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ABSTRACT

Object pose estimation is an important problem in computer vision with applications in
robotics, augmented reality and many other areas. An established strategy for object pose
estimation consists of, firstly, finding correspondences between the image and the object’s
reference frame, and, secondly, estimating the pose from outlier-free correspondences us-
ing Random Sample Consensus (RANSAC). The first step, namely finding correspondences,
is difficult because object appearance varies depending on perspective, lighting and many
other factors. Traditionally, correspondences have been established using handcrafted meth-
ods like sparse feature pipelines.

In this thesis, we introduce a dense correspondence representation for objects, called ob-
ject coordinates, which can be learned. By learning object coordinates, our pose estimation
pipeline adapts to various aspects of the task at hand. It works well for diverse object types,
from small objects to entire rooms, varying object attributes, like textured or texture-less
objects, and different input modalities, like RGB-D or RGB images. The concept of object
coordinates allows us to easily model and exploit uncertainty as part of the pipeline such that
even repeating structures or areas with little texture can contribute to a good solution. Al-
though we can train object coordinate predictors independent of the full pipeline and achieve
good results, training the pipeline in an end-to-end fashion is desirable. It enables the object
coordinate predictor to adapt its output to the specificities of following steps in the pose esti-
mation pipeline. Unfortunately, the RANSAC component of the pipeline is non-differentiable
which prohibits end-to-end training. Adopting techniques from reinforcement learning, we in-
troduce Differentiable Sample Consensus (DSAC), a formulation of RANSAC which allows us
to train the pose estimation pipeline in an end-to-end fashion by minimizing the expectation
of the final pose error.
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1. INTRODUCTION
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1.1.1. Variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
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1.2. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.2.1. Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.2.2. List of Published Research Papers . . . . . . . . . . . . . . . . . 27

1.3. Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.3.1. Correspondences-Based Approaches . . . . . . . . . . . . . . . 28
1.3.2. Template-Based Approaches . . . . . . . . . . . . . . . . . . . 31
1.3.3. Voting-Based Approaches . . . . . . . . . . . . . . . . . . . . . 33
1.3.4. Pose Regression . . . . . . . . . . . . . . . . . . . . . . . . . 35

1.4. Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 36

The last centuries have seen an accelerating development in technical achievements which
has enhanced the living quality of many people around the globe. Until 50 years back, these
technical achievements have been foremost mechanical in nature, e.g. in the form of trains,
cars or factories. With the following invention and rapid development of computers, ma-
chines were able to make fast computations, store and process large amounts of data and
connect people via the Internet. Lately, we have seen a new generation of machines, driven
by advances in artificial intelligence, which can solve more and more complex tasks more
and more autonomously. Smart home assistants, fully automated ware houses, comput-
er-assisted surgery and autonomous driving are all within reach. This progressing automa-
tion has the potential to increase life expectancy, e.g. by reducing the number of traffic
accidents, and to lift the burden of tedious tasks, e.g. by robotic assembly and packaging.
At the same time, artificial intelligence challenges our idea of human intelligence, and our
social perception and status of labor.

If a machine should act autonomously in a complex environment it has to sense and under-
stand this environment. From the many sensor types available, ordinary cameras are among
the most important since they are readily available, cheap and capture rich, visual represen-
tations of the world. Computer vision is a discipline which is concerned with the processing
of visual data. More specifically, image understanding seeks to extract semantic knowledge
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given an image or a video. Image understanding can be divided into many sub-tasks, and
in this thesis, we consider one of them: Accurate pose estimation of specific objects from
visual data. Recognizing objects and comprehending their state in the environment is a key
component in many autonomous systems, like autonomous robotics. It is a precondition
of many interactions of the system with its surroundings, e.g. grasping, moving or avoiding
certain objects.

Humans perceive their environment with their eyes to a large extent. Understanding im-
ages seems natural and easy but for a computer it is not. The brain, a very powerful pro-
cessing unit, has areas specifically designated for visual processing The intricacies of any
high level processing in the brain are not yet well understood but the brain is able to make
sense of even very crude data by combining partial information with world knowledge. For
computers, even a structured, well defined task like recognizing a specific, known object
involves searching for complex patterns in the image data. The task is non-trivial because
object appearance changes tremendously depending on perspective, lighting conditions or
occlusion.

Early attempts to solve visual recognition tasks consisted of searching for expressive im-
age features, like corners and edges, and describing patterns of these features unique to the
object in question. Efficient, statistical analysis of an image could then yield the presence
of these patterns, and hence the object itself. Finding a feature pattern that identifies an
object from all possible views and under all imaging conditions is a challenging task. It was
soon evident, that this process should be automated, since it has to be repeated for every
new object to be recognized. By means of machine learning, a field related to statistics,
the computer discovers object patterns autonomously on the basis of example views of the
object, so called training data.

Until the mid 2000s, computer vision was dominated by pipelines where a set of features
was extracted from the input image, and subsequently a learned classifier, e.g. a support vec-
tor machine, decides on object presence resp. location. Although containing some learned
components, these pipelines where largely handcrafted, meaning that a human designed
the overall strategy and the image features to solve the task at hand. Since AlexNet [KSH12]
won the ImageNet classification challenge in 2012, deep learning has advanced computer
vision achievements massively in very diverse tasks such as classification [KSH12], detec-
tion [Gir15], segmentation [LSD15] or human pose estimation [TS14]. The main advantage
of deep learning is that a neural net, in computer vision often a convolutional neural net
(CNN), can combine feature extraction and classification resp. regression within one flexible
yet powerful architecture. A CNN can adapt to a task by end-to-end learning, i.e. choosing
millions of free parameters based on pairs of inputs and desired outputs. All components of
the system, features and classifier, can optimally adapt to each other. Within the last 5 years,
new computational capabilities and vast sets of labeled data enabled computer vision algo-
rithms to even exceed human accuracy on certain tasks like image classification [RDS+15],
face recognition [HRBLM07] or traffic sign recognition [SSSI12].

Neural networks can be constructed for a wide range of (structured) inputs and outputs,
hence they can be applied to many problems in computer vision. Since neural networks are
end-to-end systems, trainable from data, the need for pipeline design seems largely expend-
able. Consequently, research in deep learning has focused, for a while, on better optimization
methods for learning [KB14], building blocks like activation functions [HZRS15b] or memory
units [GWR+16], and neural net architectures [SZ14, LSD15, HZRS15a]. However, to train a
neural network end-to-end large amounts of training data are needed which is a problem for
some applications. For example, for object detection and pose estimation it is in general not
feasible to collect thousands of images, and to annotate them with the desired prediction
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for each new object. However, we can exploit prior knowledge about the task to reduce the
necessary amount of training data, tremendously. For example, if we would want to esti-
mate an object rotation from data, we could define the output as a 3× 3 rotation matrix. In
this case, the CNN would have to learn which constraints a matrix has to fulfill to represent
a rotation. We could also encode this knowledge directly in the architecture by choosing a
rotation representation, e.g. an axis-angle vector, where no additional constraints have to be
learned.

Hence, it can be beneficial to decompose a task into components, some of which should
be learned, while some others can be constructed based on task knowledge. For instance,
in most object detection systems, the knowledge that an object can appear anywhere in
an image is encoded within a sliding window component. The image features and object
classifier, on the other hand, are learned. In this work, we follow the same strategy for object
pose estimation: The system we propose is a combination of learned components and fixed
components, modeled according to extensive prior knowledge about the task. As we will
show throughout this thesis, this strategy does not prevent end-to-end learning which sets
it apart from traditional handcrafted pipelines with e.g. a classifier learned separately.

The knowledge we specifically exploit for pose estimation is that of geometry. Geometry
is an area of mathematics whose relation with computer vision was extensively studied from
the 1980s to the early 2000s. It describes the relationship of the 3D world and its depiction
in 2D images. We know that the position and orientation of objects within the world can be
modeled by rigid body transformations, and we know how a camera projects 3D structures
onto the image plane. This knowledge enables us to reason about the pose of an object
relative to the camera given an image.

The problem of object pose estimation is particularly interesting because it is affected by
the major challenges of computer vision, namely extremely variable object appearance sub-
ject to imaging conditions like view point, lighting etc. At the same time, training data is usu-
ally limited. Object pose estimation has many applications, some of which, like augmented
reality, require a high level of accuracy while allowing only a low computational budget.

To summarize: In this thesis, we deal with the problem of pose estimation of known
object instances from a single camera image. We solve this problem using a combination of
machine learning and principles from geometry. Our solution is versatile and can be applied
to many variants of the problem, yet is highly precise. In the remainder of this section, we
introduce the task of 6D pose estimation of object instances more formally, see Sec. 1.1. We
start with a simple, restricted setup, followed by more complex variants. We also discuss
challenges and applications of pose estimation. Then, we give an overview of the main
concept of the system presented, including the main contributions and a list of associated
publications, see Sec. 1.2. In Sec. 1.3, we review the extensive related work concerning
object pose estimation. We close the introductory chapter by outlining the structure of the
remaining document in Sec. 1.4.

1.1. OBJECT POSE ESTIMATION

Object pose estimation can come in many different forms. As explained in the introduction,
we are concerned with pose estimation of rigid object instances. An object instance means
a specific object of the real world which is different from all other objects in terms of shape
and material. This is in contrast to an object class, which includes all objects of a certain
type. For example, the object class car could contain all four-wheeled vehicles. A specific
car model from that class would be an instance, e.g. a red VW Golf VII. The definition of the
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instance concept can vary slightly. Some define an instance as being associated with exactly
one physical object. Others would argue that two cars of the exact same model, including
attributes like color, belong to the same instance since they cannot be distinguished based
on appearance. In this work, we follow the latter view.

duck

no duck

Figure 1.1.: Recognition vs. Detection vs. Pose Estimation. Left: A recognition system
decides (or gives probabilities) whether an object is visible within the image or
not. Center: A detection system estimates the 2D location of an object. Right:
A 6D pose estimation system estimates the 3D position and 3D orientation of
an object relative to the camera.

Furthermore, we are concerned with the estimation of 6D poses of objects. This is in
contrast to the related tasks of recognition and detection, see Fig. 1.1. Recognition is the
task of deciding whether an image shows an object or not, i.e. it is a binary classification
problem. Detection, as we understand it here, is the task of localizing the 2D position of an
object within the image. Sometimes, detection includes estimation of object scale or the
full 2D bounding box making it a 2D to 4D regression problem. Going beyond 2D detection,
we reason about the location of the object in the 3D world. This involves the estimation of
the 3D object position and the 3D object orientation. Note that we estimate continuous,
accurate poses as opposed to quantized viewpoints like front or side which is sometimes
done for class-based pose estimation.

Finally, we consider rigid objects, i.e. we assume that objects have no moving parts or de-
formation parameters. In this case, a rigid body transformation is an adequate representation
an object’s pose.

Formal Definition. The basic setup of pose estimation considered in this work is the fol-
lowing. Variants and extensions of the basic setup will be discussed below. Given a single
RGB-D camera frame I, we estimate the rigid body transformation h of an object instance
relative to the camera. Transformation h is a 6D vector which consists of a 3D translation
t and a 3D orientation θ, e.g. in axis-angle representation. In the basic setup, the object is
known to be present in the image.

The depth channel simplifies the pose estimation problem, greatly. It contains rich cues
about the shape of the object, discontinuities in depth are a strong indicator of object bound-
aries, and depth measurements are independent of lighting conditions. Furthermore, image
depth constrains the z-component of the unknown object translation. Many RGB-D meth-
ods (see Sec. 1.3) include a final refinement that aligns a 3D model of the object with the
local depth at the estimated position, e.g. by iterative closest point (ICP) variants. Therefore,
the initial pose estimation is allowed to be somewhat coarse as it is just an initialization for
refinement.
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Object of Interest: 
Rigid Instance

Input: Camera Frame Output: 6D Pose (3D Translation + 3D Rotation)

RGB Depth

Training Data (Excerpt)

Figure 1.2.: Basic Setup of Object Pose Estimation. We want to estimate the 3D location
and 3D orientation of a rigid object instance, a toy duck in this example, given
an RGB-D image. The image is guaranteed to contain the object. Training data
shows the object from different view points where the ground truth pose was
annotated for each image. The result is shown as a green bounding box rotated
and translated by the estimated pose.

We assume that training data of the specific object is given, i.e. we treat pose estimation
as a supervised learning problem. Training data consists of a set of RGB-D images with
ground truth pose annotations h∗. Training images can be real images, i.e. captured by a
camera, or synthetic images rendered using a 3D model of the object. The training data
should cover the same view range as expected during test time. Usually, the training data
contains a few hundred images for each object. The basic setup is illustrated in Fig. 1.2, we
address this setup mainly in Chapter 2.

1.1.1. VARIANTS

Many variants of the aforementioned basic setup exist which we will briefly explain below.
We will address some of these directly in the following chapters of this thesis. Other variants
were addressed by extensions of the system we propose here.

Pose Estimation from RGB Only. This variant is identical to the basic setup but the in-
put is an RGB image instead of an RGB-D image. RGB inputs are less reliable as they are
directly affected by lighting changes, and object boundaries are less prominent, depending
on the background. Furthermore, the distance of the object w.r.t. to the camera is hard to
estimate accurately, because the projected size changes only slightly with varying distance.
Refinement cannot exploit the local scene geometry, e.g. by using ICP. Therefore, accurate
pose estimates are harder to achieve. On the other hand, in many applications, only RGB
inputs are available since RGB-D cameras are limited to a few consumer products, e.g. to
Kinect style cameras [WA], many of which also do not work well outdoors. We show how
to estimate accurate 6D poses from single RGB images in Chapter 3.

Multi-Object Pose Estimation. Instead of estimating the pose of one object which is
known to be in the image, the system is trained with multiple objects simultaneously. Given
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an RGB or RGB-D image, the system should estimate the poses of all objects present. Not
all objects known to the system appear in the input image. Hence, additional to pose esti-
mates, the system has to predict indicators (e.g. probabilities) of whether an object is visible
in the image or not, see Fig. 1.3, left. Apart from accuracy, pose estimation systems are
assessed by their scalability, i.e. their capability to handle many objects in reasonable run-
time. A special case of multi-object pose estimation is multi-instance pose estimation, i.e.
one instance can appear in an image multiple times. We do not cover multi-instance pose
estimation in this work, i.e. every object is assumed to appear at most once in an image.
Our system is natively trained for multiple objects jointly, and can decide whether an object
is present in the image or not, see Chapter 2. We show how we efficiently infer the poses
of many objects simultaneously in Chapter 3.

Object of Interest: 
𝑛 × Rigid Instance

Input: Camera Frame Output: 𝑛 × 6D Pose, 𝑛 × Probability

…

Object of Interest: 
Rigid Scene

Input: Camera Frame Output: 6D Camera Pose

Figure 1.3.: Multiple Objects and Camera Localization. Left: In multi-object pose estima-
tion we train the system with many objects. Given an input image, it has to
decide (or give probabilities) whether an object appears or not. For example, the
system was trained with the camera object, but it is not present in the image. For
all objects that do appear, 6D poses should be accurately estimated. Estimated
poses are shown using bounding boxes with the color indicating the object ID.
Right: Camera Localization. Given an image of a known scene, the system esti-
mates the 6D pose of the corresponding camera. The result is shown as a black
camera frustum w.r.t. a 3D model of the scene.

Camera (Re-)Localization. So far we have considered pose estimation of small objects
which appear in an unknown environment. However, the environment, or scene, itself can
be considered a rigid object and its pose can be estimated. This problem is called camera
localization or re-localization, because usually the pose of the camera is estimated which
is the inverse of the scene pose. Hence, we are given an image, RGB or RGB-D, of a
known environment, and the system should estimate the 6D pose of the camera which
took the image, see also Fig. 1.3, right for an illustration. Conceptually, this problem is
easier than object pose estimation because the object does not have to be located as it
occupies the whole image. In practice, camera localization is still very challenging, because
scenes are usually not completely static, they often contain large, planar, texture-less areas,
and repeating structures like windows. Furthermore, in some applications, scenes can reach
vast scales, e.g. city-scale image based localization [CBK+11]. We apply our system to the
camera localization problem in Chapter 3 and 4.
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Articulated Instance 
with 𝑛 parts 

Input: Camera Frame Output: 𝑛 × 6D Pose

Rotational
Joint

Translational
Joint

RGB Depth
Object of Interest: 

Rigid Instance Output: 6D Pose Sequence

Input: Frame Sequence

Figure 1.4.: Articulated Objects and Pose Tracking. Left: The object of interest is articu-
lated, i.e. it is composed of multiple rigid parts connected by joints. The system
should estimate a 6D pose for each part, but respect connectivity constraints as
well as the degrees of freedom allowed by the joints. The result is shown as one
blue bounding box per part. Right: Pose Tracking. Instead of a single frame, the
movement of an object is tracked over a sequence of frames. For each frame, a
6D pose should be estimated, taking into account estimations for the previous
frames. We show results as green bounding boxes.

Pose Estimation of Articulated Objects. While many objects in the real world are more
or less rigid, some have additional degrees of freedom in the form of joints resp. moving
parts, see Fig. 1.4. For example, a cupboard with a door consists of two parts connected by
a rotational joint. Articulation increases the dimensionality of the pose estimation problem,
i.e. the pose h consists of a 3D location, a 3D rotation and additional degrees of freedom for
every movable part. A naive solution of the problem is to model each part of the articulated
object as a separate rigid instance, and to estimate poses individually. However, this usually
yields poor results as it neglects the connectivity constraints among parts, and parts often
occlude each other severely. Our system was extended to estimate poses of articulated
objects in [MKB+15]. Articulated objects are a special case of deformable objects. In gen-
eral, deformable objects, like organs, are not composed of rigid parts, and often lack a clear
parametric deformation model. Articulated and deformable objects are out of scope of this
work.

Pose Tracking. In some applications, the pose of a moving object should be estimated
over time. In this case, the input is a consecutive sequence of RGB-D or RGB images for
each of which a 6D pose should be predicted, see Fig. 1.4, right. While a pose estimation
system can be applied to each frame individually, taking into account continuity constraints
between frames, i.e. tracking the object, can greatly improve robustness, e.g. w.r.t. occlu-
sion or deformation. For this purpose, a motion model expresses the plausibility of changes
in position and orientation of the object between frames. This prior knowledge can be used
in the pose estimation to yield a smooth trajectory in 6D pose space. Because the search
space in each new frame is greatly reduced, tracking often leads to reduced runtime resp. re-
al-time performance. However, one-shot pose estimation is still needed to initialize a tracking
system, and to recover from tracking failure. We do not address pose tracking in this thesis,
but [KMB+14] describes a tracking system built upon the pipeline presented in Chapter 2.
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1.1.2. CHALLENGES

Object instance pose estimation has been researched for many years, see Sec. 1.3. How-
ever, the problem is not yet solved, except for a few specific, simplified scenarios. Instance
pose estimation in general comes with many difficulties. We list the main challenges here.

Ambiguous Texture and Shape. Many objects encountered in real-
istic environments have an undistinctive shape or lack salient texture
features. This has lead to the development of methods specialized for
texture-less objects in the early 2010s, see also Sec. 1.3. Another dif-
ficulty are objects that show some form of symmetry. In that case,
different poses produce visually the same image. Such ambiguities are
problematic for estimation methods because one input has to produce
multiple outputs. Furthermore, it affects also data collection and evalu-
ation. Images showing ambiguous poses should be annotated with all
valid solutions, and evaluation should accept any of them. However, this
comes with substantial additional effort in case of human annotators,
and is non-trivial to achieve also for synthetic data generation methods,
like rendering. For instance, a cup is only rotationally symmetric if the
handle is occluded. Therefore, most available datasets do not consider
ambiguities in their ground truth annotations [HMS+]. Some authors
proposed evaluation metrics that are robust to ambiguities to some ex-
tent [HLI+12, HMO16].

Lighting. Different lighting conditions can change the appearance of an
object to a large extent. It changes the gradients on the object surface
and intense light can create hard shadows, i.e. new gradients, on the
surface. Furthermore, the color of the light can have large effects on
the color of the object. As humans, we do not perceive this effect to
the full extent because our brain adjusts for it. Either we know the true
color of the object from experience, or we estimate the color of lighting
from its effects on the environment. Todays computer vision systems
do not have this level of reasoning and world knowledge. Methods that
rely solely on depth cameras are invariant to lighting conditions but ob-
ject color and texture can be important cues that these methods ignore.
Also, intense sunlight can interfere with some depth sensor types.

Clutter and Occlusion. Depending on size and distance, an object will
often occupy only a small fraction of the input image such that some
kind of detection or segmentation is needed. In practice, many similar
objects might be present in an image which may confuse a detection
method. Also, many machine learning algorithms have a closed world
assumption, i.e. they decide among a fixed set of known classes. How-
ever, the exact background as well as clutter objects are usually unknown
at training time. A further challenge is occlusion which can make the
pose estimation arbitrarily difficult depending on the object area which
is occluded. But even small occlusions can be problematic if it affects a
distinctive feature, like the handle of the aforementioned cup.
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Reflections. Some objects are composed of difficult, reflective materi-
als which are a problem for both RGB and RGB-D based methods. Depth
sensors will produce either wrong measurements for such materials or
none at all. In the RGB image, the texture of the object is overlayed with
reflections of the environment. This makes the appearance of an object
dependent on the interplay of its surroundings, the lighting and the view-
ing angle of the camera. The environment is unknown at training time
and only partially visible in the image at test time. Hence, physical rea-
soning about reflections is extremely difficult. All of these challenges
also apply to transparent objects like glasses or bottles.

Synthetic Training Data. For many applications, generation of training
data should be possible without much human effort. Recording and
hand labeling thousands of images with accurate 6D poses by humans
is often not feasible. An alternative approach relies on rendering train-
ing data based on a CAD model or a scan of the object which is much
easier to obtain. Rendered, or synthetic, training data comes in arbitrary
amounts and with perfect ground truth annotations. Also, the distribu-
tion of viewing angles can be easily controlled. However, because of
limitations in the scanning process and simplifications in the rendering
pipeline, rendered training data often looks different from the real test
data, see also the example on the left. This is a problem because a
learning algorithm will adapt to the appearance of the training data and
cannot generalize to the test data if it looks very different. A regular-
ization which helps to bridge this gap is usually difficult to design, and
limits the expressiveness of a model. For example, one could rely on
handcrafted features which are robust to the appearance shift between
rendered and real data. However, learning features from data usually
leads to better accuracy, subject to generalization.

1.1.3. APPLICATIONS

There is a wide field of diverse applications for object instance pose estimation. We name
a few but this list is not exhaustive.

Robotics. There are two main applications for object pose estimation in robotics, namely
object grasping and navigation.

Many tasks performed by robots involve grasping specific objects, e.g. in assembly lines
or in automated ware houses [LLC]. If a robot wants to grasp an object, it has to localize
the object relative to itself, see Fig. 1.5, left. Especially objects with a complex shape might
have only certain points on the surface where it can be reliably grasped by an end effector.
In this case, the pose of the object has to be estimated precisely.

Camera localization can be used to localize the robot within a known environment, see
Fig. 1.5, center. If a robot is deployed in an unknown environment, it usually builds a map
itself incrementally, a process called Simultaneous Localization and Mapping (SLAM). How-
ever, SLAM systems can encounter tracking failure, e.g. because of camera occlusion. The
robot should then re-localize itself w.r.t. to the partial map it has already build as opposed
to starting SLAM all over again. This can be accomplished by learning a camera localization
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Figure 1.5.: Applications: Robotics and Localization. Left: A robotic arm grasping an ob-
ject. Center: A robotic platform navigating in an indoor environment. Right:
Image based localization where the input is a photograph, e.g. taking with a
mobile phone, and the output is a location on OpenStreetMap [Ope17].

component on the fly, parallel to SLAM [CGL+17]. Camera localization is also used to rec-
ognize when a robot encounters an area it has seen before. This is called loop closure, and
can be used to correct potential drift in the incremental map building process.

Outdoor/Indoor Localization. Similar to navigation in robotics, any device with a camera,
e.g. a mobile phone, can localize itself relative to a known environment using pose esti-
mation. For example a mobile phone could localize itself in case GPS (Global Positioning
System) is not working or not precise enough. More specifically, using camera localization
a user who is lost in a shopping mall could determine his position based on an image of his
current surroundings. Or see Fig. 1.5, right for an example of image-based outdoor localiza-
tion.

Augmented Reality. Augmented reality means overlaying real camera footage with virtual
content such that the real and virtual world blend together. For example, it enables engineers
to examine a virtual object, e.g. a product concept, in detail in a natural environment. The
engineer would wear augmented reality glasses, and could move around the virtual object as
if it would be real. This offers a most natural mode of navigation and, potentially, interaction.
Camera localization can be used to align a virtual object with a known, real environment. For
example, navigation markers can be naturally blended into a live view of the environment
using a mobile phone. Object pose estimation can be used to align virtual content with a
specific object. Objects can be altered or substituted in an augmented reality view, e.g. in
augmented reality games.

Medicine. In modern medicine, surgeries have become very complex procedures. Com-
puter vision can support the staff during operations or detect dangerous situations, a con-
cept called computer aided surgery. For example, in laparoscopic surgery, the operation
takes place trough the closed abdominal wall with special instruments based on an endo-
scopic camera view. While this minimally invasive procedure is beneficial for the patient, it
is very involved for the surgeon. He has to navigate inside the body cavity and manipulate
organs while taking into account diagnostic information like tumor location. The endoscopic
camera view is usually very narrow, and diagnostic information is displayed separately. A
vision based pose estimation system, such as the one presented in this work, could help
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Figure 1.6.: Applications: Augmented Reality and Medicine. Left: The system proposed
in this thesis was used to estimate the pose of the room, and render a virtual
castle on the table in a plausible way. Right: Poses of surgical instruments are
tracked during a laparoscopic surgery based on an endoscopic camera view.

by estimating the pose of surgical tools or locating the endoscopic camera within the cavity.
Augmented reality methods could be used to overlay diagnostic information directly with the
endoscopic view.

Figure 1.7.: Applications: Psychology. Left: View of a person wearing an eye tracker de-
vice. Her point of attention is marked with a green cross. Right: Camera lo-
calization allows the creation of attention maps registered with the 3D world.
Colored areas mark zones of high attention.

Psychology. In perceptional studies, psychologist are interested in the parts of the envi-
ronment which a test subject attends to during a specific task, e.g. in critical situations at
the workplace. The test subject usually wears a mobile eye tracker which measures the eye
movement relative to a head mounted camera. The camera, in turn, records the environ-
ment. Camera localization can be used to align these recordings, and thus the gaze of the
subject, with a scene model, see Fig. 1.7. Important areas can be marked beforehand in the
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scene model to facilitate automated analysis and creation of gaze statistics. This approach
is especially beneficial if the environment must not be altered, e.g. applying fiducial markers
in secure areas is usually not possible.

Monitoring. In controlled environments, like a factory, a warehouse or an apron there are
defined procedures which involve known, specific objects, e.g. certain airplane types. Often
CCTV cameras or depth scanners are available to monitor said facilities. A vision-based pose
estimation system, like the one presented in this work, can be used to ensure that operation
takes place within recommended parameters. For example, our system has been applied to
airplane recognition in apron control [MMDM+16].
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1.2. OVERVIEW

Figure 1.8.: Pose Estimation from Correspondences. We estimate an object’s pose by
first predicting correspondences between the input image and a 3D model of
the object. Then, we estimate the rigid body transformation that aligns the 3D
model and the input image based on these correspondences. We show the
alignment via the bounding box of the 3D model.

The system proposed in this thesis was inspired by an established, general approach to
object pose estimation. This approach is two-staged: Firstly, given an image of the object,
we establish correspondences between the image and the object. For example, we could
recognize certain parts of the object in the image, and assign them to the correct position
on a 3D model of the object, see Fig. 1.8, left. Secondly, given sufficiently many such corre-
spondences, we can solve for the rigid body transformation which aligns the 3D model with
the input image, see Fig. 1.8, right. This rigid body transformation is the object pose we are
looking for.

The question of how to calculate a pose estimate given image-object correspondences has
been extensively studied in the earlier years of computer vision. For example, in image-based
3D reconstruction, the calculation of the camera pose (which is the inverse of the object
pose) based on estimated correspondences is a fundamental building block [HZ04]. Many
algorithms exist that exploit principles of geometry and camera projections. For example,
given at least three 3D-3D correspondences, the pose which minimizes the mean-squared
error between the aligned, corresponding points can be calculated in closed form with the
Kabsch algorithm [Kab76].

In this thesis, we aim at exploiting the geometric knowledge that we have about the task
of object pose estimation while learning aspects of the problem which are too complex to
model explicitly. Learning the alignment of correspondences, e.g. the Kabsch algorithm, is
nonsensical because a machine learning model with limited capacity will probably not gener-
alize as well as an analytical solution. Also, it would require exponential amounts of data to
train. A learned model could potentially adapt to systematic errors in the correspondence pre-
diction stage. But even if correspondences are contaminated with outlier predictions, i.e.
blatant errors in matching, efficient algorithms from robust optimization, such as Random
Sample Consensus (RANSAC), often find a good solution.

On the other hand, predicting correspondences between an image and an object is ex-
tremely difficult because of the visual variabilities discussed in Sec. 1.1.2. However, the
quality of correspondences is key to accurate and robust pose estimation. In the earlier days
of computer vision, researchers tried to hand-engineer image features with the goal to iden-
tify objects under varying viewing angles, lighting, etc. Although they were successful in
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some restricted scenarios, see also Sec. 1.3, starting from the 2010s, learned features have
proven increasingly superior. Thus, in this work, we aim to learn to predict correspondences.
In particular, we show how to learn to regress for each pixel of an input image the location
on the object’s surface. For this purpose, we introduce a dense correspondence represen-
tation, object coordinates, named after the coordinate reference frame of the object, see
Fig. 1.9. Based on object coordinate predictions, we find the object pose using robust, geo-
metric optimization. Throughout this thesis, we show how this correspondence prediction
can be learned in a supervised fashion from object coordinate ground truth, or from 6D pose
ground truth in an end-to-end fashion.

Scan Sequence 3D Model Object Coordinates Input Image Object Coordinate Prediction

Figure 1.9.: Object Coordinates. Left: A 3D model of an object, e.g. created by 3D scan-
ning, defines a coordinate frame, illustrated by three colored axes, specific to the
object. Each point on the object surface has a unique coordinate in this frame,
a so called object coordinate. Throughout this thesis, we visualize object coor-
dinates by mapping their X/Y/Z components to the RGB cube. Right: We show
a dense object coordinate prediction for each pixel of an input image. Note that
each prediction (i.e. each pixel) encodes a correspondence between the input
image and the 3D model of the object. Gray pixels in the prediction signify that
no correspondence exists.

By learning to predict object coordinates, we can be robust to many sources of visual vari-
ability, like lighting changes or occlusion, just by adding them to the training set. The learned
model can either develop invariant features, or remember the object appearance under dif-
ferent image conditions. The learned model can also adapt to the specific objects we are
interested in. This is opposed to handcrafted features, which, for practical reasons, had to
be general purpose solutions. Furthermore, the model can learn to optimally exploit differ-
ent input modalities. For example, it can make a specific trade-off between color and depth
cues based on training data, in case RGB-D images are given. Learning correspondence pre-
diction makes it possible to estimate poses even of difficult, e.g. texture-less, objects under
difficult imaging conditions.

