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Abstract

This thesis presents the Adaptive Particle Representation (APR), a novel adap-
tive data representation that can be used for general data processing, storage, and
simulations. The APR is motivated, and designed, as a replacement representation
for pixel images to address computational and memory bottlenecks in processing
pipelines for studying spatiotemporal processes in biology using Light-sheet Fluo-
rescence Microscopy (LSFM) data.

The APR is an adaptive function representation that represents a function in
a spatially adaptive way using a set of Particle Cells V and function values stored
at particle collocation points P∗. The Particle Cells partition space, and implicitly
define a piecewise constant Implied Resolution Function R∗(y) and the spatial lo-
cations that particles are sampled. As an adaptive data representation, the APR
can be used to provide both computational and memory benefits by aligning the
number of Particle Cells and particles with the spatial scales of the function. The
APR allows reconstruction of a function value at any location y using any positive
weighted combination of particles within a distance of R∗(y). The Particle Cells V
are selected such that the error between the reconstruction and the original function,
when weighted by a function σ(y), is below a user-set relative error threshold E.
We call this the Reconstruction Condition and σ(y) the Local Intensity Scale. σ(y)
is motivated by local gain controls in the human visual system, and for LSFM data
can be used to account for contrast variations across an image.

The APR is formed by satisfying an additional condition on R∗(y); we call the
Resolution Bound. The Resolution Bound relates the R∗(y) to a local maximum of
the absolute value function derivatives within a distance R∗(y) or y. Given restric-
tions on σ(y), satisfaction of the Resolution Bound also guarantees satisfaction of
the Reconstruction Condition. In this thesis, we present algorithms and approaches
that find the optimal Implied Resolution Function to general problems in the form
of the Resolution Bound using Particle Cells using an algorithm we call the Pulling
Scheme. Here, optimal means the largest R∗(y) at each location. The Pulling
Scheme has worst-case linear complexity in the number of pixels when used to rep-
resent images. The approach is general in that the same algorithm can be used for
general (α,m)-Reconstruction Conditions, where α denotes the function derivative
and m the minimum order of the reconstruction. Further, it can also be combined
with anisotropic neighborhoods to provide adaptation in both space and time.

The APR can be used with both noise-free and noisy data. For noisy data, the
Reconstruction Condition can no longer be guaranteed, but numerical results show
an optimal range of relative error E that provides a maximum increase in PSNR



over the noisy input data. Further, if it is assumed the Implied Resolution Func-
tion satisfies the Resolution Bound, then the APR converges to a biased estimate
(constant factor of E), at the optimal statistical rate.

The APR continues a long tradition of adaptive data representations and rep-
resents a unique trade off between the level of adaptation of the representation and
simplicity. Both regarding the APRs structure and its use for processing. Here,
we numerically evaluate the adaptation and processing of the APR for use with
LSFM data. This is done using both synthetic and LSFM exemplar data. It is
concluded from these results that the APR has the correct properties to provide a
replacement of pixel images and address bottlenecks in processing for LSFM data.
Removal of the bottleneck would be achieved by adapting to spatial, temporal and
intensity scale variations in the data. Further, we propose the simple structure of
the general APR could provide benefit in areas such as the numerical solution of
differential equations, adaptive regression methods, and surface representation for
computer graphics.
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Main Acronyms

• Adaptive Particle Representation (APR) (See Section 4.1 on Page 50 for
1D and Section 5.1 on Page 82 for general)

• Light-sheet Fluorescence Microscopy (LSFM) (See Section 2.2.1 on Page 7)

• Spatiotemporal processes in biology (STB) (See Section 2.1 on Page 6)

• Representation Criteria (RC) (See Section 3.2 on Page 26)

• Computational Ratio (CR) (See Section 6.11 on Page 138)

• Memory Compression Ratio (MCR) (See Section 6.12 on Page 149)

• Pixel to Particle Speed Ratio (PP) (See Section 7.3 on Page 161)

• Speed Up (SU) (See Section 7.1 on Page 160)

• Sparse APR Random Access Data Structure (SARA) (See Section 6.5.3
on Page 140 and Section A.5.2 on Page 290)

• Sparse APR Data Structure (SA) (See Section 6.5.3 on Page 140 and
Section A.5.1 on Page 288)

• Mean Squared Error (MSE) (See Section 6.10 on Page 134)

• Peak Signal to Noise Ratio (PSNR) (See Section 6.9 on Page 133)

Key concepts and definitions

• Particle Cells (See Section 4.2.2 on Page 60 for 1D and Section 5.3 on
Page 85 for general)

• Resolution Function R(y) (See Section 4.1 on Page 50 for 1D and 5.1 for
general)

• Implied Resolution Function R∗(y) (See Section 4.2.2 on Page 60 for 1D
and Section 5.3.2 on Page 88 for general)

• Optimal continuous Resolution Functions (Rb(y) andRc(y)) (See 4.2.1,Sec-
tion 4.3.4 on Page 74 and Section A.2.1 on Page 273)



• Local Resolution Estimate L(y) (See Section 4.2.1 on Page 57 for 1D
and Section 5.13 on Page 85 for general for classic case. See Section 9.17
on Page 216 for (α,m) extensions)

• Reconstruction Condition (See Section 4.2 on Page 50 for 1D and 5.2 for
general)

• Resolution Bound (See Section 4.3 on Page 51 for 1D and Section 5.3 on
Page 83 for general)

• Local Intensity Scale σ(y) (See Section 4.2.1 on Page 56 (1D) and Sec-
tion 5.11 on Page 84 (general) for continuous assumption and Section 4.3.5
on Page 75 for effective APR assumption)

• Local Particle Cell (LPC) set L (See Section 4.19 on Page 62 for 1D and
Section 5.28 on Page 89 for general)

• Optimal Valid Particle Cell (OVPC) set V (See Section 4.2.2 on Page 62
for 1D and Section 5.28 on Page 89 for general)

• Particle sampling P∗ (See Section 4.1.1 on Page 52 in 1D and Sec-
tion 5.1.3 on Page 83 for general definition and Section 4.2.4 on Page 68
and Section 5.5 on Page 104 for sampling strategies)

• Pulling Scheme (See Section 4.2.3 on Page 63 in 1D and Section 5.4.5 on
Page 100 in general and Section A.4.1 on Page 285 for implimentation
details.)

Important variables

• f{x̄} sampled function (See Section 2.2.2 on Page 8)

• f(y) continuous function (See Section 2.2.2 on Page 8)

• Np number of particles in APR.

• N number of pixels in original image (See Section 2.2.2 on Page 8)

• Ω spatial domain

• d spatial dimension

• N Interaction Neighborhood (See Section 4.1 on Page 50 in 1D and 5.1
in general)



• E Relative error bound (See Section 4.2 on Page 50 in 1D and 5.2 in
general)

• E∗ Observed reconstruction error (See Section 6.8 on Page 130)

• ci,l particle cell at level l and location i. (See Section 5.3 on Page 85)
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1 Thesis Introduction

In this thesis, we introduce the Adaptive Particle Representation (APR). The
APR is a novel adaptive data representation designed to reduce computational
and memory costs of processing tasks. The APR is a general adaptive data
representation. However, it was motivated by and developed for the high-
throughput processing of Light-sheet Fluorescence Microscopy (LSFM) data
for the study of spatiotemporal processes in biology (STB).

1.1 Format of thesis

This thesis is structured as follows. In Chapter 2 we motivate the use of an
adaptive data representation for studying STB using LSFM data. In Chap-
ter 3, we discuss the desired properties of such an adaptive data representation
and review existing methods. In Chapter 4, we introduce the APR and its core
ideas, concepts and algorithms using 1D for didactic exposition. Compliment-
ing this, in Chapter 5 we then provide a general dimensional treatment of the
APR, including all technical details and proofs of the main results. In Chap-
ter 6, we then empirically validate and explore the properties of the APR,
focusing on the representation of LSFM data. In Chapter 7, we evaluate the
memory and computational performance of using the APR for image pro-
cessing tasks. In Chapter 8, we then discuss the similarities of the APR with
existing adaptive representations and reflect on optimality results from wavelet
thresholding. In Chapter 9, we discuss extensions of the classic APR to more
general representations and briefly explore applications. Then in Chapter 10,
we provide an extension of the APR to adapt in time and provide preliminary
results. In Chapter 11, we conclude by summarizing and the critically evalu-
ating the results of this thesis and discussing future work and applications.

1.1.1 Reading aids

At the end of each chapter, to aid the reader, we provide a conclusion and
summary of the main results of the chapter in a table format. Any information
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Chapter 1. Thesis Introduction

that was deemed important but did not fit the flow of the text was placed in
the Appendix (A) following the references. Due to the large size of this thesis,
it is recommended that for reading in pdf form, such that the hyperlinks can
be used for navigation between different areas of this thesis. Also, for reference
at the beginning of this thesis, we have provided a summary of key terms and
abbreviations that are frequently used in this thesis and provided links to their
appropriate definitions in the text.

1.1.2 Notes regarding language

Throughout this thesis, I use extensive use of ”we”. The use of ”we” was a
stylistic choice and is intended in the sense of you the reader, and myself. In all
cases, unless explicitly stated, the work presented was my own work. I do also
make use of ”I”, this usually restricted to situations where I wish to make it
clear that I am expressing a personal opinion. I also employ liberal use of casual
statements, words, or phrases in single commas ”. These statements are not
meant to be interpreted literally but are used in an attempt to communicate
the ’gist’ of an idea in a more concise way.

1.1.3 Statistical data and error bars

Empirical results are presented in this these both, with, and without error
bars. In the case where error bars are included, they represent the estimated
standard error of the data. However, more often than not, they have been
omitted. Where omitted, I have made a judgment that the error estimates
were not meaningful in the given context.
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2 APR Motivation

Contents
2.1 Towards studying spatio-temporal processes in bi-
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In this chapter, we introduce the motivation, and scope, of the work pre-
sented in this thesis and formulate the scientific problem addressed. We begin
by describing the need for high-resolution spatiotemporal data to study spa-
tiotemporal processes in biology (STB) at the cellular level. We then introduce
Light-sheet Fluorescence Microscopy (LSFM) and describe how the image data
could be used as the basis for studying STB. Following this, we highlight, how
features of LSFM data, result in processing the data becoming a critical bot-
tleneck to its use. These features include the large data size and dynamic
spatial, temporal and local intensity scales in the data. We then review cur-
rent approaches to processing LSFM data and their common features. From
this, we highlight the need for an alternative representation for LSFM image
data that can be used across specimens and processing tasks. Lastly, we dis-
cuss the human visual system, as an example of features of a desired general
alternative representation, and seek inspiration from its features. Namely, the
use of adaptive sampling and a local gain control.
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Chapter 2. APR Motivation

2.1 Towards studying spatio-temporal processes

in biology

Gaining a mechanistic understanding of spatiotemporal processes in biology
(STB) requires the ability to both observe and quantify these processes through-
out time and space [80]. These observations and quantifications are essential
for both hypothesis generation, and testing. Such quantification requires the
capacity to track and observe specific structures involved in a process in a live
developing organism consistently in space (3D) and time. For example, under-
standing of the spatiotemporal development of a specific organ, e.g. the gut,
requires the ability to track all cells’ movement, division, and lineage relation-
ships, simultaneously through time across multiple specimens [8]. To achieve
this, high-resolution data in space and time is required. Although useful, data
from individual cell tracking, or, spatial data at distinct time points, do not
provide a sufficient description of the spatiotemporal dynamics, especially in
the presence of stochasticity [28]. Unfortunately, attaining high-resolution spa-
tiotemporal data of developing processes is difficult, and only recently possible
[136, 49].

Fortunately, recent developments in fluorescence microscopy [60], chemistry
[87], and genetics [65] now provide tools that have the promise of allowing re-
searchers to extract high-resolution spatiotemporal data for a broad range of
specimens and processes in a high-throughput manner [108, 118]. However,
these fluorescence microscopes do not directly output the shape, and location,
of objects through time, instead they produce raw data (3D images through
time) from which the desired spatiotemporal information is extracted through
computational processing. This field is often called Image-based Systems Bi-
ology [106]. This step of extracting information from the raw microscopy data
is non-trivial and currently creates a significant bottleneck for research into
STB [136, 96, 108].

In this thesis, I develop a novel data representation, namely the Adap-
tive Particle Representation (APR), designed to alleviate the bottleneck in
the processing of LSFM data and enable future research into spatiotemporal
processes in biology. The next section provides a brief introduction to the
required concepts from fluorescent microscopy and image formation necessary
to understand this work.
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2.2 Using Light Sheet Fluorescence Microscopy

(LSFM) to track objects

Light Sheet Fluorescence Microscopy (LSFM) is currently the most promis-
ing and growing class of microscopes for studying STB [86, 118]. This fit
and popularity are due to LSFM’s abilities to image with both high spatial
and temporal resolution deep into tissues while simultaneously causing limited
photodamage to the specimen [60]. Further, they allow long-term imaging of
developing embryos. There has been considerable specialization and develop-
ment across different types of LSFM, e.g. [67, 29, 99], providing improvements
and trade-offs, we direct the reader to the following recent comprehensive re-
views for an overview [86, 118]. However, the basic principles of the original
Selective Plane Illumination Microscope (SPIM), introduced by Huisken et al.
[60] hold across these microscopes, and its description is used here to illustrate
the general principles of modern fluorescence microscopy as used to study STB.

2.2.1 Flouresence as a localisation technique

Fluorescent microscopes, such as LSFM, allow the inference of the location of
objects through space and time using the localization of fluorescent molecules.
Fluorescent molecules can be localized, or stuck, to structures of interest in a
specimen through the use of genetic or chemical techniques. For example, for
development biology embryos can be genetically engineered to attach fluores-
cent proteins on a particular structure of all of their cells, such as a cell’s nuclei,
as it develops. A cell usually has one nucleus per cell located in its interior
that often has a spherical shape making them ideal for tracking. The fluo-
rescent molecules attached to the nuclei become ’excited’ when exposed to a
light of particular wavelengths, causing them to emit light at different (longer)
wavelengths. The location and shape of the labeled structures can then be
inferred, by observing, or recording the spatial distribution of the brightness
(intensity) of the emitted light signal.

LSFMs allow the localization of the emitted light signal in 3D in high
spatial and temporal resolution deep into samples using a technique known
as optical sectioning that can be then used to infer position and shape of
labeled objects. To understand how this process works, we will use a simplified
example: consider the task of tracking a population of M cells through time for
a particular specimen and developing process. For simplicity, we can ignore cell
death (removal of cells), or cell division (addition of cells). Therefore, we wish
to find the set of functions C = {x1(t), x2(t), ..., xM(t)}, where xi ∈ Ω ⊂ R3,
which for all t ∈ Ωt ⊂ R tells us the 3D location of the centers of all M
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cells. As we cannot directly observe C, we first label the cell nuclei densely
with a fluorescent molecule. We assume the labeling is dense enough that
we can represent it as a piece-wise continuous function with compact support
O : Ω×Ωt → R. We will call this the Object function. In our simple example,
let

O(x, y, z, t) =
M∑
i=1

Oi(x, y, z, t) (2.1)

where Oi(x, y, z, t) is a piece-wise constant function, non-zero only at the lo-
cations occupied by the labeled cell nuclei i. Given the cells are distinct,
we assume that there is no overlap between the support of the individual
Oi(x, y, z, t). Then, given O(x, y, z, t), finding the cell tracking C, would en-
tail identifying and tracking all the compactly supported regions Oi(x, y, z, t)
through time, and defining a suitable center. However, we cannot directly
observe O(x, y, z, t) from the microscope. Instead, fluorescence microscopes
allow us to obtain regularly sampled image data I3D+t that we can process to
estimate O(x, y, z, t).

2.2.2 Sampling notation

We now introduce some notation to allow us to deal with functions, pixel im-
ages, and adaptive representations. Although some definitions may be obvious,
we define them here to remove ambiguity.

As above, when dealing with a function, round brackets, for example for
f : R2 → R, then f(x, y) denotes the function f evaluated at (x, y). Later,
we also use f(y) and multi-index notation, where for the same example in 2D,
y = (x, y) and f(x, y) = f(y).

We consider a pixel image as the set generated from evaluating a function
at a set of regularly spaced collocation points. For example, we define a 1D
image of size N with spatial resolution h sampled from [a, b] from some function
f : [a, b]→ R as

f{x̄} = {f(xi)|xi ∈ x̄} (2.2)

where x̄ = {xi|xi = a+h(i−1), i = 1, 2, .., N} are the evenly spaced collocation
points, and h = (b− a)/N . The notation holds not just for pixel images, but
also for arbitrary vectors and samplings with x̄ ∈ RN . To avoid ambiguity
with vector norms, we denote the cardinality of a set by #, so in the 1D image
example we have #x̄ = #f{x̄} = N .

Pixel images in higher dimensions follow the convention as follows, with a
3D+t pixel image, being defined for f : [ax, bx] × [ay, by] × [az, bz] × [at, bt] →
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R, being defined as f{(x̄, ȳ, z̄, t̄)} = {f(xi, yi, zi, ti)|(xi, yi, zi, ti) ∈ x̄ × ȳ ×
z̄ × t̄}. Where the number of samples in each direction is Nx, Ny, Nz, Nt,
with hx, hy, hz, ht, for the x, y, z, t directions respectively. Therefore, the total
number of samples in the pixel image N = #f{(x̄, ȳ, z̄, t̄)} = NxNyNzNt.
When written as f{x, y, z, t}, where the arguments are not explicitly vectors,
or defined constants, the expression can be interpreted as to hold for any of
sampled collocation points.

2.2.3 Imaging a sample

Figure 2.1 shows a schematic of a standard SPIM microscope, a type of LFSM,
the figure has been reproduced from Huisken et al. [60]. In the schematic, the
labeled specimen is represented by the bright green fish inside a chamber filled
with an agarose gel that keeps it in place while allowing the sample to grow.
The image data I{x̄, ȳ, z̄, t̄} is produced one 2D (x,y) plane at a time. Where
we achieve optical sectioning of one plane by illuminating a given (x,y) section
with a thin sheet of light. The labeled fluorescent molecules in this plane, are
excited, and emit light at a different wavelength that is focused perpendicular
to the light sheet on a camera (shown in the figure by the detection arrow). The
signal is integrated over a fixed time and area of size hx×hy and used to form
an image I{x̄, ȳ, z0, t0} for a fixed z0 and time t0. The size of hx = hy, and is set
by the effective area of the sensor on the camera chip. This integrated signal
is known as the intensity. The full volume of the specimen is then regularly
sampled, by moving the sample stepwise with displacement hz so that for each
step a new plane of the sample is illuminated and imaged. The series of images
I{x̄, ȳ, zi, t0} are combined into a stack, i.e. I{x̄, ȳ, z̄, t0} =

⋃Nz
i=0 I{x̄, ȳ, zi, t0}

and treated as a 3D image (Shown in bottom left of Figure 2.1). We ignore the
difference in time t0 between imaging each slice. This process is then repeated
at regular intervals in time, ht, for Nt steps to produce the 3D+t image data-
set f{(x̄, ȳ, z̄, t̄)} =

⋃Nt
i=0 I{x̄, ȳ, z̄, ti}. The signal is scaled and quantized most

often to a 16bit integer, given it a range {0, 65536}

2.2.4 Image formation

The relationship between the 3D+t image dataset I{x, y, z, t} at each location
and our desired object function O(x, y, z, t) can be modelled in the following
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Figure 2.1: The figure shows a schematic of the optical setup for a Selective Plane Illumination Microscope
(SPIM), the original design for a Lightsheet Fluorescence Microscope (LSFM) (Reproduced from Huisken et al.
[60]). First, the labeled sample is secured in a movable sample chamber using agarose gel. A thin 2D sheet of laser
light of fixed wavelength is then used to illuminate only a thin section of the specimen. The labeled structures
in the fluorescent sample that the 2D sheet passes through are excited, emitting light of another wavelength
that then is collected by the detection path (perpendicular to the light sheet) and recorded by a camera. The
fluorescence signal is integrated over a fixed time and is used to construct a 2D image. This image gives a read
out of the spatial distribution of the fluorescence label within the 2D sheet. The sample can then be moved
step-wise through the light sheet, illuminating sections of the sample, slice by slice. When done successively, at
a fixed interval, the sequence of 2D images, or slices, known as a stack, is computationally combined to create a
3D image, as shown in the lower left corner of the figure.
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way

I∗(x, y, z, t) =

∫∫∫
Ω

(O(u, v, w, t)+

b(u, v, w, t))PSF (x, y, z, t, x− u, y − v, z − w)dudvdw

(2.3)

and then sampled at pixel locations as

I{x, y, z, t} =

∫ x+hx/2

x−hx/2

∫ y+hy/2

y−hy/2

∫ t+δt

t

I∗(u, v, z, s)dudvds+ η(x, y, z, t) (2.4)

where for our example Ω ⊂ R3 would be all points in the sample chamber,
b(u, v, w, t) is additional background signal, PSF (x, y, z, t, u, v, w) is called
the point spread function (PSF), and η(x, y, z, t) models the pixel wise dis-
tortion of the image by noise [133] and δt is the integration time (not ht). The
additional background signal b(u, v, w, t) comes from non-labelled structures
either inside, or outside, the specimen that also produce light through a process
known as auto-fluorescence. The point spread function, PSF (x, y, z, t, u, v, w),
represents a spatially varying blur kernel. This blur results from the optical
properties of the microscope due to diffraction, and also the changing refrac-
tive index of the sample and chamber. The shape and size of the PSF depends
on the specific optical setup and lenses used in the microscope for both illu-
mination and detection. When using a single view, as in our example, this
PSF is anisotropic being up to three times wider in the z direction than x, y.
A truncated anisotropic Gaussian function (compact support) is often used to
approximate the kernel. The image noise η(x, y, z) results from both, the quan-
tum nature of light, and from noise introduced by the camera and its sensor
[130]. The quantum noise results in the signal following a Poisson distribu-
tion and is unavoidable. The other sources can follow Gaussian or Poisson,
distributions and are camera specific. Also, these additional noise sources can
have a spatially varying mean (non-zero) and variance. Figure 2.2 shows two
examples of both a specific (x, y) slice, and a maximum z projection of a stack
at a particular time step, from A a developing fish (Danio rerio), and B a bee-
tle (Tribolium castaneum), imaged with two different SPIM microscopes. The
”maximum z projection” is simply the image of the largest intensity across all
z for specific x, y.

2.2.5 Processing on images

The next step, given the 3D+t images; is to return to the original task of
tracking the population of M cells. This inference task may, or may not be
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practically feasible. In the sense that, recovery of O(x, y, z, t) depends on the
relative contributions and size of distortions resulting from b, PSF and η (drop-
ping arguments). In an ideal microscope, the PSF would be a Dirac delta,
and both b and η zero allowing us to measure the object function directly. In-
deed, reducing these factors is the focus of most microscope development. The
processing steps of taking the 3D+t images and obtaining information on the
labeled objects, in our case the cell trajectories C, are done in multiple steps.
First, the 3D image for each time point is often enhanced, by denoising, decon-
volution, and or background subtraction. The aim of each task is to remove,
or at least reduce, the effects of η, PSF , and b respectively. The next step is
typically isolating objects in the image, a process known as segmentation. The
segmentation can be either, binary, or multi-label. A binary segmentation is
effectively trying to find a binary image S1{x̄, ȳ, z̄, ti} from I{x̄, ȳ, z̄, ti} such
that

S1{x, y, z, ti} =

{
1 O(x, y, z, ti) > 0

0 otherwise
(2.5)

for some fixed ti. A multi-label task is higher level and involves allocating a
binary segmentation to different labels. For example, in our task, a multi-label
task could be assigning each pixel to a particular cell

SM{x, y, z, tj} =

{
kj(i) Oi(x, y, z, tj) > 0

0 otherwise
(2.6)

where kj : {1, 2, ..M} → {1, 2, ..M} is a bijection assigning each cell to a
unique label. The index j is added to denote that this mapping will often
change between time steps. The final task in our example is known as tracking
and involves making the assignments across the separate time steps tj, such
that there is then one global k for all time steps for each region. After this,
the final task is to estimate the center of each object and infer the position of
all cells through time, Ĉ. Ideally, this process would be highly repeatable and
robust, allowing the collection of numerous samples of Ĉ with high accuracy
from multiple samples.

In reality, the processing steps described above can be done jointly or in a
different order. Also, additional steps are often involved in the formation of
I{x̄, ȳ, z̄, t̄}, involving multiple views being ’fused’ together to provide a smaller
and isotropic PSF , also registration can be required either between different
views or between time steps to correct for the sample moving. Other impor-
tant processing tasks include visualization and storage of the image through
compression. Figure 2.2 shows examples of two different visualization tech-
niques, namely a single slice view and maximum z projection. Of course, in
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practice, the task may not be cell-tracking, but tracking, or estimating the
structure of other features of the sample. However, they likely require similar
steps as our example; requiring the estimation and then inference from some
object function O(x, y, z, t) obtained from I{x̄, ȳ, z̄, t̄}.

The tasks outlined above are not unique to fluorescence microscopy or im-
ages, and have been, and continue to be, addressed in both the image process-
ing and computer vision communities and literature. However, there are many
unique features to the 3D+t image datasets that result in existing algorithms
and software not being sufficient or adequate. We outline these features below,
discuss current approaches, and then formulate the problem and approach that
is the focus of the rest of this thesis.

2.3 The problem

The first feature of 3D+t image datasets is the number of pixels that are
required to capture spatial-temporal processes in biology using pixels. In both
time and space, the sampling resolutions hx, hy, hz, ht are set so that the finest
details of the process in both space and time are captured, in ’some’ Nyquist
sampling sense (It is not always precise). However, the spatial structure of
the specimens, and the temporal dynamics, of biological processes vary across
many length scales across the domain.

In space, the imaging domain Ω is a rectangle; however, the sample usually
is not, resulting in large areas of the domain where the Object function O is
zero. Further, as shown for the two example data sets in Figure 2.2, within the
sample there is a large range of spatial scales describing the Object function.
Combined, this results in a significant portion of pixels contributing little in-
formation about the localization of O. The maximum values of Nx and Ny are
effectively set by the camera, and typical values range from 1000 − 2000 for
both. The value for Nz is typically set based on the degree of anisotropy in
the PSF . The values of Nz typically range from 50− 2000, with the tendency
towards isotropic sampling (higher Nz) for state of the art LSFMs. Combined,
for one-time step, this results in a single data set with between 107 and 109

pixels and hence raw size in memory between 100 MegaBytes (MB) and 8 Gi-
gaBytes (GB) when stored is unsigned 16bit integers (as is standard) 1. Hence,
a single 3D image for one time-step can have a size that is over a thousand
times larger than typical 2D images in traditional image processing.

The large size of data is further exacerbated with the addition of time.
As with space, the temporal dynamics of an Object function for a biological

1However processing is often done using single floating point precision (32bit)
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Individual image slice

Maximum projection across slices

A B

Figure 2.2: The top panels show a single image slice I(x, y, z0) of a stack for two different specimens and labels
from two different LSFMs. The bottom panels show a maximum projection of the full 3D image stack. The
maximum projection Imax(x, y) is the image formed by taking the maximum value across z for each location
x, y. A shows images of the GFP-labeled vasculature of a developing Zebrafish (Danio rerio) imaged using a
custom built single view SPIM,(Courtesy of Stephan Daetwyler, Huisken Lab - MPI-CBG, Dataset Number: 2
Table A.1). B shows images of GFP-labelled (LifeAct) nuclei of a developing flour beetle embryo (Tribolium
castaneum) imaged using a commercial Ziess Lightsheet Z.1 microscope (Images courtesy of Akanshka Jain,
Tomancak Lab, MPI-CBG, Dataset Number: 16 Table A.1).

process usually exhibits a range of time scales. For cells, for example, both
their movement and division (cell replication) are characterized by random
processes with small sudden changes, amongst larger periods of little activity.
The total time domain under study can vary greatly, with the required total
time of imaging ranging from minutes to days. In practice, Nt can range
from one to thousands, therefore pushing the largest potential datasets up to
1012 pixels and TeraBytes (TB) of data. These data volumes can be further
increased by the use of more than one channel for simultaneous imaging of
different labelings, or, by the use of multiple views per time-point to make the
PSF smaller and more isotropic [60].

The potential for data generation over a day by a typical LSFM is shown
in Figure 2.3. The figure compares current LSFM techniques (SPIM with an
sCMOS camera) to old microscopy techniques and cameras (reproduced from
Reynaud et al. [96]). This large data volume has been called the Big Data
Challenge by Reynaud et al. [96] and impacts every part of the processing
steps outlined above, causing issues even for the storage and transferring of
data. Previously the bottleneck to studying spatiotemporal processes was the
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microscope and labeling technology. Now, with the development of LSFM, it
is the data volume and processing challenges that create a bottleneck and limit
the scale and type of experiments [108].

Let us return to our example of tracking a population of M cells by estimat-
ing C to illustrate the Big Data Challenge. Let us assume that in our example,
we imaged for a day capturing images once a minute of M = 10000 cells (again
ignoring division and death to keep the calculation simple). Such a population
is large, and we assume it would require at least the sampling values previously
discussed to capture the full process (Nx = Ny = 2000, Nz = 1000, Nt = 1440).
Therefore, the 3D+t data set could be as large as 8 TB, while our final result
Ĉ would only require 400 MB when stored as in floating point precision, a
factor of 2000.

The second feature of these image datasets adds to the complexity of pro-
cessing tasks [63, 138]. The Object function (and image), not only include
different spatial (where) and temporal (when) scales but also, differing scales
in ’how’ the information is encoded. In detail, this means that each object Oi

can have a different range of function values in both the Object function and
Image. We call this local range the local intensity scale. The local intensity
scale has many contributions. The first is the Object function itself. The den-
sity of fluorescent labels (what the Object function is a proxy for) can vary
across objects, in our case, cell nuclei. The change in the range of labeling can
result from random fluctuations, systematic difference between the cells level
of fluorescence molecule (e.g. different expression levels), and reduction of la-
beling by a process known as photo-bleaching. The second factors are a result
of the image formation process, where all three of the functions PSF , b and η
can contribute. The width and height of the PSF impacts how the density at
each location in the object function translates into image intensity. Therefore,
if the PSF varies across the image, this will also change the imaged brightness
across these regions. The background signal b contributes additional signal to
the local range in the image I that is independent of O. Lastly, the fluctua-
tions in the camera can result in random and deterministic offsets in how the
light that hits the camera is translated into a signal and intensity value.

The combination of the dynamic spatial, temporal, and local intensity
scales combined with the high pixel number in the 3D+t images often leads to
the direct application of software, algorithms, and methods in image process-
ing and computer vision being unable to solve the discussed processing tasks.
This deficiency comes both in practice, due to high computational cost, and
in principle, by the lack of acounting for varying local intensity scales in the
underlying models. Although, other image modalities, often have varying spa-
tial and local intensity scales the magnitude of these variations across a simple
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Figure 2.3: Schematic showing the data produced in 24 hours at maximum data-rates of a current LSFM (SPIM
with sCMOS Camera) producing up to 1 GB/s of image data, compared to a SPIM with older camera technology
(EMCCD Camera) producing 60 MB/s, and older optical sectioning microscopy technique, confocal laser scanning
microscope, 1 MB/s. For perspective the schematic gives the relative sizes of this data volume compared to typical
hard-ware sizes (circa, 2013). (Reproduced from Reynaud et al. [96] which was changed color and adapted from
Schmid et al. [111])
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data set is often smaller. For example, regarding the local intensity scale, this
is directly reflected in need for, and use of, unsigned 16-bit images, as opposed
to 8-bit images that are often sufficient in other image modalities (greyscale).
The smaller magnitude of changes can mean that constant approximations, or
simple models, are adequate for solving most processing tasks. In cases where
they are not adequate, the relatively smaller size of the data sets permits more
sophisticated methods to be successfully used even if they result in a significant
relative increase in computational and memory cost. Whereas, for LSFM data,
such a relative increase in computational and memory cost often exceeds capa-
bilities of current hardware and software [5]. These problems are exacerbated
by the large spatial and temporal scales combined with the high pixel count.
Effectively, any algorithm has to ’find’ the locations of the data set that are
informative, requiring processing across every pixel, before more sophisticated
steps, can be run. Although such steps may be ’cheap’ for small datasets, they
can become prohibitive at the data sizes discussed here. Further, they have to
be repeated across different tasks, or even steps, within an algorithm.

Therefore, these features of 3D+t LSFM data result in the need for the
development of custom algorithms, and methods, to deal with the processing
challenges. From the discussion above, the requirement of such algorithms
would be to have for low computational and memory cost per pixel, while
still allowing for the use of models that can account for the variations in the
temporal, spatial, and intensity scales. Indeed, there has been significant re-
search and development, into the design of methods and software to meet
these requirements. In the next section, we provide an overview of the current
approaches and methods for processing on LSFM data.

2.4 Current approaches to processing for LSFM

At a high level, we can split the research into LSFM processing into two groups,
those focusing on specific processing steps, such as deconvolution, and those
providing pipelines from image to a specific result, e.g. cell tracking, therefore
combining a range of processing steps. We will briefly overview the literature
in the two groups. Following we generalize and discuss the different approaches
and how these relate to the challenges raised above.

The research in the first group has been specifically designed to deal with
general features of LSFM data relevant to a processing task. Implementa-
tions of the methods are often provided as a Plugin for FIJI [109], a pop-
ular image-processing tool used by biologists. The specific processing tasks
include image registration [90, 88], image fusion [121, 100, 89, 91, 88, 100],
image deconvolution [91, 132, 123, 138, 27, 110, 48, 122], image segmentation
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[5, 71, 63, 10, 9, 53, 117, 75], visualization [64, 84, 98, 11, 82], cell tracking
[140, 10, 117], and storage and compression [56, 111, 11].

The second group of processing pipelines can be further split. First, there
are those pipelines that have been designed for a custom microscope, specimen
and task [132, 70, 125, 119, 127]. Second, there are those pipelines designed for
a wider use and scope [113, 11, 10, 117, 11, 49, 134]. The goal of the general
pipelines is to combine the individual processing methods mentioned above
into workflows and software that is more accessible to biologists [113].

2.4.1 Concepts

Instead of focusing on individual processing tasks, or reviewing each work in
detail, we have attempted to identify the key ideas and elements across the
research. With specific attention on those methods that provide solutions
to address the large size of the images and the spatial, temporal, and local
intensity scales.

Paralellism

A common method for approaching the computational cost of such large im-
age datasets is by increasing the throughput of the method by designing algo-
rithms that can be parallelized and run on graphics processing units (GPUs)
[110, 27, 138, 9, 10, 91, 98, 82]. GPUs are designed to perform thousands of
simple computational operations simultaneously. Utilizing GPUs can provide
significant (For example 25 times in [110]) speed up regarding total execution
time when compared to similar code executed in serial on a CPU. Utiliza-
tion of GPUs has been very successful in reducing computational time. With
their use particularly well suited for processing tasks such as deconvolution
and image fusion. However, GPUs are less suited to higher level tasks, such as
segmentation and cell tracking, where branching or more irregular, computa-
tional patterns may be required. Further, GPUs require the data that is being
computed on to be transferred to and stored in its local memory. The local
memory requirement can limit the size of datasets that can be processed, as
the size of this local memory is often an order of magnitude less, than that
available to a CPU through RAM. The memory restriction can become an is-
sue for higher level tasks that may require the simultaneous storage of multiple
variables per pixel [5].

In contrast, for acceleration of a general segmentation algorithm, Afshar
and Sbalzarini [5] utilized distributed parallelism. Distributed parallelism, si-
multaneously addresses both computational and memory costs, by computing
the solution jointly across multiple computer systems. Using distributed paral-
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lelism allows the amount of computational power and memory to be scaled to
the size of the problem. Therefore, more complicated algorithms can be run on
large datasets. However, a drawback is that development and implementation
of algorithms that solve problems on distributed systems can be difficult.

Real-time processing

A second common concept, often linked to the use of parallelism, is the concept
of real-time or online processing [108, 137, 111, 110, 27, 5, 98, 117, 99]. For
LSFM, real-time processing is the processing of image data sets during the
acquisition process of the microscope. Real-time, in this context, means being
able to perform a processing task on the data set for a given time point before
the imaging of the next time point. The classification of a method being
real-time therefore depends on the particular experiment.

Real-time processing appears to provide two major benefits. The first ben-
efit is that information in the acquired images can be used to monitor or adjust
the experiment while it is running. The monitoring and adjustment can be
done manually by a user viewing the data set, using real-time visualization
such as ClearVolume [98], or automatically, with algorithms adjusting and
monitoring the acquisition [99], resulting in what has been termed a smart mi-
croscope [108]. The second benefit involves reducing the data set size as it is
acquired. By doing this, the full data-set never has to be stored or processed
on all at once. Real-time processing is particularly useful for the fusion of
multiple views, as the dataset can be immediately reduced to one view [110].
A second approach is that the full image data can be no longer stored. In-
stead, only storing a result that has a smaller memory footprint such as the
segmentation [5] or alternative data representation [111].

Modelling the image formation process

Algorithms have also been developed to remove the effects of b, PSF , or η that
occur during image formation (see 2.3). By removing, or reducing, their effects
they make the input image I ’closer’ to the desired Object functionO and hence
simplify further processing. In particular, methods have been introduced that
reduce the impact of PSF , by performing deconvolution with an estimated
spatially varying PSF [48, 122]. Weigert et al. [138], goes further, providing
both deconvolution, and ’super-resolution’ using methods from deep learning.
The approach allows the reconstruction of isotropically sampled datasets, from
anisotropically sampled and blurred input data, in a data-specific way. Alter-
natively, Jensen et al. [63], introduce new image models, to allow for different
local intensity scales for segmentation.
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Data representations

The final approach we discuss is using alternative data representations. That
is using alternative representations of the image for processing other than or
in addition to a pixel image.

For visualization the BigDataViewer [84], utilizes multiple down-sampled
versions of the image, with smart-caching schemes, to allow visualization and
basic processing of large datasets. For segmentation and tracking, [10, 117]
use the concept of super-voxels, a 3D extension of super-pixels [2] using optical
flow [9]. The use of super-voxels helps address the different spatial and local
intensity scales, while also reducing computational complexity. The method
groups adjacent pixels together into groups, called super-voxels, where the
number of super-voxels is much less than the number of original pixels N .
Segmentation and cell tracking can then be done on this smaller dataset, giving
improvements in both computational and memory costs. Further, the methods
use local descriptors to group pixels, allowing it to account for changes in local
intensity scale. However, rather than replacing a pixel image, super-pixels
effectively augment it. With the original image still being required for further
processing tasks such as visualization.

Schmid et al. [111] introduces a different approach that translates the orig-
inal image into an alternative data representation in real-time. Specifically
designed for early developing Zebrafish embryos it makes use of their spherical
shape. The 3D images are acquired by the microscope, and in real-time, the
data is processed and projected onto a sphere using a radial maximum projec-
tion operation. The full image data is never stored. Therefore, all subsequent
processing steps are performed on the projected image providing significant
memory and computational benefits. Unfortunately, this approach is limited
to only a subset of species and developmental processes. Further, it is unclear
whether such a maximum radial projection retains all relevant information on
the Object function from the original images. The idea of using 2D projections
has generalized and further extended to work on more general geometries by
Heemskerk and Streichan [56].

2.4.2 Summary

Although the approaches above have been successful in providing methods and
algorithms that have allowed the utilization of LSFM for studying spatial and
temporal processes, there is still room for much development. Unfortunately,
many of these approaches are specific or do not scale sufficiently to make full
use of, current, and likely future, advancements in LSFM. Indeed, although
methods are sufficient to provide analysis of a single large time course of a
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single embryo, the ability to then scale consistently to a larger number of
samples is still hindered by the processing steps. A lacking feature of current
approaches is that the algorithms deal with the large size, and varying scales
individually and by time point. This duplicates the process of identifying and
accounting for the scales and high data volume. The exception to this trend
is the projection methods used by [111].

A successful approach we believe would combine a majority of the features
above. Providing a more general solution in the spirit of Schmid et al. [111]
by providing an alternative data representation that accounts for the differ-
ent scales in the dataset while simultaneously reducing its computational and
memory cost, while still fully capturing the information of the Object function
O. By handling the features of the dataset once in a general way, the repre-
sentation could then be utilized across the whole pipeline without the need for
original pixel data. The approach would ideally also scale to larger data sets
and be able to account for temporal scales.

In the next section, we reflect on biological visual systems and argue that
they provide examples of an approach with the features discussed above. We
then use two key features from visual systems as motivation for our work here.

2.5 Motivation from the visual system

As humans, our visual system continuously acquires high-resolution informa-
tion on spatial-temporal processes occurring in the world around us. Similar
to fluorescence microscopy, the visual information is gained through the de-
tection and delineation of objects through local variations in photon counts.
However, instead of objects having to be specifically labeled, changes in the
photon levels reflect the specific optical properties of the object, its location,
and local luminescence. Hence, the problem can be framed similar to that of
processing on LSFM data, with an Object function O, which we wish to infer
information about from an input ’image’ I that we perceive.

The comparison with the visual system can be taken further as it shares
many of the same features found in LSFM data and its processing. Typical
visual scenes feature both varying spatial and temporal scales in the Object
function. In space, a visual scene is composed of objects, which feature many
spatial scales, with information on their shape and size largely determined
by their boundary. They also exhibit a range of temporal scales, encountering
both stationary, slow and fast objects at any one time. Visual scenes also show
large variations in their local intensity scale, with luminescence levels varying
over up to nine orders of magnitude in a typical day [116].

To compare the ’size’ of the problem compared to LSFM, we consider the
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following thought experiment. How much data would the human visual system
have to acquire and process if it used a homogenous sampling and processing
strategy as in an LSFM? We provide a ’back of the envelope calculation’, to
estimate the order of magnitude. To estimate a hypothetical rate, we assume
the sampling resolution in space and time to be the maximum resolution, 120
degrees field of view, three color channels stored, across at 64-bit precision.
This would result in a data rate of around 2000 GB/s, or 180,000 TB a day
(See A.1 for calculations). This rough calculation indicates that the effective
data size the visual system deals with is at least comparable to LSFM. However,
it is obvious the visual system does not function in this way, in fact, estimates
on the data-rate from the retina to the visual cortex is as low as 1 MB/s [68].

