
Run-time Variability with Roles

Dissertation

Submitted in partial fulfillment of the requirements for the degree of
Doktor-Ingenieur (Dr.-Ing.)

at
Faculty of Computer Science

Technische Universität Dresden

by
M.Sc. Nguonly Taing

Born on February 10, 1982 in Phnom Penh, Cambodia

Supervisors:
Prof. Dr. rer. nat. habil. Dr. h. c. Alexander Schill
Prof. Dr.-Ing. Thomas Schlegel

External Reviewer:
Prof. Dr. Kim Mens (Université catholique de Louvain)

Date of Submission: November 17, 2017
Date of Defense: April 4, 2018





Acknowledgements

The root of my doctoral study started with a chitchat between Prof. Alexander
Schill, Mr. Des Phal and me in a conference in December 2012 in Cambodia.
During the talk, we were finding all possible scholarships for my study. Unfortu-
nately, there was no funding available for degree-seeking applicants. One year
later, I contacted Prof. Schill for his supervision letter in order to apply for a
scholarship from the Erasmus Mundus Program. Luckily, I was selected, and my
Ph.D. journey began in October 2014. My most profound gratitude goes to him
for his patience and continuous support throughout these years. I am impressed
with his blazingly fast reaction. Whenever I had some issues demanding his
advice, he responded promptly by email and was available for discussion in person
if needed. I am fortunate to have him as my supervisor.

Finishing this dissertation would not be possible without the constant support
from my advisor, Dr. Thomas Springer. Thomas spent restless hours for day-to-
day advisory and contributed significantly to writing various papers. I remember
we were once staying awake over the midnight to edit the paper altogether
although we had to travel to a conference in the early morning. Thanks for your
understanding, advice, and friendship.

Having worked on roles, I claim that being individual is important, but collabo-
ration is even more crucial. Basically, I worked alone but without collaboration
with others, I would have gotten lost my way and never perceived this topic in
such a fine-grained level. I express my appreciation to the investigators of the
RoSI project for allowing me to take part. Several seminars, workshops, and
discussions made with the RoSI team shaped my view on roles. Among these
colleagues, Markus Wutzler and Martin Weißbach were the closest ones not only
in RoSI but also in the chair of computer networks. Regularly, I approached
them whenever I had problems either academically or personally. Thanks for
your contribution and friendship.

My gratitude extends to Prof. Nicolás Cardozo who constantly collaborated
with me. He brought me a deep level of COP understanding and shared me the
tranquility concept which later became a key contribution to this work. Through
him, I met Prof. Kim Mens whom I am appreciated for his kindness to review
this dissertation.

The quality of the dissertation could not be in this shape without a great help
from Ivonne Wittig. She patiently proofread the dissertation back and forth.
Besides Prof. Schill, I believe she is the only one who read my dissertation every
written word. Well, I was wrong. Kim proved it, at least. He made exceptionally
detailed comments on both the contents and the linguistic issues that I cannot
overlook his remarkable contribution. Thanks for your great help.

I am indebted to the Swap and Transfer project of the Erasmus Mundus Program
that financed this research for 33 months and offered great administrative support.
Besides, I would like to thank the Graduate Academy of the TU Dresden for

iii



iv

granting me the four-month scholarship to complete the last three chapters.

Finally, I am very grateful to my wife, Ely, who took care of my daughters,
Chumpounut and Ampuneat, during my absence and greatly supported me
although I was more than 10,000 km away. I owe them sincere gratitude for
their unconditional love, encouragement, and understanding. I dedicate this
dissertation to them. I do love you all.



Abstract

Adaptability is an intrinsic property of software systems that require adaptation
to cope with dynamically changing environments. Achieving adaptability is
challenging. Variability is a key solution as it enables a software system to change
its behavior which corresponds to a specific need. The abstraction of variability
is to manage variants, which are dynamic parts to be composed to the base
system. Run-time variability realizes these variant compositions dynamically
at run time to enable adaptation. Adaptation, relying on variants specified at
build time, is called anticipated adaptation, which allows the system behavior to
change with respect to a set of predefined execution environments. This implies
the inability to solve practical problems in which the execution environment is
not completely fixed and often unknown until run time. Enabling unanticipated
adaptation, which allows variants to be dynamically added at run time, alleviates
this inability, but it holds several implications yielding system instability such as
inconsistency and run-time failures. Adaptation should be performed only when
a system reaches a consistent state to avoid inconsistency. Inconsistency is an
effect of adaptation happening when the system changes the state and behavior
while a series of methods is still invoking. A software bug is another source of
system instability. It often appears in a variant composition and is brought to the
system during adaptation. The problem is even more critical for unanticipated
adaptation as the system has no prior knowledge of the new variants.

This dissertation aims to achieve anticipated and unanticipated adaptation. In
achieving adaptation, the issues of inconsistency and software failures, which
may happen as a consequence of run-time adaptation, are evidently addressed
as well. Roles encapsulate dynamic behavior used to adapt players representing
the base system, which is the rationale to select roles as the software system’s
variants. Based on the role concept, this dissertation presents three mechanisms
to comprehensively address adaptation. First, a dynamic instance binding
mechanism is proposed to loosely bind players and roles. Dynamic binding of
roles enables anticipated and unanticipated adaptation. Second, an object-level
tranquility mechanism is proposed to avoid inconsistency by allowing a player
object to adapt only when its consistent state is reached. Last, a rollback recovery
mechanism is proposed as a proactive mechanism to embrace and handle failures
resulting from a defective composition of variants. A checkpoint of a system
configuration is created before adaptation. If a specialized bug sensor detects a
failure, the system rolls back to the most recent checkpoint. These mechanisms
are integrated into a role-based runtime, called LyRT.

LyRT was validated with three case studies to demonstrate the practical feasibility.
This validation showed that LyRT is more advanced than the existing variability
approaches with respect to adaptation due to its consistency control and failure
handling. Besides, several benchmarks were set up to quantify the overhead of
LyRT concerning the execution time of adaptation. The results revealed that
the overhead introduced to achieve anticipated and unanticipated adaptation to
be small enough for practical use in adaptive software systems. Thus, LyRT is
suitable for adaptive software systems that frequently require the adaptation of
large sets of objects.
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Chapter 1
Introduction

Software systems in certain application domains have to cope with heterogeneous and
dynamically changing environments such as cyber-physical systems, systems for smart cities,
and the Internet of Things. Adaptability is a desired characteristic of such systems as it allows
the program behavior to adapt in response to the changes of execution environments. Building
a software system with adaptability is challenging. Traditionally, multiple if statements
were employed, but this technique often ends up in tangled code which is hardly reusable. In
principle, a good software practice should conform to the idea of modularization [Par72] and
separation of concerns [Dij76], which allow developers to have clean and modular application
code which is easily reusable and extensible. Adaptive software systems are no exception
and should be designed with these perspectives.

Variability is a key solution to reusability and adaptability. Variability is the ability of a
software system to change its behavior corresponding to a specific need [GWT+14]. Although
variability was primarily studied in the area of Software Product Lines (SPLs) [CB10], it has
been recently applied to many other types of today’s software systems, e.g., adaptive software
systems [Hil10, GWT+14]. The abstraction of variability is to manage both base systems,
also known as static parts, and their variants, which are dynamic parts to be composed
into the base systems via variation points. While variants are a small and reusable software
feature, variation points are places to which those variants are composed. A composition
technique then realizes these composed variants and variation points to create different
behavior which features adaptability.

We1 separate different types of variability based on the time to which those variants are
composed. While variability focuses on the composition of variants at development or build
time, run-time variability shifts the composition of those variants from development to
run time2. Therefore, run-time variability allows the base system to dynamically adapt its
behavior to different execution environments based on the composed variants. We consider
this adaptation anticipated adaptation since the composed variants are given beforehand
during the development time but dynamically composed to the base system at run time.

Furthermore, today’s software systems often require evolving to adjust the changing require-
ments over an extended period of time. Running systems, such as a flight control application,
cannot tolerate a system restart to address the new requirements which are unknown in

1In this dissertation, the term “We” refers to “the author”.
2“Run time” is the time at which the application runs, e.g., the composition happens at run time. “Run-time”

is used as a compound adjective, e.g., run-time adaptation. “Runtime” is an environment where the core
mechanisms of a language are executed, e.g., Java’s runtime.

1
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advance. Therefore, those systems need the ability to incorporate those new requirements
while running. This problem is normally addressed by Dynamic Software Updates (DSU), a
research domain theoretically permitting almost no limit to update the running program.
However, DSU is a low-level solution integrated tightly into the programming language
runtime or the operating systems so that it does not consider any implementation patterns of
incorporating of those new requirements in a clean and an extensible way. Developers have to
tackle this problem on their own. Since DSU can change any part of the program on-the-fly,
this can be perceived as unanticipated adaptation because the changes were unexpected.
Although aiming for unanticipated adaptation is one of our goals in order to allow unforeseen
change at run time, this kind of unanticipated adaptation is not desirable for two reasons.
On the one hand, the way to achieve this unanticipated adaptation, as already mentioned,
is not clean and modular. Obviously, depending on the implementation pattern, updating
program code directly for several iterations may lead to tangled code. On the other hand, we
cannot integrate the anticipated adaptation easily because DSU is not purposefully designed
for adaptation.

We envision an adaptive system which is built with run-time variability in mind. The base
systems are cleanly separated from the variants; the dynamic composition of those given
variants enables anticipated adaptation. Run-time variability should not only address antici-
pated adaptation but also covers unanticipated adaptation to improve the high availability of
the running systems. Adopting the principle of run-time variability, unanticipated adaptation
is a behavioral change of the base system resulting from a dynamic composition of new
variants which are not given beforehand. In other words, unanticipated adaptation extends
anticipated adaptation with a mechanism to integrate new variants to the system at run
time, but its variants are unknown until they are needed. Without run-time variability,
supporting both adaptations at run time is challenging, and the resulting code is not clean
and often poor in modularization. From this point onwards, anticipated and unanticipated
adaptation, if not mentioned explicitly, refer to run-time adaptation whose variants, either
given beforehand or later, are dynamically composed to the base system, and the base system
adapts its behavior concerning the composed variants accordingly.

Although changes resulting from adaptation fit a software specification, they may come with
certain drawbacks. Technically, a program’s state and behavior are changed as a result of
either anticipated or unanticipated adaptation. The adverse effect of such changes is prone
to inconsistency and instability because of failures which should be avoided. We consider
these problems as a consequence of adaptation. Inconsistency of an adaptive software system
happens when the base system, which contains multiple objects3, changes its behavior
promptly due to adaptation during a series of method invocations. The series of these
method invocations have the purpose of solving a common task which requires consistent
behavior of those engaging objects from the start to the end. Therefore, to maintain the
same consistent behavior, adaptation occurring in between these invocations is prohibited.

Another possible consequence of adaptation is a system instability because of an execution
failure. The failure may happen when the base system is executing, and its behavior
is adapted several times with different compositions of multiple variants. Among those
compositions, one may contain a bug, e.g., DivideByZero, which propagates to a failure at
run time. Without a proper failure handling mechanism, the whole system could crash.

3Objects refer to instances derived from a given type of Object-Oriented Programming (OOP)
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This dissertation presents a novel approach to run-time variability aiming at achieving
anticipated and unanticipated adaptation in a single run-time solution. It explores the
basic mechanisms for dynamic binding at instance level as well as advanced mechanisms for
maintaining system consistency and stability related to adaptation.

1.1 Problem Statement

Run-time variability provides both reusability and adaptability. It is, therefore, the most
appropriate concept to date to design an adaptive software system. Several approaches have
been proposed for run-time variability ranging from architectural to programming language
solutions. Recently, the support of run-time variability has been integrated into the language
level. Through language-level abstractions, this integration minimizes greatly the effort of
implementing a system which requires frequent adaptations in response to context changes.
Context is any information which is computationally accessible and can be used to characterize
the situation of an object [Dey01, HCN08]. Context-Oriented Programming (COP) [SGP12a]
and Role-Oriented Programming (ROP) [KLG+14] are emerging programming paradigms
which are proposed in this direction.

Both COP and ROP enhance standard programming techniques by providing language
constructs to feature adaptation. However, these language solutions tackle mainly on
anticipated adaptation while neglecting unanticipated adaptation. Supporting unanticipated
adaptation is challenging, and it depends on the level of adaptation. From a run-time
perspective, adaptation can be performed at either type or instance level. This dissertation
argues that adaptation should be performed at instance level to avoid a long disruption in
changing behavior and to minimize inconsistency.

Instance-level adaptation allows individual instances to adapt independently. Because of
that, the adapted instances can change behavior promptly. In contrast, type-level adaptation
changes the behavior of all derived instances at once. In the case that some adapted instances
are busy in execution, type-level adaptation deters the adaptation until all the instances
are idle [CH05, HCH08, AHHM11, DVCH07]. If all instances are forcefully adapted at once,
the system may face inconsistency. Without a proper mechanism to avoid inconsistency,
supporting unanticipated adaptation rather causes problems than the benefit. Inconsistency
also happens in anticipated adaptation, but the probability of having it in unanticipated
adaptation is very high due to the lack of knowledge of when the runtime reaches a tranquil
state. A tranquil state is a state in which an object or instance is safe to update its behavior
without facing inconsistency [VEBD07]. Therefore, a mechanism to find this tranquil state for
adaptation is needed not only for unanticipated adaptation but also anticipated adaptation.

COP solutions, such as EventCJ [KAM11], ServalCJ [KAM15], ContextJS [LASH11], and
Context Traits [GMCC13], provide instance-level adaptation which should be possible for
incorporating unanticipated adaptation. Nonetheless, these solutions ignore this option.
Similarly, in the domain of ROP, while SCROLL [LA15] supports instance-level adaptation
by design, OT/J [Her05] uses an inflexible predicate to achieve a similar result. Both of
them are not designed for unanticipated adaptation. Additionally, the inconsistency4 is fully
addressed neither by any COP nor ROP solutions.

4Another kind of inconsistency resulting from a conflict of multiple context dependencies is well-addressed
by CoPN [Car13].
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Besides facing inconsistency, the adapted system may also encounter execution failures
resulting from software bugs which appear due to a dynamic composition of variants. In
case of unanticipated adaptation, this problem is even more critical because variants are
incorporated lately. Although COP and ROP provide language abstractions to easily
develop adaptive software systems, they have not yet proposed a testing framework for such
systems [SGP12a]. For a small set of variants, a traditional software testing technique can
be applied by testing all possible compositions of those variants. However, this is hardly
achievable for a large set of variants. Although bug-finding tools, e.g., FindBugs [HP04],
help to catch bugs, they often produce inaccurate results [JSMHB13, RAF04], and none of
them is designed to find bugs in adaptive software systems. Therefore, bugs are likely to
exist and cause failures at run time. A proactive mechanism to embrace and handle such
failures at run time is necessary to improve run-time stability.

In a nutshell, the core challenge is the lack of a dynamic instance binding mechanism to
enable instance-level adaptation in which anticipated and unanticipated adaptation should
coexist in a single run-time solution. Unanticipated adaptation needs to be incorporated
from the ground up so that additional mechanisms to handle inconsistency and failures can
be proposed in order to minimize the consequences of adaptation.

1.2 Objective

This dissertation is developed with an observation that state of the art is inadequate to address
the adaptation comprehensively in a single run-time solution. The role concept [KLG+14] is
utilized due to its dynamic and context-dependent property. Since roles and their playing
property naturally target on the instance level, selecting roles as variants helps to achieve
instance-level adaptation. This dissertation aims at:

1. Supporting anticipated adaptation. With a separation of the base system and
its given variants, the system should be adapted cleanly and modularly as a result of
different variant compositions. Adaptation is activated dynamically by a context change.
The adaptation performs at instance level in order to minimize the long disruption
and inconsistency. In addition, it is easier to extend the support of unanticipated
adaptation.

2. Supporting unanticipated adaptation. Such support tackles unnecessary runtime
restart owing to bug fixes and new requirements. Although we do not expect to adapt
every piece of applications, we follow the principle of run-time variability in which
changing the variants adapts the base system. Most of the existing variants should be
replaceable with new variants at run time. Those new variants are unknown beforehand,
but the system adapts accordingly once their composition is done.

3. Handling consequences of adaptation. Adaptation changes state and behavior of
the system, so that it might cause some problems which must be avoided. The issues
to overcome are described as follows:

(a) State and behavioral inconsistency. The inconsistency of the system resulting
from adaptation should be avoided. That is the case when adaptation happens
during a series of ongoing method invocations which require consistent behavior.
Then, adaptation which occurs between these invocations is prevented to avoid
inconsistency.



Chapter 1. Introduction 5

(b) Execution failure. Bugs are among the leading causes of software failures.
Adaptive software systems are no exception and even more vulnerable to failures.
Due to dynamic composition of variants, it is notoriously difficult to eliminate all
the bugs during the testing phase. Thus, bugs are likely to exist during run time
to cause system failures. This problem, if possible, must be avoided to improve
run-time stability.

Hence, the main research questions can be formulated as follows:

1. How can anticipated and unanticipated adaptation at instance level in the context of
run-time variability be achieved and what is the trade-off to realize those achievements?

2. How can consistent behavior of objects engaging in ongoing method executions be
maintained if dynamic changes take place?

3. How can run-time stability be improved in the presence of run-time failures caused by
variant compositions?

1.3 Overview of the Approach

Following the principle of run-time variability, roles are selected as variants, and we propose a
dynamic instance binding mechanism as a realized composition mechanism of roles. With this
mechanism, we achieve anticipated and unanticipated adaptation. Inconsistency and failures
are handled by an object-level tranquility mechanism and a rollback recovery mechanism
respectively. The three mechanisms are integrated into a runtime, called LyRT. This section
briefly explains those mechanisms, but first, the concept of roles is illustrated.

1.3.1 Roles as Variants

The role concept has been applied in many disciplines, ranging from data modeling to
conceptual modeling to programming [Ste00, KLG+14]. This concept consists of three main
object abstractions: players (core objects), roles, and compartments. The relation between
these three abstractions is defined as follows: players or core objects implement the base
system logic. Roles are variants dynamically extending or adapting the behavior of the
core objects to which they are bound. Roles are modeled as part of a compartment and
collaborate with each other. The compartment also acts as a binding scope of core objects in
which its activation adapts the core objects concerning the played roles. These abstractions
are suitable for run-time variability in which core objects can be used to implement the base
system and roles are implemented as variants. An activation of compartments facilitates the
dynamic composition of core objects and their bound roles. Throughout this dissertation,
the term core objects is used instead of players since the player denotes the role-playing
object which can be either the core object or another role in the case of roles are allowed to
play roles as well.

1.3.2 Dynamic Instance Binding Mechanism

We propose a dynamic instance binding mechanism which adheres to the role-playing model
to achieve anticipated and unanticipated adaptation at the instance level. The mechanism
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loosely binds role instances to the core objects by constructing a transient relation between
them. The binding relation also contains a compartment instance with which the relation
is associated. Conforming to run-time variability, the bound instances remain completely
decoupled from each other while appearing as a single object. A lookup table is used to store
the binding relations. Normally, programmers interact with the core objects, but a dynamic
method dispatch selects the appropriated role for invocation based on the relation obtained
from the lookup table. Therefore, manipulating the lookup table eventually triggers the
adaptation. In case of unbinding, the relation is removed from the lookup table, and the
associated role instances are destroyed making the core object to adapt accordingly.

In order to achieve context-dependent behavior, the dynamic method dispatch works only
when a certain compartment instance is activated. In this regard, the same core object
can bind to different roles located in different compartments, but the dynamic behavior of
the core becomes effective if a particular compartment is activated. The dynamic instance
binding mechanism allows a single compartment to be activated at a time in a thread.
However, compartments can be active concurrently in different threads making the program
parts to be adapted simultaneously and independent from each other.

In order to deal with unanticipated behavior at run time, the new role classes must be defined
and compiled. Whenever the roles are loaded into the run-time environment by a dynamic
class reloader, they immediately become available to be bound to other existing instances. In
the case of removing existing roles, triggering the unbinding operation is necessary. Since the
program is already running, role (un-)binding operations to support unanticipated adaptation
are made through an Extensible Markup Language (XML) configuration file.

1.3.3 Object-Level Tranquility Mechanism

The tranquility concept [VEBD07] was proposed to find a consistent state, called tranquil
state, to safely update the software components which engage in a transaction. A transaction
is a series of method invocations that need to be executed atomically. The notion of this
transaction is applied to component-based systems where participating nodes are presented
as singletons, and their communication is statically defined via ports and connections. Due
to these criteria, this concept is difficult to be applied at the object level [ESMJ10].

In order to achieve tranquility at the object level, we introduce a consistency block which is a
construct to surround the block of code where a series of methods is executed, and we expect
to have a uniform behavior regardless of any adaptation. The consistency block shares a
similar characteristic of the transaction in the sense that it prevents the behavior of multiple
objects engaged in the block from being changed. The consistency block exploits the dynamic
method dispatch of the dynamic instance binding mechanism to hold the consistent behavior
of those participating objects. Adaptation happening in the existence of the consistency
block is deterred and soon becomes effective when the block has finished. The application
developers must define the consistency block in the program. The program code outside the
consistency block is considered to be performed in the tranquil state, and it is, therefore,
safe to perform adaptation.
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1.3.4 Rollback Recovery Mechanism

As bugs cannot be completely detected during development, we embrace them during
execution as they can cause run-time failures. The main idea of a rollback recovery mechanism
is to recover, upon failure, by rolling back to a recent checkpoint. The system generates a
checkpoint before initiating a new adaptation. A checkpoint is a serialized representation
of the current application configuration, i.e., the active compartments, a list of objects
(representing roles) including their states and binding information reflecting the currently
active play-relations between players and roles.

After the checkpoint is created, the system performs the specified adaptation, and the
runtime reacts accordingly. The program may encounter failures caused by bugs which are
introduced by newly installed or updated role implementations. The system has a specialized
sensor to detect faults and to signal the runtime to roll back to the previous configuration by
restoring the most recent checkpoint. That previous configuration is assumed to be error-free
because failures had not been caught within that application configuration. Meanwhile, the
runtime records the defective configuration to prevent it from being reactivated. The system
also generates a notification to the developer responsible for bugs. The adaptation can be
reapplied through unanticipated adaptation after the bug has been fixed.

1.4 Contributions

This dissertation potentially contributes to the field of adaptive software systems in which
the integral concept is proposed with run-time variability in mind. Therefore, reusability
and adaptability are the expected results of this work. In order to support adaptation
comprehensively, we propose three mechanisms as briefly described in Section 1.3. Those
mechanisms are our key contributions:

• Dynamic Instance Binding Mechanism. As explained in Section 1.3.2, this
mechanism allows us to achieve anticipated and unanticipated adaptation at the
instance level.

• Object-Level Tranquility Mechanism. As described in Section 1.3.3, this mech-
anism prevents the objects from changing their behavior while engaging in ongoing
method executions in order to avoid inconsistency. An object is allowed to adapt its
behavior only when it reaches a tranquil state.

• Rollback Recovery Mechanism. As mentioned in Section 1.3.4, this mechanism
embraces and handles failures caused by software bugs resulting from a dynamic variant
composition.

1.5 Publications

The publications which support the key ideas in this dissertation are fully described in
Chapter 4 and are summarized as follows:

• Nguonly Taing, Thomas Springer, Nicolás Cardozo, and Alexander Schill. "A dynamic
instance binding mechanism supporting run-time variability of role-based software sys-



Chapter 1. Introduction 8

tems." In Companion Proceedings of the 15th International Conference on Modularity,
pp. 137-142. ACM, 2016.

This paper presents the dynamic instance binding mechanism, a technique to achieve an-
ticipated adaptation at instance level by utilizing the role concept. It also demonstrates
a case study of a Tax Management System which is part of our validation described in
Section 6.1.2. Besides, it provides a Snake Game to show that the mechanism is ready
for unanticipated adaptation. This showcase is also part of our validation described in
Section 6.1.3.

• Nguonly Taing, Markus Wutzler, Thomas Springer, Nicolás Cardozo, and Alexander
Schill. "Consistent unanticipated adaptation for context-dependent applications." In
Proceedings of the 8th International Workshop on Context-Oriented Programming, pp.
33-38. ACM, 2016.

This paper offers an enhancement of the original tranquility concept to make it
applicable for consistent adaptation at the object level. Additionally, it extends the
previous paper by illustrating a run-time architecture that supports unanticipated
adaptation. Moreover, the paper presents a File Transfer Application as a case study
that is part of our validation described in Section 6.1.4.

• Martin Weissbach, Nguonly Taing, Markus Wutzler, Thomas Springer, Alexander
Schill, and Siobhan Clarke. "Decentralized coordination of dynamic software updates
in the Internet of Things." In Proceedings of the IEEE 3rd World Forum on the Internet
of Things (WF-IoT), pp. 171-176. IEEE, 2016.

This paper realizes the applicability of the two papers mentioned above in the adaptation
of distributed systems in which LyRT was used as a local runtime waiting for a
decentralized coordinating protocol to trigger the adaptation.

• Nguonly Taing, Thomas Springer, Nicolás Cardozo, and Alexander Schill. "A Rollback
Mechanism to Recover from Software Failures in Role-based Adaptive Software Sys-
tems." In Companion to the first International Conference on the Art, Science and
Engineering of Programming, p. 11. ACM, 2017.

This paper presents a consequence of dynamic variant compositions which may cause
system failures due to the lack of test suite. Therefore, it proposes a rollback recovery
mechanism for Role-based systems to handle execution failures. A case study is given
which later becomes part of our validation described in Section 6.1.4.

1.6 Limitations

The goal of the dissertation is to propose the run-time architecture that features the
adaptation by supporting variability and a partial update of the run-time behavior in terms
of unanticipated adaptation. The prototype, a proof of concept, is presented as a software
framework normally integrating to the mainstream OOP that allows programmers to write
role-based applications.

However, the engineering principles of programming languages such as new language con-
structs, new compiler, formalization, and type systems are not the main focus. Additionally,
this work does not intend to fully demonstrate Self-Adaptive Systems (SASs), which usually
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rely on the control feedback loop to infer the adaptation [ST09]. The solution covers only
the adaptation part executing in the local runtime without any consideration for the self-*
properties of SASs.

1.7 Outline

The remainder of this dissertation is organized as follows:

Chapter 2 introduces the foundation of run-time variability, and we include some key
definitions that will be used for the whole dissertation. We demonstrate a chat server
application as the motivating example. From that example, we derive the requirements
for variability approaches that should satisfy the needs of run-time variability.

Chapter 3 discusses comprehensively related work in the perspective of run-time variability
and adaptation of a runtime. We focus on variability approaches derived from pro-
gramming language solutions and use the requirements that we developed in Chapter 2
to assess those state-of-the-art approaches.

Chapter 4 illustrates the key concept which includes (1) the dynamic instance binding
mechanism to realize anticipated and unanticipated adaptions, (2) the consistency
block to deal with arbitrary adaptation causing inconsistent behaviors, (3) the roll-
back recovery mechanism to embrace bugs ensuring runtime progress and supporting
continuous deployment. In addition, a full-fledged run-time architecture will be fully
visualized and illustrated.

Chapter 5 explains an implementation technique of a prototype serving as a proof of
concept for evaluation.

Chapter 6 presents the evaluation by implementing three case studies to demonstrate the
practicability of the proposed run-time architecture. Besides, various performance
metrics compared to the baseline counterparts will be discussed.

Chapter 7 concludes the dissertation by summarizing the contributions, and finally outlines
potential future work.





Chapter 2
Background and Requirements Analysis

This chapter describes the foundations on which this dissertation is based. First, the concept
of run-time variability which is used to achieve anticipated and unanticipated adaptation
is illustrated. Second, a foundation of the role concept [KBGA15] is explained. Third,
the tranquility concept [VEBD07], which defines a condition of a consistent state to safely
update the system, is described. Finally, an example which is used to derive requirements
for run-time variability is presented.

2.1 Run-time Variability

Variability is the ability of a software system to change its behavior corresponding to a
specific need [GWT+14]. Variability specifies static and dynamic parts of a system in which
changing the dynamic parts features adaptability. The static parts are typically fixed and
used to implement core system functionalities. The dynamic parts are called variants,
reusable software features which may interact with each other. Variants are designed as
options that can be selected. Variability manages these variants by allowing them to be
composed into the base system via variation points. A variation point specifies where a
decision is to be made including how, when, and where variants may be introduced [Hil10].

Although variability features adaptability, the resulting adaptation is achieved differently
based on when variants are managed. In Software Product Lines (SPLs), variability is
used to synthesize different sets of variants in order to create multiple software products in
the same product family. Since a composition of variants is done at development or build
time, the adaptability in SPL can be expressed as those resulting products fit the need of
respective clients. Variability is not limited to product lines but “it is a key fact of most, if
not all, systems” [Hil10]. Many today’s software systems are developed with variability in
mind, e.g., self-adaptive systems [GWT+14]. Thus, rather than creating multiple software
products, a single software product is created, but its behavior is adapted due to the changing
of variants. Therefore, this variability is called run-time variability, in which variants are
dynamically composed at run time in order to adapt the system’s behavior.

Run-time variability offers adaptation, but this adaptation is anticipated. Anticipated
adaptation is a process in which a system changes its behavior as a result of dynamic
composition of variants that are given beforehand. Baresi et al. [BDNG06] mentioned that a
running system might undergo a series of changes to address bug fixes and new requirements
in order to operate in today’s open-world settings. Therefore, run-time variability should
extend its ability to incorporate new variants, which are unknown during design time,
to the running system in order to address these new requirements. This ability is called

11
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unanticipated adaptation. Unanticipated adaptation is a process in which a system changes
its behavior as a result of a dynamic composition of variants that are unknown beforehand
and only given at run time.

In this dissertation, run-time variability is the ability of a software system to change its
behavior corresponding to a specific need in either anticipated or unanticipated manner.
In literature, run-time variability that also supports unanticipated adaptation is called
run-time meta-variability [HWS+09]. However, the term run-time variability is used in this
dissertation since it is broad enough to cover both kinds of adaptation.

2.2 Roles

In 1977, Bachman and Daya first introduced roles for data modeling [BD77] with a limited
notion of adaptation. Since then, the work on roles has been proposed in many domains
ranging from databases [JKH+15] to conceptual modeling [Fow97, KLG+14] to programming
languages [Her05, LA15]. Kühn et al. [KLG+14] mentioned that there is no common
understanding of roles. This statement implies that researchers or practitioners proposed
a different set of role features for their work. Steimann [Ste00] and Kühn et al. [KLG+14]
compiled a list with all features from various domains in literature as presented in Table 2.1.
While some features relate to model level(M1), some are for instance level(M0). This
dissertation addresses those instance-level features, which are run-time aspects.

2.2.1 Nature of Roles

The given role feature list consists of three main abstractions: player, role, and compartment.
Players, also called core objects, implement the core system behavior considered to be static
over the entire lifetime. Roles encapsulate dynamic behavior that can dynamically extend or
adapt the players’ behavior. Compartments are a scope in which roles reside and collaborate.
The activation of a compartment reifies a role binding process which adapts the player’s
behavior.

These role abstractions correspond to three natures, namely behavioral, relational, and
context-dependent natures [KLG+14], which are suitable for run-time adaptation. The
behavioral nature characterizes the objects that can acquire and abandon roles dynamically,
adapting the object’s behaviors. For instance, a person object can play a student or a
customer role. As roles are defined as objects, they can also play other roles. The relational
nature represents relations filled by roles which are subject to cardinality constraints. For
example, a student played by a person works for a professor played by another person
under the work-for relation, defined with a many-to-one cardinality constraint. The context-
dependent nature realizes roles and relations encapsulating them within a context-dependent
boundary scope, which is a compartment. For example, a person exclusively plays a student
role in a university compartment and plays a customer role whenever that person enters a
shop compartment. Not only roles but relations too are context-dependent because roles fill
those relations within a compartment scope.

This dissertation mainly focuses on the behavioral and context-dependent nature. With
respect to run-time variability, players or core objects represent the base system whereas
roles represent variants. Compartments specify the variation points of players and roles
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Table 2.1: Classifying features of roles. M1 and M0 are denoted as model level and instance
level respectively.

No. Description Target

Features compiled by Steimann, 2000 [Ste00]

1 Roles have properties and behaviors M1, M0

2 Roles depend on relationships M1

3 Objects may play different roles simultaneously M1, M0

4 Objects may play the same role (type) several times M0

5 Objects may acquire and abandon roles dynamically M0

6 The sequence of role acquisition and removal may be restricted M1, M0

7 Unrelated objects can play the same role M1

8 Roles can play roles M1, M0

9 Roles can be transferred between objects M0

10 The state of an object can be role-specific M0

11 Features of an object can be role-specific M1

12 Roles restrict access M0

13 Different roles may share structure and behavior M1

14 An object and its roles share identity M0

15 An object and its roles have different identities M0

Features compiled by Kühn et al, 2014 [KLG+14]

16 Relationships between roles can be constrained M1

17 There may be constraints between relationships M1

18 Roles can be grouped and constrained together M1

19 Roles depend on compartments M1, M0

20 Compartments have properties and behaviors M1, M0

21 A role can be part of several compartments M1, M0

22 Compartments may play roles like objects M1, M0

23 Compartments may play roles which are part of themselves M1, M0

24 Compartments can contain other compartments M1, M0

25 Different compartments may share structure and behavior M1

26 Compartments have their own identity M0
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which are bound together. An activation of a compartment reifies the role (un-)binding
processes to adapt the system’s behavior.

2.2.2 Foundation of Compartment Role Object Model (CROM)

Compartment Role Object Model (CROM) [KBGA15] is a role-based model that captures the
three natures of roles described above. CROM has been formalized, and it provides graphical
tool support for modeling [KBRA16]. CROM is argued to be a promising modeling technique
to represent the abstraction of the system complexity and dynamism by combining both
relational and context-dependent property under the compartment. Besides compartment,
role and object type, CROM gives another type of its elements called relationship type
denoting role relations to fully support the three natures.

The distinction between these four elements in CROM is subtle. Kühn et al. [KBGA15]
use three ontological properties, namely rigidity, foundedness, and identity, to differentiate
between them. An instance of a rigid type can stand on its own without any dependence. For
example, a person instance remains itself until it ceases to exist. An instance of a founded
type can only exist if another instance of a rigid type exists at the same time. A student
instance only exists when there is a university instance. The identity property describes
the form of identity to be unique, derived or composite. A person instance has its own
unique identity while the student’s identity is derived from the playing person due to the
shared identity feature (Feature No. 14 in Table 2.1). A teaching relationship identity is
composite because it is derived from the participation of student and professor roles in
a university. A compartment, e.g., a university, has its state and behavior; its identity is
unique. Table 2.2 summarizes the four types of CROM’s concept with the three ontological
properties. While a role instance is founded on the existence of a compartment instance,
the compartment instance itself is also founded on the existence of participating roles. An
activation of an empty compartment does not affect the players’ behavior.

Table 2.2: Ontological foundation of CROM [KBGA15].

Property Rigidity Foundedness Identity

Object Type or Natural Type Yes No Unique

Role Type No Yes Derived

Compartment Type Yes Yes Unique

Relationship Type Yes Yes Composite

CROM provides a constraint model on roles. In addition, it introduces Role Groups to apply
the constraint, e.g., cardinality constraints, to a group of roles. The constraint in CROM is
partly adopted from a model of Riehle and Gross [RG98]. The constraint model specifies that
for a given pair of role types A and B, at least one role constraint value is defined. There
are four constraint values: role-dontcare, role-implied, role-equivalent, and role-prohibited.
The role-dontcare constraint specifies no constraint between role A and B. The role-implied
constraint demonstrates the implication of an object that plays role A, also plays role B,
but not vice versa. The role-equivalent constraint is a bi-directional role-implied constraint
between A and B. The role-prohibited constraint prevents role A and B from being bound to
an object within the same active compartment. These constraints map one-to-one of a given
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pair of roles making them inflexible when dealing with cardinality. Role Groups overcome this
problem by grouping roles with cardinality constraints. Kühn et al. [KBGA15] mentioned
that Role Groups constrain a set of roles that an object is allowed to play simultaneously in
a certain compartment. For example, persons can play teaching_assistant and student
roles. A constraint specifies that teaching_assistants can assist ten students in a course,
but they cannot assist themselves as a student of a particular course. By using Role Groups,
this constraint is set as: ({({teaching_assistant}, 0, 0), student}, 1, 10).

Kühn et al. [KLG+14] proposed a metamodel for role-based modeling, and CROM is only
one possible role model which supports behavioral, relational, and context-dependent natures.
Depending on the subset of role features to be addressed, other role models can be derived
as well.

2.3 State and Behavioral Consistency

Adaptation changes state and behavior of a system in which parts of the base system are
updated according to the composing variants. The system must be in a consistent state
before the change is performed in order to ensure consistency [KM90]. “A consistent state is
a state from which the system will be able to terminate correctly” [ESMJ10]. The correct
termination refers to the point in which the system is ready to switch behavior. Since the
system comprises multiple objects, a consistent state of the system depends on the state of
individual objects which engage in run-time execution. Therefore, finding a consistent state
of the system requires to find the consistent state of these objects.

Kramer and Magee [KM90] introduced the notion of quiescence which is a condition of
putting a system into a consistent state before it is updated without restarting. The system
model is represented as a directed graph in which nodes are the servicing entities, and
connections reflect the interaction between those nodes. A node in their system refers to
a computing node in distributed systems in which the node has only one single instance.
The interaction between nodes is explicitly defined inside transactions. A transaction is
a sequence of messages that must be executed atomically [KM90]. Since quiescence was
proposed for distributed systems, the messages are passed over the networks to achieve a
common service. From the perspective of a runtime of programming languages, messages
refer to a series of method invocations of particular objects. The key idea of quiescence is
not to update the nodes while they are engaging in the transaction because those nodes are
not in a consistent state.

Quiescence is sufficient to place a node in a consistent state where the system can safely
update the node. However, this approach causes a long disruption to reach a consistent
state because a node inside the transaction is not allowed to update although it has finished
its current services and will not service for the rest of the transaction. Vandewoude et al.
proposed tranquility in order to to minimize this disruption with two observations [VEBD07].
First, a node should be able to update even when it is in a transaction if the node has not
been servicing or will not service for the rest of the transaction. Second, a node engaging
inside a sub-transaction can also be updated. A sub-transaction is also a transaction but it
appears inside a parent transaction. Normally, nodes engaging in the transaction have no
knowledge of the nodes participating in the sub-transaction. Hence, the nodes inside the
sub-transaction are invisible to the parent transaction.
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Figure 2.1: Nodes’ updatability in transactions [VEBD07].

Figure 2.1 shows a transaction T [X] which contains a sub-transaction T [Z] and consists of
four nodes (X, Y , Z, U). X initiates a communication in T [X] where Y and Z are servicing
nodes. Z further initiates a new sub-transaction T [Z] where U is a servicing node. U is
a hidden node from the viewpoint of X and Y . Regarding the nodes’ updatability in a
transaction, quiescence does not allow any node to be updated inside T [X] so the nodes can
only be updated at time 1 and 7. Similarly, U cannot be updated because it is hidden, and
quiescence is not designed for this sub-transaction. In contrast, tranquility allows X and
Y to be updated at time 1 and 7 while Z and U can be updated at any time except time
4 because they are servicing inside the sub-transaction T [Z]. Figure 2.1 clearly shows the
benefit of the tranquility concept over quiescence. Tranquility minimizes the disruption time
to update the nodes even they are participating in a transaction while a consistent state of
those nodes is still maintained.

Although tranquility is more efficient than quiescence in terms of disruption, a consistent
state is not always reachable [VEBD07]. Therefore, tranquility applies a fallback mechanism
to switch to quiescence whenever waiting for the consistent state takes longer than a threshold
period. The concepts of quiescence and tranquility apply to the component-based software
systems and distributed systems in which nodes are singletons, and their interfaces are
well-defined. Moreover, the communication between participating nodes is explicit via
component’s ports and connections. Therefore, it is statically determined which nodes are
engaging in the transaction. In object-oriented systems, the notion of transactions is implicit,
and classes, which are nodes in the tranquility concept, have multiple instances [ESMJ10].
In other words, there is no practical solution to achieve tranquility at the object level. Thus,
consistently updating the object instance remains a challenging task to overcome.

This dissertation aims at providing a mechanism to achieve a consistent state at object
level before performing anticipated and unanticipated adaptation. The term object-level
tranquility is used throughout this dissertation to express the consistent state of objects in
which adaptation can be safely performed.
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Figure 2.2: A chat server application with per-client adaptation.

2.4 Motivating Example

In order to highlight the need for run-time variability, a chat server application is used as
an example. The example is motivated by a scenario of a typical adaptive software and is
proposed to conform to the research questions. Afterwards, this example is used to derive
requirements for approaches to support run-time variability.

The chat server application, depicted in Figure 2.2, supports multiple client connections
simultaneously. The main functionality of the application is to handle data or message
transmission between the server and clients. Messages can be transmitted in a raw, a
compressed, or an encrypted format. Depending on client requirements, messages can be
both compressed and encrypted before transmission. Technically, a shared Channel object
is responsible for this transmission, and its behavior changes based on client requirements.
The clients are heterogeneous in terms of network connectivity, for example, 2G, 3G, and
4G. With respect to these connectivities, the server chooses an appropriate data format
for transmission. For example, the server only sends LZ compressed messages to 2G clients
because of low bandwidth connection. The 3G clients have more bandwidth which allows
them to transmit texts and images with a better LZX compression algorithm. The 4G clients
have the bandwidth to support all multimedia formats, and data compression is optional.

During execution, chat server administrators may want to introduce encryption features
(i.e., AES and 3-DES) to the Channel object to respond to privacy concerns of their new
users. Unlike LZ and LZX compressions, which are implemented and deployed to the runtime
beforehand, the encryption algorithms are newly introduced at run time. Their introduction
should not affect the existing client connections but rather give additional features for new
clients or old clients with newly established connections.

Based on the description of this example, key features related to adaptation are illustrated
as follows:

F1: Variations. Initially, the shared Channel object can send and receive only in a raw
format, but this ability is variable in response to the types of connected clients which
demand compression or encryption to the transmitted data.
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Figure 2.3: Behavioral change during a file transfer in the chat server application.

F2: Anticipated adaptation. Run-time adaptation is demonstrated when the shared
Channel object switches between formats in order to transfer the data. The variants,
such as LZ and LZX compressions, are deployed in advance.

F3: Unanticipated adaptation. Adding encryption features that have been unforeseen
during development time requires a technique to load newly introduced variants and
to dynamically bind the loading variants to the Channel object.

F4: Consequences of adaptation. Performing either anticipated or unanticipated adap-
tation may affect the run-time stability. The consequences are described as follows:

F4.1: State and behavioral inconsistency. A 4G client, denoted as Client 1 in
Figure 2.3, is receiving file fragments in a raw format, and in the meantime, the
server is requested to add an encryption algorithm unanticipatedly. The shared
Channel object adapts to the encryption behavior while it is still handling the
transmission of the chunks without encryption for Client 1. This adaptation
satisfies Client 2 which requires security for data transmission, but it affects
Client 1. The adaptation allows Client 1 to receive file chunks partially in a
raw format and partly in an encrypted format. Therefore, the chunks cannot be
merged into a single file. This situation occurs as a result of the adaptation that
is applied either during the execution of a long-running transaction1 (i.e., sending
file chunks) or when the system has not reached a consistent state.

F4.2: Software failures. Adaptation may happen frequently, and possibly variants
are composed arbitrarily. These criteria make the system vulnerable to failures
because bugs may appear in a composition. Bugs are common in software
systems, and testing dynamic software systems is challenging [TSCS17]. This
problem becomes even more critical when unanticipated adaptation is supported.
For example, a composition of either LZ or AES to the Channel object is tested

1The transaction is discussed in Section 2.3
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independently without error, but a bug may appear when the two variants are
composed together to perform encryption and compression on the transmitted
data. A simple bug, such as a DivideByZero, may cause the runtime to crash.

F5: Continuous deployment. Runtime should be conformally extensible by adding new
features on-the-fly without the need for a system restart. For instance, the Channel
object can have additional behavior such as new efficient compression and encryption
algorithms. Software failures should not prevent from having an adaptation in such
erroneous situations. For example, the composition of LZ and AES variants causes
a DivideByZero bug that has been uncaught before deployment. Therefore, when
performing unanticipated adaptation, the bug is manifested and crashes the runtime. In
continuous deployment settings, the runtime resists to failures and lets the developers fix
the bug and reapply the defective variants once again through unanticipated adaptation.

2.5 Requirements for the Run-Time Variability

Run-time variability has to support both anticipated and unanticipated adaptation while
the consequences of those adaptations are also taken into account. This section presents
requirements to accommodate the demanding features of the motivating example, discussed
in Section 2.4. A summary of these requirements corresponding to the described features of
the motivation example is given in Table 2.3. These requirements will also be used to assess
the related work presented in the next chapter.

R1: Modularity. Modularity does not only improve reusability and comprehensibility
of the application code but is also the foundation for run-time variability. Variants
have to be defined modularly from the base system avoiding tangled code that limits
the flexibility of the adaptation. At programming language level, variants should be
first-class citizens associating to programming language abstraction with a mechanism
to handle the dynamic activation of the variants during run time. Even though
variants are kept as separated as possible from the base for reusability and adaptability,
their connections to or glue code with the base system need to be constructive and
informative in order to improve the comprehensibility of the program code. This
requirement corresponds to F1: Variations of the motivating example.