In our system, object coordinates are predicted for each pixel based on its local image
neighborhood, i.e. based on image patches. While this restricts the available information,
depending on the patch size, it has large advantages in terms of generalization capabilities.
For example, partial object occlusion will affect some patches but not others, for which ob-
ject coordinates can still be predicted reliably. Since only a few correspondences suffice
to calculate a pose estimate, our system can handle cases where only a small object area
remains visible. The same line of argument applies to reflections and, to some extent, to
lighting changes. If some local areas are not affected by a specific distortion, accurate poses
can still be estimated.

Image patches can be ambiguous, e.g. in texture-less areas or for objects with repeating
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Figure 1.10.: Patch Ambiguity. We show three examples of possible correspondences be-
tween an image patch, shown as an inlay, and an input image. Left: A unique
case where we observe only one possible occurrence of the image patch. Cen-
ter: An ambiguous case where the input patch could fit any position on a tex-
ture-less area. Right: An ambiguous case where the input patch could fit two
positions because of a repeating structure.

structures resp. multiple identical parts, see Fig. 1.10. This is a problem when predicting
object coordinate point estimates, i.e. when the system is restricted to predict unique cor-
respondences. In Chapter 3, we describe how to predict multi-modal distributions of object
coordinates instead of point estimates. The geometric pose optimization can take all uncer-
tainties into account, and hence resolve ambiguities.

1.2.1. CONTRIBUTIONS

In the following, we give the main contributions of this thesis. Note that there are many
specific, technical contributions listed in the introductory sections of Chapters 2 to 4.

• We introduce an approach to object pose estimation which combines the benefits of
machine learning with principles from geometry.

• We demonstrate the versatility and scalability of our pipeline on a wide range of variants
of the task: We handle RGB-D and RGB inputs, we support textured and texture-less
objects, and we show results for object pose estimation as well as camera localization.

• We show how to learn specific components of a geometric pipeline individually and
end-to-end. For the latter purpose, we introduce a differentiable version of the Ran-
dom Sample Consensus (RANSAC) algorithm, called Differentiable Sample Consensus
(DSAC).

The variants of our pipeline outperformed the respective state-of-the-art at the time of
publication. Me made most of our code publicly available to the research community1, and
released two new datasets (see Appendix A.2.2 and A.2.3).

1Binaries of the system of Chapter 2 and source code of the systems of Chapters 3 and 4 can be found online.

26



Introduction

1.2.2. LIST OF PUBLISHED RESEARCH PAPERS

The following three papers are discussed in detail in the remaining chapters of this thesis.

1. Learning 6D Object Pose Estimation using 3D Object Coordinates
Eric Brachmann, Alexander Krull, Frank Michel, Stefan Gumhold, Jamie Shotton, Carsten
Rother
ECCV 2014 (Poster Presentation)

2. Uncertainty-Driven 6D Pose Estimation of Objects and Scenes from a Single RGB
Image
Eric Brachmann, Frank Michel, Alexander Krull, Michael Ying Yang, Stefan Gumhold,
Carsten Rother
CVPR 2016 (Poster Presentation)

3. DSAC - Differentiable RANSAC for Camera Localization
Eric Brachmann, Alexander Krull, Sebastian Nowozin, Jamie Shotton, Frank Michel,
Stefan Gumhold, Carsten Rother
CVPR 2017 (Oral Presentation)

We contributed to the following, additional papers associated with 6D pose estimation. How-
ever, these works will not be discussed in this thesis.

4. 6-DOF Model-Based Tracking via Object Coordinate Regression
Alexander Krull, Frank Michel, Eric Brachmann, Stefan Gumhold, Stephan Ihrke, Carsten
Rother
ACCV 2014 (Oral Presentation, Honorable Mention Demo Award)

5. Pose Estimation of Kinematic Chain Instances via Object Coordinate Regression
Frank Michel, Alexander Krull, Eric Brachmann, Michael Ying Yang, Stefan Gumhold,
Carsten Rother
BMVC 2015 (Oral Presentation)

6. Learning Analysis-by-Synthesis for 6D Pose Estimation in RGB-D Images
Alexander Krull, Eric Brachmann, Frank Michel, Michael Ying Yang, Stefan Gumhold,
Carsten Rother
ICCV 2015 (Poster Presentation)

7. Random Forests versus Neural Networks - What’s Best for Camera Relocalization?
Daniela Massiceti, Alexander Krull, Eric Brachmann, Carsten Rother, Philip H.S. Torr
ICRA 2017 (Oral Presentation)

8. PoseAgent: Budget-Constrained 6D Object Pose Estimation via Reinforcement
Learning
Alexander Krull, Eric Brachmann, Sebastian Nowozin, Frank Michel, Jamie Shotton,
Carsten Rother
CVPR 2017 (Poster Presentation)

9. Global Hypothesis Generation for 6D Object Pose Estimation
Frank Michel, Alexander Kirillov, Eric Brachmann, Alexander Krull, Stefan Gumhold,
Bogdan Savchynskyy, Carsten Rother
CVPR 2017 (Spotlight Presentation)
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The following papers are concerned with topics different from 6D pose estimation but were
published during the work on this thesis.

10. Feature Propagation on Image Webs for Enhanced Image Retrieval
Eric Brachmann, Marcel Spehr, Stefan Gumhold
ICMR 2013 (Oral Presentation)

11. Simplified Authentication and Authorization for RESTful Services in Trusted En-
vironments
Eric Brachmann, Gero Dittmann, Klaus-Dieter Schubert
ESOCC 2012 (Oral Presentation)

1.3. RELATED WORK

In the early 2000s, sparse feature-based methods enabled reliable object detection and pose
estimation from RGB images [Low04, GL06]. However, these methods required the objects
to be sufficiently textured such that a feature detector could identify reliable sparse feature
points. During this period, research focused on improving reliability [YM11] and scalability
[NS06, PCI+07] of such methods but general interest in object pose estimation was some-
what limited.

In 2010, the Kinect [WA] depth sensor was introduced for the Microsoft Xbox 360 gam-
ing console. Alongside the success in the consumer marked, researchers started to adopt
the device as an affordable RGB-D camera. Among others, the Kinect sparked renewed
interest in the problem of object pose estimation [HMS+]. The additional depth channel en-
abled pose estimation of texture-less objects which were previously difficult to handle. At
the same time, machine learning methods became increasingly popular within computer vi-
sion with general function approximators like random forests or CNNs pushing accuracy
and robustness of object pose estimation. Starting 2015, research focused on difficult
cases of object pose estimation from RGB-D images, like objects under severe occlusion
[KBM+15, MKB+17, HLRK16] or extremely ambiguous objects [HHO+17]. At the same
time, some authors tried to transfer the success of object pose estimation from RGB-D
input back to the RGB only setup [CRV+15, WL15, KHKH16].

In the review below, we focus on techniques that specifically address the detection of in-
stances of rigid objects in cluttered scenes and simultaneously infer their 6D pose. We group
methods coarsely in four categories: correspondence-based approaches, template-based ap-
proaches, voting-based approaches and methods that directly regress the object pose from
the input.

1.3.1. CORRESPONDENCES-BASED APPROACHES

Methods within this category follow a two-staged procedure: Firstly, they establish corre-
spondences between the input image and the object. Usually, these correspondences are
predicted based on local support, e.g. based on image patches. Secondly, they search for a
pose estimate which align the correspondences minimizing some error measure. Usually,
the pose search is guided by geometric constraints given by the correspondences. Robust
optimization techniques like Random Sample Consensus (RANSAC) or clustering make the
pose estimation robust to correspondence prediction errors, see Fig. 1.11. Since only a small
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number of correspondences (at least three for RGB-D images and four for RGB images) suf-
fice to recover the pose, correspondence-based methods are typically very robust w.r.t. to
occlusion.

𝐡1

𝐡3

𝐡2

𝑠1

𝑠2

𝑠3

Predict Correspondences Create Hypotheses Select Best Hypothesis Pose Estimate

Figure 1.11.: Sparse Feature-Based Pose Estimation. From left to right: Sparse features
are extracted for an input image and matched to the 3D model of the object.
The set of correspondences is likely to contain outliers, i.e. wrong matches
shown in red, due to various error sources. For robustness, several hypothe-
ses h about the object pose are created, using different subsets of correspon-
dences. The quality of hypotheses is assessed w.r.t. to some scoring function
s. The final pose estimate is the hypothesis with the largest score, potentially
after further refinement. In this thesis, we follow a similar approach, but learn
to predict dense correspondences instead of relying on sparse feature detec-
tion and matching.

Many variants of correspondence-based approaches rely on sparse feature detectors.
These extract points of interest (often scale-invariant) from the image, describe them with
local descriptors (often affine and illumination invariant), and match them to a database.
For example, Lowe [Low01] used SIFT (scale invariant feature transform) features and clus-
tered images from similar viewpoints into a single model. Another example of a system
based on sparse feature clustering is the MOPED framework [MCS10]. Sparse techniques
have been shown to scale well to matching across vast vocabularies [NS06, PCI+07], e.g.
Sattler et al. demonstrate city scale 6D camera localization based on sparse feature match-
ing [SLK16, STS+17]. Sparse feature pipelines have also been combined with machine
learning to improve interest points [RPD10, HSK12], descriptors [WHB09], and matching
[LF06, OCLF10, BRF12]. Specifically, Yi et al. [YTLF16] encoded the original SIFT pipeline
of Lowe [Low01] within a CNN architecture which they call LIFT (learned invariant feature
transform). It consists of feature extraction, rotation estimation and descriptor extraction
components which can be learned from data for increased matching performance. How-
ever, at time of publication, learned sparse features have not yet been used for object pose
estimation. A study by Sattler et al. [SHSP17] has shown that the increased matching per-
formance of learned features does not necessarily lead to increased accuracy in higher level
tasks like 3D reconstruction.

Despite their popularity, a major limitation of traditional sparse approaches is that they
require sufficiently textured objects. For objects with little or no texture, a feature detector
will fail to identify stable feature points. As an alternative, Crivellaro et al. [CRV+15] train a
CNN to detect object specific anchor points, a variant of sparse features, like the corners
of box-shaped objects. Other authors dispense the feature detector and instead establish
correspondences densely for each pixel of the input image. Object coordinates, the approach
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presented in this thesis, belongs to this strain of dense correspondence-based methods.
While individual correspondences predicted for areas with little or no texture are likely

to be inaccurate, in large numbers they can still contribute to a good solution. In case an
RGB-D sensor is available, the additional depth channel can increase the expressiveness of
correspondences in texture-less areas. Shape cues in the depth channel are useful for corre-
spondence matching, and allow to utilize stronger geometric constraints during pose estima-
tion. For example, Zach et al. [ZPSP15] use local voxel occupancy information to establish
dense correspondences between an RGB-D image and an object. A geometric consistency
check discards a large number of outlier correspondences. The remaining correspondences
yield a pool of pose hypotheses which are ranked and refined using an ICP-inspired proce-
dure. In our method, we instead learn to predict correspondences which are reliable enough
to facilitate pose optimization using RANSAC. While the method of Zach et al. [ZPSP15] is
limited to RGB-D inputs, our method supports RGB-D and RGB inputs (see Chapter 2 and
3, respectively). Given all available image modalities, it will discover the most appropriate
image features to exploit, autonomously.

Scene Coordinate Regression Our method is inspired by the Scene Coordinate Regres-
sion Forests (SCoRF) of Shotton et al. [SGZ+13] introduced for camera localization from
RGB-D images. As described in Sec. 1.1.1, camera localization is a special case of object
pose estimation where the object of interest occupies the complete input image. Shotton
et al. learn a mapping from image patches to world coordinates (resp. scene coordinates),
i.e. 3D coordinates in the reference frame of the scene. Apart from scene coordinates,
Shotton et al. also calculate camera coordinates, i.e. 3D coordinates in the reference frame
of the camera, for each pixel using the depth channel of the input image. The combination of
calculated camera coordinates and predicted scene coordinates yields dense 3D-3D corre-
spondences. Based on these correspondences, Shotton et al. fit a rigid body transform using
locally refined pre-emptive RANSAC. See Fig. 1.12 for an overview of the SCoRF pipeline.
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RGB-D Input Scene Coordinate Predictions Estimated Camera PosePose Hypotheses and Scores

Figure 1.12.: SCoRF Pipeline [SGZ+13] for Camera Localization. From left to right: A
random forest predicts dense scene coordinates for an RGB-D input image.
Hypotheses of camera poses are created, scored and refined in a pre-emptive
RANSAC schema. The best hypothesis is returned as the estimated 6D cam-
era pose. In this thesis we generalize the SCoRF framework for object pose
estimation and extend it in various ways.

The SCoRF pipeline cannot be directly applied to object pose estimation. If the object of
interest occupies only a small fraction of the input image most scene coordinate predictions,
specifically those made for the unknown background, will be wrong. This results in an ad-
verse outlier-inlier ratio which RANSAC is unable to handle. In this thesis, we extend the
concept of scene coordinate regression to that of object coordinate regression. Jointly with
the correspondence prediction, we solve a classification problem that allows us to restrict
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RANSAC hypothesis sampling to pixels which likely belong to an object of interest. Thus, we
are able to estimate accurate 6D poses of small objects in large, unknown scenes. In con-
trast to Shotton et al., we also learn object coordinate representations for multiple objects
simultaneously leading to a very scalable system (see Chapter 3). Since object pose estima-
tion is a generalization of camera localization, our pipeline can be applied to both problems.
Unlike Shotton et al., we demonstrate camera localization from RGB-D and RGB images,
see Chapter 3. In Chapter 4, we furthermore introduce a modernized variant of the original
SCoRF pipeline which can be learned end-to-end with the novel concept of differentiable
RANSAC.

The SCoRF pipeline has been extended in multiple follow-up works. Guzman-Rivera et al.
[GRKG+14] train a random forest to predict diverse scene coordinates in order to resolve
scene ambiguities. Cavallari et al. [CGL+17] show how to adapt pre-trained regression forests
for a new scene on the fly, given RGB-D input. Valentin et al. [VNS+15] introduce uncer-
tain correspondence predictions by modelling full distributions of scene coordinates. The
uncertainty information leads to a better pose refinement and thus higher pose accuracy.
However, their approach cannot be applied to RGB images because it relies on the calcula-
tion of camera coordinates from a depth channel. We developed the concept of uncertain
correspondence prediction in parallel to Valentin et al. Going beyond their work, we show
how to utilize this uncertainty also for RGB input, i.e. even if no camera coordinate can be
calculated, see Chapter 3.

Finally, there are approaches for object class detection that use a similar idea as our 3D
object coordinate representation. One of the first systems is the 3D LayoutCRF [HRW07]
which considers the task of predicting a dense, discrete part-labeling, covering the 3D rigid
object, using a decision forest, though they did not attempt to fit a 3D model to those la-
bels. After that, the Vitruvian Manifold [TSSF12] was introduced for human pose estimation.
The authors predict a dense, continuous human part labeling based on a segmented depth
image of a person. The segmentation is assumed to be given, e.g. by a simple background
subtraction on the depth channel. Using the label prediction, the authors solve for the high-
-dimensional human pose using a robust energy minimization. This work inspired the SCoRF
pipeline discussed above in detail. Similar to SCoRF, the Vitruvian Manifold system is limited
to RGB-D inputs.

1.3.2. TEMPLATE-BASED APPROACHES

A popular alternative to correspondences-based approaches are templates. A template is a
global descriptor that captures the appearance of an object from a certain view point, often
in a way that is robust to illumination changes. In practice, a set of templates is extracted
for a discrete subset of all possible viewing angles and scales to describe the object as a
whole. During test time, each template from the set is compared to the input image at all
possible 2D locations. A matching score exceeding a pre-defined threshold will yield a can-
didate detection. Candidate detections are often pruned, e.g. by further consistency checks
and non-maximum suppression. Because each template is associated with a specific view
point, a template match does, additionally to 2D location, usually also contain information
about object scale and rotation. Therefore, a template match translates to an estimate of
the 6D object pose. However, because the set of templates represents only a discretized
set of object poses, this estimate is limited in its accuracy. Hence, most template-based
methods apply some kind of post-processing, e.g. ICP refinement, to improve the final re-
sult. Usually, templates do not require an extensive training phase and have been shown to
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be very efficient during test time. Because templates are holistic object descriptions, they
tend to be very sensitive to partial occlusion.

…

Edge Template Input Edge Map Template Database Input Image

Figure 1.13.: Template-Based Approaches. Left: Early works in template matching were
concerned with defining robust distance functions to compare clean template
edge maps with noisy edge maps of input images [HKR93]. If the template
can be matched at a particular image position, the object is localized. Right:
Templates can be extracted for a dense sampling of viewpoints of an object to
create a template database. At test time, all templates a moved over an input
image. If the matching score exceeds a threshold, the object is localized, and
the viewpoint associated with the matching template can be returned as a pose
estimate.

Research on templates dates back far, with methods like [HKR93] or [FTVG06, FJS09] rely-
ing on matching contours for object detection. The success of these methods was limited,
because contours tend to be unstable when extracted from natural images. Instead, tem-
plates based on image gradients have been widely used, often based on the HOG (histogram
of oriented gradients) descriptor initially introduced for pedestrian detection [DT05]. For ex-
ample, Felzenszwalb et al. [FGMR10] describe a HOG-based deformable parts model (DPM)
for object class detection which won the PASCAL VOC 2009 detection challenge [EVGW+a].

Although object class templates like HOG or DPM can also detect rigid object instances,
they are constructed to be somewhat invariant to object appearance. While this allow them
to handle class specific variabilities it also limits their ability to discriminate exact view points
of objects as is needed for accurate 6D object pose estimation. That motivated authors to
develop instance specific template methods with the LINE templates of Hinterstoisser et al.
[HCI+12]. LINE templates come in different variants: LINE2D templates rely on stable RGB
gradients for object detection from RGB images. LINE3D templates rely on stable normals
for object detection from depth images. LINEMOD templates utilize both cues for object
detection from RGB-D images. The templates store and compare only quantized, binarized
gradients and normals which makes the computation of matching scores extremely fast. This
allows Hinterstoisser et al. to represent an object with 2000+ templates, covering different
combinations of scale and viewing angles, and still run in real time. LINEMOD templates
have been successfully applied to object pose estimation from RGB-D input in [HLI+12],
where the template match gave an initial pose estimate further refined using ICP.

By relying on gradient and normal information, LINE templates are robust to some changes
in object appearance. For example, in [HLI+12] templates were extracted using renderings
of objects, and applied to real images during test time. This is an advantage in applications
were CAD models of objects exist because images with accurate ground truth poses can
be generated easily in large amounts. We extensively compare our method to LINEMOD in
Sec. 2.3. As we will show, our method is less sensitive to illumination changes and partial
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object occlusion. At the same time, we can also learn our object coordinate representation
from synthetic (i.e. rendered) training data.

Although the matching function of templates like LINE is very fast to compute, the number
of templates needed scales linearly with the number of objects and with the extent of the
pose space to cover. In [HLI+12], the discretized pose space was limited to a few discrete
distances (resp. scales) and the upper view hemisphere. If a large range of scales and all
360◦ of viewing angles should be supported, the number of required templates, multiplied by
the number of objects, quickly grows tremendously. The scalability issues of template-based
methods have been addressed by some authors. Konishi et al. [KHKH16] arrange templates
of increasing resolution in an hierarchical pose tree for fast inference. Rios-Cabrera and
Tuytelaars [RCT13] use discriminative learning to construct a LINEMOD template cascade
which considerably speeds up template matching. Kehl et al. [KTN+16] utilize a LINEMOD
inspired hashing function for template matching, resulting in object pose estimation which
scales sub-linearly in the number of objects. Similarly Hodan et al. [HZL+15] find candidate
templates by hashing features of pixel triplets which also results in sub-linear scaling of the
method. As we will demonstrate in Sec. 2.3.6 and Sec. 3.3.2, our method also has an
empirical complexity which is sub-linear in the number of objects and in the pose space
covered.

While most templates discussed so far have been more or less handcrafted, Wohlhart
et al. [WL15] learn an object descriptor from data. The descriptor is the output of a CNN
that captures pose and object instance specific appearance in a holistic fashion, hence it is
comparable to a template. The CNN is learned such that the descriptors exhibit the following
properties: Two descriptors of the same object instance and similar poses should be similar,
in any other case they should be dissimilar. At test time, descriptors of the input image and
an object database are matched using a nearest neighbor search in Euclidean space. The
method can be applied to RGB-D or RGB inputs, and the descriptors can generalize to unseen
objects to some extent. While the method has been compared favorably to LINEMOD in a
restricted experimental setup, its accuracy and performance within a full object detection or
pose estimation pipeline remains unclear.

1.3.3. VOTING-BASED APPROACHES

The notion of voting-based approaches is that local evidence in the image restricts the pos-
sible outcome of the desired output. Hence, every image patch can cast a vote about the
output. For example, if a certain part or feature of an object is detected in the image, this
massively restricts the possible position of the object center. In case the object is rigid, the
position of the object center relative to an object feature depends only on the object rotation.
Furthermore, not all object features are visible under all rotations, and affine distortions of
an object feature can yield further information about the object pose. Although individual
votes are weak, i.e. noisy resp. uncertain, in summation they can yield a strong prediction,
see Fig. 1.14, left.

In the generalized Hough voting scheme, all image patches cast a vote in some quantized
prediction space (e.g. 2D object center and scale), and the center of the cell with the most
votes is taken as the final prediction. Because the prediction space is quantized, the final
prediction is limited in accuracy. As an alternative, clusters of votes can be found in a contin-
uous prediction space using e.g. mean-shift. In this case. the center of the cluster is taken
as the final prediction. Voting-based approaches are usually restricted to low dimensional
output predictions. In high-dimensional spaces, votes tend to scatter and not form clear
clusters.
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In [SBXS10, GYR+11], Hough voting was used for object detection, and was shown able
to predict coarse object poses. In our work, we borrow an idea from Gall et al. [GYR+11]
to jointly train an objective over both Hough votes (resp. object coordinates in our case) and
object segmentations. However, in contrast to [GYR+11] we found a simple joint distribution
over the outputs (in our case 3D object coordinates and object ID labels) to perform better
than the variants suggested in [GYR+11].

Tejani et al. [TTKK14] train a Hough forest for 6D pose estimation from an RGB-D image.
Each tree in the forest maps an image patch to a leaf which stores a set of 6D pose votes.
Tejani et al. adapt LINEMOD templates [HCI+11], discussed above, to be used as features
in each forest split node. Tejani et al. cluster pose votes in three subsequent stages to re-
duce the dimensionality of the problem: Firstly, they cluster according to the 2D projections
of the object center, secondly, according to the 3D translation component and, thirdly, ac-
cording to the 3D rotation component. Doumanoglou et al. [DKMK16] improved the method
by using auto-encoder features in the Hough forest instead of LINEMOD features. Kehl
et al. [KMT+16] follow a similar strategy but instead of using a random forest they match
image patches to a patch codebook via a nearest neighbor search based on auto-encoder
features. Each entry in the codebook is associated with 6D pose votes, which are subse-
quently clustered in 3 stages similar to [TTKK14]. Our method is conceptually similar to
[TTKK14, DKMK16, KMT+16] but instead of casting 6D votes, each image patch instead
makes a 3D continuous prediction about only its local correspondence to the object surface.
This massively reduces the search space, and, for learning a discriminative prediction, allows
a much reduced training set since each point on the surface of the object does not need to be
seen from every possible angle. We show how these 3D object coordinates can efficiently
drive a subsequent model fitting stage to achieve a highly accurate 6D object pose.

Drost et al. [DUNI10] take a two-stage voting approach using point pair features to recover
the 6D pose of objects from a depth image. A point pair feature contains information about
the distance and the normals of two arbitrary 3D points. In stage one, a reference point of
the input image is selected, and possible point pair features are calculated exhaustively by
pairing it with all other input points. All these point pair features cast votes for a location of
the reference point on the object surface in a 2D voting space. Each peak in the voting space
leads to a candidate match between the input and the object. Because a candidate match
consists of pairs of points with normal information, it identifies a unique 6D pose of the ob-
ject. However, due to quantization and sampling artifacts this candidate pose is only a coarse
estimate. The voting procedure of stage one is repeated for every input point as the refer-
ence point yielding a large number of candidate poses. In a second stage, all pose candidates
are clustered and the average pose of a cluster is given as the final output. The method of
Drost et al. compared unfavorably to more recent approaches like LINEMOD [HLI+12]. Due
to the exhaustive computation and matching of point pair features, the method is suscep-
tible to large amounts of clutter in the input. This also makes the method computationally
demanding. These shortcomings were addressed by Hinterstoisser et al. [HLRK16], improv-
ing robustness, accuracy and runtime considerably. Foremost, Hinterstoisser et al. avoid the
exhaustive pairing of input points by sampling point pairs according to object size. Further-
more, they use soft votes to account for sensor noise, and add post processing to refine
final pose estimates. While performing very well, the method is limited to depth inputs, and
has been outperformed by Michel et al. [MKB+17] using an approach based on the object
coordinate concept presented in this thesis.
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Figure 1.14.: Voting-Based Approaches and Pose Regression. Left: Four colored patches
vote for the 2D center position of the bench vise object. Every patch casts
multiple discrete votes illustrated by colored dots. Votes of the green, red
and orange patch form a clear cluster while the white background patch casts
random votes that do not contribute to any maximum. The vote cluster yields
the 2D position of the object. In high dimensional output spaces votes tend to
scatter, and no maximum can be found. Right: A CNN was trained to directly
regress rotation parameters r and translation parameters t from an input image.
Because of limited training data, direct pose regression is usually inaccurate.

1.3.4. POSE REGRESSION

While the methods explained so far rely on multi-staged strategies to estimate object poses
from input images, an alternative is to learn the immediate mapping from an input image to
a parametric representation of the pose. This idea has been predominately explored for cam-
era localization. For example, Kendall et al. [KGC15] trained a CNN, called PoseNet, to directly
regress the 6D pose vector of a scene from an RGB image. Walch et al. [WHL+16] proposed
a variant of PoseNet with a LSTM (long short-term memory) component, and Kendall and
Cipolla [KC17] evaluated the impact of different loss functions for training PoseNet. How-
ever, while PoseNet and its variants are fast and easy to train they fail to predict accurate
poses. Specifically, they are by one order of magnitude less accurate than the approaches
we present in Chapter 3 and 4. Also, they are less accurate than traditional, handcrafted
camera localization approaches based on sparse features. The unconstrained architecture of
PoseNet dismisses all geometric knowledge about the task, and the amount of training data
is insufficient to discover these concepts purely by end-to-end learning.

Inspired by PoseNet, Doumanoglou et al. [DBKK16] train a CNN to regress the object ro-
tation directly from a window centered at the object position, see Fig. 1.14, right. They con-
clude, that a direct regression is less accurate than a nearest neighbor matching of mid-level
features to a rotation database.

35



Introduction

1.4. OUTLINE OF THE THESIS

The remainder of this thesis is structured as follows: Chapter 2 introduces our system for
pose estimation of a single object instance from an RGB-D image. Here, we show how to
learn to regress object coordinates in a supervised fashion from object coordinate ground
truth. In Chapter 3, we extend this system in multiple ways to enable efficient pose estima-
tion of multiple objects from single, RGB images, i.e. without the need for a depth channel.
In Chapter 4, we introduce DSAC, Differentiable Sample Consensus, which enables us to
learn all components of our pipeline in an end-to-end fashion, i.e. we learn to predict object
coordinates that minimize the pose error on the training set. We discuss the status of ob-
ject pose estimation under the light of this thesis in Chapter 5. This includes open research
questions.
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2.1. INTRODUCTION

In this chapter, we consider a basic scenario of object pose estimation where the input is
a single RGB-D image, and the object in question is a rigid instance that is known to be
visible in the image. The ultimate goal is to design a system that is fast, scalable, robust and
highly accurate and works well for generic objects (both textured and texture-less) present
in challenging real-world settings, such as cluttered environments and with variable lighting
conditions. The work associated with this chapter was published in [BKM+14].

As discussed in Sec. 1.3, for many years the main focus in the field of detection and
2D/6D pose estimation of rigid objects has been limited to objects with sufficient amount
of texture. Most systems used a sparse representation of local features, either handcrafted,
e.g. SIFT features [Low01], or trained from data, e.g. LIFT features [YTLF16]. These systems
run typically a two-staged pipeline: Firstly, putative sparse feature matching, and secondly,
geometric verification of matched features.

Later, researchers have started to consider the task of object instance detection for texture-
less or texture-poor rigid objects, e.g. [HCI+12, HLI+12, RCT13]. For this particular challenge
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a) b) c) d)

Figure 2.1.: Overview of our System. Top left: Results on an RGB-D test image. The up-
per half shows the depth channel and the lower half shows the RGB image.
The estimated 6D pose of the query object (a Camera) is illustrated with a blue
bounding box, and the respective ground truth with a green bounding box. Top
right: Visualization of the algorithm’s search for the optimal pose, where the
inlet is a zoom of the center area. The algorithm optimizes our scoring func-
tion in a RANSAC-like fashion over a large, continuous 6D pose space. The 6D
poses, projected to the image plane, which are visited by the algorithm are color
coded: red poses are disregarded in a very fast geometry check; blue poses are
evaluated using our scoring function during intermediate, fast sampling; green
poses are subject to the most expensive refinement step. Bottom, from left
to right: (a) Probability map for the query object, (b) predicted 3D object coor-
dinates from a single tree mapped to the RGB cube, (c) corresponding ground
truth 3D object coordinates, (d) overlay of the 3D model in blue onto the test
image, rendered according to the estimated pose.

it has been shown that template-based techniques are superior to sparse feature-based ap-
proaches. Nevertheless, template-based techniques are less robust with respect to occlu-
sion because they encode the object in a particular pose with one global feature. In contrast
to this, sparse feature-based representations for textured objects are local, and hence robust
to occlusion.

Our approach is motivated by work in the field of articulated human pose estimation
[TSSF12] and camera localization [SGZ+13] from a single RGB-D image. Both works do not
predict the human resp. camera pose directly from an image, but first regress an intermedi-
ate representation. Each pixel in the image votes for a continuous coordinate in a canonical
reference frame. In the next step, a geometric validation is performed, which optimizes for
the desired pose. In spirit, both approaches are akin to the two-staged pipeline of traditional,
sparse feature-based techniques but with densely learned features.

Our system is based on these ideas presented in [TSSF12, SGZ+13] and applies them
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to the task of estimating the 6D pose of specific objects. An overview of our system is
presented in Fig. 2.1. We cannot apply [TSSF12, SGZ+13] directly since we additionally
need an object segmentation mask. Note that the method in [TSSF12] can rely on a pre-seg-
mented human shape, and [SGZ+13] does not require a segmentation because the scene
occupies the whole image. To achieve object pose estimation, we jointly predict a dense
3D object coordinate labeling and a dense object ID labeling. Another major difference to
[SGZ+13] is a guided sampling scheme to avoid the generation of many false hypotheses in
the RANSAC-based pose optimization.

Contributions. The contributions of this chapter are:

• We introduce the concept of object coordinates, a dense, continuous correspondence
representation, for object instance pose estimation. We train a discriminative model
which is able to regress object coordinates and segmentation of multiple objects, si-
multaneously.

• We formulate a new scoring function which assesses the plausibility of a pose hypothe-
sis w.r.t. the observed image and the discriminative predictions of a random forest. The
scoring function utilizes knowledge about the specific object in the form of a 3D model.
We utilize the scoring function within a RANSAC-based pose optimization schema.

