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Abstract 

The present habilitation thesis in theoretical biological physics addresses two central dynamical 
processes in cells and organisms: (i) active motility and motility control and (ii) self-organized pattern 
formation. The unifying theme is the nonlinear dynamics of biological function and its robustness in 
the presence of strong fluctuations, structural variations, and external perturbations.  
We theoretically investigate motility control at the cellular scale, using cilia and flagella as ideal model 
system. Cilia and flagella are highly conserved slender cell appendages that exhibit spontaneous 
bending waves. This flagellar beat represents a prime example of a chemo-mechanical oscillator, which 
is driven by the collective dynamics of molecular motors inside the flagellar axoneme. We study the 
nonlinear dynamics of flagellar swimming, steering, and synchronization, which encompasses shape 
control of the flagellar beat by chemical signals and mechanical forces. Mechanical forces can 
synchronize collections of flagella to beat at a common frequency, despite active motor noise that tends 
to randomize flagellar synchrony. In Chapter 2, we present a new physical mechanism for flagellar 
synchronization by mechanical self-stabilization that applies to free-swimming flagellated cells. This 
new mechanism is independent of direct hydrodynamic interactions between flagella. Comparison with 
experimental data provided by experimental collaboration partners in the laboratory of J. Howard (Yale, 
New Haven) confirmed our new mechanism in the model organism of the unicellular green alga 
Chlamydomonas. Further, we characterize the beating flagellum as a noisy oscillator. Using a minimal 
model of collective motor dynamics, we argue that measured non-equilibrium fluctuations of the 
flagellar beat result from stochastic motor dynamics at the molecular scale. Noise and mechanical 
coupling are antagonists for flagellar synchronization. 
In addition to the control of the flagellar beat by mechanical forces, we study the control of the flagellar 
beat by chemical signals in the context of sperm chemotaxis. We characterize a fundamental paradigm 
for navigation in external concentration gradients that relies on active swimming along helical paths. In 
this helical chemotaxis, the direction of a spatial concentration gradient becomes encoded in the phase 
of an oscillatory chemical signal. Helical chemotaxis represents a distinct gradient-sensing strategy, 
which is different from bacterial chemotaxis. Helical chemotaxis is employed, for example, by sperm 
cells from marine invertebrates with external fertilization. We present a theory of sensorimotor control, 
which combines hydrodynamic simulations of chiral flagellar swimming with a dynamic regulation of 
flagellar beat shape in response to chemical signals perceived by the cell. Our theory is compared to 
three-dimensional tracking experiments of sperm chemotaxis performed by the laboratory of U. B. 
Kaupp (CAESAR, Bonn).  
In addition to motility control, we investigate in Chapter 3 self-organized pattern formation in two 
selected biological systems at the cell and organism scale, respectively. On the cellular scale, we present 
a minimal physical mechanism for the spontaneous self-assembly of periodic cytoskeletal patterns, as 
observed in myofibrils in striated muscle cells. This minimal mechanism relies on the interplay of a 
passive coarsening process of crosslinked actin clusters and active cytoskeletal forces. This mechanism 
of cytoskeletal pattern formation exemplifies how local interactions can generate large-scale spatial 
order in active systems. 
On the organism scale, we present an extension of Turing’s framework for self-organized pattern 
formation that is capable of a proportionate scaling of steady-state patterns with system size. This new 
mechanism does not require any pre-pattering clues and can restore proportional patterns in 
regeneration scenarios. We analytically derive the hierarchy of steady-state patterns and analyze their 
stability and basins of attraction. We demonstrate that this scaling mechanism is structurally robust. 
Applications to the growth and regeneration dynamics in flatworms are discussed (experiments by J. 
Rink, MPI CBG, Dresden).  
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Zusammenfassung [Abstract in German] 

Das Thema der vorliegenden Habilitationsschrift in Theoretischer Biologischer Physik ist die 
nichtlineare Dynamik funktionaler biologischer Systeme und deren Robustheit gegenüber 
Fluktuationen und äußeren Störungen. Wir entwickeln hierzu theoretische Beschreibungen für zwei 
grundlegende biologische Prozesse: (i) die zell-autonome Kontrolle aktiver Bewegung, sowie (ii) 
selbstorganisierte Musterbildung in Zellen und Organismen. 
In Kapitel 2, untersuchen wir Bewegungskontrolle auf zellulärer Ebene am Modelsystem von Zilien 
und Geißeln. Spontane Biegewellen dieser dünnen Zellfortsätze ermöglichen es eukaryotischen Zellen, 
in einer Flüssigkeit zu schwimmen. Wir beschreiben einen neuen physikalischen Mechanismus für die 
Synchronisation zweier schlagender Geißeln, unabhängig von direkten hydrodynamischen 
Wechselwirkungen. Der Vergleich mit experimentellen Daten, zur Verfügung gestellt von unseren 
experimentellen Kooperationspartnern im Labor von J. Howard (Yale, New Haven), bestätigt diesen 
neuen Mechanismus im Modellorganismus der einzelligen Grünalge Chlamydomonas. Der 
Gegenspieler dieser Synchronisation durch mechanische Kopplung sind Fluktuationen. Wir bestimmen 
erstmals Nichtgleichgewichts-Fluktuationen des Geißel-Schlags direkt, wofür wir eine neue Analyse-
Methode der Grenzzykel-Rekonstruktion entwickeln. Die von uns gemessenen Fluktuationen entstehen 
mutmaßlich durch die stochastische Dynamik molekularen Motoren im Innern der Geißeln, welche 
auch den Geißelschlag antreiben. Um die statistische Physik dieser Nichtgleichgewichts-Fluktuationen 
zu verstehen, entwickeln wir eine analytische Theorie der Fluktuationen in einem minimalen Modell 
kollektiver Motor-Dynamik. Zusätzlich zur Regulation des Geißelschlags durch mechanische Kräfte 
untersuchen wir dessen Regulation durch chemische Signale am Modell der Chemotaxis von Spermien-
Zellen. Dabei charakterisieren wir einen grundlegenden Mechanismus für die Navigation in externen 
Konzentrationsgradienten. Dieser Mechanismus beruht auf dem aktiven Schwimmen entlang von 
Spiralbahnen, wodurch ein räumlicher Konzentrationsgradient in der Phase eines oszillierenden 
chemischen Signals kodiert wird. Dieser Chemotaxis-Mechanismus unterscheidet sich grundlegend 
vom bekannten Chemotaxis-Mechanismus von Bakterien. Wir entwickeln eine Theorie der senso-
motorischen Steuerung des Geißelschlags während der Spermien-Chemotaxis. Vorhersagen dieser 
Theorie werden durch Experimente der Gruppe von U.B. Kaupp (CAESAR, Bonn) quantitativ bestätigt. 
In Kapitel 3, untersuchen wir selbstorganisierte Strukturbildung in zwei ausgewählten biologischen 
Systemen. Auf zellulärer Ebene schlagen wir einen einfachen physikalischen Mechanismus vor für die 
spontane Selbstorganisation von periodischen Zellskelett-Strukturen, wie sie sich z.B. in den 
Myofibrillen gestreifter Muskelzellen finden. Dieser Mechanismus zeigt exemplarisch auf, wie allein 
durch lokale Wechselwirkungen räumliche Ordnung auf größeren Längenskalen in einem 
Nichtgleichgewichtssystem entstehen kann. Auf der Ebene des Organismus stellen wir eine 
Erweiterung der Turingschen Theorie für selbstorganisierte Musterbildung vor. Wir beschreiben eine 
neue Klasse von Musterbildungssystemen, welche selbst-organisierte Muster erzeugt, die mit der 
Systemgröße skalieren. Dieser neue Mechanismus erfordert weder eine vorgegebene 
Kompartimentalisierung des Systems noch spezielle Randbedingungen. Insbesondere kann dieser 
Mechanismus proportionale Muster wiederherstellen, wenn Teile des Systems amputiert werden. Wir 
bestimmen analytisch die Hierarchie aller stationären Muster und analysieren deren Stabilität und 
Einzugsgebiete. Damit können wir zeigen, dass dieser Skalierungs-Mechanismus strukturell robust ist 
bezüglich Variationen von Parametern und sogar funktionalen Beziehungen zwischen dynamischen 
Variablen. Zusammen mit Kollaborationspartnern im Labor von J. Rink (MPI CBG, Dresden) 
diskutieren wir Anwendungen auf das Wachstum von Plattwürmern und deren Regeneration in 
Amputations-Experimenten.  
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1  Introduction 
 

 

1.1 Overview of the thesis 

In this habilitation thesis, we present systems-level theoretical descriptions of motility control and self-
organized pattern formation in cells and tissues. The overarching theme is the nonlinear dynamics of 
biological function and its robustness in the presence of strong fluctuations, structural variations, and 
external perturbations. As examples of biological function, we focus on two central dynamical 
processes in cells and organisms: (i) active motility and motility control of motile cells and (ii) self-
organized pattern formation in cells and tissues. Cell motility and motility control is studied in the model 
system of cilia and flagella, a highly conserved motile cell appendage of eukaryotic cells1–3, which is 
regulated by chemical and mechanical cues. This flagellar control facilitates flagellar synchronization4-6 
and navigation of flagellated swimmers7–9. The second theme, pattern formation, is studied both at the 
sub-cellular scale in the context of self-organization of cytoskeletal filaments into regular myofibrillar 
patterns10, and at the organism scale. There, we present a new mechanism for the dynamic scaling of 
self-organized Turing patterns11.  

Cell motility and motility control. We study the nonlinear dynamics of the eukaryotic flagellum, a 
slender cell appendage capable of spontaneous bending waves, which propels cellular microswimmers 
and pumps fluids in the human body. The rhythmic beat of eukaryotic flagella represents a prime 
example of a chemo-mechanical biological oscillator. In publication 2.1, we study the emergent 
dynamics that arises from the interactions between several flagella. We identified a novel mechanism 
of synchronization in pairs of beating flagella, which applies to free-swimming, bi-flagellated cells. 
This synchronization mechanism relies on a closed feedback loop between flagellar dynamics and self-
motion of the cell. This novel synchronization mechanism of mechanical self-stabilization is different 
from a previous mechanism that had been widely discussed in the field. This alternative mechanism 
proposed direct hydrodynamic interactions between flagella as the primary cause of flagellar 
synchronization. We show that both mechanisms can synchronize pairs of flagella, yet the new 
mechanism is predicted to dominate in free-swimming cells.  
In publication 2.2, we extend the conceptual theoretical description of flagellar synchronization 
developed in the previous publication towards a full quantitative description of flagellar swimming and 
synchronization in the model system of a swimming unicellular alga, Chlamydomonas. For that aim, 
we combine a minimal description of flagellar beat dynamics that coarse-grains active processes inside 
the flagellum in terms of an active driving force with a full hydrodynamic treatment of cellular 
swimming. We present a one-to-one comparison between theoretical results and experimental 
measurements that have been conducted by our collaboration partners in the Howard laboratory (now 
Yale University, New Haven). Using our quantitative description, we were able to quantitatively predict 
the swimming dynamics as well as a force-velocity relation of flagellar oscillations. Of note, the 
description is free from adjustable parameters: it had been fully parameterized by one set of 
experimental data (of synchronized beating), allowing us to make quantitative predictions that we could 
test against a second, complementary set of data (of desynchronized beating). The comparison of theory 
and experiment validates the theory and highlights the predictive power of theory, which in this case 
preceded the experiments.  
In publication 2.3, we characterize the beating flagellum as a noisy oscillator. We present direct 
measurements of flagellar phase and amplitude fluctuations. These fluctuations are of active nature and 



12 
 

surpass the contribution from thermal noise by orders of magnitude. Active fluctuations are a hallmark 
of active dynamics far from thermal equilibrium. In addition to this analysis of experimental data, which 
was guided by theoretical concepts of a noisy Hopf oscillator, we provide a theory of noisy motor 
oscillations. Thereby, we are able to explain the observed active fluctuations as the result of small-
number fluctuations in the activity of molecular motors. Specifically, we study a minimal model of 
collective dynamics of molecular motors, which gives rise to spontaneous oscillations by a dynamic 
instability, similar to the rhythmic flagellar beat. We demonstrate how small-number-fluctuations 
arising from the stochastic dynamics of individual molecular motors result in active fluctuations of 
collective motor oscillations, similar to those of the flagellar beat. Hence, using the flagellar beat as a 
model system, we demonstrate that stochastic dynamics at the molecular scale can yield to measurable 
implications for mesoscopic dynamics at the cellular scale. We show that flagellar amplitude 
fluctuations introduce stochasticity in the swimming paths of flagellated swimmers such as sperm cells. 
Phase fluctuations disturb flagellar synchronization, which implies a competition between active 
fluctuations and any mechanical coupling that tends to stabilize flagellar synchrony. 
In publication 2.4, we address the control of flagellar motility by chemical signals. We characterize a 
chemotaxis strategy along helical paths, which is employed by sperm cells to find the egg, e.g. in marine 
invertebrates with external fertilization. There, sperm cells are able to sense signaling molecules 
released by the egg and to steer their swimming paths upwards a concentration gradient of these 
molecules. We previously postulated a generic mechanism for helical chemotaxis that relies on a closed 
feedback loop of sensorimotor control, linking temporal chemical signals and flagellar steering 
responses. This helical chemotaxis represents a distinct gradient-sensing strategy that is different from 
the well-studied chemotaxis of bacteria along biased random walks. Recently, a close theory-
experiment collaboration with the experimental laboratory of Prof. Kaupp (CAESAR, Bonn, Germany), 
allowed the validation of our theory on a quantitative level. In publication 2.4, we present the results of 
this theory-experiment collaboration, including a comprehensive theoretical description of flagellar 
swimming and steering. In particular, our theory accounts for the hydrodynamics of flagellar swimming 
for a flagellar beat whose shape is dynamically regulated by a cellular signaling cascade. This theory, 
which encompasses only a small set of dynamic rules, can quantitatively account for apparently 
complex steering behaviors of sperm cells as observed in experiments. This includes dynamic decision 
making of sperm cells between two distinct steering modes in a situation-specific manner.  

Self-organized pattern formation in cells and tissues. In addition to motility control, we study pattern 
formation at the cell and organism level as a second example of nonlinear dynamics in biological 
systems. 
In publication 3.1, we address the self-assembly process of a complex motor-filament system, the 
myofibril, which is the key force generator in striated and cardiac muscle cells. We present a minimal 
mechanism by which actin filaments and bipolar myosin filaments inside a one-dimensional bundle 
self-organize into periodic spatial patterns, similar to those found in myofibrils. This minimal 
mechanism demonstrates that local interactions between micrometer-sized ‘active building blocks’ are 
capable of generating spatial order on large scales. We discuss how the polydispersity of filament 
lengths and the stochasticity of kinetic interactions impacts on the regularity of the emergent periodic 
patterns.  
In publication 3.2, we study pattern formation at the organism scale. We account for a remarkable 
biological phenomenon, the spontaneous emergence of self-organized patterns that scale with organism 
size. We present a minimal model for perfect pattern scaling of a head-tail gradient in the absence of 
pre-patterning cues. This minimal model comprises three interacting chemical species subject to a 
reaction-diffusion dynamics. We analytically derive a hierarchy of self-organized and self-scaling 
patterns. We analyze the stability of steady-state patterns, their basin of attraction, and relaxation 
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dynamics. For this, we apply the theory of dynamical systems to a pattern formation problem. Our 
theory provides a conceptual framework for pattern scaling and regeneration as observed e.g. in 
flatworms. Flatworms exhibit astonishing capabilities of reversible growth and regeneration, which are 
studied by our experimental collaboration partners in the Rink laboratory (MPI CBG, Dresden, 
Germany). Our minimal theory highlights a generic mechanism that predicts signatures of self-
organized pattern scaling that can be tested in experiments conducted by our collaboration partners. 

These selected publications exemplify our approach of complexity reduction in complex biological 
systems and the quantitative comparison of theory and experiment. In all publications, we use 
theoretical physics to understand the nonlinear dynamics of biological function and its robustness in the 
presence of non-equilibrium fluctuations. 
 

1.2 What is biological physics? 
While biology is traditionally concerned with the study of life, including the structure, development, 
and behavior of living organisms and their molecular underpinnings, physics studies fundamental 
interactions of energy and matter, and their motion in space and time. The subject of biological physics, 
living matter, constitutes a common intersection between these two natural sciences. Living matter 
displays novel physical phenomena with unconventional features, which are not commonly recognized 
in equilibrium systems. These include active motility12, non-equilibrium fluctuations13,14, adaptive 
dynamics15–17, and self-organized pattern formation18,19. Biological physics studies the physical 
principles that underlie these phenomena. On a methodological side, biological physics comprises tools 
from different fields of physics: dynamical systems theory, statistical physics, and computational 
physics, see Figure 1.  
Biological systems represent complex dynamical systems, where local interactions give rise to emergent 
dynamics on the system’s level20. As a prominent example, inside cells, interacting cytoskeletal 
filaments self-assemble into regular structures, such as stress fibers or myofibrils characterized by 
nematic and smectic order21,22. Ensembles of molecular motor proteins exhibit collective dynamics, 
which drives active cell motility. On the scale of tissues, chemical and mechanical communication 
between cells orchestrates tissue development and homeostasis. In these examples, system-scale 
dynamics arises from local interactions. The description of this emergent dynamics is the realm of 
statistical physics, yet three practical differences between the statistical physics of living and non-living 
condensed matter should be noted.  
- First, living systems are by definition out of equilibrium20. Even the maintenance of a steady-state is 
characterized by a continuous flux of energy and mass. Dynamics far from equilibrium implies that 
active fluctuations can surpass thermal fluctuations13,14.  
- Second, the number of interacting constituents in living matter are often in the range of 
N = 102 ¡ 106 , not N ¼ 6£ 1023 as in a mole of ideal gas. Examples of such constituents include 
individual cytoskeletal filaments inside an animal cell that form its cytoskeleton. The comparatively 
small number of interacting constituents implies that small-number fluctuations proportional to N 1=2 
give rise to substantial deviations from mean field dynamics.  
- Third, there is not a single division line between what defines the small scale and the large scale in a 
biological system, see Figure 1. Rather, there is a hierarchy of coarse-graining levels: from molecules 
to subcellular processes to cellular dynamics to tissues to organisms and even ecological systems, see 
Figure 1. It is the challenge of biological physics to develop appropriate effective theoretical 
descriptions for a specific coarse-graining level, which can bridge from one level to the next higher 
level23. 



14 
 

 
 

Figure 1. The toolbox of theoretical biological physics. Theoretical biological physics draws 
from different fields of physics. First, dynamical systems theory is indispensable to analyze 
effective theories of biological dynamics. Such effective theories coarse-grain dynamic 
processes at smaller scales and usually comprise effective degrees of freedom, e.g. system-
level activity states. Second, statistical physics provides the framework to derive such 
effective theories of mesoscopic dynamics from interactions at the micro-scale. Third, 
computational physics enables the analysis of theoretical descriptions of biological processes 
at different levels of detail and complexity, which are not amenable to analytical treatment 
anymore. Computational methods are further needed to analyze experimental data and to 
quantitatively compare theory and experiment. This toolbox of theoretical biological physics 
is applied to identify physical mechanisms of biological function at different coarse-graining 
levels and length scales, ranging from subcellular dynamics up to the interactions between 
organisms. In this thesis, we focus on the intermediate scale of cells and organisms. 

 
In this thesis, we employ an approach of minimality that seeks to identify those degrees of freedom of 
a biological system, which are absolutely needed to understand the physical principle behind a specific 
phenomenon, thus following the principle of Occam’s razor. It is understood that any theoretical 
description represents an idealization of nature’s complexity. We nonetheless strive for a quantitative 
comparison of theory and experiment. In fact, it is often only through the use of a theoretical description 
with a minimal number of adjustable parameters that the successful determination of parameters 
becomes feasible. The same applies to the falsifiability of a proposed physical mechanism of biological 
function. A bottom-up molecular description of biological processes is often not feasible due to the 
complexity of the system under study, as well as a result of our limited knowledge of its components 
and interactions. Even if this quantitative information were available, it is often desirable to complement 
bottom-up approaches by coarse-grained effective descriptions that highlight generic principles, one at 
a time, as studied in this thesis. We consider the crucial determinants of a theoretical description of 
biological system to be this choice of coarse-graining level and the choice of effective degrees of 
freedom, together with falsifiable assumptions on their dynamic relationships. In contrast, the actual 
mathematical framework used to formulate the theoretical description can often be chosen by practical 
considerations. Common choices include ordinary and partial differential equations, stochastic 
differential equations, finite difference equations, agent-based simulations, Markov models, Boolean 
networks, and cellular automata. Thus, the same physical idea may be cast into different specific 
mathematical formulations, which can often be considered equivalent on a conceptual level. The 
theoretical descriptions in this thesis employ stochastic nonlinear differential equations, both ordinary 
and partial, as well as agent-based simulations.  
We apply this methodological toolbox to two central dynamical processes of biological systems: (i) cell 
motility and motility control, and (ii) self-organized pattern formation inside cells and organisms. 
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Thereby, we seek to understand physical mechanisms that ensure robust biological function in the 
presence of non-equilibrium fluctuations, structural variations, and external perturbations. 
 

1.3 Nonlinear dynamics and control 
Active biological systems such as cells, tissues, and organisms continuously convert chemical energy 
into work and heat to facilitate e.g. directed motility and information processing24. Additionally, these 
systems are able to form ordered spatial patterns at the cell, tissue, and organism level by means of self-
organization20. In both cases, nonlinear feedback loops control biological dynamics. This nonlinear 
control ensures robust function in the presence of fluctuations and perturbations. In addition to external 
perturbations, internal fluctuations arising from non-equilibrium molecular processes and small-number 
fluctuations in biochemical reactions can be substantial and impact the dynamics on mesoscopic scales.  
 
Nonlinear dynamics. We can characterize biological systems in terms of mesoscopic variables. These 
variables may refer to classical biological variables such as the expression of specific genes or protein 
concentrations, as well as physical variables such as forces and fluxes, or spatial order parameters. A 
combination of positive and negative feedbacks between these mesoscopic variables gives rise to a rich 
nonlinear dynamics, whose features include excitability, bistability, and spontaneous oscillations25–28. 
These features enable responses to external stimuli and cellular decision making27,29,30.  
Excitability has been well characterized in the context of neuronal dynamics25. In publication 3.1, we 
will encounter an example of excitability in a pattern formation system. Bistability allows cells to 
dynamically switch between two cellular programs, e.g. modes of metabolic activity, in an adaptation 
to environmental conditions31. We will encounter an example of dynamic switching between two 
different steering modes in the context of chemotaxis of sperm cells in publication 2.4.  
Oscillations are paramount in biology: they are observed e.g. in cellular signaling systems. In these 
systems, closed feedback loops with a temporal delay represent a generic design paradigm for 
spontaneous oscillations32. A well-studied example of a biological oscillator is the circadian clock, 
which sets day-night rhythms of biological activity33. In the circadian clock, signaling proteins regulate 
their own concentrations in a closed feedback loop with delays, resulting in oscillations with an intrinsic 
oscillation period of about 24 h. These spontaneous oscillations become entrained to the daily rhythm 
of light exposure, providing an example of synchronization. Generally, signaling systems that harbor 
an internal oscillator can serve as a bandpass filter that actively amplifies oscillations of a sensory input 
signal at a certain frequency. An example is provided by hair cells of the inner ear that detect sound 
waves34,35. Some swimming cells process oscillatory light or chemical stimuli while navigating along 
chiral paths7,8,36,37, which we address in publication 2.4.  
Spontaneous oscillations occur also in chemo-mechanical oscillators. An important example are motile 
cilia and flagella, which represent slender cell appendages of eukaryotic (non-bacterial) cells1–3. Cilia 
and flagella exhibit self-organized regular bending waves with typical frequencies in the range of 
10¡ 100Hz. This flagellar beat pumps fluids and propels cellular swimmers in a liquid. Flagellar 
bending waves result from the collective dynamics of molecular motors inside the flagellum. A closed 
feedback loop, where elastic deformations of the flagellum control spatial profiles of motor activity 
inside the flagellum, gives rise to a dynamic instability and self-organized oscillations38,39. These 
chemo-mechanical oscillations do not depend on inertia, as motion is highly overdamped at the relevant 
length and time-scales. Instead, a combination of positive feedback and negative feedback with delay 
is sufficient to drive oscillations32. Positive feedbacks are a result of active processes and have been 
termed negative friction in the context of collective motor dynamics.   
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In addition to temporal dynamics, closed feedback loops also account for spatial patterns. Bidirectional, 
local interactions between two spatial fields A(x) and B(x) can give rise to the self-organized formation 
of spatial patterns40,41, as discussed in section 1.3.2. These spatial fields can correspond to local 
concentrations of signaling molecules, or also local mechanical stress40,42,43. In publication 3.2, we will 
present a generic mechanism for self-organized pattern formation, whose patterns adapt to system size 
by nonlinear feedback control11. 
The nonlinear dynamics of biological system facilitates adaptation to external perturbations, and robust 
function in the presence of strong fluctuations. These are discussed in the following. 
 

Adaptation. Cells and tissues can adapt to external conditions that change in time. A prototypical 
example is provided by sensory adaptation, where the sensitivity towards an extracellular stimulus is 
dynamically adjusted in response to slow changes of the stimulus base-level15,17. Sensory adaptation 
allows the detection of relative changes of a stimulus on a time-scale faster than a time-scale  of 
adaptation. For sake of illustration, we consider a minimal model of sensory adaptation that has been 
abstracted by Barkai and Leibler from the more complex signaling dynamics of the chemotactic 
response of the bacterium Escherichia coli as17 
 
  
 ¿ _p = 1¡ ps. (1) 
 
Here, a single nonlinearity, the product of the external stimulus s(t) and a dynamic sensitivity p(t), 
ensures that the system’s output a = ps is independent of the stimulus level for constant stimulus, 
s(t) = s0, yet faithfully tracks relative changes of the stimulus on time-scales faster than ¿ . We will 
employ an extension of this minimal model of sensory adaptation in a theoretical description of sperm 
chemotaxis in publication 2.4.  
In addition to the dynamic adaptation of sensitivity levels, even functional spatial structures can adapt 
to external perturbations. For example, in cells that mechanically interact with an elastic substrate, the 
spatial organization of the cytoskeleton and its rheological properties change as a function of substrate 
stiffness44,45 (see also theoretical work by the author on this topic46–48). On the tissue and organ level, 
examples of structural adaptation include the growth of muscle in response to exercise, or the thickening 
of bones in response to mechanical load49,50. Complex tissues such as the liver adapt to changes in 
metabolic load. These examples highlight the dynamic adaptation of form to function in biological 
systems. This dynamic adaptation requires a reverse feedback of functional characteristics on the 
structures that generated this function in the first place. Adaptation represents a specific case of 
information processing in biological systems. We  now  turn  to  another  instance  of  cellular  
information processing,  motility  control,  which  offers  the  unique  opportunity  to  directly  observe  
the output of cellular signaling in the form of cellular motility responses. 
 

Motility control. The control of cell motility requires closed feedback loops that link motility and 
sensory input. During chemotactic navigation of cells reviewed in section 1.4.3, external chemical 
stimuli are transduced by the cell to control the dynamics of the cytoskeleton of the cell, and thus cellular 
motility. Conversely, the active motion of a cell in a spatial field of a stimulus determines the temporal 
stimuli perceived by the cell. This general principle, by which a motile agent structures the sensory 
input it receives by its own motion has gained recent attention in the field of control theory as the 
principle of information self-structuring51. Steering responses of a cell represent a direct read-out of the 
output of the signaling cascades that control motility. Thus, cellular motility control represents a 
convenient model system to study the nonlinear dynamics of cellular information processing. 
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Robustness. An important aspect of dynamic feedback control in biological systems is the robustness 
of biological function to external perturbations and internal fluctuations52,53. At the mesoscopic scale of 
the cell, thermal noise, non-equilibrium fluctuations, and molecular shot noise can be substantial and 
interfere with biological function. For example, small-number fluctuations of signaling molecules 
introduce a substantial element of stochasticity into biological information processing. In section 1.4.3, 
we review three different chemotaxis strategies employed by single cells, each of which allows to detect 
extracellular concentration gradients of signaling molecules in a different way. We argue that these 
different mechanisms represent an adaptation to different levels of noise, both in motility and sensing8. 
Occasionally, fluctuations can play also a beneficial role: some cells harness noise to facilitate a 
spectrum of heterogeneous responses despite their otherwise identical setup, the most prominent 
example being the adaptive immune system54. Theoretical descriptions of biological function as pursued 
here allow to assess the reliability of control mechanisms with respect to external perturbations and 
intrinsic fluctuations. In addition to robustness with respect to intrinsic and extrinsic fluctuations, 
biological control designs often exhibit structural robustness.  
Structural robustness defines the property of a system to function reliably, even if parameters of the 
system, or even its design, are varied. Such variability can be the result of genotypic heterogeneity, or 
of external perturbations and internal fluctuations that occurred during the development of the system. 
Control mechanisms that require fine-tuning of parameters would lack structural robustness. Theoretical 
descriptions of biological function allow to delineate the parameter region of reliable function. We will 
discuss examples of parameter robustness in chapters 2 and 3 in the context of motility control and 
pattern formation, respectively. Structural robustness relates also to the very design of the control 
mechanism itself. One common design paradigm for structural robustness is redundancy, where 
important functional elements operate in duplicate. Redundancy applies for example at the level of 
proteins, where several proteins often perform similar functions, and can partly substitute for one 
another, if one protein were absent. Similar, complex signaling networks often have redundant network 
topologies that can compensate for the failure of individual signaling links. Another design paradigm 
ensuring structural robustness are control mechanisms that depend only on qualitative features of 
functional relations between state variables (e.g. monotonic dependence of one variable on another) as 
compared to strict quantitative relations (e.g. linear dependence). In publication 3.2, we will explicitly 
discuss a generic pattern forming system that scales self-organized patterns proportional to system size, 
whenever a number of qualitative conditions are met11. 
 

In the following, we review selected aspects of nonlinear dynamics and feedback control with a focus 
on cell motility and self-organized pattern formation.  

1.3.1 Mechanisms of cell motility 
Cells employ a great variety of energy-dependent mechanisms for locomotion, including swimming, 
crawling, and twitching as discussed below55. A common feature of these different mechanisms is the 
non-equilibrium dynamics of the cytoskeleton of the cell12. Active shape changes allow motile bacteria 
and flagellated eukaryotic cells such as sperm to propel themselves in a liquid56–58. In these examples, 
molecular motors interact with cytoskeletal filaments to drive motility. Other cells such as macrophage 
immune cells crawl on a substrate by harnessing active polymerization forces of cytoskeletal filaments, 
which push their cell front forward59,60. This crawling motility requires partial adhesion to a substrate 
in order to constrain backward motion due to reaction forces. 
Directed motion requires a structural polarity of the cell. Cell polarity can be static, as in the case of 
sperm cells with a defined head-tail morphology. Static cell polarity implies that cells have to actively 
rotate during steering responses. Other cells, such as macrophages with crawling motility, display a 
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dynamic polarity, associated with a continuous remodeling of their cytoskeleton61,62. Multiple sensory 
cues including chemical and mechanical stimuli control the direction of cell motility. 
 
The molecular machinery of cell motility. We first review key components of the cytoskeleton, whose 
non-equilibrium dynamics drives the different locomotion strategies of single cells: these components 
comprise structural biopolymeric filaments and force-generating molecular motors, see Figure 2. 
Three classes of cytoskeletal filaments in eukaryotic cells. Inside cells, monomers of cytoskeletal 
proteins polymerize into filaments that constitute the cytoskeleton of the cell3,63. The cytoskeleton 
defines the mechanical properties and morphology of cells, especially in cells that lack a cell wall, such 
as animal cells. In eukaryotic cells, three classes of cytoskeletal filaments are found: actin filaments, 
microtubules, and intermediate filaments. 
- Actin filaments: Actin is the most abundant intracellular protein in the eukaryotic (non-bacterial) cell, 
constituting 1-5% of its total protein content. Actin monomers (G-actin) polymerize into semiflexible 
actin filaments (F-actin), which have a persistence length of about 10¹m 63. Actin filaments are 
structurally polar, with a designated plus-end (also named: barbed end) and minus-end (also: pointed 
end). In a typical eukaryotic cell, actin filaments form a crosslinked meshwork with gel-like properties 
that fills intracellular space. Additionally, actin filaments form a dense cortical network beneath the cell 
membrane of animal cells, the actin cortex. Turn-over of the actin cytoskeleton is fast, with a time-scale 
of 1¡ 10 s measured for the actin cortex64. 
Polymerization dynamics of actin filaments is coupled to the hydrolysis of Adenosine triphosphate 
(ATP)3,63. This renders actin polymerization a non-equilibrium phenomenon that breaks detailed 
balance. Generally, polymerization kinetics is faster at the structural plus-end of an actin filament 
compared to its minus-end. Polymerizing actin filaments can exert active polymerization forces65, 
which underlie the mechanism of crawling motility of cells59.  
The structure of the actin cytoskeleton is tightly regulated by the cell3. Specifically, the length of actin 
filaments is fine-tuned by capping proteins that cap filament ends to regulate actin polymerization 
dynamics. Severing proteins can bind at any position along an actin filament, inducing filament 
breakage at the binding position.  Actin binding proteins can crosslink and bundle actin filaments. In 
addition to these ‘passive’ actin binding proteins, actin filaments interact with molecular motors of the 
myosin family that generate active forces3. The structural polarity of actin filaments with a designated 
plus- and minus-end sets a direction of motor motion. Conventional myosin motors walk towards the 
actin plus-end. Further, actin filaments, myosin motor proteins, and actin binding proteins can assemble 
into spatially ordered structures inside cells. For example, non-motile animal cells adhered to a substrate 
can form stress fibers of bundled actin filaments, thus representing a case of nematic order. In striated 
and cardiac muscle cells, actin filaments and myosin filaments are arranged in myofibrils of almost 
crystalline regularity, thus representing an example of smectic order of the cytoskeleton22. 
- Microtubules: The second major class of cytoskeletal filaments are microtubules, which are 
polymerized out of stable dimers of the protein tubulin. Microtubules are comparatively stiff hollow 
tubes of diameter 24nm with a persistence length of about 1mm 63. Microtubules serve as tracks for 
kinesin and dynein motor proteins and play a major role in directed intracellular transport.  
Microtubules can assemble into cell-scale ordered structures. One prominent example is the mitotic 
spindle, a bipolar cytoskeletal scaffold that serves for partitioning the two copies of the chromosomes 
to the two prospective daughter cells before cell division3. A second microtubule-based structure is the 
flagellar axoneme, which forms the cytoskeletal core of cilia and flagella. The axoneme comprises a 
cylindrical arrangement of 9 doublet microtubules, which are connected by dynein molecular motors 
(and additional proteins ensuring structural integrity)66. The collective dynamics of these motors drives 
regular bending waves of motile flagella2, see Figure 4. 
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- Intermediate filaments: As a third class, intermediate filaments represent a heterogeneous family of 
filaments that serve as structural elements, e.g. in neurons and muscle cells. Special intermediate 
filaments form the hairs and nails of animals3.  
In bacteria, cytoskeletal filaments homologous to those of eukaryotic cells are found, which play 
important roles for cell motility and cell division67.  
 

 
 

Figure 2: Elements of the cytoskeleton. A. Eukaryotic (non-bacterial) cells contain actin 
filaments and microtubules as key elements of their cytoskeleton, which defines mechanical 
properties of the cell. These biopolymers are highly dynamic and continuously undergo non-
equilibrium polymerization dynamics. Actin filaments and microtubules are structurally 
polar, with distinct polymerization dynamics at their structural plus- and minus-end, 
respectively. B. Actin filaments and microtubules serve as tracks with defined directionality 
for molecular motor proteins, such as myosin motors. Myosin motors undergo chemo-
mechanical cycles, which couple the energy-favorable hydrolysis of ATP molecules and a 
conformational change, which can generate piconewton forces and perform mechanical work. 

 
Non-equilibrium polymerization dynamics. Polymerization of cytoskeletal filaments is a non-
equilibrium process that is coupled to the hydrolysis of ATP in the case of actin filaments and GTP in 
the case of microtubules3,63. We briefly review non-equilibrium polymerization dynamics for the case 
of actin filaments63. Each actin monomer tightly binds either an ATP or ADP molecule. We thus refer 
to T-state and D-state monomers, respectively. Free monomers in the cytosol are mainly in T-state, 
while the monomers within an actin filament rapidly switch to D-state by hydrolysis of their bound 
ATP. An actin filament will elongate by polymerization at its tip, whenever the concentration of free 
monomers exceeds the critical concentration of the polymerization reaction. The critical concentrations 
for T-state and D-state monomers are different due to different values of ¢G for the respective 
polymerization reactions. For intermediate concentrations of free actin monomers, there can be net 
polymerization of T-state monomers at the structural plus-end of an actin filament, and net 
depolymerization of D-state monomers at the structural minus-end. As a result, a dynamic steady state 
can form that is characterized by net elongation at the plus-end and net shrinkage at the minus-end. 
During this actin treadmilling, actin monomers ‘flow’ through the filament. This mechanism requires 
that the rate at which new T-state monomers are added at the plus-end is faster than the rate of 
hydrolysis, such that the plus-end-tip of the filament will remain in T-form. The treadmilling of 
individual actin filaments captures essential aspects of crawling cell motility, which is driven by the 
non-equilibrium polymerization dynamics of a structurally polarized actin cytoskeleton68. In publication 
3.1, we further discuss a possible role of actin treadmilling for the formation of periodic cytoskeletal 
patterns10.  
Actin filaments and microtubules serve as tracks for molecular motors, which we review in the next 
paragraph.  
 
Molecular motors convert chemical energy into work and heat. Directed transport processes inside 
cells, cell locomotion, and contraction of muscle all rely on the activity of motor proteins at the 
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molecular scale. The common working principle of a molecular motor is a tight coupling between an 
energy-favorable chemical reaction and a conformational change of the motor protein itself. This 
conformational change can perform mechanical work (with a typical order of magnitude of 
1¡ 10 pN¹m per chemo-mechanical cycle). 
Different classes of molecular motors exist in bacterial and eukaryotic cells. In the cell membrane of 
bacteria such as Escherichia coli, a rotary motor is driven by a proton-gradient56. This rotary motor 
rotates helical filaments for cell propulsion69. In eukaryotic cells, molecular motors move along actin 
filaments and microtubules to transport cargo and generate active mechanical forces63. Important motor 
families include myosin motors, which move along actin filaments, and kinesins and dyneins, which 
move along microtubules. In their function as motor tracks, actin filaments and microtubules provide a 
periodic lattice of motor binding sites with a lattice constant of a few nanometers, which is set by the 
size of their respective monomers. The structural polarity of actin filaments and microtubules with a 
designated plus-end and minus-end defines a direction of motor motion. Most members of the kinesin 
motor family walk towards the structural plus-end of microtubules, whereas most dyneins walk towards 
the minus-end. Conventional myosin motors move towards the plus-end of microtubules. Molecular 
motors undergo periodic chemo-mechanical cycles, during which the motors bind and unbind from their 
track to take a single step, while one ATP molecule is hydrolyzed. We review this chemo-mechanical 
cycle for the example of skeletal myosin63: In the most common reaction path, a free myosin motor 
domain binds an ATP molecule, which is subsequently hydrolyzed into Adenosine diphosphate (ADP) 
and a phosphate group. The release of the reaction products constitutes the rate limit step of the ATPase 
activity of free myosin. Binding of myosin to an actin filament accelerates this release at least 200-fold. 
The release of ADP and phosphate is accompanied by a conformational change of the myosin motor 
domain, which causes a motion of the myosin backbone relative to the actin filament with a working 
distance of about 5 nm. The myosin is then ready to bind a new ATP-molecule. This triggers the 
unbinding of myosin from the actin filament to restart the cycle.   
Single molecular motors such as myosin and kinesin exert typical forces in the piconewton range. For 
example, conventional kinesin motors can exert forces up to 6 pN, while taking 8nm steps along their 
microtubule track. This corresponds to a mechanical work of 10 kBT  per step. This represents a 
considerable fraction of the difference in Gibbs free energy of ¢G = 20¡ 25 kBT  associated with the 
hydrolysis of a single ATP molecule during each step63. Kinesin is a processive motor that takes a 
sequence of steps before it detaches from its track. Such processive molecular motors exhibit effective 
force-velocity relationships70: an applied external force reduces their velocity, until their motion comes 
to a halt at a critical stall force. For conventional kinesin, the stall force is about 6 pN. 
We note that for a single molecular motor, the principle of microscopic reversibility holds:  for each 
reaction step of the chemo-mechanical cycle, both the forward and the backward reaction are possible. 
Thus, there is a finite probability that a molecular motor takes a step backwards. At physiological 
conditions, the high chemical potential of ATP breaks detailed balance of the cycle and favors forward 
motion. Backward stepping of molecular motors has been observed experimentally, especially under 
high load forces. As a side note, ATP-synthesis in mitochondria relies exactly on this microscopic 
reversibility: the F0-F1-ATPase protein complex couples a proton-driven and an ATP-driven rotary 
motor. In the presence of a strong proton gradient generated by glycolosis across the mitochondrial 
membrane, the proton-driven F0 motor spins the ATP-driven F1-motor backwards71,72. As a result, the 
F1-motor serves as a dynamo that synthesizes its own fuel in the form of high-energy ATP molecules.  
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Figure 3: Mechanisms of cell motility. A. Bacteria such as Escherichia coli propel themselves 
in a liquid by rotating a passive helical filament, the prokaryotic flagellum. The rotation of 
this prokaryotic flagellum is driven by a rotary motor in the cell membrane, which draws its 
energy from a proton gradient across the cell membrane. Some bacterial strains are multi-
flagellated with several prokaryotic flagella that can synchronize their rotations and form 
stable bundles. B. Eukaryotic (non-bacterial) cells such as sperm cells can swim in a liquid 
by virtue of regular bending waves of one or several eukaryotic flagella. Eukaryotic flagella 
are active filaments. Their bending waves emerge from the collective dynamics of a large 
number (104 ¡ 105) of molecular dynein motors distributed along the length of the eukaryotic 
flagellum. C. Eukaryotic cells, such as macrophages of the immune system, harness 
polymerization forces of numerous actin filaments to crawl on a substrate. Propagation of a 
leading front termed lamellipodium is driven by polymerization forces of a structurally 
polarized actin cytoskeleton. Additional motility mechanisms are mentioned in the text.  

 
Bacteria swim by rotating passive helical filaments. One of the best-studied examples of cell motility 
is the swimming of the bacterium Escherichia coli. This bacterium employs a rotary molecular motor 
in its cell wall to rotate a passive helical filament, termed the prokaryotic flagellum56. The prokaryotic 
flagellum is physically connected by a flexible hook to the rotor of the motor complex, which in turn 
can rotate freely inside a stator that is anchored to the cell wall. A proton gradient across the cell 
membrane drives a counter-rotation of rotor and stator73. This rotary motor has been a model system of 
biological physics, and its macro-molecular structure and mechanical function have been studied in 
great detail. The rotation of the rotary motor spins the helical filament and thereby propels the bacterium 
in a liquid69, see Figure 3. 
Bacterial motility control. Bacterial swimming represents a model system of motility control that has 
been studied extensively at the level of individual motors, of individual filaments, and at the level of 
the cell. Classic experiments revealed an operational load characteristic of the rotary motor with a 
rotation frequency that decreases with the applied load74. Such force-velocity relationships represent a 
general characteristic of molecular motors.  
The prokaryotic flagellum itself is a passive filament. It is polymerized out of a single type of monomer, 
the protein flagellin. The prokaryotic flagellum forms a tubular polymer with 11 protofilaments. The 
helical shape of this filament is the result of a cooperative conformational change of flagellin monomers 
within a defined sub-set of its protofilaments. This heterogeneous conformational switch minimizes an 
intrinsic eigenstrain of the protein lattice in the flagellum75–78. Mechanical load can induce a cooperative 
conformational switching of all flagellins in one protofilament and thus a dynamic transition of the 
entire filament to a different polymorphic helical state. Most of the 11 theoretically possible 
polymorphic states have been observed in experiments. 
In bacteria with multiple flagellar filaments, hydrodynamic interactions between rotating helical 
filaments results in the synchronization of filament rotation of the different filaments and the formation 
a stable bundle79,80. This flagellar bundling enhances propulsion efficiency. During bacterial swimming 
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and navigation, flagellar bundling is tightly controlled by an intracellular signaling pathway69. 
Specifically, chemical signals can reverse the rotation direction of one or several rotary motors, which 
destabilizes the flagellar bundle and induces a transition of one or several flagella to a different 
polymorphic state of different handedness. The net result of this transient dynamics is a random 
reorientation event of the cell. A dynamic regulation of the frequency of these stochastic reorientation 
events facilitates chemotactic navigation in chemical gradients along a ‘run-and-tumble’ biased random 
walk81. This bacterial chemotaxis strategy is discussed in more detail in section 1.4.3.  
While the bacterial flagellum is a passive filament, eukaryotic (non-bacterial) cells employ active 
filaments, termed cilia and flagella, which we discuss next. 
 
The eukaryotic flagellum is an actively bending filament. Many eukaryotic (non-bacterial) cells are 
equipped with slender cell appendages termed cilia or flagella1. Cilia and flagella perform multiple 
sensory, signaling, and motility functions82,83. We will use the term eukaryotic flagellum for both cilia 
and flagella (where the main difference between cilia and flagella are their length and minor structural 
details). The eukaryotic flagellum is not to be confused with the prokaryotic flagellum of bacterial cells. 
While the prokaryotic flagellum is a passive protein polymer, the eukaryotic flagellum is an active 
filament.  
The eukaryotic flagellum is a membrane-enclosed cell appendage of typical length 10¡100¹m and 
diameter of about 500 nm that contains a highly regular cytoskeletal core, the axoneme3, see Figure 4. 
The axoneme is composed out of 9 doublet microtubules in equidistant cylindrical arrangement, see 
figure 3. Additionally, a central pair of microtubules in the center of this cylinder may be present or not, 
corresponding to the sub-types of 9+2 and 9+0-axonemes. More than 250 accessory proteins ensure 
structural integrity and function of the axoneme66. The axoneme of motile eukaryotic flagella contains 
dynein motors66,84, which render the eukaryotic flagellum a mechanically active filament85.  
 

 
 

Figure 4: The eukaryotic flagellum contains a highly conserved cytoskeletal core, the 
axoneme. The axoneme comprises a cylindrical arrangement of 9 doublet microtubules, 
which are connected by dynein molecular motors. The collective dynamics of these dynein 
motors drives regular bending waves of cilia and flagella. Left: Schematic of flagellated sperm 
cell, middle: cross-section of the flagellar axoneme, right: schematic of axonemal 
architecture. Electron micrography from ref.86 with permission. 
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It is remarkable that the highly regular structure of the axoneme is found in all 5 kingdoms of eukaryotic 
life, including amoeba, plants, and animals87. This evolutionary highly conserved structure appeared 
early after the chiasm between prokaryotes (bacteria and archaea) and eukaryotes. It has been speculated 
that the axoneme evolved from the cytoskeletal cell division machinery in eukaryotic cells, the mitotic 
spindle, by means of re-dedication to a new function87. 
 
Collective motor dynamics drives flagellar bending waves. Some cilia and flagella are motile. Inside 
their axonemes, neighboring doublet microtubules are connected by dynein molecular motors66,84. The 
axoneme has a chiral architecture: dyneins are tightly bound to one doublet and exert forces on the 
neighboring doublet in clockwise sense (when viewed from the basal end of the axoneme).  
We review the mechanism of active flagellar bending by motor-induced filament sliding2,3. The activity 
of dynein motors slides neighboring doublet microtubules relative to each other88,89. Free sliding is 
partially constrained, both at the basal end of the axoneme as well as by nexin protein links distributed 
along the flagellar length. These constraints convert the shearing forces generated by the dynein motors 
into bending moments that bend the axoneme. Bending in one direction requires that motors on one 
side of the axoneme are preferentially active at a given time. Spontaneous oscillations in motor activity 
drives regular bending waves of the flagellum. The bending rigidity of the flagellum is highly 
anisotropic for many flagella90, favoring bending in a plane. This results in planar flagellar beat patterns 
in many cells, including important flagellated model swimmers such as marine invertebrate sperm or 
the green alga Chlamydomonas. A small chirality of flagellar bending waves results in helical 
swimming paths of defined handedness of these flagellated swimmers91–93, which has implications for 
cellular navigation7–9,94. 
The control of dynein activity and the emergence of oscillatory motor activity represents an instance of 
self-organized collective dynamics in an ensemble of molecular motors95. One of the most-striking 
experiments demonstrating this self-organization is the re-activation of demembranated axonemes 
isolated from flagellated cells96–98. Upon provision of ATP, these isolated axonemes resumed regular 
bending waves, independent of any cellular control circuits.  
Self-organized flagellar bending waves are the result of a closed feedback loop between the spatial 
activity profile of dynein motors inside the axoneme and geometric deformations of the axoneme, which 
gives rise to a dynamic instability99,100. Specifically, local motor activity deforms the axoneme, which 
again changes motor activity in a defined spatial range. As a result, travelling waves of motor activity 
emerge, which propagate along the flagellar length39,100–102. The shape of the resultant flagellar bending 
waves is sensitive to boundary conditions100. We have been general in refereeing to the geometric 
deformation of the axoneme on purpose. The precise nature of the control of motor activity by 
deformations of the axoneme is still open. Three major theories are discussed. In one of the earliest 
theories, Brokaw proposed that the local curvature of the axoneme constitutes the key regulator of motor 
activity99. Other authors objected that the local deformation resulting from typical curvatures are 
negligibly small on the length-scale of individual molecular motors39. Lindemann et al. proposed that 
bending of the axoneme causes splay, i.e. an increase of the inter-doublet spacing, which potentially 
could regulate motor activity102. Finally, Jülicher et al. considered a theoretical description in which the 
local sliding displacement of neighboring microtubules controls motor activity39. While the last model 
could quantitatively account for the waveform of the sperm flagellar beat, recent experiments with 
shorter flagella of the green alga Chlamydomonas challenges the sliding control model103,104. It is 
possible that control mechanisms of the flagellar beat are less conserved as previously anticipated. A 
major bottle-neck in uniquely identifying the mechanism of motor control of the beating axoneme is 
the simplicity of flagellar bending waves, which can be characterized by a small number of waveform 
parameters. Thus, different mechanisms relying on different microscopic assumptions can reproduce 
the observed waveforms equally well, provided the parameters of these models are chosen 



24 
 

appropriately. Our research presented in this thesis provides additional characterizations of the flagellar 
beat in terms of (i) an active mechano-response of the flagellar beat in response to changes in 
hydrodynamic load5 and (ii) active fluctuations of the flagellar beat due to motor noise14. We anticipate 
that such additional characterizations can contribute to the discrimination between the different 
proposed theories on the origin of the flagellar beat. 
 