R2: Dynamic Activation. Variants are bound to the base system with a particular bind-
ing mechanism controlling the dynamic addition and removal of variants. In contrast
to static activation, where that binding process happens before run time or once at
load time, dynamic activation takes place at run time. Dynamic activation transiently
occurs several times in different places of a program. At programming-language level,
dynamic activation can be scoped in a confined adaptation block to facilitate the
change of several objects. The adaptation is deactivated automatically when the scope
expires. Dynamically scoped activation can be extended to support parallel activation
in a multi-threaded environment. For example, the chat server application allows
the channel object to be activated simultaneously with different variants to serve
multiple client requests. This requirement responses to F2: Anticipated adaptation of
the motivating example.

Adaptation, a result of dynamic activation, is triggered from various sources such as
application developers, end-users, and contextual values. At programming-language
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level, adaptation is supported by language abstraction which allows application devel-
opers to provide the activation block explicitly for adaptation anywhere in the code.
Some adaptive applications deliver the control of adaptation to their end-users to select
specific variants of their demanding functionalities, i.e., plugins. In mobile applications
or intelligent ambient systems, the adaptation typically comes from sensing data of the
observable execution environment that are interpreted to be contextual information
for adaptation transition.

Variants differ in size, form, or state (i.e., type, instance, component, service, etc.).
Choosing between these variants for adaptation is a design decision. Since this
dissertation aims for a run-time system derived from a language solution, the granularity
of adapting variants can either be at type or instance level. Supporting adaptation at
type level is not as flexible as at instance level because several instances instantiated
from the same type uniformly adapt even if some of them are not in need. Another
adverse effect is a long disruption of adaptation which requires all the instances to be in
a consistent state in order to avoid inconsistency. Therefore, we prefer the adaptation
to be applied at instance level.

R3: Late Variants Adoption. As a system keeps changing over time, there is a need
for adding new requirements previously unknown. Supporting the adoption of new
variants dynamically at run time improves service availability as the runtime does not
require a restart. This requirement responses to F3: Unanticipated adaptation of the
motivating example.

R4: Object-Level Tranquility. Dynamic adaptation is about changing the state and
behavior of a running application. Adaptation can be applied to a single object or a
group of objects at once. At run time, these objects are perhaps executing a certain
task in a long-running transaction, i.e., sending file chunks in the motivating example.
Therefore, adaptation must be applied when these objects are in a consistent state
in order to avoid inconsistency. Object-level tranquility is an essential condition for
placing these objects in a consistent state. This requirement responses to F4.1: State
and behavioral inconsistency of the motivating example.

R5: Failure Handling. Developing robust systems is another challenge to be tackled.
Variants are variable parts, and they are composed into the system. Testing the
variants independently is possible but testing their compositions is quite difficult
because the composition is realized only at run time, and the order of the composition
matters. The number of possible compositions grows exponentially as the number of
variants increases. Additionally, current testing frameworks lack contextual constructs
or do not exist for context-dependent applications [SGP12a]. In such a case, variants
are likely to be infested with bugs. This situation becomes even more critical when
variants are introduced later at run time. Hence, after the adaptation, executing
these defective compositions causes the runtime to crash. A mechanism to handle
such failures is required. This requirement responses to F4.2: Software failure of our
example.

R6: Continuous Deployment. This requirement is derived from R3 and R5. If the
system supports requirement R3, the defective variant composition, captured by a
system supporting R5, can be fixed and reapplied using unanticipated adaptation.
Therefore, supporting both R3 and R5 responses to F5: Continuous deployment in
the motivating example.
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Table 2.3: List of mapping between requirements and corresponding required features.

No Requirements Corresponding Features in the Example

1 R1: Modularity F1: Variations

2 R2: Dynamic Activation F2: Anticipated adaptation

3 R3: Late Variants Adoption F3: Unanticipated adaptation

4 R4: Object-Level Tranquility F4.1: State and behavioral inconsistency

5 R5: Failure Handling F4.2: Software failures

6 R6: Continuous Deployment F5: Continuous deployment

2.6 Chapter Summary

Run-time variability in the context of this dissertation has to capture both anticipated
and unanticipated adaptation. Run-time adaptation comes at the expense of consequences
that should be taken into consideration, such as inconsistency and failures. Roles can be a
suitable candidate for variants due to their dynamic property that captures the behavioral,
relational, and context-dependent nature. In order to avoid inconsistency, adaptation must
be performed when the system is in a consistent state. Tranquility is a sufficient condition
to find a consistent state of the system. The chat server example was to show the need for
run-time variability which is later used to derive requirements for run-time variability. In
the next chapter, the current state of the art will be comprehensively discussed based on the
requirements mentioned before.





Chapter 3
Related Work

In Chapter 2, we identified a number of requirements for variability approaches that should be
satisfied in order to support run-time variability that handles the coexistence of anticipated
and unanticipated adaptation as well as resolving techniques when facing the consequences
of such adaptation. These requirements are used to assess the state of the art of run-time
mechanisms that are designed for adaptive software systems or context-dependent applications.
Developing such systems or applications is challenging because of their transient and dynamic
adaptability. Several approaches have been proposed to combat this problem at different
levels, for example, software architecture, middleware, and programming level. Primarily,
we focus on language-level approaches because the adaptation is integrated to the core
machinery of a language allowing us to steer the extremely customizable adaptation.

In recent development, many linguistic approaches have been proposed tailoring to dynamic
adaptation with elegant language constructs to coordinate various types of variants and to
constitute a dynamic method dispatch for behavioral adaptation. This chapter conducts a
systematic review of state-of-the-art run-time variability approaches realized by programming
language models addressing the above requirements. We ignore the discussion on higher-
level techniques such as component-based approaches or middleware solutions because they
adapt software components at a coarse-grained level. Before we analyze the mainstream
programming languages, we investigate languages facilities such as inheritance, mixins, and
traits followed by a brief discussion of design patterns. Besides these language-related
solutions, we also discuss the domain of DSU as it provides a platform for unanticipated
adaptation. Finally, we synthesize all the discussed approaches into a survey list for a better
comparison.

3.1 Language Facilities

This section focuses on the traditional element of reuse and modularization in the form
of language support. Although language facilities do not address the run-time adaptation,
they are the core building block of software composition. We discuss their strengths and
weaknesses before we provide an evaluation that is summarized in Table 3.1.

3.1.1 Inheritance

In OOP, inheritance is the fundamental mechanism for code reuse. Modern programming
languages such as Java and C# support only single inheritance to reduce unnecessary com-
plexity and to avoid problems. Although single inheritance has been widely accepted, it is not

23
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expressive enough to specialize the state and behavior in complex class hierarchies [SDNB03].
Multiple inheritance, on the other hand, provides more expressiveness but introduces more
complexity which limits its usability [DMVS89, SG99]. Cook also mentioned that “multiple
inheritance is good, but there is no good way to do it.” [Coo87].

Indeed, multiple inheritance introduces ambiguity and raises a major problem known as the
diamond problem which is described as a situation of a class inheriting from two different
classes that share the same superclass. In this scenario, the class would get inherited twice
which eventually leads to a duplication of state encapsulated in the superclasses. As a
consequence, this results in serious state consistency issues [OAC+04]. Moreover, as pointed
out by Schaerli et al. [SDNB03], although the aforementioned problems are intentionally
avoided, multiple inheritance is still not the most appropriate element of reuse.

Another problem offered by the composition mechanisms of both single and multiple inheri-
tance is that they are rigid and static at design time making them less suitable for run-time
variability which requires variants to be (de-)composed dynamically.

3.1.2 Mixins

Mixins were first introduced to solve the problem of lacking expressiveness in single inheritance,
and mixins also address the problem in multiple inheritance on the ambiguity of the diamond
problem (i.e., naming, behavioral and state conflicts). The notion of mixins can be found
in Flavors [Moo86] which defines mixins as small units of reuse not necessarily complete.
Mixins can be mixed in orthogonally at arbitrary places in the class hierarchy [SDNB03].
Ancona et al. [ALZ00] define mixins as follows:

“A mixin is a uniform extension of many different parent classes with the same
set of fields and methods, that is, a class-to-class function.” [ALZ00]

As already explained in Section 3.1.1, the diamond problem, which appears in multiple
inheritance, does not exist in single inheritance. As mixins are based on single inheritance,
they do not suffer from this problem either. However, mixins still maintain the same
expressiveness as multiple inheritance. Mixins are applied to classes one at a time which
generates new subclasses in a single inheritance hierarchy [DNS+06]. Mixin composition is
linear so that the order of the mixins in the hierarchy matters. Methods defined in a mixin
simply extend or override the methods of the class to which they are applied.

To be more concrete, we revisit the example from Ancona et al. [ALZ00]. Consider a
schematic class as follows: class H1 extends P1 { desc } where P1 is a parent, desc is
a set of properties and methods are declared in subclass H1. Assuming that another H2 is
the heir of a parent P2 but requires the same set of desc which can be expressed as class
H2 extends P2 { desc }. Without mixins, in the single inheritance scenario the desc is
duplicated resulting in redundant code. Mixins solve this problem by placing the common
desc into a mixin structure M and constructing composition syntax to the classes H1 and H2
as follows:

mixin M { desc }
class H1 = M extends P1
class H2 = M extends P2

Snippet 3.1 shows a mixin implementation of the chat server application described in
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Section 2.4 by using language constructs from Jam [ALZ00] which is a mixin prototype
extended to Java. A Channel class is defined with basic send and receive function (Lines
2-10) and a mixin LZCompression has a specific send method performing compress function
(Lines 13-18). For the sake of simplicity, the data to be compressed is enclosed with <LZ>
tags. A ChannelWithLZ is a mixin class declared by allowing a LZCompression mixin to be a
subclass of the Channel class (Lines 21-23). Therefore, when a send method is called (Line
32), the send method of mixins is first invoked to compress the data before it passes to the
send method of the Channel object through super keyword (Line 16).

Snippet 3.1: The chat server application implemented with Jam mixins [ALZ00].
1 // Channel class with basic behaviors
2 class Channel {
3 void send(String data) {
4 Network.send(data);
5 }
6
7 String receive () {
8 return Network.receive ();
9 }

10 }
11
12 //Mixin declaration
13 mixin LZCompression {
14 void send(String data){
15 String c_data = "<LZ >" + data + "<LZ >"; // perform compression
16 super.send(c_data); //call super method which is Channel object
17 }
18 }
19
20 //New class declaration with Mixins
21 class ChannelWithLZ = LZCompression extends Channel{
22
23 }
24
25 //Main program
26 public class Main{
27 public static void main(String [] args){
28 Channel channel = new Channel (); // without mixins
29 ChannelWithLZ chLz = new ChannelWithLZ (); // with mixins
30
31 channel.send("DATA"); //send without compression
32 chLz.send("DATA"); //send with compression
33 }
34 }

Similar to inheritance, mixins tackle reusability and composition at design time. They do not
address run-time adaptation because they cannot be mixed in and mixed out dynamically.
Evidently, mixins do not apply to the instance level, i.e., to the Channel object for example,
but mixins are a separate type that extends the Channel class. In a nutshell, mixins follow
the paradigm of inheritance to specialize behavior by means of subclassing. Therefore, mixins
are still not applicable for run-time variability.
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3.1.3 Traits

Traits are designed to eliminate the problem of multiple inheritance and mixins while
improving the expressiveness and code reuse. Traditionally, traits are only concerned with
behavioral reusability, thus there is no state support, to avoid the diamond problem found
in multiple inheritance. Unlike classes, traits are a small unit of reuse containing a list of
specific methods for composition, and thus traits are relatively incomplete. Unlike mixin
composition that is hierarchical, trait composition is flat meaning that the semantics of a
class using traits is the same as the class constructed from all the non-overridden methods
of traits and placed inside itself. That is “if class A is defined using trait T, and T defines
methods a() and b(), then the semantics of A is the same as it would be if a() and b() were
defined directly in the class A.” [SDNB03]. Additionally, mixin composition is linear while
composition in traits is symmetric as the order does not matter. For example, given a trait
composition of T = A+B, then a composition of S = B +A is the same as T . Conflicting
methods must be resolved explicitly. Traits also support multi-level or nested composition.
However, the flattening property is still maintained. For example, given a trait composition
of T = A+X, where X = B + C, then a composition of traits S = A+B + C is the same
as T .

Snippet 3.2 demonstrates how traits are declared and composed in the Scala language with
respect to our chat server application. The normal Channel object is declared as a regular
class in Lines 1-10 while the LZCompression trait extends the Channel object. In Scala, an
object can be composed with trait either at the class declaration level (Lines 21-23) or at
the instance initialization level (Line 34). In the main program, invoking the send method
of objects with the trait (Lines 31, 35) dispatches to the send method of the LZCompression
trait because that send method is embedded into the object during composition. Therefore,
the transmitted data is compressed by the trait’s method implementation and then sent over
the network with the super.send method (Line 16) that executes the send method of the
Channel object.

Snippet 3.2: The chat server application implemented in Scala Traits [OAC+04].
1 //A Basic Channel
2 class Channel {
3 def send(data: String): Unit ={
4 Network.send(data)
5 }
6
7 def receive (): Unit ={
8 return Network.receive ()
9 }

10 }
11
12 //A trait with specialized LZ compression
13 trait LZCompression extends Channel{
14 override def send(data: String): Unit ={
15 val c_data = "<LZ >" + data + "<LZ >"
16 super.send(c_data); //call to Channel.send()
17 }
18 }
19
20 //A class with traits composition
21 class ChannelWithLZ extends Channel with LZCompression{
22
23 }
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24
25 //Main program
26 object Main extends App {
27 val channel = new Channel // Basic channel feature
28 channel.send("DATA") // Send with original behavior
29
30 val chLz = new ChannelWithLZ // Specialized channel with traits
31 chLz.send("DATA") // Send with compression
32
33 // initialize class with trait
34 val anotherChLz = new Channel with LZCompression
35 anotherChLz.send("DATA") // Send with compression
36 }

Originally, traits were proposed for the behavioral composition of a class without state
support [SDNB03] but stateful traits were later presented [DNS+06]. However, these traits
are considered static, i.e., the composition is fixed at compile time. Similar to inheritance and
mixins, static traits do not address run-time adaptation as traits cannot be (de-)composed
dynamically. On the other hand, dynamic traits such as Chai3 [SD05] allow for the dynamic
replacement of traits making it possible for run-time adaptation.

Table 3.1: Evaluation of language facilities.
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Inheritance � � � � � �

Mixins [BC90, ALZ00, Moo86] � � � � � �

Traits [SDNB03] � � � � � �

Dynamic Traits [SD05] � � � � � �

�: supported, �: partially supported, �: not supported

Evaluation

The language facilities, in general, offer a great mechanism for code reuse and thus improve
the comprehensibility and extensibility of software systems. Super class in inheritances,
mixins, and traits are modular building blocks for these language facilities. However, they
support static composition occurring at compile time, but they are less flexible at run
time. Concerning the requirements we set for run-time variability in Section 2.5, these
mechanisms respond only to R1: Modularity. Besides, dynamic traits offer an operation for
trait replacement during run time to support run-time adaptation. Therefore, dynamic traits
satisfy both R1: Modularity and R2: Dynamic Activation. Nonetheless, dynamic traits have
no mechanism to adopt a newly introduced trait for unanticipated adaptation. Moreover,
its adaptation is rigid lacking contextual and scoping activation. The consequences arising
from these adaptations remain open for exploration. Hence, dynamic traits do not fulfill the
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rest of requirements. Table 3.1 summarizes the evaluation of these mechanisms. Context
Traits [GMCC13] adds contextual behavior to dynamic traits making it more advanced in
terms of adaptation. Hence, we categorize it as a COP language which will be discussed in
Section 3.3.5.3.

3.2 The Role Object Pattern

Design patterns are proposed to handle specific problems which repeatedly appear in
software development practice. Design patterns are a promising technique for reusability,
maintainability, and extensibility [GHJV95]. Some design patterns allow software artifacts
to adapt their behavior at run time. However, this kind of adaptation is rigid in the sense
that the code has to be designed and implemented upfront with those patterns [Car13, p.
27]. Cardozo [Car13] has already briefly mentioned and pointed out the limitation of existing
design patterns that support adaptation such as state pattern, strategy pattern, decorator,
abstract factories, and dynamic proxies. In addition to that, in this section, we discuss the
role object pattern, which closely relates to our solution in terms of roles, and which is the
earliest attempt to bring roles to programming languages for dynamic adaptation.

Bäumer et al. [BRSW98] introduced the Role Object Pattern to overcome the disadvantages
of Fowler’s role models [Fow97]. The pattern consists of four participants—Component,
ComponentCore, ComponentRole, and ConcreteRole. The Component is an abstract interface
containing both role management protocol and specialized role operations. The Component-
Core implements the Component interface including the role management protocol to handle
the creation and management of the ConcreteRole instances. Similar to Fowler’s Role Sub-
type model, the ComponentRole stores a reference to the ComponentCore and implements
the specialized role operation interfaces by forwarding requests to its core attribute. The
ConcreteRole is the role-specific implementation where the extension behaviors to adapt are
located and the ComponentCore instantiates the ConcreteRole as an argument.
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Figure 3.1: Structural diagram of the Role Object Pattern [BRSW98]

The role object pattern handles a core object and its role instances separately with a reference,
but they maintain a conceptually shared identity to appear as one object which is subject to
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object schizophrenia problem [Ste07].

“Object Schizophrenia results when the state and/or behavior of what is intended
to appear as a single object are actually broken into several objects (each of which
has its own object identity).” [Her10]

Broken identity is a common issue in object schizophrenia problem. Herrmann [Her10]
explained that the roles stored in a set-like structure might duplicate their identity. Therefore,
those duplicated roles no longer adapt their core object behavior because the method
dispatcher cannot find the appropriate roles due to their duplicated identity. The role
object pattern suffers from this problem because roles (ConcreteRole) are stored in a set-like
structure in ComponentRole that shares with ComponentCore as shown in Figure 3.1.

Besides the object schizophrenia problem, the role object pattern experiences an explosion of
the class hierarchy when dealing with multiple roles that share a similar structure. Figure 3.2
shows the class diagram of our chat server example using the role object pattern. ChannelCore
is a class supposing to play two main roles: compression and encryption (i.e., AES) roles.
The compression role has two more specializations that are LZ and LZX implemented as
a subclass of the CompressionRole. Adding these specializations results in an extra level
of class hierarchy in the role object pattern making the class hierarchy rigid and fragile.
Moreover, it also incurs run-time overhead as roles are queried recursively [BRSW98].
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compress()
LZ

compress()
LZX

core

roles

Figure 3.2: The chat server class diagram using the Role Object Pattern

In summary, the role object pattern has several advantages over Fowler’s models [Fow97] in
terms of decoupling the core and roles as well as the ability to add and remove role objects
dynamically. The disadvantages are the object schizophrenia problem and the explosion of the
class hierarchy for a large number of roles. This pattern also does not address unanticipated
adaptation because roles are priorly required to construct class hierarchy.
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Evaluation

The role object pattern achieves R1: Modularity by having separated role components loosely
coupled to the core object even though it requires an explicit reference. It also satisfies
R2: Dynamic Activation by offering a role management protocol for adding, removing and
querying roles dynamically at run time. Although it provides run-time adaptation, its
adaptation is rigid lacking contextual and scoping support. Additionally, it is incapable of
supporting unanticipated adaptation, R3: Late Variants Adoption. Table 3.2 summarizes
the evaluation of the role object pattern.

Table 3.2: Evaluation of the Role Object Pattern.
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�: supported, �: partially supported, �: not supported

3.3 Language Solutions

This section discusses variability approaches derived from programming language solutions.
The languages to be discussed are Subject-Oriented Programming (SOP), Feature-Oriented
Programming (FOP), Meta-Programming (MP), Aspect-Oriented Programming (AOP),
Context-Oriented Programming (COP), and Role-Oriented Programming (ROP). Originally,
each solution was proposed as a single research agenda, but continuous contribution in the
field resulted in a diversity of work on the same subject. For example in the domain of ROP,
we can classify four groups based on the nature of roles. To keep the discussion focused,
in each solution, we first describe the general concept and point out the key features that
the solution tackles regarding run-time variability. A sample code snippet, which realizes
our chat server application, described in Chapter 2, is given to exhibit how the solution
implements run-time variability. Afterward, we classify the work of that particular domain
based on its commonality. Finally, we evaluate each classification of the respective solution
to our requirements.

Due to the great volume of research on the target domains, we cannot provide a complete
review of every work. Instead, we present the prominent research development of each
language area that has been well-discussed in the community. Furthermore, we do not review
comprehensively each individual approach, but we highlight the essence of variability support
and the connection of those approaches to our requirements.
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3.3.1 Subject-Oriented Programming (SOP)

Harrison and Ossher [HO93, HOM95] critiqued the pure OOP languages that have only a
single view as they cannot adequately describe any object from different views. Subjectivity
is a concept to extend the object to have multiple views while still keeping the core object
encapsulated. In SOP, subjects are “collection[s] of state and behavior specifications reflecting
a particular gestalt, a perception of the world at large, such as is seen by a particular
application or tool.” [HO93]. Back to our motivating example, the Channel object can have
multiple views to define its additional behavior such as LZ and LZX compression. In this
section, we cannot give a code snippet which implements our chat server application because
the Us language [SU96], a SOP language, presents incomplete syntax.

3.3.1.1 Subject Composition

Early work on SOP addressed only the composition domain rather than the behavioral
adaptation [OKH+95, CHOT99]. In SOP, objects are created with subject binding through
composition operators to transfer state and behavior from a subject to an object using
method dispatch. Similar to inheritance, the subject composition into the object is performed
at design time [UOK14]. A well-known extension to SOP is the multi-dimensional separation
of concerns which is proposed to overcome the typical problem of composition concerning
only one single dominant dimension of separation, also called the “tyranny of the dominant
decomposition.” [TOHSJ99]. The abstraction of the subjective concept provides a higher
level concept of separation of concerns and modularization. More importantly, this idea
has heavily influenced the development of other types of programming language solutions
primarily designed for adaptation, and those solutions will be discussed later in this chapter.

Evaluation

Since this solution uses subjects as variants decoupling from the core objects, it satisfies
the R1: Modularity requirement. There is no dynamic activation has been discussed in this
solution. Therefore, the rest of the requirements are not supported. Table 3.3 shows the
summary of this evaluation.

3.3.1.2 Subjective Dispatch

Smith and Ungar [SU96] proposed another kind of subjective programming, with their
language called Us, to capture different perspectives of an object by means of a layer. The
layer is the smallest but reusable unit containing specific behavior and state. A perspective
is an ordered sequence of layers that is wrapped around the core object enabling an object
perspective. Different perspectives can be applied to the core object and thus adapt the
object’s behavior. Their concept of perspective is similar to the subjectivity concept.

The Us language introduced double dispatch extending the typical method dispatch of OOP
to include perspectives for method resolution resulting in a three-dimensional dispatch.
Procedural programming relies on one-dimensional dispatch because the function can be
called without specifying the sender. OOP relies on two-dimensional dispatch by placing an
object as the message sender. Subjective dispatch, as in the Us language, puts both object
and subject (perspective) into the method dispatch to enable a three-dimensional dispatch.
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Nonetheless, this dynamic method dispatch lacks contextual support, which is addressed
within the four-dimensional dispatch in COP proposed by Hirschfeld et al. [HCH08].

Evaluation

Similar to the subject composition solution, this solution still maintains the modularity of its
layers and, therefore, satisfies the R1: Modularity requirement. Besides, its double dispatch
technique offers a basic dynamic activation which is considered to support the R2: Dynamic
Activation requirement. Table 3.3 summarizes this evaluation.

Table 3.3: Evaluation of Subject-Oriented Programming (SOP).
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Subject Composition [HO93, HOM95] � � � � � �

Subjective Dispatch [SU96] � � � � � �

�: supported, �: partially supported, �: not supported

3.3.2 Feature-Oriented Programming (FOP)

FOP is a language solution to structure, customize and synthesize large-scale software systems
with the core concept of features which can be activated and deactivated as needed [AK09].
A feature is “a prominent or distinctive user-visible aspect, quality, or characteristic of a
software system or systems.” [KCH+90]. FOP is used to implement these features which
can refine the functionality of the shared code base or other features in an incremental
manner [GS12]. Configuring and activating a set of features creates several new software
product lines with distinct behavior that share the common code base.

Snippet 3.3 presents the sample code of the chat server application implemented in Jak [BSR04].
Jak, a Java extension for FOP, allows implementing features using the refines keyword. A
Channel class (Lines 2-10) is a code base that may be refined by features to have distinct
behavior. Features are defined similar to a typical class (Lines 13-18). The Super keyword in
Line 16 is to call the super method of a feature or code base when composed. The main pro-
gram initializes the Channel object, and the send method is called in Line 26. The behavior
of the Channel object depends on whether the features are assembled through configuration
during built time. Therefore, we can assemble multiple product lines varying the Channel
object behavior either with its own or with the compression feature if the Channel object
composes of a compression feature. The composition code is not shown in Snippet 3.3
because the composition is made with FeatureIDE [TKB+14] which automatically generates
the composition code.
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Snippet 3.3: The chat server application implemented in Jak [BSR04].
1 //Code base for Channel
2 public class Channel{
3 public void send(String data){
4 Network.send(data);
5 }
6
7 public String receive (){
8 return Network.receive ();
9 }

10 }
11
12 // Refinement LZ compression functionality over Channel
13 public refines class Channel {
14 public void send(String data){
15 String c_data = "<LZ >" + data + "<LZ >";
16 Super ().send(c_data); //Call super ’s method
17 }
18 }
19
20 //Main class. Features composition is made by configuration at built time
21 public class Main{
22 public static void main(String ... args){
23 Channel channel = new Channel ();
24
25 // Behavior of send() depends on whether a feature is composed
26 channel.send("DATA"); //"<LZ >DATA <LZ >" if a feature is composed
27 }
28 }

3.3.2.1 Software Product Lines (SPLs)

SPLs are a software engineering approach that focuses on families of products which share
commonalities but have different feature variations. SPLs also use the notion of features
to produce different kinds of software products to fit the need of stakeholders. Although
their design concept is based on features, their implementation is made without explicitly
mentioning the features [AK09]. Usually, SPL’s features are called variants integrated to the
main code via variation points. In both SPL and FOP, features are implemented separately
from the code base and they are composed together by various means of compositions. Most
often, these fields overlap each other making the distinction between them difficult. We can
view SPLs as a software architecture while FOP is the language solution. In this regard,
FOP is a viable choice for developing SPLs. Because of the similarity, we place them into
the same category to discuss their features against the run-time variability requirements.

Evaluation

R1: Modularity. FOP and SPL aim at modularity of features or variants [ALS08]. The
decomposition of a software system in terms of features is the core requirement for both of
them. This decomposition helps to construct well-organized software modules that later on
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can be composed to meet the flavor of application scenarios. Apel et al. [ALS08] mentioned
that “there are two key ideas of FOP: (1) Features are mapped one-to-one to modular
implementation units called feature modules and (2) feature modules incrementally refine
[other] feature modules already [presented] in a program”. Wiring these feature modules
obviously results in composition.

There are several ways to compose the features and these depend on the language design. For
example, programmers can use C preprocessor #ifdef directives for the selection of features.
This method may accommodate only a few features or it leads to “#ifdef hell” [SC92].
Feature composition in Prehofer [Pre97] and Jak [BSR04] relies on mixins which have some
limitations discussed in Section 3.1.2, and the composition also needs a collaboration that
borrows from role concept [RAB+92, VN96, SB02]. The development of AOP also influences
the adoption of feature composition [LKKP06, Gri00, LSSP06, MO04, KAB07, AKLS07].
FeatureC++ [ALRS05], one of the FOP languages for C++, adopts the concepts of aspects
and mixins for its feature composition.

To ease feature composition and configuration, a tool like FeatureIDE [TKB+14] is developed
as a framework for the Eclipse Integrated Development Environment (IDE) to manage the
development and to compose features. FeatureIDE supports several kinds of FOP implementa-
tion techniques such as AspectJ [KHH+01], FeatureHouse [AKL09], FeatureC++ [ALRS05],
Jak [BSR04], Preprocessor directives and more to come.

R2: Dynamic Activation. FOP and SPL address feature composition bound statically
to the code base before program execution to create product lines of a product family that
are executed independently. Therefore, they are product-based or software-based adaptations
while run-time variability emphasizes the adaptation of software features at run time in a
single execution environment. Thus, FOP and SPL are not designed for run-time adaptation.
That means, they cannot satisfy the requirement of dynamic activation. Comparable
approaches that deal with this dynamic activation are discussed in Section 3.3.2.2.

R3: Late Variants Adoption. FOP and SPL are not designed to support unanticipated
adaptation because they do not satisfy the R2: Dynamic Activation which is the prerequisite
of the later variants adoption. Hence, they do not match this requirement.

R4: Object-Level Tranquility. Composing features interact with or depend on each
other to be functional. Therefore, constraints between features are necessary to verify if
the features contradict each other or if they need each other for their operations. Kang et
al. [KCH+90] introduced the concept of feature-oriented domain analysis with the notion of
feature models that describes the relationships and dependencies of a set of features belonging
to a specific product. Figure 3.3 shows the feature model for the channel object in our
chat server application. These constraints eliminate the conflicts significantly during the
composition at development time but not at run time. Therefore, this requirement is not
fulfilled because tackling the safe point to adapt the system characterized in the tranquility
concept is infeasible.

Other Requirements. Both FOP and SPL present no match for other requirements.
Table 3.4 visualizes this evaluation.
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Figure 3.3: A feature model for the chat server application developed in Fea-
tureIDE [TKB+14].

3.3.2.2 Dynamic Software Product Lines (DSPLs)

DSPLs follow the design principle of SPLs, but they manage variants dynamically in the
configurable space for adaptable software systems through an explicit model called late
variability. Similar to variability in SPL, which is a distinct property of software products,
the dynamic variability can be represented as a dynamic feature that can be activated
dynamically [DMFM10, HHPS08, HPS12, INPJ09, RSPA11, RSAS11].

The variants can be bound either statically at program compile time (i.e., FOP, SPL) or
dynamically at run time (i.e., DSPL) [RSPA11]. There is a trade-off between these two
binding mechanisms. Static bindings offer fine-grained customization and optimization
without sacrificing the performance overhead (e.g., SPL built for embedded systems). In
contrast, dynamic bindings introduce extra overhead but provide flexible feature addition to
enable run-time adaptation [RSPA11]. However, not all features can be bound at run time.
For example, features related to Central Processing Unit (CPU) architectures should be
bound statically. In this regard, Rosenmüller et al. [RSAS11] introduced a hybrid binding
technique balancing between performance and dynamic adaptation. The approach reduces
the run-time overhead by statically combining multiple features into dynamic binding units,
which are loaded and bound to the base system at run time. This technique minimizes the
number of binding operations, and thus it improves the system performance. However, the
overall system efficiency depends on whether all the bound features in the dynamic binding
units are used or some of them are just loaded without usability.

Evaluation

R1: Modularity. DSPLs adopt the principle of variants separation from SPL but dynam-
ically manage those variants for run-time adaptation. Hence, we consider DSPL to meet
these requirement criteria without further discussion.

R2: Dynamic Activation. The main mechanism to enable dynamic variability in DSPL
underlies the power of a dynamic feature binding mechanism that allows composition
and decomposition of variants or features at run time with solving all the specified inter-
dependencies and constraints between those features. Different dynamic binding approaches
have been proposed. For example, Trinidad et al. [TCPB07] and Lee et al. [LK06] use a
component-based approach to reconfigure variants at run time. FeatureAce [RSPA11] and
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the work of Rosenmüller et al. [RSAS11] are integrated frameworks for DSPL developed
on top of FeatureC++ [ALRS05]. Dinkelaker et al. [DMFM10] support dynamic variability
based on the dynamic feature model and their architecture is implemented on top of the
dynamic aspect run-time environment with meta-aspect protocol [DMB09]. Service-Oriented
Architecture (SOA) can also be used for dynamic feature binding [INPJ09]. At the language
level, rbFeature [GS12] is an FOP language implemented in the Ruby language to support
dynamic variability and run-time adaptation based on the activation of a set of features.
rbFeature relies on Metaobject Protocol (MOP) and functional programming to implement its
features. However, feature adaptation is not triggered automatically with respect to executing
context but through user intervention, for instance, from a graphical interface [CGDM11].
Despite rigid adaptation and lacking contextual activation, we assert that the DSPL satisfies
this requirement.

R3: Late Variants Adoption. Although not mentioned explicitly, rbFeature [GS12]
brings the power of the Ruby language that allows variants to be introduced and instantiated
lately at run time. This is because features are implemented with a special Ruby object
called Proc. Proc, as explained by Gunther et al. [GS12], is an anonymous block of code
like other objects but has a unique ability. Similar to closures in functional programming,
Proc can reference variables in its own creation scope. More importantly, code fragments
written in Proc can be evaluated at run time by eval method. Therefore, rbFeature partially
supports this requirement. Similarly, DSPL introduced by Helleboogh et al. [HWS+09]
proposes a meta-variability model to document the way that the variability model may
evolve. They use the concept of plug-ins as the late adoption of features to enable features
addition on-the-fly though they lack programming support. Since we cannot find enough
evidence showing that DSPL provides late variants adoption with full function, we assume
DSPL to partially support this requirement.

R4: Object-Level Tranquility. Similar to SPL, variants in DSPL go through the process
of feature modeling that defines interactive constraints for the composition as exhibited in
Figure 3.3. Even if the composition happens dynamically, finding a consistent state to adapt
the system is not addressed. Therefore, this requirement is not satisfied.

Other Requirements. DSPL supports neither R5: Failure Handling nor R6: Continuous
Deployment. The evaluation summary can be seen in Table 3.4.

3.3.3 Meta-Programming (MP)

Maes [Mae87] brought computational reflection to OOP and defines “computational reflec-
tion to be the behavior exhibited by a reflective system, where a reflective system is a
computational system which is about itself in a causally connected way.” [Mae87]. Hence,
computational reflection or just reflection is the ability to examine itself and its operational
environment to possibly change its behavior. To perform this self-examination, reflective
systems have a data structure representing their structural and computational aspects that
are normally called metaobjects. Metaobjects are located in the metalevel that is causally
connected to their objects at the base level. Metaobjects can be manipulated in the same
manner as standard objects. Due to causal connection, changing metaobjects implies a
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Table 3.4: Evaluation of Feature-Oriented Programming (FOP).
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Software Product Lines (SPLs)1 � � � � � �

Dynamic Software Product Lines (DSPLs)2 � � � � � �

�: supported, �: partially supported, �: not supported
1 Prehofer [Pre97], Jak [BSR04], FeatureC++[ALRS05], Aspect-based SPL [LKKP06, Gri00,
LSSP06, MO04, KAB07, AKLS07]
2 rbFeature [GS12], FeatureAce [RSPA11], Component-based DSPL [TCPB07, LK06], Aspect-
based DSPL [DMFM10], SOA-based DSPL [INPJ09]

behavioral change of the objects in the base level. MP uses computational reflection to
manage the metalevel through the abstraction of MOP. Therefore, MP allows the com-
putational behavior of an object to be adjusted to meet a particular requirement without
modifying the implementation of the object but rather by changing its metaobject [SW95].
This characteristic is suitable for building run-time variability.

To manage metaobjects, MOP is required. MOP contains a list of interfaces to give the
programmer two distinct abilities, namely introspection and intercession. Introspection is
the ability to examine the metaobject such as querying methods and inspecting the value of
properties while intercession permits the code to be interceded and subsequently altered.
The degree of supporting MOP for programming languages varies according to their nature.
For example, statically typed languages such as Java provide rich structural introspection of
an object while they limit intercession in a way that no structural class change is allowed.
Dynamically typed languages such as Smalltalk, Ruby, Python, JavaScript, etc., express
more freedom on the intercession. Although reflection is designed for reasoning about itself,
it is often presented to support modularization by separating the concerns from the base
code [SGP13]. Stroud [Str93] demonstrates that reflection addresses the non-functional
properties such as fault tolerance and distribution transparency. A comparison study on
dynamic adaptation over reflection, Dynamic Link Libraries (DLLs) and design patterns
is made by Dowling et al. [DSC+99] in terms of performance, modular adaptation, and
programming effort. The result concludes that reflection incurs more overhead, but it is
flexible to offer significant advantages to support separation of concerns and adaptation.

Before we start evaluating the MP, we show how to implement our chat server example
using Iguana/J [RC02], an extended framework for MOP to support dynamic behavioral
adaptation. Snippet 3.4 shows the Channel and LZCompression class which are defined as
typical classes. MetaCompression is the metaobject class that describes the interception of a
method invocation where a method call is delegated to LZCompression in the base level (Lines
21-28). In this sense, the original behavior of the Channel object is propagated to an instance
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of LZCompression through proceed method. The MOP of Iguana/J is defined to reify the
method invocation (Lines 31-33) by manipulating the metaobject class, i.e., MetaCompression.
In the main code, the protocol can be activated through the Meta.associate function that
associates types or even instances to the reified protocol (Line 41) making the Channel object
adapt its behavior. To deactivate, developers simply call Meta.reset method as shown in
Line 44.

Snippet 3.4: The chat server application implemented in Iguana/J [RC02] using Reflection.
1 // Channel class with basic behaviors
2 public class Channel{
3 public void send(String data){
4 Network.send(data);
5 }
6
7 public String receive (){
8 return Network.receive ();
9 }

10 }
11
12 // Specialized compression behavior of a Channel
13 public class LZCompression {
14 public void send(String data){
15 String c_data = "<LZ >" + data "<LZ >";
16 Network.send(c_data);
17 }
18 }
19
20 // Metaobject class
21 public class MetaCompression extends MExecute {
22 private LZCompression compression;
23
24 public Object execute(Object o, Object [] args , Method m){
25 if(compression == null) compression = new LZCompression ();
26 return (proceed(compression , args , m));
27 }
28 }
29
30 // Protocol on adaptation (compiled with Iguana/J protocol compiler)
31 protocol CompressionProtocol {
32 reify Invocation: MetaCompression; // intercept method invocation
33 }
34
35 //Main Program
36 public class Main{
37 public static void main(String ... args){
38 Channel channel = new Channel ();
39 channel.send("DATA"); //Basic sending
40
41 Meta.associate("Channel", "CompressionProtocol"); // Activation
42 channel.send("DATA"); // Sending with compression
43
44 Meta.reset("Channel"); // Deactivate the adaptation protocol
45 }
46 }
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Evaluation

We select three existing works in this domain that highly resemble the run-time variability.
Those are Iguana/J [RC02], Reflex [TBSN01, TNCC03] and Geppetto [RDT08]. We revisit
the abstract concept of run-time variability that is to manage variants and establish their
binding to the base system. In this regard, MP uses metaobjects as variants and MOP as
the binding mechanism.

R1: Modularity. Benefiting from the causally connected property, the decoupling of
concerns can be achieved by placing those concerns in the meta level while keeping the core
functions to the base object. MOP is extended to support the merging between concerns and
main code. In this respect, Salvaneschi et al. [SGP13, p. 7] call it “what an object does is
separated from how it behaves.” Iguana/J [RC02], Reflex [TBSN01] and Geppetto [RDT08]
follow this concept to achieve modularity for adaptation.

R2: Dynamic Activation. Iguana/J [RC02] is a perfect example to argue that MP
through its MOP is powerful enough to design run-time architecture to support both
anticipated and unanticipated adaptations. The reification of its protocol lets a metaobject
change an object behavior in the base level through behavioral reflection. Iguana/J is
implemented using a native dynamic library that is integrated closely to the Java Virtual
Machine (JVM) via Just-In-Time (JIT) compiler interfaces making it less portable with
different JVM implementations [TNCC03]. Another drawback of Iguana/J is the performance.
Iguana/J is powerful but costly in terms of efficiency due to the occurrences of the reification
process between metalevel and base level [RDT08]. Partial behavioral reflection is introduced
to overcome this issue which provides a more fine-grained selection of what and when the
object should be reified [TNCC03]. This reduces the unnecessary reflection process and thus
improves the overall system performance. Tanter et al. [TNCC03] introduce the full-fledge
partial behavioral reflection model in Reflex [TBSN01]. Reflex adds a hook mechanism as a
link model that is applied to the individual objects at the base level using bytecode rewriting
at load time. The reification process drives only the objects with the hook to change the
behavior although their types are meta-associated.

R3: Late Variants Adoption. Iguana/J [RC02] relies on its own protocol to specify the
association between objects and their metaobjects. The protocol description is compiled
separately with a proprietary Iguana/J compiler, and the protocol triggers the activation
any time using its own dynamic library with non-invasion to the existing code. Iguana/J
supports unanticipated adaptation as reflective behaviors are associated dynamically with
the target classes or objects at run time. Reflex [TBSN01, TNCC03], on the contrary,
limits this requirement as it aims for portability and performance. Reflex relies on bytecode
transformation at load time to insert the hook to the reifying objects. Even though reflective
behavior occurs at run time, the hooking process needs to be anticipated at load time.
Geppetto [RDT08] adopts the same partial behavioral reflection principle as Reflex, but
it is extended to support unanticipated partial behavioral reflection. This can be done
by shifting the hooking process to take place dynamically. Geppetto heavily depends on
powerful reflection of the Smalltalk language and ByteSurgeon [DDT06] which transforms
the object at run time to realize unanticipated adaptation.
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Although MP is powerful enough to take advantage of run-time variability design, it is hardly
portable across languages because different languages provide a different degree of MOP
supporting. Additionally, there is a great effort to manage variability and drive adaptation.
For example, developers need to manipulate metaobjects and MOP by themselves in Iguana/J
to handle the adaptation which should be transparent to the developers.

Other Requirements. MP fulfills three requirements, i.e., R1: Modularity, R2: Dynamic
Activation, and R3: Late Variants Adoption. The remaining requirements have not been
investigated. It is possible to extend MP to support the rest of requirements, but an
implementation mechanism is required. Table 3.5 summarizes the support of the three works
described earlier with respect to the run-time variability requirements.

Table 3.5: Evaluation of Meta-Programming (MP).
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Iguana/J [RC02] � � � � � �

Reflex [TNCC03] � � � � � �

Geppetto [RDT08] � � � � � �

�: supported, �: partially supported, �: not supported

3.3.4 Aspect-Oriented Programming (AOP)

AOP was proposed to respond to the lack of support for the rich expression of separation
of crosscutting concerns in mainstream OOP [KLM+97]. Managing these concerns in OOP
often results in unmanageable and tangled code. The concerns, for example, logging, security,
persistent transaction, synchronization, and exception handling, are kept separate from the
main code to improve modularization and thus comprehensibility and maintainability. Those
separate concerns are composed to the main code to form a complete functionality by means
of the weaving process. The concerns are often called aspects that usually contain a set of
pointcuts and advices. In the main code, there are points which specify the behavior of the
program execution such as method calls, variable initializations, etc. In AOP, these points
are known as joinpoints to which advices are injected. To coordinate the injection, AOP
defines a pointcut construct as a specification of joinpoint in the aspect module.

To understand the concept of AOP, we implement our chat server application using As-
pectJ [KHH+01], as illustrated in Snippet 3.5. As usual, the Channel object is defined as a
normal class but its specialized behavior is implemented in aspect module (Lines 23-32). In
aspect code, an execution pointcut is defined for the Channel.send method by specifying
a custom decoration with around advice (Lines 28-31). Once aspect is woven, the code in
the around advice is merged to the send method of the Channel object. The proceed (Line
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30) is a multi-method which in this case represents the send method of the Channel object.
Therefore, the call of send method in the main code (Line 18) results in compressed data
before transmission.

Snippet 3.5: The chat server application implemented in AspectJ [KHH+01].
1 // Channel class with basic behavior
2 public class Channel {
3 public void send(String data){
4 Network.send(data);
5 }
6
7 public String receive (){
8 return Network.receive ();
9 }

10 }
11
12 //Main program
13 public class MainApp {
14 public static void main(String ... args){
15 Channel channel = new Channel ();
16
17 //This is a joinpoint described in Aspect
18 channel.send("DATA"); //<LZ>DATA <LZ >
19 }
20 }
21
22 // LZCompression aspect
23 public aspect LZCompression {
24 // define pointcut over Channel.send() method
25 pointcut callSend(String data) : execution(void Channel.send(String)) &&

args(data);
26
27 //"around" advice
28 void around(String data) : callSend(data){
29 String c_data = "<LZ >" + data + "<LZ >"; // Compression algorithm
30 proceed(c_data); //call the Channel.send()
31 }
32 }

With respect to the variability concept, aspects can be variants while weaver is the binding
mechanism. A weaving process takes place at either compile time, load time or run time.
Hence, the weaving strategy determines the adaptability of software entities. Compile-
time weaving is considered as a static weaving process that presents better support for
modularization at design time but it limits adaptation at run time [SGP13]. Both load-time
and run-time weaving approaches are dynamic and open for adaptation. We discuss these
two weaving strategies separately.

3.3.4.1 Static Weaving Mechanisms

Originally, AOP supported only compile-time weaving [KHH+01]. Compile-time weaving
mechanisms merge advices to the code base at either source or byte code level. For example,
ajc, an AspectJ compiler, is a post-processed weaving compiler that introduces the hooks
for the advices to be integrated into the main program [SGP13]. This compiler-based
implementation is beneficial in the sense that most of the errors are caught in advance and
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without introducing unnecessary run-time overhead [KHH+01] but it limits the adaptability.

