AbstractRole> roleType, Context context) {
25 Session session = (Session) context.getValueForKey(new ContextFeature("session"))

.getValue();
26 for (String s : sessions) {
27 if (s.equals(session.getSessionId())) return true;
28 }
29 return false;
30 }
31
32 @Override
33 public Object getPlayer(Class<? extends AbstractRole> roleType, Context context) {
34 Session session = (Session) context.getValueForKey(new ContextFeature("session"))

.getValue();
35 if (sessions.contains(session.getSessionId())) {
36 return new DistributedSlideshow(session.getSessionId());
37 }
38 return null;
39 }
40
41 public void addSession(String session) {
42 sessions.add(session);
43 contexts.add(new Context(new ContextFeature("session"), new ContextValue(new

Session(session))));
44 }
45 }

Line 21 provides the required context information which is computed through the
addSession method in line 41. For the sake of generalization, the Session class is not
used directly, but wrapped inside a generic model, in which Context is a set of feature-
value pairs, as already illustrated in the metamodel in Figure 4.2. It is in evidence that
more specific context providers must become part of the code generation process in
order to provide better support to Phase 2 developers. As of now, for instance, it is
hard to enforce the Phase 2 developers to provide all the required context information
except checking for completeness at run time.

Next, the middleware needs to be able to decide which player to instantiate for the case
that several options were available. Here, only one ViewerPlayerProvider class exists,

102

6.1 Case Study: Distributed Slideshow

but there may be more than just this one. Nevertheless, the hasPlayer method returns
true in case a session identifier was added earlier. Session identifiers are added via the
main application, shown in Listing B.9 on page 158. In case the requested session identi-
fier is in the local list of session identifiers, the getPlayermethod instantiates the player
with the appropriate session identifier as constructor parameter and returns that player
instance. Choosing the constructor wisely enables the DistributedSlideshow player
class to provide implementations for both role types, as shown in Listing 6.6. Please note
that the role type already has to be passed when the interface implementations are regis-
tered to their respective managers, hence, the methods’ role type parameter has to be ver-
ified only in case multiple role types are served with the same provider implementation.

With respect to the legacy projector, a crucial issue at this point is that the legacy
projector might not be able to provide dynamic context information. Considering the
session identifier not to be a dynamic property but rather a pre-shared key, it has to
be changed for each new collaboration, such as by typing it in via a remote control. A
simple solution would be to modify the player provider in a way that it returns always
true for any given context. Then, the planner on the collaboration initiator’s device
could decide whether or not to invite the legacy projector in a collaboration, even if
context information is missing. This, however, should require further, rather generic,
information about the systems that want to join a collaboration since the planner would
be asked to invite a systems it does not know anything about. For the sake of simplicity,
compositions are created based on simple contextmatching, which however is not a strict
limitation of the approach itself. Improvements of this process are part of future work.

6.1.4 Coordinated Composition and Adaptation at Run Time

Up to this point, the development phases, i.e., Phase 1 and Phase 2 , were discussed.
The remainder of this section addresses the run-time aspects and highlights how the de-
rived partial implementation in conjunction with the Phase 2 developers’ adjustments
contribute to automated discovery, composition and adaptation.

System Role & Responsibility

AS1 Presenter role, thus ASPCC
AS2 Viewer role, part of initial composition, leaves after AS4 joins
AS3 Viewer role, part of initial composition, but binding fails (forcedly)
AS4 Viewer role, part of adaptation, joins before and leaves after AS2 leaves

Table 6.1: Systems, their Roles, and the Situation they showcase.

103

6 Evaluation

Next, the Distributed Slideshow scenario is extended by (simulated) devices hereinafter.
Similar to the conceptual part, ASn refers to a device. Since the scenario will establish
a one-to-many collaboration, the number of devices to be considered can be limited to
four, as shown in Table 6.1, in order to showcase the different situations that can occur.
For the sake of clarity, symbolic names are used instead of UUIDs [59] to address the in-
dividual subsystems. Please note that a concrete complementing player implementation
is usually unknown to remote subsystems. Consequently, no further details concerning
their implementation are available, except that respective players are assumed to exist
and to provide the respective context features if necessary. In this case study, how-
ever, the complementing player, i.e., the DistributedSlideshow class, is used on all
subsystems, but this information is private to each local subsystem and not shared.

Discovery

Before a collaboration can be composed, AS1 to AS4 need to discover each other, their
respective roles and contexts. During the middleware’s bootstrapping phase, the gener-
ated collaboration and role classes are preprocessed, as described in Section 5.2.2 on
page 89, in order to recreate the structure at run time as shown in Listing 6.8. Subse-
quently, they are added to the repository containing the collaboration specifications.

Listing 6.8: Indexing the Generated Collaboration and Role Classes.

1 private void updateCollaborationSpecifications() {
2 for (Class<? extends AbstractCollaboration> clazz : ClassIndex.getSubclasses(

AbstractCollaboration.class)) {
3 if (!collaborationSpecifications.containsKey(clazz)) {
4 if (clazz.isAnnotationPresent(Collaboration.class)) {
5 addCollaboration(clazz,
6 clazz.getAnnotation(Collaboration.class).coordinator(),
7 clazz.getAnnotation(Collaboration.class).roles());
8 }
9 }

10 }
11 }

The addCollaboration method triggers the discovery module, whose implementation
is shown in Listing B.10 on page 159, to broadcast a RoleAnnouncement message to
the infrastructure. The role types, i.e., ViewerRole and PresenterRole, are checked
whether they are actually discoverable (Listing B.10, Lines 66–83). Since the Presenter
role does not have any context, the dispatcher module is checked, whether a comple-
menting player exists for that role directly. In case of the Viewer role, the context is

104

6.1 Case Study: Distributed Slideshow

requested from the context manager and the dispatcher is asked whether players exist
for the respective contexts. Lastly, the RoleAnnouncement messages are created with
the contents shown in Listing 6.9 for the Presenter and Viewer role, respectively.

Listing 6.9: RoleAnnouncement Messages for the Presenter & Viewer Roles.

1 RoleAnnouncementMessage (PresenterRole):
2 Subsystem: AS-1
3 CollaborationType: org.rosi.roledisco.samples.ds.DistributedSlideshowCollaboration
4 RoleType: org.rosi.roledisco.samples.ds.PresenterRole
5
6 RoleAnnouncementMessage (ViewerRole):
7 Subsystem: AS-1
8 CollaborationType: org.rosi.roledisco.samples.ds.DistributedSlideshowCollaboration
9 RoleType: org.rosi.roledisco.samples.ds.ViewerRole

10 Context: Session(1234)

Upon receiving the RoleAnnouncement message, e.g., on AS2, the remote discovery
module processes this message and adds the contained information to the directory
service (cf. Listing B.10, Lines 101–108). Since AS1 has been newly discovered on AS2

and the respective message was sent as a broadcast instead of a directed message, which
can be inferred from the receiver’s address being empty, the discovery module on AS2

processes this event in order to reply with AS2’s role announcements as described afore.
AS1, however, will not reply with a role announcement then as AS1 received a directed
message, thereby assuming that AS2 already knows of AS1.

Composition

At this point, AS1, AS2, and AS3 discovered each other in order to be able to collaborate.
How to achieve automated, coordinated composition is explained hereinafter.

Initially, the DistributedSlideshow player class (Listing 6.6) instantiates the gener-
ated DistributedSlideshowCollaboration class (Line 13). Prior to that the player
instance registered itself to the Presenter role’s player provider (Listing B.8) with the
corresponding session identifier. The generated collaboration class subsequently in-
vokes the composition management upon instantiation (Listing 6.2, Line 18), which in
turn triggers the composition process, as depicted in Listing 6.10, Line 7.

Listing 6.10:Composition Management – Initiating a Collaboration.

1 public static void compose(AbstractCollaboration collaboration) {
2 RoleDiscoMiddleware.getCompositionManagement().doCompose(collaboration, null);
3 }

105

6 Evaluation

4 private void doCompose(AbstractCollaboration collaboration, AbstractCoordinatorRole
coordinatorRole) throws CompositionFailedException {

5 CoordinatingPervasiveCollaboration pervasiveCollaboration =
pervasiveCollaborationFactory.create(collaboration, coordinatorRole);

6 collaborationMap.put(pervasiveCollaboration.getCollaborationID(),
pervasiveCollaboration);

7 pervasiveCollaboration.compose();
8 }

The actual composition process is shown in Listing 6.11. First, the specification is
retrieved in Lines 2–9 from the repository containing the collaboration specifications.
Next, the dispatcher is requested whether the coordinating role has an appropriate
player (Lines 11–15). If necessary, the coordinating role is instantiated (Lines 15–21)
before it is bound to its newly instantiated player (Line 24). Therefore, the context is
extracted from the DistributedSlideshowCollaboration instance with the help of
the @Context annotated attributes. In this concrete example, the collaboration was
instantiated without the coordinating role instance, which is why the PresenterRole
will be instantiated at this point. An instance of the DistributedSlideshow player
class is already known as a player to the middleware thanks to the Presenter role’s
player provider. Consequently, this player, which also instantiated the collaboration
and triggered the composition process, will be selected as the coordinating role’s player.
After that, the collaboration segues into the Planning state.

Listing 6.11: Pervasive Collaboration Coordinator (PCC) – Initialization.

1 private void initialize() {
2 Optional<CollaborationSpecification> specification = collaborationManager.

getCollaborationSpecifications().stream().filter(spec -> spec.
getTheCollaboration().equals(collaboration.getClass())).findFirst();

3
4 if (!specification.isPresent()) {
5 logger.error("Collaboration␣{}␣does␣not␣have␣a␣corresponding␣specification!",

collaboration.getClass().getSimpleName());
6 throw new RuntimeException("Missing␣specification!");
7 }
8
9 CoordinatingPervasiveCollaboration.this.specification = specification.get();

10
11 Class<? extends AbstractCoordinatorRole> coordinatingRoleClass = specification.get

().getTheCoordinatorRole();
12 if (!dispatcher.hasPlayer(coordinatingRoleClass)) {
13 logger.error("Failure!␣No␣complementing␣player␣available!");
14 throw new MissingPlayerException(specification.get());
15 }
16
17 this.context = extractContext();
18
19 if (coordinatorRole == null) {

106

6.1 Case Study: Distributed Slideshow

20 coordinatorRole = dispatcher.createCoordinator(coordinatingRoleClass);
21 if (coordinatorRole == null) {
22 logger.error("Failure!␣Coordinating␣Role␣could␣not␣be␣instantiated!");
23 return;
24 }
25 }
26
27 Context tmpContext = coordinatorRole.getContext() == null ? this.context :

coordinatorRole.getContext();
28 Object coordinatorPlayer = dispatcher.getPlayer(coordinatorRole, tmpContext);
29 if (!dispatcher.bind(coordinatorRole, coordinatorPlayer)) {
30 logger.error("Failure!␣Player␣for␣coordinating␣role␣could␣not␣be␣bound!");
31 }
32 setState(CompositionState.PLANNING);
33 }

Therefore, a concrete planner is assigned for the entire lifetime of the collaboration, as
shown in Listing 6.12. The planner factory provides a planner specific to the collabo-
ration’s structure. As mentioned with respect to Listing 6.2 on page 96, the concrete
planner is determined based on the kind property of the @Collaboration annotation.
In this concrete scenario, the SimpleOneToManyPlanner, which is the greedy planner
described in Section 5.2.3, is returned and used.

Listing 6.12: Pervasive Collaboration Coordinator (PCC) – Planning.

1 private void plan() {
2 if (planner == null) planner = PlannerFactory.create(specification);
3 compositionPlan = planner.calculateCompositionPlan(directoryService.

getDiscoveryKnowledge(specification));
4 if (compositionPlan == null || compositionPlan.isEmpty()) {
5 setState(CompositionState.TERMINATE);
6 } else {
7 setState(CompositionState.PCC_SEND_INVITES);
8 }
9 this.compose();

10 }

The planner is instantiated with the given collaboration specification. Then, the compo-
sition plan is calculated invoking the calculateCompositionPlan method and passing
the discovery information, which is exmplified in Table 6.2. Finally, the planner pro-

System Role Type Context

AS2 ViewerRole Session(1234)
AS3 ViewerRole Session(1234)

Table 6.2:Content of the Directory Service on AS1 (simplified).

107

6 Evaluation

vides a composition plan transforming every piece of information into a composition
instruction, such as instantiating the Viewer role with context Session(1234) on AS2.

Listing 6.13: Preprocessing and Sending of CollaborationInvite Messages.

1 private void sendInvites() {
2 Multimap<AdaptiveSubsystem, CompositionInstruction> instructionMultimap =

getCompositionInstructionsPerSubsystem();
3 for (AdaptiveSubsystem adaptiveSubsystem : instructionMultimap.keySet()) {
4 inviteMessages.add(CollaborationInviteMessage.create(specification.

getTheCollaboration(), adaptiveSubsystem, collaborationID,
instructionMultimap.get(adaptiveSubsystem)));

5 }
6 inviteTimer = initializeTimer(inviteTimer, CompositionState.PCC_WAIT_FOR_INVITES,

this::forceFinishInvitationState);
7 setState(CompositionState.PCC_WAIT_FOR_INVITES);
8 infrastructureAbstractionLayer.send(inviteMessages);
9 }

Next, the CollaborationInvite messages are created and sent to AS2 and AS3. List-
ing 6.13 shows how the composition instructions are preprocessed in order to send only
one invite to each participating subsystem. The Multimap data structure is a key-value
data structure for which value is a collection of the specified type. Here, each subsys-
tem is related to a collection of composition instructions. After preparing the actual
messages, a timer is set to handle timeouts (Line 6). Right before the messages are sent,
the collaboration segues into the waiting state. Apart from different contents of the
messages created and send hereinafter, preprocessing works similar for all of them.

Listing 6.14: CollaborationInvite Message sent to AS2.

1 CollaborationInviteMessage:
2 Subsystem: AS-2
3 Collaboration ID: f94f1772-0896-4bf8-8639-a4feb52dee30
4 Role: org.rosi.roledisco.samples.ds.ViewerRole
5 Context: Session(1234)

The CollaborationInvite message shown in Listing 6.14 is processed by the composi-
tionmanagement of AS2 and a similar message by that of AS3. Thereby, a local represen-
tation of the collaboration to be composed is instantiated in order to distinguish several
collaborations and participate in those. Listing 6.15 shows the message processing. In
Lines 3–10, the actual provisions are calculated, thereby ensuring that the local system
has a player for the given role in the given context. With respect to the scenario, only
one role type in one context is to be instantiated, thus the provisions can be completely

108

6.1 Case Study: Distributed Slideshow

assured, so that both AS2 and AS3 return an InviteAcknowledgement message to AS1.
For the case that not a single provision can be made, an InviteRefused message would
be sent to AS1 and the local collaboration would terminate (cf. Listing 6.15, Line 12).

Listing 6.15:Collaboration Management on AS2 and AS3 – Initialization.

1 public void processMessage(CollaborationInviteMessage message) {
2 setState(CompositionState.REMOTE_INITIALIZATION);
3 List<Class<? extends AbstractNonCoordinatorRole>> roleTypes = message.getRoleTypes

();
4 List<Context> contexts = message.getContexts();
5 for (int i = roleTypes.size() - 1; i >= 0; i--) {
6 if (!dispatcher.hasPlayer(roleTypes.get(i), contexts.get(i))) {
7 roleTypes.remove(i);
8 contexts.remove(i);
9 }

10 }
11 if (roleTypes.isEmpty()) {
12 infrastructureAbstractionLayer.send(InviteRefusedMessage.create(message));
13 this.terminate();
14 } else {
15 infrastructureAbstractionLayer.send(InviteAcknowledgementMessage.createResponse(

message, roleTypes, contexts));
16 }
17 }

AS1 receives the two InviteAcknowledgementmessages, which are processed as shown
in Listing 6.16. In this case, the composition plan does not need to be updated because

Listing 6.16: Processing InviteAcknowledgement Messages on AS1.