• We compare with state-of-the-art template-based approaches, and show that our method
is on par regarding pose estimation of texture-less object instances. Furthermore, we
show superior accuracy on images with severe occlusion and drastic lighting changes.

• We published a new dataset of 20 objects, textured and texture-less, featuring three
different lighting conditions. The dataset consists of approximately 10k annotated im-
ages, see Appendix A.2.3.

• We published a set of approximately 10k new pose annotations for the dataset of
Hinterstoisser et al. [HLI+12] for heavily occluded objects, see Appendix A.2.2.

2.2. METHOD

Given an input image I, we aim at estimating the pose hc of an object c, consisting of a
3D rotation θc and a 3D translation tc. We first describe our decision forest that jointly
predicts both 3D object coordinates and object instance probabilities for each pixel of the
input image. Then, we will discuss our pose hypothesis scoring function which is based on
the forest output. Finally, we will address our RANSAC-based pose optimization scheme.

2.2.1. OBJECT COORDINATE REGRESSION

We use a single decision forest to classify pixels from an RGB-D image. A decision forest is
a set T of decision trees T j . Each decision tree is a hierarchical structure which consists of
two types of nodes, split nodes and leaf nodes. A split node compares a feature response
calculated for the incoming pixel i to a threshold, and, depending on the result, passes the
pixel to the left or right child node. Split node features access the local neighborhood of the
input pixel i to calculate a response, i.e. our forest operates on image patches. At some
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Figure 2.2.: Pose Estimation Under Severe Occlusion and Lighting Changes. Our
method is able to find the correct pose where a template-based method fails.
(a) Test image showing a situation with strong occlusion. The pose estimate by
our approach is shown in blue. The pose estimated by our re-implementation of
the method by Hinterstoisser et al. from [HLI+12] is shown in red. (b) The co-
ordinate predictions for a from one tree mapped to the RGB cube and weighted
by the soft segmentation for that object. (c) Ground truth object coordinates for
a mapped to the RGB cube. (d) Test image showing extreme light conditions,
different from the training set. Estimated poses are displayed as in a.

point, the pixel will reach a leaf node lj , which stores a prediction. Our forest is trained in a
way that allows us to gain information about which object c ∈ C the pixel i might belong to,
as well as what might be its position on this object. We will denote a pixel’s position on the
object by yi and refer to it as the pixel’s object coordinate. Each leaf lj stores a distribution
over possible object affiliations P (c|lj), as well as a set of object coordinates yc(l

j) for each
possible object affiliation c. The term yc(l

j) will be referred to as coordinate prediction.
In the following, we describe the training procedure of one randomized decision tree

[CS13]. The procedure is the same for all trees of the forest, and consists of two stages. In
training stage one, we create the structure of the decision tree, i.e. we select features and
thresholds for each split node, and we determine when to terminate growing a tree branch
and store a leaf node instead. We also give detailed information on the types of features we
use in split nodes. In training stage two, we assign predictions to each leaf node lj , namely
distributions of object affiliations P (c|lj) and an object coordinate yc(l

j) for each object.
For training, we use segmented object images and a set of RGB-D background images.

We will treat training images as a combined set of training pixels. Each training pixel i is
characterized by its position pi, its color xrgb

i , its depth di, its object instance label ci and its
object coordinate yi. Object coordinate yi labels will not be used for pixels from background
images.

Training of a Decision Tree Structure. Training the tree structure starts at the top node
where a feature with parameters ζ is selected with the goal to reduce the uncertainty in
P (c) and P (y|c) the most, based on the training data. Here, P (c) denotes the distribution
over object affiliations c, and P (y|c) denotes the conditional, continuous 3D distribution over
object coordinates y given an object affiliation c.

The selection of features at each node is based on a split score which should be able
to handle well the discrete distribution P (c) and the continuous distribution P (y|c). We
quantize the continuous object coordinate labels y based on a 5×5×5 grid to obtain discrete
object coordinate labels ŷ. The quantization allows us to use the standard information gain
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classification objective during training, which has the ability to cope better with the often
heavily multi-model distributions P (y|c) than a regression objective [GSK+11]. We define
the information gain over the joint distribution P (ŷ, c) which has potentially 125|C|+1 labels,
for |C| object instances and one additional label for a background class. In practice, many
bins are empty, and the histograms can be stored sparsely for speed. We denote by Pη(ŷ, c)
the joint distribution at node η, and by P ζ,←

η (ŷ, c) resp. P ζ,→
η (ŷ, c) the distributions in the

left resp. the right child of node η, split by parameters ζ. We select parameters ζ such that
the information gain IG in objects and proxy classes is maximized:

IG(η, ζ) = H(Pη(ŷ, c))−
∑

k∈{←,→}

[ |ηk|
|η| H(P ζ,k

η (ŷ, c))
]
, (2.1)

where H(Pη(ŷ, c)) = −
∑
c

∑
ŷ Pη(ŷ, c) logPη(ŷ, c) is the Shannon entropy of the joint dis-

tribution, |η| is the number of training pixels which arrived at the parent node, and |ηk|, k ∈
{←,→} is the number of pixels split to the left resp. the right child node. We found the
suggestion in [GYR+11] to mix two separate information gain criteria, one for P (c) and one
for P (y|c), to be inferior on our data.

The selected feature divides the data to go to the left resp. the right child node, where the
feature selection process repeats. This process iterates until a stopping criterion is met. We
stop splitting further if a maximum depth has been reached, or not enough training pixels
arrived at a node. Due to runtime complexity only a random sub-sampling of both, training
pixels and feature parameters ζ, is used. This also introduces variability between trees in
the forest, and hence the ability to generalize to unseen data.
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Figure 2.3.: Depth Adaptive Pixel Difference Features. Left: Our random forest uses pixel
differences on RGB and depth as features. We show the feature response maps
for one RGB feature fda-rgb (top), and for one depth feature fda-d (bottom). As a
magnified inlay, we show on exemplary input patch with feature offsets ω1 and
ω2 marked by crosses. Right: Feature offsets are depth adaptive, i.e. input
patches are scale-normalized according to the depth at the center pixel. We
mark the patch size for two input images taken with different distance between
object and camera. Note how the scale adapted patch covers similar portions of
the object.
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Split Node Features. The choice of features evaluated in the tree splits is central for accu-
racy and runtime of the random forest. We experimented with a large number of features,
including angles between normals, absolute (L)AB color, Haar features [VJ01], etc. We found
that the very simple and fast to compute features from [SGZ+13] performed well, and that
adding extra feature types did not appear to give a boost in accuracy but did increase runtime.
We assume that the learned combination of simple features in the tree is able to create com-
plex features which specialize for the task defined by the training data and splitting objective.
The features in [SGZ+13] consider depth or color differences from pixels in the vicinity of
pixel i, and capture local patterns of context, see Fig. 2.3, left. The feature responses can
be computed as follows.

fda-d(ζ,pi) = d

(
pi +

ω1

di

)
− d

(
pi +

ω2

di

)
(2.2)

fda-rgb(ζ,pi) = I

(
pi +

ω1

di
, γ1

)
− I

(
pi +

ω2

di
, γ2

)
,

(2.3)

where I(pi, γ) = xrgb
i [γ] returns the R, G, or B channel of a pixel according to γ, and d(pi) =

di returns the depth at position pi. Abbreviations ‘da-rgb’ and ‘da-d’ stand for depth adaptive
RGB differences and depth adaptive depth differences. ω indicates a 2D offset. The division
by di makes the features largely depth invariant, and is similar in spirit to [WCL+08], see also
Fig. 2.3, right. In summary, each split node in the forest stores a unique set of parameters
ζ ⊆ {ω1,ω2, γ1, γ2, z, τf}, with z ∈ {da-d, da-rgb} indicating the type of feature to use. We
denote τf for the threshold on the feature response that decides whether a pixel goes to
the left or the right child of a node. This threshold is also stored per node. As we mentioned
above, we use segmented object images for training. If a feature test reaches outside the
object mask, we have to model some kind of background to calculate feature responses. In
our experiments, we use uniform noise or a simulated plane the object sits on. We found
this to work well, and to generalize well to new unseen images. Putting objects on a plane
allows the forest to learn contextual information.

Training of Leaf Node Distributions. After constructing the tree structure based on quan-
tized object coordinates, we proceed with stage two of training. We push training pixels
from all objects through the tree and record all continuous locations y for each object c at
each leaf lj . This gives a conditional distribution P (y|c, lj) per leaf which we approximate
by storing only the mode yc(l

j) with most supporting samples. For each object and leaf,
we run mean-shift with a Gaussian kernel and a bandwidth of 2.5cm. Note that although we
store only one object coordinate mode per object and leaf, the object coordinate prediction
per pixel can still be multi-modal by using a forest instead of a single tree. Also note that
we did not use quantized object coordinates in training stage two. We furthermore store at
each leaf the percentage of pixels coming from each object c to approximate the distribution
of object affiliations P (c|lj) at the leaf. We also store the percentage of pixels from the back-
ground set that arrived at lj , and refer to it as P (BG|lj). We summarize the forest training
procedure in Fig. 2.4.

Using the Forest. At test time, we push all pixels of an RGB-D image through every tree of
the forest, thus associating each pixel i with a distribution P (c|lji ) and one prediction yc(l

j
i )

for each tree j and each object c. Here lji is the leaf outcome of pixel i in tree j. The leaf
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Figure 2.4.: Training of our Random Forest. Clockwise: We render RGB-D images and
object coordinates ground truth of all objects. We sample image patches from
these object images and background images to train the structure of each deci-
sion tree in a greedy fashion. After the structure is trained, we collect training
patches in tree leafs. Based on these samples, we calculate object probability
distributions, shown as a histogram, and object coordinate estimates for each
object, shown as crosses on object coordinate renderings.

outcome of all trees for a pixel i is summarized in the vector li = (l1i , . . . , l
j
i , . . . , l

|T |
i ). For

each pixel i in the image and for each object c, we calculate a weight Pc,i by combining
the P (c|lji ) stored at leafs lji . The weight Pc,i can be seen as the approximate probability
P (c|li) that a pixel i belongs to object c given it ended up in the combined set of leaf nodes
li = (l1i , . . . , l

j
i , . . . , l

|T |
i ). We will thus refer to the weight Pc,i as the object probability. We

calculate the object probability as

Pc,i =

∏|T |
j=1 P (c|lji )(∑

c′∈C
∏|T |
j=1 P (c′|lji )

)
+
∏|T |
j=1 P (BG|lji )

. (2.4)

All object probabilities of an input image yield a soft segmentation for the objects of interest.

Deduction of Eq. 2.4 In the following, we will give a detailed deduction of Eq. 2.4. Our
goal is to calculate the approximate probability Pc,i ≈ P (c|li), that a pixel i belongs to object
c given it ended up in the leafs li = (l1i , . . . , l

|T |
i ) of trees T 1, . . . , T |T |. Based on Bayes’

theorem we can calculate this probability as

P (c|li) =
P (c, li)

P (li)
(2.5)

=
P (c, li)∑

c′∈C P (c′, li) + P (BG, li)
, (2.6)

where P (li) is the probability that a pixel ends up in the leafs li regardless the object it
belongs to. The expression P (BG, li) denotes the joint probability that the pixel is part of
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the background and ends up in leafs li. We will first focus on calculating the joint probability
P (c, li) that the pixel belongs to object c and ends up in the leafs li. It can be calculated as

P (c, li) = P (c)P (li|c) (2.7)

≈ P (c)

|T |∏
j=1

P (lji |c), (2.8)

where Eq. 2.8 is based on the assumption of conditional independence of the leaf outcomes
li given the pixel’s object affiliation c. This assumption can be seen as problematic, since the
trees were trained to separate pixels not only according to object affiliation but also according
to their position in object space, i.e. their object coordinates. Therefore, our calculations are
an approximation which work well in practice, however. We can calculate the conditional
probability P (lji |c) for a leaf outcome lji given the pixel is part of object c as

P (lji |c) =
P (c|lji )P (lji )

P (c)
, (2.9)

where P (lji ) is the a priori probability of the leaf outcome lji . We can thus calculate the joint
probability P (c, li) for the object affiliation c and leaf outcome li as

P (c, li) ≈ P (c)

|T |∏
j=1

P (c|lji )P (lji )

P (c)
. (2.10)

In a similar fashion, we can calculate the joint probability P (c, li) for the pixel being part of
the background and leaf outcome li as

P (BG, li) ≈ P (BG)

|T |∏
j=1

P (BG|lji )P (lji )

P (BG)
, (2.11)

where P (BG) is the a priori probability that a pixel belongs to background. By combining
Equations 2.6, 2.10 and 2.11, we can calculate the desired probability as

P (c|li) ≈ P (c, li)

P (li)
(2.12)

=
P (c, li)∑

c′∈C P (c′, li) + P (BG, li)
(2.13)

=
P (c)

∏|T |
j=1

P (c|lji )P (l
j
i )

P (c)(∑
c′∈C P (c′)

∏|T |
j=1

P (c′|lji )P (l
j
i )

P (c′)

)
+ P (BG)

∏|T |
j=1

P (BG|lji )P (l
j
i )

P (BG)

. (2.14)

If we assume that the a priori probability P (c) that a pixel is part of an object c is the same
for each object and identical to the a priori probability P (BG) that a pixel is part of the back-
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ground1, we can simplify:

P (c|li) =

∏|T |
j=1 P (c|lji )P (lji )(∑

c′∈C
∏|T |
j=1 P (c′|lji )P (lji )

)
+
∏|T |
j=1 P (BG|lji )P (lji )

(2.15)

=

(∏|T |
j=1 P (lji )

)∏|T |
j=1 P (c|lji )(∏|T |

j=1 P (lji )
)((∑

c′∈C
∏|T |
j=1 P (c′|lji )

)
+
∏|T |
j=1 P (BG|lji )

) (2.16)

The factor
∏|T |
j=1 P (lji ) is present in the numerator and denominator. We can thus finally

write:

P (c|li) ≈ Pc,i =

∏|T |
j=1 P (c|lji )(∑

c′∈C
∏|T |
j=1 P (c′|lji )

)
+
∏|T |
j=1 P (BG|lji )

. (2.17)

The probabilities P (c|lji ) and P (BG|lji ) are stored at the leaf lji . In our implementation we
add a small constant (= 10−8) in the denominator for numerical stability.

2.2.2. SCORING POSE HYPOTHESES

Our goal is to estimate the 6D pose hc for an object c. The pose hc is defined as the rigid body
transformation that maps a point from object space yc into camera space e, i.e. e = hcyc.
We formulate pose estimation as an optimization problem w.r.t. to some scoring function s.
To calculate the score of a pose hypothesis we compare synthetic images rendered using
hc with the observed depth values (d1, . . . , dn) and the predictions of the forest (l1, . . . , ln).
Our scoring function is based on three components:

sc(hc) = λdepthsdepthc (hc) + λcoordscoordc (hc) + λsegssegc (hc). (2.18)

Note that the scoring function sc has a sub-index to denote its dependence on a 3D model of
the object c. While the component sdepthc (hc) measures deviations between the observed
and rendered depth images, the components scoordc (hc) and ssegc (hc) measure consistency
of the pose hypothesis and the predictions of the forest, namely the object coordinates and
the soft segmentation. Fig. 2.5 visualizes the benefits of each component. The parame-
ters λdepth, λcoord and λseg reflect the reliability of the different observations. We will now
describe the components in detail.

The Depth Component. This component compares observed and rendered depth images.
It is defined as

sdepthc (hc) = −
∑
i∈Mc(hc)

f(di, d
∗
i (hc))

|Mc(hc)|
, (2.19)

whereMc(hc) is the object mask, i.e. the set of pixels belonging to object c. It is derived from
the pose hc by rendering the object into the image, and excluding pixels with missing depth
observations. The term d∗i (hc) is the depth at pixel i produced by rendering the 3D model of
object cwith pose hc. The denominator in the definition normalizes the depth component to
make it independent of the object’s distance to the camera. In order to handle inaccuracies
in the 3D model we use a robust error function: f(di, d

∗
i (hc)) = min (|di − d∗i (hc)|, τd) /τd,

with cutoff threshold τd as free parameter.
1Note that a pixel is usually much more likely to belong to the background than to any object. However, experiments

with an increased prior probability for background reduced accuracy of our system.
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Depth Component 𝑠𝑐
depth

(𝐡𝑐) Coordinate Component 𝑠𝑐
coord(𝐡𝑐) Segmentation Component 𝑠𝑐

seg
(𝐡𝑐) Full Score sc(𝐡𝑐)

Figure 2.5.: Components of the Scoring Function. We visualize the composition of our
scoring function for the Can object. Top: We show the different input chan-
nels from which we calculate the individual components of our scoring function.
From left to right: The depth channel, object coordinate predictions of one tree,
object probability predictions, and (not used for computing scores) the RGB im-
age with the final pose estimate (blue) compared to ground truth (green). As an
inlay for each channel, we also show the corresponding object renderings which
are checked for consistency by the scoring function. Bottom: For visualization,
we calculated dense score maps for each score component and the full scoring
function. We created a dense sampling of the 6D pose space for the input image,
calculated the score for each pose sample, and projected the highest score into
the image for each pixel ray. Bright color means high score. While different scor-
ing components display strong local maxima, their combination usually shows
the strongest maxima at the correct pose. Note that in our pose optimization
we evaluate scores only very sparsely for a few pose hypotheses.
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The Coordinate Component. This component measures deviations between the object
coordinates predicted by the forest and rendered object coordinates. The component is
defined as

scoordc (hc) = −
∑
i∈M′

c(hc)

∑|T |
j=1 g(yc(l

j
i ),y

∗
i,c(hc))

|M ′c(hc)|
. (2.20)

where M ′c(hc) is the set of pixels belonging to object c excluding pixels with no depth ob-
servation and pixels where the object probability is smaller than a threshold, i.e. Pc,i < τp.
The latter is necessary because we find that pixels with small Pc,i do not provide reliable
object coordinate predictions yc(l

j
i ). The term y∗i,c(hc) denotes object coordinates ren-

dered using our 3D model of object c with pose hc. We again use a robust error function
g(yc(l

j
i ),yi,c(Hc)) = min

(
||yc(lji )− y∗i,c(hc)||

2
, τy
)
/τy, with cutoff threshold τy as free pa-

rameter.

The Segmentation Component. This component compares a rendered segmentation
with the soft segmentation, i.e. the object probabilities p(c|lji ), predicted by the forest. It
is defined as

ssegc (hc) = −
∑
i∈Mc(hc)

∑|T |
j=1− log p(c|lji )

|Mc(hc)|
. (2.21)

Robustness of the Scoring Function. Since our scoring components are all normalized,
stability can be an issue whenever the number of pixels to be considered becomes very
small. To address this issue we return sc(hc) = 0 whenever |M ′c(hc)| < 100.

2.2.3. POSE OPTIMIZATION

In order to find the pose which maximizes the score of Eq. 2.18, we use a RANSAC-based
algorithm. It samples pose hypotheses based on observed depth values and the coordinate
predictions from the forest. Subsequently, these hypotheses are scored and refined. A
visualization of the process can be found in Fig. 2.1. We will now describe the procedure in
detail.

Sampling of a Pose Hypothesis. We first draw a single pixel i1 from the image using a
weight proportional to the object probability Pc,i for each pixel i. We draw two more pixels
i2 and i3 from a square window around i1 using the same method. The size of the window
is calculated from the diameter of the object δc and the observed depth value di1 of the first
pixel, w = fδc/di where f is the focal length. Sampling is done efficiently using an integral
image of Pc,i. For each of the three pixels drawn, we can calculate coordinates in camera
space ei1 , ei2 and ei3 using observed depth.

Then, we randomly choose tree indices j1, j2 and j3 for the three pixels to read out the
three associated object coordinate predictions. Together with the camera coordinates, this
yields a set of three 3D-3D correspondences (ei1 ,yc(l

j1
i1

)), (ei2 ,yc(l
j2
i2

)) and (ei3 ,yc(l
j3
i3

)).
We use the Kabsch algorithm [Kab76] to calculate the pose hypothesis hc that minimizes
the squared distance between the three camera coordinate and object coordinate pairs.

The object coordinate predictions of the random forest are very noisy and contain many
outliers. Therefore, we perform a geometric check to quickly identify and discard erroneous
hypotheses. We map the predicted object coordinate yc(l

j1
i1

) into camera space using hc
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and calculate a transformation error ei1,j1(hc) = ||ei1 − hcyc(l
j1
i1

)||, which is the Euclidean
distance to the corresponding camera coordinate. Similarly, we compute errors ei2,j2(hc)
and ei3,j3(hc) of the remaining pixels. We accept a pose hypothesis hc only if none of the
three distances is larger than 5% of the object’s diameter δc. The process is repeated until a
fixed number of 210 hypotheses are accepted. We score all accepted hypotheses according
to Eq. 2.18.

Refinement. We select the top 25 hypotheses w.r.t. to our scoring function, and refine
them. To refine a pose hc, we iterate over the set of pixels Mc(hc) supposedly belonging
to the object c as done for score calculation. For every pixel i ∈ Mc(hc), we calculate the
error ei,j(hc) for all trees j. Let j̃ be the tree with the smallest error ei,j̃(hc) ≤ ei,j(hc)|∀j ∈
{1, . . . , |T |} for pixel i. Every pixel i where ei,j̃(hc) < 20mm is considered an inlier. We

store the correspondence (ei,yc(l
j̃
i )) for all inlier pixels and use them to re-estimate the

pose with the Kabsch algorithm. We repeat the process until the score of the pose according
to Eq. 2.18 no longer increases, the number of inlier pixels drops below 3, or a total of 100
iterations is reached.

The Final Estimate. We chose the pose hypothesis with the highest score after refine-
ment as our final estimate. We obtained our estimates in Figs. 2.1 to 2.5 as well as our
quantitative results in the experiments section using the exact algorithm described above.
Our formulation of the task as an optimization problem, however, allows for the use of any
general optimization algorithm to further increase the precision of the estimate.

2.3. EXPERIMENTS

We evaluated our approach on the widely used dataset of Hinterstoisser et al. [HLI+12] and
our own datasets. The dataset of Hinterstoisser et al. [HLI+12] provides synthetic training
and real test data. Our lighting dataset provides real training and real test data with realistic
noise patterns and challenging lighting conditions. To evaluate our method w.r.t. to severe
occlusion, we created additional pose annotations for the dataset of Hinterstoisser et al.
[HLI+12]. We compare to the template-based method of [HLI+12] on all datasets. We also
tested the detection performance and scalability of our method. We present an ablation
study w.r.t. to the components of our scoring function, and we comment on running times.
We train our decision forest with the following parameters. At each node we sample 500
color features and depth features. In each iteration we choose 1,000 random pixels per
training image, collect them in the current leafs and stop splitting if less than 50 pixels arrive.
The tree depth is not restricted. We include a complete list of parameter settings for the
following experiments in Appendix A.4.1.

2.3.1. OBJECT POSE ESTIMATION

Hinterstoisser et al. [HLI+12] provide colored 3D models of 13 texture-less objects2 for train-
ing, and 1,000+ test images of each object on a cluttered desk together with ground truth
poses. The test images cover the upper view hemisphere at different scales and a range of
±45◦ in-plane rotation. More details about the dataset can be found in Appendix A.2.1.

2We had to omit 2 objects since proper 3D models were missing.
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The goal is to evaluate the accuracy in pose estimation for one object per image. It is
known which object is present. We follow exactly the test protocol of [HLI+12] by mea-
suring accuracy as the fraction of test images where the pose of the object was estimated
correctly. The tight pose tolerance is defined in Appendix A.3.1. It is based on a threshold
on the average distance of transformed 3D points. In [HLI+12], the authors achieve a strong
baseline of 96.6% correctly estimated poses, on average. We re-implemented their method
and were able to reproduce these numbers. Their pipeline starts with an efficient template
matching schema, followed by two outlier removal steps and iterative closest point adjust-
ment. The two outlier removal steps are crucial to achieve the reported results. In essence
they comprise of two thresholds on the color and depth difference, respectively, between
the current estimate and the test image. Unfortunately, the correct values differ strongly
among objects and have to be set by hand for each object3. We also compare to [RCT13]
who optimize the Hinterstoisser templates in a discriminative fashion to boost performance
and speed. They also rely on the same two outlier removal checks but learn the object
dependent thresholds discriminatively.

To produce training data for our method we rendered all 13 object models with the same
viewpoint sampling as in [HLI+12], but skipped scale variations because of our depth-invari-
ant features. Since our features may reach outside the object segmentation during training
we need a background model to compute sensible feature responses. For our color features
we use randomly sampled colors from a set of background images. The background set
consists of approximately 1500 RGB-D images of cluttered office scenes recorded by our-
self. For our depth features, we use an infinite synthetic ground plane as background model.
In the test scenes, all objects stand on a table but embedded in dense clutter. Hence, we
regard the synthetic plane as an acceptable prior. Additionally, we also show results for a
background model of uniform depth noise, and uniform RGB noise. The decision forest is
trained for all 13 objects and a background class, jointly. For the background class, we sam-
ple RGB-D patches from our office background set. To account for variance in appearance
between purely synthetic training images and real test images we add Gaussian noise to the
response of color features [SGF+13]. After pose optimizing, we deploy no outlier removal
steps or further ICP refinement, in contrast to [HLI+12, RCT13].

Table 2.1.: Results on the Dataset of Hinterstoisser et al. [HLI+12]. We train with rendered
images and different background models (infinite plane and noise). We report the
average and median accuracy over all 13 objects. We also report the accuracy for
the best (Max.) and worst (Min.) object. We mark the best result per row bold.
We see that our approach is consistently superior to [HLI+12, RCT13].

LINEMOD [HLI+12] DTT-3D [RCT13] Our (plane) Our (noise)
Avg. 96.6% 97.2% 98.3% 92.6%
Med. 97.1% 97.5% 98.9% 92.1%
Max. 99.9% 99.8% 100.0% 99.7%
Min. 91.8% 94.2% 95.8% 84.4%

Table 2.1 summarizes the results. We score an average of 98.3% with the synthetic plane
background model. Hence we improve on both systems of [HLI+12] and [RCT13]. Using
uniform noise as background model, we still report accurate results, with 92.6% correctly
estimated poses on average. See Fig. 2.6 for qualitative results. We list detailed quantitative
results for all objects as well as additional qualitative results in Appendix A.4.1.

3We verified this in private communication with the authors. These values are not given in the article.
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Table 2.2.: Synthetic vs. Real Training Data. We show results on the dataset of Hinter-
stoisser et al. [HLI+12] using different training data. We achieve high accuracy in
all cases.

Synth. Training Data Real Training Data
Our (plane) Our (noise) Our (plane) Our (noise)

Avg. 98.3% 92.6% 98.1% 97.4%
Med. 98.9% 92.1% 99.6% 98.8%
Max. 100.0% 99.7% 100.0% 100.0%
Min. 95.8% 84.4% 91.1% 89.2%

To verify that our approach is not restricted to synthetic training data, we performed an
experiment where we trained with real images for each object. Since the dataset of Hinter-
stoisser et al. [HLI+12] includes only one sequence per object, we had to split each sequence
into training and test. We sampled training images with at least 15◦ angular distance, to have
an approximately regular coverage of the upper hemisphere similar to the synthetic setup. In
practice, the maximum distance of training images is ≈ 25◦ making this test slightly harder
in terms of generalization to unseen poses. All other images are test images. To remove
the background in training images we do an intersection test with the 3D object bounding
box. We substitute the background pixels with the two background model variants already
discussed above. We do not add noise to the feature responses. In this experiment, we ob-
serve high accuracy which is stable even with the simple noise background model (compare
right two columns in Table 2.2).

2.3.2. OBJECT DETECTION

Our main experimental setup deals with the task of pose estimation of a known object in
an RGB-D image. In many applications, the presence of an object is unknown and has to
be established first. This can be done by defining a threshold on the score of the final pose
estimate. The system would report a detection only if this score is below the threshold. In
the following experiment we evaluate the detection performance of this approach.

We perform this experiment on the dataset of Hinterstoisser et al. [HLI+12] since its im-
ages contain dense clutter. In each of the 13 object image sets, we only search for the
corresponding object, although other objects might be present. This is because the Hinter-
stoisser dataset only provides ground truth for one object per set. We run our full pipeline to
extract one hypothesis per image. We extract a 2D bounding box based on this hypothesis4,
following the detection evaluation setup in [RCT13]. The bounding boxes of all images of a
sequence are ranked according to their hypothesis’ score. The ground truth bounding box
is extracted using the ground truth pose. As in [RCT13], we consider a detection correct if
the intersection over union of detected bounding box and ground truth bounding box is at
least 70%. We generated precision-recall curves for each of the 13 Hinterstoisser objects
and calculated the average precision5, AP . See Fig. 2.7 for the precision-recall curves and
AP of all objects. The mean AP is 0.88, which proves sensible detection performance on
the dataset of Hinterstoisser et al. [HLI+12].

4We render the object segmentation mask based on the pose hypothesis and use its bounding box.
5We calculate the average precision according to VOC2012 [EVGW+b].
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Figure 2.6.: Examples for Pose Estimation Results. We visualize our estimates with a blue
bounding box and the ground truth pose with a green bounding box. The upper
test image shows an object from the dataset of Hinterstoisser et al. [HLI+12],
the lower test image shows an object from our lighting dataset. Next to each
test image are the predicted object coordinates y from one tree of the forest.
The inlay figures show the ground truth object coordinates (left) and the best
object coordinates (right), where “best” is the best prediction of all trees with
respect to ground truth (for illustration only).
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Figure 2.7.: Detection Performance. Precision-recall curves of all 13 object of the dataset
of Hinterstoisser et al. [HLI+12]. The mean AP of all 13 objects is 0.88
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2.3.3. ROBUSTNESS W.R.T. OCCLUSION

While the dataset of Hinterstoisser et al. [HLI+12] is challenging because of the substantial
amount of clutter, the object of interest is never occluded, significantly. Other objects in
the test images are partially occluded but ground truth pose annotations for these objects
are missing. We created these missing annotations for one sequence of the dataset of
Hinterstoisser et al. [HLI+12], resulting in approximately 1200 images where all 9 objects
present are annotated with accurate 6D poses. More information on this occlusion dataset
can be found in Appendix A.2.2.

We applied our full pose estimation approach to the challenging occlusion dataset, result-
ing in 67.3% average accuracy. Our re-implementation of [HLI+12] achieves only 54.4%
average accuracy, see Table 2.3. Consequently, we demonstrate superior robustness to
occlusion. In Appendix A.4.1, we show detailed results per object. We attribute our good
performance in the presence of occlusion to the fact that our approach relies on local predic-
tions. The random forest is able to predict correct object coordinates for areas not affected
by occlusion, and our pose optimization can still find a good solution given a small number
of inlier predictions. In contrast, since templates are global descriptions of object appear-
ance, their matching scores quickly deteriorate with growing levels of occlusion. Note that
since publication of our approach in [BKM+14], our system has been extended by Krull et al.
[KBM+15] and Michel et al. [MKB+17]. Krull et al. [KBM+15] substitute our handcrafted scor-
ing function with a CNN trained to be robust w.r.t. occlusion. Their system scores 70.3% on
the occlusion dataset. Michel et al. substitute our RANSAC-based pose optimization schema
with a conditional random field (CRF) which identifies sets of object coordinate predictions
which are geometrically consistent, similar to our geometric check for pose hypothesis vali-
dation. Their system scores 76.7% on the occlusion dataset.

