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Analysis of rate-dependent deformation and fracture phenomena during cutting of vis-

coelastic materials 

Schuldt, S. – Dresden: Technische Universität Dresden, Faculty Mechanical Engineering, 

doctoral thesis, 2017, 109 pages, 59 figures, 9 tables 

 
The cutting of foods is characterized by deformation, fracture and friction process-

es, and the viscoelastic properties of the cutting materials determine their rate-

dependent cutting behavior. This is responsible for uncontrolled fracture and defor-

mation events with increasing cutting velocity. There is a significant information deficit 

regarding the assignment of material properties and cutting parameters, as well as re-

garding a process description for industrial high-speed cutting. 

The aim of the work is the analysis of the velocity-dependent cutting behavior of 

foods up to the high-speed range. The focus is on the deformation and fracture phenom-

ena, analysed by methods of classical material analysis but also associated cutting exper-

iments performed in the range from low to high cutting velocities. For high-speed analy-

ses, a test station enabling cutting velocities of up to 10 m/s was designed. To identify 

relevant material and cutting parameters and to establish a systematic experimental pro-

gram, elastomer-based model systems with controllable viscoelastic profiles were devel-

oped. The results of the respective investigations were further verified for foods. The ve-

locity-dependent deformation behavior during cutting could be described by dynamic-

mechanical material analyses in the frequency range. Cutting force slopes at the begin-

ning of the cutting process correlated with the complex moduli and were furthermore 

dependent on the cutting velocity; this dependency corresponded to the frequency be-

havior from material analysis. The fracture properties could be attributed to ductile (poly-

meric systems) or brittle behavior (cellular plant systems). Confectionary products had a 

strong temperature- and time-dependent behavior with ductile-brittle transition within 

the experimental conditions. 

The results obtained demonstrate that there is a significant relationship between 

viscoelasticity and velocity-dependent cutting behavior. They allow a phenomenological 

process description of high-speed cutting and can be used as a basis for the balancing of 

cutting forces and as input parameters for numerical analyses of the cutting process. 

  



 
 

  



Analyse von geschwindigkeitsabhängigen Deformations- und Bruchphänomenen beim 

Schneiden von viskoelastischen Stoffen 

Schuldt, S. – Dresden: Technische Universität Dresden, Fakultät Maschinenwesen, Disser-

tation, 2017, 109 Seiten, 59 Abbildungen, 9 Tabellen 

Das Schneiden von Lebensmitteln ist geprägt durch Deformations-, Bruch- und Reib-

vorgänge. Dabei bestimmen die viskoelastischen Eigenschaften der Schneidgüter deren 

geschwindigkeitsabhängiges Schneidverhalten. Dies führt mit zunehmender Schneidge-

schwindigkeit zu unkontrollierten Bruch- und Deformationsereignissen. Dabei besteht ein 

Informationsdefizit bei der konkreten Zuweisung von Materialeigenschaften und Schneid-

parametern sowie einer Verfahrensbeschreibung für das industrielle Hochgeschwindig-

keitsschneiden. 

Ziel der Arbeit ist die Analyse des geschwindigkeitsabhängigen Schneidverhaltens 

von Lebensmitteln bis in den Hochgeschwindigkeitsbereich. Der Fokus richtet sich auf die 

Untersuchung der Teilphänomene Deformation und Bruch durch Methoden der klassi-

schen Materialanalyse sowie zugeordnete Schneidexperimente im Bereich von niedrigen 

bis hohen Schneidgeschwindigkeiten. Für entsprechende Hochgeschwindigkeitsanalysen 

wurde ein Versuchsstand mit Schneidgeschwindigkeiten von bis zu 10 m/s konzipiert. Zur 

Identifikation relevanter Material- und Schneidparameter und zur Aufstellung des syste-

matischen Versuchsprogramms wurden Modellsysteme auf Elastomerbasis mit steuer-

barem viskoelastischen Profil entwickelt. Die Ergebnisse wurden für Lebensmittel verifi-

ziert. Das geschwindigkeitsabhängige Deformationsverhalten beim Schneiden konnte 

durch dynamisch-mechanische Materialanalysen im Frequenzbereich beschrieben wer-

den. Dabei korrelierten Kraftanstiege zu Beginn des Schneidvorganges mit den Komplex-

moduln. Die Anstiege zeigten eine Abhängigkeit von der Geschwindigkeit; diese entsprach 

dem Frequenzverhalten aus der Materialanalyse. Die Brucheigenschaften konnten pro-

duktspezifisch duktilem (polymere Systeme) oder sprödem Verhalten (zelluläre, pflanz-

liche Systeme) zugeordnet werden. Zuckerwaren zeigten ein stark temperatur- und zeit-

abhängiges Verhalten mit duktil-sprödem Übergang innerhalb der Versuchsbedingungen. 

Die gewonnenen Erkenntnisse demonstrieren den Zusammenhang von Viskoelasti-

zität und geschwindigkeitsabhängigem Schneidverhalten. Sie erlauben eine phänomeno-

logische Verfahrensbeschreibung des Hochgeschwindigkeitsschneidens und können als 

Basis für die Bilanzierung von Schneidkräften und als Eingangsparameter für numerische 

Analysen des Schneidvorganges dienen.  
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Vorwort 

Die vorliegende Arbeit reiht sich in eine lange Tradition des Instituts ein, in welcher 

seit mindestens den 80er Jahren (in enger Kooperation mit dem Kombinat NAGEMA, 

Dresden) Fragestellungen zur Optimierung industrieller Schneidverfahren an Lebens-

mitteln bearbeitet wurden. Dabei entstandene Pendel- und Rotationsversuchsstände 

erlaubten bereits damals schon die Durchführung von umfangreichen Schneidexperimen-

ten mit Schneidkraftaufnahme bis in den Hochgeschwindigkeitsbereich, in Abhängigkeit 

einer breiten Schneidgutauswahl und der technischen Eingangsparameter Keilwinkel, 

Schärfe und Zügigkeit. In den Umwälzungen nach der Wende wurden die Versuchsstände 

abgebaut und die Ergebnisse der Untersuchungen nur fragmentarisch publiziert; viel 

Wissen ging verloren. Weitergeführt wurde die Schneidforschung durch ein DFG-Projekt 

zum Ultraschallschneiden, initiiert durch Prof. Lothar Linke und Yvonne Schneider. Dies 

führte, begleitet und befördert durch Prof Harald Rohm, zu zwei Doktorarbeiten und 

zahlreichen Veröffentlichungen. Auf dieser wissenschaftlichen Basis machte ich im Januar 

2011 innerhalb eines IGF-Projektes1 zur Oberflächen-, Schärfe- und Verschleißcharackteri-

sierung von Messerklingen meine ersten Schritte in der Schneidforschung. In einer 

anschließenden DFG-support-the-best-Förderung2 über die Deutsche Exzellenzinitiative, 

in Zusammenarbeit mit der Arbeitsgruppe von Professor Kästner (Festkörpermechanik), 

konnten Grundlagen zum Schneidverhalten und dem Einfluss der Viskoelastizität auf die 

geschwindigkeitsabhängigen mechanischen Eigenschaften gelegt und ausgebaut werden. 

Außerdem wurden wesentliche messtechnische Bestandteile für Hochgeschwindigkeits-

versuche finanziert. Parallel dazu bot sich in einem ZIM-Verbund3 in Zusammenarbeit mit 

der Professur für Verarbeitungsmaschinen und Verarbeitungstechnik und der Firma 

Theegarten-Pactec die Möglichkeit einen Hochgeschwindigkeitsversuchstand aufzubauen. 

Die daraus resultierenden Forschungsergebnisse bilden einen Hauptteil dieser Arbeit. 

Durch ein abschließendes Stipendium der Graduiertenakademie der TU Dresden konnte 

ich die umfassenden Ergebnisse in der nun vorliegenden Promotionsschrift konzentrieren. 

Diese ist somit, neben einer gewissen Portion Fleiß und Hingebung, auch das Ergebnis 

günstiger Fügung und forschungsfördernder Umstände. Deshalb schließt mein Dank auch 

die Mittelgeber aus öffentlicher und privater Hand mit ein. 
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Symbols and abbreviations 

a constant of Eq. 4.4                  [kg/( s⋅mm)] 
aM constant of the model approach of Eq. 5.5     [kg/( s⋅mm)] 
Al2O3 corundum 
β wedge angle of a blade       [°] 
b exponent of Eq. 4.4 reflecting the velocity dependence of s0   [-] 
BSI blade sharpness index [-] 
CI (blade displacement at) cut initiation depth     [mm] 
δ phase shift         [°]/[rad] 
d cutting stiffness         [N/mm] 
d0 initial cutting stiffness        [N/mm] 
DMA  dynamic mechanical analysis 
ε strain          [-] 
εf fracture strain         [-] 
E* complex modulus        [Pa] 
E’ storage modulus         [Pa] 
E’’ loss modulus         [Pa] 
EPDMs ethylene propylene diene monomer rubber (soft) 
EPDMh ethylene propylene diene monomer rubber (hard) 
f17 food model with 17 % (w/w) filler 
f20 food model with 20 % (w/w) filler 
f31 food model with 31 % (w/w) filler 
f35 food model with 35 % (w/w) filler 
f40 food model with 40 % (w/w) filler 
f45 food model with 45 % (w/w) filler 
f20s20 food model with 20 % (w/w) filler and 20 % (w/w) softener 
f35s20 food model with 35 % (w/w) filler and 20 % (w/w) softener 
FPZ fracture process zone 
F force          [N] 
Fadh adhesion force involved into friction processes     [N] 
FC cutting force         [N] 
FCI cutting force at cut initiation       [N] 
Fdef deformation force involved into cutting      [N] 
F’def elastic deformation force involved into cutting     [N] 
F’def viscous deformation force involved into cutting     [N] 
FF friction force         [N] 
FF1 friction force at the blade wedge       [N] 
FF2 friction force at the blade flanks       [N] 
Ffract fracture force involved into cutting      [N] 
FN normalized cutting force        [N] 
Fnorm normalized cutting force        [N] 
FN,CI  normalized cutting force at cut initiation depth     [N] 
FN,max  normalized maximum cutting force      [N] 
FSD deformation forces acting orthogonal to the surface of the blade   [N] 
FSD1 deformation forces acting orthogonal to the surface of the blade wedge  [N] 
FSD1 deformation forces acting orthogonal to the surface of the blade flanks  [N] 
Ftribo friction force involved into cutting       [N] 
FVE viscoelastic deformation force involved into friction processes   [N] 
G* complex shear modulus        [P] 
G’ storage shear modulus        [Pa] 
G’’ loss shear modulus        [Pa] 
h sample height         [mm] 
HSTS high-speed testing station 
J fracture toughness        [J/m²] 



l blade displacement       [m] 

lFN,max blade displacement at normalized maximum cutting force    [mm] 

k constant of Eq. 4.1        [(Pa⋅s)/rad]  
µ coefficient of friction        [-] 
mi operation parameter similar to b, see section 5.1.2     [-] 
n exponent of Eq. 4.1 reflecting the frequency dependence of E

*
  [-] 

n number of replications        [-] 
NBR nitrile butadiene rubber 
ω angular frequency        [rad/s] 
π Pi          [-] 
p probability value         *-+ 
P  free pass         [N] 
σ stress          [Pa] 
σf fracture stress         [Pa] 
r regression coefficient        *-+ 
SiO2 seasand 
s0 initial slope of normalized cutting force      [N/mm] 
s0,M initial slope of the model approach       [N/mm] 

sm
s

/10@0 3  initial slope of FN at a cutting velocity of 10
-3

 m/s     [N/mm] 

SSC steady state cutting 
tan δ loss factor         [-] 
tts temperature time superposition 
u cutting length         [mm] 
UTM universal testing machine 
v  cutting velocity         [m/s] 
w cutting width         [mm] 
W cutting work/energy        [Nm] 
W’ elastically stored work/energy       [Nm] 
W’’ dissipated work/energy        [Nm] 
W’’visc dissipated work/energy because of viscous flow     [Nm] 
W’’frict dissipated work/energy due to inner friction after van Vliet et al. (1993)  [Nm] 
W’’fract fracture work/energy        [Nm] 
WC cutting work/energy        [Nm] 
WCI work/energy required for cut initiation      [Nm] 
Wdef deformation work/energy involved into cutting     [N] 
W’def elastic deformation work/energy involved into cutting    [N] 
W’def viscous deformation work/energy involved into cutting    [N] 
Wfract fracture work/energy involved into cutting      [N] 
Wtribo friction work/energy involved into cutting      [N] 
X   cutting pass         [N] 
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1 Introduction to cutting of foods 

Cutting with a blade is the most prominent method in food processing to separate 

products into pieces with defined macroscopic dimensions. Segment size and shape accu-

racy, accurate product positioning before packaging and clean manufacturing demand 

high precision in processing. These factors depend on technical parameters such as cut-

ting velocity, blade geometry and blade sharpness, and on the material properties of the 

food, e.g., mechanical properties, homogeneity, thermo-physical state (Figure 1.1). 

 

 

 
Figure 1.1: Schematic process characteristics of industrial food cutting showing important input 
parameters (top) and output parameters (bottom). 

 

During the cutting process the motion of the cutting tool through the material leads 

to a complex interplay of deformation and fracture including a certain amount of friction 

between the moving device and the substrate (Dowgiallo, 2005; Schneider et al., 2009). 

This interaction of deformation, fracture and friction processes manifests itself in the cut-

ting force profile which results from the resistance of the material against penetration of 

the cutting tool and it essentially determines the final quality attributes of the material to 

be cut. In general, a high cutting quality can be achieved if product deformation and cut-
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ting forces are minimized. Depending on the specific mechanical and physicochemical 

properties of a particular food, another important issue that may contribute to cutting 

quality is the reduction of friction between blade and product (Atkins, 2009; Schneider et 

al., 2010). The relationship between deformation, fracture and friction forces and the 

resulting cutting quality can be referred to as cutting behavior. 

The food industry usually processes agricultural materials into more or less complex 

products with liquid, semi-solid or hard and tough texture. In practice, foods can assume 

any condition between pure elastic and pure viscous behavior and, in most cases, a time 

and deformation dependent combination, denoted as viscoelasticity, is observed. The 

time dependency of viscoelastic materials is responsible for phenomena such as stress 

relaxation and creep (Metzger, 2014; Miri, 2011). Fracture occurs when the deformation 

caused by the blade leads to local stresses that exceed the strength of the material. If the 

kinetics of relaxation and creep processes in front of the cutting edge is faster than the 

chosen cutting velocity, no fracture occurs. This results in extensive deformation and irre-

versible structural damage. To prevent these effects, the apparent stiffness of the materi-

al has to be increased by applying a higher cutting velocity to limit the viscoelastic energy 

dissipation, or by cutting at lower material temperature to reduce structural mobility and 

flexibility (Steffe, 1996; Schneider et al., 2010). To achieve the highest possible cutting 

quality it is essential to identify and to describe these material properties in context of the 

relevant cutting process parameters.  

In the industrial cutting of foods cutting velocities (relative motion between blade 

and product) of more than 1 m/s are state of the art. To increase the production flow-rate 

there is a general trend to faster processing; but, depending on the specific mechanical 

behavior of the viscoelastic products, this may lead to uncontrolled fracture phenomena 

such as product splintering, and undesired deformation effects such as irregular cutting 

surfaces, product deformation and insufficient cut accuracy. This is, in line with product-

ion interferences, a major limitation for a further increase of the throughput of industrial 

cutting machines. Since cause and effects are often unknown, the development and op-

timization of such machines is mainly based on an empirical adaptation of technical pa-

rameters, whereas an analytical correlation of product characteristics with damage 

events is frequently lacking. Hence, on the one hand, there is a need to understand the 



3 
 

relation between the mechanical properties and the cutting behavior of the products. On 

the other hand, there are obstacles in the process monitoring of high-speed cutting since 

testing devices for material characterization of foods normally operate in the dimension 

of mm/min or a few cm/min (Chen & Opara, 2013), and there is no standard testing ma-

chine available on the market that allows material characterization of solid foods and the 

corresponding process analysis at a testing velocity > 1 m/s; tailor-made solutions for test 

stations place high demands on design and measurement technology. 

In summary there is a need to describe the cutting characteristics over a wide cut-

ting velocity range up to high-speed on the basis of the material properties of viscoelastic 

foods. For this, methods have to be evaluated which relate parameters from material 

characterization and cutting force sequences, and cutting tests have to be carried out in 

the high speed range. The aim of the literature review is to describe the cutting process 

on phenomenological and energetic basis focusing on the involved mechanisms of defor-

mation, fracture and friction. Furthermore, the influence of the viscoelasticity and rate 

dependency with regard to cutting mechanisms will be summarized. Finally, a brief over-

view of possibilities for the detection of high-speed cutting operations is given.  

  



4 
 

 



5 
 

2 Literature review 

2.1 Cutting forces and phenomena in orthogonal cutting 

When cutting into a soft material with a straight edge blade, a deformation zone is 

formed in front of the cutting tool with increasing stress intensity in the vicinity of the 

blade tip (Figure 2.1). If exceeding the strength of the material a crack or cut is initiated 

that is growing with ongoing blade displacement l [m] (in the case of stable crack growth). 

Hence the material in front of the blade tip is deformed to a certain amount until fracture 

occurs. 

 

Figure 2.1: Stress distribution and deformation in orthogonal cutting with a straight edge blade. 
(from Boisly et al., 2016) 

 

For isotropic materials and with constant boundary conditions the deformation (and 

crack initiation) zone in front of the blade tip will be shifted by the amount the blade 

penetrates into the material (McCarthy et al., 2007). In addition to deformation forces in 

front of the cutting edge, friction forces will arise from the relative motion between blade 

flanks and the material after cut initiation since restoring forces act vertically to the direc-

tion of movement and on the newly formed separating surfaces (Dowgiallo, 2005; McCar-

thy et al., 2007). 
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Figure 2.2: Cutting force course example for a large blade that stops after cutting the smaller 
sample, with a (1) start-up phase, (2) deformation phase, (3) separation phase and a (4) detaching 
phase. FCI depicts the force at cut initiation, Fmax depicts the maximum cutting force and the area 
under the force course equals the cutting work WC. The figure is based on table 1 in Schneider et 
al. (2002).  

 

According to Schneider et al. (2002), four phases can be distinguished in a cutting 

process (Figure 2.2): The start-up phase (1) in which full contact between cutting edge 

and product is achieved, is followed by a deformation phase (2) in which the cutting force 

FC [N] increases linearly. The separation phase (3) starts when a cut is initiated (FCI in Fig-

ure 2.2) which leads to an alteration of the FC-slope. Phase (3) is determined by defor-

mation and fracture in front of the blade as well as by friction between blade and pro-

duct. In the detaching phase (4) the product is completely separated, and FC drops to zero 

with decrease of the blade-product contact area. As a consequence, the contributions to 

FC come only from deformation in phase (1) and (2), from deformation, fracture and fric-

tion in phase (3), and only from friction in phase (4) (Brown et al., 2005; Dowgiallo et al., 

2005; Schneider et al., 2002). 

For the separation phase (3) Tscheuschner (2004) established a cutting force ba-

lance as a function of the wedge angle β [°] of the blade (Figure 2.3): 

                 
 

 
           

 

 
          

Eq. 2.1 

with a resistance force FR [N] at the blade tip, friction forces from relative motion be-

tween blade and product at both sides of the blade wedge FF 1 [N] and both blade flanks 
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FF 2 [N] and with deformation forces at both sides of the blade wedge FSD 1 [N]. All side 

deformation forces FSD [N] are acting orthogonal to the direction of the respective friction 

forces. As a friction force can be written as the product of the normal force and the fric-

tion coefficient µ [-], FSD can be written as:  

           Eq. 2.2 

so that Eq. 2.1 can be summarized to:  

                
 

 
 ⁄     

 

 
           

Eq. 2.3 

 

Figure 2.3:  Outline of orthogonal cutting with a blade of thickness d with wedge angle β and forc-
es involved: cutting force FC, resistance force FR, friction forces FF 1 and FF 2 and side deformation 
forces FSD 1 and FSD 2, (modified after Tscheuschner (2004) and Zahn (2009)). 