Two core features of the human visual system are adaptive sampling and
local gain control. This adaptive sampling works by selectively focusing the
attention of the eye on areas with potentially high information content [57].
This adaptation occurs at a higher level, such as detecting faces, but also at
lower levels, adapting to information-rich areas of the scene such as edges [95].
The selective focus enables efficient inference of information about the scene
at a high effective resolution by focusing the processing capacity of the retina
and visual cortex. The local gain control, allows the eye to effectively adapt
to a scene while accounting for luminance ranges of over nine orders of mag-
nitude, even though the firing rate of an optic nerve varies over less than two
[116]. Hence, the local gain control effectively normalizes the signal efficiently
accounting for variations in the local intensity scale. Further, it has been ar-
gued; these features have evolved to provide an efficient data representation,
and the adaptivity optimizes the information transmission efficiency [23]. It
is from the two features of adaptive sampling and local gain control, that we
take inspiration from, for the development of the adaptive representation in
this thesis.

2.6 Summary and main points

In summary, the eye efficiently accounts for the large spatial and temporal
scales through adaptive sampling, while handling varying local intensity scales
through a local gain control. The adaptivity occurs at the lowest level (first
step) in the visual system, allowing all subsequent, and higher level, processing
tasks to benefit from it.

Given the challenges of processing on LSFM data, shares many features
with the visual system. It would seem that a similar approach could be useful.
Indeed, the idea of adaptivity is a feature of both the successful super-voxels
and projection approaches. We follow this approach designing an alternative
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representation that shares these properties. In the next chapter, we formally
outline the desired properties for an adaptive representation and review the
literature. The table below briefly summarizes the chapter.

Summary of the chapter

• Introduced LSFM and how it can be used to study spatiotemporal
processes in biology.

• Discussed the challenging features of LSFM data and outlined the
current bottleneck in processing raw image data

• Identified variations in spatial, temporal, and local intensity scales
as key issues contributing to this bottleneck

• Reviewed and reflected on current processing techniques and con-
cluded the need for an alternative data representation

• Compared the problem and solution from the human-visual system
for inspiration for an efficient data representation

• Concluded adaptive sampling and local gain control as key concepts
for an alternative data representation
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3.1 Introduction

In this chapter, motivated from the previous, we further develop the require-
ments of an alternative representation for LSFM images that could alleviate
processing bottlenecks. First, we outline five representation criteria (RC). We
form the RC from both reflections on the demands of processing, successful ex-
isting methods and algorithms, and ideas of efficient representations from the
visual system. Following this, we review the literature on multi-resolution and
adaptive-representations, focusing on areas are of most relevance. In conclud-
ing, we reflect on existing work and identify those ideas from existing literature
that still require development to fulfill the RC.
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3.2 Representation Criteria (RC)

Here, we present five criteria that I believe an alternative image representa-
tion should fulfill to be able to be used as a general solution for processing
LSFM images for studying spatiotemporal processes in biology. The alterna-
tive representation would be formed from the pixel image data after, or during,
acquisition. Then all preceding processing steps and storage would be done
using this alternative representation without the need for the raw pixel image
data. Motivated by the visual system, the representation would adaptively
sample the image domain while taking into account the local intensity scale.
This sampling would adapt to the range of spatial and temporal scales in the
Object function O while taking into account variations in the local intensity
scale. All following processing steps could then directly benefit from the re-
duction in computational complexity, and identification of scales.

We will first state the five criteria, then describe each and discuss it in
detail. The representation criteria (RC) are as follows:

• RC1: The size of the representation #R must be proportional to the
information content of an image, accounting for varying spatial scales,
and not scale with the number of pixels.

• RC2: The representation must guarantee a user-controllable represen-
tation accuracy E for noise-free images, relative to a local intensity scale
σ, and not reduce the signal-to-noise ratio of noisy images.

• RC3: It must be possible to rapidly convert a given pixel image to the
representation with a computational cost at most proportional to the
number of pixels.

• RC4: The representation must reduce the computational cost of image-
processing tasks without resorting to the original pixel representation.

• RC5: The representation must also be able to similarly account for
varying temporal scales.

Of course, such criteria are subjective and broad, and showing a representation
satisfies them in any precise way does not seem possible. However, we find they
do provide a useful tool, both for guiding the development of the work here
and evaluation of the results.

Although, these criteria, may not be sufficient, and it is likely that there
are others that such an alternative representation should fulfill. Also, though
we are attempting to develop the method to be of general use, there are likely
problems where the use of any adaptive representation, regardless of the RC,
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would not be appropriate. For example when the exact pixel noise distribution
is meaningful.

In this section and the immediate chapters, we do not immediately address
adaptation through time, instead focusing on a single time-step and RC1-4.
Later, in Chapter 10 we address RC5 and show how in addition to the spatial
and local intensity scales, how temporal scales can also be addressed using the
same framework.

For now, let us consider a representation R of image I, and we utilize
concepts, notation, and examples from Chapter 2. We again consider that we
have labelled M biological structures, which we model by an Object function
O(y) =

∑M
i=1Oi(y). Where we consider a single time point and y = (x, y, z).

Then, the information in the Object function regarding object i, is contained in
the support of the object function of i, that is, supp{Oi(y)} = {y ∈ Ω|Oi(y) 6=
0}. Again, instead of observing O directly we have an input image I{ȳ}, where
ȳ = (x̄, ȳ, z̄), with a total number of sample points N = NxNyNz, where the
image is formed by a process as described by Equation 2.3.

We discuss more details and motivation for each of the RC below.

3.2.1 Representation Criteria 1 (RC1)

Following the visual system, our representation should adaptively sample the
domain Ω. Adapting so that all processing tasks can focus their computational
and memory costs proportionally to information rich areas.

We define the information content in I as the data that can be used to
infer the support of O. Therefore, #R ≤ N , the number of elements in, or
size of the representation, should reflect the amount of information content in
the image, and not simply the smallest spatial scale multiplied by the domain
size as in pixel images. Since in most cases, algorithms computational and
memory complexity are of the form O(f(#R)), by aligning the size of #R
with the information content, then the computational and memory costs to
also scale with information content. However, as discussed, the information in
O is encoded in local changes in I, where the scale of these changes, we call the
local intensity scale σ(y). As in the visual system, we want the representation
R to account for the changing scale σ, as in the eye. Therefore, ideally, the
sampling would scale as

#R ∼
∫

Ω

g(I(y), σ(y))dy. (3.1)

where g : R → R, and σ : R → R is an unknown function that describes the
change in local intensity scale. Included, should be the ability to efficiently
losslessly compress the APR for file storage with a cost that reflects #R.
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3.2.2 Representation Criteria 2 (RC2)

We assume this adaptive sampling will be lossy. That is ||ÎR{ȳ}−I{ȳ}||l1 ≥ 0,
where Î is the sampled image reconstructed in some way from R. However,
we wish to be able to control the size of this reconstruction error, and hence
control the loss of information about O.

a priori, we do not know the degree that points in Ω of I contain informa-
tion about O. Therefore, we require that we control the reconstruction error
at all points in the domain similarly. Hence, the use of the infinity norm,
would seem justified. However, as with the adaptation, we know that the ab-
solute value of I, and also the reconstruction errors ε at any point, to not have
’meaning’ without taking into account the local intensity scale σ. Therefore,
we propose that our representation should be able to adapt to the information
content while controlling error as

| Î{ȳ} − I{ȳ}
σ(y)

|∞ ≤ E (3.2)

where |x̄|∞ = maxx∈x̄ x, Î{ȳ} is the reconstruction from the representation and
E is a user-controlled parameter. That is, the reconstruction error is controlled
pointwise across the domain. For noise-free circumstances, we propose that E
can be set arbitrarily small.

However, in the presence of noise, as occurs during image formation for
LSFM, minimizing the difference between the observed noisy image and the
reconstructed image is not desired. Instead, it is the reconstruction error rel-
ative to the noise-free image I∗ we would wish to control. Therefore, the
representation must be able to account for noise corruption, with an adapta-
tion that is controlled by E, while endeavoring not to lose information on O.
That is instead the representation should adapt such that, as E decreases the
reconstruction error of the representation relative to the noise-free image I∗,
should be equal to, or less, than noise level of the original noisy image.

Ideally, both this adaptation and the noisy reconstruction should be done
optimally (in some sense).

3.2.3 Representation Criteria 3 (RC3)

To be used in general we require to be able to generate R from I{ŷ} in a fast an
efficient way. Further, this process must, scale, such that if datasets continue
to grow, the cost of R will scale at the same rate. Hence, the computational
cost of generating R should be at most linear in N , i.e. O(N).
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Also, this process should be amenable to utilizing current and future par-
allel hardware. Ideally being able to utilize, GPU, shared memory and dis-
tributed parallelism.

Lastly, the process should be fast, regarding execution time, where ’fast’
depends on the application. Specifically, it should be fast enough, with the use
of appropriate hardware, that it can be used in a range of real-time applica-
tions. That is, able to compute R, during acquisition between acquiring each
time step.

3.2.4 Representation Criteria 4 (RC4)

We propose that R is to be used, instead of the pixel image data, for all
processing tasks after its formation. For example, visualization, segmenta-
tion, tracking, and storage. Replacing pixels with an adaptive representation
of the data for all processing tasks, as motivated by the human visual sys-
tem, and the methods of Schmid et al. [111]. In the best case, all existing
algorithms and software could be directly used with R, while fully benefitting
from its adaptive properties from RC1-3. However, this is unrealistic, given
most implementations of algorithms, implicitly depend on the structure of a
pixel image. Although, a more reasonable goal, is that the underlying meth-
ods, and algorithms, can be adapted from their pixel formulation to one for
R, with minimal effort.

Different algorithms and methods, interpret a pixel image in varied ways.
For example, collocation points of a continuous function, voxel elements, a
pixel graph, or nodes in a tree structure. Therefore, we propose that the
representation R should be ’close’ enough to a pixel image, that similar in-
terpretations of R are natural and possible. By sharing the interpretations,
existing algorithms are likely to be able to be more easily adapted.

Furthermore, the computational, and memory performance of these adapted
algorithms should be able to benefit from the adaptation, both regarding size,
since #R ≤ N , and through the information about the spatial scale and local
intensity intrinsic to R through adaptation. For this to be possible requires
that any increase in memory or computational cost of data structures, and
algorithm access patterns, for adapted algorithms, do not exceed the benefits
gained from adaptation.

3.2.5 Representation Criteria 5 (RC5)

Lastly, in addition to adapting to spatial scales, and the local intensity scale,
the representation should extend to time. That is, it should also in a way
consistent with RC1-4, also be able to adapt sampling in time to account for
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the temporal scales in Object function that exist. Further, we suppose that
the time adaptation should be causal. Both, to preserve temporal ordering of
events and allow real-time processing.

Again, note that we first treat space, then address time in Chapter 10.

3.3 Review of existing multi-resolution and adap-

tive representations

In this section, we review the relevant existing literature on alternative data
representations used for processing. First, we introduce our definitions of
multi-resolution and adaptive methods used here.

Representation definitions We define a multi-resolution representation as:

Multi-resolution representation. A method that represents a spatial data
set with a representation with more than one (multi) length-scale in each
spatial direction.

The size of the multi-resolution representation R, i.e. the number of free
parameters #R, or coefficients {ci}#R

i=1, that describe it, need not be less than
the number of samples in the original data N . Such representations can be
lossless or lossy. A lossless representation allows perfect reconstruction (per
sample) of the original dataset from R. Whereas, a loss-less representation
does not.

A simple example using a 2D image would be the combination of the orig-
inal image and a downsampled image by a factor two. The size of the repre-
sentation #R for this example would be N +N/4. Whereas, a pixel image by
itself has only one spatial scale in each direction determined by the sampling
distance between pixels.

Building on this defintion, we define an adaptive representation as,

Adaptive representation. A multi-resolution representation that also in-
volves data-dependent selection of non-zero free parameters relating to the
spatial scales.

The size of the representation, need not be less than N , but the determi-
nation of the number of non-zero parameters to describe the representation
depends on the dataset in some way, beyond scaling with N (or simply the
result of the data set being zero). In this definition, there is slight ambiguity
for lossless methods that could have zero coefficients for a given signal, with-
out any active selection. For example coefficients for a lossless transform. In
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this case, if the non-zero coefficients are treated the same as non-zero coeffi-
cients, we consider it only a multi-resolution representation, if however, special
treatment is given to these coefficients (’in some way’) we would define the rep-
resentation as adaptive. Therefore, this ties our definition of representations
also to their use.

Review approach Methods and techniques using both multi-resolution and
adaptive representations, have been developed for, and are used with success,
across a range of fields. These areas include image processing, computational
differential equations, statistics and computer graphics (find a range of specific
references below). Across these different applications, there are similar meth-
ods, ideas, and concepts used. However, there are also differences, diversity,
and specialization, across the fields. It is likely this diversity reflects that the
methods are customized to address the specific demands resulting from the
features of the data and the nature of memory and computational costs in the
processing involved. As discussed in Chapter 2, LSFM data has unique fea-
tures compared to classical natural image data, and processing tasks. Hence,
it would seem necessary also to review literature originally designed for other
applications, as they may share common features with LSFM data or process-
ing. Rather than focus on each field and their approaches separately, here we
have attempted to identify and group similar methods and ideas.

At the highest level, we split techniques into three groups. The groups are
Augmentation Techniques, Sparse Transform Techniques, and Sparse Colloca-
tion Techniques. We define and discuss each group separately in the section
below. In each subsection, we highlight the main ideas, and methods, we have
identified, and then finish in each case by reflecting on the representation cri-
teria RC1-4. These definitions are tied to how the specific method is used,
and a particular method can be in more than one group. For example, Wavelet
methods feature in all three. These groupings were heuristically made to allow
comparison with the representation criteria easier.

In all cases, we consider a function f(x), sampled at locations x̄, and stored
as N samples f{x̄}. In most cases, we will give the notation for a 1D notation
for simplicity, but it is to be assumed the ideas can be applied in 3D unless
otherwise stated.

3.3.1 Processing augmentation techniques

Here, we review multi-resolution representations are not adaptive (not data
dependent) and adaptive techniques that are used in addition to the origi-
nal data. Often, the multi-resolution or adaptive representations are used to
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Figure 3.1: Schematic of a five level image-pyramid, and example of a non-adaptive multi-resolution representation
R of an image. Levels greater than one correspond to blurred down-sampled versions of the original image.
(Source: https://commons.wikimedia.org/wiki/File:Image_pyramid.svg, Used under Creative Commons
Attribution-Share Alike 3.0 Unported, Created by user: Cmglee)

augment a processing step. This is done by simplifying, or regularizing, a
specific processing step. Peyré [83] provides an excellent review of adaptive
and multi-resolution representations for image-processing. In the review, the
representations are viewed as regularizers for ill-posed inversion problems.

Pyramid techniques

Some of the most natural multi-resolution representations are image pyramid
techniques [4]. These techniques involve augmenting the original image with
down-sampled images by a factor of two as shown in Figure 3.1. These down-
sampled images may either be blurred versions of the original image or, the
result of another filtering operation such as Laplacian image pyramids [26].
These multi-resolution representations can aid processing to help identify fea-
tures on different scales and have also been motivated by visual systems [4].
Related to these techniques, are scale-space techniques [139]. Scale-space tech-
niques, also form multiple blurred versions of an image. A convolution with a
Gaussian with smoothing scale s is often used for blurring. A set of images is
then created for a range of values of s. In the case of a 1D signal, the signal
is augmented to 2D with the additional dimension being scale s. This 2D
augmented signal can then be combined with tree structures decompositions
and used to identify different resolution scales in the data.
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Change of basis

Another important approach to identifying different length scales in a function
is the use of a change of basis. If the new basis has different spatial scales, the
size of different coefficients can be used to identify spatial scales in the data.

Discrete Fourier Transform The ’classic’ multi-resolution representa-
tion for signals is the discrete Fourier transform (DFT). The discrete Fourier
transform represents a signal in the following way,

f{xn} =
1

N

N−1∑
k=0

cke
i2πkn
N (3.3)

where xn ∈ x̂, and the ck are calculated as,

ck =
1

N

N−1∑
n=0

fne
i2πkn
N (3.4)

so #R = N and i =
√
−1. The DFT effectively transforms the signal into

a frequency domain representation. Where {e i2πknN }N−1
n=0 forms an orthogonal

basis of CN . Where the |ck|, corresponds to the contribution of a certain fre-
quency to the original signal. It is multi-resolution in the sense that the basis
functions e

i2πkn
N have different wavelengths that describe them. In addition

to giving frequency information on a signal, the Fourier transform also can
simplify and speed up certain processing tasks such as digital filtering or con-
volutions. Rather than calculating the DFT using the above definition, the
Fast Fourier Transform is often used allowing the coefficients ck to be com-
puted with a computational complexity of O(N logN) instead of O(N2) (the
result of the application of the definition above). Though the DFT allows
identification of frequency, and hence spatial scales in the solution, it does not
allow us to locate where the spatial scales occur in space.

Wavelets Wavelets, in contrast, allow both the identification of length scales
and their location [74, 34]. Wavelets are based on the decomposition of a signal
into basis functions of different sized support placed at regular intervals over
the domain. The basis functions are formed by combinations of two special
functions φi(x) = φ(x− i) and ψi,j(x) = 2

j
2ψ(2

j
2x− i) known as the scale and

wavelets functions respectively, where i determines the location in space and
l the length scale. The combination of these, {φi}i∈Z

⋃
{ψi,j}i,j∈Z, forms an

orthonormal basis of L2(R) [30].
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When sampling a discrete sampled function f , assuming that N = 2lmax ,
then wavelets allow the following decomposition of data in what is known as
a Multi-Resolution Analysis (MRA) [74] as

f(x) =

jmax∑
j=jmin

2j∑
i=1

di,jψi,j(x) +
2jmin∑
i=1

aiφi(x) (3.5)

where di,j are called the detail coefficients and ai are known as the approxima-
tion coefficients. Figure 3.2, shows an example of such a decomposition. The
decomposition can be interpreted in the following way; the approximation co-
efficients generate a low-resolution representation of the function, determined
by jmin, then the detail coefficients, level by level, add details progressively
to the function. The detail coefficients with lower j, respond to longer length
scales, and higher j, smaller length scales. Further, for smooth regions of a
function, as j increases, the size of |di,j| decreases. Whereas, if there is a local
discontinuity or non-smooth region, the |di,j| will not decay, or not as rapidly.
Hence, different scales and discontinuities can be readily detected in a signal
by analyzing the behavior of |di,j| across the domain [73].

In contrast, to the pyramid multi-resolution techniques above, the size of
the wavelet transform #R = N , and the coefficients can be computed with
linear computational complexity in N using the Discrete Wavelet Transform
(DWT) [72] (O(N)). A variety of processing steps can then be formulated in
the Wavelet domain, to regularize, or improve various processing tasks [83].
However, wavelets have many additional features when used as an adaptive
representation, through thresholding of coefficients, which we discuss in the
next section.

Superpixels

Superpixels group together similar, by some measure, pixels in an image into
regions larger than a single pixel [2]. In this way, superpixels can be viewed as a
form of over-segmentation. Figure 3.3 shows examples of superpixels generated
with different parameters of two images using the SLIC method in Achanta
et al. [2]. In the figure, the black lines decern the boundaries between super-
pixels. Superpixels are especially well suited for segmentation tasks, where
they reduce the number of computational elements, and hence memory costs,
and help identify spatial, and local intensity scales. These features have been
utilized by for segmentation and tracking using LSFM data using the method
for 3D data, or voxels, introduced by Amat et al. [9]. However, the method is
not designed as a general representation. Instead, the full dataset is retained
and used for all other processing and storage tasks, and may indeed still be
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Figure 3.2: An example of a wavelet decomposition using the wavelet transform used by JPEG2000 [31]. The
small image in the top left corner, represents the approximation coefficients ai and the other six images represent
the detail coefficients di,l at two different resolutions. (Source: https://commons.wikimedia.org/wiki/File:

Jpeg2000_2-level_wavelet_transform-lichtenstein.png, Used under Creative Commons Attribution-Share
Alike 3.0 Unported, Created by user: Alejo2083)

utilized while processing with the superpixels. So effectively #R ≥ N , since
the original image, is still required in addition to the superpixels.

Reflection on representation criteria

All of the above methods have been highly successful in using multi-resolution
concepts to identify different spatial, and local intensity scales, to improve
processing tasks. However, they do not address our representation criteria. In
particular, since in all cases #R ≥ N , then RC1 is not satisfied. Further,
as lossless methods, it is unclear of how RC2 is to be satisfied. Effectively,
they are not adaptive representations. Though, adaptive versions of these
representations do exist, in particular for wavelets, which we discuss below.

These methods not fulfilling the representation criteria reflect the features
of the data and problems they were designed for and not a deficiency in the
methods. For example, many of the methods are designed for the typically
small size of natural images. Hence, the methods are not focused on reducing
the computational and memory costs through a reduction in the size of the
data representation. Instead, they are focused on providing ’higher quality’
solutions to various processing tasks.
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Figure 3.3: Example of superpixels, reproduced from Achanta et al. [2]. The black borders define the edges
of the Super-pixels. The three sections represent superpixels set to an average size of 64, 256, and 1024 pixels
respectively.

3.3.2 Adaptive sparse transform domain techniques

In this section, we consider adaptive representations, where #R ≤ N , that is,
they are adaptive and have some non-zero coefficients that are ’selected’ and
describe R that is less than N . Such representations we call sparse. These
representations are sparse in the transform domain, as the coefficients {ci}#R

i=1,
can not be interpreted as function values of the original data set.

Thresholding of wavelets

Wavelets can be used as an adaptive representation, through a process known
as wavelet-shrinkage, or thresholding Donoho and Johnstone [47]. Threshold-
ing involves first calculating the wavelet transform and set of detail di,j and
approximation coefficients ai for a particular wavelet and scaling function, as
shown in 3.5. Wavelet thresholding, or shrinkage, then involves the reduction
of, or removal, of particular detail coefficients di,j based on a given criteria

based on their value. This produces a new set of coefficients Γ = {d̂i,j} which

now provide a lossy representation of the function f̂ . If the procedure sets
certain detail coefficients m coefficients to zero, then, the new f̂ has a rep-
resentation with #R = N −m. This reduced set of coefficients can then be
used to reduce computational and memory costs and is in a sense optimal for
compression [42].

Because wavelets form an orthonormal basis the effect of the removal of
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coefficients on the squared error is as follows

n∑
i=1

|f{xi} − f̂{xi})|2 =
∑
di,j /∈Γ

|di,j|2 (3.6)

giving an over-all impact on the approximation error [72]. Although simple,
the representations resulting from such thresholding operations have many
optimal properties and are successful with wide use, including in bio-medical
imaging [128]. We outline some of these optimal properties below.

Optimal error convergence Here we discuss the methods used for com-
paring different compression schemes through a framework around classing
functions in smoothness spaces known as Besov spaces as presented by DeVore
et al. [42]. A Besov space Bα,1q (Lq(Ω)) is a vector space equipped with the norm
‖.‖Bαq (Lp(Ω)) (or quasi-norm depending on p and q). The definition is involved,
and leave the full definition to Appendix A.2. DeVore et al. [42] indicate that
a Besov norm with α is ’roughly’ equivalent to having α defined derivatives in
Lp(Ω)

Given a function in the α Besov space, they prove, that the optimal rate
of convergence of the error compare to the number of coefficients #R→ 0, for
an adaptive representation asymptotically follows

||f − f̂ ||Lp ∼ O(#R−
α
d ) (3.7)

where ||.||Lp represents a chosen p norm with 1 ≤ p ≤ ∞ and 1
q

= 1
p

+ α
2
.

They show that for some threshold ε, and using a wavelet that can repro-
duce all polynomials up to degree α that by setting all coefficients

||ci,lψi,l||qLp(Ω) ≤ ε (3.8)

to zero produces an adaptive representation with an error convergence as

||f − f̂ ||Lp(Ω) ≤ C
α/2
1 C2#R−α/2||f ||Bα,1q (Lq(Ω)) (3.9)

which is the stated optimal rate.
Such a scheme does not hold for the infinity norm. However, DeVore et al.

[43] provide an alternative iterative scheme, designed for surface approximation
for setting of coefficients that find optimal representations following

‖f(x)− f̂(x)‖L∞ ≤ ε (3.10)

for a given ε, similar to the form required in RC1.
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Optimal representation of noisy functions A second optimal property
of wavelet thresholding is that it allows for adaptive representations that have
near-optimal de-noising properties [47].

If we consider a noisy signal f{x} = g(x) + η(x) where η ∼ N(0, σ) is a
normally distributed noise process with zero mean and standard deviation σ.
Then define an estimated MSE error of f̂ for the truncated wavelets as

R(g, f̂) =
1

n
E[

n∑
i=1

(g(xi)− f̂{xi}))2] (3.11)

and consider the assymptotics of the expected error E as n → ∞, where E
is the expectation over all realizations of the noise process. Then the optimal
rate achievable by any adaptive scheme is 1

n
, and for a constant width kernel

(fixed bandwidth) will at best achieve 1
n1/2 . Donoho and Johnstone [47], show

that wavelets using particular shrinkage schemes of the detail coefficients, lead
to near optimal (O( log(n)

n
)) convergence and hence near optimal representation

of noisy functions. (note we used n in replace of N to avoid confusion with
the normal distirbution)

Extensions and applications Due, to these properties, amongst others,
thresholding of wavelets have been used successfully across a wide range of
fields, and applications [128, 114, 85] (The most recognized application being
the wavelet thresholding used in JPEG2000 [31]). Because of their wide use
and success, the literature is immense, in both application, theoretical work,
and extensions. We do not review it here, and direct the reader to Plonka [85]
for a recent survey of developments with a focus on image-processing.

Dictionary learning techniques

Wavelet thresholding can be used to form compression schemes that have the
optimal asymptotic rate for functions in a given Besov space. However, having
optimal asymptotic convergence does not indicate that that the methods pro-
duce the best compression rate of any basis [35]. This point can be illustrated
by considering a function that is exactly the wavelet for some interval and
hence requires only one coefficient. A one-pixel translation of this function
will result in the use of many more coefficients. Ideally, such a translation
could also be represented by one coefficient. However, such basis functions
would no longer be orthogonal. Methods that are developed to find the best
basis from a set of non-orthogonal and redundant basis functions are known
as dictionary learning techniques. In such a way, very sparse representations
(small #R) for a specific dataset can be created. Allowing potentially for sig-
nificantly greater rates of compression than those obtained through use of an
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orthonormal basis such as wavelets. However, as the basis function no longer
form an orthogonal basis, the coefficients can no longer be found through us-
ing the inner-product. In fact, Davis et al. [35] prove that this problem is, in
general, NP-Hard. However sub-optimal methods such as greedy schemes can
be used [35], with Tosic and Frossard [126] providing a recent review.

Compressed sensing

Related to thresholding of sparse bases, are methods known as compressed
sensing [46]. Given a function which is sparse in some transform domain, com-
pressed sensing provides a method by which M < N samples can be used to
recover the original function sampled at N locations using appropriate (pos-
sibly nonlinear) algorithms. These M samples are chosen non-adaptively. In
contrast to thresholding of wavelets or other classic adaptive methods which
depend on the function. That is, their number and location are not set with
any information of the particular function. However, these samples are not
collocation points of the original function, such as pixels, but instead, could be
thought of as a specific set of random samples from the transform coefficients.
Surprisingly, given knowledge of the class of signal, and distribution of coeffi-
cients, the number of M required samples can be shown to be very close to that
which could be achieved by optimal adaptive sampling when using knowledge
of the function [46].

Reflection on representation criteria

From the discussions above, thresholded wavelet transforms appear to have
many of adaptive properties. Including proofs of optimality, that with exten-
sions would allow them to satisfy RC1-3. However, the main drawback of
these methods, including dictionary learning and compressed sensing, is that
the sparse representation exists in the transform domain. Given most process-
ing tasks in LSFM are designed for the pixel domain, many tasks would require
the reconstruction of the original image and therefore return to a data size of
N . It is true that many tasks, such as deconvolution [48], or image fusion
[100] can be done efficiently in the wavelet domain. It is not clear, however,
how existing approaches for tasks such as tracking and segmentation could be
adapted when the approaches rely on pixel graphs. A similar argument also
applies to other adaptive compression schemes, such as Zhao et al. [142], al-
though these methods are highly effective at solving the individual processing
task of compression, it is unclear how the spatial adaptation and reduction in
time could be used for general processing tasks.
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3.3.3 Adaptive sparse collocation techniques

The last group of adaptive representations is those that are sparse #R ≤ N and
the coefficients {ci}#R

i=1 can be interpreted as collocation points of the function.
That is, each coefficient ci can be mapped to a location y and ci = f(y).

From surveying the literature, historically, the main theoretical contribu-
tions of sparse collocation representations have been in fields outside of image
processing. Namely, the representation of functions for computational differ-
ential equations and statistics. In computational differential equations, the
drive for adaptive collocation representation arises when the problems being
solved have a large range of spatial and temporal scales [58]. As for LSFM
data and processing, for numerically differential equations exhibiting large dif-
ferences in spatial scales, the processing task in can become very costly and
inefficient when using homogeneously sampled grids. As previously, we have
made an effort to isolate the main ideas and attribute references to the original
methods.

Equidistribution techniques for solving differential equations

The first idea we discuss is the general principle of equidistribution that was
originally introduced by de Boor [37], Burchard [25] as a method for the adap-
tive placement of knots for splines. Splines are piecewise polynomials. In
general, the problem that is solved by equidistribution is choosing the loca-
tion, and potentially number, of collocation points x̂ such that are then used
to represent a sampled function f{x̂} for some processing task. Depending on
the application, task, and method, a monitor function is defined M(x) over
the domain Ω. The monitor function is often related to the error, some other
property of the function, or prior information of the solution. The idea is that
the nodes should be placed such that∫ xi+1

xi

M(y)dy = A (3.12)

for i = 0, ..N − 1, and A is some constant.
The concept can be understood by the following simple example. Consider,

the monitor function M(x) as a measure of the error local error ’density’. In
this way, the error between two points is simply then the integral between the
two points. Then by finding a x̄ that satisfies Equiation 3.12, coincides with
making the error between any two points the same. Therefore, in areas of
the domain where the solution error is likely to be high, the function will be
sampled with high density, and areas with the solution error is likely to be low,
are sampled with lower density. This is exactly the problem that was solved
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in 1D by a simple algorithm in De Boor [38] for the placement of knots for
splines. The algorithm was derived by the following error estimate for splines
of order k

‖f − f̂‖∞ ≤
1

k!

(∫ xi+1

xi

|f (k)(r)|1/kdr
)k

, (3.13)

where ‖f − f̂‖∞ is the maximum error over the interval xi and xi+1 and f (k)

is the k-th derivative of f . From this, they derived the monitor function of
M(x) = |f (k)(r)|1/k. De Boor [38]’s proposed method is simple and effective,
however, does not have a simple extension to higher dimensions [58]. Similar
ideas of equidistribution are used by a class of methods known as Adaptive
Method of Lines [105], however, again these methods are largely in 1D.

Additional methods have been developed that use different approaches and
monitor function, but share the equidistribution principle and can extend to
arbitrary dimensions. For example, the class of methods known as Moving
Mesh Partial Differential Equation (MMPDE) methods [59]. MMPDE meth-
ods are similarly based on a monitor function and equidistribution but are
focused on time evolution and extendable to arbitrary dimensions. MMPDE’s
define an additional evolution equation for mesh nodes, that equidistributes
the mesh through time [58]. Instead, using pseudo-forces and node addition
and removal rules, Reboux et al. [93] provided an equidistribution method,
again for arbitrary dimension, based on Lagrangian particles for the adaptive
solution of advection-diffusion equations. See Huang and Russell [58], for a
recent review of different equidistribution techniques and references.

Separately, another class of adaptive methods have been developed based
on a similar equidistribution principle [78] for mesh generation for adaptive
finite element methods [17]. Adaptive Finite ElementMethods involve the
solution of weak-form partial differential equations over elements, often tri-
angulations on mesh nodes [78]. In the approach, instead of setting some
fixed constant A, the problem is posed as finding the placement of fixed N , in
such a way that integrals, of a similar form to Equiation 3.12, all have some
a posteriori set average value. In addition to adapting by placement of the
mesh nodes (known as h-adaptation), methods also adjust the degree of the
approximation on a given element to again reduce the solution. Babuška and
Guo [15], showed for certain applications the combination, hp-adaptation, this
can result in exponential convergence. These adaptive ideas have also been
generalized to a larger class of methods, without distinct elements, known as
Partition of Unity Finite Element Methods (PUFEM) [15].
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Adaptive Mesh Refinement (AMR)

Another class of successful adaptive collocation schemes is Adaptive Mesh
Refinement (AMR) methods [18]. AMR methods use nested grids of different
resolutions that are refined, or coarsened, through time using an estimate of
the local truncation error of the time stepping error.

Mesh-based adaptive image representations

In recent years, there has been the development of adaptive image represen-
tations using linear triangulations [135, 3, 62, 141, 40, 104]. These methods
rely on representing the image using meshes as often used in FEM discussed
above. These methods have, (with the exception of Yang et al. [141] that was
designed for tomographic projection), been developed as compression meth-
ods. Often, motivated by the poor performance of some wavelet methods for
approximating sharp image edges [40].

Figure 3.4, shows an example of a mesh-based adaptive image representa-
tion, called adaptive thinning, presented in Demaret et al. [40]. These methods
have the advantage of being able to provide highly anisotropic adaptation to
spatial scales. Different methods have been used for the generation of these
meshes, including concepts similar to error equidistribution [141, 3] using error
diffusion [50], greedy point removal schemes [40], and the use of binary span-
ning trees [104]. Sarkis and Diepold [104] reviews a range of these methods.
They find that the greedy point removal method of Demaret et al. [40] provides
the highest compression rates. However, this comes at a significant increase
in relative computational cost. This high compression performance, with high
computational cost, was the motivation of the approaches in Adams [3], that
uses an error equidistributed initialization for the greedy point removal scheme
of Demaret et al. [40] to reduce memory and decrease execution time. Similar
methods, using more general polygons and binary space partitionings have also
been previously developed, see Radha et al. [92].

On an aside Agarwal and Suri [6], in the context of computer graphics,
proves that finding the optimal mesh triangulation similar to above, that sat-
isfies, ‖f − f̂‖∞ ≤ ε is a form of an NP-Hard problem.

Collocation based wavelet methods

In the previous section, we discussed sparse adaptive representations in the
wavelet domain. These methods have excellent adaptation properties are can
be proven to be in certain aspects optimal. However, the sparsity is in the
transform domain, and therefore to be utilized processing tasks must be done
there. This requirement can cause issues for specific problems that are more

42



Chapter 3. Representation criteria and previous work

Figure 3.4: Adaptive image representation using triangulated mesh using the Adaptive Thinning Method intro-
duced in Demaret et al. [40]. The left image shows the reconstructed pixel image from the representation and
right a representation of the triangulated mesh. (Reproduced from Demaret et al. [41])

suited to the original function domain. To overcome such issues for solv-
ing PDE’s [19], new wavelet techniques [55, 19, 131, 97] have been developed
based on concepts such as interpolating [45], and second generation, wavelets
[131, 120]. These methods, often called collocation wavelet methods, utilize
the adaptivity properties of wavelets, but the approximation coefficients ai,j
are collocation points of the function, and detail coefficients di,j a measure
of error in some interpolation scheme. Thresholding of detail coefficients can
then be used to form a grid, that can utilize both wavelet, and function do-
main methods. Schneider and Vasilyev [114] provides a recent review of these
methods.

Collocation wavelet methods, often use dyadic multi-resolution grids [131],
meaning each point at a lower grid resolution is also in all higher grid reso-
lutions. Figure 3.5, shows an example of such an adaptive dyadic grid and
solution for the 1D Burgers equation solved by methods from Vasilyev and
Bowman [131]. The methods allow localization in the function domain, con-
centrating grid points, and hence computational effort, adaptively across the
spatial domain. An example of this adaptation is shown in Figure 3.6, showing
the adaptation grid in 2D for solving for a shock problem from gas dynam-
ics reproduced from Regele and Vasilyev [94]. Instead of simply relying on
thresholding, the methods usually require additional heuristic steps of adding
support nodes, and ghost layers [131, 97], around the solution to make the
spatial adaptation from the wavelets usable for the processing steps. The use
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Figure 3.5: Example of an adaptive dyadic grid produced by the collocation wavelet method presented in Vasilyev
and Bowman [131] for the 1D Burgers equation. The left plot shows the solution u(x) at t = 1.5

π
and right

plot shows the dyadic adaptive grid also at t = 1.5
π

, where j, represents the resolution proportional to 2−j .
(Reproduced from Vasilyev and Bowman [131])

of interpolating wavelets [45] also allows for the computational of the detail
coefficients independently, allowing for distributed parallel implementations
such as Rossinelli et al. [97], that would likely not be possible with traditional
wavelet domain techniques.

The error of these methods, can be controlled proportional to the threshold
parameter ε across the domain by bounds like

‖f − f̂‖L2 ≤ C1ε‖f‖L2 (3.14)

where C1 is a constant that depends on f [131]. f [131]. The method can be
extended for sufficiently regular functions to bound higher order derivatives
[131].

Adaptive statistical methods

In statistics, there has been the development of methods for adaptive smooth-
ing and regression of noisy data using adaptive data-representations [47]. Donoho
and Johnstone [47], surveys these methods, showing that they can be inter-
preted as a combination of some adaptive sampling f{x̄} and a smoothing
function δ(x), and a reconstruction scheme using the two. Since #x̂ < N ,
these methods can be considered as sparse collocation adaptive representa-
tions.

The different methods align with using different reconstruction functions
and definitions of δ(x). The classification and regression trees method (CART)
[22], utilizes a piece-wise constant reconstruction and smoothing function. The
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Figure 3.6: Example of a 2D adaptive dyadic grid produced by the collocation wavelet method presented in
Regele and Vasilyev [94] for solving two-dimensional Richtmyer Meshkov instability problem at Atwood number
of 0.67 with t = 2.65 units. (Reproduced from [94])

adaptive knot placement for spline regression [52, 51], also called MARS mod-
els, use piece-wise polynomial reconstructions, with piece-wise constant δ(x).
Kartal Koc and Bozdogan [66] provides a recent review. Lastly, there are
adaptive bandwidth approaches for kernel regression [24]. These methods allow
more general form of reconstruction using compact supported kernel functions,
and continuous δ(x). Köhler et al. [69] provides a recent review.

Reflection on RC

The last group of methods appears to be closer to satisfying our representation
criteria. They incorporate adaptation to different spatial scales, while adap-
tively sampling to reduce computational and memory costs to #R < N . Also,
the adaptive sampling is in the function domain, likely making implementation
of classical ’pixel’ algorithms ’easier’ across a wide range of tasks.

Across the methods, there is usually a user-specified threshold or parameter
that allows proportional adjustment of the approximation error. However, this
control is usually global, and with exceptions, do not pointwise bound the
error as specified in RC1. Further, as is, they do not provide a means for the
incorporation of a local intensity scale or gain control.

Regarding computational cost and RC3, we require the methods to be
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SparsityPerformance

Ease of use

Figure 3.7: Schematic representing the trade-offs between a representation having high sparsity, i.e. requiring a
low number of coefficients, high performance regarding individual operations, and ease of use regarding developing
and implementing new algorithms.

able to scale to large datasets (> 10003). From the execution time analysis of
Sarkis and Diepold [104] and Adams [3], the adaptive mesh methods, appear
likely to be too computationally costly. With the methods ranging from .5 −
40 seconds to compute the solution on as small as a 512 × 512 test image
when optimized and implemented in C++. Making them unlikely to efficiently
scale without further development to images up to 4000 times larger. The
methods that have been developed for PDE’s, such as the wavelet collocation
methods, AMR, and AFEM, likely exhibit better scaling behavior. These
methods often have distributed parallel memory implementations [97] allowing
them to scale to very large problems. A caveat here is, is that these algorithms
a largely designed for adaptation of the solution through time. Therefore, the
input for the next time-step is simply the adaptive representation for the last
dataset. Hence they are not optimized, or implemented, for transformation to
an adaptive representation from an arbitrary solution on large regular grids as
is the case for LSFM data.

A final point relates to RC4 and an adaptive representations ability to
translate the sparsity of representation into decreases in memory and com-
putational cost for a range of algorithms. As discussed by, Rossinelli et al.
[97] and Berger and Colella [18], there is often a trade-off between the spar-
sity of the representation #R and the complexity and cost of implementing,
and performing processing tasks, using R. For example, the higher the degree
of relative sparsity a representation can achieve, often comes at the expense
of more complicated data structures, implementation complexity, and costly
individual operations over elements. Hence, for certain representations and
applications, it is more efficient to reduce the level of adaptivity to simplify
data-structures and speed up costs of individual basic operations [97, 18].
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3.4 Discussion

The first observation from the review and discussion is the high popularity and
success of adaptive representations across different areas of application. With
developments ranging from, image processing, computer graphics, statistics,
and computational differential equations. With many core concepts, such as
the use of tree data structures, being common across many approaches, but
the exact implementation and emphasis reflecting the particular features of the
application and data. Hence, although no representation from the review meets
our representation criteria in full, this not through some deficiency. Instead,
reflecting that the combination of features and intended use-case set out by
the representation criteria not matching those of those intended for existing
methods. With LSFM data combining the challenge of varying spatial scales
in image processing with the computational and memory issues faced when
numerically solving particular partial differential equations.

From the three groups of methods discussed above, it seems that sparse
collocation adaptive methods are closest to satisfying the representation crite-
ria. I conclude however, that there are two main concepts are not adequately
addressed in the literature and discuss them below.

3.4.1 Lack of local gain control (RC1)

The first is how to incorporate a local intensity scale into the error control as
outlined in RC1. However, with additional work, it is likely that many of the
above methods could be extended to include such a concept.