1 private void processMessage(InviteAcknowledgementMessage message) {
2 if (states.peek() == CompositionState.ADAPTATION) {
3 currentAdaptation.processMessage(message);
4 } else if (states.peek() == CompositionState.PCC_WAIT_FOR_INVITES) {
5 inviteAcknowledgmentMessages.add(message);
6 compositionPlan.update(message.getSource(), message.getRoleTypes(), message.

getContexts());
7 this.checkForStateCompletionAndContinue(CompositionState.PCC_WAIT_FOR_INVITES,

inviteMessages, inviteAcknowledgmentMessages, inviteRefusedMessages,
inviteTimer);

8 } else { /* ... */ }
9 }

all provisions were assured. When all messages are processed (cf. Listing B.11), the col-
laboration segues into the Role Instantiation state, sending InstantiateRoles messages
to AS2 and AS3, the processing of which is shown in Listing 6.17. Both will successfully

109

6 Evaluation

instantiate the role and return an InstantiateRolesResponse message containing the
unique identifiers of the concrete role instances for the given types and contexts to AS1.

Listing 6.17: Processing InstantiateRoles Messages on AS2 and AS3.

1 public void processMessage(InstantiateRolesMessage message) {
2 setState(CompositionState.ROLE_INSTANTIATION);
3 InstantiateRolesResponseMessage.Builder responseBuilder =

InstantiateRolesResponseMessage.Builder.create(message);
4 for (int i = 0; i < message.getRoleTypes().size(); i++) {
5 AbstractNonCoordinatorRole role = dispatcher.createRole(
6 message.getRoleTypes().get(i), message.getContexts().get(i));
7 if (role != null) {
8 localRoles.put(role.getId(), role);
9 responseBuilder.addBoundRole(role);

10 } else {
11 responseBuilder.addBindFailure(message.getRoleTypes().get(i), null);
12 this.rollback();
13 }
14 }
15 infrastructureAbstractionLayer.send(responseBuilder.build());
16 }

Next, AS1 sends a BindRoles message to both AS2 and AS3. The middleware’s dis-
patcher module, cf. Section 4.2.5, instantiates the player prior to the actual binding
operation (Listing 6.18, Line 4) with the help of the ViewerPlayerProvider (Listing 6.7),
which actually instantiates the player. Two cases are to be distinguished at this point: the
binding operation is assumed to be successful on AS2 but to fail on AS3 as, for example,
the player could not be instantiated. Consequently, both AS2 and AS3 respond with a

Listing 6.18: Processing BindRole Messages on AS2 and AS3.

1 public void processMessage(BindRolesMessage message) {
2 setState(CompositionState.ROLE_BINDING);
3 BindRolesResponseMessage.Builder builder = BindRolesResponseMessage.Builder.create(

message);
4 for (int i = 0; i < message.getRoleIDs().length; i++) {
5 AbstractNonCoordinatorRole role = localRoles.get(message.getRoleIDs()[i]);
6 if (dispatcher.bind(role, dispatcher.getPlayer(role, role.getContext()))) {
7 builder.addBoundRole(role.getId());
8 } else {
9 builder.addBindFailure(role.getId(), null);

10 }
11 }
12 infrastructureAbstractionLayer.send(builder.build());
13 }

110

6.1 Case Study: Distributed Slideshow

BindRolesResponse message but with different contents. AS2 will add the successfully
instantiated role’s identifier to the set of bound roles, while AS3 will add the respective
identifier to the set of failures. AS1 receives both messages and has to update the compo-
sition plan accordingly by removing the composition instruction for AS3 anddeleting the
role id for the Viewer role on AS3. Additionally, the updated composition plan has to be
validated against the collaboration specification. In this case, the updated composition
plan is still valid since the Presenter role on AS1 and the Viewer role on AS2 are available.

Next, the ActivateRoles message is sent to AS2, which then activates the role and
responds with a RolesActivated message. Since no other systems are included in the
plan anymore, AS1 can immediately send an ActivateCollaboration message, which
includes binding information relevant to the receiving subsystem. In this particular case,
it is solely the Presenter role on AS1, which is included in this message. At this point, the
collaboration on AS1 and its local representation on AS2 segue into the operational state.

Figure 6.4:Operational Distributed Slideshow Collaboration.

Figure 6.4 shows an operational Distributed Slideshow collaboration with three subsys-
tems. The host is placed in the center of the figure. Aside, two guests will see the photo
the host is currently watching. Also, they can send some comments which only the host
will see. Below the application, an introspection window presents some run-time infor-
mation of the middleware, such as discovery knowledge or the collaboration structure.

111

6 Evaluation

Adaptation

Adaptation is considered a recomposition of an operational collaboration. Since the
adaptation process is similar to the composition process, as explained in Section 4.3.5
on page 76, solely the differences compared to the composition process are discussed.

First, an adaptation which integrates a new system, i.e., AS4, is considered. AS4 joins
the infrastructure and the discovery process is starting as described earlier. A respective
event triggers the composition management on ASPCC to recalculate the plan based
on the newly acquired discovery information. It comprises newly added information
relevant to the current collaboration, in this particular case that a new Viewer role is
available on AS4 in context Session(1234).

AS Role Type Context

AS1 PresenterRole -
AS2 ViewerRole Session(1234)

CP0

AS Role Type Context

AS1 PresenterRole -
AS2 ViewerRole Session(1234)
AS4 ViewerRole Session(1234)

CP1

AS Role Type Context

AS4 ViewerRole Session(1234)

Changeset ADD (CP1\CP0)

AS Role Type Role ID

∅

Changeset REMOVE (CP0\CP1)

Figure 6.5:Composition Plans CP0 and CP1 and Derived Change Sets.

Therefore, the collaboration segues into the adapatation state and therein into the (adap-
tation’s) planning state, in which the composition plan is updated according to the newly
available discovery information. Figure 6.5 shows the original composition plan CP0,
its updated version CP1 and the derived change sets. Obviously, the Viewer role has
to be instantiated in the appropriate context on AS4. At this point, the new role is
integrated the very same way as it would be done in the initial composition, described
afore. Please note that the roles to be instantiated (or terminated) are only taken from
the given change sets and not from the actual composition plan. In case of any failures,
the entry is removed from both the composition plan (CP1) and the change set, and the
whole plan is checked against the collaboration specification.

Next, an adaptation is considered, in which the context of the Viewer role provided by
AS2 changes to Session(4321), causing the planner to exclude this role from the collabora-
tion in an updated plan, shown in Figure 6.6. The Viewer role on AS2 will be terminated
by sending a Terminatemessage, comprising the collaboration’s and the role’s identifier.

112

6.2 Runtime Evaluation

AS Role Type Context

AS1 PresenterRole -
AS2 ViewerRole Session(1234)
AS4 ViewerRole Session(1234)

CP0

AS Role Type Context

AS1 PresenterRole -
AS4 ViewerRole Session(1234)

CP1

AS Role Type Role ID

AS2 ViewerRole vr@AS-2

Changeset REMOVE (CP0\CP1)

consider vr@AS-2 a symbolic name

AS Role Type Context

∅

Changeset ADD (CP1\CP0)

Figure 6.6:Composition Plans CP0 and CP1 and Derived Change Sets.

Eventually, AS4 leaves the infrastructure, so that only the Presenter role remains. Again,
the planner calculates an updated plan. In this case, however, the updated plan will
be empty because the one-to-many relationship cannot be fulfilled any longer. As the
composition plan now is empty, the collaboration is torn down rigorously.

6.2 Runtime Evaluation

Time is a crucial issue for composing continuous service collaborations in decentralized
environments. In user-centric application scenarios, such as the distributed slideshow or
the tech-enhanced classroom, a long initial composition phasewould prevent users from
using the application. Nielsen [62] has identified three important thresholds: 100ms
lets the users feel that the system reacts instantaneously; 1 s is the limit in which the
users feel that they are able to freely navigate and their flow of thought continues to stay
uninterrupted, even though they will notice the delay; and 10 s is the delay for keeping
the user’s focus on the application. In the domain of connected cars and connected
cities, time is even more critical as delays may lead to accidents or cause injury.

Consequently, the proposed middleware including the composition protocol, is evalu-
ated in terms of time with respect to different system sizes and different application
scenarios. The prototypical implementation of the RoleDiSCo Middleware will be used
to conduct the evaluation in an emulative way in order to obtain concrete performance
results. Since discovery is a prerequisite for composition, the performance of the dis-
covery mechanism is evaluated first, and that of the composition protocol subsequently.
Prior to that, the general testbed setup and the scenarios used for the evaluation are ex-

113

6 Evaluation

plained. How the experiments for discovery and composition were performed and how
respective data was obtained is explained in the respective section of each experiment.

6.2.1 General Testbed Setup and Scenarios

In order to keep the experiments controllable and to reduce any effects caused by the
physical network, e.g., delay or unexpected message loss, the testbed was placed on a
single physical machine. That means, a node is actually one instance of the scenario ap-
plication launched on the physical machine. JGroups is used as Infrastructure Abstraction
Layer, and configured to use UDP multicast. Network communication was restricted to
the loopback interface. All experiments were conducted on two identical physical ma-
chines, which were desktop PCs with an Intel Core i5-4590 CPU of 3.30GHz, and 16 GB
memory. Debian GNU/Linux 9.1 (stretch) with Linux Kernel 4.9 was used as operating
system. The Java Virtual Machine used for the experiments was an OpenJDK 1.8.0-141.

Due to the variety of role-based runtimes, RoleDiSCo’s fallback implementation of
the Dispatcher module was used instead of a specific role-based runtime. The fallback
implementation mocks a role-based runtime to a certain degree. Since the focus of
this thesis is on discovery and composition, this is a valid simplification since signifi-
cant performance impacts occur on the level of method dispatch and not during role
instantiation or binding, according to Schütze and Castrillon [71].

Scalability with respect to the composition protocol is affected by the system size, i.e.,
the number of nodes, and the number of roles contained in the respective collaboration
specification. Thus, two rather abstract scenarios, which capture different application
structures, were created in order to obtain an insight how these structures affect the
composition process and thereby to evaluate the middleware and the composition
protocol with respect to different kinds of applications. The first scenario, denoted as
Simple-Sample, is derived from the use cases mentioned. It represents a one-to-many
collaboration, which consists of one coordinating role and one non-coordinating role, as
well as respective players. The second scenario, denoted as Five-Roles, is rather artificial
and intended to gain an insight how the composition process behaves if each node
provides more than one role instance. It consists again of one coordinating role type,
but five non-coordinating role types. The coordinating role type holds a one-to-many
relationship to each non-coordinating one. In order to automate and streamline the
experiments’ execution, awrapping class for both scenarioswas used, which instantiates
the middleware and conditionally idles or triggers the composition process after 10 s,
which is enough time to complete the discovery process.

114

6.2 Runtime Evaluation

6.2.2 Discovery Time

The discovery is responsible for sharing informationwithin and gathering such from the
infrastructure, and thereby it is the prerequisite for composition and adaptation. Hence,
discovery time is an initial delay the system needs to wait before joining or initiating
a collaboration. Besides, the performance of the discovery process acts as a metric for
the quality of the testbed environment itself. Thereby, the required time for discovering
other nodes, is considered a baseline with respect to scalability of the general system
behavior within the testbed in order to approve the testbed’s setup to be appropriate.

Discovery usually relies on additional heartbeat messages in order to detect lost and new
subsystems. As the whole testbed is placed on one physical machine, the experiment
solely relies on the RoleAnnouncement messages in order not to bias the results. This
works as follows: a new node broadcasts discovery information, including locally
available collaboration types, role types and context information. Upon receiving such
a broadcast message, it is clear that the originating node exists in the infrastructure and
the receivers reply directly with a similar message containing their local information.

Discovery time, here, is defined as the time between broadcasting the first message
and processing all the responses of other systems available in the infrastructure. In a
decentralized environment, however, a local runtime cannot determine how many other
systems should be available in order to know when discovery is complete. Thus, the
experiment setup takes over this responsibility. For each application scenario, a series
of 30 experiments was conducted, thereby gradually increasing the number of involved
nodes from 5 to 150 in steps of 5 nodes. This equates to 300 messages to be processed for
the Simple-Sample scenario and to 900 messages for the Five-Roles scenario as one mes-
sage is sent per node and role type. Thus, the Five-Roles scenario is expected to require
thrice as much time than the Simple-Sample scenario to complete the discovery process.

In order to approve that all the discovery information had been processed, the middle-
ware was configured to create log files, which were analyzed during the experiment’s
execution. The discovery time was then measured on the last node instantiated per
experiment. Each experiment was repeated 510 times on both machines. The last in-
stantiated node was recreated for every measurement, which amounts to 510 times
on each machine, in order to repeat the discovery process. The results of the first ten
iterations were dropped for each experiment on both machines in order to avoid results
being biased by initial bootstrapping of the nodes to be discovered.

115

6 Evaluation

This resulted in an initial data set of 1000 values per experiment, of which all values
larger than 2 s were considered as outliers. Though this seems arbitrary, it is related to
limited system resources which causes a retransmission ofmessages, which introduces a
delay of at least 1.5 s, as explained in Section 5.2.1 with respect to Figure 5.1. A complete
explanation of this issue is provided in Appendix A, which also includes the reasons
why it is valid to exclude all values larger than 2 s. Thereof, the mean r and the standard
deviation σ were calculated and only results within [r − 2σ, r + 2σ] were kept.

5 25 50 75 100 125 150
0

100

200

300

Nodes

D
is
co

ve
ry

Ti
m
e
[m

s]

Simple-Sample scenario
Five-Roles scenario

Figure 6.7:Discovery Time of # Nodes in ms.

Figure 6.7 shows the results for both scenarios: both lines depict the average discovery
time the respective node required to process all the discovery information. Overall the
testbed performs well for both scenarios. The results for the Five-Roles scenario are
more volatile due to the adjusted, and thereby reduced, data set especially for larger
system sizes, as depicted in FigureA.2 on page 146. Additionally, the Five-Roles scenario
requires approximately thrice the time of the Simple-Sample scenario to complete the
discovery process thereby meeting the expectations posed earlier. The results of the
Simple-Sample scenario indicate that the testbed works reliable for up to 150 nodes
or 300 messages to be sent and received rather simultaneously. Though those of the
Five-Roles scenario seem to provide a similar statement for up to 900 messages and
150 nodes, the extended discussion in Appendix A on page 145 reveals that sending
and receiving 300 messages rather simultaneously is the upper boundary for which the
testbed and the prototypical implementation provides reliable results.

116

6.2 Runtime Evaluation

6.2.3 Composition Time

The previous evaluation indicates that the testbed scales reasonably well and that the
results for up to 300 messages sent and received rather simultaneously should be re-
liable. Next, the time required to compose the scenario applications among a set of
several nodes in order to establish a collaboration is to be investigated. This composition
time is considered the overhead the composition process causes compared to static or
predefined composition.

More precisely, composition time, in this thesis, is defined as the time between initiating
a collaboration and reaching its operational state, depicted in Figure 4.10 on page 66.
Thus, it also covers the planning phase. This allows to include a minimal planning time
within the results that acts as a baseline for other potential planner implementations,
which are considered to consume more time, as any further sophisticated planning may
depend on a concrete use case, thereby increasing the overall composition time. For
that purpose, the greedy planner, presented in Section 5.2.3, was used, which basically
converts all entries in the discovery knowledge into a composition instruction, i.e., every
node that provides the non-coordinating role type will be instructed to instantiate that.