Moving in fluids. Flagellar bending waves propel cellular swimmers such as sperm cells1,58, swimming 
alga105, and pathogens (e.g. Trypanosomes106, which cause sleeping sickness, and certain life cycle 
stages of Malaria parasites107). At the length and time-scales of cellular microswimmers, viscous forces 
dominate over inertial effects108–110. The relative magnitude of inertial forces compared to viscous forces 
for a swimmer with periodic shape dynamics is characterized by the dimensionless Reynolds number 
of oscillatory motion 
 

 Re =
½!0Ad

´
. (2) 

 
Here, ½ and ´ denote the density and dynamic viscosity of the fluid, respectively, while !0 and A denote 
frequency and amplitude of the periodic swimming stroke. Finally, d denotes a characteristic length-
scale of the swimmer. A low Reynolds number implies that viscous forces dominate over inertial forces 
at the relevant time and length-scales. For example, for a beating flagellum of diameter d = 0:4¹m, 
beat amplitude A = 5¹m, beat frequency !0 = 30Hz, we estimate Re » 10¡4. Note that it is the 
diameter of the flagellum, not its length, that sets the magnitude of maximal fluid stresses111. 
In the limit of zero Reynolds number, the Navier-Stokes equation governing fluid flow simplifies to the 
linear Stokes equation,  
 
 0 = rp¡ ´r2v, (3) 
 
where p  and v  denotes pressure and flow field of the fluid. The Stokes equation is linear. Thus, its 
solutions obey a superposition principle. General solutions of the Stokes equation can be found as 
superposition of its fundamental solution, the Stokeslet vi = GijFj, which describes the flow resulting 
from a point force Fj±(r) acting on the fluid. Here, Gij(r) = (8¼´)¡1(1=r + rirj=r

3) denotes the 
Oseen tensor. This superposition principle has been exploited to derive analytical results for the motion 
of minimal model swimmers, see e.g. references112–116. This superposition principles further underlies 
 efficient algorithms to solve the Stokes equation in complex geometries numerically117.  
The second general feature of the Stokes equation is its invariance under time-reversal. This time-
reversal symmetry has important functional consequences for swimming and hydrodynamic 
synchronization at low Reynolds number. Time-reversibility implies that the swimming path of a low 
Reynolds number swimmer depends only on the sequence of shapes it attains as a function of time, but 
is independent of the rate of shape change. In particular, a reciprocal swimming stroke with a backward 
stroke that traces a forward stroke exactly backwards in time will produce a periodic motion, but zero 
net displacement. This phenomenon is known under the colloquial name of the Scallop theorem108. The 
name was coined following an illustrative example of an idealized scallop presented in a popular lecture 
by Purcell: a two-leg-swimmer with a single joint that opens and closes periodically. A corollary of the 
scallop theorem is that any swimming stroke with amplitude A, where A is small compared to a size L 
of the swimmer, will result in a net swimming speed v  that scales quadratically with A, i.e. 
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 v » A2!0=L. (4) 
 
Here, !0 is the frequency of the swimming stroke. One may denote this relation the quadratic law of 
low Reynolds number propulsion115. Formally, the net swimming speed v is independent of fluid 
viscosity ´. However, this argument assumes that the swimming stroke will not be altered by an increase 
in hydrodynamic load associated with an increase in ´. In real systems, the active processes that drive 
the swimming stroke will generally display a force-velocity relationship, i.e. slow down under increased 
load. Such force-velocity relationships have been measured for beating flagella both in response to an 
increase in fluid viscosity96,118,119 as well as in response to a dynamically varying load5.  
The mathematical beauty of self-propulsion at low Reynolds numbers has attracted a continuous stream 
of theoretical studies, following an early exposition by Taylor in 19514. We briefly mention a geometric 
interpretation by Shapere and Wilczek, who identified self-propulsion at low Reynolds numbers as a 
connection of an SE(3)-fiber bundle on a space S of admissible shapes of a swimmer120. Here, the 
special Euclidean group SE(3) denotes the Lie group of rigid body transformation in 3-dimensional 
space. Any trajectory s(t) in shape space S lifts to a trajectory [s(t);G(t)] in this fiber bundle 
S £ SE(3). This trajectory characterizes the translational and rotational motion of a shape-changing 
low Reynolds number swimmer that is free from external forces and torques in terms of a time-
dependent rigid body transformation G(t) 2 SE(3) of a material frame of the swimmer. For periodic 
shape changes of small amplitude A, the net motion G(T )¡1G(0) after one swimming stroke of period 
T  is proportional to A2, see equation (4). The proof relies on the argument that any swimming stroke 
of infinitesimal amplitude can be written as the superposition of several reciprocal shape modes. As a 
consequence of the scallop theorem, none of these reciprocal shape modes alone can result in any net 
motion of the swimmer. However, nonlinear cross-terms between different reciprocal modes result in 
net displacement, which thus scales with A2. As an example, we note that flagellar bending waves can 
be approximately described as traveling bending waves. A traveling bending wave can be written as the 
superposition of two standing waves phase-shifted by ¼=2 by elementary trigonometry. Each standing 
wave alone would provide zero net propulsion, while their superposition allows for flagellar self-
propulsion121.  
We conclude that the time-reversal symmetry of the Stokes equation prompts non-reciprocal swimming 
strokes that explicitly break time-reversal symmetry to allow for net propulsion. Similarly, we will find 
that hydrodynamic synchronization at low Reynolds numbers is only possible if specific symmetries 
are broken110,115,122, see also section 1.4.2.  
 
Flagellated microswimmers represent a model system for motility control.  Cilia and flagella are a 
best-seller of nature. Virtually all animal cells display one or more of these slender cell appendages, 
which serve for motility and sensing1,123: non-motile primary cilia facilitate our senses of smell, vision, 
and, in some species, hearing, and gauge blood flow to regulate blood pressure. Motile cilia and flagella 
propel sperm cells, green algae, and disease-causing protists, such as Trypanosomes (responsible for 
sleeping sickness) or plasmodia (which cause malaria) in a fluid124. Sensory input controls flagellar 
beating in these microswimmers and enables them to actively steer their path in response to 
environmental cues7–9. On epithelial surfaces, carpets of short flagella termed cilia synchronize their 
beat to pump fluids, such as mucus in mammalian airways125 and cerebrospinal fluid in the brain126. 
Chiral flagellar beating plays a crucial role in the establishment of the left-right body axis during 
embryonic development127,128.  
 
Flagellar swimming, steering, and synchronization. The flagellar beat − itself a manifestation of 
microscopic dynamics of dynein motors inside the flagellar axoneme − facilitates swimming and 
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steering in flagellated microswimmers. The asymmetric shape of the flagellar beat determines the chiral 
swimming paths of these cellular swimmers. A dynamic regulation of beat shape underlies steering in 
response to chemical signals, light, and possibly temperature. Finally, speed and shape of the flagellar 
beat are susceptible to external mechanical forces. This flagellar load response is a prerequisite for the 
remarkable phenomenon of beat synchronization by mechanical coupling in collections of beating 
flagella. 
Flagellar bending waves are chiral. In sperm cells and green alga, flagellar beat patterns resemble 
planar bending waves that propagate along the flagellum, from its proximal to its distal tip1. These 
flagellar bending waves commonly display a pronounced in-plane asymmetry, characterized by a static 
mean curvature of the flagellar shape. This mean flagellar curvature K0 is a result of active processes 
inside the flagellum. Experiments with reactivated flagellar axonemes revealed that K0 depends on 
ATP concentration98. This finding is consistent with the notion that flagellar asymmetry is generated by 
static motor activity inside the flagellum. Changes in the viscosity of the surrounding fluid reduced the 
mean flagellar curvature K0 119. During chemotactic steering responses of sperm cells, an intraflagellar 
signaling cascade dynamically regulates flagellar asymmetry K0 129,130. The microscopic origin of 
flagellar beat asymmetry remains insufficiently understood. 
In addition to the static and dynamic component of flagellar curvature, the flagellum is also twisted. 
This results in non-planar beat patterns that break chiral symmetry93,131,132. Flagellar twist is small in the 
green alga Chlamydomonas, as well as the beat of the flagellar beat in sperm of many model species. 
In mouse and humans, a pronounced flagellar twist gives rise to conical flagellar waves133. Flagellar 
twist is also pronounced for cilia on epithelial surfaces, whose beat pumps fluids. These cilia move 
backward during their recovery stroke in close proximity to the surface in a highly twisted 
configuration.  
The chiral flagellar beat controls swimming and steering. Chiral flagellar beat patterns result in chiral 
swimming paths of flagellated swimmers such as circles, twisted ribbons, and helices93,119,134. These 
chiral swimming paths form the basis of dedicated sampling strategies of cellular navigation7–9, which 
are reviewed in section 1.4.3. Far from boundary surfaces, sperm from marine invertebrates swim along 
helical paths91–93. From hydrodynamic simulations, we could estimate the flagellar twist required to 
account for the observed helicity of swimming paths93. This flagellar twist is surprisingly small and 
corresponds to an out-of-plane component of the planar flagellar bending waves of less than a 
micrometer. In the vicinity of boundary surfaces, sperm cells localize close to the interface135, where 
they swim in circles with defined sense of rotation relative to the surface normal119. It has been proposed 
that the chirality of the flagellar beat contributes to this surface accumulation of sperm in addition to 
pure hydrodynamic effects136–138.  
Swimming of sperm cells along circular and helical paths represents a stereotypic form of exploratory 
motion, which forms the basis of a dedicated navigation strategy. Sperm from marine species perform 
helical chemotaxis8,93,139–142 to steer their swimming path up chemical gradients of signaling molecules 
to find the egg143,144. In the unicellular green alga Chlamydomonas, a small out-of-plane component of 
the beat of the its two flagella causes a self-rotation of the cell around its swimming axis at a frequency 
of about 2Hz (which is much slower than the beat frequency of 50Hz)105. This slow rotation allows 
this green alga to detect directed light stimuli as cell rotation periodically exposes a light-sensitive eye 
spot to incident light. A simple steering feedback allows these cells to steer their swimming path relative 
to the direction of incident light9,94,145.  
Finally, during embryonic development, the chiral beat of flagella generates leftward flow of fluid, 
which determines the left-right-body axis in the developing embryo146. The broken chiral symmetry of 
the flagellar beat results neither from a spontaneous symmetry breaking, nor does it depend on physical 
laws that explicitly break chiral symmetry. Instead, the chiral flagellar beat is a result of the chiral 
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architecture of the flagellar axoneme131, which in turn is rooted in the chirality of the proteins it is built 
of. Chiral flagellar beat patterns represent an example of homo-chirality that propagates from the 
molecular scale all the way up to the scale of cells, tissues and organisms. 
 
Mechanical control of flagellar motility. The beating flagellum exerts active forces on the surrounding 
liquid. Conversely, external mechanical forces affect the swimming path of flagellar microswimmers. 
Additionally, external forces change the speed and shape of the flagellar beat itself. This mechanical 
control of the flagellar beat is important for flagellar mechano-taxis and flagellar synchronization in 
collections of flagella, as reviewed below.  
Interactions with flows and structures. Fluid-structure interactions control flagellated motility in a 
number of functional contexts. It had been noticed already by Rothschild that sperm cells localize near 
a glass-water interface, where sperm cells swim in a plane135. This phenomenon can be explained as a 
pure hydrodynamic effect. The chirality of the flagellar beat of sperm cells induces a thrust component 
normal to the interface that brings cells closer to the interface until a critical distance is reached, where 
short range repulsion sets in136,138. At least two additional hydrodynamic effects stabilize swimming at 
the interface. First, the leading order singularity of the time-averaged flow field generated by a 
swimming sperm is that of a pusher, with an inward flow component along the normal of the beat plane. 
This induces a hydrodynamic attraction the wall109. Second, swimming at a small  distance d  to the 
wall, which is less than the flagellar length L, effectively suppresses rotational diffusion of the cell, 
thereby prolonging residence times close to the interface137.  
A second instance of flagellar motility control by mechanical forces is the active upstream migration of 
sperm cells, termed rheotaxis147,148. In the presence of walls, local shear flows rotate swimming sperm 
like a weather van such that the vector of their net swimming direction points upstream149. It has been 
proposed that this rheotaxis serves as a sperm guidance mechanism in the mammalian oviduct, where 
post-coitus oviductal flows are sufficiently strong to align sperm148.  
As a final example of microswimmer-structure interactions, flagellated trypanosomes were found to 
swim more efficiently in the presence of obstacles, whose size matches the radius of curvature of 
flagellar bending waves150. This has been interpreted as an adaption to the crowded environment of the 
blood stream, where red blood cells represent semi-rigid obstacles. 
Active mechano-responses. Self-organized flagellar bending waves exhibit active mechano-responses 
with a flagellar wave form that depends on applied external forces. Early experiments by Brokaw have 
shown that an increase in the viscosity of the swimming medium reduces both the frequency and the 
amplitude of the flagellar beat96,118. Similar experiments using local micropipette-generated flows or 
swimming sperm in a visco-elastic fluid gave qualitatively similar results151,152. 
The flagellar beat is an emergent phenomenon of collective dynamics in an ensemble of dynein 
molecular motors working against both intra-flagellar forces and hydrodynamic friction forces, which 
result from moving the surrounding fluid. It is thus to be expected that changes in these external forces 
change the shape of the flagellar beat. The waveform compliance of the flagellar beat provides a rough 
estimate of the relative importance of intraflagellar friction forces and hydrodynamic friction forces. In 
publication 2.2, we theoretically derive a force-velocity relationship of the flagellar beat5. The 
corresponding effective theory coarse-grains active motor dynamics in the flagellar axoneme in terms 
of a phase-dependent active driving force. Our theoretical predictions are compared to a dynamic 
measurement of this force-velocity relationship in the green alga Chlamydomonas. We provide an 
analysis of experimental data that shows how the phase speed of the flagellar beat changes in response 
to rotations of the cell, which imparts known hydrodynamic friction forces on the flagellum, allowing 
us to infer how the beating flagellum responds to external fluid forces. 
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Recent experiments suggest that the ATP consumption of flagellar beating is rather insensitive to 
mechanical load153. This experimental finding resonates with a theoretical description that employs a 
fixed phase-dependent flagellar driving force to represents the active dynamics inside the axoneme that 
makes the flagellum beat. Accordingly, any increase in load is compensated by a reduction in speed, 
not an increase in fuel consumption. 
For single processive motors such as kinesin force-velocity curves have been measured in single-
molecule experiments70. Analogous measurements for non-processive axonemal dynein are not known, 
let alone their collective dynamics. Analysis of the flagellar beat under different load conditions 
provides a means to measure this force-velocity relationship.  
Flagellar synchronization. The force-velocity relationship of the flagellar beat is an essential 
prerequisite for the striking phenomenon of beat synchronization by mechanical coupling. It had been 
observed already by Gray almost 100 years ago that pairs of sperm cells swimming in close proximity 
can synchronize their flagellar beat1,154. Similarly, sperm held in vibrating micropipettes or exposed to 
oscillatory flows entrain to the frequency of external driving155,156. Flagellar synchronization plays an 
important role for the collective dynamics in ciliar carpets, for example on the surface of unicellular 
Paramecium or the epithelial surfaces of mammalian airways125. Emergent metachronal waves enable 
fast swimming and efficient fluid pumping127,157,158. It has been proposed already by Taylor in 1951 that 
a mechanical coupling between several flagella can synchronize their beat4. Obviously, such a 
mechanical coupling requires a dependence of the speed of the flagellar beat on mechanical forces. In 
publication 2.2, we could identify a mechanism of flagellar synchronization in free-swimming 
Chlamydomonas cells. The unicellular green alga Chlamydomonas swims like a breast-stroke swimmer 
with two flagella that can beat in synchrony5,159–161. Synchronized beating is important for 
Chlamydomonas to swim fast and straight5,162. Flagellar synchronization relies on a force-velocity 
relation of the flagellar beat, which we predict theoretically and characterize experimentally by 
analyzing experimental data5. 
Mutual interactions between flagellated swimmers can even give rise to dynamic pattern formation in 
collections of microswimmers. In dense suspensions of sperm cells, swimming in circles close to a 
boundary surface, sperm organized into vortices of about 5 cells each163. Inside each vortex, sperm 
flagella phase-locked their individual flagellar waves into a fixed phase-relationship. Vortices organized 
into regular hexagonal patterns, presumably due to an effective repulsion between neighboring vortices. 
 
Chemical control of flagellar motility. During flagellar swimming, the shape of the flagellar beat is 
under tight control of intracellular signaling. This chemical beat control facilitates in particular flagellar 
steering responses during chemotaxis129,130,164, phototaxis94,165, and mechanotaxis166. For example, 
sperm cells from marine invertebrates dynamically regulate the asymmetry of their flagellar beat to 
steer their path up a concentration gradient of chemoattractant129,130. The bi-flagellated green alga 
Chlamydomonas can switch from normal forward swimming to backward swimming upon exposure to 
strong, potentially harmful light stimuli7,94,165. During these photoshock responses, the asymmetry of 
the flagellar beat is greatly diminished in both flagella. In weak light conditions, a differential regulation 
of beat amplitude causes a yawing motion of the cell to facilitate phototaxis towards the direction of 
incoming light165. Mammalian sperm cells switch from travelling flagellar bending waves to a state of 
vigorous flagellar motility termed ‘hyperactivation’ during a ripening process inside the oviduct143,167.  
The intraflagellar calcium is a key regulator of the flagellar beat. Classic experiments by Brokaw in 
reactivated, demembranated axonemes have shown that an increase of calcium concentration increased 
the asymmetry of the flagellar beat in a gradual manner168. Studying the relationship of intraflagellar 
calcium and beat asymmetry in intact flagella is challenging, as methods for simultaneous manipulation 
and monitoring of calcium concentration are required. Recently, sea urchin sperm cells served as a 
versatile experimental model to address this question. Specifically, changes in intraflagellar calcium 
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were evoked by activation of the chemotactic signaling cascade. Intraflagellar calcium concentration 
can be monitored using calcium-dependent fluorescent dyes. In these experiments, the instantaneous 
curvature of sperm swimming paths has been used as a proxy for a time-dependent flagellar asymmetry. 
These dynamic measurements revealed a dynamic relationship between fluorescence signal and path 
curvature that was well approximated by a smooth time-derivative169. This finding suggests that the 
transfer function from intraflagellar calcium to beat asymmetry is a band pass filter. Such a control 
design would serve as an additional layer of sensory adaptation in the chemotactic control of the 
flagellar beat during chemotaxis8. Measurement of fluctuations of the flagellar beat in the green alga 
Chlamydomonas revealed unusually long correlation times of seconds, which is much longer than the 
chemo-mechanical cycle times of molecular motors151. It has been proposed that these slow flagellar 
fluctuations are caused by fluctuations of intraflagellar calcium concentration. 
It is not known by which molecular mechanism intraflagellar calcium regulates the shape of the flagellar 
beat. Axonemal dynein has several calcium binding domains and it is likely that calcium regulates motor 
activity170. Alternatively, it has been proposed that calcium control is indirect, mediated by calcium 
binding proteins such as calmodulin or calaxin171,172. Interestingly, in vitro motility assays with 
reactivated dynein suggests an indispensable role of calaxin for motor control172. In addition to calcium, 
the shape of the flagellar beat is also regulated by cAMP concentration and possibly pH173. 
 
Other motility mechanisms of single cells. We will only briefly mention alternative motility 
mechanisms employed by single cells. Despite their diversity, all these mechanisms rely on the non-
equilibrium dynamics of the cellular cytoskeleton in one way or the other.  
Bacterial twitching motility. Some bacteria use depolymerization forces for locomotion. For example, 
bacteria, such as Neisseria gonorrhoeae, extends passive protein filaments termed type IV pili, which 
adhere to neighboring cells or a substrate174. Active depolymerization at the cell-facing end of these pili 
generates forces of up to 100 pN, rendering type IV pili the strongest molecular machines characterized 
so far175,176. Active pili retraction pulls the cells forward at speeds v . 1¹ms¡1 174,177. This twitching 
motility of bacterial cells plays an important role in biofilm formation. 
Crawling motility of eukaryotic cells. Crawling motility of eukaryotic cells on a substrate depends to a 
large extent on polymerization forces. This locomotion strategy is employed e.g. by immune cells such 
as marcophages, and has been extensively studied in the model organism Dictyostelium, a slime 
mold60,178. These cells comprise a cytoskeleton of cross-linked actin filaments. Polymerization of actin 
monomers into actin filaments is a non-equilibrium process. Notably, net polymerization can occur 
even when the plus-end of the filament is pushing against an obstacle such as the cell membrane. In this 
case, each elongation of the filament by one monomer performs mechanical work65. The concerted 
action of an ensemble of polymerizing actin filaments results in a net forward propagation of the cell 
front, the lamellipodium. This crawling motility requires a self-polarization of the actin cytoskeleton 
that establishes a structural polarization of the cytoskeleton, to set the direction of motion. Signaling 
cues can bias the polarization direction, e.g. during chemotaxis of cells in external chemical 
concentration gradients61. 
After this short review of active cell motility and its dynamic control, we now turn to self-organized 
pattern formation as a second instance of spatio-temporal biological dynamics. 

1.3.2 Self-organized pattern formation in cells and tissues 
In systems far from equilibrium, such as living matter, local interactions between constituents can give 
rise to large-scale ordered patterns that represent dynamic steady states. Examples range from self-
organized pattern formation inside cells, e.g. in the cytoskeleton, to the robust development of complex 
tissues and organisms with specific spatial order adapted to their function179. In Chapter 3, we will 
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present two publications that address self-organized pattern formation at the cytoskeleton and at the 
organism level, respectively. 

Self-assembly of macro-molecular structures. Inside cells, functional marco-molecular complexes 
self-assemble from individual molecules such as interacting proteins. Self-assembly can be passive as 
for the bacterial rotary motor, where more than 20 different proteins assemble stator and rotor of the 
motor complex73,180. Self-assembly of larger structures often involves active processes. For example, 
for the assembly of the prokaryotic flagellum, an active excretion system exports flagellin monomers, 
inserting them at the proximal end of the hollow flagellum, from where the monomers diffuse to the 
assembly site at the distal end181. The axoneme of the eukaryotic flagellum contains a bidirectional 
transport system known as intra-flagellar transport182,183. Therein, kinesin motors transport cargo, 
including the proteins that built the axoneme, towards the distal tip of the axoneme, whereas mobile 
dynein motors transport cargo back towards the proximal end, resulting in a stable steady state.  
The interaction of cytoskeletal filaments and molecular motors gives rise to a variety of pattern 
formation phenomena, both in vitro and in vivo. This includes bundles of nematically aligned actin 
filaments, asters, stable swirling patterns184–186, and even ‘artificial cilia’187. A case of almost crystalline 
order of the cytoskeleton is found in myofibrils in striated muscle cells and cardiomyocytes3. Myofibrils 
are acto-myosin bundles characterized by a periodic arrangement of actin filaments of defined structural 
polarity and bipolar myosin filaments, which are organized in sarcomeric unit cells, see figure 5-C. In 
publication 3.1, we present a minimal mechanism for the self-assembly of periodic cytoskeletal patterns 
as observed in myofibrils10. This minimal mechanism relies on active force generation, such as active 
polymerization forces of treadmilling actin filaments.  
 
Pattern formation in ensembles of active particles. Self-organized dynamic patterns naturally evolve 
in suspensions of actively moving particles. Cytoskeletal filaments interacting with a large number of 
surface-bound molecular motors give rise to dynamic bundle formation and stable swirling 
patterns185,186. In dense suspensions of motile bacteria, chaotic low-Reynolds-number flows have been 
observed on a mesoscopic scale, a phenomenon termed ‘bacterial turbulence’188,189. Dense suspensions 
of swimming sperm cells at a glass-water interface can self-organize into vortex arrays with hexagonal 
order (spatial order), where additionally the sperm cells in each vortex phase-lock their flagellar 
oscillations (temporal order)163. The study of dynamic pattern formation in ensembles of active colloids 
and groups of organisms such as fish schools or bird swarms represents a sub-field of its own190–193. 
 
Pattern formation in reaction-diffusion systems far from equilibrium. A classical mechanism for 
the spontaneous formation of spatially inhomogeneous patterns are chemical reactions of diffusible 
molecules in spatially extended domains. This pattern formation requires a closed feedback loop 
between at least two reaction partners with different diffusion coefficients. Alan Turing proposed 
spontaneous pattern formation by reaction-diffusion-dynamics as a generic mechanism for the 
establishment of spatial patterns during the morphogenesis of organisms40. Recent experiments indeed 
revealed Turing mechanisms in a number of developmental processes18, including pattern formation in 
the bacterial cytoskeleton194, and the formation of digits during development195, or the formation of 
stripe patterns in zebrafish196,197.  
The generic pattern formation mechanism of Turing patterns can be paraphrased as a principle of local 
activation and long-ranged inhibition41. A positive feedback amplifies the local concentration of an 
activator, where the activator concentration exceeds a certain threshold set by the concentration of an 
inhibitor. Fast diffusion of this inhibitor results in a long-ranged inhibitory effect that sets the size of 
activation regions. This mechanism can account for both stationary and dynamic patterns. A well-
studied in vitro realization of this principle is the Beluzov-Zhabotinsky reaction, where cross-reacting 
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and diffusing chemical species give rise to travelling wave patterns and rotating spirals in the presence 
of topological defects198. Obviously, the Beluzov-Zhabotinsky reaction represents a non-equilibrium 
system. Generalization of this mechanism, where spatial fields of active stresses, strains, or fluxes play 
the role of either activator or inhibitor had been already contemplated by Turing40, with specific 
realizations proposed recently42,43. 
 
Inside cells: self-assembly of cytoskeletal patterns. Non-equilibrium dynamics in the cytoskeleton 
gives rise to the self-assembly of functional structures such as stress fibers or myofibrils on cellular 
scales. Below, we review selected examples of cytoskeletal pattern formation by local interactions 
inside cells. We will put special focus on myofibrillogenesis, i.e. the assembly of the almost crystalline 
acto-myosin bundles with sarcomeric periodicity in striated muscle cells. 
Regular patterns of the actin cytoskeleton. Actin filaments can spontaneously form spatial patterns, both 
in vitro and inside living cells. Reconstituted actin filaments form stable bundles and asters as a result 
of passive depletion and active motor forces as well as entropic effects199–202. The interaction of actin 
filaments, crosslinkers, and myosin molecular motors results in dynamic patterns, including pulsatile 
myosin foci203 and stable swirling patterns185, revealing the rich dynamics of cytoskeletal pattern 
formation far from equilibrium.  
Inside cells, actin filaments, actin-binding-proteins and myosin motors self-assemble into functional 
structures. A crosslinked meshwork of actin filaments with gel-like properties fills the intracellular 
space in animal cells and defines its rheological properties204. Myosin motors interact with actin 
filaments in a polarity-specific manner and exert microscopic force dipoles. As a result, myosin activity 
confers active contractility to the actin meshwork. We note that acto-myosin contractility is an emergent 
property of ensembles of interacting actin filaments and bipolar myosin motor filaments. A single 
myosin may either contract or expand a pair of parallel aligned actin filaments, depending on two 
possible configurations of structural polarity205,206. Specific physical mechanisms that effectively break 
the symmetry between expansion and contraction have been proposed, which result in a net compressive 
effect. These mechanisms include prolonged residence of myosin at the plus-end of actin filaments, 
filament rotation, and buckling of actin filaments under compressive load205–207. A thin and dense acto-
myosin-meshwork beneath the cell membrane of animal cells constitutes the actin cortex. This actin 
cortex sets an effective surface tension and represents a major determinant of cell shape.  
In cells that mechanically interact with an elastic substrate, actin filaments and myosin motor filaments 
form dense bundles, termed stress fibers21. These stress fibers generate contractile forces on a length-
scale of cellular dimensions. Contractile actin-bundles also form the cell division ring that constricts 
animal cells during cytokinesis, the final stage of cell division. Contractile actin bundles can even span 
across multiple cells and exert contractile forces on the tissue scale208. In the stress fibers of certain cell 
types, such as fibroblast connective tissue cells, actin-crosslinkers and myosin motors are not distributed 
homogeneously along the fiber, but display periodic patterns with alternating localization with a 
characteristic periodicity of 1¡ 2¹m 209. The periodic patterns in these striated stress fibers are 
reminiscent of the sarcomeric arrangement of actin-crosslinkers and myosin in myofibrils, to be 
discussed in more detail below. We speculate that similar physical mechanisms of self-organized pattern 
formation account for the self-assembly of periodic patterns both in striated stress fibers and 
myofibrils10. Maturation processes that regularize initial periodic patterns may be lacking in striated 
stress fibers.  
In summary, self-organized pattern formation of the actin cytoskeleton results in a diverse set of 
functional structures that are characterized by different types of spatial order. These include (figure 5) 

 isotropic symmetry, e.g. in crosslinked actin meshworks and the actin cortex202 
 nematic order, e.g. in stress fibers21 
 smectic order, e.g. in striated stress fibers and myofibrils with sarcomeric periodicity22.  
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Actin binding proteins. Actin filaments interact with a large number of actin-binding-proteins. Capping 
proteins regulate polymerization dynamics at the structural plus- and minus-end in a differential 
manner, and thus control filament length and treadmilling dynamics. Severing proteins such as gelsolin 
bind along the length of actin filaments and sever filaments at the binding position. Since their net rate 
of binding depends on filament length, severing represents a simple, yet effective mechanism of 
filament length control210. Crosslinking proteins promote the formation of crosslinked meshworks of 
actin filaments and the formation of actin bundles with nematically aligned filaments. Inside myofibrils, 
structural proteins such as tropomyosin decorate actin filaments for stability. Additional proteins 
provide structural support and elastic linkage inside sarcomeres. This includes the ‘giant proteins’ titin 
and nebulin, which scan span 0:5¹m in their extended configuration211. 
Regular patterns of microtubules. Microtubules interact with the actin cytoskeleton and have been 
proposed to represent tension-bearing structural elements212. During cell division, microtubules self-
assemble the mitotic spindle213, which constitutes part of the cell division machinery that distributes the 
chromosomes to the prospective daughter cells. This self-assembly process is driven by active motor 
forces and continuous turn-over of polymerizing and depolymerizing microtubules. Spindle assembly 
is orchestrated by two microtubule nucleation centers, which are located at opposite poles of the spindle. 
Each of these microtubule nucleation centers usually contains a centriole, a regular structure of triplet 
microtubules that the bears the same nine-fold symmetry as the microtubule-based axoneme of the 
eukaryotic flagellum. In fact, centrioles also serve as templates for axoneme assembly. Many cells, 
including the green alga Chlamydomonas, possess exactly two centrioles, which are used to assemble 
either a mitotic spindle during cell division, or to assemble and anchor up to two flagella. This shared 
use of centrioles implies that cell division and flagellar motility cannot occur at the same time in these 
cells214. The shared use of centrioles also point at a common evolutionary origin of the mitotic spindle 
and the flagellar axoneme87. 
 
 

 
 

Figure 5: Pattern formation in the actin cytoskeleton. A. Actin filaments form dense 
crosslinked meshworks with isotropic symmetry, e.g. in lamellipodia or the actin cortex of 
animal cells. B. Actin filaments can organize into bundles of aligned filaments, representing 
a case of nematic order, e.g. in connective tissue cells. C. Inside striated muscle cells and 
cardiomyocytes, actin and myosin filaments are arranged in myofibrils of almost crystalline 
regularity. Myofibrils are characterized by periodic patterns of sarcomere units and represent 
a case of smectic order in the cytoskeleton. Micrographs from ref.215,216 with permission. 
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Example of cytoskeletal pattern formation: Self-assembly of myofibrils. Myofibrils are the active 
force generator inside striated muscle cells and the cardiomyocytes of the heart3. Upon activation by 
calcium signals, myofibrils actively contract by the concerted activity of millions of myosin molecular 
motors inside. Myofibril contractions underlie all voluntary movements of higher animals and the 
rhythmic beat of the heart. The de novo assembly of myofibrils serves as a model system to study the 
general question how large scale patterns can emerge from local interactions in non-equilibrium 
systems. 
Myofibrils are highly regular macro-molecular structures that are characterized by a periodic repetition 
of unit cells termed sarcomeres, see Figure 5-C. Sarcomeres are composed of actin filaments, myosin 
motor filaments, and additional structural proteins. Their regular spatial organization inside myofibrils 
represents a case of cytoskeletal order with almost crystalline regularity. Myofibrils measure 
100¡1000¹m in length; their functional and structural unit, the sarcomere, displays typical lengths of 
1¡2¹m. The major constituents of the sarcomere are actin and myosin filaments, the latter being 
polymerized out of individual muscle-specific myosin molecular motors. The structural plus ends of the 
actin filaments are anchored in a crosslinking region termed Z-band, with the actin-binding protein -
actinin as an important constituent. During myofibril contraction, myosin filaments slide relative to the 
actin myosin filaments towards the actin plus-end, resulting in shortening of each sarcomere. This 
generation of active forces relies on the defined structural polarity of filaments inside each sarcomere. 
In addition to the three proteins named, actin, myosin, and -actinin, several hundred different proteins 
ensure the structural integrity and regulation of sarcomeric force generation. Interestingly, some of the 
largest known proteins are found inside myofibrils, such as the giant protein titin that spans half a 
sarcomeres length and serves as an elastic element211. Maximal force generation by myofibrils requires 
a dense and regular packing of myosin molecular motors and their actin tracks. In fact, the arrangement 
of proteins inside myofibrils are crystalline and result in distinct X-ray diffraction patterns217.  
It is an open question, how myofibrils are assembled. It has been proposed that existing myofibrils can 
grow by an epitaxy-like mechanism or serve as templates for the assembly of additional myofibrils. 
Additionally, precursor structures named premyofibrils, which already have a periodic structure, may 
be assembled first. These premyofibrils can then serve as template for mature myofibrils218,219. There is 
partial experimental evidence for the premyofibril hypothesis in at least some cell types. Yet, the 
fundamental question remains open: How do micrometer-sized building blocks such as actin filaments, 
myosin filaments, and titin assemble periodic structures, whether these are striated stress fibers, 
premyofibrils, or nascent myofibrils? It can be considered certain that giant scaffolding proteins such 
as titin and obscurin serve as a molecular templates for the assembly and structural organization of 
single sarcomeres211,220. However, it is unclear if these scaffolding proteins are involved already in the 
early establishment of periodic patterns in initially unstriated acto-myosin bundles. The proposition that 
that a periodic arrangement of titin molecules directs myofibrillogenesis would require a yet unknown 
mechanism by which titin molecules become arranged in periodic patterns first. We emphasize that the 
diffusion coefficients of large molecules such as titin or actin and myosin filaments are extremely low, 
which renders their passive sorting into periodic patterns kinetically impossible. We thus argue that 
active, force-generating processes should be required for myofibrillogenesis. This hypothesis is 
consistent with recent experimental findings that emphasize the importance of active tension for 
myofibrillar pattern formation, and the requirement for attachment to support structures, such as 
tendons, which can resist active forces221. 
Myosin motor forces are an obvious source of active force generation inside nascent myofibrils. Yet, 
these forces cannot explain self-assembly. In myofibrils, myosin filaments are localized near the 
structural minus-end of actin filaments, despite their tendency to slide towards the plus-end. We 
speculate that strong myosin forces can disrupt nascent myofibrils. Interestingly, it has indeed been 
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found that myosin force generation is up-regulated only after the initial stages of myofibril assembly. 
In some cells, myofibril precursors are assembled with non-muscle myosin filaments that generate less 
force, which are replaced by muscle-myosin only at later stages. These findings are consistent with a 
potentially destructive role of myosin forces during myofibril assembly. Different physical mechanisms 
have been proposed for the source of forces that sort actin and myosin filaments in place in nascent 
myofibrils. Zemel et al. proposed a sorting mechanism that depends on a second, hypothetical motor, 
which is minus-end directed222. This model could indeed account for the spontaneous emergence of 
periodic structures with polarity-sorted filaments. However, the involvement of such a hypothetical 
minus-end directed motor needs yet to be demonstrated. Yoshinaga et al. proposed a Turing-like 
mechanisms with a mutual coupling of fields of local active stress and actin polarity42. This generic 
mechanism predicts the emergence of periodic polarity patterns, yet its coarse-grained nature does not 
inform about underlying molecular mechanisms. In publication 3.1, we present a minimal model for the 
self-assembly of periodic cytoskeletal patterns as observed in myofibrils from local interactions 
between three constituents: actin filaments, bipolar myosin filaments, and a plus-end actin crosslinker10. 
 
Inside tissues and organisms: self-organized morphogen gradients. Inside tissues and organisms, 
concentration gradients of signaling molecules regulate growth and developmental patterning223. 
Important examples include the proteins Bmp224, Dpp225, and Wnt224, which establish concentration 
gradients along principal body axes during embryonic development. Signaling molecules that spatially 
orchestrate cell differentiation during morphogenesis are termed morphogens, a term first coined as a 
theoretical concept by Turing40. A more biological view defines morphogens as signaling molecules 
that are secreted in localized source regions and form long-ranged concentration gradients that 
determine discrete cell fates in a concentration-dependent manner223,226 (although this definition may 
disqualify some signaling molecules such as Wnt as classical morphogens227).  
In a minimal description, a morphogen is secreted at a point source located at x = 0, and diffuses with 
effective diffusion coefficient D in a spatial domain of size L, while being subject to degradation with 
degradation rate k  
 
 _c = p±(x) ¡ kc + Dr2c.  (5) 
 
Note the effective diffusion term can account also for undirected active transport, e.g. by cellular 
transport processes of endocytosis and exocytosis228, in addition to passive diffusion. Equation (5) 
implies an exponential concentration profile c(x) » exp(¡x=¸), where the pattern length-scale ¸ is set 
by a competition of diffusion and degradation 

  
 ¸ =

p
D=k . (6) 

 
Remarkably, scaling of concentration profiles with system size L, characterized by ¸ » L, has been 
observed in a number of biological systems, including the developing fly wing229–231. In the fly wing, it 
was shown that pattern scaling results from a dynamic regulation the morphogen degradation rate 
according to system sizes, k » L¡2 229. Several theoretical mechanisms for self-regulated pattern 
scaling have been proposed232–234, which still need to be experimentally confirmed.  
These theoretical mechanisms of pattern scaling are challenged in systems with regeneration 
capabilities. For example, small amputation fragments of the flatworm Schmidtea mediterranea can 
regenerate into a miniature version of the original worm with a proportional body plan proportionally 
scaled according to the size of the amputation fragments235. This re-patterning occurs within weeks. 
Additionally, flatworms can scale their body plan by a factor of 20 in length during growth and active 
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degrowth, depending on feeding conditions235. Long-range gradients of gene expression patterns of 
signaling molecules such as Wnt are known to pattern the anterior-posterior-axis in flatworms236. 
Regeneration capabilities as observed in flatworms require de-novo formation of a morphogen source 
after amputation. Mechanisms of self-organized pattern formation such as Turing mechanisms can 
account for the formation and positioning of a new morphogen source40,41. However, classical Turing 
mechanisms are characterized by fixed intrinsic pattern length-scales, which are again set by a 
competition of diffusion and degradation of patterning molecules, compare equation (6). In publication 
3.2, we present a general mechanism for self-organized pattern formation that generates spatial patterns 
that scale with system size11. This minimal mechanism displays structural robustness and can cope with 
parameter variations and fluctuations. We review different sources of fluctuations in biological systems. 
 

1.4 Fluctuations and biological robustness 
Life relies on stochastic processes237. Thermal noise enables diffusive transport and biochemical 
reactions at the molecular scale. Small-number fluctuations cause stochastic dynamics at the scale of 
cells and organisms. Even biological evolution relies on fluctuations: stochastic events during gene 
duplication generate genotypic variations. Here, we will focus on cell motility, which is driven by 
stochastic non-equilibrium dynamics of its cytoskeleton. This implies measurable active fluctuations at 
the mesoscopic scale of the cell that violate the fluctuation-dissipation theorem. A common 
phenomenological description of active fluctuations in terms of an effective temperature Te® above the 
thermodynamic temperature T  can provide a first, rough approximation only. Effective descriptions of 
noise in biological systems, which coarse-grain chaotic out-of-equilibrium dynamics at the microscopic 
scale, are researched actively13,14.  

1.4.1 Sources of fluctuations in biological systems 
Any chemical reaction between molecules requires that Brownian motion first brings the reaction 
partners into close contact. Thermal fluctuations are also required to overcome energetic barriers of the 
chemical reaction. In consequence, each reaction step is a stochastic event, which can often be described 
as a Poisson jump process238. Small-number fluctuations of chemical reactions do not necessarily 
average out at the scale of the cell. One simple reason for this is that copy numbers inside cells can be 
as low as a few tens or hundreds239. Thus, mean field description may miss important aspects of cellular 
dynamics. As an important aspect, nonlinear feedback loops can amplify small-number fluctuations, 
thereby propagating fluctuations from the molecular scale to the mesoscopic scale of the cell. For 
example, the stochastic binding of a single transcription factor to a specific DNA binding site can initiate 
the transcription of a particular gene and result in its translation into many copies of the corresponding 
protein. Such stochastic gene expression can lead to different gene expression profiles in cells of 
identical genetic setup240. Signaling systems that implement bistable switches with long hysteresis can 
amplify this effect. In fact, some bacterial colonies harness stochastic gene expression to induce 
phenotypic heterogeneity within the population, which can provide a competitive advantage in a time-
varying environment241. In addition to intracellular noise, cells are subject to external perturbations. 
These external perturbations include fluctuations in nutrient levels and physical parameters such as 
light, pH, and temperature, each of which affects the dynamical state of the cell. 
 

Thermal fluctuations. Free energy differences of biochemical reactions are commonly on the order of 
a few kBT , where the thermal energy kBT ¼ 4£ 10¡21J  at room temperature.  For example, the Gibbs 
free energy difference for the hydrolysis of a single ATP molecule equals 20¡ 25 kBT  63. Unfavorable 
reactions inside cells that result in high-energy reaction products, a local reduction of entropy, or which 
perform mechanical work, are coupled to the hydrolysis of triphosphate nucleosides such as ATP, which 
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breaks detailed balance of reaction cycles3,24,63. Such reactions include the chemo-mechanical cycles of 
molecular motors242. As a specific example, single kinesin molecular motors take directed 8nm steps 
on a microtubule per chemo-mechanical cycle, which corresponds to mechanical work of 10 kBT  at 
full 5 pN load force. Molecular motors that show on average directed motion will occasionally take a 
backward step due to thermal fluctuations.  
 

Molecular shot noise and small-number fluctuations. Inside cells or subcellular compartments, copy 
numbers of proteins are often in the range of hundreds. For example, the volume of an E. coli bacterium 
comprises just a few femto-liters, which implies that a concentration of one micro-molar corresponds 
to just a few thousand molecules. This is a typical order of magnitude for the most abundant bacterial 
proteins. Eukaryotic cells can be much larger than bacteria, yet important signaling processes are often 
spatially confined to sub-cellular regions of femto-liter volume, such as the nucleus or a flagellum. Low 
copy numbers imply substantial small-number fluctuations of chemical reactions and thus introduce 
noise in cellular signaling. Inside tissues, communication between cells is subject to the same sources 
of noise inherent to chemical reactions243. 
 

Sensory perception at the physical limit. Fluctuations are paramount in sensory perception of weak 
stimuli. Many sensory organelles can operate at the physical limit244. For example, rod photoreceptors 
in the retina of the eye can detect single photons245–247. Hair bundles in the inner ear respond to faint 
vibrations that carry an energy of only a few kBT  per oscillation cycle244. Specialized olfactory sensory 
neurons can detect single odorant molecules248, likewise sperm respond to single chemoattractant 
molecules249. Such signaling events are inherently stochastic in nature.  
In addition to this quantized nature of single molecule detection, thermal fluctuations impact on 
sensation at the physical limit: the absorption of a single photon or the binding of a single ligand 
molecule to a receptor induces a conformational change in the receptor proteins, which then activates 
down-stream signaling cascades. Thermal noise can induce the same conformational change as a 
detection event, and thus limits the precision of cellular signal detection250,251.  
 

Active motor fluctuations. Individual molecular motors progress through their mechano-chemical 
cycles in an inherently stochastic manner. Single-molecule experiments allow to detect discrete steps 
of single molecular motors and the stochastic timing of their stepping252. The collective dynamics in 
ensembles of molecular motors gives rise to active contractility, directed transport, but also to non-
equilibrium fluctuations. A hallmark of non-equilibrium fluctuations is the violation of the fluctuation-
dissipation theorem. At thermal equilibrium, the fluctuation-dissipation theorem relates the fluctuation 
spectrum hjA(!)j2i of a degree of freedom A to its response function ÂA(!), which characterizes the 
response to an external perturbation253 
 
  

 hjA(!)j2i =
2kBT

!
ImÂA(!). (7) 

 
Violations of the fluctuation-dissipation theorem have been experimentally observed in fluctuation 
spectrum of the cell membrane of red blood cells254, fluctuations of the cytoskeleton255–257, or the hair 
bundles of auditory sensory neurons in the inner ear258. These non-equilibrium fluctuations have been 
attributed to the stochastic collective dynamics of molecular motors.  
The beat of the eukaryotic flagellum exhibits active fluctuations as well. Previous studies reported 
Fourier peaks of finite width in power spectra of flagellar dynamics, which provides a signature of phase 
fluctuations. Goldstein et al. conducted an indirect measurement of these phase fluctuations by 
examining the frequency of phase-slips in pairs of synchronized flagella160,259,260. In publication 2.3, we 
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present a method to measure phase and amplitude fluctuations of the flagellar beat directly. Specifically, 
our method maps high-precision measurements of flagellar bending waves on a generic description of 
a limit cycle oscillator with phase and amplitude noise, the normal form of a Hopf bifurcation with 
complex noise term, 
 
 _Z = i(!c ¡!1jZj

2)Z + ¹(¤¡ jZj2)Z + (»A + i»')Z. (8) 
 
Here, Z = Aei' is a complex oscillator variable and »A and »' denote amplitude and phase noise terms, 
respectively. In publication 2.3, we further consider a minimal model of stochastic collective motor 
dynamics and show that emergent noisy motor oscillations can be likewise mapped on equation (8) of 
a noisy Hopf oscillator. 
Stochastic motor dynamics has been studied in a number of systems, ranging from stochastic 
oscillations of hair bundles of auditory sensory neurons in the inner ear34, bi-directional transport of 
actin filaments that interact with a surface coated with myosin motors in motility assays261,262, to 
oscillations in in vitro system of myosin motors and actin filaments263 and ‘artificial cilia’ consisting of 
microtubule bundles interacting with kinesin motors187. These measurements of non-equilibrium 
fluctuations in mesoscopic systems provide a way to observe signatures of the stochastic dynamics of 
molecular motors. 

1.4.2 Example of stochastic dynamics: synchronization of noisy oscillators 
Since the observation of phase-locked pendulum clocks by van Huygens, it is known that active 
oscillators can synchronize by virtue of a weak coupling, despite effects of noise or a mismatch of 
intrinsic oscillation frequencies264. In the middle of the 20th century, work on generators of radio signals, 
and phase-locked electronic oscillators in particular, motivated the development of a general theory of 
synchronization265,266. Synchronization is also observed in biological systems: examples include 
synchronization of the walking gaits of pedestrians268, coupling of the ‘segmentation clock’ genetic 
oscillators that orchestrate somatogenesis during embryonic development267, and last but not least 
synchronization in collections of beating flagella as studied in this thesis. Synchronization of oscillators 
implies the emergence of a common oscillation frequency and a fixed phase relation. We first review 
the Adler equation, a generic description for the synchronization of a pair of coupled noisy oscillators 
in the next paragraph and then turn to the synchronization in pairs of beating flagella in the remainder 
of this section.  

The stochastic Adler equation of coupled oscillators. The stochastic Adler equation provides a 
generic description for the synchronization of a pair of noisy, active oscillators. The dynamics of the 
phase difference ± = '1 ¡ '2 between the two phase oscillators with respective phases '1 and '2 can 
be idealized by265  
 
 _± = ¢! ¡ ¸ sin ± + ». (9) 
 
Here, ¢! = !1 ¡ !2 denotes the mismatch between the intrinsic frequencies of the two oscillators, ¸ 
is an effective coupling strength and »(t) denotes a Gaussian white noise term with 
h»(t)»(t0)i = 2D±(t¡ t0). The Adler equation, equation (9), captures key dynamical features of 
synchronization, which we discuss below. Many specific systems of coupled oscillators can be 
approximately mapped on the Adler equation. This includes a description of flagellar swimming and 
flagellar synchronization in free-swimming Chlamydomonas cells presented in publication 2.2. The 
dynamics given by equation (9) can be interpreted as that of an overdamped particle in a tilted periodic 
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potential U(±) = ¡¢!± ¡ ¸ cos ± 269. For zero frequency mismatch, ¢! = 0, steady states of equation 
(9) correspond to in-phase synchronization with ± = 0, and anti-phase synchronization with ± = ¼. For 
positive synchronization strength ¸ > 0, in-phase synchronization is stable, while anti-phase 
synchronization represents a meta-stable steady state, see figure 6-A,B. Noise induces stochastic phase 
slips at a frequency G = D=j2¼I0(¸=D)j2 266, where I0 denotes the modified Bessel function of the 
first kind. In case of a frequency mismatch ¢! 6= 0, the two oscillators will synchronize with a phase-
lag ±¤ = sin¡1(¢!=¸) at steady-state, provided j¢!j < j¸j. If the frequency mismatch becomes too 
large, the system undergoes a saddle-node bifurcation and no steady state exists anymore for   
j¢!j > j¸j. In this case, the dynamics is characterized by phase drift, see figure 6-D. Many analytic 
results for the stochastic Adler equation are known, see e.g. the book by Stratonovich266. 