 

As the second and the third summand of the equation can be described by tribological 

parameters both can be simplified to one friction force Ftribo [N]: 

          
 

 
 ⁄     

 

 
                   

Eq. 2.4 

which leads to 

                Eq. 2.5 
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Ftribo depends on FSD 1, FSD 2 [N] and on the surface properties of both friction partners and 

can decisively influence the cutting force. FR is the force required to disintegrate the ma-

terial cohesion and separate the product. This happens after the material has been de-

formed so far that the stress typically occurring in front of the blade tip exceeds the frac-

ture tension of the material (at the end of cutting phase (2)). According to McCarthy et al. 

(2007, 2010) and own observations the deformation may remain in front of the blade, 

even after a cut has been initiated, i. e., the deformation zone in front of the blade tip 

travels with progressive advancement of the blade and corresponds to the blade dis-

placement at cut initiation depth (CI, [mm]). The crack length therefore corresponds to 

the blade displacement minus CI. As a result, FR can be divided into a deformation and a 

fracture force Fdef [N] and Ffract [N]. This leads to the equation introduced by Dowgiallo 

(2005):  

                         Eq. 2.6 

Cutting experiments for fracture parameter determination with wires have shown that 

the fracture force depends decisively on the radius of the cutting tool (Gamonpilas et al., 

2009; Goh et al., 2005; Kamyab et al., 1998). Therefore, the sharpness of the blade has a 

significant influence on the measured total cutting force FC (Schuldt et al., 2013). Accord-

ing to literature (see e. g. Dowgiallo (2005) and Lyuten et al. (1991)) Fdef is dedicated to 

elastic (F’def [N]) and viscous deformation (F’’def [N]) so that Eq. 2.6 can also be written as: 

                                 Eq. 2.7 

Hence, depending on the mechanical properties of the product and the geometrical 

properties of the blade, the fracture and deformation forces can make up a large part of 

the cutting force. 

Due to the movement of the blade through the product, the cutting work WC [Nm] 

can be determined as the area under the FC/l-course (see Figure 2.2):  

   ∫        
    

     
  

Eq. 2.8 

which leads to:  
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                                 Eq. 2.9 

In summary, the force applied during cutting is distinctively influenced by the mech-

anical properties, i. e. the deformation and fracture properties, of the viscoelastic cutting 

materials, as well as their frictional properties. According to Luyten et al. (1992) the rate 

of cutting is directly related to the rate of fracturing. Therefore, for examining the influ-

ence of the cutting velocity on the cutting behavior, it is obvious to characterize the rate-

dependent deformation, fracture and friction properties of these materials. 

2.2 Rate dependency of deformation and fracture of viscoelastic 

materials 

In theory there exist solids that show a pure elastic (or Hookean) behavior if ex-

posed to a stress σ [Pa] or strain ε [-] (Hookean spring). In these materials all mechanical 

energy is reversibly stored. On the other side there exist materials that dissipate all ex-

posed mechanical energy which is referred to linear viscous (or Newtonian) behavior 

(Newtonian dashpot). In practice solids often show viscoelastic material behavior. It 

means that the reaction of the material to an applied stress or strain comprises partly of a 

viscous and partly of an elastic component (Steffe, 1996; Vincent, 2012). That is a typical 

behavior of (solid) foods. 

Methods to determine deformation properties usually focus on the ratio of stress 

(or force) to strain. Theoretically there exist three simple deformation modes: all-sided 

compression, simple shear and uniaxial tension/compression. The stress or deformation 

can be applied constantly or monotonically changing (static experiments) or fluctuating 

with a certain frequency (dynamic experiments) (Luyten, 1988; Luyten et al., 1992). 

If a viscoelastic material is exposed to (small) deformation that does not irreversibly 

alter its structure, the ratio between stress and strain is constant. That means the stress 

proportionally increases with strain. This deformation range is called linear viscoelastic 

region. The σ/ε ratio in the linear viscoelastic region is called “modulus” and is a measure 

of material stiffness (Lakes, 2004; Metzger, 2014; Steffe, 1996, van Vliet et al., 1993). The 

Young‘s modulus is e.g. determined from uniaxial tension experiments (Figure 2.4). 
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The ratio between the viscous and the elastic component depends on the time scale 

of the experiment. At long time scales more energy can be dissipated by viscous flow or 

relaxation, because these are processes that take time. At short time scales the reaction 

of the material is more elastic, hence more energy is reversibly stored or less energy can 

be drained off (Lyuten, 1988).  

 

Figure 2.4: Scheme for determination of Young’s modulus (ratio of stress σ to strain ε in the linear 
region εlin) out of uniaxial tension experiments (until fracture) for two materials (1, 2). 

 

If the stress or strain is applied by sinusoidal oscillation on a viscoelastic material 

the resulting (or measured) strain or stress is delayed. That means a phase shift δ [°] can 

be measured between input and output signal (Figure 2.5, left). This phase shift has a 

value between 0° (pure elastic) and 90° (pure viscous). From dynamic mechanical ana-

lyses (DMA) a complex modulus E* [Pa] (from uniaxial experiments; G* [Pa] from shear 

experiments) is derived from the ratio of σ and ε amplitude. The complex modulus can be 

plotted on a complex plane (Figure 2.5, right). From that E* equals the square root of sum 

of squares of loss modulus E’’ [Pa] (G’’ [Pa] from shear experiments) and storage modulus 

E’ (Pa) (G’ [Pa] from shear experiments). E’’ is the imaginary part of E* and a measure of 

the dissipated energy in a material (viscous component). E’ is the real part of E* and a 

measure of elastically stored energy (elastic component). The ratio E’’/E’ is designated as 

loss factor tan δ [-] and is like that a measure of the viscoelastic contribution of a system 

(Lakes, 2004; Metzger, 2014; Vincent, 2012). The time scale of an experiment is the time 

during which a certain stress is exerted on a material. It can be varied by changing the 

deformation or stress rate in a static experiment or by changing the frequency in dynamic 

tests (Luyten, 1988). 
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Figure 2.5: Phase shift δ of 45° between input signal (full line) and output signal (dotted line) from 
a dynamic mechanical measurement (left). Vector diagram with loss modulus E’’, storage modulus 
E’ and the resulting complex modulus E* (after Metzger, 2014) (right). 

 

If the rate at which the stress or strain is applied to a viscoelastic material is in-

creased (decrease of time scale) the ratio between stress and strain increases in static 

and dynamic experiments, as less energy can be dissipated. That means that moduli in-

crease with higher frequency or higher testing velocity (Figure 2.6). 

             

Figure 2.6: Compression curves for cheese at a strain rate of 2.8 ⋅ 10-3, 2.8 ⋅ 10-2, 1.4 ⋅ 10-1 (repro-
duced from Lyuten, 1988) (left); Frequency dependence of storage modulus G’ and loss modulus 
G’’ of different chewing gums (C1, B1) (reproduced from Martinetti et al., 2014) (right). 

 

To impose stress or deformation to a material a work or energy W [Nm] is needed. 

Considering σ as the applied force related to the initial cross sectional area of the speci-

men (engineering stress) and ε as the length change referred to the initial length (Cauchy 
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strain) the area under the σ/ε-course linearly correlates to W as it is the area under the 

F/l-course (Eq. 2.8). According to the above given considerations this imposed energy is 

partly elastically stored (W’ [Nm]) and partly dissipated (W’’ [Nm]): 

            Eq. 2.10 

This equation applies for small deformations where no irreversible damage appears in the 

material but also for further deformation that exceeds the linear viscoelastic region. In 

this case the ratio between stress and deformation changes and irreversible damage of 

the material can occur (Luyten, 1988). According to van Vliet et al. (1993) friction be-

tween the structural elements of composite foods (gel systems with filler, dispersions) 

can contribute to the energy dissipation, especially at large deformations. From that W’’ 

can be written as sum of energy of viscous flow W’’visc [Nm] and inner friction W‘‘frict [Nm] 

which gives:  

        
        

         Eq. 2.11 

If the deformation is increased in a way that the imposed stress exceeds material cohe-

sion fracture can appear so that additional fracture energy W‘‘fract [Nm] has to be consid-

ered: 

        
        

         
        Eq. 2.12 

As a part of the elastically stored energy in the fracture process zone is released to 

W‘‘fract, the fracture energy comes from W‘ (van Vliet et al., 1993; van Vliet, 1996). Hence 

W is the sum of an elastic energy, a dissipative energy due to deformation, and a dissipa-

tive energy due to fracture which coincides with the first three summands of Eq. 2.9 

which additionally includes Wtribo due to friction between blade and the material. This 

leads to the cutting energy (WC) equation that was proposed by Schuldt et al. (2016a):  

         
        

         
                Eq. 2.13 

Fracture can be defined as the break of all bonds between structural elements in a 

certain macroscopic plane which leads to a structural breakdown of the material over 

length scales much larger than the structural elements (van Vliet et al., 1993). There are 



13 
 

certain parameters describing fracture properties of foods. Some of the most prominent 

are the fracture stress σf [Pa], fracture strain εf [-] and fracture toughness [J/m²]. 

 

Figure 2.7:  Scheme for determination of fracture stress σf and fracture strain εf out of uniaxial 
tension experiments for two materials (1, 2), with material 1, shortly fracturing after linear de-
formation and material 2, extensively yielding before failure (after ISO 527-1: 2012). 

 

Fracture stress is the stress that is needed for total fracture of a specimen at a cer-

tain strain (εf) (Figure 2.7). Therefore W to gain σf can include amounts of elastically 

stored energy, fracture energy and energy that is dissipated due to viscous flow and inner 

friction (Eq. 2.12). In the example in Figure 2.7, a material 1 is shown which totally frac-

tures shortly after exceeding the linear deformation range. Material 2, on the other hand, 

passes through a pronounced non-linear deformation until total fracture occurs. Although 

the total energy for material failure (area under σ/ε-curve) is slightly larger for material 2, 

its σf is only about half as big as that of material 1. The single evaluation of σf can there-

fore lead to misinterpretations in comparing the fracture resistance of different materials. 

However, since it is easy to determine, the fracture stress is an often used measure for 

the evaluation of the fracture properties of foods (Luyten et al., 1992) and polymers (ISO 

527-1: 2012). 

Fracture toughness can be described by the fracture energy Wfract which comes 

from W’ (van Vliet, 1996). It is the work that is needed for exceeding material cohesion 

and creating new surfaces. Depending on the area of research different terms for explain-

ing fracture toughness are used: Williams (2009) stated that fracture toughness can be 

described by the surface energy of a material. If this material does not fracture in a brittle 

but a “tough” (or ductile) manner an amount of plastic/viscous work has to be added to 

describe fracture toughness. Van Vliet et al. (1991) described that two mechanisms are 
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involved into macroscopic fracture of gel-like foods: (real) fracture and yielding. Both 

mechanisms have to be explained on a microscopic level: (real) fracture leads to “simul-

taneous breaking of bonds between the structural elements of the network” and the 

formation of a crack. Yielding is referred to as viscous flow and located around the crack 

tip; it can lead to an increase of fracture strain (van Vliet et al., 1991). In polymer science 

the mechanism (real) fracture is referred to as “work of separation”. Mechanisms that 

substantially contribute to this work of separation are “crazing” and “cavitation” which 

are described as „void growth in the fracture process zone (FPZ)“ which precedes crack 

growth (Figure 2.8). The starting points are defects (voids, also described as holes) in the 

material. Void growth is thereby caused by tensile stresses in front of the crack tip, which 

leads to crack growth which overturns material cohesion. The term “yielding” that was 

used by van Vliet et al. (1991) is described as “viscoelastic dissipation” in the FPZ. Both 

micromechanical mechanisms, void growth and viscoelastic dissipation, contribute to 

fracture toughness (Tang et al., 2008). 

 

Figure 2.8: Schematic of craze-like microporous zone surrounding a crack growing steadily under 
small-scale yielding conditions (Tang et al., 2008). 

 

Even though fracture stress is macroscopically derived from the force response of a 

specimen and the energy needed for fracture includes different mechanisms (Eq. 2.12), 

fracture toughness being one of those, fracture stress and fracture toughness are often 

considered as equivalent (Lillford, 2001). This clearly can only hold for dominant elastic 
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materials, ideally with small fracture strain, which can be the case for biscuits or food gels 

(Lillford, 2001; Gamonpilas et al., 2009) or for materials that fracture in a brittle manner.  

If viscous flow (W’’visc) and/or inner friction (W’’frict) highly contribute to the overall energy 

W, fracture stress and fracture toughness could somehow deviate from each other. 

In viscoelastic systems σf can be velocity-dependent as it comes from rate-

dependent deformation parameters (see Figure 2.6). It normally increases with increasing 

deformation speed because more energy is required to deform the material to a certain 

extent and fracture energy (i.e. fracture toughness) is often increasing (van Vliet et al., 

1993). It is known that fracture strains from compression or tensile experiments of poly-

meric food systems can increase, fall or stay constant with rate increase (van Vliet et al., 

1993; van Vliet & Walstra, 1995). After van Vliet et al. (1993) the trends for σf and εf arise 

from two energy dissipation mechanisms referring to: 

1. viscoelasticity and  

2. friction between the different structural elements of composite systems. 

The first mechanism means that energy dissipation because of viscous flow is higher 

for lower strain rates. Thus the viscous contribution tends to be stronger and the de-

crease of storage modulus is steeper than the decrease of loss modulus at decreasing 

strain rate. It follows that transport of elastically stored energy to the crack tip can be 

inhibited because of stress relaxation during crack growth (Luyten et al., 1991). Hence the 

material has to be deformed further to reach an amount of energy (W) to induce or pro-

pagate fracture. This means that εf increases with decreasing strain rate (Luyten & van 

Vliet, 1995; van Vliet et al., 1993). For small velocities σf can also decrease with increasing 

deformation rate if W’’visc is the dominating part of W (Luyten & van Vliet, 1995; van Vliet 

et al., 1993; van Vliet & Walstra, 1995). 

The second mechanism comes from the composite nature of foods. Thus different 

structural elements with different mechanical properties in one material have the effect 

that deformation of such a material can be inhomogeneous especially at larger defor-

mations where fracture occurs. This will cause friction between the structural elements of 

the food (van Vliet et al., 1993; van Vliet & Walstra, 1995). From considerations of local 

rate of deformation and crack speed van Vliet et al. (1993) derived that this energy dissi-

pation tends to increase with deformation speed. This could have the effect that the 
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stored energy stays low and the energy transport to the crack tip “proceeds inefficiently” 

which can also contribute to the increase of σf and lead to fracture strain increase with 

increasing deformation rate (van Vliet et al., 1993). However this theory for σf increase is 

not generally accepted (Gamonpilas et al., 2009). Another reason for rate-increasing εf is 

that at small deformation rates, more time is available for crack propagation. A small 

stress that acts for long time (referred to the time scale of the experiment) can induce 

fracture at small deformations when the induced stress is sufficiently large to ensure slow 

crack propagation. This can lead to an increase of fracture strain at higher velocities (Luy-

ten & van Vliet, 1995; Boisly et al., 2016; Rohm & Lederer, 1992). 

Another factor influencing the rate dependence of σf is fracture toughness which 

can decrease or increase with strain rate or velocity (Abadyan et al., 2012; Landis et al., 

2000; Luyten & van Vliet, 1995; Tang et al., 2008). According to van Vliet et al. (1993) in 

viscoelastic materials the fracture energy is associated to the storage modulus which rep-

resents the number of effective elastic interlinks per unit cross-sectional area. Thus the 

rate-dependent increase of storage modulus causes an increase of fracture toughness 

with increasing velocity (van Vliet et al., 1993). Work of separation and viscoelastic dissi-

pation, both contributing to fracture toughness, can act simultaneously (see e.g. Cessna, 

1974; Dijkstra et al., 2002, Tang et al., 2008) (Figure 2.9).  

 

Figure 2.9: Deformation map according to Cessna (1974) giving deformation mechanisms as a 
function of strain rate or, equivalently, temperature (from Dijkstra et al., 2002). 

 

After Tang et al. (2008) for tough fracture (with stable crack growth) of polymeric 

systems two regimes can exist in one material: (1) the regime where the work of separa-

tion is dominating and (2) the regime where viscoelastic dissipation is the dominating 
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contribution to fracture toughness. If crack or fracture velocity is enhanced (which is as-

sociated with higher deformation speed) an increase of void growth (which can be re-

garded as defects) in the FPZ is enhancing work of separation (Luyten & van Vliet, 1995; 

Tang et al., 2008). Simultaneously viscous energy dissipation decreases because of shorter 

time scales. Hence with increasing crack velocity fracture toughness is increasing in re-

gime (1) and decreasing in regime (2). Both regimes can appear in one material from slow 

to high velocity (Figure 2.10). The regimes are influenced by the initial void or defect size 

and the rate dependence of the void growth mechanism and the rate dependence of the 

bulk material (Tang et al., 2008). 
  

 

Figure 2.10: Calculated values of fracture toughness for a viscoelastic solid in the regime of stable 
crack growth (tough fracture) over the crack velocity for different boundary conditions (indicated 
by n) (modified after Tang et al., 2008). 

 

As stated above the time scale is important for the viscoelastic characteristics. Gen-

erally increasing the rate or velocity of deformation reduces the time scale for viscous 

dissipation and simultaneously increases the stress in the material. If this stress exceeds 

the amount of stress that is needed for fracture and if the time scale is too short for suffi-

cient energy dissipation fracture progressively shifts from tough to brittle (van Vliet et al., 

1993). That means the material fractures without plastic deformation (Bryan & Ahuja, 

1993; Gdoutos, 2005) and unstable crack growth with high crack speed can appear (Bryan 

& Ahuja, 1993; Farahmand, 2001). As brittle fracture equals tough fracture but without 

plastic work, brittle fracture only refers to the surface energy which is consequently 

smaller than the energy needed for tough fracture (Williams, 2009) (Figure 2.11). 
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Figure 2.11: Schematic of fracture toughness dependence on temperature with transition from 
full ductile to brittle (linear elastic) behavior (modified after Aderinola et al., 2014) 

 

Increasing the temperature of a material increases the molecular mobility and like 

that enhances relaxation processes. On molecular level this can be referred to an increase 

of possible transposition processes of molecules in a polymeric network (Wrana, 2014). In 

opposite this leads to a decrease of viscous dissipation with temperature decrease which 

is in principle the same effect as decreasing the time scale or increasing the strain rate. 

Hence for many polymeric single-phase systems and blends time and temperature can be 

considered as equivalent impacts (Cho & Lee, 1998; van Gurp & Palmen, 1998; Wrana, 

2014). Therefore, under certain circumstances shift of the deformation parameters on the 

time scale is possible (Dealy & Plazek, 2009; van Gurp & Palmen, 1998) (Figure 2.12). This 

method of temperature-time superposition (tts) is used to open up areas which are diffi-

cult to measure (e.g. to display very long and short time scales). Although tts is derived 

from deformation processes (Wrana, 2014), it was also possible to verify a validity for 

fracture parameters (Cho & Lee, 1998; Pohlit et al., 2008), since these are also dependent 

on the deformation behavior. As a lower temperature has the same effect as a shorter 

time scale, decreasing the temperature promotes brittle fracture (Cessna, 1974; Olwig, 

2006) (Figure 2.11). The Cessna deformation map effectively illustrates this relation of 

strain rate, temperature and deformation mechanisms from ductile to brittle (Figure 2.9). 
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Figure 2.12: Explanation of the shift principle of temperature time superposition by means of 
creep data on aramid fibers at different temperatures (reference temperature equals 25 °C; a, 
shift factor) (Alwis & Burgoyne, 2006). 