3.4.2 Use across a wide range of tasks (RC4)

The second relates to RC4, and determining the appropriate trade-off between
sparsity, performance, and ease of use to all a representation to be used across
a range of tasks originally designed for pixel images. We highlight the trade-off
between these factors in Figure 3.7 with a schematic triangle. Where the basic
intuition is, the greater sparsity the method achieves, the greater complexity
of the basis representation resulting in the higher computational cost per co-
efficient and complexity in use. Further, the more simple the representation is
to use likely comes at the cost of not using highly optimized data-structures
and algorithms. Of course, the ideal representation would provide the highest
of all three. Assessing RC4 is not aided in that the goal of is rather ambigu-
ous. However, in the discussion of RC4, we introduce the notion of different
interpretations of pixels that are utilized by different methods. RC4 can be
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satisfied by a representation both naturally sharing the interpretations of pix-
els while reducing computational and memory costs across them. In essence,
be as close to pixels as possible, while still achieving the other representation
criteria.

Interpreted in this way, subjectively, it seems that representations requiring
the use of basis functions or triangulations for their use, may be ’too far’ from
the original pixel images to be widely used. Ideally, the algorithm would allow
the most simple interpretation of pixels, as local piece-wise constant patches,
and also allow continuous representation as a smooth function, a particle graph,
and also as a tree structure.

3.5 Summary and main points

In the above chapter we have first outlined, and then discussed, five key proper-
ties that we propose a representation should have to as a general representation
solution for studying spatiotemporal processes in biology (STB) using Light-
sheet Fluorescence Microscopy (LSFM) data as described in Chapter 2. We
named these five criteria, the representation criteria (RC). Following this, we
reviewed the different ideas and approaches of existing multi-resolution and
adaptive representations and reflected on how they could meet the represen-
tation criteria. We concluded by discussing the results and highlighting two
areas, local error adaptation and integration of a gain control (RC1), and the
ability to easily be used across a range of process tasks (RC4) as the main
areas requiring further development.

Summary of the chapter
• Introduced the five Representation Criteria RC, outlining desired

properties of an adaptive representation for processing on LSFM data

• Provided definitions and surveyed the literature of multi-resolution
and adaptive-representations, focusing on core ideas, across research
areas

• Identified sparse collocation adaptive representations as closest match
to the representation criteria

• Concluded further development was needed to satisfy RC1 through
local error adaptation including a ’local gain control’, and increased
simplicity and similarity to pixel images for the satisfaction of RC4
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In this chapter, we introduce the Adaptive Particle Representation (APR),
an adaptive sparse collocation representation designed for LSFM data. The
development of the APR represents the main theoretical contribution of this
thesis. The APR is motivated by the processing bottleneck and issues raised
in Chapter 2 and designed to fulfill the representation criteria (RC) outlined
in Chapter 3.
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The chapter is structured as follows. First, I present the mathematical
problem to which the APR is a solution. The explanation takes multiple
steps, first with the derivation of two conditions, the Reconstruction Condition,
and Resolution Bound, that we require the representation to satisfy. Then
using an introduced concept of Particle Cells we derive the Pulling Scheme an
efficient algorithm for satisfying the conditions. The solution is first derived
and explained in 1D, with formal proofs for the general dimensional problem
presented later in the next chapter. I have structured the chapter this way to
first focus on the ideas and concepts, and later focus on the technical details.

4.1 Adaptive Particle Representation (APR)

The Adaptive Particle Representation (APR) takes a regularly sampled input
function, such as pixel images, and resamples it as a set of particles P and a
Resolution Function R(y) defined for all locations y in the domain Ω. Where
particles p are collocation points in space, xp that ’carry’ properties evaluated
at that location, for example the function value fp = f(xp) (or an estimate). In
this way, then P is the set carrying all information for describing Np particles,

i.e. P = {{xp}Npp=1, {fp}
Np
p=1}, being extended to include sets of other properties

if required. The Resolution Function R : Ω → R defines a local isotropic
neighborhood N at each point in the domain Ω ⊂ R defining a subset of
particles that can be used in the reconstruction of the function at that y.
Therefore, R(y) defines a isotropic spatial length scale at every point in the
domain.

Formally, we consider a differentiable function f : Ω→ R, that is known at
sampled location with fixed spacing, and is denoted as f{x̄} where #x̄ = N .
We represent the function for a given P and R(y) in the following way

f̂(y) =
∑

xp∈N (y,R(y))

f(xp)ξp(y) (4.1)

whereN (y,R(y)) = {x ∈ Ω : |x−y| ≤ R(y)} and ξp(y) = ξ(y, xp) are constants
that satisfy

∑
xp∈N (y,R(y)) ξp(y) = 1 with ξp(y) ≥ 01. Where xp ∈ N (y,R(y)),

means all particles in P that are in the neighborhood defined by N (y,R(y)).
The Resolution Function is set such that the reconstruction follows,

‖f − f̂
σ
‖∞ ≤ E (4.2)

1This positivity constraint can be relaxed, with a slight adjustment to the results, with
addition of reconstruction dependent constant
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Figure 4.1: The left panel shows the Adaptive Particle Representation (APR) (E = 0.1 and σ(y) = 1) (left)

and pixel representation sampled with h = 0.0078 (right) of a 1D guassian pulse (I(y) = e
−(y−0.01)2

0.009 + 0.1) in
terms of a resolution function R(y) (bottom), and set of particles P (middle, top).

where ‖x‖∞ = maxxi∈x̄ xi, E is a user-specified relative error threshold and
σ(y) called the Local Intensity Scale (σ : Ω → R, and is required to satisfy
an additional ’smoothness constraint’ given in 4.15). We call this bound the
Reconstruction Condition, and this holds for any ξ satisfying the conditions
above and any P , where #(xp ∈ N (y, R(y))) > 0 for all y ∈ Ω (That is, there
is at least one support particle in the isotropic neighborhood set by R(y)).
Figure 4.1, provides an example of a 1D Gaussian function represented as
described by P and R(y). The left pane shows the Adaptive Particle Repre-
sentation, and the right shows a pixel image also intepreted as above.

4.1.1 Main results

Now we will briefly describe the main result of this thesis. The APR places
two further restrictions on the problem defined above. First, we constrain the
resolution function R(y) to also satisfy

R(y) ≤ min
x∈N (y,R(y))

(L(x)) (4.3)

where L(y) = |Eσ(y)
∂f
∂y

| is called the Local Resolution Estimate and we assume

we have access to ∂f
∂y

. We call the constraint 4.3 the Resolution Bound. If

R(y) satisfies the esolution Bound, then it also satisfies the Reconstruction
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Condition (for special σ). We note, that when ∂f
∂y

= 0, and hence L(y) is not
defined, we can interpret this simply as the point not placing any constraint on
the global resolution function at that point. Therefore, practically, divergent
L(y) does not present an issue. Second, we constrain R(y) to be an Implied
Resolution Function R∗(y), that is, it is constructed out of piecewise constant
blocks we call Particle Cells.

Result 1

Here we present a worst-case linear complexity in N algorithm, known as the
Pulling Scheme, that can find the optimal R∗(y) and particle set P that satisfy
problems in the form of the Resolution Bound (4.3) for general L(y). Where
the optimal Implied Resolution Function is the R∗ that satisfies

arg max
R∗∈R∗

∫
Ω

R∗(y)dy (4.4)

where R∗ is the set of all Implied Resolution Functions R∗(y) that satisfy the
Resolution Bound 4.3. The optimal P∗ is then the particle set that satisfies,
#(xp ∈ N (y,R(y))) > 0, and #P =

∫
Ω

1
R(y)

dy.

Result 2

Given the local resolution function σ(y) is sufficiently slowly varying (see 4.15),

and L(y) = |Eσ(y)
∂f
∂y

|, then the reconstructions f̂ formed using R∗(y) and P will

satisfy the Reconstruction Condition 4.2.

Result 3

The Implied Resolution Function R∗(y) and Particle Cell set P , can be com-

pletely described by a set of Particle Cells V = {{cip,lp}
Np
p=1|(ip, lp) ∈ Z} (i.e. it

can be defined by Np length sets of integers) and P∗ = {{fp}Npp=1}. The combi-
nation of these two sets {V ,P∗} we call the Adaptive Particle Representation
(APR). 2

4.1.2 Motivation of formulation

Before explaining and proving the above results in detail, we shall first briefly
reflect on the motivations/advantages for formulating the APR in this way.

2With the difference between P and P∗ being the explicit storage of the particle locations
in the former

52



Chapter 4. The Adaptive Particle Representation (APR)

Reconstruction Condition

First, we consider the Reconstruction Condition and form of function represen-
tation. First, the Reconstruction Condition allows direct fulfillment of RC2
and makes the inclusion of a local intensity scale central to the representation
and pointwise error control. Second, the explicit inclusion of Resolution Func-
tion gives a direct measure of a minimum local length scale at each point. This
Resolution Bound is analogous to the smoothing scale discussed by [47] and
discussed in the previous chapter. We show later in Chapter 6 this adaptation
allows the APR to scale linearly with the information content regarding the
Object function O (RC1).

Function reconstruction

The choice of function reconstruction in 4.1 differs from most representations
discussed in Chapter 3 in that it does not depend on a specific reconstruction
basis or kernel. This form was motivated by RC4, and the need for the APR
to be used across a wide range of processing tasks. This represents an attempt
to be as ’close to pixel images as possible’ while still satisfying the RC. The
formulation of 4.1 allows a wide range of interpolation, or reconstruction, meth-
ods to be used to form f̂ . Ranging from piecewise constant representations
of the image to smooth differentiable representations possibly used B-splines,
wavelets, or Partition of Unity [16] formulations. Formulated in this way the
APR guarantees that all such reconstruction methods will satisfy the Recon-
struction Condition if the coefficients satisfy the stated conditions and only
sample locations within that defined by the Resolution Function. This general
form of reconstruction comes at the cost of the sparsity of the representation.

Implied Resolution Function and Particle Cells

As is detailed below, the use of Particle Cells is central to the development
of the Pulling Scheme and satisfaction of RC3. Further, the use of Particle
Cells allows for efficient storage in memory of both the Resolution Function
and particle locations.

4.1.3 Extensions

The APR as discussed in this and the following three chapters represent the
most simple out of a class of representations that can be formulated similarly
to above. One extension is a series of representations that require the recon-
struction coefficients satisfy an increasing number of moment conditions, and
adapt to higher order derivatives of the function. Other extensions include

53



Chapter 4. The Adaptive Particle Representation (APR)

additional reconstruction conditions placed on higher derivatives of the func-
tion and anisotropic resolution functions. These representations are discussed
in Chapter 9. Although these extensions can result in greater sparsity, they
come at the sacrifice of simplicity and generality (The trade-off shown in Fig-
ure 3.7). Because our goal here is a general-use representation, we focus our
attention in the next chapter to the simplest model as proposed above.

Lastly, an important extension is the incorporation of time to allow for
satisfaction of RC5. We discuss the extension of the APR to account for time
in Chapter 10, and it follows the ideas presented here, but adapted to the
unique features of time. The extension is done such that it directly uses this
space-adapted APR presented in this Chapter.

4.2 APR description

In this section, we describe and explain the derivation of the main results
stated above in 1D for simplicity of notation and explaining ideas. The fol-
lowing chapter presents the general dimension case and provides the proofs of
theorems referred to in this section. First, we go through the derivation of the
Resolution Bound, and how it relates to the Reconstruction Condition. Next,
we present Particle Cells, and how they can be used to find Implied Resolution
Functions that satisfy the Resolution Bound. Lastly, we present the Pulling
Scheme, the algorithm that allows efficient formation of the APR.

4.2.1 Reconstruction Condition and Resolution Bound

Let us continue with the problem as outlined above, and consider the function
represented as

f̂(y) =
∑

xp∈N (y,R(y))

fpξp(y) (4.5)

where we do not assume any particular distribution of particles P , but as-
sume there is at least one p ∈ N (y, R(y)) for all y. We then consider the
reconstruction error at each point y ∈ Ω as

ε(y) = f(y)− f̂(y), (4.6)

which by assuming the function has a continuous derivative can express this
by taking Taylor series expansions of fp centered at y and using the integral

54



Chapter 4. The Adaptive Particle Representation (APR)

form of the remainder [103] as,

ε(y) = f(y)−
∑

xp∈N (y,R(y))

fpξp(y)

= f(y)−
∑

xp∈N (y,R(y))

(
f(y)ξp(y)+

(y − xp)ξp(y)

∫ 1

0

∂

∂y
f(y + s(xp − y))ds

)
(4.7)

now by using that
∑

xp∈N (y,R(y))) ξp(y) = 1

ε(y) =
∑

xp∈N (y,R(y))

(y − xp)ξp(y)

∫ 1

0

∂

∂y
f(y + s(xp − y))ds. (4.8)

We can bound this exact expression of the error, using a uniform estimate,
by bounding each integral using the maximum gradient over the interval and
using the triangle inequality and the fact that by definition |(y − xp)| ≤ R(y)
we get

|ε(y)| ≤

 ∑
xp∈N (y,R(y))

|ξp(y)|

R(y) max
x∗∈N (y,R(y))

|∂f(xi)

∂y
| (4.9)

and in now assuming3 also ξp > 0 therefore
(∑

xp∈N (y,R(y)) |ξp(y)|
)

= 1 so we

get

|ε(y)| ≤ R(y) max
x∗∈N (y,R(y))

|∂f(x∗)

∂y
|. (4.10)

Now returning to the Reconstruction Condition, we can re-write the infinity
norm as a bound on each y ∈ Ω as

|ε(y)| ≤ Eσ(y). (4.11)

So, using 4.10, 4.11 will be satisfied, if

R(y) max
x∗∈N (y,R(y))

|∂f(x∗)

∂y
| ≤ Eσ(y) (4.12)

3The procedure from here can be done without this assumption, however this leaves the
sum of the coefficients in the resulting expressions
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Figure 4.2: Schematics showing the Reconstruction Condition 4.2 (left) and Resolution Bound 4.3 (right). The

Reconstruction Condition, requires that at each y the reconstruction error for f̂(y) is below Eσ(y) for any
coefficients ξi satisfying that stated conditions. The Resolution Bound, instead places a geometric bound on the
relationship between the Local Resolution Estimate L(y). Requiring that a rectangle centered at y, with height
R(y) and width 2R(y) does not intersect L(y∗) for all y∗ ∈ Ω. Two possible values of the resolution function at
y are shown. One that satisfies the Resolution Bound, R1(y) and one that does not R2(y).

which we can formulation in terms of the Resolution Function as

R(y) ≤ Eσ(y)

maxx∗∈N (y,R(y)) |∂f(x∗)
∂y
|
. (4.13)

This we can then re-write as

R(y) ≤ σ(y) min
x∗∈N (y,R(y))

(g(x∗)) (4.14)

where g(x) = E

| ∂f(x)
∂y
|

which we can see is almost the Resolution Bound, only

the local intensity scale σ(y) is outside the max.

Restriction on Local Scale Function

To get 4.14, into the form the Resolution Bound requires an assumption that

σ(y) min
x∈N (y,R(y))

(g(x)) = min
x∈N (y,R(y))

(σ(y)g(x)) (4.15)

this, therefore, provides a constraint for the information scale σ(y) to ensure
this approximation is valid. For this to approximately hold, σ(y) must be
sufficiently slowly varying. That is it must be approximately constant over
N (y, R(y)). In general, this can not be guaranteed except in the case where
σ(y) = σ0 is a constant. However, in our examples, results are shown in
Chapter 6 reflect that the reconstruction condition still holds when σ(y) is a
smoothed local estimate of the range of f(y). Further, the restriction is slightly
relaxed, through the use of Particle Cells, as discussed in 4.3.5.
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Resolution Bound

Then, given this being satisfied, or an approximation, we have the Resolution
Bound,

R(y) ≤ min
x∈N (y,R(y))

(L(x)) (4.16)

where, L(y) = Eσ(y)

| ∂f(y)
∂y
|

is called the Local Resolution Estimate. The specific

form 4.16 is required for the algorithms used below.

Intuition for Resolution Bound

We shall briefly reflect on the Reconstruction Condition and Resolution Bound
to gain some intuition on their difference. The Reconstruction Condition is the
easier of the two to interpret, and is illustrated in left panel of Figure 4.2. The
Reconstruction Condition requires that at each point y ∈ Ω, the reconstruction
by any combination of positive coefficients ξ summing to one should be within
Eσ(y) of the function f(y). In Figure 4.2 (( right)), we illustrate the Resolution
Bound. The Resolution Bound requires that a rectangle centered at y of height
R(y) and width 2 ∗R(y) does not anywhere intersect with the curve L(y). To
give further intuition on how L then relates to the derivative, and a bound
on f , we show them in Figure 4.3. In the top panel we show an example of a
value of R(y∗) that violates the Resolution Bound in red, and a sub-optimal
R(y∗) that satisfies the Resolution Bound in blue. It is sub-optimal, as a larger
R(y∗) would also satisfy the Resolution Bound. The optimal R(y∗) is given in
the bottom panel in green.

Continuous solutions

From the formulation above, we know that the Resolution Bound represents
an equal or tighter bound on R(y) then the Reconstruction Condition. That
is the optimal solution (largest everywhere) to the Resolution Bound Rc(y)
will always be less than or equal to the optimal solution to the Reconstruction
Condition Rb(y). This difference comes from the constant approximation to
the integral in 4.8. In the limit as R(y)→ 0, the two become equivalent. The
dashed lines in Figure 4.4 show this for the 1D Gaussian example. Where
by continuous in practical examples we mean the solution can take any value
corresponding to i ∗ h, where h is the sampling resolution, and i is a positive
integer. These solutions have been calculated using a brute-force approach.
The Reconstruction Condition can be solved by ensuring the worst-case recon-
struction has an error less than Eσ. This can be done by finding the value
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Figure 4.3: An example of the optimization problem for finding the optimal resolution R(y) for a given point
y and function f(y) that satisfies the Resolution Bound and how it relates to the function and its derivative.
The top plots shows a R(y) that is too small in blue, and too large in red. The uppermost plots show the
absolute value of the gradient of the function, and its maximum value in the isotropic interaction neighborhood
N (y,R(y)). The second plots show the function f(y) and also the two error bounds for the reconstruction at
the two different resolutions R(y). The third plots shows the Local Resolution Estimate L(y) and also shows a
graphical description of the Resolution Bound. To be satisfied, the line must always be below L(y) within R(y)
(L(y) cannot intersect with the rectangle). In this way, the (top) red solution does not satisfy the Resolution
Bound, although the blue solution does. However, this is not the largest possible R(y) and hence, not optimal
R(y). We can see that the green solution (bottom) also satisfies the Resolution Bound, and does it optimally, as
any increase in R(y) would violate the Resolution Bound.
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Figure 4.4: The Local Resolution Estimate, optimal continuous resolution function satisfying the Resolution
Bound Rc(y) and the continous optimal resolution function satisfying the Reconstruction Condition Rb(y) for
the 1D Guassian shown in Figure 4.1

for which |f(y) − f(y∗)| is largest for all y∗ within R(y) of y. This is a re-
sult of the positivity constraint on the coefficients. Using this, a brute-force
approach iterates over a sampling of the function f{x̂} and checks the values
of |f(y) − f(y∗)| increasing the neighbourhood of the search (R(y)) until it
is larger than Eσ. Similarly, for the continuous resolution bound, the brute-
force approach iterates over L{x̂}, increasing the neighborhood at each point
until R(y) ≥ L(y∗). Unfortunately, both of these approaches are O(N2) worst
case complexity and scale very poorly to even moderately sized problems (See
A.2.1 for more discussions relating to continuous solutions). Further, how to
find the optimal P for a general R(y) beyond 1D is, to my knowledge, an
unsolved problem. In 1D an approach similar to that in [38] can be used, how-
ever in practice R{x̄} would also have to be stored, meaning the representation
would not be sparse.

4.2.2 Particle Cells and Implied Resolution Functions

The problem is formulated as the Resolution Bound because this allows it to
be solved optimally using a linear in N number of operations from f{x̄} if
we restrict the resolution function R∗(y) to be composed of a particular set of
square blocks. Such a function is shown by the bold black line in Figure 4.5.
In this section, we describe these Resolution Functions and blocks and relate
them to the Resolution Condition.
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Figure 4.5: An Implied Resolution Function R∗(y) (black line) constructed out of blocks called Particle Cells
ci,j . Particle Cells are defined by their location i and level l, as shown in the inset. Implied Resolution Functions
require that there is only one Particle Cell placed in any location y (no overlap).

Implied Resolution Function

The resolution function composed out of these ’blocks’, R∗(y), we call the Im-
plied Resolution Function, and the square blocks we call Particle Cells (see
Figure 4.5). The Implied Resolution Function is the piecewise constant func-
tion described by the uppermost edge of the box, as shown in Figure 4.5.
Particle cells have sides of length Ω

2l
, where Ω is the size of the domain, and l

is a positive integer we call the Particle Cell level. Hence, particle cell (block)
ci,l, is uniquely determined by its level l and location i. Figure 4.5 (inset) il-
lustrates these definitions for a single Particle Cell. The size of the blocks, and
hence levels, are set such that the lowest level is half the size of the domain
Ω (lmin = 1), and the highest level lmax aligned with the dimension of the
original pixels. For domains that are not powers of 2, this requires extending
the domain Ω. If we define the following characteristic function

φ(y, ci,l) =

{
1 y ∈ [i2−lΩ, (i+ 1)2−lΩ)

0 otherwise
(4.17)
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Figure 4.6: Comparison between the optimal Implied Resolution Function R∗ and the optimal continuous solutions
to the Resolution Bound Rc and Reconstruction Condition Rb.

then the Implied Resolution Function R∗(y) for a set of Particle Cells V is

R∗(y) =
∑
ci,l∈V

φ(y, ci,l)
Ω

2l
. (4.18)

The problem of finding the optimal (largest everywhere) Implied Resolution
Function, can be reduced to finding the smallest set of blocks V that defines
a Resolution Function R∗(y) that satisfies the Resolution Bound. We call
such a set of Particle Cells V the Optimal Valid Particle Cell (OVPC) set.
Given R∗(y) also satisfies the Resolution Bound, then necessarily, R∗(y) ≤
Rc(y) ≤ Rb(y) as shown in Figure 4.6 for the 1D Gaussian example. The
Implied Resolution Function is only defined for Particle Cell sets V that form a
spatial parition of Ω, thats is

⋃
ci,l∈V supp{φ(., ci,l)} = Ω and supp{φ(., ci1,l1)}∩

supp{φ(., ci2,l2)} = ∅ for all pairs of Particle Cells in V (i.e. (i1, l1) 6= (i2, l2)).
To construct an algorithm that finds the OVPC set for a given Local Reso-

lution Estimate L(y) requires the formulation of the Resolution Bound in terms
of Particle Cells. This formulation first requires arranging the set C of all pos-
sible Particle Cells ci,l by level l and location i as a tree structure as shown in
Figure 4.7. In 1D this is a binary tree, in 2D a quad-tree and 3D an oct-tree.
This is the same structure as used in the Haar wavelet and pyramid image for-
mulations [4]. When arranged as a tree structure, we can naturally define both
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Figure 4.7: TThe dyadic decomposition of the Particle Cell Set C of Ω×Ω represented as a tree structure. The
set of neighbors of a Particle Cell are shown in blue, and children in green.

children and neighbor relationships between Particle Cells, as shown in green
and blue in the example. Also, we define the descendants of a Particle Cell, as
the set of all children, and children’s children up to the maximum level lmax.
Given these definitions the Local Resolution Estimate can be represented as a
set of Particle Cells L by iterating over each pixel y, and adding the Particle

Cell with level l = blog2
Ω
L(y)
c and location i = by2l

Ω
c to L if it is not already

in L. Figure 4.8 shows a representation of how L relates to L(y), with L also
represented in the tree. We call this set of Particle Cells the Local Particle
Cell (LPC) set L. Formally,

L = {ci,j ∈ C|∃(y∗, L(y∗)) : y∗ ∈ (i
Ω

2l
, (i+ 1)

Ω

2l
], L(y∗) ∈ [

Ω

2l
,

Ω

2l−1
)} (4.19)

defines the LPC. Where L(y) ≤ Ω
2lmax

are set to Ω
2lmax

+ δ such that these areas
with generate Particle Cells at lmax. In practice an alternative definition is
used, effectively, taking Particle Cells one lower level than above, but gives the
same R∗ (see 4.2.3). But above, is the more natural definition, and coincides
with taking a truncated lower bound on L(y) at each point. Using this LPC
set L we can now represent the Resolution Bound using Particle Cells.

Theorem 1. A set of Particle Cells V will define an Implied Resolution Func-
tion that satisfies the Resolution Bound for a given L(y), iff, the following
statement is true: for every Particle Cell in V none of the Particle Cells de-
scendants, or neighbours descendants, are in the LPC set L
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Figure 4.8: Schematic showing the formation of a Local Particle Cell (LPC) set L from the Local Resolution
Estimate L(y)

See the following chapter Theorem 1 for the proof. We call any set of
Particle Cells satisfying this statement valid. The Optimal Valid Particle Cell
(OVPC) set V , is then defined as the set for which the replacement of any
group of Particle Cells with a larger Particle Cell would result in V no longer
being valid (Theorem 2).From these definitions, the OVPC set can be found
using a simple algorithm that explicitly checks the validity and optimality
condition of potential particle configurations. The algorithm involves iterating
from the lowest level l to higher levels, and replacing larger Particle Cells with
smaller Particle Cells until the whole set is valid. However, such an approach,
although linear in N , does not utilize the regularity and redundancy of Particle
Cells, and as a worst case checks the validity and optimality of every Particle
Cell.

4.2.3 Pulling Scheme

Here we present a novel algorithm for finding the OVPC set called the Pulling
Scheme. The name comes from the way a single small Particle Cell in L, pulls
the Resolution Function down to smaller values (by forcing smaller Particle
Cells) across the domain like a weight placed on a trampoline (See Figure 4.10
and Figure 4.11). The Pulling Scheme finds the OVPC set V directly, without
explicitly checking validity or optimality. Three properties of OVPC sets are
used to derive the algorithm. We list them below:
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L = c6,38E H

Seed Particle Cell 
Boundary Particle Cell
Filler Particle Cell

1. 2. 3.

1.) Add neighbours of seed pc as boundary pc
2.) Add neighbours of boundary pc as �ller pc
3.) Continue adding neighbours as �ller pc, at lower 
level, or same level if it would create an overlap, to �ll 
domain

Figure 4.9: Schematic how an OVPC set V can be generated when L = {ci,l} has only one Particle Cell. We
give Particle Cells an additional property called type, based on how the Particle Cell was added to the set V.
Particle cells that are in both V and L are of type seed. Particle cells that are neighbors to a seed cell are type
boundary. All others, are of type filler. V is created by first adding ci,l (1.), and its neighbors (2.) on the same
level and their neighbors (3.). The domain is then filled, allowing only one level change at once, and ensuring the
resulting set forms a spatial partition.

1. OVPC sets have a predictable and self-similar structure (See Figure 4.9
and Figure 4.10, is best seen in 2D as in Figure 5.2). The predictability
is reflected in neighboring Particle Cells never differing by more than
by one level and having a common pattern of Particle Cells around the
smallest Particle Cells in the set (highest level (resolution)). This local
structure is independent of absolute level l and therefore adds the self-
similar structure to the sets. Using these structural features, the OVPC
set V for a LPC set L with only one Particle Cell ci,l can be generated
directly for any i and l. This is done by giving each Particle Cell added to
V an additional property called type = {seed,boundary,filler}. Figure 4.9
illustrates the process. The solution is generated starting by with ci,l and
adding this Particle Cell to V with type seed. Next, the two neighbours of
ci,l are added to V with type boundary. Then for these boundary Particle
Cells their vacant neighbours are added with type filler. The last step
fills the rest of the domain with Particle Cells of type filler. Adding
adjacent Particle Cells increasing by at most one level, adding a Particle
Cell at the same level if the higher level Particle Cell would cause an
overlap between cells in V .

2. OVPC sets are what we call separable (Lemma 1). This Lemma says
that we can find the OVPC set given an LPC set L, by solving for the
optimal Particle Cell set of each Particle Cell in L separately and then
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Figure 4.10: Illustrates three OVPC sets V for three different LPC sets L. The colors of the Particle Cells indicate
their type. The three together illustrate the separable property of OVPC sets, as the OVPC set of the two Particle
Cells (bottom), can be formed by taking the smallest Particle Cell in each location of the top two OVPC sets.

taking the smallest Particle Cells from this set that covers the domain.
Figure 4.10 illustrates this for two Particle Cells in L (See Figure 5.2 for
illustration in 2D).

3. From Lemma 2 when constructing V we can ignore all Particle Cells in L
that also have descendants in L. We call this property redundancy and
is a consequence of the descendant Particle Cell providing an equal or
tighter constraint on the resolution function everywhere in the domain
then its ascendant Particle Cell.

The Pulling Scheme uses all these properties to directly construct V by
propagating solutions from individual Particle Cells in L using property 1,
one level at a time starting from the highest level of the Particle Cells in L.
Figure 4.10 shows a schematic of two solutions being propagated from two
Particle Cells. When two solutions meet at a Particle Cell, the precedence of
one solution depends on the Particle Cells type where they meet. Precedence
is ordered from seed>boundary>filler. This order represents the solution that
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R * (y)

Figure 4.11: The basic idea of the Pulling Scheme. R∗ is propagated outwards from higher levels to lower levels
utilizing property 1 and property 2 of OVPC sets. When two solutions meet, only one needs to be propagated.
Therefore, by propagating solutions from lmax to lmin and propagating the solution to higher levels using the
filler type Particle Cells, the solution can be constructed directly, without checking the validity.

provides the ’tighter’ constraint on the resolution function. Then only the
solution with precedence needs to be propagated. The Pulling Scheme can be
implemented in many different ways, and see the next chapter for a general de-
scription 5.4.5. Here, we describe an implementation that uses a data structure
that explicitly stores C the full Particle Cell tree. This is the form of Pulling
Scheme used for the benchmarking sections below, see A.4.1. However, other
forms are possible that do not require the explicit storing of the tree structure
(see 5.4.5 for a discussion). 4

Algorithm 1 describes the four steps of the algorithm on each level iterating
from the highest level lmax to lowest level lmin. Figure 4.12 gives a schematic
representation for each of the steps. This requires extending the definition of
type to also include, ascendant,ascendant neighbour, and propogate, which are
used for Particle Cells that are not in V but used in the algorithm. The use of
these allows the efficient propagation of the solutions with minimal operations.

Equivalence optimization

In practice, we use an optimization to the above scheme, which produces an
identical solution but reduces the computational and memory cost by a factor
of 2d, where d is the dimension (Lemma 3). See 5.4.4 for the proofs extended
to this case. The optimization involves utilizing the difference between the
boundary and seed Particle Cells and filler Particle Cells and uses the exact
pulling scheme as above. However, it uses a different L. We additionally define
the natural LPC Ln as

Ln = {ci,j ∈ C|∃(y∗, L(y∗)) : y∗ ∈ (i
Ω

2l
, (i+ 1)

Ω

2l
], L(y∗) ∈ [

Ω

2l+1
,

Ω

2l
)} (4.20)

4The implementation of the algorithm described here, and its parallelization were devel-
oped in collaboration in Mattius Sasuik
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note the change in the last interval from [ Ω
2l
, Ω

2l−1 ) to [ Ω
2l+1 ,

Ω
2l

) and l̂max =
lmax − 1. This coincides with a Particle Cell being in Ln if the function L(y)
passes through it, when represented as in Figure 4.8. If the pulling scheme
is run on Ln and produces Vn then, all Particle Cells ci,l with type seed and

boundary, are replaced by their children to form V̂ , this is identical to the
solution formed by the pulling scheme directly on L to produce V . That is
V̂ = V (Lemma 3).

Computational and memory complexity

Here we address the computational and memory complexity of the Pulling
Scheme using explicitly storage of C as described above. We will discuss the
equivalence optimized version described in the previous section as this is used
in practice. Although the above is given in 1D, all results hold in general
dimension d, so we will give this analysis for general dimension d.

First we consider the size of C, for a given problem with lmin and lmax,
where N = 2dlmax , then storing C requires a data-structure with

NC =
lmax−1∑
l=lmin

2dl

=
2d(lmax+1) − 2dlmin

(2d − 1)
(4.21)

entries, because the highest level in the structures is lmax − 1. If we then
consider the ratio of the size of the data-structure to the original data size N ,
we get

NC
N
≤ 1

2d − 1

(
1− 1

N

)
(4.22)

where we have set lmin = 0 as a worst case. Therefore, in the large N limit,
we get NC

N
≈ 1

2d−1
. Which gives us upper bounds of N in 1D, N

3
in 2D, and N

7

in 3D for the size of the required data-structure. Given there are only seven
unique values that are needed for the algorithm, then each only requires 3 bits
of information to be stored. Although this is not likely in practice, due to
available data types, the Pulling Scheme requires at most 3N

2d−1
bits in memory.

For the worst-case computational complexity, we can consider L∗ = C∗,
where C∗ is C restricted to lmax − 1. That is every Particle Cell is in L∗. Now
each, step requires iteration over the data-structure given O(NC) operations.
All parent and neighbour operations scale with dimension d, and therefore for
fixed d, have a fixed cost. Therefore, again we can get an upper bound on all
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steps taken across Algorithm 1 as O(NC). Therefore, the whole algorithm is
worst-case O(NC) which is O(N).

In practice, the performance of this algorithm is more complicated depend-
ing onN , L and the spatial distribution of Particle Cells. From the steps above,
we can see that the number neighbor searches at the highest resolution are the
number of seed Particle Cells at that level. The most costly steps scale with
the number of seed Particle Cells (#(L ∩ V)). This is compared to the neigh-
bor and filler Particle Cells that incur proportionally fewer operations. Hence
tentatively we would expect the performance to scale as O(N + #(L ∩ V)),
with the different term dominating depending on situation. Further, the exact
cost also would depend on the spatial distribution of L. We benchmark the
behavior of these scheme in Chapter 6 below.

Therefore, the above shows how the Pulling Scheme satisfies constructed
R∗(y) in worst case N steps as in Result 1. The last point missing is the
formulation of P that we address in the next section.

4.2.4 Choosing the Particle Set P
Given the Implied Resolution Function R∗ (represented by V) computed by
the Pulling Scheme, the last step of forming the APR (and outlining Results
1-3) is determining the sampling of particles P . We must sample particles such
that at all pixel locations y there is at least one particle within a distance of
R(y) (#(xp ∈ N (y,R(y))) > 0). We satisfy this by placing one particle at the
center of each Particle Cell in V . Specifically, for each Particle Cell ci,l in V
we add a particle p to P with location

yp =
Ω

2l
(i+ 0.5) (4.23)

where we ignore any constant offsets. Within a Particle Cell ci,l in V the
Implied Resolution Function R∗(y) is equal to the width of the Particle Cell.
Therefore, a particle placed in the center is within R∗(y) of all y within the
Particle Cell, guaranteeing #(y ∈ N (y,R(y))) > 0. Given the particle loca-
tions yp the last step is to store the intensity at the point Ip = I(yp) using an
estimate from the original image. We store these sampled particle intensities
in P∗.

Although simple, such a sampling is also in a sense optimal for a given
Implied Resolution Function. We define an optimal sampling of a given R(y)
as the sampling that satisfies

#P =

∫
Ω

1

R(y)
dy (4.24)
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Data: Particle Cell set L
Result: Optimal Valid Particle Cell set V(L)

Function pulling scheme(L)
Represent all possible Partile Cells C from lmax to lmin in
multi-resolution pyramid mesh and set all Particle Cells to
EMPTY;

forall Particle Cells c ∈ C where c ∈ L do
p.type = SEED

end
for lc = lmax : lmin do

/* Fill neighbors (Step 1) */

forall neighbors n of c ∈ C(lc) where c.type is (SEED or
PROPOGATE) do

if n.type is EMPTY then
n.type = BOUNDARY

end
/* Set Parents (Step 2) */

forall parents p of c ∈ C(lc) where c.type is (SEED,
PROPOGATE, or ASCENDANT) do
p.type = ASCENDANT

end
if lc > lmin then

/* Set Ascendant Neighbors (Step 3) */

forall neighbors n of c ∈ C(lc − 1) where c.type is
ASCENDANT do

if n.type is EMPTY then
n.type = ASCENDANT NEIGHBOR

if n.type is SEED then
n.type = PROPAGATE

end
/* Set Fillers (Step 4) */

forall children d of c ∈ C(lc − 1) where c.type is
(ASCENDANT NEIGH or PROPOGATE) do

if (d.type is EMPTY then
d.type = FILLER

end

end
return all type SEED, BOUNDARY and FILLER Particle Cells in C
as V ;

Algorithm 1: An example of a Pulling Scheme algorithm for generating a
OVPC set V from local Particle Cell set L using a temporary pyramid mesh
data structure
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Figure 4.12: Schematic illustrating the four different steps in Algorithm 1 for the Pulling Scheme. The colour of
the dots, identifies the type of Particle Cell. Blue dots represent seed, boundary in green, filler in grey, ascendant
in red, ascendant neighbour in yellow. These four steps occur on each level from the highest level lmax to lowest
lmin. Step 1, seed Particle Cells, or propogate, add neighbour cells as boundaries on level lc. Step 2, seed and
ascendant Particle Cells set their parents (lc−1) to ascendant. Step 3, the ascendant particles on lc−1 set their
vacant neighbours to ascendant neighbours. Step 4, Particle Cells of type ascendant neighbours and propogate
on level lc − 1 set empty children in lc to filler.
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and #(y ∈ N (y,R(y))) > 0 for all y ∈ Ω. We have no proof for this being
optimal. Indeed, for arbitrary R(y) you can construct samplings that satisfy
#(y ∈ N (y,R(y))) > 0 and not 4.24. However, intuitively, if we consider 1

R(y)

as the point-wise required density, then ignoring edge effects, this means that
satisfying 4.24 leads to this density being realized. Further, this integral is also
satisfied for a constant regular sampling such as pixels.

If we now consider, the integral 4.24 for the Implied Resolution Function
R∗(y), ∫

Ω

1

R∗(y)
dy =

∫
Ω

1∑
ci,l∈V φ(y, ci,l)

Ω
2l

dy

=
∑
ci,l∈V

1

= #V = #P (4.25)

as required, and therefore P∗ is optimal in the sense of 4.24. Hence, the Pulling
Scheme in addition to providing an optimal Implied Resolution Function also
provides an inherent ’optimal’ sampling.

4.2.5 Forming the APR={V ,P∗}
The combination of the Particle Cell set V and P∗ fully define the APR.
Where V = {{cip,lp}

Np
p=1|(ip, lp) ∈ Z}, and requires storing the integer ip and

lp, and P∗ = {fi = f(yi)}Npi=1. The Implied Resolution Function R∗(y) and
the particle locations yp do not need to be directly stored as they are both
directly calculatable from V . Alternatively, VN can be stored instead of V ,
however this requires also the additional storage of the type of each Particle
Cell (seed,boundary, or filler).

4.2.6 Summary

Therefore, the above concludes the presentation of the Results 1-3 presented at
the beginning of the chapter. We focused on the 1D case for ease of exposition.
The same results with the formal proofs are given in a more general formulation
in the next chapter.

4.3 Practical considerations

In the above, we have ignored particle considerations of, how do we estimate
∂f
∂y

and the impact of noise. Here we will briefly discuss these issues, including
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a discussion on the continuous resolution functions. Again, the results here
are presented in 1D but apply to the general dimension case.

4.3.1 Discrete sampling

First, we consider the what the ideal sampling of ∂f
∂y
{x̄} would be that would

allow reconstruction of all y ∈ Ω then the samples

∂f

∂y
{xi} = max

x∈[xi−h/2,xi+h/2)

∂f

∂y
(x) (4.26)

where h is the sampling distance between points for x̄. These estimates would
guarantee the APR reconstructs the function y ∈ Ω, and not just at sample
locations. This follows from the fact that this would produce an upper bound,
on the true derivative across every interval.

4.3.2 Impact of noisy Local Resolution Estimate L(y)

However, even in noise-free situations, we do not have the ability to sample

the derivative directly. Instead, we observe | ∂̂f
∂x
| = |∂f

∂x
| + ε. Therefore, it is

interesting how errors from the estimation of the derivative translate into the
violation of the Reconstruction Condition for a given relative error bound E.

Therefore, we consider how an error in L(y) translates into the error in the
solution compared to the user-set relative error bound E. That is we assume
that instead of L(y) we observe,

L∗(y) =
Eσ(y)

|∇f |(1− α)
(4.27)

where α represents the maximum relative error in |∂f
∂x
| (We assume here the

0 ≥ α < 1). We need only consider reductions of the magnitude of the gradient
as increases will not impact the Reconstruction Condition (they simply increase
the resolution wastefully). So then if we consider what the worst-case observed
E∗ is relative to the desired E for a given α (See A.3 for derivation) we get

E∗ − E
E

=
1

1− α
− 1 (4.28)

where the error is taken to occur at a local maximum of the derivative such
that the error has an impact on the solution. Interpreting this, we can see
that if α = 0.1, i.e. ten percent absolute error in the gradient, then the ratio
E∗−E
E

= 0.111, and so if E = 0.1 then the observed relative error worst case
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would be 0.111. So a ten percent error has been related to an eleven percent
increase in the realizable relative error.

This bound is insightful, as it tells us that if we have a given α and want
to guarantee some realized Ê, we can increase the user set E, to retain the
bound despite the error (i.e. such that E∗ = Ê). However, this is at the cost
of a higher number of particles. Alternatively, we can re-arrange the bound,
as

α = 1− 1

1 + (E∗−E)
E

. (4.29)

which then tells us how large a relative error in our derivative we can tolerate
if we wish to have a set accuracy for the relative error bound.

The analysis above is based on relative errors. How do we then consider
absolute errors ε? For a given ε, the relative error will be greatest with the
derivative is small. Interestingly, these are the regions of our solution where
it is likely R∗(y) ≤ L(y). That is, the large relative error will not impact the
solution. The y ∈ Ω that are most likely to contribute to V will then also have
a ’relatively’ smaller α.

4.3.3 Impact of noisy particles f̂(yp)

Now if we consider that we are only able to sample noisy estimates of the
function for our particles, f̂p = f(xp) + η(xp), where η is some noise process.
If we assume that we are still able to estimate L(y) such that R∗ is the true
optimal solution we will find our observed error is

E∗ =
|f(y)−

∑
xp∈N (y,R(y))(f(xp) + η(xp))ξp(y)|

σ(y)
(4.30)

then given L(y) is the noise-free solution then the Reconstruction Condition
holds and we get

E∗ = |A+
1

σ(y)

∑
xp∈N (y,R(y))

(xp)ξp(y)| (4.31)

where we have |A| ≤ E. Therefore as E → 0, A → 0 and therefore the
infinity norm of the observed relative error |E∗|∞ will tend to the maximum
| 1
σ(y)

∑
xp∈N (y,R(y)) η(xp)ξp(y)| across the domain.