Similar to the experiments for the discovery time, for each application scenario, a series
of 30 experiments was conducted. In each experiment, the number of involved nodes
was increased by 5, reaching from 5 to 150 nodes. The last node instantiated per exper-
iment gained the position of the PCC and thereby triggered the composition process.
Each experiment was repeated 510 times on both machines. The node representing the
PCC was recreated for every composition, so 510 times on each machine. The results
of the first ten iterations were dropped for each experiment on both machines in order
to avoid results being biased by initial bootstrapping of the non-coordinating nodes.
This resulted in a data set of 1000 values per experiment, of which the mean r and the
standard deviation σ were calculated and only results within [r − 2σ, r + 2σ] were kept
in order to remove severe outliers.

Provided that the PCC has to send five messages and process four messages per collabo-
rating system independent of the actual scenario, the system is expected to scale linearly
to the number of nodes. Since for the Five-Roles scenario the fivefold number of roles
of the Simple-Sample scenario has to be instantiated, its average composition time is
expected to be greater or equal to that of the Simple-Sample scenario. As the role-based
runtime is simply mocked using the middleware’s fallback implementation, it is possi-
ble that the average composition time for both scenarios is almost equal since bind and
activate operations do not require complex computation and return almost immediately.

117

6 Evaluation

5 25 50 75 100 125 150
0

100

200

300

400

500

←→ ×15

↕ ×4.3

←→ ×30

↕ ×8.8

Nodes

C
om

po
si
tio

n
Ti
m
e
[m

s]

(a) Composition Time for the Simple-Sample Scenario.

5 25 50 75 100 125 150
0

100

200

300

400

500

←→ ×15

↕ ×5.0

←→ ×30

↕ ×9.4

Nodes

C
om

po
si
tio

n
Ti
m
e
[m

s]

(b) Composition Time for the Five-Roles Scenario.

Figure 6.8:Average Composition Time per System Size and Scenario.

118

6.2 Runtime Evaluation

Figure 6.8 depicts the average composition time correlated to the number of nodes
involved, based on the adjusted data for both experiments. Both experiments in general
scale reasonablywell. Concerning the Simple-Sample scenario, cf. Figure 6.8a, the system
scales very well up to approximately 100 nodes. Starting with 105 nodes the system still
scales well, but a small increase is noticeable and results become more volatile. This
is a consequence of placing the testbed on one physical machine, which slowly runs out
of resources at that point. Though outliers were systematically removed, the impact of
limited system resources is still in evidence. It is noteworthy that increasing the number
of nodes by a factor of 15 only increases the composition time by a factor of 4.3. Even
for a set of 150 nodes, which is a scenario 30 times larger than the smallest one, the
composition process takes only 8.8 times longer. Overall, 150 nodes were composed in
399.8mswhich is less than the threshold of 1 s response time for interactive systems. [62]

Concerning the Five-Roles scenario, depicted in Figure 6.8b, the system scales continu-
ously well up to approximately 80 nodes. Starting with 85 nodes the system still scales
well, but results become volatile too. The reason why 100 nodes are allegedly composed
as fast as 95 nodes is that more outliers were excluded for 100 nodes, which results in
a smaller, thus better, data set and causes a lower average composition time. This holds
true for 90 and 110 nodes, respectively. Here, increasing the number of nodes by a factor
of 15 increases the composition time by a factor of 5, and for a set of 150 nodes, compo-
sition time increases by a factor of 9.4. Overall, 150 nodes were composed in 408.3ms.

5 25 50 75 100 125 150

2

4

6

8

Nodes

C
om

po
si
tio

n
Ti
m
e
pe

rN
od

e
[m

s]

Simple-Sample scenario
Five-Roles scenario

Figure 6.9:Composition Time per Node.

Figure 6.9 depicts the ratio of the total average composition time to the number of
nodes involved. Interestingly, this ratio is better the larger the system size gets. Since
intentionally the total composition time and not just the time which is required for

119

6 Evaluation

message processing was used, it is evident that the actual computation for planning or
message serialization is more significant for rather small collaborations than for larger
ones. In this concrete setting, it is recognizable that there will be a lower bound of
approximately 2.5ms/node. Especially for the Simple-Sample scenario, the effect of
limited system resources is observable as well: a small increase starting at around 105
nodes. The reason why the actually more computing-intensive Five-Roles scenario
behaves better than the Simple-Sample is discussed in the next section.

6.2.4 Discussion

First, scalability and performance of the composition process itself are subject to further
discussion. Intentionally, the actual workload was kept rather small in order to evaluate
the performance and scalability of the composition process itself rather than those of
the applications. The evaluation showed that the RoleDiSCo approach scales linearly
to the number of nodes, while the number of roles to be instantiated on a single node
is of rather limited significance. Thereinafter, other aspects of the performance and
scalability evaluation, such as the relation to other scenarios, the potential impact of
a role-based runtime, and how adaptation is addressed, are qualitatively discussed.

For both scenarios, Figure 6.9 indicates that the composition time eventually scales
linearly to the number of nodes, which coincideswith the expectations, although an over-
head for small system sizes is in evidence. As shown in Figure 6.8, the composition time
amounts to approximately 400ms for both scenarios. Though it was not a requirement,
staying below themark of 1 s response time for interactive systems [62] is a great achieve-
ment in order to establish this solution in real-world scenarios and applications as the
user’s train of thought is not interrupted. Evidently, the composition time in real-world
scenarios will heavily depend on the actual application structure and use case. However,
the user’s patience is assumed to correlate with the application’s complexity and system
size to some extent – which of course applies only to user-centric applications.

Comparing the average composition time for 80 nodes of both scenarios, the Five-Roles
scenario is 6.2% slower than the Simple-Sample scenario, which corresponds with the
expectations as well. Figure A.3 on page 147 provides a complete comparison of both
scenarios’ composition times and their relation. Nevertheless, this situation is inverted
starting with 100 nodes. This anomaly, i.e., the fact that the less computing-intensive
Simple-Sample scenario allegedly composes slower than the Five-Roles scenario, is a
result of limited system resources, especially of limited threads.

120

6.2 Runtime Evaluation

Figure A.4 on page 147 visualizes the partial composition time of each phase for 45 to
100 nodes based on a subset of the previous data set. Evidently, the waiting phases for
BindRolesResponse and RolesActivated messages take much longer for the Simple-
Sample scenario than for the Five-Roles scenario. Responses are only accepted in the
respective waiting state, which is why the middleware’s implementation switches to
that state just before sending the messages as otherwise a response could be received
while sending messages is still in progress. Thus, the time for the waiting state actu-
ally comprises the sending, remote processing, and receiving of messages. Due to the
minimal workload of the bind and activate operations, the remote systems in the Simple-
Sample scenario reply faster than those in the Five-Roles scenario, thereby potentially
hindering the process of sending messages. Since the whole testbed is placed on one
machine with four cores, all virtual nodes compete for those four cores. A reasonable
scheduling is only feasible within one virtual node but not among several. Processing
responses related to the composition protocol, moreover, is a synchronized task, which
consequently synchronizes all threads of the PCC node but not those of remote systems.
With respect to the Five-Roles scenario, the overall testbed is able to more efficiently
utilize the computing power of multiple threads simultaneously.

In the evaluation, no further complex structures have been emulated in this evaluation,
though it was claimed that role-based models enable the composition of more complex
application structures compared to, for instance, SOSSs. Thanks to the middleware
architecture of RoleDiSCo, the challenges of complex application structures and full
decentralization could be reduced. Since the composition process itself is centralized
on demand, complex application structures can be composed similar as in a centralized
system. In turn, RoleDiSCo enables every node in an infrastructure to become the
coordinator for a particular pervasive collaboration. Complex composition structures,
hence, solely depend on the planner used to determine the concrete composition plan.
Developing a general-purpose planner was, however, not within the scope of this thesis
as it is a research challenge of its own, which even holds true for application-specific
planners that have to deal with a certain complexity of the application. Thus, the
challenge of composition of complex application structures were broken down into
the planning part and the composition part, the latter of which was addressed by the
RoleDiSCo Middleware. As long as a planner provides the concrete instructions, the
middleware will attempt to compose the given plan within the infrastructure.

As this thesis is solely concerned with composition and adaptation, any evaluation
of the operational state was omitted as this can be restrained to remote procedure
calls. Furthermore, the measurements regarding the operational phase would be of low

121

6 Evaluation

significance as the role-based runtime was mocked. According to Schütze and Castril-
lon [71], role-based runtimes behave very differently in terms of run-time performance.
Static approaches, such as ObjectTeams [43] are faster than dynamic approaches such
as LyRT [76] or SCROLL [60]. Hence, the run-time overhead during the operational
phase strongly depends on the concrete role-based runtime.

In the experiments, solely isolated collaborations were considered, meaning that only
one collaboration was composed and operational at one time. Though the investigation
of how several collaborations would compose and operate in parallel is of interest, this
is a barely controllable experiment. Even if multiple collaborations are instantiated
simultaneously, composition will proceed in an uncontrolled way and presumably be
performed sequentially. Thus, only the total composition time of all parallel collabo-
rations could be measured, which would be a result of low significance.

The performance evaluation did not explicitly address adaptation. In this thesis, adap-
tation is considered a structural reconfiguration of an operational collaboration, which
may occur whenever a new node joins the infrastructure or a collaborating node leaves
the infrastructure. The planner calculates a new plan, new nodes are incorporated
similar to them during initial composition and dropped nodes will receive a Terminate
message and stop participating in the collaboration. Apart from minor differences,
adaptation works the same way as composition. Thus, adaptation time in this context
would be the recomposition time which comprises discovery, planning as well as ac-
tual recomposition. As these aspects were evaluated in isolation, it is in evidence that
recomposition time is the result of those with respect to the number of changes, i.e.,
added or removed roles and the number of nodes that are affected by those changes.

Lastly, the implementation of the RoleDiSCo Middleware offers possibilities for im-
provement as mentioned in Section 5.2 as, for instance, messaging in RoleDiSCo heavily
relies on the serialization mechanisms provided by JGroups, the default one of Java,
which is considered to be rather slow compared to custom implementations.

6.3 The ›Role‹ of Roles

This thesis aims for automated composition and adaptation of Smart Service Systems
and thereby investigates whether role-based models are a suitable abstraction in order
to achieve this. Especially the collaborative nature of the Concept of Roles was argued to
be beneficial for automated composition of software systems. This section discusses
the advantages and disadvantages of applying the Concept of Roles in this approach.

122

6.3 The ›Role‹ of Roles

First, serendipity, i.e., to integrate unforeseen entities or functionality at run time, is
a key requirement of Smart Service Systems, challenging to be achieved with com-
mon component-based or service-oriented approaches as there building blocks are
self-contained entities that cannot be split into the collaboration-dependent part and its
concrete performance. Since players and roles are loosely coupled at both design and
run time, their binding can be easily reconfigured thereby changing the overall behavior
or integrating new behavior by providing a completely new player for an existing role
instance. In the Distributed Slideshow scenario, it is conceivable that a new device is
equipped with the Viewer role and joins an operating collaboration immediately. Thus,
the Concept of Roles inherently allows for serendipity and for separation of concerns.

Second, Smart Service Systems establish collaborations among several, potentially sim-
ilar, entities. The collaborative nature of roles desires a utilization for the composition
of distributed systems as roles and their surrounding collaborations inherently specify
relationships and thereby a complete system structure. In other words, the system is
composed based on abstract functionalities, i.e., the roles, whose actual performance
is realized by entities that are not directly known to the composition, i.e., the players.
Compared to classic approaches, such as SOAs, roles are much more flexible. While
in SOAs the service and its role essential to a business process, i.e., the collaboration,
are self-contained units, roles allow to split such a unit into the service, providing the
base functionality and concrete performance, and its role essential to a collaboration.

Third, this separation allows for a demarcation of the development processes, which is a
substantial achievement in order to integrate arbitrary systems considering the increas-
ing amount of such. On the one hand, there are developers implementing services that
provide a certain functionality but actually do not focus on how their services might
integrate with others to create some synergy. On the other hand, there are developers
who would like to integrate such services but are not able to capture all eventualities of
concrete services that may occur. Applying the concept of roles, each of the groups can
continue to solely focus on their own part. However, both or even a third party is able to
integrate the individual parts by letting a service play a role in a certain collaboration.

Next, at run time, a role type can be instantiated several times for different collaborations,
which allows for simultaneous participation of the player in different collaborations. In
the experiments conducted afore, collaborationswere considered to be isolated, i.e., to be
non-conflicting or non-competing. A real-world scenario, however, will for sure face this
issue. Evidently, roles are beneficial in order to deal with isolation, as, just mentioned,
a role type can be instantiated several times, played by the same player, thus having
one physical resource participating in multiple collaborations. The crucial challenge

123

6 Evaluation

arises from physical resources that cannot be shared. Roles, however, are obviously
able to abstract this issue to some extent and create some kind of resource scheduling,
i.e., roles on a single node rotate, managed locally by the role-based runtime, in order
to share the physical resource. If this is not possible, such competing collaborations can
only be addressed by negotiating a compromise among affected collaboration(s).

Conclusively, the Concept of Roles could act as enabling technology to integrate systems
of different origins, types, architectural concepts, and granularity. This thesis showed
that applying roles allows to easily compose a system out of potentially heterogeneous
runtimes, such as a role-based runtime and a legacy one. Obviously, a runtime could
be replaced with a SOA, a component-based system, a multi-agent system, or any other
system that adopts a notion of roles. Multi-agent systems, for instance, employ roles to
denote the current state or task of an agent. The role as a common denominator would
enable agents of different vendors to collaborate, and moreover to integrate with other
types of systems, such as SOAs or even local role-based runtimes.

A certain challenge is to rethink applications and systems the role-based way. This
includes to become familiar with role-based modeling or programming languages and
requires a broader range of tool support to develop role-based systems. For instance,
the RoleDiSCo Development Support, cf. Section 5.1, does not result in a well-known
role-based programming language. Thus, a holistic development support for role-based
software systems is a remaining challenge. Besides this, developers are faced with the
question which part of a functionality is abstract and which is concrete. The Distributed
Slideshow scenario considered solely the collaborative parts, such as transmitting pic-
tures in a serialized form, as abstract functionalities. In more complex applications,
however, this will be a more challenging task. Colman and Han [19] addressed this
challenge in a role-based fashion and defined several degrees of autonomy for roles
and players. The collaboration specification adopted this idea partially but does not
cover all the proposed degrees of freedom. This does not answer the initial question
which part of the functionality is abstract and which is concrete, but at least enables
the collaboration designers to offer some flexibility to the Phase 2 developers.

6.4 Summary

This chapter was concerned with a quantitative and qualitative evaluation of the
RoleDiSCo approach in order to show how the problems mentioned in Section 1.3
were addressed. The evaluation is a foundation for a review of the research questions

124

6.4 Summary

posed in Section 1.5, which will be comprehensively provided in Chapter 7. Hereinafter,
the key findings of the evaluation are briefly summarized.

The case study used a sample application, i.e., the Distributed Slideshow, which was
specified using the Role-based Collaboration Specification. By design, the specification does
not impose any restrictions on the players of the roles, which is a prerequisite in order
to demarcate the development processes. Thereof, partial implementation was derived
using the research prototype for the development support. Consequently, the utilization
of the resulting artifact by the middleware, which is the second research prototype, was
rigorously demonstrated. Lastly, achieving automated composition and adaptation in
a decentralized environment was explained and implemented prototypically.