 

 

Figure 6: Dynamic regimes of the stochastic Adler equation. The dynamics of the phase 
difference  is equivalent to the overdamped motion of a particle in a tilted periodic potential. 
A. For positive coupling strength ¸ > 0, the in-phase synchronized state is stable, while the 
state of anti-phase synchronization  is meta-stable. B. For negative synchronization strength 
¸ < 0, stability is reversed. C. In the presence of noise, d exhibits stochastic transitions 
between adjacent stable states, so-called phase slips. D. If the mismatch ¢! between the 
intrinsic frequencies of the two coupled oscillators becomes too large, no synchronization 
occurs, and the phase difference will increase monotonically, corresponding to a regime of 
phase drift. Modified from273. 

Flagellar synchronization and the Adler equation. All dynamic regimes predicted by the Adler equation 
have been observed for pairs of beating flagella, including in-phase159,160,270 and anti-phase 
synchronization271, stable phase-lags160,161, phase slips159,160,259 and phase drift5,272. Synchronization of 
beating flagella have been proposed to result from a mechanical coupling between flagella, e.g. by direct 
hydrodynamic interactions4. The symmetry of the Stokes equation, equation (3), which governs 
hydrodynamics at the cellular scale, prompts systems that explicitly break either time-reversal 
symmetry or spatial symmetries to facilitate such hydrodynamic synchronization. 

Hydrodynamic synchronization requires broken symmetries. Already in 1951, Taylor proposed that 
the remarkable phenomenon of flagellar synchronization arises from a mechanical coupling between 
flagella, such as direct hydrodynamic interactions4. Only recently was flagellar synchronization by 
direct hydrodynamic interactions unequivocally demonstrated in experiments. Using pairs of flagellated 
cells held in separate micro-pipettes at a distance, it was found that flagellar synchronized with a 
distance-dependent synchronization strength6. Synchronization by direct hydrodynamic interactions 
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was additionally studied in systems of artificial actuators such as colloids driven by oscillating magnetic 
fields, or ‘light-mill’ micro-rotors driven by laser-light274–278. 
Similar to the problem of self-propulsion at low Reynolds numbers, hydrodynamic synchronization 
requires broken symmetries to overcome the symmetries of the Stokes equation and to provide a net 
coupling between oscillators. For illustration, we consider the idealized example of two spheres 
revolving around circular trajectories. Each sphere is driven by a constant tangential force and would 
thus assume a constant angular speed d'=dt = !0 if the other sphere were absent. The motion of one 
sphere generates a long-ranged flow field whose strength decays with inverse distance. This flow field 
exerts a hydrodynamic interaction force on the second sphere, which changes the phase speed d'=dt of 
this sphere. Although, these hydrodynamic interactions indeed couple the phase dynamics of the two 
spheres, the resultant net coupling strength ¸ is zero. This can be seen from symmetry arguments122: a 
spatial mirror operation and time-reversal will both result in the same dynamics, since the Stokes 
equation is invariant under these operations. While the spatial mirror operation does not change the 
stability of any synchronized state, stability is reversed under time-reversal. We conclude that any 
synchronized state can be neither stable nor unstable, hence ¸ = 0.  
 

 
 

Figure 7: Lack of hydrodynamic synchronization in a minimal model with symmetries. A. In 
an idealized model, a beating flagellum is represented by a sphere that moves in a viscous 
fluid along a circle, being driven by a constant tangential force 112. This model is inspired by 
the observation that each point on a beating flagellum moves on a circular orbit. B. Direct 
hydrodynamic interactions between the two rotating spheres couple their motion. However, 
the net synchronization effect is zero, as a consequence of symmetries: A reflection Mx of 
the system at the x-axis is dynamically equivalent to a time-reversal T . As the time-reversal 
reverses the stability of synchronized states, while a reflection does not, we conclude that any 
synchronized states is neutrally stable112,115,122. 

 
Different physical mechanisms have been proposed for synchronization by direct hydrodynamic 
interactions, all of which break spatio-temporal symmetry in one way or the other, which we review 
now. 
 

Amplitude compliance. In a generalization of the two sphere model considered by Lenz et al., the radii 
of the circular tracks are not constant, but are considered as elastic degrees of freedom with an effective 
stiffness k  279. This amplitude compliance breaks the time-reversal symmetry of the equation of motion.  
It is found that both spheres can synchronize their motion with an effective synchronization strength 
that scales inversely with the amplitude stiffness, ¸» 1=k. 
 

Phase-dependent driving forces. Golestanian et al. proposed a different symmetry-breaking mechanism 
that relies on phase-dependent driving forces280,281. Thereby, the two sphere system is not invariant 
anymore under a spatial mirror operation, thus facilitating net synchronization.  
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Other means to break symmetry. Additionally, Theers et al., considered the effect of small, non-zero 
Reynolds number282. The effect of unsteady acceleration at finite Reynolds numbers breaks time-
reversal symmetry and results in net synchronization with a synchronization strength ¸ » Re1=2. In the 
original formulation of the two sphere model by Vilfan et al., a no-slip boundary close to the two spheres 
was introduced, which breaks spatial mirror symmetry112.  
 

The beat of real cilia and flagella is characterized by both phase-dependent driving forces and a finite 
compliance of the flagellar wave forms118,151. Thus, time-reversal symmetry is broken, which allows for 
flagellar synchronization by direct hydrodynamic interactions. It should be noted that the symmetry 
breaking can be weak, thus resulting in a weak synchronization strength5,156. In publication 2.1, we 
present an alternative synchronization mechanism that operates independently of direct hydrodynamic 
interactions283. Instead, this mechanism relies on a closed feedback loop between flagellar dynamics 
and swimming motion. In publication 2.2, we demonstrate that this synchronization mechanism is 
important in free-swimming Chlamydomonas cells5. Synchronized beating of its two flagella is a 
prerequisite for this cell to swim fast and straight.  
Purposeful motion further requires a control of swimming direction in response to environmental cues. 
In the next section, we review navigation mechanisms for directed motion in external concentration 
gradients. 

1.4.3 Cellular navigation strategies reveal adaptation to noise 
We review three distinct strategies employed by single cells for navigation in external concentration 
gradients8. Any cellular gradient-sensing strategies must cope with noise, such as motility fluctuations, 
or molecular shot noise of chemosensation at dilute concentrations. We argue that the three different 
chemotaxis strategies employed by single cells represent an adaptation to the respective strength of 
motility and sensing noise encountered by these cells. 
 

Physical limits to chemo-sensation. Cells constantly monitor extracellular concentrations of signaling 
molecules. This sensory input controls e.g. chemotaxis in chemical gradients or cell fate decisions 
during development. Berg and Purcell made seminal contributions to our understanding of the physical 
limits of chemosensation284. Their work was later re-derived in the framework of statistical physics by 
Bialek et al.250. Specifically, many cells measure the extracellular concentration c of a signaling 
molecule by counting binding events of individual molecules to cognate surface receptors. In the 
idealized limit of maximal uptake, characterized by high receptor density and irreversible binding, the 
mean number hNi of binding events in a time window of duration ¿  is given by250,284 
 
  
 hNi = 2¼L ¢Dc ¢ ¿ , (10) 
 
where D  denotes the diffusion coefficient of the molecule. The geometric factor 2¼L corresponds to a 
cellular geometry of a perfect sphere of diameter L; generally it will scale with the longest dimension 
of the cell285. Individual binding events will be uncorrelated to good approximation, and thus the actual 
number N  of binding events will be a Poissonian random variable with mean hNi and variance hNi. 
Cellular concentration measurements are thus prone to molecular shot noise: at physiological pico-
molar concentrations, only a few molecules per second will diffuse to the cell. Hence, cells face trade-
off choices between the accuracy of concentration measurements and the temporal resolution for 
sensing time-varying concentrations, which has implications for cellular chemotaxis strategies. 
For chemotaxis, the maximal integration time ¿  for local concentration measurements is set by the time 
it takes the cell to move one body length, ¿ »L=v, where v and L denote speed and size of the cell. As 
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a numeric example, we find N ¼ 500 from equation (10) using typical values for a bacterial cell 
( L ¼ 3 ¹m, L ¼ 50¹ms¡1, D ¼ 700¹m2 s¡1, c = 1nM). Thus, concentration measurements are 
inherently unreliable at the cellular scale.  This constrains the range of potential chemotaxis strategies 
for a given cell.  
Motility noise. Motility noise comprises contributions from both thermal fluctuations and active motility 
fluctuations. For the smallest cells, such as bacteria, the contribution from thermal fluctuations can be 
substantial. In particular, effective rotational diffusion will randomize the swimming direction of a cell. 
We can estimate the effect of thermal fluctuations on a passive particle of same shape as the cell, which 
provides a lower bound for the effective rotational diffusion coefficient. For such a passive particle, the 
rotational diffusion coefficient is given by an Einstein-Stokes relation, Drot = kBT=°rot, where °rot
denotes the hydrodynamic friction coefficient for rotational motion. The rotational friction coefficient 
typically scales as °rot » L3, where L denotes a typical size of the cell. Hence, 
 
 Drot » L¡3. (11) 
 
As a numerical example, we find Drot = 0:1 s¡1, for a spherical particle of radius a=1, for which 
°rot = 8¼´a3. This estimate implies that the correlation time ¿ = 1=Drot of persistent directional 
swimming is just a few seconds for a micron-sized bacterium. For typical swimming speeds of a 
bacterium, v ¼ 10¹ms¡1, the resultant swimming path will be a persistent random walk (even in the 
absence of active tumbling) with persistence length of lp = v=(2Drot) ¼ 50¹m 286,287. It was argued 
that active motility would not pay off for the smallest bacteria, which measure less than a micron in 
size288: for these cells, directional persistence of motion would be so low that net locomotion becomes 
impossible and active motility would increase only the effective translational diffusion coefficient of 
the cell, De® = Dtrans + v2=(6Drot). Interestingly, most cells that measure less than a micron are 
indeed immotile288. 
Motile cells, such as swimming bacteria, often show chemotaxis, i.e. the directed motility upwards a 
concentration gradient, such as a gradient of nutrient concentration. Rotational diffusion restricts the 
gradient sensing strategies available to these cells. During a time span on the order of , the information 
gathered by swimming bacteria such as E. coli is not sufficient for directed steering responses in the 
direction of the gradient. Instead, these bacteria employ a stochastic navigation strategy, where only the 
frequency of random re-orientation events is adjusted. This steering strategy results in a biased random 
walk with net drift up the gradient as detailed in the next section.  
 
Three cellular strategies of gradient sensing. Motility control of motile cells is an ideal test case to 
study the adaptation of cellular signaling to dynamic and noisy environments. Pioneering work by 
Howard Berg unraveled the stochastic control logic of chemotaxis in bacteria upwards concentration 
gradients of nutrients81. Motile bacteria such as E. coli perform a biased random walk to move up a 
chemical gradient. We enjoy a rather comprehensive understanding of chemotactic signaling in bacteria 
today289,290. Eukaryotic (i.e. non-bacterial) cells, however, employ fundamentally distinct navigation 
strategies of helical chemotaxis140,291 and spatial comparison61,292, which are reviewed below. For 
eukaryotic chemotaxis, many questions regarding the underlying sensorimotor feedback logic, and its 
adaptation to dynamic chemoattractant fields are still open. Below, we elaborate the hypothesis that 
different chemotaxis strategies of bacteria and eukaryotic cells actually represent adaptations to 
different regimes of noise in sensing and motility8. We emphasize that molecular shot noise makes 
renders measuring a concentration gradient accurately a non-trivial task at the cellular scale.  
Measuring a concentration gradient requires the comparison of local concentration measurements 
c1 = c(r1; t1) and c2 = c(r2; t2) at different positions in space and possibly different times. The most 
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direct method of gradient-sensing would be to measure local concentrations at different positions r1 
and r2 of the cell at the same time t1 = t2, which amounts to a mechanism of spatial comparison. 
However, recalling that cells detect a number N  of binding events as a proxy for local concentration c  
with hNi » c, see equation (10), we are led to compare the difference in the expectation values of two 
measurements ¢N = hN1 ¡N2i, to the uncertainty ¾ in its measurement, which provides a signal-to-
noise ratio284 
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From this equation, we find that spatial comparison is a viable strategy only for relatively large and 
slowly moving cells. For fast-swimming bacteria and sperm cells, one finds that the signal-to-noise 
ratio of spatial comparison would be too low to allow for reliable steering. Instead, these cells employ 
different strategies of temporal comparison8,293, for which these cells rely on their active motion inside 
the external concentration field, which allows them to compare concentrations at different positions 
along their swimming path r(t).  
Noise in sensing and motility imposes tight constraints on cellular chemotaxis strategies. We review 
three different strategies for dynamic gradient sensing employed by single cells. 
 

Chemotaxis by spatial comparison. The fidelity of spatial gradient sensing across the diameter L of a 
cell depends strongly on the time ¿ = L=v available to integrate noisy local concentration 
measurements, which in turn depends on the speed v of the cell locomotion284. Only slow moving cells, 
such as the slime mold Dictyostelium (v ¼ 1¡10¹m=min), are able to employ spatial comparison for 
directed motion up a chemical gradient61 with the efficacy of chemotaxis depending on the signal-to-
noise ratio of spatial gradient sensing294,295. 
 

Biased random walks. Swimming bacteria such as Escherichia coli employ a stochastic chemotaxis 
strategy: they move along biased random walks to steer up chemical gradients, e.g. gradients of nutrient 
concentrations. During so-called ‘run’ periods, these cells swim along straight paths for a few seconds. 
These straight ‘runs’ are interrupted by stochastic reorientation events, termed ‘tumbling’, during which 
the bacterium picks a new swimming direction at random69. E. coli employs a particular form of 
temporal comparison for gradient-sensing by which the cell computes a smoothed time-derivative of 
the temporal concentration signal c(r(t)) along its swimming path r(t). If a decrease of this 
concentration signal is detected, which is indicative of inadvertently swimming down-gradient, the cell 
will tumble earlier and more vigorously. This ‘run-&-tumble’ strategy results in a biased random walk, 
with net drift towards regions of higher chemoattractant concentration. 
Interestingly, noise in chemosensation would render the alternative chemotaxis strategy of spatial 
comparison too inaccurate for these bacteria69,284, see also equation (12). In short, E. coli is too small 
and too fast for accurate gradient-sensing by spatial comparison. At the same time, motility fluctuations 
are similarly substantial for these cells: Sized only a few microns, E. coli cells are subject to thermal 
fluctuations that randomize their swimming direction even during supposedly straight ‘runs’. The 
rotational diffusion time D¡1

rot of a few seconds limits the available time span for signal integration. 
Correspondingly, it is observed that ‘runs’ usually do not last longer than this time span. The 
information gathered by temporal comparison during a single ‘run’ is not sufficient to control the 
steering direction284, which leads to the genuinely stochastic strategy of bacterial chemotaxis. Thus, 
sensing and motility fluctuations constrain the possible choice of chemotaxis strategy for bacteria. 
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Helical chemotaxis. A third navigation strategy exploits chiral self-motion. This strategy is employed 
e.g. by sperm from marine species with external fertilization, which respond to signaling molecules 
released by the egg144,296. These sperm swim along helical paths91–93, which is a result of the chiral beat  

 

 
Figure 8: The three strategies of single cell chemotaxis. For chemotaxis, motile cells employ 
very different strategies. Left: Cells with crawling motility, such as the slime mold 
Dictyostelium, compares concentration differences across the diameter of the cell, thus 
representing a case of spatial comparison. Subsequently, the cell becomes structurally polar 
in the direction of the gradient and moves up-gradient. Middle: The bacterium E. coli employs 
a chemotaxis strategy of temporal comparison along a biased random walk. Short run 
segments are interrupted by stochastic reorientations events termed ‘tumble’. A dynamic 
regulation of the ‘tumbling’ frequency according to temporal changes of the concentration 
signal along their swimming path results in a net drift up the gradient. Right: Sperm cells from 
marine species with external fertilization navigate along helical paths, which represents a 
stereotypic form of exploratory motion. Although helical chemotaxis represents a case of 
gradient-sensing by temporal comparison as in the case of bacterial chemotaxis, sperm 
steering responses are deterministic and point in the direction of the gradient, in contrast to 
the stochastic tumbling events of bacteria. The different chemotaxis strategies of these three 
cells suggest an adaptation to different noise levels of sensing and motility. Blue: 
concentration gradient of a signaling molecule, red: cell trajectory. Modified from ref.8 with 
permission. 
 

of their flagellum93. Helical swimming enables these cells to detect the direction of a chemoattractant 
gradient perpendicular to the helix axis: when the cell swims along a helix (whose axis is initially not 
aligned with the gradient), the cell will periodically move up and down the gradient, see figure 9. Thus, 
the cell perceives a chemoattractant stimulus that oscillates with the frequency of helical swimming. 
This frequency is about 2Hz for marine sperm119. Thereby, information about the spatial gradient 
becomes encoded in a temporal oscillation of the chemoattractant signal. This chemoattractant signal is 
transduced by a chemotactic signaling cascade297, which generically will elicit an oscillatory flagellar 
steering response140. As a result, the curvature and torsion of the sperm swimming path oscillate with 
the helix frequency. While a constant value of curvature and torsion characterizes a perfect helix, 
oscillations of curvature or torsion result in bending helices140. As a consequence, the helix axis, which 



44 
 

represents the direction of net motion, aligns with the gradient direction. Correct steering requires that 
the latency time of chemotactic signaling, which induces a phase-shift between stimulus oscillations 
and curvature oscillations, adopts an optimal value140.  
Sperm cells swim too fast (v=100¹m=s) in order to employ spatial comparison with sufficient accuracy 
along the length of their flagellum (L = 50¹m)8. Like bacteria, sperm must rely on temporal 
comparison, i.e. sperm detect how the local concentration changes in time while they actively move in 
a concentration gradient298. However, being ten-fold larger than bacteria, sperm cells are 1000-times 
less affected by thermal rotational diffusion8. Thus, sperm cells from marine invertebrates can stably 
swim along helical paths. Their helical swimming represents a stereotypic form of exploratory 
movement, which enables these cells to gather information about the direction of concentration 
gradient. This information is encoded in the relative phase of temporal oscillations of the concentration 
stimulus. Unlike bacteria that employ a fundamentally stochastic chemotaxis strategy of run-&-tumble, 
sperm use directed steering responses8,140. Generally, helical chemotaxis is expected to be more efficient 
than a biased random walk. This is because helical chemotaxis enables the cell to align its direction of 
net motion parallel to the direction of the gradient. Additionally, measuring concentration gradients 
while moving along helical paths provides an effective mean to integrate out molecular shot noise of 
chemosensation141,142. 
 

 
 

Figure 9: The principle of helical chemotaxis. We describe a navigation strategy of helical 
chemotaxis, which is employed e.g. by sperm from marine species with external fertilization 
that swim along helical paths8,93,140. In the presence of chemoattractant gradient, helical 
swimming paths bend in the direction of the gradient, which aligns the helix axis with the 
gradient direction. This chemotaxis strategy relies on a simple geometric principle: While 
swimming along a helix, the cell periodically moves up and down the gradient. The cell thus 
perceives an oscillatory chemoattractant stimulus that oscillates with the period T  of helical 
swimming. The cell responds to this oscillatory chemical signal with oscillations of its path 
curvature. As a result, the helix bends to align its axis with the gradient. 

 
Adaptation to spatio-temporal stability of concentration gradients. Cells must navigate in 
fluctuating environments. For example, chemical gradients established by diffusion in aqueous 
environments will be not be perfectly linear, but become distorted by turbulent flows299,300. As a second 
example, concentrations gradients of nutrients such as organic debris in the ocean continuously change 
due to the dynamics of its production and uptake by other organisms301,302.  In a theoretical description 
of bacterial chemotaxis, optimal strategies of chemotactic signaling such as time-scales of signal 
integration or sensory adaptation were found to depend on sensing noise303, and thus on the 
characteristics of concentration gradients. Celani and Vergassola formalized a risk-averse maximin-
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strategy for bacterial chemotaxis, which is adapted to random, short-lived concentration gradients304. If 
concentrations change on a typical time-scale, memory can improve the performance of cellular 
gradient-sensing. Concepts from control engineering (such as Kalman filters) represent strategies for 
the robust estimation of concentration gradients305. Finally, the availability of extensive memory and 
computation resources facilitates advanced strategies of gradient search. One example of such an 
advanced strategy is infotaxis. 
For the theoretically proposed mechanism of infotaxis, a hypothetical ‘search agent’ exploits its full 
sensation history to compute a detailed likelihood map of the location of a single point source306. Put 
differently, the search agent relies on a cognitive model of environmental variability. The search agent 
then choses its next movement step such as to maximize the expected reduction in Shannon entropy of 
this likelihood map. This theoretical mechanism represents a viable solution to the general trade-off 
choice between exploration (i.e. active movement geared at gathering additional information about the 
environment) and exploitation (i.e. directed movement towards the current estimate of the most-likely 
target position). Infotaxis was shown to perform even for dilute concentration gradients that are 
distorted by strongly turbulent flows. For single cells with minimal information processing capabilities, 
however, navigation strategies that require extensive memory and information processing capabilities 
such as infotaxis may not be available. Cells have to make optimal use of available resources for 
sensing, information processing, and memory for spatial navigation307. 
 
 
Concluding remark. In this introduction, we highlighted the nonlinear physics of cell motility and self-
organized pattern formation in biological systems. In particular, we emphasized how non-equilibrium 
fluctuations and external perturbations affect cellular function. In the selected publications of chapter 2 
and 3, these two central themes, nonlinear dynamics and fluctuations, are studied for specific biological 
systems. The systems under study range from flagellar swimming, steering, and synchronization to 
cytoskeletal pattern formation and self-scaling morphogen gradients. We combine analytically tractable 
theoretical descriptions and computational approaches. Thereby, we provide insight into physical 
mechanisms of biological function. Further, we enable a quantitative comparison of theory and 
experiment. Ultimately, we seek to use theoretical physics to contribute to the understanding of 
fundamental principles that render biological dynamics robust in the presence of strong fluctuations and 
perturbations. 
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2 Selected publications: Cell motility and motility control 

 

2.1 “Flagellar synchronization independent of hydrodynamic interactions” 
 

Abstract. Inspired by the coordinated beating of the flagellar pair of the green algae Chlamydomonas, 
we study theoretically a simple, mirror-symmetric swimmer, which propels itself at low Reynolds 
number by a revolving motion of a pair of spheres. We show that perfect synchronization between these 
two driven spheres can occur due to the motion of the swimmer and local hydrodynamic friction forces. 
Hydrodynamic interactions, though crucial for net propulsion, contribute little to synchronization for 
this free-moving swimmer. 
 
B. M. Friedrich, F. Jülicher: Flagellar synchronization independent of hydrodynamic interactions. Phys. 
Rev. Lett. 109(13), 138102, 2012 
 
DOI: https://doi.org/10.1103/PhysRevLett.109.138102 
 
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.109.138102 
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2.2  “Cell body rocking is a dominant mechanism for flagellar 
synchronization in a swimming green alga” 

 
Abstract. The unicellular green algae Chlamydomonas swims with two flagella, which can synchronize 
their beat. Synchronized beating is required to swim both fast and straight. A long-standing hypothesis 
proposes that synchronization of flagella results from hydrodynamic coupling, but the details are not 
understood. Here, we present realistic hydrodynamic computations and high-speed tracking 
experiments of swimming cells that show how a perturbation from the synchronized state causes 
rotational motion of the cell body. This rotation feeds back on the flagellar dynamics via hydrodynamic 
friction forces and rapidly restores the synchronized state in our theory. We calculate that this ‘cell body 
rocking' provides the dominant contribution to synchronization in swimming cells, whereas direct 
hydrodynamic interactions between the flagella contribute negligibly. We experimentally confirmed 
the coupling between flagellar beating and cell body rocking predicted by our theory. We propose that 
the interplay of flagellar beating and hydrodynamic forces governs swimming and synchronization in 
Chlamydomonas. 
 
V. F. Geyer, F. Jülicher, J. Howard, B. M. Friedrich: Cell body rocking is a dominant mechanism for 
flagellar synchronization in a swimming alga. Proc. Natl. Acad. Sci. U.S.A. 110(45), 18058(6), 2013 
 
DOI: 10.1073/pnas.1300895110 
 
http://www.pnas.org/content/110/45/18058.abstract.html?etoc 
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2.3 “Active phase and amplitude fluctuations of the flagellar beat” 
 

Abstract. The eukaryotic flagellum beats periodically, driven by the oscillatory dynamics of molecular 
motors, to propel cells and pump fluids. Small, but perceivable fluctuations in the beat of individual 
flagella have physiological implications for synchronization in collections of flagella as well as for 
hydrodynamic interactions between flagellated swimmers. Here, we characterize phase and amplitude 
fluctuations of flagellar bending waves using shape mode analysis and limit-cycle reconstruction. We 
report a quality factor of flagellar oscillations,  (mean s.e.). Our analysis shows that 
flagellar fluctuations are dominantly of active origin. Using a minimal model of collective motor 
oscillations, we demonstrate how the stochastic dynamics of individual motors can give rise to active 
small-number fluctuations in motor-cytoskeleton systems.  
 
R. Ma, G. S. Klindt, I.-H. Riedel-Kruse, F. Jülicher, B. M. Friedrich: Active phase and amplitude 
fluctuations of flagellar beating. Phys. Rev. Lett. 113(4), 048101, 2014 
 
DOI: https://doi.org/10.1103/PhysRevLett.113.048101 
 
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.113.048101 
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2.4 “Sperm navigation in 3D chemoattractant landscapes” 
 

Abstract. Sperm require a sense of direction to locate the egg for fertilization. They follow gradients 
of chemical and physical cues provided by the egg or the oviduct. However, the principles underlying 
three-dimensional (3D) navigation in chemical landscapes are unknown. Here using holographic 
microscopy and optochemical techniques, we track sea urchin sperm navigating in 3D chemoattractant 
gradients. Sperm sense gradients on two timescales, which produces two different steering responses. 
A periodic component, resulting from the helical swimming, gradually aligns the helix towards the 
gradient. When incremental path corrections fail and sperm get off course, a sharp turning manoeuvre 
puts sperm back on track. Turning results from an ‘off’ Ca2+ response signifying a chemoattractant 
stimulation decrease and, thereby, a drop in cyclic GMP concentration and membrane voltage. These 
findings highlight the computational sophistication by which sperm sample gradients for deterministic 
klinotaxis. We provide a conceptual and technical framework for studying microswimmers in 3D 
chemical landscapes. 
 
J. F. Jikeli*, L. Alvarez*, B. M. Friedrich*, L.G. Wilson*, R. Pascal, R. Colin, M. Pichlo, A. Rennhack, 
C. Brenker, U. B. Kaupp: Sperm navigation in 3D chemoattractant landscapes. Nature Communications 
6, 7985, 2015 
 

* = these authors contributed equally 
 
DOI: 10.1038/ncomms8985 
 
http://www.nature.com/ncomms/2015/150817/ncomms8985/full/ncomms8985.html 
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3 Selected publications: Self-organized pattern formation in cells 
and tissues 

 

3.1 “Sarcomeric pattern formation by actin cluster coalescence” 
 

Abstract. Contractile function of striated muscle cells depends crucially on the almost crystalline order 
of actin and myosin filaments in myofibrils, but the physical mechanisms that lead to myofibril 
assembly remains ill-defined. Passive diffusive sorting of actin filaments into sarcomeric order is 
kinetically impossible, suggesting a pivotal role of active processes in sarcomeric pattern formation. 
Using a one-dimensional computational model of an initially unstriated actin bundle, we show that actin 
filament treadmilling in the presence of processive plus-end crosslinking provides a simple and robust 
mechanism for the polarity sorting of actin filaments as well as for the correct localization of myosin 
filaments. We propose that the coalescence of crosslinked actin clusters could be key for sarcomeric 
pattern formation. In our simulations, sarcomere spacing is set by filament length prompting tight length 
control already at early stages of pattern formation. The proposed mechanism could be generic and 
apply both to premyofibrils and nascent myofibrils in developing muscle cells as well as possibly to 
striated stress-fibers in non-muscle cells.  
 
B. M. Friedrich, E. Fischer-Friedrich, N. S. Gov, S. A. Safran: Sarcomeric pattern formation by actin 
cluster coalescence. PLoS Comp. Biol. 8(6), e1002544, 2012 
 
DOI: https://doi.org/10.1371/journal.pcbi.1002544 
 
http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002544 
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3.2 “Scaling and regeneration of self-organized patterns” 
 

Abstract. Biological patterns generated during development and regeneration often scale with organism 
size. Some organisms e.g. flatworms can regenerate a re-scaled body plan from tissue fragments of 
varying sizes. Inspired by these examples, we introduce a generalization of Turing patterns that is self-
organized and self-scaling. A feedback loop involving diffusing expander molecules regulates the 
reaction rates of a Turing system, thereby adjusting pattern length scales proportional to system size. 
Our model captures essential features of body plan regeneration in flatworms as observed in 
experiments.  
 
S. Werner, T. Stückemann, M. Beirán Amigo, J. C. Rink, F. Jülicher, B. M. Friedrich: Scaling and 
regeneration of self-organized patterns. Phys. Rev. Lett. 114(13), 138101, 2015 
 
DOI: 10.1103/PhysRevLett.114.138101 
 
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.114.138101 
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4 Contribution of the author in collaborative publications 
 

The author is principal author of all publications presented in this thesis. He conceived the original idea 
for the projects in all-but-one cases. The only exception is publication 2.4: “Sperm navigation …”, 
which represent a combination of experiment and theory on sperm chemotaxis, where the experimental 
part was initiated first. The theoretical part of this publication has been solely contributed by the author. 
Below, we list the specific contributions of the author for all publications presented in this thesis. 
 
 
2.1: “Flagellar synchronization independent of hydrodynamic interactions”  

 contribution of author: original conception of project, development of theoretical description, 
all analytic calculations, all stochastic simulations, manuscript preparation including all figures 

 
2.2: “Cell body rocking is a dominant mechanism for flagellar synchronization in a swimming alga” 

 contribution of author: original conception of project, management of theory-experiment 
collaboration, development of theoretical description, all analytic calculations, all 
hydrodynamic computations, development of image analysis software, data analysis, 
manuscript preparation including all figures 

 
2.3: “Active phase and amplitude fluctuations of the flagellar beat” 

 contribution of author: original conception of project, development of data analysis method 
for limit cycle reconstruction, data analysis, development of theoretical description, 
development of analytical theory together with Rui Ma, manuscript preparation including all 
figures 
 

2.4: “Sperm navigation in 3D chemical landscapes”  
 contribution of author: development of theoretical description, hydrodynamic computations 

of chiral flagellar swimming, algorithm development for data analysis (track smoothing, helix 
fitting, chemoattractant diffusion, time series analysis), comparison of theory and experiment, 
writing of theoretical part of manuscript, contribution to introduction and discussion, prepared 
figure panels (Fig. 1c, Fig. 2, Fig. 3c, Fig. 4c, Fig. 4f, Fig. 6, Fig. S3b Fig. S3f, Fig. S4) 
 

3.1: “Sarcomeric pattern formation by actin cluster coalescence”  
 contribution of author: original conception of project, development of theoretical description, 

all stochastic simulations, all analytic calculations, manuscript preparation including all figures 
 

3.2: “Scaling and regeneration of self-organized patterns” 
 contribution of author: original conception of project, development of initial theoretical 

description, close supervision of PhD student Steffen Werner who formulated the final 
description, coordination of the project, manuscript preparation and conception of all figures 
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5 Eidesstattliche Versicherung 
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6 Appendix: Reprints of publications  
 

 

Publication 2.1: “Flagellar synchronization independent of hydrodynamic interactions“ 
Published in: 
Phys. Rev. Lett. 109(13), p. 138102, 2012; 
5 pages, 4 figures. 
 
 
Publication 2.2: “Cell body rocking is a dominant mechanism for flagellar synchronization in a 
swimming green alga”  
Published in: 
Proc. Natl. Acad. Sci. U.S.A. 110(45), 18058(6). 2013; 
6 pages, 5 figures, 12 pages of supporting material. 
 
 
Publication 2.3: “Active phase and amplitude fluctuations of the flagellar beat” 
Published in: 
Phys. Rev. Lett. 113(4), 048101, 2014; 
5 pages, 3 figures, 5 pages of supporting material. 
 
 
Publication 2.4: “Sperm navigation in 3D chemoattractant landscapes” 
Published in: 
Nature Communications 6, 7985, 2015; 
10 pages, 6 figures, 14 pages of supporting material. 
 
 
Publication 3.1: “Sarcomeric pattern formation by actin cluster coalescence” 
Published in:  
PLoS Comp. Biol. 8(6), e1002544, 2012;  
10 pages, 6 figures, 11 pages of supporting material. 
 
 
Publication 3.2: “Scaling and regeneration of self-organized patterns”  
Published in: 
Phys. Rev. Lett. 114(13), 138101, 2015; 
5 pages, 3 figures. 
 

 



 



Flagellar Synchronization Independent of Hydrodynamic Interactions
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Inspired by the coordinated beating of the flagellar pair of the green algae Chlamydomonas, we study

theoretically a simple, mirror-symmetric swimmer, which propels itself at low Reynolds number by a

revolving motion of a pair of spheres. We show that perfect synchronization between these two driven

spheres can occur due to the motion of the swimmer and local hydrodynamic friction forces.

Hydrodynamic interactions, though crucial for net propulsion, contribute little to synchronization for

this free-moving swimmer.

DOI: 10.1103/PhysRevLett.109.138102 PACS numbers: 87.16.Qp, 05.45.Xt, 47.63.�b

Eukaryotic flagella are whiplike cell appendages that
can bend actively, propel microorganisms at low
Reynolds numbers, and pump fluids, e.g., mucus in our
airways [1]. Their active bending waves are generated by a
highly conserved cytoskeletal core with cylindrically ar-
ranged microtubules intercalated by molecular motors [2]
that convert chemical energy into work and heat.
Mechanical interactions are thought to underlie the coor-
dinated beating of several flagella as observed in pairs of
sperm cells [3] or in ciliary arrays, where hundreds of short
flagella beat in synchrony as metachronal waves [4].
Recently, the biflagellate green alga Chlamydomonas has
emerged as an experimental model system for flagellar
synchronization [5–7]. A Chlamydomonas cell swims for-
ward by the approximately planar and mirror-symmetric
bending waves of its two flagella, thus resembling a breast
swimmer [8]; see Fig. 1(a). The synchronous beating of the
two flagella is important for swimming along a straight
path [9]. Free swimming cells often exhibit synchronized
flagellar beating [8,9], raising the question of the
underlying synchronization mechanism. For flagella
attached to a solid substrate, long-range hydrodynamic
interactions can induce flagellar synchronization [10–16].
Synchronization of the flagella of a moving swimmer,
however, shows different features: Here, we show that
flagellar synchronization can occur as a result of local
hydrodynamic friction forces, even in the absence of
hydrodynamic interactions.

A model swimmer for biflagellar synchronization.—
Inspired by Chlamydomonas swimming, we propose a
model swimmer of maximal simplicity that retains its basic
symmetries. The swimmer consists of three spheres of
equal radius a and respective positions rj ¼ ðxj; yj; 0Þ
attached to a planar and mirror-symmetric scaffold; see
Fig. 1(b). The swimmer is immersed in a viscous fluid of
viscosity � and the swimmer’s scaffold is frictionless. The
sphere located at r3 mimics a cell body and defines a
material frame of the swimmer with orthonormal vectors
e1 ¼ ðcos�3; sin�3; 0Þ, e3 ¼ ð0; 0; 1Þ, and e2 ¼ e3 � e1,
where the angular variable �3 characterizes rotations of

the swimmer (around the z axis) with respect to the (x, y, z)
laboratory frame; see Fig. 1(b).
The first and the second sphere move along circular orbits

of radius R, ri ¼ si þ Rð� sin’ie1 þ cos’ie2Þ, i ¼ 1; 2,
being connected by frictionless lever arms to joints located
at the corners si ¼ r3 þ l½ð�1Þie1 þ e2� of an isosceles
triangle; see Fig. 1(b). Thus, l sets the size of the swimmer.
The orbits are parametrized by respective phase angles ’i,
i ¼ 1; 2 such that bð’iðtÞ � ’ið0ÞÞ=ð2�Þc denotes the num-
ber of full rotations of the ith sphere since time t ¼ 0 with
respect to the material frame of the swimmer. Similarly,
bð�iðtÞ � �ið0ÞÞ=ð2�Þc with �i ¼ �3 þ ’i denotes the
number of rotations with respect to the laboratory frame.
Below, the dynamics of the phase angles’i is given in terms
of active driving torques; the cases _’i < 0 and _’i > 0
correspond to either a clockwise or counterclockwise revo-
lution of the driven spheres (viewed along �e3), respec-
tively. The revolving motion of these driven spheres
provides a simplified representation of the periodic bending
waves of the two slender flagella of Chlamydomonas
[10,11], for which each point on a flagellum follows a

FIG. 1 (color online). (a) Simplified flagellar beat of
Chlamydomonas showing flagellar shapes at equidistant times
representing a full beat cycle (T � 15 ms), adapted from [34].
The flagellar bending waves are approximately planar and
mirror-symmetric. Each point on a flagellum moves on a peri-
odic orbit with respect to a material frame of the cell body.
(b) The idealized model swimmer consists of three equal spheres
connected by a frictionless scaffold. The first and second sphere
(located at r1 and r2) can move along a circular trajectory as
indicated, being driven by internally generated active torques.
(The arrows correspond to the case !0 > 0).
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periodic orbit in a material frame of the cell body;
see Fig. 1(a).

We neglect inertial effects, which implies that fluid flow
is governed by the Stokes equation of zero Reynolds
number hydrodynamics [1,17]. We consider the hydrody-
namic friction force Fj and torque Tj (defined with respect

to r3) exerted by the jth sphere on the viscous fluid during
motion of the swimmer; T0

j ¼ Tj � Fj � ðrj � r3Þ denote
torques with respect to rj. For free swimming, force and

torque balance holds, Fext ¼ 0 and Text ¼ 0 with Fext ¼
F1 þ F2 þ F3, Text ¼ T1 þ T2 þ T3. The linearity of the
Stokes equation implies a linear relationship between the
generalized velocity vector for planar motion of the three
spheres, _q0 with q0 ¼ ðx1; y1; �1; . . . ; x3; y3; �3ÞT , and
the nonzero hydrodynamic friction force and torque
components [17],

ðF1x; F1y; T
0
1z; . . . ; F3x; F3y; T

0
3zÞT ¼ �0 _q0: (1)

The symmetric 9� 9 hydrodynamic friction matrix �0 can
be computed to arbitrary precision in a=jrj � rkj [18]; in
the limit of large separation between the spheres, the
friction matrix would be diagonal, �0;ij ¼ �j�ij, with

�j ¼ �rot for j ¼ 3; 6; 9 and �j ¼ � otherwise. Here,

� ¼ 6��a and �rot ¼ 8��a3 denote the translational
and rotational friction coefficients of a single sphere of
radius a, respectively. In general, the flow field induced by
the motion of one sphere will exert forces on the other
spheres, thus giving rise to nonzero, off-diagonal compo-
nents of �0, which characterize hydrodynamic interactions
between the spheres. Below, we use the Rotne-Prager-
Yamakawa approximation for �0 ¼ �0ðq0Þ, which general-
izes the Oseen tensor and applies to both translational and
rotational motion [18].

The swimmer is characterized by 5 degrees of freedom,
represented by a vector of generalized coordinates,
q ¼ ðx3; y3; �3; ’1; ’2Þ, if its internal constraints are taken
into account. In the following, we use the framework of
Lagrangian mechanics of dissipative systems [19] to de-
scribe the dynamics of our swimmer. First, _q0 ¼ L _q, with
a 9� 5 transformation matrix Lij ¼ @q0i=@qj. The rate

Rh ¼ _q0
T�0 _q0 of hydrodynamic energy dissipation dur-

ing swimming can be equivalently written asRh ¼ _qT�h _q
with the 5� 5 friction matrix �h ¼ LT�0L. The energy
for active swimming is provided by a fuel reservoir, which
we take for simplicity as infinite with internal energy
U ¼ �m1’1 �m2’2. Here, m1 and m2 denote active
driving torques that are assumed to be independent of the
present phase ’i (but see [16]). The potential U defines
generalized potential forcesQj ¼ �@U=@qj, j ¼ 1; . . . ; 5.

Further, we introduce the Rayleigh dissipation function
R ¼ Rh þR� that sets the rate at which the energy
reservoir is depleted, � _U ¼ R. Here, R� ¼ �ð _’2

1 þ _’2
2Þ

denotes a rate of internal dissipation associated with
the actuation of the two driven spheres. For notational
convenience, R� ¼ _qT�� _q with ��;ij ¼ 0 except

��;44 ¼ ��;55 ¼ �. The generalized friction forces

Pi ¼ ð1=2Þ@R=@ _qi are linear in _q, Pi ¼ �ij _qj with

� ¼ �h þ ��. Neglecting inertial forces and assuming
that no external forces act on the swimmer, we find a
balance of generalized potential forces and generalized
friction forces Qj ¼ Pj, j ¼ 1; . . . ; 5. For example, the

equation for j¼4, corresponding to q4 ¼ ’1, represents
a torque balance between a hydrodynamic friction torque,
ð1=2Þ@Rh=@ _’1 ¼ F1 � ð@r1=@’1Þ þ T0

1z, and a net motor

torque m1 � � _’1 provided by active driving. This motor
torque obeys a linear torque-velocity relation with stall
torque m1, similar to the net driving force used in [10].
An analogous statement holds for the second sphere. We
finally obtain an equation of motion of the swimmer [20],

_q ¼ ��1ð0; 0; 0; m1; m2ÞT: (2)

We first discuss the case of exactly opposite driving
torques m1 ¼ �m2, which results in a counterrotation
of sphere 1 and sphere 2 [Fig. 1(b)], similar to the
mirror-symmetric beat patterns of the two flagella of
Chlamydomonas [Fig. 1(a)]. The angular frequency !0 ¼
m1=� sets an (inverse) time scale of motion. If !0 > 0, the
revolution of the first sphere is counterclockwise and
clockwise for the second. The two cases !0 > 0 and
!0<0 are mapped onto each other by time reversal.
Net propulsion due to hydrodynamic interactions.—For

m1 ¼ �m2, there exists an orbit with perfect in-phase
dynamics characterized by � ¼ 0, where � ¼ ’1 þ ’2.
Below, we show that this orbit is stable for !0 < 0, but
unstable for !0 > 0. If initially �3ðt ¼ 0Þ ¼ 0, the
swimmer will move parallel to the y axis in an oscillatory
manner: In the limit of small spheres and small circular
orbits, a � l, R � l, we find to leading order
_y ¼ ð2=3ÞR!0 sin’1 þOð"2Þ with _’1 ¼ !0 þOð"3Þ.
Here, we introduced the small expansion parameter
" ¼ a=l and assume R=a to be of order unity. In this limit,
internal dissipation dominates over hydrodynamic dissipa-
tion, � � �R2 þ �rot. Net propulsion is a higher-order
effect [21,22] and the time-averaged velocity reads

h _yi ¼ �a!0�ða=lÞ2 þOð"4Þ; (3)

with � ¼ ½ð2 ffiffiffi
2

p � 1ÞðR=aÞ2 � 4ð1þ ffiffiffi
2

p Þ�=24. Note that
the swimmer can move either forward or backward
depending on the value of R=a and the sign of !0. For
asynchronous beating with � ¼ ’1 þ ’2 � 0, �3 oscil-
lates and the swimmer wiggles along a curved path.
If hydrodynamic interactions were absent, i.e. �0;ij ¼

�j�ij, the center of reaction rc ¼ P
jrj=3 of the swimmer

could not move since 3� _rc ¼ Fext ¼ 0, and net propulsion
would be zero. This is a well-known feature of hydro-
dynamics at zero Reynolds number. Partial screening of
hydrodynamic interactions can occur, e.g., for swimming
close to a planar substrate.
A system of coupled phase oscillators.—The phase

velocities _’1 and _’2 cannot depend on the momentary
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values of x3, y3, �3, as the phase variables are invariant
under a change of laboratory frame, but the position and
orientation variables are not. Indeed, one can eliminate the
latter from Eq. (2) and obtain a dynamical system for ’1

and ’2 in the form of two coupled phase oscillators,

� _’i¼miþ"3hi1ð’1;’2Þm1þ"3hi2ð’1;’2Þm2; i¼1;2:

(4)

Here the coupling functions hij depend only on ½’i�¼
’imod2� and can be computed from the friction matrix
�. Importantly, the hij implicitly account for the motion of

the swimmer and imposing constraints on themotionwould
change these functions.

Synchronization of counterrotating spheres.—For oppo-
site driving torques, m1 ¼ �m2 ¼ !0�, we find two limit
cycles of the phase dynamics characterized by � ¼ 0 and
� ¼ �þOð"3Þ, respectively, where � ¼ ’1 þ ’2. The
first limit cycle corresponds to perfect in-phase dynamics
as considered in the paragraph on net propulsion and is
a global attractor for !0 < 0, but unstable for !0 > 0; see
Fig. 3(b). Limit cycles of the (’1, ’2) phase dynamics
correspond to fixed points of a Poincaré return map �n !
�nþ1 ¼ �n þ�ð�nÞ that tracks �n ¼ �ðtnÞ at discrete
times tn that mark the completion of n full revolutions of
the first sphere, ’1ðtnÞ ¼ 2�nsgnð!0Þ. The solid curve in
Fig. 2(a) shows a numerical solution for�ð�Þ as a function
of initial phase sum � ¼ �0. By symmetry, �ð0Þ ¼ 0,
which corresponds to the limit cycle of in-phase synchro-
nization with � ¼ 0. This limit cycle will be stable if

� ¼ �d�=d�j�¼0 is positive. In the limit of small spheres

and small circular orbits, �ð�Þ ¼ �� sin�þOð"6Þ with
� ¼ �sgnð!0Þ3��R4=ð16�l2Þ þOð"6Þ: (5)

Thus, in-phase synchronization with � ¼ 0 is stable
for !0 < 0 and perturbations decay as limn!1�nþ1=�n ¼
1� �.
Remarkably, if hydrodynamic interactions are neglected,

�ð�Þ does not change significantly; see Fig. 2(a) (dashed
curve). In fact, hydrodynamic interactions contribute to
�ð�Þ only to higher order as Oð"6Þ. This implies that
hydrodynamic interactions have only a marginal effect for
the phase synchronization of our model swimmer. Rather,
local hydrodynamic friction forces that arise from the mo-
tion of the swimmer dominate synchronization: If one
driven sphere is ahead of the other, this asynchronous beat-
ing results in a rotation of the whole swimmer, accompanied
by hydrodynamic friction forces acting on the spheres.
In the presence of constraining forces that prevent the

swimmer from translating and rotating, the coupling func-
tions hij in Eq. (4) change, resulting in weak synchroniza-

tion toward novel limit cycles; see Fig. 2(b). In this case,
synchronization is due to hydrodynamic interactions only.
For a microscopic oscillator such as a beating flagellum

powered by molecular motors, noise is prevalent and may
counteract synchronization. As a simple model for motor
fluctuations, we now consider fluctuating driving torques,
m1 ¼ k!0 þ �1 and m2 ¼ �k!0ð1þ 	Þ þ �2, h�ii ¼ 0,
together with a detuning of driving torques, 	. We
assume a noise correlation time short compared to
T ¼ 2�=j!0j, and model �i as Gaussian white noise
with h�iðtÞ�jðt0Þi ¼ 2D!0�

2�ij�ðt� t0Þ, where D denotes

a dimensionless noise strength. Equation (4) thus becomes
a stochastic equation with multiplicative noise (for which
Stratonovich interpretation is to be used). For weak noise
with D � 1, the behavior of � ¼ ’1 þ ’2, averaged
over cycles of the fast variable ’1 � !0t, is to a good
approximation [23] given by the prototypical Adler equa-
tion [24–26],

d�=dt � 	!0 � ð�=TÞ sin�þ �; (6)

where � denotes Gaussian white noise with h�ðtÞ�ðt0Þi ¼
4D!0�ðt� t0Þ. Equation (6) describes a Brownian particle
with position � that diffuses in a tilted washboard potential.
For 	, D � j�j, � fluctuates within one potential well
(corresponding to transient synchronization), with occa-
sional phase slips from one well to the next. For 	 ¼ 0, the
frequency ð2�Þ�2dh�2i=dt of these phase slips scales with
noise strength D for D � j�j, but is suppressed for
D � j�j [25]; see Fig. 2(c). In the case of torque detuning,
	 � 0, phase locking can occur as discussed next.
In the general case of arbitrary driving torques m1 and

m2 (and no noise), phase locking between ’1 and ’2 can
occur, i.e. n2’1 � n1’2 remains bounded for some choice
of integers n1, n2. Figure 3(a) shows parameter regions
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FIG. 2 (color online). (a) Phase synchronization behavior of
our model swimmer (here for m1 ¼ �m2 < 0) can be read off
from a Poincaré return map � ¼ �ðTÞ � �ð0Þ that tracks the
change of the phase sum � ¼ ’1 þ ’2 after a full revolution of
the first sphere as function of initial � ¼ �ðt ¼ 0Þ. Fixed points
� ¼ 0 correspond to limit cycles of the (’1, ’2)-phase dynam-
ics; see Fig. 3(b1). For the dashed and solid curve, hydrodynamic
interactions were neglected or accounted for, respectively.
(b) Constraining translation and rotation of the swimmer by
clamping the third sphere changes its synchronization behavior
completely. (c) In the presence of fluctuations, the phase dynam-
ics of the free swimmer exhibits stochastic phase slips that occur
at a frequency ð2�Þ�2dh�2i=dt; shown is dh�2i=dt normalized
by D!0 (solid curve), as well as the analytical result [25]
dh�2i=dt � 4D!0I

�2
0 ½�=ð4�DÞ� for the approximate dynamics

given by Eq. (6), (dotted curve). Parameters: a=l ¼ 0:1,
R=a ¼ 5, � ¼ �l3.
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(called Arnold tongues [26]) for which phase locking
occurs.

