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Abstract

Today, most modern online services make use of big data analytics systems to extract useful
information from the raw digital data. The data normally arrives as a continuous data stream
at a high speed and in huge volumes. The cost of handling this massive data can be significant.
Providing interactive latency in processing the data is often impractical due to the fact that the
data is growing exponentially and even faster than Moore’s law predictions. To overcome this
problem, approximate computing has recently emerged as a promising solution. Approximate
computing is based on the observation that many modern applications are amenable to
an approximate, rather than the exact output. Unlike traditional computing, approximate
computing tolerates lower accuracy to achieve lower latency by computing over a partial
subset instead of the entire input data. Unfortunately, the advancements in approximate
computing are primarily geared towards batch analytics and cannot provide low-latency
guarantees in the context of stream processing, where new data continuously arrives as
an unbounded stream. In this thesis, we design and implement approximate computing
techniques for processing and interacting with high-speed and large-scale stream data to
achieve low latency and efficient utilization of resources. To achieve these goals, we have
designed and built the following approximate data analytics systems:

• StreamApprox—a data stream analytics system for approximate computing. This system
supports approximate computing for low-latency stream analytics in a transparent way
and has an ability to adapt to rapid fluctuations of input data streams. In this system,
we designed an online adaptive stratified reservoir sampling algorithm to produce
approximate output with bounded error.

• IncApprox—adata analytics system for incremental approximate computing. This system
adopts approximate and incremental computing in stream processing to achieve high-
throughput and low-latency with efficient resource utilization. In this system, we
designed an online stratified sampling algorithm that uses self-adjusting computation
to produce an incrementally updated approximate output with bounded error.

• PrivApprox—a data stream analytics system for privacy-preserving and approximate
computing. This system supports high utility and low-latency data analytics and pre-
serves user’s privacy at the same time. The system is based on the combination of
privacy-preserving data analytics and approximate computing.

• ApproxJoin—an approximate distributed joins system. This system improves the perfor-
mance of joins — critical but expensive operations in big data systems. In this system, we
employed a sketching technique (Bloom filter) to avoid shuffling non-joinable data items
through the network as well as proposed a novel sampling mechanism that executes
during the join to obtain an unbiased representative sample of the join output.

Our evaluation based on micro-benchmarks and real world case studies shows that these
systems can achieve significant performance speedup compared to state-of-the-art systems
by tolerating negligible accuracy loss of the analytics output. In addition, our systems allow
users to systematically make a trade-off between accuracy and throughput/latency and
require no/minor modifications to the existing applications.
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1 Introduction

Over the last ten years, the growth of digital data has accelerated exponentially. In 2017,
Twitter users generated 456, 000 tweets, Instagram users uploaded 46, 740 photos, and Google
conducted 3, 607, 080 searches every minute1. The volume of digital data is projected to reach
40 zettabytes2 or more by 2020 [126, 185]. In modern online services, which are mostly data-
driven services, the need for real-time data analytics will continue to increase with high rate
since it is crucial for their business. To exploit and mine rich and valuable information, data
analytics systems are required to scale and adapt in order to handle vast amounts of data,
high acquisition velocities, and a great variety of data sources and types. These challenges
are associated with a hot topic in industry and academia called “big data”. These challenges
also are described with “3Vs” [138], namely, Volume which reflects the massive data volumes,
Velocitywhich implies the rapid growth of digital data, and Varietywhich refers to the diversity
of data from various sources (e.g., sensors, web clickstreams, and social media) and also the
types of data such as structured data (e.g., relational data), semi-structured data (e.g., XML
and JSON), and unstructured data (e.g., video, audio, and plain text).

1.1 Brief History of Big Data Systems

Traditional technologies for analyzing data using SQL-based RDBMS and data warehousing
became impractical for handling such vast amounts of data [30, 53]. Thus, cluster comput-
ing with a shared-nothing architecture naturally has become a design choice for building
big data analytics systems. In these systems, data is partitioned and distributed on clus-
ters of commodity machines, and computations are performed on the same machines with
data locality-aware scheduling, fault tolerance, and scalability. Figure 1.1 shows briefly the
history of big data systems development. Google pioneered this trend by introducing MapRe-
duce [75] programming model, followed shortly by its open-source implementation, Apache
Hadoop [222]. MapReduce is a simple and general programming model for parallel data ana-
lytics. One of fundamental principles of it is to move computations to the data for processing
rather than moving data to avoid network bottlenecks. In addition, it allows users to focus
on computation on the data and the details of distributed execution and fault tolerance are
transparently handled by the framework itself.

MapReduce works well for several workloads such as Web log analysis and text processing.
However, it has been shown to be ineffective for other types of workloads: (i) iterative
processing [89, 229] such as machine learning [153] and graph processing [153, 154], (ii) data
stream processing [227].

For iterative programs, the classical MapReduce framework issues a MapReduce job for each

1https://www.domo.com/learn/data-never-sleeps-5
2A zettabyte corresponds to one thousand exabytes, that is 1021 bytes.
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Figure 1.1 – Timeline of the big data analytics systems development.

iteration and handles the intermediate output of each iteration via a driver program. This
incurs significant latency since, although themajor data remains unchanged fromone iteration
to the next, the data needs to be loaded and processed repeatedly at each iteration, thus
wasting not only computing resources but also network bandwidth. As a result, several variants
of MapReduce have been developed to overcome this limitation. For example, HaLoop [48]
caches the unchanged data in the first iteration and reuses them in the next iterations whereas
iMapReduce [231] pipelines the intermediate data between tasks and between jobs to support
iterative computations.

In addition, many complex computations such as graph processing and machine learning
are not naturally suitable for only two phases of map and reduce. Dryad [127] overcomes this
problem by using not only the two map-reduce phases, but arbitrary Directed Acyclic Graphs
(DAGs) to describe computations. In a DAG, vertices represent operations and directed edges
represent the communication between the operations. The operations are user-defined
and the communication can be established through a variety of channels including files,
shared memory FIFO, and TCP pipes. Inspired by the DAG-based dataflow concept, Apache
Spark [21, 22, 229], introduces a flexible data-sharing abstraction called Resilient Distributed
Datasets (RDDs) allowing to implement in-memory operations. With this abstraction, Spark
can support multiple computing workloads including graph processing, machine learning, and
SQL in a unified computation engine. Recently, Tensorflow [2] has been designed specifically
for deep learning workloads.

Much of digital data is produced and generated as a continuous data stream and in huge
volumes (e.g., video streaming, data streams from IoT sensors, and Twitter’s stream data). Real-
time analytics of this stream data is hard. In principle, the fundamental design of MapReduce
requires the map phase to be completed before the reduce phase starts. All intermediate
data is persisted to hard disks before sending to reducers. Thus, it introduces significant
latency and makes this computing model unfit for stream processing. As a result, a wide
range of dataflow-based stream processing systems has been proposed both in academia and
industry such as Google MillWheel [210], Naiad [168], Spark Streaming [23, 227], and Google
Dataflow [9], Apache Flink [17], IBM Streams, Microsoft StreamInsight, and Amazon Kinesis.

These distributed stream processing systems can be classified into two prominent cate-
gories: (i) batched stream processing model, and (ii) pipelined stream processing model. In
batched stream processing systems such as Spark Streaming [23, 227] and FlumeJava [54],
an input data stream is considered as a sequence of micro-batches and each micro-batch
is processed by a distributed data-parallel job. This model introduces high latency since it
requires forming micro-batches. However, it allows the fault tolerant mechanism in these
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systems to use partial results for recovery. In addition, the recovery process can be performed
in a parallel and distributed manner. On the other hand, in pipelined stream systems such as
Apache Flink and Naiad, each arriving data item is forwarded to the next operator in DAG as
soon as it is ready to be processed without forming the whole batch. Thus, this processing
model achieves lower latency. However, the recovery from failures is more expensive since it
requires the state of operators to be recovered from the last checkpoint.

Recently, the Databricks team introduced a new computing model for processing high-
speed data streams in Apache Spark, namely Structured Streaming. Instead of treating the
input data stream as a sequence of micro-batches as Spark Streaming, Structured Streaming
treats the data stream as an append-only input table [202]. A new data item of the stream is
considered as a row appended to the table. This design enables real-time stream processing
with high throughput and low latency. In addition, it allows users to analyze the input stream
by incrementally executing SQL queries on the table.

1.2 TheNeed for Approximation

Analyzing data to extract valuable information quickly is critical in terms of business of most
online services. These data-driven services are typically user-interactive applications (e.g.,
search engines, recommendation systems, and social networks) which require strict latency
constraints. With the rapid growth of data, meeting strict latency requirements in the process
becomes really difficult.

Typically, the performance (throughput and latency) constraints can be met by employing
more computing resources. As mentioned above, almost all data analytics systems in modern
online services are based on the data-parallel programming model [17, 21, 75], thus they are
able to achieve almost linear scalability by increasing computing resources, i.e., adding more
CPU cores (scale-up) and worker nodes (scale-out). However, this comes at a significantly
higher computing cost, which is not always acceptable in practice because of resource budget
limits. For example, to speed up the data analytics 10× by horizontal scaling, we need to
pay 10×more for the computing resources we added. This economic problem needs to be
carefully considered in modern online services. In addition, in large-scale services such
as social media, video streaming, and stock market analysis, the growth of data over time
will quickly overwhelm available resources. Briefly, data analytics systems of modern online
services have two desirable, but contradictory design requirements [168, 227]: (i) achieving
high-throughput/low-latency and (ii) efficient resource utilization.

To address this dilemma, we need to reduce the amount of data that needs to be processed.
A promising solution for this approach is approximate computing which is based on the obser-
vation that many modern online services do not always require exact data analytics results
(e.g., recommendation services, sentiment analysis, and stock market trend prediction). For
these services, the trends extracted from the data are more important than exact statistical
results. In addition, in some cases, it is impossible to get exact results since the input data
often contains noise (e.g, the data from IoT devices may contain inherent measurement errors).
Thus, for these services, we can apply approximate computing to strike a balance between
throughput/latency and resource constraints. Since approximate computing paradigm per-
forms analytics over a subset of data items instead of the entire datasets, it requires less time
and resources, and thus allows to achieve desirable latency and efficient resource utilization.
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1.3 The Promise of Approximate Computation

Approximate computing has recently emerged as a promising solution to reduce the com-
puting resources usage, processing time, and even energy consumption of data analytics
systems [7, 8, 103]. As mentioned above, the computing paradigm is based on the observation
that for many modern online services it is acceptable to approximate rather than produce ex-
act output results. Such services include search engines (Google, Microsoft Bing, Yandex, and
Yahoo search), recommendation systems (Youtube, Facebook, Amazon, and Netflix), speech
recognition (Apple Siri and Google voice search), and computer vision (online games). The
“correctness” or quality of output of these services is defined as providing good enough or
sufficient quality of results for users satisfaction. In addition, several applications have to
accept approximate results since their input data contains noise. Thus, even if a data analytics
system processes the whole input data, it cannot produce an exact result.

As a result, for these services and applications, it is possible to make a trade-off between
accuracy, high-throughput/low-latency and efficient resource utilization by computing over
a partial subset instead of the entire large-scale input data. This trade-off domain can be
depicted as a “throughput/latency – resource utilization – accuracy” triangle (see Figure 1.2).
The domain can be further extended with energy efficiency or even privacy-preserving
analytics objectives.

The idea behind approximate computing is to build synopses of the original massive data to
quickly answer analytics queries by executing them over the synopses instead of the original
data. In general, approximate computing techniques provide mechanisms to summarize the
massive data in such a way that this summary (synopsis) of the data effectively captures all
features and attributes that we are interested in. Ideally, the synopsis first should be small
compared to the original massive data, such as it can be kept and processed in our system.
Thus, it allows providing approximate analytical results with a significantly lower latency.
Second, it should be able to incrementally update with new arriving data. Finally, it should be
able to be processed to get the insights.

Over the last decade, approximate computing has been applied to various levels of the com-
puting stack for both hardware and software [91, 224, 225]. In detail, applications of approxi-
mate computing have been explored in various domains such as programming languages [29,
194], hardware design [193], query processing [7, 59, 200], and distributed systems [70, 121,
171]. Various approximation techniques have been proposed including sampling [11, 100],
sketches [73], and online aggregation [121, 171] to build the synopses. These techniques make
different trade-offs with respect to the output quality, supported query interface, and work-
load. However, the early work in approximate computing mainly targeted the centralized
database architecture, and it was unclear whether these techniques could be extended in the
context of big data analytics.

Among these approximation techniques, sampling has been widely applied for approximate
computing since this approach has the ability to provide probabilistic error bounds for approx-
imate results; it also fits well with a wide range of applications including graph processing [197]
and machine learning [49, 139]. Recently, sampling-based approaches have been successfully
adopted for distributed data analytics [7, 8, 103, 204]. Unfortunately, these “big data” systems
are mainly targeted towards batch processing, where the input data remains unchanged
during the course of sampling. Therefore, these systems cannot be used for stream analytics,
which requires real-time continuous processing of input data streams. One of challenges
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Figure 1.2 – Throughput/latency, resource utilization, and accuracy triangle.

in building approximate data anatlytics systems is to solve high-speed large-volume data
streams in distributed environments and producing approximate results for various queries
with resonable latencies.

1.4 Thesis Research: Approximate Data Analytics Systems

Thesis Statement. The aim of our work is to design and implement approximation techniques
to build scalable resilient systems for processing and interacting with high-speed large-
volume datasets with low latency and efficient utilization of resources. In other words, in this
thesis, we design systems to process big data with high-throughput low latency and efficient
resource utilization using approximate computing.

Scope. There exist many approximation techniques including sampling, sketches, wavelets,
histograms, and on-line aggregation. The main purpose of these techniques is to efficiently
summarize the input data using synopses and thereafter process the summary data instead
of the original input data. In this thesis, we focus on sampling-based approaches which
can be used to approximately answer a wide range of statistical queries on data streams.
Sampling-based approaches build a representative subset of the input data obtained using
stochastic mechanisms, then process this subset to provide an approximate output result.

Goals. In this thesis, we design and build approximate data analytics systems with three goals
in mind:

• Transparency Existing applications are able to get the benefit from our systems without
any modifications or with a minor change in their code base. To ensure that, we build
our systems on top of state-of-the-art big data analytics platforms such as Apache Spark
and Apache Flink without changing or with slightly changing the existing interfaces of
these systems.

• PracticalityWe offer a simple and convenient interface for approximate computation
which allows users systematically make a trade-off between the output quality, through-
put/latency or computing resources for data analytics.

• Efficiency We aim to handle very large-scale and high-speed data in an efficient and
cost-effective manner. To achieve this goal, we design and propose sampling based
techniques for approximate computing.
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Figure 1.3 – Systems Overview.

1.5 Thesis Contributions

In this thesis, we describe the design and implementation of big data analytics systems
that employ approximate computing. Figure 1.3 depicts the high-level architecture of our
approximate computing data analytics systems for processing large-scale input datasets. The
input data can be in form of batches (data-in-rest) or streams (data-in-motion). We offer
the convenience of querying on this input data by supporting a user interface that consists
of a query and a query budget for executing the query. A user submits the query as well
as specifies a query budget to the system. The query budget can either be in the form of
latency/throughput guarantees, desired processing, computing resources available or energy
consumption for query processing. Our systems make sure that the computation done over
the data remains within the specified budget and the query result is emitted along with a
confidence interval or error bounds.

In this thesis, we present the following approximate data analytics systems.

1.5.1 StreamApprox—AData Analytics System for Approximate Computing

We start this thesis with building a stream processing system called StreamApprox. The aim
of this work is to build a system that supports approximate computing for low-latency stream
analytics in a transparent manner. Furthermore, the system has the ability to adapt to rapid
fluctuations in input data streams. To realize this, we design an online adaptive stratified
reservoir sampling algorithm to produce approximate output with bounded error that requires
no modifications to the existing applications. Importantly, our proposed algorithm is generic
and can be applied to two prominent types of stream processing systems: (i) batched stream
processing such as Apache Spark Streaming, and (ii) pipelined stream processing such as
Apache Flink. To showcase the effectiveness of our algorithm, we implemented StreamApprox
as a fully functional prototype based on Apache Spark Streaming and Apache Flink. We
evaluated StreamApprox using a set of micro-benchmarks and real-world case studies. Our
evaluation shows that StreamApprox has the ability to handle high throughput input stream
data with fluctuated arriving rates and at the same time provide high accuracy in data analytics.

1.5.2 IncApprox—AData Analytics System for Approximate and Incremental

Computing

After building StreamApprox, we reviewed the design to see whether we can improve the
performance of StreamApprox further. We recognized that it is possible to improve the per-
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formance by using an additional computing paradigm called incremental computing besides
approximate computing. Incremental computing relies on the memoization of intermediate
results from previous computations and reuses them in subsequent computations. Since com-
puting over a subset of the input requires less time and resources, this computing paradigm
also achieves low-latency and efficient resource utilization as approximate computing. We
combine the two computing paradigms by designing an online stratified sampling algorithm
that uses self-adjusting computation to produce an incrementally updated approximate out-
put with bounded error. We implemented our algorithm in a system called IncApprox based
on Apache Spark Streaming. Our evaluation shows that the two computing paradigms, in-
cremental and approximate computing, are complementary and the combination allows our
system to leverage the benefits of both.

1.5.3 PrivApprox—AData Analytics System for Approximate and Privacy-Preserving

Computing

After designing StreamApprox and IncApprox, the systems that allow users to systematically
make a trade-off between throughput/latency and accuracy in stream analytics, we wondered
whether it is possible to expand the trade-off domain to more than just throughput/latency
and accuracy? This question motivated us to build the third system called PrivApprox by
expanding the trade-off domainwith a new and interesting dimension—privacy. Our objective
in this work is to develop a system that supports high-utility and low-latency data analytics
while preserving users privacy at the same time. To achieve this goal, we combined privacy-
preserving data analytics and approximate computing to build PrivApprox. Privacy-preserving
analytics adds explicit noise to the final query output to protect users privacy. In particular, we
make use of randomized response mechanisms to preserve the privacy of users and sampling
techniques to achieve low-latency in data analytics. Interestingly, by applying these sampling
techniques for approximate computing, our system actually strengthens users privacy.

1.5.4 ApproxJoin—AData Analytics System for Approximate Distributed Joins

In PrivApprox, the system needs to perform a join operation between two input data streams
to decrypt the user input stream data. Unfortunately, this join operation is a bottleneck of
the system. This motivated us to build the forth system called ApproxJoin to improve the
performance of join operations in data analytics using approximate computing. To realize this
idea, we designed a novel join sampling algorithm that combines two approximate techniques
(i) Bloom filters - a sketch technique and (ii) stratified sampling. Bloom filters remove unneces-
sary data items which do not participate in the join operation (non-join items), thus reducing
the shuffled data size during the join operation. Meanwhile, stratified sampling allows users
to take samples over the join operation to make a trade-off between accuracy and latency.
The combination of the two techniques allows users to obtain unbiased random samples over
joins. We implemented ApproxJoin in Apache Spark and evaluated it with micro-benchmarks
and real-world case-studies. Our evaluation shows that the system not only improves the
performance of join operation regarding latency but also significantly reduces total shuffled
data size through the network during the join processing.
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1.6 Organization

The remainder of the thesis is organized as follows.

In Chapter 2, we present the background about approximate computing techniques and
big data analytics frameworks used in this thesis.

In Chapter 3, we present the design and implementation of StreamApprox.

In Chapter 4, we present the design and implementation of IncApprox.

In Chapter 5, we present the design and implementation of PrivApprox.

In Chapter 6, we present the design and implementation of ApproxJoin.

Finally, in Chapter 7, we give the conclusion of our works.
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2 Background

In this chapter, we first introduce approximate computing, and then briefly review approxi-
mation techniques for data analytics systems including sampling techniques and sketches.
Next, we present big data analytics platforms used to implement our systems in this thesis.

2.1 Approximate computing

Approximate computing is a computing paradigm making a trade-off between accuracy and
efficiency. Approximate computing is based on the observation that approximate results are
sufficient for many applications such as machine learning, social media, and search engines.
For example, in machine learning, it is impossible to compute exact models for classification
and prediction problems. In video streaming applications, dropping few frames will not affect
the quality of output since human perception is limited. In search engines, there is no exact
answer for a certain search query, but a list of approximate answers.

Approximate computing has been applied across the whole computing stack including
hardware [193], compilers [192], programming languages [29, 194] (refer to [191] for a detailed
survey) and data analytics systems [7, 103, 137, 204] to trade accuracy of computations for
higher throughput, lower latency, and efficient resource utilization or efficient energy con-
sumption. For example, in K-means clustering computation, sacrificing only 5% classification
accuracy loss can save up to 50× energy [164].

Our work mainly builds on the advancements in the databases community. In this section,
we survey the approximation techniques in this context. The databases community has pro-
posed various approximation techniques based on sampling [11, 100], online aggregation [121],
and sketches [73]. However, these early works in approximate computing were mainly de-
signed for the centralized database architecture. In the context of big data analytics, it was
still not clear whether these techniques could be applied or not.

In the last five years, sampling-based approaches have been successfully adopted for dis-
tributed data analytics [7, 103, 204]. For example, BlinkDB [7] proposed an approximate
distributed query processing engine that uses stratified sampling [11] to support ad-hoc
queries with error and response time constraints. First, BlinkDB creates and maintains a
collection of multi-dimensional stratified samples using off-line stratified sampling. Second,
based on accuracy or response time requirements of users input query, it selects a rele-
vant sample to execute the query. Later, the systems SnappyData [186] and SparkSQL [27]
adopted the approximation techniques from BlinkDB to support approximate queries. Ap-
proxHadoop [103] uses multi-stage sampling [152] for approximate MapReduce job execution.
These systems show that it is possible to make a trade-off between the output accuracy
and performance gains (also efficient resource utilization) by employing sampling-based
approaches to compute over a subset of data items. However, these “big data” systems target
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batch processing and cannot cater required low-latency guarantees for stream analytics.

Like BlinkDB, Quickr [204] also supports complex ad-hoc queries in big-data clusters.
Quickr deploys distributed sampling operators to reduce execution costs of parallelized
queries. In particular, Quickr first injects sampling operators into the query plan; thereafter,
it searches for an optimal query plan among sampled query plans to execute input queries.
However, Quickr is also designed for static databases, and it does not account for stream
analytics.

As mentioned before (see §1.3), the key idea behind approximate computing is to execute
computations over synopses, which captures the vital characteristics of the original big data,
instead of the original data to approximate results with a significantly lower latency. To
build the approximate synopses (i.e., compressed representations or summaries) of the big
data, there are two major approximate techniques that can be employed: (i) sampling and (ii)
sketches (for other approximate techniques, a detailed survey is provided in [73, 164]).

2.1.1 Sampling

Sampling techniques have become the norm in approximate data analytics. They provide an
efficient and cost-effective way to reduce the size of big data meanwhile maintaining vital
properties of the original data.

The main objective of sampling mechanisms is to make use of stochastic techniques to take
samples representative of the original data. These samples can be used to quickly provide
approximate answers for a wide range of queries. The sampling mechanisms allow us to
make trade-offs between accuracy and throughput/latency by tuning the sample size of the
samples. In fact, online aggregation mechanisms make use of sampling mechanisms with the
observation that the accuracy of approximate results can be incrementally improved simply
by repeatedly adding more samples.

Random sampling mechanisms are perhaps the most widely used for approximate data ana-
lytics including approximate query processing (AQP) [7, 8, 103, 186, 204], graph processing [197],
and machine learning [49, 139]. An abundance of methods of building andmaintaining samples
of big data has been proposed along with multiple mechanisms to provide an estimator for a
given query to calculate error-bounds for approximate results. For aggregation queries such
as sum, average, and count, unbiased estimators based on Central Limit Theorem [205] can
straightforwardly provide error-bounds for approximate results.

For approximate data analytics, there are several key sampling schemes including Bernoulli
sampling, simple random sampling, stratified sampling and reservoir sampling.

Bernoulli sampling. Bernoulli sampling is an equal-probability, without-replacement sam-
pling scheme where all data items in the original data have an equal chance of being included
in the sample. Since each data item in the original data is considered independently for the
sample, the sample size of the sample is not fixed. Implementing Bernoulli sampling is quite
straightforward [114]. To perform Bernoulli sampling with sampling fraction of q, we can
implement a mechanism as follows. For each data item, we generate a random number in the
range [0, 1] (flipping a biased coin), and if the random number is less than q, we add the data
item into the sample, otherwise, we just skip it. We can further improve this algorithm by
simulating the gaps between subsequent selected items. This is based on the observation that
the number of data items that are ignored between successive selections has a geometric
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distribution. By simulating the gaps we can save CPU cycles for generating the random
number for non-selected data items [114]. The Bernoulli sampling mechanism can be applied
easily to take a sample of an input data stream within one pass in distributed environments.
However, the problem of Bernoulli is that the sample size is random and not fixed. Thus, it is
difficult to estimate the processing latency over the samples. Simple random sampling is a
sampling sheme overcoming this limitation of Bernoulli sampling.

Simple random sampling. Simple random sampling is a sampling scheme that allows us to
take k distinct data items (k is the sample size) from n data items of the original data in such a
way that every possible combination of k items is equally likely to be the sample selected (see
the definition in [161, 205]). In simple random sampling, each data item has an equal chance
to be included in the selected sample. It is considered as the most common sampling scheme
for taking a sample of the original data.

In this sampling scheme, simple random samplingwith replacement allows each data item to
appear multiple times in the sample, meanwhile simple random sampling without replacement
allows each data item appear at most one time in the sample. Given the same sample size,
simple random sampling without replacement can capturemore vital properties of the original
data. This is due to the fact that in simple random sampling with replacement, although the
sample may contain duplicated data items, the sample size is still the same. In the case the
sample size is very small compared to the population size of the original data, simple random
sampling with and without replacement are almost the same since the probability of selecting
a given data item into the sample more than once is negligible.

Although simple random sampling is widely used for approximate computing, it may po-
tentially compromise the statistical quality of the sample in the case where the original data
contains multiple homogeneous groups (e.g., an input data stream may contain several sub-
streams) with different distributions. This is due to the fact that simple random sampling may
overlook some groups having only a few but important data items. Simple random sampling
does not ensure that each group in the original data is considered fairly to contribute its data
items for the sample. Stratified sampling [11, 205] was proposed to overcome this limitation
of simple random sampling.

Stratified sampling. Stratified sampling is a sampling scheme in which the original data
is divided into a homogeneous disjoint set of groups (strata); from each group (stratum) a
random sample is drawn and these are combined together to build the sample of the original
data [205]. Stratified sampling ensures that data items from each group are considered fairly
to be present in the sample and no group will be overlooked.

Compared to simple random sampling, stratified sampling provides higher statistical preci-
sion and reduces sampling error of the sample. It also means that it requires a smaller sample
size to achieve the same accuracy as simple random sampling, thus further improving perfor-
mance and utilizing less computing resources. Therefore, stratified sampling is considered as
a building block for our approximate data analytics systems in this thesis.

There are two types of stratified sampling: (i) proportionate stratified sampling and (ii)
disproportionate stratified sampling. In proportionate stratified sampling, the same sampling
fraction is applied for each stratum, i.e., the sample size of each stratum is proportionate to
the size of the stratum, whereas in disproportionate stratified sampling, different sampling
fractions are applied for different strata. In this thesis, we only consider the proportionate
stratified sampling as a building block to design our systems.
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Note that, in the case we apply simple random sampling for each stratum, the stratified
sampling requires to know the size of the stratum in advance. Hence, it may become im-
practical in sampling data streams since the population size of a data stream is typically
unknown in advance, and thus, sampling fraction cannot be defined beforehand. In addition,
the data stream may contain a large number of data items which could not be stored in the
system, then the stratified sampling also does not work. Reservoir sampling was proposed to
overcome these issues.

Reservoir sampling. Reservoir sampling is a sampling scheme that allows us to take and
maintain a sample of size k from an input data stream. Reservoir sampling receives data items
from the input data stream and maintains a sample in a buffer called reservoir. Specifically,
to take a sample with size k from the input data stream, Reservoir sampling first fills up the
reservoir with the first k data items of the input stream, thereafter it selects a new arriving

data itemwith probability
k

i
where i is the index of the item in the input stream, then randomly

replaces one existing item in the reservoir by the selected item [114]. Reservoir sampling does
not require to know the size of the input data stream in advance. In addition, this sampling
scheme makes sure that each data item in the input stream is included in the reservoir with
equal probability.

Although reservoir sampling is resource-efficient, similar to simple random sampling, it may
potentially mutilate the statistical quality of the sampled data items in the reservoir, especially
when the input data stream combines multiple sub-streams with different distributions. The
data items received from an infrequent substream could easily get overlooked in reservoir
sampling. In addition, the scheme is difficult to implement towork in distributed environments

since it is required to maintain a global view of the probability
k

i
.

There have been several variants of reservoir sampling scheme proposed. Brown et al.
[47] extend the scheme to sample multiple streams in parallel. Al-Kateb et al. [11] combine
stratified sampling and reservoir sampling to take samples of a heterogeneous input data
stream. However, these mechanisms are not able to neither ensure the statistitical quality of
samples nor be implemented in distributed environments.

2.1.2 Sketches

Sketches are techniques to build synopses of big data including batch and stream data.
Typically, this technique is suitable to handle high-speed and large-volume data streams [73].
A sketch is a compressed synopsis or a compacted data structure that captures all interesting
features and attributes of an input stream. One of the advantages of sketch techniques is
that sketches are much smaller compared to the input data stream, thus executing queries
on sketches instead of the original data significantly improves the latencies and achieves
more efficiency in resource utilization. In general, sketches are built specifically to serve
a certain type of query in mind [73], e.g., membership query [41], finding Heavy Hitters in
data streams [72] and finding Top-k data items in data streams [156]. The similarity between
sketches is that they make use of underlying hashing schemes to summarize the original
data [125]. Next, we review several sketches which are widely adopted as technical building
blocks for approximate data analytics systems.

Bloom filter. Among sketches, Bloom filter [41] is probably the most well-known proba-
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bilistic sketch for supporting membership queries. A Bloom filter is a space-efficient data
structure designed to query whether an element is present in a dataset rapidly and memory-
efficiently [41]. The Bloom filter data structure is basically an m-bit vector. Each cell in
the vector is represented by a bit. Initially, all cells are set to 0. To add a data item to the
Bloom filter, we simply hash it h times using h hash functions to obtain bit indices and set
the corresponding bits to 1. To check for membership of a data item, we also hash it h times
using the same hash functions, and if all bits of its h hash indices are 1, then the data item
is in the dataset. For Bloom filters, false positives are possible but false negatives are not.
There is a trade-off between the size of a bit vector m and the probability of a false positive. A
larger m has less false positives but consumes more memory, whenever a smaller m requires
less memory at the risk of more false positives. The false positive rate can be computed as
follows [41]:

p ≈ (1− e
hn
m )h (2.1)

In this thesis, we also consider Bloom filter as a technical building block to design our
approximate data analytics systems since it provides three main advantages: (i) querying
the membership of data items is efficient (O(h) complexity); (ii) the size of a Bloom filter is
linearly correlated with the size of the input data, but requires a significantly smaller storage
compared to the original data; (iii) building a Bloom filter requires only a single pass over the
input data.

Count-Min Sketch. Count-Min sketch is a probabilistic data structure that is used to estimate
the frequencies of data items in an input data stream. It extends the design of Bloom filter
with a bit array structure into a table counter (a two-dimensional array) in order to maintain
approximate frequency counts of input data stream items [71]. Count-Min sketch uses a set
of hash functions to map input data items into the table. The table is organized as a sequence
of rows, each data item is mapped into the first row using the first hash function, into the
second row using the second hash function, and so on. Each row maintains a counter that
is incremented on every occurrence of the data item. This counter could also potentially
be incremented by other items mapped to the same location as collisions are expected to
happen. To estimate the frequencies of a data item, Count-Min sketch simply takes the
smallest counter among rows of the item since the counters contain the desired count plus
noise due to collisions [71, 73].

HyperLogLog. HypperLogLog is a probabilistic data structure that is used to estimate the
number of distinct data items in a dataset or an input data stream. HyperLogLog uses a hash
function to map each data item in the original data to a hash value and assumes that the
hash function produces uniform hash values. If the binary representation of hash values has l
maximum number of leading zeros at the beginning (00..0 1* - l zeros), then the number of
distinct data items in the original data is estimated to 2l [92, 122]. This algorithm is based
on the observation that the number of distinct data items (cardinality) of a list of uniformly
distributed random numbers can be estimated by measuring the maximum number of leading
zeros in the bit-string representation of each number in that list. If the maximum number of
zeros obtained among bit-strings is l, the number of distinct items in the list can be estimated
as 2l [92, 122]. Refer to [122] for deep discussion on how to use HyperLogLog in practice.

In general, sketches can be used to build synopses or summaries of data streams to capture
interesting features for answering queries. One of the limitations of sketching techniques
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compared to sampling techniques is that each sketch is designed to support a specific type
of query. For example, Bloom Filter is designed for membership queries, Count-Min sketch
for frequency queries, HyperLogLog for count distinct queries, and MinHash sketch [67] for
measuring the similarity between two sets. Meanwhile, sampling techniques can support
more general queries. Thus, in this thesis, we focus on using sampling techniques to design
approximate analytics systems. However, we also try to combine sampling techniques and
sketching techniques to support a wide-range of queries and provide better approximations
for those queries.

2.2 Big data analytics frameworks

In this section, we provide a brief description of big data frameworks which we used to
implement our approximate data analytics systems including Apache Spark [21] and Apache
Flink [17]. These two frameworks have been widely used in both academia and industry for
big data analytics.

2.2.1 Apache Spark

Apache Spark [21] is an open-source large-scale data processing framework. Comparing to
Hadoop MapReduce, Spark is much faster in processing large-scale datasets since instead of
using the disk-based cluster computing, Spark applies the in-memory computing concept
where intermediate data is cached in memory to reduce latency [133].

Spark introduces the core abstraction – Resilient Distributed Datasets (RDDs) [229] for
distributed data-parallel computing. An RDD is an immutable and fault-tolerant collection of
elements (objects) that is distributed or partitioned across a set of nodes in a cluster [21]. To
achieve fault tolerance, Spark provides the lineage mechanism in which each RDD maintains
meta-data how it was created from other RDDs. The meta-data is used to recover the RDD in
the case of failure [133, 229].

RDDs support two types of operations: transformations and actions. Transformations
return a new RDD, such as map() and filter(), and actions are operations performed on RDDs
that return the output to the driver program or store it in a persistent storage system (e.g
reduce(), count(), collect(), saveAsTextFile(), etc). Transformations are performed lazily, i.e.,
they are computed whenever an action operation is invoked [133].

Spark platform contains multiple integrated components including MLlib [22] for machine
learning, GraphX [105] for graph-based analytics, Spark SQL [27] for working with structured
data, and Spark Streaming [23] for processing data streams. Spark Streaming extends the
RDD abstraction by introducing the DStreams APIs [227], which is a sequence of RDDs arrived
during a time window. Spark Streaming splits the input data stream into micro-batches, and
for each micro-batch, a distributed data-parallel job (Spark job) is launched to process the
micro-batch.

Spark supports RDD based sampling functions, which in turn can be used to support
approximate computing [229]. In particular, Spark’s sampling functions can be classified
into the following two categories: 1) Simple Random Sampling (SRS) using sample(), and 2)
Stratified Sampling (STS) using sampleByKey() and sampleByKeyExact(). Spark implements
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these sampling functions in a “batch” fashion, where all data items are first accumulated in a
batch, and then the actual sampling is carried out.