Therefore, the noisy input data, provides an upper bound of the observed
relative error E∗ regardless of adaptation, and user set E. Note, we provide
a more detailed analysis of the impact of noise later in 8.3 showing that the
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APR converges at an optimal rate to a bias estimate of the noise-free APR
given a non-trivial Resolution Function that satisfies the Resolution Bound.
This is consistent with the simple analysis here.

4.3.4 Comparison with continuous resolution functions

Although we can solve our restricted problem optimally using Particle Cells,
this has been at the cost of fulfillment of the tighter Resolution Bound and not
allowing continuous adaptation. We provide some brief worst-case bounds and
numerical results in A.2.1. Unfortunately, for arbitrary functions, I know of
no bound between the optimal continuous Resolution Function for the Recon-
struction Condition Rb(y), and the Resolution Bound Rc(y) (Note, the c was
intended to be interpreted as for continuous). However, the ratio of the two
should converge to one as E → 0 for an infinitely differentiable function. We
can, however, find worst-case bounds between the Implied Resolution Func-
tion R∗ and Rc. These are insightful, as they indicate the upper bound on
the ’cost’ of restricting ourselves to Resolution Functions constructed using
Particle Cells. By considering the largest possible L(y) on a per Particle Cell

basis, we find that R∗(y)
Rc(y)

≤ 4
√
d. Which corresponds to a worst case pointwise

ratio of 4, ≈ 5.65 and ≈ 6.93 in 1D, 2D and 3D respectively.

Also, we could use the same method to provide an upper bound on the ratio
#P
#Pc , where Pc corresponds to the evaluation of the sampling integral (4.24 in

1D, or see 5.75 for general dimension d) with Rc. We find the following upper
bounds on the ratios of 3.47, 24.3 and 221.25 in 1D, 2D, and 3D. We note that
even given Rc I know of no means of sampling in general dimension to achieve
Pc, and that the bounds are likely not to be tight for practical L(y). Further,
use of a continuous solution numerical solution, without analytical form, would
require storage of N values, and essentially eliminate any reductions in the size
of the representation through P . However, there may be situations where this
is useful.

To test these bounds, we numerically computed optimal continuous solu-
tions. This can be done using the O(N2), ’brute force’ approach. However,
unfortunately, the high computational cost limited the investigations. With
the solution taking several orders of magnitude longer than the Pulling Scheme.

First, we found that the bound between Rc and Rb in 1D was close to
one for reasonable ranges of E � .3, and tends to one as E → 0. In 3D
using the later discussed implementation, we found the observed mean ratio
of the implied and continuous resolution functions in 3D was between 2 and 3,
depending on the image content and level of noise. Further, we find that the
worst-case bounds for particle ratio #P

#Pc do not appear to be tight in practice,
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finding ratios of less than 11 in 3D benchmark examples (compared to the
worst-case bound of 225.21).

4.3.5 Particle Cells and smoothness of the Local Inten-
sity Scale

In practice, the use of an Implied Resolution Function relaxes the smoothness
assumption on the Local Intensity Scale σ (4.2.1). For a continuous Resolution
Function an equality for the expression

σ(y) min
x∈N (y,R(y))

(g(x)) ≈ min
x∈N (y,R(y))

(σ(y)g(x)) (4.32)

would require a constant σ(y) for general f . However, we note when using an
Implied Resolution Function as in the APR we only will detect changes that
would change the Particle Cell level l. Now for a given problem the Particle
Cell level can be calculated as,

l = dlog

(
|Ω|σ(x)

g(x)

)
e (4.33)

with a −1 if the equivalence optimization is being used. We find that 4.32 is
then equivalent to

dlog

(
|Ω|

σ(x)g(x)

)
e = dlog

(
|Ω|

σ(y)g(x)

)
e (4.34)

for all x ∈ N (y,R(y)) and y ∈ Ω. This is a weaker bound then 4.32 potentially
allowing non-constant σ(y). Hence, the situation is not quite as restrictive as
4.32 implies when using an Implied Resolution Function. Further exploration
of this bound in combination with the results on the noisy L(y) (A.3) would
seem a fruitful future research direction.

4.3.6 Reconstruction of higher order derivatives

Later in Chapter 9 we discuss a generalized form of the APR that can be de-
signed to also guarantee bounds on arbitrary function derivatives. However,
can we, in general, provide any bounds on the reconstruction of the derivatives
of the function for the APR by only guaranteeing the Reconstruction Condi-
tion? Here we shall quickly consider the gradient in 1D. However, the principle
extends to higher dimensions and derivatives.

75



Chapter 4. The Adaptive Particle Representation (APR)

Lets consider we have constructed the APR for a function f . Now we
consider,

ε1 = |∂f
∂y

(y)−
ˆ∂f

∂y
(y)| (4.35)

the point wide reconstruction error of the derivative, where ˆ∂f
∂y

(y) is a first order

in h estimate of the gradient (satisfying conditions of a DC-PSE operator
[115]). Following a similar approach to above we get (see later in 9.14 for
derivation of a similar bound from which this can be inferred)

ε1 ≤ AR(y) max
x∗∈N (y,R(y))

(
∂2f

∂y2
(x∗)

)
(4.36)

where A is a constant based on the choice of particles and operator. Now given
the Resolution Bound holds, it can be shown also that

ε1 ≤ A

 Eσ

maxx∗∈N (y,R(y))

(
∂f
∂y

(x∗)
)
 max

x∗∈N (y,R(y))

(
∂2f

∂y2
(x∗)

)
. (4.37)

where we assume R(y) is bounded. If we assume an Implied Resolution Func-
tion, this is trivially satisfied. Hence we see that as E → 0, the error should
go to zero at a rate proportional to E. However, we have no guarantee on
the absolute value as in the Reconstruction Condition. Given restrictions to
a function with appropriate Lipschitz constants, one could achieve a global
bound. However, this would unlikely to be of little practical use.

The same principle holds for higher derivatives and dimensions. So in con-
clusion, the APR satisfying the Reconstruction Condition, does unfortunately
not also bound the error of the derivatives of the function.

4.4 APR transform steps summary

Therefore, here we have described the APR that resamples an image by adapt-
ing a set of Particle Cells V (representing the Implied Resolution Function
R∗(y)) and set of particles P to the content of a function. In Algorithm 2, we
outline the main steps for taking a sampled input function f{x̄} and forming
the APR. These steps are the same for arbitrary dimension; the only main
change is the definition of the Local Resolution Estimate L(y). Which in
general dimension d, for f : Rd → R becomes

L(y) =
Eσ(y)

|∇f(y)|
(4.38)
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where ∇f represents the gradient of the function, and y ∈ Ω ⊂ Rd. Also,
to the extension of the concepts for Particle Cells to higher dimensions. An
important observation is that the steps requiring interaction across all pixels
are those in step 2. Except step 5, that requires some estimation at particle
locations. All other steps require only operations on Particle Cells which have
lower memory costs than the original image.

For a detailed description on how all these steps were implimented for the
emperical results shown in Chapter 6 and Chapter 7 see A.4.

Data: Sampled input function f{x̄}
Result: APR = {V ,P∗}
1.) Set relative error bound E;
2.) Compute discrete estimate of the gradient magnitude |∇f | and σ at
locations x̄;

3.) Compute L(y) and create Local Particle Cell set L;
4.) Compute Optimal Valid Particle Cell set V from L using the Puling
Scheme;

5.) Sample particle intensities P∗ from image at center of Particle Cells
in V

Algorithm 2: Summary of the steps of computing the APR for a given
function f , sampled homogenously at x̄.

4.5 Summary and main points

In the above chapter, we have introduced the Adaptive Particle Representation
(APR) and the three theoretical and algorithmic results at its core. Following,
we described the ideas and methods that are introduced to produce them,
and a brief motivation on their form relating to the representation criteria
presented in Chapter 3. This has attempted to be done in a didactic style,
introducing the new ideas, concepts, and principles, using a 1D formulation
and schematics for ease of explanation. The following Chapter 5, provides
a more technical description of the general dimension case. It is intended,
that these two chapters complement each other, and are to be used in unison.
Next, I briefly summarize these concepts discussed in this chapter involved in
forming the APR.

The APR involves the representation of a function, originally given as N
sampled points f{x̄}, in a lossy manner, with a user-defined relative error E
to be met point-wise across the domain relative to a Local Intensity Scale σ.
The representation involves a collection of sampled points P and a Resolution
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Function R(y). The reconstruction constraint is named the Reconstruction
Condition. The function reconstruction is controlled everywhere by the Res-
olution Function R(y) that dictates the size of the isotropic neighborhood of
points, from the sampling P , which are permitted to be used for function re-
construction. However, when constructing the APR, we do not directly satisfy
the Reconstruction Condition; instead, we satisfy the Resolution Bound. The
Resolution Bound places a direct restriction on the Resolution Function, based
on the magnitude of the derivative and given restrictions on the local intensity
scale, guarantees the fulfillment of the Reconstruction Condition.

In this chapter, we showed that if the Resolution Function is restricted
to a special class of piecewise constant functions, called Implied Resolution
Functions, we provide an algorithm for finding an optimal Implied Resolution
Function R∗(y), and associated particle sampling P . This algorithm is called
the Pulling Scheme and has linear complexity in the original number of sampled
point N . The algorithm relies on the concept of Particle Cells, blocks that use
tree-structures common to multi-resolution and adaptive methods. Instead of
explicitly storing the Implied Resolution Function and particle locations yp,
the APR is fully described by {V ,P}, where V is a set of Particle Cells, and
P∗ is a set of the function intensity values sampled at collocation points of the
function.

Following this, we briefly touched on practical considerations of how to
evaluate the derivative and the impact of noise on the formation of the APR
and satisfaction of the Reconstruction Condition. Further, we also discussed
the cost of restricting the resolution function to an Implied Resolution Func-
tion. Lastly, we briefly outlined the practical steps required for the formation
of the APR, from a sampled input function.

Summary of the chapter

• Introduced the Adaptive Particle Representation (APR), using 1D,
and the main theoretical and algorithmic results of this thesis.

• Derived the Resolution Bound and Reconstruction Conditions in 1D

• Introduced Particle Cells and how they can be used to construct an
Implied Resolution Function

• Outlined the Pulling Scheme, that effeciently produces the optimal
Particle Cell set V and particle sampling P∗ that form the the APR.
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• Discussed practical issues arising from discrete sampling and noise
piece-wise constant resolution function

• Outlined the main steps in practice for transforming a given f{x̄}
into the APR {V ,P∗}.
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Chapter 5. General Dimension APR and Technical Details

This chapter extends the main results for the Adaptive Particle Represen-
tation (APR) presented in the previous chapter to general dimension. Here, we
also include technical details and proofs. For a more didactic introduction to
the ideas and concepts used in forming the APR, the reader is directed first to
the previous chapter. It is intended for this current chapter to be used in addi-
tion to the previous, and therefore, some repeated explanations or definitions
have been omitted.

This chapter is structured as follows. First, we restate the definition of the
APR and the main results from the previous section in a general dimension
setting. We then derive and discuss, the Resolution Condition, Particle Cells
and Implied Resolution Function, and the Pulling Scheme in a general dimen-
sion setting. Definitions are given in a more general way than the previous,
to allow consideration of extensions beyond those discussed here. Lastly, we
introduce possible reconstruction functions and the APR particle graph.

5.1 General dimension APR

Here we re-state the formulation of the APR in a general dimension d setting.
As in the 1D setting the Adaptive Particle Representation takes a regu-

larly sampled input function, such as pixel images, and resamples it as a set
of particles P and a resolution function R(y). Where particles p are now col-
location points in d dimensions, xp and carry function values fp = f(xp). The
resolution function R : Ω → R defines a local isotropic neighborhood N at
each point in the domain Ω ⊂ Rd.

We consider a once differentiable function f : Ω→ R, that is sampled on a
grid with fixed spacing as f{x̄} where the number of samples is #x̄ = N . We
represent the function for a given P and R(y) in the following way

f̂(y) =
∑

xp∈N (y,R(y))

f(xp)ξp(y) (5.1)

where N (y, R(y)) = {x ∈ Ω : |x − y| ≤ R(y)} and ξp(y) = ξ(y,xp) are
constants that satisfy

∑
xp∈N (y,R(y)) ξp(y) = 1 with ξp(y) ≥ 0. and assum-

ing #(xp ∈ N (y, R(y))) > 0 for all y ∈ Ω. The reconstruction follows the
Reconstruction Condition,

‖f − f̂
σ
‖∞ ≤ E (5.2)

where σ : Ω→ R, and satisfies a smoothness assumption 5.11. The Resolution
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Bound is then

R(y) ≤ min
x∈N (y,R(y))

L(x). (5.3)

We quickly re-state the results of the previous sections, providing the slight
adjustments as required.

5.1.1 Result 1

The Pulling Scheme can find the optimal R∗(y) and particle set P that satisfy
problems in the form of the Resolution Bound (5.3) for general L(y). Where
the optimal implied resolution function is the R∗ that satisfies

arg max
R∗∈R∗

∫
Ω

R∗(y)dy (5.4)

where R∗ is the set of all Implied Resolution Functions R∗(y) that satisfy the
Resolution Bound 5.3. The optimal P∗ is then the particle set that satisfies,
#(xp ∈ N (y, R(y))) > 0, and #P =

∫
Ω

1
R(y)d

dy.

5.1.2 Result 2

Given the local resolution function σ(y) is sufficiently slowly varying (see 5.11),

and then L(y) = Eσ(y)
|∇f | where ∇f represents the gradient of the function then

the reconstructions formed using R∗(y) and P will satisfy the Reconstruction
Condition 5.2.

5.1.3 Result 3

The Implied Resolution Function R∗(y) and particle cell set P , can be com-

pletely described by a set of particle cells V = {{cip,lp}
Np
p=1|ip ∈ Zd, lp ∈ Z} (i.e.

it can be define by Np length sets of integers d+1 integers) and P∗ = {{fp}Npp=1}.
The combination of these two sets {V ,P∗} we call the Adaptive Particle Rep-
resentation (APR).

5.2 Reconstruction Condition and Resolution

Bound

Here we present derivation of the Resolution Bound, it differs little from the
one-dimensional case. We begin with the Reconstruction Condition state point
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wise as

|f(y)−
∑

xp∈N (y,R(y))

fpξp(y)| ≤ E

σ(y)
(5.5)

which holds must hold for all y ∈ Ω. Therefore again we proceed by considering
the exact formulation of the error as

ε(y) = f(y)−
∑

xp∈N (y,R(y))

fpξp(y) (5.6)

now if we again assume function is C1 can express by taking Taylor series
expansions of fp centered at y and using the integral form of the remainder
for the Taylor series [103]

ε(y) =
∑

xp∈N (y,R(y))

∑
|k|=1

(y − xp)
k

∫ 1

0

∂

∂xk
f(y + s(xp − y))dsξp(y) (5.7)

where k is using multi-index notation (See [103] for a brief description). In
this case, it simply denotes summing over each spatial direction. Which we
note is equivalent to the fundamental theorem of calculus and can be written
as a path integral, and again using the triangle inequality

|ε(y)| ≤
∑

xp∈N (y,R(y))

|ξp(y)||(y − xp)|
∫ 1

0

|∇f(y + s(xp − y))|ds (5.8)

where∇f(x), represents the gradient operator. Now again given that |y−xp| ≤
R(y) then

|ε(y)| ≤

 ∑
xp∈N (y,R(y))

|ξp(y)|

R(y) max
x∈N (y,R(y))

(|∇f(y)|) (5.9)

and so then again given we assume ξp(y) > 0 then using this bound, 5.5 will
hold if

R(y) ≤ min
x∈N (y,R(y))

(
Eσ(y)

|∇f(x)|

)
, (5.10)

which then assuming sufficient smoothness of σ(y), such that the approxima-
tion

max
x∈N (y,R(y))

(
|∇f(x)|
σ(y)

)
= max

x∈N (y,R(y))

(
|∇f(x)|
σ(x)

)
(5.11)
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holds then

R(y) ≤ min
x∈N (y,R(y))

(
Eσ(x)

|∇f(x)|

)
. (5.12)

which is of the required form

R(y) ≤ min
x∈N (y,R(y))

(L(x)) . (5.13)

where the local resolution estimate is L(y) = Eσ(y)
|∇f(y)| .

5.3 Particle Cells and the Implied Resolution

Function

In this section, we introduce the general dimension treatment of Particle Cells.
We begin with several definitions that will be useful.

5.3.1 Particle Cell definitions

For our given domain Ω ⊂ Rn, with maximum side length Ω0. We begin by
extending the Ω to a square domain Ω∗ ∈ Rd, with edge length Ω0, such that
Ω ⊆ Ω∗.

Next we introduce Particle Cells C that form a partition of the extended
spatial domain Ω∗ and R the range of the possible resolution functions, R =
{R : Ω → R+}, which we call the resolution domain. Formally we enumerate
the set C, as

C = {ci,l,∀(i, l) : l ∈ N, ik = 0, .., 2l − 1} (5.14)

where i = i1, .., in is multi-index notation for the spatial indices in each direc-
tion, and l indicates the level of the Particle Cell resolution. These Particle
Cells form a partition using divisions of powers of 2, as follows,

γ(ci,l) = [
Ω0

2l
,

Ω0

2l+1
)×

∏
i

[ik
Ω0

2l
, (ik + 1)

Ω0

2l
) (5.15)

where the product is over all spatial indices and therefore,⋃
ci,l∈C

γ(ci,l) = Ω∗ ×R. (5.16)

Each Particle Cell forms regular elements, rectangles in 1D, a half-cubes in 2D,
and half-hypercubes in 3D. The 1D example of these rectangles are given in
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l = 0 l = 1

l = 2 l = 3

c0,0,0Ω0

Ω0

Ω0\21

Ωm\21

Ω0\22

Ω0\23

x

y

c1,0,0 c1,0,1

c1,1,0 c1,1,1

c2,0,0 c2,0,1 c2,0,2 c2,0,3

c2,1,0 c2,1,1 c2,1,2 c2,1,3

c2,2,0 c2,2,1 c2,2,2 c2,2,3

c2,3,0 c2,3,1 c2,3,2 c2,3,3

c3,0,0 c3,0,1 c3,0,2 c3,0,3 c3,0,4 c3,0,5 c3,0,6 c3,0,7

c3,1,0 c3,1,1 c3,1,2 c3,1,3 c3,1,4 c3,1,5 c3,1,6 c3,1,7

c3,2,0 c3,2,1 c3,2,2 c3,2,3 c3,2,4 c3,2,5 c3,2,6 c3,2,7

c3,3,0 c3,3,1 c3,3,2 c3,3,3 c3,3,4 c3,3,5 c3,3,6 c3,3,7

c3,4,0 c3,4,1 c3,4,2 c3,4,3 c3,4,4 c3,4,5 c3,4,6 c3,4,7

c3,5,0 c3,5,1 c3,5,2 c3,5,3 c3,5,4 c3,5,5 c3,5,6 c3,5,7

c3,6,0 c3,6,1 c3,6,2 c3,6,3 c3,6,4 c3,6,5 c3,6,6 c3,6,7

c3,7,0 c3,7,1 c3,7,2 c3,7,3 c3,7,4 c3,7,5 c3,7,6 c3,7,7

s(c0,0,0)=[0,Ω0)x[0,Ω0)

Figure 5.1: Four levels l of C showing how Particle Cells in 2D ci,l partition the domain Ω on levels l = {0, 1, 2, 3}.
Each square in the figure represents the spatial domain s(ci,l) of a given Particle Cell ci,l.
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Figure 4.8. We note, that this is a different, but complimentary interpretation
of Particle Cells to when constructing the implied resolution function out of
particle cells as given in the previous chapter and shown in Figure 4.5. This
partitioning is similar to those often used in quad and octree data structures,
and as used in adaptive particle cell lists [13].

We define further properties of Particle Cells, reflecting their spatial do-
main, and resolution domain separately. The spatial domain of a Particle Cell
is defined as,

s(ci,l) =
∏
i

[ik
Ω0

2l
, (ik + 1)

Ω0

2l
) (5.17)

Figure 5.1 shows an example of the spatial domain, s(ci,l) of different Particle
Cells for a range of l in 2D. The spatial domain of a Particle Cell s(ci,l) is the
area, or volume, of the domain Ω∗ of which it partitions. Effectively forming
dyadic cubes of the domain Ω [81]. The resolution domain of a Particle Cell
is defined as

r(ci,l) = [
Ω0

2l
,

Ω0

2l+1
). (5.18)

Further, we define l(ci,l) = l, to denote level of ci,l and i(ci,l) = i for the spatial
coordinate of ci,l. Now given these definitions we can now define relationships
between the Particle Cells considering them as constructing a tree structure
as shown in Figure 4.7. We define the set of descendants of a particle cell ci,l
as

D(ci,l) = {cdi,l ∈ C : s(cdi,l) ⊂ s(ci,l)}, (5.19)

which is the set of all Particle Cells who’s spatial domain overlaps with ci,l
but have a smaller resolution than r(ci,l). The first set of descendants, called
children, are shown for a cell in green in Figure 4.7. Formally, children of ci,l
are those cci,l ∈ D(ci,l) such that l(cci,l) = l(ci,l) − 1. We also then denote the
parent of ci,l, as ci/2,l−1, where ci,l is simply then the child of ci/2,l−1.

We also define the set of neighbors of a Particle Cell ci,l, by first defining
the interaction Particle Set

I(ci,l) = {cni,l ∈ C : ∃x ∈ s(cni,l),y ∈ s(ci,l) : x ∈ N (y, R(y))} (5.20)

which is the set of all Particle Cells cni,l for which there is exists a x in its
spatial domain and also a y in the spatial domain of ci,l such that they could
interact, i.e. x ∈ N (y, R(y)). Then using the interaction Particle Cell set, we
define the neighbor Particle Cell set as

B(ci,l) = {cni,l ∈ I(ci,l) : @cn′i,l ∈ I : s(cni,l) ⊂ s(cn
′

i,l)} (5.21)
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which is the set of all neighboring Particle Cells of highest level that ci,l can
interact with (including ci,l). This definition and the theorems proven below
hold across general definitions of the interaction neighborhoodN (y, R(y)). For
simplicity of explanation, here we present examples with the isotropic interac-
tion neighbourhood N (y, R(y)) = {x ∈ Ω : |x − y| ≤ R(y)}, as introduced
earlier. For the isotropic interaction neighborhood, the neighbor Particle Cell
set is simply the neighboring Particle Cells of ci,l on the same level. This is
illustrated in Figure 4.7 with a 1D example of a neighbor Particle Cell set
B(ci,l) in blue.

Using these we define a set ND ∈ C that contains all descendants of a
particular Particle Cell ci,l and its neighbors as

ND(ci,l) =
⋃

cni,l∈B(cvi,l)

⋃
cdi,l∈D(cci,l)

cdi,l. (5.22)

Then any Particle Cell set V ⊂ C forms a partition of the spatial domain Ω∗

iff, ⋃
cvi,l∈V

s(cvi,l) = Ω∗. (5.23)

Then we can also define the set of Particle Cell sets V that form a spatial
partition as

S = {V : V ⊂ C,
⋃
cvi,l∈V

s(cvi,l) = Ω∗}. (5.24)

Lastly, we formally introduce an additional property of a Particle Cell called
type, t(ci,l), discussed in the previous section for Particle Cells when compared
to a Particle Cell set T in the following way

t(ci,l, T ) =


1, ci,l ∈ T
2, ci,l /∈ T and ∃cni,l ∈ B(ci,l) : cni,l ∈ T
3, otherwise

where we name the three different Particle Cell types as seed, boundary, and
filler respectively.

5.3.2 Implied Resolution Function

Now we define the Implied Resolution Function for a set of Particle Cells V that
forms a spatial partition. We begin by now defining a characteristic function
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in general dimension as

φ(y, ci,l) =

{
1 y ∈ s(ci,l)
0 otherwise

(5.25)

that is, it is non-zero only at point within the spatial domain of the Particle
Cell. Using this the Implied Resolution Function R∗(y) for a set of Particle
Cells V forming a partition of the spatial domain is defined as

R∗(y,V) =
∑
ci,l∈V

φ(y, ci,l)
Ω0

2l
(5.26)

where we often drop the dependence on V below, unless required. One can
interpret this Resolution Function as being built out of cube blocks of length
Ω0

2l
, as shown in Figure 4.5 for 1D. In 1D the blocks are squares, 2D cubes,

and 3D hypercubes. (Note: this is different from how Particle Cells are used
to partition the resolution domain)

5.3.3 Local Particle Cell set

Given these definitions, we can now represent the Local Resolution Estimate
L(y) as Particle Cells. We assume that we have the following inequality to
satisfy

R(y) ≤ min
x∈N (y,R(y))

L(x). (5.27)

We introduce the general dimension Local Particle Cell (LPC) set L ⊆ C that
has members such that

L = {ci,l ∈ C|∃ (L(y),y) : y ∈ s(ci,l), L(y) ∈ r(ci/2,l−1)}, (5.28)

where ci/2,l−1 indicates the parent of ci,l. In words, this takes the Local Reso-
lution Estimate L(y) and finds those Particle Cells ci,l whose parents intersect
with L(y) at locations inside the spatial domain s(ci,l). An example was given
in the previous section for 1D in Figure 4.8. We also define another set we call
the natural Local Particle Cell (nLPC) set

Ln = {ci,l ∈ C : ∃ (L(y),y) ∈ γ(ci,l)}, (5.29)

in words takes the Local Resolution Estimate L(y) and finds those Particle
Cells that the function intersects. The second definition comes in use slightly
later for the equivalence optimization and is called ’natural’ due to its simpler
definition. In all except special cases, L does not form a partition of the spatial
domain.

89



Chapter 5. General Dimension APR and Technical Details

Maximum resolution level

In practice it is often useful to specify a minimum level lmin and maximum
level lmax. For a given function we can define a minimum Lmin(y) = Ω0

2lmin
and

maximum value Lmax(y) = Ω0

2lmax
. Where for both L and Ln this effectively

truncates any values with l below lmin to lmin and above lmax to lmax. (See
A.4.1 for a description of implementation and constructing these sets).

5.3.4 Optimal Valid Particle Cell sets

Now we have a way to relate, a Particle Cell set to a Resolution Function,
if now we re-formulate 5.27, in terms of this Implied Resolution Function we
have

R∗(y) ≤ min
x∈N (y,R(y))

L(x). (5.30)

we can now use the Implied Resolution Function and present the following
theorem:

Theorem 1. V will define an Implied Resolution Function R∗(y) thats satisfies
Cond. 5.30 for all y ∈ Ω∗, for a given L, and called valid iff it forms a spatial
partition and

1. ∀cvi,l ∈ V then {L ∩ ND(cvi,l)} = ∅

In words, for all Particle Cells ci,l in V , the set is valid, if and only if, there
are no Particle Cells that are descendants of ci,l or its neighbors in L.
Proof :
Given a valid Particle Cell set V , we suppose there exists at least one combi-
nation of y ∈ Ω∗ and y∗ ∈ N (y, R(y)), such that

L(y∗) < R∗(y) (5.31)

is true and therefore condition 5.30 is violated. In addition, there must exist
cvi,l ∈ V such that y ∈ s(cvi,l). From 5.26, we have

R∗(y) =
Ω∗

2l(c
v
i,l)

(5.32)

and therefore if L(y∗) < Ω∗

2
l(cc

i,l
) then there must exist some c∗i,l ∈ L, for which

l(c∗i,l) < l(cvi,l) and y∗ ∈ s(c∗i,l). Now since y∗ ∈ N (y, R(y)) and l(c∗i,l) < l(cvi,l)
it implies that

c∗i,l ∈ ND(cvi,l) (5.33)
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and therefore

∃cai,l ∈ V : {L ∩ ND(cai,l)} 6= ∅ (5.34)

and proves Theorem. 1 by contradiction. �

Now we consider conditions on V that would define it as optimal. Consider
V to be the set of all Particle Cell sets V that satisfy Theorem 1 and are valid.
Then a Particle Cell set V will be optimal if it satisfies

arg max
V∗∈V

∫
Ω∗
R∗(y,V∗)dΩ∗. (5.35)

which is equivalent to finding the largest everywhere R∗(y) that satisfies 5.30.
Which is equivalent to

arg max
R∗∈R∗

∫
Ω∗
R∗(y)dΩ∗. (5.36)

where R∗ is the set of all Implied Resolution Functions defined as 5.26 (R∗ :
Ω∗ → R+) that satisfy 5.30. We can now state the following theorem for
satisfying 5.35,

Theorem 2. Given V ⊂ C, that is valid, V will satisfy Cond. 5.35 and be
optimal, iff, there does not exist aW ⊂ C whereW 6= V and is valid for L and
where V can be formed from the elements ofW and its descendants. Formally,
V is optimal, if there does not exist any valid W such that for any cwi,l or cvi,l
the following holds (

cwi,l ∈ W , cvi,l ∈ V
)

: cvi,l ∈ D(cwi,l). (5.37)

In words, V , is optimal, if there does not exist another arrangement of
Particle Cells that form a spatial partition and is valid while having a larger
resolution anywhere in the domain.
Proof :
Lets consider two Particle Cell sets V and W , where both are valid with
respect to L, andW 6= V , and V is optimal. Now we suppose that, Cond. 5.35
is violated, that is ∫

Ω∗
R∗(y,V)dΩ∗ <

∫
Ω∗
R∗(y,W)dΩ∗, (5.38)
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that we can re-write as∫
Ω∗

∑
ci,l∈V

φ(y, ci,l)
Ω0

2l
dΩ∗ <

∫
Ω∗

∑
ci,l∈W

φ(y, ci,l)
Ω0

2l
dΩ∗. (5.39)

Given the above inequality to hold, there must exist y ∈ Ω∗ where the following
holds for some cvi,l ∈ V and cwi,l ∈ W ,

0 < φ(y, cvi,l)
Ω0

2l(c
v
i,l)

< φ(y, cwi,l)
Ω0

2l(c
w
i,l)

(5.40)

which implies that l(cwi,l) < l(cvi,l) and further that s(cvi,l) ⊂ s(cwi,l) and hence

cvi,l ∈ D(cwi,l), (5.41)

which violates Theorem 2, and thus concludes the proof through contradiction.
�.

Therefore a Particle Cell set V is an Optimal Valid Particle Cell (OVPC)
set if it satisfies both Theorem 1 and Theorem 2.

5.4 Pulling Scheme

Here we present the additional results based on the above that are used by the
Pulling Scheme. These are the general definitions of the three properties from
the previous chapter. We begin by defining

Definition 1. V∗(ci,l) is the optimal Particle Cell set for L = {ci,l}

That is the OVPC set for a LPC set with only one Particle Cell ci,l.

5.4.1 Self-similarity and production of individual solu-
tions

The first is an observation that the solution V∗(ci,l) is highly predictable and
shows self-similarity regarding its relative local structure. This is shown for
two different ci,l in 2D in Figure 5.2, where the Particle Cells are colored by
their type. As in 1D, the solutions are defined by a central seed Particle Cell,
surrounded by a layer of boundary and then filler cells. The remainder of
the domain is then filled with Particle Cells increasing by one level across
neighbors, adding Particle Cells on the same level when needed to maintain a
spatial partition. In Algorithm 3 we provide a possible pseudo-code for this
process.

92



Chapter 5. General Dimension APR and Technical Details

Data: L = {ci,l}
Result: V(ci,l)

1.) add ci,l to V ;
2.) add cbi,l ∈ B(ci,l) to V ;

3.) add cfi,l ∈ B(cbi,l) for each neighbour of these cbi,l not already in V add

to T and V ;
for lc = l(ci,l) : −1 : 0 do

propogate filler;
propogate filler;

end
Algorithm 3: Produces the OVPC V for an LPC L with only one Particle
Cell ci,l with level l(ci,l)

Function propogate filler

foreach cci,l ∈ T do
foreach cni,l ∈ B(cci,l) do

if cni,l /∈ V and D(cni,l) ∈ V = ∅ then
if s(cci,l) /∈ s(cni/2,l) then

add the parent cni/2,l of neighbour cni,l ;
Add cni/2,l to Tt and V

else
add the neighbour cni,l, as adding parent would cause

over-lap;
Add cni,l to Tt and V

end

end

end

end
Set T ← Tt;
Set Tt ← ∅;

Algorithm 4: Propogates filler Particle Cells through the domain
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(c(10,10),6) (c(20,20),5)  for        ={c(10,10),6 ,c(20,20),5}

Figure 5.2: Example of the optimal particle cell set V (right) for L = {c(10,10),6, c(20,20),5} in 2D, and the
individual optimal solutions V∗(c(10,10),6) (left) and V∗(c(20,20),5) (right) that can be used to combined using
the separability property to construct V. The particle cells are colored in the following way, a particle cell is blue
if its type is a seed if it is in the local particle cell set, ci,l ∈ L, a cell is green if it is of type boundary and
therefore has a neighbor that is in the local particle cell set and is grey if it as of type filler.

5.4.2 Separability

We present Lemma 1, that is the basis of the separability property used in
Pulling Scheme.

Lemma 1. Given V ⊂ C is optimal, with respect to L, and let V∗(ci,l) ⊂ C be
optimal for the local set L∗(ci,l) = {ci,l}. Then,

V = minhull

 ⋃
cli,l∈L

V∗(cli,l)

 (5.42)

where for T ⊆ C,

minhull(T ) = {csi,l ∈ T : {D(csi,l) ∩ T } = ∅}. (5.43)

In words, Lemma 1 states that the optimal solution V , for a given LPC set
L, can be constructed by forming the valid and optimal set for each Particle
Cell in L separately V∗(ci,l), and then forming a set with the Particle Cells ci,l
at each point y with the smallest Implied Resolution Function R∗(y,V∗(ci,l))
(highest level l). We call the above property, separability. Figure 5.2 shows
the property in 2D and Figure 4.10 in 1D. One can intuitively confirm that
the configurations are optimal, by replacing any Particle Cell by its parent,
and then checking if Theorem. 1 holds.
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Proof :

Lets consider V , which is optimal for L, and V̂ = minhull
(⋃

cli,l∈L
V∗(cli,l)

)
.

Now propose that there exists some ĉi,l ∈ V̂ such that

∃c∗i,l ∈ L : c∗i,l ∈ ND(ĉi,l) (5.44)

and therefore V̂ would not be valid by Theorem 1. However, given that V∗(c∗i,l)
is valid, it forms a spatial partition, and ĉi,l /∈ V∗(c∗i,l), therefore

∃c̄i,l ∈ V∗(c∗i,l) : c̄i,l ∈ D(ĉi,l) (5.45)

and since V∗(c∗i,l) ⊂
⋃
cli,l∈L

V∗(cli,l) then,

D(ĉi,l) ∩
⋃
cli,l∈L

V∗(cli,l) ⊇ c̄i,l (5.46)

6= ∅ (5.47)

therefore violating Lemma 1 as ĉi,l ∈ V̂ . Therefore, by contradiction, given

Lemma. 1 holds, V̂ will be valid.
Now, let us propose, that V̂ is not optimal, that is there exists some W

such that ∫
Ω∗
R∗(y, V̂)dΩ∗ <

∫
Ω∗
R∗(y,W)dΩ∗, (5.48)

following the arguments for the proof of Theorem 2 above this implies there
would exist some cwi,l ∈ W and some ĉi,l ∈ V̂ such that

ĉi,l ∈ D(cwi,l). (5.49)

Given that ĉi,l ∈ V̂ there exists some c̄i,l ∈ L such that ĉi,l ∈ V∗(c̄i,l). However,
given cwi,l /∈ V∗(c̄i,l) and V∗(c̄i,l) is optimal then,(

ND(cwi,l) ∩ V∗(c̄i,l)
)
⊇ ĉi,l 6= ∅. (5.50)

Since c̄i,l ∈ L, then W cannot be valid. Implying that V̂ must be optimal for
L and given the optimal solution is unique implies

V̂ = V (5.51)

�.

95



Chapter 5. General Dimension APR and Technical Details

5.4.3 Redundancy of Particle Cells

The third property relates to the redundancy of Particle Cells in L that have
descendants in L,

Lemma 2. Given any two Particle Cells ci,l and cpi,l, where ci,l ∈ D(cpi,l) then

minhull({V∗(ci,l),V∗(cpi,l)}) = V∗(ci,l). (5.52)

In words, the optimal valid solution of Particle Cells for which one is the
descendant of the other will be the individual valid solution of the descendant
Particle Cell.
Proof :
Lets suppose that,

∃ĉi,l ∈ minhull({V∗(ci,l),V∗(cpi,l)}) : ĉi,l /∈ V∗(ci,l) (5.53)

and then
ĉi,l ∈ V∗(cpi,l) (5.54)

and Lemma 2 is violated. However, given the definition of the minhull op-
eration, and the fact that V∗(ci,l) must form a spatial partition this implies
that

∃c∗i,l ∈ V∗(ci,l) : ĉi,l ∈ D(c∗i,l). (5.55)

However, given that V∗(cpi,l) is optimal by definition, then if c∗i,l /∈ V∗(c
p
i,l), then

by Theorem 2
cpi,l ∈ ND(c∗i,l) (5.56)

and since ci,l ∈ D(cpi,l) by construction then also

ci,l ∈ ND(c∗i,l) (5.57)

but this results in a contradiction, as then V∗(ci,l) would not be valid by
Theorem. 1 �.

5.4.4 Equivalence

Here we show that an equivalent solution can be obtained, by solving for a
smaller set of Particle Cells, that can then later be used to directly form V .
First, let us define

Definition 2. Let Vn be the optimal Particle Cell set for the natural Local
Particle Cell set Ln formed from L(y) as in 5.29
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Then we have the following result,

Lemma 3. Given Vn is optimal and valid for Ln then

V =

{
ci,l ∈ C

∣∣∣∣ (ci,l ∈ Vn, t(ci,l,Ln) = 3) or
(
ci/2,l−1 ∈ Vn, t(ci/2,l−1,Ln) < 3

)}
(5.58)

where V is the optimal valid Particle Cell set for L and ci/2,l−1 denotes the
parent Particle Cell of ci,l.

In words, V is constructed by taking all those Particle Cells that have type
filler in V , and taking the children of all Particle Cells in Vn that are of type
seed or boundary (Where type is defined relative to Ln).

Which means that finding for Vn with respect to LN is equivalent to V for
L. This is useful because, #L > #Ln and the maximum level lnmax in Ln is
one level less than lmax of L by construction (See 4.2.3). See Figure 5.3 below
for a 2D example. Proof :
Here we need to show that if Vn is the OVPC for Ln and we define

V̂(Vn) =

{
ci,l ∈ C

∣∣∣∣ (ci,l ∈ Vn, t(ci,l,Ln) = 3) or
(
ci/2,l−1 ∈ Vn, t(ci/2,l−1,Ln) < 3

)}
(5.59)

then V̂ = V where V is the OVPC for L. We do this by relying on Lemma 1.
That we can decompose our solution of

Vn = minhull

 ⋃
cli,l∈Ln

V∗(cli,l)

 (5.60)

and

V = minhull

 ⋃
cli,l∈L

V∗(cli,l)

 (5.61)

then since by construction for c∗i,l ∈ L there exists a c∗ni,l ∈ Ln such that c∗i,l ∈
D(c∗ni,l ), and l(c∗i,l) = l(c∗ni,l ) + 1 that if we can show that V̂(V∗(cn∗i,l )) = V∗(c∗i,l)
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then

V = minhull

 ⋃
cli,l∈Ln

V̂(V∗(cli,l))

 (5.62)

= V̂

minhull

 ⋃
cli,l∈Ln

V∗(cli,l)


= V̂(Vn)

the operations can be taken out of the union and minhull, due to the operation
always taking the smallest Particle Cell and the direct correspondence between
the two sets (Note: I have no formal proof of this property, but it seems to
follow from the definitions).

Therefore, we consider such a L = {c∗i,l} and Ln = {c∗ni,l } and consider

Vn = V∗(c∗ni,l ) and V̄ = V̂ (V∗(c∗ni,l )). Now lets assume that Vn is valid and
optimal solution with respect to Ln, and assume that V̄ is not valid with
respect to L.

If V̄ in not valid, then there must exist cvi,l ∈ V̄ such that

c∗i,l ∈ ND(cvi,l). (5.63)

Given this holds, then we consider the validity of Vn with respect to Ln. We
treat this in two cases.

First, suppose that l(c∗i,l) < l(cvi,l) + 1, and cvi,l ∈ Vn which implies that
l(cn∗i,l ) < l(cvi,l). Also, given c∗i,l ∈ D(cn∗i,l ) then

cn∗i,l ∈ ND(cvi,l). (5.64)

If cvni,l ∈ Vn, where cvi,l is the child of cvni,l , then since ND(cvi,l) ⊂ ND(cnvi,l ) then
also

cn∗i,l ∈ ND(cnvi,l ). (5.65)

This leads to Vn violating Theorem 1 with respect to Ln.
Now in the second case, l(c∗i,l) = l(cvi,l) + 1, implying that l(cn∗i,l ) = l(cvi,l).

However, this implies that cvni,l ∈ Vn as otherwise t(cvi,l,Ln) = 1 and l(cvi,l) =
l(c∗i,l). Therefore again since ND(cvi,l) ⊂ ND(cnvi,l ) then also

cn∗i,l ∈ ND(cnvi,l ) (5.66)

and Vn is invalid with respect to Ln.
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Therefore, given we assume Vn is valid w.r.t Ln then V̄ must also be valid
w.r.t L.

The second step is to show that when V̄ is optimal w.r.t L then also Vn
is to Ln. So again we assume that Vn is optimal, but V̄ is not. We follow on
from the proof of Theorem 2 which gives us that therefore there exists some
W such that cvi,l ∈ V̄ and cwi,l ∈ W and s(cvi,l) ⊂ s(cwi,l) and hence

cvi,l ∈ D(cwi,l). (5.67)

For this there are again two cases, one where cvi,l ∈ Vn and the other where
cnvi,l ∈ Vn where cvi,l ∈ D(pnv) and l(cnvi,l ) = l(cvi,l)− 1.