The case of corotating spheres with m1 ¼ m2 is special
in the sense that the dynamics becomes reversible: The
mirror operation ð’1; ’2Þ ! ð�’2;�’1Þ maps each orbit
onto itself, but reverses the time arrow. The ð’1; ’2Þ phase
space is foliated by neutrally stable orbits; see Fig. 3(c).
Hence, for identical driving torques, no specific phase
difference is selected. In the presence of a small mismatch
	 in driving torque,m2 ¼ m1ð1þ 	Þwith j	j � 1, we find
�ð�Þ ¼ 2�	þOð	"3Þ mod 2�, which rules out the
possibility of 2�-periodic orbits for 	 � 0 and therefore
synchronization cannot occur in this case.

Generally, symmetries dictate synchronization behavior
[27]. For two interacting oscillators, time reversal changes
an attractor of their phase dynamics such as a synchronized
state into a repeller. If the time-reversed system is equiva-
lent to a mirror image of itself, stable synchronization
can therefore not occur [27]. This is exemplified by our
swimmer with corotating spheres (m1 ¼ m2); see Fig. 3(c).
Our swimmer with counterrotating spheres (m1 ¼ �m2)
is, after a time reversal, not equivalent to its mirror image.
Correspondingly, there exist limit cycles with synchro-
nized dynamics in this case, and their stability reverses
under time reversal; see Fig. 3(b). Note that in the absence
of the third sphere, time reversal would be equivalent to a
reflection at the plane that contains both rotation axes and
synchronization would be lost for our model swimmer with
its rigid scaffold. Previous research demonstrated that elas-
ticity of the rotating objects introduces additional degrees
of freedom that can break symmetries and thus stabilize
synchronization [11,12]. However, reversibility may also
be broken without evoking elasticity as in the case of our
three-sphere swimmer.

A realistic flagellar beat.—The conceptual framework of
our model swimmer can be extended in a straightforward
manner to any mirror-symmetric microswimmer whose
swimming stroke is characterized by two phase angles
’1 and ’2. As an example, consider the idealized flagellar
beat in Fig. 1(a): During a beat cycle, the centerline ri of

each of the two flagella can be expressed as a function of
arclength s, 0 � s � L, and phase angles ’i, i ¼ 1; 2, with
_’1 > 0 and _’2 < 0 that characterize the phase of the beat
cycle: With respect to a material frame (r3; e1, e2, e3) of
the cell body, riðs; ’iÞ ¼ r3 þ ci1ðs; ’iÞe1 þ ci2ðs; ’iÞe2,
i ¼ 1; 2. By mirror symmetry of the two flagella,
c1jðs; ’Þ ¼ ð�1Þjc2jðs;�’Þ. We make the simplifying

assumption that hydrodynamic forces do not alter the
sequence of flagellar shapes (i.e. the shape functions cij),

but only affect the phase speeds _’i.
The force balance equations for the dynamics of the

three-sphere swimmer generalize to the case of a realistic
flagellar beat; the torque balance corresponding to ’i now
reads [28]

Z L

0
dsfiðsÞ � @riðsÞ=@’i ¼ mi � � _’i; i ¼ 1; 2: (7)

To compute the density fiðsÞ of hydrodynamic friction
forces along the flagellar length as a function of ’i and
_’i, we employ simple resistive force theory [29–32], while
the cell body is approximated by a drag center equivalent to
a spheroid.
Resistive force theory accounts for short-range hydro-

dynamic effects along a single flagellum by assuming
effective anisotropic friction coefficients. This is crucial
for net propulsion. However, hydrodynamic interactions
between the two flagella, or with the cell body are not
accounted for. Despite these approximations, we compute
realistic, saltatory forward swimming for in-phase flagellar
beating with a net swimming speed of 0:66 
m=cycle. As
a main result, perfect flagellar synchronization with � ¼ 0
is stable; see Fig. 4(a). Of note, the synchronization pa-
rameter � has different sign in the case of the realistic
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FIG. 4 (color online). Flagellar synchronization of
Chlamydomonas computed for the beat pattern from Fig. 1(a)
using Eq. (7) and resistive force theory. (a) The Poincaré return
map �ð�Þ [defined analogous to that of Fig. 2(a)] shows that
in-phase flagellar beating with � ¼ 0 is stable with respect
to perturbations. (b),(c) The synchronization parameter � ¼
�d�=d�j�¼0 depends on the ratio of hydrodynamic dissipation

and internal dissipation (b) as well as on the size of the cell
body (c). Parameters (unless indicated otherwise): flagellar
length, L ¼ 12 
m; semiaxes of spheroidal cell body 3:7 
m,
5 
m [34]; resistive force coefficients, �k ¼ 2��=½lnð2L=rÞ �
3=2�, �? ¼ 4��=½lnð2L=rÞ � 3=2� [29] with flagellar radius
r ¼ 0:1 
m [2], �L3=� ¼ 100.

FIG. 3 (color online). (a) Depending on the ratio of the active
driving torques m1 and m2, phase locking of the phase variables
’1 and ’2 describing our model swimmer can occur giving rise
to a distinct pattern of Arnold tongues. (b) As specific example,
a limit cycle with � ¼ ’1 þ ’2 ¼ 0 is globally attractive for
opposite torques with m1 ¼ �m2 < 0 (b1), but repulsive for
m1 ¼ �m2 > 0 (b2). (c) For equal torques m1 ¼ m2, the
(’1, ’2) phase space is foliated by neutrally stable orbits.
Parameters: a=l ¼ 0:1, R=a ¼ 5, � ¼ �l3.
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flagellar beat and that of the simple three-sphere swimmer
with m1 ¼ �m2 > 0; this can be related to geometric
factors such as cell body size; see Fig. 4(c).

Discussion.—Using a minimal model, we have demon-
strated that synchronization can occur between the two
flagella of a free-moving swimmer due to the motion of
the swimmer itself, independent of hydrodynamic interac-
tions between the flagella. Importantly, the synchroniza-
tion behavior changes fundamentally if the swimmer is
restrained from translating and rotating. Local hydrody-
namic friction forces couple the flagellar oscillators via
movements of the swimmer, even in the absence of hydro-
dynamic interactions. Coupling of oscillators by swimmer
movements can be strongly influenced by externally im-
posed constraints, which typically exist in experiments.
For our model swimmer, synchronization of the flagellar
phases attenuates if the swimmer is restrained from trans-
lating and rotating. In Chlamydomonas, perfect in-phase
synchronization of its two flagella was reported also for
cells held in a micropipette [5–7], and even for isolated
flagellar pairs detached from the cell body [33].
Hydrodynamic interactions between the two flagella and
flexibility of the flagellar beat, as proposed by others
[10,11], may contribute to synchronization. We anticipate
that synchronization depends sensitively on elastic proper-
ties of the flagellar base.

We thank J. Baumgart, E. Fischer-Friedrich, V. Geyer,
J. Howard, R. Ketzmerick, L. Morelli, and A. Vilfan for
stimulating discussions.

Note added in proof.—After submission of this Letter,
we learned from R. Bennett and R. Golestanian that they
have independently developed a similar three-sphere
model for Chlamydomonas [35].
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The unicellular green alga Chlamydomonas swims with two flagella
that can synchronize their beat. Synchronized beating is required to
swim both fast and straight. A long-standing hypothesis proposes
that synchronization offlagella results fromhydrodynamic coupling,
but the details are not understood. Here, we present realistic hydro-
dynamic computations and high-speed tracking experiments of
swimming cells that showhowaperturbation fromthe synchronized
state causes rotational motion of the cell body. This rotation feeds
back on the flagellar dynamics via hydrodynamic friction forces and
rapidly restores the synchronized state in our theory. We calculate
that this “cell-body rocking” provides the dominant contribution to
synchronization in swimming cells, whereas direct hydrodynamic
interactions between the flagella contribute negligibly. We experi-
mentally confirmed the two-way coupling betweenflagellar beating
and cell-body rocking predicted by our theory.

flagellar force–velocity relation | low-Reynolds-number hydrodynamics

Eukaryotic cilia and flagella are long, slender cell appendages
that can bend rhythmically and thus present a prime example

of a biological oscillator (1). The flagellar beat is driven by the
collective action of dynein molecular motors, which are distrib-
uted along the length of the flagellum. The beat of flagella, with
typical frequencies ranging from 20–60 Hz, pumps fluids, for
example, mucus in mammalian airways (2), and propels unicel-
lular microswimmers such as Paramecia, spermatozoa, and algae
(3). The coordinated beating of collections of flagella is important
for efficient fluid transport (2, 4, 5) and fast swimming (6). This
coordinated beating represents a striking example for the syn-
chronization of oscillators, prompting the question of how flagella
couple their beat. Identifying the specific mechanism of synchro-
nization can be difficult because synchronization may occur even
for weak coupling (7). Further, the effect of the coupling is difficult
to detect once the synchronized state has been reached.
Hydrodynamic forces were suggested to play a significant role

for flagellar synchronization already in 1951 by Taylor (8). Since
then, direct hydrodynamic interactions between flagella were
studied theoretically as a possible mechanism for flagellar syn-
chronization (9–12). Another synchronization mechanism that
is independent of hydrodynamic interactions was recently de-
scribed in the context of a minimal model swimmer (13–15). This
mechanism crucially relies on the interplay of swimming motion
and flagellar beating.
Here, we address the hydrodynamic coupling between the two

flagella in a model organism for flagellar coordination (16–19),
the unicellular green alga Chlamydomonas reinhardtii. Chlamy-
domonas propels its ellipsoidal cell body, which has typical di-
ameter of 10 μm, using a pair of flagella, whose lengths are about
10 μm (16). The two flagella beat approximately in a common
plane, which is collinear with the long axis of the cell body. In
that plane, the two beat patterns are nearly mirror-symmetric
with respect to this long axis. The beating of the two flagella of
Chlamydomonas can synchronize, that is, adopt a common beat
frequency and a fixed phase relationship (16–19). In-phase syn-
chronization of the two flagella is required for swimming along
a straight path (19). The specific mechanism leading to flagellar
synchrony is unclear.

Here, we use a combination of realistic hydrodynamic compu-
tations and high-speed tracking experiments to reveal the nature of
the hydrodynamic coupling between the two flagella of free-swim-
ming Chlamydomonas cells. Previous hydrodynamic computations
for Chlamydomonas used either resistive force theory (20, 21),
which does not account for hydrodynamic interactions between the
two flagella, or computationally intensive finite element methods
(22). We employ an alternative approach and represent the
geometry of a Chlamydomonas cell by spherical shape primitives,
which provides a computationally convenient method that fully
accounts for hydrodynamic interactions between different parts of
the cell. Our theory characterizes flagellar swimming and synchro-
nization by a minimal set of effective degrees of freedom. The
corresponding equation of motion follows naturally from the
framework of Lagrangian mechanics, which was used previously to
describe synchronization in a minimal model swimmer (13, 15).
These equations of motion embody the key assumption that the
flagellar beat speeds up or slows down according to the hydrody-
namic friction forces acting on the flagellum, that is, if there is more
friction and therefore higher hydrodynamic load, then the beat will
slow down. This assumption is supported by previous experiments
that showed that the flagellar beat frequency decreases when the
viscosity of the surrounding fluid is increased (23, 24). The simple
force–velocity relationship for the flagellar beat employed by us
coarse-grains the behavior of thousands of dyneinmolecularmotors
that collectively drive the beat. Similar force–velocity properties
have been described for individual molecular motors (25) and re-
flect a typical behavior of active force generating systems.
Our theory predicts that any perturbation of synchronized

beating results in a significant yawing motion of the cell, remi-
niscent of rocking of the cell body. This rotational motion imparts
different hydrodynamic forces on the two flagella, causing one of
them to beat faster and the other to slow down. This interplay
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between flagellar beating and cell-body rocking rapidly restores
flagellar synchrony after a perturbation. Using the framework
provided by our theory, we analyze high-speed tracking experi-
ments of swimming cells, confirming the proposed two-way cou-
pling between flagellar beating and cell-body rocking.
Previous experiments restrained Chlamydomonas cells from

swimming, holding their cell body in a micropipette (17–19). Re-
markably, flagellar synchronization was observed also for these
constrained cells. This observation seems to argue against a syn-
chronization mechanism that relies on swimming motion. How-
ever, the rate of synchronization observed in these experiments
was faster by an order of magnitude than the rate we predict for
synchronization by direct hydrodynamic interactions between the
two flagella in the absence of any motion. In contrast, we show
that rotational motion with a small amplitude of a few degrees
only, which may result from either a residual rotational compli-
ance of the clamped cell or an elastic anchorage of the flagellar
pair, provides a possible mechanism for rapid synchronization,
which is analogous to synchronization by cell-body rocking in free-
swimming cells.

Results and Discussion
High-Precision Tracking of Confined Chlamydomonas Cells. To study
the interplay of flagellar beating and swimming motion, we recor-
ded single wild-type C. reinhardtii cells swimming in a shallow ob-
servation chamber using high-speed phase-contrast microscopy
(1,000 frames per second). The chamber heights were only slightly
larger than the cell diameter so that the cells did not roll around
their long body axis, but only translated and rotated in the focal
plane. This confinement of cell motion to two space dimensions
and the fact that the approximately planar flagellar beat was par-
allel to the plane of observation greatly facilitated data acquisition
and analysis. From high-speed recordings we obtained the pro-
jected position and orientation of the cell body as well as the shape
of the two flagella (Fig. 1A and Fig. S1).
In the reference frame of the cell body, each flagellum under-

goes periodic shape changes. To formalize this observation, we
defined a flagellar phase variable by binning flagellar shapes
according to shape similarity (Fig.1B and Fig. S2). A time series of
flagellar shapes is represented by a point cloud in an abstract
shape space. This point cloud comprises an effectively one-di-
mensional shape cycle, which reflects the periodicity of the fla-
gellar beat. Each shape point can be projected on the centerline of
the point cloud. We define a phase variable φ running from 0 to 2π
that parameterizes this limit cycle by requiring that the phase
speed _φ be constant for synchronized beating. Approximately, we
determine this parameterization from the condition that the av-
eraged phase speed is independent of the location along the limit
cycle. This defines a unique flagellar phase for each tracked fla-
gellar shape. The width of the point cloud shown in Fig. 1B is
a measure for the variability of the flagellar beat during sub-
sequent beat cycles. We find that the variations of flagellar shapes
for the same value of the phase variable are much smaller than the
shape changes during one beat cycle. For our analysis, we there-
fore neglect these variations of the flagellar beat. In this way, we
characterize a swimming Chlamydomonas cell by 5 degrees
of freedom: its position ðx; yÞ in the plane, the orientation angle α
of its cell body, and the two flagellar phase variables φL and φR
for the left and right flagellum, respectively. Our theoretical
description will employ the same 5 degrees of freedom and use
flagellar shapes tracked from experiment for the hydrodynamic
computations.

Hydrodynamic Forces and Interactions. For a swimming Chlamydo-
monas cell, inertial forces are negligible [as characterized by a low
Reynolds number of Re∼ 10−3 (22)], which implies that the hy-
drodynamic friction forces exerted by the cell depend only on its
instantaneous motion (26). To conveniently compute hydrody-
namic friction forces and hydrodynamic interactions, we repre-
sented the geometry of a Chlamydomonas cell by 300 spherical
shape primitives (Fig. 2A). The spheres constituting the cell body

are treated as a rigid cluster. For simplicity, we consider free-
swimming cells and do not include wall effects in our hydrody-
namic computations. Flagellar beating and swimming corresponds
to a simultaneous motion of all 300 spheres of our cell model. The
dependence of the corresponding hydrodynamic friction forces
and torques on the velocities of the individual spheres is charac-
terized by a grand hydrodynamic friction matrix G. We computed
this friction matrix G using a Cartesian multipole expansion
technique (27);Materials and Methods gives details. Fig. 2 C and D
shows a submatrix that relates force and velocity components
parallel to the long axis of the cell. The entries of the color matrix
depict the force exerted by any of the flagellar spheres or by the
cell-body cluster (row index), if a single flagellar sphere or the cell-
body cluster is moved (column index). The indexing of flagellar
spheres is indicated by cartoon drawings of the cell next to the
color matrix. The diagonal entries of this friction matrix are pos-
itive and account for the usual Stokes friction of a single “flagellar
sphere” (or of the cell body). Off-diagonal entries are negative and
represent hydrodynamic interactions. We find considerable hy-
drodynamic interactions between spheres of the same flagellum,
as well as between each flagellum and the cell body. However,
interactions between the two flagella are comparably weak.

Theoretical Description of Flagellar Beating and Swimming. We now
present dynamical equations for the minimal set of 5 degrees of
freedom shown in Fig. 1A to describe flagellar beating, swimming,
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Fig. 1. Five degrees of freedom for Chlamydomonas. (A) In our experiments,
conducted in shallow observation chambers, Chlamydomonas cells swim in
a plane. At each time, the position and orientation of the cell body is charac-
terized by its center position ðx,yÞ and the angle α of its long axis with respect to
the laboratory frame. The beating of each flagellum is characterized by a single
periodic phase variable, φL and φR for the left and right flagellum, respectively.
The flagellar shapes shown in different colors were tracked from high-speed
recordings and correspond to a time-difference of 2 ms. This beat pattern was
used for all computations. (B) Binning of tracked flagellar shapes according to
shape similarity defines a flagellar phase angle as shown on the left. More pre-
cisely, we employed a nonlinear dimensionality reduction technique as specified
in Supporting Information to represent each tracked planar flagellar shape as
a point in an abstract shape space. This representation reveals the periodicity of
the flagellar beat and supports our description of the flagellar beat as a fixed
sequence of flagellar shapes parameterized by a single phase variable φ.
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and later flagellar synchronization in Chlamydomonas. These
equations of motion follow naturally from the framework of La-
grangian mechanics of dissipative systems, which defines gener-
alized forces conjugate to effective degrees of freedom.
Motivated by our experiments, we describe the progression

through subsequent beat cycles of each of the two flagella by re-
spective phase angles φL and φR (Fig. 1A). The angular frequency
ωj of flagellar beating is given by the time-averaged phase speed
h _φji, so we can think of the phase speed as the instantaneous beat
frequency. We are interested in variations of the phase speed that
can restore a synchronized state after a perturbation.We introduce
the key assumption that changes in hydrodynamic friction during
the flagellar beat cycle can increase or decrease the phase speed of
each flagellum. Specifically, we assume that for both the left and
right flagellum, j=L;R, the respective flagellar phase speed _φj is
determined by a balance of an active driving force Qj that coarse-
grains the active processes within the flagellum and a generalized
hydrodynamic friction force Pj, which depends on _φj. Note that in
addition to hydrodynamic friction, dissipative processes within the
flagella may contribute to the friction forces PL and PR. We do not
consider such internal friction in our description because it does
not change our results qualitatively. The hydrodynamic friction
forces Pj have to be computed self-consistently for a swimming cell.

We restrict our analysis to planar motion in the “xy” plane and thus
consider the position ðx; yÞ and the orientation α of the cell body
with respect to a fixed laboratory frame (Fig. 1A).
Any change of the degrees of freedom x, y, α, φL, or φR results

in the dissipation of energy into the fluid at some rate R. This
dissipation rate R characterizes the mechanical power output of
the cell and plays the role of a Rayleigh dissipation function
known in Lagrangian mechanics; it can be written as R= _xPx +
_yPy + _αPα + _φLPL + _φRPR, which defines the generalized friction
forces Pj conjugate to the different degrees of freedom. The
forces PL, PR, and Pα are conjugate to an angle and have physical
unit, piconewtons times micrometer. We compute the general-
ized friction forces using the grand hydrodynamic friction matrix
G introduced above. In brief, the superposition principle of low-
Reynolds-number hydrodynamics relevant for Chlamydomonas
swimming (26) implies that the generalized friction forces relate
linearly to the generalized velocities, Pj =Γjx _x+Γjy _y+Γjα _α+
ΓjL _φL +ΓjR _φR. This defines the generalized hydrodynamic fric-
tion coefficients Γji, which are suitable linear combinations of the
entries of the grand hydrodynamic friction matrix G (Materials
and Methods and Figs. S3 and S4).
The friction force Px conjugate to the x coordinate of the cell

position represents just the x component of the total force
exerted by the cell on the fluid, and an analogous statement
applies for Py ; Pα is the total torque associated with rotations
around an axis normal to the plane of swimming. If the swimmer
is free from external forces and torques, we have Px =Py = 0 and
Pα = 0. Together with the proposed balance of flagellar friction
and driving forces, PL =QL and PR =QR, we have a total of five
force balance equations, which allow us to solve for the time
derivatives of the 5 degrees of freedom. We obtain an equation
of motion that combines swimming and flagellar phase dynamics

ð_x; _y; _α; _φL; _φRÞT =Γ−1ð0; 0; 0;QL;QRÞT : [1]

The phase dependence of the active driving forces QjðφjÞ is
uniquely specified by the condition that the phase speeds should
be constant, _φj =ω0, for synchronized flagellar beating with zero
flagellar phase difference δ= 0, where δ=φL −φR.
In essence, this generic description implies that the phase speed

of one flagellum is determined by hydrodynamic friction forces,
which in turn depend on the swimming motion of the cell. Because
the swimming motion is determined by the beating of both fla-
gella, Eq. 1 effectively defines a feedback loop that couples the
two flagellar oscillators.

Theory and Experiment of Chlamydomonas Swimming. Using the
equation of motion (Eq. 1), we can compute the swimming motion
of our model cell. For mirror-symmetric flagellar beating with zero
flagellar phase difference δ= 0, the model cell follows a straight
path with an instantaneous velocity that is positive during the ef-
fective stroke but becomes negative during a short period of the
recovery stroke (Fig. 3A, Left). Chlamydomonas swims two steps
forward, one step back. This saltatory motion is also observed
experimentally by us (Fig. 3A, Right) and others (16, 28, 29). In our
computation, the instantaneous swimming velocity reaches values
up to 200 μm/s, which agrees with experimental measurements for
free-swimming cells (29), but overestimates the observed trans-
lational swimming speeds in shallow chambers, in which wall
effects are expected to reduce the speed of translational motion
(compare left and right panels in Fig. 3A). If the two flagella are
beating out of phase, the cell will not swim straight anymore, but
the cell body yaws (Fig. 3B). Cell-body yawing is observed ex-
perimentally (Fig. 3B, Right), with measured yawing rates that
agree well with our computations (Fig. 3B, Left). The proximity of
boundary walls is known to reduce translational motion but to
affect rotational motion to a much lesser extent for a given dis-
tance from the wall (21). This is indeed observed in our experi-
ments with cells swimming in shallow chambers: Whereas the
observed translational speed is smaller than predicted (Fig. 3A
and Fig. S5), the observed yawing rates are very similar to the
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Fig. 2. Hydrodynamic interactions between the two flagella are weak. (A)
Model Chlamydomonas cell represented by an ensemble of 300 spheres used to
compute hydrodynamic friction forces at low Reynolds numbers. In our calcu-
lations, the model cell was assumed to be far from any surfaces. (B) Illustration
of hydrodynamic interactions between spheres. A single sphere (labeled 1)
moving with velocity v1y > 0 along the y axis will drag fluid alongside and thus
exert a total hydrodynamic friction force F1y =G11,yyv1y >0 on the fluid. If
a second sphere (labeled 2) is held fixed close to the first one, it will locally slow
down this fluid flow. The force F2 required to hold the second sphere equals
the force exerted by this sphere on the fluid; its y component F2y =G21,yyv1y < 0
defines a friction coefficient G21,yy that characterizes hydrodynamic inter-
actions between the two spheres. (C) Hydrodynamic interactions between
different parts of the model cell. Analogous to B, one defines a matrix Gij,yy of
hydrodynamic friction coefficients for the ensemble of 2 · 14 flagellar spheres
and the rigid sphere cluster constituting the cell body that together represent
a Chlamydomonas cell (Inset). Each column of the color-codedmatrix shows the
magnitude of hydrodynamic friction exerted by a flagellar sphere (or the cell
body), if a single sphere or the cell body is moved parallel to the long cell body
axis. Off-diagonal entries characterize hydrodynamic interactions, which are
particularly pronounced along a single flagellum (white arrow), or between
one flagellum and the cell body (central column). Hydrodynamic interactions
between the two flagella are very weak and partly screened by the cell body.
(D) Same as in C, but for a recovery stroke configuration. There are weak hy-
drodynamic interactions between the proximal segments of the two flagella
(white arrow). All friction coefficients shown scalewith the viscosity of thefluid,
which was taken as the viscosity of water at 20 °C, η= 1   pN ms=μm2.
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predicted ones (Fig. 3B). The good agreement between theory
and experiment for the yawing rate supports our hydrodynamic
computation as well as our description of flagellar beating using
a single phase variable. In the next section, we show that rota-
tional motion is crucial for flagellar synchronization, whereas
translational motion is less important.

Theory of Flagellar Synchronization by Cell-Body Yawing. We now
demonstrate how yawing of the cell body leads to flagellar syn-
chronization. We first examine the flagellar phase dynamics after
a perturbation of in-phase flagellar synchrony. Fig. 4A shows
numerical results for a free-swimming cell obtained from solving
the equation of motion (Eq. 1). The initial flagellar asynchrony
causes a yawing motion of the model cell, which is characterized
by periodic changes of the cell’s orientation angle αðtÞ. The phase
difference δ between the left and right flagellum decays ap-
proximately exponentially as δðtÞ∼ expð−λt=TÞ with a rate con-
stant λ (measured in beat periods T = 2π=ω0) that will serve as
a measure of the strength of synchronization.
To mimic experiments in which external forces constrain cell

motion, we now consider the idealized case of a cell that cannot
translate, while cell-body yawing is constrained by an elastic re-
storing force Qα = − kα. Again, the two flagella synchronize in-
phase, provided some residual cell-body yawing is allowed (Fig. 4B).
In the absence of an elastic restoring force ðk= 0Þ, when the model
cell cannot translate, but can still freely rotate, its yawing motion
and synchronization behavior is very similar to the case of a free-
swimming cell that can rotate and translate. For a fully clamped cell
body, however, the synchronization strength is strongly attenuated
and is solely due to the direct hydrodynamic interactions between
the two flagella. In this case of synchronization by hydrodynamic
interactions, the time constant for synchronization is decreased
approximately 20-fold compared to the case of free swimming.
These numerical observations point to a crucial role of cell-body
yawing for flagellar synchronization. The underlying mechanism of
synchronization can be explained as follows. For in-phase synchro-
nization, the flagellar beat is mirror-symmetric and the cell swims
along a straight path. If, however, the left flagellum has a small head-
start during the effective stroke, this causes a counter-clockwise
rotation of the cell (Fig. 3B). This cell-body yawing increases
(decreases) the hydrodynamic friction encountered by the left (right)

flagellum, causing the left flagellum to beat slower and the right one
to beat faster. As a result, flagellar synchrony is restored.

Next, we present a formalized version of this argument using
a reduced equation of motion. We thus arrive at a simple theory
for biflagellar synchronization, which will later allow for quanti-
tative comparison with experiments. As in Fig. 4B, we assume that
the cell is constrained such that it cannot translate ð_x= _y= 0Þ. The
cell can still yaw, possibly being subject to an elastic restoring force
Qα = − kα. This leaves only 3 degrees of freedom: φL, φR, and α.
Neglecting direct hydrodynamic interactions between the flagella,
we can reduce the equations of motion for a clamped cell (Eq. 1
with constraint _x= _y= 0) to a set of three coupled equations for
the three remaining degrees of freedom:

_φL =ωL − μðφLÞ _α; [2]

_φR =ωR + μðφRÞ _α; [3]

kα+ ρðφL;φRÞ _α= − νðφLÞ _φL + νðφRÞ _φR: [4]

The coupling function μ in Eq. 2 characterizes the effect of cell-
body yawing on the flagellar beat as detailed below, and ν de-
scribes how asynchronous flagellar beating results in yawing; ρ is
the hydrodynamic friction coefficient for yawing of the whole cell.
The coupling functions μ, ν, and ρ can be computed using our
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Fig. 3. (A) For synchronized flagellar beating, we compute saltatory forward
swimming with positive instantaneous velocity during effective stroke beating,
and a backward motion during the recovery stroke (Left); this behavior is
summarized by cartoon drawings (Extreme Right). A typical experimental ve-
locity profile of a Chlamydomonas cell in a shallow observation chamber
measured during a cycle of synchronized beating is shown for comparison in
the middle panel. (B) Flagellar asynchrony causes cell-body yawing, both in
theory and experiment. Shown is the instantaneous rotation rate _α of the cell
body in color code as a function of the respective phase of the two flagella. For
in-phase synchronized flagellar beating (dashed line), the cell body does not
rotate (green). For out-of-phase flagellar beating, however, we find significant
cell-body rocking (blue, clockwise; red, counter-clockwise).
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Fig. 4. Flagellar synchronization by cell-body yawing. (A) For a free-swimming
cell (Top), the equationofmotion (Eq. 1) predicts a yawingmotionof the cell body
characterizedby αðtÞ if the twoflagella are initially out of synchrony (Middle). The
flagellar phase difference δ is found to decrease with time (Bottom, solid line),
approximately followinganexponential decay ∼expð−λt=TÞ (dotted line),where
T is the period of theflagellar beat and λ defines a dimensionless synchronization
strength. Thus, in-phase synchronized beating is stable with respect to pertur-
bations. Dots mark the completion of a full beat cycle of the left flagellum. (B) To
mimic experiments where external forces constrain cell motion, we simulated the
idealized case of a cell that cannot translate, while cell-body yawing is constricted
by an elastic restoring torque Qα = − kα that acts at the cell body center (Top).
Again, the two flagella synchronize (Middle) with a synchronization strength λ
that can become even larger than in the case of a free swimming as shown here
for k= 2 · 103   pN  μm, which is close to the rotational stiffness for which the
synchronization strength λ is maximal (Bottom). For very large clamping stiffness
k, the cell body cannot move and the synchronization strength λ attenuates to
a basal value λ≈ 0:03, which arises solely from direct hydrodynamic interactions
between the two flagella (arrow). Parameters: 2π=ω0 = 30 ms.
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hydrodynamic model.* Their dependence on the flagellar phase is
shown in Fig. 5 (Left). The physical significance of Eqs. 2–4 can be
explained as follows. Eq. 2 implies that during the effective stroke
of the left flagellum ðφ∼ 08Þ, a counter-clockwise rotation of the
whole cell slows down the flagellar beat, whereas a clockwise ro-
tation speeds it up (Fig. 5B, μ> 0). Eq. 3 implies the converse for
the right flagellum. During the recovery stroke ðφ∼ 1808Þ, the
effect is opposite and a counter-clockwise rotation of the cell
would speed up the beat of the left flagellum ðμ< 0Þ. Eq. 4 states
that flagellar beating causes the cell body to yaw: If the right fla-
gellum were absent, the model cell would rotate clockwise ð _α< 0Þ
during the effective stroke of the left flagellum (Fig. 5A, ν> 0),
and counter-clockwise during its recovery stroke ðν< 0Þ. This
swimming behavior is observed for uniflagellar mutants (21). For
synchronized beating of the two flagella, the right-hand side of Eq. 4
cancels to zero and the model cell swims straight. For asynchronous
flagellar beating with a finite phase difference δ=φL −φR, the
phase dependence of the coupling function νðφÞ results in an im-
balance of the torques generated by the left and right flagellum,
respectively, which is balanced by a rotation of the whole cell.
We study the dynamical system given by Eqs. 2–4 after a small

perturbation of the synchronized state at t= 0 with initial fla-
gellar phase difference 0< δð0Þ � 1. For simplicity, we assume
equal intrinsic beat frequencies, ωL =ωR =ω0. The synchroni-
zation strength λ is given by λ= −

R T
0 dt  _δ=δ. In the limit of

a small elastic constraint, we find (Supporting Information)

λ= −
I2π

0

dφ
2μðφÞν′ðφÞ

ρðφ;φÞ− 2μðφÞνðφÞ   for k � ρω0; [5]

where a prime denotes differentiation with respect to φ. Using
the coupling functions μ, ν, and ρ computed above, we obtain
λ> 0, which implies stable in-phase synchronization (Fig. 4). In
the case of a stiff elastic constraint, we obtain a different result
for λ:

λ= −
I2π

0

dφ
μðφÞν″ðφÞ

k=ω0
 for k � ρω0: [6]

Synchronization in the absence of an elastic restoring force as
characterized by Eq. 5, and synchronization involving a strong elastic
coupling as characterized by Eq. 6 shows interesting differences,
which relate to the fact that in the first case the flagellar phase dy-
namics depends only on the yawing rate _α, but not on α itself. The
difference between these two synchronization mechanisms is best
illustrated in a special case, in which both the ratio σ = μ=ν and ρ are
constant. A constant σ correspond to an active flagellar driving force
that does not depend on the flagellar phase, whereas for constant ρ
the angular friction for yawing would not depend on the flagellar
configuration. In the limit of a stiff elastic constraint, k � ρω0,
we readily find λ=−σω0

H
νν″=k= σω0

H ðν′Þ2=k> 0, which indi-
cates stable in-phase synchronization. In the limit of a weak elastic
constraint, k � ρω0, however, the integral on the right-hand side of
Eq. 5 evaluates to zero, which implies that synchronization does not
occur. Hence, synchronization in the absence of an elastic restoring
force requires that either μ=ν or ρ depend on the flagellar phase.
For our realistic Chlamydomonas model, μ and ν differ (Fig.

5A), and also ρ is not constant (Fig. S3). This allows for rapid
synchronization also in the absence of elastic forces. Previous
work on synchronization in minimal systems showed that elastic
restoring forces can facilitate synchronization (11, 30). Here, we
have shown that elastic forces can increase the synchronization
strength (Fig. 4), but they are not required for flagellar

synchronization in swimming Chlamydomonas cells, even if hy-
drodynamic interactions are neglected.
Our discussion of flagellar synchronization can be extended to

the case, where the intrinsic beat frequencies of the two flagella do
not match. If the frequency mismatch jωL −ωRj is small compared
to the inverse time scale of synchronization λ=T, a general result
implies that the two flagellar oscillators will still synchronize (7). For
a frequencymismatch that is too large, the two flagella display phase
drift with a phase difference that increases monotonously (18).

Experiments Show Coupling of Beating and Yawing. We recon-
structed the coupling functions μðφÞ and νðφÞ between beating and
yawing from experimental data using the theoretical framework
developed in the previous section. In brief, (i) we extracted the in-
stantaneous yawing rate _α and flagellar phase speeds _φL and _φR
from high-speed videos of swimming Chlamydomonas cells, (ii) we
represented the coupling functions by a truncated Fourier series,
and (iii) we obtained the unknown Fourier coefficients by linear re-
gression usingEqs. 2–4. The high temporal resolution of our imaging
enabled us to accurately determine phase speeds as time derivatives
of flagellar phase angle data. Fig. 5B displays averaged coupling
functions obtained byfitting for a typicalChlamydomonas cell;fits for
five more cells are shown in Figs. S6 and S7. We find a significant
coupling between flagellar phase speeds and yawing rates, which are
in good qualitative agreement with the theoretical predictions.
For the experimental conditions used, we commonly observed

cells that displayed a large frequency mismatch between the two
flagella. In the cells selected for analysis, this frequency mismatch
exceeded 30%. This large frequency mismatch caused flagellar
phase drift, which resulted in pronounced cell-body yawing and en-
abled us to accurately measure the coupling of yawing and flagellar
beating. Experiments were done using either white-light illumina-
tion, which gave maximal image quality, or red-light illumination,
which reduces a possible phototactic stimulation of the cells.
The observed modulation of flagellar phase speed according to

the rate of yawing is consistent with a force–velocity dependence
of flagellar beating, for which the speed of the beat decreases if
the hydrodynamic load increases. We propose that a similar load
characteristic of the flagellar beat holds also in cases of small
frequency mismatch, where it allows for flagellar synchronization.
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Fig. 5. Flagellar beating and cell-body yawing are coupled in a bidirectional
way. (Upper Left) In our theory, the beat of the left flagellum generates a tor-
que, which, in the absence of the right flagellum, has to be counterbalanced by
a yawing motion of cell body (Eq. 4). This effect is quantified by the coupling
function νðφÞ shown, normalized here by ρ0 = hρi : The effective stroke ðφL ∼ 08Þ
of the left flagellum causes the cell to yaw clockwise. (Lower Left) Conversely,
yawing of the cell changes the hydrodynamic friction force that opposes the
flagellar beat, which, in our theory, speeds up or slows down the beat (Eq. 2).
This effect is quantified by the coupling function μðφÞ shown: a counter-clock-
wise yawing during the effective stroke of the left flagellum slows down its beat.
The coupling of beating and yawing allows for flagellar synchronization in
a free-swimming cell. (Right) By fitting Eqs. 2 and 4 to experimental time-series
data, we can recover the coupling functions μðφÞ and νðφÞ=ρ0 (1 cell, n= 5 time
series of 0.5-s duration; gray regions denote mean ± SE).

*Specifically, μðφÞ=ΓLαðφ,φÞ=ΓLLðφ,φÞ, νðφÞ=ΓαLðφ,φÞ, ρðφL,φRÞ=ΓααðφL ,φRÞ. For simplicity,
the active flagellar driving forces were approximated as QL =ωLΓLL and QR =ωRΓRR for
constrained translational motion.
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Conclusion and Outlook
We have presented a theory on the hydrodynamic coupling un-
derlying flagellar synchronization in swimming Chlamydomonas
cells. We have shown that direct hydrodynamic interactions be-
tween the two flagella as considered in refs. 9–11 give only a minor
contribution to the computed synchronization strength and are
unlikely to account for the rapid synchronization observed in
experiments (16–19). In contrast, rotational motion of the swimmer
caused by asynchronous beating imparts different hydrodynamic
friction forces on the two flagella, which rapidly brings them back in
tune: Chlamydomonas rocks to get into synchrony.
Using high-speed tracking experiments, we could confirm the

two-way coupling between flagellar beating and cell-body yawing
predicted by our theory. The striking reproducibility of our fits for
the corresponding coupling functions and their favorable com-
parison to our theory is highly suggestive of a regulation of fla-
gellar phase speed by hydrodynamic friction forces that depend on
rotational motion. Thus, coupling of flagellar beating and cell-
body yawing provides a strong candidate for the mechanism that
underlies flagellar synchronization of swimming Chlamydomonas
cells. A similar mechanism may account for synchronization in
isolated flagellar pairs (31) (Fig. S8).
To explain a previously observed synchronization for cells held

in a micropipette (17–19), we propose a finite clamping compli-
ance that still allows for residual cell-body yawing with an ampli-
tude of a few degrees, which is sufficient for rapid synchronization.
Alternatively, a compliant basal anchorage of the flagellar pair or
bending deformations of the elastic cell body would allow for
flagellar synchronization by a completely analogous mechanism.
In fact, the simple theory for biflagellar synchronization by rota-
tional motion presented here (Eqs. 2–4) applies analogously to
a pivoting motion of an elastically anchored flagellar pair (Figs. S9
and S10). From the observed value λ= 0:3 for the synchronization
strength in clamped cells (19), we estimate a rotational stiffness of
k∼ 104   pN  μm for either of these two cases.

Finally, the coupling of two phase oscillators by a third degree
of freedom, in this case rotational motion, could allow for syn-
chronization also in other contexts. For example, one may con-
sider that synchronization in ciliar arrays (2) is mediated by an
elastic coupling through the matrix with elastic deformations
playing the role of the third degree of freedom.

Materials and Methods
Hydrodynamic Computation of Swimming Chlamydomonas. We represent
a Chlamydomonas cell by an ensemble of 300 spheres of radius a= 0:25  μm (Fig.
2A) and use a freely available hydrodynamic library based on a Cartesian mul-
tipole expansion technique (27) to compute the grand hydrodynamic friction
matrix G (26) for this ensemble of spheres. We assume a rigid cell body, and
hence that the spheres constituting the cell body move as a rigid unit, which
results in n= 2 · 14+ 1 independently moving objects. The matrix G has dimen-
sions 6n ×  6n and relates the components of the translational and rotational
velocities, vi and Ωi , of each of the n objects to the hydrodynamic friction
forces and torques, Fj and Tj , exerted by the j-th object on the fluid,
ðF1x ,F1y ,F1z,T1x ,T1y ,T1z,F2x ,F2y , . . . ,Tny ,TnzÞ=G _q0 with _q0 = ðv1x ,v1y ,v1z,Ω1x ,Ω1y ,
Ω1z,v2x ,v2y , . . . ,Ωny ,ΩnzÞ. Fig. 2 C and D shows a submatrix of G that relates
force and velocity components parallel to the long axis of the cell body. The
reduced friction matrix Γ for a set of m effective degrees of freedom q is
computed fromGas Γ= LTGLwith 6n×m transformationmatrix Lij = ∂ _q0,i=∂ _qj ,
where q= ðx,y,α,φL,φRÞ (13). Initial tests confirmed that the friction matrix of
only the cell body gave practically the same result as the analytic solution for
the enveloping spheroid; similarly, the computed friction matrix of only
a single flagellum matched the prediction of resistive force theory (26).

Imaging Chlamydomonas Swimming in a Shallow Observation Chamber. For cell
culture, C. reinhardtii cells (CC-125 wild-type mt+ 137c, R. P. Levine via N. W.
Gillham, 1968) were grown in 300 mL TAP+P buffer (32) (with 4× phosphate)
at 24 °C for 2 d under conditions of constant illumination (two 75-W fluo-
rescent bulbs) and constant air bubbling to a final density of 106 cells/mL.

Forhigh-speedvideomicroscopy,anassaychamberwasmadeofprecleaned
glassandsealedusingValap,a1:1:1mixtureof lanolin,paraffin,andpetroleum
jelly, heated to 70 °C. The surface of that chamber was blocked using casein
solution (solution of casein from bovine milk, 2 mg/mL, for 10min) prior to
the experiment. Single, noninteracting cells were visualized using phase-
contrast microscopy set up on a Zeiss Axiovert 100 TV Microscope using a 63×
Plan-Apochromat NA1.4 PH3 oil lens in combination with an 1.6× tube lens
and an oil phase-contrast condenser N.A. 1.4. The sample was illuminated
using a 100-W tungsten lamp. For red-light imaging, an e-beam-driven
luminescent light pipe (Lumencor) with spectral range of 640–657 nm and
powerof 75mWwasused. The sample temperaturewas kept constant at 248  C
using an objective heater (Chromaphor). For image acquisition, an EoSens
Cmos high-speed camera was used. Videos were acquired at a rate of 1,000
frames per second with exposure times of 1 ms (white light) and 0.6 ms (red
light). Finally, cell positions and flagellar shapes were tracked using custom-
build Matlab software (Supporting Information gives details).
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A. Image Analysis
High-speed movies were analyzed using custom-made Matlab
software (MathWorks Inc); our image analysis pipeline is illustrated
inFig. S1. In afirst step, estimates for position and orientation of the
cell body in a movie frame were obtained by a cross-correlation
analysis using rotated template images. In a second step, these
position and orientation estimates were refined by tracking the
bright phase halo surrounding the cell. The first and second area
moments of the cell rim provide accurate estimates for the center of
the cell body and its long orientation axis. While the tracking
precision of the first step amounts to <500 nm for the position and
a few degrees for the orientation, these values are reduced to
<50 nm and <0.5° after the second step, respectively. Special care
was taken to reduce any potential bias of the flagellar phase on
the cell-body tracking; for example, the cell rim close to the fla-
gellar bases was obtained by interpolation instead of direct track-
ing. The flagellar base is visible as a continuous, parabola-shaped
curve that connects the proximal ends of the two flagella; tracking
of this flagellar base was done by a combination of line scans and
local fitting of a Gaussian linemodel (step 3). Flagella were tracked
by advancing along their length using exploratory line-scans in
a successive manner (step 4). Flagellar tracking can be refined by
local fitting of a Gaussian line model. A movie consisting of 1,000
frames can be analyzed in an automated manner within 10 h on
a standard personal computer. Movies from red-light illumination
conditions were of lower quality and required manual correction of
the automated tracking results for each frame.

B. Flagellar Shape Analysis
Weemploy a nonlinear dimension reduction technique to represent
tracked flagellar shapes as points in a low-dimensional abstract
shape space. In a first step, smoothed tracked flagellar shapes
corresponding to one cycle of synchronizedflagellar beating (shown
in Fig. 1A) were used to define the basis of the shape space. Fla-
gellar shapes can be conveniently represented with respect to the
material frame of the cell using a tangent angle representation (1, 2).
In terms of this tangent angle θðsÞ, the xðsÞ and yðsÞ coordinates of
the flagellar midline as functions of arclength s along the flagel-
lum can be expressed as

xðsÞ= xð0Þ+
Zs

0

dξ  cos½α+ θðξÞ� and 

yðsÞ= yð0Þ+
Zs

0

dξ  sin½α+ θðξÞ�:
[S1]

Here, α is the orientation angle of the long axis of the cell body
(Fig. 1A), which implies that θðξÞ characterizes flagellar shapes
with respect to a material frame of the cell body. By averaging
the tangent angle profiles θðs; tÞ over a full beat cycle, we define
a time-averaged flagellar shape characterized by a tangent angle
θðsÞ. To characterize variations from this mean flagellar shape,
we employed a kernel principal component analysis (PCA) (3).
The kernel used to compute the Gram matrix D for the kernel
PCA must account for the 2π periodicity of the tangent angle
data and was taken as Dij =

R L
0 ds  cos½θðs; tiÞ− θðs; tjÞ�. The first

three shape eigenmodes account for 97% of the spectrum of D
and are shown in Fig. S2A. The relative contributions to the
spectrum read 67% (first mode), 18% (second mode), and 12%
(third mode). Whereas the first mode θ1ðsÞ (blue) describes

nearly uniform bending of the flagellum, the second mode θ2ðsÞ
(green) and the third mode θ3ðsÞ (red) together comprise the
components of a traveling bending wave.
Next, any flagellar shape can be projected onto the shape space

spanned by these three shape modes: Given a flagellar midline
with coordinates xðsÞ and yðsÞ, we seek the optimal approximating
shape with coordinates x̂ðsÞ, ŷðsÞ whose tangent angle θ̂ðsÞ is a
linear combination of the fundamental shape modes:

θ̂ðsÞ= θðsÞ+ β1θ1ðsÞ+ β2θ2ðsÞ+ β3θ3ðsÞ: [S2]

The coefficients β1, β2, and β3 are obtained by a non-linear fit that
minimizes the squared Euclidean distance

R L′
0 dsjxðsÞ− x̂ðsÞj2 +

jyðsÞ− ŷðsÞj2. This procedure is robust and works even if flagellar
shapes could only be tracked partially with tracked length L′ shorter
than the total flagellar length L. Note that for nonsmoothed fla-
gellar shapes the tangent angle representations can be noisy and are
thus less suitable for fitting as compared to x, y coordinates.

A time sequence of tracked flagellar shapes thus results in
a point cloud in the shape space parameterized by the shapemode
coefficients β1, β2, and β3. We fitted a closed curve to the torus-
like point cloud (Fig. S2B, solid line). This closed curve repre-
sents a limit cycle of periodic flagellar beating. Each tracked
flagellar shape can be assigned the “closest” point on this limit
cycle (i.e., the point for which the corresponding flagellar shape
has minimal Euclidean distance). By choosing a phase angle
parameterization for the limit cycle, the phase angle of each
flagellar shape is determined modulo 2π. A time-series of fla-
gellar shapes thus yields a time-series of the flagellar phase angle
φðtÞ. The phase angle parameterization of the limit cycle had
been chosen such that the flagellar phase angle φ and its time
derivative are not correlated. Finally, the zero point φ= 0 was
chosen such that the corresponding flagellar shape was nearly
straight and perpendicular to the long cell axis.

C. Computation of Hydrodynamic Friction Forces
For our hydrodynamic computations, we represented a Chlamy-
domonas cell by an ensemble of N = 300 equally sized spheres of
radius a= 0:25  μm. The cell body was chosen spheroidal and is
represented by 272 spheres that are arranged in a symmetric
fashion to retain mirror symmetries. Each flagellum is repre-
sented by a chain of 14 spheres that are aligned along a flagellar
midline with equidistant spacing. The shapes of the flagellar
midlines depend on respective phase angles φL and φR for the
left and right flagellum. These flagellar shapes were taken from
experiment for one full period of synchronized beating and are
shown in Fig. 1A. We assume that the 272 spheres constituting
the cell body move as a rigid sphere cluster. Each of the flagellar
spheres represents a cluster with just one sphere, which results in
a total of n= 2 · 14+ 1= 29 sphere clusters. We then computed
the 6n× 6n grand hydrodynamic friction matrix G for this en-
semble of n spheres clusters using a freely available hydrody-
namic library based on a Cartesian multipole expansion technique
(4). Recall that the grand hydrodynamic friction matrix G relates
the forces and torques exerted by the 6n sphere clusters to their
translational and rotational velocities (5):

P0 =G · _q0: [S3]

Here, _q0 denotes a 6n vector that combines the translational and
rotational velocity components of the n sphere clusters,
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_q0 =
�
v1x; v1y; v1z;ω1x;ω1y;ω1z; . . . ;ωnz

�
; [S4]

whereas the 6n vector P0 combines the components of the re-
sultant hydrodynamic friction forces and torques,

P0 =
�
F1x;F1y;F1z;T1x′ ;T1y′ ;T1z′ ; . . . ;Tnz′

�
: [S5]

(Primed torques represent torques with respect to the center of
the respective sphere cluster.) Fig. 2C in the main text shows
a submatrix of the grand friction matrix, which was defined as
Gij;yy =G6i−4;6j−4, i; j= 1; . . . ; n. In this figure, it was assumed that
the long cell body axis is aligned with the y axis of the laboratory
frame (i.e., α= 0), which implies that the submatrix relates mo-
tion in the direction of the long cell axis and the hydrodynamic
force components projected on this axis.
For our hydrodynamic computations, the multipole expansion

order was chosen as three. An estimate for the accuracy of our
computation could be obtained by increasing the expansion order
parameter, which changed the computed friction coefficients by
less than 1%. Initial tests confirmed that the frictionmatrix of only
the cell body gave practically the same result as the analytic
solution for the enveloping spheroid (6); similarly, the computed
frictionmatrix of only a single flagellummatched the prediction of
resistive-force theory (7) assuming a flagellar radius equal to the
sphere radius. Note that the precise value of the flagellar radius is
expected to affect hydrodynamic friction coefficients only as
a logarithmic correction (8).
Below, we consider an extension of the theoretical description

given in the main text that additionally considers the possibility of
an elastically anchored flagellar base, which allows for pivoting of
the flagellar basal apparatus (Fig. S9). In this case, the flagellar
midlines were rotated by an angle ψ .
A set of 2,400 precomputed configurations was then used to

construct a spline-based lookup table of the (reduced) hydro-
dynamic friction matrix as a function of the degrees of freedom
φL, φR, and ψ . The interpolation error was confirmed to be on
the order of 1% or less. This lookup table was then used for the
numerical integration of the (stiff) equations of motion, Eqs. 1
and S17.