Evaluation

R1: Modularity. AOP is designed intentionally for separation of crosscutting concerns
allowing the fragments of code to be scattered in different aspects. The pointcuts and advices,
defined in an aspect module, provide expressively for merging the scattered codes into the
code base. AOP, therefore, has high modularity but this modularity also comes at the
expense of two main problems. On the one hand, the high degree of decoupling causes the
obliviousness problem [FFN00] because there is no explicit glue code (i.e., such as binding)
to link the aspect to the main code. Therefore, in order to comprehend the behavior of
the program, developers need to be aware of all the relating aspects. Such problems can
be minimized by using IDE that can visualize the main program and its aspects’ symbiosis.
On the other hand, the obliviousness problem leads to the fragile pointcut problem [KS04]
because, AspectJ [KHH+01] for example, the joinpoint in the main code has to be matched
with its pointcut defined in aspects. Hence, if the joinpoint is changed without modifying its
expression pointcut in all aspects, there is a mismatch problem. However, this issue can be
solved with the help of a compiler or a refactoring tool supported in IDE. Therefore, this
static weaving AOP matches this requirement.

Other Requirements. Static weaving mechanisms such as AspectJ aim for separation of
concerns and neglect run-time adaptation. Thus, they do not fulfill the R2: Dynamic Acti-
vation requirement. Besides supporting only the R1: Modularity, static weaving mechanisms
do not satisfy the rest of the requirements. Table 3.6 summarizes this evaluation.

3.3.4.2 Dynamic Weaving Mechanisms

Static weaving approaches support better modularization at design time but limit adaptation
at run time. Dynamic weaving or run-time weaving mechanisms overcome this limitation by
shifting the aspect composition to load or run time.

The load-time weaving process is performed during the bootstrap process of application
loading, and it happens only once at the initial stage. For Java-based implementation,
bytecode weaving can be seen in the forms of load-time weaving, and usually, it relies on
bytecode manipulating libraries such as BCEL [Dah99], Javassist [Chi00], and ASM [BLC02].
The advantage of this weaving strategy is the integration of legacy systems where source
codes are unavailable; that is why they rely on bytecode rewriting tools to hook the advices
to the existing code. Another benefit of this weaving strategy is to sense all the operational
environments so that the adaptation can be pre-computed resulting in anticipated adaptation.

The run-time weaving mechanisms allow aspects to be woven dynamically and thus trigger
adaptation. Several run-time weaving frameworks have been implemented using various
techniques. Steamloom [BHMO04] customizes the JVM to support dynamic aspect weaving
whereas PROSE [NAR08], Wool [SCT03], JAsCO [VSV+05], AspectWerkz [Bon04], and
HotWave [VBAM09] rely on bytecode rewriting tools with different hot-swapping technolo-
gies. JAC [PDFS01] uses the Javassist [Chi00] class load-time MOP to implement aspect
objects that can be dynamically deployed on top of running objects. TRAP/J [SMCS04]
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takes advantage of the aspect principle to provide the necessary hooks to realize run-time
composition while dynamic object extension can be done through wrappers under the frame-
work of MOP. CaesarJ [AGMO06] offers virtual classes and propagates mixin composition
for its aspect weaver.

Evaluation

R1: Modularity. Aspects of the dynamic weaving mechanism are just like the ones in
static weaving approaches that have enough modularity expression. Therefore, we consider
they meet this requirement without further discussion.

R2: Dynamic Activation. As explained earlier, dynamic weaving allows aspects to
be (un-)woven dynamically to adapt the behavior of the core program. This adaptation
changes the program flow that applies to the joinpoints. A pointcut and its advices, which
are defined in an aspect, are merged into several joinpoints, and they also crosscut other
aspects. This characteristic is challenging for the support of the instance level adaptation
unless the particular pointcut is well described and filtered down to individual instances.
Furthermore, Hirschfeld et al. [HCN08] categorized aspect into textual modularization
instead of behavioral modularization that normally is found in inheritance. Therefore,
aspects are suitable for structural adaptation or adaptation at a coarse-grained level rather
than behavioral adaptation. Additionally, dynamically scoped activation for the fine-grained
adaptation needs to be handled by the developers. Nonetheless, we judge dynamic weaving
mechanisms to respond to this requirement.

R3: Late Variants Adoption. Although adaptation in AOP is considered structural and
rigid [RC02], a few works manage to make unanticipated adaptation possible. PROSE [NAR08],
for example, allows the aspect manager to insert and remove aspect in the breakpoint of the
JVM through a special Java Virtual Machine Aspect Interface (JVMAI) but this solution is
hardly portable. Different AOPs for a component framework such as JAC [PDFS01] and
AAOP [JZ10], also provide a mechanism to inject aspects to the code base dynamically at a
coarse-grained level. However, the full support of this requirement is not addressed by the
authors. Thus, we consider dynamic weaver partially suitable for this requirement.

Other Requirements. Dynamic weaving mechanisms fully support the R1: Modularity
and R2: Dynamic Activation requirements while partial fulfilling the R3: Late Variants
Adoption requirement as exhibited in Table 3.6. The remaining requirements are not directly
addressed by these mechanisms.

3.3.5 Context-Oriented Programming (COP)

Growing demand for supporting context-aware applications that adapt their behaviors based
on the execution context imposes some challenges on software design. First, adaptation to the
current context is transient, and it frequently occurs during the application lifecycle needing a
novel activation mechanism. Second, dynamic adaptation modifies system logic crosscutting
throughout the code base at run time that might tangle the code. Third, multiple contexts
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Table 3.6: Evaluation of Aspect-Oriented Programming (AOP).
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Static Weaving Mechanisms [KHH+01] � � � � � �

Dynamic Weaving Mechanisms1 � � � � � �

�: supported, �: partially supported, �: not supported
1 Steamloom [BHMO04], PROSE [NAR08], Wool [SCT03], JAsCO [VSV+05], As-
pectWerkz [Bon04], HotWave [VBAM09], JAC [PDFS01], TRAP/J [SMCS04], Cae-
sarJ [AGMO06] and AAOP [JZ10]

often coexist that require the combination of many adaptation logics [SGP12a]. Although
these adaptation characteristics can be implemented with multiple conditional statements,
this traditional technique often results in a poor modularization subject to fragility that
limits the comprehensibility and extensibility [CH05].

COP is an emerging language-level paradigm proposed to overcome the mentioned problems.
COP treats the context as its first-class citizen and provides a higher abstraction to manage
contextual adaptation through explicit language constructs. Context in COP is open; any
computationally accessible information can be considered as context on which the behavioral
variations depend [HCN08]. While allowing run-time adaptation, COP still maintains
adaptation logic, known as layer, separately from the code base. COP tackles dynamic
adaptation with a dynamic activation mechanism. The dynamic activation is the core
mechanism to select and combine several layers to be activated and deactivated over the code
base in response to context change [HCN08]. Therefore, COP covers structural modularity
and dynamic adaptation that context-aware applications need.

Snippet 3.6 shows how COP fits to the implementation of our chat server application. As
usual, the Channel class is defined as an ordinary class (Lines 2-10) while a specialized
behavior is defined separately as a layer LZCompression (Lines 13-18). In the main program,
invoking the send method of the Channel object in Line 26 results in normal behavior. When
this method is called inside the with block of the corresponding LZCompression layer, the
send method in the layer will be invoked. The proceed method in Line 16 works similarly
to the proceed method in AspectJ [KHH+01] which calls the super method which is the
send method in the Channel object. Thus, the result is data compression. The with block is
the dynamic activation scope which expires the adaptation of the Channel object without
explicit deactivation when it reaches the end.

In general, variants and their binding mechanism are the pillars to realize run-time variability.
In this connection, COP languages present layer as variants decoupling from the code base
but crosscutting the system which can be realized by dynamic activation. The dynamic
activation selects and scopes the scattered layer definition to compose into the code base to
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Snippet 3.6: The chat server application implemented in ContextJ [AHHM11].
1 // Channel class definition
2 public class Channel {
3 public void send(String data){
4 Network.send(data);
5 }
6
7 public String receive (){
8 return Network.receive ();
9 }

10 }
11
12 //Layer definition of LZCompression
13 public layer LZCompression{
14 public void Channel.send(String data){
15 String c_data = "<LZ >" + data + "<LZ >"; // Compression algorithm
16 proceed(c_data); //super like method
17 }
18 }
19
20 //Main Program
21 public class MainApp{
22 public static void main(String ... args){
23 Layer lzCompression = new LZCompression (); // initialize layer
24 Channel channel = new Channel (); // basic channel
25
26 channel.send("DATA"); //basic sending behavior
27
28 // activate layers
29 with(lzCompression){
30 channel.send("DATA"); // sending with compression
31 }
32 }
33 }

adapt the system behavior. Dynamic activation is an integral part of the COP languages,
but different COPs introduce different dynamic activation with their own advantages and
disadvantages. For example, ContextL [CH05] and ContextJ [AHHM11] provide activation
locally on a per-thread basis eliminating the conflict issue. Ambience [GMC08] and Subjective-
C [GCM+10], on the contrary, offer global activation that allows to trigger the adaptation
from a global thread. This technique is suitable for any applications that need to adapt the
behavior according to the external context. However, this activation may face state and
behavior inconsistency that we will discuss in Section 3.3.5.3. Similarly, JCOP [AHM+10]
and EventCJ [KAM11] control the layer activation based on user-defined events. ContextJS
allows developers to create activation style on their own. However, it is argued that
given this customization to the developers often leads to poor application design [KAM15].
ServalCJ [KAM15] uses the contexts and subscribers model to unify the existing activation
schemes into a single solution. As a result, ServalCJ supports different kinds of activation
found in ContextJ, Subjective-C, EventCJ, Flute, and ContextErlang. Flute [Bai12] is a
reactive COP offering context pause and resumption to prevent from internal application
state conflict resulting from adaptation. ContextErlang [SGP12b] combines COP and
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the concurrency actor model for per-agent variants activation triggered by context-related
messages. A detailed comparison of COP languages can be found in Cardozo [Car13, p. 77]
and Salvaneschi et al. [SGP12a].

To keep the discussion focused, we classify the COP languages into three groups based on
their activation mechanisms: Local Activation, Global Activation, and Global Activation with
Conflict Resolution. The summary of their evaluation against the requirements can be found
in Table 3.7.

3.3.5.1 Local Activation

This section evaluates the COP languages that support only local activation. The languages
we classify to be in this group are ContextL [CH05], ContextJ [AHHM11], ContextS [HCH08],
ContextR [Sch08], ContextPy [SP08].

Evaluation

R1: Modularity. COP deals with modularization through the concept of layers where
variations are placed. However, COP supports layer-in-class and class-in-layer variations.
The layer-in-class allows developers to define behavioral variations directly in the class of the
code base which limits the modularization as the code base and layers highly couple. Even if
layer-in-class improves readability, it suffers from reusability. In contrast, the class-in-layer
keeps variations separate from the code base but still allows them to be activated in the
main code. The code shown in Snippet 3.6 falls into this category. The class-in-layer is our
preference because it supports better modularization easily extensible during run time but
presents little effort on code fragment readability. We can perceive this characteristic as
matching the modularity requirement.

R2: Dynamic Activation. Dynamic activation is the main mechanism of COP, and
it is usually realized by dedicated language constructs that make the dynamic adaptation
effortless for the developers. As shown in Snippet 3.6, the with(){...} construct enables
the activation of a layer or multiple layers within its scope applying to corresponding objects.
ContextJ also supports without(){...} block that can be nested inside with() block to
disable certain adapting behavior.

R3: Late Variants Adoption. COP languages generally address anticipated adaptation
assuming that developers know or plan in advance all possible variants [SGP13]. These
variants are pushed to a stack-like structure making them ready to adapt the system behavior
at run time when certain contexts are activated. Additionally, the local activation mechanisms
support per-thread activation meaning that the adaptation happens locally in the current
thread execution and ignores the activation from different threads. This technique limits
the flexibility of unanticipated adaptation support as variants should be adopted at run
time but activated globally from another thread. Therefore, we assume the local activation
mechanism does not fulfill this requirement.
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Other Requirements. Considering this classification, COP languages with local activa-
tion do not directly support the rest of the requirements.

3.3.5.2 Global Activation

This section discusses the evaluation of COP languages that support global activation.
Those are JCOP [AHM+10], ContextErlang [SGP12b], ContextJS [LASH11], and Ser-
valCJ [KAM15]. Table 3.7 reveals the evaluation of this classification against the require-
ments.

Evaluation

R1: Modularity. Similar to local activation mechanisms, modularity is still the central
concept of the global activation approaches. Layers are still their units of reuse and
adaptation, but the primary distinction is the activation scheme. We regard these global
activation mechanisms to fulfill this modularity requirement.

R2: Dynamic Activation. In contrast to local activation mechanisms, the COP languages
that support global activation allow variants to be activated globally and shared among all
threads. This activation is flexible as it simplifies the process of variants activation through
a managing thread [SGP12a]. However, this activation may result in system inconsistency
because the activation from a global thread affects the adapting objects in the current
thread that is executing a long-running method or transaction. Nonetheless, this activation
mechanism matches the requirement.

R3: Late Variants Adoption. Most of the COP languages are designed for anticipated
adaptation with an assumption that all the possible adaptations are given upfront. To
enable unanticipated adaptation, a language should at least support late variants adoption
and those variants become active via asynchronous activation from another thread. In this
regard, ContextErlang can rely on Erlang language feature to leverage dynamic code loading
but a simplifying procedure to coordinate the variants addition needs to be implemented.
Since there is no direct support claimed by the authors, we consider this global activation
classification to support this requirement only partially.

Other Requirements. The classified COP languages present no support for other re-
quirements of run-time variability.

3.3.5.3 Global Activation with Conflict Resolution

This section evaluates the most sophisticated approaches of COP languages that provide
different activation styles with constraint checking to avoid any conflict happening during the
adaptation. The languages to be discussed are EventCJ [KAM11], Subjective-C [GCM+10],
CoPN [Car13], Ambience [GMC08], Context Traits [GMCC13], and Flute [Bai12]. The
evaluation summary of the classification of these languages is given in Table 3.7.
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Evaluation

R1: Modularity. Just as the two groups discussed in Section 3.3.5.1 and Section 3.3.5.2,
this category follows the same principle of modularity by separating the layers from their code
base. Unlike traditional COP that treats context implicitly, languages such as Subjective-C,
Ambience, and CoPN use context explicitly as their variant for adaptation that can be
composed together comparable to a layer-based system. Similarly, Context Traits uses an
explicit notion of context for adaptation, but it relies on the stateful traits as behavioral
composition block. Flute realizes modules as its variants. No matter how these languages
manage variations, the variants are designed as units of reuse and adaptation that crosscut
the base system. Therefore, we judge them to support this requirement.

R2: Dynamic Activation. Dynamic enabling and disabling of the behavioral variations
globally from different threads may yield unexpected application behavior executing in the
current thread as pointed out in Section 3.3.5.2. Such strange behavior comes perhaps from a
conflict between variants already deployed, or when the current running variants are removed
in the course of adaptation. The COP languages in this classification do not only provide
global activation styles but they also provide support to manage the conflict of adaptation
resulting from the global activation.

Loyal, Prompt and Prompt-Loyal activation styles have been investigated [DVCH07, CGMD11]
to design an activation strategy with conflict resolution. Context information is volatile as it
is subject to change at any moment in time. The loyal strategy prevents objects executing
a method in a context from abrupt change of their behavior in response to a new context
activation. The languages discussed in Section 3.3.5.1 supporting local activation employ
this loyal strategy. The prompt strategy, on the contrary, applies adaptation as soon as it is
available meaning that the adapting objects change their behavior promptly. That makes
the system potentially inconsistent as described earlier. The languages supporting global
activation utilize this prompt strategy.

Loyalty makes the adaptation consistent but delays the adaptation whereas promptness
promptly adapts the system behavior but the adaptation becomes potentially inconsistent.
The prompt-loyal strategy combines promptness and loyalty in the sense that when a new
context is activated, the adaptation is loyal within its current context until the objects
finish their computation. However, new method calls are eager and select a behavioral
configuration for the most recently activated context. Although lacking implementation,
Cardozo et al. [CGMD11] proposed this concept for Ambience [GMC08]. Flute [Bai12], as
described by Cardozo [Car13], also supports prompt-loyal activation. Adaptation in Flute is
prompt but considered loyal because the currently executing context can be paused with
state preservation and the adaptation transfers method invocation to a newly activating
context. Once the method execution in the new context is done and the old context (the
paused context) is re-activated, Flute resumes the execution of the paused context where it
left off.

R3: Late Variants Adoption. Regarding unanticipated adaptation support by dynami-
cally adopting new variants and activation, this mechanism is partially supported similar to
Global Activation Mechanisms described in Section 3.3.5.2. Context Slice [CC15] introduces
the context discovery model based on the ontology structure that groups contexts with
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respect to their similar semantics. The context carries state and behavior advertised over the
network. The discovered context that has not been known priorly can be adopted dynamically
making the system adapting according to the specified context. However, context slice is
not a complete COP solution, but it is an extension module to Context Traits that cannot
represent all COP languages in this classification. Similarly, Mens et al. [MCD16] proposes
a context-oriented software architecture which includes context discovery and resolution
components to deal with the adoption of late variants. The prototype has not yet been
fully integrated with a COP language. Therefore, we assume that the Global Activation
Mechanisms with Conflict Resolution partially fulfill this requirement.

R4: Object-Level Tranquility. Although COP languages in this category fully support
constraints for checking the conflict in adaptation, they do not address the tranquility. This
requirement aims for finding the right time (consistent state) to perform adaptation when it
is available. In other words, a system should not promptly react to the adaptation when
the consistent state has not been reached. A consistent state is an idle or steady state
when no active method or transaction is running. In this regard, the prompt-loyal strategy
solves the problem at the method level but not at the transaction level. A transaction
refers to a series of method executions to coordinate a common task or goal. Therefore, the
adaptation should not be installed during execution of the transaction; otherwise, the system
performs unexpected behaviors. Ambience [GMC08] introduces an atomic{...} code block
comparable to the notion of the defined transaction to impede the adaptation. Similarly,
context pause and resumption in Flute [Bai12] also express this concern. However, both of
them do not consider parallel adaptation where an object is shared among other threads
and the object may have distinct behavior per thread (i.e., the case of the channel object
in our chat server application). Therefore, we assume that Ambience and Flute partially
support the requirement.

Other Requirements. None of the COP languages in this category addresses software
failures resulting from layer composition as the introduction or the withdrawal of adaptation.
Hence, they support neither R5: Failure Handling nor R6: Continuous Deployment. The
evaluation is summarized in Table 3.7.

3.3.6 Role-Oriented Programming (ROP)

The concept of roles is relatively old in computing, and it has been applied for data
modeling [BD77] and conceptual modeling [Kri96, Kri98, KØ96, KM96, KLG+14]. Role
modeling has been proven to capture the abstraction of dynamic and complex systems better
than traditional OOP modeling [KBGA15]. ROP is designed to realize the dynamism of the
role concept as well as the model for the run-time adaptation.

ROP aims at behavioral adaptation through the play-relation between objects and roles. At
run time, this play-relation constitutes binding and unbinding operations of the object and
its roles for polymorphic behaviors resulting in adaptation. We select ObjectTeams/Java
(OT/J) [Her05], a well-known ROP within the community, to demonstrate the implementation
of our chat server application. Snippet 3.7 shows that the Channel class representing a player
that carries the basic behavior for data transmission (Lines 2-10). CompressionNetwork is a
team that when activated reifies the role binding process (Lines 13-24). LZCompression is a
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Table 3.7: Evaluation of Context-Oriented Programming (COP).
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Local Activation1 � � � � � �

Global Activation2 � � � � � �

Global Activation with Conflict Resolution3 � � � � � �

�: supported, �: partially supported, �: not supported
1 ContextL [CH05], ContextJ [AHHM11], ContextS [HCH08], ContextR [Sch08] and Con-
textPy [SP08]
2 JCOP [AHM+10], ContextErlang [SGP12b], ContextJS [LASH11] and ServalCJ [KAM15]
3 EventCJ [KAM11], Subjective-C [GCM+10], CoPN [Car13], Ambience [GMC08], Context
Traits [GMCC13] and Flute [Bai12]

role played by the Channel player providing specialized behavior to the player (Lines 15-23).
In OT/J, roles are inner classes defined inside a team class and developers have to configure
the binding process between player and role statically. The callin binding represented with
<- symbol (Line 22) denotes as a method dispatch that transfers the call of the send method
from the Channel object to the role. In the main program, the Channel player and the
CompressionNetwork team are initialized as ordinary objects, but the behavior of the Channel
object changes through team activation (Line 33). For example, the invocation of the send
method in Line 34 dispatches to the send method of the LZCompression which performs
compression before it calls back to the Channel player with the base.send construct in Line
18. As a result, <LZ>DATA<LZ> will be transmitted over the network.

Snippet 3.7: The chat server application implemented in OT/J [Her05].
1 // Channel class is a player
2 public class Channel {
3 public void send(String data){
4 Network.send(data);
5 }
6
7 public String receive (){
8 return Network.receive ();
9 }

10 }
11
12 //Team declaration where roles are inside
13 public team class CompressionNetwork {
14 // LZCompression is a Role class
15 public class LZCompression playedBy Channel{
16 callin void send(String data){
17 String c_data = "<LZ >" + data + "<LZ >";
18 base.send(c_data); //call base (Channel) behavior
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19 }
20
21 // configure callin binding from player to role
22 send <- replace send;
23 }
24 }
25
26 //Main program
27 public class Main {
28 public static void main(String ... args){
29 Channel channel = new Channel (); // a player
30 CompressionNetwork c_net = new CompressionNetwork (); // a team
31
32 channel.send("DATA"); //Basic sending behavior
33 c_net.activate (); //Team activation
34 channel.send("DATA"); //Send with compression
35 }
36 }

In the previous sections, we have already presented several types of variants from different
language-based solutions which are suitable for run-time variability. They are, for instance,
subjects, features, metaobjects, aspects and layers. None of them mention explicitly the
identity of these variants. Roles, which are variants for ROP, have their own identity, and
they are independent entities from the core object or player. Roles are composed dynamically
to their players with a binding mechanism to provide polymorphic behavior for those players.
Such dynamic binding activation of ROP realizes run-time variability. To evaluate ROP
languages against our requirements, we classify them into four groups based on the nature
of adopting roles: Static Roles, Dynamic Roles, Relational Roles and Contextual Roles.
Table 3.8 summarizes the requirement evaluation of these role classifications.

3.3.6.1 Static Roles

When dealing with complexity, developers use abstract concepts such as modeling to represent
a system. Role modeling enhances this abstraction to visualize the complex and dynamic
systems better than traditional object-oriented approaches. However, role modeling is
insufficient without a realized programming support. JavaStage [BA12] is a programming
technique realizing the role modeling that fundamentally focuses on role composition at
development time and ignores dynamic adaptation. Similar to mixins and traits, JavaStage
aims for code reuse while retaining advantages of role modeling. Any ROP languages with
such intention are placed in the category of Static Roles.

Evaluation

R1: Modularity. Tackling modularity is the major concern of JavaStage. In its model,
roles are units of composition that are defined as typical classes. Roles contain state and
behavior composed to the object with a play directive. JavaStage provides an interpreter
for translating to plain Java. During the translation process, the code of the bound roles is
copied to the core object as an inner class. JavaStage has been evaluated independently to
show its strength on modularity and code reuse. For example, Barbosa and Aguiar [BA13]
compared JavaStage with traits [SDNB03] on code reuse. The result revealed that roles are
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capable of reducing a significant amount of code than the traits [SDNB03] does. JavaStage is
also proved to reduce replicated code significantly more than traditional refactoring method
does [BA13].

Other Requirements. Static roles solely address software composition at design time
for reusability without concerning run-time adaptation. Therefore, they do not satisfy the
remaining requirements.

3.3.6.2 Dynamic Roles

In contrast to Static Roles, Dynamic Roles target run-time adaptation through a role
binding processes. The resulting programming languages, such as Chameleon [GØ03] and
Rava [HNL+06], typically address the dynamic behavioral extension of an object. A summary
evaluation of Chameleon and Rava is given in Table 3.8.

Evaluation

R1: Modularity. Since Chameleon and Rava adopt the role concept and implement roles
as separated entities from the core, they meet the modularity requirement. For example,
Chameleon represents its roles as constituent methods similar to advices in AOP described
in Section 3.3.4. Rava uses the mediator pattern to manage roles, and those decouple
from the core instance. Since the player and its roles are unrelated, a mediator is used to
manipulate logical references between player and role through a logical identifier denoting as
<coreObject, roleObject>.

R2: Dynamic Activation. Even though Chameleon makes use of aspect weaving for its
binding mechanism, its constituent methods (roles) are attached in advance to a respective
core object for run-time adaptation. Rava stores the logical identifier into a list structure
and this list is used to implement a dynamic method dispatch by exploiting reflection. Thus,
we consider both Chameleon and Rava support this requirement.

R3: Late Variants Adoption. Both Chameleon and Rava do not support unanticipated
adaptation as they limit the adoption of new roles at run time. Evidently, Chameleon uses
static aspect weaving for its binding mechanism which needs to give beforehand the roles.
Similarly, Rava requires an interpreter to translate its code to plain Java for logical identifier
manipulation. Thus, we consider they do not address this requirement.

Other Requirements. Both Chameleon and Rava fail to meet other requirements.

3.3.6.3 Relational Roles

Static roles present role composition for static systems. Dynamic roles offer run-time
adaptation for dynamic views of an object. None of them capture role relationships. Roles
interact with each other in the form of relationships. For example, a professor role interacts
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with student roles via the teaching relationship. Rumer [BGE07] introduces relationships as
first-class citizens where roles are placed inside those relationships. By doing this, several
constraints can be enforced in a relationship improving the system’s robustness. In Rumer,
roles can be accessed only from the relationship, not from the player, resulting in limited
behavioral adaptation of an object [KLG+14]. We summarize the Rumer evaluation against
the requirements in Table 3.8.

Evaluation

R1: Modularity. In Rumer, roles are regular classes carrying their own identity, state
and behavior. Roles participate in a relationship type without inheritance support but they
constrain each other. This decoupling makes Rumer fulfilling this requirement.

R2: Dynamic Activation. Roles exist in a relationship type. At run time, Rumer stores
roles in a collection of objects that can only be accessed from the relationship. According to
a review from Kühn et al. [KLG+14], Rumer supports at least feature numbers 3, 4, 5 of
the role feature list, depicted in Table 2.1. Such support means that Rumer offers run-time
adaptation by playing roles. We do not fully agree because there is no notion of playing
roles presented in the approach. Therefore, the adaptation from the player perspective is
rather abstract. In this regard, we assume Rumer to support this requirement only partially.

R3: Late Variants Adoption. Rumer presents no support for unanticipated adaptation
because it is limiting the dynamic activation from the player perspective. Additionally, roles
are statically given and defined in the relationship. Consequently, Rumer does not meet this
requirement.

R4: Object-Level Tranquility. Rumer introduces the concept of relationship invariants
to express the consistency constraints between participating roles in a relationship and
between relationships themselves. The former refers to intra-relationship invariants that can
be expressed in the form of multiplicity. The latter refers to inter-relationship invariants that
can be constrained. For example, Students take a Course under the Attend relationship.
A Student is hired to assist a Course under the Assist relationship. This invariant can be
defined as Attend ∩ Assist = ∅, which means the students are not allowed to assist the
course in which they take part. While the constraints enforce run-time integrity, they do not
solve the adaptation problem characterized in the tranquility concept.

Other Requirements. The rest of the requirements has not been addressed in Rumer,
and thus they are not supported.

3.3.6.4 Contextual Roles

ROP languages in this classification rely on the context-dependent nature of roles described
in Chapter 2 to construct their programming model to support context-dependent adaptation.
Such context acts as a boundary scope of roles and their relationship. Some ROP languages
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provide a context-like entity (the boundary scope) as their first-class citizen to encapsulate
this context-dependent property, but they name it differently. For example, OT/J [Her05]
names this entity a team, powerJava [BBVDT06] uses the term institution, EpsilonJ [TUI05]
and NextEJ [KT09] refers to context, and SCROLL [LA15] denotes it as a compartment.
Hence, we place OT/J, powerJava, EpsilonJ, NextEJ, and SCROLL into this classification
for evaluation for which the summary can be found in Table 3.8.

Evaluation

R1: Modularity. Similar to the three categories described above, Contextual Roles follow
the same principle to isolate role variants independently from the core object. Since roles
exist only in a certain context, they are implemented as inner classes. OT/J, powerJava,
EpsilonJ, and NextEJ are examples. Roles can be defined independently but can be imported
to a context-like entity to be context-dependent. However, implementing the roles directly
inside a context might be beneficial because it eases collaboration between roles and their
associating context [LA15]. Even though introducing an additional context entity, these
languages are still proved to achieve our modularity requirement.

R2: Dynamic Activation. In general, a core object or a player adapts its behavior
based on roles that provide polymorphic method resolution. This selection is realized by
the activation of a context with which those roles are associated. OT/J uses dynamic
aspect weaving with the bytecode rewriting library to translate its callin and callout binding
between the object and its roles to resolve dynamic method dispatch when a team is
activated. SCROLL manages role instances in the form of an acyclic directed graph and
takes advantage of the Scala language feature, dynamic maker traits, to translate statically
polymorphic methods of the bound roles to the object. In powerJava, an object and
its roles share the same interface. The object stores a reference to the role instances.
Methods that are invoked from the object are cast to a given role type in an institution.
For example, ((school.Student) person).study() shows that a person object is cast
to a Student role type in a school institution, and subsequently the study method is
invoked. Similarly, EpsilonJ conceals a dynamic method dispatch with role reference and
casting. For example, person.(school.Student).study() can be interpreted the same way
as in powerJava. NextEJ is the successor of EpsilonJ by bringing back the type safety.
Unfortunately, there is no real working compiler presented, but we assume it applies the
same mechanism found in EpsilonJ. Although these approaches present different styles of
dynamic activation, they support the requirement.

R3: Late Variants Adoption. The ROP languages, we discussed, are designed for
anticipated adaptation where roles are given upfront. None of them has claimed its support
for adopting new roles dynamically to satisfy the unanticipated adaptation. However, OT/J
presented a case study of a flight bonus example to demonstrate the support of software
evolution without invasion to the existing code, i.e., no source code is required, because OT/J
works on the bytecode level. The adapting subsystem is implemented in its team with roles
inside. OT/J manages to integrate the adapting roles with team activation to the existing
code by taking advantage of the dynamic aspect weaving mechanism with the help of the
ASM [BLC02] bytecode rewriting tool. The resulting system has new behavior. However,
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we call this a software adaptation or evolution, not run-time adaptation, because we need
to restart the legacy system. Similar to the dynamic aspect weaving strategy discussed in
Section 3.3.4, we consider these ROPs to support this requirement only partially.

R4: Object-Level Tranquility. A few ROPs pay attention to system inconsistency
resulting from the conflict of adapted roles. The conflict may happen either when the new
role contradicts semantically to the one already deployed in the system or two roles need
to coexist but adaptation demands for one of them to be removed. In this regard, only
SCROLL offers constraint checking following the role constraints of Riehle and Gross [RG98].
Similar to the classification of Relational Roles [BGE07], none of ROPs in this category
handles the tranquility concept although the constraints are supported.

Other Requirements. The ROP languages mentioned in this classification support neither
R5: Failure Handling nor R6: Continuous Deployment. The evaluation is summarized in
Table 3.8.

Table 3.8: Evaluation of Role-Oriented Programming (ROP).
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Static Roles1 � � � � � �

Dynamic Roles2 � � � � � �

Relational Roles3 � � � � � �

Contextual Roles4 � � � � � �

�: supported, �: partially supported, �: not supported
1 JavaStage [BA12]
2 Chameleon [GØ03] and Rava [HNL+06]
3 Rumer [BGE07]
4 OT/J [Her05], powerJava [BBVDT06], EpsilonJ [TUI05], NextEJ [KT09] and
SCROLL [LA15]

3.4 Dynamic Software Updates (DSU)

Running software systems are inevitably subject to change due to bug fixing or adding both
functional and non-functional requirements. Traditional approaches involve restarting the
system to patch new functionalities. Such restart presents unsatisfactory to end-users as
they may redo all the unsaved jobs. Mission critical and highly available systems cannot
tolerate the disruption and DSU is, therefore, needed.
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DSU relates to run-time variability in the sense that DSU ideally allows programmers to
transparently update every part of a program making their runtime adaptable to a new
version of the updating system on-the-fly. DSU is a perfect candidate for unanticipated
adaptation. Depending on the implementation patterns, update program code directly for
several iterations may result in tangled code. This is not the case for systems developed using
COP and ROP in which programmers must follow a given architecture or language semantics.
These languages, if they support unanticipated adaptation, may allow the developers to
update only the variable parts of the system while the static parts are kept intact.

The degree of a system’s updatability in DSU differs from one solution to another, and it
also depends on the target language. DSU normally addresses three main issues: a level of
run-time objects to be updated, time taken for the update, and state consistency. First,
the level of run-time objects to be updated is determined whether the solution allows only
the method body of an object to be changed or supports advanced modification of the
class schema, such as adding/removing methods/properties, adding/removing interfaces,
modifying class hierarchy, and so forth. A comparison of the state-of-the-art on the class
modification can be found in Gregersen and Bo [GJ11]. Second, the time taken for the update
should be as short as possible. Approaches, like DCEVM [WWS10] and JVolve [SHM09],
suspend the JVM execution and apply updates to all objects at once. These techniques
seem to have low-disruptive updating but suspending the active JVM usually results in a
longer disruption and is error-prone. Javelus [GCX+14] uses a lazy updating technique that
updates objects only when the JVM reaches a safe point. With its specialized transformer,
Javelus manages to achieve low disruptive updating. Third, the state consistency is the
core requirement that all the DSU approaches fulfill. A detailed comparison of the DSU
approaches can been found in Seifzadeh et al. [SAM13].

In summary, DSU is suitable for general software upgrades regardless of the software archi-
tecture. Therefore, it is possible to apply for unanticipated adaptation. The consistency of
the program state during and after the update are usually guaranteed. However, program-
mers must develop their own way to deal with modularization and anticipated adaptation.
Implementing a complete solution for DSU is very hard and tedious job as a simple bug may
corrupt the program and consequently it is restarted. With respect to our requirements,
DSU fulfills the R3: Late Variants Adoption and R4: Object-Level Tranquility.

3.5 Synthesis of the State of the Art

The existing variability approaches that mainly derived from programming language solutions
are compared concisely with the requirements. Table 3.9 summarizes this comparison. The
results show that none of the presented solutions captures all the requirements. Some of
the solutions are developed merely for modularization such as inheritances, mixins, traits,
subject composition, SPL, static aspect weaving, and static roles.

Apart from the group mentioned above, the remaining solutions satisfy the requirement R2:
Dynamic Activation. For example, dynamic traits, role object pattern, subject dispatch,
dynamic aspect weaving are solutions designed for anticipated adaptation. Approaches,
which provide both anticipated adaptation and conflict resolution, are DSPL, COP, and
ROP. The DSPL is an architectural solution that adapts software systems at a coarse-grained
level as its variants are composed of many class dependencies. This kind of adaptation is
suitable for systems that change infrequently. In contrast to DSPL, COP and ROP provide
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Table 3.9: The state-of-the-art survey for run-time variability.
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Language Facilities
Inheritance � � � � � �
Mixins [BC90, ALZ00, Moo86] � � � � � �
Traits [SDNB03] � � � � � �
Dynamic Traits [SD05] � � � � � �

Role Object Pattern [BRSW98] � � � � � �

Subject-Oriented Programming (SOP)
Subject Composition [HO93, HOM95] � � � � � �
Subjective Dispatch [SU96] � � � � � �

Feature-Oriented Programming (FOP)
Software Product Lines (SPLs)1 � � � � � �
Dynamic Software Product Lines (DSPLs)2 � � � � � �

Meta-Programming (MP)
Iguana/J [RC02] � � � � � �
Reflex [TNCC03] � � � � � �
Geppetto [RDT08] � � � � � �

Aspect-Oriented Programming (AOP)
Static Weaving Mechanisms [KHH+01] � � � � � �
Dynamic Weaving Mechanisms3 � � � � � �

Context-Oriented Programming (COP)
Local Activation4 � � � � � �
Global Activation5 � � � � � �
Global Activation with Conflict Resolution6 � � � � � �

Role-Oriented Programming (ROP)
Static Roles [BA12] � � � � � �
Dynamic Roles [GØ03, HNL+06] � � � � � �
Relational Roles [BGE07] � � � � � �
Contextual Roles7 � � � � � �

Dynamic Software Updates [SAM13] � � � � � �

�: supported, �: partially supported, �: not supported
1 [Pre97, BSR04, ALRS05, LKKP06, Gri00, LSSP06, MO04, KAB07, AKLS07]
2 [GS12, RSPA11, TCPB07, LK06, DMFM10, INPJ09]
3 [BHMO04, NAR08, SCT03, VSV+05, Bon04, VBAM09, PDFS01, SMCS04, AGMO06, JZ10]
4 [CH05, AHHM11, HCH08, Sch08, SP08]
5 [AHM+10, SGP12b, LASH11, KAM15]
6 [KAM11, GCM+10, Car13, GMC08, GMCC13, Bai12]
7 [Her05, BBVDT06, TUI05, KT09, LA15]
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language abstractions to enable anticipated adaptation at a fine-grained level. Therefore,
such change can happen dynamically and frequently. However, both COP and ROP support
partially unanticipated adaptation. Also, they do not adequately address inconsistency and
run-time failures.

A few solutions in MP support unanticipated adaptation, for instance, Iguana/J [RC02]
and Geppetto [RDT08]. However, these solutions are hardly portable because different
host languages support various types of MOP. Moreover, context activation is missing, and
developers have to address it separately.

DSU supports unanticipated adaptation at the level of the JVM or the operating systems.
DSU considers neither reusability nor anticipated adaptation. Application developers must
tackle on their own to bring anticipated adaptation to the system.

3.6 Chapter Summary

In this chapter, we reviewed systematically existing variability approaches derived from
programming languages, which are good candidates for achieving run-time variability. We
classified these approaches into three broad categories: Language facilities, Design patterns,
and Language solutions. Language facilities represent native mechanisms of the respective
languages and are designed for code reuse. A design pattern closely related to ours is the role
object pattern which inspired the development of many ROP languages. Language solutions
are our main focus and we discussed them primarily in the area of SOP, FOP, MP, AOP,
COP, and ROP. Due to the great volume of research in each language domain, we classified
the work in each domain based on their similarity to ease the discussion. We assessed these
groups against the requirements we set in Chapter 2. DSU was also discussed as it crosscuts
the requirements of unanticipated adaptation and state consistency. Finally, we synthesized
these evaluations into the list depicted in Table 3.9 for comparison.

From this survey list, we can draw the conclusion that DSPL, COP, and ROP are the
most promising approaches. Although DSPL seems to be a viable candidate for run-time
variability, its adaptation is rigid and structural. That is because DSPL lacks contextual and
scoping support for adaptation at a fine-grained level. COP and ROP integrate powerful
dynamic activation into an integral mechanism for run-time adaptation. However, they offer
limited functionalities to cover unanticipated adaptation and manage the consequences of
such adaptation. In the next chapter, we will discuss our approach that addresses these
shortcomings.



Chapter 4
LyRT: Role-based Runtime, Concept and Design

The goals of this dissertation are twofold. On the one hand, we investigate the run-time
variability features based on the concept of roles to steer the coexistence of anticipated and
unanticipated adaptation support. On the other hand, we further examine the implications or
consequences of adaptation on run-time systems in which those implications affect the system
consistency and stability. To meet these objectives, in Chapter 2 we derived requirements
that language engineering techniques should fulfill in order to achieve run-time variability.
In Chapter 3, we conducted a systematic review of the state of the art and pointed out that
existing variability approaches fail to fully cover these requirements of run-time variability.

In this chapter, we illustrate our approach, called LyRT, a role-based runtime, which is
proposed to circumvent the shortcomings of existing approaches and to meet the requirements
of run-time variability. First, we will give an overview of the LyRT run-time architecture
followed by a discussion of its individual components in Section 4.2. We highlight the primary
concept of the dynamic instance binding mechanism for anticipated and unanticipated
adaptation in Section 4.3, the tranquility mechanism for consistent adaptation in Section 4.4,
and the rollback recovery mechanism for handling software failures due to role composition
caused by the adaptation in Section 4.5.

To facilitate the discussion of our approach, two examples are used. An example of a tax
management system will be illustrated in Section 4.3.2 to depict the supporting features of
the runtime in terms of its role-playing relation. Another example is that of a chat server
application which has already been described in Chapter 2 to demonstrate the dynamic
behavior, inconsistency and the need for the rollback recovery mechanism. This conceptual
chapter is presented as generic as possible without sticking to a host language. However,
some code snippets are introduced based on a Java syntax to highlight the main abstractions.

4.1 Terminology

Before introducing LyRT, the following terminology is defined for its concepts and design.

4.1.1 Kinds of Objects

LyRT adopts the notion of CROM [KBGA15], discussed in Section 2, but it mainly focuses
on the instance level.
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Definition 4.1. (Core or Core Object) A core is an instance derived from a typical class
in object-oriented languages (i.e., natural type in CROM). Cores dynamically bind to or
unbind from several role instances for achieving dynamic behavior.

Definition 4.2. (Role) A role instance is a typical object whose properties and methods
substitute to a core object with a method dispatch when bound. A role instance is created in
the binding process as it cannot stand on its own due to non-rigid property. Role instances
can be bound and are active if the compartment instance with which those roles are associated
is active. Like a core, a role instance can bind another role instance.

Definition 4.3. (Compartment) A compartment instance is a typical object comprising
properties and methods. A compartment is used to objectify a collaboration of participating
roles and a fixed scope of bound roles. Although the compartment is a container of roles in
CROM, its instance is distinct from role instances. Like a core, a compartment instance can
bind another role instance in another compartment instance.

Definition 4.4. (Player) An instance of core, role and compartment can be a player due
to its ability to play other roles.

4.1.2 Relations

Core, role, and compartment relate to each other with certain kind of relations.

Definition 4.5. (Play-Relation or Bind-Relation) A play-relation is defined by any
kind of objects denoting as core, role and compartment instance binding to a role within a
compartment instance.

Definition 4.6. (Deep-Play-Relation) A deep-play-relation refers to a stack of play-
relations between a core to a role and the bound role to another role in the form of role-
playing-role.

Definition 4.7. (Link-Relation) A link-relation is defined as a relationship between a
pair of roles within a compartment instance in which those roles are bound to the respective
cores.

4.1.3 Activation

To realize dynamic behavior of core objects, a compartment instance of the prescribed bound
roles needs to be activated.

Definition 4.8. (Application Configuration) An application configuration is described
as a set of compartments and a set of roles with bindings to cores. Adaptation is a process to
transfer from one application configuration to another by means of compartment or adaptation
block activation.

Definition 4.9. (Compartment Activation) In order to enable the dynamic behavior
of cores, a compartment instance containing bound roles has to be activated as a result of
adaptation. Once activated, behavior of the cores is lifted or dispatched to the bound roles.

Definition 4.10. (Adaptation Block) An adaptation block is a construct to reconfigure the
role bindings of a set of cores within an active compartment instance to adapt the behavior of
the particular cores to the newly bound roles without activating a new compartment instance.
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4.1.4 Mechanism to Navigate Instances for Method Dispatch

Adopted from ObjectTeams/Java [Her05], lifting and lowering are the main mechanisms to
navigate the target instance for dynamic method dispatching.

Definition 4.11. (Lifting) Multiple role instances can be bound to a core by stacking up
together in the form of a deep-play-relation within a compartment instance. The lifting
mechanism navigates from a core to the last role instance in the deep-play-relation to invoke
a method sent from a core.

Definition 4.12. (Lowering) The lowering mechanism is the inverse of the lifting mecha-
nism, i.e., navigating from a role instance to its core. Lowering can be cascaded down through
a deep-play-relation to create a partial method by visiting each role instance in the relation.
Lowering can be lowered directly to a core without visiting each role instance if needed.

Definition 4.13. (Collaboration) The collaboration mechanism specifies the selection of
a compartment instance and role instance of a given link-relation for method invocation.
Since roles are not defined directly inside a compartment, the collaboration mechanism allows
a role instance to access the compartment’s properties and methods. Additionally, a given
pair of two role types has a relationship, a role instance bound to a core can invoke all role
instances of a given type bound to different cores within an active compartment instance.

4.1.5 Consistency Mechanism

A core should adapt its behavior in a consistent manner.

Definition 4.14. (Consistency Block) A consistency block is a construct specified by a
developer to group multiple method invocations of different cores in which those invocations
require the same consistent behavior from the start to the end of the block.

Definition 4.15. (Tranquil State) A tranquil state of a program is defined as a region of
executing code located outside the consistency block. A core executing in a tranquil state is
allowed to adapt its behavior; otherwise, it has to wait until a tranquil state is reached (i.e.,
the consistency block expires).

4.1.6 Rollback Recovery Mechanism

A core object changes its behavior with regard to the bound roles. If the roles are not
properly tested. Bugs in those roles are brought to the runtime during adaptation. An
execution of a method in the core propagates to the bound roles in which the bugs turn out
to be failures. Consequently, the runtime may crash.