First, let us consider the case of cci,l ∈ Vn. We then have that cvi,l ∈ D(cwi,l).
However, since c∗i,l ∈ D(cn∗i,l ) and cwi,l /∈ V̄ means that

c∗i,l ∈ ND(cwi,l) (5.68)

which directly implies that

cn∗i,l ∈ ND(cwi,l). (5.69)

However, this would make Vn not valid.

Now in the second case we have cnvi,l ∈ Vn, and hence t(cnvi,l ,Ln) < 3. So we
know that,

c∗ni,l ∈ B(cnvi,l ) (5.70)

such that

c∗i,l ∈ ND(cwi,l). (5.71)

This now contradicts that W can be valid for L. Hence given Vn is optimal
for Ln, V̄ must also be optimal for L.

Now given there is a unique optimal solution then necessarilly,

V̂ (V∗(c∗ni,l )) = V∗(c∗ni,l ) (5.72)

for any c∗i,l ∈ D(c∗ni,l ), and l(c∗i,l) = l(c∗ni,l ) + 1, and from our arguments above

this leads to V̂(Vn) = V and concludes the proof. �
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5.4.5 Algorithm description

The above Theorems and Lemmas are used to form a class of algorithms we
call the Pulling Scheme that computes an optimal particle cell set V from an
LPC set L. In the previous chapter, in Section 4.2.3, we introduced the ideas
and concepts, and do not repeat this here. The algorithm descriptions in the
previous chapter focused on an implementation using explicit storage of the full
particle cell set C. A full algorithmic description of such an approach is given
in A.4.1, and it is the algorithm used in the benchmarking sections below.

As an alternative, we provide an additional pseudo-code for a more general
form of the algorithm that does not rely on explicit storage of the Particle
Cell tree. This form could be useful in situations where the memory cost
of storing the tree becomes prohibitive, or the APR is being iterated through
time. Alternatives to using such a tree include the use of hash tables, or sparse
data-structures to handle the Particle Cells. I foresee that such approaches
could be useful if the Pulling Scheme were used for other applications such as
the numerical solution of differential equations. In fact, in early iterations of
this work, the Pulling Scheme was implemented using a hash-tablestructure.
The mesh-implementation was later developed for its ease of parallelization
and cache-efficiency. In the case of LSFM data, the size of the full Particle
Cell structure is small in comparison to the raw images. Hence, the memory
cost is of little impact to its use; this does not apply in general.

5.4.6 Generic algorithm

The pseudo-code for a generic approach is outlined in Algorithms 5-8 and we
give a description below. We assume that a method exists for propagating
individual solutions on a given level, as in Algorithm 6, and do not describe a
specific implementation here. In the description, either L could be used or Ln
with then the application of Lemma 3. Therefore, if L is used lmax, and if Ln,
lnmax = lmax − 1.

Given that we can construct individual optimal solutions, the separability
property (Lemma 1), tells us that the optimal solution for the set L can be
constructed by taking the Particle Cell with the highest level l of all individual
solutions at each point in space y. Further, from Lemma 2 we can ignore all
ci,l ∈ L that have descendants in L. If we construct the set V by starting
from our maximum level lmax. We then know from Lemma 2, that if we add a
Particle Cell, this will be the optimal Particle Cell ci,l for that location as any
Particle Cells in L for which ci,l is a descendant cannot be in V . Therefore,
we can ignore these ci,l ∈ L when constructing L. We can achieve this by
introducing a new property, status, which indicates if the cell has descendants
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1.

The pseudo-code for the Pulling Scheme in Algorithm 5. In the algorithm,
a Particle Cell is set to IN-ACTIVE, if it has descendants in L, this is done
each time a seed type Particle Cell is checked (Algorithm 7). The next step
involves propagating the individual solution V∗(ci,l) of all seed type Particle
Cells on that level, and adding the Particle Cells in cii,lV∗(ci,l) to V if they are
not already in V . If the propagation step for ci,l results in adding a Particle Cell
to V , ci,l is added to a temporary particle set Tnext (Algorithm 6). Further, if
c∗i,l is added, any ci,l ∈ L, that for which c∗i,l is the descendant, are set to PRO-
POGATE, unless already IN-ACTIVE (Algorithm 8). This step is required
because, although these particle cells cannot be in V due to Theorem 1, they
can impact the solution through Lemma 1. The algorithm then iterates to the
next level lmax−1., with first assigning Tcurrent = Tnext, and setting Tnext = ∅.
The steps of adding ACTIVE Particle Cells from L to V and propagating the
solution for ci,l with status ACTIV E or PROPOGATE is repeated. Then a
final step propagating the solution of those ci,l in the temporary Particle Cell
set Tcurrent, and adding them to Tnext if they again add c∗i,l ∈ V∗(ci,l) to V . This
process is repeated until the minimum level lmin is reached, and V has been
constructed.

5.4.7 Memory and computational complexity

The memory and computational complexity depend on the exact implemen-
tation and data structures used. In 4.2.3 we discussed the complexity of the
mesh pyramid implementation used here. Here we, briefly sketch some argu-
ments that the memory and computational cost for a mesh-free implementation
should be O(#V) and this is worst-case O(N).

Let’s assume that the data structure has O(1) access for adding and check-
ing for Particle Cells. Also, we have the ability to iterate over Particle Cells
by level; the computational complexity should scale with O(#V). This scaling
can be seen from the fact that if we assume that all ci,l in L that have descen-
dants in L have been removed (Lemma 2). Then #L ≤ #V , since V contains
either the elements of L or their children. Therefore, given the operations
described per Particle Cell above, are all O(1) respect to #L, then the total
number of operations should be O(#V). Then also if the data structure has
an O(1) over-head per Particle Cell concerning #V then the memory overhead
should also be O(#V). Where we use the fact that the additional entries to L

1In the implementation in the previous section, instead of introducing a new property,
we extend the type property (with ascendant, ascendant neighbor, and propagate) their
function is the same
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Data: particle cell set L
Result: particle cell set V
Function pulling scheme(L)

/* Initialize status property of all particle cells in L
to ACTIVE */

foreach ci,l ∈ L do
status(ci,l)← ACTIV E

end
lc ← lmax
Tnext ← ∅ Temporary particle cell sets for propogating individual
solutions ;
Tcurrent ← ∅
/* Loop over the resolution levels, from finest to

coarsest (from the maximum level l) */

while lc > lmin do
/* Loop over all particle cells in L at level lc */

foreach ci,l ∈ L : l(ci,l) == lc do
if status(ci,l) == ACTIV E then

If particle cell is still active, add to set and propogate
solution;
V ← {ci,l,V}
propogate individual solution for level(ci,l,L,Tnext,V ,lc)

if status(ci,l) 6= INACTIV E then
set parents inactive(ci,l,L)

end
foreach ci,l ∈ Tcurrent : l(ci,l) == lc do

propogate individual solution for level(ci,l,L, Tnext,V ,lc)
end
Acurrent ← Tnext
Anext ← ∅
lc −− Level done, move to next ;

end
return V

Algorithm 5: Generating a optimal valid Particle Cell set V from the Local
Particle Cell set L
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Function propogate individual solution for level(ci,l,L,T ,V,l)
temp ← FALSE
foreach c∗i,l ∈ V∗(ci,l) : l(c∗i,l) == l do

if c∗i,l /∈ V then
V ← {c∗i,l,V}
set parents propogate(c∗i,l,L)
temp ← TRUE

end
if temp == TRUE then

If the solution adds new elements, add to temporary set to be
propogated to next level ;
T ← {ci,l, T }

Algorithm 6: Add those Particle Cells in V∗(ci,l) at level l

Function set parents inactive(ci,l,L)
lp ← l(ci,l)
ip ← i(ci,l)
while lp > lmin do

lp ← lp − 1

ip ← b ip2 c
if cip,lp ∈ L then

if status(cip,lp) == INACTIV E then
Has already been set to in-active, so parents have already
been checked ;

BREAK;
else

status(cip,lp)← INACTIV E

end

Algorithm 7: Sets the status of all parent Particle Cells of a seed ci,l in L
to INACTIVE
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Function set parents propogate(ci,l,L)
lp ← l(ci,l)
ip ← i(ci,l)
while lp > lmin do

lp ← lp − 1

ip ← b ip2 c
if cip,lp ∈ L then

if status(cip,lp) 6= ACTIV E then
Has already been set to in-active, so parents have already
been checked ;

BREAK;
else

status(cip,lp)← PROPOGATE

end

Algorithm 8: Sets the status of all parent Particle Cells of a boundary or
filler Particle Cell in L to PROPOGATE

that do not feature in V must be a parent of a node in V and thus represents a
constant cost (based on the isotropic neighborhood restricted one level change
for neighbors).

In the worst case #V = N
2d

(where d is the dimension and N is full maximal
sampling) if we assume that Lemma 3 is being used, or #V = N if it is not.
Therefore, worst-case scales in both as O(N).

5.5 Particle sampling

As in the 1D case, the last step given V , is to determine the particle locations
and sample them forming P∗ and the APR. In general dimension, we take the
identical approach to 1D 4.2.4. The set of points in P = {xp}Npp=1 are chosen
such that for each Particle Cell ci,l ∈ P a particle p is added to P as

xp(ci,l) = {Ω∗

2l
(ik + 1/2)} (5.73)

for ik = 1, .., d and Np = #V . The function, is then sampled at locations

fp = f(xp) to form P∗ = {fp}Npp=1. Such a sample satisfies the requirement
that #(xp ∈ N (y, R(y))) > 0. Figure 5.3, shows an example of Vn on the left
and then V and P on the (right). #(xp ∈ N (y, R(y))) is in all cases greater
than one, with maximum resolution areas, producing a local grid identical to
a pixel image representation. If different constraints on the reconstruction
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{V,P}Vn

Figure 5.3: Left the nOVPC Vn generated using Ln and the corresponding V and particle sampling P (right).

function are required, i.e. a different number of particles, or different layout,
these could also be used. Here, we again present the simplest case.

5.5.1 APR as {Vn,P∗}
From Figure 5.3 and Lemma 3, there is a redundancy in directly storing V ,
instead Vn could be stored along with each t(ci,l) for each cell (w.r.t Ln). In
this way, the particles could be sampled from Vn using

xp(ci,l) =

{ ∏
i

{Ω∗

2l
(ik + 1/4), Ω∗

2l
(ik + 3/4)} t(ci,l) = {1, 2}

{Ω∗

2l
(ik + 1/2)} t(ci,l) = 3

(5.74)

where then the locations of P are still implicit now from Vn and their type
t(ci,l). This representation results in lower memory overhead, but at the cost
of complexity. Again, preference depends on the use-case, but as a solution
to the RC, I believe the more costly, but simpler combination of {V ,P∗} is
preferable. (However, we use this form for file storage of the APR).

5.5.2 Optimality

For the 1D case, we introduced the concept of P being ’optimal’ for R∗(y), and
hence V . We can extend this concept by considering a similar integral where
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a sampling for a given resolution function R(y) that satisfies

#P =

∫
Ω

1

R(y)d
dy (5.75)

and #(y ∈ N (y, R(y))) > 0 for all y ∈ Ω. Again, intuitively, if we consider
1

R(y)

d
as the point-wise required density (defined now for the ’hyper-volume’

dependent on the dimension d), then again ignoring edge effects, this means
that satisfying 5.75 leads to this density being everywhere exactly realized.

So again if we consider, the integral 5.75 for the implied resolution function
R∗(y), as ∫

Ω

1

R∗(y)d
dy =

∫
Ω

1(∑
ci,l∈V φ(y, ci,l)

Ω
2l

)dd (5.76)

y

=
∑
ci,l∈V

1

= #V = #P (5.77)

as required, and therefore P∗ is optimal in the sense of 5.75. Hence, the Pulling
Scheme in addition to providing an optimal Implied Resolution Function also
provides an inherent ’optimal’ sampling in general dimension.

5.5.3 Integral neighborhood optimization

From Figure 5.3, we observe that a single ci,l results in a large, high-resolution
area in the solution. If we instead take Vn and create V in the following way

Vi =

{
ci,l ∈ C

∣∣∣∣ (ci,l ∈ Vn, t(ci,l,Ln) > 1) or
(
ci/2,l−1 ∈ Vn, t(ci/2,l−1,Ln) = 1

)}
(5.78)

where now boundary Particle Cells are also kept at their original resolution,
then, if we use the alternative neighborhood of

N (y, R(y))i = {x ∈ Ω : |(y − x)|
∫ 1

0

1

R(y + s(x− y))
ds ≤ 1} (5.79)

for the representation of the function as in 5.1, instead of the isotropic neigh-
borhood, then R∗(y,Vi) will also satisfy the Reconstruction Condition 5.2.
This then results in a smaller P∗ as shown in Figure 5.4. In practice this
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{V,P}
Integal 
NeighbourhoodVn

Figure 5.4: Left the nOVPC Vn generated using Ln and the corresponding V and particle sampling P (right)
for the integral neighborhood optimization that has been used in Chapter 6 and Chapter 7

results in a ≈ 10− 30% reduction in #V , and is used in Chapter 6 and Chap-
ter 7 below. However, although useful for single time-points, I believe again
the isotropic neighborhood may be superior for satisfying the RC especially
once time is integrated.

As in the isotropic neighborhood case, we can sample directly using Vn,
with only slight adjustment

xp(ci,l) =

{ ∏
i

{Ω∗

2l
(ik + 1/4), Ω∗

2l
(ik + 3/4)} t(ci,l) = {1}

{Ω∗

2l
(ik + 1/2)} t(ci,l) = 2, 3

(5.80)

Fulfillment of Reconstruction Condition

Now we briefly show that Reconstruction Condition is satisfied for the integral
neighborhood definition and R∗(Vi,y).

We have the integral interaction neighborhood

N (y, R(y))i = {x ∈ Ω : |(y − x)|
∫ 1

0

1

R(y + s(x− y))
ds ≤ 1} (5.81)

and show that if we are using the local resolution estimate L(y) = Eσ(y)
|∇f(y)| that

this neighborhood guarantees satisfaction of the Reconstruction Condition 5.1,
given that R(y) ≥ L(y) and the assumption on the Local Intensity Scale σ(y)
being sufficiently smooth over the integral path that σ(y) ≈ σ(x) can be used.
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Starting from the following bound as presented above,

ε(y) ≤
∑

p∈N (y,R(y))

|(y − xp)|
∫ 1

0

|∇f(y + s(xp − y))|dsξp(y) (5.82)

which we wish to satisfy the Reconstruction Condition, so

Eσ(y) ≥
∑

p∈N (y,R(y))

|(y − xp)|
∫ 1

0

|∇f(y + s(xp − y))|dsξp(y) (5.83)

which we can re-write as

1

Eσ(y)

∑
p∈N (y,R(y))

|(y − xp)|
∫ 1

0

|∇f(y + s(xp − y))|dsξp(y) ≤ 1 (5.84)

and substituting for L(y) and assuming σ(y) is O(1) over the interval gives

∑
p∈N (y,R(y))

|(y − xp)|
∫ 1

0

1

L(y + s(xp − y))
dsξp(y) ≤ 1 (5.85)

now given our reconstruction kernel conditions, this will hold if for every point,

|(y − xp)|
∫ 1

0

1

L(y + s(xp − y))
ds ≤ 1 (5.86)

now given the assumption that R(y) ≤ L(y) then the above will hold if the
following also holds

|(y − xp)|
∫ 1

0

1

R(y + s(xp − y))
ds ≤ 1 (5.87)

which is the integral interaction neighborhood stated above.

5.6 Technical additions

Here we discuss two additional issues that are useful for the following chapters.
First, we discuss possible choices of reconstruction schemes for f from the APR.
Second, we discuss the APR graph, which is used later for processing.
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5.6.1 Function reconstruction and interpolation

In the discussions in this and the previous chapter, we have not specified ξp(y).
Instead, just the two conditions is must fulfill∑

xp∈N (y,R(y))

ξp(y) = 1, (5.88)

ξp(y) ≥ 0.

In essence, any average over points within the neighborhood N (y, R(y)) is
valid. Here we briefly describe three different approaches that are used in
the following chapters, that produce reconstructions f̂ that satisfy the Recon-
struction Condition. Many other possible approaches exist, including using
B-Splines or Wavelets for reconstruction, however, we stick to the following
three simple cases here. Also, Chapter 9 discusses conditions for higher order
reconstruction, these can also be used for the APR as described above.

Piecewise constant reconstruction

This first approach, is practically, the most simple and efficient. A piecewise
constant reconstruction f̂pc that satisfies 5.88 can be constructed as

f̂pc(y) =
∑
ci,l∈V

fpφ(y, ci,l) (5.89)

where φ(y, ci,l) is defined as in 5.25. Due to its simple structure, 5.89 can
be very efficiently implemented and has low computational cost. Despite its
simplicity, it seems to produces subjectively ’good’ reconstructions for visual-
ization purposes. Because of these properties, we use it as the default recon-
struction throughout the rest of this work. The draw back of this approach is
not a ’smooth’ reconstruction.

Smooth reconstruction

Instead, in the second approach, smooth reconstructions f̂s can be used by
utilizing a kernel function ψ(x) ≥ 0 in the following way

f̂s(y) =

∑
xp∈N (y,R(y)) fpψ(x− y)∑
xp∈N (y,R(y)) ψ(x− y)

. (5.90)

Such smooth reconstructions could be useful for visualization purposes, when
piecewise constant ’artifacts’ may not be wanted, or for processing applications
requiring a smooth representation.
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Worst-case reconstruction

For the analysis below, it is useful to be able to create the worst-possible recon-
struction that satisfies 5.88, so we can show empirically that the Reconstruction
Condition holds. If we consider any point y ∈ Ω, let fmin = minx∈N (y,R(y))(fp)
and fmax = maxx∈N (y,R(y))(fp), then any reconstruction satisfying 5.88 follows

fmin ≤ f̂(y) ≤ fmax (5.91)

therefore, we define the minimum f̂min and maximum f̂max, worst case recon-
structions as

f̂min(y) = min
x∈N (y,R(y))

(fp), (5.92)

and

f̂max(y) = max
x∈N (y,R(y))

(fp) (5.93)

which represent upper and lower bounds on any reconstruction.

5.6.2 APR particle graph

Many processing tasks on images require the formulation of pixel images as
a graph, for example, graph-cut methods [21]. Pixels are set as the nodes,
and edges are created between adjacent pixels. Although the APR has chang-
ing resolution across the domain, a similar symmetric particle graph can be
constructed from the APR by using adjacent particle cells, or formally, an inte-
gral interaction neighborhood. Figure. 5.5 (left), shows such a graph restricting
neighbors across the faces of particle cells, analogous to a Von Neumann (or
face-connected) neighborhood. In a classical pixel image graph, each node
(pixel) would have the same number of neighbors. However, due to the adap-
tive sampling in the particle graph, the number of neighbors can vary as the
resolution adapts. However, the maximum number and the minimum num-
ber of neighbors is bounded. The minimum number of neighbors is 2d, as in
the comparable pixel graph, and the maximum n2d where d is the dimension
(However, empirically in 3D benchmark data the average number of neighbors
is less than 6.3).

In the face connected particle graph is done on a given APR across neigh-
boring Particle Cells, particle p0 and p1 will be neighbors if the line integral of
the inverse of the Implied Resolution Function is below a certain threshold

|(xp1 − xp0)|
∫ 1

0

1

R∗(xp0 + s(xp1 − xp0))
ds ≤ 1

3

√
9 + d− 1 (5.94)
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Figure 5.5: The APR paritcle graph, shown in 2D. This aligns with connecting the particles that are in face-
connected Particle Cell neighbours of the current Particle Cell.

where d is the dimension. In 1D this bound is 1, and ≈ 1.054 in 2D and
≈ 1.105 in 3D. Particle neighbors in the particle graph can be interpreted
as those particle pairs for which the difference between the two value will
be approximately E

σ(y)
where y is a position on the line segment between the

points. Note, that these points in dimension greater than 1 exceed the integral
neighbor bound by a small factor. If it is wished that the neighbours be
guarantee a Reconstruction Condition Ê, the APR can be construction with

E = 3̂E√
9+d−1

. Due to the isotropic nature of the Implied Resolution Function,
this will guarantee that extending the neighborhood, the particles on the edge
can be used for any reconstruction, within E.

5.7 Summary and main points

In this chapter, we have introduced the Adaptive Particle Representation
(APR) for arbitrary dimension and provided the technical details and proofs
for the main theoretical and algorithmic results in this Thesis that were de-
scribed using 1D in Chapter 4.

First, we stated the definition of the APR and the main results from the
previous section in a general dimension setting. Then we derived the Reso-
lution Bound. Following this, we provided the formal definitions of Particle
Cells, Implied Resolution Functions, and the Local and Optimal Valid Parti-
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cle Cell sets. Given these definitions, we then formally stated and proved the
theorems and lemmas on which the formulation of the APR relies. Based on
these results we gave a generic algorithmic description of the Pulling Scheme
and potential optimizations for particle sampling. Lastly, we discussed three
different reconstruction functions and the APR particle graph.

An attempt to provide a general formulation was made in this section,
to allow future development and extensions to be able to utilize the above
results. We provide steps in this direction with the discussions of extensions
in Chapter 9 (space) and Chapter 10 (time).

The ideas and methods given in the last two sections have many similarities
with existing techniques described in Chapter 3 or elsewhere, we discuss this
for the different features of the APR in Chapter 8.

Summary of the chapter

• Formulated APR and stated main results in general dimension

• Derived the Resolution Bound in general dimension

• Formally introduced Particle Cells and their Implied Resolution
Functions

• Stated and proved the main theorems and lemmas used to form the
APR

• Provided a generic description of the Pulling Scheme

• Discussed particle sampling including optimizations

• Detailed three reconstruction approaches used in this work

• Introduced the APR particle graph
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In this chapter, we empirically test and explore the properties of the APR
presented in the previous two chapters. We do this using two implementations.
The first, a simple 1D implementation for analytically defined functions written
in Matlab, and second, a shared memory parallel 3D implementation designed
for 3D LSFM data.

Using the 1D implementation, we first give examples of an APR with a
simple test case and explore the effect of changing the relative error E (Where
we use a constant local intensity scale). Doing this, we evaluate whether the
APR obeys the Reconstruction Condition. Following, we then look at the
reconstruction error of the gradient of the function and then explore how the
APR handles discontinuous functions.

The introduction and results for the 3D implementation a separated into
multiple sections. First, we outline the implementation and algorithmic choices
used in constructing the APR, where we use a varying Local Intensity Scale,
based on an estimate of the local range of the function (Using the statistical
definition of range). Second; we describe the process of how synthetic data is
created for the benchmarks. Then in the third and fourth section, we provide
the benchmark results using this implementation and synthetic data. In the
first benchmarks, we explore the properties of the APR, regarding the level of
information content, the Reconstruction Condition, and image size. Then we
introduce two benchmark datasets that we use as a proxy for different infor-
mation content and image size ratios. The first set of datasets is a collection of
images and APR with a fixed ratio of information content to image size. The
second dataset is a collection of nineteen real LSFM images of varying size,
specimen, and label. We also introduce the APR data structures that are used
in 3D. Lastly, in the second set of benchmarks, we explore the computational
cost and scaling of forming the APR and the memory cost of storing the APR
in file storage.
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6.1 1D benchmarks

In this section, we explore and test the APR using 1D functions. We use the
most simple case where the Local Intensity Scale σ(y) is a constant. First,
we will briefly describe the algorithms that were used and then follow with a
discussion of various results.

6.1.1 Implementation

The results in this section were produced using scripts in Matlab. The code
takes a function f over a fixed domain Ω that can be queried at any point
y ∈ Ω. Given a user-set relative error E and the input function, the APR is
then be computed.

The Pulling Scheme was implemented as outlined in 4.2.3 and A.4.1, using
storage of a full representation of the Particle Cell set C from lmin to lmax− 1,
where Ω

2lmax
represents the smallest distance between sampled particles. The

equivalence optimization 4.2.3 was used. However, the integral neighborhood
optimization was not used. lmax was set by finding the numerical maximum
of the absolute value of the gradient, computed using central differences, and
finding its associated particle cell level using l = max(lmin, blog2( Ω

L(y)
)c)) and

lmin was set to one. The natural Local Particle Set, Ln was then calculated
by iterating over the domain at a sampling defined by Ω

2lmax
. Ln was created

by calculating L(y) and then determining the associated Particle Cells setting
and then setting the values in the C structure to one (For more details see the
description of the 3D pipeline in A.4.1).

We tested this pipeline, using a numeric, and symbolic version. In the
symbolic version, all the function and gradient calls were symbolically evalu-
ated. In the second, the numeric version, the function sampled at a spacing

Ω
2lmax

was the input of the function. L(y) was computed either using central
differences for the numerical version. The pulling scheme was then used to
calculate Vn and from this V . Lastly, the particle set P∗ = {fp} was formed
by sampling the function. As particle locations do not align with the sampling
used in the previous steps when using the numerical computation, linearly in-
terpolated values were used. Unless explicitly stated, all results are shown for
the numerical version.

6.1.2 1D example

Here, we explore the APR for a simple 1D function for a function composed of
a narrow negative and broad positive Gaussian function. Figure 6.1, shows the
APR represented as particles at fp in green, and a piecewise linear interpolation
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Figure 6.1: The APR with E = 0.05 (left) and E = 0.3 (right) for f(y) = e
−(x−0.5)2

0.05 − e
−(x+0.3)2

0.001 with
σ(y) = 1 on the domain Ω = [−2, 2]. The observed reconstruction errors (normalized infinity norm) are given
inset for E∗pc a piecewise constant reconstruciton, E∗wc worst case reconstruction, and E∗lin piecewise linear
reconstruciton. For E = 0.05, #P∗ = 176, and lmax = 12, for E = 0.3, #P∗ = 51, and lmax = 9.

in blue, for a high relative error E = 0.05 and low relative error E = 0.3
(Function definition in caption). We only use this example here; however, the
results are consistent across general differentiable functions that have been
tried. From the two plots, we can see that the particles are adapting to the
different length scales in the problem, having a low density of particles in the
flat areas and resolution increasing near the two peaks. Further, we can see
that the impact of increasing the relative error is an increase in the resolution
in the already higher resolution areas. In the inset, we show the observed
reconstruction errors E∗ of the two APRs for a range of different reconstruction
methods. We define the observed reconstruction error E∗ for a set of points x̄
as

E∗ = max
x∈x̄

(
|f̂(x)− f(x)|

σ(x)

)
(6.1)

where f̂ is the reconstructed value from the APR. A subscript is usually given
to indicate which reconstruction method was used, and x̄ is the set of all
points sampled at a spacing of Ω

2lmax
. For the 1D examples, we use three

different constructions. E∗pc is based on a piecewise constant nearest neighbor

reconstruction f̂pc, E
∗
wc is the worst-case taking the maximum reconstruction

error for both f̂min and f̂max as described in 5.6.1, and E∗lin is from a piecewise
linear (between particles) reconstruction. Figure 6.2 shows the reconstructions
for the three cases for the APR with E = 0.3. For the case of E = 0.05 the
reconstructions, except the worst-case, are indistinguishable by eye from the
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Figure 6.2: Examples of three different reconstruction methods for the E = 0.3 APR from Figure 6.1. The left
plot shows the maximum f̂max (light blue) and minimum f̂min (grey green) worst-case reconstructions (5.6.1)

with the original function plotted in transparent blue. The right plot shows piecewise constant interpolation f̂pc
(green) and piecewise linear inteprolation. The original function is plotted in transparent blue.

function. From theory, this observed reconstruction error should be less than
or equal to E for all of these methods. Returning to the values in Figure 6.1,
we see that this is the case. As expected, the worst-case reconstruction has
the highest value, followed by the piecewise constant, and then piecewise linear
reconstructions. Next, we show details of the APR formation, and how the
change of resolution between the two relative error values arises. The increase
in E, from 0.3 to 0.05, results in a scaling of the Local Resolution function L(y),
shifting it to a smaller value. The lower values then result in a more constrictive
Resolution Bound resulting then in a smaller Implied Resolution Function.
This is shown in Figure 6.3 where the Implied Resolution Function R∗(y)
(green) and the Local Resolution Estimate L(y) (blue). However, across these
figures, discerning the changes in resolution in high-resolution areas (small
R∗) is difficult. However, this is easily done instead by directly visualizing the
particle cell level l. Figure 6.4, shows the changes in resolution by particle cell
level l for the two different relative errors. We note that the particle cell level
l for the higher relative error E = 0.05 seems to be more responsive to the
features of the function then E = 0.3.

6.1.3 Reconstruction Condition

Above we showed that the Reconstruction Condition holds for two values of
relative error E. But, does this also hold for arbitrary values of E? To address
this, we computed the APR and reconstruction errors E∗ for 200 values from
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Figure 6.3: Local Resolution Estaimte L(y) (blue) and Implied Resolution Function R∗(y) (green) for the
E = 0.05 (right) and E = 0.3 (left) examples from Figure 6.1.
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Figure 6.1.

118



Chapter 6. APR Validation

0 0.2 0.4 0.6 0.8 1
Relative Error (E)

0

0.2

0.4

0.6

0.8

1

O
bs

er
ve

d 
E*

E
E*

wc
E*

lin
E*

pc

0 0.2 0.4 0.6 0.8 1
Relative Error (E)

0

0.2

0.4

0.6

0.8

1

O
bs

er
ve

d 
E*

E
E*

wc symbolic

E*
wc numeric

Figure 6.5: The observed reconstruction errors for the APR and function as in Figure 6.1 for a linear range
of 200 values of relative error E from 0.001 to 1. In both plots the dotted dark blue line indicates E∗ = E,
the representing Reconstruction Condition that the APR reconstruction should be below. The left plot shows
the observed reconstruction errors for worst case E∗wc (blue), piecewise linear E∗lin (light blue) and piecewise
constant E∗pc (green). The right plot shows the worst case reconstruction error E∗wc when the gradient is
computed analytically (green) and numerically using central differences (blue).

0.001 to 1 for the three reconstruction methods. The results are plotted in the
left plot in Figure 6.5. For small values of E the reconstruction errors show a
linear response to E, and for higher values show a piecewise constant response.
Across all values, the worst-case reconstruction, as predicted, is the highest.
Further, although it comes close to the bound, represented by the dotted line,
it never crosses it. These results, therefore, confirm that the Reconstruction
Condition holds across E for our test function.

6.1.4 Numeric vs. symbolic gradient

The derivation of the APR assumes full knowledge of the gradient of the func-
tion ∂f

∂x
. In 4.3.2, we briefly discussed some theoretical arguments on how

errors in the gradient would affect the observed reconstruction error E∗. To
test the impact of this, we compared the worst-case reconstruction error of
the APR computed with exact knowledge of f through symbolic evaluation of
∂f
∂x

and the numeric version computed from knowledge of f only at samples of
distance Ω

2lmax
. All previous results have been with the numeric version. The

result is shown in the right plot of Figure 6.5. For small values of E the results
appear identical, however, for a few points at higher E, there are some differ-
ences. Indeed, the reconstruction error for the numeric code is smaller, except
at isolated points for E near 1. Arguably, since the bound only requires E be
below the bound, the lower value results from more particles being used, and
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therefore the higher analytical solution is ’better’. However, in this example,
the difference between the two regarding the number of particles was small
(1-2).

6.1.5 Number of particles

Intuitively, we should expect that the smaller the E, the more particles that
should be required to form the optimal solution to the Resolution Bound with
Particle Cells, and therefore the number of particles should increase with in-
creasing E. This is the case, and is shown in the left plot of Figure 6.6. The
plot shows both the numeric and analytic version number of particles against
the relative error E. Only one curve can be seen because the differences are
indistinguishable when visualized this way. The plot shows that not only does
the number of particles increase with decreasing E, that it does so in a non-
linear way. To explore this, in the inset of Figure 6.6 left we show the same
results in a log-log plot. We find what appears to be two different regimes,
corresponding to linear regions in the log-log plot. In the figure, we also show
linear fits for these two regions. For small values of E, the number of particles
Np, appears to scale like E−0.86 and for higher values like E−0.56.

6.1.6 Gradient

As briefly discussed in 4.3.6, satisfying the Reconstruction Condition, only
guarantees the reconstruction of the function f at a specified relative error E,
and does not bound the derivative. However, the error of the gradient should
still scale with E. We empirically explore the gradients reconstruction error,
defined as

E∗grad = max
x∈x̄

 | ∂̂f∂y (x)− ∂f
∂y

(x)|
σgrad

 (6.2)

where we set σgrad to be equal to the maximum absolute value of the gradient
across the interval. The normalization by the maximum absolute value of the
gradient is to make the results comparable to the E bound for f . The results
are shown in the right plot of Figure 6.6, where the gradient is computed using
both 1st order, and 2nd order in h DC-PSE [115] derivative estimates. We find
that in both cases as the error decreases in E. For the first order derivative, the
error is above the bound set by E, however, for the higher order 2nd derivative,
we see that the reconstruction error in the gradient is always below E.
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Figure 6.6: The left plot shows the number of particles (Np = #V) for the APR and function as in Figure 6.1 for
a linear range of 200 values of relative error E from 0.001 to 1. Inset is the same data (blue) on a log-log plot,
with two linear fits (green). The first fit is for E ≤ 0.05, with exponent −0.86 and R-Square: 0.994 and second
for E > 0.05 with exponent −0.56 and R-Square: 0.975. The right plot shows the observed reconstruction error
of the gradient computed on the same series of APRs. The observed reconstruction error of the gradient is the
infinity norm of the gradient normalized by the maximum absolute value of the gradient. The dotted line shows
the relative error bound, the light blue shows a first order gradient, and green second order gradient.

Later in Chapter9, we discuss, and show examples of, how using the same
framework the APR can be extended to guarantee the observed reconstruction
error E∗grad in addition to E∗.

6.1.7 Discontinuities

Lastly, for the 1D case, we explore the case where f is no longer in C1 and
contains discontinuities. We do this by adding two Heaviside step functions to
the previously used example from Figure 6.1. The existence of discontinuities
violates the assumptions of the formulation of the APR. However, practically
discontinuities can be handled when using the numerical version, given the
introduction of a fixed maximum level lmax for the initial sampling. We do
this by using sampling set by the previous example for the input f{x̄}, but
letting lmax for the APR be determined by the numerical computation of the
derivative and L(y). We show the resulting APR’s for the same relative errors
E = 0.05 and E = 0.3 in Figure 6.7, with the observed reconstruction errors
again inset. We find that the two piecewise constant reconstruction meth-
ods still satisfy the Reconstruction Condition, but the worst-case method does
not. The piecewise reconstruction methods meeting the bound is the result of
only computing E∗ at the sampling points given by x̄, which coincides with
the highest sampling distance in the APR. Therefore, at the high-resolution
regions, the reconstruction is simply the particle values fp for these meth-
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Figure 6.7: The APR with E = 0.05 (left) and E = 0.3 (right) for f(y) = e
−(x−0.5)2

0.05 − e
−(x+0.3)2

0.001 + 0.5 ∗
Heaviside(x)− 0.3 ∗Heaviside(−.5− x) with σ(y) = 1 on the domain Ω = [−2, 2]. The observed reconstruction
errors (normalized infinity norm) are given inset for E∗pc a piecewise constant reconstruciton, E∗wc worst case
reconstruction, and E∗lin piecewise linear reconstruciton. For E = 0.05, #P∗ = 200, and lmax = 18, for
E = 0.3, #P∗ = 57, and lmax = 9.

ods. However, the worst-case reconstruction effectively uses all points within
R∗(y). In this case, the reconstruction fails at the discontinuity. However, the
same would occur for any discrete sampling across the discontinuity using an
isotropic kernel with support greater than one point.

6.1.8 Summary

In the above, we have briefly shown that the results from the previous methods
section hold, at-least for the basic noise-free example we have shown. We return
to using this implementation in Chapter 8 in a noisy scenario for comparison of
optimality results with wavelets. However, the results above are representative
of all 1D functions I have explored in work not presented here. We explore
issues regarding how the adaptation relates to information content, noise, and
computational issues, data structures, and storage in the 3D case we present
next.

6.2 3D florescence image implementation

In this section, we briefly outline how we have implemented the steps for form-
ing the APR for noisy 3D fluorescent images. We make use of the optimizations
for the integral neighborhood sampling (5.5.3) and equivalence optimization
(4.2.3). For the Pulling Scheme, we use explicit storage of C as described in
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Figure 6.8: Left compares the adaptive sampling of two regions of labeled cell nuclei in the same image stack
(Dataset number 6 from Table A.1). One of the regions is brighter than the other (left panel). The centre left
panel shows adaptive representations sampling based on the absolute intensity. The right panel shows adaptation
using a Local Intensity Scale calculated from the image and shown in the centre left panel. The use of the Local
Intensity Scale allows both regions to be correctly resolved (right). The schematic on the right shows the basic
idea behind the Local Intensity Scale we use here. The local intensity scale should be slowly varying and reflect
the range of intensities (from highest to lowest) of objects within a set length scale.

4.2.3 in 1D and given in with algorithm steps given in A.4.1. Here we provide
an outline of the implementation choices that differ from the 1D case above.
A.4.1 gives additional technical details for the steps. Note, in this section as
we are now dealing with images, we will use I to represent the original noisy
input image, instead of f as previously used. When implementing the APR for
3D LSFM data, three main choices had to be made. First, how to calculate the
gradient magnitude |∇I(y)|, second, what form of Local Intensity Scale σ(y)
to use and how to calculate it, and last, how to sample the image intensity at
particle locations Ip = I(yp). All decisions have been made with the objective
of meeting the Representation Criteria through optimizing both robustness to
noise and computational efficiency.

6.2.1 Gradient estimation |∇I|

To calculate the gradient magnitude |∇I| from the image we use smooth-
ing cubic B-splines [129]. Smoothing cubic B-splines provide robust gradient
estimation in the presence of noise. However, they require the setting of a
smoothing parameter λ to be set according to the noise level. Further, we
have implemented the fitting of the B-Splines using the recursive IIR approach
[129]. Using the recursive approach provides a computational cost that is O(1)
concerning λ, i.e. the computational cost is constant regarding a change in the
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Figure 6.9: Flow chart showing APR pipeline for fluorescent images, first smoothing B-splines are fit to the image,
then the gradient magnitude |∇f | and local scale σ(y), is computed. The Local Resolution Estimate L(y) is
then computed and used to construct the input for the Pulling Scheme that then computes the OVPC set V.
The particles are then sampled from the original image, forming the APR. Required parameters are given above
the boxes in purple.

smoothing scale λ.

6.2.2 Local Intensity Scale σ

For the effective adaptation to the content of the LSFM data requires the
addition of a non-constant Local Intensity Scale σ(y). We illustrate this need
in the left panel of Figure 6.8. It shows two regions of an LSFM image of
cell nuclei that show a large difference in brightness, despite both showing
comparable cells. The difference is a result of the varying local intensity scale
in LSFM data that was discussed in detail in Chapter 2. In the absence of
a dynamic Local Intensity Scale, only the bright region is correctly resolved,
with the dim nuclei being under-sampled (or no adaptation for a lower constant
scale). To correct for this, we use a spatially varying Local Intensity Scale that
is a smooth estimate of the local range of the image as shown in a schematic
on the right of Figure 6.8. This Local Intensity Scale compensates for the
varying brightness levels across the image and allows for the adaptation to
both bright and dim regions, as seen in the last two panels in the figure. The
Local Intensity Scale for the two different regions is also shown, displaying the
large difference between the two areas of the same image.

To compute and define a local range of intensity in the image requires the
addition of a length scale. For this, we use the intrinsic length scale in the
image from the image formation process. The smoothing window in each di-
rection is set proportional to the average width of the point spread function
(PSF) of the microscope used. Further, two minimum threshold parameters
σTH are introduced to prevent the resolving of background noise that would
occur in their absence (Figure A.4). As mentioned, for the Resolution Bound
to hold, the Local Intensity Scale must be sufficiently smooth (See 4.3.5). Prac-
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tically, we can not guarantee this condition for a nonconstant σ(y). However,
setting the window proportional to the PSF and calculating σ(y) from a once
down-sampled image satisfy this condition sufficiently for the Reconstruction
Condition to hold empirically (see benchmark section below). The calculation
requires a series of local mean window estimates. These are implemented using
the ideas of integral images, also known as summed area tables [33]. Summed
area tables are a recursive approach resulting in the computational cost to be
independent of the length scale (window size) used. A detailed description of
the Local Intensity Scale is given in A.4.1.

6.2.3 Intensity estimation Ip

Two methods are used to estimate intensities Ip from the image I{ȳ}. Be-
cause the image is noisy, a direct evaluation of the closest pixel value no longer
provides the best estimate of the noise-free intensity value at xp. For particles
in particle cells at pixel resolution, the intensities are median filtered in each
direction and then sampled. The use of a median filter is based on the edge
preserving properties of the filter and that the high-resolution areas are local-
ized near large gradients. For particles in a larger particle cells, i.e. with level
l > lmax we use the average intensity of the pixels contained in the particle cell
for the value of Ip. This then allows for an adaptive estimate of the intensity
Ip that uses the scale information inherent in V . A more detailed description
is given in A.4.1.

6.2.4 Reconstruction methods

For the comparison of the APR with images, a reconstruction method must be
used. In 5.6.1 we discussed the reconstruction methods used in this section.
Unless otherwise explicitly mentioned, it should be assumed that the piecewise
constant reconstruction method is used. This was chosen for its computational
efficiency, simplicity, and effectiveness.

6.2.5 Pipeline and parameters

A summary of the algorithmic steps required to form the APR from an input
image I{ȳ} are shown in Figure 6.10. The parameters that must be set are
shown in purple. These are the smoothing parameter λ for gradient estimation,
the threshold parameters for the Local Intensity Scale σTH , the point speed
function width PSFw, and the desired relative error E. A detailed discussion
of all parameters, their interpretation, and how they have been and can be, set
is given in A.7. For all of the benchmarks given below, the parameters that
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Figure 6.10: The figure shows the main steps in the pipeline for creating the APR using a 2D example image
(Dataset number 10 Table A.1). First the Local Scale Function σ(y) (Local Scale Function is red where the
value is below the minimum threshold σth) and gradient magnitude |∇I(y)| are calculated, and then combined
to compute the Local Resolution Estimate L(y) (See ∗). This is then used to form L and input to the Pulling
Scheme, the red arrow, to form V. The Implied Resolution function R∗(y) is shown (See ∗). V is then used
to define the particle locations and sample the function and create the APR left panel. The left side of the
last panel shows the APR piecewise constant reconstructed image. ((∗) for both the Local Resolution Estimate
and the Implied Resolution Function, the particle cell level has been interpolated to each pixel, to allow better
visualization)

have been used are described in a section for each in A.9. To give the reader
some intuition of the steps required to form the APR, Figure 6.10 shows the
main steps for a single slice of an LSFM image.