2.3 Rate dependent friction properties of viscoelastic materials 

Tribology deals with friction, lubrication and wear of surfaces, which are in a rela-

tive movement to one another. The interfacial effects between solid bodies as well as 

between solids and liquids or gases are considered (Dresselhuis et al., 2007; Moore & 

Geyer, 1972). An important tribological quantity is the friction force FF [N]. It reflects the 

mechanical resistance of the friction bodies against a relative movement. From this the 

coefficient of friction μ = FF/Fnorm [-] is calculated, with the normal force Fnorm [N] acting 

orthogonal to the plane of movement. A distinction is made between static friction and 

sliding friction. If the attacking forces are not sufficient to allow a movement, this is re-

ferred to as static friction. The sliding friction is defined as resistance to an existing rela-

tive movement of the friction partners (Czichos & Habig, 2010). Stick-slip is an alternation 

of static and sliding friction and is favored by low relative speed or high surface pressure 

and deformable friction bodies (Czichos & Habig, 2010; Schneider et al., 2009). Depending 

on whether a lubricant is present, dry and lubricated friction can be distinguished (Czichos 

& Habig, 2010). The following sections describe the phenomena associated with friction 
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between hard (metal) and soft friction bodies, as it is the case when cutting food with a 

blade. 

Friction can be attributed to different interaction mechanisms. These can be distin-

guished in atomic or molecular (adhesion) interactions in the contact area and mechani-

cal interactions in the bulk of the material (elastic and plastic deformations) (Atkinson, 

1975; Czichos & Habig, 2010; Moore & Geyer, 1972). Hence the friction force can be ex-

pressed as the sum of a viscoelastic deformation force FVE [N] from the material bulk and 

the adhesion force Fadh [N] (Lorenz et al., 2013a; Moore & Geyer, 1972): 

               Eq. 2.14 

 

Figure 2.13: Simplified stick-slip model of adhesion: (a) “adhesion” takes place at points A; (b) 
elastomer sample moves a distance λ at velocity V, and frictional drag is developed. Elastic  energy 
is stored in element; (c) adhesion at A’ fails. Energy stored in element is returned in part to sys-
tem. New point of attachment at A (Moore & Geyer, 1972). 

 

Adhesion in combination with relative movement of the friction bodies leads to the 

formation, growth and breaking of bonds in the real contact area. Mainly responsible for 

these adhesion phenomena are hydrogen bonds and van der Waals forces. The real con-

tact area is composed of the sum of the micro contact areas and depends on tempera-

ture, Fnorm and the sliding velocity as well as the surface roughness and the mechanical 

properties of the friction bodies (Czichos & Habig, 2010; Moore & Geyer, 1972). Fadh can 

be expressed as the product of a “frictional shear stress” and the local area of contact; 

both depend on sliding velocity and temperature (especially the frictional shear stress) 

(Lorenz et al., 2013a; Moore & Geyer, 1972). 
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Figure 2.14: Experimentally and theoretically derived friction force due to adhesion versus sliding 
velocity (Moore & Geyer, 1972). 

 

Adhesion in sliding friction is often described as a thermally activated molecular 

stick-slip process and can lead to a deformation of the soft friction surface (Figure 2.13). 

Due to the temporally dependence on the formation and breaking of bonds, the adhesion 

process is rate-dependent (Figure 2.14) (Moore & Geyer, 1972). At low velocity, an in-

crease in velocity initially leads to an increase in bond development and breaking, which 

leads to an increase of Fadh  (more bonds will be formed and ruptured per time). Above a 

specific velocity, the adhesion force decreases again as the contact time between the fric-

tion bodies is limiting the development and breaking of bonds at the friction interface. 

This behavior results in a maximum of the friction force due to pure adhesion at a specific 

sliding velocity (Grosch, 1963; Moore & Geyer, 1972). Thus adhesion plays a subordinate 

role at very high velocities (Grosch, 1963), but it can certainly play a dominant role in fric-

tion at lower velocities (Grosch, 1963; Schell, 2005). 

 

Figure 2.15: A schematic representation of the effects of different transfer films in adhesive wear 
(A); a schematic representation of abrasive wear: the metal asperity shears or cuts parts from the 
soft friction body (B) (from Atkinson, 1975). 
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As a result of friction a transfer film of the softer material can be formed on the 

hard friction partner, which can change the adhesion conditions in the area of contact 

and can lead to adhesive wear.  This can increase or decrease the wear rate (Figure 2.15, 

A).  The amount of adhesive wear will depend on a number of factors including the load, 

the environment, the sliding velocity and the material properties of the friction bodies 

(Atkinson, 1975; Brown et al., 1976). 

 

Figure 2.16: Friction master curve for the coefficient of friction of an acrylonite-butadiene gum 
vulcanizate (versus sliding velocity; aT, shift factor) sliding on silicon carbide abrasive, dusted with 
magnesium oxide powder (to exclude adhesion) with a reference temperature of 20 °C (from 
Grosch, 1963). 

 

Relative motion between the friction bodies can lead to mechanical interactions in 

the bulk of the material of the softer friction partner. These are induced e.g. by penetra-

tion of the harder into the softer friction partner or by hooking of both friction partners 

into one another (Czichos & Habig, 2010, McKellop, 2007). The mechanical interactions 

lead to elastic and plastic deformation (Atkinson, 1975; Brown et al., 1976) as well as to 

viscoelastic energy dissipation (Czichos & Habig, 2010; Lorenz et al., 2013a, 2013b). In 

abrasive wear hard irregularities of one friction partner penetrate a softer material and 

remove parts of the material by shear or cutting (Figure 2.15, B). Here the total defor-

mation before fracture will be made up of an initial elastic component plus a viscous 

component for larger deformation (Atkinson, 1975; Brown et al., 1976). Since the friction 

force depends on the mechanical properties of the softer friction partner, FF can be de-

scribed as a function of the deformation characteristics and shows a corresponding de-
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pendence on the velocity. Thus Grosch (1963) experimentally showed a relationship be-

tween the maximum of the friction force and viscoelastic energy dissipation (maximum of 

the loss factor) that could be used for applying temperature time superposition (Figure 

2.16) (Grosch, 1963; Lorenz et al., 2013a). 

Lubrication can greatly reduce friction, since the direct contact between the friction 

partners is (partially) substituted through the contact with a lubricant. For lubricated sys-

tems Stribeck curves are used which display the coefficient of friction over sliding velocity 

(Figure 2.17). In this, several regimes are crossed: At small sliding velocity, a “boundary 

regime” takes place, where the friction depends on the characteristics of the surfaces 

(Dresselhuis et al., 2007). The “mixed regime” at higher sliding velocities is characterized 

by a decrease in the solid body friction and an increased role of the rheology of the lubri-

cant, which ideally manifests itself in a drop of the friction force. The “hydrodynamic re-

gime” only depends on the rheology of the lubricant (Czichos & Habig, 2010). 

 

Figure 2.17: Stribeck curve with the three lubrication regimes (from Dresselhuis et al., 2007). 

 

As described, the friction between hard and soft bodies depends on a variety of in-

teracting parameters such as surface topography, hardness of friction partners, physico-

chemical surface properties, contact area, abrasive films in the interface. However indi-

vidual friction mechanisms are difficult to distinguish and determine (McKellop, 2007). In 

summary, it is difficult to describe the friction behavior as a function of the cutting veloci-

ty. In general, the adhesion contribution to FC should decrease at high sliding velocity. 

However, a strong rate-dependent deformation behavior of the food could mitigate or 

reverse this effect. During a cyclic cutting process wear films can build up in the course of 

the processing, which in turn can also influence the friction force. When cutting foods, 
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there are generally large differences in hardness between the friction partners. There-

fore, the roughness of the blade is of great importance. This in turn affects the real con-

tact zone, which in turn can increase Fadh. Additionally, foods vary greatly in their surface 

properties and their mechanical characteristics. Adhesive films can be formed which con-

tribute to system lubrication or reverse, but also large plastic deformations with abrasion 

of particles can appear (Schneider, 2007). As foods greatly vary in their tribological prop-

erties, solutions to reduce friction in food processing (blade geometry, blade coatings) 

often target on specific applications and products. 

2.4 Challenges in high-speed characterization 

There are very few publications in which foods were tested at high velocities to draw con-

clusions on the cutting or processing behavior. A main reason is that it is difficult to evalu-

ate high-speed processes on the basis of material characteristics of foods at high defor-

mation rate, or velocity. This is because commercially available equipment for quasi-static 

compression or tension tests generally operates at velocities in the dimension of mm/min 

or a few cm/min (Chen & Opara, 2013). Leadscrew driven systems and expensive hydrau-

lic or pneumatic systems can reach velocities of more than 1 m/s. However these devices 

usually are designed for the measurement of larger forces for testing polymers or metals. 

There is, to the best of my knowledge, no standard testing machine available on the mar-

ket that allows material characterization of solid foods and the corresponding process 

analysis at a testing velocity > 1 m/s. Therefore, it can be an approach to build up a tailor 

made test station. Equipment to apply testing velocities > 1 m/s includes, for example, 

linear actuators, rotational systems, and pendulum or drop weight testers (Field et al., 

2004; Meyers, 1994; Olwig, 2006) which provide the possibility of high-speed testing (see 

Figure 2.18 for overview). 

A further challenge is the selection of suitable force sensors for high-speed applica-

tions. For continuous force data capturing usually strain gauge based or piezo-electric 

force transducers are used (Pohlit et al., 2008). Compared to synthetic polymers or me-

tals, foods show only small forces against deformation or cutting. This requires sensitive 

measuring systems, which, however, must be robust against larger force impacts at high-
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er velocities. A further problem in force data capturing can be vibrations, which most like-

ly occur in tests with dynamic or sudden impact. They arise, for example, due to an un-

suitable test station design (natural resonance) or when, for example, the testing blade is 

excited to vibrate. These oscillations can be transmitted to the measuring system and 

superimpose the measured signal. For high-speed measurements, it may also be im-

portant whether the force is measured in front of the sample (at the blade) or behind the 

sample (at the sample support), since the sample itself can act as an attenuator. The 

measured force signals in front of the sample are thus more susceptible to alternations 

(Maurer, 2003; Shergold et al., 2006). 

 

 

Figure 2.18: Overview of methods of material testing, classified according to strain rates or the 
experimental time characteristic of the type of test (modified after Olwig, 2006; Field et al., 2004; 
Meyers, 1994) 

 

In general, strain gauge based force transducers are used to characterize mechani-

cal properties in the range of typical slow and medium testing velocities, as they are 

common in commercially available testing devices. However, load cells for measuring 

small forces have low stiffness, which can lead to the transmission of vibrations especially 

at higher testing velocities (Stock, 2015). In comparison to piezo-electric force sensors it 

has also been shown that strain gauges can output false force signals with too low values 

at high speeds or sudden loads because of lower response times (Pohlit et al., 2008). In 
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general piezo-electric force transducers are well suited for dynamic measurements of 

small forces and with a high data rate. Their low weight and high stiffness reduce the po-

tential for distinct natural resonance (Stock, 2015). 

A demonstration of limits can be given by cutting force measurements at elevated 

velocity (Kretzschmar, 2013). Here the cutting forces of cheese (Gouda) and a synthetic 

polymer (nitrile butadiene rubber, NBR) were documented over more than 5 decades of 

cutting velocity (Figure 2.19). The low and medium cutting velocities (up to 4 ⋅ 10-2 m/s) 

were investigated with an Instron universal testing machine and associated 100 N 

(cheese) or 5 kN (NBR) strain gauge force transducers. For the velocities above, a servo 

hydraulic system with 200 N (cheese) and 10 kN (NBR) strain gauge force transducers was 

used. The results show almost vibration-free cutting force profiles for the commercial 

measuring system (Instron) and vibrations in the force profiles of the servo hydraulic sys-

tem. While these are distinct for NBR with distinct variations at 1.4 ⋅ 100 m/s (10 kN sen-

sor with high basic stiffness), the results of cheese with the 200 N force sensor show ex-

orbitant force deflections at 4 ⋅ 10-1 m/s and 1 ⋅ 100 m/s (deflections out of scale). 

 

 

Figure 2.19: Force profiles (normalized to the cutting width) for cheese and NBR at different cut-
ting velocities, from an Instron universal testing machine (dotted lines) and a servo hydraulic test-
ing machine (full lines)(n = 5). 

 

Over all, high acquisition costs, little flexibility in the applicable testing velocity, and 

the combination of difficult force data capturing and high engineering costs by designing 
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tailor-made test stations are limiting factors to build up specific test stations. Neverthe-

less, the literature shows some interesting approaches for high-speed measurements of 

foods: Dowgiallo (2005, 2015) designed a special test station by combining a servo-

mechanical device with the force data acquisition system of a universal testing machine 

(strain gauge) to cut fibrous food materials with a velocity up to 4 m/s. King (1999) used a 

modified nail gun to cut lamb bone with velocities from 9 – 130 m/s using a piezo-electric 

force sensor to detect cutting forces for calculating the fracture energy. Brown et al. 

(2005) cut cheese, beef and bacon up to 0.25 m/s using a ball screw actuator and a strain 

gauge force measuring system. Shergold et al. (2006) used a hydraulic testing machine 

(until 0.8 m/s) and a gas gun (4-10 m/s) to measure the shear modulus of pig skin.  

A further (but indirect) possibility to investigate the material behavior at high strain 

rates or high velocities is provided by the temperature time superposition, which can be 

explained by relaxation mechanisms or molecular transposition processes of polymers. 

These processes depend on temperature as well as on the time scale or strain rate (or the 

frequency under oscillating stress or deformation). For this reason, materials can exhibit 

the same relaxation behavior at different temperatures. This allows the construction of 

master curves by shifting deformation parameters (moduli, loss factors, compliances) 

along the time or frequency axis (Wrana, 2014). Hence the range of the material charac-

terization can be expanded to very high or very low frequencies or strain rates. Strictly 

speaking, tts is valid only for simple polymeric systems with only one relaxation mecha-

nism (van Gurp & Palmen, 1998). For long-chain, branched polymers, multicomponent 

systems or material composites with and without internal interfaces, crystalline materials 

and substances with phase transition within the temperature range, the tts is only re-

stricted or not applicable (Dealy & Plazek, 2009; van Gurp & Palmen, 1998; Lakes, 2004; 

Nickerson et al., 2004; Wrana, 2014). As mentioned above, it is also possible to shift frac-

ture and friction parameters along the time axis when these parameters strongly depend 

on the deformation behavior (Cho & Lee, 1998; Grosch, 1963; Lorenz et al., 2013a; Lu-

dema, 1966; Pohlit et al., 2008). Precondition for tts measurements is a suitable tempera-

ture control of the samples and measuring device. A strong limitation for measurements 

of food is that, normally, complex multi-phase systems with different relaxation proper-

ties are present, and that these systems partly have several phase transitions (fats, water) 
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within the temperature ranges under investigation. The tts is well applicable when the 

food systems consist of larger amounts of long-chain molecules in the form of polysaccha-

rides and proteins, e.g. gelatin or gluten (Tsiami et al., 1995), gellan (Sworn & Kasapis, 

1998), pectin (da Silva et al., 1994) and carrageenan (Kasapis, 2001) but is somehow re-

stricted for complex food systems (Ahmed, 2012; Cuq et al., 2003; Sing et al., 2006; Udya-

rajan et al., 2007.  
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3 Aims of the study 

Foods are viscoelastic materials. This affects the velocity-dependent cutting behavi-

or. In this context, effects which occur during high-speed cutting are of industrial signifi-

cance and there is a need to relate general deformation, fracture and friction characteris-

tics with cutting process parameters (Figure 3.1). Additionally there are no commercial 

solutions for test stations to directly examine the material behavior (classical material 

characterization) and the cutting behavior (cutting tests) of foods at high velocity. The 

aim of this work is to investigate the velocity-dependent cutting behavior of foods up to 

the high-speed range with focus on the deformation and fracture behavior. 

 

Figure 3.1:  Schematic presentation of cutting process analysis and the aims and investigation 
approach of the study. Central aim is the development of cutting parameters related to parame-
ters from material analysis and related to the cutting velocity v from small to high-speed cutting 
velocity (multi-scale cutting experiments). 
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Figure 3.1 depicts the investigation approach of the study. To generate standard-

ized and reproducible specimen properties and to investigate the influence of viscoelas-

ticity, elastomer based model systems will be introduced. Therefore, a synthetic material 

is to be used with mechanical properties similar to relevant food systems. Its viscoelastic 

properties should be specifically influenced by the composition of the model systems. For 

the purpose of deformation and fracture analysis, velocity dependent properties will be 

characterized with conventional testing machines in the low and medium velocity range. 

Deformation properties will be analysed on the basis of DMA as it provides the investiga-

tion of rate-dependency and viscoelasticity. To evaluate fracture cutting forces, it is of 

particular importance to investigate fracture properties depending on blade sharpness. 

Hence blades with different blade tip radii will be characterized by different blade sharp-

ness parameters. Further fracture toughness will be determined by cutting experiments. 

In parallel, parameters from cutting force sequences that show references to the fracture 

and deformation behavior are to be identified at different cutting velocities. In a further 

analysis these cutting parameters will be related to the deformation and fracture parame-

ters of the material characterization. Here, correlations are to be found which allow direct 

reference between material and cutting properties (and vice versa). For simplicity, all cut-

ting investigations are limited to the orthogonal cutting; i. e. a straight edge blade cuts a 

product orthogonally to its surface without tangential motion components.  

Further, cutting tests will be carried out at a tailor-made high-speed test station. In 

a first step the performance (including force measurement and visualization methods) of 

the test station will be evaluated by cutting a rate sensitive (viscoelastic) model system. 

On the basis of all these investigations, the overall cutting behavior of viscoelastic model 

systems and foodstuffs from low to high-speed (multi-scale) cutting velocities will be in-

vestigated under participation of commercial testing devices and the high-speed test sta-

tion. Finally the relations between material parameters and cutting parameters for de-

formation and fracture will be evaluated for the food systems; and the velocity depend-

ence of the parameters for all systems will be analysed and discussed up to the high-

speed range. 
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4 Materials and methods 

4.1 Model systems 

4.1.1 Elastomers for blade sharpness evaluation 

The elastomers used as synthetic cutting materials for blade sharpness evaluation 

were two ethylene propylene diene monomer rubbers from Karl Treske GmbH (Berlin, 

Germany) with different hardness (EPDMs, 50 ± 5 Shore A; EPDMh, 65 ± 5 Shore A), both 

provided in sheets with a thickness of 10 mm, and a nitrile butadiene rubber (NBR; ob-

tained from a local store, producer unknown) with a sheet thickness of 6 mm and a hard-

ness of 65 ± 5 Shore A. The complex modulus, measured in a three-point bending set-up 

with an RSA3 solids analyzer (Rheometric Scientific Inc., Piscataway, NJ, USA) at 10 rad/s, 

was 45.6 MPa for EPDMh, 28.5 MPa for EPDMs, and 32.6 MPa for NBR.  