2.2.2 Apache Flink

Apache Flink [17] is an open-source framework for both distributed batch and stream data
analytics. Apache Flink and Spark Streaming both are DAG-based distributed stream process-
ing engines. At a high level, both frameworks provide similar dataflow operators (e.g., map,
flatmap, reduce, and filter). However, Spark Streaming is a batched stream processing engine,
whereas Flink is a pipelined stream processing engine. In particular, Apache Flink adopts a
pipelined architecture in which whenever an operator in the DAG dataflow emits an item, this
item is immediately forwarded to the next operator without waiting for a whole data batch.
This mechanism allows Apache Flink to support truely stream processing. In addition, Flink
considers batches as a special case of streaming, whereas Spark considers streaming as a
special case of batches.

Similar to Spark, Apache Flink also provides a fault-tolerance scheme to consistently recover
the state of data stream processing jobs in the case of failures. This scheme takes consistent
snapshots of the input data stream and state of operators. In the case of failures, the snapshots
are used for recovery. Apache Flink supports both stream and batch processing by offering two
main abstractions: (i) DataStream for stream processing and (ii) DataSet for batch processing.

In addition, Flink also contains multiple integrated components including Flink Gelly [93]
for graph processing, FlinkML [95] for machine learning, and Flink SQL [94] for supporting
SQL queries for both stream and batch data analytics.
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In this chapter, we present the design, implementation, and evaluation of StreamApprox, an ap-
proximate computing system for stream analytics. StreamApprox supports high-throughput
and low-latency stream analytics by adopting approximate computing in a transparentmanner.
In StreamApprox, we designed an online stratified reservoir sampling algorithm to produce
approximate output with rigorous error bounds.

This chapter is organized as follows. We first motivate the design of StreamApprox in
Section §3.1. We next briefly highlight the contributions of StreamApprox in Section §3.2.
Thereafter, we present the overview of StreamApprox in Section §3.3. Next, we describe
the detailed design of StreamApprox in Section §3.4. Then, we present the implementation
of StreamApprox based on the design in Section §3.5. Next, we present an experimental
evaluation of StreamApprox using micro-benchmarks in Section §3.6 and two real world
case-studies in Section §3.7. Thereafter, we present the limitations in Section §3.8. Finally,
the related work and conclusion are discussed in Section §3.9 and Section §3.10, respectively.
The content of this chapter is based on our conference paper [184] and technical report [181].

This work is based on a joint collaboration with Ruichuan Chen, Pramod Bhatotia, Christof
Fetzer, Volker Hilt, and Thorsten Strufe.

3.1 Motivation

Stream analytics systems are extensively used in the context of modern online services to
transform continuously arriving raw data streams into useful insights [17, 168, 227]. These
systems target low-latency execution environments with strict service-level agreements
(SLAs) for processing the input data streams.

In the current deployments, the low-latency requirement is usually achieved by employ-
ing more computing resources and parallelizing the application logic over the distributed
infrastructure. Since most stream processing systems adopt a data-parallel programming
model [75], almost linear scalability can be achieved with increased computing resources.

However, this scalability comes at the cost of ineffective utilization of computing resources
and reduced throughput of the system. Moreover, in some cases, processing the entire input
data stream would require more than the available computing resources to meet the desired
latency/throughput guarantees.

To strike a balance between the two desirable, but contradictory design requirements —
low latency and efficient utilization of computing resources — there is a surge of approximate
computing paradigm that explores a novel design point to resolve this tension. In particular,
approximate computing is based on the observation thatmany data analytics jobs are amenable
to an approximate rather than the exact output [80, 170]. For such workflows, it is possible to
trade the output accuracy by computing over a subset instead of the entire data stream. Since
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computing over a subset of input requires less time and computing resources, approximate
computing can achieve desirable latency and computing resource utilization.

To design an approximate computing system for stream analytics, we need to address the
following three important design challenges: Firstly, we need an online sampling algorithm
that can perform “on-the-fly” sampling on the input data stream. Secondly, since the input
data stream usually consists of sub-streams carrying data items with disparate population dis-
tributions, we need the online sampling algorithm to have a “stratification” support to ensure
that all sub-streams (strata) are considered fairly, i.e., the final sample has a representative
sub-sample from each distinct sub-stream (stratum). Finally, we need an error-estimation
mechanism to interpret the output (in)accuracy using an error bound or confidence interval.

Unfortunately, the advancements in approximate computing are primarily geared towards
batch analytics [7, 103, 204], where the input data remains unchanged during the course
of sampling (see §3.9 for details). In particular, these systems rely on pre-computing a set
of samples on the static database, and take an appropriate sample for the query execution
based on the user’s requirements (aka query execution budget). Therefore, the state-of-the-
art systems cannot be deployed in the context of stream processing, where the new data
continuously arrives as an unbounded stream.

As an alternative, we could in principle repurpose the available sampling mechanisms in
Apache Spark (primarily available for machine learning in the MLib library [22]) to build an
approximate computing system for stream analytics. In fact, as a starting point, we designed
and implemented an approximate computing system for stream processing in Apache Spark
based on the available sampling mechanisms.

Unfortunately, as we will show later, Spark’s stratified sampling algorithm suffers from
three key limitations for approximate computing, which we address in our work (see §3.5
for details). First, Spark’s stratified sampling algorithm operates in a “batch” fashion, i.e., all
data items are first collected in a batch as Resilient Distributed Datasets (RDDs) [229], and
thereafter, the actual sampling is carried out on the RDDs. Second, it does not handle the case
where the arrival rate of sub-streams changes over time because it requires a pre-defined
sampling fraction for each stratum. Lastly, the stratified sampling algorithm implemented
in Spark requires synchronization among workers for the expensive join operation, which
imposes a significant latency overhead.

3.2 Contribution

In this chapter, we present the design and implementation of StreamApprox, an approximate
computing system for stream analytics. In this system, we designed an online stratified
reservoir sampling algorithm for stream analytics. Unlike existing Spark-based systems, we
perform the sampling process “on-the-fly” to reduce the latency as well as the overheads
associated with the process of forming RDDs. Importantly, our algorithm generalizes to
two prominent types of stream processing models: (1) batched stream processing employed
by Apache Spark Streaming [23], and (2) pipelined stream processing employed by Apache
Flink [17].

More specifically, our sampling algorithm makes use of two techniques: reservoir sampling
and stratified sampling. We perform reservoir sampling for each sub-stream by creating a
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Figure 3.1 – System overview.

fixed-size reservoir per stratum. Thereafter, we assign weights to all strata respecting their
respective arrival rates to preserve the statistical quality of the original data stream. The
proposed sampling algorithm naturally adapts to varying arrival rates of sub-streams, and
requires no synchronization among workers (see §3.4).

We implemented StreamApprox based on Apache Spark Streaming [23] and Apache Flink [17],
and evaluate its effectiveness via various micro-benchmarks. Furthermore, we also report
our experiences on applying StreamApprox to two real-world case studies. Our evaluation
shows that Spark- and Flink-based StreamApprox achieves a significant speedup of 1.15× to
3× over the native Spark Streaming and Flink executions, with varying sampling fraction of
80% to 10%, respectively.

In addition, for a fair comparison, we have also implemented an approximate computing
system leveraging the sampling modules already available in Apache Spark’s MLib library
(in addition to the native execution comparison). Our evaluation shows that, for the same
accuracy level, the throughput of Spark-based StreamApprox is roughly 1.1×—2.4× higher
than the Spark-based approximate computing system for stream analytics.

To summarize, we make the following main contributions.

• We propose the online adaptive stratified reservoir sampling (OASRS) algorithm that
preserves the statistical quality of the input data stream, and is resistant to the fluc-
tuation in the arrival rates of strata. Our proposed algorithm is generic and can be
applied to the two prominent stream processing models: batched and pipelined stream
processing models.

• We extend our algorithm for distributed execution. The OASRS algorithm can be par-
allelized naturally without requiring any form of synchronization among distributed
workers.

• We provide a confidence metric on the output accuracy using an error bound or con-
fidence interval. This gives a measure of accuracy trade-off on the result due to the
approximation.

• Finally, we have implemented the proposed algorithm and mechanisms based on Apache
Spark Streaming and Apache Flink. We have extensively evaluated the system using a
series of micro-benchmarks and real-world case studies.
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3.3 Overview

This section gives an overview of StreamApprox, its computational model, and the design
assumptions. Lastly, we conclude this section with a brief background on the technical
building blocks.

3.3.1 SystemOverview

StreamApprox is designed for real-time stream analytics. Figure 3.1 presents the high-level
architecture of StreamApprox. The input data stream usually consists of data items arriving
from diverse sources. The data items from each source form a sub-stream. We make use of a
stream aggregator (e.g., Apache Kafka [130]) to combine the incoming data items from disjoint
sub-streams. StreamApprox then takes this combined stream as the input for data analytics.

We facilitate data analytics on the input stream by providing an interface for users to specify
the streaming query and its corresponding query budget. The query budget can be in the form
of expected latency/throughput guarantees, available computing resources, or the accuracy
level of query results.

StreamApprox ensures that the input stream is processed within the specified query budget.
To achieve this goal, we make use of approximate computing by processing only a subset of
data items from the input stream, and produce an approximate output with rigorous error
bounds. In particular, StreamApprox designs a parallelizable online sampling technique to
select and process a subset of data items, where the sample size can be determined based on
the query budget.

3.3.2 ComputationalModel

The state-of-the-art distributed stream processing systems can be classified in two prominent
categories: (i) batched stream processing model, and (ii) pipelined stream processing model.
These systems offer three main advantages: (a) efficient fault tolerance, (b) “exactly-once”
semantics, and (c) unified programming model for both batch and stream analytics. Our
proposed algorithm for approximate computing is generalizable to both stream processing
models, and preserves their advantages.

Batched stream processing model. In this computational model, an input data stream is
divided into small batches using a predefined batch interval, and each such batch is processed
via a distributed data-parallel job. Apache Spark Streaming [23] adopted this model to process
input data streams. While this model is widely used for many applications, it cannot adapt to
the cases where low-latency is critical since this model waits for the batching to complete
before processing the batch. Sampling the input data stream in a continuous “on-the-fly”
fashion can be challenging to address in this computational model. However, StreamApprox
overcomes this challenge by performing sampling operations before the batches are formed.

Pipelined stream processingmodel. In contrast to the batched stream processing model, the
pipelined model streams each data item to the next operator as soon as the item is ready to be
processed without forming the whole batch. Thus, this model achieves low latency. Apache
Flink [17] implements the pipelined stream processing model to support a truly native stream
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processing engine. StreamApprox can adopt this computational model easily by sampling the
input data stream in an online manner.

Note that both stream processing models support the sliding window computation [38].
The processing window slides over the input stream, whereby the newly incoming data items
are added to the window and the old data items are removed from the window. The number
of data items within a sliding window may vary in accordance to the arrival rate of data items.

3.3.3 Design Assumptions

StreamApprox is based on the following assumptions. We discuss the possible means to
reduce these assumptions in §3.8.

1. We assume there exists a virtual cost function which translates a given query budget
(such as the expected latency or throughput guarantees, or the required accuracy level
of query results) into the appropriate sample size.

2. We assume that the input stream is stratified based on the source of data items, i.e.,
the data items from each sub-stream follow the same distribution and are mutually
independent. Here, a stratum refers to one sub-stream. If multiple sub-streams have
the same distribution, they are combined to form a stratum.

3. We assume a time-based window length. Based on the arrival rate, the number of data
items within a window may vary accordingly. Note that this assumption is consistent
with the sliding window APIs in the aforementioned stream processing systems.

3.3.4 Background: Technical Building Blocks

We next describe the two main technical building blocks of StreamApprox: (a) reservoir
sampling, and (b) stratified sampling.

Reservoir sampling. Suppose we have a stream of data items, and want to randomly select a
sample of N items from the stream. If we know the total number of items in the stream, then
the solution is straightforward by applying the simple random sampling [152]. However, if a
stream consists of an unknown number of items or the stream contains a large number of
items which could not fit into the storage, then the simple random sampling does not work
and a sampling technique called reservoir sampling can be used [12, 213].

Reservoir sampling receives data items from a stream, and maintains a sample in a buffer
called reservoir. Specifically, the technique populates the reservoir with the first N items
received from the stream. After the first N items, every time we receive the i-th item (i > N ),
we replace each of theN existing items in the reservoir with the probability of 1/i, respectively.
In other words, we accept the i-th itemwith the probability of N/i, and then randomly replace
one existing item in the reservoir. In doing so, we do not need to know the total number of
items in the stream, and reservoir sampling ensures that each item in the stream has equal
probability of being selected for the reservoir. Reservoir sampling is resource-friendly, and
its pseudo-code can be found in Algorithm 1.

Stratified sampling. Although reservoir sampling is widely used in stream processing, it
could potentially mutilate the statistical quality of the sampled data in the case where the
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3 StreamApprox: Approximate Stream Analytics

Algorithm 1: Reservoir algorithm

Input: N ← sample size

1 begin
2 reservoir← ∅; // Set of items sampled from the input stream

3 foreach arriving item xi do
4 if |reservoir| < N then
5 // Fill up the reservoir

6 reservoir.append(xi);

7 else

8 p← N

i
;

9 // Flip a coin comes heads with probability p

10 head← flipCoin(p);
11 if head then
12 // Get a random index in the reservoir

13 j ← getRandomIndex(0, |reservoir| − 1);
14 // Replace old item in reservoir by xi

15 reservoir[j]← xi

Input sub-streams

Cluster

Disjoint sub-streams Sample

Stratified 

sampling

Figure 3.2 – Stratified sampling with the sampling fraction of 50%.

input data stream contains multiple sub-streams with different distributions. This is because
reservoir sampling may overlook some sub-streams consisting of only a few data items. In
particular, reservoir sampling does not guarantee that each sub-stream is considered fairly
to have its data items selected for the sample. Stratified sampling [11, 152] was proposed to
cope with this problem. Stratified sampling first clusters the input data stream into disjoint
sub-streams, and then performs the sampling (e.g., simple random sampling) over each sub-
stream independently, as illustrated in Figure 3.2. Stratified sampling guarantees that data
items from every sub-stream can be fairly selected and no sub-stream will be overlooked.
Stratified sampling, however, works only in the scenario where it knows the statistics of all
sub-streams in advance (e.g., the length of each sub-stream).

3.4 Design

In this section, we first present the StreamApprox’s workflow (§3.4.1). Then, we detail its
sampling mechanism (§3.4.2), and its error estimation mechanism (§3.4.3).
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Algorithm 2: : StreamApprox’s algorithm overview

Input: streaming query and query budget

1 begin
2 // Computation in sliding window model (§3.3.2)
3 foreach time interval do
4 // Cost function gives the sample size based on the budget (§3.8)
5 sampleSize← costFunction(budget);
6 forall arriving items in the time interval do
7 // Perform OASRS Sampling (§3.4.2)
8 // W denotes the weights of the sample

9 sample, W ← OASRS(items, sampleSize);

10 // Run query as a data-parallel job to process the sample

11 output← runJob(query, sample, W );
12 // Estimate the error bounds of query result/output (§3.4.3)
13 output± error← estimateError(output);

3.4.1 SystemWorkflow

Algorithm 2 presents the workflow of StreamApprox. The algorithm takes the user-specified
streaming query and the query budget as the input. The algorithm executes the query on the
input data stream as a sliding window computation (see §3.3.2).

For each time interval, we first derive the sample size (sampleSize) using a cost function
based on the given query budget (see §3.8). As described in §3.3.3, we currently assume that
there exists a cost function which translates a given query budget (such as the expected
latency or throughput guarantees, or the required accuracy level of query results) into the
appropriate sample size. We discuss the possible means to implement such a cost function in
§3.8.
We next propose a sampling algorithm (detailed in §3.4.2) to select the appropriate sample

in an online fashion. Our sampling algorithm further ensures that data items from all sub-
streams are fairly selected for the sample, and no single sub-stream is overlooked.

Thereafter, we execute a data-parallel job to process the user-defined query on the selected
sample. As the last step, we run an error estimation mechanism (as described in §3.4.3) to
compute the error bounds for the approximate query result in the form of output ± error
bound.

The whole process repeats for each time interval as the computation window slides [39].
Note that, the query budget can change across time intervals to adapt to user’s requirements
for the query budget.

3.4.2 Online Adaptive Stratified Reservoir Sampling

To realize the real-time stream analytics, we propose a novel sampling technique called
Online Adaptive Stratified Reservoir Sampling (OASRS). It achieves both stratified and reservoir
samplings without their drawbacks. Specifically, OASRS does not overlook any sub-streams
regardless of their popularity, does not need to know the statistics of sub-streams before the
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Sub-streams

S1

S2

S3

Reservoir

sampling

Reservoir

size (N = 3)
Weights

W1  = 6/3   (C1 =  6)

W2  = 4/3   (C2 =  4)

W3  = 1       (C3 =  2)

Figure 3.3 – OASRS with the reservoirs of size three.

sampling process, and runs efficiently in real time in a distributed manner.

The high-level idea of OASRS is simple, as described in Algorithm 3. We stratify the input
stream into sub-streams according to their sources. We assume data items from each sub-
stream follow the same distribution and are mutually independent. (Here a stratum refers to
one sub-stream. If multiple sub-streams have the same distribution, they are combined to
form a stratum.) We then sample each sub-stream independently, and perform the reservoir
sampling for each sub-stream individually. To do so, every time we encounter a new sub-
stream Si, we determine its sample size Ni according to an adaptive cost function considering
the specified query budget (see §3.8). For each sub-stream Si, we perform the traditional
reservoir sampling to select items at random from this sub-stream, and ensure that the total
number of selected items from Si does not exceed its sample size Ni. In addition, we maintain
a counter Ci to measure the number of items received from Si within the concerned time
interval (see Figure 3.3).

Applying reservoir sampling to each sub-stream Si ensures that we can randomly select
at most Ni items from each sub-stream. The selected items from different sub-streams,
however, should not be treated equally. In particular, for a sub-stream Si, if Ci > Ni (i.e.,
the sub-stream Si has more than Ni items in total during the concerned time interval), then
we randomly select Ni items from this sub-stream and each selected item represents Ci/Ni

original items on average; otherwise, if Ci ≤ Ni, we select all the received Ci items so that
each selected item only represents itself. As a result, in order to statistically recreate the
original items from the selected items, we assign a specific weight Wi to the items selected
from each sub-stream Si:

Wi =
{

Ci/Ni if Ci > Ni

1 if Ci ≤ Ni

(3.1)

We support approximate linear queries which return an approximate weighted sum of
all items received from all sub-streams. One example of linear queries is to compute the
sum of all received items. Suppose there are in total X sub-streams {Si}Xi=1, and from each
sub-stream Si we randomly select at most Ni items. Specifically, we select Yi items {Ii,j}Yi

j=1
from each sub-stream Si, where Yi ≤ Ni. In addition, each sub-stream associates with a
weight Wi generated according to expression 3.1. Then, the approximate sum SUMi of all
items received from each sub-stream Si can be estimated as:

SUMi = (
Yi∑

j=1
Ii,j)×Wi (3.2)
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As a result, the approximate total sum of all items received from all sub-streams is:

SUM =
X∑

i=1
SUMi (3.3)

A simple extension also enables us to compute the approximate mean value of all received
items:

MEAN = SUM∑X
i=1 Ci

(3.4)

Here, Ci denotes a counter measuring the number of items received from each sub-stream
Si. Using a similar technique, our OASRS sampling algorithm supports any types of approx-
imate linear queries. This type of queries covers a range of common aggregation queries
including, for instance, sum, average, count, histogram, etc. Though linear queries are simple,
they can be extended to support a large range of statistical learning algorithms [42, 43]. It
is also worth mentioning that, OASRS not only works for a concerned time interval (e.g., a
sliding time window), but also works across the entire life cycle of the input data stream.

To summarize, our proposed sampling algorithm combines the benefits of stratified and
reservoir samplings via performing the reservoir sampling for each sub-stream (i.e., stratum)
individually. In addition, our algorithm is an online algorithm since it can perform the “on-
the-fly” sampling on the input stream without knowing all data items in a window from the
beginning [13].

Distributed execution. OASRS can run in a distributed fashion naturally as it does not require
synchronization. One straightforward approach is to make each sub-stream Si be handled
by a set of w worker nodes. Each worker node samples an equal portion of items from this
sub-stream and generates a local reservoir of size no larger than Ni/w. In addition, each
worker node maintains a local counter to measure the number of its received items within a
concerned time interval for weight calculation. The rest of the design remains the same.

3.4.3 Error Estimation

We described how we apply OASRS to randomly sample the input data stream to generate the
approximate results for linear queries. We now describe a method to estimate the accuracy
of our approximate results via rigorous error bounds.

Similar to §3.4.2, suppose the input data stream contains X sub-streams {Si}Xi=1. We
compute the approximate sumof all items received from all sub-streams by randomly sampling
only Yi items from each sub-stream Si. As each sub-stream is sampled independently, the
variance of the approximate sum is:

V ar(SUM) =
X∑

i=1
V ar(SUMi) (3.5)

Further, as items are randomly selected for a sample within each sub-stream, according to
the random sampling theory [205], the variance of the approximate sum can be estimated as:

V̂ ar(SUM) =
X∑

i=1

(
Ci × (Ci − Yi)×

s2
i

Yi

)
(3.6)

25



3 StreamApprox: Approximate Stream Analytics

Algorithm 3: : Online adaptive stratified reservoir sampling

1 OASRS(items, sampleSize)
2 begin
3 sample← ∅; // Set of items sampled within the time interval

4 S ← ∅; // Set of sub-streams seen so far within the time interval

5 W ← ∅; // Set of weights of sub-streams within the time interval

6 Update(S); // Update the set of sub-streams

7 // Determine the sample size for each sub-stream

8 N ← getSampleSize(sampleSize, S);
9 forall Si in S do
10 Ci ← 0; // Initial counter to measure #items in each sub-stream

11 forall arriving items in each time interval do
12 Update(Ci); // Update the counter

13 samplei ← RS(items, Ni); // Reservoir sampling

14 sample.add(samplei); // Update the global sample

15 // Compute the weight of samplei according to Equation 3.1

16 if Ci > Ni then
17 Wi ← Ci

Ni
;

18 else
19 Wi ← 1;
20 W .add(Wi); // Update the set of weights

21 return sample, W

Here, Ci denotes the total number of items from the sub-stream Si, and si denotes the
standard deviation of the sub-stream Si’s sampled items:

s2
i = 1

Yi − 1 ×
Yi∑

j=1
(Ii,j − Īi)2, where Īi = 1

Yi
×

Yi∑
j=1

Ii,j (3.7)

Next, we show how we can also estimate the variance of the approximate mean value of
all items received from all the X sub-streams. According to Equation 3.4, this approximate
mean value can be computed as:

MEAN = SUM∑X
i=1 Ci

=
∑X

i=1(Ci ×MEANi)∑X
i=1 Ci

=
X∑

i=1
(ωi ×MEANi)

(3.8)

Here, ωi = Ci∑X

i=1 Ci

. Then, as each sub-stream is sampled independently, according to the

random sampling theory [205], the variance of the approximate mean value can be estimated

26



3.5 Implementation

as:

V̂ ar(MEAN) =
X∑

i=1
V ar(ωi ×MEANi)

=
X∑

i=1

(
ω2

i × V ar(MEANi)
)

=
X∑

i=1

(
ω2

i ×
s2

i

Yi
× Ci − Yi

Ci

)
(3.9)

Above, we have shown how to estimate the variances of the approximate sum and the
approximate mean of the input data stream. Similarly, by applying the random sampling
theory, we can easily estimate the variance of the approximate results of any linear queries.

Error bound. According to the “68-95-99.7” rule [1], our approximate result falls within
one, two, and three standard deviations away from the true result with probabilities of
68%, 95%, and 99.7%, respectively, where the standard deviation is the square root of the
variance as computed above. This error estimation is critical because it gives us a quantitative
understanding of the accuracy of our sampling technique.

3.5 Implementation

To showcase the effectiveness of our algorithm, we provide two implementations of StreamAp-
prox based on two types of stream processing systems (§3.3.2): (i) Apache Spark Streaming [23]
— a batched stream processing system, and (ii) Apache Flink [17] — a pipelined stream pro-
cessing system.

Furthermore, we also built an improved baseline (in addition to the native execution) for
Apache Spark, which provides sampling mechanisms for its machine learning library MLib [22].
In particular, we repurposed the existing samplingmodules available in Apache Spark (primarily
used for machine learning) to build an approximate computing system for stream analytics.
To have a fair comparison, we evaluate our Spark-based StreamApprox with two baselines:
the Spark native execution and the improved Spark sampling based approximate computing
system. Meanwhile, Apache Flink does not support sampling operations for stream analytics,
therefore we compare our Flink-based StreamApprox with the Flink native execution.

In this section, we first present the necessary background on Apache Spark Streaming
(and its existing sampling mechanisms) and Apache Flink (§3.5.1). Thereafter, we provide the
implementation details of our prototypes (§3.5.2).

3.5.1 Background

Apache Spark Streaming and Apache Flink both are DAG-based distributed data processing
engines. At a high level, both frameworks provide similar dataflow operators (e.g., map,
flatmap, reduce, and filter). However, as described in §3.3.2, at the core, Spark Streaming is a
batched stream processing engine, whereas Flink is a pipelined stream processing engine.
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Figure 3.4 – Architecture of StreamApprox prototypes (shaded boxes depict the implemented

modules). We have implemented our system based on Apache Spark Streaming and

Apache Flink.

Apache Spark Streaming

Apache Spark Streaming splits the input data stream into micro-batches, and for each micro-
batch a distributed data-parallel job (Spark job) is launched to process the micro-batch. To
sample the input data stream, Spark Streaming makes use of RDD-based sampling functions
supported by Apache Spark [229] to take a sample from each micro-batch. These functions
can be classified into the following two categories: 1) Simple Random Sampling (SRS) using
sample, and 2) Stratified Sampling (STS) using sampleByKey and sampleByKeyExact.

Simple random sampling (SRS) is implemented using a random sort mechanism [161] which
selects a sample of size k from the input data items in two steps. In the first step, Spark
assigns a random number in the range of [0, 1] to each input data item to produce a key-value
pair. Thereafter, in the next step, Spark sorts all key-value pairs based on their assigned
random numbers, and selects k data items with the smallest assigned random numbers. Since
sorting “Big Data” is expensive, the second step quickly becomes a bottleneck in this sampling
algorithm. To mitigate this bottleneck, Spark reduces the number of items before sorting
by setting two thresholds, p and q, for the assigned random numbers. In particular, Spark
discards the data items with the assigned random numbers larger than q, and directly selects
data items with the assigned numbers smaller than p. For stratified sampling (STS), Spark first
clusters the input data items based on a given criterion (e.g., data sources) to create strata
using groupBy(strata). Thereafter, it applies the aforementioned SRS to data items in each
stratum.

Apache Flink

In contrast to batched stream processing, Apache Flink adopts a pipelined architecture:
whenever an operator in the DAG dataflow emits an item, this item is immediately forwarded
to the next operator without waiting for a whole data batch. This mechanism makes Apache
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Flink a true stream processing engine. In addition, Flink considers batches as a special case of
streaming. Unfortunately, the vanilla Flink does not provide any operations to take a sample
of the input data stream. In this work, we provide Flink with an operator to sample input data
streams by implementing our proposed sampling algorithm (see §3.4.2).

3.5.2 StreamApprox Implementation Details

We next describe the implementation of StreamApprox. Figure 3.4 illustrates the architecture
of our prototypes, where the shaded boxes depict the implemented modules. We showcase
workflows for Apache Spark Streaming and Apache Flink in the same figure.

Spark-based StreamApprox

In the Spark-based implementation, the input data items are sampled “on-the-fly” using
our sampling module before items are transformed into RDDs. The sampling parameters are
determined based on the query budget using a virtual cost function. In particular, a user can
specify the query budget in the form of desired latency or throughput, available computational
resources, or acceptable accuracy loss. As noted in the design assumptions (§3.3.3), we have
not implemented the virtual cost function since it is beyond the scope of this chapter (see
§3.8 for possible ways to implement such a cost function). Based on the query budget, the
virtual cost function determines a sample size, which is then fed to the sampling module.

Thereafter, the sampled input stream is transformed into RDDs, where the data items are
split into batches at a pre-defined regular batch interval. Next, the batches are processed
as usual using the Spark engine to produce the query output. Since the computed output is
an approximate query result, we make use of our error estimation module to give rigorous
error bounds. For cases where the error bound is larger than the specified target, an adaptive
feedback mechanism is activated to increase the sample size in the sampling module. This
way, we achieve higher accuracy in the subsequent epochs.

I: Sampling module. The sampling module implements the algorithm described in §3.4.2 to
select samples from the input data stream in an online adaptive fashion. We modified the
Apache Kafka connector of Spark to support our sampling algorithm. In particular, we created
a new class ApproxKafkaRDD to handle the input data items from Kafka, which takes required
samples to define an RDD for the data items before calling the compute function.

II: Error estimation module. The error estimation module computes the error bounds of the
approximate query result. The module also activates a feedback mechanism to re-tune the
sample size in the sampling module to achieve the specified accuracy target. We made use
of the Apache Common Math library [158] to implement the error estimation mechanism as
described in §3.4.3.

Flink-based StreamApprox

Compared to the Spark-based implementation, implementing a Flink-based StreamApprox is
straightforward since Flink supports online stream processing natively.
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I: Sampling module. We created a sampling operator by implementing the algorithm de-
scribed in §3.4.2. This operator samples input data items on-the-fly and in an adaptive
manner. The sampling parameters are identified based on the query budget as in Spark-based
StreamApprox.

II: Error estimation module. We reused the error estimation module implemented in the
Spark-based StreamApprox.

3.6 Evaluation

In this section, we present the evaluation results of our implementation. In the next section,
we report our experiences on deploying StreamApprox for real-world case studies (§3.7).

3.6.1 Experimental Setup

Synthetic data stream. To understand the effectiveness of our proposed OASRS sampling
algorithm, we evaluated StreamApprox using a synthetic input data stream with Gaussian
distribution and Poisson distribution. For the Gaussian distribution, unless specified other-
wise, we used three input sub-streams A, B, and C with their data items following Gaussian
distributions of parameters (µ = 10, σ = 5), (µ = 1000, σ = 50), and (µ = 10000, σ = 500),
respectively. For the Poisson distribution, unless specified otherwise, we used three input
sub-streams A, B, and C with their data items following Poisson distributions of parameters
(λ = 10), (λ = 1000), and (λ = 100000000), respectively.

Methodology for comparison with Apache Spark. For a fair comparison with the sampling
algorithms available in Apache Spark, we also built an Apache Spark-based approximate
computing system for stream analytics (as described in §3.5). In particular, we used two
sampling algorithms available in Spark, namely, Simple Random Sampling (SRS) via sample,
and Stratified Sampling (STS) via sampleByKey and sampleByKeyExact. We applied these
sampling operators to each small batch (i.e., RDD) in the input data stream to generate samples.
Note that, the Apache Flink does not support sampling natively.

Evaluation questions. Our evaluation analyzes the performance of StreamApprox, and com-
pares it with the Spark-based approximate computing system across the following dimensions:
(a) varying sample sizes in §3.6.2, (b) varying batch intervals in §3.6.3, (c) varying arrival rates
for sub-streams in §3.6.4, (d) varying window sizes in §3.6.5, (e) scalability in §3.6.6, and (f)
skew in the input data stream in §3.6.7.

3.6.2 Varying Sample Sizes

Throughput. We first measure the throughput of StreamApprox w.r.t. the Spark- and Flink-
based systems with varying sample sizes (sampling fractions). To measure the throughput of
the evaluated systems, we increase the arrival rate of the input stream until these systems
are saturated.

Figure 3.5 (a) first shows the throughput comparison of StreamApprox and the two sam-
pling algorithms in Spark. Spark-based stratified sampling (STS) scales poorly because of
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(b) Accuracy loss with varying sampling fractions.

its synchronization among Spark workers and the expensive sorting during its sampling
process (as detailed in §3.5.1). Spark-based StreamApprox achieves a throughput of 1.68× and
2.60× higher than Spark-based STS with sampling fractions of 60% and 10%, respectively. In
addition, the Spark-based simple random sampling (SRS) scales better than STS and has a
similar throughput as in StreamApprox, but SRS looses the capability of considering each
sub-stream fairly.

Meanwhile, Flink-based StreamApprox achieves a throughput of 2.13× and 3× higher than
Spark-based STS with sampling fractions of 60% and 10%, respectively. This is mainly due
to the fact that Flink is a truly pipelined stream processing engine. Moreover, Flink-based
StreamApprox achieves a throughput of 1.3× compared to Spark-based StreamApprox and
Spark-based SRS with the sampling fraction of 60%.

We also compare StreamApprox with native Spark and Flink systems, i.e., without any sam-
pling. With the sampling fraction of 60%, the throughput of Spark-based StreamApprox is 1.8×
higher than the native Spark execution, whereas the throughput of Flink-based StreamApprox
is 1.65× higher than the native Flink execution.

Accuracy. Next, we compare the accuracy of our proposed OASRS sampling with that of the
two sampling mechanisms with the varying sampling fractions. Figure 3.5 (b) first shows that
StreamApprox systems and Spark-based STS achieve a higher accuracy than Spark-based
SRS. For instance, with the sampling fraction of 60%, Flink-based StreamApprox, Spark-based
StreamApprox, and Spark-based STS achieve the accuracy loss of 0.38%, 0.44%, and 0.29%,
respectively, which are higher than Spark-based SRS which only achieves the accuracy loss of
0.61%. This higher accuracy is due to the fact that both StreamApprox and Spark-based STS
integrate stratified sampling which ensures that data items from each sub-stream are selected
fairly. In addition, Spark-based STS achieves even higher accuracy than StreamApprox, but
recall that Spark-based STS needs to maintain a sample size of each sub-stream proportional
to the size of the sub-stream (see §3.5.1). This leads to a much lower throughput than
StreamApprox which only maintains a sample of a fixed size for each sub-stream.
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The sliding window size is 10 seconds, and each sliding step is 5 seconds.

3.6.3 Varying Batch Intervals

Spark-based systems adopt the batched stream processing model. Next, we evaluate the
impact of varying batch intervals on the performance of Spark-based StreamApprox, Spark-
based SRS, and Spark-based STS system. We keep the sampling fraction as 60% and measure
the throughput of each system with different batch intervals.

Figure 3.6 (a) shows that, as the batch interval becomes smaller, the throughput ratio
between Spark-based systems gets bigger. For instance, with the 1000ms batch interval, the
throughput of Spark-based StreamApprox is 1.07× and 1.63× higher than the throughput
of Spark-based SRS and STS, respectively; with the 250ms batch interval, the throughput of
StreamApprox is 1.36× and 2.33× higher than the throughput of Spark-based SRS and STS,
respectively. This is because Spark-based StreamApprox samples the data items without
synchronization before forming RDDs and significantly reduces costs in scheduling and
processing the RDDs, especially when the batch interval is small (i.e., low-latency real-time
analytics).

3.6.4 Varying Arrival Rates for Sub-Streams

In the following experiment, we evaluate the impact of varying rates of sub-streams. We
used an input data stream with Gaussian distributions as described in §3.6.1. We maintain the
sampling fraction of 60% and measure the accuracy loss of the four Spark- and Flink-based
systems with different settings of arrival rates.

Figure 3.6 (b) shows the accuracy loss of these four systems. The accuracy loss decreases
proportionally to the increase of the arrival rate of the sub-stream C which carries the most
significant data items compared to other sub-streams. When the arrival rate of the sub-stream
C is set to 100 items/second, Spark-based SRS system achieves the worst accuracy since
it may overlook sub-stream C which contributes only a few data items but has significant
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The sampling fraction is set to 60%.

values. On the other hand, when the arrival rate of sub-stream C is set to 8000 items/second,
the four systems achieve almost the same accuracy. This is mainly because all four systems
do not overlook sub-stream C which contains items with the most significant values.