Table 2.3.: Results on our Occlusion Dataset. We compare our full scoring function to a
score which uses depth only, and to the approach of [HLI+12].

Full Score Depth C. Only LINEMOD [HLI+12]
Avg. 67.3% 57.1% 54.4%
Med. 67.6% 57.8% 51.2%
Max. 100.0% 98.8% 98.7%
Min. 8.5% 2.4% 23.3%

2.3.4. ROBUSTNESS W.R.T. LIGHTING CHANGES

We recorded 20 textured and texture-less objects under three different lighting conditions:
bright artificial light (bright), darker natural light (dark), and directional spot light (spot). For
each light setting we recorded each object on a marker board in a motion that covers its
upper view hemisphere. The distance to the object varied during the recording but the
in-plane rotation was kept fixed. We added in-plane rotation artificially afterwards in the
range of ±45◦. We used KinectFusion [NIH+11, IKH+11] to record the external camera
parameters for each frame. This serves as pose ground truth and is used to generate the
object coordinates per pixel for training the decision forest. Recordings of the same object
but different lighting conditions were registered using the marker board. Images that were
used for training were segmented with the 3D object bounding box. An overview over the
dataset and details about the recording procedure can be found in Appendix A.2.3. We
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sampled training images with at least 15◦ angular distance. The maximal angular distance
of training images is ≈ 25◦. We did not place our objects on a synthetic plane, because they
were already recorded on a planar board. Depth features reaching outside the object mask
during training will just use the depth in the original training image. For color features we
sampled randomly from another set of office backgrounds that do not contain our objects.

To evaluate how well our approach generalizes with respect to varying lighting conditions,
we trained our decision forest with the bright and dark training sets. Again, we added Gaus-
sian noise to the response of the color feature for robustness. In a first run, we tested with
images of the bright set that were not used for training. Here, the forest did not need to
generalize to new lighting conditions but only to unseen views, which it does with excellent
accuracy (avg. 95%, see Table 2.4). As before, we measured performance as the percent-
age of correctly estimated poses of one object per test image which is always present. In a
second run, we tested using the complete spot set to demonstrate the capability of general-
ization to a difficult new lighting condition. We report an average rate of correctly estimated
poses of 88.2%. See Fig. 2.6 for a qualitative result on our dataset. Complete quantitative
results for all of our own objects, as well as additional qualitative results can be found in
Appendix A.4.1.

To demonstrate that the template based approach of LINEMOD [HLI+12] does not gen-
eralize as well with respect to lighting change we used our re-implementation to extract
templates for one object based on the training set described above. Note, that the training
set contains each view only with one scale. This can be problematic for LINEMOD if the test
data shows scale variation not covered by the training data. Hence, we render each training
image from 2 larger and 3 smaller distances in 10cm steps. This gives us 6 different scales
for each training image similar to the setup in [HLI+12]. As in [HLI+12], we tuned the outlier
removal parameters by hand. However, we found that we had to disable these tests com-
pletely to get any detections under new lighting conditions. In a validation run, we extracted
templates from the bright training set and tested on the bright test set. Following the pro-
cedure of [HLI+12], we can estimate correct poses in 80.1% of the images. We account the
difference to the performance on the dataset of Hinterstoisser et al. [HLI+12] to the fact that
the object is textured and that our images contain high levels of noise. If we test with the
same templates on the spot set, performance drops to 57.1%. Since our tree has seen both
bright and dark in training, we apply the following testing procedure to LINEMOD for a fair
comparison. We also extract templates from the dark training set and apply it to the spot
test set, observing 55.3%. For the final score, we consider an image solved by LINEMOD if
one of the template sets, dark or bright, lead to the correct pose. Then we observe an accu-
racy of 70.2%. Hence, even when selecting the best of multiple hypotheses of LINEMOD,
performance drops by 10%. On the same object, we report accuracy of 96.9% on the bright
test set (a lighting condition our forest has been trained with), and 91.8% on the spot test
set (not seen in training).

2.3.5. CONTRIBUTION OF SCORING COMPONENTS

We conducted further experiments to reveal the contribution of the individual components
of our scoring function for pose hypotheses. We repeated pose estimation experiments
on the dataset of Hinterstoisser et al. [HLI+12] but using each scoring component alone.
Results are included in Table 2.5, see Appendix A.4.1 for detailed results per object. The
coordinate component and the segmentation component alone give clearly inferior results.
The depth component alone gives results comparable to the full scoring function. However,
we repeated tests on the occlusion dataset discussed above, and observe that, on this
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Table 2.4.: Accuracy on our Lighting Dataset. We trained our random forest using training
images from the bright and dark lighting condition. We measure accuracy using
test images of the bright and spot lighting condition, separately. We report aver-
age and median accuracy for our 20 objects (left). We also compare to LINEMOD
[HLI+12] on one object (right). We extract templates from training images of the
bright and dark lighting condition, and measure the respective accuracy. We also
calculate accuracy when either template set resulted in the correct pose, denoted
combined. See the text for details.

All Objects Toy (Battle Cat)
Test
Condition

Our, Avg. Our, Med. Our
LINEMOD

(dark)
LINEMOD

(bright)
LINEMOD
(combined)

bright 95.6% 97.7% 96.9% - 80.1% -
spot 88.2% 93.0% 91.8% 55.3% 57.1% 70.2%

dataset, the depth component alone achieves only 57.1% average accuracy instead of 67.3%
with our full scoring function (see third column of Table 2.3). We conclude that the forest
predictions are important in handling object occlusion.

Furthermore, we include an additional baseline: Similar to [SGZ+13] we use the percent-
age of inlier pixels in M ′c(Hc) (see Sec. 2.2.2) instead of our scoring function to rate hypothe-
ses. Inliers are formally defined in Sec.2.2.3 via a threshold on the transformation error
of object coordinate predictions. We observe 40.3% average accuracy on the dataset of
[HLI+12], which clearly demonstrates that our scoring function formulation is superior.

Table 2.5.: Evaluating the Scoring Components. Results on the dataset of Hinterstoisser
et al. [HLI+12] with different variants of our scoring function.

Full Score Depth C. Seg. C. Coord. C. Inlier Score [SGZ+13]
Avg. 98.3% 96.4% 48.9% 77.6% 40.3%
Med. 98.9% 97.5% 50.6% 79.8% 40.9%
Max. 100.0% 99.8% 82.5% 96.7% 63.8%
Min. 95.8% 88.8% 15.1% 49.8% 21.3%

2.3.6. SCALABILITY AND RUN TIMES

Scalability. We show the potential of our method with respect to scalability in two different
ways: scalability in the object count, and scalability in the space of poses. The first concerns
the number of objects the system is able to identify, while the latter concerns the range of
poses it can recognize. We start with a forest that was trained for 5 objects of our lighting
dataset, and a set of training images sampled from dark and bright lighting conditions, with
an angular distance of at least 45◦. We add ±45◦ in-plane rotation to each training image.
During testing, we consider images of the spot set which are at maximum 10◦ apart from the
closest training image. This results in the same test difficulty as in the previous experiments.
Performance is measured for one object (Stuffed Cat). We modify this setup in two ways.
Firstly, we increase the object count to 30 by combining our dataset with real images of the
Hinterstoisser dataset [HLI+12]. We sample the Hinterstoisser set to have approximately
the same amount of training images for our objects and the additional Hinterstoisser objects.
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Secondly, we increase the number of in-plane rotated training images 4-fold to the full±180◦.
The results are shown in Fig. 2.8.

Default 6×Objects 4×Poses
Forest time 102ms 138ms 113ms
Opt. time 443ms 424ms 517ms
Accuracy 95% 94% 95%

10 20 30
14

16

18

20

# Objects

#
 F

e
a
tu

re
 T

e
s
ts

0 90 180 270 360

12

14

16

18

Deg. Rotation

#
 F

e
a

tu
re

 T
e

s
ts

Figure 2.8.: Scalability. Left: Running time of our system with increasing object count
and pose range. Accuracy stays stable. Right: Illustration of the sub-linear
growth of the decision forest. We measure the average number of feature
tests executed per pixel.

As the number of objects and the range of poses increase, the evaluation time of the tree
does increase slightly, but considerably less than 6× resp. 4×. The runtime of the pose
optimization is effected slightly due to variation in the forest prediction, and the accuracy of
the system stays stable. Next to the table in Fig. 2.8, we plot the sub-linear growth in the
average number of feature tests per pixel with increasing object number and range of poses.
We demonstrate here that with the forest the first essential step of our discriminatively
trained method behaves sub-linearly in the number of objects. Our proposed pipeline is
still linear in the number of objects because we perform pose optimization for each object
individually. In Chapter 3, we will introduce a RANSAC optimization schema, which operates
on all objects simultaneously, and scales sub-linearly in the number of objects.

Run Times. The complete run time of our pose estimation approach is the sum of for-
est prediction time and pose optimization time. Forest predictions are generated once per
frame and the results are reused for every object in that frame. Our GPU implementation
of the random forests takes 20ms in average per frame on the dataset of Hinterstoisser
et al. [HLI+12]. Based on these predictions, pose optimization is done per object. We imple-
mented our scoring function on the GPU and report 398ms avg. per object on the dataset
of Hinterstoisser et al. [HLI+12] with the parameter settings suggested above. However,
we found that a set of reduced parameters results in a large speed up while maintaining
accuracy. We reduced the number of hypotheses from 210 to 42, the number of refinement
steps from 100 to 20, and refined only the best 3 hypotheses. This still achieves 96.4%
avg. accuracy on the dataset of Hinterstoisser et al. [HLI+12] while reducing the average
pose optimization time to 61ms.

The system proposed in this Chapter has been extended by Krull et al. [KMB+14] by em-
bedding it in a Particle Filter framework [GSS93]. Tracking significantly reduces the search
space of pose optimization, and they achieve real-time 6D pose estimation with approxi-
mately 20 frames per second.
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2.4. DISCUSSION

In this chapter, we presented a system which can estimate the 6D pose of a rigid object
instance given an RGB-D image. It is based on a random forest which learns to decide for
each pixel of the input image whether it belongs to the object and where on the object
surface it is located. A subsequent RANSAC-based geometric optimization yields a stable
and accurate estimate of the object pose with low runtime. We have shown that the random
forest can be trained from synthetic data, that it scales well to many objects, and that it is
robust to occlusion and lighting changes.

The main limitation of the system presented in this chapter is its heavy reliance on a depth
channel, i.e. it can only be applied to pose estimation from an RGB-D image. Furthermore,
pose optimization needs to be performed for each object the forest has been trained with.
Objects not present in the image can only be discarded after optimization by thresholding
the final pose score. We will extend our method w.r.t. to these aspects in the next chapter.
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3.1. INTRODUCTION

In this chapter, we consider the task of estimating 6D poses of multiple object instances from
a single RGB image. The work associated with this chapter was published in [BMK+16].

For sufficiently textured objects, pose estimation is, more or less, considered to be solved
using sparse feature pipelines, as discussed in the introduction. The broad availability of con-
sumer depth cameras, has lead to development of RGB-D-based methods for pose estima-
tion of difficult, texture-less object instances. We presented one such system in the previous
chapter which is based on a combination of machine learning and geometric processing. In
the following, we revisit the scenario of having RGB information only, and show that we can
transfer the principles discussed so far to this setting. This is especially interesting for prac-
tical applications since many mobile devices are only equipped with a single RGB camera.
Furthermore, current consumer depth sensors do not work with direct sunlight and reflective
materials. Fig. 3.1 shows a result of our system, with augmented reality. This is a challeng-
ing case, and an extension of the method of Chapter 2, developed by Krull et al. [KBM+15],
which operates on an RGB-D image, is not able to get a visually pleasing result. We show
experimentally that our method can deliver a visually pleasing quality in 74% of test cases.
Our approach surpasses competing RGB-based systems. Furthermore, the improvements
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presented in this chapter can be applied to the RGB-D setting for increased accuracy. In
this chapter, we also demonstrate that our system can be applied to the problem of camera
localization where it compares favorably with competitors.

Figure 3.1.: Pose Estimation Using RGB only. Left: Result of our method using an RGB
image as input. We estimate the pose of the lamp, and use this information to
overlay lettering and red markers. The pose of the lamp is estimated sufficiently
well for augmented realty. Right: Result of a system [KBM+15] that uses an
RGB-D input image. The pose is less well suited for augmented reality. Note
that the red markers are significantly off on the lamp stand.

As in the previous chapter, we utilize an intermediate representation for objects, namely
object coordinates, which is a dense, continuous object-part labeling. We regress object
coordinates and object labels jointly for every pixel in the input image, i.e. we encode infor-
mation about multiple objects within one regressor. In the previous chapter, every tree in
the forest predicted an object coordinate point estimate per pixel. In the following, we in-
stead model approximate distributions of object coordinates. We will see that this is crucial
for applying our technical contributions, and achieving good results. The idea of modeling
object coordinate distributions has been explored in parallel to our own work in [VNS+15],
in the context of camera localization from a single RGB-D image. We go beyond their work
in various aspects. Firstly, their approach cannot directly be used in an RGB setting, since
it relies on the calculation of pixel coordinates in camera space. We solve this problem by
efficiently marginalizing object coordinate distributions along the pixel ray. Our approach is
suitable for mixtures of anisotropic Gaussians and incorporates perspective effects. Sec-
ondly, by exploiting the uncertainty of object labels we are able to process any number of
objects, known to the system, with a fixed budget of RANSAC hypotheses. This results in
an efficient and scalable system w.r.t. the number of objects. A core part of our pipeline
is an efficient regressor which iteratively reduces the uncertainty of object coordinate and
class label predictions. Previously, we used a standard random forest for this task. Our
extension builds upon the insight that the dense object coordinates contain a substantial
amount of “structural” information, i.e. neighboring object coordinate predictions are statis-
tically dependent. This makes it ideal for building the prediction step into an auto-context
framework [TB10]. However, directly using an auto-context random forest hampered test
performance, due to noisy outputs. We demonstrate that a new, robust regularization of the
multi-dimensional, dense labeling gives a major boost in performance.
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Contributions. The contributions of this chapter are:

1. We present a generic 6D pose estimation system for both object instances and scenes
(textured or texture-less), which only needs a single RGB image as input. Our ap-
proach exceeds the state-of-the-art. An RGB-D variant of this system exceeds the
state-of-the-art for object pose estimation and is on-par for camera localization.

2. In order to deal with the missing depth information of the sensor, we present an effi-
cient way to marginalize the object coordinate distributions over depth.

3. By exploiting label uncertainty we are able to process multiple object instances jointly
with a fixed budget of RANSAC hypotheses.

4. A new, robust (L1-loss) regularization of the multi-dimensional, continuous output,
namely object coordinates and labels, is crucial to get good performance with our au-
to-context regression forest approach.

The question of how to deal with missing depth information is of general interest to
all works that deal with object coordinates, e.g. [KMB+14, SGZ+13, GRKG+14, VNS+15,
TSSF12], and would like to use an RGB camera. The idea of applying a fixed-budget RANSAC
for multi-object estimation is of interest to all methods where the final optimization depends
on variables (explicitly or latent) such as object instance (as in our case), person height
[SKS12] or object part [MKB+15]. Our L1-loss regularization of object coordinates, is of gen-
eral interest to other auto-context regression frameworks, e.g. auto-context Hough forests
[KBC+12].

Object Label

Distribution 𝑃𝑖
𝐷(𝑐)

Auto-Context 
Layer 𝐷

Auto-Context 
Layer 1

Estimated Poses:

Object Label Distributions:

Object Coordinate
Auto-Context Feature

Object Coordinate 

Distribution 𝑃𝑖
𝐷(𝒚|𝑐)

No Reg. 𝐿1 Reg.𝐿2 Reg. Ground Truth

RGB Input Stage 1 Stage 2

Figure 3.2.: An RGB Image is Processed by our Pipeline. Left to right: We visualize two,
out of three, stages of our method. In the first stage, the auto-context random
forest processes the entire image to predict object labels (shown as probabil-
ities) and object coordinates — only shown for the location of the toy object.
The key to make the auto-context forest work well is to apply L1-loss regulariza-
tion to the multidimensional data, after each layer. The output of the first stage
are pixel-wise distributions of object labels and object coordinates. In the sec-
ond stage, the distributions over object labels are used to sample hypotheses
for all objects at once. Preliminary pose estimates are found with pre-emptive
RANSAC. In the third stage, these poses are refined using the object coordinate
distributions.
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Related Work. We briefly discuss related work relevant for this chapter. Auto-context has
been introduced in the work of Tu and Bai [TB10]. The idea is to train stacked classifiers
where early classifiers provide input for subsequent classifiers, resulting in a substantial
gain in performance. Auto-context has been widely used for segmentation [TB10, SJC08,
MSW+11, KKSC13], detection [KBC+12], and human pose estimation [RMH+14, DGLVG13],
etc. Montillo et al. [MSW+11] presented an auto-context variant where a random forest has
access to its own intermediate predictions for increased efficiency. In [KKSC13], this was
extended by smoothing the intermediate predictions. This couples predictors of neighboring
pixels, resulting in locally consistent output. We extend this idea further to multi-dimensional
continuous data. Auto-context features usually access preliminary probabilities of discrete
classes. Kontschieder et al. [KBC+12] showed that auto-context can also be deployed for
intermediate multi-dimensional continuous output in a Hough forest for pedestrian detec-
tion, but they did not smooth the intermediate output. In this chapter, we show that robust
smoothing of the multi-dimensional continuous object coordinates is essential for good per-
formance.

The simultaneous detection of multiple objects (e.g. planes) in data with many outliers is
an active field of research [ZKM05, JPF15, MF14]. However, these methods try to fit multi-
ple objects to points in the same coordinate space. While we similarly wish to find multiple
objects within the same image, we have a regressor that predicts points in a separate co-
ordinate space for each object. The fitting takes place within these separated spaces. One
straight-forward solution for this task is to iterate through all objects and search for the best
solution in each object coordinate space, as it has been done in the previous chapter or in
[SGZ+13] for camera localization. In contrast to this sequential procedure, we show how
RANSAC can efficiently process multiple objects at once according to the evidence in the
image.

3.2. METHOD

Our method consists of three individual stages, which are conceptually similar to the previ-
ous chapter. In the first stage, a random forest predicts object labels and object coordinates
jointly for every pixel of the input image. In contrast to Chapter 2, the forest predicts distri-
butions over object labels and object coordinates, instead of point estimates (Sec. 3.2.1). In
order to reduce uncertainty of the predictions as much as possible, we extend the random
forest to an auto-context random forest (Sec. 3.2.2) withL1-loss regularization. In the second
stage, we estimate the poses of multiple objects from the predicted 2D-3D correspondences
using pre-emptive RANSAC guided by the uncertainty in object labels (Sec. 3.2.3). Finally,
in the third stage, the poses are refined by exploiting the uncertainty of object coordinate
predictions (Sec. 3.2.4). Fig. 3.2 shows an overview of our pipeline.

3.2.1. REGRESSION OF OBJECT COORDINATE DISTRIBUTIONS

For each object c ∈ C, present in the image, we aim at estimating the 6D pose hc, i.e. a
rigid-body transformation. In our convention, hc maps a 3D coordinate in object space y to
a 3D coordinate in camera space e. The set C contains all objects known to the system,
including background. We briefly describe our random forest T of classification-regression
trees T , and focus on differences to the forest used in Chapter 2. The random forest predicts
for each pixel i in the image the distribution over object labels, i.e. Pi(c). Furthermore, given
an object c and pixel i, we also want to predict a distribution of coordinates in object space
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y ∈ Y ⊆ R3, namely Pi(y|c). We train both distributions jointly within one classification-re-
gression forest, as in the last chapter. Since our input is RGB only, we do not use features
that rely on depth nor depth normalization of feature scale. Instead, we use standard pixel
value differences in RGB.

frgb(ζ,pi) = I (pi + ω1, γ1)− I (pi + ω2, γ2) , (3.1)

where I(pi, γ) = xrgb
i [γ] returns the R, G, or B channel of a pixel according to γ, and ω indi-

cates a 2D offset. As before, ζ denotes split node parameters, i.e. ζ ⊆ {ω1,ω2, γ1, γ2, z, τf}
including feature type z and split threshold τf . So far, we introduced only one feature type,
i.e. z ∈ {rgb}, but in Sec. 3.2.2 we will define two more feature types.

Because our features are not depth normalized, we train the forest with different scales
of training images. We approximate re-scaling training images by scaling the feature offsets
instead. The scale factor is chosen randomly per training sample. The scale range depends
on the minimal and maximal object scale expected at test time. We use a similar approach
when adding in-plane rotation to training images. We do not actually rotate training images
but we rotate the feature offset vectors instead. This way, the forest can learn to be rotation
invariant to some extent.

To train the forest, we draw training samples uniformly from within the object segmenta-
tion and up to a certain distance outside the segmentation. This distance is set to 50% of
the maximum feature size. Samples outside the segmentation with sufficient overlap with
the object contain valuable information about the object boundary. This has proven impor-
tant in the application of auto-context discussed later in this section. Furthermore, we draw
samples of a background class from a selection of random interior background images. At
each tree depth level, we sample a pool of feature parameters ζ, uniformly. Feature thresh-
olds τf are also chosen randomly by calculating the feature response at a random training
pixel. Should a feature access a pixel outside the object segmentation during training we
return uniform color noise.

At each split node, we select the feature which has the highest information gain (see
Eq. 2.1) of the joint distribution P (ŷ, c), where ŷ are quantized object coordinates, serving
as proxy classes. In the previous chapter, we used a regular grid over the object bounding
box for quantization. For some objects, like entire rooms in a camera localization task, this
results in a very unbalanced distribution over proxy classes. Therefore, we quantize here by
nearest neighbor assignment to random cluster centers, which are randomly selected object
coordinates of the training data, see Fig. 3.3 for a visualization.

Each leaf l stores object probability distributions PT (c|l), and, instead of object coordinate
point estimates, object coordinate distributions PT (y|c, l). Distributions of object coordi-
nates are stored as Gaussian-Mixture models (GMMs),

PT (y|c, l) =
∑

(m,µ,Σ)∈M

mN (y;µ,Σ), (3.2)

where M is the set of mixture components, found via mean-shift. We calculate support
weight m, mean µ and covariance Σ for each mode. We dismiss modes with weights
m < 50% of the highest weight in M. We also dismiss modes with less than 10 sam-
ples supporting it. We calculate full covariance matrices for each mode, setting the mean of
the distribution to the mode coordinate.

During test time, we merge all object probability predictions PT (c|li) of individual trees
at pixel i, as before, according to Eq. 2.4 to yield Pi(c), which results in a high contrast
soft segmentation. We average object coordinate distributions PT (y|c, li) by combining all
mixture components within one large GMM to yield Pi(y|c).
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Figure 3.3.: Proxy Classes. We show proxy classes used for training the structure of our
random forest, for objects (left) and an entire room (right). Class IDs are encoded
by color. We create proxy classes by selecting random training pixels as cluster
centers, and assigned the remaining training pixels to their nearest cluster in
object coordinate space.

3.2.2. OBJECT COORDINATE AUTO-CONTEXT

We now describe the extension of the random forest to an auto-context random forest, and
in particular the efficient use of regularized object coordinates as a feature. Instead of one
forest, we train a stack of forests T d, where d ∈ {0, . . . , D} denotes the stack level. The first
level, T 0, is trained exactly as described above. All subsequent forests T d+1 have access to
the output of the previous forest T d, namely object probabilities P di (c) and object coordinate
predictions P di (y|c) of pixel i. Inspired by the “Geodesic Forests” approach [KKSC13], we
enforce the coupling of outputs of neighboring pixels by smoothing the predictions before
passing them to the next forest. In [KKSC13], a geodesic filter for object probabilities was
used because in their application a gradient in the input signal was often a strong indication
for an object boundary. We do not observe this correlation in our application scenario, since
strong gradients can very well appear within the same object. Instead, we deploy a me-
dian filter in a local neighborhood of each pixel. Thus, we define median-smoothed object
probabilities P di (c) as

gdC(c,pi) = argmin
P̃i∈R

∑
j∈Ni

|P dj (c)− P̃i|, (3.3)

where pi is the position of pixel i andNi is a small neighborhood around pixel i. The definition
of a feature for this output, to be used in forest T d+1, is straight forward,

fC(ζ,pi) = gdC(c,pi + δ). (3.4)

The feature parameters ζ consist of pixel offset δ and object index c.
We define the smoothing of the object coordinate prediction P di (y|c) in a similar fashion.

The median filter is robust to outliers since it optimizes the L1-loss. This property is crucial
for the object coordinate prediction as well, since outliers are very likely to occur (see Fig.
3.2). If the local smoothing is not robust, outliers will have a strong influence on the result.
Unfortunately, the median filter is not directly applicable to data with dimensionality larger
than one. However, the optimum under L1-loss can be calculated in any Euclidean space
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resulting in the geometric median. Thus, similar to Eq. 3.3, we define our regularized object
coordinate output as

gdY(c,pi) = argmin
y∈Y

∑
j∈Ni

∑
T∈T d

||µj,T − y||2, (3.5)

whereµj,T is the mean with the highest mixture weight of distribution P dj,T (y|c) for tree T at
pixel j. Hence, gdY(c,pi) is a spatial smoothing, but also a combination of the predictions of
trees T ∈ T d. Note that the geometric median minimizes the sum of distances as opposed
to the sum of squared distances, hence we optimize a L1-loss. To calculate gdY(c,pi) we
use the iterative algorithm of [VZ00]. We define the following feature on the smooth object
coordinate output:

fY(ζ,pi) = [gdY(c,pi + δ)]j . (3.6)

Feature parameters ζ consist of offset δ, object index c, and dimension index j ∈ {x, y, z}.
Function [y]j returns the entry of y in dimension j.

The training of forests T d, d ∈ {1, . . . , D} adheres to the same procedure as described
in Sec. 3.2.1, but the set of feature types is increased by fC and fY . Starting with the
second layer of the stack, we calculate the prediction of the previous forest for each training
image. Since our training images are segmented and contain no background, we paste each
training image into a random image of our background image set at a random position. The
resulting montage is most likely physically implausible, but we found this simple strategy
sufficient. We calculate the forest prediction on the montage. The resulting auto-context
feature channels are stored sub-sampled. This reduces the memory footprint, and increases
the effective range of smoothing operations between auto-context layers.

Before training the next layer, we also calculate object probabilities of the previous layer on
the background image set. The background images represent our set of negative samples,
hence object probabilities should be low. Background regions with high object probability
represent hard negatives, i.e. samples where the prediction of the last layer was wrong.
When training the new layer, we draw 50% of the background training samples according to
object probability. Thus, sampling has a bias towards hard negatives. We found this giving
a slight but no substantial gain in segmentation performance of the forest.

3.2.3. MULTI-OBJECT RANSAC

In the second stage of our pipeline, we efficiently find a preliminary pose for all objects
present in the image. These poses are refined in stage three (Sec. 3.2.4). We first describe
a standard procedure for pose estimation of a single object c′, which is a combination of the
pre-emptive RANSAC of [SGZ+13] and the hypotheses sampling schema of the previous
chapter. One large difference is the use of a scoring function which does not depend on a
depth channel but instead relies only on the discriminative predictions of the auto-context
forest. Then, we formulate a new approach for handling multiple objects at once with a fixed
budget of RANSAC hypotheses.

Single Object RANSAC. The auto-context forest predicts for each pixel i the object label
distribution PDi (c′) (where D is the last auto-context level), and the 2D-3D correspondences
(pi, P

D
i (y|c′)), i.e. the pixel position pi and the uncertain object coordinate y. We start by ap-

proximating the distributions PDi (y|c′) by their main modes {µi,T |T ∈ T D}. As before, µi,T
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denotes the mean with highest mixture weight of PDi,T (y|c′) of tree T . Thus, the correspon-
dences simplify to (pi,µi,T ). We now define the re-projection error as ||pi − Chc′µi,T ||2
where C is the camera matrix, and hc′ is the pose we are searching. We assume a 4 × 4
matrix parametrization of hypothesis hc′ , and normalization of the homogeneous residual
vector before calculating the L2-norm. A correspondence is an inlier when the re-projection
error is below τin. At this stage, we aim at finding the pose which maximizes the inlier count:

h̃c′ = argmax
hc′

∑
i∈W(hc′ )

∑
T∈TD

1[||pi − Chc′µi,T ||2 < τin], (3.7)

where function 1[·] is 1 if the enclosed statement is true, otherwise 0. We restrict the
calculation of inliers to window W(hc′), which is the projection of the 3D bounding box of
object c′.

The objective function is maximized using locally optimized pre-emptive RANSAC [SGZ+13]:
Firstly, we draw a set of nh pose hypotheses. A hypothesis hc′ is drawn by choosing four
correspondences (i,µi,T ) and solving the perspective-n-point problem (PnP) with the algo-
rithm of Gao et al. [GHTC03]. Note that this substitutes the Kabsch algorithm of the previous
chapter, which needed only three correspondences but relied on a depth channel. The tree
T from which to use µi,T is chosen randomly.

We draw the four initial pixel locations according to probability PDi (c′), which is an un-
normalized distribution over all locations i in the image. Furthermore, pixels 2-4 are drawn
within a box centered on the first pixel, which depends on the object size. Since we cannot
calculate the actual projected size of the object because of missing depth values we instead
use the following heuristic: Firstly, we read out the object coordinate prediction µi1,T asso-
ciated with the first pixel chosen. We calculate the maximum distance of µi1,T to the 3D
object bounding box. We project this distance into the image, assuming a worst case depth
of 30cm, which we assume as minimal object distance to the camera. The result is a worst
case search window which we relax by shrinking its size to 30%. We reject configurations of
4 pixels which do not pass the following tests: The minimum distance of all pixels in image
space should be at least 10px. The minimum distance of all pixels in object space should
be at least 10mm. None 3 pixels should be co-linear in object space. Hence, we enforce a
minimum distance of 10mm between the line formed by two pixels and the third pixel. Fi-
nally, the re-projection error of the 4 correspondences should be below the inlier threshold.
If after 1M iterations no valid pixel set has been found, we abort. We discard a hypothesis if
the resulting 2D bounding box occupies less than 400 pixels.

For all valid hypotheses, we draw a batch of nB pixels within their respective windows
W(hc′), and calculate the number of inliers. The hypotheses are ranked according to their
inlier count and the lower half is dismissed. The remaining hypotheses are coarsely refined
by re-solving PnP on the increased inlier set. Here, we use the PnP algorithm of Lepetit
et al. [LMNF09] which is fast even if the set of input correspondences is large. However,
we limit the maximal number of inlier correspondences for PnP to 1000. The process of
determining inliers, re-solving PnP and discarding half of the hypotheses is repeated with
additional batches of pixels drawn in each iteration. Finally, one hypothesis remains which
we use as preliminary pose estimate for object c′, denoted by h′c′ with inlier set I(h′c′).