4.1.2 Elastomers as viscoelastic food models 

Model systems for deformation parameter analysis were made from Elastosil® RT 

745-S (Wacker Chemie AG, Munich, Germany), a two component silicone elastomer with 

a curing agent. Components A and B were mixed 1:1 (w/w). By adding fillers or softeners 

it is possible to adjust the modulus or viscoelasticity. AK1000 silicone oil (Wacker Chemie 

AG, Munich) was used as softener (Gundermann & Odenbach, 2014), corn starch (Schuldt 

et al., 2016a) or icing sugar (Boisly et al., 2016) can be used as filler. In this study only the 

filler corn starch, purchased in a local super market, was used (see Table 4.1 for sample 

codes and composition of the model systems). The base elastomer samples were pre-

pared by vigorously mixing components A and B with a spatula for 5 min. After adding 

fillers or softeners to the mixture, they were mixed with (A+B) in the same way. After mix-

ing was completed, the sample was degassed in a vacuum chamber at 104 Pa for 5 min. 

Then the mixture was filled into PTFE molds (Figure 4.1). The elastomer was finally poly-

merized at 103 °C for 2.5 h in a convection oven.  
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Figure 4.1: PTFE mold (left; here for rectangular samples), pressed between aluminum sheets 
(right; fixed with screws); dimensions in mm. 

 

 
Table 4.1: Sample codes and composition of the model materials 

Sample Fraction [% w/w] 

 Base elastomer Filler Softener 

Reference 100 - - 

f17  83 17 - 

f20  80 20 - 

F31  69 31 - 

f35  65 35 - 

f40  60 40 - 

f45  55 45 - 

f20s20  60 20 20 

f35s20  45 35 20 
 

 

4.2 Foods 

To represent the wide variety of foods that are cut in industrial scale, the following 

items from the respective categories were selected: (a) foods consisting of a polymeric 

protein matrix with different disperse fillers: Bergkäse, a hard cheese variety with a casein 

matrix and dispersed milk fat globules; Leberkäse, a semi-solid aqueous actin/myosin ma-
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trix with emulsified animal fat; and Salami, an air-dried sausage from grounded fat, mus-

cle tissue, and spices. (b) plant tissues, with potato and carrot being presented in this 

study. (c) Toffee and bubble gum, representing cut and wrap sugar confectionary. Toffee 

is a soft candy with a continuous phase of a super-saturated sugar solution and a disperse 

phase, consisting of milk solids, and oil droplets (Table 4.2). 

Table 4.2: Toffee ingredients 

Ingredient Fraction 
(% w/w) 

Glucose 43.5 

Sweetened condensed milk 41.5 

Palm oil   9.9 

Sugar   4.5 

Lecithin   0.3 

Salt   0.3 
 

 

A colorant- and aroma-free model bubble gum was used in this study. There is no 

detailed information on the exact composition of the product. A chewing gum is a dis-

perse system that typically consists of 20-30 % water insoluble gum base and an aqueous 

fraction containing sugars or other sweeteners, softeners (e.g. glycerin) and aroma. A 

gum base itself is typically composed of elastomers, resins, fats, waxes, emulsifiers, fillers 

and antioxidants (Konar et al., 2016). 

All foods were obtained in local retail stores except the toffee which was manufac-

tured in the Candy Lab of Chocotech GmbH (Wernigerode, Germany) and the bubble gum 

which was provided by an industrial supplier. 

4.3 Cutting blades 

For the cutting parameter detection (chapter 5.1) cutting blades made from a mar-

tensitic steel alloy (WS 1.2379, X152CrMoV12; compliant with AISI D2 and EN ISO 4957), 

hardened to 63 HRC and mechanically polished, were obtained from ASTOR Schneid-

werkzeuge GmbH (Storkow, Germany). This blade material is regularly used in high-speed 

slicing applications. Blades with a different wedge angle (20°, 30°, or 40°; see Figure 4.2), 

and with a different tip radius dependent on the wear state were used in the experi-

ments. The virgin blade with a 20° wedge angle is referred as reference blade because it 
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refers to typical edge geometry for food slicing knives (Marquardt, 2011). One pair of 20° 

blades was electrically polished by the manufacturer to enhance sharpness. To achieve 

different blade tip geometries, pairs of the 20° blades were worn in seasand (SiO2) or co-

rundum (Al2O3) at different rotational frequencies (25/min or 100/min) for 240 min each 

by applying the horizontal abrasion procedure described in Schuldt et al. (2013). Samples 

were cut at the middle of the blade (see Figure 4.2).  The tip radius of these blades was 

determined by an optical method from blade imprints (Schuldt et al., 2013). Table 4.3 

gives an overview on the used blades and their tip geometry. 

 
Figure 4.2: Cutting blade with dimensions (in mm) and wedge angle β; arrow indicates the cutting 
position of the blade. 
 

Table 4.3: Blade characteristics 

State* Wedge angle 

(°) 

Blade tip radius*** 

(µm) 

 


Virgin (reference) 20 13.6
a
 ± 4.1 

Virgin 30 18.2
b
 ± 3.2 

Virgin 40 26.8
c
 ± 4.4 

Abraded (SiO2, 25) 20 17.1
b
 ± 1.2 

Abraded (SiO2, 100) 20 20.2
b
 ± 1.7 

Abraded (Al2O3, 25) 20 33.4
d
 ± 1.3 

Abraded (Al2O3, 100) 20 61.9
e
 ± 1.6 

Virgin, e-pol** 20 12.0
a
 ± 2.1 

*
 abrasion medium, rotational speed (rpm) during 240 min abrasion. 

**
 Electro-polished. 

***
 Threefold determination per blade, 2 blades each. Values with different superscripts 

differ significantly. 

 

To achieve satisfying data point resolution at high cutting velocities high data rates 

have to be realized by using an appropriate force measuring system. For coupling a blade 
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to this system a special blade geometry (Figure 4.3) had to be designed for the high-speed 

test station. This blade geometry was used for all multi-scale cutting velocity experiments 

(chapter 5.2 and chapter 5.3). 

 
Figure 4.3: Geometry of the blade for multi-scale cutting velocity experiments; 1 mm thick, 20.5 
mm of cutting edge, and 10° cutting wedge angle (dimensions in mm). 

4.4 Dynamic mechanical analysis 

An RSA3 Solids Analyzer (Rheometric Scientific Inc., Piscataway, N.J., U.S.A.) was 

used to perform dynamic mechanical experiments in compression. The cylindrical sam-

ples were placed on the lower plate of the parallel plate device. After application of a suf-

ficient static force, frequency sweeps were performed from ω = 1 – 100 rad/s at a strain 

of 0.5 % (linear viscoelastic region). Complex modulus E*, storage modulus E’ and loss 

modulus E’’ were recorded as a function of ω, as was the loss factor tan δ = E’’/E’. Cylin-

drical samples were used for the food (except toffee and bubble gum) and the model sys-

tems (foods: height, 10 mm and diameter, 13 mm; model systems: height, 10 mm and d, 

12 mm). All model systems were analysed at room temperature. All food samples (except 

toffee and bubble gum) were adjusted to 15 °C in an IPP55 environmental chamber 

(Memmert GmbH + Co. KG, Schwabach, Germany).  

Viscoelastic properties of the bubble gum and the toffee were analysed in oscillato-

ry shear. Cylindrical samples (diameter, 52 mm; height, 3 mm) were placed on the lower 

surface of a parallel plate geometry of a Physica MCR 300 rheometer (Anton Paar Germa-

ny GmbH, Ostfildern, Germany). After application of a sufficient normal force, frequency 

sweeps were performed in four-fold at a deformation of 0.3 % (this is within the linear 
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viscoelastic region) and with an angular frequency of ω = 1 – 500 rad/s at 20 °C, 30 °C or 

40 °C. Temperature was controlled by a Peltier device. 

All DMA tests were performed in fourfold. E* (or G* in case of shear experiments) 

was then fitted against ω using the power-law function: 

          Eq. 4.1 

where k and n reflect the frequency dependence of E* (or G*). The corresponding slope n 

can be derived by  

  
       

      ⁄   
Eq. 4.2 

4.5 Cutting experiments 

4.5.1 Test station and procedures for low and intermediate cutting velocity 

A 5564 universal testing machine (UTM; Instron Ltd., High Wycombe, UK) is able to 

realize crosshead speeds up to 2500 mm/min or 4.17 ⋅ 10-2 m/s. In the experiments it was 

used for cutting velocities up to 1000 mm/min (1.17 ⋅ 10-2 m/s). For all experiments a 

plane sample support rig was mounted on a strain gauge force transducer attached to the 

bottom frame of the UTM, and the cutting blade was mounted on the crosshead of the 

instrument. An example of a typical testing setup is given in Figure 4.4. After placing the 

samples in the rig the blade was lowered until contact with the sample was achieved, and 

the displacement reading of the instrument was set to zero. The cross-head was then lift-

ed for 20 mm, and the vertical cutting procedure (without blade inclination) was started.  

For the determination of the cutting parameters cuboid samples of the model sys-

tems (base area, 20 mm x 20 mm; height, 10 mm) were cut at room temperature and in 

fourfold determination. 
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Figure 4.4: Side view of a cutting experiment from Schuldt et al. (2013). 

4.5.2 Test station for high-speed cutting 

The described high-speed test station (HSTS) was developed in collaboration with 

the chair of Processing Machines and Processing Technology (TU Dresden). The basic op-

eration principle is the combination of rotational and linear motion (Figure 4.5). The sam-

ple is placed in an appropriate recess of a sample support skid mounted on a linear ball 

screw actuator. The sample skid is driven towards the cutting blade which is mounted on 

a rotor, and which moves along the perimeter of the rotor with the given circumferential 

velocity. By synchronizing the movement of the linear actuator and the rotor system, the 

sample is perpendicularly cut (almost no blade inclination) with a pre-set cutting velocity. 

During cutting, the blade separates the sample by moving through a gap in the skid 

(width, approximately 5 mm). To capture force as a function of time, the blade is mount-

ed on a piezo-electric force transducer (Type 9027C, Kistler Holding AG, Winterthur, Swit-

zerland) with appropriate data processing (data collection rate, up to 60 kHz). Visual doc-

umentation of the cutting process is achieved by a CR3000x2 high-speed camera system 

(Optronis GmbH, Kehl, Germany). A sketch of the mechanical part of the entire test sta-

tion is shown in Figure 4.6. 
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Figure 4.5: Operating principle of the high-speed test station with a rotor (1), the rotational axis 
(2), a blade (4) mounted on the force transducer (3), the sample (5) in the sample support skid (6), 
the linear axle (7) and the rotational lane with a radius of 0.5 m (8). 

 

Figure 4.6: Outline of the high-speed test station. 

4.5.3 Test setup for blade sharpness index determination 

The elastomer sheets were clamped between two L-shaped aluminum profiles 

(Figure 4.7) where they were fixed with screws by applying a torque of 1.0 ± 0.1 Nm (7440 

ESD torque wrench by Wera Werk, Wuppertal, Germany). Emery paper was placed at the 

inner faces of the L-profiles to avoid slippage between the metal and the samples. This 

specimen fixture was mounted onto a 1000 N force transducer that was placed on the 
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bottom frame of the UTM. The cutting blade was attached to a two-armed steel frame 

(see Figure 4.7) that was fixed to the moving crosshead of the testing machine.  

 

Figure 4.7: Clamping profiles for fixing the elastomer specimens (A), the blade clamp with a blade 
(B). 

4.5.4 Cutting procedure for multi-scale cutting experiments 

The multi-scale orthogonal cutting experiments were performed over 6 magnitudes 

of cutting velocity. This was 10-4, 10-3 or 10-2 m/s for the UTM, and 10-2, 10-1, 100 or 101 

m/s for the HSTS. The tests were performed with different data collection rates; at 10 

m/s, this rate was limited to 6 data points per mm blade displacement. Table 4.4 gives 

detailed information about the testing conditions at the respective test stations.  

 
Table 4.4: Cutting test conditions for multi-scale velocity experiments 

Cutting velocity Test station* Data collection rate 

(m/s)  (kHz)    (data points/mm) 

10
-4

 UTM 00.01  100 

10
-3

 UTM 00.10  100 

10
-2

 UTM 00.50  050 

10
-2

 HSTS 01.00  100 

10
-1

 HSTS 60.00  600 

10
-0

 HSTS 60.00  060 

10
-1

 HSTS 60.00  006 

* UTM universal testing machine, HSTS high-speed test station 
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For the experiments with multi-scale cutting velocity a specific sample support rig 

and blade support was made for the UTM to achieve similar geometrical conditions com-

pared to the high-speed cutting test setup (Figure 4.8).  

 

Figure 4.8:  Sample support rig with a bubble gum sample (white) and blade (black) support of the 
universal testing machine for multi-scale cutting velocity experiments. 

 

For the cutting experiments the samples used had a rectangular cross sectional area 

and were 10  x 20 mm² for the model systems, and 15 x 20 mm² for all foods except bub-

ble gum (12 x 23 mm²) and toffee (15 x 15 mm²). The samples of toffee and bubble gum 

were manually cut out of a string with a nearly rectangular cross-sectional area. Cutting 

width was 10 mm, 12 mm (bubble gum) or 15 mm (other foods); hence the length of the 

cut (blade displacement until geometrical end of the sample) was 20 mm, 23 mm (bubble 

gum) or 15 mm (toffee), respectively (Figure 4.9). 

 

Figure 4.9:  Geometrical cutting conditions for the universal testing machine (UTM) and the high-
speed testing machine (HSTM) with the cutting width w and the length of the cut u. The arrows 
indicate the moving direction of the blade. 
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Cutting experiments were performed in fourfold for the model systems, fivefold for 

toffee and bubble gum, and sixfold for the other foods. All model systems were cut at 

room temperature; the sugar confectionaries were equilibrated to a cutting temperature 

of 20 (only bubble gum), 30 or 40 °C and the other foods to a cutting temperature of 

15 °C in an IPP55 environmental chamber (Memmert GmbH & Co. KG, Schwabach, Ger-

many). 

4.5.5 Parameters from cutting force courses 

Cutting force FC was continuously recorded as a function of blade displacement l 

(for data rate see Table 4.4). Cutting stiffness d [N/mm] that was used for further evalua-

tion refers to the first FC/l derivative:  

  
    

   
⁄  . 

Eq. 4.3 

It was calculated from adjacent data points of the F/l course.  

 

Figure 4.10: Cutting force and cutting stiffness vs. blade displacement in cutting experiments. CI, 
cut initiation; FCI, force at cut initiation, d0, initial stiffness. A, 0 mm; B, 1.0 mm; C, 1.7 mm; D, 3.0 
mm blade displacement. 
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Figure 4.10 exemplary shows FC and d as a function of blade displacement for an 

Elastosil model system f35, and the corresponding pictures of a cutting sequence starting 

with zero displacement (A in Figure 4.10). FC initially rises linearly because of a dominant 

elastic, reversible deformation induced by the action of the blade (B in Figure 4.10). Ac-

cording to Eq. 4.3, this results in a plateau of constant d. A sudden decrease of cutting 

stiffness is associated with irreversible plastic changes in the material (Schuldt et al., 

2013). The displacement where d starts to drop corresponds to macroscopic fracture of 

the sample matrix (C in Figure 4.10). This displacement at which the cut is initiated and 

the corresponding load, were defined as cut initiation CI [mm], and as force at cut initia-

tion FCI [N], respectively. The drop of cutting stiffness takes place before the changes in FC 

become visible and therefore show that d is more sensitive for displaying cutting effects 

(see C in both graphs in Figure 4.10). Cutting stiffness before CI is reached is only related 

to deformation phenomena in the sample, and can be taken as a measure for the initial 

stiffness d0 of the system. d0 can be obtained by extrapolating the linear fit of the stiffness 

plateau (usually between 0.2 and 1.4 mm displacement for the model systems) towards 

zero displacement (see Figure 4.10). After cut initiation, fracture and friction between 

both blade sides and the sample additionally affect cutting forces (D in Figure 4.10). From 

here, it is no longer useful to interpret cutting stiffness as a material parameter. 

In Schuldt et al. (2016a) the deformational pre-crack cutting properties were ana-

lysed with the parameter d0. In later experiments it appeared that this stiffness plateau 

procedure is limited to systems with high cut initiation depths with a distinct plateau (as it 

is the case for the model systems) and is not applicable for many food systems such as 

cheese, toffee, bubble gum, and some vegetables. Another method to achieve a deforma-

tional cutting parameter is the analysis of the slope of cutting force s0 [N/mm] over a se-

ries of adjacent data points in the region where FC increases linearly (B in Figure 4.10); 

this appeared to be the more robust procedure to obtain the deformation cutting param-

eter. It is advantageous if small cut initiation depths (and a minor plateau) are present. 

Figure 4.11 shows for two cutting velocities that the two parameters, d0 and s0, give near-

ly identical values. 

To allow the comparison of cutting forces irrespective of sample dimension, FC was 

normalized to a cut width of 10 mm. For the sake of clarity, this normalized cutting force 
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FN is further expressed in force units [N]. FN,CI [N] refers to FN at CI. The force/displace-

ment curves were analysed to obtain the deformational pre-crack cutting parameter s0 

[N/mm], which corresponds to the slope of FN vs. l in the deformation phase, and which 

was determined by linear regression of the initial linear part of the normalized cutting 

force. 

 

Figure 4.11: Comparison of initial slope of cutting force and initial stiffness for different Elastosil 
model systems and two cutting velocities. Dotted lines: f(x) = 1*x 

 

These initial FN vs. l slopes were then related to v using power-law by 

          Eq. 4.4 

where the constant a and the exponent b reflect the cutting velocity dependence of s0.  

4.5.6 Fracture toughness determination and blade sharpness index 

The blade sharpness index BSI [-] is a dimensionless, objective parameter for sharp-

ness evaluation which was introduced by McCarthy et al. (2007).  The determination of 

the BSI is performed by fixing sheets of the testing materials between two anti-buckle 

clamps (Figure 4.7). The testing material is cut between the clamps, and all parameters 

needed for BSI calculation including fracture toughness can be achieved by choosing an 

appropriate experimental setup. 
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The BSI relates the energy WCI [Nm] necessary to initiate a cut to the product of cut 

initiation depth CI [m], cutting width w [m] and fracture toughness J [J/m²] of the testing 

material  

    
   

        ⁄   
Eq. 4.5 

where BSI = 0 indicates a blade with ideal sharpness, and an increase in BSI can be inter-

preted as decreasing sharpness. McCarthy et al. (2007) concluded that the BSI is inde-

pendent of the cutting material and of the cutting velocity, and that it is only influenced 

by the geometrical properties of the blade. In a subsequent study, McCarthy et al. (2010) 

used a finite element model and showed by simulation that an increase of blade tip radius 

and wedge angle significantly increases the BSI. 

For the calculation of the BSI (Eq. 4.5) of the individual blades, it was necessary to 

perform two different cutting tests with each elastomer. The first cutting test was to de-

termine CI, FN,CI and WCI. The elastomers were cut in the middle of the sample through a 

10 mm slot in the L-profiles (see Figure 4.7). For that purpose, the crosshead of the test-

ing machine was lowered manually until contact between the blade and the specimen 

was achieved. After setting the displacement reading to zero, the crosshead was raised 

for 20 mm. Blade displacement was limited to 5 mm (this was deep enough to initiate a 

cut in each material with any blade), cutting velocity v was 10 mm/min or 1000 mm/min, 

and the F/l data collection rate was 1000 or 300 data points/mm, respectively. Cutting 

stiffness was then plotted against displacement (Figure 4.12). In contrast to McCarthy et 

al. (2007), the stiffness courses for virgin and blunted blades showed qualitative conform-

ity, probably because of using thicker testing materials. The initial cutting stiffness plateau 

reflects the elastic deformation of the specimen in front of the blade, and CI was graph-

ically determined as that displacement at which d starts to decrease drastically (see also 

chapter 4.5.5). This was cross-checked by progressively moving a blade into the specimen 

in 0.1 mm increments and intermittent analysis of the rubber surface. Subsequently, WCI 

= ∫ F ⋅ d l was calculated from the force/displacement data between zero displacement 

and CI. 
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Figure 4.12: Determination of cut initiation depth (left), friction and cutting forces as a function of 
displacement (middle), and determination of fracture toughness (right) in the steady state cutting 
(SSC) region. 