Definition 4.16. (Failure) A failure or a run-time failure refers to a method execution
of a core which might cause a runtime to crash. The failure is caused by a software bug
which appears in roles. When a defective role is bound to a core, its behavior is lifted for
invocation. Therefore, common bugs in that defective role, such as a DivideByZero, can
crash the runtime.
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4.2 An Architecture of Role-based Run-time Variability

Role-based applications normally consist of two main parts—static and dynamic ones. Cores
or core objects are considered to be static parts while roles are modeled as dynamic parts.
As the name suggests, the static parts remain fixed within the life cycle of an application.
The roles are variable and can be exchanged in response to the need for the adaptation.
The play-relation of players and roles constitutes the binding process to activate dynamic
behaviors of the players as roles encapsulate the polymorphic behaviors of the corresponding
players. This abstraction aligns with the notion of run-time variability whose variants,
dynamic parts, are composed to the system’s static parts by means of a binding process to
achieve variability.

LyRT is a role-based run-time engine with the goal to comprehensively support run-time
variability and its implications for system consistency and stability. The proposed approach
relies on the concept of roles as specified in the CROM [KLG+14, KBGA15], a unified model
of compartments, roles and objects (cores) which captures the three natures of roles discussed
in Chapter 2. That is behavioral, relational and context-dependent nature. LyRT aims to
achieve the behavioral and context-dependent nature of roles but only partially fulfills the
relational nature due to the lack of constraint support.

4.2.1 LyRT Architecture

The architecture of LyRT is depicted in Figure 4.1. Its main parts are the Tranquility
Controller (TC), the Role Execution Engine (REE), and the Rollback Recovery Controller
(RRC). The process of adaptation is either initiated by a context change that triggers an
anticipated adaptation or by developers that update or add roles on-the-fly to address new
or changed requirements with unanticipated adaptation.

The Tranquility Controller checks the requested adaptation to determine when the runtime
should perform the changes—promptly or restrainedly to avoid inconsistency. The Role
Execution Engine is the execution environment of LyRT in which anticipated and unantici-
pated adaptation is performed. Compartments, roles, and objects located inside REE are
the object representations of our run-time model. The Rollback Recovery Controller is an
additional component introduced to detect and handle software failures due to dynamic role
composition as a result of the adaptation. All three main parts will be explained in detail in
the following sections.

4.2.2 Context Discovery

Context is the main source to trigger adaptation. Although compartments are introduced to
achieve context-dependent property by means of activation and deactivation, the compartment
itself is not a context. Compartments objectify the collaboration of roles played by different
cores [KLG+14]. Such objectification expresses not only the activation of the dynamic
behavior of those core objects but also the activation of a relationship or collaboration of
the participating roles which are played by different cores. This technique facilitates the
adaptation resulting from context changes. We adopt the notion of context which is defined
as “any computationally accessible information” [HCN08]. This definition is broad and
open but it is confirmed to be valid in developing context-dependent applications [SGP12a].
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Figure 4.1: Overview of LyRT architecture.

Information to derive context can be obtained from outside, i.e., the environment or the
users, but it can also be originated internally from the value of sensors attached to the
system.

Similar to many COP languages [AHH+09], the context in LyRT is abstract but it allows
different parts of the system, e.g., different threads or different instances of the same object
type, to live in separate contexts. Therefore, the resulting adaptation is applied independently
to each application part. This technique is more flexible than the approaches adopted by
Ambience [GMC08] and Subjective-C [GCM+10] which provide a unique global context
shared by all application parts. From a conceptual point of view, having a single global
context brings a more intuitive model for systems such as mobile applications, but allowing
multiple contexts to exist independently is more flexible in practice [SGP12a]. With respect
to the chat server example, described in Chapter 2, the context in LyRT allows each thread,
which handles a client session, to adapt differently to the specific conditions of the client
engaging in service. Additionally, it is possible to adopt the unique global context. A
compartment in LyRT is a normal object which can be declared as a singleton class to steer
the activation globally based on certain context change, i.e., an event processing. Anyway,
we assume developers can derive the context to trigger the adaptation. LyRT offers a way to
(de-)activate dynamic behavior, but it provides neither context model nor context reasoning,
e.g., a context that is derived from a machine learning technique.
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4.2.3 Adaptation

According to the role concept [KLG+14] and CROM [KBGA15], the adaptation of objects is
a result of role bindings in conjunction with an activation of a compartment with which the
bound roles are associated. Since dynamic behavior is encapsulated in roles, an application
configuration can, for instance, be changed by switching from one compartment to another or
by performing a set of role binding and unbinding operations within an active compartment.
Figure 4.2 depicts the two different kinds of activation. To be consistent, we use the
notation as depicted in the legend box (Figure 4.2c) to represent the core object, the
role, the compartment, and their relations throughout this dissertation. While this section
mainly discusses the abstraction of anticipated adaptation, unanticipated adaptation will be
explained in Section 4.3.8.
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Figure 4.2: Activation strategies to achieve dynamic behavior.

4.2.3.1 Adaptation as an Activation of a Compartment

Figure 4.2a visualizes the concept of an activation of a compartment by allowing objects
o1, o2, and o3 to have initial behaviors based on instances of the bound roles r1, r2, r3
respectively in the compartment instance ct1 which is currently active. During the execution,
the adaptation happens resulting in following:
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ct1.deactivate();
ct2.activate();

These objects eventually adapt new behavior encapsulated in roles specified in the new
instance ct2 of another compartment. The adaptation is straightforward, and it allows a
large structure of application to be changed because compartments do not only capture
behavioral change of certain objects in isolation but also their interactions in terms of role
relationship (i.e., the link-relation between r1 and r3).

Snippet 4.1: Adaptation by switching compartments.
1 ct1.initBinding (){ // initialize the binding
2 o1.bind(R1.class); // describes the binding/playing process
3 o2.bind(R2.class);
4 o3.bind(R3.class);
5 }
6
7 ct2.initBinding (){ // initialize the binding
8 o1.bind(R4.class); // describes the binding/playing process
9 o2.bind(R5.class);

10 o3.bind(R3.class);
11 }
12
13 ct1.activate (); // compartment is activated
14
15 //... executing
16
17 // Adaptation occurs
18 ct1.deactivate (); // compartment is deactivated
19 ct2.activate (); //a new compartment is activated
20
21 //... executing with new behavior

Snippet 4.1 shows what the program to describe the play-relation and adaptation in LyRT
with respect to Figure 4.2a should look like. LyRT is developed to support the role binding
and activating happening totally at run time. Once core objects (e.g., o1, o2, and o3) and a
compartment (e.g., ct1 and ct2) are initialized, the role binding process can be constructed
with the initBinding-block construct (Lines 1-5). After the compartment is activated in Line
13, those core objects adapt their behavior to roles R1, R2, and R3 respectively. Afterwards,
adaptation triggers the deactivation of the current compartment and activates a new one
(Lines 18-19). After the adaptation, the core objects adapt their behavior according to the
bound role instances in the compartment ct2. The bound roles are not destroyed when the
compartment is deactivated so that when the compartment is reactivated, the bound roles
become active immediately without reinitialization.

4.2.3.2 Adaptation as a Change of Roles in an Active Compartment

If there is a small behavioral change of a single object (e.g., o1 to unbind from r1 and to
bind to r4 in the same ct1 compartment), using CROM results in two separate compartment
types. One compartment has the same representation of Compartment1 and another has a
slight variation that changes from r1:R1 to r4:R4. The problem of having two compartment
types for these configurations is that the state of unchanged roles (i.e., r2, r3) cannot be
preserved at run time in the transition from one compartment to another. This is because
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switching between compartments requires a new instantiation of roles although they are
derived from the same type.

LyRT extends the capability of supporting adaptation by not limiting to the (de-)activation
of compartments but also allowing roles to be changed inside an active compartment. In
Figure 4.2b, the adaptation needs o5 to change its behavior by unbinding from r1:R1 and
binding to r4:R4 role instance whereas the rest of role-play relations remains untouched.
This technique seems to contradict to the model specified in CROM in which the number of
roles is fixed in a given compartment. However, to be CROM compliant, we assume that in
the model all the role types (i.e., R1, R2, R3, R4) are given in the compartment. We further
argue that context triggering the adaptation can be attached to both compartment and
role inside a compartment. Supporting these types of adaptation provides the runtime with
different degrees of variability—from a fine-grained level of individual role instance to a
coarse-grained level of the compartment. Supporting unanticipated adaptation, which will
be explained in Section 4.3.8, falls into this category.

In order to change a new role in an already active compartment, an AdaptationBlock
construct is used to provide the necessary role operations such as binding, unbinding and
transferring in response to adaptation. Snippet 4.2 exhibits an implementation based on
the adaptation process shown in Figure 4.2b. The adaptation takes place in Lines 12-15
mentioning that the core object o5 first unbinds from role R1 and then binds to a new role
R4.

Snippet 4.2: Using AdaptationBlock to change roles in an active compartment.
1 ct3.initBinding (){ // initialize the binding
2 o4.bind(R2.class);
3 o5.bind(R1.class);
4 o6.bind(R3.class);
5 }
6
7 ct3.activate ();
8
9 //... executing

10
11 // Adaptation occurs
12 AdaptationBlock ac = new AdaptationBlock (){
13 o5.unbind(R1.class);
14 o5.bind(R4.class);
15 }
16
17 //... executing with new behavior

4.3 Role Execution Engine

According to Figure 4.1, the adaptation goes to the tranquility controller to check whether
the adaptation should be performed now or later. The consistency mechanism built in the
tranquility controller relies on the dynamic instance binding mechanism which is a core
component of the role execution engine. Therefore, the role execution engine is discussed
first in order to understand how the adaptation works internally.
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4.3.1 Run-time Model

When dealing with complexity, a model is developed to abstract the problem. Models are
typically used at design time to capture the blueprint of software systems aiming at improving
the understandability among developers. Useful information conveyed by the model often
gets lost at run time as the model elements are transformed into run-time artifacts which no
longer maintain their originality [ODPR08]. Engineering adaptive software systems requires
the knowledge of run-time model to easily monitor and change their behavior while still
providing a complete overview of the running systems. We follow this principle to design the
run-time model of LyRT.

Although CROM [KBGA15] inspired us to design LyRT, it is a model which can have
different implications on designing a run-time model. Compartment Role Object Instance
(CROI) [KBGA15] is an instance model, formally specified, representing CROM1 at run
time but it does not provide a computation model (e.g., representation of objects in a
runtime and method dispatching). Furthermore, the current formalized model does not
support the deep-play-relation (role-playing-role) which is insufficient for building the partial
method, described in Section 4.3.5. We use pure object-oriented technologies to construct the
representation of our run-time computation model similar to CROI. Figure 4.3 represents
our run-time model. LyRT’s run-time model contains three main types of instances derived
from a compartment, role and natural type2 (i.e., to instantiate core object) respectively. A
play-relation fulfills a set of role instances played by cores in a compartment. An instance of
a natural type (i.e., core object) may play multiple instances of roles from different types.
Similarly, an instance of role which is played by an instance of natural type may also play
other instances of different role types (i.e., deep-play-relation). Like an instance of the natural
type, a compartment instance may play multiple instances of roles in another compartment.
A link -relation establishes a relationship between a pair of roles participating in the same
compartment.

In short, the features of CROM that we adopt for LyRT are object-plays-role, role-plays-role,
compartment-plays-role, and partial role-relationship3. We cannot fulfill all the features
specified in CROM. For example, role constraints and constraints on the relationship are not
directly supported because normally constraints are enforced at the type level whereas we
focus on the instance level. Instead, LyRT’s run-time model provides the deep-play-relation
to support partial method cascading over the deep roles. The supporting features are
sufficient for run-time adaptation because we can dynamically change the play-relation
within a compartment. Activating the compartment reifies those play-relations for object
adaptation.

To achieve the flexible run-time model that can be changed at any point in time during
execution, we arrange the instances of the distinct types to be decoupled from each other and
stored them in an instance pool as shown in Figure 4.4. We rely on the dynamic instance
binding mechanism, which will be described later in Section 4.3.3, to dynamically bind
and unbind those instances to reconstruct the run-time model as depicted in Figure 4.3.

1The discussion of the distinction between compartment, role and object is given in Chapter 2
2A core object is instantiated from a natural type
3LyRT does not support relationship type, but it allows the expression of method invocation reflecting the

collaboration which will be discussed in Section 4.3.5
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Figure 4.3: LyRT’s run-time model.

The binding relations of those instances are stored in the lookup table, which will also be
presented later, to be manipulated for changing the run-time model to achieve adaptation.
Note that from the run-time model perspective roles are located inside a compartment, but
they are physically independent of each other to maintain the flexibility of adaptation by
just replacing roles at run time.
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Figure 4.4: Arrangement of run-time objects to represent the run-time model.

4.3.2 An Example of a Tax Management System

Figure 4.5 shows an example of a Tax Management System which is represented as a run-time
model to highlight the role-playing features supported in LyRT. The detailed functionality
of this example will be explained as a case study in Section 6.1.2. The basic functionality
is to manage a company comprising different roles to be played by persons. The example
further presents how taxes are collected from the company and a freelancer which is a role
expected to be played by a person. Based on regulation, the company and the freelancer pay
taxes at a different rate.

Person is a natural type that has several instances (e.g., ely, bob, alice, ana); each plays
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-name:String
-saving:double
+setSaving(int):void
+getSaving():int

ely:Person

-revenue:double
-tax=20%:double
+deductRevenue(double):void
+taxToBePaid():double

abc:Company
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-salary=1500:int
+getPaid(): int
+work(): void
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-salary=1500:int
+getPaid():void
+work(): void

a1:Accountant

-salary=1600:int
+getPaid():void
+paySalary():void

-name:String
-saving:double
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+getSaving():int

bob:Person

-revenue:double
+getRevenue():double
+setRevenue(double):void

tax:TaxDepartment

e1:TaxEmployee

+collectTax():void

t1:TaxPayer

+pay():double
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-name:String
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and being a freelancer

t2:TaxPayer

+pay():double

Figure 4.5: An example of the tax management system.

different roles. While ely and bob play the same Developer role, they bind to different
instances of the Developer role. The behavior of each person instance is adapted according
to the played role.

Besides scoping roles, a compartment is like a normal object consisting of state and behavior
and may play roles. A compartment abc instantiated from a Company in which the abc
company plays a TaxPayer role located in a TaxDepartment compartment in order to pay
taxes.

The play-relation is not restricted between objects and roles, but a role is also allowed to play
another role. A person ely stops working for abc company and becomes a Freelancer who
in turn needs to play a TaxPayer role in to order pay taxes in the scope of TaxDepartment
compartment.

Roles which are played by different objects can interact with each other in terms of relationship
expressed as a method call, affecting all cores playing the role. For instance, the Accountant
role has a pays-salary link-relation with Developer. To facilitate this link-relation, alice who
plays Accountant role calls the paySalary() method to pay a monthly salary to all person
instances playing the Developer and Accountant roles. Besides, roles in a compartment can
access attributes and methods of that compartment and vice versa. For example, when
the Accountant role calls paySalary(), this method withdraws money from the revenue
attribute of the abc company, to distribute it to the person instances playing Developer and
Accountant roles. Similarly, a collects-tax link-relation between TaxEmployee and TaxPayer
in the TaxDepartment compartment can be expressed in the invocation of a collectTax
method of the TaxEmployee role. We call this feature a collaboration.



Chapter 4. LyRT: Role-based Runtime, Concept and Design 70

4.3.3 Dynamic Instance Binding Mechanism

Code weaving is a mechanism to bind the implementation of two or more objects [KLM+97].
This mechanism is used in different programming paradigms geared towards dynamic object
(re-)composition, such as AspectJ [KHH+01] in AOP [KLM+97], ContextJ [AHHM11] in
COP [HCN08], and ObjectTeams/Java [Her05] in ROP [KLG+14].

Normally, objects are woven either at the source code or bytecode level. Weaving at source
code level usually happens at compile time by means of a pre-processor and a modified
compiler. This mechanism does not affect the performance of the system. However, it does
not allow to split woven code, or re-weave new behavior at run time because when woven,
two objects become one indivisible system entity. Furthermore, it is not possible to weave
two system classes or legacy systems for which their source code is not available. To solve
this problem, bytecode weaving mechanisms are introduced hoping that bytecode rewriting
allows to split and merge objects at some points during the system execution. Bytecode
weaving may happen at post-compile time, load time, or run time. Nevertheless, like source
code weaving, bytecode weaving at post-compile and load time does not support (re-)weaving
because it generates a system snapshot. Run-time bytecode weaving provides code reweaving
but may result in a performance overhead. System crashes may occur when reweaving
as this mechanism does not assure the validity of the woven code. Even though weaving
may happen at run time, bytecode weaving is usually applied to object types. Supporting
bytecode weaving for instance level is very limited as this may require to destroy the instance
and re-initialize it after weaving. Therefore, this process must wait until the instance is idle
and its state is copied to map it back after the newly woven instance has been instantiated.
Thus, this technique is not suitable for highly adapted systems which require instance-level
adaptation.

We propose a dynamic instance binding mechanism in which, rather than weaving at the
source code or bytecode level, we dynamically bind two or more role instances to object
instances by constructing a transient relationship between them at run time. A binding
relation shows the run-time association between binding instances. This mechanism utilizes
the concept of sharing and dispatching which are two fundamental concepts of object-
oriented languages to manage the flexibility of an object that can change its behavior at
run time [BD96, SLU88]. Sharing is used to extract common functionalities, i.e., behaviors,
from other objects without the need for redundant implementation of those functionalities.
Dispatching then realizes the execution operations of the shared functionaries among the
sharing objects. Inheritance is a standard mechanism known for static sharing as it cannot
change the class hierarchy during run time. In contrast, delegation is considered as a
dynamic sharing technique which has been used for supporting the late binding of an object
to dynamically invoke a method to achieve variability at the instance level. To be flexible,
the dynamic instance binding mechanism, therefore, considers the implementation of the
concept of the dynamic sharing and dispatching based on role-playing-relation to achieve
context-dependent variability.

In the playing-relation, once a core object binds to a role instance, their properties and
methods are shared among each other. A lookup table is used to store the binding relation
at run time. Note that bound instances remain completely decoupled from each other while
appearing as a single object. Programmers interact with core objects; however, their method
invocations are dispatched to the bound roles based on delegation.
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For example, in the tax management system in Figure 4.5, the ely:Person instance binds to
the d1:Developer instance by saying that the Person plays a Developer role. The ely:Person
instance has access to all state and behavior of the d1:Developer through delegation. In
order to do this, a proper method dispatching mechanism is needed (see Section 4.3.5). In
our system, unbinding object instances simply removes the binding relation from the lookup
table and destroys unused instances. For example, when removing the play-relation between
the Person and the Developer instances, the Person no longer has access to the state and
behavior of the Developer. The rebinding operation follows the same process as the initial
binding. Our mechanism enables dynamic behavioral variations by merging and splitting
different object instances. A split role instance can also be attached to another core while
preserving all its states.

In order to deal with unanticipated behavior at run time, the new behavioral classes must
be defined and compiled. Whenever the bytecode classes are loaded into the run-time
environment, they immediately become available to be bound to other existing instances.
Manipulating data in the lookup table is required to construct the binding relation. A further
discussion is explained in Section 4.3.8.

In summary, our dynamic instance binding concept is suitable for highly dynamic run-time
systems that require continuous modification to cope with an ever-changing environment.
As a result, run-time variability can be achieved by allowing anticipated and unanticipated
adaptation at the instance level.

4.3.4 Lookup Table

The dynamic instance binding mechanism heavily relies on the lookup table to maintain the
run-time model for computation. As mentioned earlier, compartment, object, and role are
normal object-oriented classes that do not necessarily relate to each other at type level. At
instance level, they can be dynamically bound according to the role-playing model. The
relationship in the lookup table is extended to capture the different types of instance bindings.

Relation

Id
CompartmentId
CoreId
PlayerId
RoleId
Depth
BoundTime
UnboundTime

Player

Id
TypeName

Role

Id
TypeName

Compartment

Id
TypeName

one-to-many relationship

Figure 4.6: Structure of the lookup table.

The structure of the lookup table is conceptually expressed in the form of a relational
database schema as shown in Figure 4.6. Each instance type is stored in the respective table
of Player, Role, and Compartment according to their type. Those tables contain the real
identity of the instances and their type name, e.g., Person or Developer. We use hashcode
as an internal identity to identify the object, and this code is stored in the Id attribute of
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those tables. The Player, Role and Compartment tables have a one-to-many relationship to
the Relation table.

The Relation table holds the relationship of those binding instances. The attributes in the
Relation table are sufficient to express the play-relation and to be used for the dynamic
method dispatch. The Id is an auto-generated identity of each relation. The CompartmentId
denotes the identity of a compartment instance. The CoreId refers to the identity of a core
object derived from a natural type, e.g., the identity of bob. The PlayerId is the identity of
the player which can be an identity of a compartment, role or core object. The RoleId, as
the name suggests, is the role’s identity to be bound to a player. The Depth represents the
depth from a core object instance that occurs in a deep-play-relation. In the example in
Figure 4.5, ely plays the f1:Freelancer role and the f1:Freelancer plays the t1:TaxPayer
role. In this case, the t1:TaxPayer has a depth of 2 level while the f1:Freelancer has a
depth of 1 level with respect to the distance from ely.

The BoundTime and UnboundTime in the Relation table present the time in which a role is
bound to and unbound from a core object respectively. These two attributes are used for
handling consistency which will be explained in Section 4.4.

Table 4.1 shows the sample data of the run-time model depicted in Figure 4.5. Instead of
using an integer for the instance identity, we use plain text easing the identity tracking. The
first and second rows in the table represent the type of a play-relation, between ely and
d1:Developer, and bob and d2:Developer instances inside the abc compartment instance. In
contrast to bob, alice, which is also a Person instance, plays another role, i.e., a1:Accountant,
as shown in Row 3. Rows 4 and 5 demonstrate the deep-play-relation in which ely has the
f1:Freelancer role and this role binds to the t1:TaxPayer role. These two relations virtually
weave the f1:Freelancer and t1:TaxPayer roles to the ely instance. A compartment may
play a role like any core object. For example, the abc compartment plays the t2:TaxPayer
role inside the tax compartment in Row 6.

Table 4.1: Sample data of the tax management system in the relation table.

Id CompartmentId CoreId PlayerId RoleId Depth

1 abc:Company ely:Person ely:Person d1:Developer 1

2 abc:Company bob:Person bob:Person d2:Developer 1

3 abc:Company alice:Person alice:Person a1:Accountant 1

4 tax:TaxDepartment ely:Person ely:Person f1:Freelancer 1

5 tax:TaxDepartment ely:Person f1:Freelancer t1:TaxPayer 2

6 tax:TaxDepartment abc:Company abc:Company t2:TaxPayer 1

The design of the lookup table should be simultaneously accessible and thread-safe. This is
because LyRT supports multiple contexts which activate the adaptation of different program
parts, i.e., different threads and different instances, simultaneously and independently. While
from a conceptual point of view the structure of the lookup table is valid, it may face several
problems such as state inconsistency of the lookup table, a single point of failures and
performance bottlenecks. We leave these problems to the implementer of LyRT to resolve
the particular issues.

An implementation suggestion is that the lookup table should be globally locked to avoid
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any race condition issues of the concurrent access. The lookup table is used to manage
the internal representation of the run-time system while it should not impose too much
on system performance. According to role-based applications, the lookup table is modified
in two stages—object creation, and role binding/unbinding (i.e., adaptation). The object
creation involves in instantiating of core object and compartment in which their instances
are placed into the instance pool. Roles are instantiated during the binding process in which
their binding relations in the lookup table are also created. Additionally, once the role
is bound, its methods are cached locally in the associating compartment instance for the
dynamic method dispatch, discussed in Section 4.3.5. This technique ensures that dynamic
method invocations do not require to navigate for a target role instance through an expensive
query in the lookup table.

4.3.5 Instance-based Method Dispatch

This section describes the composition and method dispatch in LyRT. The execution model
in LyRT is player-centric. A method invocation starts from a core object to roles. In order
to demonstrate the navigation between these two object types, we borrow the terminology
of lifting and lowering from ObjectTeams/Java [HHM04]. While lifting navigates from a
core object to roles which are composed to the core object itself, lowering traverses from a
role to the core object to achieve partial method behaviors. Besides, collaboration functions
are necessary for method invocation of a role participating in a relationship and method
invocation of the associated compartment instance. Figure 4.7 shows a visualization of these
functions with respect to the run-time model. While LyRT allows programmers to access
directly the methods of the relevant instances, accessibility to those instances’ states can be
done indirectly by wrapping the state in get and set methods. Additionally, the method
translation disregards the polymorphism of class inheritance. For example, a role R1 is a
subclass of a role R2, and a core object O plays the role R2. This play-relation is not inherited
to R1.

+ method1()
+ method2()

ct1:CompartmentType

Lifting

plays plays plays

collaboration 
with compartment

collaboration 
with role

Lowering to a core

Lowering to a player

o1:Object1 r3:Role3 o2:Object2r2:Role2r1:Role1

Figure 4.7: Translation polymorphism.

4.3.5.1 Lifting Functions

A core has access to the state and behavior of all roles bound to it. Whenever there is a
method call from a core object, a method dispatch mechanism lifts the method by looking
for the method to call among all bound roles in the Relation table and invokes it within an
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active compartment. If the lookup method is not found in the bound roles, the dispatcher
will look into the core object itself, and raise a run-time error if no method is matched.
This process applies to binding relations in which the core and its roles have no duplicated
method signatures (i.e., no method polymorphism). In other words, the core object and its
bound roles become one compound object in which all methods are accessible from the core
object as they would have been implemented directly in the core object.

In the example of the tax management system illustrated in Figure 4.8, ely instance can
call the getPaid method of the bound Developer role by ely.invoke("getPaid"). Similarly,
alice instance can invoke the paySalary method due to its binding to the Accountant role.

abc:Company

plays

+setSaving(int): void
+getSaving(): int

ely:Person

d1:Developer

+getPaid(): int
+work(): void +setSaving(int): void

+getSaving(): int

alice:Person

a1:Accountant

+paySalary():void

+getPaid(): int
+work(): void compose

+paySalary():void
compose

plays

Figure 4.8: Composition using lift function.

In case of method polymorphism (i.e., methods sharing the same signature), the method
invocation is always resolved first for the method implemented in roles. The priority of
the invocation is given to a role with the deepest relation with respect to the core object.
For example, in Figure 4.7, if Object1, Role1, and Role2 share the same m method, the
m method of the instance of Role2 is invoked. Algorithm 4.1 shows how lifting can select
an appropriate role for invocation when a method is called from a core within an active
compartment.

Algorithm 4.1: Lifting algorithm.

Input : core, method

Output : object

1 compartment := GetActiveCompartment(CurrentThreadId)

2 if compartment is not null then

3 if HasBoundRoles (compartment, core) then

4 role := GetDeepestRole(compartment, core,method)

5 return role

6 else

7 return core

8 end

9 else

10 return core

11 end
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In the play-relation, an object is allowed to bind to multiple roles, but those roles must
stack up together to construct a deep-play-relation in the form of role-playing-role as seen
in Figure 4.7. In other words, within a compartment, an object cannot play two or more
roles at the same time if those roles are not related to each other. Attempting to bind
two different roles yields a replacement of the old with the new one. In the example of
the tax management system, a person instance cannot be bound to the Developer and the
Accountant roles at the same time because these two roles are semantically not supposed to
be composed to the core object together.

4.3.5.2 Lowering Functions

The operation of lowering is the inverse of the lifting function. Therefore, the primary task of
the lowering function is to get a player instance, which can be queried from the lookup table,
if we know the current role instance performing a lowering function. In the deep-play-relation,
invokePlayer(method, argsType, args) cascades down by visiting each role instance in the
play-relation while invokeCore(method, argsType, args) lowers directly to the core object
(Figure 4.7). This lowering function has the same semantics of the proceed method in AOP
and COP, and it also shares a similarity of super call in typical object-oriented languages.

In Figure 4.5, ely.invoke("getPaid") calls the getPaid method in the Developer role, but
the implementation of the getPaid method will transfer the salary of 1500 to the saving
attribute of ely by calling this.invokePlayer("setSaving", 1500). The keyword this
refers to the current instance of Developer role while invokePlayer("setSaving", 1500)
results in a call of the setSaving(1500) method of ely, an instance of Person.

The lowering operation can be used to construct partial method calls when there is a deep-
play-relation (i.e., a role plays roles). A partial method is a method whose definition is
scattered among several bound role instances. The lowering technique allows each role
instance, including the core object, to be invoked partially by visiting each instance in
the relation. Therefore, behavioral variations can be achieved by constructing different
role bindings in which the order of binding also matters. The lowering pseudocode is
straightforward and is shown in Algorithm 4.2.

In order to highlight the partial method, let us revisit the chat server example, described in
Chapter 2.4. The Channel object may have different behaviors according to the played roles
LZ compression and AES encryption. Snippet 4.3 shows how format methods are defined in
which each of them is responsible for specific behavior (i.e., while LZ for compression, AES
for encryption). Figure 4.9 illustrates the behavior of the Channel object with respect to the
different binding configurations. When the format method is called, it is lifted to the deepest
role in the relation, and it is lowered down based on the lowering function implemented
in each role. Hence, the method calls can be simulated as a stack which can be popped
for execution until the stack is empty. Given different bindings as shown in Figure 4.9a,
Figure 4.9b, Figure 4.9c, the end result is produced differently.
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Algorithm 4.2: Lowering algorithm.

Input : currentRole, method

Output : object

1 compartment := GetActiveCompartment(CurrentThreadId)

2 if compartment is not null then

3 role := GetPlayer(compartment, currentRole,method)

4 return role if not null; core otherwise

5 else

6 Raise no active compartment exception

7 end

Snippet 4.3: Definition of Channel, LZ and AES in the chat server application.
1 class Channel extends CoreObject{ //Core object
2 public void format(String data){
3 System.out.println(data);
4 }
5 }
6
7 class LZ extends Role{ //Role
8 public void format(String data){
9 String f_msg = "<LZ>" + data + "<LZ >";

10 invokePlayer("send", String.class , f_msg); // lowering
11 }
12 }
13
14 class AES extends Role{ //Role
15 public void format(String data){
16 String f_msg = "<AES >" + data + "<AES >";
17 invokePlayer("send", String.class , f_msg); // lowering
18 }
19 }
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Figure 4.9: Partial method with lowering function.

4.3.5.3 Collaboration Functions

The lowering and lifting functions specify the method dispatch between the core object and
its played roles. Collaboration Functions further extend the accessibility to methods of an
associating compartment and methods of roles which are played by different objects, but
those roles have a relationship within the compartment.

From the run-time model perspective, roles seem to be declared inside a compartment
as inner classes which allow them to access the outer class (compartment) easily like in
ObjectTeams/Java [Her05]. As mentioned, LyRT decouples this association by treating all
instances of core object, role, and compartment to be physically independent of each other.
Therefore, a collaboration function, invokeCompartment(method, argsType, args), is needed
to access the compartment’s methods. This design decision is to make the replacement of
role instances at run time possible to support both anticipated and unanticipated adaptation.

The invocation of a relationship is embedded in the method call invokeRel(RoleType,
method, argsType, args). Algorithm 4.3 demonstrates how the underline mechanism of
this function works. First, this function must be performed inside an active compartment
because the actual method invocation targets on roles. Second, querying all the cores binding
to the passing role type to invoke the respectively passing method.

In the example of the tax management system, described in Figure 4.5, the Accountant
role has a pays-salary relationship with the Developer role in a Company compartment.
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When alice invokes the paySalary method via the bound role Accountant, the inovk-
eRel(Developer.class, "getPaid") method in Line 4 of Snippet 4.4 is executed by querying
all the person instances which play the Developer role (i.e., bob and ely) to invoke the
getPaid method as shown in Lines 10-15. In turn, the getPaid method deducts the salary
from the revenue of the company compartment, specified in a salary property, from a
revenue property of the compartment with collaboration function (Line 12) and then the
amount is accumulated to the saving property of the respective persons by the lowering
function (Line 14).

Algorithm 4.3: Algorithm of invokeRel(), a collaboration function.

Input : roleType, method

1 compartment := GetActiveCompartment(CurrentThreadId)

2 if compartment is not null then

3 {coresi} := GetCores(compartment, roleType)

4 for i := 1 to n− 1 do

5 coresi.invoke(method)

6 end

7 else

8 Raise no active compartment exception

9 end

Snippet 4.4: Collaboration functions in the tax management example.
1 class Accountant extends Role{ //Role
2 public void paySalary(String data){
3 // invoke getPaid () from all persons binding to Developer role
4 invokeRel(Developer.class , "getPaid");
5 }
6 }
7
8 class Developer extends Role{ //Role
9 int salary = 1500;

10 public void getPaid (){
11 // deduct revenue from a compartment
12 invokeCompartment("deductRevenue", Double.class , salary);
13 //set saving to a person
14 invokePlayer("setSaving", int.class , salary);
15 }
16 }

4.3.6 Activation Styles

Anticipated adaptation is determined by application developers who give all the necessary
compartments and roles to be activated or deactivated during development time although
the decision of performing adaptation can be made at run time. LyRT is designed to support
adaptation, on a per-thread and per-instance basis. Compartments can be activated in
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different threads, thus adapting program behavior at the thread level. However, in each
thread, there is only one compartment instance which can be active at a time. Role binding
is performed at the instance level when a compartment is activated, only particular core
objects binding to roles change their behavior.

4.3.6.1 Synchronous Activation

In a single thread environment, adaptation can be performed sequentially during the run-time
execution by means of activating a compartment instance or activating of adaptation block
within an active compartment as mentioned in Section 4.2.3. This activation technique
is also known as synchronous activation or per-control-flow activation in COP [KAM15].
Typically, this kind of activation is straightforward, easy to understand, and refrains from
the problem of inconsistency (see Section 4.4). The reason for that is the programmer’s
awareness of the execution point when the dynamic behavior becomes active.

4.3.6.2 Asynchronous Activation

LyRT allows core objects to change their behavior inside an active compartment from another
thread which is running asynchronously from the main thread. The reason is that adaptation
can be triggered at any point in the program and from different sources such as from context
and/or an event. The active compartment and the core objects to be adapted must be
shared across different threads so that they can be used to reconfigure the new role binding
with AdaptationBlock construct of an active compartment when a predefined condition is
met. Although the technique is flexible, it faces inconsistency issues when the core objects
are not ready to adapt. This problem is addressed in Section 4.4.

Snippet 4.5 shows a sample of the chat server scenario on how the activation could happen
asynchronously in order to modify the behavior of the current executing objects. The
Channel object can have two different behaviors, i.e., LZ or LZX compression to transmit
the data. These compression algorithms are changed with respect to the bandwidth of the
network, which is monitored on another thread (Lines 9-25). Therefore, in the main thread,
the Channel object sends file chunks with the specified algorithm (Lines 28-31).

Snippet 4.5: Asynchronous activation triggered from another thread.
1 Channel channel = Registry.newCore(Channel.class); //Core
2 Session s1 = Registry.newCompartment(Session.class);// Compartment
3
4 s1.initBinding (){ // Initial binding
5 channel.bind(LZ.class);
6 }
7
8 //Spawn a thread to monitor the network bandwidth for adaptation
9 Runnable eventMonitor = () -> {

10 while(true){
11 if(Network.bandwidth () > 1000){ // bandwidth is above 1Mbps
12 s1.activate (); // activate for rebinding process
13 AdaptationBlock ab = new AdaptationBlock (){
14 channel.bind(LZX.class); // binding new LZX compression role
15 }
16 s1.deactivate ();
17 } else {
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18 s1.activate (); // activate for rebinding process
19 AdaptationBlock ab = new AdaptationBlock (){
20 channel.bind(LZ.class); //bind to LZ compression role
21 }
22 s1.deactivate ();
23 }
24 }
25 }
26
27 //Main execution
28 s1.activate (); // activate for dynamic behavior
29 while (!EOF(file)){
30 channel.invoke("send", getChunk(file));
31 }

4.3.7 Life Cycle of a Role

A life cycle of a role instance happens in the following stages:

• Creation: A role instance is implicitly created during the binding process to a
core object. The newly created role instance might become active immediately if its
compartment instance is currently active; otherwise, it has to wait until its compartment
instance is activated.

• Activation: Because of context-dependent property, a role instance becomes active
only when the compartment instance it associates with is active.

• Transfer: A role instance can be transferred from one core object to another without
losing its state. However, during the transfer process, methods corresponding to the
role instance should not be actively invoked. Due to decoupling from core objects, a
role instance can be transferred from current core object to another core object by
simply updating the binding relation in the lookup table.

• Deactivation: If its compartment is deactivated, a role instance becomes inactive but
its physical instance still exists. There is no passive/active state of the role instance
supported in an active compartment.

• Destruction: A role instance is destroyed in the unbinding process, or when the
compartment instance is destroyed. Again, deactivation of the compartment instance
does not destroy the role instance.

4.3.8 Supporting Unanticipated Adaptation

The rigorous design of the dynamic instance binding mechanism enables easy replacement of
roles dynamically at run time, enabling the possibility of (re-)loading existing or new roles
which eventually trigger unanticipated adaptation based on asynchronous activation.

A concept of bringing roles to be bound at run time is depicted in Figure 4.10. First,
it is necessary to have a support for dynamic instance binding in a runtime as shown in
Figure 4.10a. Second, there is an active compartment which specifies roles bound to an
existing core object. Figure 4.10b exemplifies the steps. Initially, before loading new roles
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Figure 4.10: Loading and reloading roles dynamically.

there is an active compartment ct1 containing a binding relation between core object o1
and role r1. Next, the new role type, Role2, can be loaded dynamically via a dynamic class
loader in Step 1○ before in Step 2○, the binding relation is constructed. Section 5.4 discusses
in detail about an implementation of the dynamic class loader. The entire process does not
physically affect the existing core objects. The application states are fully preserved. This
increases flexibility and reduces disruption while performing updates, as the change of every
instance of a given type, is not necessary. Once the binding relation is constructed, the
behavior of the core object is dispatched to the newly bound role respecting to the lifting
operation, described in Section 4.3.5.
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Figure 4.11: Process of unanticipated adaptation.

To realize unanticipated adaptation, there are four steps to be performed by application
developers. First, new roles, which define the new behavior of certain objects, must be
given and compiled 1○. Second, the developers obtain current binding information from
the lookup table, in which a tool to dump the lookup table is given 2○. The information is
necessary to construct the binding relation in an adaptation file in step 3○. The adaptation
file is an XML file specifying the information for constructing the binding relation such as
an active compartment and new role types to be bound to the existing objects, i.e., cores
or roles. Once the XML configuration is prepared, the file can be parsed by Application
Programming Interface (API) of the runtime 4○. In case the binding operations are specified,
the prescribed role type is loaded into the runtime, and the binding relation is stored in the
lookup table. Conversely, the unbinding process deletes the binding relation in the lookup
table and destroys the role instance. This happens asynchronously because the parsing
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process to manipulate the lookup table is triggered from another thread.

Snippet 4.6: An adaptation XML file.
1 <?xml version ="1.0"?>
2 <adaptation >
3 <compartment type="value" id="value">
4 <bind [coreId="value" | roleId="value"] roleType="value" />
5 <unbind [coreId="value" | roleId="value"] roleType="value" />
6 <rebind [coreId="value" | roleId="value"] roleType="value" />
7 <transfer fromCoreId="value" toCoreId="value" roleType="value" />
8 <[bind | rebind] [coreId="value" | roleId="value"] roleType="value" >
9 <invoke method="method_name" returnType="void" />

10 </[bind | rebind]>
11 </compartment >
12 </adaptation >

Snippet 4.6 shows the elements composed in a configuration for unanticipated adaptation.
The detailed description of each element is done as follows:

• adaptation: A top-level element for unanticipated adaptation. It contains at least
one active compartment element for reconfiguration of core object binding. Several
compartment elements can be described if developers want to adapt in multiple
compartments executing in different threads. Note that there is only one active
compartment per thread at a particular point in time.

• compartment: This element represents an active compartment where role operations
are taking place. The type attribute is the fully qualified type name while id is
the identity of the compartment which can be queried from the runtime. There are
sub-elements inside a compartment element which are related to the role operations,
i.e., binding, unbinding, rebinding, and transferring.

• bind: The element realizes the binding between either a core object or a role instance
and a given role in the roleType attribute depending on whether a coreId or roleId
is given. The value of both coreId and roleId is an object’s identity which can be
extracted from the runtime (i.e., the lookup table). In the process of parsing, the
role type is loaded into the runtime (e.g., JVM), and a role instance of that type is
instantiated.

• unbind: A given role specified in the roleType attribute is unbound from either core
object or role instance depending on whether the coreId or roleId attribute is given.
The role instance is destroyed and its binding relation is also removed from the lookup
table.

• rebind: This element results from the combination of the unbind and bind element.

• transfer: This element detaches a role instance of a given type specified in the RoleType
attribute from a core object (fromCoreId attribute), and attaches it to another core
object as denoted in the toCoreId attribute within the same compartment. As the
role instance is not destroyed, its states are preserved.

• invoke: Either bind or rebind element may contain single or several invoke elements
which define a method in a given role type to be explicitly called.
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4.3.9 Overcoming Object Schizophrenia

The loose binding of two or more objects which represent themselves as a single compound
object sharing a common identity may lead to the problem of object schizophrenia [SR02].
Especially, it happens in the form of a broken identity when one of the participating objects
changes its identity. This problem causes the dynamic method dispatch to be no longer valid
among member objects.

In LyRT, when a compartment is activated, an object with a set of bound roles is just one
compound object although those roles are physically separated. This activation minimizes
the risk of broken identity as selecting roles is done only in an active compartment [HHM04].
However, the possibility of a broken identity of roles remains if those identities are duplicated
or changed. In this regard, we rely on the hashcode method to generate a per-lifetime,
unique identity for every object including its role instances. This hashcode is used as an
object identity to store in and to query from the lookup table. Furthermore, the lookup
table controls the object binding relation which can only be altered explicitly by means of
adaptation; otherwise, it maintains a consistent binding relation. Therefore, we consider
LyRT to be free of object schizophrenia problem.

4.3.10 Runtime Interaction with the Registry

The registry is a core component that allows programmers to interact with the run-
time. To write role-based applications in LyRT, programmers need to understand the
CROM [KBGA15] model and the necessary functions supported in the registry. The registry
contains functions which deal with the creation of CROM elements, such as compartments,
roles, and core objects, as shown in Table 4.2. These instantiations as well as the role
binding process create a new record in the lookup table, which is later used for translating
the method polymorphism. Table 4.3 displays the block constructs in LyRT to facilitate the
initial binding, the subsequent adaptation, and consistency (Section 4.4). Table 4.4 shows the
supporting functions of composition and method dispatch. There are other role-manipulated
functions which are not discussed. Detailed instructions on how to use these functions in
order to run role-based applications will be described in the case studies (Section 6.1).

Table 4.2: Creation of compartment and object and role binding functions.

Description Method

Creating Compartment newCompartment(CompType, argsType, args)

Creating Core Object newCore(ObjectType, argsType, args)

Binding role bind(Object, RoleType, argsType, args)

Unbinding role unbind(Object, RoleType)

Rebinding role rebind(Object, RoleType, argsType, args)

Transferring role transfer(fromObject, RoleType, toObject)

Activating compartment activate()

Deactivating compartment deactivate()

Destroying role instances destroy()
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Table 4.3: Block constructs.

Description Method

Initial Binding Block Compartment.InitBinding(){...}

Adaptation Block AdaptationBlock ab=new AdaptationBlock(){...}

Consistency Block Consistency c1=new Consistency(){...}

Table 4.4: Method dispatching functions.

Description Method

Lifting invoke(method, argsType, args)

Lifting to a role invoke(RoleType, method, argsType, args)

Lowering to player invokePlayer(method, argsType, args)

Lowering to core invokeCore(method, argsType, args)

Accessing to compartment invokeCompartment(method, argsType, args)

Relation with role invokeRel(RoleType, method, argsType, args)

4.4 Tranquility Controller

The main idea behind the tranquility controller is to determine whether a core object should
promptly react to shift its behavior with respect to the adaptation, or whether it should wait
if a series of ongoing methods is executing to achieve a common goal. While this problem
remains unexplored in role-based software systems [KLG+14, SGP12a], in practice there are
applications which require multiple method invocations which need to be executed atomically
(i.e., consistent behavior). In the chat server example, chunks of a file should be transmitted
with the same data format, e.g., all without compression or all with compression, to avoid
corruption when assembling at the client side.

The tranquility controller relies on the tranquility concept [VEBD07], which divides a
program into multiple consistency blocks4 containing a set of method executions of different
cores as shown in Figure 4.12. The cores executing inside a consistency block are not allowed
to change their behavior regardless of adaptation. Regions outside the consistency block
are called tranquil states where the adaptation can be performed safely. Our object-level
tranquility concept extends the original tranquility concept to support the safe update of
the node at instance level and to provide parallel execution. Section 6.1.4.3 discusses the
differences between the two in a case study.

4Originally, the term transaction is used. To avoid confusion over database transactions, the term
consistency block is used.
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Figure 4.12: Tranquility concept.

4.4.1 Consistency Block

The adaptation in LyRT can happen either synchronously or asynchronously (see Sec-
tion 4.3.6). Synchronous adaptation is defined in the flow of the program execution within
an active thread. This strategy does not imply any system inconsistency because adaptation
occurs sequentially under the control of the developers. Asynchronous activation, however,
is triggered by a shared thread to adapt objects in the executing thread. It allows a flexible
adaptation which can be easily derived from context reasoning in different program threads.
Consequently, this crosscutting adaptation may affect system inconsistency as objects are
engaging in a transaction5 which requires uniform behavior from the start to the end of the
transaction.