D. Generalized Hydrodynamic Friction Forces
We employ the framework of Lagrangian mechanics of dissipative
systems (9) to define generalized hydrodynamic friction forces and
derive an equation ofmotion for the effective degrees of freedom in
our theoretical description of Chlamydomonas swimming and
synchronization. The 6n degrees of freedom q0 for the n sphere
clusters used in our hydrodynamic computations are enslaved by
the five effective degrees of freedom in our coarse-grained theory
(Fig. 1). Below, one more degree of freedom, ψ , is introduced to
characterize pivoting of an elastically anchored flagellar basal ap-
paratus. We thus have

q0 = q0ðqÞ; [S6]

wherewe introduced the six-component vectorq= ðx; y; α;φL;φR;ψÞ
that comprises the six effective degrees of freedom. The reduced
6× 6 hydrodynamic friction matrix Γ for these six effective degrees
of freedom can be computed from the grand hydrodynamic friction
matrix G as

Γ=LT ·G ·L [S7]

with a 6n× 6 transformation matrix L given by refs. 10 and 11:

Lij = ∂ _q0;i=∂ _qj: [S8]

The rate of hydrodynamic dissipation can now be equivalently
written as a quadratic function of either _q0 or _q :

R= _qT0 ·G · _q0 = _qT ·Γ · _q: [S9]

The generalized hydrodynamic friction coefficients Γij are de-
picted in Fig. S3. In this context, generalized hydrodynamic
friction forces can be defined as

Pj =Γjx _x+Γjy _y+Γjα _α+ΓjL _φL +ΓjR _φR +Γjψ _ψ ; j= x; y; α;L;R;ψ :

[S10]

Interestingly, the generalized hydrodynamic friction force conju-
gated to one degree of freedom depends also on the rates of the
change of the other degrees of freedom, which implies a coupling
between the various degrees of freedom. This fact is illustrated by
Fig. S4. Fig. S4A depicts the translational velocities of the flagellar
spheres caused by pure yawing of the cell body with rate _α. This
motion is characterized by a 6n vector of velocity components,
_qðαÞ0 =L · ð0; 0; _α; 0; 0; 0ÞT . Similarly, the beating of the left flagel-
lum induces hydrodynamic friction forces as shown in Fig. S4B. The
resultant force (and torque) components are combined in the
6n vector PðLÞ

0 =G ·L · ð0; 0; 0; _φL; 0; 0ÞT . Fig. S4 indicates that
the scalar product _qðαÞ0 · PðLÞ

0 = _αΓαL _φL does not vanish, which
implies a nonzero friction coefficient ΓαL and thus a coupling
between cell-body yawing and flagellar beating.
In our theoretical description, the phase dynamics of the left

flagellum, say, is governed by a balance of the generalized hy-
drodynamic friction force PL and an active driving force QL,
similarly QR =PL for the right flagellum. In the case of free
swimming, force and torque balance imply Px =Py = 0 and Pα = 0.
Together with an equation for Pψ , these equation allow to self-
consistently solve for the rate of change _q of the 6 degrees of
freedom. If one degree of freedom were constrained, qj = 0, the
corresponding force equation becomes void, since a constraining
force Qj equal to Pj then balances the generalized hydrodynamic
friction force Pj associated with this degree of freedom.
In general, the active driving forces QL and QR will depend on

the flagellar phase. This phase dependence is fully determined by
the requirement that the flagellar phase speeds should be con-
stant, _φj =ω0, in the case of synchronized flagellar beating with
δ= 0. Here, ω0 denotes the angular frequency of synchronized
flagellar beating. Explicitly, we find

QLðφLÞ=ω0

h
ΓLLðφL;φLÞ+ΓLRðφL;φLÞ

− 2Γ2
LyðφL;φLÞ

�
ΓyyðφL;φLÞ

i
: [S11]

An analogous expression holds for QRðφRÞ. Note that the gener-
alized active driving forces are conjugate to an angle, and therefore
have the physical unit piconewtons times micrometer. These phase-
dependent active driving forces can be written as potential forces
Qj =−∂U=∂φj, j=L;R, where the potential U reads

U = −
ZφL

−∞

dφLQLðφLÞ−
ZφR

−∞

dφRQRðφRÞ: [S12]

The potential U continuously decreases with time, indicating the
depletion of an internal energy store and the dissipation of energy
into the fluid during flagellar swimming. The rate of hydrody-
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namic dissipation equals the rate at which potential energy is
dissipated:

R= − _U =QL _φL +QR _φR: [S13]

E. Analytic Expression for the Flagellar Synchronization
Strength
We present details on the derivation of Eqs. 5 and 6 for the
synchronization strength λ in the case of the reduced equations
of motion, Eqs. 2–4. We assume equal intrinsic beat frequencies,
ωL =ωR =ω0, and a small initial phase difference, 0< δð0Þ � 1.
To leading order in δ, we find relations that link the rotation rate
_α and the rate _δ at which the phase difference changes,

kα+ ρðφ;φÞ _α=−d½νðφÞδ�=dt [S14]

_δ= − 2μðφÞ _α: [S15]

Here φ≈ω0t denotes the mean flagellar phase. The first equation
describes how flagellar asynchrony causes a yawing motion of the
cell body, and the second equation describes how this yawing
motion then changes the flagellar phase difference. In the absence
of any elastic constraint for yawing, k= 0, we can solve for _δ :

ðρ− 2μνÞ _δ= 2μν′ω0δ: [S16]

Now, Eq. 5 follows from Eq. S16 using λ= −
R T
0 dt  _δ=δ and

a variable transformation φðtÞ=ω0t+OðδÞ.
In the case of a very stiff elastic constraint with k � ρω0, we

make use of the fact that variations of the phase difference δ
during one beat cycle will be small compared to its mean value
δ0 = hδi. As a consequence, Eq. S14 can be approximated as
kα= − ν′ω0δ0. Using this approximation and Eq. S15, Eq. 6
follows.

F. Comparison of Experiment and Theory
We can compare instantaneous swimming velocities predicted by
our hydrodynamic computation with experimental measurements
and find favorable agreement (Fig. 3 and Fig. S5). Note that wall
effects present in our experiments, but not accounted for by our
hydrodynamic computations, are expected to reduce translational
velocities (but less so rotational velocities) (12). The hydrody-
namic computations are based on a fixed flagellar beat pattern
parameterized by a flagellar phase angle, which was obtained
experimentally for one beat cycle with synchronized beating (Fig.
1A). The good agreement between theoretical predictions and
experimental measurements for the instantaneous swimming ve-
locities further validate our reductionist description of the flagellar
shape dynamics by just a single phase variable for each flagellum.
Next, we tested the applicability of the reduced equations of mo-
tion, Eqs. 2–4, in the experimental situation. For this aim, we re-
constructed the coupling functions μðφÞ, νðφÞ and ρðφÞ from
experimental time series data for _α, _φL, and _φR. The coupling
functions were represented by truncated Fourier series and the
unknown Fourier coefficients determined by a linear regression of
Eqs. 2, 3, or 4, respectively (Fig. S6). Repeating this fitting pro-
cedure for data from six different cells gave consistent results (Fig.
S7). Moreover, the phase dependence of the fitted coupling func-
tions agrees qualitatively with our theoretical predictions. Note that
our simple theory does not involve any adjustable parameters.

G. An Elastically Anchored Flagellar Basal Apparatus
In the main text, we had assumed for simplicity that the flagellar
base is rigidly anchored to the cell body. Whereas the proximal
segments of the two flagella are tightly mechanically coupled with
each other by so-called striated fibers to form the flagellar basal
apparatus, the flagellar basal apparatus itself is only connected to

an array of 16 long microtubules spanning the cell (13). We now
consider the possibility that this anchorage allows for some
pivoting of the flagellar basal apparatus as a whole by an angle ψ
(Fig. S9A). In addition to the 5 degrees of freedom of Chlamy-
domonas beating and swimming considered in the main text (Fig.
1), we now include this pivot angle ψ as a 6th degree of freedom.
The rate of hydrodynamic dissipation is now given by R= _xPx +
_yPy + _αPα + _φLPL + _φRPR + _ψPψ , with Pψ being the generalized
hydrodynamic friction force conjugate to the pivot angle ψ . As-
suming Hookean behavior for the elastic basal anchorage with
rotational pivoting stiffness k, we readily arrive at an equation of
motion that reads in the case of free swimming:

ð_x; _y; _α; _φL; _φR; _ψÞT =Γ−1�0; 0; 0;QL;QR; − kψ
�T
: [S17]

Fig. S9B shows flagellar synchronization for a free-swimming
cell with elastically anchored flagellar base: Although some basal
pivoting occurs as a result of flagellar asynchrony, the swimming
and synchronization behavior is very similar to the case of a rigidly
anchored flagellar base, as shown in Fig. 4A. For a cell that can
neither translate nor yaw, however, the situation is different (Fig.
S9C). We find strong flagellar synchronization provided the elastic
stiffness k is not too large. Flagellar synchronization by basal
pivoting is thus effective also for a fully clamped cell. In contrast,
for a rigidly anchored flagellar base, the synchronization strength λ
would be relatively weak in this case, being due only to direct
hydrodynamic interactions between the two flagella.
Flagellar synchronization by basal pivoting is conceptually very

similar to synchronization by cell-body yawing as discussed in the
main text. In the case of a fully clamped cell, we can approximate
the synchronization dynamics by virtually the same generic
equation of motion as Eqs. 2–4, when we substitute ψ for α:

_φL =ω0 − μðφLÞ _ψ ; [S18]

_φR =ω0 + μðφRÞ _ψ ; [S19]

kψ + ρðφL;φRÞ _ψ = − νðφLÞ _φL + νðφRÞ _φR: [S20]

Here, the coupling functions μ, ν, and ρ play a similar role as the
previously defined μ, ν , and ρ for Eqs. 2–4 and show a qualitatively
similar dependence on the flagellar phase (Fig. S10). To derive Eqs.
S18–S20, we neglected direct hydrodynamic interactions between
the two flagella and approximated the active driving forces by
QLðφÞ=ω0ΓLLðφ;φÞjψ=0 and QRðφÞ=ω0ΓRRðφ;φÞjψ=0. The cou-
pling functions are defined as μðφÞ=−ΓLψ ðφ;φÞ=ΓLLðφ;φÞjψ=0,
νðφÞ= −ΓψLðφ;φÞjψ=0, and ρðφ;φÞ=Γψψ ðφL;φRÞjψ=0. This choice
retains the key nonlinearities of the full equation of motion (Fig.
S3). Eq. S18 states that pivoting of the flagellar basal apparatus
with _ψ > 0 slows down the effective stroke of the left flagellum (and
speeds up the right flagellum). For synchronized flagellar beating,
there will be no pivoting of the flagellar base. For asynchronous
beating, however, the flagellar base will be rotated out of its sym-
metric rest position by an angle ψ if the stiffness k is not too large.
Any pivoting motion of the flagellar base during the beat cycle
changes the hydrodynamic friction forces that oppose the flagellar
beat, which in turn can either slow down or speed up the respective
flagellar beat cycles, and thus restore flagellar synchrony.
To gain further analytical insight, we study the response of

the dynamical system in Eqs. S18–S20 after a small pertur-
bation 0< δð0Þ � 1. To leading order in δ=φL −φR, we find
(with φ≈ω0t)

kψ + ρðφ;φÞ _ψ =−d½νðφÞδ�=dt; [S21]

_δ= − 2μðφÞ _ψ : [S22]
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In the biologically relevant case of a relatively stiff basal
anchorage of the flagellar basal apparatus with k � ρω0,
we find for the synchronization strength a result analogous
to Eq. 6:

λ= −
I2π

0

dφ   
μðφÞν″ðφÞ

k=ω0
: [S23]
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0. Raw movie frame

2. Cell rim detection

4. Flagellar tracking 5. Final result

3. Flagellar base

1. Rotated templates

Fig. S1. Image analysis pipeline used to automatically track planar cell position and orientation as well as flagellar shapes in high-speed movies of swimming
Chlamydomonas cells. (0) A typical movie frame. (1) Rotated template images used for a cross-correlation analysis to estimate cell position and orientation in
a movie frame. (2) The cell body outline was tracked by detecting intensity maxima (green) of line scans along rays (shown in blue), which emanate from the
putative cell-body center. From the cell-body outline, we obtain refined estimates for cell position and orientation. (3) The position of the flagellar base was
then determined using a fan of line scans (along the blue lines), followed by a line scan (green) in a direction perpendicular to the maximal intensity direction
(red). (4) Finally, flagellar shapes were tracked in a successive manner using combinations of line scans similar to those in step 3. (5) The final result of our
tracking software provides for each frame: cell body position (red dot) and orientation (green arrow), cell body rim (green), as well as center lines of the two
flagella (blue).
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Fig. S2. We represent a single flagellar shape by n= 3 shape coefficients as a point in an abstract shape space that is spanned by three principal shape modes.
(A) The principal shape modes were determined by employing a kernel PCA to the tangent angle representation θðsÞ of smoothed flagellar shapes that were
tracked from the left flagellum of cell no. 2 during one beat cycle of synchronized flagellar beating. From the PCA, we obtained three dominant shape modes
with respective tangent angle representations θ1ðsÞ, θ2ðsÞ, and θ3ðsÞ as shown. Together, these principal shape modes account for 97% of the variance of this
tangent angle dataset. For sake of illustration, exemplary flagellar shapes corresponding to the superposition of the mean flagellar shape and just one shape
mode with tangent angle θðsÞ+ βiθiðsÞ, i= 1,2,3 are shown to the right ð−5≤ βi ≤5Þ. (B) Each tracked flagellar shape from one flagellum can be represented by
a single point in an abstract shape space that is spanned by the three principal shape modes. More specifically, the coordinates ðβ1,β2,β3Þ of this point are
obtained by approximating the tracked flagellar shape by a superposition of a previously computed mean flagellar shape and the three principal shape modes
(Eq. S2). The set of flagellar shapes from an entire experimental movie thus corresponds to a point cloud. This point cloud scatters around a closed curve (solid
line), which reflects the periodic nature of the flagellar beat. This closed curve has been obtained by a simple fit to the point cloud of flagellar shapes and can
be considered as a limit cycle of flagellar beating. Deviations from this limit cycle measure the variability of the flagellar beat. We can use this representation to
define a distinct flagellar phase angle φ (modulo 2π) for each tracked flagellar shape as indicated by the color code by mapping each flagellar shape onto the
limit cycle. A time series of flagellar shapes thus yields a time series of the flagellar phase angle φðtÞ. As an illustration of this assignment, superpositions of
flagellar shapes are shown to the right, each of which corresponds to flagellar shapes that were assigned the same flagellar phase modulo 2π. (C) Two-di-
mensional projections corresponding to the three-dimensional shape space representation in B.
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Fig. S3. Generalized hydrodynamic friction matrix Γij associated with the effective degrees of freedom x, y, α, φL, φR, and ψ . This generalized friction matrix
determines the generalized hydrodynamic friction forces Pi conjugate to the degrees of freedom q= ðx,y,α,φL,φR,ψÞ as Pi =Γij _qj , and is computed as a pro-
jection of the grand hydrodynamic friction matrix (Eq. S7). Each friction coefficient Γij is a periodic function of the two phase angles φL and φR, Γi,j =Γi,jðφL,φRÞ
and is represented as a color plot with axes as indicated. Here, α is set to zero; different values of α would correspond to a simple rotation of the matrix shown.
By Onsager symmetry, Γij =Γji . Several features are noteworthy. The coefficient ΓLR characterizes hydrodynamic interactions between the two flagella and is
found to be small compared to, for example, ΓLL. The other coefficients ΓLj =ΓjL, which set the friction force PL conjugate to φL, depend strongly on φL, but
almost not on φR. This is yet another manifestation of the fact that direct hydrodynamic interactions between the two flagella are comparably weak.
Analogous statements hold for the coefficients ΓRj . A counter-clockwise rotation of the cell, _α> 0, will increase the friction force PL during the effective stroke
of the left flagellum ðΓLα > 0Þ but decrease the corresponding respective friction force PR for the right flagellum during its effective stroke ðΓRα < 0Þ. Mirror
symmetry of the swimmer amounts to invariance of the friction matrix under the substitution ðx,y,α,φL,φRÞ→ ð−x,y,− α,φR,φLÞ, which implies a number of
symmetry relations, for example, ρ=Γαα must be symmetric in φL and φR. Finally, this rotational friction coefficient ρ=Γαα depends on the flagellar phases in
a more pronounced way than the translational friction coefficients Γxx and Γyy . This is in line with the general fact that rotational friction coefficients depend
more strongly (as ∼ l3) on the effective linear dimension l of an object than translational friction coefficients ð∼ lÞ. The coefficients Γjα and Γjψ associated with
yawing of the whole cell and pivoting of the flagellar apparatus, respectively, show a similar dependence on the flagellar phases.

2 pN

P0
(L)v0

(α)

1 μm/ms

Fig. S4. Coupling of cell-body yawing and flagellar beating. (Left) Translational velocities of the flagellar spheres used in our hydrodynamic computation
associated with a pure yawing motion of the cell body with rate _α. (Right) Hydrodynamic friction forces exerted by the flagellar spheres (as well as by the cell
body), if the left flagellum advances along its beat cycle with rate _φL. The generalized hydrodynamic friction coefficient ΓαL that couples cell-body yawing and
beating of the left flagellum can be computed as a scalar product between the velocity profile resulting from yawing and the force profile resulting from
flagellar beating and is found to be non-zero. Parameters: _φL =ω0, _α= 0:2ω0, and 2π=ω0 = 30 ms.
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synchronized flagellar beating (dashed line), this velocity vanishes in our theory for symmetry reasons (green). If the two flagella are out of synchrony,
however, significant sideward motion of the cell is observed, both in theory and experiment. Note that wall effects present in the experiments, but not
considered in the computations, reduce translational velocities. (B) Instantaneous swimming velocity in the direction of the long cell axis, again as a function of
the flagellar phase angles.
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Fig. S6. The reduced equations of motion, Eqs. 2–4, were fitted to experimental time-series data for the yawing rate _α of the cell, as well as the flagellar phase
speeds _φL and _φR. This provided experimental estimates for the phase-dependent coupling functions μ, ν, and ρ. Specifically, we represented each coupling
function as a truncated Fourier series and determined the unknown Fourier coefficients by a linear regression using Eqs. 2–4. (A) Linear regression of Eq. 2.
Shown to the left in black is the instantaneous flagellar phase speed of the left flagellum _φL (smoothed with a span of 15 ms). Shown in red is a reconstructed
phase speed ωL − μLðφLÞ _α that depends on the instantaneous cell-body yawing rate _α, as well as the intrinsic flagellar frequency ωL and phase-dependent
coupling function μL for the left flagellum, which were obtained by the fit. The coefficient of determination was R2 = 30%. The estimate for μL obtained from
this fit is shown to the right (blue), together with a theoretical prediction (black) (see also Fig. 5A). (B) Linear regression of Eq. 4. Shown to the left is the
measured instantaneous yawing rate _α of the cell body (black) and a yawing rate reconstructed from the flagellar phase dynamics, ½−νðφLÞ _φL +
νðφRÞ _φR�=ρðφL,φRÞ (red). The coefficient of determination was R2 = 93%. From this fit, we obtain an experimental estimate for the coupling functions νðφÞ and
ρðφL,φRÞ (blue); theoretical predictions are shown in black.
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Fig. S7. Experimental fits for the coupling functions μ, ν, and ρ introduced in Eqs. 2–4 (blue curves, shaded regions indicate mean ± SE) and theoretical
predictions (black). The coupling functions μ, ν, and ρ relate flagellar beating and cell-body yawing. Fitting results are shown for six different cells illuminated
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curves represent the average of the fitted coupling functions for the n fits; the averaged coefficient of determination R2 is stated.
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Fig. S8. Theory of flagellar synchronization for an isolated flagellar pair. Inspired by experiments by Hyams and Borisy (1) reporting synchronization in
isolated flagellar pairs, we computed the swimming and synchronization behavior of a flagellar pair with cell body removed. For the computations, we used
flagellar shapes and flagellar driving forces QjðφÞ, j= L,R, determined from an intact cell (Fig. 1) (A) For a free-swimming flagellar pair, we observe a char-
acteristic yawing motion of the flagellar pair characterized by αðtÞ, if the two flagella are initially out of synchrony. The flagellar phase difference δ is found to
decrease with time (solid line), approximately following an exponential decay (dotted line). This implies that the in-phase synchronized state is stable with
respect to perturbations. Each completion of a full beat cycle of the left flagellum is marked by a dot. (B) To mimic experiments in which external forces
constrain the motion of the flagellar pair, we simulated the idealized case of a pair that cannot translate, while yawing of the pair is constricted by an elastic
restoring torque Qα = − kα that acts at the basal apparatus (red dot). As in the case of a free-swimming pair, the flagellar phase difference δ decays with time,
indicating stable synchronization. In the case of a constrained cell, the synchronization strength λ strongly depends on the clamping stiffness k. Parameters:
2π=ω0 = 30 ms, k= 104   pN  μm=rad. To enhance numerical stability, we added a small constant κ= 10  pN  μm ms to the flagellar friction coefficients, ΓjjðφL,φRÞ,
j= L,R, which corresponds to internal dissipation (2).

1. Hyams JS, Borisy GG (1975) Flagellar coordination in Chlamydomonas reinhardtii: isolation and reactivation of the flagellar apparatus. Science 189(4206):891–893.
2. Friedrich BM, Jülicher F (2012) Flagellar synchronization independent of hydrodynamic interactions. Phys Rev Lett 109(13):138102.
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Fig. S9. Theory of flagellar synchronization by basal pivoting. (A) We consider the possibility of an elastically anchored flagellar basal apparatus (red), which
allows for pivoting of the basal apparatus (solid lines) by an angle ψ from its symmetric reference configuration (dashed lines). (B) For a free-swimming cell, the
equation of motion, Eq. S17, predicts both a yawing motion of the cell characterized by αðtÞ and a pivoting motion of the flagellar base characterized by ψðtÞ,
if the two flagella are initially out of synchrony. The flagellar phase difference δ is found to decrease with time (solid line), approximately following an ex-
ponential decay (dotted line). This implies that the in-phase synchronized state is stable with respect to perturbations. Each completion of a full beat cycle of
the left flagellum is marked by a dot. The synchronization behavior in the case of an elastically anchored flagellar basal apparatus is nearly identical to the case
of a stiff anchorage, as shown in the main text in Fig. 4. The lowest panel shows typical amplitudes of basal pivoting (δψ , solid line) and cell-body yawing (δα,
dashed line) as a function of basal stiffness k. Amplitudes were determined as half the range of variation during one beat cycle for an initial phase difference of
δð0Þ= π=2. (C) For a clamped cell that can neither translate nor rotate, the flagellar apparatus can still pivot and will do so if the two flagella are initially out of
phase. As in the case of a free-swimming cell, the flagellar phase difference δ decays with time, indicating stable synchronization. In the case of a clamped cell,
the synchronization strength λ strongly depends on the stiffness k of the elastic anchorage of the basal flagellar apparatus, which sets the amplitude of basal
pivoting. Parameters: 2π=ω0 = 30 ms, k= 104   pN  μm=rad.
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Fig. S10. Theoretical coupling functions for the case of a pivoting flagellar base. (A) A pivoting motion of the flagellar base changes the hydrodynamic
friction force associated with flagellar beating and thereby speeds up or slows down the flagellar beat cycle in our theory. This effect is quantified by
a coupling function μ (Eq. S18). (B) Hydrodynamic friction associated with pivoting of the flagellar base (and the attached flagella) is characterized by a friction
coefficient ρ (Eq. S20). This friction coefficient is maximal when the two flagella extend maximally from the cell body during their effective stroke. (C) The beat
of the left flagellum causes pivoting of the flagellar base. This effect is quantified by a coupling function ν (Eq. S20).
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The eukaryotic flagellum beats periodically, driven by the oscillatory dynamics of molecular motors, to
propel cells and pump fluids. Small but perceivable fluctuations in the beat of individual flagella have
physiological implications for synchronization in collections of flagella as well as for hydrodynamic
interactions between flagellated swimmers. Here, we characterize phase and amplitude fluctuations of
flagellar bending waves using shape mode analysis and limit-cycle reconstruction. We report a quality
factor of flagellar oscillations Q ¼ 38.0� 16.7 (mean� s:e:). Our analysis shows that flagellar fluctua-
tions are dominantly of active origin. Using a minimal model of collective motor oscillations, we
demonstrate how the stochastic dynamics of individual motors can give rise to active small-number
fluctuations in motor-cytoskeleton systems.

DOI: 10.1103/PhysRevLett.113.048101 PACS numbers: 87.16.Qp, 05.40.Ca, 47.63.Gd, 87.18.Tt

Systems far from equilibrium such as living matter
display active, nonthermal fluctuations as well as directed
motion and oscillations, which are important for biological
function. As a prominent example, molecular motors
coupled to cytoskeletal filaments convert chemical energy
into work and heat to generate motion at the cellular scale.
Motor-filament systems can drive mechanical oscillations
including spontaneous hair bundles oscillations in the ear
[1], mitotic spindle oscillations during cell division [2],
sarcomere oscillations in insect flight muscle [3], and the
regular bending waves of cilia and flagella, which propel
cells in a liquid including sperm and green algae [4], as well
as clear mucus in mammalian airways [5]. Cilia and flagella
are slender cell appendages of 10–100 μm length, ubiqui-
tously found in nonbacterial cells, which comprise a
conversed cylindrical scaffold of microtubules interspersed
by dynein molecular motors.
The collective dynamics of the motors working against a

viscoelastic load drives flagellar oscillations via a dynamic
instability [6]. Force generation by individual motors relies
on the stochastic progression through a mechanicochemical
cycle [7]. The stochastic nature of force generation should
manifest itself in oscillations that display a characteristic
level of noise, representative of active fluctuations.
Intriguingly, previous work reported Fourier peaks of finite
width in power spectra of flagellar oscillations [8] and
phase slips in pairs of synchronized flagella [9–11], which
allowed an indirect assessment of flagellar noise. A direct
measurement of flagellar fluctuations is pending, let alone a
mechanistic understanding. Flagellar fluctuations impart on
biological function: Phase fluctuations of flagellar beating
should counteract synchronization in collections of flagella,
which is important for fast swimming [12] and efficient
fluid pumping [13]. Amplitude fluctuations will result in

noisy swimming paths of flagellated swimmers and impart
on hydrodynamic interactions between swimmers [14].
Here, we report direct measurements of phase and

amplitude fluctuations of the flagellar beat and discuss
the microscopic origin of active flagellar fluctuations using
a minimal model. We further illustrate the impact of
flagellar fluctuations on swimming and synchronization.
Our analysis contributes to a recent interest in driven, out-
of-equilibrium systems and their fluctuation fingerprint
[15–18] by characterizing noisy limit-cycle dynamics in
an ubiquitous motility system, the flagellum.
Flagellar shape analysis.—We characterize flagellar

beat patterns as the superposition of principal shape modes.
This dimensionality reduction is key to our fluctuation
analysis. We analyze planar beat patterns of bull sperm
swimming close to a boundary surface [19], filmed at
250 frames=s (corresponding to about 8 frames per beat
cycle). The flagellar centerline rðs; tÞ, tracked as function
of arclength position s and time t, can be expressed with
respect to a material frame of the sperm head in terms of a
tangent angle ψðs; tÞ

rðs; tÞ ¼ rhðtÞ −
Z

s

0

ds0½cosψðs0; tÞe1 þ sinψðs0; tÞe2�:
ð1Þ

Here, rhðtÞ denotes the sperm head center, and e1 and e2 are
orthonormal vectors with e1 pointing along the long head
axis; see Fig. 1(a). A space-time plot of ψðs; tÞ reveals the
periodicity of the flagellar beat; see Fig. 1(b). This high-
dimensional data set can be projected on a low-dimensional
“shape space” using shape mode analysis based on princi-
pal component analysis [20]. The time-averaged tangent
angle ψ0ðsÞ ¼

P
n
i¼1 ψðs; tiÞ=n characterizes the mean
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shape of the beating flagellum (n ¼ 1024 frames in each
movie). We further define a two-point correlation matrix
Mðs; s0Þ ¼ P

i½ψðs; tiÞ − ψ0ðsÞ�½ψðs0; tiÞ − ψ0ðs0Þ�, where
s, s0 range over m equidistant arclength positions along
the flagellum. The eigenvectors ψ jðsÞ of the symmetric
m ×m-matrix M, sorted by decreasing magnitude of the
corresponding eigenvalues, characterize principal shape
modes of the flagellar beat. The first two shape modes
account for 95� 1% of the variance of the tangent angle
data (all measurements are mean�s:e:, n ¼ 7 cells). We
project the full data set on a two-dimensional shape space
spanned by these two shape modes

ψðs; tÞ ≈ ψ0ðsÞ þ β1ðtÞψ1ðsÞ þ β2ðtÞψ2ðsÞ ð2Þ

with shape coefficients β1, β2 obtained by least-square
fit; see Figs. 1(c), 1(d). Flagellar beating implies periodic

shape changes of the flagellum and, thus, noisy oscillations
of the shape coefficients with mean frequency ω0 ¼ 2π=T,
where T ¼ 32.4� 1.9 ms. Individually, β1ðtÞψ1ðsÞ and
β2ðtÞψ2ðsÞ describe standing waves; their combination
results in a traveling wave propagating from the base to
the tip of the flagellum, thereby facilitating net propulsion.
Limit-cycle reconstruction.—The point cloud represent-

ing subsequent flagellar shapes in Fig. 1(d) forms a closed
loop. This allows us to define a limit cycle of noisy flagellar
oscillations (red) by fitting a closed curve ðβ̄1ðφÞ; β̄2ðφÞÞ,
parametrized by a phase φ. The phase parametrization of
the limit cycle is defined such that the mean of the phase
speed is independent of φ [21]. Thus, φ slightly differs
from the polar angle in the ðβ1; β2Þ plane. Next, we assign a
unique flagellar phase to each tracked flagellar shape by
projecting the corresponding point in the ðβ1; β2Þ plane
radially onto the limit cycle. The shape trajectory
ðβ1ðtÞ; β2ðtÞÞ avoids the singular origin; thus, the instanta-
neous phase speed _φ is well defined.
Phase fluctuations.—The phase speed _φ has a mean

equal to the frequency ω0 of the beat but can fluctuate
around this mean. Phase speed fluctuations cause a decay
of the phase-correlation function CðtÞ ¼ hexp i½φðt0 þ tÞ−
φðt0Þ�i; see Fig. 1(e). This decay is insensitive to meas-
urement noise that is uncorrelated from frame to frame. The
frame-to-frame phase increments Δφi ¼ φðtiþ1Þ − φðtiÞ
are approximately normally distributed [Fig. 1(f), inset].
Furthermore, the correlation time of phase speed fluctua-
tions is on the order of our temporal resolution 4 ms
or below and, thus, short compared to the time scale
of phase decoherence. We can, thus, interpret the observed
phase decoherence using an idealized model of δ-correlated
phase speed fluctuations,

_φ ¼ ω0 þ ζ; ð3Þ

where ζ is Gaussian white noise with hζðtÞζðt0Þi ¼
2Dδðt − t0Þ and D denotes a phase-diffusion coefficient.
In this idealization, jCðtÞj ¼ expð−DjtjÞ. By fitting an
exponential to measured jCðtÞj, we obtain the phase-
diffusion coefficient of sperm flagellar beating D ¼ 3.2�
1.9 s−1; see Fig. 1(e). An alternative measure for the
phase stability of oscillations is the quality factor, Q ¼
ω0=ð2DÞ ¼ 38.0� 16.7, where ω0=Q indicates the width
at half-maximum of the principal peak in the power spectral
density of exp½iφðtÞ�.
The observed phase fluctuations of the flagellar beat are

dominantly of active origin and surpass passive, thermal
fluctuations by orders of magnitude (as suggested by
earlier, indirect measurements [10]): For a simple estimate,
we consider a flagellar beat that is constrained to move
along the shape limit cycle with φ as the only degree of
freedom. The friction force Pφ conjugate to φ comprises
hydrodynamic friction γ _φ and dissipation within the
flagellum. We estimate γ ≈ 3 pN μms [22,23]. We, thus,

(a) (b)

(c)

(e) (f)

(d) 

FIG. 1 (color online). The flagellar beat of sperm cells displays
active fluctuations. (a) Tracked flagellar shapes are conveniently
characterized by a tangent angle ψðs; tÞ. (b) The kymograph of
this tangent angle reveals the periodicity of the flagellar beat.
(c) Using principal component analysis, we identify two principal
shape modes ψ1ðsÞ, ψ2ðsÞ, whose superpositions account for
95% of the variability of the tangent angle data. (d) By projecting
the tangent angle data on the shape space spanned by ψ1ðsÞ and
ψ2ðsÞ, each flagellar shape is assigned a pair of shape coefficients
ðβ1; β2Þ; see Eq. (2). This representation allows us to define a
limit cycle of perfect periodic beating (red). By projection onto
this limit cycle, we define a phase φ for each flagellar shape.
(e) The flagellar phase-diffusion coefficient D is determined by
fitting an exponential decay (red) to the phase correlation
function (jCðtÞj: thick blue, ReCðtÞ: thin blue). (f) Phase speed
Δφi=Δt and squared amplitude AðtiÞ are negatively correlated.
Inset: phase increments are approximately normally distributed.
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obtain an upper bound kBT=γ ≈ 0.0015 s−1 for the con-
tribution of thermal fluctuations to phase diffusion D,
which is a thousandfold smaller than the value measured.
Amplitude fluctuations.—We define an instantaneous

amplitude of the flagellar beat AðtÞ ¼ jβ1ðtÞ þ iβ2ðtÞj=
ρ0ðφðtÞÞ, normalized by ρ0ðφÞ ¼ jβ̄1ðφÞ þ iβ̄2ðφÞj. Thus,
the complex oscillator variable ZðtÞ ¼ AðtÞeiφðtÞ maps the
shape limit cycle onto the unit circle. In our data, the
amplitude AðtÞ is approximately normally distributed with
σ2A ¼ hAðtÞ2i − 1 ¼ 0.0070� 0.0023 [24]. The autocorre-
lation function of amplitude fluctuations decays with time
constant τA ¼ 5.9� 1.8 ms. Interestingly, we find that
phase speed correlates with amplitude squared; the slope
−ω1 of a linear regression gives ω1=ω0 ¼ 0.38� 0.10; see
Fig. 1(f). Thus, the beating flagellum is represented as a
nonisochronous oscillator (with approximate isochrones
φ − 2τAω1lnA ¼ const [25]). Nonisochrony of nonlinear
oscillators has been related to synchronization [26,27].
Noisy normal form.—Previous theoretical work

described the onset of flagellar oscillations as a supercriti-
cal Hopf bifurcation [28] with normal form (μ > 0) [29]

_Z ¼ iðωc − ω1jZj2ÞZ þ μðΛ − jZj2ÞZ þ Ξ: ð4Þ

In the absence of noise Ξ ¼ 0 as considered originally
[28], the complex oscillator variable ZðtÞ ¼ AðtÞeiφðtÞ
exhibits spontaneous oscillations with amplitude A ¼ Λ1=2

and frequency ω0 ¼ ωc − ω1Λ for effective motor activity
Λ > 0. In this case, we may assume Λ ¼ 1 after a
parameter transformation.
To study the role of fluctuations, we add a multipli-

cative noise term Ξ ¼ ZðζA þ iζφÞ with uncorrelated
Gaussian white noise variables satisfying hζjðtÞζkðt0Þi ¼
2Djδjkδðt − t0Þ, j; k ∈ fA;φg and use Stratonovich inter-
pretation. This choice represents the simplest phase-
invariant noise term with tunable phase and amplitude
noise strengths Dφ and DA [30]. For weak noise DA;
Dφ ≪ μΛ, amplitude fluctuations satisfy hAðt0ÞAðt0þtÞi−
1≈σ2Aexpð−jtj=τAÞ with correlation time τA ¼ ð2μΛÞ−1
and variance σ2A ¼ DAτAΛ. Phase fluctuations are colored
with effective phase-diffusion coefficient D ¼ Dφþ
ðω1=μÞ2DA. Our measurements of active flagellar fluctua-
tions, thus, allow the full parametrization of Eq. (4) (with
Λ ¼ 1). Note that in the special case DA ¼ Dφ ≪ μΛ our
choice of multiplicative noise gives the same long-term
behavior as additive noise.
Flagellar fluctuations imply nondeterministic swim-

ming.—Using measured noise strengths, we simulated
realistic beat patterns and corresponding stochastic swim-
ming paths; see Fig. 3(a). Specifically, we (i) use Eq. (4) to
simulate ZðtÞ ¼ AðtÞeiφðtÞ, (ii) construct shape coefficients
β1ðtÞ þ iβ2ðtÞ ¼ AðtÞρ0ðφðtÞÞ and tangent angles ψðs; tÞ
by Eq. (2), and (iii) compute the path rhðtÞ using resistive

force theory [22] as described in Ref. [23]. We find that the
center RðtÞ of sperm swimming circles diffuses with
diffusion coefficient DR ¼ 3.3 μm2=s, which is on the
same order of magnitude, albeit smaller, than a valueDR ¼
9� 2 μm2=s measured for sea urchin sperm [8]. Our
analysis includes amplitude and phase fluctuations but
neglects additional shape fluctuations; thus, our value is
a lower bound.
Although phase and amplitude fluctuations are corre-

lated, we can ask separately for their respective effect on
swimming. Phase fluctuations cause fluctuations in swim-
ming speed but do not change the shape of the path. This is
because the Stokes equation governing self-propulsion at
low Reynolds numbers [31] is invariant under (stochastic)
reparametrizations of time.
To gain qualitative insight into the microscopic origin of

noisy oscillations and the dependence of phase diffusion on
microscopic parameters, we now discuss a minimal motor
model and show how it can be mapped onto Eq. (4).
A minimal model for noisy motor oscillations.—We

exemplify how a finite collection of motors drives sponta-
neous oscillations with characteristic small-number fluctua-
tions using the classical two-state model [6,32] in its most
simple form: A collection ofN motors, rigidly attached to an
inextensible backbone interacts with a filament through an
effective potentialWðxÞ ¼ U½1 − cosð2πx=lÞ�; see Fig. 2(a).
Here, x is the coordinate of the motor along the filament,
and l is the periodicity of the filament. Individual motors

minimal motor model
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FIG. 2 (color online). A minimal model of coupled motors
predicts noisy oscillations. (a) An ensemble of N motors, grafted
at a rigid backbone (gray), can bind and unbind to a filament with
transition rates ωon and ωoff . Bound motors interact with the
filament through an interaction potential WðxÞ. Filament and
backbone are coupled viscoelastically. (b) The motor model
exhibits spontaneous, noisy oscillations, here visualized by
filament position X and total motor force. The deterministic
limit cycle is shown in red. (c) The phase correlation function
CðtÞ (real part shown in blue) decays exponentially
jCðtÞj ≈ expð−DtÞ, defining the phase-diffusion coefficient D.
(d) The quality factor Q ¼ ω0=ð2DÞ scales with N for large N,
consistent with our analytic approximation (dashed red, Eq. (5)).
The star indicates the experimentally measured Q. For all
simulations, we chose parameters close to the Hopf bifurcation
(ξa=ξ ¼ 1.2π2, ν ¼ 10, α ¼ η ¼ 0.5, N ¼ 104, unless indicated
otherwise; errors smaller than symbol size).
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can bind to and unbind from the filament with rates
ωonðxÞ ¼ Ω½η − α cosð2πx=lÞ� and ωoff ¼ Ω − ωon. Here,
η denotes the mean fraction of attached motors (“duty
ratio”). Importantly, the binding rates are spatially inhomo-
geneous, characterized by α, and break detailed balance. If
the filament is now coupled to the backbone by a viscoelastic
element with viscosity ξ and elastic stiffness k, we obtain a
force-balance equation for the position XðtÞ of the filament
kX þ ξ _X ¼ Fm with Fm ¼ −

P
i∂XWðxi − XÞ, where the

sum extends over all bound motors and xi ¼ il=N is a
simple choice for the positions of the motors along the
backbone.
To properly define a thermodynamic limit for large N,

we rescale stiffness and viscosity as k ¼ k0N and ξ ¼ ξ0N.
In the limit N → ∞, the system can exhibit spontaneous
oscillations by a supercritical Hopf bifurcation, when
the normalized motor activity ξa=ξ ¼ 2π2αU=ðΩl2ξ0Þ
exceeds the threshold 1þ ν, where ν ¼ k=ðξΩÞ [32]. For
a finite motor number, we numerically observe noisy
oscillations; see Fig. 2.
In the following, we analytically compute the quality

factor Q in the limit of large (yet finite) motor number
N, assuming that we are close to the Hopf bifurcation
with ε ¼ ξa=ξ − 1 − ν positive and small. Following
Refs. [32,33], we first approximated the stochastic binding
and unbinding dynamics of individual motors by a dif-
fusion approximation, thus arriving at a Fokker-Planck
equation for the probability distribution of filament position
and density ρðxÞ of bound motors (see Supplemental
Material [34] for details). Because of the simple choice
of potential WðxÞ, the dynamics of the first Fourier mode
of ρðxÞ decouples from that of the higher modes, resulting
in a three-dimensional stochastic system [33]. A nonlinear
coordinate transformation maps this system onto Hopf
normal form Eq. (4), with oscillator variable Z satisfying
ReZ ¼ X=lþOðε3=2Þ and phase-dependent noise term
Ξ ¼ iζ, where hζðtÞζðt0Þi ¼ 4DΛδðt − t0Þ. The quality
factor Q ¼ ω0=ð2DÞ is found to scale with N

Q ≈
ω0

2Ω
NΛ

ηð1 − ηÞ
�

2παffiffiffi
ν

p þ 1=
ffiffiffi
ν

p
�

2

: ð5Þ

Furthermore, Λ≈ εð1þ 4νÞ=½3π2νð1þ 2νÞ�, μ≈Ωε=ð2ΛÞ,
ω0 ≈Ω

ffiffiffi
ν

p ½1þ ε=ð2þ 4νÞ�. Interestingly, the motor duty
ratio η controls oscillation quality, although η affects
neither amplitude nor frequency (for N → ∞). To under-
stand this, note that the number of bound motors fluctuates
with mean ηN and variance ηð1 − ηÞN. This number
characterizes a spatially homogeneous “background” of
bound motors, which does not contribute directly to the
oscillations but sets the amplitude of motor density fluc-
tuations responsible for phase diffusion. Oscillations
become also more regular for increasing amplitude.
Equation (5) and simulations of the full model agree well
close to the Hopf bifurcation; see Fig. 2. This minimal

motor model recapitulates the experimental observation
of phase diffusion in a minimal setting and illustrates
how noisy oscillations can arise from small-number
fluctuations.
Flagellar synchronization.—Phase fluctuations cause

phase slips in pairs of synchronized flagella, e.g., in the
green algae Chlamydomonas [10].Chlamydomonas swims
with two flagella, which can synchronize their beat.
Analysis of phase slips allowed a previous, indirect
estimate of flagellar phase fluctuations, corresponding to
Q ≈ 25 for the quality factor of individual flagella [10].
A latter study indicated a length dependence of Q, with
correspondingQ ranging from ≈70–120 for length increas-
ing from 6 to 12 μm [35]. Interestingly, flagellar synchro-
nization in Chlamydomonas seems to operate just below a
tolerable level of noise: Consider the approximate dynam-
ics of the phase difference δ between two identical, coupled
oscillators _δ ¼ −λ=T sin δþ ζ, where ζ is Gaussian white
noise with hζðtÞζðt0Þi ¼ 4Dδðt − t0Þ [10,36]. Using the
estimate λ ≈ 0.3 for the synchronization strength [10],
we find λQ ≈ 10, which yields robust synchronization. A
tenfold higher noise level, however, implies failure of
synchronization; see Fig. 3(b).
Conclusion.—The beating flagellum is a noisy oscillator,

driven by N ≈ 8 × 104 dynein motor domains [37]. Here,
we precisely measured its phase and amplitude fluctua-
tions, using a novel method of limit-cycle reconstruction
[20]. We obtain a quality factor Q ¼ 38� 16.7 of flagellar
oscillations. Values estimated in other cytoskeletal oscil-
lators are Q ¼ 2.2� 1.0 (N ≈ 2500) for spontaneous hair
bundle oscillations [38] and Q ¼ 1.4� 1.1 (N ¼ 10–100)
for an in vitro acto-myosin system [16]. We find that the
strength of flagellar phase fluctuations is several orders of
magnitudes above the level corresponding to thermal noise,
highlighting the active origin of flagellar fluctuations.

20

R(t)

rh(t)

(a) (b) 0.4

0 0-π π

λQ=10

λQ=1

p(δ)

δ

FIG. 3 (color online). Flagellar fluctuations imply nondeter-
ministic swimming and counteract synchronization. (a) We
simulated stochastic sperm swimming paths rhðtÞ (black), using
measured flagellar fluctuation strengths. Fluctuations imply that
the blue center RðtÞ of red sperm swimming circles diffuses, with
apparent diffusion coefficient DR ¼ 3.30� 0.01 μm2=s. B. Pairs
of flagella can synchronize, e.g., in the green alga Chlamydo-
monas. In a simple description of flagellar synchronization, the
phase difference δ between its two flagella peaks around zero for
realistic noise strength (λQ ¼ 10) but is almost uniformly
distributed for tenfold stronger noise (λQ ¼ 1), indicating lack
of synchronization.
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We compute the quality factor Q in a minimal model of
motor-filament oscillations and find thatQ is proportional to
the number of motors. A simple numerical example [39]
yields noisy oscillations with amplitude, frequency, and
quality factor Al ≈ 68 nm, ω0 ≈ 228 s−1, Q ≈ 33, which
roughly match measured values (Al≈100nm, ω0 ≈ 200 s−1

[19], Q ≈ 38). Our analytic approximation Eq. (5) is not
applicable for these large-amplitude oscillations. Note that
the model does not fully capture flagellar oscillations
quantitatively because it strongly simplifies flagellar geom-
etry and motor dynamics.
We show that phase and amplitude fluctuations affect

sperm swimming differently: Whereas amplitude fluctua-
tions cause an effective diffusion of sperm swimming
circles, phase fluctuations imply speed fluctuations but
do not change the shape of the path. Additionally, phase
fluctuations introduce phase slips in collections of
synchronized flagella [10].
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Here, we present details on the determination of the quality factor of noisy motor-filament oscillations for the
minimal motor model discussed in the main text. We first derive a Langevin equation [see Eq. (S16)] for the stochastic
motor dynamics using methods presented in [31, 32]. We then show how this Langevin equation can be transformed
into a stochastic Hopf normal form using a center manifold technique, see Eq. (S23). From this, we obtain an
approximation for the quality factor, see Eq. (S33).
In the minimal motor model [6, 31], a collection of N motors is rigidly connected to a common backbone at equally

spaced positions xi = il/N , see Fig. 1 (Fig. 2A in the main text). These motors interact with a filament of periodicity
l: Individual motors can bind and unbind from the filament with position-dependent transition rates

ωon(x) = Ω[η − α cos(2πx/l)], (S1)

ωoff(x) = Ω− ωon. (S2)

Here, Ω denotes a characteristic transition rate, η the duty ratio of motors, and x a coordinate along the filament,
while α characterizes spatial variation of the transition rates. Note that ωon(x) +ωoff(x) = Ω. This so-called uniform
rate assumption greatly simplifies the analytical treatment of the model [31]. Motors bound to the filament are subject
to an interaction potential

W (x) = U [1− cos(2πx/l)]. (S3)

The filament is connected to the motor backbone via an elastic spring of stiffness k = Nk0 and a dashpot with drag
coefficient ξ = Nξ0 operating in parallel, see Fig. 1. The dynamics of the filament is now given by

kX + ξẊ = −
∑

i

∂XW (xi −X). (S4)

To properly define a thermodynamic limit for large N , we will rescale stiffness and viscosity as k = k0N and ξ = ξ0N .