 

In the second cutting test, fracture toughness of the elastomers was determined ac-

cording to McCarthy et al. (2007) by using virgin blades with 20° wedge angle. The elas-

tomers were cut to a depth of 60 mm at v = 10 mm/min or v = 1000 mm/min (data collec-

tion rate: 120 data points/mm). The plot of F vs. l gives the cutting pass X (see Figure 

4.12). The blade was then set again to its initial position, and the cutting procedure was 

repeated by another move of the blade through the same specimen (free pass P) to re-

cord friction force. The residual force (X-P) is consequently related to fracture of the spe-

cimen. It can be clearly seen that the forces reach an equilibrium state at about 20 mm 

displacement where steady state cutting (SSC) begins. Subsequently, the product (X-P) ⋅ l 

is plotted against contact area (m²) between blade and elastomer (see Figure 4.12). Frac-

ture toughness can finally be obtained from the slope of the plot in the SSC region (i.e., at 

25 –50 mm displacement). 

The elastomers (EPDNs/h 10 mm thick; NBR 6 mm thick) were manually cut into 

40 x 95 mm² sheets with a scalpel. For the two reference blades, all individual measure-

ments were performed at 10 mm/min and 1000 mm/min and for the three elastomers in 

fourfold determination. Experiments with the other blades (see Table 4.3) were also per-

formed in fourfold determination but only at v = 10 mm/min and only for EPDMs. All 

measurements were performed at room temperature. 
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5 Results and discussion 

5.1 Developing methods for cutting parameter detection 

The determination of fracture, deformation and cutting parameters of foods often 

provides distinct deviations because of the natural variance or heterogeneous material 

properties of the products (see for example Alvarez et al., 2000; Rohm et al., 1997; 

Schuldt et al., 2016b; Taylor et al., 2011; Vandenberghe et al., 2014). By use of elastomers 

as model systems these limitations can be minimized for better accuracy of the measured 

parameters. In chapter 5.1.1 the development of viscoelastic polymers as model systems 

that reflect the cutting properties of foods will be introduced. 

The scope of chapter 5.1.2 is to identify parameters from cutting force courses of 

food model systems that characterize the deformation resistance of the materials in vicin-

ity of the blade tip. These parameters will be referred to deformation behavior of the ma-

terials characterized by dynamic mechanical analysis at small deformation. Finally rate-

dependence of the deformation parameters will be pointed out. 

In chapter 5.1.3 general fracture parameters will be referred to parameters from 

cutting force courses in dependence to cutting velocity. For foods the literature proposes 

different methods for characterizing fracture toughness or the energy that is necessary to 

break material cohesion and create new surfaces as e. g. wedge fracture tests (Vincent et 

al., 1991) or edge-notched tension or bending tests (Gamonpilas et al., 2009; Kamyab et 

al., 1998; Skamniotis et al., 2016; Taylor et al., 2011). The different methods can vary for 

example in mode of fracture (Vincent et al., 1991) or direction of deformation (Luyten et 

al., 1992); determination of fracture toughness of foods itself “is complex because of a 

high degree of rate dependence and non-linearity” (Kamyab et al., 1998). That may be 

reasons why different methods for characterizing fracture properties of foods can give 

substantial variations (Gamonpilas et al., 2009; Kamyab et al., 1998; Luyten et al., 1992). 

For fracture parameter determination it therefore seems reasonable to choose a method 

with equal deformation and fracture conditions as the cutting application to that this pa-

rameter should be referred to. Indeed the literature provides certain methods for frac-
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ture toughness determination out of cutting experiments with different setups as orthog-

onal cutting with a rake (Skamniotis et al., 2016) or with straight edge blades (Cho & Lee, 

1998; McCarthy et al., 2007) as well as wire cutting (Kamyab et al., 1998).  

5.1.1 Development of food model systems 

Several attempts have been made to make use of elastomers for the simulation of 

various bio-based materials. For the instrumental quantification of chewing forces, Ko-

hyama et al. (2004) used silicone rubber as food model to overcome issues of poor repro-

ducibility that was observed with real foods. Other authors used silicone rubber to simu-

late cutting properties of biological tissues such as skin (McCarthy et al., 2007), or to 

simulate the rate dependent development of shear moduli of soft solids in medical appli-

cations (Shergold et al., 2006). 

A general requirement of model systems is that they represent the relevant attrib-

utes of the original system. That implies that the main properties of the originals are iden-

tified (Stachowiak, 1973). As important criteria for food model systems for cutting the 

following attributes can be defined: 

• qualitatively similar cutting force courses in a similar force scope, 

• similar values for cut initiation and force at cut initiation, 

• similar viscoelastic and mechanical properties. 

Additionally it should be possible to adjust the material characteristics by proper selection 

of composition to study effects concerning viscoelasticity. 

Many sliceable foods such as cheese or sausages comprise a bio-polymeric network 

structure containing solid, semi-solid and liquid fillers (Barden et al., 2015; Bruno & Mo-

resi, 2004; Jaros et al., 2001). As reference foods for slicing operations one can therefor 

choose Gouda cheese and Leberkäse. Both systems show a linear increase of cutting force 

at the beginning of cutting procedure which means that cutting stiffness is constant 

(Figure 5.1). For Gouda this plateau is very narrow and more like a maximum. If the blade 

advances in the cutting substrate cutting stiffness drops significantly when the cut is initi-

ated (Schuldt et al., 2013). In the case of young Gouda cheese this happens early at ap-

proximately 0.2 mm. Compared to that Leberkäse is deformed elastically in front of the 
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cutting edge over a larger blade displacement scale. Consequently a cutting stiffness plat-

eau is formed until approximately 2 mm. At higher blade displacement cutting stiffness 

weakens and marks a cut initiation at 2.8 mm. After cut initiation the force course pro-

gressively increases for Gouda which indicates a substantial contribution of friction to the 

overall cutting force. For Leberkäse friction has a minor role because of no further force 

increase after cut initiation. In comparison to standard elastomers (see Schuldt et al., 

2013) both food systems show low maximum normalized cutting forces between 1 N and 

2 N.  

 

Figure 5.1: Normalized cutting force and cutting stiffness of Gouda and Leberkäse at a cutting 
velocity of 10 mm/min. Only selected datapoints are displayed as sample identifiers. Cutting stiff-
ness is referred to normalized cutting force. 

 

Elastomers also consist of a polymer-matrix in that liquid or solid fillers can be dis-

persed. These can influence the mechanical properties as tensile strength, hardness or 

viscoelasticity (Zhang et al., 2011). Moreover elastomers can be supplied in big quantity 

from one batch and comprise other advantages concerning geometry and handling (e.g., 

negligible temperature dependency). The silicone based elastomer Elastosil was used to 

evaluate its potential as food model. By adding fillers or softeners it is possible to adjust 

the modulus or viscoelasticity. 

Figure 5.2 depicts cutting force and cutting stiffness vs. blade displacement of dif-

ferent Elastosil model systems (for sample codes see Table 4.1). They showed a high 

quantitative and qualitative equivalence to food systems containing bio-polymeric matri-

ces (Figure 5.1). Maximum normalized cutting forces were in the range of 2.5 to 7.5 N 
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which is in the same magnitude as the selected foods. The addition of a filler resulted in 

an increase of FC and, hence, higher stiffness before cut initiation. Incorporating a soften-

er in the matrix had the opposite effect, namely a decrease of FC and d. After cut initia-

tion, friction forces that are proportional to the contact area appeared, and led to a fur-

ther increase of FC when blade displacement increased. 

 

Figure 5.2: Cutting force and cutting stiffness of different model systems at a cutting velocity of 
10 mm/min. Only selected data points are displayed as sample identifiers. For sample code, see 
Table 4.1. Cutting stiffness is referred to normalized cutting force. 

 

Model systems without (reference) or with a low amount of filler (sample f20), and 

those with softener (f20s20, f35s20) showed a distinctive softness. These systems did not 

exhibit a stiffness plateau with constant values but a continuous or even progressive rise 

of d before cut initiation. In these cases samples get compressed, and the rigid probe 

support influences the development of cutting force with ongoing blade displacement. 

Consequently, in these cases, the cutting stiffness can no longer be considered as only 

being sample dependent, and interpretation of the data has to be done with care. 

Nevertheless, FN,CI reflects the force that is needed to provoke a macroscopic fracture of 

the sample matrix and can therefore be interpreted independently from the development 

of d. 

Table 5.1 depicts selected model systems and shows that the addition of fillers led 

to a progressive reduction of CI and FN,CI. These systems were less compliant, and a lower 

force was needed to induce macroscopic fracture at the surface. A probable cause for the 

latter is the alteration of the network because of a reduced strength of binding forces 
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between matrix and filler particles. The addition of a softener increased compliance and, 

hence, cut initiation depth (see also Zhang et al., 2011). For f35s20 and f20s20, there was 

an increase in CI and a decrease in FN,CI compared to the systems without softener but 

equal amounts of filler, indicating a further alteration of the network. f20s20 did not 

show a cut initiation within 8 mm of blade displacement. Over all the systems with high 

amounts of filler show CI values that are well in the range of the food examples, especially 

Leberkäse. In comparison Gouda has very low CI with high standard deviation. This 

underlines the need of a model system to examine cutting properties. 

 
Table 5.1: Cutting parameters of selected food and Elastosil model systems at 10 mm/min 
cutting velocity (for sample codes see Table 4.1). 

Sample Cut initiation [mm] Normalized force at 
cut initiation [N] 

Initial slope of cutting force 
[N/mm] 

Gouda 0.2 ± 0.1  0.08 ± 0.01 0.57 ± 0.07 

Leberkäse 2.8 ± 0.2  1.28 ± 0.17 0.45 ± 0.02 

Reference
a
 6.1 ± 0.2  5.62 ± 0.20 0.49 ± 0.01 

f20 5.0 ± 0.1  4.51 ± 0.22 0.71 ± 0.05 

f35 1.5 ± 0.2  2.16 ± 0.35 1.42 ± 0.08 

f45 0.8 ± 0.1  1.70 ± 0.20 2.24 ± 0.06 

f20s20 -   - 0.23 ± 0.03 

f35s20 5.2 ± 0.0  1.73 ± 0.10 0.24 ± 0.02 
a
 model system (Elastosil) without filler 

 

The initial slope of cutting force s0 is unaffected by stiffening effects due to the 

sample support rig. The addition of filler and softener showed distinctive effects on the 

development of the cutting force. Systems containing the filler showed a high, and 

systems containing the softener showed lower cutting forces at the beginning of the 

measurements. Hence, the addition of the filler increased s0, whereas the addition of the 

softener reduced s0 (Table 5.1). It should also be mentioned that the reducing effect 

caused by the softener was stronger than was the increasing effect caused by the filler 

(see f20s20 and f35s20 vs. f20 and f35, respectively). 

In general foods have viscoelastic properties and, compared to technical materials 

as wood, metals or plastics, the hardness is low. Table 5.2 gives an overview of complex 

modulus and loss factor for selected foods. Most of the systems exhibit dominantly elastic 
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properties at the given frequency (loss factor < 1), except toffee with dominant viscous 

contribution. The complex moduli are in the range from 0.44 to 5.60 MPa.  

 
Table 5.2: Mechanical propertiesa of selected food systems at 15 °C 

Sample E* at 10 rad/s [MPa] tan δ at 10 rad/s [-] 

Bergkäse 3.17 ± 0.10 0.277 ± 0.002 

Gouda
b
 0.50 ± 0.03 0.314 ± 0.007 

Leberkäse 0.44 ± 0.01 0.170 ± 0.014 

Salami 3.32 ± 0.39 0.240 ± 0.014 

potato 5.60 ± 1.21 0.157 ± 0.014 

toffee
c
 0.87 ± 0.05 1.500 ± 0.044 

bubble gum
c
 2.55 ± 0.15 0.346 ± 0.021 

a
 E*, complex modulus from dynamic mechanical analysis; tan δ, loss factor 

b
 data at room temperature; 

c
 data at 30 °C, G* from shear modus 

 

 

Table 5.3: Mechanical propertiesa of the model systems 
(for sample codes see Table 4.1). 

Sample E* at 10 rad/s [MPa] tan δ at 10 rad/s [-] 

Reference 0.30 ± 0.02 0.241 ± 0.007 

20 0.69 ± 0.03 0.318 ± 0.002 

f35 1.40 ± 0.06 0.378 ± 0.003 

f45 2.74 ± 0.13 0.411 ± 0.020 

f20s20 0.80 ± 0.01 0.441 ± 0.001 

f35s20 0.41 ± 0.02 0.564 ± 0.017 
a
 E*, complex modulus; tan δ, loss factor 

 

Table 5.3 depicts mechanical properties of selected Elastosil model systems.  

 

The addition of corn starch as filler led to a successive and significant increase of E* for 

the sample with 45 % (w/w) filler (f45), and also to a significant increase of the loss factor 

tan δ. The increase of E* is the result of the inclusion of a considerable amount of rigid 

particles in the gel network matrix (Bokobza, 2009; Jampen, 2001). The reference and the 

filled polymers exhibited a loss factor < 1, which corresponds to predominantly elastic 

properties. An increase of tan δ means that viscous contributions become more 

important in the system. The fact that the incorporation of the filler resulted in an 
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increase of tan δ points on an alteration of the network because of poor interactions 

between the filler and the polymer matrix (Chen & Dickinson, 1999). The addition of 

silicone oil as softener reduced E* and increased tan δ which agrees with Zhang et al. 

(2011) who documented a decrease of hardness, crosslinking density, and an increase of 

tan δ and of the fracture strain when silicone oil was added to silicone rubber. The 

addition of the softener elevated tan δ to a higher extent than in mixtures without 

softener that contained a similar amount of filler. This indicates a further alteration of the 

network structure. Depending on composition the complex moduli are in the range of 0.3 

to approximately 3 MPa and loss factors are between 0.24 and 0.56. This demonstrates 

that the DMA properties of a broad selection of foods (see Table 5.2) are matched by the 

model systems. 

From these results it can be concluded that, compared to polymeric food systems 

the use of Elastosil silicone rubber with varying filler and softener content provides model 

systems with similar cutting force courses and similar cutting parameters. By proper se-

lection of system ingredients it is possible to adjust the viscoelastic and mechanical prop-

erties which lie in the scope of a broad selection of foods. Over all the model systems ful-

fill the above-named attributes as a food model system for cutting applications. 

5.1.2 Deformation cutting parameter 

For all model systems, the complex modulus showed power law dependence on an-

gular frequency (Figure 5.3). From Eq. 4.2 it is possible to derive the corresponding slopes 

ni (Bruno & Moresi, 2004) (Table 5.4). The lowest value refers to the reference, and the 

addition of filler and softener leads to an increase of n, indicating higher rate depend-

ence. This comes from more pronounced viscous contribution properties that are reflect-

ed by tan δ (Table 5.2). According to Booij and Thoone (1982), there is an approximate 

relation between δ [rad] and n:  

   
 ⁄      Eq. 5.1 
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In case of gel systems with tan δ < 1, this relation applies at higher angular frequen-

cy and can be used where Eq. 4.1 is valid (Bruno & Moresi, 2004; Friedrich and Heymann, 

1988). The fact that δ measured in the experiments and δ from Eq. 5.1 is highly intercor-

related with a correlation coefficient close to 1 therefore means that the frequency de-

pendence of the samples highly depends on their viscoelastic properties: the more im-

portant the viscous contribution of the system, the higher is n. Consequently, a system 

showing a higher n and δ can be expected to be more sensitive to different loading rates 

or cutting velocities than a system with a lower n and δ. 

 

Figure 5.3: Frequency dependence of Elastosil model systems with different fillers. For sample 
code see Table 4.1. 

 
Table 5.4: Mechanical propertiesa of the model systems 
derived from DMA (for sample codes see Table 4.1) 

Sample n [-] 0.5 π ⋅ n [-] 

Reference 0.153 ± 0.002 0.240 ± 0.004 

20 0.197 ± 0.001 0.309 ± 0.002 

f35 0.230 ± 0.004 0.361 ± 0.006 

f45 0.252 ± 0.010 0.396 ± 0.015 

f20s20 0.268 ± 0.002 0.421 ± 0.003 

f35s20 0.334 ± 0.003 0.524 ± 0.004 
a
 n, logarithmic slope of E* vs. angular frequency; 0.5 π ⋅ n, 

phase shift calculated by Eq. 5.1 
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Figure 5.4: Complex modulus measured at 1, 10 and 100 rad/s (identifiers, see insert) as a func-
tion of the normalized initial slope of cutting force s0 derived from cutting experiments at 10 
mm/min (left) and 1000 mm/min cutting velocity (right). Each data point at a distinct s0 repre-
sents one model system. 

 

The comparisons of s0 from cutting experiments at different cutting velocity with E* from 

DMA at different angular frequency showed significant correlations that were indepen-

dent of the model systems (r ≥ 0.97) (Figure 5.4). E* is defined as the ratio of the stress to 

strain amplitude at low deformation, and stress is calculated from the oscillating force 

amplitude that is related to the cross-section of the sample. On the other hand, the initial 

slope of cutting force is derived from the force generated through a one-dimensional de-

formation exerted by a cutting blade. In both cases, force appears to be proportional to 

deformation so that Hooke’s law is valid. Figure 5.4 also shows that E* and d0 can be re-

garded as equivalent material parameters, which indicates that the rate dependence in 

both methods is similar. In other experiments (results not shown) it was observed that 

cutting force and cutting energy of nitrile butadiene rubber was power law related to cut-

ting velocity in the range from approx. 100 – 105 mm/min. Consequently, the relationship 

between individual s0,i and individual cutting velocities vi can be established similar to Eq. 

4.1:  

   
        

      
⁄  

Eq. 5.2 
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This mi ratio reflects to which extent cutting stiffness and pre-crack forces increase when 

cutting velocity is increased by one magnitude (Figure 5.5). As was observed for tan δ and 

n, the addition of filler and/or softener led to an increase of mi, which was highest for the 

system f35s20. This means that the pre-crack forces show a higher increase with 

increasing cutting velocity when viscous contributions in the systems are more important. 

 In Figure 5.5, mi from Eq. 5.2 is also plotted against the phase shift obtained from 

DMA experiments at 10 rad/s, and δ calculated from the E*/ω slope (Eq. 5.1). The linear 

relationship (r > 0.97) between the cutting velocity dependence of s0 (i.e., mi), and the 

phase shift extracted from DMA experiments by two different procedures demonstrate 

that the viscoelastic properties of a system have a significant impact on the pre-crack 

cutting force. Therefore, it appears reasonable to predict pre-crack cutting forces at high 

cutting velocity when DMA parameters and cutting force values at moderate cutting 

velocity have been already measured. This assumption, however, only holds if no 

fundamental change in the mechanical properties takes place at very high cutting velocity 

(which might be the case for viscoelastic solids; Mulliken and Boyce, 2006; Shergold et al., 

2006) and will be analysed in section 5.3.3.  

 
Figure 5.5: log(Δs0) / log(Δv) for the different model systems. Power law dependence of the initial 
cutting stiffness s0,i on cutting velocity vi of different model systems (left, for sample code, see 
Table 4.1), and power law dependence of s0,i on vi as function of the phase shift from dynamic 
mechanical analysis (DMA, right). 