3.6.5 VaryingWindow Sizes

Next, we evaluate the impact of varying window sizes on the throughput and accuracy of
the four systems. We used the same input as described in §3.6.4 with its three sub-streams’
arrival rates being 8000, 2000, and 100 items per second. Figure 3.7 (a) and Figure 3.7 (b) show
that the window sizes of the computation do not affect the throughput and accuracy of these
systems significantly. This is because the sampling operations are performed at every batch
interval in the Spark-based systems and at every slide window interval in the Flink-based
StreamApprox.

3.6.6 Scalability

To evaluate the scalability of StreamApprox, we keep the sampling fraction as 40% andmeasure
the throughput of StreamApprox and the Spark-based systems with different numbers of
CPU cores (scale-up) and different numbers of nodes (scale-out).

Figure 3.8 (a) shows unsurprisingly that StreamApprox and Spark-based SRS scale better
than Spark-based STS. For instance, with one node (8 cores), the throughput of Spark-based
StreamApprox and Spark-based SRS is roughly 1.8× higher than that of Spark-based STS.
With three nodes, Spark-based StreamApprox and Spark-based SRS achieve a speedup of
2.3× over Spark-based STS. In addition, Flink-based StreamApprox achieves a throughput
even 1.9× and 1.4× higher compared to Spark-based StreamApprox with one node and three
nodes, respectively.
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Figure 3.8 – Comparison between StreamApprox, Spark-based SRS, and Spark-based STS. (a) Peak

throughput with different numbers of CPU cores and nodes. (b) Peak throughput

with accuracy loss.

3.6.7 Skew in the Data Stream

Lastly, we study the effect of the non-uniformity in sub-stream sizes. In this experiment,
we construct an input data stream where one of its sub-streams dominates the other sub-
streams. In particular, we evaluated the skew in the input data stream using the following
two data distributions: (i) Gaussian distribution and (ii) Poisson distribution.

I: Gaussian distribution. First, we generated an input data stream consisting of three sub-
streams A, B, and C with the Gaussian distribution of parameters (µ = 100, σ = 10), (µ =
1000, σ = 100), and (µ = 10000, σ = 1000), respectively. The sub-stream A comprises 80% of
the data items in the entire data stream, whereas the sub-streams B and C comprise only
19% and 1% of data items, respectively. We set the sliding window size to w = 10 seconds,
and each sliding step to δ = 5 seconds.

We keep the accuracy loss across all four systems the same and then measure their respec-
tive throughputs. Figure 3.8 (b) shows that, with the same accuracy loss of 1%, the throughput
of Spark-based STS is 1.05× higher than Spark-based SRS, whereas Spark-based StreamAp-
prox achieves a throughput 1.25× higher than Spark-based STS. In addition, Flink-based
StreamApprox achieves the highest throughput which is 1.68×, 1.6×, and 1.26× higher than
Spark-based SRS, Spark-based STS, and Spark-based StreamApprox, respectively.

II: Poisson distribution. In the next experiment, we generated an input data stream with
the Poisson distribution as described in §3.6.1. The sub-stream A accounts for 80% of the
entire data stream items, while the sub-stream B accounts for 19.99% and the sub-stream C
comprises only 0.01% of the data stream items, respectively. Figure 3.9 shows that StreamAp-
prox systems and Spark-based STS outperform Spark-based SRS in terms of accuracy. The
reason for this is StreamApprox systems and Spark-based STS do not overlook sub-stream
C which has items with significant values. Furthermore, this result strongly demonstrates
the superiority of the proposed sampling algorithm OASRS over simple random sampling in
processing long-tail data which is very common in practice.
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3.7 Case Studies

In this section, we report our experiences and results with the following two real-world case
studies: (a) network traffic analytics (§3.7.2) and (b) New York taxi ride analytics (§3.7.3).
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3.7.1 Experimental Setup

Cluster setup. We performed experiments using a cluster of 17 nodes. Each node in the
cluster has 2 Intel Xeon E5405 CPUs (quad core), 8GB of RAM, and a SATA-2 hard disk, running
Ubuntu 14.04.5 LTS. We deployed our StreamApprox prototype on 5 nodes (1 driver node and
4 worker nodes), the traffic replay tool on 5 nodes, the Apache Kafka-based stream aggregator
on 4 nodes, and the Apache Zookeeper [25] on the remaining 3 nodes.

Measurements. We evaluated StreamApprox using the following key metrics: (a) throughput:
measured as the number of data items processed per second; (b) latency: measured as the total
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time required for processing the respective dataset; and lastly, (c) accuracy loss: measured as
|approx− exact|/exact where approx and exact denote the results from StreamApprox and a
native system without sampling, respectively.

Methodology. We built a tool to efficiently replay the case-study dataset as the input data
stream. In particular, for the throughput measurement, we tuned the replay tool to first
feed 2000 messages/second and continued to increase the throughput until the system was
saturated. Here, each message contained 200 data items.

For comparison, we report results from StreamApprox, Spark-based SRS, Spark-based
STS systems, as well as the native Spark and Flink systems. For all experiments, we report
measurements based on the average over 10 runs. Lastly, the sliding window size was set to
10 seconds, and each sliding step was set to 5 seconds.

3.7.2 Network Traffic Analytics

In the first case study, we deployed StreamApprox for a real-time network traffic monitoring
application to measure the TCP, UDP, and ICMP network traffic over time.

Dataset. We used the publicly-available 670GB network traces from CAIDA [51]. These were
recorded on the high-speed Internet backbone links in Chicago in 2015. We converted the
raw network traces into the NetFlow format [66], and then removed unused fields (such as
source and destination ports, duration, etc.) in each NetFlow record to build a dataset for our
experiments.

Query. We deployed the evaluated systems to measure the total sizes of TCP, UDP, and ICMP
network traffic in each sliding window.

Results. Figure 3.10 (a) presents the throughput comparison between StreamApprox, Spark-
based SRS, Spark-based STS systems, as well as the native Spark and Flink systems. The result
shows that Spark-based StreamApprox achieves more than 2× throughput than Spark-based
STS, and achieves a similar throughput compared with Spark-based SRS (which looses the
capability of considering each sub-stream fairly). In addition, due to Flink’s pipelined stream
processing model, Flink-based StreamApprox achieves a throughput even 1.6× higher than
Spark-based StreamApprox and Spark-based SRS. We also compare StreamApprox with the
native Spark and Flink systems. With the sampling fraction of 60%, the throughput of Spark-
based StreamApprox is 1.3× higher than the native Spark execution, whereas the throughput
of Flink-based StreamApprox is 1.35× higher than the native Flink execution. Surprisingly, the
throughput of the native Spark execution is even higher than the throughput of Spark-based
STS. The reason for this is that Spark-based STS requires the expensive extra steps (see §3.5.1).
Figure 3.10 (b) shows the accuracy loss with different sampling fractions. As the sampling

fraction increases, the accuracy loss of StreamApprox, Spark-based SRS, and Spark-based
STS decreases (i.e., accuracy improves), but not linearly. StreamApprox systems produce
more accurate results than Spark-based SRS but less accurate results than Spark-based STS.
Note however that, although both StreamApprox systems and Spark-based STS integrate
stratified sampling to ensure that every sub-stream is considered fairly, StreamApprox systems
are much more resource-friendly than Spark-based STS. This is because Spark-based STS
requires synchronization among workers for the expensive join operation to take samples
from the input data stream, whereas StreamApprox performs the sampling operation with a
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(a) Peak throughput with varying sampling fractions. (b) Accuracy loss with varying

sampling fractions. (c) Peak throughput with different accuracy losses.

configurable sample size for sub-streams requiring no synchronization between workers.

In addition, to show the benefit of StreamApprox, we fixed the same accuracy loss for all
four systems and then compared their respective throughputs. Figure 3.10 (c) shows that,
with the accuracy loss of 1%, the throughput of Spark-based StreamApprox is 2.36× higher
than Spark-based STS, and 1.05× higher than Spark-based SRS. Flink-based StreamApprox
achieves a throughput even 1.46× higher than Spark-based StreamApprox.

Finally, to make a comparison in terms of latency between these systems, we implemented
our proposed sampling algorithm OASRS in Spark-core, and then measured the latency
in processing the network traffic dataset. Figure 3.12 indicates that the latency of Spark-
based StreamApprox is 1.39× and 1.69× lower than Spark-based SRS and Spark-based STS in
processing the network traffic dataset.

3.7.3 NewYork Taxi Ride Analytics

In the second case study, we evaluated StreamApprox with a taxi ride dataset to measure the
average distance of trips starting from different boroughs in New York City.

Dataset. We used the NYC Taxi Ride dataset from the DEBS 2015 Grand Challenge [129]. The
dataset consists of the itinerary information of all rides across 10, 000 taxies in New York City
in 2013. In addition, we mapped the start coordinates of each trip in the dataset into one of
the six boroughs in New York.

Query. We deployed StreamApprox, Spark-based SRS, Spark-based STS systems, as well as
the native Spark and Flink systems to measure the average distance of the trips starting from
various boroughs in each sliding window.

Results. Figure 3.11 (a) shows that Spark-based StreamApprox achieves a similar throughput
compared with Spark-based SRS (which, however, does not consider each sub-stream fairly),
and a roughly 2× higher throughput than Spark-based STS. In addition, due to Flink’s pipelined
streaming model, Flink-based StreamApprox achieves a 1.5× higher throughput compared to
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Spark-based StreamApprox and Spark-based SRS. We again compared StreamApprox with
the native Spark and Flink systems. With the sampling fraction of 60%, the throughput of
Spark-based StreamApprox is 1.2× higher than the throughput of the native Spark execution,
whereas the throughput of Flink-based StreamApprox is 1.28× higher than the throughput of
the native Flink execution. Similar to the result in the first case study, the throughput of the
native Spark execution is higher than throughput of Spark-based STS.

Figure 3.11 (b) depicts the accuracy loss of these systems with different sampling fractions.
The results show that they all achieve a very similar accuracy in this case study. In addition,
we also fixed the same accuracy loss of 1% for all four systems to measure their respective
throughputs. Figure 3.11 (c) shows that Flink-based StreamApprox achieves the best through-
put which is 1.6× higher than Spark-based StreamApprox and Spark-based SRS, and 3× higher
than Spark-based STS. Figure 3.12 further indicates that Spark-based StreamApprox provides
the 1.52× and 2.18× lower latency than Spark-based SRS and Spark-based STS in processing
the NYC taxi ride dataset.

3.8 Discussion

The design of StreamApprox is based on the assumptions mentioned in §3.3.3. Reducing these
assumptions is beyond the scope of this chapter. Nevertheless, in this section, we discuss
some approaches that could be used to meet our assumptions.

I: Virtual cost function. We currently assume that there exists a virtual cost function to
translate a user-specified query budget into the sample size. The query budget could be
specified, for instance, as either available computing resources, desired accuracy or desired
latency requirement.

For instance, with an accuracy budget, we can define the sample size for each sub-stream
based on a desired width of the confidence interval using Equation 3.9 and the “68-95-99.7”
rule. With a desired latency budget, users can specify it by defining the window time interval
or the slide interval for their computations over the input data stream. It becomes a bit
more challenging to specify a budget for resource utilization. Nevertheless, we discuss some
existing techniques that could be used to implement such a cost function to achieve the
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desired resource target. In particular, we refer to the two existing techniques: (a) Virtual data
center [16], and (b) resource prediction model [218–220] for the latency requirement.

Pulsar [16] proposes an abstraction of a virtual data center (VDC) to provide performance
guarantees to tenants in the cloud. In particular, Pulsar makes use of a virtual cost function to
translate the cost of a request processing into the required computational resources using a
multi-resource token algorithm. We could adapt the cost function for our purpose as follows:
we consider a data item in the input stream as a request and the “amount of resources”
required to process it as the cost in tokens. Also, the given resource budget is converted
in the form of tokens, using the pre-advertised cost model per resource. This allows us to
compute the number of items, i.e., the sample size, that can be processed within the given
resource budget.

For any given latency requirement, we could employ a resource prediction model [218–
220]. In particular, we could build the prediction model by analyzing the diurnal patterns in
resource usage [57] to predict the future resource requirement for the given latency budget.
This resource requirement can then be mapped to the desired sample size based on the same
approach as described above.

II: Stratified sampling. In our design in §3.4, we currently assume that the input stream is
already stratified based on the source of events, i.e., the data items within each stratum follow
the same distribution. This assumption is practical in many cases. For example, consider an
IoT use-case which analyzes data streams from sensors to measure the temperature of a city.
The data stream from each individual sensor will follow the same distribution since it measures
the temperature at the same location in the city. Therefore, a straightforward way to stratify
the input data streams is to consider each sensor’s data stream as a stratum (sub-stream).
In more complex cases when we cannot classify strata based on the sources, we need a
preprocessing step to stratify the input data stream. This stratification problem is orthogonal
to our work, nevertheless for completeness, we discuss two proposals for the stratification of
evolving data streams, namely bootstrap [87] and semi-supervised learning [157].

Bootstrap [87] is a well-studied non-parametric sampling technique in statistics for the
estimation of distribution for a given population. In particular, the bootstrap technique
randomly selects “bootstrap samples” with replacement to estimate the unknown parameters
of a population, for instance, by averaging the bootstrap samples. We can employ a bootstrap-
based estimator for the stratification of incoming sub-streams. Alternatively, we could also
make use of a semi-supervised algorithm [157] to stratify a data stream. The advantage of
this algorithm is that it can work with both labeled and unlabeled data streams to train a
classification model.

3.9 RelatedWork

Given the advantages of making a trade-off between accuracy and efficiency, approximate
computing is applied to various domains: graphics, machine learning, scientific simulations,
etc. In this context, approximation mechanisms have been proposed at various levels of
the system stack, from hardware to applications — including languages, tools, processors,
accelerators, memory, and compilers (refer to [191] for a detailed survey). Our work mainly
builds on the advancements in the databases community. In this section, we survey the
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approximation techniques in this context.

Over the last two decades, the databases community has proposed various approximation
techniques based on sampling [11, 100], online aggregation [121], and sketches [73]. These
techniques make different trade-offs with respect to the output quality, supported query
interface, and workload. However, the early work in approximate computing mainly targeted
towards the centralized database architecture.

Recently, sampling-based approaches have been successfully adopted for distributed data
analytics [7, 103, 137, 204]. In particular, BlinkDB [7] proposes an approximate distributed
query processing engine that uses stratified sampling [11] to support ad-hoc queries with
error and response time constraints. ApproxHadoop [103] uses multi-stage sampling [152]
for approximate MapReduce job execution. Both BlinkDB and ApproxHadoop show that it is
possible to make a trade-off between the output accuracy and the performance gains (also
the efficient resource utilization) by employing sampling-based approaches to compute over
a subset of data items. However, these “big data” systems target batch processing and cannot
provide required low-latency guarantees for stream analytics.

Like BlinkDB, Quickr [204] also supports complex ad-hoc queries in big-data clusters.
Quickr deploys distributed sampling operators to reduce execution costs of parallelized
queries. In particular, Quickr first injects sampling operators into the query plan; thereafter,
it searches for an optimal query plan among sampled query plans to execute input queries.
However, Quickr is also designed for static databases, and it does not account for stream
analytics. IncApprox [137] is a data analytics system that combines two computing paradigms
together, namely, approximate and incremental computations [34–37] for stream analytics.
The system is based on an online “biased sampling” algorithm that uses self-adjusting compu-
tation [33] to produce incrementally updated approximate output. Lastly, PrivApprox [183]
supports privacy-preserving data analytics using a combination of randomized response and
approximate computation.

By contrast, in StreamApprox, we designed an “online” sampling algorithm solely for ap-
proximate computing, while avoiding the limitations of existing sampling algorithms.

3.10 Conclusion

In this chapter, we presented StreamApprox, a stream analytics system for approximate
computing. StreamApprox allows users to make a systematic trade-off between the output
accuracy and the computation efficiency. To achieve this goal, we designed an online stratified
reservoir sampling algorithm which ensures the statistical quality of the sample from the
input data stream. Our proposed sampling algorithm is generalizable to two prominent types
of stream processing models: batched and pipelined stream processing models.

To showcase the effectiveness of our proposed algorithm, we built StreamApprox based on
Apache Spark Streaming and Apache Flink. We evaluated the effectiveness of our system using
a series of micro-benchmarks and real-world case studies. Our evaluation shows that, with
varying sampling fractions of 80% to 10%, Spark- and Flink-based StreamApprox achieves a
significantly higher throughput of 1.15×—3× compared to the native Spark Streaming and
Flink executions, respectively. Furthermore, StreamApprox achieves a speedup of 1.1×—2.4×
compared to a Spark-based sampling system for approximate computing, while maintaining

40



3.10 Conclusion

the same level of accuracy for the query output. As mentioned at the beginning, the content
of this chapter is based on our conference publication [184] and technical report [181]. Finally,
the source code of StreamApprox is publicly available: https://streamapprox.github.io/.
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4 IncApprox: Approximate and Incremental

StreamAnalytics

After building StreamApprox, we analyzed and reviewed its design to improve the performance
of it further. We observed that in slide window computation, there is an overlap between two
consecutive slide windows which contains data items common to both slide windows. For
these overlapping data items, we do not need to recompute the computation over them, thus
we can incrementally compute the next slide window based on the result of the preceding
slide window. As a result, this observation creates an opportunity for us to improve the
performance of StreamApprox using incremental computing paradigm.

In this chapter, we show that the two computing paradigms, incremental and approximate
computing, are complementary. Both computing paradigms rely on computing over a subset of
data items instead of the entire dataset to achieve low latency and efficient cluster utilization.
Therefore, we can combine these paradigms together in order to leverage the benefits of
both. To concretize this idea, we designed an online stratified sampling algorithm that uses
self-adjusting computation to produce an incrementally updated approximate output with
bounded error. We implemented our algorithm in a data analytics system called IncApprox
based on Apache Spark Streaming.

This chapter is organized as follows. We first motivate the design of IncApprox in Section
§4.1. We next briefly highlight the contributions of IncApprox in Section §4.2. Then, we
present an overview of the system in Section §4.3. We next present the design in Section §4.4,
implementation in Section §4.5, and evaluation of IncApprox in Section §4.6, and two real
world case-studies in Section §4.7. Finally, discussion, related work, and conclusions are
presented in Section §4.8, Section §4.9, and Section §4.10, respectively.
The content of this chapter is based on our conference paper [137]. This work is based on a

joint collaboration with Dhanya R Krishnan, Pramod Bhatotia, Christof Fetzer, and Rodrigo
Rodrigues.

4.1 Motivation

The motivation of this work is similar to StreamApprox which is to strike a balance between
two desirable, but contradictory design targets in stream processing systems: (i) high through-
put/low latency and (ii) efficient utilization of computing resources. However, to achieve this
goal, in IncApprox, we apply not only approximate computing paradigm but also incremental
computing since the both computing paradigms prefer to compute over a subset of data
instead of the entire input data. Computing only over a subset of the input data requires
much less time and computing resources, and thus, these computing paradigms can achieve
high performance and efficient resource utilization in processing continuous high-speed
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input data stream.

Incremental computing. Incremental computation is based on the observation that many
data analytics jobs operate incrementally by repeatedly invoking the same application logic
or algorithm over an input data that differs slightly from that of the previous invocation [112,
119]. For example, in stream processing, the same computations repeatably perform over
data items in each slide window. In such a workflow, small, localized changes to the input
often require only small updates to the output, creating an opportunity to update the output
incrementally instead of recomputing everything from scratch [3]. Since the work done is
often proportional to the change size rather than the total input size, incremental computation
can achieve significant performance gains (low latency) and efficient utilization of computing
resources [35, 176].

Themost commonway for incremental computation is to rely on programmers to design and
implement an application-specific incremental update mechanism (or a dynamic algorithm)
for updating the output as the input changes [46, 65, 76, 77, 90, 110]. While dynamic algorithms
can be asymptotically more efficient than re-computing everything from scratch, research in
the algorithms community shows that these algorithms can be difficult to design, implement
and maintain even for simple problems. Furthermore, these algorithms are studied mostly in
the context of the uniprocessor computing model, making them ill-suited for parallel and
distributed settings which is commonly used for large-scale data analytics.

Recent advancements in self-adjusting computation [3–5, 143] overcome the limitations of
dynamic algorithms. Self-adjusting computation transparently benefits existing applications,
without requiring the design and implementation of dynamic algorithms. At a high level, self-
adjusting computation enables incremental updates by creating a dynamic dependence graph
of the underlying computation, which records control and data dependencies between the
sub-computations. Given a set of input changes, self-adjusting computation performs change
propagation, where it reuses thememoized intermediate results for all sub-computations that
are unaffected by the input changes, and re-computes only those parts of the computation
that are transitively affected by the input change. As a result, self-adjusting computation
computes only on a subset (“delta” ) of the computation instead of re-computing everything
from scratch.

Approximate computing. Approximate computation is based on the observation that many
data analytics jobs are amenable to an approximate, rather than the exact output [80, 162, 170,
199]. For instance, for click-stream analysis, it is sufficient to know the relative popularity of
webpages rather than the exact access counts for each webpage. For such an approximate
workflow, it is possible to trade accuracy by computing over a partial subset instead of the
entire input data to achieve low latency and efficient utilization of resources.

Over the last two decades, researchers in the database community proposed many tech-
niques for approximate computing including sampling [11, 100], sketches [73], and online
aggregation [121]. These techniques make different trade-offs with respect to the output
quality, supported query interface, and workload. However, the early work in approximate
computing was mainly targeted towards the centralized database architecture, and it was
unclear whether these techniques could be extended in the context of big data analytics.

Recently, sampling based approaches have been successfully adopted for distributed data
analytics [7, 103]. These systems show that it is possible to have a trade-off between the
output accuracy and performance gains (also efficient resource utilization) by employing
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sampling-based approaches for computing over a subset of data items. However, these “big
data” systems target batch processing workflow and cannot provide low-latency guarantees
for stream analytics.

The marriage. We make the observation that the two computing paradigms, incremental and
approximate computing, are complementary. Both computing paradigms rely on computing
over a subset of data items instead of the entire dataset to achieve low latency and efficient
resource utilization.

4.2 Contribution

In this chapter, we propose to combine incremental and approximate computing paradigms
together in order to leverage the benefits of both. Furthermore, we achieve incremental
updates without requiring the design and implementation of application-specific dynamic
algorithms, and support approximate computing for stream analytics.

The high-level idea is to design a sampling algorithm that biases the sample selection to
the memoized data items from previous runs. We realize this idea by designing an online
sampling algorithm that selects a representative subset of data items from the input data
stream. Thereafter, we bias the sample to include data items for which we already have
memoized results from previous runs, while preserving the proportional allocation of data
items of different (strata) distributions. Next, we run the user-specified streaming query
on this biased sample by making use of self-adjusting computation and provide the user an
incrementally updated approximate output with error bounds.

We implemented our algorithm in a system called IncApprox based on Apache Spark Stream-
ing [23], and evaluated its effectiveness by applying IncApprox to various micro-benchmarks.
Furthermore, we report our experience on applying IncApprox on two real-world case-studies:
(i) real-time network monitoring, and (ii) data analytics on a Twitter stream. Our evaluation
using real-world case-studies shows that IncApprox achieves a speedup of ∼ 2× over the na-
tive Spark Streaming execution, and ∼ 1.4× over the individual speedups of both incremental
and approximate computing.

To summarize, we makes the following contributions.

• We present the first system that transparently combines the incremental and approxi-
mate computing paradigms for stream analytics.

• We present an adaptive execution mechanism using an interface of a query budget that
allows users to make a trade-off between the output accuracy and latency guarantees
or available computing resources.

• Finally, we provide a confidence metric on the output accuracy using an error bound or
confidence interval. This gives a measure of accuracy trade-off on the result due to the
approximation.
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Figure 4.1 – System overview.

4.3 Overview

4.3.1 SystemOverview

IncApprox is designed for real-time data analytics on online data streams. Figure 4.1 depicts
the high-level design of IncApprox. The online data stream consists of data items from diverse
sources of events or sub-streams. We use a stream aggregator (such as Apache Kafka [130],
Apache Flume [18], Amazon Kinesis [14], etc.) that integrates data from these sub-streams,
and thereafter, the system reads this integrated data stream as the input. We facilitate user
querying on this data stream by providing a user interface that consists of a streaming query
and a query budget. The user submits the streaming query to the system as well as specifies a
query budget. The query budget can either be in the form of latency guarantees/SLAs for data
processing, desired result accuracy, or computing resources available for query processing.
Our system makes sure that the computation done over the data remains within the specified
budget. To achieve this, the system makes use of a mixture of incremental and approximating
computing for real-time processing over the input data stream, and emits the query result
along with the confidence interval or error bounds.

4.3.2 Design Goals

The goals of the IncApprox system are to:

• Provide application transparency: We aim to support unmodified applications for stream
processing, i.e., the programmers do not have to design and implement application-
specific dynamic algorithms or sampling techniques.

• Guarantee query budget: We aim to provide an adaptive execution interface, where the
users of the system can specify their query budget in terms of tolerable latency/SLAs,
desired result accuracy, or the available cluster resources, and our system guarantees
the processing within the budget.

• Improve efficiency: We aim to achieve high efficiency with a mix of incremental and
approximate computing.

• Guarantee a confidence level: We aim to provide a confidence level for the approximate
output, i.e., the accuracy of the output will remain within an error range.
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4.3.3 SystemModel

Before we explain the design of IncApprox, we present the system model assumed in this
work.

Programming model. Our system supports a batched streaming processing programming
model. In batched stream processing (see Figure 4.2), the online data stream is divided into
small batches or sets of records; and for each batch a distributed data-parallel job is launched
to produce the output.

As opposed to the trigger-based programming model (see [227] for details), the batched
streaming model provides three main advantages: (i) it provides simple fault tolerance based
on re-computation of tasks, and efficient handling of stragglers using speculative execution;
(ii) it provides consistent “exact-once” semantics for records processing instead of weaker
semantics such as “at least once” or “at most once”; and finally, (iii) it provides a unified
data-parallel programming model that could be utilized for batch as well as stream processing
workflows. Given these advantages, the batched streaming model is widely adopted by
many stream processing frameworks including Spark Streaming [23], Flink [17], Slider [38],
TimeStream [180], Trident [208], MapReduce Online [70], Comet [119], Kineograph [64], and
NOVA [50].

Computation model. Our computation model for stream processing is sliding window com-
putations. In this model (see Figure 4.3), the computation window slides over the input data
stream, where new arriving input data items are added to the window and the old data items
are dropped from the window as they become less relevant to the analysis.

In sliding window computations, there is a substantial overlap of data items between the
two successive computation windows, especially, when the size of the window is large relative
to the slide interval. This overlap of unchanged data-items provides an opportunity to update
the output incrementally.

Assumptions. Our system makes the following assumptions. We discuss these assumptions
and the different possible methods to enforce them in §4.8.

1. We assume that the input stream is stratified based on the source of event, i.e., the
data items within each stratum follow the same distribution, and are mutually indepen-
dent. Here a stratum refers to one sub-stream. If multiple sub-streams have the same
distribution, they are combined to form a stratum.

2. We assume the existence of a virtual function that takes the user specified budget as
the input and outputs the sample size for each window based on the budget.

3. We assume that the memoized results for incremental computation are stored in the
way that is fault-tolerant.
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Figure 4.3 – Sliding window computation over data stream.

Lastly, we assume a time-based window length, and based on the arrival rate, the number
of data items within a window may vary accordingly. Note that this assumption is consistent
with the sliding window APIs in the aforementioned systems.

4.3.4 Building Blocks

Our system leverages several computational and statistical techniques to achieve the goals
discussed in §4.3.2. Next, we briefly describe these techniques and the motivation behind our
design choices.

Stratified sampling. In a streaming environment, since the window size might be very large,
for a realistic rate of execution, we perform approximation using samples taken within the
window. But the data stream might consist of data from disparate events. As such, we must
make sure that every sub-stream is considered fairly to have a representative sample from
each sub-stream. For this we use stratified sampling [11]. Stratified sampling ensures that
data from every stratum is selected and none of the minorities are excluded. For statistical
precision, we use proportional allocation of each sub-stream to the sample [12]. It ensures
that the sample size of each sub-stream is in proportion to the size of sub-stream in the
whole window.

Self-adjusting computation. For incremental sliding window computations, we use self-
adjusting computation [3–5, 143] to re-use the intermediate results of sub-computations
across successive runs of jobs. In this techniquewemaintain a dependence graph between sub-
computations of a job, and reuse memoized results for sub-computations that are unaffected
by the changed input in the computation window.

Error estimation. For defining a confidence level on the accuracy of the approximated output,
we use error estimation [68]. This specifies a confidence interval or error bound for the
output, i.e., we emit the output in the following form : output ± error margin. A confidence
level along with the margin of error tells how accurate is the approximate output.
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4.4 Design

In this section, we present the detailed design of IncApprox.

4.4.1 AlgorithmOverview

Algorithm 4 presents an overview of our approach. The algorithm computes a user-specified
streaming query as a sliding window computation over the input data stream. The user also
specifies a query budget for executing the query, which is used to derive the sample size
(sampleSize) for the window using a cost function (see §4.3.3 and §4.8). The cost function
ensures that processing remains within the query budget.

For each window (see Figure 4.3), we first adjust the computation window to the current
start time t by removing all old data items from the window (timestamp < t). Similarly, we also
drop all old data items from the list of memoized items (memo), and the respective memoized
results of all sub-computations that are dependent on those old data items.

Next, we read the new incoming data items in the window. Thereafter, we perform propor-
tional stratified sampling (detailed in §4.4.2) on the window to select a sample of size provided
by the cost function. The stratified sampling algorithm ensures that samples from all strata
are proportional, and no stratum is neglected.

Next, we bias the stratified sample to include items from the memoized sample, in order to
enable the reuse of memoized results from previous sub-computations. The biased sampling
algorithm (detailed in §4.4.3) biases samples specific to each stratum, to ensure reuse, and at
the same time, retain proportional allocation.

Thereafter, on this biased sample, we run the user specified query as a data-parallel job
incrementally, i.e., we reuse the memoized results for all data items that are unchanged in
the window, and update the output based on the changed (or new) data items. After the job
finishes, we memoize all the items in the sample and their respective sub-computation results
for reuse for the subsequent windows. The details are covered in §4.4.4.
The job provides an estimated output which is bound to a range of error due to approxima-

tion. We perform error estimation (as described in §4.4.5) to estimate this error bound and
define a confidence interval for the result as: output± error bound.

The entire process repeats for the next window, with updated windowing parameters and
the sample size. (Note that the query budget can be updated across windows during the
course of stream processing to adapt to the user’s requirements.)

4.4.2 Stratified Reservoir Sampling

Stratified sampling clusters the input stream into homogenous disjoint sets of strata (here
homogenous means the items within a stratum have same distribution) and selects a random
sample from each stratum. Meanwhile, reservoir sampling selects a uniform random sample of
fixed sizewithout replacement, from an input streamof unknown size. We perform a combined
stratified reservoir sampling, adopted from the approach in [11], along with proportional
allocation, i.e., we sample the streaming data within a sliding window by stratifying the stream,
and applying reservoir sampling within each stratum proportionally. By combining these two
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Algorithm 4: Basic algorithm

Input: streaming query and query budget
Windowing parameters (see Figure 4.3):
t← start time; δ← slide interval;

1 begin
2 window← ∅; // List of items in the window

3 memo← ∅; // List of items memoized from the window

4 sample← ∅; // Set of items sampled from the window

5 biasedSample← ∅; // Set of items in biased sample

6 foreach window in the incoming data stream do
7 // Remove all old items from window and memo

8 forall elements in the window and memo do
9 if element.timestamp < t then
10 window.remove(element);
11 memo.remove(element);

12 // Add new items to the window

13 window← window.insert(new items);
14 // Cost function gives the sample size based on the budget

15 sampleSize← costFunction(budget);
16 // Do stratified sampling of window (§4.4.2)
17 sample← stratifiedSampling(window, sampleSize);
18 // Bias the stratified sample to include memoized items (§4.4.3)
19 biasedSample← biasSample(sample, memo);
20 // Run query as an incremental data parallel job for the window (§4.4.4)
21 output← runJobIncrementally(query, biasedSample);
22 // Memoize all items & respective sub-computations for sample (§4.4.4)
23 memo← memoize(biasedSample);
24 // Estimate error for the output (§4.4.5)
25 output± error← estimateError(output);
26 // Update the start time for the next window

27 t← t + δ;

techniques, statistical quality of the sample is maintained—as sample from every stratum is
selected proportionally, and a random sample of fixed size—given by cost function is selected
from the window.

The stratified reservoir sampling algorithm (described in Algorithm 5) uses a fixed size reser-
voir with size equal to the sample size. It allocates the space in the reservoir proportionally to
the samples from each stratum, based on number of items seen so far in the corresponding
stratum. As we move forward through the window for sampling, the arrival rate of items in
each stratum may change, hence the proportional allocation must be updated. Therefore,
periodically, the algorithm re-allocates the space in the reservoir to ensure proportional
allocation. Thereafter, based on this re-allocation, we adapt the algorithm to use an adaptive
reservoir sampling (ARS) [12] for those strata whose sub-reservoir sizes are changed, and
conventional reservoir sampling (CRS) [11] for those strata whose sub-reservoir sizes are
unchanged. (Let reservoir consists of a group of sub-reservoirs, each for storing sample
from each stratum). ARS ensures that we periodically adjust the proportional allocation
(based on the arrival rate), and CRS ensures randomness in sampling technique. Once the
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Algorithm 5: Stratified reservoir sampling algorithm

Input: T ← Interval for re-calculation of sub-reservoir size

1 stratifiedSampling(window, sampleSize)

2 begin
3 S ← ∅ // Ordered set of all strata seen so far in window

4 forall item belonging to stratum Si in window do
5 S.add(Si); // Add new stratum seen to S

6 i← Index of stratum Si ;
7 // Fill reservoir until sampleSize is reached

8 if (
∑|S|

h=1 |sample[h]|) < sampleSize then
9 sample[i].add(item); // Add item to its sub-reservoir

10 else
11 if T interval is passed then
12 forall Si in S do
13 i← Index of stratum Si ;
14 // Compute new sub-reservoir size using Equation 4.1

15 newSize[i]← sample[i].computeSize();
16 if newSize[i] 6= |sample[i]| then
17 c← newSize[i] − |sample[i]|;
18 // Do Adaptive Reservoir Sampling

19 sample[i]← ARS(c, sample[i], Si);

20 else
21 // Do Conventional Reservoir Sampling

22 sample[i]← CRS(item, sample[i], Si);

23 // Skip items in window, if seen by ARS or CRS

24 skipItemsSeen(); // Details omitted

25 else
26 // Until T , do Conventional Reservoir Sampling

27 sample[i]← CRS(item, sample[i], Si);

sub-reservoir’s proportional allocation is handled using ARS, the sampling technique switches
back to CRS, until the next re-allocation interval.

Algorithm 5 works as follows: For each item seen in a window, if the stratum of the item
is newly seen, then we add it to the set of strata seen so far. Initially, we fill the reservoir
of sample until it is full. Here the reservoir is a store for our stratified sample ′sample′,
and can be considered as a group of sub-reservoirs of different strata such that: |sample|
=

∑|S|−1
i=0 |sample[i]| where S is the ordered set of all strata seen so far in the window, and

sample[i] is the sub-reservoir of the sample from the ith stratum. We fill the reservoir by
adding each item to its corresponding sub-reservoir, based on the stratum to which the item
belongs.