FOKKER-PLANCK EQUATION OF MOTOR-FILAMENT DYNAMICS

We now derive a continuum description for the dynamics of the discrete set of motors. In order to define a probability
density ρ0(z) of bound motors, we divide the interval [0, l] into m bins of width ∆ = l/m and respective bin centers
zi = i∆−∆/2, and set ρ0(zi) = (1/∆)ni/N , where ni denotes the number of bound motors within the i-th bin.

k

N

ωon ωoff

0 l 2l

W(x)
x

2U

ξ
X

FIG. 1: An ensemble of N motors, grafted at a rigid backbone (gray), can bind and unbind to a filament with transition rates
ωon and ωoff . Bound motors interact with the filament through an interaction potential W (x). Filament and backbone are
coupled visco-elastically through a spring and dashpot operating in parallel.
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Following [32], we can formulate a master equation that governs the evolution of the joint probability distribution
P (X,n1, . . . , nm) for the filament position X and the bin counts ni

∂P

∂t
=− ∂

∂X

[(

m
∑

i=1

W ′(zi −X)

ξ0

ni

N
− k0

ξ0
X

)

P

]

+

m
∑

i=1

ωoff(zi −X)(E+
i − 1)niP (S5)

+
m
∑

i=1

ωon(zi −X)(E−

i − 1)

(

N

m
− ni

)

P.

Here, E±

i denote step operators, whose action on any function f(ni) obeys E
±

i f(ni) = f(ni ± 1). Using bin center
positions as approximate motor positions introduces a relative coarse-graining error O(1/m2). To obtain a Fokker-
Planck equation for ρ0(z), we replace P (X, {ni}) by P (X, ρ0), expand Eq. (S5) using the operator expansion

E
±

i = 1± ∂

∂ni
+

1

2

∂2

∂n2
i

± · · · (S6)

and neglect all derivatives higher than the second order, which implies a truncation error of order O(1/N2), as well
as a coarse-graining error of relative order O(1/m2). For further simplification, we change the reference frame from
the common motor backbone to the co-moving frame of the filament, and use henceforth the density ρ(x) of bound
motors with respect to the filament coordinate, ρ(x) = ρ0(z −X) (where ρ(x) shall be extended outside the interval
[−X, l−X ] by periodic continuation for mathematical convenience). This finally leads to a functional Fokker-Planck
equation for the distribution function P (X, ρ) (see also [32])

∂P

∂t
= − ∂

∂X
vP +

∫ l

0

dx
δ

δρ(x)
AP (S7)

+
1

2N

∫ l

0

dx

∫ l

0

dy δ(x− y)
δ2

δρ(x)δρ(y)
CP.

The drift terms read

v =

∫ l

0

dx
W ′(x)

ξ0
ρ(x)− k0

ξ0
X, (S8)

A = ωoff(x)ρ(x) − ωon(x)[1/l − ρ(x)]− v∂xρ(x), (S9)

while the diffusion term reads

C = ωoff(x)ρ(x) + ωon(x)[1/l − ρ(x)]. (S10)

Choosing a bin size m ∼
√
N that increases with the number of motors, we find that both drift terms and diffusion

terms in Eq. (S7) are each accurate to leading order in 1/N .

Spatial Fourier Expansion

We expand ρ(x) into a spatial Fourier series

ρ(x) =
η

l
a0 +

α

l

∞
∑

n=1

an cos
(

2πn
x

l

)

+ bn sin
(

2πn
x

l

)

, (S11)

and rewrite the functional Fokker-Planck equation (S7) in terms of the Fourier coefficients [32]

∂

∂t
P ({an, bn}, X, t) =− ∂

∂X
(vP )−

∑

n

(

∂

∂an
AnP +

∂

∂bn
BnP

)

+
∑

m,n

∂2Daa
mnP

∂am∂an
+ 2

∂2Dab
mnP

∂am∂bn
+

∂2Dbb
mnP

∂bm∂bn
. (S12)
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The drift terms An, Bn characterize the deterministic mean-field dynamics of the system, and read

An =
2

α

∫ l

0

A(x) cos(2πnx/l)dx, Bn =
2

α

∫ l

0

A(x) sin(2πnx/l)dx (S13)

for n ≥ 1, while A0 = (1/η)
∫ l

0
A(x)dx and B0 = 0. The elements of the diffusion matrix characterize the noise effect

due to a finite number of motors, and read

Daa
mn =

2

Nα2

∫ l

0

C(x) cos(2πmx/l) cos(2πnx/l)dx,

Dab
mn =

2

Nα2

∫ l

0

C(x) cos(2πmx/l) sin(2πnx/l)dx, (S14)

Dbb
mn =

2

Nα2

∫ l

0

C(x) sin(2πmx/l) sin(2πnx/l)dx.

In general, the noise strengths are state-dependent. For small oscillation amplitudes and in the limit of weak noise,
we can approximate them by their respective values evaluated at the fixed point of the deterministic dynamics,
characterized by a0 = 1, a1 = −1, b1 = 0. Specifically, we find

Da = Daa
11 =

Ω

2N

[

2η

α2
(1 + a0(1− 2η)) + 3a1

]

≈ Ω

2N

[

4η(1− η)

α2
− 3

]

,

Db = Dbb
11 =

Ω

2N

[

2η

α2
(1 + a0(1− 2η)) + a1

]

≈ Ω

2N

[

4η(1− η)

α2
− 1

]

, (S15)

Dab
11 =

Ω

2N
b1 ≈ 0.

Remarkably, the dynamics of the principlal Fourier modes a = a1, b = b1, and filament position X decouples from
the other modes [32] with corresponding Langevin dynamics

ȧ = −Ω(a+ 1− γb2 + βbX/l) + ζa(t),

ḃ = −Ω(b+ γba− βaX/l) + ζb(t), (S16)

Ẋ =
Ωl

2π
(γb− βX/l),

where ζi(t) denote Gaussian white noise terms satisfying 〈ζi(t)ζj(t)〉 = 2Di δijδ(t − t′) for i, j = a, b, and β/(2π) =
ν = k0/(ξ0Ω), γ = ξa/ξ0 = 2π2αU/(Ωl2ξ0).
We now show how Eq. (S16) can be transformed into Hopf normal form. We first treat the noise-free case,

Da = Db = 0. We first do a linear transformation of the coordinate tuple (a, b,X) to a new set of coordinates,
comprising a real variable y and a complex variable Y ,





a+ 1
2b

2X/l



 =





1 0 0
0 χ χ∗

0 1 1









y
Y ∗

Y



 , (S17)

where χ = π(−ε+ 2ν + 2i
√
ν)/(

√
ν + i)2, ε = γ − 1 − ν. Conversely, Y = i(b − χX/l)/Imχ with Imχ = −2π/(

√
ν +

1/
√
ν) +O(ε). In the new coordinate set, the linearized dynamics at the fixed point (y, Y ) = (0, 0) is diagonal

d

dt

(

y
Y

)

=

(

−Ω 0
0 Ω(ε/2 + i

√
ν)

)(

y
Y

)

(S18)

One can show that y relaxes to an invariant manifold y = y(Y, Y ∗) that is tangential to the plane y = 0 at (y, Y ) =
(0, 0). For this so-called center manifold [28], we make a quadratic ansatz

y = h1Y
2 + h∗

1Y
∗2 + h2Y Y ∗ +O(|Y |3) (S19)

with complex coefficients hi that can be determined self-consistently from the full nonlinear dynamics. The dynamics
of Y on the manifold defined by (S19) comprises a linear term, as well as cubic terms as leading order nonlinearity

dY

dt
= Ω

( ε

2
+ i

√
ν
)

Y − g0Y
3 − g1Y

2Y ∗ − g2Y Y ∗2 − g3Y
∗3 +O(|Y |4),

(S20)
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where gi are complex numbers. Using nonlinear coordinate transformations of the form Y = Z + θZpZ∗(3−p), all
cubic nonlinearities can eliminated, with the exception of Z2Z∗. Thus, we have brought the dynamics of Z into Hopf
normal form

dZ

dt
= µ(Λ− |Z|2)Z + i(ωc − ω1|Z|2)Z +O(|Z|4), (S21)

with parameters

µ =
3π2Ων(1 + 2ν)

2(1 + 4ν)
, Λ =

Ωε

2µ
=

1

π2

ε(1 + 4ν)

3ν(1 + 2ν)
, ωc = Ω

√
ν, ω1 = − µ

√
ν

1 + 2ν
. (S22)

For ε > 0, in the absence of noise, the complex oscillator variable Z = A exp iϕ oscillates with amplitude A = |Z| =
√
Λ

and frequency ω0 = ωc − ω1Λ.
In the case of weak noise, we can apply the same series of coordinate transformations used above to the Langevin

equation (S16), while neglecting noise-induced drift terms of order O(1/N)

dZ

dt
= µ(Λ − |Z|2)Z + i(ωc − ω1|Z|2)Z + iζ(t), (S23)

where ζ(t) denotes Gaussian white noise with 〈ζ(t)ζ(t′)〉 = 4D0Λδ(t− t′) and noise strength

4D0Λ = 2Db

(√
ν + 1/

√
ν

2π

)2

+O(ε). (S24)

We now compute the variance of amplitude fluctuations and the phase diffusion coefficient. We consider the limit
of weakly perturbed oscillations, σ2

A � Λ. Using Stratonovich calculus, we derive from Eq. (S23) equations for the
instantaneous amplitude A and phase φ

Ȧ = µ(Λ −A2)A+ sinφ ζ(t), (S25)

φ̇ = ωc − ω1A
2 +

cosφ

A
ζ(t). (S26)

We approximate the phase-dependent noise strengths by their phase-averaged expectation values, which will reproduce,
to leading order in the noise-strength, the same dynamics on time-scales longer than the oscillation period. We also
linearize the stochastic dynamics Eq. (S25) for small amplitude fluctuation δA, neglecting terms of order O(δA2),

d

dt
δA ≈ −2µΛδA+

1√
2
ζ(t), (S27)

φ̇ ≈ ωc − ω1Λ− 2ω1

√
Λ δA+

1√
2Λ

ζ(t). (S28)

The first equation describes an Ornstein-Uhlenbeck process with correlation time τA = (2µΛ)−1 and variance

σ2
A = D0ΛτA = D0/(2µ). (S29)

For the phase-diffusion coefficient, we find

D = lim
t→∞

1

2t

(

〈[ϕ(t)− ϕ(0)]2〉 − 〈[ϕ(t) − ϕ(0)]〉2
)

(S30)

= lim
t→∞

1

2t
〈
∫ t

0

∫ t

0

dt1dt2 ϕ̇(t1)ϕ̇(t2)〉 − ω2
0 (S31)

=

[

1 +

(

ω1

µ

)2
]

D0. (S32)

We now readily find for the qualify factor

Q =
ω0

2D
= Θ

ω0

2Ω

NΛ

η(1− η)

(

2πα√
ν + 1/

√
ν

)2

(S33)
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with prefactor

Θ =

[

1− α2

4η(1− η)

]

[

1 +

(

ω1

µ

)2
]

. (S34)

This prefactor can be shown to vary around 1 within close bounds,

3/4 ≤ Θ ≤ 9/8, (S35)

and has therefore been omitted in the approximation presented in the main text. The proof of inequality (S35)
involves 0 ≤ α ≤ η and α ≤ (1− η), as well as |ω1/µ| =

√
ν/(1 + 2ν) = 2−1/2/[(2ν)−1/2 + (2ν)1/2) ≤ 2−3/2.

This approximation is only valid for weakly perturbed oscillations with σ2
A � Λ; the latter condition can be

rephrased as N � 1/ε2. We remark that amplitude fluctuations remain finite, even at the Hopf bifurcation, and can
be shown to scale as σ2

A ∼ N−1/2 for ε = 0.

[6] F. Jülicher and J. Prost, Phys. Rev. Lett., 78, 4510 (1997)
[28] J. D. Crawford, Rev. Mod. Phys., 63, 991 (1991).
[31] T. Gúerin, J. Prost, and J.-F. Joanny, Eur. Phys. J. E, 34, 60 (2011).
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track. Turning results from an ‘off’ Ca2þ response signifying a chemoattractant stimulation

decrease and, thereby, a drop in cyclic GMP concentration and membrane voltage. These
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deterministic klinotaxis. We provide a conceptual and technical framework for studying
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M
any motile sperm rely on chemical and physical cues to
locate the egg1–4. A beating hair-like filament, called the
flagellum, serves both as an antenna that gathers

sensory cues and as a motor that propels the cell. Receptors on
the flagellar surface transduce these sensory cues into cellular
signals. Ultimately, these signals modulate the wave-like beating
of the flagellum that steers a sperm’s swimming path (for review
see ref. 5).
Sperm from many species, in particular marine animals, are

attracted to the egg by chemical factors—a process called
chemotaxis. Previous chemotaxis studies tracked sperm only in
two-dimensions (2D); at the glass/water interface of shallow
observation chambers, sperm swim on a plane in circles6–10.
While cruising on circular paths in a chemical gradient, sperm
sample the chemoattractant concentration either continuously or
intermittently and gradually adjust their swimming path—a
mechanism called klinotaxis. The repetitive stimulation entrains a
suite of Ca2þ bursts that modulate the waveform of the flagellar
beat5,9,11,12. The ensuing alternate periods of symmetrical and
asymmetrical beating give rise to a looping swimming pattern
(‘drifting circles’) up a gradient. However, unrestricted sperm
from species such as sea urchin swim on a 3D helical path13–17.
The conceptual work by Crenshaw17,18 suggests that in a
chemical gradient, sperm orient by helical klinotaxis, that is, by
alignment of the helix towards the gradient. In addition,
Crenshaw17,18 shows that such alignment could be theoretically
achieved if the components of the cell’s rotational velocity are
simple functions of the stimulus.
A generic quantitative theory of this chemotactic steering

by Friedrich and Jülicher19 captures the essence of navigation
along periodic paths: a cellular signalling system transforms
the periodic stimulation s(t) (chemoattractant binding) into a
periodic intracellular signal i(t) (Ca2þ bursts) that in turn
modulates the swimming path curvature kp(t). The phase lag
between s(t) and kp(t), that is, the latency of the Ca2þ signal, is a
crucial determinant of the directed drift of circles up or down a
2D chemical gradient. This theory also predicts bending of the
swimming helix in 3D. However, these theories have not been
experimentally tested in a well-defined 3D chemical gradient;
moreover, the mechanisms of 3D klinotaxis cannot be derived
from 2D swimming at interfaces, not least because of the
hydrodynamic interactions between the flagellum and the surface
of the recording chamber20,21. In fact, 3D navigation mechanisms
remain unknown for any swimming eukaryotic cell, because of
the technical challenges to rapidly establish and quantitatively
characterize a chemical gradient and to track rapidly moving cells
as they traverse a complex chemical 3D landscape.

We chose the sea urchin Arbacia punctulata to study the
search strategy of sperm in a 3D chemoattractant landscape.
A. punctulata are broadcast spawners that release their gametes
into the ocean, where sperm swim freely. For several reasons,
A. punctulata sperm provide an unmatched model to address
fundamental questions of cell navigation22: (1) chemotaxis has
been well-established22,23; (2) the chemoattractant is known24,
and the signalling pathway has been studied in depth25–29;
(3) conditions for swimming in an aqueous medium can be
readily emulated; finally, (4) Arbacia sperm, unlike mammalian
sperm, represent a homogenous population, that is, most sperm
are chemotactically active.
Here we study freely swimming sperm using digital inline

high-speed holographic microscopy30. Moreover, 3D landscapes
with defined spatio-temporal pattern are created by light using a
caged chemoattractant31. In addition, we study by reverse
optochemical engineering of signalling events, how steering
responses are adjusted during navigation in a gradient. Finally,
using hydrodynamic simulations and a minimal model of sperm
signalling, we provide a theoretical framework accounting for
sperm navigation in 3D.

Results
Tracking sperm in 3D. Sperm were illuminated with coherent
laser light. Light scattered by sperm interfered with the
unscattered background, and this interference was recorded by a
camera at 600 holograms per s (h.p.s.). Applying the Rayleigh–
Sommerfeld back-propagator32, we determined numerically
from each hologram the 3D coordinates of the sperm head33

(Supplementary Fig. 1). Far from boundaries, A. punctulata
sperm swam on a regular helical path with a mean speed
v¼ 200±57 mms� 1 (Fig. 1a); mean helix parameters were:
radius r0¼ 8.4±3.1 mm, pitch p0¼ 47.6±9.1 mm, helix period
T¼ 0.38±0.07 s, path curvature kp¼ 0.065±0.013 mm� 1 and
path torsion tp¼ 0.067±0.031 mm� 1 (track duration 1 s; n¼ 20
cells, mean±s.d.). For comparison, near a glass/water interface,
sperm swim on circles of radius r0¼ 23.5±0.9 mm
with swimming speed v¼ 160±29 mms� 1, and circle period
T¼ 0.9±0.2 s (n¼ 6). Thus, 2D and 3D kinematic parameters
are distinctively different, underscoring the notion that 2D and
3D navigation are fundamentally different20.

The sperm head wiggles around the average path with a
frequency identical to that of the flagellar beat34; passive head
wiggling counterbalances periodic forces generated by active
flagellar bending35. For freely swimming sperm, head wiggling
indicated a flagellar beat frequency of 43.5±3.5Hz (Fig. 1b;
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Figure 1 | Sperm navigate along helical paths. (a) Diagram showing the averaged swimming path of unstimulated sperm (duration 1 s, see color bar).

Radius r0 and pitch p0 are drawn to scale. (b) Reconstruction of the 3D swimming path far from walls. Head wiggling was used to determine the beating

plane orientation. (c) The vector normal to the beating plane (blue arrows) precesses around the helical axis (h, red arrow) with fixed inclination, describing

a circle on the surface of a unit sphere centred around h. Vectors are not to scale.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms8985

2 NATURE COMMUNICATIONS | 6:7985 |DOI: 10.1038/ncomms8985 | www.nature.com/naturecommunications

& 2015 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


n¼ 20). Moreover, head wiggling was approximately planar,
consistent with an approximately planar beat pattern. While
sperm swim along a helix, the head-wiggling plane slowly rotates
around the helix axis: the normal vector describes a circle on the
unit sphere (Fig. 1c), characterized by a constant inclination to
the helix axis (52.0�±11.5�; circular mean±circular s.d., n¼ 20).
To gain insight into the mechanisms producing a helical path,

we simulated swimming paths resulting from different flagellar
waveforms using resistive-force theory35,36. The flagellar shape
was characterized by a constant flagellar twist tf and a flagellar
curvature kf(l,t)¼K0þB cos(o0t� ll) describing a travelling
bending wave with beat amplitude B, wave speed o0/l and mean
flagellar curvature K0 along the arc length l of the flagellum.
We calculated the swimming path produced by three different
flagellar waveforms: asymmetric/non-twisted (K040; tf ¼ 0),
symmetric/twisted (K0¼ 0; tf 40) and asymmetric/twisted
(K040; tf 40). Without twist, the beat pattern and swimming
path were planar (Fig. 2a), that is, sperm moved on circles of
radius rpE1.3/K0 that is set by the flagellar beat asymmetry. The
symmetric/twisted beat produced a non-planar beat pattern, and
sperm swam on twisted ribbons (Fig. 2b). A fraction of human
sperm adopts this pattern37. Finally, an asymmetric/twisted beat
produced a helical path, which is observed for some sperm
species13,14, and head wiggling occurred in a plane that slowly
rotated around the helix axis (Fig. 2c). Both features are borne out
by our experiments (Fig. 1b). This beat pattern could result from
a combination of periodic motor activity travelling down the
flagellum, which drives planar bending waves and persistent
motor activity, which twists the flagellum38.

3D steering is deterministic. Using a photosensitive caged form
of the chemoattractant resact, we sculpted by light well-defined
3D profiles of chemoattractant. The intensity profile of the
uncaging ultraviolet light was approximated by a Gaussian beam
(Supplementary Fig. 2, Supplementary Movie 1). To mimic an egg
that continuously releases resact, ultraviolet illumination was
maintained during the measurement. The time-dependent
concentration profile c(x,t) was reconstructed numerically from
the light profile using the resact diffusion coefficient39 and the
extinction coefficient and quantum yield of caged resact (Fig. 3a,
Supplementary Movie 2). From the swimming path r(t)
and the concentration profile c(x,t), we derived the chemo-
attractant stimulus encountered by sperm s(t)¼ c(r(t),t) (Fig. 3b,
Supplementary Fig. 3, Supplementary Movies 3,4).

Sperm might employ either a deterministic or stochastic
strategy of chemotactic steering. For deterministic steering,
correcting path adjustments are directed towards the
gradient. Alternatively, during stochastic steering, path
adjustments are chosen at random; afterwards, the micro-
swimmer decides whether this choice was favourable and acts
accordingly. Bacteria follow a stochastic search strategy; they
alternate between episodes of straight swimming (‘runs’) and
stochastic tumbling, which randomizes cell orientation and,
thereby, produces a random walk40. However, ‘runs’ up a
gradient are longer, producing a biased drift towards the
chemoattractant source. To distinguish between deterministic
and stochastic search strategies, we analysed the distribution
of helical adjustments relative to the local concentration
gradient for sperm crossing a chemoattractant field. The
bending of the helix axis (dh/dt) is biased towards the
perpendicular component r>c of the local gradient, that is,
the optimal direction for local alignment with the gradient
(Fig. 3c). Thus, steering responses of sperm are deterministic
rather than stochastic.

The sensori-motor transfer function. We identified two different
steering modes while sperm navigate in a chemoattractant
gradient. Steady bending of the helix aligned its axis with the
gradient direction, thereby ramping up the mean stimulation
level (‘on response’); occasionally bending was interrupted by a
vigorous steering event that abruptly changed the swimming
direction (‘off response’) (Fig. 3b). Using a Fourier filter,
we decomposed the stimulus function s(t) into high and low
frequency components. One component represents stimulus
oscillations of about 2Hz, resulting from the helical nature of the
path; this 2Hz component was superimposed on the steady
increase or decrease of the mean stimulus level (Fig. 4a,d).
Remarkably, oscillations in curvature and torsion of the
swimming helix are highly correlated with the stimulus
oscillations, suggesting that subtle changes in helix geometry are
underlying its smooth alignment with the gradient, that is, the ‘on
response’ (Fig. 4d,e).
We used a simple model of phase-locked oscillations to fit

the cross-correlation of stimulus and swimming response:
Acos(O0Dtþf)e�DDt, where O0 is the helix frequency, f is
the phase shift between path curvature or torsion and the
stimulus, and D accounts for phase diffusion (Fig. 4f). We find a
phase shift between stimulus oscillations and oscillations

e1 e3

e2 e2

Figure 2 | Simulated swimming paths for three prototypical flagellar waveforms. The top of each panel illustrates the swimming path, while at the

bottom is shown a waveform sequence for aligned sperm head (grey) with a coloured reference point on the flagellum (left: top view; right: side view).

(a) Planar and asymmetrical beating (mean flagellar curvature, K040) results in circular paths. (b,c) A small flagellar twist (tf40) results in non-planar

beat patterns and swimming paths. For symmetric beating (K0¼0), the resulting swimming path is a twisted ribbon (b), whereas for asymmetric beating

(K040) sperm swim on helices, and the beating plane has a constant inclination with the helix vector h (c).
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of curvature and torsion of fk¼ 205.7� (184.8�, 233.2�) and
ft¼ � 16.3� (� 72.2�, 43.6�), respectively, where the numbers in
parentheses indicate 95% confidence intervals by bootstrap

(n¼ 10 cells). For optimal alignment, theory predicts19 a
fk¼ 180� and ft¼ 0�—in fair agreement with our
experimental results (see Supplementary Note 1).
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Strong steering responses were initiated when the slow
stimulus component began to decline, that is, when sperm were
about to lose track of the gradient, hence ‘off response’ (Fig. 4b,c).
Nine out of 10 cells displayed such ‘off responses’, and during a
total recording time of 77 s ‘off responses’ were observed on 31
occasions. Strong ‘off responses’ provide sperm with the means to
evoke an emergency steering manoeuvre when steady helix
alignment (‘on response’) is not sufficient.
In conclusion, sperm survey a chemical landscape on two

different timescales simultaneously. While swimming up the
gradient (mean stimulation level increases), the rapid periodic
stimulus component smoothly and continuously bends the
swimming helix towards the gradient. When swimming down
the gradient (mean stimulation level decreases), sperm respond
with a vigorous, yet almost optimally directed turn. While the
smooth helix bending during the ‘on response’ involves only
subtle adjustments of helix parameters, the strong ‘off response’
affords major transient distortions of helix geometry. After
getting back on track, sperm resume regular helical swimming.

The behavioural ‘off response’ is generated by Ca2þ . Sperm
host a sophisticated pathway for Ca2þ signalling that controls the
flagellar beat waveform (Fig. 5a). Briefly, chemoattractant
stimulation produces a pulse of cyclic GMP (cGMP), the intra-
cellular messenger31. The rise is caused by cGMP synthesis via the
chemoreceptor, a guanylyl cyclase27 and the decay by cGMP
hydrolysis via phosphodiesterase (PDE) activity. cGMP opens
cyclic nucleotide-gated Kþ -selective channels28 (CNGK) and,
thereby hyperpolarizes sperm25. During the decline from
hyperpolarization, voltage-dependent Ca2þ channels (CatSper)
open26. Ultimately, Ca2þ entering the sperm flagellum initiates a
change in the flagellar waveform and a steering response7,9,11,31.

The behavioural ‘off response’ when swimming down the
gradient indicates that not only an increase, but also a decrease of
chemoattractant evokes a Ca2þ signal. To test this idea, we
developed a technique for optochemical control of a cellular
response. We imposed a temporal pattern of photo-stimulation
on sperm loaded with membrane-permeable caged cGMP31,39.
The cGMP dynamics inside sperm is controlled via the balance
between extrinsic ‘synthesis’ by photolysis of caged cGMP and
intrinsic hydrolysis by PDE. Thereby, we mimicked an increase or

decrease of resact. We produced cGMP with 393-nm light and
simultaneously followed the changes in Ca2þ concentration and
membrane potential Vm by a Ca2þ indicator dye (Fluo-4) and a
voltage probe (di-8-ANEPPS), respectively. As a control, we
mimicked a brief puff of chemoattractant by a light pulse that is
shorter than the latency of the Ca2þ response (o200ms). The
control stimulus, after a short latency, evoked a transient Ca2þ

signal (Fig. 5b)31. Using a longer light pulse, the waveform of the
Ca2þ signal changed in two respects: the amplitude of the
initial Ca2þ signal became much smaller and, unexpectedly,
a second Ca2þ signal was generated precisely when the
photolyzing light was switched off. In keeping with our
nomenclature, we refer to the first and second Ca2þ signal as
‘on’ and ‘off’ Ca2þ response, respectively.

To elucidate the cellular mechanism underlying the Ca2þ ‘off
response’, we probed the cGMP-induced voltage response using
the same light protocol. Light stimulation produced a hyperpo-
larization25 (Fig. 5b). For both brief and long light pulses, the
waveform of the rising phase of the hyperpolarization was
identical. However, for long light pulses (that is, with prolonged
cGMP ‘synthesis’), the decline from the hyperpolarizing peak was
slower and incomplete; after the light was switched off (that is,
when cGMP production ceased), the recovery from hyper-
polarization was rapidly completed. The rapid Vm drop coincided
with the onset of the Ca2þ ‘off response’. The following model
readily accounts for these observations22,26: Voltage-dependent
CatSper channels open during recovery from hyperpolarization.
While the photolyzing light is on, cGMP does not return to
baseline levels as quickly and completely as compared with a brief
light pulse. Consequently, a fraction of CNGK channels are kept
open, and sperm stay partially hyperpolarized. When cGMP
production by light ceases, cGMP levels rapidly drop due to PDE
activity. The rapid return to resting Vm opens additional CatSper
channels and, thereby, produces the Ca2þ ‘off response’. The
behavioural ‘off response’ triggered by this Ca2þ signal results in
a major correction of the swimming path. Along the new
direction of swimming, sperm experience again an ascending
chemoattractant concentration in time.

Model of chemotactic steering. Previous theoretical models did
not address how the flagellar beat steers a cell in a gradient15,19.
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Moreover, they predicted steady adjustment of the swimming
path by a constant feedback mechanism. We developed further
the theory of chemotactic steering in two respects: a dynamic
regulation of flagellar waveform and an adaptive steering
feedback. For steering, sperm must alter the waveform of their
flagellum. Therefore, we first computed helix parameters for
constant waveforms (characterized by mean flagellar curvature K0

and constant flagellar twist); this allowed the identification of a
unique parameter set that reproduces the helix geometry in the
absence of stimulation (Fig. 6a,b). Furthermore, 2D experiments
suggest that a chemotactic signalling pathway regulates the mean
flagellar curvature9,12. Therefore, we simulated the 3D swimming
path resulting from variations of K0. A small-amplitude, periodic
modulation of K0 causes steady helix bending (Fig. 6c), whereas a
single large-amplitude modulation elicits a sharp turn (Fig. 6d).
Helix bending and sharp turn are reminiscent of the ‘on’ and
‘off response’, respectively. Second, in an extended model of
chemotactic steering, K0 is dynamically adjusted to the stimulus
concentration sampled by the swimming cell (see Supplementary
Note 1). For up the gradient swimming, when only small course
corrections are needed to align the helix, the signalling feedback
strength is small; consequently, the amplitude of K0 oscillations
is small too, resulting in steady alignment (‘on responses’).
If, however, sperm swim down a gradient, an upregulated feedback
strength allows for sharp turns (‘off responses’). Simulations using
this generic model account for the chemotactic ‘on’ and ‘off’
steering responses and show robust chemotaxis towards the
summit of a resact concentration profile (Fig. 6e,f).

Discussion
We identify the principal features of sperm navigation in a
3D chemical landscape. Sperm probe the chemoattractant

concentration along helical paths and, thereby, a spatial gradient
is translated into a temporal stimulus pattern that oscillates with
the 2Hz periodicity of helical movement. Thus, the swimming
path organizes the temporal stimulus pattern perceived by sperm,
a principle known as information self-structuring41. The periodic
component is superimposed on a mean stimulus level (baseline)
that either increases or decreases slowly when swimming up or
down a continuous gradient, respectively. The rapid stimulus
oscillations provide a sense of direction, whereas the baseline
slope controls the response strength. A positive slope signifying
a chemoattractant increase produces weak ‘on responses’; a
negative slope when losing track evokes strong ‘off responses’.
This regulation of response strength allows sperm to tune
klinotaxis behaviour ranging from subtle helix bending to abrupt
emergency turns.
Response regulation can be achieved by dynamic adjustment of

feedback strength, which is superior to a previous model with
only constant feedback19. What might be the cellular signalling
mechanisms underlying dynamic feedback strength? The cGMP
dynamics, resulting from cGMP degradation by PDE activity and
inactivation of the receptor guanylyl cyclase27, controls the
recovery from hyperpolarization and, thereby, the amplitude and
timing of Ca2þ responses. Based on our macroscopic Ca2þ

measurements, we propose a model in which slowly increasing
stimulation during helix alignment keeps cGMP levels elevated
and the recovery from hyperpolarization is, therefore, slower and
incomplete; consequently, Ca2þ responses turn out small. When
stimulation is waning while drifting down the gradient, cGMP
hydrolysis outcompetes cGMP synthesis. As a result, CNGK
channels close swiftly and Vm rapidly drops to resting values, thus
triggering a large ‘off’ Ca2þ signal that drives an ‘off response’.
We propose that the regulated feedback strength resides in
the dynamic balance between cGMP synthesis and hydrolysis.
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Future work needs to combine holographic microscopy with
fluorescence imaging techniques to monitor the signalling events
in single cells during 3D chemotaxis.
While sperm from many marine invertebrates reach the egg by

free 3D swimming, sperm from some fish swim on the 2D surface
of the large egg during their search for a small fertilization site,
known as the micropyle42. Moreover, mammalian sperm swim
along the narrow oviduct and intermittently interact with the
convoluted epithelium that lines the oviduct43, thus mammalian
sperm probably switch between 2D and 3D navigation. How
similar are 2D and 3D navigation mechanisms? For sea urchin
sperm, the drifting-circle pattern observed during 2D chemotaxis
on a surface is equivalent to the helix-bending mode of 3D
klinotaxis. Because the ‘off response’ is inherently rooted in the
design of cellular signalling, we expect that the control logic is
similar for 2D and 3D scenarios. Thus, why have ‘off responses’
escaped detection in studies of 2D navigation? For 2D swimming
at interfaces, movements are constrained and subject to
hydrodynamical interactions with the surface. Consequently, the
ballistic component of movement along the helical path is
missing because movement across the surface is not possible. The
degree of freedom for 3D swimming is manifold larger and thus is
the likelihood that sperm eventually will swim away from the
chemical source. Therefore, the ‘off response’ is more important
and prominent for 3D than for 2D swimming. Future work needs
to address the behavioural ‘off response’ under 2D conditions, for
example, by applying the approach of reversed optochemical
engineering at the single cell level.
How common are navigation strategies of sperm across phyla?

For mammalian sperm, three different mechanisms of guidance
have been proposed: chemotaxis44,45, thermotaxis46,47 and
rheotaxis4,48. Human sperm, when rapidly stimulated with
progesterone, a putative chemoattractant, released from caged
progesterone49 undergo hyperactive episodes that change the
swimming direction45. Similar events are observed in a
thermotaxis assay after a temperature shift to lower values47.
Superficially, these hyperactive episodes observed in human
sperm are reminiscent of the ‘off responses’. However, unlike ‘off
responses’, they initiate a stochastic rather than deterministic
reorientation and are more akin to stochastic tumbling episodes
of bacterial chemotaxis.
Klinotaxis is a basic mechanism of navigation displayed by

many motile cells and organisms50, including the nematode
Caenorhabditis elegans, larva from Drosophila, Platynereis
and zebrafish primordial germ cells, protists and even some
bacteria51–55. Sensory modalities as diverse as phototaxis,
thermosensation, taste, olfaction and electroreception employ
klinotaxis. In many animals, neuronal circuits are dedicated to
analyse the temporal pattern of sensory stimuli that instruct the
klinotactic response. Moreover, neuronal circuits are composed of
‘on’ and ‘off cells’ that register the ups and downs of sensory
stimuli. Temporal sampling during klinotaxis is either
accomplished along a periodic path or by undulatory
movements of the body. It is quite remarkable that a signalling
pathway can encompass these computational features in a
single cell.
On a final note, chemoattractant landscapes around an egg in a

natural habitat are not known and are expected to be rather
complex. Local chemoattractant concentrations might be rapidly
changing and distorted by turbulent fluid flow and drifting of
eggs, giving rise to ‘plumes’ rather than Gaussian-shaped
continuous gradients56. To emulate these native conditions and
to study how sperm, and any other microswimmers, cruise in
such complex chemical landscapes is the next frontier of enquiry.
The optochemical and microscopy techniques presented here
combined with computational models provide the means to

generate and quantify complex landscapes and to reveal the
search strategy during microswimmer navigation in general.

Methods
Sample preparation. Sperm spawning was evoked by injecting 0.5ml of 0.5M KCl
into the body cavity of sea urchins from the species A. punctulata. Sperm were
collected using a Pasteur pipette and stored on ice. Artificial seawater (ASW)
contained (in mM) 423 NaCl, 9.27 CaCl2, 9 KCl, 22.94 MgCl2, 25.5 MgSO4,
0.1 EDTA and 10 HEPES. The pH was adjusted to pH 7.8 with NaOH.

Imaging chamber. Dry sperm were diluted 6.6� 104 fold with ASW
supplemented with 0.5% Pluronic F127 (Sigma-Aldrich) and studied in a
custom-made observation chamber (11.5� 11.5� 1mm3). The chamber featured
two openings for sperm injection. To minimize convective flow, the laboratory and
the microscope incubator were set to 18 �C. The temperature of 18 �C was chosen
because it roughly corresponds to the average temperature of the northern Atlantic
coast during the fertility season of A. punctulata57.

Optical set-up. Freely swimming sperm were tracked using an inverted micro-
scope (IX71; Objective � 20, 0.75 numerical aperture, UPLSAPO; Olympus).
Coherent illumination was achieved with a laser light source (LDH-D-C-510,
PicoQuant GmbH) and the corresponding controller (Sepia II Multichannel
Processor, PicoQuant GmbH). Laser light was coupled into a multimode fibre.
A custom-made adapter was used to position the fibre parallel to the optical axis of
the objective. The illumination intensity was adjusted to use the dynamical range
of the camera (12-bit; PCO Dimax HD). Movies were collected at 600 frames
per second; each frame represents a holographic image containing the complete
3D information of the sperm cell.

Caged compounds were photolyzed using a 365-nm LED (M365L2-C;
Thorlabs). The ultraviolet light was coupled into a liquid guide (77566; Newport)
followed by two Plano-convex lenses (LA 1951-A f¼ 25.4mm; LA 1509-A
f¼ 100mm; Thorlabs) and coupled to the imaging optical path with a dichroic
filter (ff 495-Di03; Semrock). The irradiation power (0.8mW) was measured with a
power meter (detector PowerMax and head model PS19Q; Coherent). The light
spectrum was recorded with a spectrometer (51024 DW; Ocean Optics). Photolysis
and data acquisition were synchronized using a wave generator (33500B; Agilent).

Reconstruction of the 3D swimming path. The 3D swimming path was
reconstructed in several steps. First, we created a ‘background’ image from the
average intensity value of the hologram sequence (usually 24,000 frames). Because
moving objects in the hologram sequence are averaged out, the background image
contains only the non-scattered light and the fringes resulting from interference of
the source with non-moving particles. Dividing each hologram by the background
image results in distinct interference patterns of moving sperm32. To curb the data
volume, single sperm cells were tracked within the plane of the image using a
custom-made tracking programme written in Java (Java 1.6 24; ImageJ v.1.47m).
The determined position was used to define a moving region-of-interest (ROI) of
typically 300� 300 pixels around the sperm cell for each frame; this ROI was used
for further analysis.

The Rayleigh–Sommerfeld back-propagation scheme was used to numerically
refocus each background-free hologram. Numerical refocusing resulted in a focus
stack of computed images. The z-position of the cell corresponded to the point of
contrast inversion (Gouy phase anomaly58; Supplementary Fig. 1). Contrast
inversion was identified by an image-processing filter that highlights axial gradients
in the image stack, such as the Sobel filter33,59,60.

Caged compounds and flash photolysis. N-Fmoc-S-(2-Nitroveratryl)-L-cysteine
was obtained as described61 and used for solid-phase peptide synthesis (Biosyntan
GmbH, Berlin, Germany) to obtain caged Cys8-S-DMNB-resact31. The extinction
coefficient of caged resact (20 mM) in ASW was measured by an absorption
spectrophotometer (Varian Carry 5000). To determine the photochemical
quantum yield (fchem), a 50 mM solution of the caged peptide in ASW was
irradiated with a 365±5 nm ultraviolet-LED providing an power flux of
90mWcm� 2 (NCSU033A(T), Nichia, Japan). At several time points aliquots were
taken and analysed via HPLC (n¼ 3). From the initial slope of linear release
(0–15% conversion) and the rate of photon absorption, determined by
ferrioxalate actinometry62, we determined a photochemical quantum yield of
fchem¼ 0.4±0.1%. DEACM-caged cGMP was synthesized as described63.

Characterization of the 3D gradient. The ultraviolet-light profile was char-
acterized by measuring optical sections along the z-axis. A stack of seven glass
cover-slides (150-mm thickness each) was placed at the location of the observation
chamber. The ultraviolet profile was measured between slides by adding fluorescein
(10 ml; 1mM) and imaging the fluorescence emission (emission filter ET 510 LP;
Chroma) that resulted from excitation of fluorescein using the LED ultraviolet
source. Because the geometry of the spatial light profile is fixed with respect to the
objective lens, focusing on the individual planes was achieved by moving the
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camera to the corresponding conjugate plane. The resulting image was rescaled to
compensate for the change in magnification. The scaling factor was measured by
imaging a grid (DV2 calibration grid; Photometrics) at each camera position.
Individual fluorescence pictures, corresponding to the ultraviolet projection on the
different planes, were fitted to a Gaussian function (R240.977). The change in
width along the different optical sections was well-described by a Gaussian beam64

(Supplementary Fig. 2).
To calculate the resact concentration in time and space, we numerically solved

Fick’s second law in 3D using the Euler method for both resact and caged resact.
Space was discretized on cubes of 5-mm side, and the integration time step chosen
was 1.67ms. The diffusion of resact39 (Dresact¼ 239mm2 s� 1) and caged resact
were assumed to be identical. The release of resact from its caged analogue (100 nM
caged resact) was calculated on each iteration based on the power and spectrum of
the ultraviolet source, the extinction coefficient (e¼ 4,100M� 1 cm� 1) and the
photochemical quantum yield of DMNB-caged resact. Programmes were written in
MATLAB (Mathworks).

Quantification of the helical swimming path. From the tracked sperm head
trajectory, we define an averaged path r(t) by averaging out wiggling of the sperm
head at the frequency of the flagellar beat, using a least-square fit that simulta-
neously minimizes the average disance of r(t) to the head trajectory and the third
time derivative of track coordinates. The implicit prior on the third spatial deri-
vative ensures smoothness of the averaged path without introducing a bias on the
path curvature. We then fitted perfect helices to short r(t) segments using sliding
windows of 0.75 s. This defines a helical path centre line R(t), and the helix vector
h¼ dR/dt/|dR/dt|.

We define s(t)¼ c(r(t),t) as a proxy for the concentration stimulus sampled
by the cell in a concentration field c(x,t) and compute the local gradient
direction rc(R,t). This gradient can be decomposed into components parallel
(r||c¼ (rc � h)h) and perpendicular (r>c¼rc �r||c) to the helix vector
(Fig. 3c). If the helix were perfectly aligned with the gradient direction, r>c would
be zero.

We characterize helix bending (dh/dt) with respect to the local gradient
direction rc as

dh
dt

¼ g1g1 þ g2g2; ð1Þ

where g1¼r>c/|r>c|, g2¼ h� g1 and h form a local coordinate system that
moves along the helix centre line. Thus, aligment occurs when the helix bends
towards g1 (g140). Any bending in the direction g2 does not contribute to
chemotaxis. For the histogram showing the direction of helix bending relative to
the gradient direction (Fig. 3c), we analysed n¼ 10 cells along their full tracks every
0.75 s, corresponding to 152 data points.

To compute path curvature kp(t) and torsion tp(t) of r(t), we fitted perfect
helices to sliding path segments of duration 0.25 s. To stabilize the nonlinear helix
fitting algorithm, we included a prior to the cost function that penalizes strong
deviations from the helix parameters obtained for fitting a helix to a longer path
segment of 0.75-s duration. The path curvature and path torsion were obtained
from the radius and pitch of the fitted helical segments. We define the oscillatory
part of s(t), kp(t) and tp(t) by subtracting a baseline defined by a
Fourier filter with cut-off frequency at 1Hz. To determine the phase-shifts
(fk and ft) between stimulus and curvature/torsion oscillations, we fitted a
model Acos(O0Dtþf)e�DDt of phase-locked oscillations to their normalized
cross-correlation, where O0 is the helix frequency and D accounts for phase
diffusion.

To characterize the fraction of cells displaying ‘off responses’, we selected those
cells for which at least 3,000 frames (equivalent to 5 s) had been successfully
tracked using our 3D tracking algorithm. ‘Off responses’ were attributed to
alignment events where the angle between the helical axis and the gradient abruptly
changed from values exceeding 90�.

We determined the plane of head wiggling by fitting planes to short segments of
the head trajectory of 150-ms duration, using singular-value-decomposition on
centred coordinate data.

Numerical simulations of swimming sperm. We numerically reconstructed the
swimming path that would result from prototypical flagellar waveforms using
resistive-force theory35,36. Specifically, we computed the anisotropic hydrodynamic
friction forces associated with shape changes of the slender flagellum. This allowed
us to self-consistently solve for the instantaneous motion of the cell’s material
frame under conditions of force balance. Instantaneous translations and rotations
were integrated using an explicit Euler scheme and the formalism of rigid body
transformations. The time-dependent shape of the flagellum was characterized by
the position vector rf(l,t) of the flagellar centre line as a function of arc length l
along the flagellum and time t, as well as a Cosserat frame consisting of three
orthonormal vectors e1(l,t), e2(l,t) and e3(l,t), such that e3 is tangential to the
flagellar centre line rf, and e1 and e2 span a normal cross-section of the flagellum.
Bending and twisting of the flagellum are characterized by rotations of the Cosserat
frame:

drf
dl

¼ e3;
de3
dl

¼ kf e1;
de1
dl

¼ �kf e3 þ tf e2;
de2
dl

¼ � tf e1; ð2Þ

where kf(l,t) denotes flagellar curvature and tf denotes flagellar twist. We assume a
constant flagellar twist tf and a flagellar curvature kf given by a travelling bending
wave,

kf ðl; tÞ ¼ K0 þB cosðo0t� llÞ; ð3Þ
where K0 is mean curvature, B the amplitude, o0 the angular frequency and 2p/l
the wavelength of the flagellar bending waves.

We assumed parallel and normal flagellar friction coefficients x||¼ 0.99Z,
and x>¼ 1.81x||, respectively, where Z denotes the dynamic viscosity of the
surrounding liquid35. The flagellar length (41 mm), flagellar wavelength
(2p/l¼ 29.6 mm) and amplitude of the flagellar curvature wave (B¼ 0.160 mm� 1)
were estimated from flagellar tracking of sperm swimming close to a water/glass
interface. The beat period (2p/o0¼ 23ms) was estimated from the frequency
of head wiggling for sperm swimming in 3D. Mean flagellar curvature
(K0¼ 0.0351 mm� 1) and flagellar twist (tf¼ 0.00477 mm� 1) were obtained by a
nonlinear fit to reproduce the experimentally measured helix parameters, see
Fig. 5a,b. The sperm head was approximated by an ellipsoid with axes 2.5, 1.25 and
1.25 mm, as estimated from electron micrographs. Finally, the proximal end of the
flagellum (neck) is assumed collinear with the long axis of the sperm head.

Numerical simulation of sperm chemotaxis. Using our hydrodynamic
simulation scheme, we computed sperm swimming paths r(t) in a concentration
landscape c(x,t) of chemoattractant. We assume a dynamic regulation of the shape
of the flagellar beat in response to the concentration stimulus s(t) sampled by the
cell along its path:

sðtÞ ¼ cðrðtÞ; tÞ: ð4Þ
The time-dependent stimulus s(t) is transduced by a simple adaptation mod-
ule19,65,66, where p(t) denotes a dynamic sensitivity, a(t) the signalling output
variable and m a signalling time-scale:

m
da
dt

¼ ps� a

m
dp
dt

¼ pða� 1Þ:
ð5Þ

This minimal description embodies key characteristics of the sperm chemotactic
signalling system as observed in experiments, namely an adaptation of sensitivity
according to the baseline stimulus level39, as well as relaxation to the rest state
(a¼ 1) for any stimulus that does not change in time9. Further characteristics
of the signalling module (equation (5)) are provided in the Supplementary
Information text. The output variable a(t) regulates the mean flagellar curvature
K0 of the flagellar beat according to:

K0 ¼ Kb � wða� 1Þ: ð6Þ
Here Kb denotes the mean flagellar curvature of unstimulated sperm and w denotes
a feedback strength. For simplicity, all other parameters of the flagellar beat are
assumed constant. A dynamic regulation of mean flagellar curvature on
chemotactic stimulation has been demonstrated in previous 2D experiments12.

To conceptualize our novel experimental finding of ‘off responses’, we employ a
dynamic feedback strength w(t) that can alternate between a low (won) and a high
value (woff) for steady swimming up or down the gradient, respectively. We
introduce a signalling variable q(t), which tracks changes of the stimulus baseline,
and that obeys the following low-pass filter dynamics:

Z
dq
dt

¼ a� q; ð7Þ

where Z denotes a relaxation time-scale. In our minimal description, the dynamic
feedback strength w(t) takes either of the two values, depending on whether q(t)
exceeds a threshold y:

w ¼ won for q4y
woff for qoy

�
: ð8Þ

For the simulations, we employed the concentration landscape c(x,t) corresponding
to the experiment shown in Fig. 3b. Parameters: m¼ 150ms, Z¼ 500ms, y¼ 0.95,
won¼Kb, woff/won¼ 8 and Kb¼ 0.0351 mm� 1.

Measurement of changes in [Ca2þ ]i and membrane voltage Vm. We measured
changes in [Ca2þ ]i and Vm using a rapid-mixing device (SFM-400; Bio-logic) in
the stopped-flow mode. Changes in [Ca2þ ]i and Vm were measured with the Ca2þ

indicator Fluo-4 AM and the voltage-sensitive indicator di-8-ANEPPS (Molecular
Probes), respectively. Dry sperm were suspended 1:6 (vol/vol) in loading buffer
containing ASW and the indicator, in the absence (di-8-ANEPPS) or presence
(Fluo-4 AM) of 0.5% Pluronic F127 (Molecular Probes). After incubation for at
least 45min with Fluo-4 AM or 5min for di-8-ANEPPS at 17 �C, the sample was
diluted 1:20 with ASW. Sperm were allowed to equilibrate in the new medium for
5min. In the stopped-flow device, the sperm suspension was rapidly mixed 1:1
(vol/vol) with resact in ASW or ASW alone. Concentrations of resact are given as
final concentrations after mixing. Fluorescence was excited by a SpectraX Light
Engine (Lumencor). Emission was recorded by photomultiplier modules
(H9656-20; Hamamatsu Photonics). The signal was amplified and filtered through
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a voltage amplifier (DLPVA-100-B-S; Femto Messtechnik). Data acquisition was
performed with a data acquisition pad (PCI-6221; National Instruments) and
Bio-Kine software v. 4.49 (Bio-Logic). For Ca2þ and Vm recordings, the excitation
light was passed through a BrightLine 475/28 nm filter (Semrock) (SpectraX Light
Engine). For Ca2þ measurements, the emitted light was passed through a
BrightLine 536/40-nm filter (Semrock). Ca2þ signals represent the average of at
least two recordings and are depicted as the per cent change in fluorescence (DF)
with respect to the mean of the first 5–10 data points before the onset of the
signal (F0). The control (ASW) DF/F0 signal was subtracted from the resact- or
cGMP-induced signals. The Vm signals were recorded in dual-emission mode.
The filters in front of the two photomultipliers were BrightLine 536/40 nm and
BrightLine 628/40 nm (Semrock). The Bio-Logic software was used to record the
fluorescence in the ratiometric dual-emission mode. The Vm signals are the ratio of
F536/628 or R. The control (ASW) R signal was subtracted from the resact- or
cGMP-induced signals. The mean R of the first 5–10 data points before the onset of
the changes in fluorescence was set to 0, yielding DR. The Vm signals represent the
average of at least three recordings and were digitally smoothed with five-point
average smoothing. The changes in di-8-ANEPPS fluorescence were calibrated into
Vm (mV) by stimulating sperm with 2.5 nM resact concentrations in ASW (9mM
Kþ ) and ASW of 30mM and 100mM extracellular Kþ . Plotting the resact-evoked
DR against [Kþ ]o allowed the interpolation of Vrest and DR/mV as previously
described25. Calibration of DR to mV was performed within each set of
experiments. The data obtained from ensemble measurements were analysed
using OriginPro 9.0 (OriginLab Corporation).