 

In summary, silicone rubbers with fillers can be considered as useful model systems 

for food with tailor-made viscoelastic properties, and as suitable for linking mechanical 
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properties at small deformation to cutting behavior: the initial slope of force from cutting 

experiments appears as useful material parameter to conclude on the complex modulus 

from small deformation testing, and vice versa. s0 measured at different cutting velocity 

reflects the rate dependence during cutting processes, and can be related to viscoelastic 

material parameters such as the loss factor tan δ or n obtained by DMA. The more viscous 

(or the higher tan δ) a cutting material is, the more it is sensitive to velocity changes in-

duced by angular frequency in small deformation experiments, but also to different cut-

ting velocities. Small deformation testing is therefore very useful to predict cutting prop-

erties of different materials before cut initiation. Consequently, the modification of visco-

elastic and deformation properties of particular foods, or the modification of the cutting 

process may be a sufficient tool to optimize high-speed cutting applications. 

5.1.3 Fracture cutting parameter  

When cutting with a blade or wire into a sample the measured fracture energy is 

highly correlated to the blade tip radius (Goh et al., 2005; Kamyab et al., 1998). For frac-

ture toughness determination from blade cutting tests it therefore is essential to charac-

terize the cutting tool geometry, i. e. the sharpness of the blade. Therefore the sharpness 

of blades will be characterized by different parameters (including the BSI) and fracture 

toughness of the elastomeric model systems will be determined after McCarthy et al. 

(2007). Then this fracture toughness will be linked to parameters from cutting experi-

ments that refer to the fracture of the cutting substrates. 

In a previous study, Schuldt et al. (2013) showed that the blade tip radius is a mea-

sure for the geometrical characterization of blades, and that it can be taken as appropri-

ate measure to quantify the abrasion of blades that leads to sharpness reduction. Figure 

5.6 depicts the relationship between CI and blade tip radius for EPDMs that was cut at v = 

10 mm/min. CI was, independent of blade surface finishing, almost identical for the 20° 

blades. An increase in the blade tip radius that comes from different wedge angles result-

ed in an increase of CI, as did the increase in the blade tip radius that comes from abra-

sion of the 20° blades (r = 0.94, p < 0.05). The dependency of FN,CI on blade tip radius fol-

lows the same pattern: again, effects of blade surface finishing (insignificant effect on 



58 
 

blade tip radius; see Table 4.3) are negligible whereas the increase in blade tip radius 

caused by changes in blade geometry or induced by abrasion result in a significant (r = 

0.97) increase of this measure. 

 
Figure 5.6: Cut initiation depth and normalized force at cut initiation as a function of blade tip 
radius for elastomer EPDMs cut with different blades at 10 mm/min. White symbols, virgin blades 
with different wedge angle (indicated in figure). Black symbols, 20° blades with different degree 
of abrasion (see Table 4.3). Grey symbol, 20° electro-polished blade. Data are arithmetic means ± 
standard deviation of (n=8) determinations (two blades per geometry, quadruplicate testing). 

 

The fact that both CI and FN,CI depend linearly on the blade tip radius implies that, 

for a particular material, both parameters might be taken as an indicator for blade sharp-

ness. The respective correlation coefficient between CI and FN,CI is significant (r = 0.99). 

 
Figure 5.7: Cut initiation depth, normalized force at cut initiation, fracture toughness and blade 
sharpness index as a function of cutting velocity for EPDMs (dark grey), EPDMh (grey) and NBR 
(light grey) for the reference blade (20°, virgin). Data are arithmetic means ± standard deviation of 
(n=8) determinations (two blades per geometry, quadruplicate testing). Different letters in a block 
indicate significant (p < 0.05) differences. 
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For 20° virgin blades, Figure 5.7 summarizes the influence of cutting velocity and 

cutting material on CI, FN,CI, J and BSI. As already shown in chapter 5.1.1, cut initiation 

depth is higher for the softer material, especially at v = 1000 mm/min. Despite a similar 

Shore A hardness, NBR exhibited a significantly lower CI than EPDMh. Similar trends are 

evident for the force at cut initiation, meaning that a lower force is necessary to initiate a 

crack in the NBR material. 

McCarthy et al. (2007) also tested velocity effects during cutting of polyurethane 

and did not observe a rate dependence for cutting force, CI and, hence, FN,CI. This is in 

contrast to the results in this study: an increase of cutting velocity resulted in a significant 

increase of CI for EPDMs and NBR, and in a significant increase of FN,CI in case of all mate-

rials. A rate dependency of fracture strain and fracture stress in compression or tensile 

testing was observed by, e.g., Fatt & Ouyang (2007) and van Vliet et al. (1993). In contrast 

to the results obtained with different blades but one particular cutting material and velo-

city (see Figure 5.6), the correlation coefficient between CI and FN,CI is remarkably lower 

but still significant (r = 0.80) when different materials and different cutting velocities are 

considered. A higher cutting velocity leads to a higher cutting force (results not shown) 

which corresponds to a typical rate-dependent behavior for rubber (see for example 

Boisly et al., 2016 or Yang et al., 2000). Fracture toughness, a parameter that is necessary 

to calculate the blade sharpness index (Eq. 4.5), was in a range that was specified for oth-

er polymer materials (McCarthy et al., 2007; Shergold & Fleck, 2004), and depended sig-

nificantly on cutting velocity. This is typical for rate-dependent solids (Landis et al., 2000) 

and has also been observed for viscoelastic food materials such as cheese or starch gels 

(Gamonpilas et al., 2009; Kamyab et al., 1998). Whereas J is independent of material 

hardness and similar for EPDMs and EPDMh, NBR showed significantly lower values at 

both cutting velocities. 

Finally, the blade sharpness indices for the reference blades, obtained after cutting 

the different materials at two different cutting velocities, are also depicted in Figure 5.7. 

Generally, BSI of the industrial blade geometries used in this study  ranged from 0.25 – 

0.35, which is by a factor of 1.5 – 2.0 higher than the BSI that was calculated by McCarthy 

et al. (2007) for scalpels and commercial razor blades, but in the range of the BSI of 

blunted scalpel blades.  It is also evident from the results in this study that, at least for the 
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tested conditions, neither material properties nor cutting velocity show a significant in-

fluence on the blade sharpness index (see also McCarthy et al., 2007). 

 

 

Figure 5.8: Blade sharpness index as a function of blade tip radius, or normalized force at cut initi-
ation. Data are from cutting of EPDMs at 10 mm/min.  White symbols, virgin blades with different 
wedge angle (indicated in figure). Black symbols, 20° blades with different degree of abrasion (see 
Table 4.3). Grey symbol, 20° electro-polished blade. Data are arithmetic means ± standard devia-
tion of (n=8) determinations (two blades per geometry, quadruplicate testing). 

 

Figure 5.8 shows that the blade sharpness index, determined by using blades with 

different wedge angle or differently abraded 20° blades, depends linearly and significantly 

on blade tip radius (r = 0.95), and even more on FN,CI (r = 0.99). The general trends are 

similar as observed for CI versus blade tip radius (see Figure 5.6). In the case of virgin 

blades with increasing wedge angle, the BSI increase is not disproportionate but follows 

the fabrication-induced tip radius increase. Hence an increase in the wedge angle at con-

stant blade tip radius does not lead to an increase of BSI. These experimental data are 

contradictory to simulation results of McCarthy et al. (2010) who calculated a higher BSI 

for larger wedge angles at similar blade tip radii. The higher r of the linear relationship 

between BSI and FN,CI also supports Schuldt et al. (2013) who argued that a mechanical 

blade analysis is much more sensitive for the detection of wear than the optical approach.  

If FN,CI can be taken as a measure for the sharpness of a blade then it should be pos-

sible to derive a relation between this cutting force parameter and the resistance of ma-

terials against fracture when cutting the materials with sharp blades. From Figure 5.7 one 

can suppose that FN,CI and fracture toughness are correlating. Covering all materials at 
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three different cutting velocities with sharp blades the correlation between FN,CI and J is 

significant (p = 0.001) (Figure 5.9). Taking into account that FN,CI is related to fracture 

stress σf contributing elastic and viscous energy, FN,CI can be taken as a measure that cor-

relates with fracture toughness especially if the energy contribution of the system is do-

minantly elastic.  
  

 

Figure 5.9: Force at cut initiation versus fracture toughness for EPDMs, EPDMh and NBR at 
10 mm/min, 100 mm/min and 1000 mm/min of (n=8) determinations (two blades per data point, 
quadruplicate testing) with regression line (r = 0.93, n = 9).  

 

Unlike to NBR and EPDM the fracture toughness determination of the Elastosil 

model systems according to McCarthy et al. (2007) showed irregularities because of dif-

ferent material characteristics. In contrast to the manufactured elastomers the Elastosil 

systems are less stiff, reflected by a lower complex modulus of one magnitude (compare 

Table 5.3 and the DMA data in chapter 4.1.1). Hence the mounting of the samples be-

tween the L-profiles with screws led to compliance and relaxation of the material so that 

no constant pre-tension could be applied. To overcome this issue spring clamps were 

used to apply a lower constant force to the L-profiles. Nevertheless measurements 

showed some controversy effects as the force of the free pass (second run in the pre-cut 

material) was very close to or even higher than the  force of the cutting pass (first cut in 

the material) which is not explainable by means of fracture mechanics (McCarthy et al., 

2007). Interestingly this effect was more pronounced at higher cutting velocities. It was 

supposed that the reduced surface pressure by the spring clamps in combination with the 

soft materials led to slip out of the mounted material into the cutting slot as the material 
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was cut the first time. Hence more material had to be displaced by the blade in the se-

cond run with the effect that the measured forces were falsely raised. 

It can be concluded that the blade sharpness index is suitable for characterizing the 

sharpness of blades for food processing. It is independent of the cutting velocity and, in 

contrast to McCarthy et al. (2010), independent of the wedge angle. Normalized to geo-

metrical and fracture properties of the specimen substrate, BSI only depends on the blade 

tip radius itself. CI and especially FN,CI provide measures of sharpness equivalent to the BSI 

once a particular specimen substrate and a single velocity are used. In case a simple and 

fast sharpness characterization for a specific cutting application is needed, CI and FN,CI can 

however be advantageous. 

Independent of cutting substrate and cutting velocity fracture toughness showed a 

significant correlation to sharpness parameter FN,CI that can simply be determined from 

cutting force courses. Fracture toughness could not be determined for the soft Elastosil 

model systems by the method proposed by McCarthy et al. (2007). Hence for further in-

vestigations the parameter FN,CI will be taken as indicator of fracture resistance of the 

cutting material. It should not be used as a quantitative measure to compare different 

systems with distinct viscoelastic variation. Moreover CI gives additional information 

about the amount of deformation until fracture in the sample is provoked by the blade. 

5.2 High-speed cutting on the example of bubble gum  

5.2.1 Cutting forces over 6 decades of cutting velocity 

Figure 5.10 shows the progress of force during cutting of a model bubble gum, co-

vering 6 magnitudes of cutting velocity that were applied using the universal testing ma-

chine (10-4, 10-3 and 10-2 m/s), or the high-speed test station (10-2, 10-1, 100 and 101 m/s). 

Qualitatively, all cutting force profiles exhibited a similar shape, and the cutting forces 

recorded at 10-2 m/s with both the UTM and the HSTS show a sufficient agreement. Some 

slight deviations of the cutting force profiles at the beginning of the cutting process may 

be attributed to the dynamic response characteristics of the force transducer systems (a 

strain gauge transducer in the UTM, a piezo transducer in the HSTS) (Pohlit et al., 2008). 
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Figure 5.10: Cutting force vs. blade displacement (n = 5) for bubble gum (30 °C) cut at six different 
velocities with two testing machines. Grey lines, universal testing machine. Black lines, high-speed 
test station. The arrow indicates that the onset of the steady-state cutting plateau moves to lower 
displacement at higher cutting velocity. 

 

From a quantitative point of view, the cutting force increases continuously with in-

creasing cutting velocity.  For low velocities, such a behavior was also observed in earlier 

cutting experiments performed on a viscoelastic food model on elastomer basis (Boisly et 

al., 2016; Schuldt et al., 2016a). Cutting forces generally arise from the resistance of a 

material against deformation, and from fracture and friction effects in the time course 

where the cutting blade is driven through the product. The increase in cutting force with 

increasing cutting velocity can be attributed to the rate-dependent behavior of viscoelas-

tic materials at small (see chapter 5.1.2) and large deformation (Boisly et al., 2016). Ten-

sile tests until rupture also indicated that fracture resistance is higher at higher velocity 

(Schmidt et al., 2018). The friction at the interface between cutting blade and product is 

determined by the complex interplay of adhesion phenomena, surface deformation, and 

changes in contact area (see, for example, Lovell & Deng, 1999). The evaluation of the 

contribution of friction to overall cutting force in dependence to cutting velocity is there-

fore not trivial, and out of the scope of this study. 

In pure viscous materials, all deformation energy is dissipated and no fracture oc-

curs (Luyten et al., 1991). The viscous response of the gum is clearly visible in the cutting 

force profiles at low cutting velocity (i.e., 10-4 – 10-2 m/s) where the initial cutting force 

increase is less pronounced (see Figure 5.10). These gentle slopes suggest that the mate-
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rial is squeezed and deformed when the blade initially cuts into the sample. In addition to 

a more pronounced initial cutting force increase, the onset of the cutting force plateau is 

reached at a lower blade displacement when cutting velocity is increased. This plateau 

indicates steady-state conditions where the contributions of deformation, fracture and 

friction to the cutting force are in equilibrium and do not further change (McCarthy et al., 

2007). 

5.2.2 Viscoelastic effects introduced by cutting velocity and temperature 

Figure 5.11 shows a series of movie stills taken during cutting of bubble gum with 

the HSTS device at 1 or 10 m/s. At 30 °C sample temperature, the more viscous nature of 

the material at 1 m/s is evident (Figure 5.11, left): the image reflects a significant defor-

mation of the gum at the onset of the cut where the blade has already separated the gum  

 

Figure 5.11: Movie stills from videos taken during cutting at the respective conditions (upper im-
ages), and representative photographs of the cutting surfaces taken from different directions.  
Arrows indicate direction of cutting. 

 

(behind the blade). This type of deformation is responsible for the plastic distortion of the 

cutting surface, especially at the front and the back of the sample (bottom photographs in 

Figure 5.11, left), which contributes to the low quality of the cutting surface. The effect of 

increasing cutting velocity to 10 m/s is that the overall sample deformation introduced by 
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the blade is significantly decreased (see movie still, middle of Figure 5.11, right side of the 

sample behind the blade), and the corresponding cutting surface shows almost no plastic, 

irreversible deformation, meaning that the quality of the cutting surface is significantly 

improved. 

A general property of many polymeric materials is that their small and large defor-

mation behavior, as well as fracture and friction properties can be explained by tempera-

ture time superposition (Cho & Lee, 1998; Lorenz et al., 2013a; Pohlit et al., 2008) which 

has been applied to polymeric food systems by e.g. Sing et al. (2006). Cho & Lee (1998) 

described the tts principle as “… the time and the temperature are equivalent … that data 

at one temperature can be superimposed upon data at another temperature by shifting 

the curves along the time axis”. This means that decreasing sample temperature at a gi-

ven deformation rate is equivalent to an increase of deformation rate at constant sample 

temperature. Indeed, cutting tests performed at a velocity of 10 m/s and at 20 °C showed 

some interesting effects. In contrast to cutting at the same velocity at 30 °C, no defor-

mation of the material through the cutting blade was observed (Figure 5.11, right). From 

the movie still of the cutting sequence it can be seen that an anticipatory crack is emana-

ting in front of the cutting edge of the blade which is a typical characteristic of brittle frac-

ture with unstable crack growth (Bryan & Ahuja, 1993; Farahmand, 2001). This phenome-

non can be attributed to fracture mechanics which differs for ductile and brittle fracture: 

whereas ductile fracture is characterized by sufficient plastic deformation before crack-

ing, the latter proceeds without plastic deformation (Bryan & Ahuja, 1993; Gdoutos, 

2005) and is elastic in nature (Farahmand, 2001; van Vliet, 1996). Materials that show 

plastic or ductile behavior at low deformation rate may behave elastic or brittle when 

stressed at a sufficiently high deformation rate (Loncin & Merson, 1979), or at low tem-

perature (which is denoted as tough-to-brittle transition; Langer et al., 2001). Hence, brit-

tle fracture appears if the time scale is too short for viscous energy dissipation and if the 

deformational energy overcomes the amount of fracture energy (van Vliet et al., 1993). 

This “excessive” energy is then suddenly converted into an anticipatory crack and into 

acoustic energy that could be observed as an acoustic shock in the test field. This is in line 

with observations from the DMA experiments, also showing that the reaction of the bub-
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ble gum towards deformation tends to be more elastic when decreasing sample tempera-

ture and/or when increasing angular frequency. 

 

Figure 5.12: Three consecutive movie stills from a cut performed at 10 m/s, sample temperature: 
20 °C. Time interval between neighboring pictures is 0.1 ms, corresponding to a 1 mm travelling 
distance of the blade. The arrow points to the sudden crack that appears in the stressed material. 

 

As can be seen from consecutive images of the cutting sequence recorded at 104 fps 

(Figure 5.12), this crack suddenly appears from one picture to another (i.e., within 

0.1 ms). Assuming that, at fracture initiation, the distance from the blade tip to the end of 

the sample is 10 mm implies a crack speed of at least 100 m/s which is in the range of 

that of polymeric systems (Dear, 1996). Crack propagation can be regarded as a stochastic 

process that is related to the inner structure of the material, and to initial defects such as 

cracks, voids or inclusions (Bryan & Ahuja, 1993; Farahmand, 2001; Gdoutos, 2005). This 

means that brittle fracture does not occur directed and predictable but is a somehow 

random phenomenon that can even lead to crack branching (Bobaru & Zhang, 2015) and 

product splintering. Depending on the product, both effects may lead to a low cutting 

quality. 

Crack path instability because of brittle fracture can lead to a rough cutting surface 

(Bobaru & Zhang, 2015) which was also observed in our experiments (Figure 5.11, right, 

bottom). By analysing the cutting surface of the sample, the initiation of brittle fracture in 

the sample can therefore be estimated. 

All effects shown in Figure 5.11 are further illustrated by the high-speed videos 

(Video 5.1: 1 m/s, 30 °C; Video 5.2: 10 m/s, 30 °C; Video 5.3: 10 m/s, 20 °C)1. 

                                                      
1
 See permalink http://dx.doi.org/10.25532/OPARA-5; for further information see List of videos 

http://dx.doi.org/10.25532/OPARA-5
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5.2.3 Quantitative cutting force analysis at different conditions 

Apart from the qualitative viscoelastic effects observed at varying cutting velocity 

and temperature, it is also the development of the cutting force FC that is significantly 

affected by the applied condition. Cutting the bubble gum at 1 m/s resulted in a continu-

ously increasing FC that, from approx. 7 mm blade displacement onwards, became con-

stant once steady-state cutting was achieved (Figure 5.13, left); FC remained constant 

even after the sample was completely separated (blade displacement > 23 mm). This can  

 

Figure 5.13: Cutting force vs. blade displacement of bubble gum (n = 5) cut at different velocity 
and temperature. 