Once the reservoir is full, then until a pre-decided periodical time interval T to re-allocate
sub-reservoir sizes, we proceed with a conventional reservoir sampling (CRS). In CRS tech-
nique, for each of the further items seen in each stratum Si, we decide with a probability
|sample[i]|

|Si| whether to accept or reject the item, i.e., all items in a stratum have equal probability
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Algorithm 6: Subroutines for the stratified sampling algorithm

1 Let incomingItems[ ] represent incoming items seen when moving forward through window

2 ARS(c, sample[i], Si)

3 begin
4 if c > 0 then
5 // Add c items to sample[i] from incoming items belonging to Si

6 ∀j ∈ {0, ..., c− 1} : sample[i].add(incomingItems[Si].get(j));
7 else
8 // Evict random c items from sample[i]
9 ∀j ∈ {0, ..., c− 1} :
10 // random(a, b)gives a random number between [a, b]

11 sample[i].remove(random(0, |sample[i]| −1));

12 CRS(item, sample[i], Si)

13 begin

14 p← |sample[i]|
|Si|

; // Probability of replacement

15 // Replace a random item from sample[i] with item, using probability p

16 sample[i].replace(sample[i][random(0, |sample[i]| −1)],
17 item, p);

of inclusion [11]. If the item is accepted, then we replace a randomly selected item in the
corresponding sub-reservoir with the accepted item.

After T interval of time, we re-allocate the sub-reservoir sizes of each stratum, to ensure
proportional allocation. This T interval determines how frequently proportional allocation is
verified. Thus, T is selected based on frequency of change in the arrival rate in each stratum
(since change in arrival rate changes proportional allocation), by counting the number of items
of each stratum per time unit at the stream aggregator. First, after interval T , we compute
the size of sub-reservoir to be allocated to each ith stratum at current time t′. It is computed
proportional to the total number of items seen so far in the corresponding stratum within
the window, using the equation:

|sample[i](t′)| = sampleSize ∗ |Si|
k

(4.1)

where sampleSize is the total size allocated to reservoir, |Si| is the number of items seen so
far in the stratum Si and k is the total number of items seen so far in the window.

Thereafter, if the re-allocated sub-reservoir size |sample[i](t′)| at current point of time
t′ is different from the previously adjusted sub-reservoir size (i.e., if there is any change in
sub-reservoir size), we proceed with ARS—to adapt according to this change in size (described
in Algorithm 6) as follows: When sub-reservoir size of Si has increased by c, then from the
incoming stream, we insert c items that belong to stratum Si, to the corresponding sub-
reservoir sample[i]. If the sub-reservoir size has decreased by c, we evict c number of items
from the sub-reservoir. This ensures that proportional allocation is retained.

If the re-allocated sub-reservoir size of a stratum is unchanged, we proceed with CRS for
the stratum as explained before.

We perform stratified reservoir sampling until the window terminates and the resulting

52



4.4 Design

Algorithm 7: Biased sampling algorithm

1 biasSample(sample, memo)

2 begin
3 S ← sample.getAllStrata(); // Set of all strata in sample

4 foreach ith stratum Si in S do
5 x←memo[i].size(); // no. of items memoized from Si

6 y← sample[i].size(); // no. of items in sample from Si

7 biasedSample[i]← ∅; // List of items in biased sample from Si

8 if x > y then
9 // Add y items from memo[i] to biasedSample[i] to enable re-use

10 ∀j ∈ {0, ..., y − 1} : biasedSample[i].add(memo[i].get(j));
11 else
12 // First add x items from memo[i] to biasedSample[i]
13 ∀j ∈ {0, ..., x− 1} : biasedSample[i].add(memo[i].get(j));
14 // Fill the remaining (y − x) items from the stratified sample

15 int j = 0;
16 while (biasedSample[i].size() < y) do
17 biasedSample[i].add(sample[i].get(j));
18 j + +;

stratified sample consists of samples from each stratum, proportional to the size of corre-
sponding stratum seen in the whole window.

4.4.3 Biased Sampling

Biased sampling. Biased sampling enables result reuse by including memoized data items in
the sample, but at the same time, ensures that the proportional allocation of samples from
each stratum is retained. In sliding window computations where the window slides by small
intervals, there is only a small change in the input based on insertion and deletion from the
window (see Figure 4.3). Hence, wememoize and reuse the results of sub-computations whose
input is unchanged. However, if we reuse all memoized results from the previous window,
the proportional allocation is lost, since proportions in different windows may vary due to
difference in the arrival rate of sub-streams. Therefore, we select the number of memoized
items for result reuse, based on the number of items in the sample from each stratum.

Algorithm 7 describes our biased sampling algorithm. In this algorithm, we bias the sample
from each stratum separately. Note that here, “memoized items” and “sample size” are specific
to each stratum. The algorithmworks as follows: If the number of memoized items x is greater
than or equal to the sample size y, then we create a biased sample with only y items from the
memoized list, and neglect the extra memoized items. If the number of memoized items is
less than sample size, then we give priority to memoized items and create a biased sample
with all memoized items first, and later we add more items to this biased sample from the
stratified sample until the size of biased sample becomes equal to the size of stratified sample.
This ensures proportional allocation. However, some of the memoized items in memo might
be already in the stratified sample, and this might cause duplicates in the biased sample.
Therefore, in practice, we use a data structure such as a HashSet for storing biasedSample to
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remove duplicates automatically. Finally, we get a biased sample which includes all essential
memoized items as well as stratified samples based on the arrival rate, thus ensuring both
reuse and proportional allocation.

Precision and accuracy in biased sampling. An estimated result is precise if similar results
are obtained with repeated sampling, and it is accurate if estimated result is closer to the true
result (a precise result doesn’t necessarily be accurate always) [152]. Our stratified sample
is precise than a random sample since it considers every stratum, and uses proportional
allocation. Accuracy of a stratified sample is more if (i) different strata have major differences
and (ii) within each stratum, there is homogeneity [152]. Based on our assumptions in §4.3.3,
our stratified sample is accurate since different stratum have different distribution, and items
within each stratum follow same distribution (homogenous).

We bias the sample from each stratum separately, thus preserving the statistics of stratified
sampling, i.e., after the bias, the biased sample still consists of items from each stratum in
the same proportional allocation obtained from stratified sampling. Further, even though
the items selected within a stratum are biased to include memoized items which belong to
the same stratum, since the items follow same distribution, there is little difference between
items within a stratum. Thus our bias sampling technique is as precise and accurate as how
the stratified sample is, provided the assumptions hold.

4.4.4 Run Job Incrementally

Next, we run the user-specified streaming query as an incremental data-parallel job on the
biased sample (derived in §4.4.3). For that, we make use of self-adjusting computation [3, 4].

In self-adjusting computation, the computation is divided into sub-computations, and a
dynamic dependence graph is constructed to record dependencies between these sub-comp-
utations. Formally, a Dynamic Dependence Graph DDG = (V, E) consists of nodes (V )
representing sub-computations and edges (E) representing data and control dependencies
between the sub-computations. Thereafter, a change propagation algorithm is used to
update the output by propagating the input changes through the dependence graph. The
change propagation algorithm identifies a set of sub-computations that directly depend
on the changed data and re-executes those sub-computations. This in turn leads to re-
computation of other data-dependent sub-computations. Change propagation terminates
when all transitively dependent sub-computations are re-computed. For all the unaffected
sub-computations, the algorithm reuses memoized results from previous runs without re-
computation. Lastly, results for all re-computed (or newly computed) sub-computations are
memoized for the next incremental run.

Next, we illustrate the application of self-adjusting computation to a data-parallel job
based on the MapReduce model [75]. (Note that our implementation is based on Spark
Streaming [23], which is a generic extended version of MapReduce.) Figure 4.4 shows the
dependence graph built based on the data-flow graph of the MapReduce model. The data-
flow graph is represented by a DAG, where map and reduce tasks represent nodes (or sub-
computations) in the dependence graph, and the directed edges represent the dependencies
between these tasks. For an incremental run, we launch map tasks for the newly added
data items in the sample (M5 and M6), and reuse the memoized results for the map tasks
from previous runs (M1 to M4). The output of the newly computed map tasks invalidates the
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Figure 4.4 – Run data-parallel job incrementally.

dependent reduce tasks (R3 and R5). However, all reduce tasks that are unaffected by the
changed input can simply reuse their memoized results without re-computation (R1, R2, and
R4). Lastly, we memoize the results for all freshly executed tasks for the next incremental run.
Note that the items removed from the window also act as the input change (e.g., M0), and
sub-computations dependent on the removed items are also re-computed (e.g., R3).

4.4.5 Estimation of Error Bounds

In order to provide a confidence interval for the approximate output, we estimate the error
bounds due to approximation.

Approximation for aggregate functions. Aggregate functions require results based on all the
data items or groups of data items in the population. But since we compute only over a small
sample from the population, we get an estimated result based on the weightage of the sample.

Consider an input stream S, within a window, consisting of n disjoint strata S1, S2 ..., Sn, i.e.,
S =

∑n
i=1 Si. Suppose the ith stratum Si has Bi items and each item j has an associated value

vij . Consider an example to take sum of these values, across the whole window, represented

as
∑n

i=1(
∑Bi

j=1 vij). To find an approximate sum, we first select a sample from the window

based on stratified and biased sampling as described in §4.4, i.e., from each ith stratum Si

in the window, we sample bi items. Then we estimate the sum from this sample as: τ̂ =∑n
i=1(Bi

bi

∑bi
j=1 vij)± ε where the error bound ε is defined as:

ε = tf,1− α
2

√
V̂ ar(τ̂) (4.2)

Here, tf,1− α
2
is the value of the t-distribution (i.e., t-score) with f degrees of freedom and α =

1 − confidence level. The degree of freedom f is expressed as:

f =
n∑

i=1
bi − n (4.3)
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The estimated variance for sum, V̂ ar(τ̂) is represented as:

V̂ ar(τ̂) =
n∑

i=1
Bi ∗ (Bi − bi)

s2
i

bi
(4.4)

where s2
i is the population variance in the ith stratum. Since the bias sampling is such that the

statistics of stratified sampling is preserved, we use the statistical theories [205] for stratified
sampling to compute the error bound.

Currently, we support error estimation only for aggregate queries. For supporting queries
that compute extreme values, such as minimum and maximum, we can make use of extreme
value theory [68, 150] to compute the error bounds.

Error bound estimation. For error bound estimation, we first identify the sample statistic
used to estimate a population parameter, e.g., sum, and we select a desired confidence level,
e.g., 95%. In order to compute the margin of error ε using t-score as given in Equation 4.2, the
sampling distribution must be nearly normal. The Central Limit Theorem (CLT) states that
when the size of sample is sufficiently large (>= 30), then the sampling distribution of a statistic
approximates to normal distribution, regardless of the underlying distribution of values in
the data [205]. Hence, we compute t-score using a t-distribution calculator [158], with the
given degree of freedom f (see Equation 4.3), and cumulative probability as 1− α/2 where α
= 1 − confidence level [152]. Thereafter, we estimate the variance using the corresponding
equation for the sample statistic considered (for sum, the Equation is 4.4). Finally, we use this
t-score and estimated variance of the sample statistic and compute the margin of error using
Equation 4.2.

4.5 Implementation

We implemented IncApprox based on the Apache Spark Streaming framework [23]. Figure 4.5
presents the high-level architecture of our prototype, where the shaded boxes depict the
implemented modules. In this section, we first give a brief necessary background on Spark
streaming, and next, we present the design details of the implemented modules.

Background. Spark Streaming is a scalable and fault-tolerant distributed stream processing
framework. It offers batched streamprocessing APIs (as described in §4.3.3), where a streaming
computation is treated as a series of batch computations on small time intervals. For each
interval, the received input data stream is first stored on a cluster’s memory and a distributed
file system such as HDFS [19] or Tachyon [147]. Thereafter, the input data is processed
using Apache Spark [229], a distributed data-parallel job processing framework similar to
MapReduce [75] or Dryad [127].

Spark Streaming is built on top of Apache Spark, which uses Resilient Distributed Datasets
(RDDs) [229] for distributed data-parallel computing. An RDD is an immutable and fault-
tolerant collection of elements (objects) that is distributed or partitioned across a set of nodes
in a cluster. Spark Streaming extends the RDD abstraction by introducing the DStreams
APIs [227], which is a sequence of RDDs arrived during a time window.

IncApprox implementation. Our implementation builds on the Spark Streaming APIs to
implement the approximate and incremental computing mechanisms. At a high-level (see

56



4.5 Implementation

Sampling

module

Batched

RDDsBatch 

generator

(Spark)

Query  output

Data stream

Sampled

RDDs Incremental 

computation

module

Query budget

Re!ned 

sampling rate

Virtual cost

function

Initial

sampling rate

Error

estimation

module

Streaming

query
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Figure 4.5), the input data stream is split into batches based on a pre-defined interval (e.g.,
one second). Each batch is defined as a sequence of RDDs. Next, the RDDs in each batch
are sampled by the sampling module, with an initial sampling rate computed from the query
budget using the virtual cost function. The sampled RDDs are inputs for the incremental
computation module. In this module, the sampled RDDs are processed incrementally to
provide the query result to the user. Finally, the error is estimated by the error estimation
module. If the value of the error is higher than the error bound target, a feedback mechanism
is activated to tune the sampling rate in the sampling module to provide higher accuracy in
the subsequent query results. We next explain the details for the implemented modules.

I: Sampling module. The sampling module implements the approximation mechanism as
described in §4.4. For that, we adapt sampling methods available in Spark, namely sample(), to
implement our sampling algorithm.

II: Incremental computation module. The incremental computation module implements the
self-adjusting computation mechanism as described in §4.4.4. To implement this component,
we reuse the caching mechanism available in Spark to memoize the intermediate results for
the tasks. For the reduction operations, we adapt a windowing operation in Spark Streaming,
namely reduceByKeyAndWindow() to incrementally update the output. Finally, the dependence
graph is maintained at Spark’s job controller.

III: Error estimationmodule. Finally, the error estimationmodule calculates the error bounds
for the output and sends feedback to the sampling module to tune the sample size in order to
satisfy the accuracy constraint. We implement the algorithm described in §4.4.5 using the
Apache Common Math library [158].

In general, our modifications in Spark Streaming are fairly straightforward, and could easily
be adapted to other batched streaming processing frameworks (described in §4.3.3). More
importantly, we support unmodified applications since we did not modify the application
programming interface.
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4.6 Evaluation

In this section, we first present a micro-benchmarks based evaluation, and next, we report
our experience on deploying IncApprox for the real-world case-studies (§4.7).
For analyzing the effectiveness of memoization in improving the result reuse rate, we

evaluate IncApprox using a simulated data stream. In particular, our evaluation analyzes the
impact of varying four different parameters, namely, sample size, slide interval, window size,
and arrival rate for sub-streams.

We generated a synthetic data stream with three different sub-streams. Each sub-stream is
generated with an independent Poisson distribution and different mean arrival rates. For the
first three experiments, i.e., to analyze the impact of sample size, slide interval, and window
size on memoization, we generated three sub-streams with a mean arrival rate of 3 : 4 : 5
data items per unit time respectively. To analyze the impact of the fluctuating arrival rate
of events, we generated two sub-streams with fluctuating arrival rates, and kept the third
sub-stream with a constant arrival rate, for a comparative analysis.

4.6.1 Varying Sample Sizes

We first study the effect of varying sample sizes on memoization by applying our algorithm
(described in §4.4) to the synthetic data stream. For the experiment, we keep the other
parameters—window size and slide interval—fixed. We measure the average number of mem-
oized items from each sub-stream S1, S2, S3 with different arrival rates 3 : 4 : 5 respectively,
by varying the total sample size.

Figure 4.6 (a) shows our measurements with a fixed window size of 10, 000 items, 4% slide
interval (i.e., 400) and varying sample sizes (on x-axis): 10%, 20%, 40%, 60% and 80% of the win-
dow size. We observe that the average number of data itemsmemoized is directly proportional
to the sample size and the arrival rate. When the sample size increases, the average number
of data items memoized increases constantly because more items from the previous window
is available for memoization. We also observe a higher memoization rate for sub-streams
with higher arrival rates, the reason being a proportional allocation of sub-sample sizes.

4.6.2 Varying Slide Intervals

Next, we evaluate the impact of varying slide intervals on memoization with constant window
and sample sizes. We measure the average number of items memoized from each sub-stream
with different slide intervals.

Figure 4.6 (b) shows our measurements with a fixed window size of 10, 000 and sample
size of 10% window size (i.e., 1000), but varying slide intervals (on x-axis): 1%, 2%, 4%, 8%,
and 16% of the window size. We observe that when the slide interval is 1%, our algorithm
memoizes an average of 99.5% of total samples, which greatly improves the reuse rate, and
thus, leads to higher efficiency. As evident from the plot, when the slide interval increases,
the percentage of memoized items decreases, because larger slides allow fewer samples to
reuse from the previous window. We also repeated the experiments with different window
sizes, but observed very similar results. Thus, the results illustrate that smaller slides (which
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Figure 4.6 – The effect of various sample fractions and slide intervals on the memoization.

is the usual case for an incremental workflow) allow higher memoization and thus higher
result reuse.

4.6.3 VaryingWindow Sizes

Next, we evaluate the impact of varying window sizes on memoization. We measure the
number of items in a sample and the number of items memoized from the previous window,
and analyze the reuse rate based on this measurement. We begin our experiment with a
window of 10, 000 items, and then increase/decrease the window size, e.g., we first increase
the window size by 200, then decrease it by 100, etc.
Figure 4.7 (a) shows our measurements, with a fixed 2% slide interval and 10% sample size

for each corresponding window size. The x-axis represents ∆, i.e., the change in window
size between two adjacent windows (see Figure 4.3). The figure illustrates that whenever the
window size decreases (i.e., ∆ is negative), memoized samples are more than the samples
needed in the current window. For example, when ∆ is −100, sample size is 1010 and we have
1017 memoized items from the previous window i.e., decreasing window size can allow a 100%
re-use rate, provided the slide interval is considerably low (here 2%). The figure also depicts
that when window size increases (i.e, ∆ is positive), the sample size is higher than the number
of memoized items from the previous window, and the larger the increase in the window size,
the larger is the difference between samples needed and memoized. This implies a lesser
result reuse rate.

4.6.4 Varying Arrival Rates for Sub-Streams

Lastly, we evaluate the effect of fluctuating arrival rate of sub-streams. As mentioned earlier,
we generated two sub-streams, each with fluctuating arrival rates, and a third sub-stream
with a constant arrival rate for the analysis. We measure the percentage of items memoized
from each sub-stream.

Figure 4.7 (b) depicts the memoization based on fluctuating arrival rates, for a fixed window
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Figure 4.7 – The effect of various window sizes and arrival rates on the memoization.

of 10, 000 items and sample size of 10%. The x-axis shows the arrival rate for the three
substreams S1, S2, and S3. The figure illustrates that memoization is inversely proportional
to the arrival rate. For example, for sub-stream S1, when the arrival rate increases from 1
to 3, the percentage of memoization decreases, because the sample size gets higher due
to proportional allocation, but memoized items available are lesser. When S1’s arrival rate
decreases from 3 to 2, we observe that the memoization increases since we have more items
memoized from the previous window. Sub-stream S2 also depicts similar behaviour. However
we notice that even though arrival rate is constant for the third sub-stream, its memoization
rate differs relative to the other two sub-streams since we use a proportional allocation of
sample sizes. The figure illustrates that in spite of the fluctuations in arrival rates, IncApprox
has a memoization rate greater than 97%.

4.7 Case Studies

Next, we present our experience on deploying IncApprox for the following two real-world
case-studies: (i) network traffic monitoring, and (ii) data analytics on Twitter stream.

4.7.1 Experimental Setup

Cluster setup. For the evaluation, we used a cluster of 24 nodes connected via Gigabit
Ethernet (1000BaseT full duplex). Each node has 2 Intel Xeon E5405 CPUs (quad core), 8GB
of RAM, and a SATA-2 hard disk, running Debian Linux 5.0 with kernel 2.6.26. We deployed
IncApprox on 20 nodes and Apache Kafka [130] stream aggregator on the remaining 4 nodes
(the setup is similar to Figure 4.1).

Measurements. We evaluated two key metrics: throughput and accuracy loss. The through-
put is defined as the number of processed records per second, and the accuracy loss is defined
as (approx− exact)/exact where approx and exact are the results obtained from approximate
and native executions respectively. We report the average over 20 runs for all measurements.
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Finally, to assess the individual performance benefits of incremental (Inc) and approximate
(Approx) computing paradigms, we switched on Inc (incremental computation) and Approx
(sampling + error estimation) modules separately. For Inc, the window size is set to 10 seconds,
and the window slide interval is set to 2 seconds. For Approx, the sampling fraction is set to
60%.

4.7.2 Network Traffic Analytics

Network traffic monitoring plays an important role in network management [52, 144]. In
this case study, we evaluated the performance of IncApprox in a real-time network traffic
monitoring application that measures the number of TCP, UDP, and ICMP packets over time.

Dataset. We used network traffic traces from CAIDA [51]. In particular, we used the network
traces captured on the high-speed Internet backbone links in Chicago (labeled as A) containing
around 670 GB of network traffic in year 2015.

Methodology. From the CAIDA traces, we created a NetFlow [66] dataset for our experiments.
We developed a tool that allows us to tune the throughput of the NetFlow stream, i.e., the
number of messages sent per second and the number of NetFlow records per message. The
experiment was conducted for 30 minutes. The throughput of the stream is tuned to measure
the system throughput. The stream starts with 1000 messages/second and continues to
increase throughput until the system is exhausted. Each message from the stream contains
200 NetFlow records.

Results.

Figure 4.8 shows the throughput comparison between Approx, Inc, IncApprox, and native
Spark Streaming. The individual throughput for approximate computing (Approx) and incre-
mental computing (Inc) is 1.41× and 1.43× higher than native Spark Streaming execution,
respectively. However, IncApprox performs significantly better with the combined benefits
of both paradigms, an improvement of 2.1× over the native execution.

Figure 4.9 (a) indicates that the throughput decreases quickly with the increasing sampling
fraction. With the sampling fraction of 5%, IncApprox achieves a 2.6× higher throughput
compared to the native execution, whereas the throughput of Approx is 2.14× higher than
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the throughput of the native execution. At the sampling fraction of 90%, the throughput is
1.58× and 1.9× less than the throughput with 5% sampling fraction for IncApprox and Approx,
respectively.

Figure 4.9 (b) shows the accuracy loss during the approximate computation under different
sampling rates. As the sample size increases, the accuracy loss gets smaller (in other words,
accuracy improves), though not in a linear fashion.

4.7.3 Twitter Analytics

Analyzing online social networks is an active research area [163]. In the second case-study,
we evaluated IncApprox on a real-time Twitter data stream to compute trending topics.

Dataset. For this case study, we developed a crawler using the Twitter API [209] to collect
publicly available tweets during three days, from September 17 to September 19, 2015.

Methodology. Since the Twitter API rate limits the number of returned tweets per request,
we first dumped the crawled tweets dataset to a CSV file, and developed a tool to replay the
tweets as a Twitter stream. This tool allows to control the throughput of the tweet stream. In
our experiments, the throughput of the tweet stream is started with 1000 messages/second
and continuously increased until the system is exhausted.

Results.

Figure 4.8 represents the throughput of each approach while processing the tweet stream.
Approx and Inc achieve 1.49× and 1.51× higher throughput than native Spark Streaming.
IncApprox is 2× better than native in terms of throughput.

Figure 4.9 (a) indicates that sampling fractions directly affect the throughput of IncApprox
and Approx. With the sampling fraction of 5%, the throughput of IncApprox is 2.6× higher
than the throughput of the native execution, whereas this value of Approx is 2.03×. At the
sampling fraction of 90%, the throughput is 1.6× and 1.7× less than the throughput with 5%
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sampling fraction for IncApprox and Approx, respectively.

Figure 4.9 (b) shows the accuracy loss with different sampling rates. The accuracy loss in
case of Twitter analytics has a similar but slightly higher curve as for network monitoring.

4.8 Discussion

The design of IncApprox is based on three assumptions (see §4.3.3). Solving these assump-
tions is beyond the scope of this chapter. However, in this section, we discuss some of the
approaches that could be used to meet our assumptions.

I: Stratification of sub-streams. Currently we assume that sub-streams are stratified, i.e.,
the data items of individual sub-streams have the same distribution. However, it may not be
the case. As also discussed in Chapter §3, we next present two alternative approaches, namely
bootstrap [87, 88, 175] and a semi-supervised learning algorithm [157] to classify evolving data
streams.

Bootstrap [87, 88, 175] is a non parametric re-sampling technique used to estimate param-
eters of a population. It works by randomly selecting a large number of bootstrap samples
with replacement and with the same size as in the original sample. Unknown parameters of a
population can be estimated by averaging these bootstrap samples. We could create such a
bootstrap-based classifier from the initial reservoir of data, and the classifier could be used
to classify sub-streams. Alternatively, we could employ a semi-supervised algorithm [157] to
stratify a data stream. This algorithm manipulates both unlabeled and labeled data items to
train a classification model.

II: Virtual cost function. Secondly, we assume that there exists a virtual function that com-
putes the sample-size based on the user-specified query budget. The query budget could be
specified as either available computing resources or latency requirements. As also discussed
in the previous chapter, we suggest two existing approaches—Pulsar [16] and resource pre-
diction model [99, 155]—to design such a virtual function for given computing resources and
latency requirements, respectively.

Pulsar [16] is a system that allocates resources based on tenants’ demand, using a multi-
resource token bucket. It provides a workload independent guarantee using a pre-advertised
cost model, i.e., for each appliance and network, it advertises a virtual cost function that
maps a request to its cost in tokens. We could adopt a similar cost model as follows: An
“item”, i.e., a data block to be processed, could be considered as a request and “amount of
resources” needed to process it could be the cost in tokens. Since the resource budget gives
total resources (here tokens) to be used, we could find the number of items, i.e., the sample
size, that can be processed using these resources, ruling out faults and stragglers.

To find the sample-size for a given latency budget, we could use a resource predictionmodel
based on performance metrics and QoS parameters in SLAs. Such a model could analyze
the diurnal patterns of resource usage [57], e.g., off-line predictions based on pre-recorded
resource usage log or predictions based on statistical machine learning [99, 155], to predict
the future resource requirements based on workload and latency. Once we get the resource
requirement for a latency budget using this model, we could find the sample-size needed by
using the above suggested method similar to Pulsar.
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III: Fault tolerance. Our current algorithm does not take into account the failure of nodes in
the cluster where memoized results are stored. We discuss three different approaches that
could be adopted for fault tolerance if memoized results are unavailable: (i) we could continue
processing the window without using any memoized items, albeit with lower efficiency; (ii)
we could use a similar approach for fault tolerance as provided in Spark [229], where the
lineage of memoized RDDs is used to recompute only the lost RDD partitions; (iii) we could
make use of underlying distributed fault tolerant file-systems (HDFS [19]) to asynchronously
replicate the memoized results.

4.9 RelatedWork

IncApprox builds on two computing paradigms, namely, incremental and approximate com-
puting. In this section, we survey the techniques proposed in these two paradigms.

Incremental computation. Since modifying the output of computation incrementally is
asymptotically more efficient than re-computing everything from scratch, incremental com-
putation is an active area of research for “big data” analytics. Earlier big data systems for
incremental computation proposed an alternative programming model where the program-
mer is asked to implement an efficient incremental-update mechanism. Examples of non-
transparent systems include Google’s Percolator [173], and Yahoo’s CBP [151]. A downside
of these early proposals is that they depart from the existing programming model, and also
require implementation of dynamic algorithms on per-application basis, which could be
difficult to design and implement.

To overcome the limitations of the aforementioned systems, researchers proposed trans-
parent approaches for incremental computation. Examples of transparent systems include
Incoop [35, 37], Comet [119], DryadInc [176], Slider [38] and NOVA [50]. These systems leverage
the underlying data-parallel programming model such as MapReduce [75] or Dryad [127] for
supporting incremental computation. Our work builds on transparent big data systems for
incremental computation. In particular, we leverage the advancements in self-adjusting com-
putation [3] to improve the efficiency of incremental computation. In contrast to the existing
approaches, our approach extends incremental computation with the idea of approximation,
thus further improving the performance and throughput for applications.

Approximate computation. Approximation techniques such as sampling [11, 100], sketches [73],
and online aggregation [121] have been well-studied over the decades in the context of tradi-
tional (centralized) database systems. Recently proposed systems such as ApproxHadoop [103]
and BlinkDB [7, 8] showed that it is possible to achieve the benefits of approximate computing
also in the context of distributed big data analytics.

ApproxHadoop [103] uses multi-stage sampling [152] for approximate MapReduce [75] job
execution. BlinkDB [7, 8] proposed an approximate distributed query processing engine
that uses stratified sampling [11] to support ad-hoc queries with error and response time
constraints. Our system builds on the advancements in approximate computing for big data
analytics. However, our system is different from the existing approximate computing systems
in two crucial aspects. First, unlike the existing systems, ApproxHadoop and BlinkDB, that are
designed for batch processing—we target stream processing. Second, we extend approximate
computing with incremental computation.
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4.10 Conclusion

In this chapter, we presented the marriage of incremental and approximate computations.
Our approach transparently benefits unmodified applications, i.e., programmers do not have
to design and implement application-specific dynamic algorithms or sampling techniques.
We build on the observation that both computing paradigms rely on computing over a subset
of data items instead of computing over the entire dataset. We marry these two paradigms
by designing a sampling algorithm that biases the sample selection to the memoized data
items from previous runs. We implemented our algorithm in a data analytics system called
IncApprox based on Apache Spark Streaming. Our evaluation shows that IncApprox achieves
improved benefits of low-latency execution and efficient utilization of resources. As men-
tioned at the beginning of this chapter, the content of this chapter is based on our conference
publication [137].
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Privacy-Preserving StreamAnalytics

We have so far designed and implemented StreamApprox and IncApprox that strike a balance
between the two desirable classical goals in stream processing systems: (i) achieving high-
throughput/low-latency and (ii) efficient utilization of computing resources. These systems
allow users to systematically make a trade-off between throughput/latency and accuracy.
However, we wanted to explore new trade-off domains in addition to throughput/latency
and accuracy.

This motivated us to conduct the third work in this thesis — PrivApprox to expand the
trade-off domain with a new privacy dimension. This work is based on the observation
that nowadays, online advertisement is a major economic force for modern online services,
where users’ private data is continuously collected for real-time data analytics. In the current
advertisement eco-system, the goals of users and data analysts are at odds: users seek
stronger privacy, while analysts strive for high-utility data analytics in near real time. In this
chapter, we target to design a pragmatic privacy-preserving data analytics system PrivApprox
that resolves this tension.

This chapter is organized as follows. We first motivate the design of PrivApprox in Sec-
tion §5.1. We next briefly highlight the contributions of PrivApprox in Section §5.2. Thereafter,
we present the overview of PrivApprox in Section §5.3. Next, we describe the detailed design
of PrivApprox in Section §5.4. Next, we present the implementation of PrivApprox based
on the design in Section §5.5. Then, we present an experimental evaluation of PrivApprox
using micro-benchmarks in Section §5.6 and two real world case-studies in Section §5.7.
Thereafter, we discuss the limitations of our design in Section §5.8. Finally, the related work
and conclusions are presented in Section §5.9 and Section §5.10, respectively. Note that we
present the privacy analysis and proofs of PrivApprox system in Appendix §A.1.
The content of this chapter is based on our conference paper [183] and our technical

report [182]. This work is based on a joint collaboration with Martin Beck, Pramod Bhatotia,
Ruichuan Chen, Christof Fetzer, and Thorsten Strufe.

5.1 Motivation

Many online services continuously collect users’ private data for real-time analytics. Much of
this data arrives as a data stream and in huge volumes, requiring real-time stream processing
based on distributed systems [17, 20, 23, 24].

In the current ecosystem of data analytics, the analysts usually have direct access to the
users’ private data, and must be trusted not to abuse it. However, this trust has been violated
in the past [69, 120, 178, 196].
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A pragmatic eco-system has two desirable, but contradictory design requirements: (i)
stronger privacy guarantees for the users; and (ii) high-utility stream analytics in real-time.
Users seek stronger privacy, while analysts strive for high-utility analytics in real time.

To meet these two design requirements, there is a surge of novel computing paradigms
that address these concerns, albeit separately. Two such paradigms are privacy-preserving
analytics to protect user privacy and approximate computation for real-time analytics.

Privacy-preserving analytics. Recent privacy-preserving analytics systems favor a dis-
tributed architecture to avoid central trust (see §5.9 for details), where users’ private data
is stored locally on their respective client devices. Data analysts use a publish-subscribe
mechanism to run aggregate queries over the distributed private dataset of a large number of
clients. Thereafter, such systems add noise to the aggregate output to provide useful privacy
guarantees, such as differential privacy [82]. Unfortunately, these state-of-the-art systems
normally deal with single-shot batch queries, and therefore, these systems cannot be used
for real-time stream analytics.

Approximate computation. As also mention in previous chapters, approximate computation
is based on the observation that many data analytics jobs are amenable to an approximate,
rather than the exact output (see §5.9 for details). For such an approximate workflow, it is
possible to trade accuracy by computing over a partial subset (usually selected via a sampling
mechanism) instead of the entire input dataset. Thereby, data analytics systems based on
approximate computation can achieve low latency and efficient utilization of resources.
However, the existing systems for approximate computation assume a centralized dataset,
where the desired sampling mechanism can be employed. Thus, existing systems are not
compatible with the distributed privacy-preserving analytics systems.

Themarriage. Wemake the observation that the two computing paradigms, privacy-preserving
analytics and approximate computation, are complementary. Both paradigms strive for an
approximate instead of the exact output, but they differ in theirmeans and goals for approxima-
tion. Privacy-preserving analytics adds explicit noise to the aggregate query result to protect
users’ privacy. Whereas, approximate computation relies on a representative sampling of the
entire dataset to compute over only a subset of data items to enable low-latency/efficient
analytics.

5.2 Contribution

In this chapter, we marry privacy-preserving analytics and approximate computing paradigms
together in order to leverage the benefits of both. The high-level idea is to achieve privacy
(via approximation) by directly computing over a subset of sampled data items (instead of
computing over the entire dataset) and then adding an explicit noise for privacy-preservation.

To realize this marriage, we designed an approximation mechanism that also achieves
privacy-preserving goals for stream analytics. Our design (see Figure 5.1) targets a distributed
setting, similar as aforementioned, where users’ private data is stored locally on their re-
spective personal devices, and an analyst issues a streaming query for analytics over the
distributed private dataset of users. The analyst’s streaming query is executed on the users’
data periodically (a configurable epoch) and the query results are transmitted to a centralized
aggregator via a set of proxies. The analyst interfaces with the aggregator to get the aggregate

68



5.3 Overview

query output periodically.

We employ two core techniques to achieve our goal. Firstly, we employ sampling [166]
directly at user’s site for approximate computation, where each user randomly decides
whether to participate in answering the query in the current epoch. Since we employ sampling
at the data source, instead of sampling at a centralized infrastructure, we are able to squeeze
out the desired data size (by controlling the sampling parameter) from the very “first stage” in
the analytics pipeline, which is essential in low-latency environments.

Secondly, if the user participates in the query answering process, we employ a randomized
response [96] mechanism to add noise to the query output at user’s site, again locally at the
source of the data in a decentralized fashion. In particular, each user locally randomizes its
truthful answer to the query to achieve local differential privacy guarantees (§5.4.2). Since
we employ noise addition at the source of data, instead of adding the explicit noise to the
aggregate output at a trusted aggregator or proxies, we enable a truly “synchronization-free”
distributed architecture, which requires no coordination among proxies and the aggregator
for the mandated noise addition.