Data analysis. All data are given as mean±s.d. unless otherwise stated.

References
1. Kantsler, V., Dunkel, J., Blayney, M. & Goldstein, R. E. Rheotaxis facilitates

upstream navigation of mammalian sperm cells. eLife 3, e02403 (2014).
2. Eisenbach, M. & Giojalas, L. C. Sperm guidance in mammals - an unpaved road

to the egg. Nat. Rev. Mol. Cell Biol. 7, 276–285 (2006).
3. Publicover, S., Harper, C. V. & Barratt, C. [Ca2þ ]i signalling in sperm - making

the most of what you’ve got. Nat. Cell Biol. 9, 235–242 (2007).
4. Miki, K. & Clapham, D. E. Rheotaxis guides mammalian sperm. Curr. Biol. 23,

443–452 (2013).
5. Alvarez, L., Friedrich, B. M., Gompper, G. & Kaupp, U. B. The computational

sperm cell. Trends Cell Biol. 24, 198–207 (2014).
6. Cosson, M. P., Carre, D. & Cosson, J. Sperm chemotaxis in siphonophores. II.

Calcium-dependent asymmetrical movement of spermatozoa induced by the
attractant. J. Cell Sci. 68, 163–181 (1984).

7. Guerrero, A. et al. Tuning sperm chemotaxis by calcium burst timing. Dev.
Biol. 344, 52–65 (2010).

8. Miyashiro, D. et al. Chemotactic response with a constant delay-time
mechanism in Ciona spermatozoa revealed by a high time resolution analysis of
flagellar motility. Biol. Open 4, 109–118 (2015).
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19. Friedrich, B. M. & Jülicher, F. Chemotaxis of sperm cells. Proc. Natl Acad. Sci.
USA 104, 13256–13261 (2007).

20. Guerrero, A. et al. Strategies for locating the female gamete: the importance of
measuring sperm trajectories in three spatial dimensions. Mol. Hum. Reprod.
17, 511–523 (2011).

21. Elgeti, J., Kaupp, U. B. & Gompper, G. Hydrodynamics of sperm cells near
surfaces. Biophys. J. 99, 1018–1026 (2010).

22. Kaupp, U. B. 100 years of sperm chemotaxis. J. Gen. Physiol. 140, 583–586
(2012).

23. Ward, G. E., Brokaw, C. J., Garbers, D. L. & Vacquier, V. D. Chemotaxis of
Arbacia punctulata spermatozoa to resact, a peptide from the egg jelly layer.
J. Cell Biol. 101, 2324–2329 (1985).

24. Shimomura, H., Dangott, L. J. & Garbers, D. L. Covalent coupling of a resact
analogue to guanylate cyclase. J. Biol. Chem. 261, 15778–15782 (1986).

25. Strünker, T. et al. A Kþ -selective cGMP-gated ion channel controls
chemosensation of sperm. Nat. Cell Biol. 8, 1149–1154 (2006).

26. Seifert, R. et al. The CatSper channel controls chemosensation in sea urchin
sperm. EMBO J. 34, 379–392 (2015).

27. Pichlo, M. et al. High density and ligand affinity confer ultrasensitive signal
detection by a guanylyl cyclase chemoreceptor. J. Cell Biol. 206, 541–557
(2014).

28. Bönigk, W. et al. An atypical CNG channel activated by a single cGMP
molecule controls sperm chemotaxis. Sci. Signal 2, ra68 (2009).

29. Gauss, R., Seifert, R. & Kaupp, U. B. Molecular identification of a
hyperpolarization-activated channel in sea urchin sperm. Nature 393, 583–587
(1998).

30. Garcia-Sucerquia, J. et al. Digital in-line holographic microscopy. Appl. Opt. 45,
836–850 (2006).

31. Kaupp, U. B. et al. The signal flow and motor response controling chemotaxis
of sea urchin sperm. Nat. Cell Biol. 5, 109–117 (2003).

32. Lee, S. H. & Grier, D. G. Holographic microscopy of holographically trapped
three-dimensional structures. Opt. Exp. 15, 1505–1512 (2007).

33. Wilson, L. G., Carter, L. M. & Reece, S. E. High-speed holographic microscopy
of malaria parasites reveals ambidextrous flagellar waveforms. Proc. Natl Acad.
Sci. USA 110, 18769–18774 (2013).

34. Serres, C., Feneux, D., Jouannet, P. & David, G. Influence of the flagellar wave
development and propagation on the human-sperm movement in seminal
plasma. Gamete Res. 9, 183–195 (1984).

35. Friedrich, B. M., Riedel-Kruse, I. H., Howard, J. & Jülicher, F. High-precision
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Supplementary Figure 1: Tracking of sperm head from individual holograms. (a)  A frame 

of raw holographic data; the sperm head can be seen as the fainter series of concentric diffraction 

fringes at the centre of the image. (b) A frame of background-corrected holographic data (see 

methods).  The centroid of the circular diffraction pattern provides the x-y position of the head. 

From background-corrected holograms, a refocused image stack was created. (c) Section through 

the refocused stack at a fixed y-position. The position is indicated by the red dashed line in (b). 

The z-coordinate of the sperm head is derived from the steepest intensity gradient along z (the 

point of contrast inversion is indicated by yellow arrows). (d)  A portion of the refocused stack 

around the cell was extracted and a gradient filter was applied to highlight axial intensity 

gradients. This gradient stack was projected along the z-direction, retaining the maximum 

intensity value at each x-y position. A faint image of the flagellum becomes visible. 



 

Supplementary Figure 2: Characterization of the chemoattractant release. (a) Normalized 

profile of UV light used for release of resact (top). The UV profile was measured by exciting 

fluorescein sheets distributed at different z-positions along the optical axis of the microscope. 

The focal plane of the objective corresponds to z = 0 µm. Individual sections were fitted to a 

Gaussian function (bottom). (b) Fitted width of the UV light profile at different heights along the 

optical axis (data in points yellow with black outline; thin black error bars lay within the points). 

The width of the light at different z-positions resembles a Gaussian beam (equation, and 

corresponding fit shown as a thick black line). (c) Molar extinction coefficient of caged resact in 

ASW. 



 

Supplementary Figure 3: Sperm steering in a 3D gradient. (a, d) representative swimming 

paths of sperm in the gradient shown in Figure 3a. (b, e) Corresponding stimulus encountered by 

sperm while swimming in the gradient. (c, f) Relative changes of the stimulus baseline and 

alignment of the helical path. 



Supplementary Figure 4: Exemplary simulation 

of sperm chemotaxis when chemoreceptors are 

located along the flagellum. (a) Computed path of 

a cell navigating in a chemoattractant gradient (grey 

shades), where K0 is dynamically adjusted by a 

simple feedback. The chemoattractant sensors have 

been assumed to be distributed uniformly along the 

flagellar surface (see Supplementary Note). 

Regardless of the chemoreceptor location (head 

versus flagellum) the navigation behaviour is 

analogous (see Fig. 6. and Supplementary Note). (b) 

Mean flagellar curvature in time K0 for the simulated 

path shown in panel a. During swimming up the 

gradient, K0 modulations are small. Swimming 

down the gradient triggers a large modulation of the 

mean flagellar curvature and results in a large 

correction of the swimming direction. (c) Relative 

change in baseline stimulus and alignment rate (γ1) 

for the simulated path shown in panel a. 



Supplementary Note  

Jan F. Jikeli1*, Luis Alvarez1*, Benjamin M. Friedrich2*, Laurence Wilson3*, René Pascal1, 

Remy Colin4, Magdalena Pichlo1, Andreas Rennhack1, Christoph Brenker5, and U. Benjamin 

Kaupp1: Sperm navigation along helical paths in 3D chemoattractant landscapes 

 

Theoretical description of steering along helical paths 

This SI text presents a theoretical analysis of our mathematical model of sperm chemotaxis 

along helical paths. We first summarize symbols and equations used. Second, we characterize 

the input-output transfer function of the signaling module for three prototypical stimulus 

functions s(t). We then review the kinematics of swimming along perfect helical paths, as well 

as steering along bent helices by oscillating path curvature and path torsion. We specifically 

address on and off steering responses. We discuss the role of phase lags – both due to signaling 

latency as well as due to the dynamics of swimming – between stimulus and motor response. 

 

List of symbols used: 

t:   time 

x:   space coordinates 

r(t):   averaged swimming path of the sperm cell 

c(x,t):  chemoattractant concentration-field 

s(t):   concentration stimulus sampled by the cell along its path 

R(t):  centerline of helical swimming path r(t) 

h(t):  unit vector pointing along the helical axis of a helical swimming path r(t) 

( ) :c t   chemical gradient at r(t) 

( ) :c t   component of the gradient parallel to h(t) 



( , )c t x :  component of the gradient perpendicular to h(t) 

g1(t):  unit vector parallel ( )c t  

g2(t):  unit vector perpendicular to h(t) and g1(t) 

1(t):  alignment rate of the helix vector h(t) towards g1(t)  

2(t):  alignment rate of the helix vector h(t) towards g2(t)  

p(t):   dynamic sensitivity of signaling system  

a(t):   signaling output variable 

µ:   signaling time-scale 

(t):  steering feedback strength 

on:   steering feedback strength during on resonse 

off:  steering feedback strength during off response 

q(t):  trigger variable  that monitors changes of the stimulus baseline 

:  trigger threshold for off responses 

:  time-scale of stimulus filtering 

v(t):  swimming speed 

p(t):  path curvature of swimming path r(t) 

p(t):  path torsion of swimming path r(t) 

t(t):  tangent vector of the Frenet frame along the swimming path r(t) 

n(t):  normal vector of the Frenet frame along the swimming path r(t) 

b(t):  binormal vector of the Frenet frame along the swimming path r(t) 

r0:  helix radius 

p0, 2h0: helix pitch 



:  angular frequency of helical swimming 

K0(t):   mean flagellar curvature 

Kb:  mean flagellar curvature in the absence of stimulation  

l:  arc-length coordinate along the flagellum 

rf(l,t):  position of the flagellar centerline 

f(l,t):  flagellar curvature 

f:  flagellar twist 

0:  angular flagellar beat frequency 

:  wavelength of flagellar bending wave 

e1(l,t):  normal vector of the Cosserat frame along the flagellum 

e2(l,t):  binormal vector of the Cosserat frame along the flagellum 

e3(l,t):  tangent vector of the Cosserat frame along the flagellum 

 

List of equations: 

Helix bending: 

          (1) 

(dot denotes time-derivative) 

 

Flagellar wave form dynamics: 
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Signalling dynamics: 
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Characterisation of the adapation module 

We discuss the input-output characteristic of the adaptation module in equations (5.1) and (5.2) 

for three prototypical stimuli s(t).  

 

Constant stimulus  

For a constant stimulus of the form s(t) = s0, the output a(t) is always constant, a(t) = 1.  

 

Oscillatory stimulus 

An oscillating stimulus 0 1( ) cos( )s t s s t   with frequency  and (small) amplitude s1 will 

elicit oscillations of the output variable around its rest value, a 1 a( ) 1 cos( )a t s t     , with 

amplitude gain a and phase-lag a. Here,  

 a
a 2 2

0

1
1

i ie
s i


 




  
  (S1) 

denotes the so-called complex susceptibility of the signaling system.  Note that the phase-lag a 

between s(t) and a(t) is independent of the base-level 0s . The oscillation amplitude as1 scales 

as s1/s0, and thus, the output variable a(t) displays adaptation because it responds to relative 

changes of the input stimulus. 

Of note, the trigger variable q(t) (see equation 7) oscillates only weakly in this case with an 

amplitude that is attenuated by a factor |1+i|-1 as compared to a(t). 

 



Exponential stimulus 

We consider a stimulus baseline s(t) = s0 exp( t) that changes in time at a rate thatcan be 

either positive (increasing stimulus) or negative (decreasing stimulus). In this case the output is 

detuned from its rest-value:  

 ( ) 1a t   . (S2) 

The amount of detuning is set by a competition between the time-scale of adaptation () and the 

time-scale on which the stimulus changes (|-1). Thus, the condition q > on the trigger 

variable q(t) is equivalent to the rate  to exceed a threshold: 

 1* 
 




   . (S3) 

The stimuli sampled by swimming cells can be approximated as a superposition of fast 

oscillations and a slowly changing baseline, and thus represent a superposition of these 

idealized cases.  

 

A theory of steering along helical paths  

The Frenet frame; curvature and torsion 

The bending and twisting of a swimming path r(t) is characterized by its signed curvature p(t) 

and torsion p(t). These quantities describe the dynamics of an orthonormal coordinate system 

that moves along r(t), consisting of the tangent vector / vt r , the normal vector n t t , and 

the binormal vector  b t n . This so-called Frenet frame rotates along the path according to 

the Frenet-Serret formulas: 

 p p p p,  ,  ,  v v v v v         r t t n n t b b b   (S4) 

Note that the signed curvature is only defined up to a global choice of sign. The sign of p

distinguishes right-handed helices ( p 0  ) and left-handed helices ( p 0  ). 

 



Swimming along perfect helices 

Flagellar propulsion with an asymmetric, nonplanar beat pattern that is perfectly periodic in 

time implies an averaged swimming path r(t) that is a perfect helix with constant curvature κp 

and torsion τp. The vector (t) = v[p t(t) - p b(t)] can be shown to be an invariant of this 

motion. In fact, 0 | |  Ω  is the angular frequency of helical swimming, while the helix vector 

h = /0 points along the centerline of the helix. The vector  characterizes rotations of the 

Frenet frame, e.g.  t Ω t . Thus, the tangent vector t performs a precession motion around the 

helix vector h with a constant rotation rate 0. We note the useful formulas pv Ω t  and 

pv  Ω t . The radius and pitch of the helix can be computed as 2 2
0 p p p/ ( )r      and 

2 2
0 p p p2 2π / ( )h     , respectively. Note that planar circular paths (Fig. 2a) and twisted 

ribbons (Fig. 2b) can be considered as degenerate cases of helical swimming characterized by 

p= 0 and p= 0, respectively. 

 

Sampling a concentration gradient along helical paths 

We now consider the idealized case of a cell moving along a perfect helical path r(t) inside a 

linear concentration field 0( ) ·c c c x x . Relative to the helix vector h, the concentration 

gradient vector ∇c can be decomposed as 

 c c c     (S5) 

with (i) a component parallel to the helix vector, ( · )c c   h h , and (ii) a component 

perpendicular to the helix vector, c c c   , see Fig. 3c in the main text. While 

swimming along a helical path, the cell samples a concentration stimulus s(t) = c(r(t)) from the 

concentration field that comprises (i) a slow change of the stimulus baseline resulting from a 

net motion along the direction h and (ii) a fast oscillation with the frequency  of helical 

swimming. For an appropriate choice of coordinate system, we find 

 0 0 0 0 0( ) ( ) cos( )s t c c h t c r t       h . (S6) 

 



Chemotaxis by phase-locked oscillations of path curvature and torsion 

The time-dependent concentration stimulus sampled by a sperm cell along its path serves as 

input for a signaling system that controls the shape of the flagellar beat, and thus changes 

curvature κp(t) and torsion p(t) of the swimming path. Generally, an oscillatory concentration 

stimulus as in equation (S6) will elicit phase-locked oscillations of path curvature and torsion. 

We consider an idealized case of perfect curvature and torsion oscillations with the frequency 

0  of helical swimming  

 p 0 1 0( ) cos( ),t t          (S7) 

and analogously, p 0 1 0( ) cos( )t t        . Here, we explicitly account for a phase-shift   

between oscillations of s(t) and κp(t), which characterizes latency times of chemotactic signal 

processing. Oscillating curvature and torsion yield bent helices: Using a theory put forward 

previously1-3, we can compute the bending rates 1  and 2  of helical paths defined in the 

Methods section equation (1) 

  0
1 0 1 0 1cos cos

2
r h     


    (S8) 
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    (S9) 

Thus, a sufficient condition for optimal alignment of the helix axis with respect to the 

concentration gradient characterized by 1 0   and 2 0   is given by π   and 0  , 

implying that curvature oscillations would be anti-phase to stimulus oscillations, while torsion 

oscillations would be in-phase. These results pertain also in more realistic cases of slightly 

nonlinear concentration fields, and concentration stimuli sampled along helical paths that are 

perturbed by steering feedback, as long as the feedback is weak (characterized by 

0 1a c r  ). 

 

The“off response” 



Whether the helical path is directed up the concentration gradient ( 0)c  h  or down the 

concentration gradient ( 0)c  h  is reflected by a slow increase or decrease of the stimulus 

baseline, respectively. From Equations (S6) and (7), we find for the trigger variable q(t) 

 0 01 cq h
c


 

  
h

.  (S10) 

Thus, an off response is triggered in our simulations whenever the relative gradient strength in 

the direction of the helix axis falls below the critical value: 

 
0 0

1c
c h





 



.  (S11) 

For the parameters used, we have 3 1
0 0( 1) / ( ) 1.2 10 mh         or about 6%  over one 

helix pitch 02 50 mh  . During an off response, the helix axis rotates rapidly as a result of 

large-amplitude oscillations of path curvature and torsion. While the geometric principle is 

fully analogous to the case of on responses, equations (S8) and (S9) will only hold in an 

approximate sense and the directional precision of these vigorous steering responses might be 

reduced as compared to the case of on responses.   

 

Phase-lags in simulations 

In our simulations, path curvature κp(t) and torsion p(t) are regulated only indirectly by 

dynamically adjusting the mean flagellar curvature K0, see equation (6). For the parameters 

chosen, we observe an additional phase-lag 
0K between oscillations of K0 and κp, where 

0
π 3K  . This phase-lag depends on the oscillation frequency  and vanishes if we impose 

adiabatically slow oscillations of mean flagellar curvature. The effective phase-lag   that 

governs the bending rate in equation (S8) is the sum of (i) the phase-lag a due to signaling 

latency and (ii) the phase-lag 
0K arising from the dynamic regulation of the beat pattern, 



 
0a K    .  (S12)  

For the parameters chosen, we find 2π / 3a   according to equation (S1). Thus, π  . 

Similarly, 0  . From equation (S8) and (S9), we find 1 0   and 2 0  , corresponding to 

positive chemotaxis with the helix axis bending in the direction of the concentration gradient. 

 

Location of stimulus receptor 

The minimal theory presented above assumed for simplicity that stimulus concentration s(t) is 

measured at the position r(t) of the sperm head, see equation (4). However, chemoattractant 

molecules bind to surface receptors distributed along the flagellar length 4. We can account for 

this by defining a flagellar stimulus sw(t) that represents a weighted average of the local 

stimulus concentration along the flagellum  

 
0

( ) ( ( , ), t) ( )d
L

ws t c l t w l l  fr .      (S13) 

Here, ( , )l tfr  denotes the centerline of the flagellum parametrized by arc-length l and w(l) is a 

normalized density of receptors as a function of l. For the special case of a -distribution 

located at the head position, we recover the previous definition. We also define the trajectory of 

the weighted “center of mass” rw(t) of the receptor ensemble 

   
0

( ) ( , ) ( )d
L

w t l t w l l  fr r        (S14) 

as well as the corresponding path curvature w(t) of its averaged path. We can use the stimulus 

sw(t) instead of the head stimulus s(t) as input for the adaptation module given in equation (5). 

Simulation results are largely independent of the choice of w(l), provided the delay time of the 

adaptation module is adjusted accordingly. Generally, there is a phase lag f between the 

flagellar stimulus sw(t) and the head stimulus s(t) such that, sw(t)  s(t + 0
-1f). This additional 

phase lag can be compensated by changing the delay time of the adaptation module to ensure 

that the effective phase lag 
0a f K       between oscillations of head stimulus s(t) and 

oscillations of head path curvature (t) still sum up to . For the case of uniformly distributed 

receptors along the flagellum (w(l) = 1/L), we find e.g. π / 2f  . Choosing = 60 ms in 



simulations, yielded a  5/3 and thus positive chemotaxis with  . Note that equations 

(S8) and (S9) governing the direction of helix bending generalize to the case of an arbitrary 

receptor distribution w(l), provided  is replaced by the phase lag between oscillations of 

flagellar stimulus sw(t) and oscillations of the weighted flagellar path curvature w(t). As 

anticipated, simulations accounting for a uniform receptor distribution along the flagellum do 

not qualitatively differ to the minimal model considered in the main text, where the stimulus 

concentration is measured at the position of the sperm head (see Supplementary Fig. 4). 
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Introduction

The intriguing striations of muscles were first observed more

than a century ago [1]. All skeletal and cardiac muscle cells

develop striated acto-myosin bundles of striking regularity termed

mature myofibrils, which are characterized by a periodic

localization of myosin II filaments alternating with crosslinking

regions rich in a-actinin [2]. An analogous, though less regular,

arrangement of actin and myosin filaments can be found in

adherent, non-muscle cells that express striated stress fibers [3,4].

Some developing muscle cells contain similar striated stress-fiber

like acto-myosin bundles termed premyofibrils and nascent

myofibrils [5–7] that have been proposed to represent interme-

diate structures for the formation of mature myofibrils [8]. Figure 1

depicts the periodic structure of mature myofibrils. Periodically

spaced crosslinking regions termed Z-bodies or Z-bands delineate

1mm-wide sarcomeric regions that comprise actin filaments of

organized polarity and crosslinking myosin filaments in the

sarcomere midzone. How are these surprisingly regular structures

assembled? Numerous proteins involved in myofibrillogenesis have

been identified together with their critical role in several muscle

diseases [9]. However, the mechanistic basis for sarcomere self-

assembly and the establishment of striated order remains elusive.

There is evidence that striated fibers are preceded by unstriated

fibers, which lack apparent sarcomeric localization of myosin and

crosslinkers. Nascent striations first become visible as agglomer-

ations of the actin crosslinker a-actinin, which then grow and

change position to establish a regular, periodic spacing [10]. The

formation of these early, unstriated bundles requires the parallel

alignment of actin filaments, their mutual crosslinking as well as

some means to control bundle thickness. Initial bundle formation

depends on actin crosslinking, and possibly Onsager nematic

alignment and depletion attractions of entropic origin [11,12], or

kinetic effects due to polar actin flow [13]. The thickness of such

actin bundles might be kinetically controlled [14]; additionally,

geometric frustration effects due to the chirality of actin filaments

have been proposed to set bundle thickness [15–17]. Here, we

focus on the stage of development in which there is already a pre-

formed, unstriated bundle of finite thickness and present a

mechanism to explain the subsequent emergence of initial

sarcomeric order within this unstriated bundle. In muscle cells,

subsequent myofibrillar maturation processes, not modeled here,

and fine-tuning of actin filament length, e.g. by nebulin [18,19],

drive the transition to final crystalline order.

So far, a number of sarcomeric scaffolding proteins such as titin,

N-RAP, and WASP have been identified [18–23] and it is highly

probable that these scaffolding proteins help to enhance and

maintain striated order. However, it is unclear if these scaffolding

proteins are able to establish initial striated order in the first place.

To do this, these proteins would have to align in a periodic

manner on a super-micrometer length-scale by some yet unknown

mechanism. Additionally, it is unclear how myosin filaments,

which normally walk towards actin plus-ends, become localized

near actin minus-ends during myofibril assembly. Here, we ask if

physical interactions of actin and myosin filaments, as well as

crosslinkers are sufficient to induce initial striated order in filament

bundles. Such a mechanism could be generic and could also apply

to the formation of striations in acto-myosin stress fibers in

PLoS Computational Biology | www.ploscompbiol.org 1 June 2012 | Volume 8 | Issue 6 | e1002544



non-muscle cells. We show that the combination of treadmilling

actin filaments and processive, plus-end tracking crosslinkers

suffices to account for the self-organization of striated order and

the localization of myosin filaments. Some examples of plus-end

tracking crosslinkers such as formins and VASP are known in the

biological literature [24,25]. We emphasize that the plus-end

tracking crosslinking of actin filaments in acto-myosin bundles is

probably not due tothe action of a single protein, but rather to the

concerted assembly by several, interacting structural proteins such

as the plus-end capping protein CapZ, the actin crosslinker a-
actinin and the giant scaffolding protein titin [26,27]. Our simple,

coarse-grained model replaces this interplay of Z-body proteins by

a single ‘‘effective’’ crosslinker that processively grafts actin plus-

ends. Note that molecular details may be species-specific: In a

recent study by Rui et al. [28], the concerted action of the Z-band

proteins Zasp, Zipper, kettin, and titin was demonstrated to be

pivotal for Z-body formation in Drosophila muscle, while a-actinin
seemed to be dispensable. The strongest evidence for our key

assumption of an effective plus-end tracking crosslinker has been

provided by recent FRAP-experiments in myofibrils. In these

experiments, plus-ends of actin filaments remained localized at the

crosslinking band, yet these actin filaments showed polymerization

dynamics at their plus-ends. This observation is consistent with the

picture of a Z-body acting as a processive, plus-end tracking

crosslinker that allows the insertion of new actin monomers while

holding the actin filament plus-ends linked with each other. Such a

crosslinker could undergo rapid binding and unbinding cycles with

actin plus-ends. One study identified a pool of very dynamic actin

filaments in mature myofibrils [29]. Physically, a processive plus-

end tracking crosslinker results in the condensation of actin

filaments into clusters or I-Z-I complexes that consist of two

adjacent domains of polarity-sorted actin filaments (I-bands) held

together by a crosslinking Z-band, see figure 1. In this paper, we

present a minimal model whose analysis shows that actin filament

treadmilling and crosslinking can account for the initial establish-

ment of striated order.

Survey of previous modeling approaches
Several groups have proposed polarity sorting of actin filaments

by myosin activity [30,31]. However, those mechanisms localize

myosin filaments close to actin filament plus-ends, which is

opposite to the myosin localization observed in striated stress fibers

and myofibrils, where myosin resides in the mid region between

neighboring crosslinks that attach to the actin plus-ends, see

figure 1. In simulations of a generic bundle of polar filaments

crosslinked by populations of both plus- and minus-end directed

motors, Zemel et al. demonstrated sarcomeric ordering with

correct polarity sorting if applied to actin bundles [32], see also

[33]. However, in the context of actin bundles, there is little

evidence for an unconventional, minus-end directed myosin [34].

The concept of a plus-end tracking crosslinker as put forward

here has been introduced earlier in the framework of a mean field

description [35]. Recently, the group of Joanny proposed a

description for the establishment of striated order by stress-induced

polarity sorting in terms of a one-dimensional, active gel [36].

However, this mechanism relies on a phenomenological coupling

term and as such does not provide insight into the microscopic

mechanisms that eventually underlie this coupling.

Model

A bundle of treadmilling actin filaments
To describe the transition from an unstriated actin bundle to a

striated one, we consider in our simulations a single, long bundle

that consists of Na parallel actin filaments aligned with the long

axis of the fiber (chosen to be the x-axis). In biological cells,

striated fibers have an extension in the transverse direction of only

a few hundred nanometers. In our computational model, we

therefore ignore the transverse position of the individual actin

filaments and assume that each filament can interact with any

other provided their projections on the fiber axis overlap. This

assumption corresponds to a mean-field treatment of the

transverse degrees of freedom.

For simplicity, filaments are assumed to be rigid and incom-

pressible with respective lengths Lj , j~1, . . . ,Na. For figures 2, 3,

4, filament lengths are monodisperse with Lj~L0 for all j; whereas

for figure 4 filament length are chosen from a log-normal

Figure 1. Schematic depiction of sarcomeric organization in myofibrils. Actin filaments (blue and red) are grafted at their plus-ends in an a-
actinin rich crosslinking band, termed the Z-band (green). The repetitive units spanning from one Z-band to the next are referred to as sarcomeres
and measure 1{2mm in length. The myosin band (magenta) is traditionally called A-band, while the myosin-free part of the actin band is called I-
band. Numerous auxiliary proteins ensure structural integrity and tune elastic properties.
doi:10.1371/journal.pcbi.1002544.g001

Author Summary

Muscle contraction driving voluntary movements and the
beating of the heart relies on the contraction of highly
regular bundles of actin and myosin filaments, which share
a periodic, sarcomeric pattern. We know little about the
mechanisms by which these ‘biological crystals’ are
assembled and it is a general question how order on a
scale of 100 micrometers can emerge from the interac-
tions of micrometer-sized building blocks, such as actin
and myosin filaments. In our paper, we consider a
computational model for a bundle of actin filaments and
discuss physical mechanisms by which periodic order
emerges spontaneously. Mutual crosslinking of actin
filaments results in the formation and coalescence of
growing actin clusters. Active elongation and shrinkage
dynamics of actin filaments generates polymerization
forces and causes local actin flow that can act like a
conveyor belt to sort myosin filaments in place.
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distribution that satisfies SLjT~L0 and SL2
j T{L2

0~n2L2
0, see also

the Supporting Information (SI).

Actin filaments are structurally polar and filaments ends are

referred to as either the plus-end or the minus end, see figure 2A.

We distinguish actin filaments with plus-ends that face either the

positive x-direction (orientation ej~1, blue in figures), or the

negative x-direction (ej~{1, red in figures). Actin filament

polymerization is a non-equilibrium process and polymerization

and depolymerization rates differ for the plus- and minus-ends,

respectively. In a deterministic description of filament polymeri-

zation dynamics at steady state, we assume that the individual

actin filaments possess a net polymerization speed v0 at their plus-
ends whose absolute magnitude is equal to the net depolymeriza-

tion speed at their minus ends. (The corresponding polymerization

rate is thus v0=a, where a denotes actin monomer length.) The

broken symmetry of the polymerization dynamics results in a

velocity difference ejv0 between the current plus-end position xj of
the j-th filament (with a lab-frame velocity vj~ _xxj ) and its

individual monomers (velocity v0j ~vj{ejv0). This phenomenon

is commonly referred to as filament treadmilling [2], see figure 2A.

For an actin filament that is subject only to a friction force

fj~caLjv
0
j for motion relative to the cytosol, the plus-end advances

with velocity vj~ejv0, while the monomers are at rest, v0j ~0, and
the friction force fj is zero due to force balance. Here, ca is an

effective friction coefficient that accounts for rapid binding and

unbinding interactions with the surrounding actin gel, and,

possibly, integrin-mediated interactions with a substrate. This

situation changes, if rigid crosslinks between actin filaments

constrain their motion.

Processive actin crosslinking
In addition to treadmilling actin filaments, the second key

ingredient of our model is a processive, plus-end tracking actin

crosslinker that effectively describes the concerted action of several

Z-body proteins, see figure 2A. In our simulations, actin filaments

become irreversibly crosslinked with a rate r(Dxj{xk D), if their
respective plus-end positions xj and xk are close. The precise

functional form of r affects results only slightly and we chose

r~r0 exp ({Dxj{xk D=d)=d with r0~v0=L0 and d~0:05 (mea-

sured in units of L0). A case of reversible plus-end crosslinking for

which actin filaments can spontaneously dissociate again is

considered in the SI text S1. Subsequent crosslinking results in

the formation of ‘actin filament clusters’ that consist of many actin

filaments whose respective plus-ends are aligned and which are

permanently crosslinked by effective plus-end tracking crosslinkers.

Such an actin cluster will move as a whole subject to the sum of

forces acting on its constituent actin filaments. These crosslinked

actin clusters can grow by fusion. If two actin filaments belonging

to two small clusters establish a new crosslink, the new x-
coordinate of the merged cluster is taken as the weighted average

of the respective x-coordinates of the two clusters. In real nascent

striated fibers, the longitudinal alignment of plus-ends of cross-

linked filaments supposedly involves a dynamic reorganization of

Figure 2. Actin cluster formation and coalescence. A. Our computational model of sarcomeric pattern formation considers a one-dimensional
bundle of parallel actin filaments, which undergo treadmilling, i.e. filaments polymerize at their plus-ends and depolymerize at their minus-ends
resulting in a net motion of the plus-end with respect to the individual monomers. Plus-end tracking crosslinkers (green) can permanently attach to
the plus-ends of actin filaments (blue and red, indicating filament polarity), while still allowing for polymerization at filament plus-ends. B. Plus-end
tracking crosslinking results in the formation and coalescence of actin clusters as reflected by a reduction in the number of actin clusters (single actin
filaments are counted as one cluster). If there is no friction between sliding filaments (f~0), all actin clusters eventually coalesce into a small number
of very large clusters (blue, mean+s.e., n~100). Time is measured in units of actin length divided by treadmilling speed, L0=v0 . In the presence of
inter-filament friction (f~0:1ca), however, actin clusters above a critical size effectively repel each other, resulting in a kinetically stabilized
configuration with a finite number of actin clusters (magenta). To the right, example kymographs of actin cluster coalescence are shown for the cases
without friction and with friction, respectively. A small imbalance in the number of filaments treadmilling either to the right or to the left within the
final striated bundle causes a slow motion of the entire bundle as a whole as is reflected by the tilted cluster trajectories. Using static instead of
periodic boundary conditions impedes this motion, see SI text S1. The color scheme encodes filament number in actin clusters as shown in the color
bar.
doi:10.1371/journal.pcbi.1002544.g002
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the crosslinking Z-band on a time-scale of several minutes [27],

which is not included in our minimal model.

Importantly, the proposed plus-end tracking crosslinkers are

assumed to be processive, i.e. they always remain locally attached

to the filament plus-ends, even in the presence of actin tread-

milling of the crosslinked filaments, see figure 2A. As a

consequence, the center of an actin cluster is subject to

polymerization forces of its constituent actin filaments and moves

with a velocity vc that is determined by a local force-balance of

cytosolic friction forces. This force balance is spelled out below in

the paragraph ‘Active motion of a single actin cluster’.

For figure 2 only, a generic friction force fjk~fLjk(v
0
j {v0k) for

the relative sliding of two actin filaments is introduced, which is

proportional to the mutual length overlap Ljk of the two filaments.

Here, f denotes a friction coefficient.

Finally, the motion of actin clusters is determined in each time-

step in a self-consistent manner by a balance of forces. We employ

periodic boundary conditions with a system size Lsys~40L0; a

case of static boundary conditions is discussed in the SI text S1.

Total filament numbers were Na~2000 for actin filaments and

Nm~1000 for myosin filaments (Nm~0 for figure 2).

Myosin as dynamic actin crosslinker
In the premyofibrils of developing muscle cells as well as in stress

fibers of non-muscle cells, the molecular motor myosin II

Figure 3. Sarcomeric ordering in the presence of myosin. A. Simulation snap-shots showing the emergence of sarcomeric order in an acto-
myosin bundle ( single actin filaments: blue and red, myosin filaments: magenta, plus-end crosslinker connecting actin filament plus ends belonging
to one cluster : green). Actin filaments can interact if their projections on the bundle axis overlap. Additionally, bipolar myosin filaments (magenta)
dynamically attach to actin filaments in a polarity-specific manner, thus acting as a second set of active crosslinkers. Different vertical positions of the
filaments are indicated solely for visualization purposes. Initially, filament positions are random (t~0). After a transient period during which clusters
of crosslinked actin filaments form and coalesce (t~1), a stable configuration is established characterized by a periodic pattern of actin clusters
interspersed by bands of aligned myosin (t~10). To characterize sarcomeric order in these simulated bundles, we compute the structure factor I(q)
as defined in the main text (blue curves in lower panel, simulation time t~1,10, respectively). The height of the principal Bragg peak (red circle)
defines the sarcomeric order parameter S. The active myosin force that tends to oppose sarcomeric ordering was chosen as fm~1, measured in units
of caL0v0 . An animated version of this simulation can be found as Video S1 available online as Supplementary Information. B. Illustration of the ‘actin
conveyer belt’ mechanism: Actin filaments that are grafted at their plus-end by a processive crosslinker have to polymerize against the crosslinker
(that acts as an obstacle) and are pushed backwards in a form of local retrograde flow. Myosin filaments interacting with these treadmilling actin
filaments are transported away from the cluster center provided that the actin treadmilling speed exceeds the active myosin walking speed. C.
Myosin filaments that are attached to actin filaments from two neighboring clusters serve as an active crosslinker and mediate repulsive forces
between the two clusters due to the difference in the actin polymerization forces and the myosin active forces, see also SI text S1. D. Myosin active
force slows-down sarcomeric ordering: The inset shows the time-course of the sarcomeric order parameter S(t) (blue,mean+s.e.,n~100) for fm~1,
together with a fit of simulation results to an exponential saturation curve S0½1{ exp ({t=t)� (red) that allows us to extract a time-scale t of
sarcomeric ordering. The main plot shows this time-scale t as a function of myosin force fm ; t diverges as fm approaches a critical value f �m . For myosin
forces that are larger the critical value f �m, sarcomeric order is not established. Instead, myosin forces facilitate the coalescence of crosslinked actin
clusters into a small number of very large clusters (not shown), similar to the case shown in figure 2B without friction.
doi:10.1371/journal.pcbi.1002544.g003
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polymerizes into bipolar filaments of a few hundred nanometers

length that have numerous myosin heads at either end [37].

Individual myosin heads change conformations via ATP-depen-

dent cycles, while synchronously attaching to (and pushing on)

actin filaments. Despite the low duty ratio of individual myosin

heads, the large number of these heads ensures a processive and

significant myosin-actin interaction. In our simulations, we employ

a coarse-grained description of bipolar myosin filaments of length

Lm~0:5L0, in which the individual myosin heads at the two ends

of a myosin filament are described as a pair of ‘actin binding sites’,

see figure 3D. Each of these two actin binding sites can bind one

actin filament in a polarity-specific way. Attachment and

detachment to actin filaments are described as simple Poisson

processes with constant rates kon~koff~v0=L0. Once a myosin

filament is attached to an actin filament, we assume a linear force-

velocity relation for myosin walking past the actin filament, see

also SI text S1 for details. Myosin walking speed is directly related

to an active myosin force fm (that also equals the myosin stall

force). While myosin filaments tend to walk towards actin filament

plus-ends, a strong backward force acting on the actin filament can

push both the actin and myosin filaments in the opposite direction.

In our simulations, actin treadmilling and associated polymeriza-

tion forces indeed cause such a motion of myosin filaments

towards actin filament minus-ends.

Active motion of single actin clusters
For sake of illustration, consider an isolated actin cluster that

comprises a total number nz of filaments of positive orientation

that treadmill towards the xw0-direction (blue in figures) as well

as a number n{ of filaments of negative orientation (treadmilling

towards the xv0-direction, red in figures). In our deterministic

description of filament treadmilling, the monomers of the nz
filaments with positive orientation all move with the same velocity

vc{v0, whereas those of the n{ filaments of negative orientation

all move with velocity vczv0. Here v0 is treadmilling speed and vc
the (yet unknown) velocity of the crosslinking Z-band. The two sets

of filaments exert respective friction forces on the cytosol,

fz~caL0(vc{v0)nz and f{~caL0(vczv0)n{, where L0 is actin

filament length and ca a cytosolic friction coefficient per actin

filament unit length, see above. By Newton’s third law, the counter

forces of these cytosolic friction forces act on the Z-band and

amount in this case exactly to the polymerization forces of the

treadmilling actin filaments. Local force balance at the Z-band,

0~({fz)z({f{), determines the velocity of this single cluster

as vc~v0(nz{n{)=(nzzn{).

The structure factor quantifies sarcomeric order
The structure factor is a standard measure used in condensed

matter physics to quantify the regularity of periodic order [38]; it is

defined as the squared amplitude of the Fourier transformed

density-density correlation function. We can adopt the structure

factor to quantify sarcomeric order in our simulations: We

characterize the crosslinked clusters by their respective plus-ends

positions xj and total filament number nj . We then define

I(q)~D
P

j nj exp (iqxj)D
2=

P
j n

2
j . Examples of this structure factor

as a function of wave vector q are shown in figure 3A. Periodic

order is characterized by a series of very sharp, so-called Bragg

peaks. The height S of the principal Bragg peak (red point) defines

a sarcomeric order parameter.

Parameter estimates
Our computational model primarily serves as a proof of physical

principle. The emergence of striated order in the framework of this

model is a robust process that is not sensitive to the parameter

choices. A sensitivity analysis can be found in the SI text S1. Since

the parameters in the model represent effective quantities (which,

in particular, average out transverse degrees of freedom),

numerical estimation of these parameters is difficult. Therefore,

our simulation results are presented assuming specific ratios of

parameters only, without specifying their absolute values in

physical units. Nevertheless, we now present a rough guide to

these parameter values.

In unstriated stress fibers, actin filament length range from

0:5{2mm, myosin filaments have a length of about 1mm [39].

Thus, the length-scale L0, which sets the mean length of actin

filaments in our simulations, may be chosen as *1mm. Actin

polymerization speeds of up to about 1mm=s have been observed

in vitro, while filopodia protrusion driven by actin polymerization

can be as fast as 0:1mm=s, see [40] and references therein. In

stereocilia, actin polymerization is highly regulated and polymer-

ization speeds can be as low as 1mm=24h [41]. While in general

the polymerization speed of an actin filament is force-dependent

Figure 4. Sarcomeric order despite actin filament length variability. In a modified version of the simulations shown in figure 3, the lengths of
individual actin filament were chosen from a unimodular length distribution, see main text. Example length distributions are shown for three values
of the length variability parameter n. Sarcomeric order also evolved in simulated acto-myosin bundles with a distribution of filament lengths, but with
a reduced sarcomeric order parameter and increased sarcomere spacing at steady-state (mean+s.e.).
doi:10.1371/journal.pcbi.1002544.g004
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with a stall force in the pico Newton range [37,42], we assume

here a constant mean polymerization speed v0. The ratio L0=v0
sets the primary time-scale of sarcomeric pattern formation in our

simulations, and it is shown below that sarcomeric ordering in

established within t*10L0=v0 for typical parameter choices.

Experimentally, sarcomeric pattern formation evolves on a time-

scale of hours [5], which corresponds to an actin polymerization

speed v0*0:1mm=min in our simulations. This estimated actin

polymerization speed would be lower than that in filopodia, but

significantly larger than the speed measured e.g. in stereocilia.

Myosin filaments may exert pico Newton forces on actin

filament at full activation. Decoration of actin filaments with

troponin/tropomyosin reduces myosin walking, which would

correspond to lower values for the active myosin force fm in our

simulations. Below, we argue that myosin walking towards actin

filaments impedes the correct, sarcomeric polarity sorting, which is

established in our model by actin treadmilling. The effective

friction for an actin filament moving within a dense bundle is

presumably dominated by binding-unbinding interactions with the

surrounding actin gel as well as integrin-mediated interactions

with the substrate. The corresponding effective friction coefficient

ca is expected to be orders of magnitude larger than the

hydrodynamic friction coefficient for motion in water [43],

caw3:10{3 pNs=mm2. Assuming a friction coefficient for single

actin filaments (per unit length) in the range

ca*0:1{10pNs=mm2, we would find for a filament of length

1mm moving at a speed of 1mm=min friction forces in the range

1:5{150fN, i.e. well below both the stall force of actin

polymerization and the buckling force of single actin filaments.

We did not incorporate filament diffusion explicitly in our

model, as thermal motion will be small in a dense bundle. Note,

however, that dynamic myosin forces with short correlation time

can induce stochastic, bidirectional motion of filaments.

Several studies pointed out the effect of integrin-mediated

anchorage of Z-lines for myofibrillogenesis [44]: Although, initial

I-Z-I complexes did form even in the presence of RNAi against

integrin, Z-body stability was apparently reduced and bundle

integrity was impaired in these experiments [28]. Presumably,

integrins play multiple roles starting with the stabilization of I-Z-I-

complexes, which corresponds in our model to a reduced rate of

dissociation of single filaments from an actin cluster (see also SI

text S1). Secondly, anchorage reduces the mobility of I-Z-I

complexes, which would correspond to an increased total friction

coefficient of actin clusters. As anchored I-Z-I complexes still

showed some residual mobility, anchorage must be dynamic and

allow for slippage. Thus, dynamic anchorage affects the effective

parameters in our model, but does not change its basic, qualitative

features. Finally, stable anchorage at the two terminal ends of an

acto-myosin bundle specifies its boundary conditions; a simulation

case of static boundary conditions is shown in the SI to mimic a

bundle whose terminal ends are grafted by focal complexes to a

substrate.

Results

Plus-end crosslinking facilitates formation and growth of
I-Z-I clusters
In our simulations, we consider a minimal, one-dimensional

model of a bundle of treadmilling actin filaments. Actin filaments

with nearby plus-ends can form a stable crosslink by a complex of

molecules (that eventually become the Z bodies) that holds the

plus-end of the two actin filaments, but still allows for actin

polymerization at the plus-end, see section ‘The computational

model’ and figure 2A. Subsequent crosslinking gives rise to the

formation of actin clusters that consist of several actin filaments

whose respective plus-ends are aligned and which are permanently

crosslinked by effective plus-end tracking crosslinkers. Each actin

cluster will move as a whole subject to the sum of forces acting on

its constituent actin filaments. These crosslinked actin clusters can

grow by fusion and eventually self-organize into sarcomeric order,

thus representing precursors of the I-Z-I complexes observed

during early myofibrillogenesis [45]. To gain basic insight into the

process of actin cluster formation and coalescence, we first

simulated bundles of treadmilling actin filaments and crosslinks

without myosin filaments; the effect of myosin filaments is

discussed in the next section. We observe the formation and

coalescence of clusters of crosslinked actin filaments, see figure 2B.

In each actin cluster, the constituent actin filaments polymerize

at their plus-ends, thereby pushing against the processive cross-

linkers of the Z-band. The growing actin filaments themselves

move away from the Z-band in a form of ‘local retrograde flow’.

The polymerization forces exerted by the polymerizing actin

filaments on the Z-band are counter-balanced by friction forces

that constrain the motion of the actin filaments. Any imbalance in

the number of filaments of the two orientations will result in a net

polymerization force and thus net motion of the cluster. The

collision of two clusters can result in their mutual coalescence and

the formation of a larger cluster. If actin filaments slide past each

other without any friction, all filaments would eventually coalesce

into a small number of very large clusters, see figure 2B. If we

assume, however, a hypothetical, effective friction between moving

actin filaments, coalescence of actin clusters above a critical size is

dynamically impeded and sarcomeric order results.

The arrest of actin cluster coalescence due to our proposed

inter-filament friction can be understood on qualitative grounds as

follows: The active motion of a single actin cluster is driven by an

imbalance of polymerization forces acting on the Z body that can

arise from an imbalance between the respective numbers of the

constituent filaments of the two different filament orientations.

This net polymerization force is balanced by the total friction force

of the actin cluster (and possibly additional forces due to

interactions with neighboring clusters). Since this total friction is

proportional to the total number of filaments in the actin cluster,

whereas the net polymerization force (due to statistical imbalance)

roughly scales only as the square root of this number, smaller actin

clusters move faster than larger clusters. Furthermore, the mutual

friction force between two overlapping actin clusters adds a friction

term to the force balance that scales as the product of the

respective filament numbers and therefore will eventually stall the

approach of actin clusters above a certain size. In the more

complex case of an actin bundle, the force balance for all actin

clusters has to be considered. Friction between sliding actin

filaments may be provided by fast, dynamic crosslinking along the

entire lengths of the actin filaments by a second set of crosslinkers.

Next, we discuss the possibility that myosin filaments serve as such

a dynamic actin crosslinker, which mediates an effective repulsion

between neighboring actin clusters.

Treadmilling actin filaments act as a conveyor belt that
moves myosin to the A-band
We now augment the simple actin bundle model by adding

bipolar myosin filaments that can dynamically attach to actin

filaments in a polarity-specific way, see figure 3D. The relative

motion of actin and myosin filaments is governed by a linear force-

velocity relation for myosin walking, see section ‘The computa-

tional model’. While myosin activity leads to ‘walking’ of the

myosin towards the actin plus-ends, the local retrograde flow of

treadmilling actin filaments transports the myosin in the opposite
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direction as in figure 3A. For the case shown, actin treadmilling

outpaces active myosin walking towards actin plus-ends, resulting

in highly regular sarcomeric patterns with myosin localized near

the actin minus-ends. Any actin filament, which is grafted at its

plus-end in a Z-band has to polymerize against this obstacle, and is

pushed away from the cluster center in a form of ‘local retrograde

flow’, see figure 3C. For weak active myosin forces and thus slow

active myosin walking, myosin filaments attached to such an actin

filament are dragged along with this retrograde flow towards the

depolymerizing minus-end of the actin filament. This ‘actin

conveyor belt’ not only transports myosin filaments to the future

A-band, but also generates an effective repulsion between

neighboring I-Z-I clusters mediated by crosslinking actin filaments,

which ensures a regular sarcomeric spacing of actin clusters.

Stronger active myosin forces drive the myosin towards the actin

plus-ends and therefore slow down sarcomeric ordering, see

figure 3D. Above a critical force level, active myosin walking

dominates actin treadmilling, and a wrong polarity sorting results

that localizes myosin at the plus-ends and thus impedes sarcomeric

ordering.

Sarcomeric order despite actin length variability
To account for a distribution of actin filament lengths, we

simulated bundles comprising actin filaments of different lengths.

For simplicity, we chose a static polydispersity for the actin length

given by a unimodular distribution of fixed mean length SLT~L0

and tunable width SL2T{L2
0~n2L2

0. Remarkably, sarcomeric

ordering occurred even for considerable length variability n,
though with a sarcomeric order parameter that decreased

monotonically with n, see figure 4. Sarcomeric spacing increased

as a function of length variability n, showing that the longest actin

filaments set sarcomere spacing. Using an exponential distribution

for actin filament length instead of a unimodular distribution

resulted in no apparent sarcomeric ordering (not shown).