 

be attributed to a distortion of the sample in the cutting gap because of sample defor-

mation in front and at the back of the blade. Increasing sample temperature led to a de-

crease of the cutting force, which is associated to lower sample stiffness. When cutting 

samples at 30 °C and 40 °C but at 10 m/s, the maximum FC was by a factor of approx. 2.5 

higher (Figure 5.13, left). Steady-state cutting was reached at 5 mm blade displacement, 

indicating that the deformation at the onset of the cut is lower. FC is, however, significant-

ly reduced before the end of the sample is reached. This can be attributed to the reduc-

tion of friction and fracture forces through anticipatory sample separation because of a 

partly brittle behavior that could not be identified from the video data (see Figure 5.11, 

middle). Cutting at 10 m/s and 20 °C showed a highly brittle reaction of the gum, identi-

fied by the steep FC increase and an FC maximum in the first quarter of the sample. The 

subsequent decline of the force because of increasing brittle fracture was also reported 
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for example for polypropylene at different temperature and velocity (Dijkstra et al., 2002; 

Olwig, 2006). Multiple determinations showed a large variation that can be attributed to 

the random nature of brittle cracks (Bobaru & Zhang, 2015). The fact that, after passing 

its maximum, FC did not always decrease to zero can be primarily attributed to persisting 

friction forces at the blade when the product fractures only partially. Interestingly, the 

maximum FC at 20 °C and 10 m/s is on average lower than at 30 °C and the same velocity, 

and also not higher than at 20 °C and 1 m/s. This can be attributed to a decrease of frac-

ture toughness with brittle fracture (Langer et al., 2001) as well as to the reduction of 

energy dissipation because of a reduced plastic deformation (Gdoutos, 2005). 

5.2.4 Qualitative relation between DMA and cutting behavior 

Now the question arises whether the deformation behavior of the chewing gum 

observed in rheological experiments can be linked to the behavior observed during cut-

ting. Figure 5.14 shows the dependency of the mechanical properties of the bubble gum 

on temperature and on deformation speed (angular frequency). The complex modulus G* 

as a measure of sample stiffness increased with increasing angular frequency ω (or short-

er time scale), and it was higher when sample temperature was lower. In the latter case, 

the ω dependency was less pronounced, pointing on lower viscous contributions (Schuldt 

et al., 2016b). This is also evident from the dissipation factor tan δ, the ratio of viscous to 

elastic contributions. Viscous contributions to material stiffness were lowest at 20 °C and 

maximum ω and highest at 40 °C and 1 rad/s. Whereas tan δ apparently approaches an 

equilibrium at high ω it constantly increases with decreasing angular frequency. The DMA 

data show a remarkable shift in the mechanical properties of bubble gum between 40 °C 

and 20 °C which is in accordance with Martinetti et al. (2014) who characterized the me-

chanical properties of post-chewed bubble gum at different temperature. 

The DMA results are in line with observations from the cutting experiments, also 

showing that cutting forces increase with increasing cutting velocity (shorter time scale) 

and decreasing sample temperature and that viscous effects occurred at lower cutting 

velocity. In addition the reaction of the bubble gum towards cutting tends to be more 
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elastic when decreasing sample temperature and/or when increasing cutting velocity 

which is in line with tan δ dependence on angular frequency.  

 

Figure 5.14: Frequency dependence of the complex modulus E* (circles) and the loss factor tan δ 
(triangles) of bubble gum at 40 °C (black), 30 °C (grey) and 20 °C (white). Each data point is arith-
metic mean ± standard deviations of 4 replicate measurements. 

5.3 Multi-scale cutting behavior of viscoelastic materials 

After the detection of the cutting parameters in chapter 5.1 and the evaluation of 

the HSTS in chapter 5.2, the following chapter will bring together the two experimental 

approaches. For this purpose, the object of investigation is extended from model systems 

to food systems. In a first step, the mechanical properties of the investigated materials 

will be determined with DMA and their multi-scale cutting properties will be investigated. 

Finally, an analysis of the cutting parameters with regard to deformation and fracture 

properties is carried out. 

5.3.1 Deformation properties from dynamic mechanical analysis 

Over two magnitudes of , the food models are characterized by power law behav-

ior of E*, and dominant elastic contributions that are almost independent of angular fre-

quency (Figure 5.15). The frequency dependency of the food models is similar to that of 

the category (a) and (b) foods, which however exhibit more dominant elastic contribu-

tions (tan δ is lower). In contrast toffee is a system of strong frequency dependence 
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which is similar to the behavior of other sugar confectionary such as bubble gum (see 

Figure 5.14). The behavior of toffee is predominantly viscous at 1 rad/s (tan δ ≈ 2), shows 

the G”/G’ crossover at approximately 50 rad/s and is predominantly elastic at 500 rad/s 

(tan δ ≈ 0.3). Consequently, the slope of G* vs.  decreases from low to high frequency 

(Booij and Thoone, 1982). From the sigmoid shape of the tan δ vs.  function it may be 

assumed that the loss factor approaches an equilibrium value at both small and high fre-

quency.  

   

 

Figure 5.15: Dynamic mechanical analysis of model samples and foods. Dark symbols, complex 

modulus; light symbols, tan . For sample code see Table 4.1. 
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5.3.2 Cutting forces and cutting properties at multi-scale cutting velocity 

Figure 5.16 shows the force profiles of different systems obtained during cutting at 

v = 10-3, 10-1 and 101 m/s. f35s20 and the other food models (data not shown) exhibited a 

behavior qualitatively similar to that of the foods having a polymeric matrix, namely 

Bergkäse with a very low between-specimen variation, and the processed meat products. 

 

Figure 5.16: Force profiles of one food model and foods, obtained by applying different cutting 
velocities. Cutting force is normalized to 10 mm cut width. Light grey, 10-3 m/s (Instron); dark 
grey, 10-1 m/s (high-speed device); black, 101 m/s (high-speed device). 
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As the cutting force represents the sum of the contributions of deformation, fracture and 

friction, and as the stiffness of the hard cheese is one magnitude above that of model 

f35s20 (see DMA results), friction and/or fracture forces of the cheese are obviously 

smaller than that of the filled elastomer. Both systems show a distinct contribution of 

friction because of the nearly linear increase of FN with l, caused by a proportional in-

crease of the contact area between blade and product until the entire blade is penetrated 

into the material (at around 10 mm blade displacement). Hence, the similar level of FN 

can therefore be attributed to the low fracture toughness of cheese, compared to elas-

tomeric systems (see also Schuldt et al., 2016b). In contrast to Bergkäse, the meat prod-

ucts show an attenuated FN increase in the separation phase (3), visible from approxi-

mately 3 mm blade displacement onwards. This indicates a reduced contribution of fric-

tion, probably because of the lubrication of the blade by the dispersed fat or water. The 

much lower cutting forces of Leberkäse are a result of the lower material stiffness (see 

Figure 5.15). Salami and Leberkäse exhibited higher between-specimen variations of FN at 

every cutting velocity, presumably caused by a more heterogeneous microstructure. In all 

systems, FN increased pronouncedly with increasing velocity (Boisly et al., 2016; Brown et 

al., 2005), but almost no effects on the cutting profiles were observed; this points on duc-

tile fracture behavior (see chapter 5.2). 

The increase of FN with v is also evident for toffee. Especially for intermediate cut-

ting velocity, the cutting forces were much higher than for all other systems. Because ma-

terial stiffness (see Figure 5.15) is of the same magnitude and because of the non-

prominent friction forces (see Figure 5.16; no linear increase of FN until full blade pene-

tration at 10 mm blade displacement), these result from the higher fracture resistance of 

the material (see also chapter 5.3.4). At low v, the FN profile points on a significant plastic 

sample deformation (see also chapter 5.2). At 10 m/s there is a remarkable variation of 

cutting forces and, compared to v, the cutting force maximum is at a displacement where 

the dimensional end of the sample (u = 15 mm) is by far not reached. Both effects can be 

associated with brittle fracture (Bobaru & Zhang, 2015; Olwig, 2006) (see also chapter 

5.2.3) which becomes evident from the video data of toffee, cut at 10 m/s (Video 5.4)2. 

Similar to bubble gum, toffee showed a strong dependence on the temperature, with 

                                                      
2
 See permalink http://dx.doi.org/10.25532/OPARA-5; for further information see List of videos 

http://dx.doi.org/10.25532/OPARA-5
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lower temperatures favoring brittle behavior (results not shown). A detailed discussion of 

the temperature dependence of toffee with respect to tts can be found in Schmidt et al. 

(2018). 

Potato showed relatively high cutting forces at low v which may be attributed to its 

high stiffness (see Figure 5.15). Interestingly there was no FN increase with increasing v 

even though DMA suggested increasing deformation forces at a shorter time scale. This 

was also reported for potato and carrots by Dowgiallo et al. (2005), and may be attributed 

to brittle fracture that goes in line with decreasing deformation forces and decreasing 

fracture toughness (Aderinola et al., 2014; Langer et al., 2001). Vincent et al. (1993) des-

cribed vegetables as a “supercomposite … ” that is “arranged in a series of morphological 

hierarchies” containing fibrous components (e.g., cell wall structures) and non-fibrous 

parenchyma, the latter fracturing in a brittle manner. Alvarez et al. (2000) analysed frac-

ture behavior of fruits and vegetables and also proposed brittle failure of the cells. From 

these explanations one can derive that cellular plant tissues show partly brittle fracture 

characteristics. For every cutting velocity, the remarkable between-specimen variation is 

apparently linked to this brittle behavior and/or to the variability of the material itself 

(see also Schuldt et al., 2016b). The behavior of carrots, which reveals more directional 

internal structures, was comparable (data not shown). 

To analyse cutting behavior in more detail, the maximum normalized cutting forces 

FN,max and the corresponding blade displacement lFN,max were plotted against cutting ve-

locity (Figure 5.17). For all model systems and the cheese, a power-law increase of FN,max 

with v is evident. Leberkäse and Salami also show a distinct increase of FN,max but only for 

v > 0.1 m/s. This can be attributed to the heterogeneous structure, as both systems con-

tain a significant amount of macroscopic filler that resists transection. At low v, these fil-

lers are squeezed rather than dissected so that cutting forces for separating the material 

may be superimposed. At higher velocity the filler particles are separated because of in-

ternal stiffening, and the contribution of deformation forces (see Figure 5.15) to FN is 

more pronounced. This is supported by rough cutting surfaces of salami (Figure 5.18) and 

the residues that remained at the cutting edge of the blade when cutting with a velocity 

of up to 1 m/s (see the rough cutting path in the material and the blade edge after cutting 
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at 10-1 m/s (Video 5.5)3 and the smooth cutting surface (Figure 5.18) and cutting path in 

the material when cutting with 10 m/s (Video 5.6)³. In all these cases, blade displacement 

at FN,max is almost constant and close to the dimensional end of the sample, indicating 

that the general fracture behavior is not affected by v (see Figure 5.17 and chapter 5.2). 

 

  
Figure 5.17: Cutting velocity dependence of maximum normalized cutting force (black), and blade 
displacement at this force (grey) of different foods. Length of the cut of the samples is 20 mm 
(except for toffee, 15 mm). For the sake of clarity, markers are slightly shifted along the x-axis.  

 

                                                      
3
 See permalink http://dx.doi.org/10.25532/OPARA-5; for further information see List of videos 

http://dx.doi.org/10.25532/OPARA-5
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In case of toffee, FN,max increased exponentially with cutting velocity at small and in-

termediate v. The attenuated increase at higher velocity reflects a progressively brittle 

behavior (as was discussed for bubble gum in chapter 5.2), and is in line with the fre-

quency dependence of the complex modulus (see Figure 5.15). In addition, lFN,max illus-

trates the brittle material reaction. At low v, it is deformed and squeezed during the en-

tire passage of the blade, and FN,max is reached at the end of the sample. Because of the 

anticipatory brittle fracture of the material, lFN,max is progressively decreasing from 

v = 10-1 m/s onwards and reached values lower than 5 mm blade displacement at v = 

10 m/s (Dijkstra et al., 2002; Olwig, 2006) (see also chapter 5.2.3 ). 

 
Figure 5.18: Surfaces of Salami after cutting at 10-1 m/s (rough, upper picture) or at 10 m/s 
(smooth, lower picture). 

 

FN,max of potato (see Figure 5.17) and carrot (data not shown) are only slightly af-

fected by v, and lFN,max alternates distinctly but is in general located in the first half of the 

sample, which does not disprove the thesis of brittle cutting. The fact that, for potato and 

carrot, Dowgiallo (2005) reported a decreasing maximum cutting force over nearly two 

magnitudes may be attributed to technical differences regarding force measurement. 

Pohlit et al. (2008) compared the results of force capturing with a strain gauge and a pie-

zo-electric force sensor at a velocity up to 100 m/s; they concluded that the piezo trans-

ducer gave higher force responses from 10-1 m/s upwards and supposed the strain gauge 

to give erroneous results because of slower response times. 
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In summary a broad variety of foods has been cut at several magnitudes of cutting veloci-

ty up to 101 m/s. It could be shown that the polymeric model systems and the foods on 

polymeric basis showed similar cutting behavior. The results do not indicate brittle frac-

ture behavior at the highest velocities. Even though plant tissues show similar material 

characteristics from DMA measurements they reveal fundamental differences in cutting 

behavior which is most likely attributable to their inherent composite structures that in-

cludes partly brittle fracture behavior. For all other systems the DMA characteristics basi-

cally coincide with the cutting velocity dependence of the cutting forces. It was shown 

that the highly rate dependent deformation behavior of the investigated confectionaries 

significantly influenced the cutting behavior, as a transition from ductile to brittle fracture 

at high cutting velocities was determined. The strong dependence on temperature and 

time scale reflects the challenges in processing these materials. Analysing FN,max and blade 

displacement at FN,max can provide additional information on the nature of fracture me-

chanism. 

5.3.3 Deformation parameters at multi-scale cutting velocity 

The cutting parameter s0 was used to characterize the deformation properties of 

the foods and the model systems. Figure 5.4 shows that E* and s0 of the different Elastosil 

model systems correlate linearly (r ≥ 0.97). This strong dependency does not exist when 

considering foodstuffs and model systems together (Table 5.5). Even though there is a 

general tendency of increasing moduli with increasing s0, the correlation is not always 

significant. 

Figure 5.19 shows an example of the dependence of E* over s0 with a regression 

line over values of the food and the model systems (solid line) and a regression line only 

over the values of the model systems (broken line). Except for Leberkäse, the data points 

of the foods are clearly above the regression line of the model systems. The reasons why 

E*/s0 of foods und food models do not clearly correlate may be attributed to the detec-

tion of the cutting parameter s0 and differences of the structures and fracture properties 

of the specific materials. At the beginning of the cutting sequence the cutting force in-

crease of the foods could have been attenuated according to creeping and plastic defor-
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mation in front of the blade tip (salami), cell damage (i.e. fracture; potato) or a very early 

CI (cheese). This may have led to smaller s0-values that are not in line with the s0-trend of 

the food models. In contrast Leberkäse shows a good agreement with the model systems. 

A pronounced stiffness plateau (see Figure 5.1) and a high cut initiation depth indicate a 

distinct elastic deformation before cut initiation which is similar to the model systems. 

Table 5.5: Correlation coefficients from linear regression of complex-
modulus versus normalized initial cutting force slope at different cut-
ting velocities and angular frequencies for f31, f40, f35s20 (for sample 
code see Table 4.1), Bergkäse, Leberkäse, potato and Salami. 

 Regression coefficients [-] 

Angular frequency   1 rad/s 10 rad/s 100 rad/s  

Cutting velocity 
↓ 

   

10
-3

 m/s 0.83*  0.80* 0.78* 

10
-2

 m/s 0.63  0.62 0.62 

10
-1

 m/s 0.60  0.62 0.62 
*
 significant correlation (p = 0.05) 

 

 
 

 

Figure 5.19: Complex modulus E* at 10 rad/s versus normalized initial slope s0 at 10-3 m/s cutting 
velocity for foods and model systems  (n = 4); solid line, regression line of all data points; broken 
line, regression line of only the model systems. 
 

Chapter 5.1.2 discussed how viscoelastic contributions affect the pre-crack proper-

ties of food models and showed that there is a close linear relation between particular 

parameters obtained from DMA measurements. These were, in particular, the slope n 
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that related E* to  (Eq. 4.1) and the phase shift δ (here in rad, taken as average value 

from the frequency sweeps), supposed to be related to this slope via the approximate 

relation from Booij and Thoone (1982) (as transformation from Eq. 5.1):  

    
 ⁄    Eq. 5.3 

This equation holds for materials that follow Eq. 4.1 (Bruno and Moresi, 2004; Friedrich 

and Heymann, 1988) and implies that, the higher the viscous contribution of a system, 

the higher is the frequency dependence of the complex modulus. Figure 5.20 shows that 

Eq. 5.3 is valid for both, the model systems and the analysed foods, giving values of n that 

are nearly identical to those obtained from the frequency sweeps (see Eq. 4.2). 

 

Figure 5.20: Comparison of velocity and time related measures from dynamic mechanical analysis 
and multi-scale cutting experiments. Broken line: f(x) = 1*b. 

 

b, the cutting velocity dependence of s0, was calculated from cutting experiments 

by applying Eq. 4.4. Except for potato (r = 0.35), all regression coefficients were r ≥ 0.96, 

indicating a significant interaction between s0 and v. By considering all samples, Figure 

5.20 shows that the two power law exponents from the DMA experiments are linearly 

related to b that relates cutting force to cutting velocity (Eq. 4.4). This linear relation how-

ever is not applicable to potato as no increase of the initial FN slopes with increasing v was 

detected. In contrast to the other systems, toffee shows a rather high standard deviation 

for n calculated by Eq. 5.3 which results from the distinct shift of viscoelastic properties 
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versus angular frequency (see Figure 5.15; coefficient of variance of nearly 30 % for δ); 

these results should therefore be considered with caution. 

The dotted line in Figure 5.20 has a slope of 1, therefore showing that n from DMA 

experiments and b are equivalent. It clearly demonstrates the validity of  

        
 ⁄    Eq. 5.4 

from low to high-speed cutting velocity for the model systems and the non-composite 

foods of category (a) and (c). The system with the highest deviation from the dotted line 

(approx. 20%) is Bergkäse, presumably because of a small cut initiation depth and a low 

fracture toughness (see Schuldt et al., 2016b) that might affect the interrelationship from 

Eq. 5.4.  

In practice, the velocity dependence of cutting forces as expressed in Eq. 5.4 is im-

portant for e.g. dimensioning gear drives for industrial cutting or processing machines, or 

for modeling cutting forces at different v. Starting point for predicting material behavior 

could be a model approach with as few parameters as possible. It would further be ad-

vantageous to use results that can be obtained by using conventional testing machines. 

From these considerations a model approach derived from Eq. 4.4 is proposed: 

             Eq. 5.5 

with s0,M being the modeled initial FN vs. l slope that depends on v, and the exponent n as 

the slope from Eq. 4.1 obtained by DMA material characterization. The model constant aM 

is calculated by transposing Eq. 5.5: 

    
           

           ⁄    
Eq. 5.6 

With 
sm

s
/10@0 3  determined in a cutting experiment performed at v = 10-3 m/s 

(= 60 mm/min), a common velocity for food characterization that is covered by commer-

cial testing machines (Chen & Opara, 2013). Consequently, the model constant aM can be 

obtained by determining two parameters, namely n and 
sm

s
/10@0 3 . With the two parame-

ters n and aM , s0,M can be calculated for any cutting velocity. 
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Figure 5.21: Experimental s0 values as a function of cutting velocity (markers). Solid lines and re-
gression coefficients are from power law fits according to Eq. 4.4. The dotted line indicates the 
results of the model approach Eq. 5.5. 

 

Figure 5.21 shows the individual s0 slopes vs. cutting velocity for the different ma-

terials, the corresponding power law regression functions (Eq. 4.4) and the model func-

tions obtained by applying Eq. 5.5. The regression functions show sufficient agreement for 

all materials except for potato, and the respective correlation coefficients are significant 

(p < 0.01). It is evident that the synthetic elastomeric materials show high conformity at 

any cutting velocity, therefore giving the best power law fits, and indicating that they can 
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be considered as food models with almost ideal properties. The foods however show 

some deviations from power law which may come from their natural variability (Rohm et 

al., 1997; Schuldt et al., 2016b; Vandenberge et al., 2014). In case of the cellular plant ma-

terials, the measured s0 does neither increase nor decrease with increasing v so that re-

gression and model cannot be considered as appropriately expressing material behavior. 