Kramer and Magee [KM90] define a transaction as “a sequence of messages that must be
executed atomically”. The messages in the definition refer to the method invocations of
objects at the instance level. We assume that a transaction is an explicit concept which
is known to the developer. It means that in some parts of the program code, there are
transaction blocks surrounding the code to be executed atomically. The atomic property
in this regard refers to the uniform behaviors which should not be changed as a result of
an adaptation. The notion of this transaction is not related to the term transaction in
the domain of databases, in which atomicity, consistency, isolation, and durability (ACID)
properties are ensured. To avoid confusion, the term consistency block is used.

Snippet 4.7 shows a sample consistency block in a program where the Channel object in our
chat server example (Chapter 2) is not allowed to change the way it formats the data before
transmission, i.e., performing encryption, inside the block. Outside the block, the adaptation
can be performed ordinarily.

Snippet 4.7: Application of ConsistencyBlock.
1 // Adaptation can be performed before entering the consistency block
2 (ConsistencyBlock cb1 = new ConsistencyBlock ()){
3 while (!EOF(file)){ //not end of file
4 channel.invoke("send", getChunk(file)); //send a chunk
5 }
6 }
7 // Adaptation can be performed after the consistency block

5The term transaction here is defined in the concept of quiescence [KM90] and tranquility [VEBD07]. The
term consistency block is used to avoid confusion over the database transaction.
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8
9 // channel object may use different algorithms to transmit the data

10 (ConsistencyBlock cb2 = new ConsistencyBlock ()){
11 while (!EOF(file)){ //not end of file
12 channel.invoke("send", getChunk(file)); //send a chunk
13 }
14 }

A consistency block is a scope of a consistency object (i.e., cb1 and cb2 in Snippet 4.7 in Line
2 and 10) that lives only in the block. The consistency object is instantiated when the block is
activated and is destroyed when the block is ended. The consistency object, representing the
consistency block, is registered with a starting time in an active compartment of a particular
thread to anchor the appropriate role for method invocation during its lifecycle. Those roles
will be maintained to ensure the uniform behavior during the block execution regardless
of any adaptation demanding for binding or unbinding those roles. The consistency block
and its associated consistency object are used interchangeably. Table 4.5 shows a sample
registration of the first consistency blocks shown in Figure 4.13.

The consistency block must be provided by developers to guard the code block in which
adaptation must not happen in order to ensure system consistency. This block is a thread-
based execution meaning that it prevents any objects within the block from being adapted
within its own thread while it is still possible to perform an adaptation of the same object
instance executed in different threads.

Thread1 Thread2Main

channel:Channel

Consistency Block

perform LZ
compression

starts

perform LZX
compression

By default, each compartment has 
LZ roles bound to the channel object.

compartment is
activated

1

2
3
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4

5
perform LZ
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Adapt to 
bind LZX
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6
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handle
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handle
Client 2

T
T+1
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T+n is a timestamp 
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Figure 4.13: Consistent behavior of a shared object in a multi-threaded environment.

Considering our chat server example in a detailed process as depicted in Figure 4.13, the
shared Channel object is used to transmit the data for different clients, i.e., Thread1 and
Thread2 are for client 1 and client 2 respectively. This example demonstrates the change
of the sending behavior of the Channel object with respect to the thread and consistency
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block it is executing in. When a new client connects, a new thread is created to handle the
client session (step 1○). In each thread, there is an active compartment instance derived
from the same type where a LZ role for data compression is the default binding role (step
2○). In Thread1, the consistency block is started by performing the data transmission with
the LZ compression role.

Soon after the start of this consistency block, the network condition presumably changes
and demands binding to a LZX compression role (step 3○). This adaptation is also applied to
Thread2, handling another client session. Since Thread1 has already started the block, there
is no effect to ensure the consistent behavior within the block. However, in Thread2, the
new LZX behavior is applied to the Channel object because it enters the consistency block
after the adaptation took place.

In step 4○, another adaptation happens to unbind the LZX role which is currently executing
in Thread2. In this regard, this LZX role must not be removed immediately from the Channel
object. Instead, it is marked with the unbound time. The role with the unbound time will
be deleted after the consistency block expires. This technique ensures that the execution
of methods in the consistency block remains consistent regardless of the addition or the
withdrawal of roles. After the expiration of the consistency block, the adaptation becomes
effective for the next method call (step 5○ and 6○).

4.4.2 A Solution to Realize the Consistency Block

In order to achieve the consistency block as described in the previous section, the system
relies on the dynamic instance binding mechanism to select the appropriate roles for method
dispatching. The BoundTime and UnboundTime attributes in the Relation table of the lookup
table (Section 4.3.4) help to determine which roles should be selected for invocation.

4.4.2.1 Dealing with Addition of New Roles

Whenever the adaptation occurs resulting in addition of a new role, the role and its binding
relation are added to the runtime and the lookup table respectively. The runtime stores the
time when the consistency block started in each thread. There is only one consistency block
which can be active in each thread at a specific point in time. Table 4.5 shows the registration
of the first consistency blocks which resembles the process described in Figure 4.13, denoted
as cb11 and cb21 in Thread1 and Thread2 respectively. The StartTime column shows the
value of the registered timestamp of each consistency block belonging to a particular thread.

If there is a running consistency block, the method dispatch (i.e., lifting operation) compares
the times when the consistency block was started and the time when the new role is bound.
If the BoundTime is greater than the StartTime of the consistency block, the role is excluded
from the method invocation. Consequently, the adaptation does not affect the execution of
methods inside the current consistency block as shown in step 3○ of Thread1 in Figure 4.13.
The adaptation will become effective with the next method calls after the block has expired
(i.e., step 5○ of Thread1). Algorithm 4.4 is a pseudo-code implementation for method
dispatching (lifting) of a core executing when a consistency block is present.

Table 4.6 shows the snapshot of the lookup table from step 2○ to 4○ in Figure 4.13. The
consistency block cb11 locates in the compartment ct1 where two roles instances are bound
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Algorithm 4.4: Lifting algorithm when a consistency block is present.

Input : core, method

Output : object

1 compartment := GetActiveCompartment(CurrentThreadId)

2 if compartment is not null then

3 if HasConsistencyObject (CurrentThreadId) then

4 startT ime := GetStartTimeOfConsistencyObject(CurrentThreadId)

5 if HasBoundRoleBeforeConsistencyBlock (compartment, core, startTime)

then

6 role := GetDeepestRole(compartment, core,method, startT ime)

7 return role

8 else

9 return core

10 end

11 else

12 return core

13 end

14 else

15 return core

16 end

to the same Channel object with different timestamps as seen in the BoundTime attribute.
According to the method dispatch rule, the lzx1:LZX role should be invoked when bound.
However, since the cb11 block starts at time T + 1, lz1:LZ is used for invocation instead
because lz1:LZ is bound earlier at time T . While cb11 is executing, lzx1:LZX is bound at
time T + 2. Hence, lzx1:LZX will be used in subsequent method calls either with or without
a consistency block.

Table 4.5: Sample consistency block registration in each thread conforming to Figure 4.13.

ThreadId CompartmentId ConsistencyBlockId StartTime

Thread1 ct1 cb11 T + 1

Thread2 ct2 cb21 T + 4
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Table 4.6: Sample data of the chat server runtime in the Relation table as depicted in
Figure 4.13. ct1 and ct2 are active compartments in Thread1 and Thread2 respectively.

Id Comp.Id CoreId PlayerId RoleId BoundTime UnboundTime

1 ct1 channel channel lz1:LZ T nil

2 ct1 channel channel lzx1:LZX T + 2 nil

3 ct2 channel channel lzx2:LZX T + 3 T + 5

4.4.2.2 Dealing with Removal of Bound Roles

Similar to adding a role, if the adaptation happens as a role removal, the role to be removed
is not deleted immediately but it is marked as unbound with the timestamp specified in the
UnboundTime attribute in the lookup table. This technique allows the objects to interact with
the role to be removed in a consistency block as shown in step 4○ of Thread2 in Figure 4.13.
The role to be removed is permanently deleted from the runtime as soon as the consistency
block has expired. Consequently, the adaptation affects the method calls subsequent to the
expiration of the consistency block, i.e., step 6○ in Thread2. Similarly, if the bound role
is transferred from one core object to another, it is considered as the role to be removed.
Therefore, the same process explained above is applied.

As an example for removing a role during the execution of a consistency block, the lzx2:LZX
role in the ct2 compartment (Row 3 in Table 4.6) is marked unbound at time T + 5 but this
role is part of the cb21 consistency block. Therefore, it is kept until the cb21 has expired.

To sum up, in order to realize consistent adaptation over ongoing multiple method invocations,
we introduced the consistency block, which is specified by the developers in the program
code. The BoundTime and UnboundTime attributes are updated as a result of adaptation to
realize the consistency block. Finally, the runtime excludes roles to be bound or unbound
from the method dispatch inside a consistency block in order to prevent the system from
inconsistencies.

4.5 Rollback Recovery Controller

This component is designed to embrace run-time failures caused by bugs as a result of role
composition which is triggered by adaptation. This composition is very dynamic in highly
adaptive systems, and the developer cannot eliminate all the bugs during the testing phase.
Simple bugs such as DivideByZero or ArrayOutOfBound can crash the runtime limiting the
high availability of the runtime. These simple bugs are normally not caught by the compiler,
e.g., Java compiler. Therefore, such bugs may appear during the execution.

There are many kinds of software bugs. The scope of this dissertation focuses on software
bugs which might cause run-time failures during execution. While some of these bugs can
normally be caught by the application exception handling during execution, others, like
ArithmeticException, are not.
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4.5.1 Failures Resulting from a Role Composition

Let us recall the activation strategy supported in LyRT. LyRT provides two levels of
adaptation. First, the adaptation results from switching from one compartment to another
at the coarse-grained level. Since roles are located inside the compartment, core objects
are adapted according to those binding relations. Second, inside an active compartment,
an object may change roles several times because of context change. The latter case is
illustrated by a DivideByZero error, which is likely to occur, in our chat server example
described in Chapter 2.

Figure 4.14 demonstrates a DivideByZero failure which may happen in a particular role
composition triggered by three adaptations consecutively. First, the Channel object binds to
the LZ role denoted in Figure 4.14a. According to the rule of dispatching, the invocation
of invoke("format", data) in step 1○ is dispatched to the format method of the LZX role
in step 2○. In turn, the factor method of the LZX itself is called in step 3○. Although
the factor method may generate the value 0, there is no DivideByZero failure happening
because any number to the power of 0 is 1.

Second, the system adapts to play the AES role as shown in Figure 4.14b. The implementation
of the AES role has no factormethod as it relies on the factormethod of the player, that is the
Channel object (step 2○). So, the DivideByZero failure never occurs since the implementation
of the factor method returns the value 8 (step 3○).

The composition in the third configuration, Figure 4.14c, may cause a DivideByZero failure.
The configuration is composed of the Channel object, the LZX role, and the AES in the form
of deep-play-relation. In step 1○ the invoke("format", data) method is dispatched to the
format method of the AES role in regard to the dispatching rule. The factor method in step
2○ is dispatched to the implementation of the factor method of the LZX role because the
LZX role is the player of the AES role. Therefore, whenever the factor method in step 3○
returns the value 0, the call of the format method in AES results in a DivideByZero error.

In the example above, while the composition of a role in isolation does not cause a failure,
a particular relation of multiple roles might cause a run-time failure. Additionally, the
order of the composition matters. For instance, in Figure 4.14c, there will be no failure
if the Channel object first plays the AES role which then plays the LZX role because the
invokePlayer("factor") of the AES role will be lowered to the factor method of the Channel
object.

4.5.2 Rollback Recovery Mechanism

Adaptation results in changing a composition of roles to a core object (i.e., binding and
unbinding). A method invocation of an object from a particular composition may contain
an error leading to a failure. Therefore, the main idea of the approach is to embrace failures
caused by bugs if we cannot avoid them, and enable the runtime to recover by rolling back to
a recent checkpoint. The system generates a checkpoint before initiating a new adaptation.
A checkpoint is a serialized representation of the current application configuration (AC),
i.e., instances of roles and their associating compartment, including their states and binding
information, reflecting the currently active play-relations between players and roles within a
compartment.
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class Channel{
public void send(byte[] data){

Network.send(invoke(“format”, data));
}

public byte[] format(byte[] data){
return data << invoke(“factor”);  

}

public int factor(){
return 8;  

}
}

class LZX{
public byte[] format(byte[] data){

byte[] msg = data / (2 ^ invoke(“factor”));
return invokePlayer(“format”, msg);

}

public int factor(){
return random(0, 9); //0 - 9

}
}

class AES{
public byte[] format(byte[] data){

byte[] msg = data/invokePlayer(“factor”);
return invokePlayer(“format”, msg); 

}
}
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There is a chance of DivideByZero failure when calling the factor method.
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Figure 4.14: Composition leading to a DivideByZero failure.
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After the checkpoint is created, the system performs the specified adaptation and the runtime
reacts accordingly. The program may encounter bugs introduced by newly installed or
updated role implementations. The system has a specialized bug sensor to detect bugs and
to signal the runtime to roll back to the previous configuration by restoring the most recent
checkpoint. That previous configuration is assumed to be error-free because bugs had not
been caught within that application configuration. Meanwhile, the runtime records the
defective configuration to prevent it from being re-activated. The system also generates a
notification to the developer responsible for the bugs. The application configuration can be
reapplied after the bug has been fixed and the new code version has been shipped.
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Figure 4.15: A checkpoint of different activation strategies.

The adaptation in LyRT is done on a per-thread and per-instance basis in which it allows
two or more instances of a compartment to live in different threads, and the activation
of those compartments adapts core objects independently. Hence, the rollback recovery
mechanism is applied on a per-thread basis to capture an independent rollback recovery
process for each thread. Depending on the adaptation specified in each thread, a failure
may happen in a particular thread which contains a defective role composition while the
rest keeps running properly. Figure 4.15 illustrates the mentioned explanation by showing
different styles of behavior activation and how checkpoints are made in isolation. Figure 4.15a
shows that Thread1 adapts the core object behavior by means of deactivating the current
active compartment and activating another compartment without any sign of failure. The
checkpoint is made before this transition. In contrast, Figure 4.15b depicts a role change
within an active compartment of Thread2 where a checkpoint of the current configuration
needs to be made. Consequently, this change causes a failure, which needs to be recovered
to keep the application running in a valid configuration. This recovery process is done
independently from Thread1.

4.5.3 Rollback Recovery Architecture

The runtime architecture had to be extended as depicted in Figure 4.16 to incorporate the
rollback recovery mechanism as part of LyRT. The extension comprises four components,
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namely a bug sensor, a control unit, a checkpoint manager, and a rollback unit. With
our approach, the dynamic adaptation cycle is completed by 1○ making a checkpoint of
the current system configuration, 2○ adapting the application configuration, 3○ detecting
failures, 4○ recovering from a software failure by rolling back to the previous application
configuration and 5○ notifying the developer about the failure.

Role Execution Engine

Control Unit

Bug Sensors
detect failure

push

notify failure 

AC1 AC2

AC0
AC1

AC0

pop

3

45

restore
fix bugs 

and re-apply

st
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k

CheckpointRollback

developer 

2

serialize AC
1

adapt

failure

Figure 4.16: Rollback recovery architecture (AC: Application Configuration).

4.5.4 Checkpoint

In pursuit of supporting rollback, the runtime takes system snapshots as checkpoints,
before performing an adaptation transaction. Given that the currently active application
configuration is persisted in the lookup table, creating checkpoints consists of serializing
the records containing all the role instances and binding information, pushing them to the
stack (Step 1○ in Figure 4.16). Depending on the way we persist the data, serialization may
be time-consuming, however, this is an effective method to preserve the objects’ states and
their dependencies, as opposed to shallow copying or cloning.

Besides the state stored in attributes of objects that represent roles, the roles’ behavior
might manipulate externally stored data, e.g., by utilizing file or database operations. For a
complete rollback, such external state needs to be considered for checkpoint and rollback.
While file versioning systems can be applied to deal with the rollback of files, database
versioning is also on the verge of realizing this concept [HVBL15]. However, for the sake of
simplicity, supporting this external state is considered out of scope.

The process of the checkpoint is embedded in the adaptation process. In case of performing
the adaptation by switching from one compartment to another, the checkpoint is done
when the former compartment is deactivated to serialize the current configuration of itself
(Figure 4.15a). If adaptation happens by unbinding and binding new roles in an active
compartment, these operations are placed in the adaptation block where the checkpoint
can be made when the block is activated. Snippet 4.8 resembles the adaptation process
as depicted in Figure 4.15b in coding style. Initially, roles R1, R2, and R3 are bound to
different objects. The subsequent adaptation is asked to replace R1 and R2 with R4 and R5
respectively. Therefore, the adaptation block (Lines 13-16) is necessary to let the runtime
makes a checkpoint, which contains the instances of R1, R2, and the current compartment
ct3, before applying new adaptation.
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Snippet 4.8: Checkpoint is made when AdaptationBlock is activated.
1 // Initial binding
2 ct3.initBinding (){
3 obj1.bind(R1.class);
4 obj2.bind(R2.class);
5 obj3.bind(R3.class);
6 }
7
8 ct3.activate (); // Compartment activation
9

10 // Executing ....
11
12 // Triggers adaptation
13 (AdaptionBlock ab1 = new AdaptationBlock ()){ // checkpoint is created
14 obj1.bind(R4.class); //new binding to replace R1
15 obj2.bind(R5.class); //new binding to replace R2
16 }

For a large server application which involves several adaptations, keeping the checkpoint for
all the executing threads consumes more memory if they are stored in memory. Although
checkpoints can be stored on disk, the rollback process would take much longer due to slower
disk access. Therefore, the maximum number of possible checkpoints should be limited by
the developer who can estimate the frequency of adaptation in the system. LyRT sets the
threshold value of the checkpoint to be 10 for each thread by default.

4.5.5 Bug Sensors

Bug sensors are run-time components designed to detect software failures that are uncaught
during testing or compilation. Bug sensors are used to signal the Control Unit for recovery, as
depicted in step 3○ of Figure 4.16. Inspired by the software fault tolerance domain [QTSZ05],
two types of bug sensors can be deployed during run time. The first type of sensors utilizes the
exception handling system used by the application. The second type of bug sensors handles
memory-related bugs, by detecting buffer overflow, memory leaks, etc. However, garbage-
collected languages, such as Java, resolve most of the memory-related issues. Therefore, we
consider only the first type of bug sensors to monitor the run-time failures. This technique
tackles only the failures raised by run-time exceptions. Bug sensors are installed either
globally in the main program to intercept all exceptions raised from all threads, or locally to
each thread, capable of catching only a particular thread’s exceptions. In a scenario like our
chat server example, the sensor should be installed in each thread because variability and
potential failures exist on the thread level. Although we provide the default implementation
of a bug sensor, developers can customize it to suit their needs.

4.5.6 Rollback

The runtime rolls back by destroying the current defective configuration and restoring the
latest checkpoint from the stack (step 4○ in Figure 4.16). This process involves deleting the
current records in the lookup table and inserting the serialized records from the checkpoint.
The lookup table manages instance relations and their executing thread information. There-
fore, the rollback, which is performed on a per-thread level, is relevant to the threads in
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which the failure occurred. This design minimizes the overall system disruption and data
loss.

Although clients do not experience disconnection, the rollback probably incurs data loss
during its recovery process. We leave this problem to the application protocol to keep the
executing messages in the cache and to resend the cached messages once the recovery is done.

Another scenario which does not limit the applicability of this rollback is to apply a new
feature to a testing user group. Considering our chat server example, each user in the testing
group has their own representation of the data transmission (e.g., without compression or
with compression). The new encryption feature (AES) is applied to particular users in the
testing group with different composition configurations before system-wide adoption. A bug
in the specific encryption composition has only an impact on the testing group while it has
no effect on the regular clients. Since LyRT allows unanticipated adaptation, the bug can be
fixed, and the fixed configuration can be reapplied subsequently.

4.5.7 Control Unit

It is a central component handling checkpoints, rollback, and bug notifications. The Control
Unit communicates with the adaptation activation to generate a checkpoint between each
adaptation and listens to the signal from the bug sensors to execute a rollback. The Control
Unit records the defective adaptation configurations in order to avoid the same configuration
from being activated at a later stage unless fixes have been made. Meanwhile, the Control
Unit notifies developers about the failure and reapplies the configuration once the bug is
solved, by means of unanticipated adaptation as illustrated in step 5○ of Figure 4.16.

4.6 Required Features of Host Languages to Implement LyRT

The concept behind LyRT is introduced to be generic; so it can be implemented in any
modern object-oriented technology although we chose Java as a host language. However,
LyRT still requires some language features such as reflection, dynamic class loading, and
exception handling to support its variability.

Reflection. Reflection provides a low-level API, which can be used to query methods and
their accepted arguments for a specific class. This feature is used heavily in our dynamic
method dispatch as the methods of roles are queried and cached for later invocation.
A method call from a core object is intercepted and compared to the cached methods
of the bound roles. If the signature of a calling method is matched, technically the
identical cached method of a role is invoked. The invocation process also relies on
reflection due to the late method binding as it is determined during run time, especially
in the case when a new role instance is bound dynamically.

Dynamic Class Adaptation. Another feature, which should be supported in the host
language to implement LyRT, is the dynamic class adaptation which allows the new
implementation of an existing class or a new class to be reloaded and loaded respectively.
This feature is essential for supporting unanticipated adaptation in which roles are
required to be adapted during execution.
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Exception Handling. Besides, an exception handling mechanism must be supported in
the host language as well. This mechanism can be used to implement the bug sensor.

The mentioned features are typically supported in any modern OOP languages. Therefore,
the concept to design LyRT can be implemented in those languages without issues. Next
chapter, we will show how this concept can be implemented in Java as a framework.

4.7 Chapter Summary

This chapter illustrated the conceptual work of LyRT which introduced three main essential
components, namely the Role Execution Engine, the Tranquility Controller, and the Rollback
Recovery Controller, in a single run-time architecture for dynamic variability. The Role
Execution Engine is designed based on a dynamic instance binding mechanism developed to
support loosely coupled bindings between instances to achieve adaptation on a per-thread
and per-instance basis. Additionally, unanticipated adaptation has been designed from
the ground up and embedded in the dynamic instance binding mechanism. LyRT allows
programmers to interact with the runtime by means of accessing to functions of the registry.

The Tranquility Controller consists of a consistency block mechanism to surround application
code containing a series of method invocations of objects which are required to be executed
consistently. Therefore, those objects are not allowed to change their behavior in the presence
of the consistency block.

The Rollback Recovery Controller is an extension to the Role Execution Engine to make a
checkpoint of the current application configuration, i.e., role instances and their compartment
instances, before applying a new adaptation. A specialized sensor utilizing the application
exception handling is installed to embrace run-time failures. Once a failure is detected,
the runtime rolls back to the previously saved checkpoint in order to reinstate the thread
in which the failure occurred. Thanks to the support of adaptation on a per-thread and
per-instance basis, which allows us to make a checkpoint and roll back on the thread level,
it minimizes the overall run-time disruption and data loss. Hence, it improves run-time
stability.

In order to implement LyRT, host languages require a few features namely reflection, dynamic
class adaptation and exception handling. Modern object-oriented programming languages
support those. In the next chapter, we will show the prototype implementation of LyRT in
Java.



Chapter 5
LyRT Implementation

An important part of demonstrating the feasibility of LyRT involves building a realistic
prototype which we can use to assess the features of the presented approach with respect
to the requirements of run-time variability and to also evaluate its performance aspects.
In this chapter, we describe the implementation of LyRT as a library framework in Java.
Afterwards, we will discuss the trade-offs of using Java, as opposed to other dynamically
typed languages.

5.1 An Implementation Overview

A prototype of LyRT is implemented in Java as a library in order to demonstrate the
generality of the proposed approach. Due to the fact that Java is a statically and strongly
typed language it is more challenging to implement an adaptive run-time system than to
rely on dynamically typed languages. As a library, the prototype runs on pure JVM and
requires no additional development tooling.

The essential ingredients of the prototype implementation are depicted in Figure 5.1 and
briefly described as follows:

Registry and Lookup Table. This is the core run-time component where most of the
implementation logic of the dynamic instance binding mechanism and the lookup table
are located. The Registry is a singleton class which is used by other components.

Dynamic Method Invocation. This part contains an implementation of cached method
tables which are stored in each compartment instance for handling the lifting, lowering
and collaboration functions. In order to improve performance, the invokedynamic
opcode instruction is used for method invocation.

Dynamic Class Reloading. In order to incorporate the unanticipated adaptation support,
a role class has to be dynamically loaded and reloaded if its implementation is altered.
The XML helper is needed to parse the unanticipated adaptation script.

Block Constructs. This component describes the implementation of the three distinct
block constructs including the ConsistencyBlock to realize the tranquility controller.

Rollback Recovery. This component handles checkpoints, and rolls back if the runtime
gets a signal from the bug sensor reporting an error caused by role composition.

Compartment, Role and Core Object. These are required entities which programmers
use to implement role-based adaptive systems running on LyRT.

97
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Registry and Lookup Table

Block Constructs

Dynamic Class Reloading

Dynamic Method Invocation

RelationRegistry

RelationEnumReflectionHelper

IndyBootstrap CallableMethod

JINDY
A high-level invokedynamic library

XMLParser

ClassReloader

XMLConstructor

Rollback Recovery

ControlUnit <<Interface>>
UncaughtExceptionHandler
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InitBindingBlock AdaptationBlock ConsistencyBlock

<<Interface>>
AutoCloseable
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Compartment, Role and Core Object
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Compartment <<Interface>>
IRole

implements extends

Figure 5.1: An overview of LyRT implementation and its class diagram.

5.2 Registry and Lookup Table

The registry is the core function of LyRT which allows programmers to develop a role-based
application following the CROM [KBGA15]. The registry implements the dynamic instance
binding mechanism that manipulates the lookup table in order to manage the instances of
compartment, role and core objects. The class diagram related to this registry can be found
in Figure 5.2.

The lookup table is an ArrayDeque<Relation> which is an efficient generic list structure in
Java. The lookup table is stored locally in each compartment object. The Relation contains
the object references as follows:

• Compartment: an Object represents a compartment object.

• Core: an Object represents a core object.

• Player: also an Object. If the relation kind is a play-relation, the player object is the
core object. Otherwise (i.e., deep-play-relation), this player is a role. If a compartment
acts as a core object to play a role, this player is the compartment object.

• Role: an Object represents a role object.

• Depth: an int denotes the distance of a role with respect to the core object.
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Registry and Lookup Table

+ getRegistry(): Registry
+ getRollbackStacks(): HashMap<Long, Stack<ArrayDeque<Relation>>>
+ clearCheckpoint(): void
+ isRollbackEnabled(): boolean
+ enableRollback(boolean): boolean
+ newCore(Class<T>, Object…): T
+ newCompartment(Class<T>, Object…): T
+ bind(RelationEnum, Player, Class<T>, Object…): T
+ bind(RelationEnum, int, int, String): T
+ rebind(RelationEnum, Player, Class<T>, Object…): T
+ rebind(RelationEnum, int, int, String): T
+ unbind(RelationEnum, Player, Class<?>): void
+ unbind(RelationEnum, int, int, String): void
+ transfer(Player, Player, Class<?>): void
+ transfer(int, int, int, String): void
+ getActiveCompartments(): ConcurrentHashMap<Long, Compartment>
+ getActiveCompartment(): Compartment
+ activateCompartment(Compartment): void
+ deactivateCompartment(Compartment): void
+ destroyCompartment(Compartment): void
+ invoke(ConcurrentHashMap<Integer, CallableMethod>, Class<T>, String, Object…): T
+ registerConsistencyBlock(Compartment, int, LocalDateTime): void
+ removeConsistencyBlock(Compartment, int): void
+ cancelAdaptation(AdaptationBlock): void
- getMethodSig(Method): MethodSig
- registerCoreCallable(ConcurrentHashMap<Integer, CallableMethod>, Object, Class<?>): void
- registerCompartment(Compartment, Class<?>): void
- registerLiftingCallable(Compartment, Object, Object, Class<?>): void
- registerLoweringCallable(Compartment, Object, Class<?>): void
- removeLiftingCallable(Compartment, Object, Class<?>): void
- removeLoweringCallable(Compartment, Object, Class<?>): void
- reRegisterCallable(Compartment, Object): void
- adjustCallable(LocalDateTime, Compartment): void
- getCallable(Class<T>, Method): Callable<T>

- registry: Registry
- m_corePools: ArrayDeque<Object>
- m_consistencies: ConcurrentHashMap<Integer, SimpleEntry<Integer, LocalDateTime>>
- m_lock: ReentrantLock

Registry

+ newRelation(Compartment, Object, Object, Object, int): Relation
+ clone(): Relation

+ compartment: Object
+ core: Object
+ player: Object
+ role: Object
+ depth: int
+ boundTime: LocalDateTime
+ unboundTime: LocalDateTime

Relation

+ relationCode: int

+ PLAY
+ DEEP_PLAY

RelationEnum

+ newInstance(Class<T> clazz, Object…): T
- getParameterTypes(Object…): Class<?>[]

ReflectionHelper

Figure 5.2: A class diagram of registry’s components.
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• BoundTime: a java.time.LocalDateTime type represents the time when a role got
bound.

• UnboundTime: a java.time.LocalDateTime type represents the time when a role
got unbound. This meta-data is valid only when a consistency block is present.

The lookup table presented in Chapter 4 is a relational database schema in which we
can rely on an in-memory database to store the play-relation and the deep-play-relation.
We stick to the ArrayDeque<Relation> data structure because of two reasons. First, it
is easy and fast for a reasonable amount of relations. Additionally, Java 8 provides the
java.util.stream API1, which enables functional-style operations on streams of elements,
in order to manipulate the searching process of the list data type with ease. Second, there is
no need for a separate list structure to implement instance pools which store the references of
compartments, roles, and core objects respectively. However, the manipulation of millions of
objects using ArrayDeque<Relation> is more expensive than that of the in-memory database.
An application might have millions of objects but the lookup table is kept separately in each
compartment instance. So, it is unlikely in practice that a compartment would hold millions
of roles.

5.3 Dynamic Method Invocation

In order to achieve dynamic application behavior, a method should be resolved dynamically at
run time. Reflection is a suitable yet time-consuming approach. Thus, in order to compensate
the overhead while maintaining the adaptability, we implement a table for caching methods
of a core and its bound roles. This caching follows our method dispatching rule as explained
in Section 4.3.5. Each method in the table has a reference to a Callable<?> interface whose
concrete implementation is dynamically generated and contains the new invokedynamic
instruction. Hence, a method is invoked utilizing this new opcode instruction instead of
using reflection. The class diagram for this component can be found in Figure 5.3.

Dynamic Method Invocation

+ callDispatch(Lookup, String, MethodType, Class<?>, String): CallSite
- mhToString: MethodHandle

IndyBootstrap

- method: String
- callable: Callable<?>
- invokingObject: Object

CallableMethod

JINDY
A high-level invokedynamic library

Figure 5.3: A class diagram of dynamic method invocation.

1Java Stream API accessed on July 15, 2017: https://docs.oracle.com/javase/8/docs/api/java/util/
stream/package-summary.html

https://docs.oracle.com/javase/8/docs/api/java/util/stream/package-summary.html
https://docs.oracle.com/javase/8/docs/api/java/util/stream/package-summary.html
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5.3.1 A Cached Method Table

All defined methods of a core object are sliced and stored in a cached method table with a
ConcurrentHashMap<Integer, CallableMethod> data structure. The Integer is a hashcode
of a method signature denoted as a key whose value is a CallableMethod data type reflecting
the execution model of the method. The CallableMethod class contains a Callable<?>
interface and invokingObject referring to either a core object or a role (Figure 5.4 2○). The
Callable<?> interface has a concrete CallableImp class dynamically generated at run time
(Figure 5.4 3○). The function of the CallableImp is to link a symbolic method name and its
concrete implementation by the invokedynamic opcode instruction that will be explained in
Section 5.3.2.

comp:Compartment

plays+a(): void
+b(): void

c:Core r:Role
+b(): void
+c(): void

a (1111) Callable<?>, c:Core

Method (Hashcode) CallableMethod (Callable<?>, invokingObject)

b (2222) Callable<?>, r:Role

c (3333) Callable<?>, r:Role

invoke(Object, Object…): T
Callable T

<<implements>>

invoke(Object, Object…): T
CallableImp

A Cached Method Table

Dynamically Generated Code 
Hooking the invokedynamic instruction

A Simple Role Binding

3

2

1

Figure 5.4: A process to build a cached method table for dynamic invocation.

When the core object is bound to a role type, the relation is created in the lookup table.
A role object is instantiated and its declared methods are sliced and stored in the cached
method table. If the role object contains methods with the exact same signature as those
of the core object, it overrides the existing one of the core. As a result, the invocation of
the core object’s method is delegated to that of the role object. If the signatures are not
matching, the core object can invoke the role methods by providing the concrete method
signature which is then translated to a hashcode that can be looked up in the method table
in order to find the appropriate receiver.

Figure 5.4 shows a simple binding between a core and a role as illustrated in 1○. There
are only three methods (a, b, and c) stored in the cached method table because method b
of the core object is overridden by method b of the role specified by the lifting mechanism
illustrated in Section 4.3.5. The associated Callable<?> interface contains the invokedynamic
instruction for invocation.

The cached method table is readjusted when there is a change in the role binding process.
The procedure explained above not only conforms to the lifting function but also applies to
the lowering and the collaboration functions as described in Section 4.3.5. Each function has
its own cached method table, and all of them are stored in each compartment instance.
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JINDY: a Java library to support invokedynamic 49

Each invokedynamic instruction is originally in an unlinked state.

A non-constant call site may be relinked by changing its method handle. 

The call site then becomes permanently linked to the invokedynamic instruction.
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MethodHandle mh = …;
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Fig. 1. Runtime execution of invokedynamic.

holding the MethodHandle that represents the selected method (g of the Functions
class in Figure 1).

An invokedynamic instruction is considered permanently linked when the boot-
strap method returns a CallSite (state 2 in Figure 1). From that time on, the following
invocations simply call the method referenced by the returned MethodHandle. Be-
sides, the JVM will apply the usual optimizations performed for common statically typed
method invocations.

It could be necessary to relink the linked method, due to some event occurred at run-
time (state 3 in Figure 1). After relinking, the MethodHandle will point to
Functions.f instead of to the original Functions.g method. For this purpose, the
new invoke package [22] offers three implementations of the CallSite abstract class:
the ConstantCallSite class for permanent method handles, and the Volatile-
CallSite and MutableCallSite classes for relinking a method handle with the
same type descriptor (MethodType) –VolatileCallSite supports multi-threading.

As mentioned, a resolved invokedynamic instruction is linked to a CallSite,
and each CallSite contains a MethodHandle. This MethodHandle is a refer-
ence to an underlying method, field or constructor. Therefore, an invokedynamic in-
struction performs the appropriate operation associated to the corresponding Method-
Handle.

Figure 5.5: Run-time execution of the invokedynamic, an excerpt from JINDY [CO14].

5.3.2 The invokedynamic opcode instruction

Since Java 7, the invokedynamic opcode instruction has been added to the JVM in order to
provide a new dynamic linking and to shift the type checking of the method invocation to
run time [CO14]. Once the link is established, the JVM performs a common optimization in
order to provide a better run-time performance compared to the reflection [CO14].

Figure 5.5 shows the run-time execution of invokedynamic operation. First (Step 0), the
method to be invoked in the Application class is passed as a string and its parameters
are optional. This method is in unlinked state that it supposes to call the Bootstrap class
returning a CallSite. The CallSite contains a MethodHandle of a target method to be
resolved at run time (i.e., either f or g method of the Functions class). During execution
(Step 1), an invokedynamic instruction is linked just before the first execution. After that
(Step 2), the link becomes permanent. The JVM then can optimize that link in order to
improve run-time performance. If necessary, the link can be reestablished to another method
for adaptation (Step 3). A further detailed illustration can be found in JINDY [CO14].

Despite the optimistic performance gain, the support of the invokedynamic for high-level
application is infeasible for a typical programmer due to the lack knowledge of bytecode
specification. The bytecode, i.e., Callable<?>, must be regenerated at run time in order
to hook the invokedynamic opcode instruction into the method attaching to the specific
CallSite. For the sake of simplicity, we use JINDY [CO14] library which offers a high-
level support of the invokedynamic instruction relying on the efficient dynamic bytecode
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generation library ASM [BLC02]. JINDY proved that the overhead of the invokedynamic is
minimal compared to the static method invocation.

Snippet 5.1 shows the implementation of a generic IndyBootstrap class which is associated
with each method of a core object or a role (Line 3 of Snippet 5.2). The implementation of
the Callable<?> interface of each method is dynamically generated by JINDY’s ProxyFac-
tory.generateInvokeDynamicCallable method as depicted in Line 6 of Snippet 5.2. Each
method is registered in the cached method table stored in each compartment instance as
illustrated in Snippet 5.3.

Snippet 5.1: An implementation of the invokedynamic bootstrap that returns Constant-
CallSite.
1 public class IndyBootstrap {
2 private static MethodHandle mhToString = null;
3
4 public static CallSite callDispatch(MethodHandles.Lookup lookup , String

name , MethodType methodType , Class <?> paramClass , String methodName)
throws Throwable{

5
6 mhToString = lookup.findVirtual(paramClass , methodName , methodType.

dropParameterTypes (0, 1));
7
8 return new ConstantCallSite(mhToString);
9 }

10 }

Snippet 5.2: Generating a Callable<?> of the invokedynamic for a particular method of
role. This snippet is a method implementation in the Registry class.
1 private <T> Callable <T> getCallable(Class <T> clazz , Method method) {
2 try {
3 Bootstrap bootstrap = new Bootstrap(Cache.Save , "net.lyrt.IndyBootstrap",

"callDispatch", clazz , method.getName ());
4 MethodSignature sig = new MethodSignature(method.getReturnType (), clazz ,

method.getParameterTypes ());
5
6 Callable <T> callable = ProxyFactory.generateInvokeDynamicCallable(

bootstrap , sig);
7
8 return callable;
9 } catch (Throwable t) {

10 t.printStackTrace ();
11 }
12
13 return null;
14 }

Snippet 5.3: Registering a Callable<?> of the invokedynamic instruction into the method
table of the lifting function. This snippet is a method implementation in the Registry class.
1 private void registerLiftingCallable(Compartment compartment , Object core ,

Object role , Class <?> roleType){
2
3 Method [] methods = roleType.getDeclaredMethods ();
4
5 for (Method method : methods) {
6 Callable <?> c = getCallable(roleType , method);
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7 MethodSig ms = getMethodSig(method);
8 String m = String.format("%d:%s", core.hashCode (), ms.toString ());
9

10 CallableMethod cm = new CallableMethod(m, role , c);
11
12 compartment.liftingCallable.put(m.hashCode (), cm);
13 }
14 }

5.4 Dynamic Class Reloading

Support for unanticipated adaptation does not require any change on the overall implemen-
tation as the dynamic instance binding mechanism was proposed for this purpose. The
remaining requirement is to load and reload the role type or class dynamically at run time.
Once the role class is loaded into the JVM, it is initialized and its methods can be cached in
the existing cached method table explained Section 5.3. As a result, the later invocation
from a core object will be dispatched to the newly loaded role instance.

By default, Java allows a class to be dynamically loaded at run time. However, once
loaded, the class template is cached in the JVM. Subsequent changes are prohibited, thus,
classes cannot be reloaded and the implementation cannot be changed at run time. In order
to overcome this limitation, we provide a dynamic class reloader (ClassReloader), which
extends the default class loader, provided by Java. In contrast to the default class loader
that reads from the cache, our class reloader reads the class’s bytecode every time when it is
loaded. Thus, the new implementation is reflected. This technique is adopted in all major
software frameworks, such as Spring2, that needs the dynamic class reloading capability.
The class diagram related to this section can be found in Figure 5.6.

Dynamic Class Reloading

+ parse(String): void
- proceedBinding(Element, int): void
- proceedRebinding(Element, int): void
- proceedUnbinding(Element, int): void
- proceedTransfer(Element, int): void

XMLParser

+ openXML(): void
+ closeXML(): void
+ append(String): void
+ getXMLBindingBaseOperation(int, int, boolean, boolean, String): String
+ getXMLUnbindingBaseOperation(int, int, boolean, String): String
+ getXMLTransferOperation(int, int, int, String): String

- m_buffer: StringBuffer
XMLConstructor

+ reload(): Class<?>
+ reload(String): Class<?>
+ loadClass(String): Class<?>
+ findClass(String): Class<?>
- loadClassData(String): byte[]

- classPath: String
- reloadedClass: String

ClassReloader

Figure 5.6: A class diagram of dynamic class reloading.

Snippet 5.4 shows the implementation of the dynamic ClassReloader. In Line 22 the
bytecode of the role class is read by the loadClassData method (Lines 37-51). In Line 23,
the loaded bytecode is redefined into a class using the defineClass method of the super
class’ ClassLoader.

2Spring framework accessed on July 15, 2017: https://spring.io

https://spring.io
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Snippet 5.4: An implementation of the dynamic class reloader.
1 public class ClassReloader extends ClassLoader {
2 String classPath = "target" + File.separator + "test -classes";
3 String reloadedClass;
4
5 public ClassReloader (){}
6
7 public ClassReloader(String classPath){ this.classPath = classPath; }
8
9 public Class <?> reload (){ return loadClass(reloadedClass); }

10
11 public Class <?> reload(String clazz){
12 reloadedClass = clazz;
13 return reload ();
14 }
15
16 @Override
17 public Class <?> loadClass(String s) { return findClass(s); }
18
19 @Override
20 public Class <?> findClass(String s) {
21 try {
22 byte[] bytes = loadClassData(s);
23 return defineClass(s, bytes , 0, bytes.length);
24 } catch (IOException ioe) {
25 try {
26 return super.loadClass(s);
27 } catch (ClassNotFoundException ignore) { }
28 ioe.printStackTrace(System.out);
29 return null;
30 }
31 }
32
33 public Class <?> loadClass(Class <?> clazz){
34 return loadClass(clazz.getName ());
35 }
36
37 private byte[] loadClassData(String className) throws IOException {
38 String userDir = System.getProperty("user.dir");
39 String fullDir = userDir + File.separator + classPath + File.

separator;
40 File f = new File(fullDir + className.replaceAll("\\.", File.

separator) + ".class");
41
42 if(!f.exists ()) throw new IOException (); //force to use super (

ClassLoader) to load class
43
44 int size = (int) f.length ();
45 byte buff[] = new byte[size];
46 FileInputStream fis = new FileInputStream(f);
47 DataInputStream dis = new DataInputStream(fis);
48 dis.readFully(buff);
49 dis.close();
50 return buff;
51 }
52 }

The ability to reload the class at run time may affect the semantics of the already running
instances whose class template has changed. Since LyRT operates on the instance level and
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the bound role is conceptually considered a part of the core object in which the role instance
is never directly accessed by the programmer, this problem has no effect on our concept and
implementation.

For example, Alice and Bob are the instances of a Person class denoting core objects. Both
of them play the same Student role type with different instances, student1 and student2. At
run time, the Student role type’s implementation is changed and changes should only apply
for Alice but not for Bob. In this scenario, the programmer must provide the new binding
to the new implementation of the Student role for Alice through an XML configuration
(see Section 4.3.8 of Chapter 4). As a result, a student3 instance with the new implementation
is initialized and bound to Alice while the existing student2 role, which is still bound to
Bob, remains the old one.

5.5 Block Constructs

According to our concept described in Chapter 4, there are three kinds of block constructs
supported in LyRT—InitBindingBlock, AdaptationBlock, and ConsistencyBlock. These
blocks rely on the AutoCloseable interface, which is known as try-with-resources available
since Java 7. It is a specialized exception handling technique, which automatically closes
the opened resources, such as files, databases, sockets, when the try-catch block reaches its
end. The class diagram associated to this section can be found in Figure 5.7.

Block Constructs

+ close(): void
- compartment: Compartment

InitBindingBlock

+ close(): void
- lock: ReentrantLock
AdaptationBlock

+ close(): void
- compartment: Compartment

ConsistencyBlock

+ close(): void

<<Interface>>
AutoCloseable

Figure 5.7: A class diagram of the block constructs.

5.5.1 The InitBindingBlock Construct

The InitBindingBlock is used only one time to bind certain roles to cores immediately after
a compartment object is initialized. LyRT performs role binding at run time and roles must
be virtually resided in a compartment object. The implementation of the InitBindingBlock
is shown in Snippet 5.5. Since roles can only be bound in an active compartment, when the
block is initialized, the passing compartment object reference is activated and deactivated
when the block has expired as described in the overridden close method (Lines 10-12).

Snippet 5.5: InitBindingBlock implementation.
1 public class InitBindingBlock implements AutoCloseable{
2 Compartment compartment;
3
4 public InitBindingBlock(Compartment compartment){
5 this.compartment = compartment;
6 this.compartment.activate ();
7 }
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8
9 @Override

10 public void close () {
11 compartment.deactivate(false); //No need to do check point
12 }
13 }

In order to use the InitBindingBlock, a compartment object is required because it is
embedded in the initBinding method of a compartment. The implementation of this
method returns a new InitBindingBlock(this) where this is the compartment object.
Similar to the usage of the try-catch block, developers need to provide the construct as
shown in Lines 7-9 in Snippet 5.6. Note that there is no catch block required.