The RoleDiSCo Middleware’s prototypical implementation’s performance and scalabil-
ity were evaluated. Performance was not a strong requirement, but time is generally a
crucial metric. Hence, it is remarkable that the composition time stays below the mark
of 1 s response time for interactive systems [62] even for system sizes up to 150 nodes
although the implementation still offers possibilities for improvement. Moreover, the
composition scales linearly to the number of nodes involved in the collaboration. So,
automated composition was shown to be derivable from role-based models and com-
position itself was achieved in a considerably short amount of time. Consequently, the
RoleDiSCo approach solved the problems of on-demand composition of smart service
systems and of the discontinuity between design-time specification, and the run-time
composition and adaptation.

Evidently, role-based models are a proper abstraction to specify complex service struc-
tures in order to realize on-demand composition and subsequent adaptation of Smart
Service Systems at run time. TheRoleDiSCoDevelopmentMethodology in conjunctionwith
theRoleDiSCoMiddleware allows to support theConcept of Roles throughout the entire sys-
tem life cycle, thereby eliminating the discontinuity between design and run time. The
development methodology, moreover, preserves the autonomy of both the autonomous
service developer and the Smart Service System designer. Limitations of enforcing
complex service structures in decentralized environments depend on the concrete plan-
ner that is used and the trade-off of applying role-based models in order to compose
complex service structures in decentralized environments, in turn, is considerably small.

125

7 Conclusion

This chapter concludes the thesis and thereby briefly summarizes the preceding chap-
ters. Thereafter, in conjunction with the main contributions of this thesis, the research
questions and problem statements will be reviewed. Finally, remaining challenges and
potential areas for future work are pointed out.

7.1 Summary

Chapter 1 motivated this thesis and argued that near-future smart computing environ-
ments, such as smart cities, smart homes, and in general the Internet of Things, will
heavily rely on the spontaneous collaboration of independently developed services.
However, existing solutions are limited in their application structure mainly due to
an absence of overlying specifications or models. Moreover, such collaborations will
be continuous or ongoing, and will not have a predefined expiration as, for instance,
business processes have. The increasing amount of smart systems and their provided
services requires new development approaches in order to demarcate the development
processes of the individual services from that of the collaborations as much as possible.
Eventually, approaches providing comprehensive models do not support spontaneous
run-time composition and approaches achieving such do not utilize models supporting
complex structures. The Concept of Roles was argued to provide an intuitive abstraction
that perfectly matches the collaborative nature of Smart Service Systems. Hence, the
approachwas designed based on the hypothesis that role-based abstractions allow to specify
Smart Service Systems at design time and subsequently enable on-demand composition and
adaptation of such systems in decentralized environments at run time.

Chapter 2 briefly summarized the predominant role concepts available in literature, as
no common definition of roles in computer science exists, and outlines the utilization and
understanding of the Concept of Roles and its application within the scope of this thesis.

127

7 Conclusion

Chapter 3 comprehensively analyzes the current state of practice and related work.
Approaches in the domain of role-based modeling, role-based runtimes and systems
achieving spontaneous collaborations, notably Self-Organizing Software Systems, were
analyzed. Besides seeing the problem statements confirmed, the discontinuity between
design and run timewas in evidence. The investigated approaches either utilize compre-
hensive models, partially even role-based models, but do not achieve automated compo-
sition, or they achieve automated composition of rather simple, predefined structures.

Subsequently, Chapter 4 presents the concepts to solve the aforementioned problems.
First, the RoleDiSCo Development Methodology separates the development of the over-
all Smart Service System, i.e., the collaboration, from that of the service and its role
essential to the collaboration. The methodology includes a Role-based Collaboration Spec-
ification to specify Smart Service Systems. Next, the RoleDiSCo Middleware Architecture
is designed to utilize the artifacts resulting from the development methodology in
order to achieve on-demand composition of Smart Service Systems in decentralized
environments. The middleware automatically derives discovery information, provides
a respective decentralized discovery mechanism and abstracts concrete underlying net-
work infrastructures. Finally, in order to compose and adapt such systems coordinately,
a protocol for coordinated on-demand composition and subsequent adaptation is proposed.
Chapter 5 provides some insights into the implementational details of the two research
prototypes that were developed in order to evaluate the approach.

Lastly, Chapter 6 is concerned with the qualitative and quantitative evaluation of the
RoleDiSCo approach. A case study rigorously demonstrates the complete development
methodology, how independent services can be integrated in both a role-based and a
non-role-based way, and eventually how these artifacts are used by the middleware in
order to achieve automated discovery, composition and adaptation in a coordinated
manner. Additionally, the approach was evaluated with respect to performance and
scalability. The evaluation concludeswith a critical discussion concerning the utilization
of the Concept of Roles for on-demand composition of Smart Service Systems.

7.2 Research Results

In Section 1.3, four key problems of engineering Smart Service Systems were identified,
all with the challenges of heterogeneity, context-awareness, and decentralization in
mind: on-demand composition of Smart Service Systems; a missing context-aware,
complex service system specification; a discontinuity from design-time specification to

128

7.2 Research Results

run-time composition and adaptation; and the intertwined development processes of
autonomous services and their role essential to a collaboration. The remainder of this
section is concerned with answering the research questions posed in Section 1.5.

1. What is a proper abstraction to specify complex service collaborations in order to realize
on-demand composition and subsequent adaptation of Smart Service Systems at run time?

The Concept of Roles is a proper abstraction to specify complex service collaborations
and to realize on-demand composition as well as adaptation thereof. Roles inherently
allow for serendipity, i.e., to integrate unforeseen entities or functionality at run time,
which is a huge advantage in order to realize heterogeneity. Since players and roles are
loosely coupled, their binding can be easily reconfigured thereby changing the overall
behavior or integrating new behavior by providing a new player for an existing role.

The collaborative nature of roles desires a utilization for the composition of distributed
systems as roles and their surrounding collaborations inherently specify relationships
and thereby a complete system structure. Compared to classic approaches, e.g., SOAs,
roles are much more flexible. While, for instance, in SOAs the service and its role
essential to a complete business process result in the same logical and physical unit,
applying the concept of roles allows to split this unit into the service, providing the
base functionality and concrete execution, and its role essential to a collaboration.

This separation allows to demarcate the development processes of the individual ser-
vices from those of the collaborations. Developers implementing services that provide
a certain functionality do not have to focus on how their services might integrate with
others. Conversely, developers who would like to integrate such services do not have to
capture all eventualities of concrete services to be integrated. Applying the concept of
roles, each of the groups can continue to focus on its own part. Both or even a third party
is able to integrate the individual parts by letting a service play a role in a collaboration,
which is a substantial achievement considering the increasing amount of smart systems.

At run time, a role type can be instantiated several times for different collaborations,
which allows for simultaneous participation of the player in different collaborations.
Thus, roles are very beneficial in order to deal with isolation as multiple role instances
can be played by the same player, thereby having one physical resource participating
in multiple collaborations. Roles, moreover, allow to abstract physical resources that
cannot be shared to some extent: multiple role instances on a single node may rotate in
order to share the physical resource, thereby creating some kind of resource scheduling.

129

7 Conclusion

Conclusively, the Concept of Roles could act as an enabling technology to integrate sys-
tems of different origins, types, architectural concepts, and granularity. This thesis
showed that applying roles allows to easily compose a system out of potentially hetero-
geneous runtimes, such as a role-based runtime and a legacy one. Obviously, a runtime
could be replaced with a SOA, a component-based system, a multi-agent system, or any
other kind of system that adopts a notion of roles. Nevertheless, the role as a common de-
nominator could enable systems of different vendors to collaborate, andmoreover to inte-
grate with other systems of other types, such as SOAs or even a local role-based runtime.

2. How can these abstractions be supported throughout the application life cycle (i.e., development
and operation phase) in a way which preserves the autonomy of both the autonomous service
designer and the Smart Service System designer?

In order to support the Concept of Roles throughout the application life cycle, the
RoleDiSCo Development Methodology, which demarcates the development processes
and thereby preserves the individual developers’ independence, results in artifacts that
are designed to be used by the RoleDiSCo Middleware, which thereby eliminates the
existing discontinuity between design and run time, and complements the support of
the Concept of Roles throughout the entire application life cycle.

The RoleDiSCo Development Methodology, a two-phase development methodology, de-
marcates the development of the service from that of its role essential to a collaboration:
First, a collaboration designer specifies the overall collaboration including its abstract
functionality using the proposed role-based, context-aware collaboration specification.
This specification is independent of the roles’ potential players. Thereof, a partial im-
plementation is derived, which is later complemented with its concrete performance by
several other developers in a second phase. The derived partial implementation can be
integrated without changing the existing implementation. This preserves the individual
development lanes of the autonomous services and those of the collaborations. The
artifacts resulting from the development methodology are designed to be used by the
RoleDiSCo Middleware, thereby eliminating the discontinuity between design and run
time, and supporting the Concept of Roles throughout the entire application life cycle.

3. What are limitations of enforcing complex service structures in decentralized environments?

Thanks to the RoleDiSCo Middleware, the composition and adaptation process is only
limited by the respective planner that calculates the composition plan. The prototypical
implementation lacks a general-purpose planner, which would be able to compute a
composition plan based on an arbitrary collaboration specification. In other words,
limitations concerning the service structure only arise from the designated planner

130

7.3 Future Work

but neither from the composition protocol nor from the proposed middleware. At
run time, the system will probably not scale indefinitely, which may be caused by
various reasons, such as limitedmemory on the Pervasive Collaboration Coordinator, or
limited network bandwidth. Additionally, large-scale collaborations might face volatile
network situations causing a lot of adaptations. Though the system will continue to
work, the overall stability and usability might be affected. Nevertheless, the evaluation
demonstrated that the approach scales reasonably well up to 150 nodes, which was an
upper boundary solely due to limited resources of themachine used for the experiments.

4. What is the trade-off of applying the concept of roles to on-demand composition and adaptation
of Smart Service Systems? What are limitations?

Roles primarily exist as types while services or components are already instantiated
and run. Thus, roles have to be instantiated first, then they have to be bound to their
players, and eventually that binding is to be activated, which is considered equivalent
to binding a service to another. The performance evaluation, however, shows that the
protocol’s overhead in total is significantly low. Of course, if role instantiation, player
instantiation, or their binding is more time-consuming, the overall performance will
decrease. Since the total composition time for all three steps in two scenarios with 150
nodes, thus 150 respectively 750 role instances, is less than half a second, the trade-off
of applying the role concept to on-demand composition and adaptation is considerably
small. The case study argued the role-based approach to be feasible and beneficial,
while the performance evaluation demonstrated the composition protocol’s overhead
introduced by roles to be of little significance. In other words, automated composition
and structural adaptation can be derived from role-based models almost for free.

7.3 Future Work

This thesis combined two different research domains. One goal was to utilize the com-
prehensive models from the domain of Role-based Software Systems, with autonomous
composition and adaptation features available in Self-Organizing Software Systems.
Notwithstanding its contribution to the current state of research, a couple of interesting
research challenges were not addressed within this thesis.

General-Purpose Planner

A crucial limitation in order to realize arbitrary intricate application structures is the
underlying planner, which matches a collaboration specification with the respective

131

7 Conclusion

discovery information in order to provide the composition instructions. Section 5.2.3
pointed out that such planners exist [72] and explained how to utilize them. As a logical
consequence, it has to be investigated, whether such a planner should compute plans
based on a yet to be defined composition plan metamodel, a model derived from the
specification as part of the proposed development methodology, or on a manually
provided model, which equates to manually implementing the planner. Assuming that
it is possible to calculate plans either on a static metamodel (general-purpose planner)
or a derived model (generated, tailored planner), it would be interesting to investigate
whether a general-purpose planner is significantly slower than a tailored one.

Formally Founded Specification

Section 3.1.2 discussed the Compartment-Role-Object Model (CROM) [56] as a formal
metamodel capturing many features of role-based modeling languages existent in
literature. Though the specification is inspired by CROM, it is not formally founded
on that. CROM is based on ontological foundations of roles, which were not discussed
in this thesis, but have several implications on the definitions of players, roles, and
compartments (i.e., collaborations). Additionally, the player’s type is always known and
predefined in CROM, which was to be avoided in favor of serendipity. Assuming the
player’s interface, generated for the player as part of the code generation process, as the
player’s type, the ontological foundations are still violated as an interface is not rigid,
but a CROM-based formal foundation appears achievable. This would ease to interlink
approaches employing different notions of roles.

Fine-Grained Adaptation

As of now, adaptation is considered as a structural recomposition caused by infrastruc-
tural or contextual changes. Evidently, adaptation should be much more fine-grained.
Since roles are stateful, decoupled units, they can easily be migrated among players.
However, currently the approach is not able to automatically derive a migration from
change sets that result from updated composition plans, but limited to adding and re-
moving roles from the collaboration. This issue has been partially explored in [MW6] by
integrating an approach that reliably performs complex run-time adaptations of highly
distributed software systems without a central control unit [82] into the approaches
presented in this thesis. Thereby, the proposed specification was extended by particular
instructions that enable the middleware to migrate roles specifically. Since such adap-
tations usually depend on a concrete scenario, it is reasonable that the collaboration
designer will take care of such explicit adaptations.

132

The End.

Bibliography

[1] WilM P van der Aalst andArthur HM ter Hofstede. “YAWL: Yet AnotherWorkflowLanguage”.
In: Information Systems 30.4 (2005), pp. 245–275. doi: 10.1016/j.is.2004.02.002.

[2] Android Developers. Android. url: https://developer.android.com (visited on 10/07/2017).
[3] Avahi Service Discovery Suite. url: http://avahi.org (visited on 02/24/2017).
[4] Charles W Bachman and Manilal Daya. “The Role Concept in Data Models”. In: Proceedings of

the Third International Conference on Very Large Data Bases. VLDB Endowment, Oct. 1977.
[5] Bela Ban. JGroups. A Toolkit for Reliable Messaging. Red Hat. 2017. url: http://www.jgroups.

org/ (visited on 09/10/2017).
[6] Sergio Barile and Francesco Polese. “Smart Service Systems and Viable Service Systems: Ap-

plying Systems Theory to Service Science”. In: Service Science 2.1-2 (2010), pp. 21–40. doi:
10.1287/serv.2.1_2.21.

[7] Lorenzo Bettini. Implementing Domain-Specific Languages with Xtext and Xtend. Learn How to
Implement a DSLwith Xtext and Xtend Using Easy-to-Understand Examples and Best Practices.
Packt Publishing Ltd, Aug. 2016. isbn: 9781786464965.

[8] Lachlan Birdsey, Claudia Szabo, and Katrina Falkner. “CASL: A declarative domain specific
language for modeling Complex Adaptive Systems”. In: 2016 Winter Simulation Conference
(WSC). IEEE, 2016, pp. 1241–1252. isbn: 978-1-5090-4486-3. doi: 10.1109/WSC.2016.7822180.

[9] Guido Boella and Friedrich Steimann. “Roles and Relationships”. In: ECOOP’07: Proceedings of
the 2007 Conference on Object-oriented Technology. Berlin, Heidelberg: Springer, July 2007.

[10] Bonjour. Apple, Inc. url: https : / / support . apple . com / de - de / bonjour (visited on
02/24/2017).

[11] Antonio Bucchiarone, Antonio Cicchetti, and Martina De Sanctis. “Towards a Domain Specific
Language for Engineering Collective Adaptive Systems”. In: 2017 IEEE International Workshops
on Foundations and Applications of Self* Systems (Tucson, AZ, USA, Sept. 18–22, 2017). Sept. 2017.
doi: 10.1109/FAS-W.2017.115.

[13] Tomas Bures, Ilias Gerostathopoulos, Petr Hnetynka, Jaroslav Keznikl,Michal Kit, and Frantisek
Plasil. “DEECO:An Ensemble-basedComponent System”. In: Proceedings of the 16th International
ACM Sigsoft Symposium on Component-based Software Engineering. New York, NY, USA: ACM,
2013, pp. 81–90. isbn: 978-1-4503-2122-8. doi: 10.1145/2465449.2465462.