6.3 3D synthetic data

To be able to test the properties of the APR for 3D LSFM data we use syn-
thetically generated image data. We generate synthetic images following our
Object function and image formation model described in 2.2.1 and 2.2.4. Syn-
thetic data is used as it allows us to control image parameters, such as im-
age size, content, and quality in addition to full knowledge of the noise-free,
ground-truth image and Object function. We provide an overview below and
give additional technical details in A.8. The synthetic image generation was
implemented in C++ using the ArrayFire GPU library [12].

6.3.1 Object function

We follow the model of an LSFM image as discussed previously in 2.2.1. Where
we define our Object function (ignoring time) defined on Ω ⊂ R3 with M
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objects as

O(x, y, z) =
M∑
i=1

Oi(x, y, z) (6.3)

where the function is set to zero outside of Ω for simplicity. Each object is
composed as

Oi(x, y, z) = BiO
∗(x− xi, y − yi, z − zi) (6.4)

where O∗(x, y, z) is a piecewise constant function of compact support, that we
call the template object, and Bi is a constant we call the brightness of object
i. In all but one case, the template object used below is a sphere.

6.3.2 Image formation

Given a particular Object funtion, we form an image I{y}, approximating the
image formation process described previously in 2.2.4. The first step involves
the simplified version of Eq 2.3 and discrete approximation of

I∗(x, y, z) =

∫∫∫
Ω

(O(u, v, w) + b)

PSF (x− u, y − v, z − w)dudvdw

(6.5)

where b is set to be a constant and PSF as set as a non-spatially varying
Gaussian with a standard deviation in each direction of PSFi. For efficiency,
the convolution is only done once over the template object, allowing a high
sampling approximation to the Object function, without explicitly storing it.
The ground truth image is then formed by integrating over the pixel (voxel)
volume (hx, hz, hy) to create the pixel intensity for each location as

Igt{x, y, z} =

∫ x+hx/2

x−hx/2

∫ y+hy/2

y−hy/2

∫ z+hz/2

z−hz/2
I∗(u, v, w)dudvdw (6.6)

for fixed locations ȳ, the spacing of pixels and pixel volumes does not need to be
the same (isotropic). However, this is the case for the benchmarks here. Note,
we have also integrated of z dimension as a simplification. Again a discrete
approximation to the integral is used. The last step involves the corruption of
the image by noise as

I{x, y, z} = Igt{x, y, z}+ η(x, y, z, Igt{x, y, z}) (6.7)
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Object Function Ground Truth Image Original (Noisy) Image APR Reconstructed Image

O (y)

O (y) I gt {y} I {y} tI {y}

Figure 6.11: Flow chart showing the generation of synthetic images used for benchmarking the APR. First
template objects are generated of a certain size, given locations (xi, yi, zi) , and brightness Bi, to define the
Object function O(y) (left). The Object function is then blurred through convolution with a Gaussian kernel
PSF , and then sampled to produce the Ground Truth Image Igt{y} (center left). This ground truth image is then
corrupted by a Gaussian approximation to Poisson Noise η, to generate the Original Image I{y} (center right).
This original image is then transformed into an APR. The APR can be then used to produce a reconstructed
image Î{y} that can be compared with both the original and ground truth image for benchmarking.

where η(x, y, z, Igt{x, y, z}) ∼ N (Igt{x, y, z}, Igt{x, y, z}) a Gaussians noise
with mean and variance equal to the intensity of the pixel as an approxi-
mation to Poisson noise [76]. The image I{x, y, z} at locataions ŷ we denote
as I{ŷ}, it is this image that is transformed into the APR.

6.3.3 Summary

Figure 6.11 provides an example of 2D slices of the steps in the synthetic image
generation pipeline. Throughout the benchmarks below, we alter the synthetic
images regarding image size, information content, quality, and sampling. We
will briefly describe how this is done for each, relating to the parameters men-
tioned above. Figure 6.12, provides examples of what the original image of a
fixed sphere template looks like under different conditions.

Image size

The image size can be changed by setting the appropriate size of the domain
Ω, pixel locations y and pixel size hx, hy, hz.

Information content

Given our Object function model of the image, we can define the level of
information content to be proportional to the number of objects M in the
image. Therefore, we can scale the image content for a given size image and
sampling, by increasing the number of objects M . The objects are given
random locations uniformly distributed across the domain and often have a
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random uniform distribution of brightness Bi, within the range Bmin and Bmax.
An example is shown in the right image in Figure 6.12.

Image blur

We alter the degree of image blur and its shape using the width of the Gaussian
kernel and its standard deviation parameters PSFi. Here, we show results for
three levels of blur; we call small, medium, and large blur. They correspond to
a standard deviation in terms of pixels of 1, 3, and 6 respectively. Figure 6.12
in the left most column provides an example of how these blur kernels impact
the same template.

Image quality

Here we consider either noise-free, that is η is set to zero, or the noisy case
using a Poisson noise approximation. The image quality can be then altered, by
changing the relative magnitude of the η compared to the object brightnesses
Bi. The mean of η within any object i can be approximated by a combination
of b+Bi. Therefore, we can increase or decrease the image quality by increasing
or decreasing the ratio of Bi

Bi+b
. This is done by keeping a fixed average object

brightness Bi and then changing the background b. Hence, we are altering the
average Peak Signal to Noise Ratio (PSNR) of the image. We show results here
for three levels of image quality we call low, medium and high Image Quality
(Abbreviated to Qual in figures). Figure 6.12, third column gives examples for
these levels of image quality.

Sampling

Lastly, the degree of sampling can be changed. This involves decreasing the
pixel size hx, hy, hz and sampling y while keeping all other variables fixed in
real variables. Practically, this means the PSF width PSFi defined in pixels
has to be appropriately increased. The increase in sampling can be thought of
as zooming in on the object, as with a camera lens.

6.4 APR properties benchmarks

All benchmarks were run using the 3D pipeline described above that has been
implemented in a C++ Library using OpenMP shared memory parallelism for
most algorithm steps. A workstation running Ubuntu, Xeon E5-2660 v3 (25M
Cache, 2.60 GHz), 64 GB ram was used to run all benchmark and applications
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Figure 6.12: A summary of the different groups of synthetic images used in the benchmarks. The first column
shows the three levels of blur used. The second column shows examples of the APR reconstruction using Îpc for
three relative errors E, for the medium blur noise-free case for a close up of a sphere object template. The third
and forth columns show the original image, and APR reconstruction (E = 0.1) for noisy images for the medium
low and high image quality levels used. The left image shows the original image and reconstruction for medium
blur and image quality with E = 0.1, showing the random distribution of object location and brightness Bi.

below. In this section, we will give a description of each benchmark and
describe the results and give the exact parameters used in A.9.

6.4.1 Noise-free Reconstruction Condition

In the first set of benchmarks, we assess if the Reconstruction Condition holds
for noise-free synthetic images. The benchmarks are similar to those run in
the 1D case above. The details of all the parameters used are given in A.9.1.
For these benchmarks, we again show the observed reconstruction error which
as for the 1D case above is

E∗ = max
x∈ȳ

(
|Î{x} − Igt{x}|

σ(x)

)
(6.8)

that is the infinity norm of the pointwise reconstruction error relative to the
computed Local Intensity Scale σ at that point. The observed reconstruction
error was calculated at all pixel locations in the original image ȳ.

In these benchmarks, the number of objects is held fixed (five), and for a
given E an image is generated with randomly placed objects with brightnesses
that vary randomly over an order of magnitude. The first plot in Figure 6.13
shows the observed reconstruction error E∗ for piecewise constant reconstruc-
tion and for 40 values of E, and 40 repetitions for small, medium and large
blur. For all blurs and E, the reconstruction error is below the dotted line that
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Figure 6.13: The first plot, on the left axis shows the observed reconstruction error E∗, Igt the ground truth and

piece-wise constant reconstructed image Îpc for a noise-free input image, the dotted line is E∗ = E, representing
the Reconstruction Condition. The shaded areas represent an estimate of the standard deviation and the solid line
the mean. The right axis shows the mean number of particles in the APR. Both are plotted against the relative
error bound E shown for synthetic data small, medium, and large levels of blur as shown in Figure 6.12. The
second plot shows the medium level of blur benchmark, but showing the observed reconstruction error for worst-
case, piecewise constant and smooth reconstruction methods (See 5.6.1). Each cross represents an individual
APR and Image comparison.

represents E = E∗ the Reconstruction Condition. The second plot in the figure
shows the medium blur benchmark but using the three different reconstruc-
tion methods. The piecewise constant and smooth reconstruction methods
obey the Reconstruction Condition. However, for the worst-case reconstruc-
tion, we find three points out of 1600 realizations do not satisfy the bound, and
they sit slightly above it the dotted line. This breaking of the Reconstruction
Condition could arise from the smoothness assumption for the Local Inten-
sity Scale failing at these points, or enter through a numerical error in L(y)
or other transform steps. Another important observation is the tightness of
the Reconstruction Condition when assessed by the worst-case reconstruction.
This implies that the APR is effectively adapting, as the worst-case recon-
struction is almost exactly E. These two benchmarks used sphere template
objects, to test whether the results were affected by the geometry of the tem-
plate, we used an anisotropic ’Octopus’ template (See Figure A.4), shown in
the first plot in Figure 6.14. Comparing the results to the sphere template
results, we see little qualitative, except the response appearing more linear for
higher E for the octopus template. These results are consistent with running
other benchmarks with a variety of templates. Based on this, for the rest of
the benchmarks presented here, we only use our sphere templates, due to their
computational simplicity.

In summary, except a few points, we find the Reconstruction Condition
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Figure 6.14: The first plot is a repetition of noise-free benchmark in Figure 6.13 with octopus template image
(see Figure A.4) used instead of the sphere template for the Object function. The second plot shows the observed
reconstruction error E∗ for piecewise constant reconstruction for a noisy image. The blue line shows the infinity
norm of the observed relative error E∗ in response to changing relative error bound E with a noisy image (medium
quality and blur) as input to the APR against the desired bound E. The Reconstruction Condition E = E∗ given
by dark blue dotted line. We see the observed reconstruction error reaches a lower bound which it does not
decrease below and therefore is above the bound for small E. The green line shows the result when noisy
intensities fp are replaced with noise-free ground-truth intensities fgt,p, but the noisy sampling is used. In this
case, the observed relative error now obeys the bound for all E. The solid blue line shows the average observed
infinity norm of the observed relative error E∗ for the original images

holds, despite no guarantee on this due to the non-constant Local Intensity
Scale σ. Because, the worst-case reconstruction (almost) meets the bound,
then any reconstruction method using a weighted average of points will also
meet the Reconstruction Condition. Therefore, in the noise-free case, the APR
guarantees a user set reconstruction error E relative to a local intensity scale,
and therefore we conclude that for these cases it satisfies RC2. In addition to
the reconstruction error, for the first and third plot, we also provide the average
number of particles for the APR for a given relative error E. As expected
intuitively, like in the 1D case, the average number of particles monotonically
decreases as E increases. However, in these examples, instead of having two
regimes, there appear to be multiple scaling regimes that depend on both the
template and the size of the blur kernel used. One observation is that for low
blur, the number of particles is much less sensitive to E, then for the higher
blur images that show much larger gradients in response to E.

6.4.2 Noise corrupted Reconstruction Condition

In reality, however, LSFM data is corrupted by noise. In 4.3.3, we gave an
argument that we would expect the observed reconstruction error E∗ to reach
a lower bound as E → 0. Indeed, we see this in practice. In the first plot of
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Figure 6.15: The left axis of the first plot shows the PSNR of the reconstructed APR from a noise corrupted
image, normalized by the PSNR of the APR with E = 0.001. The right axis shows the ratio of the mean squared
error (MSE) of the APR reconstructed image over the MSE of the original image compared to the ground truth,
plotted against relative error bound E. The second plot also shows the observed PSNR against the relative error
but for medium image quality and small, medium and large image blur.

Figure 6.14 we repeat the same experiment for medium blur case presented
in Figure 6.13 right, but for a noisy input image with medium image quality.
We see that for values of E > 0.2 the observed reconstruction error decreases
with E, however, beyond this point it reaches a lower bound and no longer in-
creases. For values of E < 0.1, the observed reconstruction error is then above
E violating the Reconstruction Condition. Although, the analysis, relies on
the adaptation being correct, and the lower bound arising only from the uncer-
tainty of the noise-free values of fp. To discriminate the source of the bound,
we also calculated the observed reconstruction error when the noisy fp are re-
placed with intensities from the ground truth image fgt,p (i.e. without noise),
but still with the noisy construction of V and particle placement. We find that
in this case (shown by the green curve) the Reconstruction Condition is again
satisfied. We find similar results for the low and high image quality results,
with the lower bound shifting appropriately. These results indicate that the
approximation of V , and the Implied Resolution Function R∗(y) are relatively
robust to noise in our benchmarks. Then, given the observed reconstruction
error E∗ reaches a lower bound, how should we choose E in the presence of
noise? To explore this question, we look at the observed Peak Signal to Noise
Ratio (PSNR) of the reconstructed image. Here, we have calculated the ob-
served PSNR as

PSNR = 10 log10(
64000

MSE
) (6.9)
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where MSE is the Mean Squared Error which we calculated as

MSE =
1

N

∑
yi∈ȳ

(Î{yi} − Igt{yi})2 (6.10)

where as previously N is the number of pixels in the original image. As we are
only concerned about the relative change of the observed PSNR with respect
to E, we use the Normalized PSNR, which is simply the observed PSNR at
E divided by the average observed PSNR of an APR with E = 0.001 for the
same type of image. The Normalized PSNR allows us to compare the results
across different image qualities and blur levels.

The first plot in Figure 6.15 shows Normalized PSNR against relative error
E for low, medium, and high image quality with medium blur. For the different
image qualities, we see different dynamics. However, the cases have some
common features. Interestingly, the maximum PSNR does not occur as E → 0.
Instead, all qualities show a nonlinear behavior as E gets small. For the low and
medium quality images, the PSNR has a maximum in E between 0.08− 0.15.
For the low image quality case, there is a positive relationship for larger E and
the Normalized PSNR. This is likely due to the image being so noisy, that the
improvement in image quality from downsampling the image dominates.

In the second plot, we show the same benchmark, but for medium image
quality, and changing blur. Here, the medium and high blur images show
similar dynamics, reaching a maximum PSNR between E = 0.05− .1. The low
blur images, however, show almost no dependence on E. This low dependence
is similar to that seen in the average particle number. Therefore, for noisy
images, there seems to be an optimal range of E between 0.05 − 0.15 across
medium to high image blur and medium to high image quality. Fortunately,
from observation, this appears to align with the image quality and blur of
common LSFM data. Because higher values of E are preferred as this leads to
a lower number of particles being used by the APR, in cases where non-prior
information is known we use a default value of E = 0.1 seems appropriate.

Lastly, we address the how the image quality of the reconstruction from the
APR compares to the original noisy image. For the optimal range of E do we
find a higher or lower image quality than the original? To address this on the
right axis of the first plot in Figure 6.15, we show the ratio of the MSE of the
reconstructed APR image, to the MSE of the original image for the medium
image quality and varying blur. The results show that in the optimal range
the MSE of the APR is four to five times lower than the MSE of the original
image. We find similar results across image qualities (not shown). Therefore,
we can conclude, that in this range, the errors made due to optimization are
’within’ the error of the noise of the original image.
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Figure 6.16: The first plot on the left axis shows the ratio of the PSNR of the APR reconstructed image, compared
to the PSNR of the noisy original image (Only computed for areas above local information scale threshold σTH).
On the right axis, the number of particles, against the information content set by the number of template objects
M in the original image (parameter details: A.9.4). Only the mean is given as the confidence interval was
indistinguishable on the plot. The second plot on the left axis shows the number of particles, and the right
right axis the number of pixels, plotted against the original image width, for 10, 50 and 100 objects in the image
(parameter details: A.9.5).

These results indicate that for our benchmarks the APR can satisfy the
second part of RC2, in that given an appropriate E, the APR adapts, while
not reducing the signal-to-noise ratio compared to the original noisy image.

6.4.3 Increasing information content

In the following benchmark, we address how the APR adapts to image con-
tent. We can test this through increasing the number of objects M we use to
construct the Object function O for a fixed size image. The first plot of Fig-
ure 6.16 on the left axis shows the average number of particles for an increasing
number of objects for low, medium, and high image quality with medium blur.
We find an approximately linear relationship between the number of objects
and the average number of particles across image quality. Notably, the low
image quality images require a higher number of particles on average, likely
reflecting over-sampling due to uncertainty in L(y). The relationship is not
exactly linear, due to the fixed size of the domain. As the number of objects
increases the likelihood of them over-lapping increases, given that the maxi-
mum resolution is fixed to pixel resolution this reduces the required number of
particles, leading to a sub linear relationship. Therefore, for our benchmarks,
the APR appears to be adapting to the information content of the image.

However, how does the image quality change with the number of objects?
We address this, by plotting the observed PSNR of the reconstructed image
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normalized by the observed PSNR of the original image for non-background
regions (see Figure 6.16). The right axis of the plot shows that this ratio is
nearly constant when plotting against the number of objects, with a slight neg-
ative trend. However, across all, the ratio is always greater than 1, with lower
quality images shower a higher ratio. We restrict the PSNR to non-background
regions because otherwise the PSNR is dominated by the proportion of the im-
age that does not have any objects. This is due to the reconstruction error
being near zero in these flat regions. The near zero reconstruction error in the
background results in a strong negative correlation with the number of objects
and is un-informative. Instead, the restricted ratio provides us an informative
lower bound. From the constant response, we, therefore, can conclude that
for our benchmark data the APR effectively adapts to the information content
while maintaining image quality.

6.4.4 Increasing image size

We have shown that for a fixed image size, the size of the APR scales with
the information content, but what about for fixed information content and
increasing size? The second plot in Figure 6.16 addresses this question, plotting
the number of particles for 10, 50 and 100 objects against increasing image
width W (N = W 3). That is, the size and number of the objects are held
constant and the size of the domain they are placed in increases. The three
curves all show similar, but scaled and shifted, dynamics. In all cases, the
number of particles increases towards a limiting fixed number of particles. That
is, beyond a given image size, the number of particles in the APR becomes
constant. The growing number of particles for lower image sizes likely reflects
the objects overlapping due to the confined domain, resulting in the increase in
the number of particles as the objects become less over-lapped on average. To
provide perspective, the number of pixels N is also plotted on the right axis.
From the above, we conclude that the size of the APR reflects the number and
distribution of objects and not the original image size N . Therefore, when
combined with the conclusions of the last benchmark, we assess that the APR
fulfills RC1 for the data presented here.

6.4.5 Increasing sampling rate

In the last benchmark of this section, we explore how the APR of a fixed object
distribution and blur responds to a change in sampling. That is, does the APR
becomes independent of the originally chosen sampling? Conceptually, this is
equivalent to deciding what resolution of the image to set when using a digital
camera to capture a fixed scene. Here, we ignore any practical issues that
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would result from the reduction in the number of photons per pixel. For
this benchmark, we place a single object in the center of the image and then
increase the sampling by decreasing hx = hy = hz, while keeping the PSF
and domain constant in real terms (but increasing in terms of pixels). The
smoothing parameter λ is also increased as to represent a fixed smoothing
length in real terms. In the first plot of Figure 6.17 we show the number of
particles plotted against the width W . For small image sizes, we see a linear
increase in the number of particles. However, above an image width W of
approximately 100, the number of particles oscillates around a fixed value.
The equivalent noise-free benchmark shows similar dynamics; where it is clear
the oscillations show a distinct pattern increasing between consecutive widths
that are a power of 2. Therefore, these oscillations appear to be reflecting the
changing relationship between the quantization and L(y). Hence, on average
the number of particles reaches a ’maximum’ sampling. We note that an image
with high blur was used to result in the APR reaching a maximum resolution l
at a low image size to aid computational simplicity. This effectively decreases
the image size for which the fixed size ’kicks in’ (See A.9.6 for additional details
on the benchmark).

Given that some limiting APR is reached, how is the image quality of
the reconstruction affected by further increases in sampling? We address this
question in the second plot in Figure 6.17, showing the PSNR of the same
benchmark against image width. Here, we find that the reconstructed image
quality increases as the sampling rate is increased until an image width of
approximately 400. Beyond this width, the value begins to oscillate, possibly
indicating that the gains from in improvement of image quality from an increas-
ing number of samples are smaller error induced by the sampling technique.
The above results show that the APR can utilize an increase in sampling to
increase image quality while keeping the resulting size of the representation
constant.

6.5 APR performance benchmarks

In this next section, we give results of ’performance’ benchmarks for the trans-
forming, and the memory and file storage costs of the APR. From the results
in the previous section, we know that the size of the APR, in terms of the
number of particles (or Particle Cells), depends on the information content.
However, the cost of transforming, and representing the APR in memory, also
depends on the original image size N . The dependence of memory and storage
cost on N arises through the pixel sampling limiting the highest resolution lmax
of the representation. Although in the previous benchmark we showed that
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Figure 6.17: The two plots show the number particles Np, and PSNR of the APR for an image with fixed image
content and blur size, but increased sampling, and hence width W . The benchmark is equivalent to choosing the
resolution of a natural image for a fixed scene. (See A.9.6 for parameters)

the APR becomes independent of the initial sampling resolution, most images
do not appear to be sampled in this regime. Therefore, to understand the
performance requires understanding the dependence on both the level of infor-
mation content, the number of objects, and the original image size N . Instead
of discussing absolute particle numbers, it seems more intuitive to discuss the
ratio of particles Np to original pixels N . Hence we define the Computational
Ratio (CR) as

CR =
number of input pixels

number of output particles

=
N

Np

(6.11)

where an image with a high amount of information content for its size will
have a small CR, and an image with a low amount of content for its size a
large ratio.

In the analysis below, and in Chapter 7 which explores processing with the
APR, we use two groups of test datasets. The first, we call the Computational
Ratio benchmark data, and consists of synthetic data, with the CR set to three
levels, high, medium and low. The second, we call the Exemplar benchmark
data, consists of nineteen LSFM datasets of various size, species, and labeling.

Following we will first describe the CR and Exemplar benchmark data, then
introduce the APR data structures we have used and then provide results for
the computational cost of forming the APR, and its storage cost.
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Computational Ratio (CR5) Computational Ratio (CR20) Computational Ratio (CR100)

Figure 6.18: Maximum intensity projection of examples of the Computational Ratio (CR) benchmark data that
are used to represent low (CR100), medium (CR20) and high (CR5) levels of information content (N = 4003).

6.5.1 Computational Ratio benchmark data

To represent low, medium, and high image content relative to image size,
we generate data sets for varying image size N and number of objects M that
approximately correspond to CRs of 100, 20, and 5 respectively. In Figure 6.18,
we show the maximum projection for examples of a CR5, CR20, and CR100
synthetic data sets with image size N = 4003 (We use this CR’X’ notation in
figures and the remaining text). However, we could not determine a procedure
for generating a precise CR for a given image. Instead, the datasets were
generated using a linear estimate of the number of objects required to reach a
certain ratio (See A.10.1). Generated in this way, the CR does vary across N ,
and the average CR values for N = 2003 to N = 10003 are 5.8, 19.3, and 89.4
for the CR5, CR20, and CR100 cases respectively. However, I do not believe
this detracts from the analysis. The values of CR were set as to span realistic
values as seen in the Exemplar benchmark data discussed next.

6.5.2 Exemplar benchmark data

To add to the analysis using the CR benchmark data, we also run benchmarks
on a corpus of nineteen LSFM datasets. The Exemplar data is intended to
give real examples of ratios and times that can be achieved for the APR with
our current implementation. In Figure 6.19 we show an example of a 2D
section of the original image, APR in particles, and reconstruction for data set
7 of nuclei from an early developing Zebrafish. The datasets are summarized
in Table A.1 and parameters used in Table A.2. How parameters was set
is discussed in A.10.2. The first plot in Figure 6.21, shows the CR for the
exemplar benchmark data. The CRs for the exemplar data sets range from
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Original Image APR (Particles Coloured by Intensity) APR (Reconstructed)

ZoomZoom Zoom

Figure 6.19: A 2D slice showing the original image I (left), particles of the APR coloured by intensity (middle),

and reconstructed image Îpc (right) of labelled cell nuclei for a developing Zebrafish (Images courtesy of Gopi
Shah, Huisken Lab, MPI-CBG Dataset number: 7 Table A.1) The insets show a close up of the same region. The
particle rendering was created by rendering all particles from Particle Cells from which the image plane intersects.

a minimum of 5.6 to a maximum of 180, with a mean of 42.1 and median of
28.5. The numbering in figures corresponds to the number in Table A.1.

6.5.3 Data structures

Appropriate data structures must be used to be able to store, and process on,
the APR. Ideally, these structures allow fast memory access at low overhead.
Here, we propose two different multi-level data structures for the APR, with
each level, encoded similar to sparse matrix schemes [101] and are described in
detail in A.5. Alternative data structures could be used for the APR, and we
do not claim those we use here are optimal. However, I have tested alternative
data structures (not shown) including those based on hash tables and tree
data structures and found the two proposed here provided superior all-around
performance. The choice of data-structure is critical to the performance of
using a data representation for processing, and I leave further investigations
and comparisons for future research.

The data structures both efficiently encode V and P∗ in memory by only
storing one spatial coordinate per Particle Cell in a sparse matrix like repre-
sentation. The Particle Cells are stored in structures by level l. On each level,
the Particle Cells ci,l are stored in vectors according to the last two of the co-
ordinates of i, and ordered by the first spatial coordinate. We refer to the first
coordinate as y, and this represents the memory access direction. The data
structures are split into two components, one representing V called the access
data structure, and the second storing the particle intensities P∗ with in an
identical memory layout. The data structures are called the Sparse APR (SA),
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described in A.5.1, and shown in Figure A.5, and Sparse APR Random Access
(SARA) data structure, described in A.5.2 and shown in Figure A.6. The SA
requires linear in y iteration for neighbor access, and the second permits ran-
dom access of neighbors at the cost of a higher memory overhead. The SARA
achieves random access by an efficient storing or neighbors and also stores the
Particle Cell type.

The memory cost of storing the APR for the two data structures is discussed
in detail in A.5. In summary, when storing intensity as float, the SA data
structure requires 50 % extra memory in addition to the particle intensity,
and the SARA structure 200 %, compared to storing an image that had Np

pixels. Therefore, the memory cost of storing the APR will only be less than
the original image in memory if the CR is greater than 1.5 for the SA, and 3
for the SARA. However, this high overhead is not incurred on any additional
properties to the particle intensity that needs to be stored (there is a slight over-
head see A.5.1). For example, when performing processing tasks, additional
variables are needed to be stored per pixel, or for the APR per particle. For an
image, these additional variables scale directly with N . However, for the APR
these directly scale with Np and therefore will have a lower memory cost will
be lower by the factor approximately equal to the CR. Therefore, in practice,
the access over-head per particle is usually amortized by the use of multiple
particle properties. Examples of this are shown in the next chapter.

In this chapter, we only provide benchmarking of the computational cost of
forming the SARA structure. However, the formation of the SA structure has
a lower cost. Further benchmarks regarding the computational performance
and memory cost of using the SA and SARA structures for processing is the
subject of Chapter 7. Although neighbor access can be done using the SA, the
SARA data structure was used in all benchmarks where neighbor access was
required.

6.5.4 Execution time

In this section, we analyze the computational cost, or execution time, for
forming the APR from an original image with N pixels. The steps of forming
the APR have been summarized the schematic in Figure 6.9 earlier in the
chapter. The pipeline can be broadly grouped into three steps, first calculating
the Local Resolution Estime L(y) using filtering operations on the original
image, then forming Ln and finding Vn using the Pulling Scheme and lastly
constructing an APR data structure. Below, we first address the overall cost
and then provide more detailed analysis for the three steps. We have not
included the time taken to load the image in memory in the analysis here.
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Figure 6.20: The first plot shows the execution time to produce the APR from the original image, to the APR
data structure in seconds, for images from size N from 503 to 10003 using the CR5 (dark blue), CR20 (light
blue) and CR100 (light green) benchmark data. The second plot shows the time taken for the filtering steps on
the original image for the same benchmark data. These are the steps to calculate L(y) and median filtering on
the whole image. The standard deviation is shown by the error bar.

Full pipeline

The first plot in Figure 6.20 shows the total execution time for forming the
APR from an input image for the CR benchmark data. The time taken shows
a linear dependence on N , with a slight increase in computational cost for
decreasing CR. The time corresponds to an average of 130 MegaPixels per
second for processing CR5 input images or taking 7.2 seconds to form the
APR from an input image of size N = 10003 and CR5. The execution time for
the Exemplar data is shown in the second plot in Figure 6.21. The execution
times range from 1 second to 16 seconds for the largest datasets. With an
average execution time of 6.7 seconds.

Pixel steps

In the second plot of Figure 6.22, we show the execution time of the filter-
ing steps on the original image. From comparison with the first plot, we can
see that this represents a majority of the computational cost and that these
steps do not depend on the CR. These steps include the calculation of the
gradient magnitude, calculation of σ(y), construction of L and median filter-
ing for intensity estimation. The contribution of each of these steps to the
total execution cost is shown in the first plot of Figure 6.22. On average,
these steps account for over 80% of the total computational cost. With the
calculation of the gradient magnitude using B-splines accounting for over 50%
of the computational cost. I believe this relatively high cost of the full image
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Figure 6.21: The first plot shows the Computational Ratio (CR) of the Exemplar benchmark data, plotted against
the images average width (N1/3)). The number corresponds to that given for each dataset in Table A.1. The
second figure shows the total execution time to form the APR for the Exemplar benchmark data, again plotted
against the average width.
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Figure 6.22: The first plot shows the proportion of the total execution time taken by each the different pixel
operation steps against image width W for the CR benchmark data. The second plot shows the total execution
time for steps forming L(y), for a range of different parameter values, plotting against the number of pixel in
the original image. The lines are indistinguishable, reflecting that the steps execution time is independent of the
parameter values.
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Figure 6.23: The first plot shows the percentage of the total execution time taken by the Pulling Scheme
algorithm, that takes Ln as input and calculates Vn against image width W for the CR benchmark data. The
second plot shows the same data but plots instead the average execution time. The error bars in both cases
represent the estimated standard deviation. (Note the dynamics for small image sizes are an artifact of the CR
for small images being inflated to near 5 for all datasets.)

pixel operations is not a consequence of expensive operations (as all filters have
efficient algorithms and implementations). Instead, it is a reflection of the al-
gorithms scaling with N , for very large N , compared to the pulling scheme
and data structure formation scaling with the number of required particles.

Pulling Scheme

In the first plot of Figure 6.23 we show the proportion of the total execution
time taken by the Pulling Scheme taking the natural Local Particle Cell set
Ln and forming Vn. For large images N > 6003 we find that across different
CR levels the step accounts for less the 2.5% of the total execution time.
Where as expected the higher CR leads to a higher cost, as the number of
operations scale with the number particle cells in #Ln. In the second plot,
we plot the absolute execution time for the CR benchmark data. We note the
small execution times even at the largest image sizes for CR5. Further, the
scaling for each dataset shows a weak sub-linear scaling in practice. However,
we note that both of these plots show sporadic variation in the observed timing
that hinders analysis. This variation is a result of a deficiency in the OpenMP
parallelism used here. However, it does not result in an incorrect solution.
Unfortunately, I have not yet addressed this issue.

Additional benchmarks To avoid this issue, and to allow for further anal-
ysis, we also present additional benchmarks here using only serial execution.
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Figure 6.24: In the first plot, we show the Pulling Scheme execution time against image size for four different fixed
ratios of #L

N
. The Particle Cells in L where randomly generated and the results averaged across 10 realizations.

All ratios showed linear scaling that was confirmed in a log-log plot. The yellow line corresponds to L containing
all particle cells between lmin and lmax, representing the worst-case performance. The second plot shows the
average execution time for three different fixed image sizes N , plotted against the number of seed Particle Cells in
V. The number of seed Particle Cells is simply #(V ∩L) and hence increases linearly with #L. The relationship
does not represent a polynomial scaling.

Independently from the CR benchmark analysis in this section, we also tested
the Pulling Scheme for randomly generated L. This allows the ability to di-
rectly alter inputs to the Pulling Scheme without having to consider the whole
pipeline and how to generate the appropriate synthetic image. In the first plot
of Figure 6.24, we show the scaling of the Pulling Scheme for a fixed ratio
of #L and N . In all benchmarks are run with Particle Cells in L sampled
uniformly and randomly from level lmin to lmax with a set probability. This
benchmark is similar, but not exactly equivalent, to the fixed CR benchmarks.
First, we find confirmation of the worst case linear scaling represented by the
Worst-case curve. This benchmark corresponds to the largest #L for a given
image size N . We also ran three other ratios, .1, .01, and .001, finding linear
scaling for all. Each of these benchmarks corresponds to scaling together both
the image size and the number of particle cells in L.

In the second benchmark, we fix the image size and increase the number
of Particle Cells in L that are randomly generated. In the second plot of
Figure 6.24, we plot the number of seed Particle Cells in V for three different
image sizesN . The number of seed Particle Cells is the number of Particle Cells
given by #(L∩V). We find this is the appropriate variable when compared to
V because the number of neighbor search operations is directly proportional
to the number of seed Particle Cells, and not simply the absolute #V . For
all image sizes N we find non-polynomial scaling. With the rate of increase
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Figure 6.25: In the first plot, we show the average execution time against N four sizes of #L. The values
were set at fixed ratios of the number of Particle Cells in the N = 1003 case. The arrow notes the direction of
increasing #L. The second plot shows the same data on a log-log plot. Linear regression shows sub-linear scaling
for all plots for large N . We find that the polynomial scaling coefficient appears to decrease with increasing #L.
The yellow line for the smallest value of #L for the highest five N values had a gradient of 0.975 and Rsquare
of 1, and the purple curve representing the largest value of #L had a gradient of 0.667 and Rsquare again of 1.

in execution time decreasing as #(L ∩ V) increases. We note that the same
relationship is seen for #L (they are proportional), but arguably its is the
number of seed cells that is the relevant variable. Empirically the relationship
does not seem to be a polynomial nor logarithmic. In the last benchmark, we
instead fix the total number of Particle Cells in L and consider the execution
time as the image size N is increased. The results are shown in the first plot
of Figure 6.25 for four different numbers of Particle Cells. The four levels
were set at ratios of 0.001, 0.01, 0.1 and 1 of the maximum number of Particle
Cells in the N = 1003 image. For all four levels, we find sub-linear scaling in
N . That is, the execution time increases at a decreasing rate as N increases.
This is confirmed in the second plot, that shows the log-log plot of the same
data. Interestingly, the polynomial growth coefficient decreasing as the number
of Particle Cells in L increases. With the smaller number of Particle Cell
benchmark being almost linear, scaling at ∼ N0.975, and the largest number of
Particle Cells at ∼ N0.667.

I do not have a concrete explanation for this scaling behavior. However, it
also coincides with slightly sub-linear scaling that can be observed in fixed CR
benchmark data. One point of insight comes from the fact that a fixed #L
does not imply a fixed #V . In fact, as N increases so do the number of particle
cells in V . However, from the fixed N benchmark we find that the dominant
component of the computational cost comes from the number of seed Particle
Cells in V . However, the number of seed Particle Cells is constant across N .
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Figure 6.26: The first plot shows the percentage of the total execution time taken to form the SARA data
structure from Vn and sample the particles intensity for the CR benchmark data plotted against the image width
W . The second plot shows the execution time in seconds of the same step, but for a fixed image size and
increasing number of particles.

Therefore, as N increases only the ’cheaper’ steps of adding boundary and
filler Particle Cells are increased. However, this is not satisfactory, but we
leave further investigations to future research.

Pulling scheme summary In summary, we have confirmed that the Pulling
Scheme has worst case linear scaling in N . Further, the computational cost
for fixed N is proportional to the level of information content through the
number of seed Particle Cells. However, we have no exact form for this scaling
behavior, but it is sub linear. Further, for fixed size of L and increased N we
find sub linear behavior, with a scaling rate that is inversely proportional to
the number of Particle Cells in L.

APR data structure

In the last step of the pipeline, the SARA data structure is formed from Vn;
this includes the particle sampling step. The first plot of Figure 6.26 shows
the proportion of the total execution time for this step. Forming the data
structure and sampling the particles, took on average 2, 5 and 13 percent of
the total execution time for the CR100, CR20, and CR5 datasets. Therefore,
showing a strong dependence on the total number of particles. This is also
reflected in the second plot, showing the execution time for a fixed image size,
and increasing number of particles. The dependence on N likely arises through
both the maximum resolution and therefore lmax, and also the slow down in
cache efficiency when sampling the particles from a larger image.
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Execution time summary

Hence we have outlined the computational cost of forming the APR, showing
an overall linear scaling in N for a fixed CR, with the Pulling Scheme showing
sub linear scaling. I believe the above results show that the APR can be
formed efficiently, as the largest computational cost has been reduced to the
estimation of the image gradient. With the computational cost of the Pulling
Scheme being relatively low.

The above results have been on a single CPU machine, utilizing OpenMP
for parallelization. Preliminary work for scaling on multi-core machines and
GPU implementations indicate that the pipeline is amenable to scaling through
further parallelization. Especially, acceleration of the pixel steps. However,
here we have preferred a shared memory implementation due to ease of devel-
opment, and the typically considerably larger amount of RAM available then
GPU memory. We leave these investigations to future work.

A particular task being classified as ’fast’ is always relative. However, the
implementation here is within the real-time values that have been given in
the literature [110, 5]. However, real-time applications will entail temporal
datasets. Therefore the transform would also have to include the time step,
which involves additional steps, but also optimizations. If we here limit our-
selves to the processing of stand alone large datasets, the above results appear
to be ’fast’ as they are O(1) with the calculation of the gradient magnitude, a
simple computational task.

Therefore, for the results here, I claim that the APR can be rapidly formed
with a linear scaling in the number of pixels, and hence RC3 is satisfied.

6.5.5 Memory Cost

The total amount of memory required to run the pipeline is approximately 3.25
copies of the original image stored as a float. This is a result of having to store
the original image, and the temporary variables for calculation of the Local
Resolution Estimate L(y), and then finally sample the intensities from the
original image. I am uncertain of how to reduce this further, beyond change
of datatype, while processing only a single time point.

6.5.6 Storing the APR

Last, in this section, we assess the efficiency of lossless compression of the
APR for file-storage. We store the APR using the HDF5 file format [124] and
BLOSC HDF5 plugin [7] for lossless compression. This is done by storing Vn
per level as a sparse matrix using an unsigned 8bit integer array, with nonzero
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Figure 6.27: The first plot shows the Memory Compression Ratio (MCR), the ratio of the APR file-size to the
original uncompressed image file size for the CR benchmark data against image width W . The second plot shows
the same data, but instead plotting the ratio of the Memory Compression Ratio (MCR) and the Computational
Ratio (CR).

entries set to the Particle Cell type. The particle intensities are then stored
again per level unsigned 16bit integer. Therefore, in addition to storing the
Particle Cell set V and particle intensities P∗, we also store the Particle Cell
type. Stored in this way the Particle Cell information is highly compressed.
The high compression is reflected in that on average 92 % of the bytes are used
storing the particle intensities. Further, in the limiting case where the number
of particles is equal to the number of input pixels, the particle intensities
account for 99.9 % of the storage cost. A.6 gives more technical details. Given
the fact that the size of the APR depends linearly on image content, raw
compression ratios are not necessarily informative for the storage cost of the
APR without reference to its CR. Hence, we define the Memory Compression
Ratio (MCR) as

MCR =
Size of the input image in bytes

Size of the compressed APR in bytes
. (6.12)

We are interested in the ratio MCR
CR

, that is, how well for a given CR the
data set is compressed. In the first plot Figure 6.27 shows the MCR for the
CR benchmark data. We can see that the MCR for images larger than 4003

becomes constant across CR. In the second plot, we show the ratio MCR
CR

also
for larger images the ratio becomes constant, with a value of approximately
1.8 for the three CRs. This result tells us that for a data set with a given CR,
we can expect the file storage to be 1.8 times smaller than the CR ratio when
compared to the original data size. Despite, the requirement of the additional
storage of the particle cell locations, level, and type, that are not required in
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Figure 6.28: The Memory Compression Ratio (MCR) for the exemplar benchmark datasets against the geometric
average width (N1/3), where the numbers coincide with those given in Table A.1. The two plots show the same
data, with the first showing a zoomed subset omitting two outlier data points.

the original image.
Figure 6.28 shows the MCR for the exemplar benchmark data. The same

data is plotted twice with different scales as the variation is quite large across
the data sets. The median MCR of the exemplars is 55.2 and mean 109.
Regarding actual file sizes, the average size of the uncompressed input images
is 1.87 GB, and the compressed APR, 36 MB.

We note that more sophisticated compression schemes should be able to
be used to compress the size of the intensity data down further. In particular
extensions of the Easy Path Wavelet Transform, would seem like a good fit for
the APR [85]. However, we leave this to future work.

Therefore, the APR can be efficiently compressed with a filesize propor-
tional to the image content a requirement of RC1.

6.6 Summary and main points

In this chapter, we presented the main empirical results of this thesis regarding
the properties, and computational cost of forming, the APR.

We began by showing results for a 1D analytically defined function. There,
we showed that the Reconstruction Condition held across a range of reconstruc-
tion functions, and also showed the scaling behavior of the gradient computed
from the APR. We also explored the impact of discontinuities in the solution.