Nevertheless, the model approach for potato apparently fits the increase of s0 until 

10-1 m/s. In case of toffee, both regression through Eq. 4.4 and modeling through Eq. 5.5 

seem sufficiently linked to the experimental data. However, the increase of s0 is not con-

stant but apparently attenuated for v > 10-1 m/s, which is also in accordance with the res-

ponse to DMA (see Figure 5.15). 

 

 

Figure 5.22: Relative deviation of the model values from the experimental data (at 0 % the model 
equals the experimental value). Circles, food models (white, f35s20; grey, f40; black, f31); 
squares, meat products (white, Salami; black, Leberkäse); upright triangle, Bergkäse; inverted 
triangle, potato; diamond, toffee. 

 

Figure 5.22 depicts the relative deviations of the calculated values s0,M based on 

Eq. 5.5 from the experimental data s0, calculated from (s0- s0,M)/s0. For nearly all systems, 

the model values deviate by less than 30 % which can be considered as an appropriate 

forecast of experimental data. Three systems show substantial deviations from the 30 % 

line, that is Bergkäse, toffee and potato (the latter with more than 900 % deviation at 

10 m/s; out of range in Figure 5.22). The model for the cheese is unsatisfactory, mainly 
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because experimental data somewhat deviate from power law behavior. This probably 

reflects a limitation of the slope determination method because Bergkäse has small cut 

initiation depths so that s0 has to be obtained from a lower number of cutting force data 

points. The model for toffee shows a distinct overestimation at higher velocity, especially 

at 10 m/s, which comes from the attenuation of the s0 increase. 

It can be concluded that the cutting parameter s0 reflects the initial stiffness of the 

cutting material and can therefore be related to the complex modulus from DMA. Pre-

sumably because of differences in morphology and structure the correlation between s0 

and E* is not significant for the food systems. The velocity dependence of s0 can be ex-

pressed by the parameter b from Eq. 4.4. and the relation between the pre-crack cutting 

parameter b and the DMA parameters n and δ is valid from low to high cutting velocity 

and can be expressed by Eq. 5.4 for all investigated systems except for cellular or fibrous 

plant tissues. The application of a simple model approach as given by Eq. 5.5 can be a use-

ful engineering tool to estimate initial cutting forces, mostly for materials that reveal con-

stant viscoelastic properties. For systems with increasing elastic contributions at higher 

velocity the experimental values can be overestimated as this appeared in the case of tof-

fee. For plant tissues the model does not fit. 

5.3.4 Fracture parameters at multi-scale cutting velocity 

In chapter 5.1.3 FN,CI from cutting force courses was depicted as fracture measure 

for the cutting process. Additionally CI shows which amount of deformation is needed 

until fracture in the sample is provoked. CI and normalized cutting force at cut initiation 

FN,CI for foods and the food model f35s20 (as example for the other model systems) from 

10-4 m/s (10-3 m/s for f35s20) to 100 m/s cutting velocity are depicted in Figure 5.23. For 

10 m/s cut initiation could not be derived because of cutting force smoothing and limited 

number of data points. Two trends can be reported for CI: either a clear decrease (model 

systems, Salami, Leberkäse) or a trend to stay constant (Bergkäse, carrot, potato, toffee; 

see also Figure 5.24) with increasing v. It is known that fracture strains from compression 

or tensile experiments of polymeric food systems can increase, fall or stay constant with 

higher rate (van Vliet et al., 1993; van Vliet & Walstra, 1995). The decrease of fracture  
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Figure 5.23: Cutting velocity dependence of cut initiation depth (grey) and normalized force at 
this blade displacement (black) of different systems.  

 

strain with increasing velocity can be associated to the viscoelastic effect that less energy 

is dissipated by viscous flow and relaxation so that energy transport to the crack tip is 

enhanced (van Vliet et al.,1993; van Vliet & Walstra, 1995). Consequently the material has 

to be deformed less to reach an amount of energy to induce fracture. For vegetables it is 

known that fracture strains tend to decrease with increasing strain rate which is associa-

ted to a limited fluid release (stress relaxation) through the cell walls with higher defor-

mation speed. Hence higher stress buildup in the cell causes fracture at lower extensions 

(Ormerod et al., 2004; Zdunek & Umeda, 2006). Even though fracture strains of polymeric 

systems containing fillers often increase with increasing velocity (Boisly et al., 2016; Rohm 

& Lederer, 1992, van Vliet & Walstra, 1995) and although it was the case for the elasto-
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mers in this study used for fracture toughness determination (Figure 5.7), it was not the 

case for CI of the model systems. Moreover fracture strain from tensile experiments of an 

Elastosil model system containing iced sugar as filler was also increasing when applying 

higher deformation speeds (Boisly et al., 2016). Cutting means that a blade is pressed in a 

material which will partly be compressed in front of the blade tip. If the sample is com-

pressed against the sample support (as it is the case in these experiments and in industri-

al practice), stiffness increases with increasing blade displacement (Schuldt et al., 2013). 

This stiffening will further increase with higher cutting velocity (see Figure 5.4 and Figure 

5.21). Consequently the force for fracture initiation tends to be reached at lower blade 

displacements. In case of EPDM and NBR (Figure 5.7) measurement setup (see chapter 

4.5.3) prevented material stiffening against a sample support and may have led to in-

creasing CI with increasing cutting velocity. This could be associated to inner friction be-

tween the structural elements of the composite which can lead to inefficient energy 

transport to the crack tip (van Vliet et al., 1993).  

For the force at cut initiation three categories of velocity dependence can be de-

rived (Figure 5.23). (1) For most systems FN,CI increases with increasing cutting velocities 

(model systems, Bergkäse, toffee (see Figure 5.24)). (2) For vegetables it stays constant or 

slightly decreases at high velocities and (3) for Leberkäse and Salami, FN,CI progressively 

decreases with increasing cutting velocities. 

 

Figure 5.24: Cutting velocity dependence of cut initiation depth (grey) and normalized force at 
this blade displacement (black) of toffee (30 °C). 
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The increase of fracture toughness or stress at fracture of viscoelastic systems with 

higher rate is often reported in the literature (see for example Gamonpilas et al., 2009; 

Luyten & van Vliet, 1995; van Vliet et al., 1993; Forte et al., 2015; McCulloch, 2008). After 

van Vliet et al. (1993) this can be explained macroscopically by an increasing dissipation of 

energy at higher velocity because of friction between the structural elements of the com-

posite systems. This can lead to an increase of σf after constant values at lower deforma-

tion rates, as it is also the case of FN,CI for the model systems. Controversially toffee shows 

a sharp increase of FN,CI even at small velocities. This is in accordance to σf from tension 

and compression experiments of McCulloch (2008) with toffee at small velocities. At 

1 m/s increase of FN,CI seems to attenuate which possibly indicates ongoing brittle frac-

ture with decrease of fracture toughness (Aderinola et al., 2014; Langer et al., 2001). On 

small-scale the increase of bond strength (van Vliet et al., 1993) or the increase of defect 

or void growth (Luyten & van Vliet, 1995; Tang, 2008) can be associated to an increase of 

fracture toughness which contributes to the overall force response of FN,CI. Similar to the 

FN,CI of the model systems several authors reported on an increase of fracture toughness 

at higher velocities after primal constancy at lower velocities i.e. for gelatin (Forte et al., 

2015) and starch gels (Luyten et al., 1992). In model simulations Tang et al. (2008) show-

ed that this dependency can be associated to the interference of viscoelastic dissipation 

at small and void growth in front of the crack tip at higher velocities (Figure 2.10). 

Vegetables showed nearly constant values or a slight decrease of FN,CI with cutting 

velocity increase as it was also the case for fracture stress of potato (Canet et al., 2007; 

Scanlon & Long, 1995). This can be associated to brittle failure of the cells of the plant 

materials (Alvarez et al., 2000; Vincent et al., 1993) which can be linked to rate-

independent fracture toughness (Langer et al., 2001). 

Leberkäse and Salami show a distinct decrease of FN,CI with increasing cutting veloci-

ty. For fracture stress (Luyten & van Vliet, 1995; van Vliet et al., 1993; van Vliet & Walstra, 

1995) and fracture toughness (Tang et al., 2008) this is the case if viscoelastic dissipation 

is dominating overall energy composition (W’’visc in Eq. 2.11). Because the dissipation is 

inhibited with shorter time scales the fracture parameters decrease with ongoing veloci-

ty. As Leberkäse and Salami show high CI values at the lower cutting velocities the mate-

rial in front of the blade tip is extensively deformed before fracture (see also discussion in 
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chapter 5.3.2). After van Vliet et al. (1993) at higher deformations friction between the 

components of composite systems is enhanced. Especially Salami with its heterogeneous 

composition shows a distinct structural deformation (Figure 5.18) at lower cutting veloci-

ties. This leads to inter-particle friction (W’’frict in Eq. 2.12) which can also result in an in-

crease of overall force response (van Vliet et al., 1993) at low cutting velocities. 

In summary fracture properties have been analysed with CI and FN,CI. For the chosen 

test setup CI decreased with increasing cutting velocity because of increased tension 

buildup. Depending on the materials and energy dissipation mechanism with higher v, 

FN,CI increased, decreased or stayed constant. Over all using the fracture parameter FN,CI 

from the initial cutting force data includes limitations because the derivation from the 

initial cutting force data at 101 m/s was not possible. Ideally it would be advantageous to 

use an alternative fracture parameter that reflects the fracture behavior during cutting 

and could easily be derived at high velocities. However FN,CI seems a suitable tool for frac-

ture characterization. Generally it can be concluded that increasing the cutting velocity 

leads to minimization of CI and hence lower product deformation which is attributed to 

enhanced cutting quality (Schneider et al., 2010). After Atkins et al. (2004) and Dowgiallo 

(2005) minimizing of cutting forces leads to optimization of cutting quality. Especially po-

lymeric foods with heterogeneous structures (Leberkäse and Salami) show a substantial 

improvement of cut initiation and a substantial reduction of force for cut initiation. This 

enhancement of cutting quality with increasing cutting velocity is in line with the findings 

in chapter 5.3.2 (Figure 5.18). 

5.3.5 Conclusions on the friction forces 

As the total cutting force (represented by FN,max) summarizes deformation (repre-

sented by s0), fracture (represented by FN,CI) and friction forces (Eq. 2.6), it should be pos-

sible to derive information about the velocity dependence of the friction component from 

the velocity dependence of FN,max, s0 and FN,CI. Figure 5.25 compares the slopes of the 

power law functions of FN,max, s0 and FN,CI from v = 10-4 (10-3 for the model systems) to v = 

100 m/s. As FN,max represents the velocity dependence of the total cutting force, higher 

values of s0 mean that the contribution of the deformation force to total force is increas-
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ing with higher cutting velocity. Since the values compared are not suitable for accurate, 

quantitative energy analyses, only tendencies on qualitative basis can be derived.  

 
Figure 5.25: Cutting velocity dependence of the cutting parameters normalized maximum cutting 
force (dark grey), initial slope of the normalized cutting force (light grey) and normalized force at 
cut initiation (white) for different model systems (for sample code see Table 4.1) and foods. 

 

From Figure 5.25 it can be stated that for some systems (f31, f40, Bergkäse, carrot) 

the ratio of fracture force to the total cutting force is decreasing with increasing v. To 

equilibrate the “energy balance” it can be concluded that in these systems friction forces 

gain importance at higher velocities. Since friction forces stem from adhesion forces and 

viscoelastic deformation forces (Eq. 2.14), and adhesion forces decrease at high sliding 

velocities (Grosch, 1963; Moore & Geyer, 1972), the velocity-induced increase in friction 

forces should follow the frequency response of the complex moduli (Figure 5.15). For 

other systems (f35s20, Leberkäse, Salami, potato) velocity trends of fracture and defor-

mation parameters have contrary tendencies and therefore could equilibrate each other. 

No conclusion on the friction force is possible in these cases. For toffee and bubble gum 

velocity dependence of deformation and fracture both tends to gain importance com-

pared to velocity dependence of FN,max. In this case friction contribution may decrease 

with increasing cutting velocity. This appears to be conclusive because both confection-

aries showed increased adhesion to the blades at low velocities. This adhesion decreased 

with increasing cutting velocity. Assuming that the adhesion forces make up a large part 

of the friction force, it is understandable that the ratio of the friction force to the total 

cutting force decreases. 
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6 Conclusions and outlook 

Foods are heterogeneous material systems: from the morphological viewpoint, 

cellular, fibrous, crystalline and amorphous structures can be present. Their viscoelastic 

properties can vary from dominantly viscous to dominantly elastic and have a decisive 

influence on velocity-dependent processing operations such as cutting. This can lead to 

process-disturbing effects, especially at high cutting velocity. To correctly classify the 

deformation, fracture and friction processes during cutting and to understand the cutting 

behavior of the foods, it is of importance to reveal relationships between the mechanical 

behavior and cutting force parameters. Since the natural variability of food can be 

disadvantageous in experimental process analysis, the use of model systems with 

reproducible mechanical properties is an interesting advancement. 

 
Figure 6.1: Strategies in cutting process analysis: cutting experiments, material analyses and nu-
meric simulations. The broken line specifies the investigation approach of this study. 

 

Investigation approach of this work was to use a test station for phenomenological 

and energetic high-speed cutting experiments. Simultaneously, correlations between 
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deformation and fracture parameters from material analysis as well as parameters from 

cutting force sequences in the low-speed range were to be determined using proper 

viscoelastic model systems. Furthermore, the suitability of the detected parameters for 

real food systems as well as the high-speed range had to be assessed (Figure 6.1). 

By using the developed high-speed test station and a commercial universal testing 

device it was possible to analyse the cutting behavior over 6 magnitudes of cutting 

velocity. Capturing force data allows to detect and to distinguish materials on the basis of 

their viscoelastic behavior. This could be shown using bubble gum as an appropriate 

model system to reflect viscoelastic phenomena: at low cutting velocity, the cutting 

process is dominated by viscous effects that are continuously replaced by elastic effects 

(brittle fracture) as cutting velocity increases. Decreasing the temperature of the bubble 

gum led to similar effects as increasing cutting velocity. In line with cutting force data, 

video analysis of the cutting process and material characterization allow a holistic 

description of the cutting process and the cutting behavior of materials at high velocity. 

A broad variety of foods had been cut at several magnitudes of cutting velocity up 

to 10 m/s. It could be shown that the polymeric model systems and the foods on poly-

meric basis showed similar cutting behavior. The results did not indicate brittle fracture at 

the highest velocities. Even though cellular plant materials show similar material charac-

teristics from DMA they revealed fundamental differences in cutting behavior which was 

most likely attributed to their cellular structures that provoke partly brittle fracture be-

havior. For all other systems the DMA characteristics basically coincided with the cutting 

velocity dependence of the cutting forces. Analysing FN,max and blade displacement at 

FN,max can provide additional information on the nature of fracture mechanism. Generally 

it can be concluded that increasing the cutting velocity led to minimization of CI and 

hence lower product deformation which is, next to minimizing of cutting forces, attribut-

ed to enhanced cutting quality. Especially polymeric foods with heterogeneous structures 

(Leberkäse and Salami) showed a substantial decrease of CI and a substantial reduction of 

FCI. For confectionaries cutting velocity had a very strong effect on cutting behavior as 

these are very sensitive to temperature and velocity; like that fundamental changes of 

fracture mechanism from ductile to brittle fracture could be detected. The products seem 

to have a cutting velocity range with optimum cutting quality (see Figure 5.11). Beyond 
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and above this range, extensive plastic product deformation (below) or extensive product 

splintering (above) lead to unacceptable product quality. This optimum velocity range can 

significantly be influenced by the temperature. This clearly reflects the sensibility of con-

fectionaries to temperature variations during processing.  

Elastosil silicone rubbers can be considered as useful model systems for food which 

viscoelastic properties can be adjusted by a proper selection of filler and softener. The 

silicone rubbers provided similar cutting force courses and similar cutting parameters 

compared to polymeric food systems and were generally suitable for linking mechanical 

properties at small and large deformation to cutting behavior. 

An important parameter deviated from the cutting force is the cutting stiffness. 

From this, CI and FN,CI can be derived. The cutting stiffness before cut initiation is 

equivalent with the initial cutting force increase s0 which is a useful material parameter to 

conclude on the complex modulus from small deformation testing, and vice versa. s0 of 

the model systems measured at different cutting velocity reflects the rate dependence of 

the cutting process (by parameter b from from Eq. 4.4), and could be related to 

viscoelastic material parameters such as the loss factor tan δ or n obtained by DMA. The 

more viscous (or the higher tan δ) the model material was, the more it was sensitive to 

velocity changes induced by angular frequency in small deformation experiments, but 

also to different cutting velocities. In further experiments with the high-speed test station 

these basic findings could also be transferred to different food systems. In general the 

relation between the cutting velocity reflecting parameter b and the DMA parameters n 

and δ was valid from low to high-speed range and could be expressed by Eq. 5.4 except 

for cellular or fibrous plant tissues. Over all DMA was very useful to predict pre-crack 

cutting properties of different materials. Furthermore the application of a simple model 

approach that was given by Eq. 5.5 showed to be a useful engineering tool to estimate 

initial cutting forces, mostly for materials that reveal constant viscoelastic properties. For 

systems with increasing elastic contributions at higher velocity (brittle fracture) the 

experimental values had been overestimated as this appeared in the case of toffee. For 

fibrous plant tissues the model did not fit. 

Independent of cutting substrate (in case of the elastomers analysed in chapter 

5.1.3) and cutting velocity, fracture toughness showed a significant correlation to sharp-
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ness parameter FN,CI, that can simply be determined from cutting force courses. This pa-

rameter was taken as indicator of fracture resistance of the cutting material. CI addition-

ally gives information about the amount of deformation until fracture in the sample is 

provoked by the blade. For the chosen test setup CI decreased with increasing cutting 

velocity because of increased tension buildup. Depending on the materials and energy 

dissipation mechanism with higher v, FN,CI increased, decreased or stayed constant. The 

internal structures of the composite materials had a distinct influence on this velocity 

dependence. A single consideration of viscoelasticity did not allow a general derivation to 

the rate-dependence of cutting fracture resistance. As a result, the fracture properties 

must be determined for each material system and for the relevant velocity range. For 

most systems the contribution of fracture force to overall cutting force seems to attenu-

ate with increasing v. From that it may be assumed that, for some systems, friction can 

play an important role at high cutting velocities. Over all using the fracture parameter FN,CI 

from the initial cutting force data included limitations because the derivation from the 

initial cutting force data at 10 m/s was not possible. 

The starting point for further research should therefore be the detection of a frac-

ture parameter, e.g. from wire cutting tests, that allows the direct determination of frac-

ture toughness. On this basis, the influence of viscoelastic dissipation and pure work of 

separation could separately be detected and evaluated. For a holistic description of the 

cutting process it is important to investigate friction phenomena. Here, the development 

of suitable methods for describing friction during cutting at multi-scale cutting velocity 

should be the future focus. Ideally it would be advantageous to use fracture and friction 

parameters that could easily be derived at high cutting velocities. A solution could be the 

tts which, in addition to mechanical properties at small deformation, can also represent 

fracture and friction properties for large velocity ranges. Over all the description of the 

cutting behavior by means of cutting force parameters forms the foundations for the 

phenomenological understanding of cutting processes; on the other hand, it can be used 

as basis for energetic cutting process descriptions in numerical modeling approaches 

(Figure 6.1), which is, next to cutting experiments and material characterization, the third 

pillar of cutting process analysis. 
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