The last, but not the least, silver bullet of our design: it turns out that the combination of
the two aforementioned techniques (i.e., sampling and randomized response) led us to achieve
zero-knowledge privacy [101], a privacy bound tighter than the state-of-the-art differential
privacy [82]. (We prove our claim in §A.1.)
To summarize, we present the design and implementation of a practical system for privacy-

preserving stream analytics in real time. In particular, our system is a novel combination of
the sampling and randomized response techniques, as well as a scalable “synchronization-
free” routing scheme employing a light-weight XOR encryption scheme [62]. The resulting
system ensures zero-knowledge privacy, anonymization, and unlinkability for users (§5.3.2).
Altogether, we make the following contributions:

• We present a marriage of sampling and randomized response to achieve improved
performance and stronger privacy guarantees.

• We present an adaptive query execution interface for analysts to systematically make a
trade-off between the output accuracy, and the query execution budget.

• We present a confidence metric on the output accuracy using a confidence interval to
interpret the approximation due to sampling and randomization.

To empirically evaluate our approach, we implemented our design as a fully-functional
prototype in a system called PrivApprox1 based on Apache Flink [17] and Apache Kafka [130]. In
addition to stream analytics, we further extended our system to support privacy-preserving
“historical” batch analytics over users’ private datasets. The evaluation based on micro-
benchmarks and real-world case-studies shows that this marriage is, in fact, made in heaven!

5.3 Overview

In this section, we present an overview of our system called PrivApprox.

1 The source code of PrivApprox along with the experimental evaluation setup is publicly available: https://Pri-

vApprox.github.io.
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Figure 5.1 – System overview.

5.3.1 SystemArchitecture

PrivApprox is designed for privacy-preserving stream analytics on distributed users’ private
dataset. Figure 5.1 depicts the high-level architecture of PrivApprox. Our system consists of
four main components: clients, proxies, aggregator, and analysts.

Clients locally store users’ private data on their respective personal devices, and subscribe
to queries from the system. Analysts publish streaming queries to the system, and also specify
a query execution budget. The query execution budget can either be in the form of latency
guarantees/SLAs, output quality/accuracy, or the available computing resources for query
processing. Our system ensures that the computation remains within the specified budget.

At a high-level, the system works as follows: a query published by an analyst is distributed
to clients via the aggregator and proxies. Clients answer the analyst’s query locally over the
users’ private data using a privacy-preserving mechanism. Client answers are transmitted to
the aggregator via anonymizing proxies. The aggregator aggregates received answers from
the clients to provide privacy-preserving stream analytics to the analyst.

5.3.2 SystemModel

Before we explain the design of PrivApprox, we present the system model assumed in this
work.

QueryModel

PrivApprox supports the SQL query language for analysts to formulate streaming queries.
While queries can be complex, the results of a query are expressed as counts within histogram
buckets, i.e., each bucket represents a small range of query’s answer values. Specifically,
each query answer is represented in the form of binary buckets, where each bucket stores
a possible answer value ‘1’ or ‘0’ depending on whether or not the answer falls into the
value range represented by that bucket. For example, an analyst can learn the driving speed
distribution across all vehicles in San Francisco by formulating an SQL query “SELECT speed
FROM vehicle WHERE location=`San Francisco'”. The analyst can then define 12 answer
buckets on speed: ‘0’, ‘1∼10’, ‘11∼20’, · · · , ‘81∼90’, ‘91∼100’, and ‘> 100’. If a vehicle is moving at
15 mph in San Francisco, it answers ‘1’ for the third bucket and ‘0’ for all others.
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Our query model supports not only numeric queries as described above, but also non-
numeric queries. For non-numeric queries, each bucket is specified by a matching rule or a
regular expression. Note that, at first glance, our query model may appear simple, it however
supports a range of queries such as histogram queries and frequency queries. In addition, it
has been shown to be effective for a wide-range of analytics algorithms [42, 43].

ComputationModel

PrivApprox adopts a batched stream programming model [17, 23] in which the online data
stream is split into small batches; and each small batch is processed by launching a distributed
data-parallel job. The batched streaming model is adopted widely compared to trigger-based
systems [20, 24] for the following advantages: exact-once semantics, efficient fault-tolerance,
and a common data-parallel programming model for both stream and batch analytics.

In particular, PrivApprox employs sliding window computations over batched stream pro-
cessing [38, 39]. For sliding windows, the computation window slides over the input data
stream, where the new incoming data items are added, and the old data items are dropped
from the window as they become less relevant. Note that these systems [17, 23] expose a
time-based window length, and based on the arrival rate, the number of data items within a
window may vary accordingly.

ThreatModel

Analysts are potentially malicious. They may try to violate the PrivApprox’s privacy model,
i.e., de-anonymize clients, build profiles through the linkage of requests and answers, or
de-randomize (remove added noise from) the answers.

Clients are potentially malicious. They could generate false or invalid responses to distort
the query result for the analyst. However, we do not defend against the Sybil attack [81],
which is beyond the scope of this work [214].

Proxies are also potentially malicious. They may transmit messages between clients and
the aggregator in contravention of the system protocols. PrivApprox includes at least two
proxies, and there are at least two proxies which do not collude with each other.

The aggregator is assumed to be Honest-but-Curious (HbC): the aggregator faithfully
conforms to the system protocol, but may try to exploit the information about clients. The
aggregator does not collude with any proxy, nor the analyst.

Finally, we assume that all end-to-end communications use authenticated and confidential
connections (are protected by long-lived TLS connections), and no system component could
monitor all network traffic.

Privacy Properties

Our privacy properties include: (i) zero-knowledge privacy, (ii) anonymity, and (iii) unlinkabil-
ity.

All aggregate query results in the system are independently produced under zero-knowledge
privacy guarantees. The chosen privacy metric zero-knowledge privacy [101] builds upon
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differential privacy [82] and provides a tighter bound on privacy guarantees compared to
differential privacy. Informally, zero-knowledge privacy states that essentially everything that
an adversary can learn from the output of an zero-knowledge private mechanism could also
be learned using aggregate information. Anonymity means that no system components can
associate query answers or query requests with a specific client. Finally, unlinkability means
that no system component can join any pair of query requests or answers to the same client,
even to the same anonymous client.

For the formal definitions, analysis, and proofs—refer §A.1.

Assumptions

We make the following assumptions.

1. We assume that the input stream is stratified based on the source of event, i.e., the
data items within each stratum follow the same distribution, and are mutually indepen-
dent. Here a stratum refers to one sub-stream. If multiple sub-streams have the same
distribution, they are combined to form a stratum.

2. We assume the existence of a virtual function that takes the query budget as the input
and outputs the sample size for each window based on the budget.

3. We assume that the aggregator faithfully follows the system protocol. We could use
trusted computing such as remote attestation [195] based on Trusted Platform Modules
(TPMs) to relax the HbC assumption.

We discuss different possible means to meet the first two assumptions in §5.8.

5.4 Design

PrivApprox consists of two main phases (see Figure 5.1): submitting queries and answering
queries. In the first phase, an analyst submits a query (along with the execution budget) to
clients via the aggregator and proxies. In the second phase, the query is answered by the
clients in the reverse direction.

5.4.1 Submitting Queries

To perform statistical analysis over users’ private data streams, an analyst creates a query
using the query model described in §5.3.2. In particular, each query consists of the following
fields, and is signed by the analyst for non-repudiation:

Query := 〈QID, SQL, A[n], f, w, δ〉 (5.1)

• QID denotes a unique identifier of the query. This can be generated by concatenating
the identifier of the analyst with a serial number unique to the analyst.

• SQL denotes the actual SQL query, which is passed on to clients and executed on their
respective personal data.
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• A[n] denotes the format of a client’s answer to the query. The answer is an n-bit vector
where each bit associates with a possible answer value in the form of a “0” or “1” per
index (or answer value range).

• f denotes the answer frequency, i.e., how often the query needs to be executed at
clients.

• w denotes the window length for sliding window computations [38]. For example, an
analyst may only want to aggregate query results for the last ten minutes, which means
the window length is ten minutes.

• δ denotes the sliding interval for sliding window computations. For example, an analyst
may want to update the query results every one minute, and so the sliding interval is
set to one minute.

After forming the query, the analyst sends the query, along with the query execution budget,
to the aggregator. Once receiving the pair of the query and query budget from the analyst,
the aggregator first converts the query budget into system parameters for sampling (s) and
randomization (p, q). We explain these system parameters in the next section §5.4.2. Hereafter,
the aggregator forwards the query and the converted system parameters to clients via proxies.

5.4.2 AnsweringQueries

After receiving the query and system parameters, we next explain how the query is answered
by clients and processed by the system to produce the result for the analyst. The query
answering process involves several steps including (i) sampling at clients for low-latency
approximation; (ii) randomizing answers for privacy preservation; (iii) transmitting answers
for anonymization and unlinkability; and finally, (iv) aggregating answers with error estimation
to give a confidence level on the approximate output. We next explain the entire workflow
using these four steps. (The algorithms are detailed in §5.4.3.)

Step I: Sampling at Clients

We make use of approximate computation to achieve low-latency execution by computing
over a subset of data items instead of the entire input dataset. Specifically, our work builds
on sampling-based techniques [7, 103, 137, 204] in the context of “Big Data” analytics. Since
we aim to keep the private data stored at individual clients, PrivApprox applies an input data
sampling mechanism locally at the clients. In particular, we use Simple Random Sampling
(SRS) [166].

Simple Random Sampling (SRS). SRS is considered as a fair way of selecting a sample from
a given population since each individual in the population has the same chance of being
included in the sample. We make use of SRS at the clients to select clients that will participate
in the query answering process. In particular, the aggregator passes the sampling parameter
(s) on to clients as the probability of participating in the query answering process. Thereafter,
each client flips a coin with the probability based on the sampling parameter (s), and decides
whether to participate in answering a query. Suppose that we have a population of U clients,
and each client i has an answer ai. We want to calculate the sum of these answers across the
population, i.e.,

∑U
i=1 ai. To compute an approximate sum, we apply the SRS at clients to get a
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sample of U ′ clients. The estimated sum is then calculated as follows:

τ̂ = U

U ′

U ′∑
i=1

ai ± error (5.2)

Where the error bound error is defined as:

error = t
√

V̂ ar(τ̂) (5.3)

Here, t is a value of the t-distribution with U ′ − 1 degrees of freedom at the 1− α/2 level of
significance, and the estimated variance V̂ ar(τ̂) of the sum is:

V̂ ar(τ̂) = U2

U ′ σ2(U − U ′

U
) (5.4)

Where σ2 is the sample variance of sum.

Note that we currently assume that all clients produce the input stream with data items
following the same distribution, i.e., all clients’ data streams belong to the same stratum. We
further extend it for stratified sampling in §5.4.4.

Step II: AnsweringQueries at Clients

Clients that participate in the query answering process make use of the randomized response
technique [96] to preserve answer privacy, with no synchronization among clients.

Randomized response. Randomized response protects user’s privacy by allowing individuals
to answer sensitive queries without providing truthful answers all the time, yet it allows
analysts to collect statistical results. Randomized response works as follows: suppose an
analyst sends a query to individuals to obtain the statistical result about a sensitive property.
To answer the query, a client locally randomizes its answer to the query [96]. Specifically, the
client flips a coin, if it comes up heads, then the client responds its truthful answer; otherwise,
the client flips a second coin and responds “Yes” if it comes up heads or “No” if it comes up
tails. The privacy is preserved via the ability to refuse responding truthful answers.

Suppose that the probabilities of the first coin and the second coin coming up heads are
p and q, respectively. The analyst receives N randomized answers from individuals, among
which Ry answers are “Yes”. Then, the number of original truthful “Yes” answers before the
randomization process can be estimated as:

Ey = Ry − (1− p)× q ×N

p
(5.5)

Suppose Ay and Ey are the actual and the estimated numbers of the original truthful “Yes”
answers, respectively. The accuracy loss η is then defined as:

η =
∣∣∣∣∣Ay − Ey

Ay

∣∣∣∣∣ (5.6)
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Figure 5.2 – XOR-based encryption with two proxies.

It has been proven in [83] that, the randomized response mechanism achieves ε-differential
privacy [82], where:

ε = ln
(Pr[Response = Y es|Truth = Y es]

Pr[Response = Y es|Truth = No]
)

(5.7)

More specifically, the randomized response mechanism achieves ε-differential privacy,
where:

ε = ln
(p + (1− p)× q

(1− p)× q

)
(5.8)

The reason is: if a truthful answer is “Yes”, then with the probability of ‘p + (1− p)× q’, the
randomized answer will still remain “Yes”. Otherwise, if a truthful answer is “No”, then with
the probability of ‘(1− p)× q’, the randomized answer will become “Yes”.

It is worth mentioning that, combining randomized response with the sampling technique
used in Step I, we achieve not only differential privacy but also zero-knowledge privacy [101]
which is a privacy bound tighter than differential privacy. We prove our claim in §A.1.

Step III: Transmitting Answers via Proxies

After producing randomized responses, clients transmit them to the aggregator via the proxies.
To achieve anonymity and unlinkability of the clients against the aggregator and analysts, we
utilize the XOR-based encryption together with source rewriting, which has been used for
anonymous communications [62, 63, 79, 188]. Under the assumptions that:

• at least two proxies are not colluding

• the proxies don’t collude with the aggregator, nor the analyst

• the aggregator and analyst have only a local view of the network

neither the aggregator, nor the analyst will learn any (pseudo-)identifier to deanonymize
or link different answers to the same client. This property is achieved by source rewriting,
which is a typical building block for anonymization schemes [79, 188]. At the same time the
content of the answers is hidden from the proxies using the XOR-based encryption.

XOR-based encryption. At a high-level, the XOR-based encryption employs extremely effi-
cient bit-wise XORoperations as its cryptographic primitive compared to expensive public-key
cryptography (see Figure 5.2). This allows us to support resource-constrained clients, e.g.,
smartphones and sensors. The underlying idea of this encryption is simple: if Alice wants to
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send a message M of length l to Bob, then Alice and Bob share a secret MK (in the form of a
random bit-string of length l). To transmit the message M privately, Alice sends an encrypted
message ‘ME = M ⊕MK ’ to Bob, where ‘⊕’ denotes the bit-wise XOR operation. To decrypt
the message, Bob again uses the bit-wise XOR operation: M = ME ⊕MK .

Specifically, we apply the XOR-based encryption to transmit clients’ randomized answers as
follows. At first, each randomized answer is concatenated with its associated query identifier
QID to build a message M :

M = QID, RandomizedAnswer (5.9)

Thereafter, the client generates (n− 1) random l-bit key strings MKi with 2 ≤ i ≤ n using a
cryptographic pseudo-random number generator (PRNG) seeded with a cryptographically
strong random number. The XOR of all (n− 1) key strings together forms the secret MK .

MK =
n⊕

i=2
MKi (5.10)

Next, the client performs an XOR operation with M and MK to produce an encrypted
message ME .

ME = M ⊕MK (5.11)

As a result, the message M is split into n messages 〈ME , MK2 , · · · , MKn〉. Afterwards, a
unique message identifier MID is generated, and sent along with the split messages to the n
proxies via anonymous channels enabled by source rewriting [79, 188].

Client −→ Proxy1 : 〈MID, ME〉
Client −→ Proxyi : 〈MID, MKi〉

(5.12)

Upon receiving the messages (either 〈MID, ME〉 or 〈MID, MKi〉) from clients, the n proxies
transmit these messages to the aggregator.

The message identifier MID ensures that ME and all associated MKi will be joined later to
decrypt the original message M at the aggregator. Note that, 〈MID, ME〉 and all 〈MID, MKi〉
are computationally indistinguishable, which hides from the proxies if the received data
contains the encrypted answer or is just a pseudo-random bit string.

Step IV: Generating Result at the Aggregator

At the aggregator, all data streams (〈MID, ME〉 and 〈MID, MKi〉) are received, and can be
joined together to obtain a unified data stream. Specifically, the associated ME and MKi are
paired by using the message identifier MID. To decrypt the original randomized message M
from the client, the XOR operation is performed over ME and MK : M = ME ⊕MK with MK

being the XOR of all MKi : MK =
⊕n

i=2 MKi . As the aggregator cannot identify which of the
received messages is ME , it just XORs all the n received messages to decrypt M .

The joined answer stream is processed to produce the query results as a sliding window. For
each window, the aggregator first adapts the computation window to the current start time t
by removing all old data items, with timestamp < t, from the window. Next, the aggregator
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adds the newly incoming data items into the window. Then, the answers in the window are
decoded and aggregated to produce the query results for the analyst. Each query result is an
estimated result which is bound to a range of error due to the approximation. The aggregator
estimates this error bound using Equation 5.3 and produces a confidence interval for the
result as: queryResult± errorBound. The entire process is repeated for every window.

Note that an adversarial client might answer a query many times in an attempt to distort
the query result. However, we can handle this problem, for example, by applying the triple
splitting technique [62].

Error bound estimation. We provide an error bound estimation for the aggregate query
results. The accuracy loss in PrivApprox is caused by two processes: (i) sampling and (ii)
randomized response. Since the accuracy loss of these two processes is statistically inde-
pendent (see §5.6), we estimate the accuracy loss of each process separately. Furthermore,
Equation 5.2 indicates that the error induced by sampling can be described as an additive
component of the estimated sum. The error induced by randomized response is contained in
the ai values in Equation 5.2. Therefore, independent of the error induced by randomized
response, the error coming from sampling is simply being added upon. Following this, we
sum up both independently estimated errors to provide the total error bound of the query
results.

To estimate the accuracy loss of the randomized response process, we make use of an
experimental method. We run several micro-benchmarks at the beginning of the query
answering process without performing the sampling process, to estimate the accuracy loss
caused by randomized response. We measure the accuracy loss using Equation 5.6.

On the other hand, to estimate the accuracy loss of the sampling process, we apply the
statistical theory of the sampling techniques. In particular, we first identify a desired con-
fidence level, e.g., 95%. Then, we compute the margin of error using Equation 5.3. Note
that, to use this equation the sampling distribution must be nearly normal. According to
the Central Limit Theorem (CLT), when the sample size U ′ is large enough (e.g., ≥ 30), the
sampling distribution of a statistic becomes close to the normal distribution, regardless of
the underlying distribution of values in the dataset [205].

5.4.3 Algorithms

In this section, we describe the algorithmic details of PrivApprox’s system protocol. We
present two algorithms: (i) the workflow at a client carrying out sampling and randomization;
and (ii) the workflow at the aggregator.

#I: Workflow at a client. Algorithm 8 summarizes how a client processes a query. Each client
maintains its personal data in a local database. Upon receiving a query, the client first flips a
sampling coin to decide whether to answer the query or not. If the coin comes up heads, then
the client executes the query on its local database to create a truthful answer to the query.
The truthful answer is in the form of bit buckets with a “1” or “0” per bucket, depending on
whether or not the “Yes” answer falls within that bucket. The answer may have more than one
bucket containing a “1” depending on the query. Next, the client randomizes the answer using
the randomized response mechanism. In particular, the client flips the first randomization
coin, if it comes up heads, the client responds its truthful answer. If it comes up tails, then
the client flips the second randomization coin and reports the result of this coin flipping. The
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Algorithm 8: Answering a query at clients

1 Input: Query and query budget
2 s, p, q ← costFunction(budget); // s is the sampling parameter

3 // p and q are the randomizing parameters

4 A[n]← Query.A[n]; // Answer bit-vector

5 execute—At—Client() //Execute the method every f seconds

6 begin
7 flipResult0← coinFlip(s);// Flip the sampling coin

8 if flipResult0 ==“Heads” then
9 client.participate← “True” ;
10 truthfulAnswer← localDataProcess(Query.SQL);
11 flipResult1← coinFlip(p); // First randomizing coin

12 if flipResult1 ==“Heads” then
13 A[n]← truthfulAnswer; // Process the local data

14 else
15 flipResult2← coinFlip(q); // Second coin

16 if flipResult2 ==“Heads” then
17 // for all “Yes” in the bit-vector

18 ∀i ∈ {1, ..., n}: if(A[i] == 1) A[i]← 1;
19 else
20 // for all “No” in the bit-vector

21 ∀i ∈ {1, ..., n}: if(A[i] == 1) A[i]← 0;

22 sendAnswer(A[n]); // Send the answer to the aggregator

randomized answer is still in the binary string format after the randomization process.

#II: Workflow at the aggregator. The aggregator receives clients’ data streams from the
proxies, and joins them to obtain a combined data stream. Thereafter, the aggregator pro-
cesses the joined stream to produce the output for the analyst. Algorithm 9 describes the
overall process at the aggregator. The algorithm computes the query results as a sliding
window computation over the incoming answer stream. For each window, the aggregator
first adapts the computation window to the current start time t by removing all old data
items, i.e., with timestamp < t, from the computation window. Next, the aggregator adds
the new incoming data items in the window and decrypts the answers in the data stream.
Thereafter, the input data items for a window are aggregated to produce the query output for
the analyst. We also estimate the error in the output due to approximation and randomization.
The aggregator estimates this error bound and defines a confidence interval for the result
as: queryResult± errorbound. The entire process is repeated for the next window, with the
updated windowing parameters and query budget (for the adaptive execution).

5.4.4 Practical Considerations

Next, we present three design enhancements to improve the practicality of PrivApprox.
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Algorithm 9: Generating query result at the aggregator

1 Input: w ← query.time_window; δ ← query.slide_interval;
2 t← start time of window;
3 execute—At—Aggregator() //Execute the method every δ seconds

4 begin
5 window← ∅; // List of items in the window

6 foreach (window w in the incoming stream ) do
7 forall elements in w do
8 if element.timestamp < t then
9 w.remove(element); // Remove all old items

10 w← w.insert(new items); // Add new items

11 queryResult← ∅; // query result

12 forall answer in the sample do
13 queryAnswer← decryptAnswer(answer);
14 // Get query results associate with analyst IDs

15 queryResult← aggregateAnswer(queryAnswer);

16 queryResult± error← estimateError(queryResult);
17 t← t + δ; // Update the start time for the next window

Stratified Sampling

As described in §5.4.2, we employ Simple Random Sampling (SRS) at clients for approximate
computation. The assumption behind using SRS is that all clients produce data streams
following the same distribution, i.e., all clients’ data streams belong to the same stratum.
However, in a distributed environment, it may happen that different clients produce data
streams with disparate distributions.

Accommodating such cases requires that all strata are considered fairly to have a represen-
tative sample from each stratum. To achieve this we use the stratified sampling technique [7,
137]. Stratified sampling ensures that data from every stratum is proportionally selected
(based on the arrival rate) and none of the minorities are excluded.

To perform stratified sampling, instead of just one sampling parameter s, we use a set of
sampling parameters S = {si} where i ∈ {1, · · · , n} (n is the number of disparate distribution
sub-streams in the input stream). All clients within a given stratum i flip a sampling coin with
the probability si to decide on the participation in the answering process. The value si is
determined based on the proportional arrival rate of the sub-stream (or stratum). The rest of
the answering process remains unchanged (as in §5.4.2).
Accordingly, we adapt the error estimation for stratified sampling to provide a confidence

interval for the query result. Suppose the clients C come from n sources (disjoint strata) C1,
C2 · · · , Cn, i.e., C =

∑n
i=1 Ci, and the ith stratum Ci has Bi clients and each such client j has

an associated answer aij in binary format.

To compute an approximate sum of the “Yes” answers, we first select a sample from all
clients C based on the stratified sampling, i.e., we sample bi items from each ith stratum Ci.
Then we estimate the sum from this sample as: τ̂ =

∑n
i=1(Bi

bi

∑bi
j=1 aij) ± ε where the error
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bound ε is defined as:

ε = tf,1− α
2

√
V̂ ar(τ̂) (5.13)

Here, tf,1− α
2
is the value of the t-distribution (i.e., t-score) with f degrees of freedom and α

= 1 − confidence level. The degree of freedom f is calculated as:

f =
n∑

i=1
bi − n (5.14)

The estimated variance for the sum, V̂ ar(τ̂), can be expressed as:

V̂ ar(τ̂) =
n∑

i=1
Bi ∗ (Bi − bi)

r2
i

bi
(5.15)

Here, r2
i is the population variance in the ith stratum. Similar to the SRS described in §5.4.2,

we use the statistical theories [205] for stratified sampling to calculate the error bound.

Historical Analytics

In addition to providing real-time data analytics, we further extended PrivApprox to support
historical analytics. The historical analytics workflow is essential for the data warehousing
setting, where analysts wish to analyze user behaviors over a longer time period. To facilitate
historical analytics, we support the “batch analytics” over the users’ data at the aggregator.
The analyst can analyze users’ responses stored in a fault-tolerance distributed storage (HDFS)
at the aggregator to get the aggregate query result over the desired time period.

We further extend the adaptive execution interface for historical analytics, where the
analyst can specify query execution budget, for example, to suit dynamic pricing in spot
markets in the cloud deployment. Based on the query budget, we perform an additional round
of sampling at the aggregator to ensure that batch analytics computation remains within the
query budget. We omit the sampling details at the aggregator due to space constraints.

Query Inversion

In the current setting, some queries may result in very few “Yes” truthful answers in users’
responses. For such cases, PrivApprox can only achieve lower utility as the fraction of truthful
“Yes” answers gets far from the second randomization parameter q (see experimental results
in §5.6.4). For instance, if q is set to a high value (e.g., q = 0.9), having few “Yes” answers in the
user responses will affect the overall utility of the query result.

To address this issue, we propose a query inversion mechanism. If the fraction of truthful
“Yes” answers is too small or too large compared to the q value, then the analysts can invert
the query to calculate the truthful “No” answers instead of the truthful “Yes” answers. In this
way, the fraction of truthful “No” answers gets closer to q, resulting in a higher utility of the
query result.
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Figure 5.3 – Architecture of PrivApprox prototype.

5.5 Implementation

We implemented PrivApprox as an end-to-end streamanalytics system. Figure 5.3 presents the
architecture of our prototype. Our system implementation consists of threemain components:
(i) clients, (ii) proxies, and (iii) the aggregator.

First, the query and the execution budget specified by the analyst are processed by the
initializer module to decide on the sampling parameter (s) and the randomization parameters
(p and q). These parameters along with the query are then sent to the clients.

Clients. We implemented Java-based clients for mobile devices as well as for personal com-
puters. A client makes use of the sampling parameter (based on the sampling module) to
decide whether to participate in the query answering process (§5.4.2). If the client decides
to participate then the query answer module is used to execute the input query on the local
user’s private data stored in SQLite [203]. The client makes use of the randomized response to
execute the query (§5.4.2). Finally, the randomized answer is encrypted using the XOR-based
encryption module; thereafter, the encrypted message and the key messages are sent to the
aggregator via proxies (§5.4.2).

Proxies. We implemented proxies based on Apache Kafka (which internally uses Apache
Zookeeper [25] for fault tolerance). In Kafka, a topic is used to define a stream of data items.
A stream producer can publish data items to a topic, and these data items are stored in Kafka
servers called brokers. Thereafter, a consumer can subscribe to the topic and consume the
data items by pulling them from the brokers. In particular, we make use of Kafka APIs to
create two main topics: key and answer for transmitting the key message stream and the
encrypted answer stream in the XOR-based encryption protocol, respectively (§5.4.2).

Aggregator. We implemented the aggregator using Apache Flink for real-time stream analytics
and also for historical batch analytics. At the aggregator, we first make use of the join method
(using the aggregation module) to combine the two data streams: (i) encrypted answer stream
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Table 5.1 – Utility and privacy of query results with different randomization parameters p and q.

p q Accuracy loss (η) Privacy Level (ε)

0.3
0.3 0.0278 1.7047
0.6 0.0262 1.3862
0.9 0.0268 1.2527

0.6
0.3 0.0141 2.5649
0.6 0.0128 2.0476
0.9 0.0136 1.7917

0.9
0.3 0.0098 4.1820
0.6 0.0079 3.5263
0.9 0.0102 3.1570

and (ii) key stream. Thereafter, the combined message stream is decoded (using the XOR-
based decryption module) to reproduce the randomized query answers. These answers are
then forwarded to the analytics module. The analytics module processes the answers to
provide the query result to the analyst. Moreover, the error estimation module is used to
estimate the error (§5.4.2), which we implemented using the Apache Common Math library. If
the error exceeds the error bound target, a feedback mechanism is activated to re-tune the
sampling and randomization parameters to provide higher utility in the subsequent epochs.

For the historical analytics, we asynchronously store the (randomized responses) data
in HDFS [45] at the aggregator (as a separate pipeline, which is not shown in Figure 5.3
for simplicity). To support historical analytics on the stored data at the aggregator, we also
implemented a samplingmethod sample() in Flink to support our samplingmechanism (§5.4.4).

5.6 Evaluation

In this section, we evaluate PrivApprox using a series of micro-benchmarks. For all mi-
crobenchmark measurements, we report the average over 100 runs.

5.6.1 Varying Sampling and Randomization Parameters

We first measure the effect of randomization parameters on the utility and the privacy
guarantee of the query results. In particular, the utility is measured by the query results’
accuracy loss (Equation 5.6), and privacy is measured by the level of achieved zero-knowledge
privacy (Equation A.4). For the experiment, we generated 10, 000 original answers randomly,
60% of which are “Yes” answers. The sampling parameter s is set to 0.6.
Table 5.1 shows that different settings of the two randomization parameters, p and q, do

affect the utility and the privacy guarantee of the query results. The higher p means the
higher probability that a client responds with its truthful answer. As expected, this leads to
higher utility (i.e., smaller accuracy loss η) but weaker privacy guarantee (i.e., higher privacy
level ε). In addition, Table 5.1 also shows that the closer we set the probability q to the fraction
of truthful “Yes” answers (i.e., 60% in this microbenchmark), the higher utility the query result
provides. Nevertheless, to meet the utility and privacy requirements in various scenarios,
we should carefully choose the appropriate p and q. In practice, the selection of the ε value
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Figure 5.4 – (a) Accuracy loss with varying sampling and randomization parameters. (b) Error
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and individually.

depends on real-world applications [140].

We also measured the effect of sampling parameter on the accuracy loss. Figure 5.4 (a)
shows that the accuracy loss decreases with the increase of sampling fraction, regardless of
the settings of randomization parameters p and q. The benefits reach diminishing returns
after the sampling fraction of 80%. The system operator can set the sampling fraction using
resource prediction model [218–220] for any given SLA.

5.6.2 Error Estimation

To analyze the accuracy loss, we first measured the accuracy loss caused by sampling and
randomized response separately. For comparison, we also computed the total accuracy loss
after running the two processes in succession as in PrivApprox. In this experiment, we set the
number of original answers to 10, 000 with 60% of which being “Yes” answers. We measure the
accuracy loss of the randomized response process by setting the sampling parameter to 100%
(s = 1) and the randomization parameters p and q to 0.3 and 0.6, respectively. Meanwhile, we
measure the accuracy loss of the sampling process without the randomized response process
by setting p to 1.
Figure 5.4 (b) represents that the accuracy loss during the two experiments is statistically

independent to each other. In addition, the accuracy loss of the two processes can effectively
be added together to calculate the total accuracy loss.

5.6.3 Varying Number of Clients

We next analyzed how the number of participating clients affects the utility of the results. In
this experiment, we fix the sampling and randomization parameters s, p and q to 0.9, 0.9 and
0.6, respectively, and set the fraction of truthful “Yes” answers to 60%.

Figure 5.5 (a) shows that the utility of query results improves with the increase of the
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Table 5.2 – Comparison of crypto overheads (# operations/sec). The public-key crypto schemes

use a 1024-bit key.
Encryption Decryption

Phone Laptop Server Phone Laptop Server

RSA [10] 937 16× 2,770 341× 4,909 275× 126 25890× 698 23666× 859 26401×
Goldwasser [63] 2,106 7× 17,064 55× 22,902 59× 127 25686× 6,329 2610× 7,068 3209×

Paillier [187] 116 129× 489 1930× 579 2335× 72 45308× 250 66076× 309 73392×

PrivApprox 15,026 943,902 1,351,937 3,262,186 16,519,076 22,678,285

number of participating clients, and few clients (e.g., < 100) may lead to low-utility query
results.

Note that increasing the number of participating clients leads to higher network overheads.
However, we can tune the number of clients using the sampling parameter s and thus decrease
the network overhead (see §5.7.3).

5.6.4 Varying Fraction of Truthful Answers

We also measured the utility of both the native and the inverse query results with different
fractions of truthful “Yes” answers. For the experiment, we still keep the sampling and
randomization parameters s, p and q to 0.9, 0.9 and 0.6, respectively, and set the total number
of answers to 10, 000.
Figure 5.5 (b) shows that PrivApprox achieves higher utility as the fraction of truthful “Yes”

answers gets closer to 60% (i.e., the q value). In addition, when the fraction of truthful “Yes”
answers y is too small compared to the q value (e.g., y = 0.1), the accuracy loss is quite high at
2.54%. However, by using the query inversion mechanism (§5.4.4), we can significantly reduce
the accuracy loss to 0.4%.

84



5.6 Evaluation

Table 5.3 – Throughput (# operations/sec) at clients

No. of operations/sec Phone Laptop Server

SQLite read 1,162 19,646 23,418
Randomized response 168,938 418,668 1,809,662
XOR encryption 15,026 943,902 1,351,937
Total 1,116 17,236 22,026

5.6.5 Varying Answer’s Bit-vector Sizes

We measured the throughput at proxies with various bit-vector sizes of client answers
(i.e., A[n] in §5.4.1). We conducted this experiment with a 3-node cluster (see §5.7.1 for the
experimental setup). Figure 5.6 (a) shows that the throughput, as expected, is inversely
proportional to the answer’s bit-vector sizes.

5.6.6 Effect of stratified sampling

To illustrate the use of stratified sampling, we generated a synthetic data stream with three
different stream sources S1, S2, S3. Each stream source is created with an independent
Poisson distribution. In addition, the three stream sources have an arrival rate of 3 : 4 : 5 data
items per time unit, respectively. The computation window size is fixed to 10, 000 data items.

Figure 5.6 (b) shows the average number of selected items of each stream source with
varying sample fractions using the stratified sampling mechanism. As expected, the average
number of sampled data items from each stream source is proportional to its arrival rate and
the sample fractions.

5.6.7 Computational Overhead of CryptoOperations

We compared the computational overhead of crypto operations used in PrivApprox and prior
systems. In particular, these crypto operations are XOR in PrivApprox, RSA in [10], Goldwasser-
Micali in [63], and Paillier in [187]. For the experiment, we measured the number of crypto
operations that can be executed on: (i) Android Galaxy mini III smartphone running Android
4.1.2 with a 1.5 GHz CPU; (ii) MacBook Air laptop with a 2.2 GHz Intel Core i7 CPU running OS
X Yosemite 10.10.2; and (iii) Linux server running Linux 3.15.0 equipped with a 2.2 GHz CPU
with 32 cores.

Table 5.2 shows that the XOR operation is extremely efficient compared with the other
crypto mechanisms. This highlights the importance of XOR encryption in our design.

5.6.8 Throughput at Clients

We measured the throughput at clients. In particular, we measured the number of operations
per second that can be executed at clients for the query answering process. In this experiment,
we used the same set of devices as in the previous experiment.

Table 5.3 presents the throughput at clients. To further investigate the overheads, we
measured the individual throughput of three sub-processes in the query answering process:
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erage number of sampled data items after stratified sampling with different sampling

fractions.

(i) database read, (ii) randomized response, and (iii) XOR encryption. The result indicates that
the performance bottleneck in the answering process is actually the database read operation.

5.6.9 Comparisonwith RelatedWork

First, we compared PrivApprox with SplitX [62], a high-performance privacy-preserving
analytics system. We compare the latency incurred at proxies in both PrivApprox and SplitX.
SplitX is geared towards batch analytics, but can be adapted to enable privacy-preserving
data analytics over data streams. Since PrivApprox and SplitX share the same architecture,
we compare the latency incurred at proxies in both systems.