Snippet 5.6: InitBindingBlock usage.
1 //Main code. Initializing a compartment and a core.
2 Registry reg = Registry.getRegistry ();
3 Compartment compartment = reg.newCompartment(Compartment.class);
4 Person p = reg.newCore(Person.class);
5
6 //Init binding block
7 try(InitBindingBlock ib = compartment.initBinding ()){
8 p.bind(Student.class);
9 }

5.5.2 The AdaptationBlock Construct

The AdaptationBlock provides a mechanism to change roles from cores within an active
compartment. Unlike the InitBindingBlock, which is called immediately after the compart-
ment object is initialized, the AdaptationBlock can be called several times responding to
the required adaptations happening over time. The implementation of this block also relies
on the try-with-resources. The important part of this implementation is to perform the
checkpoint process of current application configuration before transferring to the new one
(see Section 5.6).

When the block has expired, the close method is called to check whether the adaptation
contains defective roles which cause the runtime to crash. In that case, the adaptation is can-
celed meaning that the cached method table is reverted because binding and unbinding roles
change the data in the cached method table. The implementation of the AdaptationBlock
is shown in Snippet 5.7.

Snippet 5.7: AdaptationBlock implementation.
1 public class AdaptationBlock implements AutoCloseable{
2 public AdaptationBlock (){
3 Registry reg = Registry.getRegistry ();
4 Compartment compartment = reg.getActiveCompartment ();
5 if (compartment == null) throw new RuntimeException("No active

compartment was found");
6
7 ControlUnit.checkpoint(compartment);
8 }
9

10 @Override
11 public void close (){
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12 if(ControlUnit.hasDefectiveRoles ()){
13 Registry.cancelAdaptation(this);
14 }
15 }
16 }

The usage of the AdaptationBlock requires a call inside an active compartment. Snippet 5.8
depicts two adaptations which require a core person to bind to different roles by using two
AdaptationBlocks.

Snippet 5.8: AdaptationBlock usage.
1 compartment.activate ();
2
3 // Adaptation requires a person to bind to new role
4 try(AdatpationBlock ab = new AdaptationBlock ()){
5 person.bind(Professor.class);
6 }
7
8 // Another adaptation of the person
9 try(AdaptationBlock ab = new AdapationBlock ()){

10 person.bind(CEO.class);
11 }
12
13 compartment.deactivate ();

5.5.3 The ConsistencyBlock Construct

The ConsistencyBlock is used in order to prevent the behavior of core objects from being
changed while executing. It is essential to detect an active compartment and to register
a consistency object associated with the active compartment and a starting timestamp
(Snippet 5.9). This timestamp is required to prevent the sliced methods of the newly bound
roles from being registered in the cached method table. In other words, the method table of
each core object is maintained and thus the behavioral consistency of the cores is ensured.

In each thread, there is only one ConsistencyBlock running anchored with the compart-
ment object. Therefore, multiple ConsistencyBlocks execute in parallel in a multi-threaded
environment. Those ConsistencyBlocks are stored in a ConcurrentHashMap<Integer, Sim-
pleEntry<Integer, LocalDateTime>> data structure where the first Integer refers to the
associated compartment hashcode and the SimpleEntry<Integer, LocalDateTime> is a
key-value pair of the hashcode of the consistency object and the starting timestamp of the
ConsistencyBlock.

Any new role binding or unbinding occurring during the presence of the ConsistencyBlock
will be marked with the timestamp attributed to BoundTime and UnboundTime respectively
in the Relation data type. Therefore, when the ConsistencyBlock expires as defined in the
close method of Snippet 5.9, the cached method table is adjusted with respect to the bound
or unbound roles. Furthermore, the registered consistency object is also removed by calling
removeConsistencyBlock of the Registry class.
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Snippet 5.9: ConsistencyBlock implementation.
1 public class ConsistencyBlock implements AutoCloseable {
2 private Registry reg;
3 private Compartment compartment;
4
5 public ConsistencyBlock (){
6 reg = Registry.getRegistry ();
7 compartment = reg.getActiveCompartment ();
8 if(compartment ==null) throw new RuntimeException("No active

compartment was found");
9

10 LocalDateTime time = LocalDateTime.now();
11 reg.registerConsistencyBlock(compartment , this.hashCode (), time);
12 }
13
14 @Override
15 public void close () {
16 reg.removeConsistencyBlock(compartment , this.hashCode ());
17 }
18 }

Snippet 5.10 demonstrates how the ConsistencyBlock is used for a Channel object of the
file transfer application, explained in Chapter 2, in which the behavior of the Channel object
must not be changed while sending file chunks. Any adaptation happening asynchronously
and changing the behavior of the channel object is not permitted, but the adaptation will be
performed as soon as the ConsistencyBlock expires for the current executing thread.

Snippet 5.10: ConsistencyBlock usage.
1 compartment.activate ();
2
3 // Consistent behavioral invocation
4 try(ConsistencyBlock cb = new ConsistencyBlock ()){
5 while(EOF(file)){
6 channel.invoke("send", getChunk(file));
7 }
8 }
9

10 compartment.deactivate ();

5.6 Rollback Recovery

Checkpoint and rollback are developed inside a ControlUnit class containing two additional
functions. First, the reportBugs() method logs the bugs found in a configuration for
developers to fix. Second, the hasDefectiveRoles()method checks and prevents the defective
roles from being reactivated. We attach the checkpoint execution to the implementation
of the AdaptationBlock mentioned in Section 5.5.2, while the rollback process is handled
in the bug sensor implementation. A class diagram related to this process can be found in
Figure 5.8.
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Rollback Recovery

+ checkpoint(Compartment): void
+ checkpoint(): void
+ rollback(Compartment): void
+ rollback(): void
+ reportBugs(): void
+ hasDefectiveRoles(): boolean

ControlUnit

+ uncaughtException(Thread, Throwable): void

BugSensor

+ uncaughtException(Thread, Throwable): void

<<Interface>>
UncaughtExceptionHandler

Figure 5.8: A class diagram of rollback and recovery component.

5.6.1 Checkpoint and Rollback

Serialization can be used to implement a checkpoint. In Java, serialization requires to
implement the Serializable interface. However, not all objects can be serialized, such as
file pointer, socket, database connection. Due to backward compatibility, performance is a
serious issue in the Java serialization library. Therefore, we use a third-party serialization
library called Kryo3. Kryo is a fast and reliable object graph serialization framework for Java
that provides many benefits compared to the default Java serialization. First, the serializing
object does not require to implement the Serializable interface. Second, it can perform a
both deep and shallow copying. Third, it is incorporated in many well-known open source
projects such as Apache Spark4 and Storm5.

In this prototype, we use a copy method in order to build checkpoints by copying the relations
and role instances in the lookup table and pushing them to the stack. The deep copy ensures
the role instances and their dependencies to be copied by using direct assignment from
object to object, opposed to the serialization that transforms from object to bytecode and
from bytecode to object. As a result, the copying technique consumes more memory for
large objects, but it is faster than the serialization. Kryo supports both techniques. We
use a HashMap<Long, Stack<ArrayDeque<Relation>>> data structure in order to capture
the saved checkpoints of a particular thread. The key (Long) is a thread identity while the
Stack<ArrayDeque<Relation>> holds a stack of multiple checkpoints of the lookup table
represented as an ArrayDeque<Relation> as explained earlier in Section 5.2.

In order to roll back, we first remove the current configuration (i.e., binding information and
role instances) from the lookup table (ArrayDeque<Relation>). Then, we pop the recent
checkpoint from the stack and reinstate it in the lookup table. Finally, the cached method
table is reevaluated.

5.6.2 Utilizing an Exception Handling for the Bug Sensor

By taking advantage of the application-level exception handling, we can hook in an exception
handler for all threads, a group of threads, or a particular thread in order to intercept

3Kryo accessed on July 16, 2017: https://github.com/EsotericSoftware/kryo

4Apache Spark accessed on July 16, 2017: http://spark.apache.org

5Storm accessed on July 16, 2017: http://www.storm-project.net

https://github.com/EsotericSoftware/kryo
http://spark.apache.org
http://www.storm-project.net
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the raising error for handling a recovery process. The bug sensor implements the Uncaugh-
tExceptionHandler interface by overriding the default method, i.e., uncaughtException(),
where the logic of the recovery process takes place. We can then set the bug sensor for any
uncaught exception. Snippet 5.11 depicts the bug sensor implementation which is installed
at the beginning of the main code as shown in Line 4 of Snippet 5.12, or attached to each
thread (Line 7 of Snippet 5.12).

Snippet 5.11: Bug sensor implementation.
1 public class BugSensor implements Thread.UncaughtExceptionHandler {
2 private Socket client;
3
4 public BugSensor(Socket client){
5 this.client = client;
6 }
7
8 @Override
9 public void uncaughtException(Thread t, Throwable e) {

10 Registry reg = Registry.getRegistry ();
11 Compartment comp = reg.getActiveCompartments ().get(t.getId ());
12
13 // Report bugs
14 ControlUnit.reportBugs(comp , e);
15
16 // Rollback
17 ControlUnit.rollback(comp);
18
19 // Restart the client thread
20 ServiceHandler handler = new ServiceHandler(client);
21 handler.start();
22 }
23 }

Snippet 5.12: Bug sensor installation.
1 public static void main(String ... args){
2 // Globally attach the bug sensor
3 BugSensor sensor = new BugSensor(client);
4 Thread.setDefaultUncaughtExceptionHandler(sensor);
5
6 // Locally attach the bug sensor to specific thread
7 Thread.currentThread ().setUncaughtExceptionHandler(sensor);
8
9 //The rest of program

10 }

The current implementation of the bug sensor catches only the uncaught exceptions which
are subclasses of the RuntimeException, such as DivideByZeroException, ArrayOutOfBound-
Exception, etc., raised by the JVM. For the caught exceptions such as IOException, there
are two options to handle and detect them with the bug sensor. First, application developers
need to manually rethrow all the caught exceptions so that the JVM can perform a stack trace
of the caught exceptions until it reaches the exception block in the bug sensor. The second
option requires no application developers’ involvement, but still, it needs to rethrow caught
exceptions. Exception rethrowing can be injected automatically during class loading by using
a bytecode rewriting framework such as ASM [BLC02]. For the current implementation, we
chose the first option.
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The effectiveness of the recovery process lies under the power of the bug sensor. Our current
implementation relies on the exception handling mechanism to detect the uncaught and
caught exception handling at the application level. Nonetheless, the JVM-related issues
such as OutOfMemoryError that shuts down the JVM cannot be handled. In this regard,
implementing a bug sensor at the JVM level could be more efficient, but it may face
compatibility issues.

If an exception is raised in a particular thread, that thread is killed. Although respawning
the thread is purposeful in the bug sensor implementation, some service disruptions are
unavoidable during the thread restarting process. We leave this problem to the application
developers for customizing the bug sensor to handle an application-specific recovery process.

5.7 Compartment, Role, and Core Object

In order to implement role-specific functionality in LyRT, programmers have to rely on
the given Compartment class, IRole and IPlayer interfaces. IPlayer and IRole are Java
interfaces containing default methods. Normally, Java does not allow to have a concrete
implementation in the interface, but this is possible in Java 86. A method with concrete
implementation is called default method which must be defined with a default keyword.
The default method shares similar semantics with static traits [BMN14], and allows us to
add role operations easily.

To be a core object, a user-defined class must implement the IPlayer interface making it
capable of performing role operations such as binding, unbinding, and method invocation. A
method to be invoked is given as a String and matches a method signature stored in the
cached method table. These player’s functionalities are implemented to call the associating
Registry’s methods comprising the respective logics. A class diagram showing a relationship
between compartment, role and object can be found in Figure 5.9.

Compartment, Role and Core Object

+ initBinding(): InitBindingBlock
+ activate(): void
+ deactivate(): void
+ deactivate(boolean): void
+ invoke(String, Class<T>, Object…): T
+ invoke(String, Object…): T
+ getRelations(): ArrayDeque<Relation>

- m_liftingCallable: ConcurrentHashMap<Integer, CallableMethod>
- m_loweringCallable: ConcurrentHashMap<Integer, CallableMethod>
- m_compartmentCallable: ConcurrentHashMap<Integer, CallableMethod>
- m_relations: ArrayDeque<Relation>
- m_reg: Registry

Compartment

+ bind(Class<T>, Object…): T
+ rebind(Class<T>, Object…): T
+ invokePlayer(String, Class<T>, Object…): T
+ invokeCore(String, Class<T>, Object…): T
+ invokeCompartment(String, Class<T>, Object…): T
+ invokeRel(Class<?>, String, Object…): void
+ getCore(): Object
+ getPlayer(): Object
+ getComparment(): Object

IRole

+ invoke(String, Class<T>, Object…): T
+ invoke(String, Object…): T
+ bind(Class<T>, Object…): T
+ rebind(Class<T>, Object…): T
+ unbind(Class<?>): void
+ transfer(Class<?>, Player): void

- coreCallable: ConcurrentHashMap<Integer, CallableMethod>
IPlayer

Figure 5.9: A class diagram of Compartment, Role and Core Object.

The IRole interface extends the IPlayer with additional binding and rebinding operations

6An official discussion is available at: https://docs.oracle.com/javase/tutorial/java/IandI/
defaultmethods.html, accessed on July 17, 2017

https://docs.oracle.com/javase/tutorial/java/IandI/defaultmethods.html
https://docs.oracle.com/javase/tutorial/java/IandI/defaultmethods.html
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in order to support the deep-play-relation. The IRole interface contains also default meth-
ods dealing with lifting, lowering (i.e., invokeCore and invokePlayer), and collaboration
(i.e., invokeCompartment and invokeRel) functions as explained in Section 4.3.5. Besides,
we can add additional methods in order to get a reference of the core, player or even
compartment objects with getCore, getPlayer, and getCompartment method respectively.
Similar to IPlayer, the role’s default methods then call the respective Registry’s functions.
In order to be a role, a user-defined class needs to implement this IRole interface.

Contrarily, Compartment is a class implementing the IPlayer interface in order to play
roles. A user-defined compartment has to be a subclass of this Compartment class. As
explained earlier in Section 5.3, each compartment instance contains different cached method
tables, whose data structure is a ConcurrentHashMap<Integer, CallableMethod>, for lifting,
lowering and collaboration functions as well as for managing its own lookup table with
ArrayDeque<Relation>. Having separate tables greatly minimizes the global locking in the
entire application when executing in a multi-threaded environment. Thus, the performance
is improved. However, the ConcurrentHashMap is still used because there are cases in which
different roles in the same compartment instance are executed concurrently.

5.8 Decision to Use Java

The reasons why Java was used as a host language for the LyRT prototype are twofold.
On the one hand, we want to tackle the challenge of implementing adaptive behavior in a
strongly and statically typed language. Hence, if we can demonstrate that the concept of
LyRT can be developed in Java, it may be feasible for other languages as well. Evidently, any
list data structures can be used to represent a lookup table. Similarly, a cached method table
can be implemented in any dictionary data structure. Instead of invokedynamic opcode,
reflection is always a last resort. For consistency, checkpoint, and rollback, they require no
additional toolkits. Implementing a bug sensor is also viable since these dynamic languages
fully support exception handling. On the other hand, Java is still one among the most
popular languages in industry and academia. Furthermore, most of the existing ROPs are
based on Java although some of them are no longer accessible at the moment.

Through code snippets, we have shown that the method invocation is passed by a string to
avoid statically type checking at compile time. Yet, this technique limits code readability.
Code readability can be exceedingly improved if LyRT is implemented in those dynamic
languages (e.g., Ruby, Python, Javascript, etc.) because they delay the type checking until
run time. Their open implementation further enhances the vocabularies of the framework. For
example, our try-block can be cleanly replaced by a with statement in Python. Additionally,
dynamic method dispatch can be implemented by hooking an interception logic in a method_-
missing(method, *args, &block) in Ruby. Python offers a similar function by defining inside
a __getattr__(self, name) method. In Java, we can develop an interpreter or a compiler for
language extension in order to enhance code readability. However, the resulting development
environment would lack the tool support such as IDE and debugging tool. Since developing a
new language is out of scope, LyRT is prototyped as a library for better integration into the
mainstream language. LyRT is publicly available at https://github.com/nguonly/lyrt.

https://github.com/nguonly/lyrt
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5.9 Chapter Summary

In this chapter, the most important parts of the LyRT implementation were described.
Java is the chosen host language for exercising our concept in order to demonstrate the
generality of LyRT which does not depend too heavily on the host language’s features.
The ArrayDeque<Relation> is used to implement the lookup table, while manipulating
role relations relies on the java.util.stream API. The relations in the lookup table serve
as information for building a cached method table for dynamic dispatch containing the
new invokedynamic opcode instruction for efficient method invocation. We hope that
this technique can minimize the runtime overhead of both searching a method and its
invocation. The InitBindingBlock, AdaptationBlock, and ConsistencyBlock constructs
are implemented with a try-with-resource construct available since Java 7.

The checkpoint is implemented per thread with a direct copy of the lookup table ArrayD-
eque<Relation> and is pushed to the stack Stack<ArrayDeque<Relation>>. In order to roll
back, a copied ArrayDeque<Relation> is popped from the stack and is restored to the runtime.
Despite limitations, application exception handling is adopted for initial implementation of
the bug sensor. In the next chapter, we will evaluate LyRT based on this prototype as a
proof of concept.



Chapter 6
Evaluation

This chapter demonstrates the practical feasibility of LyRT in terms of the requirements of
run-time variability, set in Chapter 2, and performance. The evaluation is divided into two
main parts. First, three case studies will be presented to systematically assess the criteria
of the requirements. With these case studies, this dissertation further analyses features
supported in LyRT against the classifying role feature list compiled by Kühn et al. [KLG+14].
Since CROM [KLG+14] influences the design of LyRT, we also discuss the relation between
the two. Second, several micro-benchmarks are set up to critically evaluate the overhead of
the runtime in terms of execution time.

6.1 Case Studies

With respect to our research questions asked in Chapter 1, we derived five requirements and
added another one by observing the relationship between the high availability property and
software deployment cost in Chapter 2. These requirements will be our primary validation
points used to systematically assess the case studies. Let us briefly revisit those requirements:

R1: Modularity. Adaptive entities, also known as variants, should be declared separately
from the base system and from each other in order to have a clean application logic.

R2: Dynamic Activation. The coupled variants can be functional by means of activation.
Deactivation of the activated variants should be supported.

R3: Late Variants Adoption. As applications keep changing, foreseeing all possible vari-
ants beforehand is impossible. Unknown variants should be adopted at run time and
dynamically activated in order to provide an additional unforeseen functionality.

R4: Object-Level Tranquility. Adaptation can be harmful if it happens at the wrong
time. Having a proper mechanism to handle a consistent behavior of an object as a
precaution is necessary.

R5: Failure Handling. While activation of a single variant executes flawlessly, variants
that interact with each other may result in a bug and cause run-time failures.

R6: Continuous Deployment. This requirement is derived from the support of R3 and
R5. The defective variants, which are captured (R5), should be incorporated to the
runtime once again through the late adoption capability (R3) when they are fixed.

115
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6.1.1 Validation Setup

Although the validation of the expressiveness of a system is not trivial [Fel90], we have
developed a validation approach as systematically as possible. Table 6.1 shows how the case
studies address the requirements. Additionally, these case studies are developed and targeted
in different application domains to demonstrate LyRT’s applicability. They are summarized
as follows:

Tax Management System is a console application which intends to demonstrate the
modularity and adaptability at the instance level.

Snake Game is a classic game with a Graphical User Interface (GUI) support that mainly
targets unanticipated adaptation.

File Transfer Application is a client-server application executing in a multi-threaded
environment that primarily focuses on consistent behavior and error handling. This
case study focuses also on the derived feature of continuous software deployment.

Table 6.1: Case studies and their intended validating points. Both � and � symbols are
denoted as requirement satisfaction, but the intended validation points are denoted by this
� symbol.

Requirement Tax Management System Snake Game File Transfer Application

R1 � � �

R2 � � �

R3 � �

R4 �

R5 �

R6 �

The case studies share a common structure for discussion:

• A scenario describing a typical use of an adaptive software system.

• A description of expected functionality derived from the scenario.

• A description of the implementation highlighting the required functionality.

• A validation on how the case study fulfills the requirements shown in Table 6.1.

Limitations on the validation. The validation should be performed without bias. In
order to do so, we could have implemented the same case studies in a comparable approach
and drawn a comparative study. Unfortunately, we cannot follow this step because of
two main reasons. On the one hand, there are no comparable approaches, which support
all requirements as discussed in Chapter 3. Most of the existing approaches tackle only
requirement R1 and R2. The state-of-the-art analysis was summarized in Table 3.9 in
Chapter 3. On the other hand, doing a comparative study can be easily subjective and
biased in the experiment due to the knowledge of the selected approaches and the case
studies [Gon08, p. 141].
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6.1.2 Tax Management System

This case study has been described in the concept chapter (Section 4.3.2) as an example to
discuss the dynamic instance binding mechanism. Again, we use this example, with a slight
change to demonstrate the modular design and the dynamic activation to achieve adaptation
at instance level. This case study is motivated by the following scenario:

A software firm is developing an integrated salary and tax payment system for
companies, startups, and the state tax department. The main goal is to keep
track of the tax payment of individuals which is based on their revenue. The tax
for a company employee is calculated into the company revenue; so the company
will pay the tax as a whole which accounts for 20% of its net income, while a
self-employed person pays only 10%.

The company generates revenue by the performance of its staff. Apart from
day-to-day business, accountants are responsible for the monthly salary payment
to all employees including themselves. The received salary is a net income and
stored in the person’s saving. Self-employees or freelancers manage their income
and pay tax by themselves. A person who was previously an employee can be a
freelancer. The system should be able to calculate the correct amount of tax for
this person.

Besides showing dynamic activation, this case study also serves as a tutorial for implementing
role-based applications using LyRT prototype.

6.1.2.1 Expected Functionality

Before discussing the code implementation, practical functionalities are highlighted. Figure 6.1
depicts the run-time model with the following functionalities:

Adaptability. There are several instances of a Person class, fulfilling different roles includ-
ing Developer, Accountant, Freelancer, TaxPayer, and TaxCollector. These roles represent
the respective behaviors to be performed by the engaging person. For example, while devel-
opers work to generate revenue, accountants issue a salary payment. For any reason, an ely
instance, formerly a Developer, resigns from a company abc and starts as a Freelancer. As
a result, ely’s behavior adapts accordingly.

Monthly Salary Generation. At the end of each month, accountants invoke a paySalary
method in order to distribute the salary to respective persons employed in each position.
The salary is a net income by withdrawing from a company revenue and is aggregated to the
person’s saving. The individual employee’s income tax (20%) is withheld by the company,
which then pays the overall tax for all employees.

Tax Collection. Both a company and a freelancer have to pay taxes at different rates.
A TaxCollector collects taxes by invoking a collectTax method. This method looks for
appropriate TaxPayers obligated to pay taxes. The collected taxes are added to the revenue
of a TaxDepartment.
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-name:String
-saving:double
+setSaving(int):void
+getSaving():double

ely:Person

-revenue:double
-taxRate=20%:double
+deductRevenue(double):void
+taxToBePaid():double

abc:Company

plays

d1:Developer

-salary=1500:int
+getPaid(): int
+work(): void

d2:Developer

-salary=1500:double
+getPaid():void
+work(): void

a1:Accountant

-salary=1600:double
+getPaid():void
+paySalary():void

-name:String
-saving:double
+setSaving(int):void
+getSaving():double

bob:Person

-revenue:double
+getRevenue():double
+setRevenue(double):void

tax:TaxDepartment

e1:TaxCollector

+collectTax():void

t1:TaxPayer

+pay():double

f1:Freelancer

-taxRate=10%:double
+taxToBePaid():double

-name:String
-saving:double
+setSaving(int):void
+getSaving():double

alice:Person

-name:String
-saving:double
+setSaving(int):void
+getSaving():double

ana:Person

plays

plays

plays

plays

collects-tax

pays-salary

compartment plays a role

plays

An ely instance stops 
working from a company

and being a freelancer

t2:TaxPayer

+pay():double

Legend

o:Object r1:Role
ct1:Compartment

r1:Role
play-relation link-relation

Figure 6.1: A class diagram for the Tax Management System, based on CROM notation.
This diagram was illustrated once in Figure 4.5 to explain the concept of the dynamic
instance binding mechanism.

6.1.2.2 Implementation

This section starts with discussing the definition of the relevant compartment, role and core
object implementations. Afterwards, we explain how these objects are crafted in order to
achieve dynamic behavioral activation.

Core Object. A Person class, illustrated in Snippet 6.1, is the main core object which
will bind to different roles in order to perform certain tasks. Although it is not necessary, a
core object is normally defined by implementing the IPlayer interface to hook into certain
functionalities without relying on the Registry (see Section 5.2). The definition of the
Person class contains two fundamental properties: name and saving with respective get/set
methods. The saving property is used to store how much money that the person has earned.
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Snippet 6.1: Implementation of the Person core object.
1 public class Person implements IPlayer{
2 private String name;
3 private double saving;
4
5 public Person(String name){ this.name = name; }
6
7 public String getName () { return name; }
8 public void setName(String name) { this.name = name; }
9

10 public double getSaving () { return saving; }
11 public void setSaving(double saving) { this.saving += saving; }
12 }

Developer Role. Similar to a core object, a role is defined by implementing the IRole
interface. Snippet 6.2 shows the implementation of a Developer role which has a default
salary of 1500 Euro. A getPaid method will be called by a person who plays an Accountant
role allowing the person playing this Developer role to get monthly payment. This procedure
will deduct the amount from the company revenue and will add the salary to the saved
property of the person that binds to this role. Note that a company is implemented as a
compartment (Snippet 6.7). The role calls a paySalary method of the company compartment
using the invokeCompartment method. In order to save the paid salary to the person’s saving
attribute, a reference to its core object is required. A getCore method returns a core object’s
reference binding to this role (Line 8).

A workmethod simulates the revenue generation by calling a addRevenuemethod of a company
compartment using the invokeCompartment method (Line 15). The revenue generated in
each call is equivalent to the paid salary.

Snippet 6.2: Implementation of the Developer role.
1 public class Developer implements IRole{
2 private double salary =1500;
3
4 public Developer(Double salary) { this.salary = salary; }
5
6 public void getPaid (){
7 invokeCompartment("paySalary", salary);
8 Person core = (Person)getCore ();
9 core.setSaving(salary);

10 }
11
12 public void work(){
13 IPlayer person = (IPlayer)getCore ();
14 String name = person.invoke("getName", String.class);
15 invokeCompartment("addRevenue", salary); // increase company revenue
16 System.out.println(name + " generates a revenue of "+salary+" Euro");
17 }
18 }

Accountant Role. Being an employee, an Accountant role shares a similar getPaid
method with the Developer role as implemented in Snippet 6.3. It has a paySalary method
for the distribution of the salary to all persons based on the fulfilled position, i.e., Developer
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and Accountant. With our collaboration functions (see Section 4.3.5), the invokeRel1 method
can be used to invoke the getPaid method of both the Developer and the Accountant role
by means of a relationship between them as depicted in Figure 6.1. The invokeRel method
triggers all the core objects who play the passing role type (i.e., Developer) in order to call
the getPaid method (Lines 11-12).

Snippet 6.3: Implementation of the Accountant role.
1 public class Accountant implements IRole{
2 private double salary = 1600;
3
4 public void getPaid (){
5 invokeCompartment("paySalary", salary);
6 Person core = (Person)getCore ();
7 core.setSaving(salary);
8 }
9

10 public void paySalary () {
11 invokeRel(Developer.class , "getPaid");
12 invokeRel(Accountant.class , "getPaid");
13 }
14 }

Freelancer Role. A Freelancer is a role that has to pay 10% of incoming tax indepen-
dently. Snippet 6.4 shows its implementation. It collects revenue by invoking an earn method.
Its taxToBePaid method which will be called by the TaxPayer role returns the amount of
tax to be paid based on the current revenue and the tax rate.

Snippet 6.4: Implementation of the Freelancer role.
1 public class Freelancer implements IRole{
2 private double salary;
3 private double taxRate = 0.1; //10%
4
5 public void earn(double amount){ salary += amount; }
6
7 public double getMoney (){ return salary; }
8
9 public double taxToBePaid (){

10 double tax = salary * taxRate;
11 salary -= tax;
12 return tax;
13 }
14 }

TaxPayer Role. The TaxPayer role has the ability to calculate the correct amount of
tax to be paid based on its players, either the Company compartment or the Freelancer
role. According to its implementation in Snippet 6.5, it has a pay method which first
queries the amount of the paid tax by the invocation of the taxToBePaid method (defined
in both Company and Freelancer). The return value is accumulated to the revenue of the
compartment (Line 6), which is the TaxDepartment.

1invokeRel refers to invoking a role’s method participating in a relationship
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Snippet 6.5: Implementation of the TaxPayer role.
1 public class TaxPayer implements IRole {
2 public void pay(){
3 IPlayer payer = (IPlayer)getCore ();
4 double tax = payer.invoke("taxToBePaid", double.class);
5 String payerName = payer.invoke("getName", String.class);
6 invokeCompartment("addRevenue", tax);
7 System.out.println(payerName + " pays a tax of " + tax + " Euro");
8 }
9 }

TaxCollector Role. Snippet 6.6 presents the implementation of a TaxCollector role
intended to be played by the Person core object. Its collectTax method invokes the pay
method of all core objects binding to the TaxPayer role. Those core objects are the abc
company compartment and ely who played the Freelancer role as shown in Figure 6.1.

Snippet 6.6: Implementation of the TaxCollector role.
1 public class TaxCollector implements IRole{
2 public void collectTax (){
3 invokeRel(TaxPayer.class , "pay");
4 }
5 }

Company Compartment. A compartment is defined by subclassing the Compartment
class, given by LyRT. A Company class is coded in Snippet 6.7. The addRevenue method
is called by the work method of the Developer role (Line 13 of Snippet 6.2) to generate a
company revenue. Similarly, the paySalary method is called by the getPaid method of the
Developer role to subtract the revenue for salary payment. The taxToBePaid method is
used to calculate the tax amount to be paid with respect to the applied tax rate and current
revenue.

Snippet 6.7: Implementation of the Company compartment.
1 public class Company extends Compartment{
2 private double revenue = 0;
3 private String name;
4 private double taxRate = 0.2; //20%
5
6 public Company(String name){ this.name = name; }
7
8 public String getName () { return name; }
9

10 public void addRevenue(double amount){ revenue += amount; }
11 public double getRevenue (){ return revenue; }
12
13 public double taxToBePaid (){
14 double tax = revenue * taxRate; //tax to be paid
15 this.revenue -= tax; // deduct from revenue
16 return tax;
17 }
18
19 public void paySalary(double amount){ revenue -= amount; }
20 }
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TaxDepartment Compartment. A TaxDepartment is a compartment to scope another
application block where the functionality of a tax payment exists. Its implementation,
depicted in Snippet 6.8, defines addRevenue and getRevenue methods derived from the
collected tax.

Snippet 6.8: Implementation of the TaxDepartment compartment.
1 public class TaxDepartment extends Compartment{
2 private double revenue;
3 private String name;
4
5 public TaxDepartment(String name){ this.name = name; }
6
7 public double getRevenue () { return revenue; }
8 public void addRevenue(double amount) { this.revenue += amount; }
9 }

Main Program. The main program is shown in Snippet 6.9 which resembles the run-time
model depicted in Figure 6.1. The output resulting from the execution of this main program is
self-explanatory and shown in Snippet 6.10. The following paragraphs explain the execution
of the constructed main program.

Initialization of Compartment, Role and Core Object. The intended compartments
and core objects can be instantiated by the Registry functions as shown on Lines 4-7 of
Snippet 6.9. The initialization of roles is done implicitly in the binding process that takes
place in the InitBindingBlock (Lines 10-14 and Lines 42-46 of Snippet 6.9).

Dynamic Activation. Conceptually, once bound, a role adapts or provides additional
behaviors to its core object. To enable this feature, abc, an instance of the Company
compartment, must be activated (Line 16) because it contains the role binding configuration
as done in the InitBindingBlock. Then, bob and ely, instances of the Person, start working
in order to generate a revenue for the company whose revenue initially was zero. This can be
done by invoking a work method, defined in the Developer role. The company revenue gains
7000 Euro (2*1500 + 2*2000), resulting from four executions of the work method (Lines
18-21) and bob and ely having different salary scales (see implementation of Developer role
in Snippet 6.2).

Alice then issues a monthly payment to all company’s employees, who are bob, ely and
herself, by executing the paySalary method of the Accountant role (Line 29). Despite the
same core person, neither bob nor ely can invoke the paySalary method because they play
the Developer role. The produced output is shown in Snippet 6.10. After invoking the
paySalary method, the balance of the company revenue is 1900 Euro because the salaries of
1500 Euro, 2000 Euro, and 1600 Euro have been given to bob, ely, and alice respectively.

Let us investigate the tax payment process. The abc company is deactivated in order to
disable the current behavior at least for ely while the tax compartment, an instance of the
TaxDepartment, becomes active. In this configuration ely drops the role of the Developer
and starts as a Freelancer (Line 44). The Freelancer role, currently bound to ely, also
plays a TaxPayer role enabling ely to execute the tax payment by calling the pay method.
Similarly, the abc company also plays the TaxPayer role for the same reason (Line 45), but
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ely and abc company pay a tax with different rates according to the specification (10% for
a Freelancer and 20% for a Company). Once ana, a Person playing a TaxCollector role,
invokes a collectTax method, the taxes are collected from both the abc company and ely
because they are the core objects of the TaxPayer role.

Since ely is now a freelancer and has earned 2000 Euro (Line 50), she has to pay 200 Euro
for 10% tax. The abc company, however, pays 380 Euro (1900*0.2) for its 20% tax of the
net income. The collected tax, in total 580 Euro, is debited to the tax department revenue.

Snippet 6.9: The main program of the Tax Management System.
1 public static void main(String ... args){
2 Registry reg = Registry.getRegistry ();
3 // Initialization of compartment , role and core object
4 Company abc = reg.newCompartment(Company.class , "ABC");
5 Person alice = reg.newCore(Person.class , "Alice");
6 Person bob = reg.newCore(Person.class , "Bob");
7 Person ely = reg.newCore(Person.class , "Ely");
8
9 // Construct initial binding

10 try(InitBindingBlock ib = abc.initBinding ()){
11 alice.bind(Accountant.class);
12 bob.bind(Developer.class , 1500.00);
13 ely.bind(Developer.class , 2000.00);
14 }
15
16 abc.activate (); //a compartment is activated
17
18 bob.invoke("work"); //bob works to generate company ’s revenue
19 bob.invoke("work"); //bob works to generate company ’s revenue
20 ely.invoke("work"); //ely works to generate company ’s revenue
21 ely.invoke("work"); //ely works to generate company ’s revenue
22
23 System.out.println("====== Before Salary Payment ======");
24 System.out.println("Company revue is " + abc.getRevenue () + " Euro");
25 System.out.println("Bob saving is " + bob.getSaving () + " Euro");
26 System.out.println("Ely saving is " + ely.getSaving () + " Euro");
27 System.out.println("Alice saving is " + alice.getSaving () + " Euro");
28
29 alice.invoke("paySalary"); //alice generates salary
30
31 System.out.println("====== After Salary Payment ======");
32 System.out.println("Company revenue is " + abc.getRevenue () + " Euro");
33 System.out.println("Bob saving is " + bob.getSaving () + " Euro");
34 System.out.println("Ely saving is " + ely.getSaving () + " Euro");
35 System.out.println("Alice saving is " + alice.getSaving () + " Euro");
36
37 abc.deactivate (); // deactivate the abc compartment
38
39 TaxDepartment tax = reg.newCompartment(TaxDepartment.class ,"Tax Dept.");
40 Person ana = reg.newCore(Person.class , "Ana");
41
42 try(InitBindingBlock ib = tax.initBinding ()){ //role binding
43 ana.bind(TaxCollector.class);
44 ely.bind(Freelancer.class).bind(TaxPayer.class);
45 abc.bind(TaxPayer.class);
46 }
47
48 tax.activate (); // activate the tax compartment
49
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50 ely.invoke("earn", 2000.0); //ely earns
51
52 ana.invoke("collectTax"); //Ana collects tax from ely and abc company
53
54 System.out.println("====== After Tax Payment ======");
55 System.out.println("Collected tax is " + tax.getRevenue () + " Euro");
56 System.out.println("Company revenue is " + abc.getRevenue () + " Euro");
57 System.out.println("Ely saving is " + ely.getSaving () + " Euro");
58 }

Snippet 6.10: Output produced by the main program.
1 Bob generates a revenue of 1500.0 Euro
2 Bob generates a revenue of 1500.0 Euro
3 Ely generates a revenue of 2000.0 Euro
4 Ely generates a revenue of 2000.0 Euro
5 ====== Before Salary Payment ======
6 Company revue is 7000.0 Euro
7 Bob saving is 0.0 Euro
8 Ely saving is 0.0 Euro
9 Alice saving is 0.0 Euro

10 ====== After Salary Payment ======
11 Company revenue is 1900.0 Euro
12 Bob saving is 1500.0 Euro
13 Ely saving is 2000.0 Euro
14 Alice saving is 1600.0 Euro
15 Ely pays a tax of 200.0 Euro
16 ABC pays a tax of 380.0 Euro
17 ====== After Tax Payment ======
18 Collected tax is 580.0 Euro
19 Company revenue is 1520.0 Euro
20 Ely saving is 3800.0 Euro

6.1.2.3 Validation

Concerning the requirements, the points to be validated are the following:

R1: Modularity. The main purpose of the case study is to demonstrate the dynamic
adaptation at the instance level. There are several Person instances having totally
different behaviors according to the played roles, i.e., Developer, Accountant, TaxPayer,
etc. Those roles are clearly separated from the core Person as shown in Snippet 6.2,
Snippet 6.3, and Snippet 6.5 respectively. Although a compartment contains roles
from the model perspective, its concrete implementation is defined as a separate class.
Snippet 6.7 shows how the Company compartment is implemented separately from its
participating roles. In short, the definition of the core objects, roles and compartments
is loosely coupled at design time while they merge together at run time with a binding
operation. Therefore, this case study shows that building role-based applications on
top of LyRT achieves modularity.

R2: Dynamic Activation. Those separated roles in the case study can be dynamically
bound to the respective cores in order to perform certain tasks at run time as shown in
Snippet 6.9. While bob instance invokes the work method as a Developer (Lines 18-21
of Snippet 6.9), alice instance executes the monthly payment via a paySalary method
as an Accountant (Line 29 of Snippet 6.9). These new behaviors, encapsulated in roles,
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are activated only when their associated compartment becomes active (i.e., Company
compartment is activated in Line 16 of Snippet 6.9) because roles are configured to
reside within a compartment during the binding process (i.e., InitBindingBlock as
shown in Lines 10-14 of Snippet 6.9). When their compartment is no longer active, the
behavior of the core objects reverts to the original. Another compartment with different
binding configurations of the same cores can be activated to bring different behaviors
to those cores. For instance, ely instance becomes a Freelancer in a TaxDepartment
compartment soon after her previous compartment Company is deactivated and her new
compartment TaxDepartment is activated (Lines 37-48 of Snippet 6.9).

6.1.3 Arcade Snake Game

In order to demonstrate the effectiveness of unanticipated adaptation, we pick up an arcade
snake game in which the snake object and the game interface can dynamically be adapted
to unforeseen functionality during run time. The case study is motivated by the following
scenario:

A developer is tasked to implement a classic snake game with a GUI laid out
on a fixed square board in which the snake can move around. The goal is that
the snake has to eat in order to extend its body length and level up. Once
the food is eaten, another item is placed randomly in the square board. The
challenge is that the snake is not allowed to neither hit its body nor the walls
surrounding; otherwise the game is over. The game should be designed to address
new requirements at run time without shutting it down.

In this case study we focus on unanticipated adaptation. Additionally, we explore the
applicability of adapting the GUI applications.

6.1.3.1 Expected Functionality

Before discussing the underlying implementation of the unanticipated adaptation support,
we first describe the technical functionality of the snake game and the expected scenarios for
which unanticipated adaptation is required.

The class diagram of the snake game is illustrated in Figure 6.2. The snake game works
on the Board class which consists of a two-dimensional array of cells. Each Cell contains
rows and columns to identify its position on the Board. The Cell has different types such
as empty cell, snake body, obstacle and food. The Snake class refers to the parts of the
snake body which contains the reference to cells in the Board. The snake moves to the next
cell based on a direction, maneuvered by players, specified in a Router class. The Router
defines the position and the movement parameters of the snake and checks whether the snake
collides with obstacles, i.e., its own body, walls, and other barriers. The food is a special cell
(Cell.CELL_TYPE_FOOD) eaten by the snake when its head moves to the food cell position.

The SnakeGame class contains the main game settings as well as the main class to be executed.
Additionally, there are classes dealing with user interfaces. BoardPanel is the main core
interface where the game is painted and animated. StatusPanel, located at the bottom
of the GUI (Figure 6.3), shows only the information about the command keys to perform
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certain tasks whereas the StatisticsPanel, positioned at the top of the GUI, displays the
movement speed of the snake and the number of items eaten.

Obstacle <<Role>>

+defineObstacle():void
+clearAllObstacles():void

+ generateFood(): void
+ setObstacle(int, int): void
+ setCellType(int, int, int): void
+ getFood(): Cell

- cells: Cell[][]
- foodCell: Cell

Board
+ getRow(): int
+ getCol(): int
+ getType(): int
+ setType(int): void

- row: int
- col: int
- type: int

Cell

+ grow(): void
+ move(Cell): void
+ getFoodEaten(): int
+ reset(): void

- snakePart: 
LinkedList<Cell>
- head: Cell
- foodEaten: int
- board: Board

Snake

+ update(): void
+ checkCrash(Cell): boolean
+ getNextCell(Cell): Cell
+ reset(): void

- gameOver: boolean
- snake: Snake
- direction: int
- board: Board

Router

+ start(): void
+ reset(): void
+ pause(): void
+ isPause(): boolean
+ isGameOver(): boolean
+ increaseSpeed(): void
+ decreaseSpeed(): void
+ main(): void

- game: SnakeGame
- snake: Snake
- direction: int
- board: Board

SnakeGame

+ drawGrid(): void
+ getNextCell(Cell): Cell
+ positionFood(): void

- game: SnakeGame
- foodPanel: Panel
- board: Board

BoardPanel

+ paintComponent(): void
- game: SnakeGame

StatisticsPanel

+ paintComponent(): void
StatusPanel

PassingWall <<Role>>

+getNextCell(Cell): Cell

MovingFood <<Role>>

- foodTimer: Timer

+ actionPerformed():void
+ startMovingFood():void
+ getRandomCell(): void

*1

*

1

plays

plays

1

1

plays

1

1

1

1

1 1

1 1
1 1

1 1

1 1

Figure 6.2: Class diagram of the Snake Game.

Roles, such as PassingWall, Obstacle, and MovingFood, are not given during compile time.
They will be discussed in each unanticipated adaptation scenario. For common understanding,
we attach these roles to their respective core objects as shown in Figure 6.2.

In order to satisfy players, a game is typically evolved over time to add new functionalities.
While some functionalities are added statically, some are incorporated dynamically and
unexpectedly. In the Snake Game, we present three scenarios of adding new functionalities
dynamically in terms of unanticipated adaptation. Each of them has a purpose to demonstrate
various settings of applying new behavior in LyRT. The three scenarios are:

1. The snake is allowed to pass through walls. For example, when it hits the wall on the
right side, it will appear on the opposite side and vice versa.

2. An obstacle is added in the square board to impose an additional challenge in a higher
level of the game. The added obstacle can also be removed.

3. The food, which was initially in a static position, is moving randomly at a slower speed
than that of the snake to be sure that the snake can catch the moving food. While
playing, the moving food can be reverted to the fixed position in response to the game
settings.

Figure 6.3a presents the default game settings without applying any unanticipated adaptation.
While Figure 6.3b shows the behavior of the snake when adapting to allow passing through
a wall, Figure 6.3c exhibits the addition of obstacles on-the-fly.
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(a) Original functionality. (b) Passing through walls. (c) Adding/removing obstacles.
Figure 6.3: User interfaces of the snake game.

6.1.3.2 Implementation

This section highlights the implementation of each unanticipated adaptation scenario. Only
the implementation of relevant classes and new roles responsible for the scenario are discussed.

Let the game run, and we supposedly start applying unanticipated adaptation in three
different scenarios. In each scenario, a core object is associated with exactly one role. The
compartment has no significant impact on these scenarios. Since the existence of roles
requires a compartment, we use only one global active compartment for role binding.

Scenario 1: Passing Through Walls. The aim of this scenario is to show the ordinary
dynamic method dispatch which performs the lifting operation, i.e., the method is delegated
to the role bound to a core. To allow the snake to pass through a wall, we need to update
the logic when the snake reaches the edge of the board. The Router’s getNextCell method
returns the next position based on the current direction. The getNextCell method needs to
be modified but rather than changing the code directly in the Router class, a PassingWall
role is defined. Snippet 6.11 shows an implementation of the PassingWall role which provides
a modified logic of the getNextCell method. The implementation of this method looks
similar to that of the Router. The main differences are the passing wall logic added in Lines
12, 15, 18, and 21. Note that Line 3 queries the core object (i.e., Router object) which plays
the PassingWall role. Figure 6.4 elaborates this function as a sequential diagram.