In the second portion of this chapter, we provided results for the APR for
3D LSFM data. First, we introduced the 3D pipeline including the choice of
Local Intensity Scale σ and also the method of synthetic image generation used
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for benchmarking. Then we assessed the properties of the APR, both regarding
reconstruction error, noise, image content, image size, and image sampling. In
the last section evaluated the performance of transforming an image into the
APR, regarding memory and computational costs. For this analysis, we used
two datasets, called the Computation Ratio (CR) and exemplar benchmark
data. Next, we discuss limitations of these results and then reflect on the
representation criteria. Following this summary of the main results of the
chapter is given in bullet form.

6.6.1 Limitations of the benchmark results

Here we discuss limitations of the above benchmark results, and the ability to
make inferences from them on the performance on ’real’ LSFM data.

Local Intensity Scale

A key limitation for the results arises from the Local Intensity Scale used here.
First, we have heuristically defined an estimate of the local range of the func-
tion with a length scale. We have shown that the APR can effectively adapt
taking this scale into account. We have not addressed whether or not this scale
is in any way relevant or appropriate. Specifically, in the benchmarks above E∗

incorporates the observed σ. Ideally, we should define a ground truth adapta-
tion, and σ, and compare our results to these. This ignores deficiencies in the
Local Intensity Scale that could lead to loss of information content. Indeed,
this does occur through a lowering of resolution on the interface between bright
and dim objects.

Further, the Local Intensity Scale given here requires empirical re-scaling
A.4.1 and the setting of minimum thresholds in the presence of noise. These
actions seem unsatisfactory, and although similar concepts may be required,
ideally they would have a sound theoretical basis.

Despite these limitations, the results, both across benchmarks and real
data are encouraging. Showing that the Local Intensity Scale does indeed
’achieve’ its intended purpose, and I think they serve as a proof of principle.
However, given the limitations above, and the lack of theoretical guarantee
of the Reconstruction Condition, further development of the Local Intensity
Scale seems warranted.

Synthetic data

Limitations also arise regarding the simplifications that were made for the gen-
eration of synthetic data. Although the synthetic data showed varying spatial
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and local intensity scales, it did not include other of LSFM data discussed
in 2.2.4. This includes a lack of spatially varying PSF, more sophisticated
noise models, and extraneous background signal. Qualitative evidence from
real benchmark data indicates that the APR can still ’work well ’ in the pres-
ence of these additional features. However, without ground truth images, it
is unclear how to accurately assess the APR in these situations. A practi-
cal route would be the incorporation of these additional features into more
realistic synthetic data for testing. Indeed, concurrent unpublished research
has been successfully undertaken by colleagues at the MPI-CBG to generate
such data sets. Hence, evaluation using this resource would seem invaluable
to addressing these issues and also those of the Local Intensity Scale.

Parameters

Another limitation of the above results includes the use of knowledge of the syn-
thetic benchmark to set parameters. For example, for the B-Spline smoothing
parameter λ, using the background intensity level for a noise estimate. Fur-
ther, for the Local Intensity Scale, the minimum object brightness was used for
σth. The use of this information would seem to bias the above results, as such
information is not ’readily’ available from real data. However, we have found
that the results above are relatively insensitive to the exact setting of these
values. With the exception, of σth being set below the smooth noise level, or
greatly above the brightness of the objects in the image.

Ideally, these parameters would all be estimated from the input image. This
is an issue that is linked to both the generation of more realistic synthetic data,
and the form of the Local Intensity Scale, and could be addressed jointly in
future research.

Conclusions

From these results above, we can see that additional development is still re-
quired for any confident inference of the results regarding the properties of the
APR from the benchmarks to real datasets. However, I do believe they provide
a promising proof of principle that could form the basis of a robust solution.

6.6.2 Reflection on Representation Criteria

The results for both the properties and performance of the APR shown above
were designed to test the first three representation criteria RC1-3. Here, we fo-
cus on the benchmark results, largely ignoring the limitations discussed above.
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Below we assess whether the APR appears to have the correct properties for
our synthetic benchmark data to fulfill the representation criteria.

Representation Criteria 1

We showed in 6.4.3, that the size of the APR, i.e. #V scales linearly with an
increase in objects in a fixed size image. Where we defined the information
content of an image to be a function of the number of objects it contains.
We then showed that as the image size is increased for fixed image content,
the size of the APR (6.4.4) becomes constant. These results indicating that
the adaptation becomes independent of the original image size. Lastly, in
Section 6.4.5, we showed that as the sampling resolution for a fixed scene is
increased, the size of the APR also becomes constant.

Hence, for our synthetic data, we conclude that the size of the APR reflects
the information content of the image, and not the image size or sampling and
RC1 is satisfied.

Representation Criteria 2

In 6.4.1, we showed that the Reconstruction Condition holds for noise-free
images, for a range of reconstruction methods while using a non-constant Local
Intensity Scale σ. For noisy images, in 6.4.2, we showed that the APR is still
effectively adaptive to the image, but, the Reconstruction Condition does not
hold. However, we showed that for an optimal range of relative error E, the
errors made in the approximation of the APR are within the level of the noise.
Further, the reconstructed APR results in an increase in PSNR compared to
the original image.

Therefore, we again conclude that for the synthetic images presented here
the APR satisfies RC2.

Representation Criteria 3

In 6.5.4, we analyzed the execution time of transforming a pixel image into
the APR. The results showed the whole pipeline is linear in the number of
original pixels N . With the computational cost being dominated by simple
filtering operations on the full image. The pulling scheme, the basis of the
adaptation, represents a small proportion of the cost, representing less than
2.5% of the total execution time. Further, the pulling scheme is worst-case
linear performance, and actual performance proportional to the information
content in the image. Given the computational time is within time ranges given
within the literature for ’real-time’ for LSFM datasets [5, 110], we conclude
the transform step is ’fast’.
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Therefore, we conclude that the described implementation of the APR on
our test system satisfies RC3.

Summary

The above chapter has presented evidence that the APR satisfies the first three
representation criteria for our benchmark data. In the next chapter, we address
the fourth representation criteria regarding using the APR for processing tasks.

Summary of the chapter

• Provided a 1D exemplar, showing the adaptation of the APR, and
the impact of the relative error E.

• Confirmed that the Reconstruction Condition holds in 1D for the
benchmark example, and showed a reconstruction of the gradient of
the function from the APR, and the impact of discontinuities.

• Introduced the APR pipeline for 3D LSFM data

• Described synthetic data generation process used to benchmark the
APR

• Showed that for noise-free images the Reconstruction Condition holds
and that for noisy images, there exists an optimal range of E that
reduce the PSNR of the original image.

• Showed that the size of the APR scales linearly with information
content while maintaining image reconstruction quality.

• Showed that the size of the APR becomes independent of both the
original image size N , and the sampling resolution used, as both are
increased.

• Introduced the Computational Ratio benchmark and examplar
benchmark data sets that are used to assess the performance of the
APR.

• Introduced and described the data structures that are used for the
APR
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• Showed that the worst-case execution time for transforming an image
to the APR is linear in N , and that it is linear in N for a fixed
ratio of #L

N
. For a fixed size N the cost scales sub-linearly with the

number of seed Particle Cells in V . For fixed for fixed size of #L the
computational cost is sub-linear in N at a rate inversely proportional
to the number of Particle Cells.

• Showed that the APR can be efficiently losslessly stored at a rate
larger than the Computational Ratio (CR) of the given APR.

• Discussed limitations of the Local Intensity Scale, synthetic data, and
setting of parameters

• Reflected on representation criteria (RC1-3) and the evidence of the
APR fulfilling them for the synthetic benchmark data.
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In this chapter, we present results for a selection of basic image processing
tasks using the APR. Here we directly investigate RC4, and whether the
adaptation of the APR can be used to reduce memory and computational
costs, and possibly complexity, of a range of image processing tasks. Ideally,
we wish to show that if the input image has been transformed into an APR, the
input image is no longer needed, and all processing, storage, and visualization
can be done directly using the APR.

This chapter is structured as follows. First, we discuss the different inter-
pretations of the APR, and how this relates to different processing tasks for
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pixels. Next, we discuss how to evaluate the performance of processing tasks
on the APR, and propose evaluation metrics. Then, we present four perfor-
mance benchmarks. Namely, linear neighbor access, random neighbor access,
separable pixel filtering, and segmentation. For all these examples we evaluate
the performance with respect to comparable pixel algorithms and use both the
CR (6.5.1) and exemplar (6.5.2) benchmark data defined in the previous chap-
ter. Following that, we show various methods for visualization of the APR.
Lastly, we discuss briefly how the APR can be used to create novel algorithms
that utilize its adaptation, giving an Adaptive APR filter and segmentation as
examples.

7.1 Interpretations of the APR for processing

Traditional processing tasks have been developed using, and rely on, a range
of interpretations of images. By this, we mean the same pixel image could
be interpreted in many ways. For example as a graph, collocation points
of a continuous function, spatial partitioning of square pixels, or the highest
resolution of a tree structure.

Just like pixels, we can also, interpret and use, the APR in different ways
depending on the particular processing task. These interpretations align with
many of those commonly used in pixel-based processing. Figure 7.1, shows
a schematic representation of the four main APR interpretations we discuss
below.

7.1.1 Collocation points and spatial partition

The top right schematic shows the APR formulated as an adaptive spatial
partition, from the Particle Cells V , and point estimates of the intensities, from
the particles. Represented in this way, we could view the APR as adaptively
sized pixels, or restricted superpixels [2]. Similarly, a lower resolution partition
can be used, utilizing Vn, combined with particle cell type. This interpretation
is utilized the APR raycasting example below.

7.1.2 Particle graph

The bottom right shows the APR formulated as a particle graph (as described
and defined in 5.6.2), where particles are nodes, and neighbors and edges
are defined using the Resolution Function. This provides an analog to face-
connected graphs on pixels often used for graphical models [21]. We use this
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Collocation points and volumes

Graph Tree Structure

R * (y)

Continuous Reconstruction

Figure 7.1: In the top right we show the APR represented as a spatial partition from the Particle Cells in V and
a set of particles, which are collocation points. In the bottom right schematic we show the APR represented as
a graph, where the particles are nodes, and edges link particles as discussed in 5.6.2. In the schematic in the top
left, we show how the APR can be used to provide a continuous reconstruction of an image everywhere across
the domain. Lastly, in bottom left we show a schematic of the APR as a pruned binary tree (quadtree in 2D, or
octree in 3D)), where the links, are between parent and child Particle Cells.
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interpretation in the APR segmentation and APR adaptive filter examples
below.

7.1.3 Continuous representation

The top left schematic shows how the APR interpreted as a continuous function
represented adaptively at collocation points. The continuous function can then
be reconstructed at any point using 5.1. This reconstruction can be done
locally, such that a full reconstruction of a high-resolution pixel image is not
necessary. We use this interpretation in the separable pixel filters below.

7.1.4 Tree structure

Lastly, the bottom left shows the APR represented as a pruned tree structure.
The APR has a natural tree representation due to the parent child relationships
of Particle Cells (as seen in Figure 4.8). If a tree is constructed using the
Particle Cells of an APR, and including all parents of Particle Cells in V
then, the resulting tree structure, can be interpreted as an adaptively pruned
tree. This tree structure could be useful for using the APR with wavelets, or
multi-resolution methods such as pyramid methods [4]. We utilize such a tree
structure in the calculation of an energy term in the segmentation below.

7.2 Evaluating performance

The APR can reduce the cost of existing algorithms in two ways. First, by
decreasing the total processing time by a reduction in the number of opera-
tions that have to be executed, and second by reducing the amount of memory
required to run the algorithm. The relative importance of the two and the
degree of reductions depend on the nature of the algorithm and its implemen-
tation. Below we introduce quantitative evaluation metrics to evaluate the
improvements in different algorithms and input images.

The first evaluation metrics relate to the computational performance, or
speed up, of the algorithm. For a given algorithm and implementation we
define the SpeedUp (SU) as,

SU =
Processing time of the algorithm on pixels

Processing time of the algorithm on particles
. (7.1)

Which is useful to relate to the Computational Ratio (CR, see 6.11), by

SU = CR ∗ PP, (7.2)
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where PP is the Pixel-Particle Speed Ratio and defined as

PP =
Time to compute the operation on a pixel

Time to compute the operation on a particle
. (7.3)

The PP reflects the relative cost of computing an operation on a particle from
an APR vs. a pixel from the input image for the equivalent task (value less
than one indicates pixels are faster). The value of PP depends on many factors,
including memory access patterns, data structures, hardware and absolute size
of the required data in memory. Consequently, even for a set algorithm running
on fixed hardware, the PP will be a function of both the input image size N ,
and Computational Ratio CR. Therefore, for tasks where PP < 1, as in most
low-level tasks, there will be a minimum value of CR for which the algorithm
is faster on the APR than pixels. Therefore, understanding the speed up for
algorithms requires knowledge of PP, CR, and N .

The second set of evaluation metrics relates to the reduction in memory.
We define the Memory Reduction Ratio (MRR) as

MRR =
Memory Cost (MC) for pixel algorithm

Memory Cost (MC) for particle algorithm
(7.4)

Expressed using the CR gives

MRR = CR ∗MPP (7.5)

where

MPP =
Memory required per pixel

Memory required per particle
, (7.6)

and reflects the relative memory cost of a single pixel vs. particle. For an
algorithm on a pixel image, the Memory Cost (MC) in Bytes usually scales
directly with the number of pixels N and variables, as

MCpixels = (Number of variables) ∗ (Data type in Bytes) ∗N. (7.7)

In comparison, the APR additionally requires storage of additional information
for location and neighbor access. This overhead depends on the specific data
structure used. We provide a detailed analysis of the MC for the two data
structures used here in A.5. In summary, for the APR in Bytes,

MCAPR = (Number of variables) ∗ (Data type in Bytes) ∗Np

+ (Cost of data structure per particle) ∗Np, (7.8)

where Np is the number of particles, and the cost of the data structure per
particle depends on N . Therefore, as the number of variables increases, the
additional overhead of the APR data-structures is amortized so that MPP will
approach 1 and the MRR the CR.
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7.3 Performance benchmarks

To demonstrate potential range of performance, we analyze three low-level and
one higher-level processing task below. The three low-level tasks are linear and
random neighbor access and separable pixel filtering, and the higher-level task
is segmentation. These low-level tasks, in addition to being core to many pro-
cessing algorithms, also represent a lower-bound for the performance benefits
of the APR due to their simple operations and access patterns that are well
suited to processing on pixels. In contrast, for the segmentation task, we use
an external min-cut library with more irregular computation and access pat-
terns provides an example of an algorithm more suited to the APR. A.10.3
describes the implementation and details of the benchmarks, and in the main
text, we focus on discussion of the results.

For the four performance benchmarks, we provide results for the compu-
tational and memory evaluation metrics and total execution time for the CR
benchmark data for input images from N = 2003 up to N = 10003 and summa-
rize the performance on the exemplar data sets. 1 We also discuss differences
between the APR and pixel algorithms, and where appropriate provide addi-
tional results.

7.3.1 Limitations

We note that all these results are highly implementation dependent, for both
the APR and pixel results. Ideally, exactly equivalent algorithms could be
constructed and compared. Unfortunately, due to differences between the data
structure used for an image, a contiguous array, and the more complicated
data structure of the APR, this is not realizable. We have endeavored here
only to provide equivalent optimization across both APR and pixel algorithms.
Further, this is in part the motivation for the simple nature of the benchmarks
used below. We only show results here using the SA, and SARA APR data
structures. It is likely that alternative data structures or improvements could
provide improved results. In this way, the results below can be thought of as
an indicative lower bound on performance. The same argument can be applied
to the pixel implementation and data structures. However, it is likely that the
pixel algorithms are closer to their ’optimal’ form.

1Note, that smaller sized original images have been omitted from the results as the CR
could not be accurately adapted to reflect the CR of each benchmark dataset and hence
confused the results.
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Figure 7.2: The first plot on the left axis shows the mean Speed Up (SU) for the CR benchmark data against
image width for linear neighbor access in green (The dashed lines follow the same convention for both datasets).
The right axis shows the Memory Cost (MC) of the algorithm in GB plotted in blue for the APR and pixel
implementations. The second plot for the same data shows the Pixel to Particle Speed (PP) ratio against image
width
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Figure 7.3: The first plot shows the Memory Reduction Ratio (MRR) for the CR benchmark data against the
image width for linear neighbor access. The second plot shows the natural logarithm of the average execution
time for the same data.
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Figure 7.4: The first plot on the left axis shows the mean Speed Up (SU) for the CR benchmark data against image
width for random neighbor access in green (The dashed lines follow the same convention for both datasets).
The right axis shows the Memory Cost (MC) of the algorithm in GB plotted in blue for the APR and pixel
implementations. The second plot for the same data shows the Pixel to Particle Speed (PP) ratio against image
width.

7.3.2 Neighbor access

The first task we benchmark is that of neighbor access. Neighbor access is at
the core of many image processing algorithms. For each pixel and particle, the
task involved accessing, and then summing, the intensity of all face-connected
neighbors and storing the result. The APR neighbors were defined using the
3D the APR particle graph as described in 5.6.2. The particle graph is simply
the face-connected neighbors of the Particle Cells. We benchmarked two forms
of neighbor access. The first we call linear access requires iterating over all
pixels, or particles, in memory order and accessing all neighbors. The second,
we call random access, involved randomly iterating over pixels, or particles,
and accessing the neighbors. These two benchmarks allow us to assess the two
’extremes’ of neighbor access patterns. See A.10.4 for an description of the
implementations.

Computational cost

The left axis of the first plot of Figure 7.2 shows the SU for the linear access
benchmark for the CR benchmark data. The average SU for CR5 is 0.897,
CR20 is 2.386, and CR20 is 7.77. These low SUs and slow down for CR5
reflect the relative efficiency of performing neighbor access on pixel images.
The PP values also reflect this, with average values showing it is between six
and ten times faster to perform neighbor access on pixels (Figure 7.2 second
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Figure 7.5: The first plot shows the Memory Reduction Ratio (MRR) for the CR benchmark data against the
image width for random neighbor access. The second plot shows the natural logarithm of the average execution
time for the same data.

plot). Interestingly, the higher the CR, the higher the PP. In the second plot
of Figure 7.2, we show the natural logarithm of the execution times. For the
CR20 and CR100, we see the positive SU values reflected in faster execution
times for the APR. However, for CR5 for larger images, as reflected in the SU,
the linear access is slower (although comparable magnitude) on the APR than
on pixels. The first plot in Figure 7.6 gives the SU values for the exemplar
data sets. One dataset, the smallest, shows a slowdown (SU< 1), with an
SU value of 0.7075. However, all other exemplars show speedups with a mean
SU of 4.28 and median 2.76. In contrast, although significantly slower for
both pixels and particles in total execution time, the random neighbor access
benchmark showed larger SUs for the APR. The left axis of the first plot in
Figure 7.4 shows the SU across CR and image size. The average SU for CR5
is 1.4, CR20 is 8.5, and CR100 is 28. We can understand the increase in
SU compared to linear access further from the PP values shown in the second
plot. The increase relative to linear access reflects the change in memory access
patterns. With the pixel image no-longer having a cache advantage due to the
layout of pixels in memory. Further, the smaller data set size for the APR
likely improves cache efficiency. However, we see that the SU and PP values
reduce as the original image size increases. This likely reflects the decrease in
cache benefits from the small size of the APR. In the second plot of Figure 7.5
we show the natural logarithm of the execution times. In contrast, the APR
total time is less than the pixels across image size and CR. For the exemplar
SU, shown in the second plot in Figure 7.4 also reflects the increased relative
performance with a mean SU value of 18.8 and median of 12.25.
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Figure 7.6: The first plot shows the Speed Up (SU) for the exemplar benchmark data plotting against image
width for the linear neighbor access performance benchmark. The second plot shows the same data but for the
random neighbor access performance benchmark.

Memory Cost

We present the absolute values in GB of the memory cost on the right axis of
the first plots in Figure 7.2 and Figure 7.5 for the linear and random neighbor
access benchmarks respectively. The memory cost for both benchmarks is
identical, as they both required the original data and storage of the result.
The impact of the CR on the MC can be seen, with the CR20 and CR100
datasets requiring roughly an order of magnitude less memory. The first plots
in Figure 7.3 and Figure 7.5 show the Memory Reduction Ratios (MRR).
Across image sizes and CRs, consistent reductions in memory were observed.
The average MRR of 2.751 for CR5, 8.376 for CR20, and 40.96 for CR100.
The MRR values for the exemplar datasets, not plotted here, also show an
improvement in memory cost with a mean MRR value of 24.4 and median of
12.2.

7.3.3 Separable pixel filtering

In the third performance benchmark, we assess the task of separable image
filtering, using a Gaussian blur. The Gaussian blur kernel is taken to be
defined in 3D and over pixels. The filtering is separable in that we perform
the task using three consecutive filtering steps applying a 1D filter in each
direction. Doing this sequence of filter steps gives the same result as using the
full 3D kernel once, and is commonly used as the computational cost scales
as 3L compared to L3 when L is the filter length in one dimension (although,
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Figure 7.7: The first plot on the left axis shows the mean Speed Up (SU) for the CR benchmark data against
image width for separable pixel filtering in green (The dashed lines follow the same convention for both datasets).
The right axis shows the Memory Cost (MC) of the algorithm in GB plotted in blue for the APR and pixel
implementations. The second plot for the same data shows the Pixel to Particle Speed (PP) ratio against image
width.

not all 3D filters are separable). Since the APR does not have particles at
each pixel location, for these sites, we use a reconstructed intensity. However,
instead of interpolating the full image, only the appropriate slice needs to be
reconstructed at any time. We then compute the filter on the reconstructed
slice only at particle locations. We only present results for a fixed filter length
L, however, the comparative results for different L are similar. For simplicity
and performance, we have used the piecewise constant interpolation. A more
detailed description is given in A.10.5.

Computational cost

The left axis of the first plot of Figure 7.7 shows the SUs for the separable pixel
filtering task for the CR benchmark data. We find a mean SU value of 6.923
for CR5, 13.16 for CR20, and 24.93 for CR100. The results all show a peak
SU for mid range image widths 200 − 400 then converging to lower values as
W increases. These dynamics are likely the result of the slice reconstruction.
This step has a fixed cost with respect to N , not CR, and the cost becomes
proportionally more expensive with an increase in image size. The dynamics
with W are more clearly illustrated with the PP, showing a peak and then
decrease of performance as shown in the second plot of Figure 7.7. Again,
we see that the PP ratio is higher for higher CR, reflecting cache efficiency
benefits of larger high-resolution regions, and the lower per particle cost of the
reconstruction step. In the second plot of Figure 7.8 we show the natural log of
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Figure 7.8: The first plot shows the Memory Reduction Ratio (MRR) for the CR benchmark data against the
image width for separable pixel filtering. The second plot shows the natural logarithm of the average execution
time for the same data.

the execution times for the APR and pixel algorithms, showing the consistent
SUs across W . The SU for the exemplars benchmark data is shown in the first
plot of Figure 7.9 with a mean SU of 12.27, and mean time of 1.23 and 14.13
seconds for the pixel and APR algorithms respectively.

Memory Cost

Regarding the memory cost, we find similar results as the neighbor access task.
For the pixel algorithm, the memory requirements are again simply the input
image and result. The APR similarly requires storage of the APR input and
result but also an image slice for the reconstruction step. The MC reductions
shown on the right axis of the first plot in Figure 7.7 and Figure 7.8. For the
fixed CR datasets, the MRR values are 4.35 for CR5, 12.35 for CR20, and
38.02 for CR100. These results, reflect the additional overhead of the image
slice having lower impact per particle for a larger CR. The exemplar data sets
had a mean MRR value of 24.48 and median 19.09. In absolute values, this
corresponds to an average memory cost for pixels of 7.47 GB and the APR
359 MB.

Comparison between approaches

However, the results from these two approaches are different and do not present
a fair comparison. To evaluate differences we compared the result of the pixel
filter, and the APR filter interpolated to an image, to the ground truth image
filtered by the pixel filter for 100 realizations for a fixed image size (2503,
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Figure 7.9: The first plot shows the Speed Up (SU) for the exemplar benchmark data plotting against image
width for the seperable pixel filtering performance benchmark. The second plot shows the execution time for
the segmentation performance benchmark for the exemplar benchmark data. The SU was not available, due to
the pixel algorithm being unable to be run on the benchmark machine due to memory constraints. The numbers
coincide with those in Table A.1.

CR5). For comparison, we also computed the result of the pixel filtering on
a piecewise constant reconstruction from the APR. We did this for a small
σ = 0.5 and larger σ = 2 blurred kernel.

Examples of the results are shown in Figure 7.10. For the small blur kernel,
the mean APR PSNR was 30.68 with a standard deviation of 1.49, for the orig-
inal image 23.38 with a standard deviation of 0.395, and for the reconstructed
APR 30.71 with standard deviation 1.26. Therefore, the APR filter provided
accurate results. However, in the large blur kernel, the mean APR PSNR was
31.883 with a standard deviation of 2.89, for the original image 42.93 with a
standard deviation of 0.6, and for the reconstructed APR 42.56 with standard
deviation 1.14. These results indicate that the APR filter no longer produces
accurate results. The poor performance can also evident in the bottom right
image in Figure 7.10 where distinct artifacts can be seen. This is the result of
the Implied Resolution Function not being valid for the intermediate filtering
results in the separable scheme. In such cases, it seems it would be necessary to
result to pixel filtering on a reconstructed APR, as those results are equivalent
for larger filters. This also indicates that the failing is not due to the piece-wise
constant reconstruction. The poor performance is not a pure function of filter
size, but depends on the spatial scales of the resulting function, with large
filters designed for edge detection not showing similar issues (not shown).

Hence we conclude, that the above approach is only of specific use, and
does not represent a direct replacement for pixel filtering. The example also
illustrates the care that must be taken when adapting algorithms from pixels
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  Ground Truth Filter σ = .5   Pixel Filter σ = .5   APR Filter σ = .5

  Ground Truth Filter σ = 2   Pixel Filter σ = 2   APR Filter σ = 2

Mean PSNR: 23.38 Sd: .39 Mean PSNR: 30.68 Sd: 1.49 

Mean PSNR: 42.56 Sd: .6 Mean PSNR: 31.88 Sd: 2.89 

Figure 7.10: Example images of the validation for separable filtering benchmark. The APR and pixel algorithms
were run using a narrow Gaussian (top) and broad Gaussian (bottom), for the pixel filter for noise-free ground
truth image (left), the original image (center) and the APR filter the reconstructed to an image (left). The mean
and standard deviation of the PSNR compared to the ground truth filter over 100 for a CR5 image of size 2503

is provided at the bottom of the images. The results show that the APR filter works well for small blur kernels.
However, as the kernel gets larger the APR filter no longer produces accurate results, reflected in the low PSNR
compared to comparable the pixel filter.
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to the APR.

7.3.4 Segmentation

The last performance benchmark is binary segmentation using graph cuts. The
binary segmentation task involves estimation of the compactly supported re-
gion in the Object function, as described earlier in Section 2.5. This benchmark
serves two purposes, showing the benefit of the APR for more sophisticated
processing tasks, and also giving an example of the APR being used directly
with an existing algorithm and implementation.

We compute the segmentation using graph cuts using an implementation
of a min-cut maximum flow algorithm provided with Boykov and Kolmogorov
[21]. The algorithm takes an input energy for a node belonging to a source and
a sink, and energy between its neighbors, and using this partitions the nodes
into either source or sink nodes. Where we define the source set to be those
pixels or particles inside the support of our Object function.

We computed the energy terms using both the Particle Cell properties of
level and type, and a local min-max range computed using an APR tree struc-
ture. The energy used is described in detail in A.10.6. To allow for direct
comparison between the pixel and particle results, we use the same energy, us-
ing the piecewise constant reconstruction of quantities for the pixel algorithm.
This allows us to isolate the differences between the two representations rather
than energies. For both the APR and pixel image a face-connected graph was
used. Because we use the same energy for both, we remove this from the
analysis and only show the results for the solving of the solution through the
min-cut, maximum flow step. Unfortunately, due to memory constraints on
the benchmark machine, the pixel algorithm could only be run up to image
sizes of 5503, thus limiting the results that require direct comparison.

Computational cost

The left axis on the first plot in Figure 7.11 shows the SUs for the segmentation
benchmark for the CR benchmark data. We find a mean SU value of almost
exactly the CR, with 5.2 for CR5, 19.66 for CR20, and 92.4 for CR100. In
the second plot of Figure 7.11 we see that this results in PP values very close
to one. Therefore the cost between the two approaches per node is roughly
the same. The equivalence is not obvious, as the APR particle graph can
have up to 24 nodes, and has a different structure (However, the average
number of neighbors is approximately 6.23 for the CR benchmark data). The
second plot in Figure 7.12 gives the natural logarithm of the execution time.
We could not compute SU values for the exemplar data sets instead, as the
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Figure 7.11: The first plot on the left axis shows the mean Speed Up (SU) for the CR benchmark data against
image width for segmentation performance benchmark in green (The dashed lines follow the same convention for
both datasets). The pixel algorithm could not be run due to memory constraints on the pixel data set for images
larger than 5503. However, we have extrapolated the projected memory cost. The right axis shows the Memory
Cost (MC) of the algorithm in GB plotted in blue for the APR and pixel implementations. The second plot for
the same data shows the Pixel to Particle Speed (PP) ratio against image width. Again, data is only available
for images smaller than 5503.

pixel algorithm could not be run. Instead, the second plot in Figure 7.9 gives
the absolute time for the APR solution. With an average execution time for
the exemplar benchmark data of 6.99 seconds. For reference, this compares
with 25.21 seconds taken for the 5003 pixel algorithm. We note that in this
benchmark neither the pixel nor APR data structures are used. Instead, both
using the graph data structures of the graph cut implementation. The use of
the same data structure effectively accounts for the results above.

Memory Cost

As mentioned due to high memory requirements of the graph cuts solver (on
our benchmark machine (64 GB RAM)) pixel results were only able to be
computed for images up to 5503. In contrast, we could compute the solution
for all but two (CR5 > 9003) CR and all of the exemplar benchmarks using
the APR. The right axis of the first plot in Figure 7.11 shows both real and
projected memory cost. The high memory cost for the pixel algorithm due to
the algorithm storing edges for both the pixels and links to their neighbors.
The first plot of Figure 7.12 shows the MRR scales almost linearly with CR.
For the exemplar datasets, the mean MRR value was 39.7 and median 26.9.
Corresponding to an average absolute memory cost of 13.5GB, compared to
an estimated 384.7GB for the pixel equivalent. As as a note, these results are
not given as a criticism of the max-cut memory cost. Indeed, optimized graph
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Figure 7.12: The first plot shows the Memory Reduction Ratio (MRR) for the CR benchmark data against the
image width for the segmentation performance benchmark. Those values for W > 550 represent estimates from
extrapolation of the pixel memory cost. The second plot shows the natural logarithm of the average execution
time for the same data; we note that the CR5 benchmark data could only be run up to an image width of
W = 850.

cut solvers do exist for reducing this memory cost. Instead, we show here
that with direct placement of the pixel image with the APR for an existing
algorithm, significant reductions in memory cost can be achieved, that result
in a range of problems that were otherwise infeasible, feasible.

Comparison between approaches

To validate that the APR segmentation, we compared the APR and pixel image
segmentations to ground-truth and calculated the Dice Similarity Coefficient
(DSC) [44] for 100 repetitions of a CR5 image of width 250. We define the
DSC in our case as,

DSC =
#(Sgt ∩ Sp)
#Sgt + #Sp

, (7.9)

where Sgt is the set of pixels in the support of the Object function and Sp, is
the estimated set of pixels from the segmentation algorithm, and # indicates
the size or cardinality, of a set. To allow direct comparison with the pixel
result, for calculation of the DSC a piecewise constant reconstruction from
the APR segmentation was used. Figure 7.13, shows an example segmenta-
tion, with the original image, ground-truth segmentation, and segmentations
results for the APR and pixel algorithm given. The calculated DSCs of both
approaches are statistically identical, with the APR having a mean of 0.88 and
a standard deviation of 0.069 and the pixel segmentation a mean of 0.87 and
a standard deviation of 0.087. The closeness of the results can be seen in a
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Original Image Ground Truth Binary Mask

Segmentation APR Segmentation Pixels

Mean DSC APR : 0.88 Sd: 0.069 Mean DSC Pixels : 0.87 Sd: 0.087 

Figure 7.13: Validation for segmentation performance benchmark. The same energy function was used for both
pixel and APR segmentation. The ground truth binary image is creating using the binarization of the Object
function. The APR and pixel segmentation give near identical results as shown by the computed Dice Similarity
Coefficients (DSC) mean and standard deviation over 100 repetitions for CR5 images of width 250 given in the
figure.
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visual comparison, with only isolated pixels being different. From above, we
conclude that the results of the two approaches are comparable.

7.4 Visualization

A key processing task using LSFM data is visualization. Both for display of
the original image data and any processed results. Visualization is a process-
ing task, as the raw data can not be viewed directly, and must be processed
’in some way’ to provide a visual representation. For 3D visualization, this is
evident, as the image data represents an opaque 3D cube of integers. How-
ever, even for visualization of the original 2D image slices usually requires
calculation, or manual setting, of a visual contrast range.

The APR, rather than restricting the visualization possibilities, extends
them when compared to the original image data. Given, as that a pixel image
representation can be constructed from the APR, this is not surprising. Here,
we discuss three different avenues of APR visualization that can be achieved
without returning to the full pixel image. We do not benchmark the relative
computational or memory performance below, showing the results as proof of
principle. We leave the development of efficient implementations and studies
of relative performance to future work. A.11, provides additional technical
information for each.

7.4.1 By slice

The first methods we discuss, is visualization by reconstruction, on a slice by
slice basis. If we only wish to view one slice at a time, the reconstruction can
be done on a slice by slice basis. Hence, this does not require having to recon-
struct the whole image (as used in the pixel filtering above). In addition to
the multiple examples throughout the thesis above, Figure 7.14 gives examples
of the APR reconstruction and comparison to the input image. In practice,
we find that the piecewise constant reconstruction has been sufficient for vi-
sualization purposes. This could easily be implemented in real time per slice,
as on a 2013 laptop, reconstructing a 1000 × 1000 slice took approximately
.002 seconds. Although, given correct setting of the contrast control, such
piecewise constant representations do show significant ’artifacts’ as shown in
Figure 7.15. If these are not desired more sophisticated reconstructions could
be used as described in 5.6.1.
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Original Image APR Reconstructed

Figure 7.14: Comparison between a subset of a slice of the original image (left) and the APR piecewise constant
reconstruction (right) for exemplar dataset 7 in Table A.1.

APR Reconstructed

Figure 7.15: An example of piecewise constant APR reconstruction of exemplar dataset 1 in Table A.1. The
contrast has been adjusted to highlight the variation over low-resolution areas. This is the same image as presented
in Figure 6.10
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Pixel Raycast

APR Raycast

Figure 7.16: Comparison for the same view perspective of an APR (bottom) and Pixel (top) maximum intensity
ray cast of exemplar dataset 17 in Table A.1.

7.4.2 By racasting

A second method allowing for 3D visualization of an APR is ray-casting. Ray
casting involves generating a 2D view of a 3D scene, by tracing rays through the
data to an observer. Figure 7.16, shows an example of a maximum perspective
ray-cast computed on the original image, and direct on the APR for an LSFM
data set. Shown at the given contrast levels the two are virtually indistinguish-
able. However, there are still distinct differences, with Figure 7.17 highlighting
them using a different contrast range. A second example is also given in Fig-
ure 7.23, showing a visualization of a segmentation result using an extension
of the algorithm. The APR ray cast is done by casting multi-resolution rays
through the image, level by level, and then combining the results in a final
step. The algorithm has a computational and memory complexity that is
O(Np), only requiring the SA data structure. Such an algorithm could form
the basis of useful visualization software, as currently in for the largest images
(approximately > 10003) can not be visualized at the full resolution in the cur-
rent state of the art software [98] due to memory constraints. Further details
of the implementation are given in A.11.2.

7.4.3 By particle rendering

The last visualization method involves direct visualization of the APR. We
have given various examples of this in 1D and 2D throughout the thesis above.
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APR Raycast

Pixel Raycast

Figure 7.17: Reproduction of the pixel and APR ray-cast example for the same view shown in Figure 7.16.
Contrast has been adjusted to highlight the differences and loss of information for the APR ray-cast resulting
from an intensity threshold. (Dataset number: 17 in Table A.1)
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Intensity  Particle Cell Level 

Particle Cell Type Particle Cells

Figure 7.18: An example of the direct rendering of an individual slice of the APR exemplar data set 1 in Table A.1.
Three panes show direct particle rendering with size proportional to the Particle Cell level and color reflecting
the particle intensity, Particle Cell level, and Particle Cell type across the examples. The last pane shows a direct
rendering of the Particle Cells colored relative to their particles intensity.
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Paraview Particle Renderings

Figure 7.19: Screen captures for examples of direct particle rendering of (left) exemplar dataset 7 in Table A.1
and (right) exemplar dataset 17 in Table A.1 using Paraview [14]. The particles are coloured by intensity, and an
opactiy scaling has been used to remove background particles.

Not only can the intensity be visualized, but also the particle cell level, location,
and type. Figure 7.18, shows an example of this for a small portion of LSFM
data in 2D. With the use of thresholding or variable opacity, particles can also
be directly rendered in 3D. Figure 7.19, shows screen captures of two particle
renderings of the APR of LSFM data using Paraview [14].

7.5 Novel algorithms

Some algorithms are naturally better suited for pixel images, as shown by
the filter example above. However, the reverse can equally be true. The
adaptation, and added information, from particle level and type, naturally
provide information about the image. We can directly use this information
for processing as illustrated with the segmentation example above. Further,
although possible, calculating the same information directly from the image
with the APR, would likely come at significant cost and complexity. In addition
to providing useful information to existing algorithms, the APR can be used to
create novel algorithms. We illustrate this with a simple adaptive APR filter
example and segmentation using the approach above with a slightly altered
energy.

7.5.1 Adaptive APR filters

Adaptive APR filters are the APR equivalent of the separable pixel filters
benchmarked above. Defining the filter over neighboring particles from the
particle graph, instead of equally spaced pixels. As the distance between neigh-
boring particles varies across the image, computing an adaptive APR filter is
analogous to a spatially adaptive pixel filter with filter size changing to the
content of the image.
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  Original Image   Ground Truth Gradient Magnitude

Original Gradient Magnitude (Finite 
DI�erences)

  APR Adaptive Gradient Magnitude

Mean PSNR: 16.75 Mean PSNR: 34.60

Figure 7.20: Evaluation of Adaptive APR filter used to compute the gradient magnitude with synthetic data,
obtained by filtering in each direction with {− 1

2h−
, 1

2h−
− 1

2h+
, 1

2h+
}, where h+ and h− are the particle spacings

in the positive and negative direction respectively, and multiple particles on one face being averaged. Top left
original noisy image, top right ground truth gradient magnitude using finite differences, bottom left original
image gradient magnitude using finite differences, and bottom right APR Adaptive gradient magnitude. The
mean PSNR with respect to the ground truth gradient magnitude is given averaged over 100 repetitions, for CR5
N = 2503 images.
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 Adaptive APR Gradient MagnitudeOriginal Gradient Magnitude (Finite DI�erences)

Figure 7.21: Evaluation of Adaptive APR filter used to compute the gradient magnitude on an exemplar dataset 10
in Table A.1. The right image was generated using central finite differences to compute the gradient magnitude
on the original image. The left image was obtained by using adaptive APR filtering in each direction with
{− 1

2h−
, 1

2h−
− 1

2h+
, 1

2h+
}, where h+ and h− are the particle spacings in the positive and negative direction

respectively, and multiple particles on one face being averaged, and then the image formed using piecewise
constant reconstruction.
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For the APR, implementing the adaptive APR filter involves the same
process as in the linear neighbor access benchmark above. In contrast, an
adaptive pixel implementation would be significantly more involved. Here we
show results for a gradient magnitude calculation using adaptive APR filters.
The gradient in each direction is calculated by taking the average of one-
sided differences between neighboring particles in each direction (as a particle
can have up to 8 neighbors in one direction, i.e. x,y, or z). Figure 7.20,
shows the results for benchmark data, where we compare the result with the
gradient magnitude calculated using central finite differences on the original
and ground truth images for 100 CR5 images of width 250. The adaptive APR
filter had an average PSNR of 34.6 and standard deviation of 1.2394 while the
average PSNR for the original image approach had an average PSNR of 16.78
with a standard deviation of 0.1802. Hence, the adaptive APR filter shows
significantly more robustness to noise for our benchmark data. The algorithm
also provides nice denoising properties for the exemplar datasets, as shown
in Figure 7.21 for one slice of an LSFM dataset. We also tested an adaptive
APR smoothing filter that involves taking a weighted average over neighboring
particles. Multiple passes were made for greater smoothing. Comparative
results for the same data as the gradient example are shown in Figure 7.22.
The adaptive APR smoothing filter showed a higher PSNR (37.8) increase
than any fixed kernel Gaussian smoothing on the original image (maximum
33.42). This held for from one to seven passes. We have shown the results
for four taps, as that was the best result for the adaptive APR smoothing
filter. Therefore the adaptive APR smoothing filter provides an alternative for
smoothing other than using a pixel filter approach discussed above.

7.5.2 Segmentation and visualization

The visualization and segmentation examples presented above can also be con-
sidered as novel algorithms, as they directly use the properties of the APR.
In Figure 7.23, we show an APR ray cast volume rending of segmentation
results for exemplar data set 17, using a slightly adapted energy (A.10.6) for
the graph cuts approach presented above. Colour is used to indicate depth.
Across the exemplar benchmark data, using this adaptive energy and segmen-
tation approach showed promising preliminary results, with minimal change
in parameters. These results were qualitatively similar in quality, and execu-
tion time, to those produced by state of the art method distributed method
presented in Afshar and Sbalzarini [5] run using a high-performance cluster.
Although we do not explore this further here, it provides motivation for further
development of segmentation algorithms for the APR.
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  Ground Truth Image   Original Image

 APR (reconstructed) APR Adaptive Smooth (4 Passes)

PSNR Mean: 17.93

PSNR Mean: 30.42 PSNR Mean: 37.80

Figure 7.22: Evaluation of APR Adaptive Smooth filter with synthetic data, obtained by filtering in each direction
with {0.1, 0.8, 0.1} directly with particle neighbors generating an adaptive filter, with multiple particles on one
face being averaged. Top left, shows the original ground truth image, Top right shows the original image, bottom
left APR reconstructed image, and bottom right shows an example result of four passes with the filter in each
direction. For each image, the mean PSNR with reference to the ground truth image is shown over 200 repetitions
for CR5 images of width 250. Four passes achieved the maximum PSNR for the APR. However, any number of
passes of those tested (up to 7) exceeded the PSNR of any Gaussian filter on the original or reconstructed image
(maximum PSNR of 34.4).
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Coloured by z depth

Figure 7.23: Raycast rendering of segmentation using the graph cuts segmentation approach with the energy
described in A.10.6 for LSFM exemplar data set 17 in Table A.1. The image is coloured by depth, using a volume
rendering approach using an extension of the ray-casting algorithm discussed in 7.4.2.