The main advantages of locally refined, pre-emptive RANSAC, as deployed here, com-
pared to the pose optimization described in Chapter 2 are the following. Instead of choosing
the n-best, unrefined hypothesis once and refining them to the end, a larger number of hy-
pothesis is partially refined and pruned incrementally. The intuition is that only after some
refinement iterations it becomes evident which hypotheses are likely to have high accuracy.
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Figure 3.4.: Exploiting Object Coordinate Uncertainty. During pose refinement we need
to marginalize the 3D object coordinate distribution PDi (y|c) over depth. We
show that an approximation can be computed in closed-form for the projection
pyramid at position pi. This is done by integrating along the ray (dashed line)
while taking perspective effects into account.

In this context, the advantage of the inlier-based scoring function over the rendering-based
score of Chapter 2 is that it can easily be evaluated partially on a limited number of pixels.
Only for a few, surviving hypotheses will we calculate the inlier score on a larger number of
pixels.

Multi-Object RANSAC. Often, it is unknown which objects are present in the given image.
The procedure above could be repeated for all objects C and the final hypotheses could be
filtered based on inlier count, see e.g. the detection experiment in Sec. 2.3.2. However,
this scales poorly when the number of potential objects |C| becomes large. We present a
new method for processing all objects at once, within the pre-emptive RANSAC framework.
Instead of drawing nh hypotheses for each object independently, we draw one shared set
of hypotheses. During the sampling of a hypothesis we decide on the fly which object it
belongs to. This decision is based on the object label prediction of the first pixel sampled.

In detail, each hypothesis is created as follows: Assuming background as c = 0 we draw
the first pixel location i according to

∑|C|
c=1 P

D
i (c), which is an unnormalized distribution over

i. That is, the first pixel is drawn according to the probability of belonging to any object. Only
then do we determine the object’s identity by drawing the object index c′ of the local distri-
bution at pixel i, i.e. PDi (c). The remaining three pixel positions are drawn according to the
unnormalized distribution PDi (c′), subject to the bounding box constraint mentioned earlier.
Finally, we perform pre-emptive RANSAC separately for each object which was elected by
at least one hypothesis.

Note that no hypothesis will be drawn for objects without sufficient evidence in the image.
Furthermore, each hypothesis has to pass the initial validity check, which requires some con-
sistency of the object coordinate predictions drawn. Hence, the final distribution of objects
c in the hypothesis pool will in general not follow the (unnormalized) distribution

∑
i P

D
i (c)

of object probabilities over the image because hypotheses of certain objects might be more
likely to fail the hypothesis validity check.

3.2.4. POSE REFINEMENT

The preliminary poses h′c of RANSAC minimize the (truncated) re-projection error of a set of
inlier correspondences (i,µi,T ), see Eq. (3.7). Note that in the objective function each of
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the correspondences is treated with equal weight. However, we have access to full distribu-
tions PDi (y|c), which model uncertainty information in the object coordinate prediction. We
aim to exploit this information for pose refinement, which is the third stage in our pipeline.
To achieve this, we now introduce a novel procedure for efficiently computing the (approxi-
mated) marginalized object coordinate distribution in the image.

The basic idea for pose refinement is that we want to maximize the pose probability under
the distributions PDi (y|c). In [VNS+15], this idea was explored by scoring hypotheses based
on the log-likelihood of inlier correspondences:

h̃c = argmax
hc

∑
i

logPi(h
−1
c ei|c), (3.8)

where ei is the camera coordinate of pixel i. Note, the transformation h−1
c ei yields an object

coordinate. However, unlike [VNS+15], we do not have access to depth information, and thus
cannot recover ei. We only know that the true ei must lie within the projection volume of
pixel i (see Fig. 3.4). We denote this volume byRi. We can now substitute the likelihood of
ei in Eq. (3.8) with the probability of Ri:

h̃c = argmax
hc

∑
i∈I(h′

c)

logPDRi
,where

PDRi
=

∫∫∫
Ri

PDi (h−1
c [x, y, z]T |c) dx dy dz .

(3.9)

For robustness, we calculate the likelihood only over the inlier set I(h′c) of the current,
preliminary pose h′c, found according to Sec. 3.2.3.

We now explain how to approximate PDRi
efficiently. Instead of integrating over all dimen-

sions, we integrate along the ray cast from the camera origin to the pixel center (see Fig.
3.4). Since the shape of the volume is a pyramid, we add a quadratic factor during integration
since the diameter of the pyramid grows with distance z. Because we would like to inte-
grate in camera coordinate space, we first transform the Gaussian mixture components of
PDi (y|c), which is defined in terms of object coordinate space, to camera coordinates using
hc = [θc|tc]. For notational convenience we assume a matrix parametrization of pose hc and
rotation θc, here. Furthermore, we apply rotation θxy which maps the pixel with position pi
to (0, 0)T . Thus, we transform the mean of each mixture component to µe = θxy(θcµ+ tc)
and the covariance matrices to Σe = θxy(θcΣθ

T
c )θTxy. After these transformations, the

pixel ray aligns with the z-axis, keeping x and y constant in the integral. This allows us to
approximate

PDRi
≈

∑
(m,µ,Σ)∈MD

i

m

∫ ∞
−∞

z2N ([0, 0, z])T ;µe,Σe) dz (3.10)

where a closed form solution exists for the integral. Note that the factor z2 is crucial since
volumeRi is a pyramid with the camera origin as its tip. By plugging this approximation into
Eq. (3.9) and optimizing, we are able to refine preliminary poses h′c, to yield our final pose
estimates h̃c. We run 100 iterations of [NM65] (gradient free) in the implementation of NLopt
[Joh]. When calculating the log-likelihood of each pixel, we ignore the contribution of mixture
components whose covariance matrix has a determinant of less than 1000, where object
coordinates are measured in mm. We threshold the log-likelihood of each pixel between
-100 and 100 for robustness.
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3.3. EXPERIMENTS

We evaluate our work on three publicly available datasets. First we demonstrate pose es-
timation performance for a single object given an RGB image (Sec. 3.3.1). Here, we also
report results for RGB-D input images. Next, we evaluate our system with respect to detec-
tion of multiple objects (Sec. 3.3.2). Finally, we consider the scenario of camera localization
(Sec. 3.3.3).

3.3.1. SINGLE OBJECT POSE ESTIMATION

We conduct the following experiments on the dataset of Hinterstoisser et al. [HLI+12], i.e.
we estimate poses of texture-less objects in a cluttered scene (see Fig. 3.2 for an example,
and Appendix A.2.1 for details). Each image of the dataset is annotated with the ground truth
6D pose of one object and the ID of this object is assumed to be known. Although colored
3D models of the objects are available for the generation of training images, learning from
synthetic images is beyond the scope of the approach in this chapter. Instead, we split the
real image sequences of the dataset in training and test as explained in the end of Sec. 2.3.1.
We select training images such that the associated object poses have a minimum angular
distance of 15◦, which results in using ≈ 15% of all images for training. The remaining
images serve as test set. We segment training images so that the scene context cannot
be learned. During training, we sample patches with random scales according to an object
distance between 65cm and 115cm, the range given for training in [HLI+12]. Note that this
dataset is comprised of RGB-D images. For pose estimation from RGB, we simply omit the
depth channel of each test image.

Parameters. We train 3 trees (max. depth 64) per auto-context layer and 3 layers in total.
The inlier threshold is set to τin = 3px and we sample nh = 256 hypotheses during pose
optimization. We include a complete list of parameters in Appendix A.4.2.

Metrics. We measure the percentage of images where the object pose was estimated
correctly. Different measures have been proposed in the past, see Appendix A.3. Hinter-
toisser et al. [HLI+12] define a threshold on the average distance of transformed 3D points.
The exact tolerance to translational and rotational error depends on object size and shape.
Shotton et al. [SGZ+13] define this tolerance explicitly and accept a pose if the error is below
5cm and 5◦. While appropriate for some applications, these two measures are not very well
suited when applying visual effects to the 2D image, e.g. augmented reality. For example,
pose accuracy in z direction is far less important for the visual impression than precision in
x and y. Therefore, we additionally propose the following measure, see Appendix A.3.2 for
a formal definition. We project the object model into the image using the ground truth pose
and the estimated pose. We accept the estimated pose, if the average re-projection error
of all model vertices is below 5px. We denote this measure as 2D Projection. See Fig. 3.1
for a comparison of metrics. With the measure of Hinterstoisser et al. both results are cor-
rect, but only the left result is correct with the 2D projection measure. Finally, to evaluate
2D detection performance, we calculate the 2D bounding box overlap and accept it if the
intersection over union (IoU) > 50%. We denote this 2D Bounding Box.
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RGB SETTING

Baselines. The template-based approaches LINEMOD (for RGB-D images) and LINE2D (for
RGB images) have been introduced in [HCI+11] for object detection. Unfortunately, imple-
mentations of LINEMOD and LINE2D are unavailable. We used the open source code in
OpenCV which was optimized for synthetic images. To make it work well for real images we
activated sampling of strong gradients in the object interior. We verified the detection per-
formance of our LINE2D implementation on the dataset of [RCT13] and achieve comparable
results as in [RCT13]. Testing on the original data of [HCI+11] is not possible because it is
not publicly available. LINEMOD, but not LINE2D, was extended to perform pose estimation
from RGB-D images in [HLI+12]. We created a variant of [HLI+12] based on LINE2D for pose
estimation from RGB images. Of the various post-processing steps of [HLI+12] we apply
only the color check because the other steps are based on depth.

We were not able to compare to the method of [RCT13]. The authors were not able to
provide us source code or binaries, or to run the experiment for us. This method extends
[HCI+11, HLI+12] by discriminative learning of templates. Their templates achieve pose
estimation accuracy comparable to LINEMOD, while being considerably faster.

Table 3.1.: Pose Estimation from RGB Images. Pose estimation results on the dataset of
[HLI+12] for a single object where the object ID is known in advance. AC means
auto-context.

Our
L1 reg.

Our
L2 reg.

Our
w/o reg.

Our
w/o AC

LINE2D
[HCI+11]

2D Projection 73.7% 68.6% 38.0% 59.3% 20.9%
2D Bounding Box 97.5% 97.1% 90.3% 96.2% 86.5%
6D Pose (Metric of [HLI+12]) 50.2% 46.0% 19.6% 30.1% 24.2%
6D Pose (5cm 5◦[SGZ+13]) 40.6% 34.1% 11.0% 22.6% 8.1%

Results. Results are shown in the left half of Table 3.1. In 73.7% of test images our ap-
proach delivers an accuracy which is suitable for visual effects. See Fig. 3.5 for qualitative
results. The high accuracy is reflected in low median errors for translation and rotation, i.e.
2.3cm and 5.9◦. The translational error occurs predominantly in z-direction. Our final refine-
ment step, using uncertainty (see Sec. 3.2.4), helps reducing this error. Without this step we
loose 4.2% with the 2D projection measure and 17.9% with the measure of Hinterstoisser
et al.

Our auto-context (AC) framework boosts performance substantially e.g. by 14.4% with
the 2D projection measure (see Ours w/o AC in Table 3.1). We observe that regularization of
the intermediate auto-context feature channels was absolutely essential. Omitting this step
leads to unstable results and performance was actually worse than omitting auto-context
altogether (see Ours w/o reg.). Using L2 regularization, compared to L1, results in a loss of
5.1%. Our auto-context framework largely improves correctness of object label and coordi-
nate predictions. For instance the number of inliers within the ground truth segmentation
increases from 17.1% to 33.5%. An object coordinate prediction is an inlier if the mean
of the distribution falls within 2cm of the ground truth object coordinate at that pixel. Ad-
ditionally, it also effectively reduces the uncertainty of predictions. The average differential
entropy of the object coordinate distributions reduces by 20% and the average number of
modes reduces by 10%.
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LINE2D detects objects relatively well (see 2D Bounding Box score) but fails to reliably es-
timate correct poses. Without depth information it relies mostly on gradients on the object
silhouette. This makes accurate estimation of rotation very difficult. Although [RCT13] intro-
duced improved templates, note that even a perfect template based method can at most
assign the nearest neighbor in the training set, since refinement using ICP is not possible
with RGB images. In our setup, optimal nearest neighbor matching would achieve a me-
dian rotation accuracy of 8.3◦ or 15.5% under the 6D pose measure of [SGZ+13] assuming
zero translational error. This is substantially less accurate than our results showing that our
method successfully interpolates between training images.

Figure 3.5.: Pose Estimation From RGB Images. Left: Four objects, partially overlaid with
3D models with the estimated pose. Right: Detecting multiple objects at once.
Six out of ten objects have been detected. We accept hypotheses with at least
400 inliers. The bounding box color encodes the object ID.

RGB-D SETTING

The pipeline of this chapter can be easily altered to make use of a depth channel if available.
In this case, forest features can be depth-normalized, perspective-n-point is substituted by
the Kabsch algorithm, inliers are defined in 3D camera space, and final refinement is based
on camera coordinates as in [VNS+15].

Baselines. We compare to the RGB-D pose estimation pipeline described in Chapter 2, and
denote it as Render Score, here. We also compare to the method of Krull et al. [KBM+15]
which is an extension of the aforementioned pipeline by utilizing a CNN in the final pose
optimization stage.

Results. Results are shown in the right half of Table 3.2. With the measure of Hinter-
stoisser et al. [HLI+12], multiple methods approach the limit of 100% correctly estimated
poses. The measure of Shotton et al. [SGZ+13] is more sensitive with respect to rotation.
With this measure, our new approach estimates 82.1% of poses correctly, which is consid-
erably more than Krull et al. (-9%) or the method of Chapter 2, Render Score, (-30%). We
attribute this to the robust inlier-based pose optimization which is different from the general
purpose CNN in [KBM+15] and the handcrafted scoring function of the previous chapter. In
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Table 3.2.: Pose Estimation from RGB-D Images. Pose estimation results on the dataset
of [HLI+12] for a single object where the object ID is known in advance. Inlier
Score denotes the method presented in this chapter with auto-context and L1

regularization, but adapted for RGB-D inputs. Render Score denotes the method
presented in Chapter 2.

Our
Inlier Score

Krull et al.
[KBM+15]

Our
Render Score

2D Projection 95.7% 82.6% 81.7%
2D Bounding Box 99.6% 98.8% 99.1%
6D Pose (Metric of [HLI+12]) 99.0% 93.9% 97.4%
6D Pose (5cm 5◦[SGZ+13]) 82.1% 73.1% 52.1%

particular, the scoring function of Chapter 2 has a higher emphasis on model fitting with the
comparison of rendered and observed images. Here, we instead rely on the discriminative
power of the random forest. Note that in the experiments of the previous chapter our Ren-
der Score was superior to an inlier-based scoring function, which seems to contradict the
results here. However, in Chapter 2, the random forest was trained on rendered and tested
on real images, hence its predictions were less reliable.

In the RGB-D setting, the use of auto-context results only in a small improvement (+2.4%
with L1 reg. under 5cm 5◦, compared to +1.9% with L2 reg., and -8.9% w/o reg.). With the
2D projection measure, our approach estimates 95.7% of poses correctly, which is again a
large improvement compared to the baselines (+13.1%, +14% respectively). This confirms
the suitability of our approach for applying visual effects.

We show qualitative results for individual objects in Fig. 3.6, and for multiple objects in
Fig. 3.7. These figures also show the intermediate output of the auto-context random forest
at different stack levels. In Appendix A.4.2, we report rates of correctly estimated poses per
object, and list median pose errors in X/Y/Z and rotation.

3.3.2. MULTI-OBJECT DETECTION

The previous experiments performed pose estimation of a single object. We now evaluate
the detection performance of our approach, i.e. we do not know upfront which objects are
present in a test image. We use the occlusion dataset, i.e. our additional annotation of
the dataset of Hinterstoisser et al. [HLI+12], see Appendix A.2.2 for details. The occlusion
dataset consists of one image sequence with pose annotations for all 9 objects present. The
amount of occlusion can be very large making this dataset extremely challenging.

We search for all 13 objects, i.e. even those not present in the sequence, in all images, and
keep the strongest response per object. We accept a response if the IoU is at least 50%. We
rank all results according to response score which is the inlier count for our method and the
matching score for LINE2D. We plot precision vs. recall in Fig. 3.8, left. We compare two
variants of our method: Firstly, we divide the budget of 256 RANSAC hypotheses evenly
among objects, denoted Ours w/o sharing. Secondly, we apply the method described in
Sec. 3.2.3, i.e. we sample hypotheses according to the object label distribution, denoted
Ours w/ sharing. It is important to note that the 256 hypotheses have to be valid, see middle
of Sec. 3.2.3. Hence, the run-time can vary depending on the difficulty of finding a valid
hypothesis.
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Figure 3.6.: Single Object Pose Estimation Results. Left: An RGB frame with the esti-
mated pose of one object. The bounding box color encodes the object ID. Cen-
ter: The prediction of the auto-context random forest at different stack levels
zoomed in on the object. The top row shows object probabilities, the bottom
row shows object coordinates. Object coordinates are visualized by mapping
X/Y/Z to the RGB cube. Right: Ground truth segmentation and ground truth
object coordinates.

Results. LINE2D achieves 0.21 average precision (AP), due to its sensitivity to occlusion.
The two variants of our method score 0.49 AP (Ours w/o sharing) and 0.51 AP (Ours w/
sharing). As a further experiment, we re-train the auto-context random forest with additional
objects to a total of 25 and 50 objects. We repeat the experiment above and measure AP
and processing time. Here, we omitted final refinement because it had little impact on the
detection performance but would have dominated run time (ca. 100ms per object). See
results in Fig. 3.8, right. With more objects, the performance of the schedule w/o sharing
drops more rapidly while its run time increases. Processing time is predominately spent on
searching for valid hypotheses where objects are occluded or missing. Sampling hypotheses
according to the label distribution scales much better. For 50 objects known, on average 21.2
hypotheses are drawn for an object that is present, and only 1.6 hypotheses for an object
not visible. In contrast, the naive approach w/o sharing allocates 5 hypotheses for each of
the 50 objects. Therefore, sampling hypotheses according to the label distribution predicted
by our forest lets us concentrate processing time on objects which are likely to be present
in the image. Our new, multi-object RANSAC processes all 50 objects in ca. 1s. Note that
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RGB Frame and Poses Level 2
Object Label Prediction
Auto-Context Level 1 Level 3

Figure 3.7.: Multi-Object Pose Estimation Results. Left: An RGB frame with estimated
poses of all objects. Only detections with a minimum number of 400 inliers are
shown. Right: The label prediction of the auto-context random forest at different
stack levels. Bounding box colors encode object IDs.

our implementation runs on CPU only, and is not optimized. We expect a large boost for a
GPU port.

3.3.3. CAMERA LOCALIZATION

Camera localization is a variant of object pose estimation where the object of interest is a
complete scene, e.g. a room, which occupies the complete image. Shotton et al. [SGZ+13]
published an RGB-D dataset of 7 scenes with annotated camera poses, see Appendix A.2.4
for details. Multiple image sequences are given per scene, which were split by [SGZ+13]
in training and test. We use the depth channel to calculate object coordinate labels for the
training set. This labeling can also be rendered using the available 3D models. Otherwise,
we ignored depth channels and estimate the camera pose from RGB only. We kept param-
eters largely unchanged with respect to Sec. 3.3.1, up to a few exceptions due to the large
difference in object size. For example, we increased the inlier threshold τin to 10px. See
Appendix A.4.2 for more details.

Baselines. We compare to a sparse feature-based approach reported in [SGZ+13]. ORB
features [RRKB11] are matched to a sparse reconstruction of the scene, and the pose is cal-
culated via perspective-n-point within a RANSAC framework. Furthermore, we compare to
PoseNet [KGC15], which is a general purpose CNN architecture, trained to directly regresses
the 6D camera pose.

Results. In a first experiment, we follow Shotton et al. and assume that it is known, which
of the 7 scenes is present in the test image, see top part of Table 3.3. In 55.2% of test cases
we estimate the pose correctly, i.e. within the 5cm 5◦ threshold. This is an improvement of
14.5% over the sparse feature baseline. Our auto-context framework boosts performance
by 3.2% and refinement using uncertainty by 1.0%. Compared to PoseNet, our results
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Figure 3.8.: Detection Experiment on the Occlusion Dataset. Left: Precision-recall plot for
13 objects. Right: Average precision and run time for increasing object count.

Table 3.3.: Results on the 7-Scenes Dataset Using RGB Only. The Avg. Error is calculated
by averaging the median pose error per scene. Scene Known denotes the exper-
iment where the scene ID for each image is known in advance. Scene Unknown
denotes the experiment where the scene ID has to be inferred from the image.

Pose (Scene Known) 5cm 5◦ Avg. Error
Sparse RGB [SGZ+13] 40.7% -
PoseNet [KGC15] - 46.9cm, 5.4◦

Our 55.2% 6.1cm, 2.7◦

Pose (Scene Unknown)
Our w/ sharing 50.0% 8.5cm, 3.3◦

Our w/o sharing 33.1% 15.0cm, 8.5◦

have a translational error that is one order of magnitude smaller. Applying the RGB-D variant
of our pipeline, we have 88.1% of correct poses, which is on-par with the results of the
state-of-the-art RGB-D method [VNS+15] (89.5%). We observed no improvement when
applying auto-context in the RGB-D setting, although the intermediate prediction quality of
the forest increased. We show results on individual scenes of the dataset of Shotton et al.
[SGZ+13] in Table 3.4. Qualitative results are shown in Fig 3.9.

In a second experiment, we estimate the pose and scene ID jointly from an RGB image,
see bottom part of Table 3.3. We train one auto-context random forest for all scenes, and
let RANSAC sample 256 object hypotheses per image, according to the object label distribu-
tions, see Our w/ sharing. Despite the increased difficulty, we observe only a medium loss
in performance, i.e. 5.2%. Furthermore, this is substantially better than evenly distributing
the budget of hypotheses over the 7 scenes and adjusting parameters to achieve equal run-
time, see Our w/o sharing. To achieve equal runtime of the two RANSAC variants w/ sharing
and w/o sharing we adjusted parameters in the following way: The final hypothesis of the
variant w/ sharing will at least pass 8 rounds of pre-emptive RANSAC, i.e. drawing of pixel
batches and re-solving PnP. Then, it is refined using uncertainty. For the variant w/o sharing
there is no minimum number of pre-emptive passes. This results in less pixels drawn and
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RGB Frame
Object Coordinate Prediction
Auto-Context Level 1 Level 2 Level 3

Object Coordinate
Ground Truth

Reconstructed
Camera Path

Figure 3.9.: Camera Localization Results. We show (from left to right) an RGB frame of
a room sequence, the object coordinate prediction of different auto-context lev-
els, the object coordinate ground truth, and the estimated camera path (green)
for one complete image sequence. We removed some extreme outlier poses,
which results in rare gaps in the estimated path. The ground truth camera path
(orange) is also shown for comparison.

less iterations of re-solving PnP. Also, there is no refinement using uncertainty. Using these
settings results in a run-time of ca. 700ms for both variants to process all 7 scenes per test
image.

3.4. DISCUSSION

In this chapter, we extended our pose estimation system in various ways. We adapted the
pipeline to estimate poses from RGB inputs only. Therefore, we substituted the render-
ing-based scoring function of Chapter 2 by an inlier counting schema which relies only on
the discriminative predictions of the random forest. To account for the missing depth cues,
we adapted the auto-context algorithm [TB10] for object coordinate regression. The key
ingredient to make it work well is a new, robust regularization of the auto-context feature
channels. Furthermore, we introduced a refinement schema for extra precision which ex-
ploits predicted distributions of object coordinates, and, in contrast to previous work, does
not rely on a depth channel. Finally, we presented a multi-object RANSAC schema which
lets our system scale to dozens of objects while concentrating computational budget only
on those with sufficient evidence in the input image. We demonstrated the capability of our
system to estimate poses of single and multiple objects, and to regress accurate camera
poses in a camera localization task. The accuracy of our pose estimation system enables
the application of convincing visual effects to RGB images, see Fig, 3.10 for some examples.

So far, our pipeline has one learned component: A (auto-context) random forest. While
it achieves good results it is unclear how to adjust the training of the random forest for in-
creasing the accuracy of pose estimates. The quality of object coordinate predictions cannot
be improved directly, e.g. by stochastic gradient descent (SGD). Furthermore, we measure
the performance of our pipeline in terms of accuracy of estimated poses. However, during
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Table 3.4.: Camera Localization Results. Results of our approach per object on the dataset
of Shotton et al. [SGZ+13]. We compare to the sparse feature baseline re-
ported in [SGZ+13], and the state-of-the-art RGB-D-based method of Valentin
et al. [VNS+15]. We also compare our median accuracy to PoseNet [KGC15].

Pose Error <5cm 5◦ Median Error
RGB RGB-D RGB

Scene Our
Sparse F.
[SGZ+13]

Our
Valentin

[VNS+15]
Our

PoseNet
[KGC15]

Chess 94.9% 70.7% 99.6% 99.4% 1.5cm, 1.3◦ 32cm, 3.8◦

Fire 73.5% 49.9% 94.0% 94.6% 3.0cm, 1.4◦ 57cm, 7.0◦

Heads 48.1% 67.6% 89.3% 95.9% 5.9cm, 3.4◦ 30cm, 6.1◦

Office 53.2% 36.6% 93.4% 97.0% 4.7cm, 1.7◦ 48cm, 5.1◦

Pumpkin 54.5% 21.3% 77.6% 85.1% 4.3cm, 2.1◦ 49cm, 4.3◦

Kitchen 42.2% 29.8% 91.1% 89.3% 5.8cm, 2.2◦ 64cm, 4.2◦

Stairs 20.1% 9.2% 71.7% 63.4% 17.4cm, 7.0◦ 48cm, 7.5◦

Average 55.2% 40.7% 88.1% 89.5% 6.1cm, 2.7◦ 46.9cm, 5.4◦

Our LINE2D

Figure 3.10.: Examples of Visual Effects. We applied our pose estimation system to a room
(left) and the duck object (right). Using our pose estimates, we added a virtual
castle resp. sunglasses to the images. The accuracy of our estimated poses,
even using inputs which are RGB only, yields high quality results. The result of
the LINE2D template-based method [HCI+11] is noticeably off.

training we optimize the information gain of proxy classes per split node of the random for-
est in a greedy fashion. The relation of this training objective and the pose accuracy is not
straight forward, especially because the RANSAC-based pose optimization is robust to errors
in the object coordinate prediction. For example, in our experiment regarding camera local-
ization from RGB-D images, we have seen that auto-context improves the quality of object
coordinate predictions. However, this did not translate to more accurate pose estimates.

In the next chapter, we will substitute the random forest and our handcrafted scoring
function with two CNNs. CNNs, despite having proven powerful machine learning tools in
recent years, have the advantage that their predictions can be optimized directly via SGD
allowing the use of a wide range of loss functions. We will show how to train a variant of
our pose estimation pipeline in an end-to-end fashion, i.e. directly optimizing the accuracy of
estimated poses on the training set.
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4.1. INTRODUCTION

In the previous chapters, we have introduced a pose estimation pipeline which combines
learned components with geometric processing for very accurate and stable results. Re-
cently, deep learning has been shown to be highly successful at image recognition tasks
[SZ14, HZRS15a, Gir15, RDGF15], and, increasingly, in other domains including geometry
[EF15, KJC16, KGC15, DMR16]. Part of this recent success is the ability to perform end-
to-end training, i.e. propagating gradients back through an entire pipeline to allow the direct
optimization of a task-specific loss function, see for example [YTLF16, AGT+16, TZTV16].

In this chapter, we are interested in learning components of our pose estimation pipeline
such that the accuracy of pose estimates increases. In our approach we predict object coordi-
nates based on local image neighbourhoods, followed by a global model fit. Random Sample
Consensus (RANSAC) is an integral component of this wide-spread strategy because it adds
robustness to individual errors in the local predictions. We ask the question whether we can
train a pipeline like the one presented in this thesis end-to-end. More specifically, we want
to learn parameters of a convolutional neural network (CNN) such that models, fit robustly
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to its predictions via RANSAC, minimize a task specific loss function. The work associated
with this chapter was published in [BKN+17].

Introduced in 1981, RANSAC algorithm [FB81] remains the most important algorithm for
robust estimation. It is easy to implement, it can be applied to a wide range of problems,
and it is able to handle data with a substantial percentage of outliers, i.e. data points that are
not explained by the data model. RANSAC and variants thereof [TZ00, Nis03, CM05] have,
for many years, been important tools in computer vision, including multi-view geometry
[HZ04], object retrieval [PCI+07], pose estimation [SGZ+13, BKM+14] and simultaneous
localization and mapping (SLAM) [MMT15]. Solutions to these diverse tasks often involve a
strategy very similar to ours: Local predictions (e.g. feature matches) induce a global model
(e.g. a homography). As mentioned before, RANSAC provides robustness to erroneous local
predictions. The principles of making RANSAC differentiable which we discuss in this chapter
are general and can be transferred to any system with a RANSAC component.

RANSAC works by first creating multiple model hypotheses from small, random subsets
of data points. Then it scores each hypothesis by determining its consensus with all data
points. Finally, RANSAC selects the hypothesis with the highest consensus as the final
output. Unfortunately, this hypothesis selection is non-differentiable meaning that it cannot
be used in an end-to-end-trained deep learning pipeline, directly.

A common approach within the deep learning community is to soften non-differentiable
operators, e.g. argmax in LIFT [YTLF16] or visual word assignment in NetVLAD [AGT+16].
In the case of RANSAC, the non-differentiable operator is the argmax operator which selects
the highest scoring hypothesis. Similar to [YTLF16], we might substitute the argmax for a
soft argmax which is a weighted average of arguments [CW10]. We indeed explore this di-
rection but argue that this substitution changes the underlying principle of RANSAC. Instead
of learning how to select a good hypothesis, the pipeline learns a (robust) average of hy-
potheses. We show experimentally that this approach learns to focus on a narrow selection
of hypotheses and is prone to overfitting.

Alternatively, we aim to preserve the hard hypothesis selection but treat it as a proba-
bilistic process. We call this approach DSAC – Differentiable Sample Consensus – our new,
differentiable counterpart to RANSAC. DSAC allows us to differentiate the expected loss of
the pipeline w.r.t. to all learnable parameters. This technique is well known in reinforcement
learning, for stochastic computation problems like policy gradient approaches [SHWA15].

To demonstrate the principle, we choose the problem of camera localization: From a single
RGB image of a known static scene we estimate the 6D camera pose (3D translation and
3D rotation) relative to this scene. Since we are interested in estimating the pose of a
single object, a scene, the classification resp. segmentation aspect of our pipeline becomes
superfluous, hence we omit it for simplicity in this chapter. We introduce a variant of our
system which is end-to-end trainable. In contrast to Chapter 2 and 3, we adopt two CNNs
for predicting object coordinates, and for scoring hypotheses. More importantly, the key
novelty of this chapter is to replace RANSAC by our new, differentiable DSAC.

Contributions. The contributions of this chapter are:

• We present and discuss two alternative ways of making RANSAC differentiable, by
soft argmax selection and probabilistic selection. We call our new RANSAC version,
with the latter option, DSAC (Differentiable Sample Consensus).

• We put both options into an end-to-end trainable camera localization pipeline. It follows
the same principles discussed so far but contains two separate CNNs, linked by our
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new RANSAC.

• We validate experimentally that the option of probabilistic selection is superior, i.e.
less sensitive to overfitting, for our application. We conjecture that the advantage of
probabilistic selection is allowing hard decisions, and, at the same time, keeping broad
distributions over possible decisions.

• We exceed our previous results on camera localization by 11%, which sets a new
state-of-the-art at the time of publication of this thesis.