Figure 5.7 (a) shows that, with different numbers of clients, the latency incurred at proxies
in PrivApprox is always nearly one order of magnitude lower than that in SplitX. The reason
is simple: unlike PrivApprox, SplitX requires synchronization among its proxies to process
query answers in a privacy-preserving fashion. This synchronization creates a significant
delay in processing query answers, making SplitX unsuitable for dealing with large-scale
stream analytics. More specifically, in SplitX, the processing at proxies consists of a few
sub-processes including adding noise to answers, answer transmission, answer intersection,
and answer shuffling; whereas, in PrivApprox, the processing at proxies contains only the
answer transmission. Figure 5.7 (a) also shows that with 106 clients, the latency at SplitX is
40.27 sec, whereas PrivApprox achieves a latency of just 6.21 sec, resulting in a 6.48× speedup
compared with SplitX.

Next, we compared PrivApprox with a recent privacy-preserving analytics system called
RAPPOR [211]. Similar to PrivApprox, RAPPOR applies a randomized response mechanism
to achieve differential privacy. However, RAPPOR is not designed for stream analytics, and
therefore, we compared PrivApprox with RAPPOR for privacy only. To make an “apple-to-
apple” comparison between PrivApprox and RAPPOR in terms of privacy, we make a mapping
between the system parameters of the two systems. We set the sampling parameter s = 1,
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(b) Differential privacy level comparison b/w RAPPOR and PrivApprox.

and the randomized parameters p = 1− f , q = 0.5 in PrivApprox, where f is the parameter
used in the randomized response process of RAPPOR [211]. In addition, we set the number
of hash functions used in RAPPOR to 1 (h = 1) for a fair comparison. In doing so, the two
systems have the same randomized response process. However, since PrivApprox makes use
of the sampling mechanism before performing the randomized response process, PrivApprox
achieves stronger privacy. Figure 5.7 (b) shows the differential privacy level of RAPPOR and
PrivApprox with different sampling fractions s.

It is worth mentioning that, by applying the sampling mechanism, PrivApprox achieves
stronger privacy (i.e., zero-knowledge privacy) for clients. The comparison between differen-
tial privacy and zero-knowledge privacy is presented in §A.1.
Recently, several privacy-preserving stream analytics systems have been proposed [111,

215, 217]. These systems make use of the Laplace mechanism [82, 84] to achieve differential
privacy. In particular, they add Laplace noise to the truthful answers at the aggregator to
protect the users’ privacy. However, their approach relies on strong trust assumptions of the
aggregator as well as the connection between clients and the aggregator. On the contrary,
PrivApprox applies randomized response mechanism to process users’ private data locally
at clients under the control of users. Combined with the sampling mechanism, PrivApprox
achieves stronger privacy guarantees (with a tighter bound for εdp-differential privacy and
εzk-zero-knowledge privacy).

5.7 Case Studies

We next present our experience using PrivApprox in the following two case studies: (i) New
York City (NYC) taxi ride, and (ii) household electricity consumption.
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Figure 5.8 – Throughput at proxies and the aggregator with different numbers of CPU cores and

nodes.

5.7.1 Experimental Setup

Cluster setup. We used a cluster of 44 nodes connected via a Gigabit Ethernet. Each node
contains 2 Intel Xeon quad-core CPUs and 8 GB of RAM running Debian 5.0 with Linux kernel
2.6.26. We deployed two proxies with Apache Kafka, each of which consists of 4 Kafka broker
nodes and 3 Zookeeper nodes. We used 20 nodes to deploy Apache Flink as the aggregator.
In addition, we employed the remaining 10 nodes to replay the datasets to generate data
streams for evaluating our PrivApprox system.

Datasets. For the first case study, we used the NYC Taxi Ride dataset from the DEBS 2015
Grand Challenge [129]. The dataset consists of the itinerary information of all rides across
10, 000 taxies in New York City in 2013. For the second case study, we used the Household
Electricity Consumption dataset [190]. This dataset contains electricity usage (kWh) measured
every 30 minutes for one year by smart meters.

Queries. For the NYC taxi ride case-study, we created a query: “What is the distance distribu-
tion of taxi trips in New York?”. We defined the query answer with 11 buckets as follows: [0, 1)
mile, [1, 2) miles, [2, 3) miles, [3, 4) miles, [4, 5) miles, [5, 6) miles, [6, 7) miles, [7, 8) miles, [8, 9)
miles, [9, 10) miles, and [10, +∞) miles.

For the second case-study, we defined a query to analyze the electricity usage distribution
of households over the past 30 minutes. The query answer format is as follows: [0, 0.5] kWh,
(0.5, 1] kWh, (1, 1.5] kWh, (1.5, 2] kWh, (2, 2.5] kWh, and (2.5, 3] kWh.

Evaluation metrics. We evaluated our system using four key metrics: throughput, latency,
utility, and privacy level. Throughput is defined as the number of data items processed per
second, and latency is defined as the total amount of time required to process a certain
dataset. Utility is the accuracy loss defined as | estimate−exact

exact |, where estimate and exact are
the query results produced by applying PrivApprox and the native computation, respectively.
Finally, privacy level (εzk) is calculated using Equation A.4. For all measurements, we report
the average over 10 runs.
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5.7.2 Scalability

We measured the scalability of the two main system components: proxies and the aggregator.
We first measured the throughput of proxies with various numbers of CPU cores (scale-up)
and different numbers of nodes (scale-out). This experiment was conducted on a cluster
of 4 nodes. Figure 5.8 (a) shows that, as expected, the throughput at proxies scales quite
well with the number of CPU cores and nodes. In the NYC Taxi case-study, with 2 cores, the
throughput of each proxy is 512, 348 answers/sec, and with 8 cores (1 node) the throughput is
1, 192, 903 answers/sec; whereas, with a cluster of 4 nodes each with 8 cores, the throughput
of each proxy reaches 2, 539, 715 answers/sec. In the household electricity case-study, the
proxies achieve relatively higher throughput because the message size is smaller than in the
NYC Taxi case-study.

We next measured the throughput at the aggregator. Figure 5.8 (b) depicts that the aggrega-
tor also scales quite well when the number of nodes for aggregator increases. The throughput
of the aggregator, however, is much lower than the throughput of proxies due to the relatively
expensive join operation and the analytical computation at the aggregator. We notice that the
throughput of the aggregator in the household electricity case study does not significantly
improve in comparison to the first case study. This is because the difference in the size of
messages between the two case studies does not affect much the performance of the join
operation and the analytical computation.

5.7.3 Network Bandwidth and Latency

Next, we conducted the experiment to measure the network bandwidth usage. By leveraging
the samplingmechanism at clients, our system reduces network traffic significantly. Figure 5.9
(a) shows the total network traffic transferred from clients to proxies with different sampling
fractions. In the first case study, with the sampling fraction of 60%, PrivApprox can reduce
the network traffic by 1.62×; whereas in the second case study, the reduction is 1.58×.
Besides the benefit of saving network bandwidth, PrivApprox achieves also lower latency in

processing query answers by leveraging approximate computation. To evaluate this advantage,
we measured the effect of sampling fractions on the latency of processing query answers.
Figure 5.9 (b) depicts the latency with different sampling fractions at clients. For the first case-
study, with the sampling fraction of 60%, the latency is 1.68× lower than the execution without
sampling; whereas, in the second case-study this value is 1.66× lower than the execution
without sampling.

5.7.4 Utility and Privacy

Figure 5.10 (a)(b)(c) show the utility, the privacy level, and the trade-off between them, respec-
tively, with different sampling and randomization parameters. The randomization parameters
p and q vary in the range of (0, 1), and the sampling parameter s is calculated using Equation A.4.
Here, we show results only for NYC Taxi dataset. As the sampling parameter s and the first
randomization parameter p increase, the utility of query results improves (i.e., accuracy loss
gets smaller) whereas the privacy guarantee gets weaker (i.e., privacy level gets higher). Since
the New York taxi dataset is diverse, the accuracy loss and the privacy level change in a
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Figure 5.10 – Results from the NYC taxi case-study with varying sampling and randomization

parameters: (a) Utility, (b) Privacy level, (c) Comparison between utility and privacy.

non-linear fashion with different sampling fractions and randomization parameters. Interest-
ingly, the accuracy loss does not always decrease as the second randomization parameter
q increases. The accuracy loss gets smaller when q = 0.3. This is due to the fact that the
fraction of truthful “Yes” answers in the dataset is 33.57% (close to q = 0.3).

5.7.5 Historical Analytics

To analyze the performance of PrivApprox for historical analytics, we executed the queries on
the datasets stored at the aggregator. Figure 5.11 (a) (b) present the latency and throughput,
respectively, of processing historical datasets with different sampling fractions. We can
achieve a speedup of 1.86× over native execution in historical analytics by setting the sampling
fraction to 60%.

We also measured the accuracy loss when the approximate computation was applied (for
the NYC Taxi case-study). Figure 5.11 (c) shows the accuracy loss in processing historical data
with different sampling fractions. With the sampling fraction of 60%, the accuracy loss is only
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less than 1%.

5.8 Discussion

In this section, we discuss some approaches that could be used to meet our assumptions
listed in §5.3.2.

Stratified sampling. In our design in §5.4, we currently assume that the input stream is already
stratified based on the source of event, i.e., the data items within each stratum follow the same
distribution. However, it may not be the case in real-world applications. As also discussed
in previous chapters, we next describe two proposals for the stratification of evolving data
streams, namely bootstrap [87, 88, 175] and semi-supervised learning [157].

Bootstrap [87, 88, 175] is a well-studied non-parametric sampling technique in statistics
for the estimation of distribution for a given population. In particular, the bootstrap method
randomly selects “bootstrap samples” with replacement to estimate the unknown parameters
of a population; for instance, by averaging the bootstrap samples. We can employ a bootstrap-
based estimator for the stratification of incoming sub-streams. Alternatively, we could also
make use of a semi-supervised algorithm [157] to stratify a data stream. The advantage of
the algorithm is that it can work with both the labeled and unlabeled data stream to train a
classification model.

Virtual cost function. Currently, in our implementation described in §5.5, for a given user-
specified query budget about privacy εzk, the sampling and randomizing parameters can
be computed using the reversed function of Equation A.4. However, for the query budget
involving available computing resources or latency requirements (SLAs)—we currently assume
that there exists a virtual function that determines the sampling parameter based on the query
budget. As also discussed in previous chapters, we recommend two existing approaches—
Pulsar [16] and resource prediction model [99, 155]—to design and implement such a virtual
function for the given computing resources and latency requirements, respectively.

Pulsar [16] is a “virtual datacenter (VDC)” system that allows users to allocate resources
based on tenants’ demand. The system proposes a multi-resource token bucket algorithm
that uses a pre-advertised cost model for supporting workload independent guarantees. We
could apply a similar cost model based on Pulsar as follows: A data item to be processed could
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be considered as a request, and “amount of resources” needed to process these items could
be the cost in tokens. Since the resource budget gives total resources (here tokens) to be
used, we could find the number of clients, i.e., the sampling fraction at clients, that can be
processed using these resources.

To find the sampling parameter for a given latency budget, we could use a resource predic-
tion model [218–220]. The resource prediction model could build by analyzing the diurnal
patterns of resource usage [57], and predicts the resource requirement to meet SLAs leverag-
ing statistical machine learning [99, 155]. Once we have the resource requirement in place
to meet a given SLA—we can find the appropriate sampling parameter by using the above
suggested method similar to Pulsar.

5.9 RelatedWork

Privacy-preserving analytics. Since the notion of differential privacy [82, 84], a plethora
of systems have been proposed to provide differential privacy with centralized trusted
databases supporting linear queries [145], graph queries [134], histogram queries [118], Airavat-
MapReduce [189], SQL-type PINQ queries [159, 160, 179] and even general programs, such as
GUPT [165] and Fuzz [116]. In practice, however, such central trust can be abused, leaked, or
subpoenaed [69, 120, 178, 196].

To overcome the limitations of the centralized database schemes, recently a flurry of
systems have been proposed with a focus on achieving users’ privacy (mostly, differential
privacy) in a distributed setting where the private data is kept locally. Examples include
Privad [108], PDDP [63], DJoin [169], SplitX [62], πBox [141], KISS [212], Koi [109], xBook [201],
Popcorn [113], and many other systems [10, 86, 117]. However, these systems are designed to
deal with the “one-shot” batch queries only, whereby the data is assumed to be static during
the query execution.

To overcome the limitations of the aforementioned systems, several differentially private
stream analytics systems have been proposed recently [55, 56, 85, 97, 124, 187, 198]. Unfortu-
nately, these systems still contain several technical shortcomings that limit their practicality.
One of the first systems [85] updates the query result only if the user’s private data changes
significantly, and does not support stream analytics over an unlimited time period. Subsequent
systems [55, 124] remove the limit on the time period, but introduce extra system overheads.
Some systems [187, 198] leverage expensive secret sharing cryptographic operations to pro-
duce noisy aggregate query results. These protocols, however, cannot work at large scale
under churn; moreover, in these systems, even a single malicious user can substantially distort
the aggregate results without detection. Recently, some other privacy-preserving distributed
stream monitoring systems have been proposed [56, 97]. However, they all require some
form of synchronization, and are tailored for heavy-hitter monitoring only. Streaming data
publishing systems like [215] use a stream-privacy metric at the cost of relying on a trusted
party to add noise. In contrast, PrivApprox does not require a trusted proxy or aggregator to
add noise. Furthermore, PrivApprox provides stronger privacy properties (zero-knowledge
privacy).

Sampling and randomized response. Sampling and randomized response, also known as
input perturbation techniques, are being studied in the context of privacy-preserving analytics,
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albeit they are explored separately. For instance, the relationship between sampling and
privacy is being investigated to provide k-anonymity [58], differential privacy [165], and
crowd-blending privacy [102]. In contrast, we show that sampling combined with randomized
response achieves the zero-knowledge privacy, a privacy bound strictly stronger that the
state-of-the-art differential privacy. Furthermore, PrivApprox achieves these guarantees for
stream processing with a distributed private dataset.

Randomized response [96, 216] is a surveying technique in statistics, since 1960s, for col-
lecting sensitive information via input perturbation. Recently, Google, in a system called
RAPPOR [211], made use of randomized response for privacy-preserving analytics for the
Chrome browser. RAPPOR provides differential privacy (εdp) for clients while enabling analysts
to collect various types of statistics. Like RAPPOR, PrivApprox utilizes randomized response.
However, RAPPOR is designed for heavy-hitter collection, and does not deal with the situation
where clients’ answers to the same query are changing over time. Therefore, RAPPOR does
not fit well with the stream analytics. Furthermore, since we combine randomized response
with sampling, PrivApprox (εzk) provides a privacy bound tighter than RAPPOR (εdp).

Secure multi-party computation. In theory, secure multi-party computation (SMC) [104,
223] could be used for privacy-preserving analytics. It is, however, expensive for real-world
deployment, especially for stream analytics, even though there have been several proposals
reducing SMC’s computational overhead [107, 128, 148, 149, 174, 221]. Furthermore, SMC
guarantees input-privacy during computation, but is orthogonal to output-privacy as provided
by differential privacy.

Approximate computing. Approximation techniques such as sampling [11, 59, 100], sketches [73],
and online aggregation [121] have been well-studied over the decades in the databases com-
munity. Recently, sampling-based systems (such as ApproxHadoop [103], BlinkDB [7, 8],
IncApprox [137], Quickr [204], StreamApprox [184]) and online aggregation-based systems
(such as MapReduce Online [70, 171], G-OLA [230]) have also been shown effective for “Big
Data” analytics.

We build on the advancements of sampling-based techniques. However, we differ in two
crucial aspects. First, we perform sampling in a distributed way as opposed to sampling in
a centralized dataset. Second, we extend sampling with randomized response for privacy-
preserving analytics.

5.10 Conclusion

In this chapter, we presented PrivApprox, a privacy-preserving stream analytics system. Our
approach builds on the observation that both computing paradigms — privacy-preserving
data analytics and approximate computation — strive for approximation, and can be combined
together to leverage the benefits of both. Our evaluation shows that PrivApprox not only
improves the performance to support real-time stream analytics, but also achieves prov-
ably stronger privacy (i.e., zero-knowledge privacy) guarantees than the state-of-the-art
differential privacy.

As mentioned before, the content of this chapter is based on our conference publica-
tion [183] and our technical report [182]. PrivApprox’s source code is publicly available:
https://PrivApprox.github.io.
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In PrivApprox, to achieve the anonymity property, the system needs to split the original
messages into two pieces and send to the aggregator to perform a join operation between two
input data streams to decrypt the user input stream data. Unfortunately, this join operation
is a bottleneck of the system. This motivated us to conduct the fourth work in this thesis to
improve the performance of join operations. We start our work by building a system for joins
between input static datasets since it naturally can be extended for a batch based stream
processing system.

In this chapter, we present the design, implementation, and evaluation of ApproxJoin,
an approximate distributed join system. ApproxJoin allows us to mitigate the overhead of
joins in big data analytics by adopting approximate computing techniques. We implemented
ApproxJoin combining a sketching technique (Bloomfilter) and a sampling technique (stratified
sampling) to reduce the shuffled data size as well as latency during the join operations.

This chapter is organized as follows. We first present the motivation behind ApproxJoin in
Section §6.1. We next describe the contributions of ApproxJoin in Section §6.2. After that, we
give the overview of ApproxJoin in Section §6.3. Next, we describe in details the design of
ApproxJoin in Section §6.4. Thereafter, we present the implementation of ApproxJoin based
on the design in Section §6.5. We next describe an experimental evaluation of ApproxJoin
using micro-benchmarks in Section §6.6 and two real world case studies in Section §6.7. Then,
we present the discussion and the related work in Section §6.8 and Section §6.9, respectively.
Finally, we conclude our work in this chapter in Section §6.10.
This content of this chapter is based on our under-submission paper. This work is based

on a joint collaboration with Istemi Ekin Akkus, Pramod Bhatotia, Spyros Blanas, Ruichuan
Chen, Christof Fetzer, and Thorsten Strufe.

6.1 Motivation

Over the last ten years, the growth of publicly available digital data has accelerated exponen-
tially. To store this large amounts of data, analytical data repositories called “data lakes” have
been used instead of the DBMS. While the publicly raw data is huge and valuable, extracting
useful knowledge from the lake of data is really a challenge since it requires data analytics
systems to scale and adapt to handle the vast amount of data with great variety of data
source and types. Therefore, to extract valuable insights from the raw data, modern online
services make use of big data systems based on parallel and distributed frameworks such as
Hadoop [19], Apache Spark [21], and Apache Flink [17].

Since in data lakes, the raw data comes frommany sources, to pluck the valuable information
for the sea of data, the big data systems need to combine the data from many sources and
perform analytics on the merged data. Thus, join operations become a critical building block
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in these systems. While joins are important, they are expensive, especially with regard to
communication costs. For example, commercial database systems could take hours or even
days to process complex join queries [146]. Therefore, improving the performance of join
operations can drastically reduce the overall latency of the big data systems.

One way to achieve this is to simply throw more computing resources, which comes at
significant computing cost. A new and better way is to leverage approximate computing. As
also mentioned in previous chapters, approximate computing is based on the observation that
for many real-world applications it is sufficient to produce approximate rather than exact
results [80, 170]. For such applications, it is possible to compute over a partial subset instead
of the entire massive of data, achieving lower latency and efficient resource utilization.

Over the last decade, approximate computing has been applied in various domains such as
programming languages [29, 194], hardware design [193], query processing [7, 59, 200], and
distributed systems [70, 121, 171]. Various approximation techniques have been proposed to
make trade-offs between required resources and output quality, including sampling [11, 100],
sketches [73], and online aggregation [121, 171].

Sampling techniques have been widely applied for distributed data analytics [7, 8, 146, 204].
Moreover, the same techniques can be adopted to reduce the overhead of join operations [146,
204]. However, previous work requires intricate knowledge of the joined tables [6, 7, 204] or
requires to perform off-line sampling [7] and take a relevant sample for each query. Wander
Join [146] provides a mechanism to perform online-sampling over join using random walks.
However, it still needs to handle non-join data items from input datasets (null vertices in
the join data graph). Furthermore, Wander Join supports only single node settings, but not
distributed system environments.

To understand the benefits and challenges of approximate join, consider joining two datasets
R and S that share a join attribute A. The inner-join of R and S is the subset of the cross-
product of these datasets containing pairs (r, s) such that r ∈ R, s ∈ S, and r.A = s.A. The
complexity of a simple hash join is O(|R|+ |S|), and O(|R| × |S|) for a simple nested loop join.
Therefore, sampling R and S before the join operation would have significant performance
benefits.

However, obtaining approximate join results by sampling is an inherently difficult problem
from the correctness perspective. We illustrate this with the classical example: joining two
datasets R = (a, v0), (b, v1), (b, v2), . . . , (b, vn) and S = (b, v′

0), (a, v′
1), (a, v′

2), . . . , (a, v′
n) [61]. If

a naive random sampling mechanism is applied to sample R and S before join, the result is
likely to be an empty set. Thus, implementing correct and precondition-free sampling on joins
is a challenging task.

6.2 Contribution

In this chapter, we present the design and implementation of ApproxJoin, an approximate
distributed join system that improves the performance of join operations in big data analytics
using approximate computing.

In this work, we tackle the challenges of distributed join operations (see § 6.1) by designing
a novel join sampling algorithm that combines a Bloom filter sketch technique with stratified
sampling. Bloom filter allows us to remove unnecessary data items which do not participate
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in join operations. Therefore, these data items are not shuffled around as in native join
operations, thus reducing communication overhead. Meanwhile, stratified sampling allows us
to take a uniform sample over input datasets, such that operations after the join process only
this resulting sample instead of the entire join output. Our proposed join mechanism can be
used for both two-way joins and multi-way joins.1

We implemented our algorithm in a system called ApproxJoin based on Apache Spark [21,
229] and evaluate its effectiveness onmicro-benchmarks, TPC-H queries, and a real-world use
case. Our evaluation shows that ApproxJoin achieves a speedup of (6− 9×) over Spark-based
systems with the same sampling fraction. ApproxJoin leverages Bloom filtering to reduce the
shuffled data volume during the join operation by 5− 82× compared to Spark-based systems.
Without any sampling, our microbenchmark evaluation shows that ApproxJoin achieves a
speedup of 2−10× over the native Spark RDD join [229] and 1.06−3× over a Spark repartition
join. In addition, our evaluation with TPC-H benchmark shows that ApproxJoin is (1.2− 1.77×)
faster than the state-the-art related system — SnappyData [186].

To summarize, we make the following contributions.

• We propose a novel mechanism to perform sampling over joins that preserves the
randomness (i.e., statistical quality) of sampling.

• We provide a confidence metric on the output accuracy using an error bound or confi-
dence interval.

• Finally, we implement the proposed algorithms and mechanisms based on Apache Spark
and extensively evaluate the system using a series of micro-benchmarks and real-world
datasets.

6.3 Overview

In this section, we first describe how join operations are implemented in state-of-the-art big
data systems. We then highlight the shortcomings of distributed join processing approaches.
Afterwards, we present an overview of ApproxJoin that addresses these shortcomings.

6.3.1 Distributed Joins in Big Data Systems

Many big data systems, such as Apache Spark [21], Apache Flink [17] and Hadoop [19], partition
the input datasets into smaller data chunks stored on different nodes of a deployment cluster.
Although this partitioning helps with storing and processing large datasets in a fault-tolerant
and parallel fashion, it also creates a challenge for join operations involving multiple datasets:
the join operation requires the systems to move data items from one node to another, so that
the cross-product operation can be performed on each node. To perform this data movement,
the systems typically adopt two join strategies: (i) repartition join and (ii) broadcast join.

Repartition Join. This mechanism is the default join execution approach in big data sys-
tems [17, 21, 133]. The basic idea is to ensure that data items having the same join keys from
all input datasets are collected at the same node in the cluster. To achieve this goal, the input

1A two-way join is the equi-join between two datasets (R on S), whereas a multi-way join is the composition of

several two-way joins (R1 on R2 on ... on Rn, where Ri(i = 1, ..., n) is an input dataset).
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Figure 6.1 – The comparison between sampling over joins mechanisms with different sampling

fractions. (a) Latency; (b) Accuracy loss.

datasets are repartitioned using the same partitioner (e.g., the same hash function), so that
a given join key is collected by a single node. This node then performs the cross-product
operation between the data items.

The advantage of this mechanism is that it does not require sophisticated steps to perform
the join operation: The repartitioning operation can be modeled as a simple MapReduce job,
whose shuffle phase naturally transfers the data items to the desired nodes. The disadvantage,
however, is that this transfer can involve a significant amount of data and the transferred data
items can include items that are not going to participate in the join. When the overlap fraction
of the data items in different datasets is low, this approach leads to significant overhead in
data transfer, which can also affect latency (see Section 6.6). In this chapter, the overlap
fraction is defined as the total number of data items participating in the join operation divided
by the total number of data items of all inputs.

Broadcast Join. When one input dataset is much smaller than the others, the systems can
broadcast the smaller dataset to all nodes storing the other datasets. Afterwards, the join
operation is performed at the map phase of the processing [40]. Broadcast join is very efficient
for joins between a single, large dataset and one or more small datasets, because it avoids
moving the data items of the large dataset through the network. However, this situation may
not always be possible in real world traces (see §6.7).

6.3.2 Problem Statement

Join operations are often considered critical in big data systems. Unfortunately, they are
expensive operations even with the state-of-the-art big data systems, such as Apache Spark
and Apache Flink. This high cost is not only related to the computation but also to the
communication required to perform the join operation. In practice, these big data systems
can take hours or even days to process a join operation between dataset that is gigabytes or
terabytes in size.

A naïve solution to improve the performance of joins is to employmore computing resources,
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which comes at a significant monetary cost. An alternative approach is to utilize approximate
computing, where only a subset of input data is used to obtain results. Approximate computing
trades off accuracy for low latency and efficient resource utilization, by providing users with
approximate results with associated error bounds. In the case of joins of big datasets, this
trade-off is based on the observation that the exact results of a distributed join operation may
not be necessary: the computation of exact results incurs additional delay for user response,
but does not provide any additional value.

One widely used technique for approximate computing is sampling. Sampling over joins,
however, is not a straightforward task and becomes challenging, especially in a distributed
environment. One approach – pre-join sampling – performs sampling over the input datasets
before the join and uses the samples to perform the join operation. Although this approach is
simple and quite fast, it produces poor quality output, as explained in § 6.1 (see Figure 6.1 (a)).
Another approach – post-join sampling – preserves the statistical properties of the join output
by performing sampling after the join operation is finished. Unfortunately, this sampling
requires the entire join operation to complete, and thus, introduces significantly high latency
(see Figure 6.1 (b)).

A recent join approach, Wander Join [146], aims to model the join relationship among the
data items as a graph, where a vertex represents a data item and an edge is drawn between
two vertices if they can join with each other. Wander Join then performs random walks, so
that each path would correspond to a sampled join output. However, Wander Join is not
designed for distributed settings.

Wemake the following observations: Distributed analytics systems deal with a huge amount
of data. The latency and accuracy of join operations in these systems become sensitive to
the amount of data transferred during the join; therefore, it is important to ensure that only
necessary data items are transferred over the network. Furthermore, the size of the input
datasets also means that the cross product phase in the join operation can have a detrimental
effect on the latency for obtaining the join results.

The case for approximation in distributed joins. Filtering data items not participating in the
join can reduce the amount of data transfer significantly; thus, reducing the latency of the
join operation. However, this reduction depends on the number of such data items: if the
‘overlapping fraction’ (i.e., data items that are going to participate in the join) is large, these
items will still have to be transferred over the network. More importantly, the bottleneck of
the join operation will shift to the cross product of these items (see §6.6).

6.3.3 ApproxJoin Overview

ApproxJoin is designed tomitigate the overhead of join operations in big data analytics systems.
Figure 6.2 shows the high-level architecture of ApproxJoin. The input of ApproxJoin consists
of several datasets to be joined. We facilitate joins on the input datasets by providing a simple
user interface. The user submits the join query and its corresponding query execution budget.
The query budget can be in the form of expected latency guarantees, or the desired accuracy
level. Our system ensures that the input data is processed within the specified query budget.
To achieve this, ApproxJoin applies the approximate computing paradigm by processing only
a partial input data items from the datasets to produce an approximate output with error
bounds. At a high level, ApproxJoin makes use of a combination of sketching and sampling to
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Figure 6.2 – ApproxJoin overview.

select a subset of input datasets based on the user specified query budget.

Design goals. We had the following goals when we designed and implemented ApproxJoin:

• Transparency: Provide a simple programming interface to users that is similar to the
join operation of state-of-the-art systems. This goal implies that there will be negligible
(or no) modifications to existing programs.

• Query budget guarantees: Ensure that the join operation is performed within the query
budget supplied by the user in the form of desired latency or desired error bound. This
goal implies that the system should accurately estimate the latency and error bounds of
the approximation in the join operation.

• Efficiency: Handle very large input datasets in an efficient and cost-effective manner.
This goal implies that the system reduces the usage of resources (e.g., network, CPU) as
much as possible.

Query interface. ApproxJoin supports joins with algebraic aggregation functions, such as
SUM, AVG, COUNT, and STDEV. In addition, a query execution budget is provided to specify
either the latency requirement or desired error bound. More specifically, consider the case
where a user wants to perform an aggregation query after an equal-join on attribute A for n
input datasets R1 on R2 on ... on Rn, where Ri(i = 1, ..., n) represents an input dataset. The user
sends the query q and supplies a query budget qbudget to ApproxJoin. The query budget can be
in the form of desired latency ddesired or desired error bound errdesired. For instance, if the
user wants to achieve a desired latency (e.g., ddesired = 120 seconds), or a desired error bound
(e.g., errdesired = 0.01 with confidence level of 95%), he/she defines the query as follows:

SELECT SUM(R1.V + R2.V + ... + Rn.V )

FROM R1, R2, ..., Rn

WHERE R1.A = R2.A = ... = Rn.A

WITHIN 120 SECONDS

OR

ERROR 0.01 CONFIDENCE 95%

ApproxJoin executes the query and returns the most accurate query result within the
desired latency which is 120 seconds, or returns the query result within the desired error
bound ±0.01 at a 95% confidence level.

Design overview. The basic idea of ApproxJoin is to address the shortcomings of the existing
join operations in big data systems by reducing the number of data items that need to
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be processed. Our first intuition is that we can reduce the latency and computation of a
distributed join by removing redundant transfer of data items that are not going to participate
in the join. Our second intuition is that the exact results of the join operation may be desired,
but not necessarily critical, so that an approximate result with well-defined error bounds can
also suffice for the user.

Figure 6.2 shows an overview of our approach. There are two stages in ApproxJoin for the
execution of the user’s query:

Stage#1: Filtering redundant items. In the first stage, ApproxJoin determines the data items
that are going to participate in the join operation and filters the non-participating items. This
filtering reduces the data transfer that needs to be performed over the network for the join
operation. It also ensures that the join operation will not include ‘null’ results in the output
that will require special handling, as in WanderJoin [146]. ApproxJoin employs a well-known
data structure, Bloom filter [41]. Our filtering algorithm executes in parallel at each node that
stores partitions of the input and handles multiple input tables at the same time.

Stage #2: Approximation in distributed joins. In the second stage, ApproxJoin uses a sam-
pling mechanism that is executed during the join process: we sample the input datasets
while the cross product is being computed. This mechanism overcomes the limitations of the
previous approaches and enables us to achieve low latency as well as preserve the quality of
the output as highlighted in Figure 6.1. Our sampling mechanism is executed during the join
operation and preserves the statistical properties of the output.

In addition, we combine our mechanism with stratified sampling [11], where tuples with
distinct join keys are sampled independently with simple random sampling. As a result, data
items with different join keys are fairly selected to represent the sample, and no join key
will be overlooked. The final sample will contain all join keys—even the ones with few data
items—so that the statistical properties of the sample are preserved.

More specifically, ApproxJoin executes the following steps for approximation in distributed
joins:

Step #2.1: Determine sampling parameters. ApproxJoin employs a cost function to compute
an optimal sample size according to the corresponding budget of the query. This computation
ensures that the query is executed within the desired latency and error bound parameters of
the user.

Step #2.2: Sample and execute query. Using this sampling rate parameter, ApproxJoin
samples during the join and then executes the aggregation query q using the obtained sample.

Step #2.3: Estimate error. After executing the query, ApproxJoin provides an approximate
result together with a corresponding error bound in the form of result± error_bound to the
user.

Note that our sampling parameter estimation provides an adaptive interface for selecting
the sampling rate based on the user-defined accuracy and latency requirements. ApproxJoin
adapts by activating a feedback mechanism to refine the sampling rate after learning the data
distribution of the input datasets (see §6.5).
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Figure 6.3 – Bloom filter building.

6.4 Design

In this section, we explain the details of ApproxJoin’s operation. We first describe how we
filter redundant data items for multiple datasets to support multiway joins (§6.4.1). Then, we
describe how we perform approximation in distributed joins using three main steps: (1) how
we determine the sampling parameter to satisfy the user-specified query budget (§6.4.2), (2)
how our novel sampling mechanism executes during the join operation (§6.4.3), and finally (3)
how we estimate the error for the approximation (§6.4.4).

6.4.1 Filtering Redundant Items

In a distributed setting, join operations can be expensive due to the communication cost of
the data items. This cost can be especially high in multi-way joins, where several datasets are
involved in the join operation. One reason of this high cost is that data items not participating
in the join are shuffled through the network during the join operation.

To reduce this communication cost, we need to distinguish such redundant items and avoid
transferring them over the network. In ApproxJoin, we use Bloom filters for this purpose. The
basic idea is to utilize Bloom filters as a compressed set of all items present at each node and
combine them to find the intersection of the datasets used in the join. This intersection will
represent the set of data items that are going to participate in the join.

A Bloom filter is a data structure designed to query the presence of an element in a dataset
in a rapid and memory-efficient way [41]. There are three advantages why we choose Bloom
filters for our purpose. First, querying the membership of an element is efficient: it has O(h)
complexity, where h denotes a constant number of hash functions. Second, the size of the
filter is linearly correlated with the size of the input, but it is significantly smaller compared
to the original input size. Finally, constructing a Bloom filter is fast and requires a single pass
over the input.

Bloom filters have been exploited to improve distributed joins in the past [31, 142, 206, 207].
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Algorithm 10: Filtering using multi-way Bloom filter

Input: n: number of input datasets
|BF |: size of the Bloom filter
fp: false positive rate of the Bloom filter
R: input datasets

1 // Build a Bloom filter for the join input datasets R

2 buildJoinFilter(R, |BF |, fp)
3 begin
4 // Build a Bloom filter for each input Ri

5 // Executed in parallel at worker nodes

6 ∀i ∈ {1...n}: BFi ← buildInputFilter(Ri, |BF |, fp);
7 // Merge input filters BFi for the overlap between inputs

8 // Executed sequentially at master node

9 BF← ∩n
i=1BFi;

10 return BF

11 // Build a Bloom filter for input Ri

12 // Executed in parallel at worker nodes

13 buildInputFilter(Ri, |BF |, fp)

14 begin
15 |pi| := number of partitions of input dataset Ri

16 pi := {pi,j}, where j = 1, ..., |pi|
17 //MAP PHASE

18 //Initialize a filter for each partition

19 forall j in {1...|pi|} do
20 p-BFi,j ← BloomFilter(|BF |, fp);
21 ∀rj ∈ pi,j : p-BFi,j .add(rj .key);

22 //REDUCE PHASE

23 // Merge partition filters to the dataset filter

24 BFi ← ∪|pi|
j=1p-BFi,j ;

25 return BFi

However, these proposals support only two-way joins. Although one can cover joins with
multiple input datasets by chaining two-way joins, this approach would add to the latency
of the join results. ApproxJoin handles multiple datasets at the same time and supports
multi-way joins without introducing additional latency.