[12] Tomas Bures, Filip Krijt, Frantisek Plasil, Petr Hnetynka, and Zbynek Jiracek. “Towards In-
telligent Ensembles”. In: Proceedings of the 2015 European Conference on Software Architecture
Workshops (Dubrovnik, Cavtat, Croatia, Sept. 7–11, 2015). ECSAW ’15. New York, NY, USA:
ACM, 2015, 17:1–17:4. isbn: 978-1-4503-3393-1. doi: 10.1145/2797433.2797450.

[14] Business Process Model and Notation. OMG Specification. Version 2.0. Object Management Group
(OMG), Jan. 3, 2011. url: http://www.omg.org/spec/BPMN/2.0/ (visited on 02/10/2017).

[15] Mauro Caporuscio and Carlo Ghezzi. “Engineering Future Internet Applications: The Prime
Approach”. In: Journal of Systems and Software 106.August 2015 (Apr. 2015), pp. 9–27. doi:
10.1016/j.jss.2015.03.102.

135

https://doi.org/10.1016/j.is.2004.02.002
https://developer.android.com
http://avahi.org
http://www.jgroups.org/
http://www.jgroups.org/
https://doi.org/10.1287/serv.2.1_2.21
https://doi.org/10.1109/WSC.2016.7822180
https://support.apple.com/de-de/bonjour
https://doi.org/10.1109/FAS-W.2017.115
https://doi.org/10.1145/2465449.2465462
https://doi.org/10.1145/2797433.2797450
http://www.omg.org/spec/BPMN/2.0/
https://doi.org/10.1016/j.jss.2015.03.102

Bibliography

[16] Mauro Caporuscio, Vincenzo Grassi, Moreno Marzolla, and Raffaela Mirandola. “GoPrime: A
Fully Decentralized Middleware for Utility-Aware Service Assembly”. In: Software Engineering,
IEEE Transactions on 42.2 (Feb. 2016), pp. 136–152. doi: 10.1109/TSE.2015.2476797.

[17] Valeria Cardellini, Mirko D’Angelo, Vincenzo Grassi, MorenoMarzolla, and RaffaelaMirandola.
“A Decentralized Approach to Network-Aware Service Composition”. In: Service Oriented and
Cloud Computing. Cham: Springer, Cham, Sept. 2015, pp. 34–48. isbn: 978-3-319-24071-8. doi:
10.1007/978-3-319-24072-5_3.

[18] Alan W Colman. “Role Oriented Adaptive Design”. PhD thesis. Swinburne University of
Technology, 2006.

[19] Alan W Colman and Jun Han. “On the Autonomy of Software Entities and Modes of Organisa-
tion”. In: Proceedings of the 1st International Workshop on Coordination and Organisation. 2005. url:
http://www.ict.swin.edu.au/personal/jhan/jhanPapers/coorg05autonomy.pdf.

[20] Alan W Colman and Jun Han. “Roles, Players and Adaptable Organizations”. In: Applied
Ontology 2.2 (Apr. 2007), pp. 105–126.

[21] Alan W Colman and Jun Han. “Using Role-Based Coordination to Achieve Software Adaptabil-
ity”. In: Science of Computer Programming 64.2 (Jan. 2007), pp. 223–245. doi: 10.1016/j.scico.
2006.06.006.

[22] Anind K Dey. “Understanding and Using Context”. In: Personal Ubiquitous Comput. 5.1 (Jan.
2001), pp. 4–7. doi: 10.1007/s007790170019.

[23] Giovanna Di Marzo Serugendo and J Fitzgerald. “MetaSelf: an Architecture and a Development
Method for Dependable Self-* Systems”. In: SAC’10: Proceedings of the 2010 ACM Symposium on
Applied Computing. 2010.

[24] Giovanna Di Marzo Serugendo et al. “Self-Organisation: Paradigms and Applications”. In: En-
gineering Self-Organising Systems. Ed. by Giovanna Di Marzo Serugendo, Anthony Karageorgos,
Omer F Rana, and Franco Zambonelli. Berlin, Heidelberg: Springer, 2004, pp. 1–19.

[25] Eclipse Modeling Framework (EMF). The Eclipse Foundation. url: http://www.eclipse.org/
modeling/emf/ (visited on 08/11/2017).

[26] SvenEfftinge et al. “Xbase: ImplementingDomain-specific Languages for Java”. In:Proceedings of
the 11th International Conference on Generative Programming and Component Engineering (Dresden,
Germany, Sept. 26–27, 2012). GPCE ’12. New York, NY, USA: ACM, 2012, pp. 112–121. isbn:
978-1-4503-1129-8. doi: 10.1145/2371401.2371419.

[27] eMarketer Inc. 2 Billion Consumers Worldwide to Get Smart(phones) by 2016. Dec. 2014. url:
http://www.emarketer.com/Article/2-Billion-Consumers-Worldwide-Smartphones-
by-2016/1011694 (visited on 01/05/2016).

[28] Roy Thomas Fielding and Richard N Taylor. “Principled design of the modern Web archi-
tecture”. In: ACM Transactions on Internet Technology (TOIT) 2.2 (May 2002), pp. 115–150. doi:
10.1145/514183.514185.

[29] Martin Fowler. Inversion of Control Containers and the Dependency Injection Pattern. Jan. 23, 2004.
url: https://martinfowler.com/articles/injection.html (visited on 10/05/2017).

[30] Pedro Garcia Lopez et al. “Edge-centric Computing: Vision and Challenges”. In: SIGCOMM
Comput. Commun. Rev. 45.5 (Sept. 2015), pp. 37–42. issn: 0146-4833. doi: 10.1145/2831347.
2831354.

[31] Gartner, Inc. Gartner Says 6.4 Billion Connected ”Things” Will Be in Use in 2016, Up 30 Percent
From 2015. Press Release. Nov. 2015. url: http://www.gartner.com/newsroom/id/3165317.

[32] Gartner, Inc. Gartner Says a Typical Family Home Could Contain More Than 500 Smart Devices by
2022. Press Release. Sept. 2014. url: http://www.gartner.com/newsroom/id/2839717.

[33] Gartner, Inc. Gartner’s 2016 Hype Cycle for Emerging Technologies Identifies Three Key Trends That
Organizations Must Track to Gain Competitive Advantage. Aug. 2016. url: http://www.gartner.
com/newsroom/id/3412017.

136

https://doi.org/10.1109/TSE.2015.2476797
https://doi.org/10.1007/978-3-319-24072-5_3
http://www.ict.swin.edu.au/personal/jhan/jhanPapers/coorg05autonomy.pdf
https://doi.org/10.1016/j.scico.2006.06.006
https://doi.org/10.1016/j.scico.2006.06.006
https://doi.org/10.1007/s007790170019
http://www.eclipse.org/modeling/emf/
http://www.eclipse.org/modeling/emf/
https://doi.org/10.1145/2371401.2371419
http://www.emarketer.com/Article/2-Billion-Consumers-Worldwide-Smartphones-by-2016/1011694
http://www.emarketer.com/Article/2-Billion-Consumers-Worldwide-Smartphones-by-2016/1011694
https://doi.org/10.1145/514183.514185
https://martinfowler.com/articles/injection.html
https://doi.org/10.1145/2831347.2831354
https://doi.org/10.1145/2831347.2831354
http://www.gartner.com/newsroom/id/3165317
http://www.gartner.com/newsroom/id/2839717
http://www.gartner.com/newsroom/id/3412017
http://www.gartner.com/newsroom/id/3412017

Bibliography

[34] Valerio Genovese. “A Meta-model for Roles: Introducing Sessions”. In: Proceedings of the 2nd
Workshop on Roles and Relationships in Object Oriented Programming, Multiagent Systems, and On-
tologies. Ed. by Guido Boella, Steffen Goebel, Friedrich Steimann, Steffen Zschaler, and Michael
Cebulla. July 2007, pp. 27–38. url: http://www.di.unito.it/~genovese/publications/
2007/roles07.pdf.

[35] Yaron Y. Goland, Ting Cai, Paul Leach, Ye Gu, and Shivaun Albright. Simple Service Discovery
Protocol/1.0. Tech. rep. Oct. 28, 1999. url: ftp://ftp.pwg.org/pub/pwg/ipp/new_SSDP/draft-
cai-ssdp-v1-03.txt (visited on 01/05/2017).

[36] Google Chromecast. Google Inc. 2016. url: https://www.google.com/intl/en_us/chromecast/
(visited on 01/05/2017).

[37] Google Guice. Version 4.1. Google Inc. 2017. url: https://github.com/google/guice (visited
on 10/05/2017).

[38] Joel Greenyer, Larissa Chazette, Daniel Gritzner, and Eric Wete. “A Scenario-Based MDE
Process for Dynamic Topology Collaborative Reactive Systems – Early Virtual Prototyping of
Car-to-X System Specifications”. In: Proceedings Workshops zur Modellierung in der Entwicklung
von kollaborativen eingebetteten Systemen (MEKES) (to appear). 2018. url: http://jgreen.de/wp-
content/documents/2018/virtual-prototyping-of-car-to-x-applications-camera-
ready.pdf.

[39] Guava. Google Core Libraries for Java. Version 22.0. Google Inc. 2017. url: https://github.com/
google/guava (visited on 10/05/2017).

[40] Erik Guttman. “Autoconfiguration for IP networking: enabling local communication”. In: IEEE
Internet Computing 5.3 (2001), pp. 81–86. doi: 10.1109/4236.935181.

[41] Robrecht Haesevoets, Danny Weyns, and Tom Holvoet. “Architecture-centric Support for
Adaptive Service Collaborations”. In: ACM Transactions on Software Engineering and Methodology
(TOSEM) 23.1 (Feb. 2014), pp. 2–40.

[42] Rolf Hennicker and Annabelle Klarl. “Foundations for Ensemble Modeling – The Helena
Approach”. In: Specification, Algebra, and Software. Berlin, Heidelberg: Springer, 2014, pp. 359–
381. isbn: 978-3-642-54623-5. doi: 10.1007/978-3-642-54624-2_18.

[43] Stephan Herrmann. “Object Teams: ImprovingModularity for Crosscutting Collaborations”. In:
Objects, Components, Architectures, Services, and Applications for a Networked World: International
Conference NetObjectDays, NODe 2002 Erfurt, Germany, October 7–10, 2002 Revised Papers. Ed. by
Mehmet Aksit, Mira Mezini, and Rainer Unland. Berlin, Heidelberg: Springer, 2003, pp. 248–
264.

[44] Stephan Herrmann, Christine Hundt, Katharina Mehner, and Jan Wloka. “Using Guard Predi-
cates for Generalized Control of Aspect Instantiation and Activation”. In: DAW’05: Dynamic
Aspects Workshop. 2005, pp. 93–101. url: http://www.objectteams.org/publications/
DAW05.pdf.

[45] How to AirPlay content from your iPhone, iPad, or iPod touch. Apple Inc. Sept. 13, 2016. url:
https://support.apple.com/en-us/HT204289 (visited on 01/05/2017).

[46] Tobias Jäkel, Martin Weißbach, Kai Herrmann, Hannes Voigt, and Max Leuthäuser. “Position
Paper: Runtime Model for Role-Based Software Systems”. In: 2016 IEEE International Conference
on Autonomic Computing (ICAC). July 2016, pp. 380–387. doi: 10.1109/ICAC.2016.17.

[47] Márk Jelasity, Alberto Montresor, and Ozalp Babaoglu. “Gossip-based Aggregation in Large
DynamicNetworks”. In:ACMTransactions on Computer Systems (TOCS) 23.3 (Aug. 2005), pp. 219–
252. doi: 10.1145/1082469.1082470.

[48] David Kempe, Alin Dobra, and Johannes Gehrke. “Gossip-Based Computation of Aggregate
Information”. In: 44th Annual IEEE Symposium on Foundations of Computer Science - FOCS 2003.
IEEE Computer. Soc, 2003, pp. 482–491. isbn: 0-7695-2040-5. doi: 10.1109/SFCS.2003.1238221.

137

http://www.di.unito.it/~genovese/publications/2007/roles07.pdf
http://www.di.unito.it/~genovese/publications/2007/roles07.pdf
ftp://ftp.pwg.org/pub/pwg/ipp/new_SSDP/draft-cai-ssdp-v1-03.txt
ftp://ftp.pwg.org/pub/pwg/ipp/new_SSDP/draft-cai-ssdp-v1-03.txt
https://www.google.com/intl/en_us/chromecast/
https://github.com/google/guice
http://jgreen.de/wp-content/documents/2018/virtual-prototyping-of-car-to-x-applications-camera-ready.pdf
http://jgreen.de/wp-content/documents/2018/virtual-prototyping-of-car-to-x-applications-camera-ready.pdf
http://jgreen.de/wp-content/documents/2018/virtual-prototyping-of-car-to-x-applications-camera-ready.pdf
https://github.com/google/guava
https://github.com/google/guava
https://doi.org/10.1109/4236.935181
https://doi.org/10.1007/978-3-642-54624-2_18
http://www.objectteams.org/publications/DAW05.pdf
http://www.objectteams.org/publications/DAW05.pdf
https://support.apple.com/en-us/HT204289
https://doi.org/10.1109/ICAC.2016.17
https://doi.org/10.1145/1082469.1082470
https://doi.org/10.1109/SFCS.2003.1238221

Bibliography

[49] JaroslavKeznikl, Tomas Bures, Frantisek Plasil, andMichal Kit. “TowardsDependable Emergent
Ensembles of Components: The DEECo Component Model”. In: 2012 Joint Working IEEE/IFIP
Conference on Software Architecture and European Conference on Software Architecture. IEEE, pp. 249–
252. isbn: 978-0-7695-4827-2. doi: 10.1109/WICSA-ECSA.212.39.

[50] Annabelle Klarl. “Engineering Self-Adaptive Systems with the Role-Based Architecture of
Helena”. In: 24th International Conference on Enabling Technologies: Infrastructure for Collaborative
Enterprises. IEEE, Aug. 2015, pp. 3–8. isbn: 978-1-4673-7692-1. doi: 10.1109/WETICE.2015.32.

[51] Annabelle Klarl, Lucia Cichella, and Rolf Hennicker. “From Helena Ensemble Specifications to
Executable Code”. In: Formal Aspects of Component Software. Cham: Springer Intl. Publ., Sept.
2014, pp. 183–190. isbn: 978-3-319-15316-2. doi: 10.1007/978-3-319-15317-9_11.

[52] Annabelle Klarl and Rolf Hennicker. “Design and Implementation of Dynamically Evolving
Ensembles with the Helena Framework”. In: 2014 23rd Australian Software Engineering Conference
(ASWEC). IEEE, 2014, pp. 15–24. isbn: 978-1-4799-3149-1. doi: 10.1109/ASWEC.2014.26.

[53] Christian Krupitzer, Felix Maximilian Roth, Sebastian VanSyckel, Gregor Schiele, and Christian
Becker. “A Survey on Engineering Approaches for Self-Adaptive Systems”. In: Pervasive and
Mobile Computing 17 (Feb. 2015), pp. 184–206. doi: 10.1016/j.pmcj.2014.09.009.

[54] ThomasKühn. formalCROM– Implementation. url: https://github.com/Eden-06/formalCROM
(visited on 03/24/2017).

[55] Thomas Kühn, Kay Bierzynski, Sebastian Richly, and Uwe Aßmann. “FRaMED: Full-fledge
Role Modeling Editor (Tool Demo)”. In: Proceedings of the 2016 ACM SIGPLAN International
Conference on Software Language Engineering. New York, NY, USA: ACM, Oct. 2016, pp. 132–136.
isbn: 978-1-4503-4447-0. doi: 10.1145/2997364.2997371.