Related Work. Over the last decades, researchers have proposed many variants of the
original RANSAC algorithm [FB81]. Most works focus on either or both of two aspects:
speed [CMK03, Nis03, CM05], or quality of the final estimate [TZ00, CMK03]. For detailed
information about RANSAC variants we refer the reader to [RFP08]. To the best of our knowl-
edge, this work is the first to introduce a differentiable variant of RANSAC for the purpose
of end-to-end learning.

In the following, we review previous work on differentiable algorithms. The success of
deep learning began with systems in which a CNN processes an image in one forward pass to
directly predict the desired output, e.g. class probabilities [KSH12], a semantic segmentation
[LSD15] or depth values and normals [EF15]. Given a sufficient amount of training data,
CNNs can autonomously discover useful strategies for solving a task at hand, e.g. hierarchical
part-structures for object recognition [ZF14].

However, for many computer vision tasks useful strategies have been known for a long
time. Recently, researchers started to revisit and encode such strategies explicitly in deep
learning pipelines. This can reduce the necessary amount of training data compared to CNNs
with an unconstrained architecture [SS16]. Yi et al. [YTLF16] introduced a stack of CNNs that
remodels the established sparse feature pipeline of detection, orientation estimation and
description originally proposed in [Low04]. Arandjelovic et al. [AGT+16] mapped the Vector
of Locally Aggregated Descriptors (VLAD) [AZ13] to a CNN architecture for place recognition.
Thewlis et al. [TZTV16] substituted the recursive decoding of Deep Matching [RWHS16] with
reverse convolutions for end-to-end trainable dense image matching.

Similar in spirit to these works, we show how to train an established, RANSAC-based com-
puter vision pipeline in an end-to-end fashion. Instead of substituting hard assignments by
soft counterparts as in [YTLF16, AGT+16], we enable end-to-end learning by turning the hard
selection into a probabilistic process. Thus, we are able to calculate gradients to minimize
the expectation of the task loss function [SHWA15].

4.2. METHOD

As a preface to explaining our method, we first briefly review the standard RANSAC algorithm
for model fitting, and how it can be applied to the camera localization problem using discrim-
inative object coordinate regression. Then, we explain two strategies of making RANSAC
differentiable, using a soft argmax operator and probabilistic selection of hypotheses. Fi-
nally, we present a variant of our pose estimation system for camera localization which can
be learned end-to-end with the aforementioned strategies.
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4.2.1. STANDARD RANSAC

Many problems in computer vision involve fitting a model to a set of data points which in
practice usually include outliers due to sensor noise and other factors. The RANSAC algo-
rithm was specifically designed to be able to fit models robustly in the presence of noise
[FB81]. Dozens of variations of RANSAC exist [TZ00, CMK03, Nis03, CM05]. We consider a
general, basic variant here but the new principles presented in this chapter can be applied to
many RANSAC variants, such as to locally-refined pre-emptive RANSAC [SGZ+13]. A basic
RANSAC implementation consists of four steps:

1. Generate a set of model hypotheses by sampling minimal subsets of data points.

2. Score hypotheses based on some measure of consensus, e.g. by counting inliers.

3. Select the best scoring hypothesis.

4. Refine the selected hypothesis using additional data points, e.g. the full set of inliers.
This step is optional, though in practice important for high accuracy.

We consider an RGB image I consisting of pixels indexed by i. We wish to estimate the
parameters h̃ of a model that explains I. In the camera localization problem this is the 6D
camera pose, i.e. the 3D rotation and 3D translation of the camera relative to the scene’s
coordinate frame. Following the main approach of this thesis, we do not fit model h̃ directly
to image data I, but instead make use of intermediate, noisy 2D-3D correspondences pre-
dicted for each pixel: Y (I) = {y(I, i)|∀i}, where y(I, i) is the object coordinate of pixel i,
i.e. a discriminative prediction for where the point imaged at pixel i lives in the 3D object
coordinate frame. We will use yi as shorthand for y(I, i). Y (I) denotes the complete set
of object coordinate predictions for image I, and we write Y for Y (I). To estimate h̃ from
Y we apply RANSAC as follows:

1. Generate a Pool of Hypotheses. Each hypothesis is generated from a subset of
correspondences. This subset contains the minimal number of correspondences to
compute a unique solution. We call this a minimal set YJ with correspondence in-
dices J = {j1, ..., jn}, where n is the minimal set size. To create the set, we uni-
formly sample n correspondence indices: jm ∈ [1, . . . , |Y |] to get YJ := {yj1 , ...,yjn}.
We assume a function H which generates a model hypothesis as hJ = H(YJ) from
the minimal set YJ . In our application, H is the perspective-n-point (PnP) algorithm
[GHTC03], and n = 4.

2. Score Hypotheses. The scalar function s(hJ , Y ) measures the consensus or quality
of hypothesis hJ , e.g. by counting inlier correspondences. As in Chapter 3, we define
an inlier, specific to our application, via the re-projection error of object coordinate yi:

ei = ‖pi − ChJyi‖, (4.1)

where pi is the 2D location of pixel i and C is the camera projection matrix. We call
yi an inlier if ei < τin, where τin is the inlier threshold. In the following, instead of
counting inliers, we aim to learn s(hJ , Y ) to directly regress the hypothesis score from
re-projection errors ei, as we will explain shortly.

3. Select Best Hypothesis. We take

hAM = argmax
hJ

s(hJ , Y ), (4.2)

where AM stands for argmax.
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4. Refine Hypothesis. The selected hypothesis hAM is refined using function R(hAM, Y ).
Refinement may use all correspondences Y . A common approach is to select a set of
inliers from Y and recalculate function H on this set. The refined pose is the output
of the algorithm h̃AM = R(hAM, Y ).

4.2.2. LEARNING IN A RANSAC PIPELINE

So far, we had a single learned component, namely the regression forest that made the
predictions y(I, i). Krull et al. [KBM+15] extended the approach of Chapter 2 to also learn
the scoring function s(hJ , Y ) as a generalization of our handcrafted score. However, these
two components have thus far been learned separately.

We instead aim to learn both, the object coordinate prediction and the scoring function,
and to do so jointly in an end-to-end fashion within a RANSAC framework. Making the param-
eterizations explicit, we have y(I, i; w) and s(hJ , Y ; v). We aim to learn parameters w and
v where w affects the quality of poses that we generate, and v affects the selection process
which should choose a good hypothesis. Note that neither w nor v influence the initial sam-
pling of minimal sets YJ which is done uniformly and thus has no learnable parameters. To
declutter notation, we denote (transitive) dependence on parameters with a superscript w
resp. v. For example, we write Y w and hw

J to reflect that object coordinate predictions and
hypotheses depend on parameters w. Similarly, we write hw,v

AM to reflect that the selected
hypothesis depends on w and v. Finally, we abbreviate score s(hw

J , Y
w; v) as sw,vJ .

We would like to find parameters w and v such that the loss ` of the final, refined hypothe-
ses over a training set of images is minimized, i.e.

w̃, ṽ = argmin
w,v

∑
I

`(R(hw,v
AM , Y

w),h∗), (4.3)

where h∗ are ground truth model parameters for I. To allow end-to-end learning, we need to
differentiate w.r.t. w and v. We assume a differentiable loss ` and a differentiable refinement
function R.

One might consider differentiating hw,v
AM w.r.t. to w via the minimal set YJ of the single

selected hypothesis of Eq. 4.2. But learning a RANSAC pipeline in this fashion fails because
the selection process itself depends on w and v which is not represented in the gradients of
the hypothesis selected via argmax. We observed in early experiments that the training loss
immediately increases without recovering. Parameters v influence the selection directly
via the scoring function s(h, Y ; v), and parameters w influence the quality of competing
hypotheses h.

We next present two approaches to learn parameters w and v – soft argmax selection
and probabilistic selection – that do model the dependency of the selection process on the
parameters.

SOFT argmax SELECTION (SOFTAM)

To solve the problem of non-differentiability, one can relax the argmax operator of Eq. 4.2
and substitute it for a soft argmax operator [CW10]. The soft argmax turns the hypothesis
selection into a weighted average of hypotheses:

hw,v
SoftAM =

∑
J

P (J |v,w)hw
J (4.4)
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which averages over candidate hypotheses hw
J with

P (J |v,w) =
exp(sw,vJ )∑
J′ exp(sw,vJ′ )

. (4.5)

In this variant, scoring function sw,vJ has to predict weights that lead to a robust average
of hypotheses (i.e. model parameters). This means that model parameters corrupted by
outliers should receive sufficiently small weights such that they do not affect the accuracy
of hw,v

SoftAM. Substituting hw,v
AM for hw,v

SoftAM in Eq. 4.3 allows us to calculate gradients to learn
parameters w and v. More details on the derivatives follow below.

By utilizing the soft argmax operator, we diverge from the RANSAC principle of making
one hard decision for a hypothesis. Soft argmax hypothesis selection bears similarity with
an independent strain within the field of robust optimization, namely robust averaging, see
e.g. the work of Hartley et al. [HAT11]. While we explore soft argmax selection in the exper-
imental evaluation, we introduce an alternative in the next section that preserves the hard
hypothesis selection, and is empirically superior for our task.

Further Details on the Derivatives of soft argmax. To learn our camera localization pipeline
in an end-to-end fashion, we have to calculate the derivatives of the task loss function
`(R(hw,v

SoftAM, Y
w),h∗) w.r.t. to learnable parameters. In the following, we show the deriva-

tive w.r.t. parameters w, but derivation w.r.t. parameters v works similarly.
Applying the chain rule and calculating the total derivative of refinement R, we get:

∂

∂w
`(R(hw,v

SoftAM, Y
w),h∗) =

∂`

∂R

(
∂R

∂hw,v
SoftAM

∂hw,v
SoftAM

∂w
+

∂R

∂Y w

∂Y w

∂w

)
(4.6)

Since hw,v
SoftAM is a weighted average of hypotheses (see Eq. 4.4) we can differentiate it as

follows:
∂

∂w
hw,v
SoftAM =

∂

∂w

∑
J

P (J |v,w)hw
J

=
∑
J

(
hw
J
∂

∂w
P (J |v,w) + P (J |v,w)

∂

∂w
hw
J

) (4.7)

Weights P (J |v,w) follow a softmax distribution of hypothesis scores (see Eq. 4.5).
Hence, we can differentiate further as follows:

∂

∂w
P (J |v,w) =

∂

∂w

exp(sw,vJ )∑
J′ exp(sw,vJ′ )

=
∂
∂w

exp(sw,vJ )∑
J′ exp(sw,vJ′ )

− exp(sw,vJ )

(
∑
J′ exp(sw,vJ′ ))2

∑
J′

∂

∂w
exp(sw,vJ′ )

=
exp(sw,vJ ) ∂

∂w
sw,vJ∑

J′ exp(sw,vJ′ )
−

exp(sw,vJ )
∑
J′ exp(sw,vJ′ ) ∂

∂w
sw,vJ′

(
∑
J′′ exp(sw,vJ′′ ))2

= P (J |v,w)
∂

∂w
sw,vJ − P (J |v,w)

∑
J′ exp(sw,vJ′ ) ∂

∂w
sw,vJ′∑

J′′ exp(sw,vJ′′ )

= P (J |v,w)
∂

∂w
sw,vJ − P (J |v,w)

∑
J′

P (J ′|v,w)
∂

∂w
sw,vJ′

= P (J |v,w)

(
∂

∂w
sw,vJ − EJ′∼P (J′|v,w)

[
∂

∂w
sw,vJ′

])

(4.8)
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Combining this with Eq. 4.7 we have

∂

∂w
hw,v
SoftAM =

∑
J

(
hw
J
∂

∂w
P (J |v,w) + P (J |v,w)

∂

∂w
hw
J

)
=
∑
J

(
P (J |v,w)hw

J

(
∂

∂w
sw,vJ − EJ′

[
∂

∂w
sw,vJ′

])
+ P (J |v,w)

∂

∂w
hw
J

)
= EJ∼P (J|v,w)

[
hw
J
∂

∂w
sw,vJ − hw

J EJ′∼P (J′|v,w)

[
∂

∂w
sw,vJ′

]
+

∂

∂w
hw
J

]
.

(4.9)

This formulation is inconvenient to use in combination with backpropagation because the
derivatives of the scoring function sw,vJ appear in two separate places, in an outer loop over
J and an inner loop over J ′. To avoid calculating backward passes multiple times or caching
data, we factor out sw,vJ as follows. First, to reduce the notational overhead, we write EJ [.]
for EJ∼P (J|v,w) [.]. We also isolate the inner loop by splitting the expectation.

∂

∂w
hw,v
SoftAM = EJ

[
hw
J
∂

∂w
sw,vJ

]
− EJ

[
hw
J EJ′

[
∂

∂w
sw,vJ′

]]
+ EJ

[
∂

∂w
hw
J

]
(4.10)

The nested expectation can be re-structured as follows.

EJ
[
hw
J EJ′

[
∂

∂w
sw,vJ′

]]
=
∑
J

P (J)hw
J

(∑
J′

P (J ′)
∂

∂w
sw,vJ′

)

=
∑
J

∑
J′

hw
J P (J)P (J ′)

∂

∂w
sw,vJ′

=
∑
J′

∑
J

hw
J P (J)P (J ′)

∂

∂w
sw,vJ′ (Commuting sums.)

=
∑
J

∑
J′

hw
J′P (J ′)P (J)

∂

∂w
sw,vJ (Renaming indices.)

= EJ

[∑
J′

hw
J′P (J ′)

∂

∂w
sw,vJ

]
(4.11)

Finally, we insert this back into Eq. 4.10 and isolate the derivatives of the scoring function
which allows us to use backpropagation:

∂

∂w
hw,v
SoftAM = EJ

[(
hw
J −

∑
J′

hw
J′P (J ′)

)
∂

∂w
sw,vJ

]
+ EJ

[
∂

∂w
hw
J

]
. (4.12)

The derivative of hw,v
SoftAM is used in Eq. 4.6 to learn end-to-end with the soft argmax strategy.

PROBABILISTIC SELECTION (DSAC)

As an alternative to the soft argmax selection, we can substitute the deterministic selection
of the highest scoring model hypothesis in Eq. 4.2 by a probabilistic selection, i.e. we chose
a hypothesis probabilistically according to:

hw,v
DSAC = hw

J , with J ∼ P (J |v,w), (4.13)
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where P (J |v,w) is the softmax distribution of scores predicted by sw,vJ (see Eq. 4.5).
The inspiration for this approach comes from policy gradient approaches in reinforcement

learning that involve the minimization of a loss function defined over a stochastic process
[SHWA15]. Similarly, we are able to learn parameters w and v that minimize the expectation
of the loss of the stochastic process defined in Eq. 4.13:

w̃, ṽ = argmin
w,v

∑
I∈I

EJ∼P (J|v,w) [`(R(hw
J , Y

w))] . (4.14)

By optimizing the expected loss during training, the system will try to increase the probability
of good hypotheses while making them also more accurate. One the other hand, the system
will try to decrease the probability of bad hypotheses while the impact of their accuracy is
limited.

As shown in [SHWA15], we can calculate the derivative w.r.t. parameters w by using the
identity ∂

∂w
P (J |v,w) = P (J |v,w) ∂

∂w
logP (J |v,w) as follows (similarly for parameters v):

∂

∂w
EJ∼P (J|v,w) [`(·)] =

∂

∂w

∑
J

P (J |v,w)`(·)

=
∑
J

`(·) ∂

∂w
P (J |v,w) + P (J |v,w)

∂

∂w
`(·)

=
∑
J

`(·)P (J |v,w)
∂

∂w
logP (J |v,w) + P (J |v,w)

∂

∂w
`(·)

= EJ∼P (J|v,w)

[
`(·) ∂

∂w
logP (J |v,w) +

∂

∂w
`(·)
]
,

(4.15)

where we use `(·) as a stand-in for `(R(hw,v
J , Y w),h∗). The derivative of the expectation

is an expectation over derivatives of the loss and the log probabilities of model hypotheses.
Further derivations follow below.

We call this method of differentiating RANSAC that preserves hard hypothesis selection
DSAC – Differentiable Sample Consensus. See Fig. 4.1 for a schematic view of DSAC in
comparison to the RANSAC variants introduced at the beginning of this section. While learn-
ing parameters with the vanilla RANSAC is not possible, as mentioned before, both new
variants, SoftAM and DSAC, are sensible options which we evaluate in the experimental
section.

Further Details on the Derivatives of DSAC. Using the DSAC strategy, we learn our pose
estimation pipeline by minimizing the expectation of the task loss function, as shown in
Eq. 4.15. We differentiate ∂

∂w
`(·) = ∂

∂w
`(R(hw,v

J , Y w),h∗) following Eq. 4.6, and log prob-
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Figure 4.1.: Stochastic Computation Graphs [SHWA15]. A graphical representation of
three RANSAC variants investigated in this thesis. The variants differ in the way
they select the final model hypothesis: a) non-differentiable, vanilla RANSAC
with hard, deterministic argmax selection; b) differentiable RANSAC with deter-
ministic, soft argmax selection; c) differentiable RANSAC with hard, probabilistic
selection (named DSAC). Nodes shown as boxes represent deterministic func-
tions while circular nodes with yellow background represent probabilistic func-
tions. Arrows indicate dependency in computation. All differences between a),
b) and c) are marked in red.
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(4.16)

Put back in Eq. 4.15, this results in

∂

∂w
EJ [`(·)] = EJ

[
`(·)

(
∂

∂w
sw,vJ − EJ′

[
∂

∂w
sw,vJ′

])
+

∂

∂w
`(·)
]
. (4.17)

As in Eq. 4.9, the term sw,vJ appears in two separate places. Following Eq. 4.10 et seqq., we
simplify further by isolating sw,vJ .

∂

∂w
EJ [`J(·)] = EJ

[(
`J(·)−

∑
J′

`J′(·)P (J ′)

)
∂

∂w
sw,vJ

]
+ EJ

[
∂

∂w
`J(·)

]
. (4.18)
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Note that we introduced a subindex for loss `(·) to keep track of the hypothesis it belongs
to.

4.2.3. DIFFERENTIABLE CAMERA LOCALIZATION
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Figure 4.2.: Differentiable Camera Localization Pipeline. Given an RGB image, we let a
CNN with parameters w predict object coordinates, i.e. dense 2D-3D correspon-
dences. From these, we sample minimal sets of four object coordinates and
create a pool of hypotheses h. For each hypothesis, we create an image of
re-projection errors which is scored by a second CNN with parameters v. We
select a hypothesis probabilistically according to the score distribution. The se-
lected pose is also refined.

We demonstrate the principles for differentiating RANSAC for the task of one-shot camera
localization from an RGB image. In the following, we describe a variant of the pose estima-
tion pipeline of Chapter 3 which can be learned in an end-to-end fashion using the strategies
described above.

In Chapter 3, we used an auto-context random forest to predict multi-modal object co-
ordinate distributions per image patch. After that, minimal sets of four object coordinates
were randomly sampled and the PnP algorithm [GHTC03] was applied to create a pool of
camera pose hypotheses. A pre-emptive RANSAC schema iteratively refined, re-scored and
rejected hypotheses until only one remained. The pre-emptive RANSAC scored hypotheses
by counting inlier object coordinates, i.e. object coordinates yi for which re-projection error
ei < τin. In a last step, the final, remaining hypothesis was further optimized using the un-
certainty of the object coordinate distributions predicted by the auto-context random forest.
The differentiable camera localization pipeline of this chapter differs in the following aspects:

• Instead of a random forest, we use a CNN (called ‘Coordinate CNN’ below) to predict
object coordinates. For each 42× 42 pixel image patch, it predicts a object coordinate
point estimate. We use a VGG style architecture with 13 layers and 33M parameters.
To reduce test time we process only 40×40 patches per image which results in 40×40
object coordinate predictions.

• We score hypotheses using a second CNN (called ‘Score CNN’ below). We took in-
spiration from the work of Krull et al. [KBM+15] which is an extension of the system
described in Chapter 2. Krull et al. learn a CNN to compare rendered and observed
images. Instead, our Score CNN predicts hypothesis consensus based on re-projec-
tion errors. For each of the 40× 40 object coordinate predictions yi, we calculate the
re-projection error ei for hypothesis hJ (see Eq. 4.1). This results in a 40 × 40 re-pro-
jection error image, which we feed into the Score CNN, a VGG style architecture with
13 layers and 6M parameters.
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• Instead of the pre-emptive RANSAC schema, we score hypotheses only once and
select the final pose either by applying the soft argmax operator (SoftAM) or by prob-
abilistic selection according to the softmaxed scores (DSAC).

• Only the final pose is refined. We choose inlier object coordinate predictions, i.e. object
coordinates yi with re-projection error ei < τin, and solve PnP [LMNF09] again using
this set. This is iterated multiple times. Since the Coordinate CNN predicts only point
estimates we do no further pose optimization using uncertainty.

See Fig. 4.2 for an overview of our differentiable camera localization pipeline. Where ap-
plicable we use the same parameter values used in experiments of Chapter 3, e.g. sampling
256 hypotheses, using 8 refinement steps and an inlier threshold of τin = 10px.

4.3. EXPERIMENTS

For comparability to other methods, we again show results on the 7-Scenes dataset [SGZ+13]
which is widely used by camera localization methods. The dataset consists of RGB-D images
of 7 indoor environments where each frame is annotated with its 6D camera pose. The data
of each scene is comprised of multiple sequences (= independent camera paths) which are
assigned either to test or training. The number of images per scene ranges from 1k to 7k
for training resp. test. We omit the depth channels and estimate poses using RGB images
only. See Appendix A.2.4 for more details on this dataset.

We measure accuracy by the percentage of images for which the pose error is below 5◦

and 5cm. See Appendix A.3.3 for details on calculating this error. For training, we use the
following differentiable loss which is closely correlated with the task loss:

`pose(h̃,h∗) = max(](θ̃,θ∗), ‖t̃− t∗‖), (4.19)

where h = (θ, t), θ denotes the axis-angle representation of the camera rotation, and t is
the camera translation. We measure angle ](θ̃,θ∗) between estimated and ground truth
rotation in degree, and distance ‖t̃− t∗‖ between estimated and ground truth translation in
cm.

Since the dataset does not include a designated validation set, we separated multiple
blocks of 100 consecutive frames from the training data to be used as validation data (in
total 10% per scene). We fixed all learning parameters on the validation set (e.g. learning
rate and total amount of parameter updates). Once all hyper parameters were fixed, we
re-trained on the full training set.

4.3.1. COMPONENTWISE TRAINING

Our pipeline contains two trainable components, namely the Coordinate CNN and the Score
CNN. First, we explain how to train both components using surrogate losses, i.e. train them
not in an end-to-end fashion but separately. End-to-end training using differentiable RANSAC
will be discussed in Sec. 4.3.2.

Object Coordinate Regression. Similar to our experiments in Chapter 3, we use the depth
information of training images to generate object coordinate ground truth. Alternatively, this
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ground truth can also be rendered using the available 3D models. We train the Coordinate
CNN using the following surrogate loss:

`coord(y,y∗) = ‖y − y∗‖, (4.20)

where y is the object coordinate prediction and y∗ is ground truth. We also experimented
with other losses including L2 (squared distance), Huber [Hub64] and Tukey [BT74] which
consistently performed worse on the validation set. We train with mini batches of 64 ran-
domly sampled training patches. We use the Adam [KB14] optimizer with a learning rate of
10−4. We cut the learning rate in half after each 50k updates, and train for a total of 300k
updates.

Score Regression. We synthetically created data to train the Score CNN in the following
way. By adding noise to the ground truth pose of training images, we generated poses above
and below the pose error threshold of 5◦ and 5cm. Using the object coordinate predictions of
the trained Coordinate CNN, we compute re-projection error images of these poses. Poses
with a large pose error w.r.t. the ground truth pose will lead to large re-projection errors,
and we want the Score CNN to predict a small score. Poses close to ground truth will lead
to small re-projection errors, and we want the Score CNN to predict a high score. More
formally, the pose error `pose(h,h∗) of a hypothesis h should be negatively correlated with
the score prediction s(h, Y ; v). Thus, we train the Score CNN to minimize the following loss:

`score(s, s∗) = |s− s∗|, (4.21)

where: s∗ = −β`pose(h,h∗). Parameter β controls the broadness of the score distribution
after applying softmax. We use this distribution for weights in SoftAM (see Eq. 4.5) and to
sample a hypothesis in DSAC (see Eq. 4.13). A value of β = 10 gave reasonable distributions
on the validation set, i.e. poses close to ground truth had a high probability to be selected,
and poses far away from ground truth had a low probability to be selected. We train the
Score CNN with a batch size of 64 re-projection error images of randomly generated poses.
We use Adam [KB14] for optimization with a learning rate of 10−4. We train for a total of 2k
updates.

Results. We report the accuracy of our pipeline, trained componentwise, in Table 4.1. We
present the accuracy per scene and the average over scenes. Since scenes with few test
frames like Stairs and Heads are overrepresented in the average, we additionally show accu-
racy on the dataset as a whole (denoted Complete, i.e. 17,000 test frames). We distinguish
between RANSAC, i.e. non-differentiable argmax hypothesis selection, SoftAM, i.e. differen-
tiable soft argmax hypothesis selection and DSAC, i.e. differentiable probabilistic hypothesis
selection. As can be seen in Table 4.1, RANSAC, SoftAM and DSAC achieve very similar re-
sults when trained componentwise. The probabilistic hypothesis selection of DSAC results
in a slightly reduced accuracy of -0.7% on the complete dataset, compared to RANSAC.

4.3.2. END-TO-END TRAINING

In order to facilitate end-to-end learning as described in Sec. 4.2, some parts of the pipeline
need to be differentiable which might not be immediately obvious. We already introduced
the differentiable loss `pose. Furthermore, we need to derive the model function H(YJ) and
refinement R w.r.t. learnable parameters.
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Table 4.1.: Effect of End-to-End Training. Accuracy measured as the percentage of test
images where the pose error is below 5cm and 5◦. Complete denotes the com-
bined set of frames (17,000) of all scenes. Numbers in green denote improved
accuracy after end-to-end training for SoftAM resp. DSAC compared to componen-
twise training. Similarly, red numbers denote decreased accuracy. Bold numbers
indicate the best result for each scene.

Trained Componentwise Trained End-To-End
RANSAC SoftAM DSAC SoftAM DSAC

Chess 94.9% 94.8% 94.7% 94.2% -0.6% 95.4% +0.7%
Fire 75.1% 75.6% 75.3% 76.9% +1.3% 75.7% +0.4%
Heads 72.5% 74.5% 71.9% 74.0% -0.5% 72.4% +0.5%
Office 70.4% 71.3% 69.2% 56.6% -14.7% 76.0% +6.8%
Pumpkin 50.7% 50.6% 50.3% 51.9% +1.3% 59.7% +9.4%
Kitchen 47.1% 47.8% 46.2% 46.2% -1.6% 56.3% +10.1%
Stairs 6.2% 6.5% 5.3% 5.5% -1.0% 6.2% +0.9%
Average 59.5% 60.1% 59.0% 57.9% -2.2% 63.1% +4.1%
Complete 61.0% 61.6% 60.3% 57.8% -3.8% 66.2% +5.9%

In our application, H(YJ) is the PnP algorithm. Off-the-shelf implementations (e.g. [GHTC03,
LMNF09]) are fast enough for calculating the derivatives via central differences. Refinement
R involves determining inlier sets and resolving PnP in multiple iterations. This procedure
in non-differentiable because of the hard inlier selection procedure. However, because the
number of inliers is usually large, refined poses tend to vary smoothly with changes to the
input object coordinates. Hence, we treat the refinement procedure as a black box, and
calculate derivatives via central differences, as well. For stability, we stop refinement early,
in case less than 50 inliers have been found. Because of the large number of inputs and to
keep central differences tractable, we subsample the object coordinates for which gradients
are calculated (we use 1%), and correct the gradient magnitude accordingly (×100).

Similar to e.g. [YTLF16] or [KGC15], we found it important to have a good initialization
when learning end-to-end. Learning from scratch quickly reached a local minimum. Hence,
we initialize the Coordinate CNN and the Score CNN with componentwise training, see
Sec. 4.3.1. We optimized training hyperparameters separately for SoftAM and DSAC on the
validation set.

For DSAC, we use a fixed learning rate of 10−6 for the Coordinate CNN and optimize with
Adam. We clamp all gradients to the range of ±10−3 before passing them to the Coordinate
CNN. For the Score CNN, we use a fixed learning rate of 10−7 and optimize using stochastic
gradient descent with momentum [RHW88] of 0.9. We clamp gradients to the range of
±10−1 before passing them to the Score CNN.

Choosing learning parameters for the SoftAM strategy was extremely difficult, because
training was very unstable. The following setting were working best. We use a fixed learning
rate of 10−5 for the Coordinate CNN and 10−7 for the Score CNN. We optimize both CNNs
using stochastic gradient descent with momentum of 0.9, and we clamp all gradients to the
range of ±10−1 before passing them to the CNNs. We train for 5k updates.

Results. See Table 4.1 for results of both strategies. Compared to the initialization (trained
componentwise), we observe a significant improvement for DSAC (+5.9% on the com-
plete dataset, standard error of the mean ±0.4%). DSAC improves accuracy for all scenes,
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with strongest effects for Pumpkin (+9.4%) and Kitchen (+10.1%). SoftAM significantly
decreases accuracy compared to the componentwise initialization (-3.8% on the complete
dataset). SoftAM overfits severely on the Office scene (-14.7%) and decreases accuracy for
most other scenes. Note that these results differ from the results we reported in [BKN+17].
Since the publication of [BKN+17], we improved the learning parameters of DSAC (we state
the new parameters above) which increased results from 62.5% to the 66.2% reported here.
As mentioned before, learning with SoftAM is unstable and using the updated learning pa-
rameters would lead to an accuracy of 33.8% for SoftAM.

Table 4.2.: Comparison to Previous Work. Accuracy measured as the percentage of test
images where the pose error is below 5cm and 5◦. Complete denotes the com-
bined set of frames (17,000) of all scenes. Bold numbers indicate the best result
for each scene. E2E stands for trained end-to-end.

Sparse Features
[SGZ+13]

Our
Chapter 3 DSAC, E2E

Chess 70.7% 94.9% 95.4%
Fire 49.9% 73.5% 75.7%
Heads 67.6% 48.1% 72.4%
Office 36.6% 53.2% 76.0%
Pumpkin 21.3% 54.5% 59.7%
Kitchen 29.8% 42.2% 56.3%
Strairs 9.2% 20.1% 6.2%
Average 40.7% 55.2% 63.1%
Complete 38.6% 55.2% 66.2%

In Table 4.2, we compare the results of DSAC to the sparse features baseline presented in
[SGZ+13] and our results of Chapter 3. Our pipeline, trained with DSAC, surpasses, on most
scenes, the accuracy of both competitors substantially. On the complete set, we improve
accuracy by 11% compared to the results of Chapter 3. We also measured the median pose
error of all frames in the dataset, see Table 4.3. Note that the latest version of PoseNet
[KC17] states median translational errors of around 20cm per scene, so it cannot compete
in terms of accuracy.

Table 4.3.: Median Pose Errors. We show results for the complete 7-Scenes dataset
(17,000 frames). Most accurate results are marked bold.