For simplicity, we first explain how our algorithm uses a Bloom filter to find the intersection
of two input datasets. Afterwards, we explain how our algorithm finds the intersection of
multiple datasets at the same time.

I: Two-way Bloomfilter. For the two-way filtering, consider the join operation of two datasets
R1 on R2 (see Figure 6.3). First, we construct a Bloom filter for each input (step 1 in Figure 6.3),
which we refer to as dataset filter. We perform AND among the dataset filters (step 2). The
resulting Bloom filter represents the intersection of both datasets and is referred to as join
filter.

Afterwards, we broadcast the join filter to all nodes (step 3). Each node checks the mem-
bership of the data items in its respective input dataset in the join filter. If a data item is not
present, it is discarded. In Figure 6.3, all data items with keys C0 and C1 are preserved.
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II: Multi-way Bloom filter. We generalize the two-way Bloom filter, so that it applies to
n input datasets. Consider the case where we want to perform a join operation between
multiple input datasets Ri, where i = 1, ..., n: R1 on R2 on ... on Rn.

Algorithm 10 presents the two main steps to construct the multi-way join filter. In the first
step, we create a Bloom filter BFi for each input Ri, where i = 1, ..., n (lines 4-6), which is
executed in parallel at all worker nodes that have the input datasets. In the second step, we
combine the n dataset filters into the join filter by simply applying the logical AND operation
between the dataset filters (lines 7-9). This operation adds virtually no additional overhead to
build the join filter, because the logical AND operation with Bloom filters is fast, even though
the number of dataset filters being combined is n instead of two.

Note that an input dataset may consist of several partitions hosted on different nodes.
To build the dataset filter for these partitioned inputs, we perform a simple MapReduce job
that can be executed in distributed fashion: We first build the partition filters p-BFi,j , where
j = 1, ..., |pi| and |pi| is the number of partitions for input dataset Ri during the Map phase,
which is executed at the nodes that are hosting the partitions of each input (lines 15-21).
Then, we combine the partition filters to obtain the dataset filter BFi in the Reduce phase
by merging the partition filters via the logical OR operation into the corresponding dataset
filter BFi (lines 22-24). This process is executed for each input dataset and in parallel (see
buildInputFilter()).

Is Filtering Sufficient?

After constructing the join filter and broadcasting it to the nodes, one straightforward ap-
proach would be to complete the join operation by performing the cross product with the data
items present in the intersection. Figure 6.4 (a) shows the advantage of performing such a join
operation with multiple input datasets based on a simulation (see §6.4.5). With the broadcast
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join and repartition join mechanisms, the transferred data size gradually increases with the
increasing number of input datasets. However, with the Bloom filter based join approach,
the transferred data size significantly reduces even when the number of datasets in the join
operation increases.

Although this filtering seems to significantly reduced transferred data among nodes, this
reduction may not always be possible. Figure 6.4 (b) shows that even with a modest overlap
fraction between three input datasets (i.e., 40%), the amount of transferred data becomes
comparable with the repartition join mechanism. Furthermore, the cross product operation
will involve a significant amount of data items, potentially becoming the bottleneck.

In ApproxJoin, we first filter redundant data items as described in this section. Afterwards,
we check whether the overlap fraction between the datasets is small enough, such that we
can meet the latency requirements of the user. If so, we perform the cross product of the
data items participating in the join. In other words, we do not need approximation in this
case (i.e., we compute the exact join result). If the overlap fraction is large, we continue with
our approximation technique, which we describe next.

6.4.2 Approximation: Cost Function

ApproxJoin supports the query budget interface for users to define a desired latency (ddesired)
or a desired error-bound (errdesired) as described in §6.3. ApproxJoin ensures the join operation
executed within the specified query budget by tuning the sampling parameter accordingly.
In this section, we describe how ApproxJoin converts the join requirements given by a user
(i.e., ddesired, errdesired) into an optimal sampling parameter. To meet the budget from the user,
ApproxJoin makes use of two types of cost functions to determine the sample size: (i) latency
cost function, (ii) error-bound cost function.

I: Latency cost function. In ApproxJoin, we consider the latency for the join operation being
dominated by two factors: 1) the time to filter and transfer participating join data items, ddt,
and 2) the time to compute the cross product, dcp. To execute the join operation within the
delay requirements of the user, we have to estimate each contributing factor.

The latency for filtering and transferring the join data items, ddt, is measured during the
filtering stage (described in §6.4.1). We then compute the remaining allowed time to perform
the join operation:

drem = ddesired − ddt (6.1)

To satisfy the latency requirements, the following must hold:

dcp ≤ drem (6.2)

In order to estimate the latency of the cross product phase, we need to estimate how many
cross products we have to perform. Imagine that the output of the filtering stage consists
of data items with m distinct keys C1, C2 · · · , Cm. To fairly select data items, we perform
sampling for each join key independently (explained in §6.4.3). In other words, we will perform
stratified sampling, such that each key Ci corresponds to a stratum and has Bi data items.
Let bi represent the sample size for Ci. The total number of cross products is given by:

CPtotal =
m∑
1

bi (6.3)
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Figure 6.5 – The latency of cross-product operation with varying input sizes.

The latency for the cross product phase would be then:

dcp = βcompute ∗ CPtotal (6.4)

where βcompute denotes the scale factor that depends on the computation capacity of the
cluster (e.g., #cores, total memory).

We determine βcompute empirically via a microbenchmark by profiling the compute cluster
as an offline stage. In particular, we measure the latency to perform cross products with
varying input sizes. Figure 6.5 shows that the latency is linearly correlated with the input
size, which is consistent with plenty of I/O bound queries in parallel distributed settings [7,
15, 228]. Based on this observation, we estimate the latency of the cross product phase as
follows:

dcp = βcompute ∗ CPtotal + ε (6.5)

where ε is a noise parameter.

Given a desired latency ddesired, the sampling fraction s = CPtotal
m∑
1

Bi

can be computed as:

s = (drem − ε

βcompute
) ∗ 1

m∑
1

Bi

= (ddesired − ddt − ε

βcompute
) ∗ 1

m∑
1

Bi

(6.6)

Then, the sample size bi of stratum Ci can be then selected as follows:

bi ≤ s ∗Bi (6.7)

According to this estimation, ApproxJoin checks whether the query can be executed within
the latency requirement of the user. If not, the user is informed accordingly.

II: Error bound cost function. If the user specified a requirement for the error bound, we
have to execute our sampling mechanism, such that we satisfy this requirement. Our sampling
mechanism utilizes simple random sampling for each stratum (see §6.4.3). As a result, the
error erri can be computed as follows [152]:

erri = z α
2
∗ σi√

bi
(6.8)
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where bi represents the sample size of Ci and σi represents the standard deviation.

Unfortunately, the standard deviation σi of stratum Ci cannot be determined without
knowing the data distribution. To overcome this problem, we design a feedback mechanism
to refine the sample size (the implementation details are in §6.5): For the first execution of a
query, the standard deviation of σi of stratum Ci is computed and stored. For all subsequent
executions of the query, we utilize these stored values to calculate the optimal sample size
using Equation 6.10. Alternatively, one can estimate the standard deviation using a bootstrap
method [7, 152]. Using this method, however, would require performing offline profiling of
the data.

With the knowledge of σi and solving for bi gives:

bi = (z α
2
∗ σi

erri
)2 (6.9)

With 95% confidence level, we have z α
2

= 1.96; thus, bi = 3.84 ∗ ( σi
erri

)2. erri should be less or
equal to errdesired, so we have:

bi ≥ 3.84 ∗ ( σi

errdesired
)2 (6.10)

Equation 6.10 allows us to calculate the optimal sample size given a desired error bound
errdesired.

III: Combining latency and error bound. From Equations 6.7 and 6.10, we have a trade-off
function between the latency and the error bound with confidence level of 95%:

ddesired ≈ 3.84 ∗ ( σi

errdesired
)2 ∗ βcompute

Bi
∗ (

m∑
1

Bi) + ddt + ε (6.11)

6.4.3 Approximation: Sampling and Execution

In this section, we describe our sampling mechanism that executes during the cross product
phase of the join operation. Executing approximation during the cross product enables
ApproxJoin to have highly accurate results compared to pre-join sampling. To preserve
the statistical properties of the exact join output, we combine our technique with stratified
sampling. Stratified sampling ensures that no join key is overlooked: for each join key, we
perform simple random sampling over data items independently. This method fairly selects
data items from different join keys. The filtering stage (§6.4.1) guarantees that this selection is
executed only from the data items participating in the join.

For simplicity, we first describe howwe perform stratified sampling during the cross product
on a single node. We then describe how the sampling can be performed on multiple nodes in
parallel.

I: Single node stratified sampling. Consider an inner join example of J = R1 on R2 with a pair
keys and values, ((k1, v1), (k2, v2)), where (k1, v1) ∈ R1 and (k2, v2) ∈ R2. This join operation
produces an item (k1, (v1, v2) ∈ J if and only if (k1 = k2).
Consider that R1 contains (C0, v1), (C0, v2), and (C0, v3), and that R2 contains (C0, v4),

(C0, v5), (C0, v6), and (C0, v7). The join operation based on key C0 can be modeled as a com-
plete bipartite graph (shown in Figure 6.6). To execute stratified sampling over the join, we
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Figure 6.6 – The cross-product operation graph of join data items having overlap key C0.

perform random sampling on data items having the same join key (i.e., key C0). As a result,
this process is equal to performing edge sampling on the complete bipartite graph.

Sampling edges from the complete bipartite graph would require building the graph, which
would correspond to computing the full cross product. To avoid this cost, we propose a
mechanism to randomly select edges from the graph without building the complete graph.
The function sampleAndExecute() in Algorithm 11 describes the algorithm to sample edges
from the complete bipartite graph. To include an edge in the sample, we randomly select
one endpoint vertex from each side and then yield the edge connecting these vertices (lines
19-23). To obtain a sample of size bi, we repeat this selection bi times (lines 17-18 and 24). This
process is repeated for each join key Ci (lines 15-24).

II: Distributed stratified sampling. The sampling mechanism can naturally be adapted to
execute in a distributed setting. Algorithm 11 describes how this adaptation can be achieved.
In the distributed setting, the data items participating in the join are distributed to worker
nodes based on the join keys using a partitioner (e.g., hash-based partitioner). A master node
facilitates this distribution and directs each worker to start sampling (lines 4-5). Each worker
then performs the function sampleAndExecute() in parallel to sample the join output and
execute the query (lines 12-26).

III: Query execution. After the sampling, each node executes the input query on the sample
to produce a partial query result, resulti, and return it to the master node (lines 25-26). The
master node collects these partial results and merges them to produce a query result (lines
6-8). The master node also performs the error bound estimation (lines 9-10), which we
describe in the following subsection (§6.4.4) . Afterwards, the approximate query result and
its error bounds are returned to the user (line 11).

6.4.4 Approximation: Error Estimation

As the final step, ApproxJoin computes an error-bound for the approximate result. The
approximate result is then provided to the user as approxresult± error_bound.

Our sampling algorithm (i.e., the sampleAndExecute() function in Algorithm 11) described in
the previous section can produce an output with duplicate edges. For such cases, we use the
Central Limit Theorem to estimate the error bounds for the output. This error estimation is
possible because the sampling mechanism works as a random sampling with replacement.
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Algorithm 11: : Stratified sampling over join

Input:
bi: sample size of join key Ci

N1i & N2i: set of vertices (items) in two sides of complete bipartite graph of join key Ci

m: number of join keys
C: set of all join keys (i.e., {∀i ∈ {1, ..., m} : Ci})

1 // Executed sequentially at master node

2 sampleDuringJoin()

3 begin
4 foreach workeri in workerList do
5 resulti ← workeri.sampleAndExecute();// Direct workers to sample and execute the query

6 result← ∅; // Initialize empty query result

7 foreach Ci in C do
8 result← merge(resulti);// Merge query results from workers

9 // Estimate error for the result

10 result± error_bound← errorEstimation(result);
11 return result± error_bound;

12 // Executed in parallel at worker nodes

13 sampleAndExecute()

14 begin
15 foreach Ci in C do
16 samplei ← ∅; // Sample of join key Ci

17 counti ← 0;// Initialize a count to keep track # selected items

18 while counti < bi do
19 // Select two random vertices

20 v← random(N1i);
21 v′ ← random(N2i);
22 // Add an edge between the selected vertices and update the sample

23 samplei.add(< v, v′ >);
24 counti ← counti + 1; // Update counting

25 resulti ← query(samplei); // Execute query over sample

26 return resulti;

We can also remove the duplicate edges during the sampling process by using a hash table,
and repeat the algorithm steps until we reach the desired number of data items in the sample.
This approach might worsen the randomness of the sampling mechanism and could introduce
bias into the sample data. In this case, we use the Horvitz-Thompson [123] estimator to
remove this bias. We next explain the details of these two error estimation mechanisms.

I: Error estimation using the Central Limit Theorem. Suppose we want to compute the
approximate sum of data items after the join operation. The output of the join operation
contains data items with m different keys C1, C2 · · · , Cm, each key (stratum) Ci has Bi data
items and each such data item j has an associated value vi,j . To compute the approximate
sum of the join output, we sample bi items from each join key Ci according to the parameter
we computed (described in §6.4.2). Afterwards, we estimate the sum from this sample as
τ̂ =

∑m
i=1(Bi

bi

∑bi
j=1 vij)± ε, where the error bound ε is defined as:

ε = tf,1− α
2

√
V̂ ar(τ̂) (6.12)
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Here, tf,1− α
2
is the value of the t-distribution (i.e., t-score) with f degrees of freedom and

α = 1− confidencelevel. The degree of freedom f is calculated as:

f =
m∑

i=1
bi −m (6.13)

The estimated variance for the sum, V̂ ar(τ̂), can be expressed as:

V̂ ar(τ̂) =
m∑

i=1
Bi ∗ (Bi − bi)

r2
i

bi
(6.14)

Here, r2
i is the population variance in the ith stratum. We use the statistical theories for

stratified sampling [205] to compute the error bound.

II: Error estimation using the Horvitz-Thompson estimator. Consider the second case,
where we remove the duplicate edges and resample the endpoint nodes until another edge is
yielded. The bias introduced by this process can be estimated using the Horvitz-Thomson
estimator. Horvitz-Thompson is an unbiased estimator for the population sum and mean,
regardless whether sampling is with or without replacement.

Let πi is a positive number representing the probability that data item having key Ci is
included in the sample under a given sampling scheme. Let yi is the sample sum of items
having key Ci: yi =

∑bi
j=1 vij . The Horvitz-Thompson estimation of the total is computed

as [205]:

τ̂π =
m∑

i=1
( yi

πi
)± εht (6.15)

where the error bound εht is given by:

εht = t α
2

√
V̂ ar(τ̂π) (6.16)

where t has n− 1 degrees freedom. The estimated variance of the Horvitz-Thompson estima-
tion is computed as:

V̂ ar(τ̂π) =
m∑

i=1
(1− πi

π2
i

) ∗ y2
i +

m∑
i=1

∑
j 6=i

(πij − πiπj

πiπj
) ∗ yiyj

πij
(6.17)

where πij is the probability that both data items having key Ci and Cj are included.

Note that the Horvitz-Thompson estimator does not depend on how many times a data
item may be selected: each distinct item of the sample is used only once [205].

6.4.5 Analysis of ApproxJoin

In this section, we first analyze the communication complexity of ApproxJoin. Thereafter, we
provide computational complexity analysis for the proposed stratified sampling over joins in
the sampling stage of ApproxJoin.

110



6.4 Design

I. Communication Complexity

For the communication complexity, we analyze the performance gain of ApproxJoin in terms
of shuffled data size during the filter stage with various setting of Bloom filters using a model-
based analysis. We compare the gains of ApproxJoin with the broadcast and repartition join
mechanisms. Based on our analysis, we also show how to select input parameters for Bloom
filter to achieve an optimal trade-off between reducing the shuffled data volume and the
desired false positive value in the Bloom filters.

Suppose we want to execute a multi-way join operation on attribute A for n input datasets
R1 on R2 on ... on Rn, where Ri(i = 1, ..., n) is an input dataset. For simplicity, we assume that
|R1| < |R2| < ... < |Rn|. The number of nodes in our experimental cluster is k and k > 1.

Broadcast join. In broadcast join, we broadcast all smaller datasets to all nodes that contain
the largest dataset. The total shuffled data volume is bounded by:

Sbc = 〈|R1|+ |R2|+ ... + |Rn−1|〉 ∗ (k − 1) (6.18)

When we add one more node to the cluster, the relative increase in the shuffled data volume
in broadcast join will be:

θF

θk
= |R1|+ |R2|+ ... + |Rn−1| (6.19)

When we add one more dataset Rn+1 to the join operation, the relative increase in the shuffled
data volume will be:

θF

θn
= |Rn| ∗ (k − 1) (6.20)

Repartition join. In repartition join, we shuffle data items of datasets across the cluster to
make sure that each node in the cluster will keep at least a chunk/partition of each dataset.
Therefore, the shuffled data volume in repartition join is computed as follows:

Sre = 〈|R1|+ |R2|+ ... + |Rn−1|+ |Rn|〉 ∗
k − 1

k
(6.21)

When we add one more node to the cluster, the relative increase in the shuffled data volume
in repartition join will be:

θF

θk
= 〈|R1|+ |R2|+ ... + |Rn−1|+ |Rn|〉 ∗

1
k ∗ (k + 1) (6.22)

When we add one more dataset Rn+1 to the join operation, the relative increase in the shuffled
data volume will be:

θF

θn
= |Rn+1| ∗

k − 1
k

(6.23)

ApproxJoin. Algorithm 10 describes our proposed filtering using a Bloom filter for multi-
way joins. The algorithm builds a Bloom filter BFi for each dataset Ri using the function
buildInputFilter. In the Map phase, the function builds Bloom filters for all partitions of the
input dataset Ri. In the Reduce phase, all the partitioned Bloom filters are merged to build the
Bloom filter BFi for the input datasetRi. Since we fix the size for all Bloom filters, the volume of
the shuffled data for building Bloom filters for all inputs is computed as |BF |∗(k−1)∗n, where

111



6 ApproxJoin: Approximate Distributed Joins

|BF | is the size of each Bloom filter. Thereafter, the Bloom filters of all inputs are combined
to build a join Bloom filter with size |BF | for all join input using the function buildJoinFilter.

Next, the algorithm broadcasts the join Bloom filter to all nodes to filter out all data items
that do not participate in the join operation. The shuffled data size of the broadcast step is
calculated as |BF | ∗ (k − 1). The volume of shuffled data for the filtering step is computed
as 〈|r1| + |r2| + ... + |rn|〉 ∗ k−1

k ; where |ri| is the size of data items participating in the join
operation of input Ri .

In summary, the total volume of shuffled data in the proposed filtering mechanism is
calculated as follows:

Sbf = |BF | ∗ (k − 1) ∗ (n + 1)+

+ 〈|r1|+ |r2|+ ... + |rn|〉 ∗
k − 1

k

(6.24)

When we add one more node to the cluster, the relative increase in the shuffled data volume
in ApproxJoin will be:

θF

θk
= |BF | ∗ (n + 1)+

+ 〈|r1|+ |r2|+ ... + |rn−1|+ |rn|〉 ∗
1

k ∗ (k + 1)

(6.25)

When we add onemore dataset Rn+1 to the join operation, the relative increase of the shuffled
data volume is computed as:

θF

θn
= |BF | ∗ (k − 1) + |rn+1| ∗

k − 1
k

(6.26)

Note that for Bloom filters, false positives are possible, but false negatives are not. There is
a trade-off between the size of a bit vector |BF | and the probability of a false positive. A larger
|BF | has fewer false positives but consumes more memory, whereas a smaller |BF | requires
less memory at the risk of more false positives. The false positive rate can be computed as [41]:

p ≈ (1− e
N∗h
|BF | )h; where h is the number of hash functions and N is the number of data items

inserted to the Bloom filter. For a given |BF | and N , the value of h that minimizes the false

positive probability [41, 172] is h = |BF |
N ∗ ln 2. Therefore, we have: p ≈ (1− eln 2)

|BF |
N

∗ln 2 which

can be simplified to: ln p = − |BF |
N ∗ (ln 2)2. Thus |BF | can be computed as follows:

|BF | = −N ∗ ln p

(ln 2)2 (6.27)

In our design, we select N = |Rn|; where |Rn| is the size of the largest input dataset.

We use a simulation-driven approach, based on the aforementioned model, to analyze the
trade-off between reducing the shuffled data volume and the desired false positive value in
the Bloom filters. We conduct an experiment by using the simulation. We create three input
datasets R1, R2, and R3; where |R1| = 10000, |R2| = 1000000, |R3| = 10000000. We set the
overlap fraction to 1%; and the number of keys in R1, R2, and R3 to 1000, 100000, and 1000000,
respectively. The value of each data item in the datasets follows Poisson distribution with
lambda parameter 10. Finally, we set the number of nodes in the cluster k = 100. We run the
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Figure 6.7 – The data shuffle size comparison between broadcast join, repartition join, optimal

ApproxJoin, and ApproxJoin with different desired false positive values. Optimal

ApproxJoin is the case that there is no false positive happen during the join operation

in ApproxJoin.

simulation with the input parameters and analyze the shuffled data volume with different
false positive values. Figure 6.7 shows the shuffled data volume of broadcast join, repartition
join, optimal ApproxJoin, and ApproxJoin. Optimal ApproxJoin is the case when there are no
false positives during the join operation of ApproxJoin. When the false positive rate is set to
less than or equal to 0.01, ApproxJoin reaches the optimal case.

This simulation allows us to quickly set the desired false positive parameter for ApproxJoin
with varying input datasets.

II. Computational Complexity

Since ApproxJoin significantly reduces the communication overhead for distributed join
operations, it becomes important to ensure that the bottleneck is not shifted to another
part of the system, potentially hindering improved performance. Thus, another important
aspect of the performance analysis is the computational complexity, which theoretically
represents the amount of time required to execute the proposed algorithm. Here, we provide
the computational complexity analysis of our sampling mechanism (§6.4.3) in comparison
with the broadcast and repartition join mechanisms.

Consider that we want to perform a join operation for n inputs R1 on R2 on ... on Rn, where
Ri(i = 1, ..., n) is the input dataset. The inputs contain m join keys Cj(j = 1, ..., m). Let |rij | be
the number of data items participating in the join operation from input Ri with join key Cj .

In repartition join or broadcast join, we need to perform the full cross product operation
over these data items. As a result, the computational complexity for each join key Cj is

O(
n∏

i=1
|rij |).

On the other hand, in ApproxJoin, we perform sampling over the cross product operation.
As a result, for each join key Cj , the sampling mechanism performs bj random selections
on each side of the bipartite graph (§6.4.3), where bj represents the sample size of join key

Cj . bj is computed as s ∗
n∏

i=1
|rij |, where s is the sampling fraction. Thus, the computational
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complexity of the proposed sampling mechanism is O(bi). Rewriting bj as s ∗
n∏

i=1
|rij |, the

computational complexity for each join key Cj becomes O(s ∗
n∏

i=1
|rij |)).

6.5 Implementation

In this section, we describe the implementation details of ApproxJoin. At the high level,
ApproxJoin composed of two main modules: (i) filtering and (ii) approximation. The filtering
module constructs the join filter to determine the data items participating in the join. These
data items are fed to the approximation module to perform the join query within the query
budget specified by the user.

We implemented our design by modifying Apache Spark [21]. Spark uses Resilient Dis-
tributed Datasets (RDDs) [229] for scalable and fault-tolerant distributed data-parallel com-
puting. An RDD is an immutable collection of objects distributed across a set of machines. To
support existing programs, we provide a simple programming interface that is also based on
the RDDs. In other words, all operations in ApproxJoin, including filtering and approximation,
are transparent to the user. To this end, we have implemented a PairRDD for approxjoin()
function to perform the join query within the query budget over inputs in the form of RDDs.
Figure 6.8 shows in detail the directed acyclic graph (DAG) execution of ApproxJoin.
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I: Filtering module. The join Bloom filter module implements the filtering stage described
in §6.4.1 to eliminate the non-participating data items. A straightforward way to implement
buildJoinFilter() in Algorithm 10 is to build Bloom filters for all partitions (p-BFs) of each input
and merge them in the driver of Spark in the Reduce phase. However, in this approach, the
driver quickly becomes a bottleneck when there are multiple data partitions located on many
workers in the cluster. To solve this problem, we leverage the treeReduce scheme [133]. In
this model, we combine the Bloom filters in a hierarchical fashion, where the reducers are
arranged in a tree with the root performing the final merge (Figure 6.8). If the number of
workers increases (i.e., ApproxJoin deployed in a bigger cluster), more layers are added to the
tree to ensure that the load on the driver remains unchanged. After building the join filter,
ApproxJoin broadcasts it to determine participating join items in all inputs and feed them to
the approximation module.

The approximation module consists of three submodules including the cost function, sam-
pling and error estimation. The cost function submodule implements the mechanism in §6.4.2
to determine the sampling parameter according to the requirements in the query budget.
The sampling submodule performs the proposed sampling mechanism (described in §6.4.3)
and executes the join query over the filtered data items with the sampling parameter. The
error estimation submodule computes the error-bound (i.e., confidence interval) for the
query result from the sampling module (described in §6.4.4). This error estimation submodule
also performs fine-tuning of the sample size used by the sampling submodule to meet the
accuracy requirement in subsequent runs.

II: Approximation: Cost function submodule. The cost function submodule converts the
query budget requirements provided by the user into the sampling parameter used in the
sampling submodule. We implemented a simple cost function by building a model to convert
the desired latency into the sampling parameter. To build the model, we perform offline
profiling of the compute cluster. This model empirically establishes the relationship between
the input size and the latency of cross product phase by computing the βcompute parameter
from the micro-benchmarks. Afterwards, we utilize Equation 6.7 to compute the sample sizes.

III: Approximation: Sampling submodule. After receiving the intersection of the inputs
from the filtering module and the sampling parameter from the cost function submodule,
the sampling submodule performs the sampling during the join as described in §6.4.3. We
implemented the proposed sampling mechanism in this submodule by creating a new Spark
PairRDD function sampleDuringJoin() that executes stratified sampling during the join.

The original join() function in Spark uses two operations: 1) cogroup() shuffles the data in
the cluster, and 2) cross-product performs the final phase in join. In our approxjoin() function,
we replace the second operation with sampleDuringJoin() that implements our mechanism
described in §6.4.3 and Algorithm 11. Note that the data shuffled by the cogroup() function is
the output of the filtering stage. As a result, the amount of shuffled data can be significantly
reduced if the overlap fraction between datasets is small. Another thing to note is that
sampleDuringJoin() also performs the query execution as described in Algorithm 11.

IV: Approximation: Error estimation submodule. After the query execution is performed
in sampleDuringJoin(), the error estimation submodule implements the function errorEsti-
mation() to compute the error bounds of the query result. The submodule also activates
a feedback mechanism to re-tune the sample sizes in the sampling submodule to achieve
the specified accuracy target as described in §6.4.2. We use the Apache Common Math
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Figure 6.9 – The latency breakdown of: (a) ApproxJoin without sampling; (b) Spark repartition

join; (c) Native Spark join.

library [158] to implement the error estimation mechanism described in §6.4.4.

6.6 Evaluation

In this section, we present the evaluation results of ApproxJoin based on micro-benchmarks
and the TPC-H benchmark. In the next section, we will report evaluation based on real-world
case studies.

6.6.1 Experimental Setup

Cluster setup. Our cluster consists of 10 nodes, each equipped with two Intel Xeon E5405
quad-core CPUs, 8GB memory and a SATA-2 hard disk, running Ubuntu 14.04.1.

Synthetic datasets. We analyze the performance of ApproxJoin using synthetic datasets
following Poisson distributions with λ in the range of [10, 10000]. The number of distinct join
keys is set to be proportional to the number of workers.

Metrics. We evaluate ApproxJoin using threemetrics: latency, shuffled data size, and accuracy
loss. Specifically, the latency is defined as the total time consumed to process the join
operation; the shuffled data size is defined as the total size of the data shuffled across nodes
during the join operation; the accuracy loss is defined as (approx−exact)/exact, where approx
and exact denote the results from the executions with and without sampling, respectively.

6.6.2 Benefits of Filtering

The join operation in ApproxJoin consists of two main stages: (i) filtering stage for reducing
shuffled data size, and (ii) sampling stage for approximate computing. In this section, we
activate only the filtering stage (without the sampling stage) in ApproxJoin, and evaluate the
benefits of the filtering stage.

Two-way joins. First, we report the evaluation results with two-way joins. Figure 6.9(a)(b)(c)
show the latency breakdowns of ApproxJoin, Spark repartition join, and native Spark join,
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respectively. Unsurprisingly, the results show that building Bloom filters in ApproxJoin is quite
efficient (only around 42 seconds) compared with the cross-product-based join execution
(around 43× longer than building Bloom filters, for example, when the overlap fraction is 6%).
The results also show that the cross-product-based join execution is fairly expensive across
all three systems.

When the overlap fraction is less than 4%, ApproxJoin achieves 2× and 3× shorter latencies
than Spark repartition join and native Spark join, respectively. However, with the increase
of the overlap fraction, there is an increasingly large amount of data that has to be shuf-
fled and the expensive cross-product operation cannot be eliminated in the filtering stage;
therefore, the benefit of the filtering stage in ApproxJoin gets smaller. For example, when
the overlap fraction is 10%, ApproxJoin speeds up only 1.06× and 8.2× compared with Spark
repartition join and Spark native join, respectively. When the overlap fraction increases to
20%, ApproxJoin’s latency does not improve (or may even perform worse) compared with the
Spark repartition join. At this point, we need to activate the sampling stage of ApproxJoin to
reduce the latency of the join operation, which we will evaluate in §6.6.3.

Multi-way joins. Next, we present the evaluation results with multi-way joins. Specifically,
we first conduct the experiment with three-way joins whereby we create three synthetic
datasets with the same aforementioned Poisson distribution. We measure the latency and
the shuffled data size during the join operations in ApproxJoin, Spark repartition join and
native Spark join, with varying overlap fractions. Figure 6.10(a) shows that, with the overlap
fraction of 1%, ApproxJoin is 2.6× and 8× faster than Spark repartition join and native Spark
join, respectively. However, with the overlap fraction larger than 8%, ApproxJoin does not
achieve much latency gain (or may even perform worse) compared with Spark repartition join.
This is because, similar to the two-way joins, the increase of the overlap fraction prohibitively
leads to a larger amount of data that needs to be shuffled and cross-producted. Note also that,
we do not have the evaluation results for native Spark join with the overlap fractions of 8%
and 10%, simply because that system runs out of memory. In addition, Figure 6.10(b) shows
that ApproxJoin significantly reduces the shuffled data size. For example, with the overlap
fraction of 6%, ApproxJoin reduces the shuffled data size by 16.68× and 14.5× compared with
Spark repartition join and native Spark join, respectively.
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Next, we conduct experiments with two-way, three-way and four-way joins. In two-way
joins, we use two synthetic datasets A and B that have an overlap fraction of 1%; in three-way
joins, the three synthetic datasets A, B, and C have an overlap fraction of 0.33%, and the
overlap fraction between any two of them is also 0.33%; in four-way joins, the four synthetic
datasets have an overlap fraction of 0.25%, and the overlap fraction between any two of these
datasets is also 0.25%.

Figure 6.10(c) presents the latency and the shuffled data size during the join operation with
different numbers of input datasets. With two-way joins, ApproxJoin speeds up by 2.2× and
6.1×, and reduces the shuffled data size by 45× and 12×, compared with Spark repartition join
and native Spark join, respectively. In addition, with three-way and four-way joins, ApproxJoin
achieves even larger performance gain. This is because, with the increase of the number of
input datasets, the number of non-join data items also increases; therefore, ApproxJoin gains
more benefits from the filtering stage.

Scalability. Finally, we keep the overlap fraction of 1% and evaluate the scalability of Ap-
proxJoin with different numbers of compute nodes. Figure 6.11(a) shows that ApproxJoin
achieves a lower latency than Spark repartition join and native Spark join. With two nodes,
ApproxJoin achieves a speedup of 1.8× and 10× over Spark repartition join and native Spark
join, respectively. Meanwhile, with 8 nodes, ApproxJoin achieves a speedup of 1.7× and 6×
over Spark repartition join and native Spark join.

6.6.3 Benefits of Sampling

As shown in previous experiments, ApproxJoin does not gain much latency benefit from the
filtering stage when the overlap fraction is large. To reduce the latency of the join operation
in this case, we activate the second stage of ApproxJoin, i.e., the sampling stage.

For a fair comparison, we re-purpose Spark’s built-in sampling algorithm (i.e., stratified
sampling via sampleByKey) to build a “sampling over join” mechanism for the Spark repartition
join system. Specifically, we perform the stratified sampling over the join results after the join
operation has finished in the Spark repartition join system. We then evaluate the performance
of ApproxJoin, and compare it with this extended Spark repartition join system.

Latency. We measure the latency of ApproxJoin and the extended Spark repartition join with
varying sampling fractions. Figure 6.11(b) shows that the Spark repartition join system scales
poorly with a significantly higher latency as it could perform stratified sampling only after
finishing the join operation. Even if we were to enable the Spark repartition join system to
perform stratified sampling over the input datasets and then perform the join operation over
these samples, this would come with a significant accuracy loss.

Accuracy. Next, we measure the accuracy of ApproxJoin and the extended Spark repartition
join. Figure 6.11(c) shows that the accuracy losses in both systems decrease with the increase of
sampling fractions, although ApproxJoin’s accuracy is slightly worse than the Spark repartition
join system. Note however that, as shown in Figure 6.11(b), ApproxJoin achieves an order
of magnitude speedup compared with the Spark repartition join system since ApproxJoin
performs sampling during the join operation.
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(c) Accuracy loss with varying sampling fraction. Note that Spark repartition join

performs sampling after the join operation in this experiment.

 0

 400

 800

 1200

 1600

 2000

200 400 600 800

L
a
te

n
c
y
 (

s
e
c
o
n
d
s
)

Desired latency (seconds)

(a) Latency

ApproxJoin

Spark repartition join

10-�

10��

10��

10��

100

 200  400  600  800

A
c
c
u
ra

c
y
 l
o
s
s
 (

%
)

Desired latency (seconds)

(b) Accuracy loss

ApproxJoin

Spark repartition join

Figure 6.12 – Comparison between ApproxJoin and Spark repartition join with sampling after the

join operation: (a) Latency; (b) Accuracy loss with varying latency budgets.

6.6.4 Effectiveness of Cost Function

ApproxJoin provides users with a query budget interface, and uses a cost function to convert
the query budget into a sample size (see §6.4.2). In this experiment, a user sends ApproxJoin a
join query along with a latency budget (i.e., the desired latency the user wants to achieve).
ApproxJoin uses the cost function, whose parameter is set according to themicro-benchmarks
(β = 4.16 ∗ 10−9 in our cluster), to convert the desired latency to the sample size. We measure
the latency of ApproxJoin and the extended Spark repartition join in performing the join
operations with the identified sample size. Figure 6.12(a) shows that ApproxJoin can rely on
the cost function to achieve the desired latency quite well (with the maximum error being
less than 12 seconds). Note also that, the Spark repartition join incurs a much higher latency
than ApproxJoin since it performs the sampling after the join operation has finished. In
addition, Figure 6.12(b) shows that ApproxJoin can achieve a very similar accuracy to the Spark
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repartition join system.

6.6.5 Comparisonwith SnappyData using TPC-H

In this section, we evaluate ApproxJoin using TPC-H benchmark. TPC-H benchmark consists
of 22 queries, and has been widely used to evaluate various database systems. We compare
ApproxJoin with the state-of-the-art related system — SnappyData [186].