[56] ThomasKühn, Stephan Böhme, SebastianGötz, andUweAßmann. “ACombined FormalModel
for Relational Context-dependent Roles”. In: Proceedings of the 2015 ACM SIGPLAN International
Conference on Software Language Engineering (Pittsburgh, PA, USA). SLE 2015. New York, NY,
USA: ACM, 2015, pp. 113–124. isbn: 978-1-4503-3686-4. doi: 10.1145/2814251.2814255.

[57] Thomas Kühn, Stephan Böhme, Sebastian Götz, and Uwe Aßmann.A Combined Formal Model for
Relational Context-Dependent Roles (Extended). Tech. rep. TUD-FI15-04-September 2015. Dresden:
Technische Universität Dresden, Sept. 2015. url: http://www.qucosa.de/urnnbn/urn:nbn:
de:bsz:14-qucosa-178506.

[58] Thomas Kühn, Max Leuthäuser, Sebastian Götz, Christoph Seidl, and Uwe Aßmann. “A Meta-
model Family for Role-Based Modeling and Programming Languages”. In: Software Language
Engineering. Cham: Springer Intl. Publ., Sept. 2014, pp. 141–160. isbn: 978-3-319-11244-2. doi:
10.1007/978-3-319-11245-9_8.

[59] P. Leach, M. Mealling, and R. Salz. A Universally Unique IDentifier (UUID) URN Namespace. RFC
4122. IETF, July 2005, pp. 1–32. url: https://tools.ietf.org/html/rfc4122.

[60] Max Leuthäuser and Uwe Aßmann. “Enabling View-based Programming with SCROLL”. In:
Proceedings of the 2015 Joint MORSE/VAO Workshop. New York, NY, USA: ACM Press, 2015,
pp. 25–33.

[61] Mengchi Liu and Jie Hu. “Information Networking Model”. In: Proceedings of the 28th Inter-
national Conference on Conceptual Modeling. Conceptual Modeling - ER 2009 (Gramado, Brazil,
Nov. 9–12, 2009). Ed. by Alberto H. F. Laender, Silvana Castano, Umeshwar Dayal, Fabio Casati,
and José Palazzo M. de Oliveira. Berlin, Heidelberg: Springer, 2009. isbn: 978-3-642-04839-5.
doi: 10.1007/978-3-642-04840-1_12.

[62] Jakob Nielsen. Usability Engineering. San Francisco, CA: Morgan Kaufmann, 1993. isbn: 978-0-
12-518406-9.

[63] Open Connectivity Foundation, Inc. UPnP Device Architecture 2.0. Feb. 2015. url: http://upnp.
org/specs/arch/UPnP-arch-DeviceArchitecture-v2.0.pdf.

[64] Terence Parr. The Definitive ANTLR 4 Reference. 2nd ed. Dallas, Texas ; Raleigh, North Carolina :
The Pragmatic Bookshelf, Sept. 2014. isbn: 1934356999.

138

https://doi.org/10.1109/WICSA-ECSA.212.39
https://doi.org/10.1109/WETICE.2015.32
https://doi.org/10.1007/978-3-319-15317-9_11
https://doi.org/10.1109/ASWEC.2014.26
https://doi.org/10.1016/j.pmcj.2014.09.009
https://github.com/Eden-06/formalCROM
https://doi.org/10.1145/2997364.2997371
https://doi.org/10.1145/2814251.2814255
http://www.qucosa.de/urnnbn/urn:nbn:de:bsz:14-qucosa-178506
http://www.qucosa.de/urnnbn/urn:nbn:de:bsz:14-qucosa-178506
https://doi.org/10.1007/978-3-319-11245-9_8
https://tools.ietf.org/html/rfc4122
https://doi.org/10.1007/978-3-642-04840-1_12
http://upnp.org/specs/arch/UPnP-arch-DeviceArchitecture-v2.0.pdf
http://upnp.org/specs/arch/UPnP-arch-DeviceArchitecture-v2.0.pdf

Bibliography

[65] Christian Piechnick. “Smart Application Grids”. Diploma Thesis. Dresden, Oct. 2011.
[66] Christian Piechnick, Sebastian Richly, Sebastian Götz, Claas Wilke, and Uwe Aßmann. “Using

Role-Based Composition to Support Unanticipated, Dynamic Adaptation – Smart Application
Grids”. In: ADAPTIVE 2012: The Fourth International Conference on Adaptive and Self-Adaptive
Systems and Applications. 2012.

[67] Sławek Piotrowski. ClassIndex. Version 3.4. Atteo. 2017. url: https://github.com/atteo/
classindex (visited on 10/05/2017).

[68] Trygve Reenskaug and Jim Coplien. The DCI Architecture: A New Vision of Object-Oriented
Programming. May 2009. url: http://www.artima.com/articles/dci_vision.html.

[69] Dirk Riehle and Thomas Gross. “Role Model Based Framework Design and Integration”. In:
ACM SIGPLAN Notices (1998). doi: 10.1145/286936.286951.

[70] Mazeiar Salehie and Ladan Tahvildari. “Self-adaptive Software: Landscape and Research
Challenges”. In: ACM Trans. Auton. Adapt. Syst. 4.2 (May 2009), 14:1–14:42. issn: 1556-4665. doi:
10.1145/1516533.1516538.

[71] Lars Schütze and Jeronimo Castrillon. “Analyzing State-of-the-Art Role-based Programming
Languages”. In: Companion to the First International Conference on the Art, Science and Engineering
of Programming (Brussels, Belgium). Programming ’17. New York, NY, USA: ACM, 2017, 9:1–9:6.
isbn: 978-1-4503-4836-2. doi: 10.1145/3079368.3079386.

[72] Geoffrey De Smet et al. OptaPlanner User Guide. Optaplanner: An Open Source Constraint
Satisfaction Solver in Java. Red Hat et al. url: https://www.optaplanner.org.

[73] Friedrich Steimann. “On the Representation of Roles in Object-oriented and Conceptual Mod-
elling”. In: Data & Knowledge Engineering 35.1 (Oct. 2000), pp. 83–106. doi: 10.1016/S0169-
023X(00)00023-9.

[74] Friedrich Steimann. “Role = Interface: A Merger of Concepts”. In: (2001). issn: 0896-8438. url:
http://deposit.fernuni-hagen.de/2183/.

[75] Daniel Sykes, Jeff Magee, and Jeff Kramer. “FlashMob: Distributed Adaptive Self-assembly”.
In: Proceedings of the 6th International Symposium on Software Engineering for Adaptive and Self-
Managing Systems. New York, NY, USA: ACM, May 2011, pp. 100–109.

[76] Nguonly Taing, Thomas Springer, Nicolás Cardozo, andAlexander Schill. “ADynamic Instance
Binding Mechanism Supporting Run-time Variability of Role-based Software Systems”. In:
Companion Proceedings of the 15th International Conference on Modularity (Málaga, Spain). MODU-
LARITYCompanion 2016. NewYork, NY, USA: ACM, 2016, pp. 137–142. isbn: 978-1-4503-4033-5.
doi: 10.1145/2892664.2892687.

[77] Luis M Vaquero and Luis Rodero-Merino. “Finding your Way in the Fog”. In: ACM SIGCOMM
Computer Communication Review 44.5 (Oct. 2014), pp. 27–32. doi: 10.1145/2677046.2677052.

[78] Web Services Business Process Execution Language. OASIS Standard. Version 2.0. OASIS, Apr. 11,
2007. url: http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html (visited
on 02/10/2017).

[79] Web Services Choreography Description Language. W3C Candidate Recommendation. Version 1.0.
World Wide Web Consortium (W3C), Nov. 9, 2005. url: http://www.w3.org/TR/ws-cdl-10/
(visited on 02/10/2017).

[80] Web Services Description Language. W3C Recommendation. Version 2.0. World Wide Web Con-
sortium (W3C), June 26, 2007. url: http://www.w3.org/TR/wsdl20 (visited on 02/10/2017).

[81] Mark Weiser. “The Computer for the 21st Century”. In: Scientific American 265.3 (1991), pp. 94–
104.

[82] Martin Weißbach and Thomas Springer. “Coordinated Execution of Adaptation Operations in
Distributed Role-based Software Systems”. In: SAC’17 (Marrakesh, Marocco). SAC ’17. New
York, NY, USA: ACM, 2017, pp. 45–50. doi: 10.1145/3019612.3019624.

139

https://github.com/atteo/classindex
https://github.com/atteo/classindex
http://www.artima.com/articles/dci_vision.html
https://doi.org/10.1145/286936.286951
https://doi.org/10.1145/1516533.1516538
https://doi.org/10.1145/3079368.3079386
https://www.optaplanner.org
https://doi.org/10.1016/S0169-023X(00)00023-9
https://doi.org/10.1016/S0169-023X(00)00023-9
http://deposit.fernuni-hagen.de/2183/
https://doi.org/10.1145/2892664.2892687
https://doi.org/10.1145/2677046.2677052
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://www.w3.org/TR/ws-cdl-10/
http://www.w3.org/TR/wsdl20
https://doi.org/10.1145/3019612.3019624

Bibliography

[83] Danny Weyns, Sam Malek, and Jesper Andersson. “On Decentralized Self-Adaptation: Lessons
From the Trenches and Challenges for the Future”. In: Proceedings of the 2010 ICSE Workshop on
Software Engineering for Adaptive and Self-Managing Systems. New York, NY, USA: ACM, May
2010, pp. 84–93. isbn: 978-1-60558-971-8. doi: 10.1145/1808984.1808994.

[84] Danny Weyns et al. “On Patterns for Decentralized Control in Self-Adaptive Systems”. In:
Software Engineering for Self-Adaptive Systems II. Ed. by Rogério de Lemos, Holger Giese, Hausi
A Müller, and Mary Shaw. Berlin, Heidelberg: Springer, 2013, pp. 76–107.

[85] Gerd Wütherich, Nils Hartmann, Bernd Kolb, and Matthias Lübken. Die OSGi Service Platform.
Eine Einführung mit Eclipse Equinox. Heidelberg: dpunkt.verlag, 2008. isbn: 9783898644570.

[86] Xtext – Language Engineering Made Easy! The Eclipse Foundation. url: http://www.eclipse.
org/Xtext/ (visited on 10/08/2017).

140

https://doi.org/10.1145/1808984.1808994
http://www.eclipse.org/Xtext/
http://www.eclipse.org/Xtext/

List of Figures

1.1 Simple, Reconfigurable, and Complex Service Structures. 4

2.1 Roles as Names of Associations in UML Diagrams. 13
2.2 Different Perspectives on Roles. [cf. 20, Figure 1] 15
2.3 Conceptually Complemented Perspective on Roles. 16

3.1 Key Concepts of Macodo and their relations. [cf. 41, Figure 2] 24
3.2 Classification Scheme for Role-based Run-Time Systems. 29
3.3 Conceptual Relationships in ROAD. [cf. 21, Figure 9] 32
3.4 Classification Scheme for Spontaneously Collaborating Run-Time Systems. 37
3.5 GoPrime’s Case Study: A Smart Health Scenario. [cf. 16, Figure 8] . . . 40

4.1 RoleDiSCo Development Methodology. 46
4.2 Role-based Collaboration Specification’s Metamodel. 47
4.3 Generated Partial Implementation for the Classroom Scenario. 54
4.4 Context–Player Relation. 55
4.5 High-Level-Architecture of the RoleDiSCo Middleware. 57
4.6 Direct Method Invocation, Bypassing the Coordinating Subsystem. . . 61
4.7 Structure and Example of a RoleAnnouncement Message. 62
4.8 Protocol Overview for Coordinated Composition of Pervasive Collabo-

rations. 65
4.9 Operational States of the Middleware at Run Time. 66
4.10 Life Cycle of a Pervasive Collaboration. 66
4.11 Protocol Overview of the Distributed, Coordinated Composition on the

PCC’s Subsystem. 68
4.12 Structure of a CollaborationInvite Message. 69
4.13 Structure of an InviteAcknowledgement Message. 69
4.14 Structure of an InstantiateRoles Message. 70
4.15 Structure of an InstantiateRolesResponse Message. 70
4.16 Structure of a Rollback Message. 70
4.17 Structure of a BindRoles Message. 71
4.18 Structure of a BindRolesResponse Message. 71
4.19 Life Cycle of a Pervasive Collaboration on a Non-Coordinating Subsystem. 73
4.20 Structure of an InviteRefuse Message. 76
4.21 Relation of the Composition Plan CP0 and its Adapted Version CP1. . . 76
4.22 Complete View on the Adaptation State. 78

5.1 Message Processing Time. 88

141

List of Figures

6.1 Scenario of the Distributed Slideshow. 92
6.2 Generated Partial Implementation for the Distributed Slideshow Scenario. 95
6.3 Legacy Player Implementation. 99
6.4 Operational Distributed Slideshow Collaboration. 111
6.5 Composition Plans CP0 and CP1 and Derived Change Sets. 112
6.6 Composition Plans CP0 and CP1 and Derived Change Sets. 113
6.7 Discovery Time of # Nodes in ms. 116
6.8 Average Composition Time per System Size and Scenario. 118
6.9 Composition Time per Node. 119

A.1 Comparison of the average Discovery Time based on Original and Ad-
justed Data of the Five-Roles Scenario’s Experiments. 145

A.2 Discovery Time Data Points Accumulated by Intervals. 146
A.3 Composition Time: Five-Roles Scenario in relation to the Simple-Sample

(baseline). 147
A.4 Composition Time grouped by Composition Phases.

(left bars represent Simple-Sample, right bars represent Five-Roles) . . 147

142

List of Tables

1.1 Overview of the Requirements. 9

2.1 Steimann’s 15 Classifying Features. 14
2.2 Kühn’s Additional Classifying Features of Roles. [58] 16

3.1 Detailed Comparison of Role-based Modeling Abstractions. 27
3.2 Comparison of Role-based Runtime Systems. 35
3.3 Comparison of Spontaneously Collaborating Run-Time Systems. 41

4.1 Player’s occurrence in a role’s method. 50
4.2 Review of the Requirements. 80

6.1 Systems, their Roles, and the Situation they showcase. 103
6.2 Content of the Directory Service on AS1 (simplified). 107

143

List of Listings

4.1 Basic Grammar of the Collaboration Specification. 49
4.2 Sample Structure of a Role’s Method. 50
4.3 Collaboration Specification with Context Features. 53
4.4 Relationships in a Generated Collaboration Class. 55

5.1 Deriving the Player References of a Role’s Method. 85
5.2 Deriving the Role’s Implementation. 86

6.1 Collaboration Specification of the Distributed Slideshow Scenario. . . . 94
6.2 Excerpt of the Generated Collaboration Class. 96
6.3 Generated Viewer Role. 97
6.4 Complementing Player Implementation exemplified in OT/J. 99
6.5 Legacy Player Implementation in Java. 100
6.6 Excerpt of the DistributedSlideshow Class as Legacy Player. 100
6.7 Combined Context & Player Provider for the Viewer Role. 101
6.8 Indexing the Generated Collaboration and Role Classes. 104
6.9 RoleAnnouncement Messages for the Presenter & Viewer Roles. 105
6.10 Composition Management – Initiating a Collaboration. 105
6.11 Pervasive Collaboration Coordinator (PCC) – Initialization. 106
6.12 Pervasive Collaboration Coordinator (PCC) – Planning. 107
6.13 Preprocessing and Sending of CollaborationInvite Messages. 108
6.14 CollaborationInvite Message sent to AS2. 108
6.15 Collaboration Management on AS2 and AS3 – Initialization. 109
6.16 Processing InviteAcknowledgement Messages on AS1. 109
6.17 Processing InstantiateRoles Messages on AS2 and AS3. 110
6.18 Processing BindRole Messages on AS2 and AS3. 110

B.1 Sample Implementation of the LectureContext. 149
B.2 Xtext Grammar for the Role-based Collaboration Specification. 150
B.3 Deriving the Player Interface of a Role. 152
B.4 Session Class used as Context Property. 153
B.5 Generated Collaboration Class of the Distributed Slideshow Scenario. 154
B.6 Generated Code of the Presenter Role. 155
B.7 Complete Implementation of DistributedSlideshow Class. 155
B.8 Context & Player Provider for the Presenter Role. 157
B.9 Distributed Slideshow’s Main Application. 158
B.10 Discovery Service’s Implementation. 159
B.11 Implementation of checkForStateCompletionAndContinue. 162

144

Appendix A Supplementary Figures & Tables

Discovery Time Experiments

The data obtained during the experiments regarding the discovery time (Section 6.2.2)
for the Five-Roles scenario was adjusted by considering all values larger than 2 s as out-
liers. Figure A.1 displays the average discovery time based on the original, unadjusted
data. Evidently, starting after 55 nodes, the discovery time constantly increases until a
threshold of roughly 2.75 s is reached. In contrast to that, the dashed line represents
the average discovery time based on the adjusted data, similar to Figure 6.7.