Snippet 6.11: Implementation of PassingWall role.
1 public class PassingWall implements IRole{
2 public Cell getNextCell(Cell currentPosition) {
3 Router router = (Router)this.getCore ();
4 Board board = router.getBoard ();
5
6 int row = currentPosition.getRow ();
7 int col = currentPosition.getCol ();
8 int dir = router.getDirection ();
9

10 if (dir == Router.DIRECTION_RIGHT) {
11 col++;
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12 if(col==board.getColCount () -1) col=1;
13 } else if (dir == Router.DIRECTION_LEFT) {
14 col --;
15 if(col == 0) col = board.getColCount () - 2;
16 } else if (dir == Router.DIRECTION_UP) {
17 row --;
18 if(row == 0) row = board.getRowCount () - 2;
19 } else if (dir == Router.DIRECTION_DOWN) {
20 row++;
21 if(row == board.getRowCount () -1) row = 1;
22 }
23
24 return router.getBoard ().getCells ()[row][col];
25 }
26 }

r:Router pw:PassingWall

dispatch to pw.getNextCell()

call r.getNextCell()

getNextCell(): 
new implementation

Figure 6.4: Sequential diagram of the passing-wall functionality.

In order to perform unanticipated adaptation for this configuration, an XML configuration
file is needed to specify the identity of the current active compartment and the Router object.
This information can be obtained by the run-time API. Snippet 6.12 shows this configuration
file. Whenever the binding operation is completed, the call of the getNextCell method in
Router will dynamically be dispatched to the one defined in the PassingWall role. The snake
then can pass through the wall without crashing.

Snippet 6.12: An adaptation XML file for passing through walls.
1 <?xml version ="1.0"?>
2 <adaptation >
3 <compartment type="net.lyrt.Compartment" id="123">
4 <rebind coreId="234" roleType="net.lyrt.demo.snake.PassingWall" />
5 </compartment >
6 </adaptation >

There are several ways to trigger the unanticipated adaptation. For example, it can be done
either by having a GUI to submit the XML configuration file or through the network. In
this implementation, we develop a FileWatcher daemon to monitor the change of the XML
configuration file. The daemon fires the unanticipated adaptation process when the file
change is detected.

Scenario 2: Enabling Moving Food. This scenario shows how it is possible to integrate
a new software requirement and to revert back to the original settings by means of adding
and removing roles in an unanticipated manner. In the previous scenario, the PassingWall
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role provided a new method implementation to modify the existing functionality of the core
object Router by using the dynamic method dispatch to allow the snake to pass through
walls. In this scenario, the food is moving randomly within the near-by empty cells when the
MovingFood role is bound to its core BoardPanel. There is no method dispatch presented in
this scenario, but the implementation of the new requirement embedded in the role will call
and manipulate the available methods in its core and will replace the old behavior.

b:Board

call generateFood()

bp:BoardPanel mf:MovingFood

Timer to repaint 
the food on GUIreturn food cells

Timer to move 
food randomly.

Call startMovingFood()

modify food location

position food on GUI by
calling bp.positionFood()

Figure 6.5: Sequential diagram of enabling moving food scenario.

Besides implementing an IRole interface, a MovingFood role, coded in Snippet 6.13, also
implements a java.awt.event.ActionListener interface to support the interval execution
with the timer javax.swing.Timer. When this role is bound, it is initialized and then the
timer will be started with a delay of 500 milliseconds, as shown in the constructor. Eventually,
the actionPerformed method is invoked repeatedly which causes the food to be moved. Line
16 gets a reference to the core BoardPanel which is used to manipulate the random cell
generation of the food. Lines 19-29 ensure that the food is randomly generated only in empty
cells. After that, the positionFood method in Line 30 is called to update the food location
in the GUI. This process is executed every 500 milliseconds. To ease comprehension, the
process is visualized in a sequential diagram as shown in Figure 6.5.

In order to bind the MovingFood role to the already running core BoardPanel, an XML
configuration file, specifying the binding operation, is required. It is shown in Snippet 6.14.
If this MovingFood feature is no longer needed, we can perform the unbinding operation via
the same XML configuration as presented in Snippet 6.15.

Snippet 6.13: Implementation of MovingFood role.
1 public class MovingFood implements IRole , ActionListener{
2 final static int DELAY = 500; //food moving speed
3 Timer foodTimer;
4
5 public MovingFood (){
6 foodTimer = new Timer(DELAY , this);
7 foodTimer.start (); // Timer ticks for every 500ms
8 }
9

10 @Override
11 public void actionPerformed(ActionEvent e) {
12 startMovingFood (); // repetitive calls every 500ms
13 }
14
15 public void startMovingFood (){
16 BoardPanel boardPanel = (BoardPanel) getCore ();
17 if(boardPanel == null) return; //when unbound occurs
18 Board board = boardPanel.getBoard ();



Chapter 6. Evaluation 130

19 while(true){
20 Cell foodCell = board.getFoodCell (); //get next cell
21 Cell nextCell = getRandomCell(board , foodCell);
22 if(nextCell.getType () == Cell.CELL_TYPE_EMPTY){
23 board.setCellType(foodCell.getRow (), foodCell.getCol (), Cell.

CELL_TYPE_EMPTY); //Reset old food cell
24
25 //Set new food cell
26 board.setFoodCell(nextCell.getRow (), nextCell.getCol ());
27 break;
28 }
29 }
30 boardPanel.positionFood (); // Position the food on board panel
31 }
32
33 private Cell getRandomCell(Board board , Cell currentPosition) {
34 int direction = (int)(Math.random ()*4); //next direction
35 int row = currentPosition.getRow ();
36 int col = currentPosition.getCol ();
37
38 if (direction == Router.DIRECTION_RIGHT) col ++;
39 else if (direction == Router.DIRECTION_LEFT) col --;
40 else if (direction == Router.DIRECTION_UP) row --;
41 else if (direction == Router.DIRECTION_DOWN) row ++;
42 Cell [][] cells = board.getCells ();
43 return cells[row][col];
44 }
45 }

Snippet 6.14: An adaptation XML file for binding MovingFood role.
1 <?xml version ="1.0"?>
2 <adaptation >
3 <compartment type="net.lyrt.Compartment" id="123">
4 <bind coreId="234" roleType="net.lyrt.demo.snake.MovingFood" />
5 </compartment >
6 </adaptation >

Snippet 6.15: An adaptation XML file for unbinding MovingFood role.
1 <?xml version ="1.0"?>
2 <adaptation >
3 <compartment type="net.lyrt.Compartment" id="123">
4 <unbind coreId="234" roleType="net.lyrt.demo.snake.MovingFood" />
5 </compartment >
6 </adaptation >

Scenario 3: Adding/Removing Obstacles. The purpose of this scenario is to add a
new feature (adding/removing obstacle) in the game by explicit method calls, configured in
the XML configuration file. Additionally, we demonstrate the ability of the ClassReloader
allowing several new implementations of the same role type to be reloaded during run time.
An obstacle is just a collection of cells whose type is set to Cell.CELL_TYPE_OBSTACLE in
the Board instance. Thus, an Obstacle role, lately introduced to be bound to the Board
instance, can be used to manipulate cells of the Board.

Snippet 6.16 shows the implementation of the Obstacle role with a defineObstacle method
which contains a setting of 10 horizontal blocks of an obstacle (Lines 5-7). A visual GUI is



Chapter 6. Evaluation 131

b:Board o:Obstacle

Timer to repaint 
the board on GUI

invoke o.defineObstacle()

invoke o.clearAllObstacles() clearAllObstacles()

defineObstacle()

Figure 6.6: Sequential diagram of adding and removing obstacles

depicted in Figure 6.3c. The defineObstacle method is explicitly invoked after being bound
in which it can be configured in the invoke element, specified in the XML configuration file
(Line 5 of Snippet 6.17). Figure 6.6 adds an elaboration support in the form of a sequential
diagram.

Snippet 6.16: Implementation of adding obstacles in the Obstacle role.
1 public class Obstacle implements IRole {
2 public void defineObstacle (){
3 Board board = (Board)this.getCore (); //get a refer to a core object
4
5 for(int y=0; y<10; y++){
6 board.setObstacle (13, y+10);
7 }
8 }
9 }

Snippet 6.17: An adaptation XML file for adding obstacles in the Obstacle role.
1 <?xml version ="1.0"?>
2 <adaptation >
3 <compartment type="net.lyrt.Compartment" id="123">
4 <bind coreId="420521101" roleType="net.lyrt.demo.snake.Obstacle" >
5 <invoke method="defineObstacle" returnType="void" />
6 </bind>
7 </compartment >
8 </adaptation >

Supposedly, during the game play, there is a need to clear all the obstacles in the GUI. To
do so, a clearAllObstacles method is added to the Obstacle role which has already been
loaded to the target JVM in the previously unanticipated adaptation. Snippet 6.18 shows a
modified implementation of the Obstacle role. This role must be recompiled, and the binding
of the core object to this role is reconfigured with an explicit clearAllObstacles method
invocation as illustrated in Snippet 6.19. The ClassReloader reads the new implementation
of the Obstacle role and the role is rebound to the core Board. As a result, all the existing
obstacles disappear from the GUI.
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Snippet 6.18: Implementation of removing obstacles in the Obstacle role.
1 public class Obstacle implements IRole {
2 public void defineObstacle (){
3 ...
4 }
5
6 public void clearAllObstacles (){
7 Board board = (Board)getCore (); //get a refer to a core object
8 Cell food = board.getFoodCell ();
9 for(int row=1;row <board.getRowCount () -1;row ++){

10 for(int col=1;col <board.getRowCount () -1;col ++){
11 board.setCellType(row , col , Cell.CELL_TYPE_EMPTY);
12 }
13 }
14 board.setFoodCell(food.getRow (), food.getCol ()); //set food back
15 }
16 }

Snippet 6.19: An adaptation XML file for eliminating obstacles in the Obstacle role.
1 <?xml version ="1.0"?>
2 <adaptation >
3 <compartment type="net.lyrt.Compartment" id="123">
4 <rebind coreId="420521101" roleType="net.lyrt.demo.snake.Obstacle" >
5 <invoke method="clearAllObstacles" returnType="void" />
6 </bind>
7 </compartment >
8 </adaptation >

6.1.3.3 Validation

With respect to the requirements, the points to be validated are as follows:

R1: Modularity. The variants, such as PassingWall, MovingFood, and Obstacle, used to
adapt the unforeseen functionality, are modeled as roles defined separately from their
core objects. Those roles are not given upfront but introduced dynamically at run time
as shown in Snippet 6.11, Snippet 6.13, and Snippet 6.16. Therefore, this requirement
is satisfied.

R2: Dynamic Activation. Assuming that roles are already loaded into the runtime, on
how these roles are dynamically loaded will be discussed in the validation of the next
requirement. Since the snake game is running, the role binding operation must be
prescribed in an XML configuration file, e.g., Snippet 6.12. The dynamic activation
then happens as an event that is fired when there is a change in the XML file. Once
activated, the core objects swift to new behaviors embedded in roles.

R3: Late Variants Adoption. The newly introduced roles, Obstacle, MovingFood, and
PassingWall, are dynamically introduced and attached to the existing core objects
Board, BoardPanel, and Router respectively. The ability of the ClassReloader allows
these lately introduced roles to be loaded and reloaded to the running JVM, so that
they can be bound to their core objects by the parsing process of the XML configuration
file. In order to fulfill unanticipated adaptation, a reference to a core object is necessary,
and this information can be obtained from the run-time API. The FileWatcher daemon
monitors the change of the XML file and fires the parsing process. Thus, adaptation



Chapter 6. Evaluation 133

is performed in an unanticipated manner. The three unanticipated adaptations show
that LyRT fulfills this requirement.

6.1.4 File Transfer Application

This case study shows that all requirements are needed but emphasizes the consistent behavior,
rollback recovery, and continuous deployment features. The case study is motivated by the
following scenario:

A developer is tasked to implement an adaptive file transfer application which
supports the concurrent access of multiple clients. The server’s function of
transmitting data has to be adapted several times. Originally, the server uses
a raw format to transmit data while the adaptation requires a compression, or
an encryption, or a combination of both to perform a similar task. Assuming
that the server uses a shared channel object to handle data encoding/formatting
before transmission. Hence, performing adaptation for a new client also affects
the existing clients, which is valid according to specification. However, if the
existing clients engage in a file transfer, the adaptation should not affect them
immediately. The adaptation for these clients is then performed in the next file
download.

High availability of the server runtime is another major requirement. The runtime
should be able to incorporate better compression or encryption algorithms on-
the-fly. Additionally, the runtime should be able to recover from run-time failures
which were caused by adaptation in order to improve the application’s overall
availability.

Aside from the consistent adaptation and the recovery feature, this case study also demon-
strates the adaptation that can happen in multiple threads. Objects living in a particular
thread may behave differently in other threads, although those objects are derived from the
same type. The consistency of the system stays intact as these objects do not share anything
among them. However, if a state of an object is modified by multiple threads at the same
time, it poses a common racing issue. We do not cover this problem as it opens another
interesting research area on the domain of Software Transactional Memory (STM) [MS04]
for role-based systems.

6.1.4.1 Expected Functionality

Before explaining the underlying implementation, the expected application functionality is
described. First, this case study consists of both the server and the client side. Hence, a
simple protocol is needed.

A Simple File Transfer Protocol is based on the Transmission Control Protocol (TCP)
established between server and client although we focus mainly on the server side. The
protocol is described as follows:

A server is listening on a specific port accepting two commands, GET N and QUIT.
After a TCP client socket is established, a thread for recent client connection is
started allowing the server to accept other clients concurrently. The GET N is



Chapter 6. Evaluation 134

sent from a client to request a file. Instead of downloading a real file, N denotes a
number of chunks for a particular file to be downloaded. After receiving the GET
N command, the server sends file chunks continuously for N times as illustrated
in Figure 6.7. For the sake of simplicity, a string of DATA is represented as a file
chunk. The QUIT command is used to disconnect from the server.

In order to integrate a smooth recovery, the server keeps track of the number of
requested chunks (N) and the chunks which have been sent completely. If there
is a failure happening during the sending process, the sending of the remaining
chunks can be resumed.

:ServerService
:ServiceHandler

spawn a new thread

c1:Client

GET N

c2:Client

send chunk 1

send chunk N

:ServiceHandler

GET N spawn a new thread

send chunk 1

send chunk N

Figure 6.7: A sequential diagram of the file transfer protocol handling two clients.

This case study focuses on the dynamic behavior of the shared Channel object which can be
used to format data in a raw (original behavior), a compression (LZ), an encryption (AES) or
a combination of the LZ and the AES. According to the role model, the Channel object is a
core whereas LZ and AES are roles. A dynamic activation is needed to be operational.

Dynamic Activation. The server is designed to support multiple clients concurrently by
a separate client handling service (ServiceHandler). In each client service, there is a single
active compartment to handle a scope of dynamic behavioral activation at the instance and
the thread level. For clients, they therefore may receive different formats to encode file
chunks although the Channel object is shared among all clients. This is a purpose of having
the shared Channel object to demonstrate dynamic activation.

To visually demonstrate the dynamic activation, the server is developed with a GUI that
manages all the connected clients. The administrator can select a single or multiple clients to
adapt possible combinations as shown in Lines 56-64 of Snippet 6.20. For example, Figure 6.8
shows the server interface connecting to three clients 1○ but only two of them are selected for
adaptation which can be done via a button click 2○. A client is identified by its IP address
and local port number, i.e., 127.0.0.1:56257. These clients request a file with 10 chunks by
issuing a command GET 10. During the transmission of the chunks, the administrator selects
two clients, whose port numbers are 56257 and 56259, to be adapted first by LZ and then AES.
As a result, these two clients receive different formats of chunks while the client with 56258
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port number continues to receive chunks with a raw format as illustrated in Figure 6.9.

1

2

Figure 6.8: A server interface to demonstrate a dynamic activation.

Figure 6.9: An interface of clients to demonstrate a dynamic activation.

Consistent Behavior. Note that the adapted clients face inconsistent behavior of receiving
chunks. Evidently, the clients with the connected port number 56257 and 56259 are receiving
file chunks with different formats (i.e., partly raw, compressed, or encrypted) as shown in
Figure 6.9, so the server should be able to handle this issue although it was forced to adapt.

Recovery. With respect to the deep-play-relation, the Channel object can be bound to
the AES role, and the AES role then binds the LZ role to perform a stacking behavior with the
lowering function as explained in Section 4.3.5. This relation can also be that the LZ role
binds to the AES role.

As already explained in Chapter 4 (Section 4.5), the play-relation of the Channel object
works properly with the isolated binding to either LZ or AES role. However, the interaction
of the three entities might cause a run-time crash. This is the case when the Channel object
binds to the LZ role and the LZ role binds to the AES role in the form of role-playing-role.
A DivideByZero error comes from the factor variable (Line 4 of Snippet 6.24) returning a
zero value from the lowering function invoke("factor") which refers to the factor method
of the LZ role (Snippet 6.23) due to that fact the LZ role is a player of the AES role. Not
all interactions cause this error at least when AES role, a role of the Channel object, is a
player of the LZ role because the factor method invocation in the AES refers to the one in
the Channel object, which values 10.
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We expect the runtime should be able to recover from this execution failure resulting from
adaptation.

Continuous Deployment. It is an additional feature to be expected that allows the
defective roles, i.e., AES, to be fixed and be integrated once again into the system. We
call this process a continuous deployment as the runtime continues to operate with a new
functionality regardless of failures.

6.1.4.2 Implementation

There are several classes to be implemented including the GUI. Below, only essential classes
are presented while the full implementation is available in our GitHub repository.

• ServerService: It is a class responsible for creating a server socket and managing the
ServiceHandler thread class to establish a particular connecting client.

• ServiceHandler: It is a thread class handling a client socket and the implementation
of the file transfer protocol (Snippet 6.20).

• Communicator: It is a class dealing with actual data communication which contains a
send and a receive method (Snippet 6.21).

• AppState: It contains a collection of static variables to be shared among other classes.

• BugSensor: It is an implementation of a bug sensor managing a rollback recovery
process (Snippet 6.25).

Implementation of the File Transfer Protocol. The File Transfer Protocol discussed
earlier is fully implemented in a ServerHandler class which extends a Thread class. Once
a client is connected, the server returns a Socket and spawns the ServiceHandler class
parameterizing the returning Socket. While the server waits for other clients, the spawned
ServiceHandler object handles the communication protocol with the connected client. The
implementation of ServiceHandler is shown in Snippet 6.20.

Apart from the protocol implementation, the code of the ServiceHandler class also contains
essential code relevant to LyRT. For example, the installation of the bug sensor is in Line 17;
the consistency mechanism is in Lines 33-36; and the adaptation process is in Lines 56-64.
This code will be discussed later in this section.

Snippet 6.20: Implementation of the ServiceHandler.
1 public class ServiceHandler extends Thread{
2 Socket socket;
3 Compartment compartment;
4 Communicator communicator;
5 Channel channel;
6 RecoveryProperty recProp = new RecoveryProperty ();
7
8 public ServiceHandler(Socket socket , RecoveryProperty pop){
9 this.socket = socket;

10 channel = AppState.channel;
11 communicator = new Communicator(this.socket , channel);
12 this.recProp = pop;



Chapter 6. Evaluation 137

13 this.compartment = recProp.compartment;
14 }
15
16 public void run(){
17 Thread.currentThread ().setUncaughtExceptionHandler(new BugSensor(this));

// install the bug sensor
18
19 compartment.activate ();
20 while(true){
21 if(recProp.isRecovered) { // Resuming sending chunks on error
22 resumeSendingFileChunks ();
23 recProp.isRecovered=false;
24 }
25 String msg = communicator.receive ();
26 if(msg.equals(Command.QUIT)){ // Disconnect
27 compartment.deactivate(false);
28 AppState.listModel.removeElement(this);
29 break;
30 }else if(msg.contains(Command.GET)){ // Request a file
31 String [] com = msg.split(" ");
32 recProp.numberOfChunks = Integer.parseInt(com [1]);
33 if(AppState.isTranquil) // Tranquility
34 try(ConsistencyBlock cb = new ConsistencyBlock ()) {
35 sendFileChunks(recProp.numberOfChunks);
36 }
37 else sendFileChunks(recProp.numberOfChunks); // Without tranquility
38 }
39 }
40 }
41
42 private void sendFileChunks(int startIdx , int n){
43 for(int i=startIdx; i<n; i++){
44 delay (500);
45 communicator.send("DATA " + (i+1)); // simulate a file chunk
46 recProp.offset = i;
47 }
48 }
49
50 private void sendFileChunks(int n){ sendFileChunks (0, n); }
51
52 private void resumeSendingFileChunks (){
53 sendFileChunks(recProp.offset+1, recProp.numberOfChunks);
54 }
55
56 public void processAdaptation(String op){
57 compartment.activate ();
58 try(AdaptationBlock ab = new AdaptationBlock ()){
59 if(op.equals("AES")) channel.bind(AES.class);
60 if(op.equals("LZ")) channel.bind(LZ.class);
61 if(op.equals("LZ-AES")) channel.bind(LZ.class).bind(AES.class);
62 if(op.equals("AES -LZ")) channel.bind(AES.class).bind(LZ.class);
63 }
64 }
65 }

Communicator. The Communicator implements real network communication as shown in
Snippet 6.21. The parameterized Socket holds a reference to a particular connected client,
and the Channel object is responsible for the encoding and decoding of sent and received
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messages respectively (Lines 19 and 26 of Snippet 6.21). That is where the Channel object
is of importance to demonstrate the behavioral change in the data transmission.

Snippet 6.21: Implementation of the Communicator.
1 public class Communicator {
2 private Socket socket;
3 private BufferedReader input;
4 private PrintWriter output;
5 private Channel channel;
6
7 public Communicator(Socket socket , Channel channel){
8 this.socket = socket;
9 this.channel = channel;

10 try {
11 input = new BufferedReader(new InputStreamReader(this.socket.

getInputStream ()));
12 output = new PrintWriter(this.socket.getOutputStream (), true);
13 } catch (IOException ioe) {
14 ioe.printStackTrace ();
15 }
16 }
17
18 public void send(String data) {
19 String msg = channel.invoke("format", String.class , data);
20 output.println(msg);
21 }
22
23 public String receive () {
24 try {
25 String msg = input.readLine ();
26 return channel.invoke("unformat", String.class , msg);
27 } catch (IOException e) {
28 e.printStackTrace ();
29 }
30 return "";
31 }
32 }

Compartment. In this case study, compartments are used to activate dynamic behavior,
but no other properties or methods are needed. Hence, it is sufficient to use the default
net.lyrt.Compartment class given by LyRT.

Channel Core Object. The Channel object is the core containing three main methods,
format, unformat, and factor, to be adapted. By default, the implementation of both format
and unformat methods simply returns the passing string message. The additional factor
method is used to demonstrate the error case which will be discussed later. Snippet 6.22
shows the implementation of the Channel object.
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Snippet 6.22: Implementation of the Channel core object.
1 public class Channel implements IPlayer{
2 public String format(String data) { return data; }
3
4 public String unformat(String data) { return data; }
5
6 public int factor (){ return 10; }
7 }

LZ and AES Role. Since the Channel object is required to adapt in order to perform
compression, encryption, or a combination of both, these functions are implemented in roles
namely LZ and AES for compression and encryption respectively. While the LZ compression
role implementation is shown in Snippet 6.23, the AES encryption role is coded in Snippet 6.24.
These two roles share the same format method signature with the Channel core object but
they are implemented differently to provide compression and encryption functionality. For
the sake of simplicity, we discuss only the format method for data preparation to be sent
from the server to clients. Furthermore, we return the data with enclosing <LZ> and <AES>
to simulate the LZ compression and AES encryption algorithm respectively.

Snippet 6.23: Implementation of the LZ compression role.
1 public class LZ implements IRole{
2 public String format(String data){
3 String msg = invokePlayer("format", String.class , data);
4 return "<LZ >" + msg + "<LZ >"; // perform compression algorithm
5 }
6
7 public int factor (){ return 0; }
8 }

In order to demonstrate the rollback recovery feature, we inject the possible case of the
DivideByZero error in the AES encryption role on Line 5 of Snippet 6.24. Unlike the Channel
core and the LZ role, the AES role is not equipped with a factor method but will use the
factor method from its player by invoking invokePlayer("factor", int.class) on Line 4
of Snippet 6.24.

Snippet 6.24: Implementation of the AES encryption role.
1 public class AES implements IRole{
2 public String format(String data){
3 String msg = invokePlayer("format", String.class , data);
4 int factor = invokePlayer("factor", int.class);
5 int errorInjection = 1/ factor; // simulating an error in certain

composition
6 return "<AES >" + msg + "<AES >"; // perform encryption algorithm
7 }
8 }

Dynamic Activation. We do not focus on demonstrating the dynamic activation since
the two case studies earlier cover that thoroughly. In fact, it is straightforward to use
the role binding operation as shown in the processAdaptation method in Lines 56-64 of
Snippet 6.20. The main difference is that rather than relying on the InitBindingBlock, the
AdaptationBlock is used to hook into the checkpoint process for rollback.
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Tranquility. In order to enable consistent behavior, the ConsistencyBlock is needed to
surround the sendFileChunks method in the ServiceHandler class (Snippet 6.20), which
contains the adaptive behavior of the Channel object. The behavior of the Channel object will
not be changed even though the server runtime is forcefully adapted during the file chunks’
transmission. The time the next file is downloaded, the file chunks will be transmitted in
the format which was defined in the most recent adaptation.

Inconsistent Behavior

(a) Without a tranquility setting.

Consistent Behavior

Adaptation happens in
the next file transmission

(b) With a tranquility setting.
Figure 6.10: Impact of tranquility settings on object behavior.

In our example, two clients connect to the server at different times because we want to
experiment with and without tranquility settings on the server side. However, both of
them download two files with 10 and 5 chunks by sending the commands GET 10 and GET
5 one after another. During the first file downloading process, the server adapts to use
LZ compression. Without tranquility support, there is an inconsistent behavior among file
chunks as shown in Figure 6.10a, as opposed to consistent behavior with tranquility support,
depicted in Figure 6.10b. In the next file transmission, the LZ compression will be used for
transmission only for that client which connects with tranquility setting turned on.

Rollback Recovery. In order to recover from run-time execution failures caused by
adaptation, a proper checkpoint of the current configuration, a rollback recovery, and a bug
sensor are needed (Section 4.5). While the checkpoint process is embedded in the adaptation
process, the rollback recovery attaches to the bug sensor whose implementation is shown in
Figure 6.25. The bug sensor is installed in each client session in Line 17 of Snippet 6.20, and
each session involves an active compartment. Therefore, if an error occurs, it affects only
the currently engaging client session.

When the DivideByZero error is encountered, the uncaughtException method in Snippet 6.25
is invoked. The runtime rolls back from the current defective configuration to the previous
one stored in the checkpoint. After that the ServiceHandler is restarted while the client
socket is still maintained (Line 19). Hence, the client session remains connected. However,
the logic of sending file chunks is disrupted. That is why we leave the recovery process for
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a particular application partly to the protocol developer. In this case study, our proposed
file transfer protocol is integrated with a simple recovery protocol complemented with our
rollback recovery mechanism.

Snippet 6.25: Implementation of the BugSensor.
1 public class BugSensor implements Thread.UncaughtExceptionHandler {
2 private ServiceHandler client;
3
4 public BugSensor(ServiceHandler client){ this.client = client; }
5
6 @Override
7 public void uncaughtException(Thread t, Throwable e) {
8 Registry reg = Registry.getRegistry (); //get registry instance
9 Compartment comp = reg.getActiveCompartments ().get(t.getId ());

10
11 // Rollback
12 ControlUnit.rollback(comp);
13
14 // Logging to the server message panel
15 AppState.appendMessage (t + " throws " + e);
16 AppState.appendMessage(t.getName () + ">>>>> Rollback >>>> ");
17
18 // Restart server service handler
19 AppState.serverService.restartService(client);
20 }
21 }

The recovery protocol keeps track of the number of chunks that have been sent. During the
recovery process, the ServiceHandler is restarted and the recovery logic resumes sending
the left chunks (Lines 22-23 of Snippet 6.20). Again, there is no disruption at the client
side due to the execution failure and recovery process happening only at the server side.
Figure 6.11 shows a simple interface of the rollback recovery process of both server and client
with logging messages. The server adapts several times while serving a client request by
binding the Channel object to LZ, AES and the interaction of AES and LZ role 1○. So far, it
works fine, as depicted on the client side 2○, but in the last attempt (the interaction of LZ
and AES) it causes a DivideByZero exception detected by the bug sensor 3○. The execution
failure happens before the file chunks have completely been sent 4○, but there appears no
service disruption at the client side 5○. This proves that our rollback recovery mechanism
works as expected.

Defective configuration detected. 
Rolling back to the last configuration

(AES-LZ)

Failure occurred!

Resuming file chunks 
receiving after recovery.

1
2

3
4

5

Figure 6.11: Recovering from the DivideByZero failure in the LZ-AES composition.
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Note that in the client message window, file chunks appear in inconsistent state due to
the adaptation. In this experiment, the server disables the tranquility support in order to
demonstrate the effect of the rollback recovery process. If tranquility was enabled, there
would not occur any failure because of the adaptation delay. However, it will cause a failure
in the next file request because the failure is detected when a particular composing method
is executed.

Continuous Deployment. In addition to exclude of the defective role by rolling back,
the defective role is reported allowing the developer to fix the bug hoping that the fixed role
can be reapplied once again. With the unanticipated adaptation support, this fixed role can
be installed after modification and recompilation.

Figure 6.12 shows the process of the continuous deployment in the File Transfer Application
on both server and client. First, the server adapts the connected client twice from LZ to
AES role 1○ and 2○. Apparently, no failure is detected. The server then attempts to adapt
the client with LZ and AES composition which causes an execution failure 3○. Therefore,
the client still receives the AES encoding message 4○ due to rollback process at the server
side. The defective AES role must be altered in the sense that the format method and the
factor variable cannot produce the same DivideByZero error. For example, the code in Line
5 of Snippet 6.24 can be modified to be 1*factor to simulate the bug elimination. Once
compiled, the server runtime must enable the dynamic class reloading capability 5○ before
the LZ and AES composition can be reapplied 6○. Eventually, the client receives the properly
encoded file chunks resulting from the fixed AES role 7○.

1

2

3

4

6

7

Failure occurred!
Rollback to 

use AES role.

AES role is fixed
and reloaded.

Adapt to AES role.

5

Figure 6.12: Continuous deployment by fixing the AES role to be rebound.

6.1.4.3 Validation

With respect to the requirements, the points to be validated are the following:

R1: Modularity. Clearly, there is a separation of the core object and its adapting variants.
In this case study, while the Channel object is a core, the LZ and the AES are roles.
These entities are defined separately as shown in Snippet 6.22, Snippet 6.23, and
Snippet 6.24, but they are bound together at run time. Additionally, the default
compartment that is used to scope the dynamic behavior is also defined independently.
Therefore, they are modular making this requirement satisfied.
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R2: Dynamic Activation. As explained, the Channel object is shared among all connected
clients whose behavior is adapted based on the bound roles either LZ or AES or the
combination of both. The activation is performed under the binding or unbinding
operations which can be seen in Lines 56-74 of Snippet 6.20. Due to the activation
support at the instance and the thread level, the Channel object has different behaviors
executing concurrently for respective clients as shown in Figure 6.9.

R3: Late Variants Adoption. Although we did not present it explicitly, this feature was
explained in the continuous deployment scenario in which the reporting bug in the AES
role is eliminated, and the AES role is recompiled to be installed once again. Due to the
dynamic class reloading, the new implementation can be dynamically reloaded from
the bug-free AES role. Hence, this requirement is supported.

R4: Object-Level Tranquility. Having consistent behavior during the transmission of
chunks is a goal in this case study. The server’s tranquility setting can be enabled and
disabled using an interface. Using the tranquility option, the sendFileChunks method
is guarded by the ConsistencyBlock as expressed in Snippet 6.20 in Lines 34-36. As a
result, the client receives all the chunks in a uniform encoding in spite of adaptation.
The adaptation, occurred in between, will become effective in the next file request
(Figure 6.10b).

R5: Failure Handling. While binding the Channel object to either the LZ or the AES role
independently is not problematic in terms of execution failures, the interaction of these
two roles may cause failures. Snippet 6.25 demonstrates the bug sensor implementation
to embrace the DivideByZero error raised as an exception and to roll back to the
previous working configuration. Complementing with the recovery protocol, the server
runtime successfully recovers from failure and resumes sending the remaining file chunks
without disrupting the overall file transfer (Figure 6.11).

R6: Continuous Deployment. This is a derived requirement as LyRT supports R3 and
R5. We presented a dedicated continuous deployment scenario to deal with a defective
role composition (i.e., the LZ binding to the AES role). The modified or bug-free AES
role can be cleanly composed to the system once again. All these things are done while
the system is running (Figure 6.12). Therefore, it contributes to the high availability
of the runtime.

Object-Level Tranquility versus the Original Tranquility
As mentioned in Chapter 2, our behavioral consistency mechanism (Requirement R4) is
founded on the concept of tranquility [VEBD07]. Still the term tranquility is used throughout
this dissertation for behavioral consistency. The original tranquility used the term transaction
to describe the interactions between participating nodes. The nodes are allowed to update
when they reach a tranquil state (see Section 2.3). To avoid confusion, we coined the term
consistency block instead of transaction (see Section 4.4). The consistency block is used to
prevent the engaging objects from changing their behavior in a series of ongoing method
executions. The notion of the transaction in the original tranquility concept is applied
for the component-based systems where participating nodes are represented as singletons,
and their communications are statically defined through ports and connections. Due to
these criteria, the original tranquility concept is hardly applied to object level [ESMJ10].
Therefore, a dynamic update of the shared node (i.e., resembling the shared Channel object)
in an execution environment where the node, participating and executing in multiple threads,
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is infeasible.

Single method execution

Ongoing method executions

Client 1

Client 2

TimeAdapt to encrypt data

Ongoing method executions
with consistent behavior

Ongoing method executions
with inconsistent behavior

Without Tranquility

TimeAdapt to encrypt data

Original Tranquility

TimeAdapt to encrypt data

Our Tranquility Solution1 2 3

or

Figure 6.13: A comparison of consistency mechanisms. The original tranquility 2○ was
proposed by Vandewoude et al. [VEBD07].

Figure 6.13 shows a comparison of consistency mechanisms. A system without tranquility
mechanism 1○ is prone to behavioral inconsistencies if updates occur in the middle of
ongoing method executions. This case study illustrated the behavior of a server running
without the tranquility mechanism enabled (Figure 6.10). The original tranquility concept
2○ addressed this problem partially using transactions. It causes, however, a long disruption
for Client2. Although the update of nodes is possible inside a transaction for certain cases,
it is likely impossible in the worst case in which the node is shared. Additionally, there is
no concurrent support as mentioned earlier. Therefore, a consistent behavior is achieved
but with longer disruption for the original tranquility concept [TWS+16] (see Section 2.3 for
further discussion on the updatability of nodes in a transaction). Our consistency mechanism
3○ was proposed to overcome this issue with the ConsistencyBlock. Depending on the
connecting time of clients, each client may have different algorithms to format the Channel
object, but their consistent behavior is ensured in a given ConsistencyBlock. The discussion
on the problem handling was done in Section 4.4.

6.1.5 LyRT versus the State of the Art

Having demonstrated the three case studies implemented in LyRT, we showed that LyRT
matches closely the requirements of run-time variability, set in Chapter 2. Chapter 3 presented
a systematic literature analysis, in which parts of the third case study, the File Transfer
Application, were implemented with respect to the modularity and dynamic activation
as summarized in Table 6.2. Even if we cannot make a direct comparison between those
approaches and LyRT, at least it serves as a good reference. Table 6.3 shows the feature
comparison of LyRT with existing run-time variability approaches, which have been discussed
in Chapter 3.

6.1.6 Other Assessments

Although it works at the level of runtime, LyRT is based on the role concept and inspired by
CROM [KLG+14]. CROM itself is also derived from the 26 classifying features of role which
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Table 6.2: Reference to various implementations of the File Transfer Application.

Category Language Reference

Mixins Jam [ALZ00] Snippet 3.1

Traits ScalaTraits [OAC+04] Snippet 3.2

Feature-Oriented Programming (FOP) Jak [BSR04] Snippet 3.3

Meta-Programming (MP) Iguana/J [RC02] Snippet 3.4

Aspect-Oriented Programming (AOP) AspectJ [KHH+01] Snippet 3.5

Context-Oriented Programming (COP) ContextJ [AHHM11] Snippet 3.6

Role-Oriented Programming (ROP) OT/J [Her05] Snippet 3.7

have been presented in Chapter 2. Hence, it is interesting to show how many features LyRT
can fulfill as compared to formal CROM2 [KBGA15] and other ROP languages.

6.1.6.1 Classification According to the Role Features

In this section, we want to show which role features, compiled by Kühn et al. [KLG+14],
are mapped to LyRT. The result is summarized in Table 6.4. The feature analysis of ROP
languages is discussed by Kühn et al. [KLG+14] and in SCROLL [LA15]. An analysis of
formal CROM is also available [KBGA15]. Below, we discuss which of those classifying
features that LyRT supports and how LyRT addresses them.

1. Roles have properties and behaviors. (�: supported)
Like a typical object-oriented class, a role can define properties and methods. The
Developer (Snippet 6.2) and Accountant (Snippet 6.3) roles are examples.

2. Roles depend on relationships. (�: not supported)
Although LyRT offers the invokeRel method to invoke a method of a collection of
core objects (Snippet 6.3), there is no relationship type supported. Hence, roles do not
depend on any relationship.

3. Objects may play different roles simultaneously. (�: supported)
In LyRT, objects play different roles simultaneously and also execute the role’s methods
concurrently due to the support for activation at the instance and the thread level.
The behavior of the Channel object in the File Transfer Application, described in
Section 6.1.4, serves as an example.

4. Objects may play the same role (type) several times. (�: supported)
Role’s binding and unbinding operations takes place at run time. There is no restriction
to rebind the same role type. For example, the Channel object can bind and rebind to
the LZ compression role several times.

5. Objects may acquire and abandon roles dynamically. (�: supported)

2CROM has been formalized. The formally validated CROM is also known as formal CROM
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Table 6.3: Feature comparison of LyRT with various approaches.
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Language Facilities
Inheritance � � � � � �
Mixins [BC90, ALZ00, Moo86] � � � � � �
Traits [SDNB03] � � � � � �
Dynamic Traits [SD05] � � � � � �

Role Object Pattern [BRSW98] � � � � � �

Subject-Oriented Programming (SOP)
Subject Composition [HO93, HOM95] � � � � � �
Subjective Dispatch [SU96] � � � � � �

Feature-Oriented Programming (FOP)
Software Product Lines (SPLs)1 � � � � � �
Dynamic Software Product Lines (DSPLs)2 � � � � � �

Meta-Programming (MP)
Iguana/J [RC02] � � � � � �
Reflex [TNCC03] � � � � � �
Geppetto [RDT08] � � � � � �

Aspect-Oriented Programming (AOP)
Static Weaving Mechanisms [KHH+01] � � � � � �
Dynamic Weaving Mechanisms3 � � � � � �

Context-Oriented Programming (COP)
Local Activation4 � � � � � �
Global Activation5 � � � � � �
Global Activation with Conflict Resolution6 � � � � � �

Role-Oriented Programming (ROP)
Static Roles [BA12] � � � � � �
Dynamic Roles [GØ03, HNL+06] � � � � � �
Relational Roles [BGE07] � � � � � �
Contextual Roles7 � � � � � �

Dynamic Software Updates [SAM13] � � � � � �

LyRT � � � � � �

�: supported, �: partially supported, �: not supported
1 [Pre97, BSR04, ALRS05, LKKP06, Gri00, LSSP06, MO04, KAB07, AKLS07]
2 [GS12, RSPA11, TCPB07, LK06, DMFM10, INPJ09]
3 [BHMO04, NAR08, SCT03, VSV+05, Bon04, VBAM09, PDFS01, SMCS04, AGMO06, JZ10]
4 [CH05, AHHM11, HCH08, Sch08, SP08]
5 [AHM+10, SGP12b, LASH11, KAM15]
6 [KAM11, GCM+10, Car13, GMC08, GMCC13, Bai12]
7 [Her05, BBVDT06, TUI05, KT09, LA15]
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Table 6.4: Comparison of LyRT with role-based approaches based on the role features
they support.
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2 � � � � � � � � � �

3 � � � � � � � � � �

4 � � � � � � � � � �

5 � � � � � � � � � �

6 � � � � � � � � � �

7 � � � � � � � � � �

8 � � � � � � � � � �

9 � � � � � � � � � �

10 � � � � � � � � � �

11 � � � � � � � � � �

12 � � � � � � � � � �

13 � � � � � � � � � �

14 � � � � � � � � � �

15 � � � � � � � � � �

16 � � � � � � � � � �

17 � � � � � � � � � �

18 � � � � � � � � � �

19 � � � � � � � � � �

20 � � � � � � � � � �

21 � � � � � � � � � �

22 � � � � � � � � � �

23 � � � � � � � � � �

24 � � � � � � � � � �

25 � � � � � � � � � �

26 � � � � � � � � � �

�: supported, �: partially supported, �: not supported, �: not applicable
The description of each feature is found in Table 2.1. The classification of existing
approaches against the role features is not described in this dissertation but taken
from literature [KLG+14, LA15, KBGA15].
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In an active compartment, a core object can call bind and unbind methods dynamically.
The core object adapts its behavior accordingly.

6. The sequence of role acquisition and removal may be restricted. (�: not sup-
ported)
It is not directly supported although it is not difficult to implement. The reason is
that LyRT abstracts the context model from which the information of role acquisition
and removal is generated (Section 4.2.2).

7. Unrelated objects can play the same role. (�: supported)
Roles are modeled as unrelated types in which they do not require any association
to core objects at design time. For example, the TaxPayer role can be played by a
Company compartment as well as a Freelancer role (Figure 6.1). Therefore, this feature
is fulfilled.

8. Roles can play roles. (�: supported)
Just like a core object, a role can play roles. An instance of the Person class ely plays a
Freelancer role in the TaxDepartment compartment. The Freelancer role then plays
a TaxPayer role to form a deep-play-relation (Figure 6.1).

9. Roles can be transferred between objects. (�: supported)
Although it was not shown in the case studies, this feature can be easily done by the
transfer operation (see Section 4.3.10). For example, the person alice may transfer
the Accountant role to bob by invoking alice.transfer(Accountant.class, bob).

10. The state of an object can be role-specific. (�: supported)
A role is implicitly instantiated during the binding process via the bind method.
Although two or more core objects can bind the same role type, each of those core
objects is bound to a specific role instance. Therefore, the state, encapsulated in a
bound role instance, reflects the state of the core object. In the Tax Management
System, bob and ely play the same Developer role, but they have different salary
scales attached in each Developer role instance (Lines 12-13 of Snippet 6.9).

11. Features of an object can be role-specific. (�: supported)
Clearly, when a core object binds a role, it has additional features encapsulated in
the role. For example, a Person object can be a Developer who works and generates
a revenue while another Person instance is an Accountant who generates a monthly
salary.

12. Roles restrict access. (�: not supported)
Any kind of constraints has not yet been incorporated in the current implementation.

13. Different roles may share structure and behavior. (�: supported)
Role types are regular Java classes which can inherit from different role types.

14. An object and its roles share identity. (�: supported)
Although an object and a role are two distinct objects, they become a compound object
that shares a common identity when bound.

15. An object and its roles have different identities. (�: supported)
As already mentioned in feature 14, an object and its role have different identities. The
runtime manages these identities by using relations that can be manipulated through
the standard Java 8 stream API (see Chapter 5).
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16. Relationships between roles can be constrained. (�: not supported)
As explained in feature 2, there is no first-class relationship supported. Therefore,
constraints between roles based on relationships are not supported.

17. There may be constraints between relationships. (�: not supported)
Similar to feature 16, this feature is not supported.

18. Roles can be grouped and constrained together. (�: not supported)
Roles are grouped in a compartment. Nonetheless, grouping them in a RoleGroup as
defined in formal CROM [KBGA15] is infeasible. Constraints between roles can be
neither applied in a compartment nor in a RoleGroup.

19. Roles depend on compartments. (�: supported)
Roles can be bound only in a compartment, and their behaviors become effective when
their compartment is active. This is the case when an instance ely of the Person class
is a Developer in the Company compartment and after that ely becomes a Freelancer
in the TaxDepartment compartment. So, roles depend on compartments.

20. Compartments have properties and behaviors. (�: supported)
The compartment definition is just like a general class which includes properties and
behaviors. Company (Snippet 6.7) and TaxDepartment (Snippet 6.8) compartments are
examples.

21. A role can be part of several compartments. (�: supported)
Since roles and compartments are separated entities by definition in LyRT, a role may
belong to any compartment.

22. Compartments may play roles like objects. (�: supported)
The feature is supported by intention. The Company compartment plays a TaxPayer
role in the TaxDepartment compartment as shown in Figure 6.1.

23. Compartments may play roles which are part of themselves. (�: supported)
Compartments and roles are loosely coupled, so there is no restriction on this kind of
play-relation.

24. Compartments can contain other compartments. (�: not supported)
Since there is only one compartment that can be active at the same time in the same
thread, nested compartments are not supported.

25. Different compartments may share structure and behavior. (�: supported)
LyRT fulfills this feature due to the fact that a compartment is a standard class.

26. Compartments have their own identity. (�: supported)
Since a compartment is a regular class, it carries its own identity.

6.1.6.2 Discussion of LyRT in Relation to Formal CROM

Influenced by CROM [KLG+14], LyRT intermingles with a number of role features available
in CROM. Due to their differences in terms of usage, we can only informally discuss them
based on the feature comparison illustrated in Table 6.4. The discussion below highlights
the most important features, which are satisfied by either CROM or LyRT but not by both.
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Relationship Type. Formal CROM has a unique relationship type that supports mul-
tiplicity and cardinality to express the relationship between the participating roles in a
compartment (Feature 2). There is no first-class relationship type supported in LyRT.
However, from the runtime perspective LyRT offers the invokeRel method to invoke a
method of a role participating in a relationship.