Our, Chapter 3 4.5cm, 2.0◦

Ours, Trained
Componentwise

RANSAC 4.0cm, 1.6◦

SoftAM 3.9cm, 1.6◦

DSAC 4.0cm, 1.6◦

Ours, Trained
End-To-End

SoftAM 4.0cm, 1.6◦

DSAC 3.5cm, 1.6◦

4.3.3. INSIGHTS AND DETAILED STUDIES

Ablation Study. We study the effect of learning the Score CNN and the Coordinate CNN in
an end-to-end fashion, individually. We use componentwise training as initialization for both
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Figure 4.3.: Ablation Study and Score Distribution Entropy. (a) Effect of end-to-end learn-
ing on pose accuracy w.r.t. the two CNNs in our pipeline. The Coordinate CNN
has the main effect on the overall accuracy. (b) Effect of end-to-end training on
the entropy of the score distribution on the complete dataset. DSAC allows for
broader distributions than SoftAM. Set the text for details.

CNNs. See Fig. 4.3 a) for results on the complete dataset. For DSAC, training the Score
CNN in an end-to-end fashion increases accuracy slightly, but training the Coordinate CNN
is essential for best results. Although training only the Coordinate CNN in an end-to-end
fashion increases accuracy by +0.2% compared to training both CNNs, the effect is not
statistically significant. We conclude that the influence of the Score CNN is limited in this
pipeline, and the score initialization seems to be sufficient for good results. Similarly, for
SoftAM, we see that the bad accuracy is not due to overfitting of the Score CNN, but the
instability of learning the Coordinate CNN.

Analysis of Object Coordinate Predictions. In the componentwise training, the Coordi-
nate CNN learned to minimize the surrogate loss `coord, i.e. the distance ‖yi − y∗i ‖ of object
coordinate predictions yi w.r.t. ground truth y∗i . In Fig. 4.4, we visualize how the prediction
of the Coordinate CNN changes when trained in an end-to-end fashion, i.e. to minimize the
loss `pose. Both end-to-end learning strategies, SoftAM and DSAC, increase the accuracy
of object coordinate predictions in some areas of the scene at the cost of decreasing the
accuracy in other areas. We observe very extreme changes for the SoftAM strategy, i.e.
the increase and decrease in object coordinate accuracy is large in magnitude, and improve-
ments are focused to small scene areas. The DSAC strategy leads to a much more cautious
tradeoff, i.e. changes are smaller and widespread. We conclude that SoftAM tends to overfit
due to overly aggressive changes in object coordinate predictions.

Score Distribution Entropy. See Fig. 4.3 b) for an analysis of the effect of end-to-end
learning on the average entropy of the softmax score distribution (see Eq. 4.5). We observe
a clear reduction in entropy for the SoftAM strategy. The larger the pose error of a hypothesis
is, the larger is also its influence on the pose average (see Eq. 4.4). SoftAM has to weigh
down such poses aggressively for a good average. DSAC can allow for a broader distribution
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-10cm +10cm±0cm

Change in Prediction Error w.r.t. Initialization after End-to-End Training:

Improvement Decrease

d) SoftAM e) DSAC

a) Input RGB
b) Object Coordiante
Ground Truth

c) Object Coordiante
Prediction (Initial.)

Figure 4.4.: Prediction Quality. We analyze object coordinate prediction quality on an Office
test image (a) with ground truth object coordinates (b) (X/Y/Z mapped to RGB).
The prediction after componentwise training can be seen in (c). We vizualize
the relative change of prediction error w.r.t. componentwise training in (d) for
SoftAM, resp. in (e) for DSAC. We observe an aggressive strategy of SoftAM
which focuses large improvements on small areas (14% of predictions improve).
DSAC shows small improvements but on large areas (38% of predictions im-
prove). Note that DSAC achieves superior pose accuracy on this scene.

because poses which are unlikely to be chosen do not affect the loss of poses which are
likely to be chosen. This is an additional factor in the stability of DSAC.

Restoring the argmax Selection. After end-to-end training, one may restore the original
RANSAC algorithm, e.g. selecting hypotheses w.r.t. scores via argmax. In this case, the
average accuracies stay relatively stable at 65.6% for DSAC resp. 57.2% for SoftAM.

Test Time. The object coordinate prediction takes ∼0.5s on a Tesla K80 GPU. Pose opti-
mization takes ∼1s. The runtime of argmax hypothesis selection (RANSAC) or probabilistic
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selection (DSAC) is identical and negligible.

Difficulty of the 7-Scenes Dataset. Compared to the object coordinate predictions of the
random forest in Chapter 3 the predictions of the Coordinate CNN are very smooth, see
Fig. 4.4. This raises the question whether robust pose fitting is still necessary for these
outputs. Although the CNN predictions look smooth, inlier ratios range from 5% to 85%.
See Fig. 4.5, left for the inlier ratio distribution over the complete 7-Scenes dataset. In
accordance to [SGZ+13], we consider an object coordinate prediction an inlier if it is within
10cm of the ground truth object coordinate. In Fig. 4.5, right, we plot the performance of
DSAC against the ratio of inliers. For comparison we plot the performance of a naive approach
without RANSAC where we fit a pose to all object coordinate predictions. Please see Fig. 4.6
for examples of difficult situations in the 7-Scenes dataset which our DSAC pipeline is able
to solve.
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Figure 4.5.: Importance of RANSAC. Left: Distribution of inlier ratios of our object coor-
dinate predictions. Right: Corresponding pose estimation accuracy of DSAC
compared to a naive approach without RANSAC.

Figure 4.6.: Difficult Frames within the 7-Scenes Dataset. From left to right: Texture-less
surfaces, motion blur, reflections, and repeating structures. DSAC estimates the
correct pose in all 4 cases.
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Multi-Modality. Compared to the system presented in Chapter 3, the DSAC pipeline per-
forms not as well on the Stairs scene (see Table 4.2). We account this to the fact that the
Coordinate CNN predicts only uni-modal point estimates whereas the random forest of Chap-
ter 3 predicts multi-modal object coordinate distributions. The Stairs scene contains many
repeating structures, so we expect multi-modal predictions to help. We also expect bad
performance of the SoftAM strategy in case pose hypothesis distributions are multi-modal
because an average is likely to be a bad representation of either mode. In contrast, DSAC
can probabilistically select the correct mode. We conclude that multi-modality in object coor-
dinate predictions and pose hypothesis distributions is a promising direction for future work.

4.4. DISCUSSION

We presented two strategies for differentiating the RANSAC algorithm: Using a soft argmax
operator, and probabilistic selection. By experimental evaluation we conclude that proba-
bilistic selection is superior and call this approach DSAC. We demonstrated the use of DSAC
for learning a variant of our pose estimation pipeline for camera localization in an end-to-end
fashion. However, DSAC can be deployed in any deep learning pipeline where robust opti-
mization is beneficial, for example learning structure from motion or SLAM end-to-end.
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In this thesis, we presented a detection and pose estimation system for object instances
which combines machine learning techniques with principles from traditional computer vi-
sion, like geometry. This system supports a wide range of object types and can process
RGB or RGB-D inputs. We addressed many challenges in this thesis that typically restrict
the practical applicability of object pose estimation in realistic scenarios. While we made
progress in many aspects, there are still many limitations and open questions for future
research. In the following, we discuss both, advantages and limitations, of our proposed
solution. Me mark the main keywords bold in each limitations section.

5.1. ACCURACY AND VERSATILITY

Our pose estimation pipeline can reliably detect the presence and estimate the poses of
object instances from a single input image under varying lighting conditions and severe
occlusion. It can handle textured and texture-less objects by discovering reliable features
autonomously during training. Several works extended our pipeline. For example, Michel
et al. used object coordinates to estimate poses of articulated instances. Our system has
been applied to detect small items (see Chapters 2 and 3), furniture [MKB+15], aircrafts
[MMDM+16] and whole scenes (see Chapter 3 and 4). All object types can be located with
a few centimeters and degrees precision. Visually, the poses estimated and ground truth
can hardly be distinguished making it precise enough for augmented reality, even with RGB
input. At the time of publication, we set a new state-of-the-art in terms of accuracy on
multiple, diverse datasets.
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Limitations. While our approach supports a wide variety of object types there are still
many objects which are particularly challenging. Specifically, for object composed of reflec-
tive and transparent materials neither RGB nor RGB-D image cues are reliable. Regarding
RGB, the objects may appear highly textured with many distinct features. But those features
are not part of the object but of the environment which is reflected or shining through. This
environment is usually unknown and only seen partially in the remaining image. This makes
reasoning about which cues belong to the object and which to the environment difficult.
Regarding depth, most sensors will not provide reliable cues for reflective or transparent
materials either. They either provide no measurements or wrong measurements: this ap-
plies to structured light, time-of-flight and stereo.

Also, objects of thin shape are particularly difficult. They usually do not exhibit expressive
texture and most depth sensors have problems to provide reliable measurements. These
objects appear in many applications and environments, e.g. in the form of poles or pencils.
Tools like cutlery or surgical tools are thin-shaped, and are additionally composed of reflective
material making them extra challenging.

As mentioned before, our pipeline has been extended to handle articulated objects instead
of rigid objects. Such objects are composed of multiple rigid parts connected by joints, e.g.
a cupboard with a moving door. However, other objects, like plush toys or clothing, are
freely deformable without such clear constraints. For such objects, the prediction of object
coordinates based on image patches is still sensible. The deformation is likely to change
the global shape of an object but less so the local appearance. However, the subsequent
RANSAC-based pose optimization procedure is problematic. Even if a parametric model for
the deformable pose can be formulated it is likely to have many free parameters. Every
additional free parameter in the pose hypothesis space increases the minimal number of
correspondences needed to sample a pose. Hence, it becomes increasingly unlikely that a
sampled correspondence set is outlier-free. The number of hypothesis samples needed to
counteract this effect grows exponentially. Therefore, to support freely deformable objects,
more intelligence in hypothesis sampling is needed or an alternative pose optimization pro-
cedure altogether as seen, for example, in [TSSF12] for 60D poses.

The applicability of the object coordinate concept to deformable objects has been demon-
strated in the tracking extension of our pipeline [KMB+14], see Fig. 5.1, left. The pose of the
cat can be estimated because the object coordinates are correctly predicted for parts not
affected by the deformation. The pose optimization does work in this example because of
the robustness of tracking. Note, that this system treats the cat as a rigid object, i.e. defor-
mation parameters are not part of the pose space. Tracking restricts the search for a good
hypothesis to a small neighborhood in the 6D pose space, based on previous observations.
Although the deformed cat does not fit the rigid model very well, it is still the local optimum
in this small neighborhood.

We restricted our system to pose estimation of object instances. However, concepts
similar to object coordinates have been applied to object classes [HRW07, TSSF12]. Specif-
ically, landmarks, which can be thought of as sparse object coordinates, are a recurring con-
cept in class-based pose estimation, see e.g. [TS14, TSLP14]. Object coordinates could be
re-thought as a geodesic interpolation of class landmarks, and an object coordinate predictor,
e.g. a CNN, could learn to be robust to intra-class variabilities.
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Figure 5.1.: Deformable Objects and Ambiguities. Left: In an extension to the system of
Chapter 2, Krull et al. [KMB+14] have shown that object coordinate regression
can be very robust w.r.t. to object deformation when combined with tracking.
Note that deformation parameters are not estimated in their system. Right: Al-
though the steps in the image are identical, their appearance differs, see the
patches marked. Therefore, learning ambiguities form limited data can be diffi-
cult.

5.2. SCALABILITY: OBJECT POSE ESTIMATION

The implementation of our approach takes approximately 100ms to estimate the pose of one
object on a single frame, and is has been extended to real time tracking [KMB+14], support-
ing approximately 20 frames per second on a laptop. Hence, the system is fast enough for
practical application such as grasping specific objects by a robot, and even augmented reality
when tracking can be applied. In Chapter 2, we discussed how to train a joint classification-re-
gression forest that predicts soft segmentations and object coordinates simultaneously for
multiple objects. The runtime of the forest scales logarithmically in the number of objects.
In Chapter 3, we discussed a hypothesis sampling schema for RANSAC which decides on
the fly, based on predicted object label distributions, for which object a hypothesis should
be created. We showed empirically that this lets us perform the pose optimization stage
sublinearily in the number of objects. The whole system is able to process 50 objects in
approximately 1s with a CPU only implementation.

Limitations. If thousands or millions of objects should be supported, a logarithmic com-
plexity might be insufficient. A combination of object coordinate regression with hashing
[KTN+16, WL15] could yield better run times. Also, pose optimization can clearly not be
performed for all objects in the database. An hierarchical approach which identifies objects
first and only optimized poses of objects of high probability could be necessary.

Another aspect, not discussed in this thesis, is multi-instance pose estimation, i.e. the
case where an object can appear in an image more than once. We achieved some prelimi-
nary results by applying mean-shift to identify clusters in the pose hypothesis pool, where
subsequently, pose optimization is run per cluster. However, only shortly before the time of
publication of this thesis, multi-instance pose estimation datasets were published [HMS+]
which would facilitate a quantitative evaluation.
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5.3. SCALABILITY: CAMERA LOCALIZATION

In Chapter 4, we discuss a variant of our pipeline for camera localization which used a CNN
for object coordinate prediction. In our experiments, we can show that this CNN can handle
rooms with a size of a few square meters. In a preliminary experiment, we apply our system
to the dataset of Kendall et al. [KGC15] which contains large outdoor scenes extending over
hundreds of meters, see Fig. 5.2. We kept the capacity, and hence the run time, of our
Coordinate CNN constant in all experiments, therefore it scales constant in the size of the
scene.

Figure 5.2.: Outdoor Camera Localization. We trained a variant of the DSAC system of
Chapter 4 for the large scale outdoor camera localization dataset of [KGC15].
We show an exemplary result for the Kings Cross scene, with the ground truth
camera path drawn green, and our estimated path drawn orange. Our median
accuracy on this scene is 22cm and 0.4◦. A state-of-the-art sparse feature based
approach [SLK16] has a median accuracy of 42cm and 0.5◦ on this scene.

Limitations. It is evident that with growing scene size and constant model capacity accu-
racy of the object coordinate predictions decrease. Unfortunately, inaccurate object coordi-
nates will at some point make pose optimization impossible, because the inherent geomet-
ric constraints will be violated. In this case, the system fails to produce even an approxi-
mate pose. We have seen in preliminary experiments that this is the case at district-sized
scenes, specifically the streets scene in the dataset of Kendall et al. [KGC15] which spans
over 10,000m2. Increasing the model capacity has proven ineffective, either because the
capacity needed scales exponentially or other aspects play a role. For example, with very
large scenes, and specifically with repeating architectural structures, image patches become
more and more ambiguous. Object coordinate point estimates, as produced by the CNN of
Chapter 4, cannot capture this ambiguity. As show in Chapter 3, modeling object coordi-
nate distributions is a sensible strategy and CNNs have been shown capable of making such
predictions [GPAM+14, LSZ15, Bis94]. In preliminary experiments, we trained a CNN to
model object coordinate distributions. However, this failed to improve results even on highly
ambiguous scenes like the Stairs sequence of the 7-Scenes dataset, see Fig. 5.1, right.
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Possibly, the amount of training data is insufficient for the CNN to recognize and model
ambiguities. A strong regularization at the feature level could help in this case.

An important application of camera localization is to recover from tracking failure in a SLAM
system. But to be applied in this scenario, camera localization cannot be pre-trained on the
scene since it is discovered on the fly. Cavallari et al. [CGL+17] show how to adapt an ob-
ject coordinate regression forest online for a unknown scene. However, their systems relies
on a depth channel to calculate estimates of object coordinates for incoming frames. Fur-
thermore, the adaptation of the random forest is restricted to updating leaf distributions. A
system, like the one presented in Chapter 4, could adapt to a scene with incremental end-
to-end learning. At its current state however, training is too slow, and end-to-end learning
works only with a good initialization. Furthermore, an online learning training schedule has
to be developed, e.g. by applying curriculum learning [BLCW09].

5.4. OBJECT POSE ESTIMATION FROM RGB ONLY

There was a renewed interest in object pose estimation after the introduction of the Kinect
depth sensor. It enabled detection of objects without sufficient texture cues where previous,
feature-based approaches failed. We were among the first who aimed to transfer the suc-
cess of object pose estimation from RGB-D images back to the RGB only case [BMK+16].
We showed that machine learning approaches are adaptive enough to deal with the few avail-
able cues of texture-less objects. We achieved accurate and robust pose estimation results
without the need for a depth channel. Since most image data is RGB only, this has been an
important achievement.

Limitations. The experiments in Chapter 3 were limited to cases with no or little amount
of occlusion. We conducted some experiments on our occlusion dataset (Appendix A.2.2),
and while detection of the objects works fairly well, pose estimates are very inaccurate.
Preliminary experiments with a CNN architecture instead of a random forest, show some
promise. However, to the best of our knowledge, convincing pose estimation from an RGB
image and under severe occlusion has not yet been demonstrated. The system presented
in this thesis has been extended to handle severe occlusion in [KBM+15] and [MKB+17] but
both approaches rely on depth information.

5.5. EXPLOITING PREDICTION UNCERTAINTY

In Chapter 3, we showed the benefit of modeling and exploiting uncertainty of object co-
ordinate predictions. We modeled uncertainty by learning multi-modal object coordinate
distributions rather than point estimates. This approach can account for varying difficulty
in the data. For example, predicting precise object coordinates for highly textured areas is
easy and the corresponding distribution will be narrow. For texture-less, uniformly colored
areas, the predicted distribution will be broad. Later stages of the pipeline can then trust
some predictions more than others. We showed that object coordinate distributions can be
exploited even if no depth channel is available at test time.

Limitations. For some symmetric objects, like texture-less bowls, all object coordinates
are extremely ambiguous. Modeling such extremely broad distributions is possible, although
difficult in practice with parametric models like Gaussians. The main problem, however,
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is the sampling of pose hypotheses. To generate a hypothesis in this case, a minimal
set of object coordinates has to be sampled from the predicted distributions. Because the
uncertainty is very high, the probability to sample a consistent set is small, at least if the
object coordinate samples are drawn independently.

We modeled uncertainty using the distribution of training samples in random forest leaf
nodes. In Chapter 4, we used a CNN to predict object coordinates but only point estimates.
However, CNNs have been shown to model arbitrarily complex distributions [GPAM+14,
LSZ15, Bis94] which we expect to help pose estimation.

5.6. LEARNING OBJECT POSE ESTIMATION

We showed the benefit of carefully choosing aspects of the task at hand which should be
learned, and which aspects should be hard coded based on prior knowledge. We chose to
learn to predict correspondences from an input image but used principles from geometry to
find the final pose estimate. This separation has proven superior to approaches which dis-
miss all prior knowledge and cast pose estimation as an unconstrained regression problem,
like PoseNet [KGC15]. The use of prior knowledge reduces the need for training data which
is often limited.

Limitations. In many applications, collection training data with accurate annotations of 6D
ground truth poses is connected with substantial human effort and, therefore, a problem.
On the other hand, scans of objects are easier to obtain resp. CAD models of objects are
available, e.g. from production cycles. Producing synthetic training data based on such 3D
models is highly desirable because a rendering engine can produce arbitrary amounts of data
and ground truth annotations are highly accurate. However, often there is a shift in appear-
ance between real data of an object and synthetic data, e.g. because the scanning device
cannot capture all material properties. Therefore, learning from synthetic data is often
problematic, especially if features are also learned. The model will adapt to the specifici-
ties of the synthetic data including the inaccuracies of the scanning and rendering pipelines.
Such models usually perform significantly worse on real data because of lacking generaliza-
tion capabilities. In Chapter 2, we have shown how to train a random forest from synthetic
data and achieve very accurate results on real data. This was possible because the features
were not learned from scratch but restricted to combinations of pixel difference features.
Furthermore, the random forest could rely on a depth channel where many inaccuracies of
synthetic data are less severe. To achieve good performance, we had to apply noise to the
responses of RGB features to make them less reliable, and hence the forest chose depth
features more often. We expect learning a CNN using similar data to be highly problematic
as hierarchical convolution features are much more adaptive, and generalization control by
adding noise to responses is more involved. There is, however, a vast literature concerning
domain adaptation, see e.g. [BDBC+10], a field which is specifically concerned with bridging
the gap between data drawn from different distributions, like synthetic and real data. In re-
cent years, a new generation of generative models, generative adversarial networks (GANs),
have been introduced which have been shown to produce increasingly realistic natural im-
ages based on random noise samples [GPAM+14, NYB+17]. GANs can be conditioned on
existing input data, and change complex image aspects [IZZE17] like time of day and season.
GANs have also been successfully applied to domain adaptation tasks [GUA+16, SPT+17].
Therefore, a conditional GAN could potentially adapt the image statistics of rendered training
data for object pose estimation making it more natural.
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If training data generation using a renderer is an option, one can design an arbitrary training
data distribution and generate an infinite number of samples for learning. If no prior knowl-
edge about the test data distribution exists, a uniform prior can be deployed for the training
distribution, e.g. by sampling ground truth poses from SE(3) and render the corresponding
images. However, it is also possible to guide the training data sampling throughout the
learning process. A differentiable renderer [LB14], facilitates passing gradients of the train-
ing loss through the rendering pipeline directly to the distribution of training data parameters.
These parameters control the object pose but also additional aspects like lighting, occlusion
and reflections. Changing these parameters in the direction of the training loss gradients
will produce more difficult training examples which could potentially improve robustness on
the test set.

5.7. END-TO-END LEARNING WITH DSAC

We introduced a differentiable formulation of the RANSAC algortihm which enables us to
learn object coordinate regression end-to-end using the full geometric pose estimation pipeline.
We therefore bridged a gap between traditional computer vision based in geometry and mod-
ern machine learning-based computer vision. However, DSAC is not limited to geometric
pipelines. It is a generic, robust optimization method which implements the general strat-
egy of hypothesize and verify. Therefore, DSAC can be used in any learning system where
robust selection of model hypotheses is beneficial.

Limitations. In this thesis, end-to-end learning was restricted to a camera localization vari-
ant of the pipeline introduced in Chapter 4. Specifically, this pipeline omits the object seg-
mentation step because a scene object does per definition occupy the whole image. How-
ever, an adaption of the camera localization pipeline for object pose estimation is possible
if an additional CNN predicts a soft segmentation similar to the random forest in Chapters
2 and 3. The pose hypothesis pool would than be sampled according to this soft segmen-
tation. Learning this end-to-end is also possible, since the hypotheses sampling could be
modeled similarly to the hypothesis selection in DSAC. This would result in an optimization
over two expectations, one over all possible sampled hypothesis pools and one over the
selected hypothesis. While the prediction of a soft segmentation is vital for object pose
estimation, camera localization could also benefit. The pipeline could learn which parts of a
scene to avoid in hypothesis sampling, like untextured areas or unstable, moving parts like
cars and pedestrians.

We trained the DSAC-based camera localization pipeline of Chapter 4 in an end-to-end
fashion but not from scratch. A good initialization was needed or the system would quickly
reach a local-minimum in end-to-end training. For initialization, we trained the system using
ground truth object coordinates generated from depth images. Object coordinate ground
truth can also be obtained by rendered object coordinates using a 3D model of the scene.
However, in some scenarios both depth and 3D scene models are difficult or impossible
to obtain. It would be desirable to initialize the system without ground truth object coordi-
nates. In preliminary experiments, we have seen that initialization is possible with object
coordinates calculated from a constant depth prior. However, even after end-to-end training,
the pipeline does not reach the same accuracy as when initialized with ground truth object
coordinates. At the moment its unclear whether this is solely an optimization problem or
whether a different initialization is necessary.
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6. CONCLUSION

Pose estimation is an important problem in computer vision with many application areas. As
a research topic, it is challenging because of a wide range of difficult object types and varying
image conditions. This makes it a natural test bed of machine learning techniques. While
the amount of training data is usually very limited, we can utilize a vast repertoire of prior
knowledge about the task, e.g. camera models and geometry. Pose estimation is therefore
an interesting meeting point of machine learning and traditional computer vision. In this
thesis, we introduced and approached many of the challenges of object pose estimation.
Our system is versatile, robust, scalable and fast enough for practical applications. Some
of our contributions, like DSAC, are applicable to a wide range of other learning problems.
In the previous chapter, we discussed many exciting, open research questions in the area
of object pose estimation. Specifically, we expect that many approaches and algorithms of
traditional computer vision can benefit from machine learning and vise versa to yield exiting
new systems for many practical problems.
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A.1. SYMBOLS AND ABBREVIATIONS

Symbol Description
I Image (RGB or RGB-D).

c ∈ C Object index c and set of objects C.
i Pixel index.

pi 2D Position of pixel i.
xrgb
i RGB color at pixel i.
di Depth measurement at pixel i.
ei 3D camera coordinate at pixel i.

y(I, i) or yi 3D object coordinate prediction of image I for pixel i. It encodes a 2D-3D
correspondence between the image and an object.

ŷ Quantized object coordinate resp. proxy class.
Y (I) or Y Set of all object coordinate predictions for an image I.
T ∈ T Decision tree T of random forest T .
lji Leaf index of tree Tj predicted for pixel i.
ζ Random forest feature parameters.

w, v Neural network weights.
J Minimal set of pixel indices to create a pose hypothesis, i.e. J =

{j1, ..., jn}. For RGB-D inputs n = 4, for RGB inputs n = 3.
YJ Minimal set of object coordinate predictions to create a pose hypothesis,

i.e. YJ = {yj1 , ...,yjn}
H(YJ) Function that creates a hypothesis from a minimal set, i.e. perspective-n-

point (PnP) algorithms [GHTC03] for RGB inputs or the Kabsch algorithm
[Kab76] for RGB-D inputs.

h = (θ, t) Pose hypothesis consisting of 3D rotation θ and 3D translation t, i.e. 6D
vector.

C Camera calibration matrix.
R(h, Y ) Refinement function of hypothesis h with access to all object coordi-

nates Y .
s(h) Scoring function to assess the quality of hypothesis h
`(.) Task loss function.
X̃ Optimal X w.r.t. some optimization problem.
X∗ Ground truth X.

Symbols not listed here are defined and used locally in the respective paragraph.

Abbreviation Description
RGB Digital image with a red, green and blue color channel.
RGB-D Color image with an additional depth channel.
RANSAC Random Sample Consensus
DSAC Differentiable Sample Consensus
CNN Convolutional Neural Network
ICP Iterative Closest Point
PnP Perspective-n-Point
SGD Stochastic Gradient Descent
IoU Intersection over Union
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A.2. DATASETS

Several object instance detection datasets have been published in the past [RCT13, DBCMC12],
many of which deal with 2D poses only. Lai et al. [LBRF11] published a large RGB-D dataset
of 300 objects that provides ground truth poses in the form of approximate rotation angles.
Unfortunately, such annotations are to coarse for the accurate pose estimation task we try
to solve. A dataset with accurate 6D pose annotations was published by Hinterstoisser et al.
[HLI+12] and is widely used as a benchmark. We describe this dataset in Sec. A.2.1. De-
spite its popularity, the Hinterstoisser dataset has a few limitations which motivated us to
publish two additional datasets. Firstly, the object of interest in the Hinterstoisser dataset
is never substantially occluded. We therefore published a dataset of additional annotations
of occluded objects in the Hinterstoisser dataset. We describe this occlusion dataset in
Sec. A.2.2. Secondly, the Hinterstoisser dataset images are all recorded under static light-
ing conditions. In Sec. A.2.3, we describe our lighting dataset which features training and
test data captured with three different lighting configurations. Finally, we describe a pose
estimation dataset specific to the task of camera localization, published by Shotton et al.
[SGZ+13], in Sec. A.2.4. Note that all of these datasets are RGB-D datasets. Nevertheless,
they are widely used for pose estimation from RGB. In this case, depth channels are ignored.

A.2.1. DATASET OF HINTERSTOISSER ET AL. [HLI+12]

This dataset consists of 15 RGB-D image sequences corresponding to 15 different objects of
interest. The objects feature little amount of texture and are approximately 15cm to 30cm in
diameter. Each sequence consists of approximately 1,200 frames sampling the upper view
hemisphere of the corresponding object including ±45◦ in-plane rotation. In Table A.1, we
state the extent and number of test frames per object. For each frame, the rotation and
translation of the object is given relative to the camera. The distance between the object
of interest and the camera ranges between 65cm and 115cm. Ground truth poses were
annotated using a marker board which is also visible in the images. The object of interest
is usually displayed in the center of the frame surrounded by dense clutter on a work desk.
The clutter consists predominately of objects from the respective other image sequences
but their pose is not annotated. The specific clutter configuration changes throughout each
sequence, probably to avoid severe occlusion. Therefore, the object of interest is never
occluded substantially. Apart from that, the imaging conditions among all sequences are
static, i.e. the camera type, lighting conditions and the global desk setup are static. The
camera calibration parameters are also known with a focal length of 573px and a principal
point at (325, 242).

In the original evaluation procedure, proposed by Hinterstoisser et al. in [HLI+12], all nat-
ural image are test images. For each test frame, the ID of the object of interest is given,
and only the pose has to be estimated. Performance is measured as the percentage of
test frames per sequence where the pose has been estimated correctly, subject to some
threshold. This threshold is defined via the average distance of transformed vertices of the
object’s 3D model, see Sec. A.3.1 for details. There are no designated training or validation
images. Instead, a 3D model of each object is provided which can be used to render training
or validation data synthetically, see Fig. A.1. The 3D models were reconstructed from real
images using a marker board for registration, and feature coarse color information. For two
objects, namely for the cup and the bowl, no 3D models are provided. Hence, we do not
use them in our experiments.
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Ape

CameraBench Vise Can Egg Box

Duck

Driller

Cat Glue Hole Puncher

IronLamp Phone

All ObjectsTraining Frames Test Frame

Figure A.1.: Overview of the Dataset of Hinterstoisser et al. [HLI+12]. From left to right:
Two renderings of the duck’s 3D model used for training, a real test frame of
the duck object, and an overview of all objects of the dataset used in our exper-
iments with the corresponding name. Note that 3D models for two out of 15
objects are not provided, namely for the bowl and the cup. Hence, they are not
shown and not used in our experiments.

Table A.1.: Statistics of the Hinterstoisser et al. Dataset. We state the approximate extent
of each object, and the number of test frames available for each object. Note that
training data has to be generated using 3D models provided in the dataset.

Approximate Size
(width × height × depth)

# Test
Frames

Ape 8cm × 9cm × 8cm 1,235
Bench Vise 12cm × 22cm × 22cm 1,214
Camera 14cm × 10cm × 14cm 1,200
Can 18cm × 19cm × 10cm 1,195
Cat 13cm × 12cm × 7cm 1,178
Driller 8cm × 21cm × 23cm 1,187
Duck 8cm × 9cm × 10cm 1,253
Egg Box 11cm × 7cm × 15cm 1,252
Glue 8cm × 17cm × 4cm 1,219
Hole Puncher 13cm × 10cm × 11cm 1,236
Iron 12cm × 14cm × 26cm 1,151
Lamp 12cm × 21cm × 20cm 1,226
Phone 15cm × 18cm × 9cm 1,242
Bowl 17cm × 8cm × 17cm 1,233
Cup 9cm × 10cm × 12cm 1,240
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A.2.2. OCCLUSION DATASET (OUR)

The dataset of Hinterstoisser et al. [HLI+12] is free of occlusions. While the objects anno-
tated in the dataset of [HLI+12] are embedded in dense clutter they are still fully visible in
each frame. Hence, to demonstrate robustness against occlusion we created a new dataset.
We annotated one sequence (“Bench Vise”, ca. 1,200 frames) of the dataset of [HLI+12] with
6D poses of 8 additional objects present in the scene, i.e. we provide approximately 10,000
additional annotations for this dataset. In Table A.2, we state the number of additional an-
notations per object as well as the number of frames with a certain degree of occlusion.
Depending on the viewing direction, these 8 objects occlude each other to a large extent
making this dataset very challenging. Fig. A.2 shows one frame with all annotations marked,
and a closeup of a heavily occluded object.