5 25 50 75 100 125 150
0

1,000

2,000

3,000

Nodes

D
is
co

ve
ry

Ti
m
e
[m

s] original data
adjusted data

Figure A.1:Comparison of the average Discovery Time based on Original and Adjusted Data of
the Five-Roles Scenario’s Experiments.

In Figure A.2, the original data set is grouped into intervals similar to a histogram.
Up to 50 nodes, technically all of the 1000 values measured are below the mark of
1 s, meaning that the discovery process was completed within 1 s. Above 50 nodes,
however, the values lie within the range of 2 s to 3 s. only a very few results lie within
the intervals of 1 s to 2 s, 3 s to 4 s, and 4 s to 5 s. The reason for this gap is related to
the JGroups’ issue discussed in Section 5.2.1, where messages got lost and had to be
resent, which introduced a certain delay and thereby caused this gap. The reason that
messages have to be resent in this particular case is that the physical resources of the
testbed are limited and network packets are dropped physically. The first increase

145

Appendix A Supplementary Figures & Tables

is noticeable at 55 nodes and indicates that an upper boundary for reliably sending
and receiving messages is reached. At this point, 324 messages had to be processed
by the node under test. The experiments concerning the discovery time of the Simple-
Sample scenario and the composition time in general are not affected by this issue as
the total number of messages sent or received rather simultaneously never exceeds a
total of 150 messages for the composition and a total of 300 messages for the discovery
process of the Simple-Sample scenario. Consequently, all values larger than 2 s were
considered outliers as they are caused by the limited resources of the testbed and not
by the approach itself. Though this weakens the significance of the results, especially
of those for larger sets of nodes, the adjusted data provides a much better insight into
the behavior of the discovery process than the original data set. In order not to distort
the overall results, those values were ignored when calculating the average discovery
time for both scenarios in Figure 6.7.

25 50 75
100 125 150 [0,1) s

[2,3) s

[4,5) s
0

200

400

600

800

1,000

Nodes Discovery Time
Interval

Sa
m
pl

es

Figure A.2:Discovery Time Data Points Accumulated by Intervals.

146

Composition Time Experiments

Figures A.3 and A.4 address the issue that the Five-Roles scenario allegedly performs
better than the Simple-Sample in terms of the composition time. Evidently, the Simple-

0 20 40 60 80 100 120 140 160

−10%

−5%

0%

5%

10%

15%

Nodes

Figure A.3:Composition Time: Five-Roles Scenario in relation to the Simple-Sample (baseline).

Sample scenario performs worse compared to the Five-Roles scenario, especially for
system sizes from 105 to 140 nodes. In Figure A.4, the composition time is segmented

50 75 100 125 150
0

100

200

300

400

Nodes

C
om

po
si
tio

n
Ti
m
e
[m

s]

Figure A.4:Composition Time grouped by Composition Phases.
(left bars represent Simple-Sample, right bars represent Five-Roles)

into its ten individual phases, i.e., from bottom to top: initialize (planning), send invites,
wait for replies, send instantiates, wait again, send binding instructions, wait again,

147

Appendix A Supplementary Figures & Tables

send role activation, wait for successful response, and finally send collaboration acti-
vation. Especially for the last two phases of the composition process, the Simple-Sample
requires much more time for the aforementioned system sizes. One reason for this is
that messages on the PCC are processed in a single, synchronized thread. While in the
Five-Roles scenariomore roles have to be instantiated, the utilization ofmultiple threads
is better than in the Simple-Sample scenario as just one role needs to be instantiated
per virtualized node. Since all nodes are placed on one physical machine, this issue
becomes a bottleneck.

148

Appendix B Code Listings

B.1 Concept

Listing B.1: Sample Implementation of the LectureContext.

1 package org.rosi.roledisco.samples.classroom;
2
3 /* import statements */
4
5 public class LectureContext implements Serializable {
6 private final String lectureName;
7 private final String description;
8 private final UUID lectureId;
9

10 public LectureContext(String lectureName, String description, UUID lectureId) {
11 this.lectureName = lectureName;
12 this.description = description;
13 this.lectureId = lectureId;
14 }
15
16 @Override
17 public int hashCode() {
18 return lectureId.hashCode();
19 }
20
21 @Override
22 public boolean equals(Object o) {
23 if (this == o) return true;
24 if (o == null || getClass() != o.getClass()) return false;
25 LectureContext that = (LectureContext) o;
26 return lectureId.equals(that.lectureId);
27 }
28 }

149

Appendix B Code Listings

B.2 Implementation

Listing B.2: Xtext Grammar for the Role-based Collaboration Specification.

1 grammar de.tudresden.inf.rn.rosi.roledisco.CollaborationSpecification with org.
eclipse.xtext.xbase.Xbase

2
3 generate collaborationSpecification "http://rn.inf.tu-dresden.de/rosi/roledisco/

CollaborationSpecification"
4
5 import "http://www.eclipse.org/xtext/xbase/Xbase" as xBase
6 import "http://www.eclipse.org/xtext/common/JavaVMTypes" as types
7 import "http://www.eclipse.org/emf/2002/Ecore" as ecore
8
9 CollSpec:

10 importSection=XImportSection?
11 module = Module;
12
13 Module:
14 'module' name=QualifiedName
15 collaboration = Collaboration;
16
17 Collaboration:
18 'collaboration' name=ValidID '{'
19 (
20 context+=Context*
21 (roles+=CoordinatorRole) &
22 (roles+=NonCoordinatorRole+) &
23 (constraints=RoleConstraints)? &
24 (multiplicities=Multiplicities)?
25)
26 '}';
27
28 Context:
29 'context' featureType=JvmTypeReference featureName=ValidID;
30
31 CoordinatorRole:
32 'coordinator' 'role' Role;
33
34 NonCoordinatorRole:
35 'role' Role;
36
37 fragment Role:
38 name=ValidID '{'
39 context+=Context*
40 features+=Feature*
41 '}';
42
43 RoleConstraints:
44 'constraints' '{'
45 constraints+=RoleConstraint*
46 '}';
47
48 RoleConstraint:

150

B.2 Implementation

49 RoleProhibition | RoleImplication | RoleEquivalence;
50
51 RoleProhibition:
52 roleA=[Role]
53 '>-<'
54 roleB=[Role];
55
56 RoleImplication:
57 roleA=[Role]
58 '-->'
59 roleB=[Role];
60
61 RoleEquivalence:
62 roleA=[Role]
63 '<->'
64 roleB=[Role];
65
66 Multiplicities:
67 'multiplicities' '{'
68 multiplicities+=Multiplicity*
69 '}';
70
71 Multiplicity:
72 OneToOne | OneToMany;
73
74 OneToOne:
75 roleA=[Role]
76 ('one-to-one'|'to')
77 roleB=[Role];
78
79 OneToMany:
80 roleA=[Role]
81 (
82 toInfinity?='one-to-many' |
83 toInfinity?='to-many' |
84 'to' '(' howMany=INT ')'
85)
86 roleB=[Role];
87
88 Feature:
89 Property | Operation;
90
91 Property:
92 type=JvmTypeReference name=ValidID ('=' body=XLiteral)?;
93
94 Operation:
95 (isPlayerQualifierSet?='player')? 'op' name=ValidID
96 '('(params+=FullJvmFormalParameter
97 (',' params+=FullJvmFormalParameter)*)?')'
98 (=>':' type=JvmTypeReference)?
99 body=XBlockExpression?;

100
101 PlayerFeatureCall returns xBase::XExpression:
102 PlayerLiteral

151

Appendix B Code Listings

103 (=>({PlayerAssignment.assignable=current} ('.'|explicitStatic?="::") feature=[types
::JvmIdentifiableElement|FeatureCallID] OpSingleAssign) value=XAssignment

104 |=>({PlayerFeatureCall.memberCallTarget=current} ("."|nullSafe?="?."|explicitStatic
?="::"))

105 (explicitReturnType?='[' returnType=JvmTypeReference']')?
106 ('<' typeArguments+=JvmArgumentTypeReference (',' typeArguments+=

JvmArgumentTypeReference)* '>')?
107 feature=[types::JvmIdentifiableElement|IdOrSuper] (
108 =>explicitOperationCall?='('
109 (
110 memberCallArguments+=XShortClosure
111 | memberCallArguments+=XExpression (',' memberCallArguments+=XExpression)*
112)?
113 ')')?
114 memberCallArguments+=XClosure?
115);
116
117 XPrimaryExpression returns xBase::XExpression:
118 XConstructorCall |
119 XBlockExpression |
120 XSwitchExpression |
121 XSynchronizedExpression |
122 XFeatureCall |
123 XLiteral |
124 XIfExpression |
125 XForLoopExpression |
126 XBasicForLoopExpression |
127 XWhileExpression |
128 XDoWhileExpression |
129 XThrowExpression |
130 XReturnExpression |
131 XTryCatchFinallyExpression |
132 XParenthesizedExpression |
133 PlayerFeatureCall;
134
135 XLiteral returns xBase::XExpression:
136 XCollectionLiteral |
137 XClosure |
138 XBooleanLiteral |
139 XNumberLiteral |
140 XNullLiteral |
141 XStringLiteral |
142 XTypeLiteral;
143
144 PlayerLiteral:
145 {PlayerLiteral} 'player';

Listing B.3:Deriving the Player Interface of a Role.

1 def void inferPlayerInterface(Role role, IJvmDeclaredTypeAcceptor acceptor, boolean
isPreIndexingPhase, CollSpec collSpec) {

2 acceptor.accept(role.toInterface('''«collSpec.module.fullyQualifiedName».I«role.
name»RolePlayer''',[])) [

3 setInterface = true

152

B.3 Evaluation

4 for(feature : role.features) {
5 if(feature instanceof Operation) {
6 if(feature.isPlayerQualifierSet) {
7 members += feature.toMethod(feature.name, feature.type) [
8 setDefault = false
9 setAbstract = true

10 documentation = feature.documentation
11 for(p : feature.params) {
12 parameters += p.toParameter(p.name, p.parameterType)
13 }
14]
15 }
16 if(null!==feature?.body)
17 for(PlayerFeatureCall c : EcoreUtil2.getAllContentsOfType(feature?.body,

PlayerFeatureCall)) {
18 val node2 = NodeModelUtils.findNodesForFeature(c,XbasePackage.Literals.

XABSTRACT_FEATURE_CALL__FEATURE).head
19 val name = node2.text.trim
20 members += role.toMethod(name,if(c.explicitReturnType) c.returnType.type

.typeRef else Void.TYPE.typeRef) [
21 setDefault = false
22 setAbstract = true
23]
24 }
25 }
26 }
27]
28 }

B.3 Evaluation

Listing B.4: Session Class used as Context Property.

1 package org.rosi.roledisco.samples.ds;
2
3 public class Session {
4 private final String sessionId;
5
6 public Session(String sessionId) {
7 this.sessionId = sessionId;
8 }
9

10 @Override
11 public boolean equals(Object o) {
12 if (this == o) return true;
13 if (o == null || getClass() != o.getClass()) return false;
14
15 Session session = (Session) o;
16
17 return getSessionId().equals(session.getSessionId());
18 }

153

Appendix B Code Listings

19
20 @Override
21 public int hashCode() {
22 return getSessionId().hashCode();
23 }
24
25 public String getSessionId() {
26 return sessionId;
27 }
28 }

Listing B.5:Generated Collaboration Class of the Distributed Slideshow Scenario.

1 package org.rosi.roledisco.samples.ds;
2
3 import de.tudresden.inf.rn.rosi.roledisco.middleware.composition.coordination.

CompositionManagement;
4 import de.tudresden.inf.rn.rosi.roledisco.model.AbstractCollaboration;
5 import de.tudresden.inf.rn.rosi.roledisco.model.annotations.Collaboration;
6 import de.tudresden.inf.rn.rosi.roledisco.model.annotations.Constraint;
7 import de.tudresden.inf.rn.rosi.roledisco.model.annotations.Context;
8 import de.tudresden.inf.rn.rosi.roledisco.model.annotations.Multiplicity;
9 import de.tudresden.inf.rn.rosi.roledisco.model.constraints.RoleConstraint;

10 import de.tudresden.inf.rn.rosi.roledisco.model.multiplicities.RoleLink;
11
12 @Collaboration(
13 coordinator = PresenterRole.class,
14 roles = ViewerRole.class,
15 kind = Collaboration.Kind.ONE_TO_MANY
16)
17 @Constraint(
18 from = PresenterRole.class,
19 to = ViewerRole.class,
20 value = RoleConstraint.ROLE_PROHIBITION
21)
22 @Multiplicity(
23 from = PresenterRole.class,
24 to = ViewerRole.class,
25 value = RoleLink.ONE_TO_MANY
26)
27 public class DistributedSlideshowCollaboration extends AbstractCollaboration {
28
29 @Context
30 Session session;
31
32 public DistributedSlideshowCollaboration(Session session) {
33 super();
34 this.session = session;
35 CompositionManagement.compose(this);
36 }
37
38 public DistributedSlideshowCollaboration(PresenterRole coordinator) {
39 super(coordinator);
40 CompositionManagement.compose(this, coordinator);

154

B.3 Evaluation

41 }
42
43 public DistributedSlideshowCollaboration(PresenterRole coordinator, Session session

) {
44 super(coordinator);
45 this.session = session;
46 CompositionManagement.compose(this, coordinator);
47 }
48
49 public Session getSession() {
50 return session;
51 }
52
53 public void setSession(Session session) {
54 this.session = session;
55 }
56 }

Listing B.6:Generated Code of the Presenter Role.

1 package org.rosi.roledisco.samples.ds;
2
3 import de.tudresden.inf.rn.rosi.roledisco.middleware.dispatcher.Dispatcher;
4 import de.tudresden.inf.rn.rosi.roledisco.model.AbstractCoordinatorRole;
5
6 public class PresenterRole extends AbstractCoordinatorRole {
7
8 public void sendMessage(String msg) {
9 Dispatcher.getDispatcher().dispatchToRoles(this, ViewerRole.class,"receiveMessage

",msg);
10 }
11
12 public void receiveMessage(String msg){
13 Dispatcher.getDispatcher().dispatchToPlayer(this,"receiveMessage",msg);
14 }
15 }

Listing B.7:Complete Implementation of DistributedSlideshow Class.