Assuming static filament lengths allows us to study separately the

mechanisms that result in actin filament length control and actin

turnover, which we now discuss.

Myosin order despite high actin turnover
Actin filament length control and turnover of filaments both

depend crucially on the polymerization and depolymerization

dynamics of actin filaments. Thus, length control and filament

turnover are in principle inseparable. This being said, we

nonetheless aimed at isolating the qualitative effect of actin

turnover. To this end, we augmented our computational model by

including prototypical actin dynamics that differentiates between

idealized dynamic regimes of either (i) steady-state treadmilling

with constant actin filament length L0, (ii) ‘actin catastrophies’

characterized by fast and complete depolymerization of filaments

that occur with rate k, and (iii) rapid de novo polymerization of new

actin filaments [46]. These simple limits are not intended to

realistically depict actin dynamics. Rather they allow us to study

the qualitative effects of actin filament turnover, without changing

the filament length distribution. As expected, actin filament

turnover interferes with the formation of large actin clusters and

results in reduced sarcomeric order, see figure 5. Surprisingly,

myosin is still sorted into regular A-bands even for considerable

actin turnover rates. We conclude that partial polarity sorting of

actin filaments is sufficient to sort myosin into A-bands. This may

provide an explanation for experimental observations in which

myosin ordering was observed to precede the formation of large,

periodically spaced I-Z-I complexes.

A simple model for actin filament length control
Our simulations suggest that sarcomere spacing is set by the

length of actin filaments at early stages of striated ordering. How is

actin filament length controlled within a pool of highly dynamic

actin filaments? Capping proteins regulate filament polymerization

and depolymerization rates. However, on their own, these proteins

do not provide a means to tune the average filament length to a set

point since they act locally in a manner that is not sensitive to the

total length of a filament. Energetically favorable crosslinking or

attraction of actin filaments all along their length can result in a

unimodular length distribution as this ensures maximal mutual

overlap of filaments [47]. However, to allow for filament sliding

and sorting, such crosslinking would have to be highly dynamic.

Alternatively, severing agents (such as ADF/cofilin-like UNC-60B

Figure 5. Myosin order despite actin turnover. We devised a minimal model of actin filament turnover, see main text. For simulations as in
figure 3, but with actin turnover, the sarcomeric order parameter was found to decrease as a function of actin filament turnover rate (blue curve) as
actin turnover impedes the formation of large actin clusters (blue, mean+s.e., n~100). Surprisingly, an analogously defined order parameter for
myosin positions attains significant values even for considerable actin turnover rates. A simulation snap-shot at t~50 is shown to the right for actin
turnover rate k~1 (in units of v0=L0).
doi:10.1371/journal.pcbi.1002544.g005
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[23]) are recruited by actin filaments in a length-dependent

manner and can provide a generic feedback mechanism that

controls actin filament length [48–50]. We consider a simple

implementation of actin filament severing assuming that filaments

elongate by polymerization at their plus-end with constant

polymerization speed v0, whereas the minus-end is stable. A

generic severing agent can bind with constant rate a anywhere

along the filament and cut it there. Since the minus-end facing

fragment of a cut actin filament comprises mainly ADP-bound

actin monomers and thus is less stable, we assume that this

fragment rapidly depolymerizes after severing, see figure 6A.

This simple severing mechanism results in a unimodular length

distribution at steady state, see figure 6B as well as SI text S1. For

an intuitive explanation for this length control mechanism, note

that longer filaments with more monomers have a higher

probability to recruit a severing agent within a certain time

interval compared with shorter filaments: In this scenario,

filaments act as ‘binding antennas’ for severing agents. Figure 6

shows the emergence of sarcomeric order from an initially

unstriated bundle for which actin filaments polymerize and are

cut by severing agents.

Discussion

Here, we proposed a simple, generic, and robust mechanism for

striated pattern formation in a crosslinked bundle of aligned actin

filaments. This physical mechanism of sarcomeric ordering is

based on the formation of small actin clusters by the plus-end

crosslinking of single actin filaments and the subsequent coales-

cence of these smaller actin clusters into larger ones, which are

reminiscent of the I-Z-I complexes observed during early

myofibrillogenesis [45]. This mechanism represents a way to

establish cytoskeletal order on length-scales of tens of microns from

micron-size building blocks independent of any external scaffold-

ing. Termination of cluster coalescence and stabilization of

sarcomeric units requires a repulsive force between actin clusters.

In mature myofibrils, the giant protein titin acts like an elastic

spring and could serve this function. However, it is questionable if

titin could play its role as a spacer between Z-bodies already at

these early stages. While the N-terminal domain of titin is involved

in early Z-body formation [28], the M-line epitope of titin

associated to its C-terminal domain is established only after a delay

[51] and ligand binding may be required to stretch the titin protein

so that it spans the sarcomere; thus, at early times, titin may not set

the initial sarcomere spacing [20]. Here, we studied polymeriza-

tion forces from polymerizing actin filaments as a possible

mechanism to generate repelling forces between actin clusters. A

similar mechanism may apply to stress fibers in adherent, non-

muscle cells as well as to stress-fiber like structures in developing

muscle cells.

The assembly of mature myofibrils in striated muscle cells has

been proposed to be a multi-step process [8] that starts with the

formation of unstriated, stress fiber-like acto-myosin bundles near

the plasma membrane, followed by the establishment of sarco-

meric order within these bundles [10], possibly by actin cluster

formation and coalescence as proposed here. These striated

bundles represent an important intermediate in the assembly of

mature myofibrils and are termed nascent myofibrils. Nascent

myofibrils can grow by incorporating free actin and myosin

filaments in a mechanism of ‘‘self-templating’’. Additionally, they

can fuse with each other into a single fiber of increased diameter

after aligning their respective periodic patterns [5,52]. Finally,

maturation processes and actin length fine-tuning regularizes

sarcomeric order resulting in mature myofibrillar ‘‘crystals’’. This

myofibrillogenesis pathway represents a succession of hierarchical

ordered states. We speculate that the assembly of striated stress

Figure 6. Actin filament length control by severing. A. Filament severing provides a simple physical mechanism for actin filament length
control, see main text. In an idealized scenario, an actin filament (blue) binds a severing agent (scissors) with a rate aL that is proportional to its
length L at a random position. The filament is then cut at the binding position, and its minus-end facing fragment is subsequently depolymerized. B.
Actin filament severing results in a unimodular filament length distribution at steady state, see histrogram (gray) and analytical expression (red, see SI
text S1). For the severing rate used, a~1:5v0=L

2
0 , mean filament length SLT~1:02L0 , and filament length variability parameter, n~0:52. C.

Simulation of an acto-myosin bundle as in figure 3, but with actin filament severing as described in panel A. Shown is a snap-shot of the simulations
at time t~50 (actin filaments: blue and red; myosin: magenta; end-tracking crosslinker: green), as well as the averaged structure factor (black curve,
gray region indicates mean+s.e., n~100).
doi:10.1371/journal.pcbi.1002544.g006
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fibers in non-muscle cells may follow a partial sequence of

myofibrillar steps. Initial sarcomeric pattern formation in unstri-

ated bundles would be a key step in this pathway and could rely on

similar physical mechanisms both in muscle and non-muscle cells.

Experimental visualization of early sarcomeric pattern forma-

tion including actin filament length distribution, polymerization

dynamics and their associated forces is technically challenging, but

may be essential to test theoretical models of sarcomere formation.

Little is known about the dynamics of actin filaments at early

stages of sarcomeric pattern formation. In mature myofibrils, actin

polymerization dynamics has been observed at both the plus- and

the minus end [6,29]. These experiments show that actin filaments

are highly dynamic even in these apparently stable striated bundles

and that Z-bodies may act as plus-end tracking actin crosslinkers.

It should be noted that at these late stages, actin filament

treadmilling was not observed; thus, actin treadmilling may be

limited to the early stages of striated ordering.

In vitro experiments with reconstituted actin stress fibers [53]

might serve as an accessible experimental system to study

sarcomeric pattern formation and actin polarity sorting. Addition-

ally, filament treadmilling in the presence of crosslinkers is a source

of expansive stress and should reduce any contractile prestress in

the bundle, or even give rise to an overall expansive stress. This

prediction could be tested in future experiments, possibly by laser

nano-surgery of unstriated bundles.

Myosin filaments walk towards actin plus-ends. Unless counter-

acted by other mechanisms, myosin walking would result in a

wrong localization of myosin at nascent Z-bodies and thus impair

sarcomeric ordering. In our model, actin treadmilling counter-acts

myosin walking and transports myosin towards the future M-band,

provided active myosin forces are not too strong. It has been

suggested that in some species, the early establishment of

sarcomeric patterning involves a non-muscle isoform of myosin

II, which is later replaced by muscle-specific myosin II [8]. It is

tempting to speculate that muscle myosin allows for maximal force

generation, whereas non-myosin filaments play a role as structural

elements during the early establishment of striated order, for

which, according to our model predictions, strong myosin forces

could be obstructive. Alternatively, the decoration of actin

filaments with tropomyosin may limit myosin walking during the

early stages of sarcomeric pattern formation and thus prevent the

active myosin forces from disrupting the treadmilling imposed

myosin localization as we suggest. This is consistent with a recent

study by Rui et al., which showed that sarcomeric pattern

formation was impaired in the presence of RNAi against

tropomyosin and troponin [28].

In conclusion, we put forward a model that includes a minimal

number of generic mechanisms that results in sarcomeric polarity

sorting in in silicio acto-myosin bundles. We acknowledge the

possibility that the mechanism presented here is only partial and

that other mechanisms also contribute to sarcomeric pattern

formation that can be tested experimentally. In particular, details

of our computational model can differ from the genesis of

sarcomeres in developing muscle cells: Actin filament buckling as

observed in reconstituted in vitro systems [12,53] may reduce the

myosin mediated repulsion force between neighboring actin

clusters. Also, adhesive linkage of nascent Z-bodies to an extra-

cellular substrate could reduce actin cluster motility [7,44]. We

believe, however, that our theoretical study helps identify key

elements of sarcomeric pattern formation. We propose that the

length of sarcomere constituents such as actin filaments must be

tightly controlled as it is expected to set sarcomere length at early

stages of striated ordering. The emergence of sarcomeric order

from the active condensation of actin clusters fits into the general

framework of cytoskeletal pattern formation by active self-

organization, which provides an alternative to external templating

mechanisms.

Supporting Information

Text S1 Supplementary Text S1 provides further details on the

computational model used, a sensitivity analysis for the model

parameters, a model extension for the case of reversible actin

crosslinking, as well as an illustrative mean-field description of

actin cluster crosslinking by biopolar myosin filaments.

(PDF)

Video S1 Supplementary Video S1 shows the emergence of

sarcomeric order in a simulated, one-dimensional acto-myosin

bundle: Single, treadmilling actin filaments are shown in blue and

red depending on the direction of their plus-end. At their plus end,

actin filaments can become permanently crosslinked by a

processive crosslinker that tracks actin plus ends while allowing

for plus-end actin polymerization. Additionally, bipolar myosin

filaments (magenta) dynamically attach to actin filaments in a

polarity-specific manner, thus acting as a second set of active

crosslinkers. Different vertical positions of the filaments are

indicated solely for visualization purposes. Sarcomeric order in

these simulated bundles can be quantified by the structure factor

I(q) as defined in the main text (blue curves in lower panel). See

also figure 3 in the main text.

(AVI)
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S1 Details of the computational model

S1.1 Algorithm structure

We employ an Euler scheme with fixed time-step dt = 0.01L0/v0. (In initial simulations,
testing smaller time-steps did not change results.) At the beginning of each simulation,
both actin and myosin filaments are assigned random positions xj and xm,k, respectively;
additionally, a random orientation εj = ±1 is assigned to actin filaments. At this stage,
no crosslinks between actin filaments exist and all myosin filaments are unbound from the
actin filaments.

In each subsequent time-step, any two actin filaments whose projections on the x-axis
overlap can establish a stable crosslink at their plus-ends with a probability ρ(|xj−xk|)dt =
ρ0 exp(−|xj−xk|/δ)dt/δ that depends on the distance of the respective plus-end positions,
xj and xk. Subsequent crosslinking results in the formation of ‘actin filament clusters’ that
consist of many actin filaments with aligned plus-ends. If two actin filaments belonging
to two small clusters establish a new crosslink, these two clusters then merge into a single
cluster. The x-coordinate of this new cluster is taken as the weighted average of the
respective x-coordinates of the two clusters.

In our simulations, an idealized myosin filament with midpoint position x is assumed
to have one actin binding site at either end located at x±Lm/2, where Lm is the length of
a myosin filament. Each of these two binding sites can bind to exactly one actin filament
in a polarity-specific manner, see figure 3C. (The binding site at x ± Lm/2 binds to an
actin filament of orientation ε = ±1, respectively.) During a time-step, a free binding
site may bind to an actin filament in the range of this binding site with probability kondt.
An occupied myosin binding site may unbind from its actin filament either spontaneously
with probability koffdt, or, by forced unbinding, if the depolymerizing minus-end of the
actin filament retracts past the binding site.

For the simulations that include actin filament turn-over in figure 5, the number of
“actin catastrophies” during a time-step was determined as a Poisson random variable



S2

with mean kNa, where Na is the total number of actin filaments in the bundle. A corre-
sponding number of actin filaments was randomly selected and removed from the system.
Actin filament severing as employed for figure 6 was similarly implemented.

Furthermore, we employ a continuous description of actin polymerization assuming
a constant plus-end polymerization speed v0. In a more microscopic description not
considered here, this would correspond to a plus-end elongation by four monomers during
each time-step (using typical values L0 ≈ 1µm for the length of a two-stranded actin
filament and a = 5.5 nm for the size of a monomer [43]).

Finally, the individual speeds of actin clusters and myosin filaments inside the bundle
are determined in a self-consistent manner by a balance of forces at each actin cluster
and myosin filament, respectively, see figure S1. We consider cytosolic friction forces
for both actin filaments (γaLjv

0
j ) and myosin filaments (γmLmvm,j), as well as a linear

force-velocity relation for the interaction of bound pairs of actin and myosin filaments,
see section S1.4. Actin polymerization at the plus-end is taken into account as an offset
εjv0 between the velocity of the actin plus-end vj = ẋj and the velocity v0

j = vj − εjv0 by
which the individual actin monomers move with respect to the cytosol. The corresponding
positions of actin and myosin filaments are updated accordingly in each time-step.

S1.2 Actin filament length

For figures 2, 3, and 5, we assumed a monodisperse distribution for the length of actin
filaments, Lj = L0 for all j. An equal polymerization and depolymerization speed v0 at
the plus- and the minus-end, respectively, ensures that filament length does not change in
time. For figure 4, the length of individual filaments was also taken to be static, but was
drawn from a unimodular length distribution p(L) with mean 〈L〉 =

∫∞
0
dLLp(L) = L0

and variance 〈L2〉 − L2
0 = ν2L2

0. For p(L), we chose a log-normal distribution with scale
parameter σ =

√
ln(1 + ν2) and location parameter µ = −σ2/2

p(L) =
1

Lσ
√

2π
exp

[
−(ln(L/L0)− µ)2

2σ2

]
. (S1)

Finally, for figure 6, the length of individual filaments changes dynamically with time, see
section S1.3.

S1.3 Actin filament length control by severing

We present a simple model for the length control of polymerizing actin filaments, which
is employed in a modified version of our computational model presented in figure 6. This
simple model idealizes a more sophisticated model discussed in [36–38]. We consider a
pool of Na filaments, which for simplicity are assumed to elongate at their plus-end with
a constant polymerization speed v0, while their minus-ends are stable (possibly due to
minus-end capping). Consequently, the length of a filament grows in time, L̇j = v0.
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Additionally, severing agents can bind to a filament with equal probability all along the
filament length and cut the filament at the binding position, see figure 6A. Subsequently,
the minus-end facing fragment of the cut filament is assumed to depolymerize completely
(possibly due to the fact that it consists mainly of ADP-actin), whereas the plus-end facing
fragment remains (possibly recruiting a new cap for its minus-end). Let α dL denote the
rate by which a severing agent binds to a short length segment dL of a filament. Then
the total probability that during a short time-interval dt a filament of length L is cut
somewhere along its length is αLdt, i.e. the overall scission probability is proportional
to filament length. A simulation of this mechanism with Na = 2000 actin filament results
in unimodular distribution of filament length at steady-state, see figure 6B.

In a mean-field description, the filament length distribution p(L) is found to obey a
master equation

∂

∂t
p(L, t) = −v0

∂

∂L
p(L, t)− αLp(L, t) + α

∫ ∞
L

dl p(l, t). (S2)

The first term on the right hand side is a convective term that arises from the polymeriza-
tion speed and describes a flux in probability space due to the elongation of actin filaments
by polymerization. The second term is the rate at which filaments of length L are cut
into smaller filaments by the severing agent, which decreases the number of filaments of
length L. The third term finally represents the rate of accrual of stable, plus-end facing
fragments of size L from the scission of longer filaments. The probability that a cut will
occur at a distance L from the plus-end of a long filament of length l is α. Equating
the left-hand side of equation (S2) to zero, we can solve for the the steady-state length
distribution p0(L) and find

p0(L) = αL/v0 exp[−αL2/(2v0)]. (S3)

The mean filament length 〈L〉 is determined by a competition of the cutting rate α and
the polymerization speed v0, whereas the normalized length variability ν is independent
of both α and v0

〈L〉 =

√
πv0

2α
, 〈L2〉 − 〈L〉2 = ν2〈L〉2, ν =

√
(4/π)− 1 ≈ 0.52. (S4)

S1.4 Linear force-velocity relation of actin-myosin interaction

We assume a linear force-velocity relation for the active walking of a myosin filament that
is attached to an actin filament. If the actin filament (say of orientation ε = +1) is held
fixed with zero velocity (v0

a = 0), this force-velocity relation reads

γ̃vm = fm + fext,m, (S5)
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where vm is the velocity of the myosin filament, fext,m an external force acting on the
myosin filament and fm denotes an active myosin force (that also equals the myosin stall
force). The actin filament is subject to an opposite force −fm. The coefficient of propor-
tionality γ̃ = γmLm + γm,a represent a friction coefficient that combines a contribution
stemming from a cytosolic friction force γmLmvm for myosin motion relative to the cy-
tosol, and a contribution that effectively describes protein friction of the actin-myosin
interaction, γm,a(vm − va), which we assume is proportional to the relative velocity of
the myosin with respect to the actin. We use γa = γm and γm,a = 10γaL0. The above
force-velocity relation can thus be rephrased in equivalent form as a force balance

γmLmvm + γm,a(vm − v0
a) = fm + fext,m. (S6)

This formulation generalizes in a straightforward manner to the case of a moving actin
filament. If fext,a denotes an external force acting on the actin filament of length La, we
have an analogous force balance for the actin filament

γaLav
0
a − γm,a(vm − v0

a) = −fm + fext,a. (S7)

In the context of our actin bundle simulations, the external force fext,a is actually zero for
free actin filaments. For polymerizing actin filaments grafted in a Z-band, however, fext,a

is non-zero and represents the counter force of the actin polymerization force. Given fext,a

and fext,m = 0, we can self-consistently solve for the myosin and actin velocities, vm and
va, respectively, see figure S2. In the absence of external forces, the active myosin force fm
causes the myosin filament to move towards the actin plus-end, while the actin filament
itself is pushed backward as a result of a counter-acting force fm. A strong, backward-
directed external force acting on the actin filament, fext,a < −γa/γm,afm, pushes both the
actin filament and the myosin filament backwards, va, vm < 0, despite the fact that the
myosin filament advances relative to the actin filament, vm − va > 0.

S2 Model parameters and sensitivity

Table S1 lists reference parameters used for the figures (unless stated otherwise). The
parameters marked with an asterisk (L0, v0, γa) set a characteristic length scale (L0), time-
scale (L0/v0), and force-scale (γaL0v0), respectively. All other parameters are defined in
a dimensionless manner relative to these scales. We independently varied parameters and
determined (non-exclusive) ranges for which robust sarcomeric pattern formation occurred
(characterized by a mean sarcomeric order parameter 〈S〉 > 0.9; simulation time t = 50).

S3 Myosins crosslink actin clusters

In our model, bipolar myosin filaments can mechanically link neighboring actin clusters
by binding to one actin filament from each cluster, respectively. These linker myosin
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symbol meaning value range
Na number of actin filaments 2000 250-4000
Nm number of myosin filaments 1000 250-2000
L0 mean actin filament length 1 (∗) n.a.
Lm myosin filament length 0.5 (L0) 0.1-1 a

Lsys system size 40 (L0) 20-80
v0 actin polymerization speed 1 (∗) n.a.
γa cytosolic friction coefficient for actin 1 (∗) n.a.
γm cytosolic friction coefficient for myosin 1 (γa) 0-10
γma friction coefficient for actin-myosin interaction 10 (γaL0v0) 2.5-100
fm active myosin force 1 (γaL0v0) 0-9.5 b

kon actin-myosin binding rate 1 (v0/L0) 0.05-10
koff actin-myosin unbinding rate 1 (v0/L0) 0-10
δ range of actin crosslinking 0.05 (L0) 0.01-0.1
ρ base rate of actin crosslinking 1 (v0/L0) 0.01-1

aSystem size was adapted as Lsys = 16(2L0 + Lm) to be an integer multiple of the expected
sarcomere size.

bA simulation time of t = 250 was chosen to account for an increased time-scale of sarcomeric
ordering.

Table S1. Reference parameters used in simulations.
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mediate an effective interaction force between the two clusters: While myosin tends to
walk towards actin plus-ends, thus pulling the two clusters closer together as in the sliding
filament model of sarcomere contractions, actin treadmilling together with acto-myosin
friction mediates an effective repulsion. For a sufficiently high density of actin filaments,
the net repulsion force between the two clusters scales with the total number n of linker
myosins, (γm,av0 − fm)n. Figure S4A shows the number of myosin filaments linking two
neighboring actin clusters as a function of the separation distance ∆x between cluster cen-
ters in simulations with variable actin filament length; this dependence is non-monotonic.
Intuitively, this can be understood as follows: For small separation distances, only a small
number of myosin filaments happen to be enclosed between two clusters. For large sepa-
ration distances, however, the number of long actin filaments that can possible engage in
a myosin-mediated mechanical link is small. In the following, we will make this reasoning
more quantitative. The expected total number of myosin filaments fully enclosed by two
cluster centers can be approximated by cm(∆x − Lm), where cm = Nm/Lsys is the den-
sity of myosin filaments in the bundle and ∆x > Lm the separation distance of the two
clusters. Out of this total number of myosin filaments between the two clusters, only a
certain fraction will actually bind to two actin filaments at a given time. We can estimate
this fraction of linker myosin filaments by formulating a mean-field theory. For this, we
consider an idealized scenario of two static actin half-clusters separated by a distance
∆x, each of which comprises a number N of actin filaments whose individual lengths are
distributed according to some length distribution, p(L), see figure S4B. We characterize
the myosin filaments enclosed between the two cluster centers by four different concen-
tration fields of their midpoint positions, according to whether they are not bound to
any actin filament (c0(x)), bound to an actin filament from either the left or right cluster
only (cL(x), cR(x), respectively), or, if they are true linker myosins that are bound to
actin filaments from both the left and the right cluster (c2(x)). The dynamics of these
concentration fields is governed by convection due to the actin conveyor belt with speed
vm = (γmav0−fm)/(γma+γm), as well as by exchange terms ∆∗ due to binding/unbinding
kinetics and forced unbinding of myosins that have reached the depolymerizing minus-end
of an actin filament

ċL = −vm∇cL −∆L2 −∆L0,

ċR = +vm∇cR −∆R2 −∆R0,

ċ0 = + ∆L0 + ∆R0,

ċ2 = + ∆L2 + ∆R2,

(S8)
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where the exchange terms read

∆L0 = koffcL − konΦ(xL)Nc0 + vm
p(xL)

Φ(xL)
cL,

∆R0 = koffcR − konΦ(xR)Nc0 + vm
p(xR)

Φ(xR)
cR,

∆L2 = −koffc2 + konΦ(xR)NcL,

∆R2 = −koffc2 + konΦ(xL)NcR.

(S9)

Here, xL = x − Lm/2, xR = ∆x − x − Lm/2, and Φ(x) =
∫∞
x
dx′ p(x′) is the cumulative

distribution function of actin filament lengths that counts how many filaments have sizes
greater than x. The exchange rate ∆L0 characterizes the exchange between the pool of
myosin filaments exclusively attached to an actin filament from the left cluster and the
pool of free myosin filaments that are not bound to any actin filament: Spontaneous
unbinding occurs occurs at a rate koffcL(x), while the rate of binding of free myosin
filaments with center position x to an actin filament from the left cluster is proportional
to the number Φ(xL)N of actin filaments that are long enough to extend to position xL,
where xL is the position of the left binding site of these myosin filaments. The latter
rate thus reads konΦ(xL)Nc0(x). Finally, the third term accounts for forced unbinding of
myosin filaments: once a myosin reaches the depolymerizing minus end of its actin track, it
‘falls off’ the filament to which it was bound. Forced unbinding of myosin filaments occurs
with a rate vm[p(xL)/Φ(xL)]cL that is proportional to the local proportion p(xL)/Φ(xL)
of actin filaments of length L = xL among those with a length larger than xL. The other
exchange rates are derived similarly. Provided none of the actin filaments extends over
the entire cluster distance, myosins are confined to the region between the clusters and a
steady state evolves. At steady state, we find

c2(x) ∼ konN

koff

F+ exp

[
konN

vm
F− +

F−
F+

(
koff

vm
+G1

)
−G2

]
(S10)

Here, we used short-hand notation F± = (1/2)[Φ(x + Lm/2) ± Φ(∆x − x − Lm/2)] and
G± = (1/2)[p(x+Lm/2)/Φ(x+Lm/2)±p(∆x−x−Lm/2)/Φ(∆x−x−Lm/2)]. Figure S4B
shows the analytical solution from eq. S10, revealing the formation of a myosin band in the
midzone between the two actin clusters at steady state. Interestingly, this steady state is
characterized by a cyclic flux of myosin filaments, see figure S4B: Myosins bound to a blue
actin filament are actively transported to the left until they detach either spontaneously
or because they have been convected by actin treadmilling to the minus-end of their actin
track. Free myosins on the left-side of the two cluster system are more likely to bind to a
red filament due the higher local prevalence of these filaments. Once bound to a red actin
filament, these myosins are transported to the right by actin treadmilling. This cyclic flux
implies a violation of detailed balance and underpins the active nature of the underlying
processes. In fact, the steady-state analytical solution from eq. S10 also describes the
transient behavior in our simulations of acto-myosin bundles, see figure S4A.
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Supporting Information Figures

Figure S1. Local force balances determine velocities. Motion of actin filaments
parallel to the bundle axis is characterized by respective lab-frame velocities v0

j (of the
filament monomers). For actin filaments (red and blue) grafted at their plus-end in a
crosslinking band (green), these velocities are offset from the velocity vc of the
crosslinking band by εjv0, where εj = ±1 denotes filament orientation. Moving actin
and myosin filaments are subject to friction with the cytosol; black arrows denote the
respective friction forces. The mutual interaction of actin and myosin filaments is
modeled by a linear force-velocity relation. As detailed in section S1.4, this relation can
be also be represented by an active force fm of actin-myosin interaction acting on the
myosin filament (magenta arrow) as well as a protein friction force −γm,a(vm − vj)
associated with the interaction (red arrow). Corresponding counter forces act on the
respective actin track. Force balance for each crosslinked actin cluster, as well as for
each individual myosin filament allows us to self-consistently determine the velocities of
all actin clusters and myosin filaments, respectively.
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Figure S2. Force-velocity relation of actin-myosin interaction. The walking of a
myosin filament (magenta) with respect to an actin filament (blue) is modeled by a
linear force velocity relation, see section S1.4. A backward directed force fext,a acting on
the actin filament can push both the actin and the myosin filament backward (in the
−x-direction). Such forces arise as counter forces of actin polymerization forces in our
simulations. In this case, the myosin filament continues to advance with respect to the
actin filament as indicated by a positive velocity difference vm − va > 0.
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Figure S3. Changing boundary conditions. A. Kymograph of actin cluster
formation and coalescence in the presence of myosin for the simulation shown in figure
3. This simulation employed periodic boundary conditions. B. Kymograph of actin
cluster formation and coalescence in a simulated acto-myosin bundle as in panel A, but
for static boundary conditions. Static boundary conditions are realized by inserting two
actin half-clusters at the two bundle ends whose positions are fixed throughout the
simulation, x1 = 0 and x2 = Lsys, by imposing suitable constraining forces. Each
half-cluster comprises N = 50 actin filaments of specified polarity at t = 0. This mimics
bundles that are grafted by focal adhesions at their terminal ends. The color scheme
encodes filament number in actin clusters as shown in the color bar.
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Figure S4. Myosins crosslink actin clusters. A. Myosin filaments mechanically
link neighboring actin clusters by binding to one actin filament from each cluster,
respectively. The plots show that in simulations of an acto-myosin bundle with variable
actin filament length, the number of these linker myosins depends on the distance ∆x
between actin clusters in a non-monotonic way (gray dots). Also shown is an analytical
result for the number of linker myosin derived for a pair of static actin clusters at steady
state (red), assuming that the total number of myosins enclosed by the two cluster
centers scales as cm(∆x− Lm) where cm = Nm/Lsys is the density of myosin filaments in
the bundle (red dashed curve). Parameters as in figure 4 for different values of the
length variability parameter, ν = 0, 0.1, 0.3; simulation time, t < 10. For the mean field
theory, we assume N = 100 actin filament per half-cluster. B. For the analytical theory,
we consider an idealized scenario with two static actin half-clusters (with a certain
length distribution of actin filaments) as well as a number of myosin filaments enclosed
between the two cluster centers, see section S3. Myosin filaments can be either bound to
one actin filament from each cluster (no motion due to force balance), be bound to an
actin filament from one cluster only (myosin is convected by actin treadmilling), or be
unbound. Using a mean field description, we can compute the fractions of myosins in
the different binding states at steady state. This steady state is characterized by a cyclic
flux of myosin filaments between the different binding states, see main text. Parameters:
Actin filament number per half-cluster, N = 5 (for illustration purposes); cluster
spacing, ∆x = 2.5; actin length variability parameter, ν = 0.3; myosin binding rates kon

and koff as in table S1.
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Biological patterns generated during development and regeneration often scale with organism size.
Some organisms, e.g., flatworms, can regenerate a rescaled body plan from tissue fragments of varying
sizes. Inspired by these examples, we introduce a generalization of Turing patterns that is self-organized
and self-scaling. A feedback loop involving diffusing expander molecules regulates the reaction rates of a
Turing system, thereby adjusting pattern length scales proportional to system size. Our model captures
essential features of body plan regeneration in flatworms as observed in experiments.
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Understanding the morphogenesis of a complex multicel-
lular organism from a single fertilized egg poses a funda-
mental challenge in biology [1,2]. The diversity of shapes of
living organisms emerges from biological patterning proc-
esses that assign cell fates depending on the spatial position
of cells [1]. Patterning processes are remarkably precise and
reproducible, despite environmental perturbations and the
stochastic nature of fundamental cellular processes such as
gene expression [3]. Furthermore, the astonishing regener-
ation capabilities of certain animals, including flatworms,
polyps, salamanders, and newts, require patterning mecha-
nisms that additionally can cope with highly variable initial
conditions [4–7]. Both the robust establishment and the
scaling of patterns during growth are poorly understood.
The fruit fly Drosophila melanogaster has been an

important model system to study biological pattern for-
mation and body plan scaling [8–11]. There, specific
molecules, called morphogens, are secreted in localized
source regions. Morphogens establish long-range concen-
tration profiles by the interplay of transport and degrada-
tion. They provide chemical signals away from the source
that can regulate patterning and growth [12–19].
Specifically, fly wing development has been extensively
studied [13,14,16–18,20]. Quantification of morphogen
profiles in the developing fly wing at different stages of
development revealed that the morphogen concentration
profiles scale with the size of the growing tissue, main-
taining an approximately constant shape [16–18,20].
In a minimal description, the characteristic decay length
λ ¼ ðD=kÞ1=2 of these concentration profiles depends on
the effective diffusion coefficient D and the degradation
rate k [10,14]. It has been proposed that the scaling of these
profiles is achieved by a dynamic regulation of the
morphogen degradation rate via a chemical signal, called
the expander, whose level varies with system size
[12,15–18]. Different possible realizations for such

mechanisms have been proposed [11,12,15–18,21–23].
These mechanisms rely on prepatterned tissues with speci-
fied sources or sinks for morphogens or the expander.
Scaling and regeneration of the entire body plan in

the flatworm Schmidtea mediterranea challenges scaling
mechanisms that rely on prepatterned cues. Schmidtea
mediterranea can regenerate the complete animal from
minute tissue fragments by repatterning the fragment to
establish a proportionately scaled body plan [24].
Furthermore, flatworms grow when fed and literally shrink
when starving, scaling their body plan proportionally over
more than one order of magnitude in length (≈0.5–20 mm
for Schmidtea mediterranea) [24]. These experimental
observations prompt the existence of patterning systems
with remarkable self-organizing and self-scaling properties.
Recently, chemical signals have been identified whose
perturbations have long-range effects on body plan pattern-
ing and regeneration. In particular, Wnt signaling, a path-
way with conserved roles for developmental patterning,
determines head-tail polarity during flatworm regeneration
[25–28]. Inspired by these examples of biological pattern
formation, we address in this Letter general requirements
for the emergence of robust patterns that scale with
system size.
The simplest model to spontaneously generate head-tail

polarity based on graded concentration profiles of signaling
molecules is the classical reaction-diffusion system intro-
duced by Turing [29–31]. However, the resulting patterns
do not scale naturally as sketched in Fig. 1, since diffusion

(a) Classical Turing (b) Scaled Patterns

FIG. 1 (color online). Classical Turing patterns show more
periodic repeats in larger systems as a result of fixed intrinsic
length scales (a), instead of being a scaled-up version of the
patterns in small systems (b).
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coefficients and reaction rates define fixed characteristic
length scales. Here, we extend the Turing model and
introduce a self-organized feedback mediated by an
expander molecule. This allows the system to robustly
scale concentration profiles and source regions over several
orders of magnitude of system size. Our model illustrates a
general mechanism that could account for essential features
of pattern scaling and regeneration observed in biological
systems.
Size dependence and multistability of Turing patterns.—

We briefly recall the classical Turing framework to high-
light the size dependence of its emergent patterns and to
introduce the notation used throughout this Letter. We
consider a minimal version of the Turing mechanism,
which consists of two chemical species (with concentra-
tions A and B) that diffuse with diffusion coefficient DA
andDB, and interact in a one-dimensional domain of size L
with reflecting boundary conditions

∂tA ¼ αAPðA; BÞ − βAAþDA∂2
xA;

∂tB ¼ αBPðA;BÞ − βBBþDB∂2
xB: ð1Þ

We specifically consider linear degradation with rates βA
and βB and production with rates αA and αB, and a
switchlike Hill function typical for cooperative and com-
petitive chemical reactions in biological systems:

PðA;BÞ ¼ Ah

Ah þ Bh : ð2Þ

Equation (2) implies that production is switched on if the
activator concentration A exceeds the inhibitor concentra-
tion B. The choice of Eqs. (1) and (2) is conceptually
equivalent to Turing’s original formulation [29], yet par-
ticularly suitable for analytical treatment. The diffusion
coefficients and degradation rates define two characteristic
length scales

λA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

DA=βA
p

; λB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

DB=βB
p

: ð3Þ

The interplay between these length scales and the system
size determines the final patterns, as we show next.
Equation (1) possesses a unique homogeneous steady

state, which can become unstable with respect to inhomo-
geneous perturbations [29–31]. For h → ∞, corresponding
to a binary source switch PðA;BÞ ¼ ΘðA − BÞ, we can
analytically solve for all inhomogeneous steady-state pat-
terns of Eqs. (1) and (2). These are indexed by the number
m of contiguous sources, defined as regions in which
A > B, and the number n of source regions touching the
system boundaries, see Fig. 2(a). In fact, the ðm; nÞ-pattern
can be constructed as the concatenation of 2m − n copies of
the (1,1)-pattern, which thus serves as a basic building
block. The ðm; nÞ-pattern exists only if L exceeds a critical

size that linearly increases with mode number 2m − n (gray
region).
We numerically find that steady-state patterns become

linearly stable only above a second critical size (black
region). In large systems, several stable steady states coexist.
However, in systems of increasing size, we observed
increasingly smaller basins of attraction of patterns with
small mode number, rendering these patterns unstable with
respect to finite-amplitude perturbations, as exemplified in
Fig. 2(b).
The (1,1)-pattern is globally stable only in a limited size

range, see Fig. 2(a) (blue region). Next, we show how the
introduction of a third reaction species E stabilizes the
(1,1)-pattern, irrespective of system size.
Pattern scaling by gradient scaling.—We present a

specific example for a general class of minimal feedback
mechanisms that yield pattern scaling by adjusting the
intrinsic pattern length scales λA and λB. A third molecular
species E, termed the expander, is produced homogeneously,
diffuses, and is subject to degradation
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FIG. 2 (color online). Classical Turing patterning implies that in
larger systems higher-order patterns form. (a) Steady-state
patterns of Eq. (1) are classified by two pattern numbers
ðm; nÞ: m is the total number of contiguous source regions,
while n is the number of source regions touching the system
boundaries. Typical profiles of the activator concentration
Aðm;nÞðxÞ for the ðm; nÞ-pattern are shown in red. Size ranges
are shown, where the ðm; nÞ-pattern is linearly stable (black), or
exists, but is not stable (gray). In the blue region, the (1,1)-pattern
is the only stable pattern. (b) Basins of attraction: final pattern
type at steady state as a function of system size on the horizontal
axis and initial conditions on the vertical axis. Initial conditions
linearly interpolate between the (1,1)- and (1,0)-pattern, i.e.,
Aðx; t ¼ 0Þ ¼ ð1 − qÞAð1;1ÞðxÞ þ qAð1;0ÞðxÞ, and analogously for
Bðx; t ¼ 0Þ. Parameters: DB=DA ¼ 30, αB=αA ¼ 4, βB=βA ¼ 2,
h → ∞ (a), h ¼ 5 (b).
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∂tE ¼ αE − κEBEþDE∂2
xE: ð4Þ

The Turing system controls the degradation rate of the
expander via the inhibitor B. In turn, the expander shall
feedback on the Turing system, see Fig. 3(a). We choose a
regulation of the degradation rates by the expander (with κA,
κB > 0)

βA ¼ κAE; βB ¼ κBE: ð5Þ
We define the relative source size l=L ¼ hPi and expander-
dependent pattern length scales λA ¼ ðDA=hκAEiÞ1=2 and
λB ¼ ðDB=hκBEiÞ1=2, analogous to Eq. (3). Here, the
brackets denote spatial averages over the system.
We numerically find that the source size of steady-state

patterns scales with system size over several orders of
magnitude, see Figs. 3(b) and 3(c). Concomitantly, we
obtain a scaling of the effective Turing length scales λ�A ∝ L
and λ�B ∝ L, where the asterisk denotes steady state.
We can challenge pattern scaling by perturbations that

mimic experiments such as amputations, see Fig. 3(d).
Two example trajectories, corresponding to head and tail
fragments, respectively, converge to an appropriately
rescaled (1,1)-pattern, after a transient overshoot of the
source size. Two additional trajectories, simulating uniform
injection of the expander, likewise converge to this fixed
point. One trajectory [labeled iv in Fig. 3(d)] is charac-
terized by the transient formation of a second source.
We observe pattern scaling for a vast parameter range,

provided (i) inhibitor diffusion is sufficiently fast (a
necessary condition for pattern formation in any Turing
system) and (ii) the expander feedback strength falls into an
intermediate range, see Fig. 3(e).
Next, we provide insight into how and why scaling

works. First, we identify steady states, each of which scales
with system size. For the simple case of adiabatically slow
expander dynamics, we then show that the (1,1)-pattern is a
stable steady state.
The extended Turing system with expander feedback

generates steady states, for which the relative source size
l�=L is independent of system size L. This can be shown
from Eqs. (1) and (4) at steady state. By spatial averaging,
we obtain 0¼ αBhP�i−kBhB�E�i and 0 ¼ αE − kEhB�E�i
and hence

l�

L
¼ αEκB

αBκE
: ð6Þ

In addition, also the pattern length scales λ�A and λ�B scale
with high precision with system size. In the limit of large
expander range [λE ¼ ðDE=hκEBiÞ1=2 ≫ L], for which the
concentration profile of E is approximately homogeneous,
scaling becomes exact. For simplicity, we consider a binary
source switch (h → ∞). If the expander level was imposed
as constant E ¼ E0, the Turing system would reach one of
the ðm; nÞ-patterns discussed above in the absence of

expander feedback, with pattern length scales λAðE0Þ
and λBðE0Þ. The relative source size fðm;nÞ ¼ l=L of such
a pattern depends on E0 only via the dimensionless ratios
λAðE0Þ=L and λBðE0Þ=L. Hence, fðm;nÞ ¼ fðm;nÞðL2E0Þ is
a function of L2E0. This shows that changing E0 has
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FIG. 3 (color online). Scalable pattern formation in a Turing
system with expander feedback. (a) The Turing system and the
expander mutually control their degradation rates, resulting in a
stable feedback loop. (b) Scaling corresponds to morphogen
profiles that collapse as a function of relative position x=L
(normalized by respective concentrations A0, B0, E0 at x ¼ 0).
(c) The feedback self-consistently adjusts the length scales λA and
λB of the morphogen profiles and thus the source size l with
system size (symbols: numerical results; lines: analytical solution
of Eqs. (1) and (4) at steady state for homogeneous expander
concentration and h → ∞). Here, E0 ¼ ðαA=κAÞ1=2 and λ0 ¼
½DA=ðE0κAÞ�1=2 denote the characteristic concentration and length
scales of the system. (d) Example trajectories, mimicking
amputation experiments (labeled i, ii), and uniform, one-time
injection of the expander (labeled iii, iv); all converge to the same
stable fixed point, an appropriately scaled (1,1)-pattern.
(e) Parameter regions for stable, self-scaling pattern formation
(green), and regions of expander divergence (orange, purple).
Parameters of panels (a)–(d) indicated by cross. (f)–(g) For
adiabatically slow expander dynamics, the system relaxes along
the nullclines of the Turing system fðm;nÞ (shown for h → ∞,
λE ≫ L). As each nullcline intersects the steady-state condition
of Eq. (6) twice, the system possesses two fixed points ðn;mÞþ
and ðn;mÞ− for each pair ðn;mÞ. In the blue region, the (1,1)-
pattern is the only stable steady state of the Turing system,
compare to Fig. 2, implying that all trajectories must converge to
this fixed point. Parameters: DB=DA ¼ 30, DE=DA ¼ 10,
αB=αA ¼ 4, αE=αA ¼ 0.4, κB=κA ¼ 2, κE=κA ¼ 2, h ¼ 5,
L=λ0 ¼ 10, unless indicated otherwise.
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analogous effects on the relative source size as changing L
in the classical Turing system. The same argument also
implies that a ðm; nÞ-pattern can only exist above a critical
value of E0, corresponding to the minimum system size for
the existence of patterns in Fig. 2(a). Below this critical
value, fðm;nÞ is zero. Above this value, fðm;nÞ displays a
nonmonotonic dependence on E0, which results from
opposing effects of the pattern length scales of the activator
and the inhibitor on the source size l, see Fig. 3(f). The
intersections of the curves fðm;nÞ with the constant value
l�=L given by Eq. (6) define the steady states of the full
system with expander feedback. For each pattern type
ðm; nÞ, we find two steady-state patterns, denoted ðm; nÞþ
and ðm; nÞ−, with respective expander levels Eþ

ðm;nÞ <
E−
ðm;nÞ, see the black and white circles in Fig. 3(f).
The fact that fðm;nÞðL2E�Þ ¼ l�=L is independent of

system size L by Eq. (6) implies that also L2E� is
independent of L for each steady state. We conclude
E� ∝ L−2 and thus λAðE�Þ ∝ L, λBðE�Þ ∝ L, consistent
with our numerical results in Fig. 3(c).
We now discuss the stability of the (1,1) pattern in the

simple limit of adiabatically slow expander feedback. In
this limit, the source size first relaxes to l=L ¼ fðm;nÞðL2EÞ
for some ðm; nÞ, corresponding to the fast time scale of the
Turing system. Then, by Eq. (4), the system moves slowly
along this nullcline according to

∂tE ¼ αE −
κEαB
κB

fðm;nÞðL2EÞ: ð7Þ

Stability of steady-state patterns requires ∂Efðm;nÞ > 0,
which can be shown to hold only for Eþ

ðm;nÞ, see Fig. 3(f).
Which branch fðm;nÞ is selected for arbitrary initial

conditions by the fast Turing dynamics? This problem is
formally equivalent to the stability of ðm; nÞ-patterns in the
Turing system without expander feedback as a function of
system size L. From the analysis presented in Fig. 2(b), we
deduce that the ð1; 1Þþ-pattern is the only stable pattern in
the blue region, which thus represents a basin of attraction.
Numerical analysis shows that the basin of attraction of the
ð1; 1Þþ-pattern is even larger than the blue region and that
this pattern is stable also for nonadiabatic expander
dynamics, see the trajectories in Fig. 3(d).
In summary, the scaling mechanism for patterns and

sources presented here relies on expander molecules that
dynamically adjust the degradation rates of morphogens in
a Turing system. Thereby, the expander controls the pattern
length scales and the source size of the resulting Turing
patterns. The expander concentration is itself dynamic
and is regulated by the concentrations of the Turing
morphogens. For the feedback introduced here, the relative
source size at steady state is always independent of system
size, see Eq. (6). We showed that a head-tail polarity pattern
with a single source region scales as a function of system

size, is stable with respect to perturbations, and regenerates
in amputation fragments.
Regeneration of patterns after amputation can be under-

stood as follows. For a head fragment without a source, and
hence no inhibitor production, the inhibitor level decreases,
which decreases the expander degradation rate. Hence, the
expander level increases. For a tail fragment, the inhibitor
produced by the source spreads in a smaller system. This
implies higher inhibitor levels, which in turn decreases the
source size. Only when the relative source size has fallen
below its steady-state value does the expander level increase.
For head and tail fragments, the increasing expander level
increases the degradation rate of the activator and the
inhibitor, and thus scales down their pattern length scales.
For a given feedback scheme, the stability of fixed points

depends on whether the source is fixed [11,15,21] or
dynamic as in our case. For example, two mutually
suppressing concentration profiles (here the inhibitor and
the expander) would not result in a stable pattern for a fixed
source size, but yield a stable scaling pattern in our case,
since the expander also effectively expands the source.
The minimal mechanism presented above allows for

several generalizations. First, the feedback of the Turing
system on the expander level could be likewise imple-
mented via the production rate, e.g., αE ∝ B, instead of via
the degradation rate βE ¼ κEB. Then, scaling would require
βA ∝ 1=E; βB ∝ 1=E, which yields analogous results. As a
second possibility for pattern scaling, the feedback in
Eq. (5) could also be mediated by A instead of B, provided
the expander diffuses sufficiently fast. More generally,
similar results also follow for shuttling mechanisms for
which E adjusts both the degradation rates and diffusion
coefficients of A and B. However, controlling only
diffusion is not compatible with self-organized pattern
scaling as presented here. Our mechanism relies on a
size-dependent amplitude of morphogen profiles, which is
lacking for pure diffusion control.
It is interesting to note that the flux βAA has a size-

independent amplitude. The spatial profile of this flux
could provide a readout of the scaling morphogen profiles
independent of their amplitudes.
Conclusion.—Motivated by biological examples of pat-

terns that adjust to organism size [10,11,16–18,20,21], we
present a minimal, self-organized patterning system that
reliably establishes a head-tail pattern, scaled to match
system size for a broad range of initial conditions. We
extended a classical Turing system featuring local activa-
tion and lateral inhibition by a feedback loop, comprising a
third diffusible molecule. The kinetics of this expander
depends on the Turing patterns and feeds back on the
Turing length scales. Thereby, the expander effectively
serves as a chemical size reporter. In contrast to earlier
works on gradient scaling [12,15–18,21–23], this mecha-
nism is fully self-organized. In particular, it does not rely on
prepatterned sources or sinks.
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In size-monitoring systems, as considered here, a key
challenge relates to the simple fact that these obviously
require long-range communication across the scale of the
system. This implies a tradeoff between an upper size limit
for scaling, and the time scale of pattern formation. Here, this
time scale is set by morphogen diffusion and system size.
For example, assuming a maximum diffusion coefficient of
100 μm2=s and a maximum organism size of 20 mm,
relevant for the flatworms considered, we infer a patterning
time scale of 3–30 days, roughly consistent with the
experimental range of 1–2 weeks for the restoration of body
plan proportions after amputation [24,26]. Note that trans-
port processes such as active mixing could accelerate
morphogen dispersal, and thus allow for faster pattern
formation [10]. In the minimal theory formulated here, no
expander degradation occurs in the absence of the inhibitor.
A basal degradation, independent of the inhibitor, would cap
the expander concentration and thus set a lower size limit for
scaling.
Our theory provides basic insight into the principles of

self-organized pattern scaling and accounts for key quali-
tative features of scalable patterning during flatworm
regeneration and growth. Three important signatures can
be associated with the self-organized scaling mechanism
introduced here: (i) overall levels of morphogens depend on
system size, (ii) morphogen degradation rates depend on
system size, and (iii) the source size after amputation can
exhibit a nonmonotonic dynamics. These signatures pro-
vide explicit testable predictions regarding the regulatory
dynamics of candidate patterning pathways such as Wnt
signaling during regeneration and growth or degrowth in
flatworms. Interestingly, the expression of a Wnt activator
(Wnt11-5) indeed displays a nonmonotonic dynamics
during regeneration [28], reminiscent of signature (iii).
In the future, it will be important to quantify spatial profiles
of signaling molecules and degradation rates as a function
of system size, which will allow us to test the generic
concepts presented here.
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