Figure A.2.: Our Occlusion Dataset. Left: One frame of the Bench Vise sequence of the
dataset of [HLI+12] annotated with poses of 8 additional objects, each marked
with a bounding box where the color encodes the object ID. The original dataset
contains only the pose of one object, marked by the green bounding box. Note
that some objects are occluded. Middle: Our annotations also include heavily
occluded objects. Shown here is the Ape figure marked by a blue bounding box.
Right: The Ape figure with different levels of occlusion, from top to bottom:
20%, 40%, 60%, 80%. See also Table A.2 for details on the calculation of
occlusion values.

We annotated the sequence by initializing the pose of each object by hand, and propagating
the object pose via the ground truth transformation of each frame. If the propagation pro-
duced errors or when the object was moved within the scene we re-initialized by hand. For
each frame, all poses were refined using ICP. We made the annotation data publicly available,
and the dataset has since been widely used, e.g. in [KBM+15, MKB+17, HLRK16, RL17]. It
has also been added to the SIXD object instance pose estimation challenge [HMS+].

A.2.3. LIGHTING DATASET (OUR)

We recorded an RGB-D dataset of 20 textured and texture-less objects ranging from approx-
imately 20cm to 55cm, see Table A.3. Fig. A.5 shows every object of our dataset. For each
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Table A.2.: Statistics of the Occlusion Dataset. We state the total number of test frames
per object as well as the number of frames where the projected object area is
occluded to a certain degree. We render the object using the ground truth pose
and compare the Kinect depth channel with the rendered depth at each pixel. We
count the percentage of pixels where the rendered depth value is at least 1cm
larger.

# Frames

Total
Occlusion

0-30%
Occlusion
30-70%

Occlusion
70-100%

Ape 1,170 974 115 81
Bench Vise 1,214 1,183 31 0
Can 1,207 869 313 25
Cat 1,187 635 332 220
Driller 1,214 746 455 13
Duck 1,143 859 164 120
Egg Box 1,175 899 219 57
Glue 901 543 268 90
Hole Puncher 1,210 1,069 140 1
Sum 10,421 7,777 2,037 607

object, we obtain three sequences which differ in the lighting condition it was captured with.
We record under bright artificial light, darker natural light and an artificial spot light. While the
first two lighting conditions are diffuse, the last is strongly directional causing hard shadows
on edges of an object. See Fig. A.4 for the different lighting conditions for five of our objects.

We recorded approximately 550 images per object (i.e. approximately 11,000 images in
total), sampling the upper view hemisphere without in-plane rotation. See Table A.3 for the
exact number of frames per lighting condition and object. Each frame of the dataset shows
exactly one object on a marker board, which we used for registration, in front of a neutral
background. The RGB images contain a substantial amount of noise due to the registration
of depth and RGB channels with the Kinect SDK [WA]. We provide a texture-less 3D model of
each object and the ground truth 6D pose of each frame. We use a focal length of 580px and
a principal point at the image center. Fig. A.3 displays the scan and preprocessing pipeline.
The objects are scanned with a commercially available Kinect camera and are segmented
in each RGB-D image afterwards. This procedure is done three times with varying lighting
conditions.

We propose the following evaluation procedure for this dataset. Images of two lighting
conditions may be used as training data, namely bright and dark sequences. The respective
spotlight sequence should be used for testing, i.e. a pose estimation system has to gener-
alize from diffuse lighting to strong directional lighting. To increase the amount of training
resp. test data, in-plane rotation of ±45◦ in 7 steps should be added to each frame. The
ID of the object of interest is known for each frame and only its pose has to be estimated.
Performance is measured as the percentage of test frames per sequence where the pose
has been estimated correctly where we use the same pose tolerance as Hinterstoisser et al.
[HLI+12], see Sec. A.3.1.
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(a) (b) (c)

(d) (e) (f )

Figure A.3.: Lighting Data Acquisition Pipeline. For each object, we run the following ac-
quisition procedure three times to record three different lighting conditions. We
register these three different image sequences using the marker board the ob-
ject is standing on. (a) We use the commercially available Kinect camera and
KinectFusion [NIH+11] system to obtain a 3D scan of the scene together with
the camera poses (b) and the RGB-D data for each captured frame. The black
holes in the RGB-D images correspond to pixels were no depth information was
available. (b) A top-side view with a subset of 50 out of 1,000 camera frusta, and
the object (red) in the center. The object has been manually segmented in 3D.
(c) A 3D bounding box (light blue) is positioned around the object, shown as the
depth map from the camera with the red frustum in (b). The object mask for each
RGB-D frame is then defined by all object pixels where the corresponding depth
values fall inside the bounding box. (d) For training, we use the segmented
RGB-D images. The segmentation has holes and is imperfect at boundaries,
due to the inaccurate and missing depth values from Kinect. However, the test
data presents similar noise characteristics. (e) We show the continuous 3D ob-
ject coordinates calculated from the depth channel and the ground truth pose.
X/Y/Z is mapped to RGB for visualization. (f) We show the quantized 3D object
coordinates on a 5×5×5 grid. We use the quantized object coordinates as proxy
classes when computing the objective function for learning the tree structure in
Chapter 2.

112



Appendix

           Bright           Dark                        Spot  

Owl

Audiobox

Carry Case

Abstract 
Sculpture 1

Toy 
(Stridor)

    Training Data               Training Data                                Test Data  

Figure A.4.: Three Different Lighting Conditions. For each object, we gathered training
and test images under three different lighting conditions: Bright artificial light
(left), darker natural light (middle), and directional spot light (right). Note that
the markers on the table are used only to register scans of different lighting
conditions. We generate ground truth pose annotations using Kinect Fusion
[NIH+11].
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Audiobox Carry Case Dishsoap Helmet Hole Puncher

Pump Teapot Toolbox Toy (Battle Cat) Toy (Panthor)

Toy (Stridor) Stu�ed Cat Duck Dwarf Mouse

Owl Elephant Samurai Abstract Sculpture 1 Abstract Sculpture 2

Figure A.5.: Objects of the Lighting Dataset. Each object of our dataset segmented and
labeled with its name. This is the same segmentation we use for training our
decision forests.
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Table A.3.: Statistics of the Lighting Dataset. We state the approximate extent of each
object. Furthermore we list the number of frames available per lighting condition.

Approximate Size
(width x height x depth)

# Frames
Bright

Lighting
Dark

Lighting
Spotlight
Lighting

Audiobox 18cm x 19cm x 20cm 179 165 199
Carry Case 40cm x 33cm x 24cm 175 167 161
Dishsoap 15cm x 18cm x 12cm 128 133 126
Helmet 35cm x 16cm x 27cm 95 135 95
Hole Puncher 27cm x 15cm x 26cm 136 163 140
Pump 19cm x 11cm x 16cm 225 237 247
Teapot 29cm x 15cm x 19cm 262 263 252
Toolbox 44cm x 24cm x 29cm 188 178 191
Toy (Battle Cat) 30cm x 11cm x 13cm 171 177 170
Toy (Panthor) 33cm x 13cm x 14cm 132 132 156
Toy (Stridor) 30cm x 19cm x 17cm 147 195 194
Stuffed Cat 22cm x 25cm x 20cm 139 139 151
Duck 14cm x 8cm x 13cm 186 164 179
Dwarf 14cm x 11cm x 16cm 181 137 170
Mouse 18cm x 17cm x 15cm 202 203 233
Owl 14cm x 17cm x 13cm 388 388 329
Elephant 30cm x 15cm x 17cm 187 184 181
Samurai 17cm x 30cm x 18cm 315 164 241
Abstract Sculpture 1 9cm x 10cm x 12cm 136 119 114
Abstract Sculpture 2 17cm x 9cm x 14cm 126 140 76

A.2.4. 7-SCENES DATASET OF SHOTTON ET AL. [SGZ+13]

The 7-Scenes camera localization dataset was published by Shotton et al. [SGZ+13]. It con-
sists of RGB-D image sequences recorded at 7 different indoor locations measuring 3m2 to
12m2, see Table A.4 and Fig. A.6 for an overview.

For each of the seven scenes, several image sequences have been recorded by different
persons moving the camera through the respective room. Kinect Fusion [NIH+11] was used
to track the camera poses for each sequence, and to generate a 3D model of each scene. The
dataset is split into training and test sets at the sequence level, e.g. a learning-based method
has to generalize to large changes in viewpoint. Other imaging conditions, like lighting or
the camera type, do not vary. The dataset features some difficulties in the form of repeating
structures, like stairs, motion blur or large texture-less areas. The amount of training and
test data per scene vary substantially between 1,000 and 7,000 images, see Table A.4. The
camera calibration parameters are given with a focal length of 585px and a principal point in
the image center.

Depth and RGB images are not registered and registration information is not given. In our
experiments in Chapter 3 and 4, we registered manually using a focal length of 525px for the
RGB sensor. We solved for the unknown rigid body transformation between the depth sen-
sor and the RGB sensor by hand-clicking correspondences between RGB and depth channels
of a few training images. Accuracy on this dataset is usually measured as the percentage of
test frames where the camera pose error is below 5◦ and 5cm, see also Appendix A.3.3.
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Table A.4.: Statistics of the 7-Scenes Dataset. We state the approximate area of each scene
which we measured in the 3D models given by Shotton et al. Furthermore, we
list the number of training and test frames available per scene.

Approximate
Area

# Training
Frames

# Test
Frames

Chess 3m × 2.5m 4,000 2,000
Fire 3.5m × 3m 2,000 2,000
Heads 2m × 1m 1,000 1,000
Office 4m × 3m 6,000 4,000
Pumpkin 2.5m × 4m 4,000 2,000
Kitchen 4.5m × 2.5m 7,000 5,000
Strairs 3.5m × 2.5m 2,000 1,000

StairsOfficeFire Heads RedKitchenChess PumpkinScene

Example 
Frame

Scene
Model

Figure A.6.: 7-Scenes Overview. We show one example frame for each of the scenes as
well as a rendering of the 3D models provided with the dataset.

A.3. EVALUATION MEASURES

Several measures of evaluating pose estimation have been proposed over the years in the
literature. In object pose estimation tasks, one usually does not measure the difference
between ground truth and estimated pose but rather the alignment of a 3D model of the
object under the estimated pose and the ground truth pose. In Sec. A.3.1, we present one
measure of this kind which is widely used for object pose estimation from RGB-D inputs.
In Sec. A.3.2, we present a version of the previous measure tailored for pose estimation
from RGB inputs. Finally, in Sec. A.3.3, we discuss evaluation of pose accuracy in camera
localization tasks.

A.3.1. OBJECT POSE: MEASURE OF HINTERSTOISSER ET AL. [HLI+12]

Hinterstoisser et al. [HLI+12] proposed to measure accuracy as the fraction of test images
where the pose of the object in question was estimated correctly. Poses are correct, if the
following inequality holds:

τp <
1

|V|
∑
v∈V

||h∗v − h̃v||, (A.1)

whereV is the set of all vertices of a 3D model of the object, h∗ is the ground truth pose and h̃
is the estimated pose. The measure computes the average distance between corresponding
vertices transformed with the estimated pose and the ground truth pose. The threshold τp
is fixed to be 10% of the object diameter. For rotationally symmetric objects (e.g. a bowl) a
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slightly different metric is used:

τp <
1

|V|
∑

v1∈V

min
v2∈V

||h∗v1 − h̃v2||. (A.2)

Here, the distance is not measured between corresponding vertices but between vertices
of minimal distance.

A.3.2. OBJECT POSE: 2D PROJECTION MEASURE

Figure A.7.: Tolerance of Pose Estimation Measures. We render object segmentation
masks (turquoise) according to estimated poses of the object in the center of
each crop. Left: Two examples where the segmentation seems to be well
aligned visually but the measure of Hinterstoisser et al. [HLI+12] (Sec. A.3.1)
rejects both pose estimates because of translation error in z direction. The 2D
projection measure (Sec. A.3.2) accepts both pose estimates. Right: Two ex-
amples where the pose seems to be less well aligned but the error is within
tolerance of the measure of Hinterstoisser et al. [HLI+12]. The 2D projection
measure rejects both pose estimates.

The measure of Sec. A.3.1 is very sensitive to errors in object translation, e.g. for an object
with a diameter of 15cm a maximum translation error of 1.5cm is within tolerance. This
makes sense for pose estimation from RGB-D inputs where the location of an object can
be estimated accurately in all 3 dimension. However, when poses are estimated from RGB
images, the distance between the object and the camera cannot be predicted as accurately.
For instance, the projected size of an object might only change the fraction of a pixel if its
distance to the camera is changed by 1cm. This observation motivated us to propose a new
measure for the evaluation of 6D object pose estimates.

We assess the quality of pose estimation via a tolerance on the average 2D projection
error of 3D model vertices. In contrast to the measure of Hinterstoisser et al. [HLI+12]
of Sec. A.3.1, the 2D projection measure coincides well with visual alignment quality, see
Fig. A.7. Formally, we calculate

1

|V|
∑
v∈V

||Ch∗v − Ch̃v||2 < 5px, (A.3)

where V is the set of all object model vertices, C is the camera matrix, h∗ is the ground truth
pose and h̃ is the estimated pose. We assume normalization of the homogeneous vector
before calculating the L2 norm. Note that we use a fixed tolerance of 5px instead of a toler-
ance that depends on the object diameter. We found that visual alignment is independent

117



Appendix

of object size, and that pose estimation of large objects is usually easier. We also saw in our
experiments that the version of the relaxed measure of Hinterstoisser et al. proposed for
symmetric objects is overly tolerant to misalignment. Therefore, we do not use a similarly
relaxed version of our 2D projection measure for symmetric objects.

A.3.3. CAMERA LOCALIZATION MEASURES

In camera localization tasks, pose accuracy is usually measured for camera orientation and
camera position, separately. For orientation, the angular error is calculated between the
ground truth camera rotation and the estimated camera rotation, and measured in degree.
For position, the Euclidean distance is calculated between the ground truth camera transla-
tion and the estimated camera translation. Note that these errors have to be calculated in
scene space. Throughout this thesis, we estimate the rigid body transformation h of an ob-
ject relative to the camera. The camera pose is the inverse transformation, i.e. h−1, and the
aforementioned errors have to be calculated with the inverse transformation, see Fig. A.8.

Figure A.8.: Measuring Error in Camera Localization. The pose of a scene (black box)
has been estimated inaccurately (red box). The camera is depicted as a black
triangle. If the error is measured in camera space (left), we observe a certain
rotational error but no translational error, compare the centers of the black and
red box. If the error is measured in scene space (right), we observe both a
rotational and an addtional translational error, compare centers of the black and
red triangles.

There are two common ways to measure camera localization accuracy over an image
sequence. Shotton et al. [SGZ+13] propose to measure the percentage of test frames where
the rotational and translational error is below 5cm and 5◦. This measure is commonly used
for indoor localization datasets where this high accuracy can be achieved, e.g. in [SGZ+13,
VNS+15, GRKG+14, CGL+17]. For larger outdoor scenes, the threshold can be increased,
e.g. in [KC17]. But, usually, accuracy for outdoor localization dataset is measured by the
median rotational and translational error, respectively, e.g. in [KGC15, WHL+16, KC17].

A.4. DETAILED EXPERIMENTAL RESULTS AND PARAMETERS

In this section, we list detailed results of experiments discussed in Chapter 2 and 3. This in-
cludes measured accuracy for individual objects as well as additional qualitative results. For
descriptions of the experimental setups and conclusions drawn from the results please see
the corresponding sections in the respective chapters. Furthermore, we list detailed parame-
ter setting for training random forests for object coordinate regression, and for RANSAC-based
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pose optimization. Detailed results of Chapter 4 as well as the corresponding parameters
are given within the chapter.

A.4.1. 6D POSE ESTIMATION USING OBJECT COORDINATES

This chapter was concerned with 6D pose estimation of a single object instance given a
single RGB-D image. In particular, we investigated robustness of our method w.r.t. occlu-
sion and lighting changes, and concluded improved accuracy of our method compared to
competitors. We also conducted an ablation study w.r.t. the individual components of our
scoring function. In these experiments, we measured the percentage of test frames where
the pose was estimated correctly subject to the pose tolerance of Sec. A.3.1.

OBJECT POSE ESTIMATION

We list detailed results of the experiment of Sec. 2.3.1 where we estimated 6D poses on the
RGB-D dataset of Hinterstoisser et al. [HLI+12]. The following table lists quantitative results
for individual objects, and for training the random forest with synthetic (i.e. rendered) and
real training data. Furthermore, we show results when training with different background
models, namely an infinite plane or uniform noise. Our approach is superior to [HLI+12,
RCT13] for most objects.

Synth. Training Real Training
LINEMOD DTT-3D Our Our Our Our
[HLI+12] [RCT13] (plane) (noise) (plane) (noise)

Ape 95.8% 95.0% 95.8% 85.4% 91.1% 89.2%
Bench Vise 98.7% 98.9% 100.0% 98.9% 100.0% 99.7%
Camera 97.5% 98.2% 99.6% 92.1% 98.7% 95.5%
Can 95.4% 96.3% 95.9% 84.4% 99.6% 98.9%
Cat 99.3% 99.1% 100.0% 90.6% 99.7% 98.8%
Driller 93.6% 94.3% 99.5% 99.7% 99.9% 100.0%
Duck 95.9% 94.2% 95.9% 92.7% 96.8% 94.4%
Box 99.8% 99.8% 98.0% 91.1% 100.0% 99.2%
Glue 91.8% 96.3% 98.9% 87.9% 91.7% 96.7%
Hole Puncher 95.9% 97.5% 99.4% 97.9% 99.6% 99.0%
Iron 97.5% 98.4% 97.6% 98.8% 99.9% 100.0%
Lamp 97.7% 97.9% 99.8% 97.6% 99.1% 98.7%
Phone 93.3% 95.3% 97.6% 86.1% 98.8% 95.8%
Bowl 99.9% 99.7% - - - -
Cup 97.1% 97.5% - - - -
Average 96.6% 97.2% 98.3% 92.6% 98.1% 97.4%
Median 97.1% 97.5% 98.9% 92.1% 99.6% 98.8%
Best 99.9% 99.8% 100.0% 99.7% 100.0% 100%
Worst 91.8% 94.2% 95.8% 84.4% 91.1% 89.2%

Fig. A.9 shows qualitative results on the same dataset. We show estimated poses as well
as predictions of the random forest for the same frame.
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ROBUSTNESS W.R.T. OCCLUSION

Using our additional annotations for the dataset of Hinterstoisser et al. [HLI+12], i.e. the oc-
clusion dataset, we measure the accuracy of our method when objects are partially occluded.
The following table lists the accuracy of the system of Chapter 2 of individual objects of our
occlusion dataset. We also show results using only the depth component of our scoring
function to verify the benefit of including the forest predictions in hypothesis scoring.

Full Score Depth C. Only LINEMOD [HLI+12]
Ape 62.6% 51.9% 49.8%
Bench Vise 100.0% 98.8% 98.7%
Can 80.2% 98.8% 51.2%
Cat 50.0% 27.7% 34.9%
Driller 84.3% 71.8% 59.6%
Duck 67.6% 57.8% 65.1%
Box 8.5% 2.4% 39.6%
Glue 62.8% 33.3% 23.3%
Hole Puncher 89.9% 71.5% 67.2%
Average 67.3% 57.1% 54.4%
Median 67.6% 57.8% 51.2%
Best 100.0% 98.8% 98.7%
Worst 8.5% 2.4% 23.3%

120



Appendix

Figure A.9.: Qualitative Results on the Dataset of Hinterstoisser et al. [HLI+12]. We show
poses estimated with the system of Chapter 2 (blue bounding box) versus the
ground truth pose (green bounding box). Next to each test image, we visualize
the predicted object coordinates y from one tree of the forest. The inlay figures
show the ground truth object coordinates (top) and the best object coordinates
(bottom), where “best” is the best prediction of all trees with respect to ground
truth (for illustration only).
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ROBUSTNESS W.R.T. LIGHTING CHANGES

Using our new lighting dataset we investigated how the system of Chapter 2 can generalize
to unseen lighting conditions. All objects have been trained with images from the bright and
dark image sequence. We tested with different images from the bright lighting condition,
i.e. the system has to generalize to unseen views. Furthermore we tested with images from
the spot lighting condition, i.e. the system has to generalize to unseen views and an unseen
lighting condition. Although the latter test is challenging, the drop in performance is only
moderate.

Object bright test condition spot test condition
Audio Box 90.5% 75.4%
Carry Case 97.9% 95.9%
Dish Soap 100.0% 100.0%
Helmet 91.0% 77.6%
Hole Puncher 99.9% 98.1%
Pump 81.5% 69.3%
Teapot 99.5% 91.9%
Toolbox 99.0% 99.5%
Toy (Battle Cat) 96.9% 91.8%
Toy (Panthor) 99.7% 96.9%
Toy (Stridor) 97.8% 94.0%
Stuffed Cat 100.0% 98.3%
Duck 89.9% 81.6%
Dwarf 87.7% 67.6%
Mouse 94.6% 89.1%
Owl 97.3% 60.5%
Elephant 98.6% 94.7%
Samurai 97.7% 98.5%
Sculpture 1 92.5% 82.7%
Sculpture 2 99.9% 100.0%

Average 95.6% 88.2%
Median 97.7% 93.0%
Best 100.0% 100.0%
Worst 81.5% 60.5%
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Figure A.10.: Qualitative Results on our Lighting Dataset. Poses estimated with our sys-
tem (blue bounding box) versus the ground truth pose (green bounding box).
Next to each test image are the predicted object coordinates y from one tree
of the forest. The inlay figures show the ground truth object coordinates (top)
and the best object coordinates (bottom), where “best” is the best prediction
of all trees with respect to ground truth (for illustration only).
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CONTRIBUTION OF SCORING COMPONENTS

We investigated the contribution of the individual components of the scoring function pre-
sented in Chapter 2 on the pose estimation accuracy. We also compare to a simpler inlier
based scoring function that does not rely on a 3D model of the object. See the following
table for the accuracy per object on the dataset of Hinterstoisser et al. [HLI+12]. The full
scoring function gives a significant performance boost over all competing variants.

Full Score Depth C. Obj. C. Coord. C. Inlier Score
Only Only Only [SGZ+13]

Ape 95.8% 88.8% 75.5% 79.8% 61.5%
Bench Vise 100.0% 98.8% 50.6% 89.5% 37.7%
Camera 99.6% 96.9% 32.8% 85.3% 21.3%
Can 95.9% 97.4% 59.7% 70.0% 23.3%
Cat 100.0% 97.8% 77.6% 96.7% 47.1%
Driller 99.5% 99.1% 55.3% 78.4% 50.0%
Duck 95.9% 93.4% 49.2% 76.2% 42.9%
Box 98.0% 97.5% 52.6% 49.8% 27.3%
Glue 98.9% 95.3% 82.5% 58.7% 63.8%
Hole Puncher 99.4% 98.1% 25.6% 91.6% 34.5%
Iron 97.6% 98.6% 23.1% 80.5% 44.7%
Lamp 99.8% 99.8% 35.7% 91.6% 40.9%
Phone 97.6% 91.8% 15.1% 60.3% 29.1%
Average 98.3% 96.4% 48.9% 77.6% 40.3%
Median 98.9% 97.5% 50.6% 79.8% 40.9%
Best 100.0% 99.8% 82.5% 96.7% 63.8%
Worst 95.8% 88.8% 15.1% 49.8% 21.3%

PARAMETER LISTINGS

The following settings were used in all pose estimation experiments of Chapter 2.

Training Parameters
maximum feature offset: 20 pixel meters
# feature candidates: 1,000
ratio of ‘da-d’ to ‘da-rgb’ features 0.5
# of trees |T |: 3
# samples per image to learn tree structure: 1,000
# samples per image to learn leaf distributions: 5,000
minimum # samples per leaf: 50
object coordinate proxy classes ŷ: 125
bandwidth of mean-shift: 25mm
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Test Parameters
score depth comp. weight λdepth: 1.5

score coordinate comp. weight λcoord: 1

score seg. comp. weight λobj: 1

threshold τd used in sdepthc : 50mm
threshold τy used in scoordc : (0.2 · δc)2 with object diameter δc
threshold τp used in scoordc : 10−8

# hypotheses sampled: 210
threshold used during sampling of poses: 0.05 · δc with object diameter δc
inlier threshold used in refinement: 20mm
number of hypothesis to be refined: 25

A.4.2. ENHANCED 6D POSE ESTIMATION USING UNCERTAINTY INFORMATION

In this chapter, we conducted experiments regarding pose estimation of an object instance
from single RGB images.

SINGLE OBJECT POSE ESTIMATION

In the following table we, list quantitative results on the dataset of Hinterstoisser et al.
[HLI+12] using different pose acceptance measures. “2D Projection, Avg. Err. <5px” ac-
cepts a pose based on the average re-projection error, see Sec. A.3.2. “2D B. Box, IoU>0.5”
accepts a pose if the 2D bounding boxes of the estimation and ground truth overlap at least
50%. “6D Pose, Measure of [HLI+12]” accepts a pose based on aligned of the object’s
3D model, see Sec. A.3.3. “6D Pose, Err. <5cm 5◦” accepts a pose if the rotational error
resp. the translational error is below 5◦ resp. 5cm. We also list median pose errors in X/Y/Z
direction resp. for rotation.

% of test frames correct using RGB inputs.

Object
2D Projection,
Avg. Err. <5px

2D B. Box,
IoU>0.5

6D Pose,
Measure of [HLI+12]

6D Pose,
Err. <5cm 5◦

Ape 85.2% 98.2% 33.2% 34.4%
Bench Vise 67.9% 97.9% 64.8% 40.6%
Camera 58.7% 96.9% 38.4% 30.5%
Can 70.8% 97.9% 62.9% 48.4%
Cat 84.2% 98.0% 42.7% 34.6%
Driller 73.9% 98.6% 61.9% 54.5%
Duck 73.1% 97.4% 30.2% 22.0%
Egg Box 83.1% 98.7% 49.9% 57.1%
Glue 74.2% 96.6% 31.2% 23.6%
Hole Puncher 78.9% 95.2% 52.8% 47.3%
Iron 83.6% 99.2% 80.0% 58.7%
Lamp 64.0% 97.1% 67.0% 49.3%
Phone 60.6% 96.0% 38.1% 26.8%
Average 73.7% 97.5% 50.2% 40.6%
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Median pose accuracy using RGB inputs.

Object
Median
X Error

Median
Y Error

Median
Z Error

Median
Rot. Error

Ape 0.2cm 0.2cm 2.1cm 6.4◦

Bench Vise 0.2cm 0.2cm 2.1cm 5.7◦

Camera 0.3cm 0.4cm 2.7cm 6.7◦

Can 0.2cm 0.2cm 1.9cm 4.9◦

Cat 0.2cm 0.2cm 2.1cm 6.4◦

Driller 0.2cm 0.2cm 2.2cm 4.1◦

Duck 0.3cm 0.2cm 2.7cm 9.0◦

Egg Box 0.2cm 0.2cm 1.8cm 4.2◦

Glue 0.3cm 0.2cm 3.1cm 8.4◦

Hole Puncher 0.2cm 0.2cm 1.7cm 5.1◦

Iron 0.2cm 0.2cm 1.4cm 4.2◦

Lamp 0.3cm 0.2cm 1.8cm 4.7◦

Phone 0.3cm 0.3cm 3.3cm 6.9◦

Average 0.2cm 0.2cm 2.2cm 5.9◦

The pipeline of Chapter 3 can also be adapted for RGB-D inputs. In the following, we list the
corresponding quantitative results, and median pose errors.

% of test frames correct using RGB-D inputs.

Object
2D Projection,
Avg. Err. <5px

2D B. Box,
IoU>0.5

6D Pose,
Measure of [HLI+12]

6D Pose,
Err. <5cm 5◦

Ape 95.8% 99.7% 98.1% 59.0%
Bench Vise 97.3% 99.2% 99.0% 92.9%
Camera 98.7% 96.9% 99.7% 92.8%
Can 98.6% 99.8% 99.7% 89.6%
Cat 97.9% 99.8% 99.1% 80.1%
Driller 93.2% 99.4% 100.0% 93.1%
Duck 90.5% 100.0% 96.2% 52.1%
Egg Box 98.2% 99.1% 99.7% 96.8%
Glue 92.8% 100.0% 99.0% 55.1%
Hole Puncher 96.1% 99.6% 98.0% 80.3%
Iron 97.0% 99.0% 99.9% 96.9%
Lamp 92.4% 100.0% 99.5% 91.7%
Phone 95.6% 99.8% 99.6% 86.8%
Average 95.7% 99.6% 99.0% 82.1%
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Median pose accuracy using RGB-D inputs.

Object
Median
X Error

Median
Y Error

Median
Z Error

Median
Rot. Error

Ape 0.1cm 0.1cm 0.2cm 4.4◦

Bench Vise 0.1cm 0.1cm 0.2cm 2.3◦

Camera 0.1cm 0.1cm 0.2cm 2.4◦

Can 0.1cm 0.1cm 0.2cm 2.6◦

Cat 0.1cm 0.1cm 0.1cm 2.9◦

Driller 0.1cm 0.1cm 0.3cm 1.8◦

Duck 0.1cm 0.1cm 0.2cm 4.8◦

Egg Box 0.1cm 0.2cm 0.2cm 2.2◦

Glue 0.1cm 0.1cm 0.2cm 4.6◦

Hole Puncher 0.1cm 0.1cm 0.2cm 3.1◦

Iron 0.1cm 0.1cm 0.2cm 2.6◦

Lamp 0.2cm 0.1cm 0.2cm 2.7◦

Phone 0.2cm 0.1cm 0.3cm 2.6◦

Average 0.1cm 0.1cm 0.2cm 4.3◦

PARAMETER LISTINGS

The following settings were used in all pose estimation experiments of Chapter 2 with RGB
inputs.

Training Parameters
maximum feature offset: 10px
# feature candidates: 1,000
# of trees |T |: 3
# of auto-context levels D: 3
# samples drawn per object: 500k
# samples drawn from background: 1.5M
minimal # samples per leaf: 50
object coordinate proxy classes ŷ: 125
bandwidth of mean-shift: 25mm
neighborhood used in gdC : 5× 5

neighborhood used in gdY : 3× 3
sub-sampling of auto-context feature channels: 2

Test Parameters
inlier threshold: 3px
# hypotheses sampled: 256
pixel batch size: 100,000
full refinement iterations: 100
full refinement bounds X/Y/Z/Rot: ± 50mm/50mm/200mm/10◦

For experiments of Chapter 3 using RGB-D inputs, we used a maximum feature offset of
10 pixel meters and an inlier threshold of 10mm. For camera localization experiments, we
used a maximum feature offset of 20px and an inlier threshold of 10px. For camera localiza-
tion we applied random in-plane rotations of ± 30◦ to all training images and sub-sampled
auto-context feature channels by a factor of 4.
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