1 package org.rosi.roledisco.samples.ds.ui;
2
3 /* import statements */
4
5 public class DistributedSlideshow {
6 private final JFrame root;
7 private List<Picture> pictures;
8 private int imageIndex = 0;
9 private JButton previousButton;

10 private JButton nextButton;
11 private JTextField feedback;
12 private JLabel image;
13 private JLabel session;
14 private JTextArea comments;

155

Appendix B Code Listings

15 private JPanel rootPanel;
16 private JScrollPane scp1;
17 private ViewerRole viewerRole;
18 private PresenterRole presenterRole;
19
20 /**
21 * Player for the Presenter Role
22 */
23 public DistributedSlideshow(String sessionName, List<Picture> pictures) {
24 PresenterPlayerProvider.getInstance().addPresenter(sessionName, this);
25 new DistributedSlideshowCollaboration(new Session(sessionName));
26 this.pictures = pictures;
27 session.setText(sessionName);
28
29 root = new JFrame("Distributed␣Slideshow␣(" + sessionName + ")␣[Presenter]");
30 rootPanel.remove(feedback);
31 root.setContentPane(rootPanel);
32 root.pack();
33 root.setVisible(true);
34 root.setDefaultCloseOperation(WindowConstants.EXIT_ON_CLOSE);
35
36 image.setIcon(new ImageIcon(pictures.get(0).getAbsolutePath()));
37
38 nextButton.addActionListener(e -> {
39 int newImageIndex = (imageIndex + 1) % pictures.size();
40 if (presenterRole != null) {
41 presenterRole.setPicture(pictures.get(newImageIndex));
42 }
43 DistributedSlideshow.this.setPicture(pictures.get(newImageIndex));
44 imageIndex = newImageIndex;
45 });
46
47 previousButton.addActionListener(e -> {
48 int newImageIndex = (imageIndex - 1) % pictures.size();
49 if (newImageIndex < 0) imageIndex += pictures.size();
50 if (presenterRole != null) {
51 presenterRole.setPicture(pictures.get(newImageIndex));
52 }
53 DistributedSlideshow.this.setPicture(pictures.get(newImageIndex));
54 imageIndex = newImageIndex;
55 });
56 }
57
58 /**
59 * Player for the Viewer Role
60 */
61 public DistributedSlideshow(String sessionName) {
62 session.setText(sessionName);
63 rootPanel.remove(scp1);
64 rootPanel.remove(nextButton);
65 rootPanel.remove(previousButton);
66 feedback.addActionListener(e -> {
67 if (viewerRole != null) {
68 viewerRole.sendFeedback(feedback.getText());
69 feedback.setText("");

156

B.3 Evaluation

70 }
71 });
72 root = new JFrame("Distributed␣Slideshow␣(" + sessionName + ")␣[Guest]");
73 root.setContentPane(rootPanel);
74 root.pack();
75 root.setVisible(true);
76 root.setDefaultCloseOperation(WindowConstants.EXIT_ON_CLOSE);
77 }
78
79 private void receiveFeedback(String message) {
80 comments.append(String.format("%s\n", message));
81 }
82
83 private void setPicture(Picture picture) {
84 image.setIcon(new ImageIcon(picture.getAbsolutePath()));
85 }
86
87 /* UI Designer generated code */
88 }

Listing B.8:Context & Player Provider for the Presenter Role.

1 package org.rosi.roledisco.samples.ds;
2
3 /* import statements */
4
5 public class PresenterPlayerProvider implements PlayerProvider, ContextProvider {
6 private static final PresenterPlayerProvider myInstance = new

PresenterPlayerProvider();
7
8 static {
9 Dispatcher.getDispatcher().addPlayerProvider(PresenterRole.class, getInstance());

10 ContextManager.getContextManager().addContextProvider(PresenterRole.class,
getInstance());

11 }
12
13 private final Map<String, DistributedSlideshow> players = Maps.newHashMap();
14
15 public static synchronized final PresenterPlayerProvider getInstance() {
16 return myInstance;
17 }
18
19 @Override
20 public Collection<Context> getContext(Class<? extends AbstractRole> role) {
21 return Collections.emptyList(); // Presenter is not required to provide contexts
22 }
23
24 @Override
25 public boolean hasPlayer(Class<? extends AbstractRole> roleType, Context context) {
26 return true; // irrelevant as Presenter is manually triggered
27 }
28
29 @Override
30 public Object getPlayer(Class<? extends AbstractRole> roleType, Context context) {

157

Appendix B Code Listings

31 Session session = (Session) context.getValueForKey(new ContextFeature("session"))
.getValue();

32 return players.get(session.getSessionId());
33 }
34
35 public void addPresenter(String session, DistributedSlideshow slideshow) {
36 players.put(session, slideshow);
37 }
38 }

Listing B.9:Distributed Slideshow’s Main Application.

1 package org.rosi.roledisco.samples.ds.ui;
2
3 /* import statements */
4
5 public class SlideshowMain extends JDialog {
6 private String session;
7 private JPanel contentPane;
8 private JButton buttonOK;
9 private JButton buttonCancel;

10
11 public SlideshowMain() {
12 setContentPane(contentPane);
13 setModalityType(ModalityType.MODELESS);
14 getRootPane().setDefaultButton(buttonOK);
15 buttonOK.addActionListener(e -> onOK());
16 buttonCancel.addActionListener(e -> onCancel());
17 setDefaultCloseOperation(DO_NOTHING_ON_CLOSE);
18 addWindowListener(new WindowAdapter() {
19 public void windowClosing(WindowEvent e) {
20 onCancel();
21 }
22 });
23 contentPane.registerKeyboardAction(e -> onCancel(), KeyStroke.getKeyStroke(

KeyEvent.VK_ESCAPE, 0), JComponent.WHEN_ANCESTOR_OF_FOCUSED_COMPONENT);
24 session = null;
25 while (session == null || session.isEmpty())
26 session = JOptionPane.showInputDialog(this, "Session␣Name?", "Session␣Name",

JOptionPane.QUESTION_MESSAGE);
27 ViewerPlayerProvider.getInstance().addSession(session);
28 }
29
30 public static void main(String[] args) {
31 SlideshowMain dialog = new SlideshowMain();
32 dialog.pack();
33 dialog.setVisible(true);
34 }
35
36 private void onOK() {
37 JFileChooser fileChooser = new JFileChooser();
38 fileChooser.addChoosableFileFilter(new FileFilter() {
39 @Override
40 public boolean accept(File f) {

158

B.3 Evaluation

41 if (f.isDirectory()) {
42 return true;
43 }
44 String extension = FileUtils.getExtension(f);
45 if (extension != null) {
46 return extension.equals(FileUtils.bmp) ||
47 extension.equals(FileUtils.jpeg) ||
48 extension.equals(FileUtils.jpg) ||
49 extension.equals(FileUtils.png);
50 }
51 return false;
52 }
53
54 @Override
55 public String getDescription() {
56 return "Images␣(*.bmp,␣*.jpeg,␣*.jpg,␣*.png)";
57 }
58 });
59 fileChooser.setMultiSelectionEnabled(true);
60 if (fileChooser.showOpenDialog(this) == JFileChooser.APPROVE_OPTION) {
61 File[] files = fileChooser.getSelectedFiles();
62 if (files.length > 0) {
63 new DistributedSlideshow(session, Lists.newArrayList(files).stream().map(file

-> new Picture(file.getAbsolutePath())).collect(Collectors.toList()));
64 dispose();
65 }
66 }
67 }
68
69 private void onCancel() {
70 dispose();
71 System.exit(0);
72 }
73
74 /* UI Designer generated code */
75 }

Listing B.10:Discovery Service’s Implementation.

1 package de.tudresden.inf.rn.rosi.roledisco.middleware.discovery;
2
3 /* import statements */
4
5 @Singleton
6 public class DiscoveryService {
7 private final EventBus eventBus;
8 private DirectoryService directoryService;
9 private ScheduledExecutorService timer;

10 private InfrastructureAbstractionLayer infrastructure;
11 private ContextManager contextManager;
12 private Dispatcher dispatcher;
13 private MessageQueue messageQueue;
14 private CollaborationManager collaborationManager;
15

159

Appendix B Code Listings

16 @Inject
17 public DiscoveryService(MessageQueue messageQueue, DirectoryService

directoryService, InfrastructureAbstractionLayer infrastructure, ContextManager
contextManager, Dispatcher dispatcher, CollaborationManager

collaborationManager, EventBus eventBus) {
18 this.directoryService = directoryService;
19 this.infrastructure = infrastructure;
20 this.messageQueue = messageQueue;
21 this.contextManager = contextManager;
22 this.dispatcher = dispatcher;
23 this.collaborationManager = collaborationManager;
24 this.eventBus = eventBus;
25 this.timer = Executors.newScheduledThreadPool(5);
26
27 eventBus.register(this);
28 messageQueue.register(this);
29 collaborationManager.init();
30 timer.scheduleAtFixedRate(this::heartbeat, 0, 1000, TimeUnit.MILLISECONDS);
31 }
32
33 @Subscribe
34 private void newCollaborationSpecification(NewCollaborationSpecificationEvent e) {
35 publish(Collections.unmodifiableCollection(collaborationManager.

getCollaborationSpecifications()), null);
36 }
37
38 @Subscribe
39 private void newSubsystemDetected(NewSubsystemEvent event) {
40 if (event.getDiscoveryType() == NewSubsystemEvent.DiscoveryType.BY_BROADCAST)
41 publish(Collections.unmodifiableCollection(collaborationManager.

getCollaborationSpecifications()), event.getSubsystem());
42 }
43
44 @Subscribe
45 private void contextUpdate(ContextUpdate contextUpdate) {
46 publish(Lists.newArrayList(contextUpdate.getSpecification()), null);
47 }
48
49 private Collection<RoleAnnouncementMessage> createMessages(

CollaborationSpecification specification) {
50 Collection<RoleAnnouncementMessage> messages = new HashSet<>();
51 if (isDiscoverable(specification.getTheCoordinatorRole())) {
52 messages.add(createMessage(specification.getTheCoordinatorRole(), specification

.getTheCollaboration()));
53 }
54 for (Class<? extends AbstractRole> roleType : specification.getOtherRoles()) {
55 if (isDiscoverable(roleType)) {
56 messages.add(createMessage(roleType, specification.getTheCollaboration()));
57 }
58 }
59 return messages;
60 }
61
62 private RoleAnnouncementMessage createMessage(Class<? extends AbstractRole>

roleType, Class<? extends AbstractCollaboration> theCollaboration) {

160

B.3 Evaluation

63 return RoleAnnouncementMessage.create(theCollaboration, roleType, contextManager.
getContext(roleType));

64 }
65
66 private boolean isDiscoverable(Class<? extends AbstractRole> roleType) {
67 Collection<Context> contexts = contextManager.getContext(roleType);
68 if (contexts.isEmpty()) {
69 if (roleType.getSuperclass().equals(AbstractCoordinatorRole.class))
70 return dispatcher.hasPlayer((Class<? extends AbstractCoordinatorRole>)

roleType);
71 else
72 return dispatcher.hasPlayer((Class<? extends AbstractNonCoordinatorRole>)

roleType, null);
73 } else {
74 for (Context context : contexts) {
75 if (isDiscoverable(roleType, context)) return true;
76 }
77 }
78 return false;
79 }
80
81 private boolean isDiscoverable(Class<? extends AbstractRole> roleType, Context

context) {
82 return dispatcher.hasPlayer((Class<? extends AbstractNonCoordinatorRole>)

roleType, context);
83 }
84
85 private void publish(Collection<CollaborationSpecification> specifications,

@Nullable AdaptiveSubsystem receiver) {
86 Collection<RoleAnnouncementMessage> messages = new HashSet<>();
87 for (CollaborationSpecification specification : specifications) {
88 messages.addAll(createMessages(specification));
89 }
90 if (receiver == null) {
91 for (RoleAnnouncementMessage message : messages) {
92 infrastructure.publish(message);
93 }
94 } else {
95 for (RoleAnnouncementMessage message : messages) {
96 infrastructure.send(receiver, message);
97 }
98 }
99 }

100
101 @Subscribe
102 @AllowConcurrentEvents
103 private void processMessage(RoleAnnouncementMessage msg) {
104 directoryService.addDiscoveryInformation(msg.getSource(), msg.getCollaboration(),

msg.getRole(), msg.getContext());
105 if (directoryService.reportSubsystem(msg.getSource())) {
106 eventBus.post(new NewSubsystemEvent(msg.getSource(), msg.isBroadcast()));
107 }
108 }
109
110 private void terminate() {

161

Appendix B Code Listings

111 timer.shutdown();
112 messageQueue.unregister(this);
113 }
114
115 private void heartbeat() {
116 infrastructure.publish(new HeartbeatMessage());
117 }
118
119 @Subscribe
120 @AllowConcurrentEvents
121 private void processMessage(HeartbeatMessage msg) {
122 if (directoryService.reportSubsystem(msg.getSource())) {
123 eventBus.post(new NewSubsystemEvent(msg.getSource(), msg.isBroadcast()));
124 }
125 }
126 }

Listing B.11: Implementation of checkForStateCompletionAndContinue.

1 private synchronized void checkForStateCompletionAndContinue(CompositionState
expectedState, Collection<? extends Message> requests, Collection<? extends
Message> responses, Collection<? extends Message> errorResponses, final Timer
timerToBeCancelled) {

2 if (expectedState.equals(states.peek()) && responses.size() + errorResponses.size()
== requests.size()) {

3 timerToBeCancelled.cancel();
4 timerToBeCancelled.purge();
5 if (errorResponses.size() > 0)
6 setState(expectedState.failure());
7 else {
8 setState(expectedState.success());
9 requests.clear();

10 responses.clear();
11 errorResponses.clear();
12 }
13 this.compose();
14 }
15 }

162

	Titlepage
	Abstract
	Acknowledgements
	List of Publications
	Acronyms
	Introduction
	Motivation
	Terminology
	Problem Statement
	Requirements Analysis
	Research Questions and Hypothesis
	Focus and Limitations
	Outline

	The Role Concept in Computer Science
	What is a Role in Computer Science?
	Roles in RoleDiSCo

	State of the Art & Related Work
	Role-based Modeling Abstractions for Software Systems
	Classification
	Approaches
	Summary

	Role-based Run-Time Systems
	Classification
	Approaches
	Summary

	Spontaneously Collaborating Run-Time Systems
	Classification
	Approaches
	Summary

	Summary

	On-Demand Composition and Adaptation of Smart Service Systems
	RoleDiSCo Development Methodology
	Role-based Collaboration Specification for Smart Service Systems
	Derived Partial Implementation
	Player & Context Provision

	RoleDiSCo Middleware Architecture for Smart Service Systems
	Infrastructure Abstraction Layer
	Context Management
	Local Repositories & Knowledge
	Discovery
	Dispatcher

	Coordinated Composition and Subsequent Adaptation
	Initialization and Planning
	Composition: Coordinating Subsystem
	Composition: Non-Coordinating Subsystem
	Competing Collaborations & Negotiation
	Subsequent Adaptation
	Terminating a Pervasive Collaboration

	Summary

	Implementing RoleDiSCo
	RoleDiSCo Development Support
	RoleDiSCo Middleware
	Infrastructure Abstraction Layer
	Knowledge Repositories and Local Class Discovery
	Planner

	Evaluation
	Case Study: Distributed Slideshow
	Scenario
	Phase 1: Collaboration Design
	Phase 2: Player Complementation
	Coordinated Composition and Adaptation at Run Time

	Runtime Evaluation
	General Testbed Setup and Scenarios
	Discovery Time
	Composition Time
	Discussion

	The ›Role‹ of Roles
	Summary

	Conclusion
	Summary
	Research Results
	Future Work

	Bibliography
	List of Figures
	List of Tables
	List of Listings
	Supplementary Figures & Tables
	Code Listings
	Concept
	Implementation
	Evaluation