Constraints. RoleGroup has been incorporated in formal CROM in order to place certain
constraints on roles in a relationship even if the constraint between relationships is not
supported (Features 16, 17, 18). LyRT does not support any kind of constraints.

Inheritance. According to Features 13 and 25, roles and compartments in formal CROM
do not support inheritance semantically. Since roles and compartments are defined as
standard object-oriented classes, LyRT supports these features. However, the play-relation
is not inherited. For example, a core object S plays a role R. A subclass O that inherits from
S does not hold the inheritance of the played R role. OT/J [Her05] is a role-based language
that tackles this problem [HHM04].

Deep roles. Formal CROM supports only flat roles meaning that a core may play roles, but
the played role cannot play other roles. Therefore, the deep-play-relation or the role-playing
role feature is not fulfilled (Feature 8). LyRT supports this feature.

Run-time features. CROM is a model which cannot provide some of the run-time aspects.
For example, the ability to dropping and acquiring roles (Feature 5) as well as transferring
roles dynamically (Feature 9) are not applicable for formal CROM. These features are fully
supported in LyRT.

6.2 Performance Evaluation

Generally, run-time support for adaptation has a negative impact on system performance
because of the adaptation management. In case of LyRT, this is in particular due to
variants management and late method binding. Performance degradation has been observed
in COP [AHH+09, SGP12b] as well as ROP [SC17, Leu17] compared to their respective
baselines, and is also observable in LyRT. In this section, various micro-benchmarks are
presented to quantify the run-time overhead of LyRT.

6.2.1 Experimental Setup

Benchmarking a Java application is challenging due to various non-deterministic fac-
tors [GBE07]. Non-determinism is caused for instance by JIT compilation, optimization in
the JVM, and garbage collection. Thus, we write benchmarks in a reliable micro-benchmark
framework, called Java Microbenchmarking Harness (JMH)3, to minimize bias. The results
are captured when the benchmark reaches the steady state after a number of warm-up

3JMH accessed on August 25, 2017: http://openjdk.java.net/projects/code-tools/jmh/

http://openjdk.java.net/projects/code-tools/jmh/
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iterations. We chose 20 warm-up iterations and another 20 iterations to observe the actual
performance. These 40 iterations in total were forked to run on three different JVM instances
in order to improve the uniform distribution of the result. The result of each benchmark is
the average of 60 iterations, i.e., 20 iterations in each fork, with a confidence interval of 90%
to 95%.

The benchmarks were run on an Apple MacBook Pro with 2.2GHz Intel Core i7 and 16GB of
RAM running macOS Sierra version 10.12.6 and Oracle Java SE 8 (build 1.8.0_92-b14). The
JMH version is 1.19. In some benchmarks, we measure the performance of Javassist [Chi00],
a bytecode rewriting library, to analyze both anticipated and unanticipated adaptation. The
Javassist4 version, used in the benchmarks, is 3.21.0-GA.

Several benchmarks were set up to evaluate the execution time of the following points:

• Method Dispatch: shows the overhead of method dispatch compared to the standard
invocation.

• Partial Method Invocation: demonstrates the performance of stacking behavior of
the role-playing-role feature compared with delegation.

• Adaptation: exhibits the cost of role binding, unbinding and transferring for both
anticipated and unanticipated adaptation.

• Adaptation versus Method Invocation: depicts the trade-off of using LyRT by
revealing the correlation between adaptation and method invocation.

• Consistency: compares the cost of method invocation in a consistency block to the
one without.

• Checkpoint and Rollback: highlights the time and space overhead to perform the
checkpoint and rollback operation.

• Memory and CPU Consumption: shows the overhead of memory and CPU
consumption.

6.2.2 Method Dispatch

Setup
This benchmark measures the execution time overhead of LyRT’s method invocation, which
is lifted or dispatched to a role. This benchmark contains a core object with a single
method returning a dummy string value. The evaluation is performed on a method call
through different techniques such as standard invocation, reflection and the invokedynamic
instruction [CO14]. For LyRT, we add two additional roles R1 and R2. Each role contains a
method defined similarly to the one in the core object in order to show the performance of
the method dispatch. In one configuration, the core object binds a role R1 while in other it
binds R1 and R1 binds role R2. In this benchmark, we solely focus on the lifting aspect or
dispatching mechanism in LyRT while the lowering aspect will be discussed in a subsequent
benchmark.

4Javassist accessed on August 25, 2017: http://jboss-javassist.github.io/javassist/

http://jboss-javassist.github.io/javassist/
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Figure 6.14: Performance of various techniques on method invocation.

Discussion
As depicted in Figure 6.14, the standard invocation is the fastest among all, followed by
the invokedynamic instruction, which is insignificantly slower. This conforms to the results
of Conde et al. [CO14]. Reflection, which was expected to be considerably slower than the
aforementioned techniques, performs quite well in Java 8 and is only about 3.3 times slower.
The reason is that recent JVM versions inline reflective methods when a certain threshold
of repetitive invocations is reached. Although LyRT uses the invokedynamic opcode for
its method invocation (see Section 5.3.2), its performance is 11 to 13.5 times slower than
the pure invokedynamic opcode and the standard invocation respectively. This overhead
is caused by the fact that, in each invocation, LyRT looks for an active compartment and
hashes a method to search through the cached method table in order to find an appropriate
role to be invoked. Although this is a very expensive mechanism, it enables LyRT to support
contextual method dispatch and therefore dynamic system behavior at run time. The number
of roles to be bound has no significant impact on the performance of LyRT since the cached
method table stores only the most recent method affecting the dispatching rules. For instance,
in the configuration of LyRT-TwoRoles, the method of R1 was overridden by the method of
R2 due to late binding. Therefore, the process to search through the cached method table
remains the same and the performance is eventually comparable.

6.2.3 Partial Method Invocation

Setup
LyRT allows a bound role to play other roles; this allows us to construct a stacking behavior
by visiting all roles in the deep-play-relation (i.e., partial method in COP domain). The
prominent baseline for this benchmark is delegation due to its similarity and instance level
operation. A set of classes, whose instances are connected to each other via a method call,
is created. Each class contains a method which calls another method of its kind to form a
method chain similar to our stacking method. In case of LyRT, a core object is bound to a
role, and the role is bound to another role to form a deep-play-relation. Each role contains a
method which calls its player via invokePlayer method. For this setup, roles are stacked
together until the fifth level is reached. Although there is no study to show that the fifth
level is enough in practical use, this number has been employed in the COP domain to
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benchmark the activation of multiple layers.
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Figure 6.15: Performance of partial method invocation by stacking roles up to fifth level.

Discussion
Figure 6.15 shows the performance comparison between LyRT and its delegation counterpart.
The x-axis categorizes a number of partial methods to be invoked while 0 means invoking a
method of the core object itself. The value 1 means the method is executed on a role and
then lowered to the core which is twice in total. In case of 5 roles, the overall execution is 6.
The y-axis shows the time taken in microseconds to perform each category. In both cases,
the overhead is linearly increased with respect to the number of partial methods. In average,
the slowdown of both approaches is a factor of 1.4 for LyRT and 1.2 for delegation.

However, partial method invocation in LyRT is observed to be around 25 times slower than
that of the delegation which is a huge performance impact. The reason is that LyRT always
checks whether the compartment is active or not to select the appropriate cached method
table for invocation. Additionally, the passing method and its parameters need to be packed
and hashed in order to find the appropriate role to be invoked. This process of method
selection is rather expensive compared to the actual method invocation itself as shown in the
previous benchmark (see Section 6.2.2). The performance of delegation is highly optimized
by modern JVM as it has been investigated by Götz and Pukall [GP09]. Moreover, the
benchmark on delegation does not consider contextual dispatch and unanticipated adaptation,
and methods are statically invoked by an interface.

The result also indicates that the overhead keeps increasing excessively compared to the
delegation when the number of roles is on the rise. Practically, we expect that there are only
a few roles needed to construct a partial method. For example, only two roles were required
in the case study of the File Transfer Application, discussed in Section 6.1.4. In this case,
the overhead is reduced.
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6.2.4 Adaptation

Setup
Adaptation of an object is an ability to swiftly change its behavior based on context. There
are three operations provided by LyRT to support adaptation: binding, unbinding and
transferring roles. The rebinding operation is also available but it is a combination of
the unbinding and the binding operation. Thus, we exclude it from the benchmark. The
remaining operations are measured for anticipated and unanticipated adaptation. In this
benchmark, we compare adaptation in LyRT with a bytecode rewriting library, called
Javassist [Chi00].

Javassist is powerful as it allows programmers not only to define a new class but also to modify
an existing class before it is initially loaded into JVM, resembling unanticipated adaptation.
Unlike its competitors, Javassist provides an API for both source-level and bytecode-level
translation. Whenever the source-level API is used, programmers can transform a class with
source-level vocabularies like class and method without knowledge of bytecode specification.
Therefore, dynamic change of object behavior is possible and easy to implement. Despite
transformation capability, Javassist has a low overhead while keeping ease of use [CN03].
According to the state-of-the-art survey illustrated in Table 6.3, only Iguana/J [RC02],
Geppetto [RDT08], and DSU [SAM13] should be considered to benchmark for the support of
unanticipated adaptation, but we decided not to do so because of the following reasons. DSU
is a JVM-specific solution, which is not portable, while LyRT is an architectural approach
applicable to many languages. Similar to DSU, Iguana/J is implemented via a dynamic
library integrated tightly to the JVM; it is therefore not portable. Geppetto has Smalltalk
as its host language making a comparison more challenging.

The setup for this benchmark is to have a number of roles scaling from 10, 100, 1,000, 5,000,
and 10,000 to be bound to the same number of core objects. This procedure is also applied
to unbinding and transferring operations for anticipated and unanticipated adaptation. For
Javassist, a method of the core object is redefined using the source-level API and dynamically
reloaded featuring the scaling number. In order to reload a newly redefined class, Javassist
by default relies on Java Platform Debugging Architecture (JPDA) forcing the benchmark
to run in a debugging mode. Hence, we extended Javassist to reload classes dynamcially
by using Java Agent5. As an agent, this custom class has an insignificant effect on the
benchmark because it runs once per JVM at load time.

Discussion
The result of this benchmark is shown in Figure 6.16. The x-axis shows different categories
of benchmarks for 10, 100, 1,000, 5,000, and 10,000 roles. For Javassist, this is a number
of times to redefine a class method. The UA prefix in the legend stands for unanticipated
adaptation. The y-axis shows an execution time of each category in milliseconds.

Generally, the binding and unbinding operations have a minimal overhead, and their perfor-
mance is comparable for both anticipated and unanticipated adaptation in the measurements
less than 1,000 roles. More than that, the unbinding operation takes a longer time to be
completed than the binding one. The reason lies in the unbinding implementation which adds

5Java Agent accessed on August 25, 2017: https://docs.oracle.com/javase/7/docs/api/java/lang/
instrument/package-summary.html

https://docs.oracle.com/javase/7/docs/api/java/lang/instrument/package-summary.html
https://docs.oracle.com/javase/7/docs/api/java/lang/instrument/package-summary.html
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Figure 6.16: Performance of adaptation (UA prefix stands for unanticipated adaptation).

additional logic to check if there is a deep-play-relation to be performed, besides adjusting
the cached method table.

The transferring operation incurs more overhead as compared to the binding and unbinding
operations. The reason is that during a transferring process the binding relation in the
lookup table needs to be detached from a source and attached to a destination. Therefore,
the cached method table is adjusted on both sides. In contrast to this, binding and unbinding
operations update the binding relation and the cached method table once for the engaging
core object.

Regarding unanticipated adaptation (with UA prefix), LyRT typically parses an adaptation
XML file and loads roles with a ClassReloader in addition to the default process performed
in the anticipated adaptation. As a result, any adaptation operation, i.e., UA-Binding,
UA-Unbinding, and UA-Transfer, for unanticipated adaptation shows an additional overhead
compared to its anticipated adaptation counterparts. In average, unanticipated adaptation
is about two times slower than anticipated adaptation.

Javassist, in all cases, introduces a significant overhead due to the recompilation of the core
object to add a new implementation of a method. In average, Javassist is 12 and 23.5 times
slower than the unanticipated and anticipated adaptation respectively. Even if Javassist
performs poorly on adaptation, the method invocation of the adapted object runs very fast
(see Section 6.2.5). Javassist adapts behavior at the class level for which core objects of the
same type are eventually affected by the new definition. LyRT applies adaptation at the
instance level, and it is not required to recompile the core object despite the addition of new
roles. In fact, newly introduced roles must be compiled before they can be loaded into the
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JVM. We consider this compilation to be part of the preparation phase of unanticipated
adaptation rather than the unanticipated adaptation process itself. The compilation time
for LyRT, therefore, does not count in the benchmark.

6.2.5 Adaptation versus Method Execution

Setup
The overall performance of adaptive systems results from the efficiency of adaptation and
the execution of newly adapted entities. To further illustrate the relationship between them,
we wrote a benchmark to simulate the adaptation process by scaling from 10 to 1,000 roles
which are bound to the same number of core objects. We consider only the binding operation
to represent the adaptation in LyRT. After the binding is completed, the respective core
objects invoke a certain number of methods ranging from 1,000 to 1,000,000 times. For
Javassist [Chi00], we setup the same procedure as described in Section 6.2.4. For 1,000 roles
and 1 million method invocations, it is enough to show the correlation of the two approaches.

Figure 6.17: Adaptation versus method invocation.

Discussion
Figure 6.17 depicts the result of the relationship between adaptation and method execution
of LyRT and Javassist. As expected, LyRT performs well on adaptation although the number
of roles keeps increasing (see execution time axis vs. adaptation axis). However, it imposes
a huge overhead on method invocation when the number of invocation is more than 100,000
times (see execution time axis vs. invocation axis). This overhead results from the support
of contextual dispatch and unanticipated adaptation as presented in Section 6.2.2 and
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Section 6.2.3. In contrast, Javassist spends most of the time on adaptation and apparently
invokes the method at the speed of standard execution. Chiba and Nishizawa [CN03] claimed
that the overhead of Javassist’s method execution is about ten nanoseconds which is negligible
as the JVM inlines the method. This JVM optimization technique does not hold true for
LyRT because roles are still separated entities and JVM has no knowledge about them.

From the result, we can deduce that LyRT is suitable for a dynamic system which is highly
adaptable involving a great number of objects to be adapted at once, but it should not be
used in a static or rarely dynamic system.

6.2.6 Consistency

Setup
In order to achieve consistent behavior, a consistency block is used. This benchmark analyzes
the overhead of entering and leaving the consistency block as well as the method execution
within the block compared to the one without using consistency blocks.
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Figure 6.18: Overhead of consistency support.

Discussion
Figure 6.18 shows the overhead of method invocation executing in a consistency block
corresponding to one executing without consistency block. The y-axis shows the execution
time in microseconds. There is no significant overhead be observed as the cached method
table of engaging core objects remains untouched when the runtime detects a running
consistency block. The cost of entering and leaving the consistency block is small, and
it happens only one time per block regardless of multiple method invocations. A slight
overhead occurs when the running consistency block has expired and the cached method
table is adjusted according to the prescribed adaptation. So, the cost of achieving consistent
behavior is relatively minimal. In average, a method executed with a consistency block is
1.04 times slower than its execution without a consistency block. The whole consistency
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including entering and leaving the block is 1.39 times slower than the standard execution in
LyRT.

6.2.7 Checkpoint and Rollback

Setup
This benchmark displays the overhead of the recovery support in LyRT. We have separate
measurements for checkpoint and rollback within a range from 10 to 10,000 roles. The
baseline for this benchmark consists of a class containing a HashMap<Integer, Object> data
structure to maintain its roles, in which Integer represents a hashcode of a role and Object
references to the role. The role is a typical class defined with an empty method returning
a dummy string. To do a checkpoint, we introduce an ArrayDeque<KeyValue> to hold a
list of a key-value pair of the role and its hashcode collected from all core objects. In case
of a benchmark for 10 roles, 10 core objects are created; each has one role resulting in 10
key-value pairs for the checkpoint.

Since we rely on Kryo library to perform a deep copy for checkpoint (see Section 5.6.1),
we also measure a pure deep copy for the same amount of roles to back up the discussion.
Additionally, the space overhead of the checkpoint will be presented. In general, Java has
no operator like sizeof() as in C language to determine the actual memory allocation
for a particular object. Therefore, we cannot directly measure the space overhead on the
checkpoint since the checkpoints are kept in memory. Instead, we serialize the roles with a
default format onto a disk and measure the disk usage as a reference for the checkpoint size.
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Figure 6.19: Overhead of the checkpoint and the recovery.

Discussion
Figure 6.19 illustrates the time taken for doing a checkpoint and a rollback scaling with the
number of active roles ranging from 10 to 10,000. Regarding the checkpoint, LyRT introduces
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significant overhead, roughly 13.06 times slower than the baseline. The reason is that LyRT
has a larger data structure to be maintained, not only playing relations but also deep-playing
relations. The main overhead of the checkpoint is the object reference assignment which
changes from the old role to the newly copied role in the lookup table. This process has to
be done for each relation in the lookup table before it is pushed onto the stack. In the case
of role-playing-role, the player reference in the lookup table needs to be replaced as well.
This replacement process is expensive as it runs O(n2), where n is a relation. In contrast,
the baseline runs only O(n), where n is a key-value pair. Despite producing a high overhead,
the execution time in LyRT is relatively small, i.e., 3.24 milliseconds for 10,000 roles, which
is fast enough with respect to usability.

Both LyRT and the baseline introduce an exceeding overhead on rollback compared to their
checkpoint. Although the runtime uses a deep copy to clone roles inside a data structure
maintaining roles (a lookup table for LyRT and a HashMap<Integer, Object> for the baseline)
for checkpoint which seems to be time-consuming, Kryo handles this task efficiently. Times
taken for pure copying of 10, 100, 1,000, 5,000, 10,000 roles are 0.23, 0.41, 1.96, 8.31, and
16.12 microseconds respectively. Rollback involves in deleting the current data structure6

and restoring data in a checkpoint to its respective data structure. This process requires
O(n2) execution, where n is a relation, since we have multiple objects and a set of available
roles in the checkpoint to be matched.

However, the rollback in LyRT entails even more overhead than its baseline counterpart
as the runtime needs an extra time on adjusting the cached method table for each binding
relation after the lookup table is restored. This process is essential in order to have runtime
ready for execution. In average, the overhead of rollback in LyRT is 17.23 times higher than
that of the baseline.

Unlike checkpoint which is performed in each adaptation, rollback is done only when a failure
is detected. Therefore, it should not affect the normal execution of a program apart from
the significant overhead. Furthermore, LyRT treats the checkpoint and rollback as a feature
which can be turned off by calling Registry.setRecovery(false) if it is not needed.

The space overhead of the checkpoint in LyRT depends on the implementation of roles and
their amount. As already explained in Section 5.6.1, although we push the whole lookup table
(ArrayDeque<Relation>) in a compartment to the stack, only roles are serialized (i.e., similar
to copy by value). Core objects and their compartment are copied by reference. Hence, the
space overhead is relatively minimal. Table 6.5 shows the overhead per checkpoint based on
the number of roles. Each role contains only an empty method without specifying any fields.
Additionally, we also provide information if the checkpoint is performed for a whole lookup
table for comparison.

6.2.8 Memory and CPU Consumption

Setup
Memory and CPU consumption is another interesting aspect to see how much overhead is
introduced compared to the baseline. Rather than demonstrating a complete set of memory

6LyRT uses a central data structure stored in each compartment whereas the baseline maintains it in each
core object.
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Table 6.5: The space overhead per checkpoint in Kilobytes.

Number of Roles

10 100 1,000 5,000 10,000

Only Roles 0.05 0.31 2.95 14.67 29.32

Lookup Table 6.43 16.58 118.01 569.88 1,135.30

and CPU usage of a whole application, we highlight only the consumption for the binding
operation which could be a basis for estimation.

The baseline of this benchmark is a typical object containing a HashMap<Integer, Object>
data structure to hold references to its roles. While an Integer stores a hashcode of a
role, Object contains a reference to the role itself. Each object has one role. We scale the
benchmark from 1,000 to 10,000 roles in which the number of cores equals to the number
of roles. Below that value, memory footprint is too small to be projected. For LyRT, we
generate core objects ranging from 1,000 to 10,000 while each of them binds to a role.

Benchmarking memory and CPU consumption in Java is prone to bias because of a garbage
collector. Although there is no option to suppress the garbage collector, an alternative
method is to increase the heap size to be large enough to accommodate the benchmark.
After several trials, we found out that within the scale of 10,000 cores and roles, 2GB of heap
size is sufficient to prevent the garbage collector from kicking in. We profile the memory and
CPU usage with a default tool given by Oracle known as VisualVM7 (i.e., executed by a
jvisualvm command line). Figure 6.20 and Figure 6.21 show a snapshot of CPU and memory
utilization of the baseline and LyRT produced by the tool. To visualize the utilization, we
allow the benchmark to run but being idle for 5 seconds. After the benchmark is completed,
it stays inactive for another 2 seconds.

Discussion
Figure 6.22a shows a comparison of memory consumption between baseline and LyRT. Note
that both baseline and LyRT have a pre-allocated memory of about 85MB for the 2GB heap
size setting (see Figure 6.20b and Figure 6.21b). This number is lower for the smaller heap
size. For 1,000 and 5,000 roles, the baseline projects the same amount of memory usage.
Although it seems incorrect, the reason would be that it uses the pre-allocated memory. That
is why benchmarking below 1,000 roles yields insignificant memory usage for the baseline.
LyRT utilizes memory 1.33, 2.78 and 3.27 times more than the baseline for 1,000, 5,000 and
10,000 roles respectively. In average, memory overhead in LyRT is 2.46 times more than that
of the baseline. The reason is that LyRT uses JINDY [CO14] to support invokedynamic
opcode which generates extra Callable classes for each core and each role. More elaboration
can be found in Chapter 5. In order to speed up the method lookup, LyRT uses these
generated classes to build a cached method table with additional meta-data which occupies
some spaces. Apart from that, the lookup table and role management code also contribute

7VisualVM accessed on August 27, 2017: https://visualvm.github.io

https://visualvm.github.io
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(a) CPU consumption of the baseline.

(b) Memory consumption of the baseline.
Figure 6.20: A snapshot of CPU and memory consumption of the baseline for 10,000 roles
(GC: Garbage Collector).
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(a) CPU consumption of LyRT.

(b) Memory consumption of LyRT.
Figure 6.21: A snapshot of CPU and memory consumption of LyRT for 10,000 roles (GC:
Garbage Collector).
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Figure 6.22: Memory consumption.

Figure 6.22b breaks down the memory utilization in LyRT. A large portion of memory usage
(44%) is spent on the invokedynamic code generation. The cached method tables, which
include the cache for core object, lifting, lowering and collaboration functions, account for
30%. The rest is for the role management data structure including the lookup table.

While an average CPU consumption in LyRT is 28.1%, the baseline utilizes only 0.8% for
this benchmark. This result is directly perceived from the VisualVM profiling tool. The
explanation of the huge overhead is similar to that of memory consumption. Note that the
measurement of CPU consumption is solely for the benchmark and it does not count for the
clock of the garbage collector because there is no observable garbage-collection activity.

6.3 Discussion

We used the case studies to evaluate the practical feasibility of LyRT in the domain of software
systems which requires adaptation at instance level. Crucially, in adaptive software systems,
adaptation always involves a performance decline. This also holds for LyRT. Through the
benchmarks, we found out that the measured overhead remains mostly acceptable (except
for the deep-play relation with more than a few roles) with respect to usability of highly
dynamic systems. This section discusses strengths and weaknesses of LyRT and outlines
possible future enhancements.

6.3.1 Run-time Versatility

The case studies have shown that LyRT cleanly hosts role-based applications in order
to achieve dynamic adaptation with respect to the six requirements derived for run-time
variability. We highlight the main features in the following sections.

6.3.1.1 Roles as Variants

Based on run-time variability which separates variants from the base system, utilizing the role
concept inherently achieves dynamic adaptation at the instance level due to the decoupling of
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role instances from the cores. The notion of compartments further enhances the collaboration
between roles and serves as a dynamic scoping of the playing core objects to enable the
context-dependent behavior. With our dynamic instance binding mechanism, we realize the
role concept to be a computational model for run-time variability.

6.3.1.2 Anticipated Adaptation

The case studies emphasize the need for the proposed dynamic instance binding mechanism to
achieve a fine-grained adaptation down to the level of instances. In fact, de facto approaches
contributing to run-time variability from different domains like AspectJ [KHH+01] of AOP,
ContextJ [AHHM11] of COP and OT/J [Her05] of ROP activate new behavior at the type
level adapting all derived instances.

Although there is no consensus showing the pros and cons of type versus instance level
adaptation, we believe that adapting objects at the instance level is more flexible from
the runtime perspective. Some applications portray perfectly the need for instance-level
adaptation, such as the Tax Management System (see Section 6.1.2), which is hardly achieved
by type-level adaptation. Additionally, instance-level adaptation, given by the dynamic
instance binding mechanism, provides an opportunity for unanticipated adaptation and
advanced features such as consistency and rollback recovery.

6.3.1.3 Unanticipated Adaptation

The dynamic instance binding mechanism enables the support of unanticipated adaptation
without causing too much overhead in terms of execution time as compared to its anticipated
adaptation. This support does not only show the addition of non-obtrusive behavior on-
the-fly but also benefits to a system demanding for high availability. The Snake Game is a
showcase for demonstrating this feature.

As discussed in Chapter 3, there are not so many systems which enable this capability. First,
in order to avoid producing overhead, they opt for compile or load time activation which
happens only once during an application life cycle. Therefore, hooking in new behavior
at run time is infeasible. Second, in systems which adapt objects at the type level, it is
hard to control the precise objects to be adapted without a predicate. Third, unanticipated
adaptation faces a major inconsistency issue due to the limited knowledge of all adapted
objects. For systems adapting at the type level, it may happen that some instances are
idle while others are busy (e.g., with invoking a method). Adapting that given type is
undoubtedly problematic for the active instances. In this regard, adapting an object at the
instance level has an advantage over that of the type-level adaptation.

Benefitting from instance-level adaptation, LyRT presented a straightforward architecture
to gain control of unanticipated adaptation. Only selected instances are adapted. However,
unanticipated adaptation is prescribed in an XML configuration file in which object references
are needed. Even though we provide an API to query the lookup table, it is still a drawback
that developers must be aware of all core objects or roles to be dynamically adapted.
Adapting plenty of objects has to be configured carefully; otherwise, it may break the system.
Besides, adding new behavior on-the-fly may violate system security which is not in the
scope of this dissertation. Moreover, consistency is still an issue, but it is handled by a
separate mechanism, discussed in the subsequent section.
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6.3.1.4 Consistency

LyRT solves the aforementioned inconsistency problem by providing a consistency block to
guard the code block where uniform behavior is required. Executing within this block, core
objects are safe to maintain their behavior regardless of adaptation happening asynchronously
and randomly. Adaptation happens when the block has expired, and it only affects current
thread. Hence, we can minimize the blocking factor of the adaptation in other threads
while still maintaining consistency among those threads. However, developers must place
this consistency block since they are fully aware of program execution and its expected
functionality. That consistency block works on both anticipated and unanticipated adaptation,
and produces an insignificant overhead.

6.3.1.5 Rollback Recovery

In order to contribute to high availability and stability of the runtime, LyRT integrates
the rollback recovery mechanism to monitor the run-time execution failure arisen from role
composition. Although the case study of the File Transfer Application has only two roles,
the four possible combinations resulting from compositions of those roles contained at least
one composition yielding run-time failure, i.e., LZ binds to AES. We argue that if a system
has a dozen of roles, manual testing for all the possible combinations in order to find bugs is
far from trivial. This does not count for roles lately introduced in an unforeseen manner.

The rollback recovery mechanism alleviates this problem by embracing failures at run
time through its specialized bug sensor taking advantage of exception handling. Creating
checkpoints at each adaptation helps to build composition knowledge to be recovered when
a failure is detected. Through the case study and the benchmark, we have demonstrated
that the runtime can gracefully recover from the failure without dropping client sessions.
However, there are some limitations and open issues, which should be addressed as follows:

How does rollback affect the program execution flow? Once bugs are detected, the
runtime rolls back the affected thread to the previous checkpoint and re-spawns the
thread. Data might get lost because program flow should resume from where the
error is caught after rollback. This is a limitation since Java does not equip with an
on-error-resume feature. In exchange, we suggest integrating a recovery process in
an application protocol as we did in the File Transfer Application.

A failure is detected after several adaptations. Suppose errors are introduced within
configuration AC1, but the faulting method has never been executed. Then, the
runtime adapts to configurations AC2 and AC3. In AC3, the runtime catches the
failure of AC1. In this case, the system rolls back to AC2, which is the wrong choice.
We consider it for future improvement.

What is the effectiveness of the bug sensor? The degree of fault tolerance of the pro-
posed mechanism depends on the effectiveness of the bug sensor. Our current im-
plementation relies on the exception handling mechanism to detect the caught and
uncaught exceptions at the application level. Nonetheless, JVM-related issues, such
as OutOfMemoryError that shuts down the JVM, cannot be handled. In this regard,
implementing the bug sensor at the JVM level could be more efficient, but it may face
compatibility issues between the JVM releases.
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6.3.1.6 Continuous Deployment

By taking advantage of the support of unanticipated adaptation and rollback recovery,
we can take the continuous deployment feature for granted. This support is essential for
adaptive systems demanding for high availability and stability in spite of erroneous situations.
A failure, arisen from a particular composition of variants, is reported by the bug sensor
to which a fixing version of them can be redeployed allowing the core objects to adapt
accordingly. Although trivial, the third case study elegantly demonstrated the need for this
feature for highly dynamic systems having hostile compositions.

6.3.2 Overhead

Naturally, enforcing behavioral adaptation at run time entails an overhead in terms of
execution time. Our benchmarks confirmed this statement valid. However, the overhead is
not a blocking factor for the practicability of LyRT. Despite being small, the case studies
show that the overhead is not perceivable by the users. Table 6.6 shows the overhead of
each feature in LyRT compared to the baseline counterparts. Although these overheads
are considerably high, the actual execution times are relatively small, i.e., a matter of
milliseconds for most cases. The chosen baselines are optimal for their respective purpose
whereas LyRT is generalized to support all the mentioned features at once. Therefore, the
overhead is inevitable. Below, we highlight the causes of the overhead and raise them for
future optimization.

Table 6.6: Summary of LyRT overhead regarding its features. Overhead is
denoted as a number of times slower (+) or faster (-).

Benchmark Baseline Overhead

Method Dispatch Standard Invocation +13.50

Partial Method Invocation Delegation +25.00

Unanticipated Adaptation Javassist [Chi00] -12.00

Unanticipated Adaptation Anticipated Adaptation +2.00

Consistent Method Execution1 Standard LyRT +1.04

Consistency2 Standard LyRT +1.39

Checkpoint Baseline Implementation +13.06

Rollback Baseline Implementation +17.23

Memory Consumption (for binding) Baseline Implementation +2.46

CPU Utilization (for binding) Baseline Implementation +35.00

1 A method invocation executed in a consistency block.
2 A measurement of a method invocation in a consistency block plus the time
taken for entering and leaving the block.

Although the implementation was not optimized, we point out sources of penalty for future
optimization. The discussion below is based on the current implementation and the chosen
data structure for the lookup table as it can be found in Chapter 5.
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Two primary sources of performance degradation need to be investigated. On the one
hand, the dynamic method dispatch checks an active compartment and associating roles
to be dispatched. This checking has to be done for every invocation which contributes to
a compelling amount of overhead. This task should be inlined for repetitive method calls.
In fact, once a target method is found, its execution speed is comparable to the standard
invocation; thanks to the invokedynamic opcode. Thus, the point to optimize is to find
the optimal process of method selections. On the other hand, since role instances are kept
separated from the core object, manipulating these roles is expensive due to the need for
listing and comparing processes. Normally, there is an O(n) search over the lookup table
(ArrayDeque<Relation>), where n is the number of binding relations. Building the cached
method table, however, requires an O(n2) search because of the deep-play-relation where it
can be reduced to be O(n log(n)). The chosen data structure to represent the lookup table
also influences the overall performance.

Another implementation aspect which should be considered for optimization is not to use
Java 8 lambda and stream API very much. We totally rely on these new features for lookup-
table manipulation. Instead, a traditional imperative programming style with iterations and
for-each loops should be employed since it is around five times faster than the functional
style lambda and stream. This result is publicly confirmed, and our benchmark also reports
similarly. In turn, we lose the sweet spot of readability in functional style if it is omitted.

As a remark, no matter how performance is optimized, we will never reach the speed of
the static systems. This is a trade-off between adaptation support and performance of the
run-time system.

6.3.3 Practicability

Through the benchmarks, we have scaled the number of roles up to 10,000 to show the
performance of adaptation. At this size, the role binding, in general, performs pretty fast;
the unbinding takes longer while the transfer takes even longer. In average, it takes 1.5
seconds as we assume the transfer operation will not be used quite often. Whether this
number is perceivable by users depends on the program size. Even if there is no quantitative
study on how many percentages of roles to be used in a typical adaptive system, we can get
a reference from the closest domains. Gregor Kiczales, the inventor of AOP and AspectJ,
once mentioned on the Dr.Dobb8 website that around 15% of program code could be placed
in aspects. This number aligns with the finding of Sven Apel who studied on 8 applications
written in AspectJ [Ape07, p. 113]. Salvaneschi et al. [SGP11] also believed that this number
is reasonable for COP. In this regard, it should rationally hold true for ROP and LyRT.
Therefore, a role-based application whose number of roles amounts to 10,000 may contain
more than 50,000 classes. At this size, spending 1.5 seconds in average for adaptation of
10,000 roles should be acceptable by the users. Practically, execution times required for
anticipated and unanticipated adaptation approximate to 25 and 35 milliseconds respectively
for an average-size application whose number of roles amounts to 1,000. Therefore, these
adaptation times are relatively small for practical use. Table 6.7 summarizes execution times
taken for anticipated and unanticipated adaptation with respect to the number of roles.

8The 15% Solution accessed on August 18, 2017: http://www.drdobbs.com/the-15-solution/184414845

http://www.drdobbs.com/the-15-solution/184414845
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Table 6.7: An average execution time for adaptation including role binding
and unbinding of an application with respect to the 15% solution1.

Number of Roles (15%)

10 100 1,000 5,000 10,000

Number of Core Objects (85%) 57 567 5,667 28,333 56,667

Anticipated Adaptation2 0.29 1.39 25.62 400.45 1,212.60

Unanticipated Adaptation2 1.06 2.64 35.35 557.84 1,973.56

1 The 15% Solution accessed on August 18, 2017: http://www.drdobbs.com/
the-15-solution/184414845
2 Execution time in milliseconds.

While scaling on adaptation imposes an insignificant overhead, the method execution of
newly adapted core objects inevitably entails a considerable overhead which is subject to
optimization. Because of this reason, LyRT is suitable for highly adaptive systems comprising
thousands of roles to be adapted at once, but it shall not be used for static or rarely adaptable
systems demanding for speed.

At the scale of 10,000 roles, the benchmarks of the checkpoint and the rollback show a
significant overhead as opposed to their baselines. However, their execution times are
relatively small concerning the practicability of a typical application, i.e., 0.32 seconds and
1.13 seconds for checkpoint and rollback, respectively. Moreover, the rollback overhead
affects the overall system performance only when a failure is detected.

Similarly, LyRT uses memory 2.46 times more than the baseline and utilizes CPU even more.
However, we still manage the case studies to run on resource-constraint devices such as the
first model of Raspberry Pi whose memory is limited to 256MB, and it is powered by a
700MHz single-core ARM processor.

6.3.4 Generality of LyRT

LyRT was proposed to be a general approach as much as possible without relying too much
on the host languages. In Section 4.6, we have already described which features are required
to implement a prototype for LyRT. Although Java is chosen as the host language, the main
purpose is to show the generality of the approach which is not tightly attached to the host
language. It is even easier to implement LyRT in dynamically typed languages such as
Ruby or Python whose MOP is fully supported for open implementation. Section 5.8 further
explains this claim.

http://www.drdobbs.com/the-15-solution/184414845
http://www.drdobbs.com/the-15-solution/184414845
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6.4 Chapter Summary

In this chapter, we exhibited a systematic approach to evaluate LyRT. First, we demonstrated
the prototype of LyRT by using it to implement three case studies in the domain of adaptive
software systems. For each case study, we validated LyRT against the run-time variability
requirements. These validations show that LyRT is more advanced than the existing
variability approaches with respect to adaptation due to the incorporation of unanticipated
adaptation and consistency control. Furthermore, LyRT integrates the rollback recovery
mechanism in order to improve run-time stability. Subsequently, we compared LyRT with
existing role-based approaches based on the classifying features of roles. LyRT satisfies 19
out of 26 features which mainly targets the run-time aspects.

Second, several micro-benchmarks were developed to quantify the overhead of LyRT regarding
its supported features. The result shows that LyRT is suitable for highly adaptive systems
while falls short on static or rarely adapted systems. That is the intention of developing
LyRT in order to trade performance with flexibility, i.e., adaptation, consistency and failure
handling in particular. Some points related to implementation have been sketched out for
future optimization, i.e., instead of using lambda expressions and Java stream API, an
imperative for-each loop should be used to manipulate roles. In the next chapter, we will
conclude this dissertation by summarizing the contributions and outlining future work.





Chapter 7
Conclusion and Future Work

Adaptive software systems are designed to operate in an ever-changing environment. Tradi-
tionally, building such systems leads to convoluted designs in order to achieve the necessary
run-time flexibility. Variability is a promising approach to develop adaptive software systems
while keeping software components (i.e., variants) modular for reusability. However, vari-
ability focuses on variant compositions at build time to create multiple software products.
Run-time variability focuses on one product but deals with run-time adaptation by shifting
the composition from build to run time. Dynamic composition of variants enables a system
to adapt its behavior accordingly.

This dissertation addressed the shortcomings of the existing approaches which are inadequate
to provide comprehensive support for run-time variability. They are often limited to
anticipated adaptation support in which the system behavior only changes with respect
to a set of predefined execution environments. This makes them unsuitable to address
practical problems where the execution environment is not fixed and often unknown until
run time. Enabling unanticipated adaptation support alleviates this issue but holds several
implications yielding undesirable behavior, such as inconsistency and potential run-time
failure. Depending on the type of variants and their activation mechanisms, providing
support for unanticipated adaptation might be a technological challenge. Throughout this
dissertation, we argued that instance-level adaptation is necessary in order to not only support
unanticipated adaptation but also handle inconsistency and run-time failure comprehensively.

7.1 Summary of Contributions

The goal of this dissertation was to provide flexible run-time support for adaptation as
well as to improve run-time availability and stability. In the context of roles, as discussed
in Chapter 2, we presented a run-time architecture, called LyRT, to offer comprehensive
support for run-time variability. LyRT is designed to support the coexistence of anticipated
and unanticipated adaptation at instance level. Additionally, we solve two fundamental
adaptation problems which are inconsistency in ongoing method executions and run-time
handling of failures due to role compositions. In order to solve these problems, we presented
three mechanisms in Chapter 4, which are seamlessly integrated into LyRT. These three
mechanisms are our core contributions which are summarized as follows:

Dynamic Instance Binding Mechanism. The role concept lays a prominent foundation
to support instance-level adaptation. Along with CROM [KLG+14], a dynamic instance
binding mechanism was proposed to loosely capture the binding relation between core
objects and their roles. This binding relation stores enough information not only for
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roles to be dispatched but also for their context-dependent behavior to be encapsulated
in an activation of a compartment. This relation is stored in a lookup table, a data
structure to manipulate roles and their associated compartment. The runtime keeps
the three kinds of objects separately allowing to lately adopt new roles at run time.
A dynamic method dispatch is determined based on the current information stored
in the lookup table. Therefore, this mechanism allows us to achieve both anticipated
and unanticipated adaptation at the instance level. The mechanism supports both
local and global activation allowing programmers to predefine the adaptation in the
currently executing thread or to trigger the adaptation from a global thread. Besides,
it allows a core object to bind and execute different roles simultaneously in order to
achieve variability in a multi-threaded environment.

Object-Level Tranquility Mechanism. Any system which allows dynamic activation
may face inconsistency when objects are not ready to adapt. In other words, those
objects promptly change their behavior when they are engaging in a block of code
where consistent behavior is required. Based on the concept of tranquility and the
dynamic instance binding mechanism, we presented a consistency mechanism working
at the object level to refrain the behavior of corresponding objects from being changed
regardless of either anticipated or unanticipated adaptation which is triggered asyn-
chronously. In order to enable consistent behavior, programmers have to provide a
consistency block, a framework construct, to surround the code demanding consistent
behavior. After the block has expired, the runtime reaches a tranquil state in which the
adaptation can take place safely. Similar to the dynamic instance binding mechanism,
this mechanism operates at the instance and the thread level enabling core objects to
live in a consistent state in parallel with the other adapted objects of the same type.

Rollback Recovery Mechanism. Run-time variability requires a dynamic composition
of variants. Although practically limited, theoretically, the number of variants is
infinite. The dynamic composition of these variants is prone to failure during execution
as we cannot assure all the possible compositions to work correctly. We presented
a rollback recovery mechanism to remedy this problem. The key to the solution
is to install a checkpoint of a system configuration before each adaptation taking
place. We proposed a specialized bug sensor, which relies on the application exception
handling for the current prototype, to embrace the run-time failure resulting from a
defective configuration. The bug sensor signals to the runtime to roll back the system
configuration to the most recent checkpoint which worked flawlessly. This mechanism
also operates at the thread level. Therefore, the detected failure only affects the
encountering thread. This characteristic allows the runtime to perform a lightweight
recovery without impacting the other threads.

Each mechanism answers to each of the three research questions formulated in Section 1.2,
which were later used to derive six requirements for run-time variability. Rather than
answering the questions directly, we validated LyRT against those requirements. The
prototype of LyRT was implemented in Chapter 5 and evaluated in Chapter 6. In the
evaluation chapter, we implemented three case studies by using the LyRT prototype to
validate LyRT against the six requirements. Unlike its rivals discussed in Chapter 3, we
argued that LyRT is versatile by satisfying those requirements. This validation proved that
the three mechanisms in LyRT meet the objectives, and thus they respond to our research
questions. Concerning the run-time performance, we developed several micro-benchmarks
to quantify the overhead. The summary of the overhead is shown in Table 6.6. The result
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revealed that although there is a considerable overhead compared to the baselines, the
execution is still sufficiently small for a practical use of typical adaptive systems. Therefore,
LyRT is suitable for a highly adaptive system which requires thousands of objects to be
adapted at once, but it should not be used in a static or a rarely adaptive system.

7.2 Future Work

Although LyRT is more versatile in terms of run-time adaptation, consistency and rollback
recovery, it inevitably comes with certain drawbacks. In Section 6.3, we discussed the
strengths and weaknesses of LyRT. Those weaknesses are the limitations to be addressed in
future work.

Optimization. According to the measured overhead, the LyRT prototype needs to be
optimized. As mentioned in Section 6.3.2, an immediate action is to eliminate the
usage of lambda expressions and to minimize the role-searching process. For a crucial
optimization, we need a role-aware JVM in order to get an optimal role tracing when
the role becomes active.

Code Readability. The current LyRT prototype is implemented in Java as a library which
limits the code readability when a core object needs to execute a role’s method. This
limitation is because of the strongly and statically typed checking at compile time
which does not allow the method to be substituted properly. In turn, we use a string
to resemble the method. In order to improve the code readability, an interpreter
should be developed to abstract all the function calls in LyRT into pure Java code. We
consider to reimplement LyRT in dynamically typed languages as a Domain-Specific
Language (DSL) purely embedded in those languages. This technique would not only
drastically improve the code readability but would also demonstrate the generality of
the approach.

Revisiting the Rollback Recovery Mechanism. In Section 6.3.1.5, we mentioned limi-
tations of the rollback recovery mechanism. As future work, those shortcomings should
be addressed, the bug sensor implementation in particular. Furthermore, a more
sophisticated case study with a large number of role compositions should be carried
out and evaluated along with the feature support for continuous software deployment.

Constraints. As described in Section 2.2, the played roles participating in a compartment
may constrain with each other. Enforcing constraints improves run-time consistency.
Hence, we plan to integrate these constraints as well as the notion of Role Groups,
specified in formal CROM [KBGA15], into LyRT.

Comprehensibility of the Role Model. Inspired by CROM [KBGA15], LyRT intro-
duces a run-time model based on the notion of compartment, role and object model.
Therefore, understanding CROM is essential to differentiate between the static and the
dynamic parts as well as their associated context so that developers can transform these
parts into the respective compartment, role and object model. Kühn et al. [KLG+14]
mentioned that the research landscape on roles is fragmented and discontinuous, imply-
ing practical limitations. Hence, a user study should be conducted in order to assess
the knowledge of applying the role model to a practical application.
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Fragility. Enabling unanticipated adaptation may violate system security and integrity.
In order to avoid these problems, a contract or a security policy should be specified.
Besides, there should be a link between a model and the runtime so that a modification
made in the model reflects the runtime change. If the model is checked with a model
checker, then the reflective change in runtime is safe to perform with respect to the
new specification. ProFeat [CDKB16] is a role-based model checker which can be used
to realize this vision.
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