SnappyData is a hybrid distributed data analytics framework which supports a unified
programming model for transactions, OLAP and data stream analytics. It integrates GemFine,
an in-memory transactional store, with Apache Spark. SnappyData inherits approximate
computing techniques from BlinkDB [7] (off-line sampling techniques) and the data synopses
to provide interactive analytics. SnappyData does not support sampling over joins.

In particular, we compare ApproxJoin with SnappyData using the TPC-H queries Q3, Q4
and Q10 which contain join operations. To make a fair comparison, we only keep the join
operations and remove other operations in these queries. We run the benchmark with a scale
factor of 10×, i.e., 10GB datasets.

First, we use the TPC-H benchmark to analyze the performance of ApproxJoin with the
filtering stage but without the sampling stage. Figure 6.13(a) shows the end-to-end latencies
of ApproxJoin and SnappyData in processing the three queries. ApproxJoin is 1.34× faster
than SnappyData in processing Q4 which contains only one join operation. In addition, for
the query Q3 which consists of two join operations, ApproxJoin achieves a 1.3× speedup than
SnappyData. Meanwhile, ApproxJoin speeds up by 1.2× compared with SnappyData for the
query Q10.
Next, we evaluate ApproxJoin with both filtering and sampling stages activated. In this

experiment, we perform a query to answer the question “what is the total amount of money
the customers had before ordering?”. To process this query, we need to join the two tables
CUSTOMER and ORDERS in the TPC-H benchmark, and then sum up the two fields
o_totlaprice and c_acctbal.

Since SnappyData does not support sampling over the join operation, in this experiment it
first executes the join operation between the two tables CUSTOMER and ORDERS, then
performs the sampling over the join output, and finally calculates the sum of the two fields
o_totalprice and c_acctbal. Figure 6.13(b) presents the latencies of ApproxJoin and SnappyData
in processing the aforementioned query with varying sampling fractions. SnappyData has a
significantly higher latency than ApproxJoin, simply because it performs sampling only after
the join operation finishes. For example, with a sampling fraction of 60%, SnappyData achieves
a 1.77× higher latency than ApproxJoin, even though it is faster when both systems do not
perform sampling (i.e., sampling fraction is 100%). Note however that, sampling is inherently
needed when one handles joins with large-scale inputs that require a significant number
of cross-product operations. Figure 6.13(c) shows the accuracy losses of ApproxJoin and
SnappyData. ApproxJoin achieves an accuracy level similar to SnappyData. For example, with
a sampling fraction of 60%, ApproxJoin achieves an accuracy loss of 0.021%, while SnappyData
achieves an accuracy loss of 0.016%.
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6.7 Case Studies

We evaluate ApproxJoin based on case studies with two real-world datasets: (a) network
traffic dataset and (b) Netflix Prize dataset.

6.7.1 Network Traffic Analytics

Dataset. We use the CAIDA network traces [51] whichwere collected on the Internet backbone
links in Chicago in 2015. In total, this dataset contains 115, 472, 322 TCP flows, 67, 098, 852 UDP
flows, and 2, 801, 002 ICMP flows. Here, a flow denotes a two-tuple network flow that has the
same source and destination IP addresses.

Query. We use ApproxJoin to process the query: What is the total size of the flows that
appeared in all TCP, UDP and ICMP traffic? To answer this query, we need to perform a join
operation across TCP, UDP and ICMP flows.

121



6 ApproxJoin: Approximate Distributed Joins

 0

 10

 20

 30

 40

 50

ApproxJoin
Spark repartition join

Native Spark join

10-�

100

101

102

L
a
te

n
c
y
 (

m
in

u
te

s
)

S
iz

e
 (

G
B

)

(a) Latency and shu�ed data size

Latency [minutes]

Shu�ed data size [GB]

 0

 10

 20

 30

 40

 50

 60

 70

 80

10 20 40 60 80 No sampling

L
a
te

n
c
y
 (

m
in

u
te

s
)

Sampling fraction (%)

(b) Latency vs sampling fraction

ApproxJoin

Spark repartition join

Native Spark join

Figure 6.15 – Comparison between ApproxJoin and Spark join systems in Netflix case study: (a)

Latency and shuffle data; (b) Latency with various sampling fractions.

Results. Figure 6.14(a) first shows the latency comparison between ApproxJoin (with filtering
but without sampling), Spark repartition join, and native Spark join. ApproxJoin achieves a
latency 1.72× and 1.57× lower than Spark repartition join and native Spark join, respectively.
Interestingly, native Spark join achieves a lower latency than Spark repartition join. This
is because the dataset is distributed quite uniformly across worker nodes in terms of the
join-participating flow items, i.e., there is little data skew. Figure 6.14(a) also shows that
ApproxJoin significantly reduces the shuffled data size by a factor of 300× compared with the
two Spark join systems.

Next, different from the experiments in §6.6, we extend Spark repartition join by enabling it
to sample the dataset before the actual join operation. This leads to the lowest latency it could
achieve. Figure 6.14(b) shows that ApproxJoin achieves a similar latency even to this extended
Spark repartition join. In addition, Figure 6.14(c) shows the accuracy loss comparison between
ApproxJoin and Spark repartition join with different sampling fractions. As the sampling
fraction increases, the accuracy losses of ApproxJoin and Spark repartition join decrease, but
not linearly. ApproxJoin produces around 42×more accurate query results than the Spark
repartition join system with the same sampling fraction.

6.7.2 Netflix Prize Analytics

Dataset. We also evaluate ApproxJoin based on the Netflix Prize dataset which includes
around 100M ratings of 17, 770 movies by 480, 189 users. Specifically, this dataset contains
17, 770 files, one per movie, in the training_set folder. The first line of each such file contains
MovieID, and each subsequent line in the file corresponds to a rating from a user and the date,
in the form of 〈UserID, Rating, Date〉. There is another file qualifying.txt which contains
lines indicating MovieID, UserIDs and the rating Dates.

Query. We perform the join operation between the dataset in training_set and the dataset
in qualifying.txt to evaluate ApproxJoin in terms of latency. Note that, we cannot find a

122



6.8 Discussion

meaningful aggregation query for this dataset; therefore, we focus on only the latency but
not the accuracy of the join operation.

Results. Figure 6.15(a) shows the latency and the shuffled data size of ApproxJoin (with
filtering but without sampling), Spark repartition join, and native Spark join. ApproxJoin
is 1.27× and 2× faster than Spark repartition join and native Spark join, respectively. The
result in Figure 6.15(a) also shows that ApproxJoin reduces the shuffled data size by 3× and
1.7× compared with Spark repartition join and native Spark join, respectively. In addition,
Figure 6.15(b) presents the latency comparison between these systems with different sampling
fractions. For example, with the sampling fraction of 10%, ApproxJoin is 6× and 9× faster
than Spark repartition join and native Spark join, respectively. Even without sampling (i.e.,
sampling fraction is 100%), ApproxJoin is still 1.3× and 2× faster than Spark repartition join
and native Spark join, respectively.

6.8 Discussion

In our design, to set optimal values for the Bloom filter parameters, it requires to know in
advance, the size of the input datasets. However, in reality, it is not always possible to know
in advance the size of input datasets. This might lead to excessive calibration of the size
of Bloom filters with orders of magnitude differences compared to the optimal setting. To
overcome this problem, in this section, we discuss three alternative design choices for Bloom
filters that we considered in ApproxJoin to filter the redundant items (step 1). To evaluate
different variants of Bloom filters in terms of size and computation cost, we used a simulation
with one input dataset containing 100K data items and built the corresponding Bloom filters.
Figure 6.16 shows the size of each Bloom filter used.

Invertible Bloom filter. In addition to the membership check, an Invertible Bloom Filter
(IBF)) [106] also allow to get the list of all items present in the filter. As a result, the participating
join items can be obtained by using the subtraction operation of the IBF. However, the IBF
comes at a higher cost for computation and storage of the filter: Each cell in an IBF is not a
single bit as a regular Bloom filter, but a data structure with a count maintaining the number
of collisions and an invertible value of keys. Moreover, just as regular Bloom filters have false
positives, there is a probability that a get operation returns a “not found” result, although the
data might still be in the filter, but due to collisions it cannot be found. This probability is the
same as the false positive rate for the corresponding Bloom filter. Thus, the filtering step may
have false negatives (due to the “not found” result), negatively affecting the join result. Note
that such a false negative is not possible with the regular Bloom filters.

Counting Bloom filter. One can also use a Counting Bloom Filter (CBF) [44] for the filtering
stage. CBFs also provide the remove/subtraction operation, similar to IBFs, but not the get
operation. Unlike an IBF, each cell in a CBF is only a count that tracks the number of collisions.
As a result, CBFs can be considerably smaller than IBFs (see Figure 6.16). However, the size
CBFs is still significant larger than regular Bloom filter (see Figure 6.16).

Scalable Bloom filter. In our design, we need to know the size of the input datasets for
configuring optimal values for the Bloom filters. In practice, however, this information may
not always be available in advance. As a result, non-optimal values for Bloom filters may be
chosen. To address this problem, we could employ Scalable Bloom filters (SBFs) [172], where
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the input dataset can be represented without knowing the number of data items to be put in
the filter. This mechanism adapts to the growth of the input size by using a series of regular
Bloom filters of increasing sizes and tighter error probabilities.

To build a global SBF (as our join filter), we need to merge local SBFs from all worker nodes in
the cluster. Unfortunately, the current design and implementation of SBFs do not support the
union operation to perform this merging. We show how to implement this merge operation
by creating a pull request2 to the SBF repository. Our implementation takes advantage of
the fact that SBFs contain a set of regular Bloom filters. As a result, we perform the union
operation between two SBFs by executing the union of regular Bloom filters under the hood.

6.9 RelatedWork

Over the last decade, approximate computing has been applied in various domains such as
programming languages [29, 194], hardware design [193], and distributed systems [70, 121,
171]. Our techniques mainly target the databases research community [6, 7, 131, 132, 177, 204,
226]. In particular, various approximation techniques have been proposed to make trade-offs
between required resources and output quality, including sampling [11, 100], sketches [73],
and online aggregation [121, 171]. Chaudhari et al. provide a sampling over join mechanism by
taking a sample of an input and considering all statistical characteristics and indices of other
inputs [61]. AQUA [6] system makes use of simple random sampling to take a sample of joins
of inputs that have primary key-foreign key relations. BlinkDB [7] proposes an approximate
distributed query processing engine that uses stratified sampling [11] to support ad-hoc
queries with error and response time constraints. SnappyData [186] and SparkSQL [27] adopt
the approximation techniques from BlinkDB to support approximate queries. Quickr [204]
deploys distributed sampling operators to reduce execution costs of parallel, ad-hoc queries
that may contain multiple join operations. In particular, Quickr first injects sampling operators
into the query plan and searches for an optimal query plan among sampled query plans to
execute input queries.

Unfortunately, all of these systems require a priori knowledge of the inputs. For example,
AQUA [6] requires join inputs to have primary key-foreign key relations. For another example,

2https://github.com/josephfox/pythonbloomfilter/pull/11
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the sampling over join mechanism [61] needs the statistical characteristics and indices of
inputs. Finally, BlinkDB [7] utilizes most frequently used column sets to perform off-line
stratified sampling over them. Afterwards, the samples are cached, such that queries can be
served by selecting the relevant samples and executing the queries over them. While useful in
many applications, BlinkDB and these other systems cannot process queries over new inputs,
where queries or inputs are typically not known in advance.

Ripple Join [115] implements online aggregation for joins. Ripple Join repeatedly takes
a sample from each input. For every item selected, it is joined with all items selected in
other inputs so far. Recently, Wander Join [146] improves over Ripple Join by performing
random walks over the join data graph of a multi-way join. However, their approach crucially
depends on the availability of indices, which are not readily available in “big data” systems like
Apache Spark. In addition, the current Wander Join implementation is single-threaded, and
parallelizing the walk plan optimization procedure is non-trivial. In this work, we proposed a
simple but efficient sampling mechanism over joins which works not only on a single node
but also in a distributed setting.

Recently, an approximate query processing (AQP) formulation [98] has been proposed to
provide low-error approximate results without any preprocessing or a priori knowledge of
inputs. The formulation based on probability theory allows to reuse results of past queries to
improve the performance of future query processing. However, the current version of AQP
formulation does not support joins.

The keynote speakers at SIGMOD 2017 [60, 136, 167] highlighted the challenges and oppor-
tunities in approximate query processing. In a follow up succinct blog post [26], Chaudhuri
explains the reasons why AQP research does not have a significant impact in services and
production. One of the reasons they indicate is that the current applicable techniques that
take samples over joins by uniformly sampling the join inputs have both poor performance
and accuracy. In this work, we tried to tackle this problem by proposing a stratified sampling
mechanism to take samples during the join to achieve low latency and accuracy at the same
time.

6.10 Conclusion

In this chapter, we strive to address the challenge associated in performing approximate joins
for distributed data analytics systems. We achieve this by performing sampling during the
join operation to achieve low latency as well as high accuracy. In particular, we employed a
sketching technique (Bloom filters) to reduce the size of the shuffled data during the joins, and
also proposed a stratified sampling mechanism that executes during the join in a distributed
setting. We implemented our techniques in a system called ApproxJoin using Apache Spark
and evaluated its effectiveness using a series of micro-benchmarks and real-world datasets.

Our evaluation shows that ApproxJoin significantly reduces query response times as well as
data shuffled through the network during the join operation without losing accuracy of the
query results due to sampling compared with the state-of-the-art systems. More specifically,
ApproxJoin achieves a speedup of 6 − 9× and reduces 5 − 82× the shuffled data volume
compared to Spark based systems with the same sampling fraction.
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Since the growth of digital data has been faster than the growth of computational power,
approximate computing is emerging as an essential technique for big data analytics with
interactive response time. This thesis shows how approximate computing can be applied
in big data analytics systems to improve performance as well as achieve efficient resource
utilization. Our approach makes use of sampling techniques to enable transparent, practical
and efficient approximate computation in big data systems. Interestingly, this thesis contains
cases that, by applying sampling techniques for approximate computing, not only achieve
higher performance in data analytics but also strengthen users privacy. We conclude this
thesis with a summary of our results, a few of lessons that we learned, and an outlook on
future work.

7.1 Summary of Results

This thesis presents the design and implementation of the following four systems for approxi-
mate big data analytics:

• StreamApprox—a system for approximate stream analytics (Chapter 3). This system
applies approximate computing for low-latency stream analytics in a transparent way.
In addition, it is able to adapt to rapid fluctuations of input data streams. One of the
key insights of this system is an online adaptive stratified reservoir sampling algorithm
to produce approximate output with bounded error. This algorithm has the ability to
perform “on-the-fly” sampling on the input data stream and can be parallelized naturally
without requiring any form of synchronization among distributed workers.

• IncApprox—a data analytics system for incremental approximate computing (Chapter
4). This system extends StreamApprox by not only adopting approximate computing
but also incremental computing in stream processing to achieve high-throughput and
low-latency with efficient resource utilization. The key insight of this system is an
online stratified sampling algorithm that uses self-adjusting computation to produce an
incrementally updated approximate output with bounded error.

• PrivApprox—a privacy-preserving stream analytics system (Chapter 5). This system
supports high-utility and low-latency data analytics and preserves user’s privacy at the
same time. The key idea of this system is the combination of (i) a randomized response
mechanism to preserve the privacy of users and (ii) sampling techniques to achieve
low-latency in data analytics. Interestingly, we proved that by applying the sampling
techniques for approximate computing, our system actually strengthens users privacy.

• ApproxJoin—an approximate distributed joins system (Chapter 6). This system improves
the performance of joins — critical but expensive operations in big data systems. The
key insight of this system is a sketching technique (Bloom filter) to avoid shuffling non-
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participating join data items over the network, and a sampling mechanism that executes
during the join to obtain an unbiased representative sample of the join output.

Our experiences using micro-benchmarks and real-world case-studies show that our
proposed approaches can significantly improve the performance of the-state-of-the-art big
data analytics systems with efficient resource utilization without sacrificing the accuracy of
analytics.

Since the digital data continues to grow exponentially and even faster than the Moore’s
law, we hope that our proposed techniques for approximate computing will be useful for big
data analytics community to improve the performance of their systems and at the same time
achieve the efficiency in resource usage.

Lessons Learned. The most important lesson learned from this thesis is that using native
available sampling techniques may counteract the performance of big data analytics as high-
lighted in Chapter 3. The reason is that performing sampling over large-scale distributed
datasets is a challenge and it also introduces significant overhead. However, if the sampling
process can be performed in a proper manner, it significantly improves the performance
of not only batch but also stream data analytics in terms of throughput and latency (see
Chapter 3 and Chapter 4).

The second lesson learned is that computing accurate error bounds for approximate answers
is critical in approximate data analytics systems since sampling techniques introduce error,
and users always want to know how far the approximate results diverge from the exact results.
The sampling techniques which are based on the statistics theory work fine in computing
the error bounds for linear queries such as SUM/AVG, COUNT, and STDEV with certain
assumptions on the input datasets. However, applying these techniques in a naive manner
does not work for complex queries containing join operations as described in Chapter 6. The
reason is that performing joins over dataset samples would not preserve statistical properties
of the join output. Therefore, sampling over joins requires careful analysis of error bounds.

Finally, the surprising lesson learned from this thesis is that applying the sampling tech-
niques can strengthen the privacy of users of modern online services. Chapter 5 shows that
the combination of the sampling and randomized response techniques led us to achieve
zero-knowledge privacy [101], a privacy bound tighter than the state-of-the-art differential
privacy [82].

7.2 FutureWork

Currently, wemainly use sampling techniques to build our approximate data analytics systems.
These techniques support a wide range of query types not required to be fully known in
advance. They allow executing queries over samples to get approximate results rather than
over the original data. However, they perform poorly for queries asked for rare data items in
the original data which are unlikely to be added to any sample, e.g., queries for abnormal data
items for anomaly detection, distinct counts queries, and frequencies queries. Therefore, as a
future work, we want to extend our systems to support various query types and achieve even
better performance by combining sampling techniques and sketching techniques. We want
to combine stratified sampling techniques with several sketches such as Count-Min sketch,
HyperLogLog and MinHash Sketch. We applied this approach in the work of ApproxJoin by
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combining stratified sampling and Bloom filter to improve the performance of joins. However,
we also want to apply this approach in StreamApprox, IncApprox, and PrivApprox. Moreover,
ApproxJoin is designed to improve the performance of joins between static datasets. As a
future work, we will extend further our proposed mechanism in ApproxJoin to improve the
performance of joins between not only static input datasets but also data streams.

In addition, in the architecture of PrivApprox, we currently assume that the aggregator is
deployed on a trusted infrastructure. However, most likely, this will not be the case. Ideally, we
would like to deploy the aggregator on an untrusted platform in the public cloud. To achieve
this goal, as a future work, we want to design a trusted aggregator for privacy-preserving
data analytics using a trusted computing platform such as Intel SGX [74].

Recently, a new computing model namely Structured Streaming has been proposed in
Apache Spark. This computing model considers an input data stream as an append-only
table [202] in which a new arriving data item is treated as a row appended to the table.
With this computing model, Spark Structured Streaming is 3× faster than Apache Flink [32].
Thus, we also want to implement our proposed sampling algorithm in StreamApprox and
IncApprox into the Spark Structured Streaming to verify whether or not our approach can
further improve the performance of the stream processing framework.

Next, we would like to close this thesis by raising several questions for future research.

Approximate computing for advanced analytics. Currently, our systems support linear
queries. While they are useful for many statistics applications, users may also want to perform
advanced analytics such as machine learning or graph processing, it is not clear whether the
proposed approaches can be applied for these application domains. To answer this question,
we need to investigate the workflow of these applications to determine which parts of the
workflow can enable approximate computing. In addition, we need to define a new accuracy
metric for these applications which is definitely a challenge.

Approximate computing for IoT applications. In the context of Internet of Things (IoT), a
large number of IoT devices continue to generate a massive amount of data. To perform
real-time analytics over this massive data, edge computing architecture has been proposed to
move computations to the edges of networks which are closer to data sources. Unfortunately,
most computing nodes at edges have limited capacity (e.g., computing, storage, and energy
resources) to support real-time analytics over the data from IoT devices. Thus, to overcome
the challenge, we may apply approximate computing for edge analytics. A natural research
question is: can we apply sampling techniques to achieve efficiency for edge analytics as well
as reduce the communication cost (i.e., transferring only selected data items) from edges to
the cloud?

Approximate computing for efficiency and security. Nowadays, cloud computing has be-
come a popular platform for delivering modern online services. Since these services store
and maintain the sensitive data of their customers on clouds, security becomes a major con-
cern. In this context, trusted execution environments [74] allow us to make the cloud-based
services more resilient against security attacks. However, to enable the security property
for data analytics, this approach may introduce new sources of overhead for data analytics
systems [28]. Thus, a research question arises naturally: can approximate techniques help us
to remove this overhead? In other words, does combining approximate computing and trusted
execution based mechanisms allow modern online services to achieve not only efficiency
but also security at the same time? In addition, can we measure security the same way we
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measure privacy? These questions are compelling but also challenging for future research.
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A Appendix

A.1 Privacy Analysis and Proofs

In this section, we present the privacy analysis and proofs of PrivApprox system (see Chap-
ter 5). Note that these mathematical proofs were done by Martin Beck. PrivApprox achieves
three privacy properties (i) zero-knowledge privacy, (ii) anonymity, and (iii) unlinkability as
introduced in §5.3.2.

Property # I: Zero-knowledge privacy. We show that the system designed in Section 5.4
achieves εzk-zero-knowledge privacy and prove a tighter bound for εdp-differential privacy,
than what generally follows from zero-knowledge privacy [101]. The basic idea is that all data
from the clients is already differentially private due to the use of randomized response. Fur-
thermore, the combination with pre-sampling at the clients makes it zero-knowledge private
as well. Following the privacy definitions, any computation upon the results of differentially,
as well as, zero-knowledge private algorithms is guaranteed to be private again.

In the following paragraphs we show that:

• Independent and identically distributed (IID) sampling decomposes easily and is self-
commutative. See Lemma 1.

• Sampling and randomized response mechanisms commute. See Lemma 2.

• Pre-sampling and post-sampling can be traded arbitrarily around a randomized response
mechanism. See Corollary 1.

• A εzk-zero-knowledge privacy bound for our system. See Theorem 1

• A εdp-differential privacy bound for our system. See Theorem 2

• Our differential privacy bound is tighter than the general differential privacy bound
derived from a zero-knowledge private algorithm. See Proposition 1.

Intuitively, differential privacy limits the information that can be learned about any individual
i by the difference occurring from either including i’s sensitive data in a differentially private
computation or not. Zero-knowledge privacy on the other hand also gives the adversary
access to aggregate information about the remaining individuals denoted as D−i. Essentially
everything that can be learned about individual i can also be learned by having access to some
aggregate information upon D−i.

Let San() be a sanitizing algorithm, which takes a database D of sensitive attributes ai

of individuals i ∈ P from a population P as input and outputs a differentially private or
zero-knowledge private result San(D). For brevity, we write SanA(D) for the output of the
adversary A with arbitrary external input z and access to San(D). Similarly, we omit the
explicit usage of the external information z as input to the simulator S, as well as the total size
of the database. See [102] Definition 1 and 2 for the extended notation. Let O ⊆ Range(SanA)
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be any set of possible outputs. εdp-differential privacy can be defined as

Pr[SanA(D) ∈ O] ≤ eεdp · Pr[SanA(D−i) ∈ O] (A.1)

while εzk-zero-knowledge privacy is defined as

Pr[SanA(D) ∈ O] ≤ eεzk · Pr[S(T (D−i), |D|) ∈ O]. (A.2)

Before proving the desired properties, we need to introduce some notation. Let D = {ai}
be a database of sensitive attributes of individuals i ∈ P. For ease of presentation and without
loss of generality we restrict the individual’s sensitive attribute to a boolean value ai ∈ {0, 1}
and D = ai′ for all i′ ∈ P. Furthermore, let D(D) = {U : U ⊆ D} be the super-set of all
possible databases and Sam(D, u) : D(D)× (0, 1)→ D(D) be a randomized algorithm that i.i.d.
samples rows or individuals with their sensitive attributes from database D with probability s
without replacement. Let San(D, p, q) : D(D)×(0, 1)×(0, 1)→ D(D) be a two-coin randomized
response algorithm that decides for any individual i′ in database D with probability p if it
should be part of the output. If it is not included in the output, the result of tossing a biased
coin (coming up heads with probability q) is added to the output.

Lemma 1. (Decompose and commute sampling) Let s = uv with s, u, v ∈ (0, 1) being sam-

pling probabilities for a sampling function Sam(). It follows that Sam() can be composed and

decomposed easily and is self-commutative.

Sam(D, s) ≈ Sam(Sam(D, u), v)
≈ Sam(Sam(D, v), u).

Proof. Let Samu, Samv be sampling algorithms that sample rows i.i.d. from a database with

probability u and v respectively. By applying Samu(D), any row in D has probability u of

being sampled. The probability for any row in D being sampled by Samv is equivalently

v. Using function composition the probability for any row in D being sampled by Sams =
(Samu ◦ Samv)(D) is

s = uv. (A.3)

From multiplication being commutative (u · v = v · u) follows that Samu and Samv commute,

that is Samu ◦ Samv = Samv ◦ Samu. This is true for deterministic functions and can easily

be extended to randomized functions described as random variables, as random variables are

commutative under addition and multiplication. For ease of presentation and without loss

of generality we keep the notion of functions instead of random variables. Let Sams(D) =
Sam(D, s) be a sampling function that samples rows i.i.d. from a given database D with

probability s. Decomposing sampling function Sams() with probability s into two functions

with probabilities u and v follow from (A.3). It also follows that two sampling functions with

probabilities u, v can be composed into a single sampling function with sampling probability

s.

Lemma 2. (Commutativity of sampling and randomized response) Given a sampling algorithm

Sam() and a randomized response algorithm San(), the result of the pre-sampling algorithm

Fpre(D, s, p, q) = San(Sam(D, s), p, q) is statistically indistinguishable from the result of the

post-sampling algorithm Fpost(D, s, p, q) = Sam(San(D, p, q), s). It follows that sampling and

randomized response commute under function composition: Sam ◦ San = San ◦ Sam.
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Proof. For any individual i having ai ∈ D we have to consider eight different possible cases.

In case the sampling algorithm Sam() decides to not sample i, it obviously doesn’t matter

if it gets removed before the randomized response algorithm is run of afterwards. We thus

condition on Sam() to include i in the output.

1. Let us first consider the case that San() outputs the real value for individual i. As Sam()
is fixed to output i independent of its value, there is no difference between Fpre and

Fpost.

2. In case San() outputs a randomized answer Sam() again is not influenced by the out-

come of any of the coin tosses and passes i along to the output. This is of course also

independent of the actual randomized result.

This concludes the proof that sampling and randomized response are independent regarding

their order of execution and thus commute.

Corollary 1. (Arbitrary sampling around randomized response) Let s = uv for s, u, v ∈ (0, 1)
be sampling probabilities for a sampling function Sam() and San() be a two-coin randomized

response mechanism with probabilities (p, q). Sampling can be arbitrarily traded between pre-

sampling and post-sampling around the randomized response mechanism San.

San(Sam(D, s), p, q) ≈ Sam(San(Sam(D, u), p, q), v)
≈ Sam(San(D, p, q), s).

Proof. This follows directly from applying Lemma 1 and Lemma 2.

We will now give a bound on εzk for the privacy of our system under the zero-knowledge
privacy setting, as well as derive a tighter bound for (εdp)-differential privacy, than the bound
that generally follows from zero-knowledge privacy.

Theorem 1. (εzk-zero-knowledge privacy) Let A be an algorithm that applies sampling with

probability s, together with a two-coin randomized response algorithm using probabilities (p, q).
A is εzk-zero-knowledge private with

εzk = ln

(
s

2− s

1− s

(
p + (1− p) q

(1− p) q

)
+ (1− s)

)
. (A.4)

The system design is described in Section 5.4.

Proof. From [102], Theorem 1 follows that a (k, εrr)-crowd-blending private mechanism com-

bined with a pre-sampling using probability s achieves ε-zero-knowledge privacy with

εzk = ln

(
s ·

(2− s

1− s
eεrr

)
+ (1− s)

)
.

We omit the description for the additive error δ, which can be derived equivalently from [102]

Theorem 1. Following Proposition 1 from [102] every εrr-differentially private mechanism

is also k, εrr-crowd-blending private, thus randomized response being an εrr-differentially
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private mechanism, also satisfies (k, εrr)-crowd-blending privacy with k = 1. Combining both

results with (5.8) εrr = ln
(

p+(1−p)q
(1−p)q

)
gives an

εzk = ln

(
s ·

(2− s

1− s

(
p + (1− p)q

(1− p)q

))
+ (1− s)

)
zero-knowledge private mechanism for randomized response combined with pre-sampling.

Using Corollary 1 we can replace pre-sampling with a combination of pre- and post-sampling

(with probabilities u, v respectively and s = u · v) while keeping εzk fixed. We thus have

εzk = ln

(
uv

2− uv

1− uv

(
p + (1− p) q

(1− p) q

)
+ (1− uv)

)
.

If we do not aim at achieving zero-knowledge privacy, we can fall back to differential privacy
using the result from [101], Proposition 3, which states that any ε-zero-knowledge private
algorithm is also 2ε-differentially private. Using the results from sampling secrecy [135],
which achieve a privacy boost by applying pre-sampling before using a differentially private
algorithm, we derive a tighter bound for differential privacy, than what follows generally from
zero-knowledge privacy.

Theorem 2. (εdp-differential privacy) Let A be an algorithm that applies sampling with proba-

bility s, followed by a two-coin randomized response algorithm using probabilities (p, q). A is

εdp-differentially private with

εdp = ln

(
1 + s

(
p + (1− p) q

(1− p) q
− 1

))
. (A.5)

Proof. We use the result from [78], Proof of Lemma 3, which bounds an εrr-differential private

algorithm combined with pre-sampling using probability s by εdp = ln(1 + s(exp(εrr) − 1)).
Let εrr = ln

(
p+(1−p)q

(1−p)q

)
be the bound derived for randomized response, we get

εdp = ln

(
1 + s

(
p + (1− p) q

(1− p) q
− 1

))
.

Applying Corollary 1 we derive an εdp bound for the combination of pre-sampling, randomized

response and post-sampling of:

εdp = ln

(
1 + (uv)

(
p + (1− p) q

(1− p) q
− 1

))
.

Proposition 1. (Tighter εdp-differential privacy bound) The bound εdp for differential privacy

of a sampled randomized response system derived in Theorem 2 is tighter than εzk-differential

privacy, which is again tighter than the general 2εzk-differential privacy bound that follows

from εzk-zero-knowledge privacy [101].
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Figure A.1 – Ratio of εzk

εdp
depending on the sampling parameter s for different values p and q.

We directly proof Proposition 1 by comparing εdp from Theorem 2 with εzk from Theorem 1.
As we want to prove a bound that is tighter than ε, we drop the factor of 2. This is possible
because a ε-differentially private algorithm is also 2ε-differentially private. If we succeed in
proving a bound tighter than ε, then 2ε-differential privacy is trivially fulfilled.

Proof. Proposition 3 from [101] states that every ε-zero-knowledge private algorithm is also
2ε-differentially private. Using Theorem 1 we get a εzk-differentially private systemwith 2εzk =
2ln

(
s2−s

1−s

(
p+(1−p)q

(1−p)q

)
+ (1− s)

)
. Theorem 2 proves a bound of εdp = ln

(
1 + s

(
p+(1−p)q

(1−p)q − 1
))

.

Let eεrr = p+(1−p)q
(1−p)q . Putting together Theorem 2, Theorem 1, Proposition 1 and Proposi-

tion 3 [101] we have:

ln

(
1 + s

(
p + (1 − p) q

(1 − p) q
− 1

))
< ln

(
s

2 − s

1 − s

(
p + (1 − p) q

(1 − p) q

)
+ (1 − s)

)
s

(
p + (1 − p) q

(1 − p) q
− 1

)
<

2 − s

1 − s
s

(
p + (1 − p) q

(1 − p) q
− 1

)
s (eεrr − 1) <

2 − s

1 − s
s (eεrr − 1)

1 <
2 − s

1 − s

As s ∈ (0, 1) is the sampling parameterwith aminimal right side for smin = argmins∈(0,1)

(
2−s
1−s

)
=

0 the above inequality becomes 1 < 2, which holds and concludes the proof.

Relation of differential privacy and zero-knowledge privacy. Zero-knowledge privacy and
differential privacy describe the advantage ε of an adversary in learning information about
individual i by using an output from an algorithm San() running over database D containing
sensitive information ai ∈ D of individual i compared to using a result of a second — possibly
different — algorithm San′() running over D−i. Zero-knowledge privacy is a strictly stronger
privacy metric through the additional access to aggregate information of the remaining
database D−i compared to differential privacy [101]. By intuition, as differential privacy is a
special case of zero-knowledge privacy and the adversary aims at maximizing its advantage,
the advantage of an adversary in the zero-knowledge model is at least as high and possibly
higher than the advantage of an adversary in the differential privacymodel: εzk ≥ εdp. Figure A.1
draws the ratio εzk

εdp
between the zero-knowledge privacy level εzk and the differential privacy

level εdp given identical parameters p, q and s. Put differently, as the adversary is allowed to do
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more in the zero-knowledge model, the privacy level is lower, which is reflected by a higher
εzk value compared to the differential privacy level εdp — given identical system parameters.

Property # II: Anonymity. We make the following assumptions to achieve the remaining two
privacy properties:

(A1) At least two out of the n proxies are not colluding.

(A2) The aggregator does not collude with any of the proxies.

(A3) The aggregator and analysts cannot — at the same time — observe the communication
around the proxies.

(A4) The adversary, seen as an algorithm, lies within the polynomial time complexity class.

To provide anonymity, we require that no system component (proxy, aggregator, analyst)
can relate a query request or answer to any of the clients. To show the fulfillment of that
requirement we take the view of all three parties.

a) A proxy can of course link the received data stream to a client, as it is directly connected.
However, as the data stream is encrypted, it would need to have the plaintext query request
or response for the received data stream. To get the plaintext the proxy would either need to
break symmetric cryptography, which breaks assumption (A4), collude with all other proxies
for decryption, which breaks assumption (A1) or collude with the aggregator to learn the
plaintext, which breaks assumption (A2).

b) Anonymity against the aggregator is achieved by source-rewriting, which is a standard
anonymization technique typically used by proxies and also builds the basis for anonymization
schemes [79, 188]. To break anonymity the aggregator must be a global, passive attacker,
which means that he is able to simultaneously listen to incoming and outgoing traffic of any
proxy. This would violate assumption (A3). The other possibility to bridge the proxies is by
colluding with any of them — breaking assumption (A2).

c) The analyst knows the query request, but doesn’t get to learn the single query answers.
He needs to collude with the aggregator, to see single responses. Thus the problem reduces
to breaking anonymity from the view of the aggregator. Collusion with the aggregator and any
proxy would break assumption (A2). Collusion with up to n− 1 proxies reduces to breaking
anonymity from the proxy view.

Property # III: Unlinkability. Unlinkability is provided by the source-rewriting scheme as in
anonymity. Breaking unlinkability on any proxy is similar to breaking anonymity, as the proxy
would need to get the plaintext query. The aggregator only gets query results, but no source
information, as this is hidden by the anonymization scheme. The query results sent by the
clients also do not contain linkable information, just identically structured answers without
quasi-identifiers. The view of the analyst doesn’t receive responses, so it must collude with
either a proxy or the aggregator, effectively reducing to the same problem as described above.
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