7.6 Summary and main points

In this chapter, we explored how the APR can be used for processing tasks.
We did this by first discussing how the APR can be interpreted for different
processing tasks, and then introduced evaluation metrics for comparison of
performance with pixel algorithms. Following this, we presented a variety of
processing results across three categories. These categories were performance
benchmarks, visualization, and novel algorithms. The summary box below
highlights the main results and findings. Lastly, we reflect on the results in
light of our representation criteria.

7.6.1 Reflection on Representation Criteria

The results in this section were designed as to provide evidence regarding the
APRs ability to fulfill RC4, which requires the adaptivity of the APR is able
to be used across a wide-range of processing tasks without returning to the
original image. As seen in the linear neighbor access task, there will exist
tasks where the APR is less well suited than a pixel representation, resulting
in lower performance. Further, we showed that in the pixel filter task, that
care must be taken that the results of the adapted task still align with the
original task. Further, across the benchmarks, the exact performance is highly
implementation specific, with multiple alternatives for both pixels and the
APR for any given task.

However, instead, let’s focus on the objective of RC, that is the question,
’can standard processing be done effectively directly on the APR without re-
quiring the original image?’. Further, let us consider processing tasks to be
defined regarding an algorithmic objective, instead of an explicit algorithm
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(e.g. de-noising using blurring, as opposed to the application of a Gaussian
pixel filter). Where then ’effective’ encapsulates many principles and trade offs
between computational and memory cost, the complexity of implementation,
and its ease of adaptation to a range of existing tasks. These issues have been
previously discussed in 3.4.2 and summarized in Figure 3.7. In this framework,
I believe the above results for the APR are promising, for the following reasons
supported by the results above:

• The simple structure of the APR allows the APR to be ’interpreted’ in
the same way a traditional pixel image is (See 7.1)

• The adaptation of the APR, for realistic ranges of CR, provides reduc-
tions in memory and computational cost of at least an order of magnitude
across tasks (See 7.3).

• The APR provides additional information that can provide simple algo-
rithms using the APR with high-performance.

• The APR can be directly used with some existing algorithms

• In the worst case, pseudo-pixel-APR algorithms can be developed that
locally, or fully, reconstruct the pixel image (See 7.3.3).

However, there are also many limitations to processing with the APR. Firstly,
there is the added complexity of implementations and data structures. This
complexity is compounded by the fact that in most cases, existing algorithms
will need to be redesigned and implemented, resulting in added time, and a
barrier to use. Second, is that the APR is intrinsically lossy. Therefore, deci-
sions made regarding parameters for the APR, E, and choice of Local Intensity
Scale, could result in the loss of information that is vital to some processing
task. In particular, certain image enhancement tasks such as deconvolution
or de-noising may rely on the exact pixel distribution, therefore requiring the
full original image. Although, in a particular processing pipeline, such tasks
could be done before the APR formed, using the APR for later higher level
tasks such as segmentation, tracking, and visualization. Alternatively, the
pixel image data could be retained and used jointly with the APR.

In summary, given we cannot prove fulfillment of RC4, we can, however,
evaluate RC4 in the negative. That is, is there significant evidence supporting
that the APR cannot be used across a wide range of tasks without returning to
a pixel image? If we restrict ourselves to tasks as outlined in Chapter 2, with
the possible exception of image enhancement, I have yet to find such evidence.
Hence, tentatively, and with further development, I conclude that the APR
appears to have the correct features to satisfy RC4.
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Summary of the chapter

• Discussed different interpretations of the APR for processing

• Introduced performance evaluation metrics for APR processing

• Evaluated performance of four processing tasks for the APR com-
pared to pixel algorithms

• For the pixel filtering example highlighted how the APR can be lim-
ited in direct applications for certain tasks.

• Showed performance of all tasks where proportional to image content,
not just original image size N

• All but the CR5 benchmark for linear access showed a speed up when
compared to pixel implementations.

• All tasks showed memory reductions that scale proportional to image
content.

• For the segmentation task, the memory reduction was significant,
resulting in otherwise infeasible large processing tasks feasible on our
benchmark machine

• Showed proof of principle of three different visualizations directly
using the APR

• Showed how the APR could result in novel algorithms utilizing its
spatial adaptation with the adaptive APR filters.

• Reflected on the limitations of the results and fulfillment of RC4
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In this chapter, we reflect on the literature introduced in Chapter 3, and
discuss the similarities between the different components of the APR and ex-
isting methods in the literature. Importantly, the ideas of the APR grew out
of an initialization method for the extension of Reboux et al. [93] for images,
and hence many ideas are related to this approach. We structure this com-
parison by discussing the following elements separately: the Reconstruction
Condition, the Resolution Function and APR reconstruction, the Resolution
Bound, and the Pulling Scheme. We then focus on a comparison between
the APR and wavelet thresholding, focusing on two optimality results regard-
ing efficient representation and noisy reconstruction. For both, we provide an
empirical comparison between the APR and wavelets reproducing the result
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(Donoho and Johnstone [47] and DeVore et al. [42]). Lastly, we present some
preliminary theoretical results on the optimality of APR noisy sampling.

8.1 Similarity to other methods

The Adaptive Particle Representation (APR) shares ideas and concepts across
almost all of the adaptive representations discussion in Chapter 3. The APR
is a member of the last group we presented, of adaptive sparse collocation
methods (3.3.3). It shares the principle of adapting sampling to image content
that is at the core of he mesh-based adaptive image representations, however,
the APR does not rely on a mesh triangulation. Conceptually, it combines
error estimates at the core of error equidistribution (3.3.3) methods with a
reconstruction form similar to the ’oracle’ methods reviewed by Donoho and
Johnstone [47].The solution is computed using common multi-resolution struc-
tures (3.3.1) and results in a solution that is similar to those produced by sparse
collocation wavelet methods (3.3.3). For brevity, for the methods we discuss
here we will often refer back to the appropriate section in Chapter 3 where
references and descriptions can be found.

8.1.1 APR form and Resolution Function

The APR represents a function using a Resolution Function R(y) and set of
collocation points P∗, see 5.1. This form, is most similar to the adaptive oracle
models such as Breiman et al. [22], Friedman and Silverman [52], Brockmann
et al. [24] discussed in Donoho and Johnstone [47] and used for adaptive band-
width regression tasks for unknown functions. The oracle sets the bandwidth
of the regression kernel in some way across the domain to improve the predic-
tive power of the model with the presence of noise. Another related approach
is that of adaptive Lagrangian particles [93] where a local resolution is carried
as a property of the particles. However, the APR differs in that the Resolution
Function is defined everywhere.

The reconstruction allows the use of any weighted averaged of particles
within the Resolution Function. Such a form is similar to the local recon-
struction used in Partition of Unity methods [16]. This more general form
differs from methods such as wavelets (3.3.1), dictionary methods (3.3.2), and
adaptive mesh methods (3.3.3) , where reconstruction is restricted to a single
reconstruction method often defined by a specific basis. Where as in the APR
reconstruction can be achieved by a range of basis functions satisfying criteria
on their particle weights and support. Further, in fixed basis methods, the
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local adaptation scale is implicit in the size of the local basis function, rather
than explicit as for the Resolution Function in the APR.

8.1.2 Reconstruction Condition

The Reconstruction Condition 5.2, requires that the infinity norm of the re-
construction from the APR point-wise weighted by some local intensity scale
is bounded a user specified constant across the domain. For a constant local
intensity scale, a similar bound is required the adaptive methods described in
DeVore et al. [43] and Agarwal and Suri [6]. DeVore et al. [43] provides a
scheme for constructing sparse wavelet transforms that guarantee point-wise
reconstruction error. Agarwal and Suri [6] discusses optimal mesh triangula-
tions with a point-wise Reconstruction Condition and proves that finding the
general optimal solution belongs to a class of NP-hard problems.

8.1.3 Local Intensity Scale

Across the review, I have not found methods that attempted to include a
weighting function to control the point-wise error. This likely reflects a lack of
motivation in the fields of application intended for the representations. How-
ever, existing methods could be extended to include such concepts. Further,
given the lack of guarantee, or practical constraints on the Local Intensity
Scale, it seems further algorithmic and theoretical work is still needed for a
more flexible integration of such scales.

8.1.4 Resolution Bound

The Resolution Bound, Eq 5.3, provides a direct condition on the Resolution
Function for the reconstruction that given restrictions can guarantee the Re-
construction Condition. The Resolution Bound is derived from analysis of
the reconstruction error using the integral form of the remainder of a Taylor
series approximation. Using such a technique has a long and rich history start-
ing with its use for splines representations as originally presented in de Boor
[37], De Boor [38], Burchard [25] in combination with the idea of error equidis-
tribution 3.3.3. Further, the integral remainder is at the heart of a range of
error equidistribution based methods.

However, the exact form of the Resolution Bound placing an inequality
on the Resolution Function everywhere in the domain does not appear to be
central to any of these methods. The closest appears in Reboux et al. [93]
which includes a minimum step over a Local Resolution Estimate like quantity
defined on particles.
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Another point of difference from these methods is the formulation as a
constrained maximization problem of R(y) subject to the Resolution Bound.
Further, this then allows the APR to utilize the geometry that is inherent in
the Resolution Bound relating to L(y) and R(y), that is not a feature of either
the Reconstruction Condition or the direct error analysis. This geometry arises
from the width of interaction, and function value, being linked.

8.1.5 Particle Cells and Implied Resolution Function

Particle Cells are used by the APR both for adaptive sampling, and for the
construction of an Implied Resolution Function that satisfies the Resolution
Bound. Particle Cells partition both the spatial domain and ’resolution’ do-
main into regular regions with sizes that are negative powers of two segments of
the domain. The decomposition in the spatial domain corresponds to the pop-
ular binary, quad, and octree decompositions in 1D, 2D, and 3D. Further, such
decompositions are at the heart of the Haar wavelet transform and multireso-
lution and pyramid based methods 3.3.1. However, the particle cells differ in
that also partition the resolution domain, in a way that is similar to the scale
space in scale-space decomposition [139] and adaptive particle cell-lists [13].

The Implied Resolution Function is constructed by a collection of Particle
Cells which cover the domain like hypercube blocks. This special Particle Cell
set V partitions the spatial domain without overlap. This is similar in spirit to
the piecewise constant decomposition over similar elements in the Haar wavelet
transform. However, in practice, it is quite different, as only one block is used
for each point in space in the APR, and this is of a fixed value.

I have not come across similar work regarding the explicit formulation of the
Particle Cells, and the results proved in 5.3 regarding the Implied Resolution
Functions and the Resolution Bound. It is likely; they are simply restatements
of existing results presented in a new formulation. I speculate that if the
problem correctly formulated as a constrained maximization problem under a
set of pixel constraints, this link would be made more clear. For example, the
optimal solution is created by the effective polytope constructed by all the of
the individual constraints of the particle cells in the Local Particle Cell set L.
Such links are left to future work.

8.1.6 Pulling Scheme

The Pulling Scheme allows for the direct construction of the OVPC V , rep-
resenting the optimal Implied Resolution Function in a worst case linear al-
gorithm. The Pulling Scheme utilizes the range of results for Particle Cells,
constructing a solution by propagation of individual solutions from highest to
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lowest resolution. Conceptually, this could be thought of as analogous to a
Green’s Function approach to solving differential equations. However, the in-
tegral is replaced by the ’minhull’ operation across the sets. I note, that this
minhull operation likely has a direct correspondence with an existing concept
in the literature of which I am not aware.

When constructing the set, the algorithm involves steps of adding particle
cells from the Local Particle Cell set L and layers of neighbors that increase
in resolution away from local maxima in resolution. The algorithm appears
to have greatest similarities with adaptive thresholding wavelet schemes pre-
sented in DeVore et al. [43], Vasilyev and Bowman [131], Rossinelli et al. [97].
All of these methods include insertion of high-resolution areas, with padding,
analogous to ghost layers, added to provide support for the high-resolution
particles. In DeVore et al. [43], these operations are directly motivated by the
Reconstruction Condition of the methods, however in Vasilyev and Bowman
[131] and Rossinelli et al. [97], they seem to be justified in a more practical
heuristic manner.

8.1.7 Wavelet thresholding

Although not precise, there seems to be a conceptual link between the way
wavelet thresholding 3.3.2 selects coefficients and the adaptivity of the APR.
Also, the APR can be used with a wavelet based reconstruction method, using
the scaling functions of the wavelet transform, selecting the largest scaling
function at each point that satisfies the Resolution Bound.

We briefly describe this link for the 1D Haar wavelet transform. Let’s
consider the Haar wavelet transform in 1D and its detail coefficients di,j, where
i is the spatial coordinate and j the level. These detail coefficients at any level
are the difference between neighboring pixels in a mean down-sampled version
of the signal at the previous level. Therefore, they represent a down sampled
approximation of the local gradient. Therefore, the thresholding

|f(xj,1)− f(xj,2)| ≤ T (8.1)

is related to through a one-sided finite difference operator as

|∂f
∂x

(x1)| ≤ 2j−jmaxT (8.2)

where it is assumed the highest resolution sampling jmax has spacing h = 1.
This is similar to the assignment of level l during construction of the Local
Particle Cell Set L. If we consider a Particle Cell at resolution l∗ in the APR,
and a wavelet transform thresholded with some T that has a similar highest
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resolution element for some point x. For that to occur in the APR, would
require there to be no smaller Particle Cells within the spatial domain of the
Particle Cell in L. Similarly, for the wavelet, being the highest resolution
at that point would require that all detail coefficients within the support of
the wavelet to be zero. Hence, both representations reflect that the gradient
in that region is everywhere bounded by some 2j−jmaxT . However, the APR
having resolution l∗ provides a stronger constraint on the underlying f , then
the Haar wavelet, as the APR allows for more general reconstructions with a
support that is not constrained to an individual particle cell element.

This concept also seems to extend to the higher order reconstruction APR,
when compared to higher order wavelet reconstructions. As the details coeffi-
cients then become bounded by local integrals of the higher order derivatives
and comparison to the APR can again be made this way. We leave further
exploration of these ideas to future work.

8.1.8 Computational and Memory Cost

Given the pipeline for forming the APR has a worst-case linear computational
and memory cost for input size N , it is, therefore, in an asymptotic sense as
efficient any of the adaptive approaches above. Beyond this, providing exact
comparisons requires both a reference problem and implementations. Further,
based on reported execution times for natural images, it would appear that
the formation of the APR can scale and be more computed efficiently when
compared to results given for mesh-based image representations [104].

However, regarding memory cost, the in-place DWT approach for calcula-
tion of wavelet coefficients is superior to the full APR pipeline. As the lifting
scheme can be done in-place, requiring only the original image in memory, how-
ever, the APR pipeline we have presented requires approximately 3.25 times
more memory. However, if we only consider the pulling scheme, and assume
that the local particle cell set is given, then the memory cost is smaller than
the original image. Also, as shown above, in practice the computational per-
formance of the pulling scheme is dependent on the image content showing
sub-linear scaling in N for a fixed total level of content. Further, a wavelet
equivalent of the APR would likely require additional algorithmic steps and
additional storage of variables than simply the DWT.

8.1.9 Summary and originality

In summary, the APR unites many concepts and ideas across a large range of
existing adaptive and multi-resolution representations. However, the focus on
the Resolution Function using the Resolution Bound, and solving this using
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an optimal restricted solution using Particle Cells, appears to be an original
approach to adaptive representations. Further, the inclusion of the Local Inten-
sity Scale and the space-time adaptation extension (discussed in Chapter 10)
appear to be novel.

8.2 Comparison to wavelet optimality

Given the wide range of algorithms and methods for adaptive representations,
optimality results can be of particular use. Optimality results, usually, provide
proof that a property of a given representation is ’the best’ in some sense, or
belongs to the class of ’optimal’ results. Being able to prove a representation
is optimal is useful as they provide theoretical guidance on whether alternative
methods or additional development, would provide increased performance.

Wavelet thresholding (3.3.2) techniques possess many optimal properties
that have contributed to their wide adoption and use. These have also inspired
similar optimality results such as those proven for the greedy point removal
method in Iske and Demaret [61]. We will focus on two of these results here,
and compare the results of the APR using benchmark results from the original
papers. First, we address the optimal scaling of reconstruction error, as intro-
duced by DeVore et al. [42]. Second, we address the optimal representation of
noisy functions as described in Donoho and Johnstone [47]. We already briefly
introduced these results in 3.3.2 above. Both of these results appear to be
highly relevant in assessing the APR. Inspired by these results in the following
section we prove a related result for noisy sampling and the APR.

8.2.1 Optimal error convergence

As discussed previously in 3.3.2, DeVore et al. [42] proved that wavelet thresh-
olding has an optimal rate of convergence in terms of some approximation norm
as the number of coefficients in the representation #R is decreased. They do
this by proving a theoretical optimal rate and showing that wavelets, given
certain restrictions, satisfy this.

Explicitly they show that given a function in α Besov space (Appendix A.2)
the optimal rate of convergence of the error compared to the number of coef-
ficients #R→ 0 for an adaptive representation asymptotically follows

||f − f̂ ||Lp ∼ O(#R
α
d ) (8.3)

where ||.||Lp represents a chosen p norm with 1 ≤ p ≤ ∞ and 1
q

= 1
p

+ α
2
. They

show that given the chosen wavelet can reproduce polynomials of up to degree
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α, the number of non-zero co-efficients in a thresholded wavelet scheme will
achieve this optimal rate.

a-priori it is not known in what α Besov class any given image or function
belongs to. However, given wavelet thresholding is optimal, for any given image
the optimal rate can be estimated by empirical observation of α as #R → 0
using an optimal representation.

Ideally, we would also prove whether or not the APR, or its higher order
reconstructions, belong to this optimal class of methods. On first appearances
using the tools of Besov spaces, this would appear to be a tractable problem,
but we leave it to future research. Instead, we take the easier approach of
testing this empirically. We can form the APR, and scale E → ∞ such that
Np → 0 and compare the scaling behavior with wavelet thresholding. If the
same rate is achieved, then we have empirical evidence that they belong to the
same optimal class. Practically, it is not clear to me that such a result is of
immediate use, but it is an effective tool when comparing between underlying
properties of methods.

Comparison with APR

We can deduce from the properties of the APR, that a comparable thresholded
wavelet transform should be able to produce the same norm error using less
non-zero coefficients than a given APR. This directly follows from the fact that
the APR does not rely on a given basis, and allows for isotropic reconstruction
at any point. These additional restrictions come at the cost of additional parti-
cles for the APR. Further, the APR representation can be further transformed
using a non-thresholded wavelet representation that would have #R ≤ Np

coefficients with identical reconstruction error. Hence, wavelet transforms of
the APR could be a useful tool for APR compression. However, it is still of
interest whether the APR adaptation of the APR belongs to the optimal class
for any reconstruction norms, and if so, which. To assess this, we compare L1

and L2 error scaling results Haar wavelet thresholding, as was done in the orig-
inal paper [42]. Using wavelet thresholding implemented in Matlab’s wavelet
toolbox for two test images shown in Figure 8.1. These images are the classic
Lena, and MIT Cameraman images. The Lena image was used in the original
paper. However, the Cameraman image was not. The results shown for these
two test images were consistent with those for other images tested.

Figure 8.2 shows the L1 and L2 scaling results on a log-log plot against
the number of non-zero coefficients in the Haar wavelet representation and the
number of particles in the APR. The piecewise constant reconstruction method
was used for the APR. The L1 error is computed as the mean of the absolute
value of the reconstruction error, and the L2 the mean squared reconstruction
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LenaCameraman

Figure 8.1: Classic 512 × 512 benchmark images, Cameraman (512 × 512 left), and Lena (right), used for the
optimal error scaling results in Figure 8.2

error. In the left plots we can see that as the #R gets small the error of both
the APR and wavelet asymptote to a curve of a similar slope. However, in the
case of the L2 error, the Haar wavelet result asymptotes to a steeper curve.
This behavior was consistent across other test images. Hence, it seems that
in terms of L1 error the APR has similar convergence behavior, and hence
the same optimal class. However, this is not the case for the L2 error. Also,
despite the same optimality property in L1, we can see that consistent to our
arguments above the Haar wavelet transform produces a lower error for the
same number of coefficients (particles).

Interestingly, here, as in the original results, the linear scaling behavior
only arises for small #R. At such levels, the image quality is low (not shown),
and hence it is unclear how useful such scaling behavior is in practice. We
leave further investigations to future research.

8.2.2 Optimal representation of noisy signals

The second, maybe more important results for comparison with wavelets are
those for the optimal representation of noisy signals. From our analysis above,
we show that the APR seems robust and effective for noisy images, improving
the PSNR from the noisy original while adaptive sampling. However, the
question arises, is this being done in an optimal way? For wavelet thresholding,
as already discussed above in 3.3.2, it was proven in Donoho and Johnstone
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Figure 8.2: The scaling results for the L1 (left) and L2 (right) errors plotted as a log-log plot against the number
of non-zero coefficients in the thresholded Haar wavelet transform and the number of particles in the APR. The
results are shown for the Cameraman (top) and the Lena (bottom) benchmark images.
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[47], that wavelet thresholding can achieve ’near’ optimal convergence for the
approximation of a noisy function. We shall give the exact result here, and then
reproduce the results for the test functions provided in Donoho and Johnstone
[47] and compare them to the equivalent results for the APR. Following this,
we prove some related results for the APR.

We begin by considering a function sampled at N equally distributed points
x̄ as

g{x} = f(x) + η(x) (8.4)

where η(x) is a zero mean Gaussian noise process with standard deviation σ.
Then if we consider some de-noised reconstruction of the function f , which we
call f̂ , then we define the risk as

R(f̂ , f, N) =E[
1

N

N∑
i=1

(f̂(xi)− f(xi))
2] (8.5)

that is the expected value of the MSE of the reconstruction based on N origi-
nal samples. We can then consider the performance of de-noising methods by
observing the convergence behavior of R(f̂ , f, N) as N → ∞. The optimal
rate, which Donoho and Johnstone [47] call the ’parametric rate’ is O( 1

N
).

Compared to any fixed band-width (width) method that has a best case ap-
proximation rate of O( 1

N1/2 ).
The result of Donoho and Johnstone [47] is that for an ideal wavelet adap-

tation f̂ ∗ with knowledge of the true function, the risk is bounded in the
following way,

R(f̂ ∗, f, N) ≤ (C1 + C2 log2(N))σ2

N
(8.6)

and that they provide methods that can achieve estimators f̂ within 2 log(N)
factor of this as

R(f̂ , f, N) ≤ (2 log(N) + 1)

(
(C1 + C2 log2(N))σ2

N
+
σ2

N

)
(8.7)

where only the noisy input is used.

Comparison with APR

In Donoho and Johnstone [47] they give results for four test noise corrupted
test functions called HeaviSine (Figure 8.3), Doppler (Figure 8.4) ,Bumbs (Fig-
ure 8.5) and Blocks (Figure 8.6). The function definitions are given in the
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Figure 8.3: Benchmark results for the HeaviSine test function from Donoho and Johnstone [47]. The HeaviSine
test function is a scaled version of f(y) = 4 sin(4πy)− sgn(t− 0.3)− sgn(0.72− t). The top left plot shows the
noise free function (Ground Truth), and two examples of noisy input sequences. The top right plot then shows
the wavelet denoising result for the two noisy input sequences, and bototm left shows the same for the APR. The
bottom right shows a log-log plot of the mean MSE over 50 realizations for the APR and wavelet reconstructions
for N = 26, .., 216

caption of the figures. The functions are all scaled as described in Donoho
and Johnstone [47] and corrupted by Gaussian noise with standard deviation
σ = 1. We reproduce the results of the paper for a thresholded wavelets and
the APR.

For the wavelet results we again used Matlab wavelet functions, using the
wden function with hard wavelet, multi-level thresholding, using the ’sqrt-
log’ shrinkage method allowing six levels of adaptation and using the second
Daubechies wavelet [34]. These settings provided the best performance across
all benchmarks of tested wavelets and settings combinations, and where ’repre-
sentative’, (if not the best) of the best settings for each example. This allowed
for a ’fairer’ and less complicated result then customizing the wavelet param-
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Figure 8.4: Benchmark results for the Doppler test function from Donoho and Johnstone [47]. The Doppler test

function is a scaled version of f(y) = (y(1− y))1/2 sin
(

2π(1+a)
t+a

)
for a = 0.05. The top left plot shows the

noise free function (Ground Truth), and two examples of noisy input sequences. The top right plot then shows
the wavelet denoising result for the two noisy input sequences, and bototm left shows the same for the APR. The
bottom right shows a log-log plot of the mean MSE over 50 realizations for the APR and wavelet reconstructions
for N = 26, .., 216

eters for each function.

For the APR, we follow a similar scheme as that for the 3D LSFM data.
We use cubic B-splines to estimate the gradient with the smoothing parameter
set as λ = .5N across the samples. The Local Intensity Scale was set to be
a constant, set to the maximum of the function across the interval, and the
relative error estimate set to E = 0.08. The particle intensities were estimated
from the original image by taking the average over all points within the im-
plied resolution function of the particle. The function was then reconstructed
using piecewise linear reconstruction between the particles. Note since we are
interested in risk convergence, we do not consider the number of particles used.
However, consistently, the number of wavelet coefficients used was less than
the number of particles used by the APR.
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Figure 8.5: Benchmark results for the Bumps test function from Donoho and Johnstone [47]. The Bumps
test function is a scaled version of f(y) =

∑
j hjK((y − yj)/wj) where K(y) = (1 + |y|)−4 and

hj = {4, 5, 3, 4, 5, 4.2, 2.1, 4.3, 3.1, 5.1, 4.2}, wj = {0.005, .005, .006, .01, .01, .03, .01, .01, .005, .008, .005} and
yj = {0.1, 0.13, 0.15, 0.23, .025, 0.4, 0.44, 0.65, 0.76, 0.78, 0.81}. The top left plot shows the noise free function
(Ground Truth), and two examples of noisy input sequences. The top right plot then shows the wavelet denoising
result for the two noisy input sequences, and bototm left shows the same for the APR. The bottom right shows
a log-log plot of the mean MSE over 50 realizations for the APR and wavelet reconstructions for N = 26, .., 216

A note, when comparing the MSE of the APR and Wavelet representations
it must be remembered that the APR has an ideal non-zero MSE through the
Reconstruction Condition. That is if the samples were noise-free the MSE
would be a non-zero value that is less than E2. However, the ideal wavelet
representation given noise-free would converge to a zero MSE.

For each benchmark function, both the wavelet and APR method were run
on the noisy function with N = 26, .., 216 samples with 50 repetitions each.
For each test function we show an example of the ground truth, and two noisy
function inputs for N = 1024 and N = 65536 and then in separate plots we
then show the APR and wavelet solutions. Lastly, we show plot the average
MSE against N on a log-log plot.
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Figure 8.6: Benchmark results for the Blocks test function from Donoho and Johnstone
[47]. The Blocks test function is a scaled version of f(y) =

∑
j hjK((y − yj)) where

K(y) = (1 + sign(y))/2 and hj = {4,−5, 3,−4, 5,−4.2, 2.1, 4.3,−3.1, 2.1,−4.2} and yj =
{0.1, 0.13, 0.15, 0.23, .025, 0.4, 0.44, 0.65, 0.76, 0.78, 0.81}. The top left plot shows the noise free func-
tion (Ground Truth), and two examples of noisy input sequences. The top right plot then shows the wavelet
denoising result for the two noisy input sequences, and bototm left shows the same for the APR. The
bottom right shows a log-log plot of the mean MSE over 50 realizations for the APR and wavelet reconstructions
for N = 26, .., 216
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Across the benchmarks, we see that both the APR and wavelet reconstruc-
tion provide high-quality estimations of the noisy function. Further, across the
benchmarks, ’by eye’ the APR solutions appear to be of subjectively of equiva-
lent or in some cases higher quality. However, we note that the behavior of the
MSE is varied across the benchmarks. For the HeaviSine test function in Fig-
ure 8.3, we see very similar convergence behavior. However, the APR appears
to better capture the function discontinuities. In contrast in the Bumps test
function the APR provides a smoother all round reconstruction, but consis-
tently underestimates the height of the peaks. Further, the scaling behavior of
Dopper, Bumps, and Blocks test functions appears to show multiple regimes.
In comparison, the wavelet results show more consistent scaling.

From the above results, it appears that the APR provides high-quality
reconstructions that are comparable with those of the near optimal recon-
structions with wavelets. Further, the APR appears to show multiple scaling
regions, with higher and lower convergence regions. Subjectively, some of these
reconstructions appear to be of better quality.

8.3 Optimal ε convergence of the APR

The above results provide motivation for further analysis of the approximation
behavior of the APR for noisy signal inputs. However, as mentioned, if the
APR allowed perfect estimation of the particle intensities, the reconstruction
would still result in a non-zero MSE, reflecting the Reconstruction Condition
and relative error E and Local Intensity Scale σ(y). Hence instead it appears
to be more appropriate to evaluate the noise performance regarding how, and
if, the APR converges in MSE to a value within E2, and what our expected
value of the APR is given noisy input. We call this ε convergence and explore
this below.

Lets consider a reconstruction of the APR, where we assume that R(y) is
noise free, either a continuous solution satisfying the Resolution Bound, or the
implied Resolution Function R∗(y) for an APR with σ(y) = 1 and relative
error E = ε (to avoid confusion with the expectations below), where we have
estimated the particle intensity values f̂(xp) from some noisy sampling g{x̄},
with N points, estimated as

f̂(xp) =
1∑

x∈N (y,R(y))

∑
x∈N (xp,R(xp))

g{x} (8.8)

that is simply the weighted sum of all points in g{x̄} within R(y) of xp. As
we have done in the benchmark results above. We assume, as above, that each
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value of g can be decomposed as

g{x} = f(x) + η(x) (8.9)

where η(x) ∼ N (0, σ). That is, each value is normally distributed with zero
mean and standard deviation σ, and the process is independent of each x.
For comparison with the wavelet results in Donoho and Johnstone [47] we are
interested in the statistical properties of the estimate f̂(xp) as N →∞.

First, let’s consider the expected value of the error in the estimated particle
intensity,

E[f̂(xp)− f(xp)] = E[
1∑

x∈N (y,R(y))

∑
x∈N (y,R(y))

g{x} − f(xp)] (8.10)

now let us consider a further decomposition of this sum in the following way

E[f̂(xp)− f(xp)] = E[
1∑

x∈N (y,R(y))

∑
x∈N (y,R(y))

(f(xp) + h(x) + η(x))]− f(xp)

(8.11)

where we use 8.9, and we define h(x) by decomposing the noisy function com-
ponent in terms of g{x} = f(xp)+h(x)+η(x). Now given that the expectation
is linear, we can isolate the random variable, giving us

E[f̂(xp)− f(xp)] =
1∑

x∈N (y,R(y))

∑
x∈N (y,R(y))

h(x)

+
1∑

x∈N (y,R(y))

∑
x∈N (y,R(y))

E[η(x)] (8.12)

now given that each η(x) is independent and identically distributed (i.i.d) with
mean zero, then,

E[f̂(xp)− f(xp)] =
1∑

x∈N (y,R(y))

∑
x∈N (y,R(y))

h(x). (8.13)

where we relate the two as g(x) = h(x)+f(xp). Now, given that R(y) satisfies
the Reconstruction Condition for ε, and let M = 1∑

x∈N (y,R(y))
(the inverse of

the number of sample points used in the neighborhood), then we can then
bound this as,

|E[f̂(xp)− f(xp)]| = |
1∑

x∈N (y,R(y))

∑
x∈N (y,R(y))

h(x)|

≤ ε

(
M − 1

M

)
(8.14)
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where the factor comes from the assumption that h(xp) = 0. However, given
we have also that R(y) satisfies the Resolution Bound in addition to the Recon-
struction Condition then the maximum gradient is bounded across the interval.
This allows us to get an upper bound on the growth of h(x) by assuming the
it is at the worst case the local minimum or maximum of a piece-wise linear
(in 1D) sections. Using this upper bound we get the tighter bound that,

|E[f̂(xp)− f(xp)]| = |
1∑

x∈N (y,R(y))

∑
x∈N (y,R(y))

h(x)|

≤ ε

21/d
(8.15)

where d is the dimension. Hence, our estimate will converge to a value within
ε

21/d of the true value as N → ∞. Now lets consider the variance of this
estimate, that is what is the asymptotic behavior of the MSE of our estimate
as again N →∞. So we have

Var[f̂(xp)− f(xp)] = Var[
1∑

x∈N (y,R(y))

∑
x∈N (y,R(y))

g{x} − f(xp)] (8.16)

which following the same steps as above we get,

Var[f̂(xp)− f(xp)] = Var[
1∑

x∈N (y,R(y))

∑
x∈N (y,R(y))

η(x)] (8.17)

which is the variance of the uniformly minimum variance unbiased estimator
of the normally random variable η and is therefore

Var[f̂(xp)− f(xp)] =
σ2

M
. (8.18)

Now assuming that f has a bounded first derivative, then for sufficiently large
M that M > 0 such that the above makes sense then

Var[f̂(xp)− f(xp)] =
σ2

C0N
. (8.19)

since R(y) defines an isotropic region representing a constant (hyper) volume
fraction of the domain, and C0 is some point dependent constant. Therefore,
each estimate f̂(xp), converges to within ε of f(xp), with assymptotic rate of
1
N

.
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Pointwise approximation using R(y)

Next, we consider what we asymptotically get for the expected MSE that we
align with Donoho and Johnstone [47] and call the risk,

R(f̂ , f, N) =E[
1

N

N∑
i=1

(f̂(xi)− f(xi))
2] (8.20)

=
1

N

N∑
i=1

E[(f̂(xi)− f(xi))
2] (8.21)

now using the fact that E[X2] = Var[X] + (E[X])2, we get,

R(f̂ , f, N) =
1

N

N∑
i=1

(
Var[(f̂(xi) + f(xi))] + (E[(f̂(xi)− f(xi))])

2
)

(8.22)

and now using the same steps from 8.14 and 8.19 above,

R(f̂ , f, N) =
σ2

N2

N∑
i=1

1

Ci
+

1

N

N∑
i=1

 1∑
x∈N (y,R(y))

∑
x∈N (y,R(y))

h(x)

2

(8.23)

where Ci is a point dependent volume scaling constant. Now we using the fact
that R(y) follows the Reconstruction Condition we have

R(f̂ , f, N) ≤ σ2

N2

N∑
i=1

1

Ci
+

ε2

22/d
(8.24)

Now since Ci are non-zero constants, we can then bound them by 1
Ci
≤ A,

such that we get

R(f̂ , f, N) ≤ Aσ2

N
+

ε2

22/d
(8.25)

therefore, we see that we have asymptotic convergence to a biased estimator
that behaves as 1

N
, which is the optimal rate with convergence that depends

on A, which is a function of R(y).

8.3.1 APR reconstruction

In the above, we assumed that for every point in the domain we used R(y)
to estimate the point. What if instead we only estimate f(xp), and then
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reconstruct the intensities at the other points, as in the APR. We now repeat
the above steps. So now we have

E[f(y)− f̂(y)] = E[f(y)−
∑

xp∈N (y,R(y))

f̂{xp}ξp] (8.26)

= f(y)−
∑

xp∈N (y,R(y))

E[f̂{xp}]ξp

(8.27)

using our result from 8.14 above, we have

E[f(y)− f̂(y)] = f(y)−
∑

xp∈N (y,R(y))

f(xp) +
1∑

x∈N (xp,R(xp))

∑
x∈N (xp,R(xp))

h(x)

 ξp

=
∑

xp∈N (y,R(y))

h1(xp) +
1∑

x∈N (xp,R(xp))

∑
x∈N (xp,R(xp))

h2(x)

 ξp

(8.28)

where h is defined similarly as above. Now h2(x) is bounded by ε
21/d , for

arbitrary particles and worst case the Reconstruction Condition gurantees
h1(x) ≤ ε. Hence we have

|E[f(y)− f̂(y)]| ≤
∑

xp∈N (y,R(y))

ε+
1∑

x∈N (xp,R(xp))

∑
x∈N (xp,R(xp))

ε

21/d

 ξp

≤ (1 +
1

21/d
)ε. (8.29)

Therefore, any reconstruction will have a an expected value with bias smaller
than (1 + 1

21/d )ε at all points y ∈ Ω. What is the variance of our estimator?
So we have

Var[f(y)− f̂(y)] = Var[
∑

xp∈N (y,R(y))

f̂{xp}ξp] (8.30)

= Var[
∑

xp∈N (y,R(y))

 1∑
x∈N (xp,R(xp))

∑
x∈N (xp,R(xp))

g{x}

 ξp]

= Var[
∑

xp∈N (y,R(y))

 1∑
x∈N (xp,R(xp))

∑
x∈N (xp,R(xp))

η(x)

 ξp]

(8.31)
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here we have to be careful because the η(x) are no longer all independent due
to the overlap of the neighborhood causing different original sample points
enter the variance multiple times. Therefore we have to take care of these by
also considering the covariance between the samples,

Var[f(y)− f̂(y)] =
∑

xp∈N (y,R(y))

ξ2
pVar[

1∑
x∈N (xp,R(xp))

∑
x∈N (xp,R(xp))

η(x)]+

2
∑

(xp,xq)∈N (y,R(y)):xp 6=xq

ξpξqCov[
1∑

x0∈N (xp,R(xp))∑
x0∈N (xp,R(xp))

η(x0),
1∑

x1∈N (xq ,R(xq))

∑
x1∈N (xq ,R(xq))

η(x1)]

(8.32)

which we evaluate, as the only terms that will be non-zero in the covariance
will be for the cases with x0 = x1. If we let γp,q be the number of shared points
in the original noisy sampling for the support particles p and q then we get,

Var[f(y)− f̂(y)] = σ2
∑

xp∈N (y,R(y))

1∑
x∈N (xp,R(xp))

ξ2
p+ (8.33)

2
∑

(xp,xq)∈N (y,R(y)):xp 6=xq

ξpξq
γp,qσ

2

(
∑

x1∈N (xq ,R(xq))
)(
∑

x0∈N (xp,R(xp)))

(8.34)

Next, we introduce the constants Cp such thatNCp =
∑

x∈N (xp,R(xp)), (ignoring

complications due to the discrete nature of N) . We then note that γp,q is
bounded by the smaller of the number of points in p or q, we shall choose p to
be the larger, then we have,

Var[f(y)− f̂(y)] ≤ σ2

N

 ∑
xp∈N (y,R(y))

ξ2
p

Cp
+ 2

∑
(xp,xq)∈N (y,R(y)):xp 6=xq

ξpξq
Cp


(8.35)

hence, our estimator converges to a biased estimate at the optimal rate of 1
N

for all y ∈ Ω.

So then lastly, we consider the Risk for our reconstruction, that is the
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expected asymptotic behavior of the MSE, following the steps again as above,

R(f̂ , f, N) =E[
1

N

N∑
i=1

(f̂(xi)− f(xi))
2] (8.36)

=
1

N

N∑
i=1

Var[f̂(xi)] +
1

N

N∑
i=1

(
E[f̂(xi)− f(xi)]

)2

(8.37)

≤ 1

N

N∑
i=1

σ2

N

 ∑
xp∈N (y,R(y))

ξ2
p

Cp
+ 2

∑
(xp,xq)∈N (y,R(y)):xp 6=xq

ξpξq
Cp


+ ((1 +

1

21/d
)ε)2 (8.38)

again we can see that if we bound our constants that are independent of N by
some constant A1 then we have

R(f̂ , f, N) ≤ A1σ
2

N
+ ((1 +

1

21/d
)ε)2 (8.39)

therefore, we again have that the MSE will converge with optimal rate 1
N

, to
a value with bias ((1 + 1

21/d )ε)2 > ε2, where ε is a user set parameter.

8.3.2 Result summary

Therefore, assuming R∗(y) satisfies the Reconstruction Condition for param-
eter E = ε and particles values are estimated by the original Gaussian dis-
tributed noisy samples in R(y) of every particle, then the APR will have the
following properties as the total sampling N increases:

1. Reconstruction at particle locations from the image follows, |E[f̂{xp} −
f(xp)]| < 1

21/d and Var[f̂{xp} − f(xp)] ≤ σ
NCp

2. Reconstruction using the noisy particles at arbitrary locations follows
|E[f̂(y) − f(y)]| < (1 + 1

21/d )ε with Var[f̂{xp} − f(xp)] ≤ A0σ2

N
, i.e. an

introduced error factor of 1
21/d ε

3. The expected MSE of the reconstruction follows R(f̂ , f, N) ≤ A1σ2

N
+

((1 + 1
21/d )ε)2

where Cp is a constant that depends on the size of R(xp), A0 a constant
that depends on the Resolution Function around y and the reconstruction
method and sampling used. Lastly A1 depends on the Resolution Function
and reconstruction method across the domain. It is worth noting that the
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bound (1 + 1
21/d )ε is not tight and given assumptions on function within R(y)

of y, and better than worst-case reconstruction this could be reduced to be
closer to ε. Effectively the bias introduced into the representation is a result
of the spatial average used to estimate the particles.

Hence, we can see that assuming an R(y) that satisfies the Resolution
Bound, guarantees optimal convergence to a solution that is within bounded
distance of our noise-free reconstruction. However, we have assumed that for
the given APR that R∗(y) satisfies the Reconstruction Condition and Resolu-
tion Bound. However, with noisy function input, this would not be guaranteed
to hold. However, if knowledge of the relative error bounds of estimation of
L(y) are known, then the above results could be adapted using to incorporate
the results on noisy adaptation in A.3.

The above analysis does agree well with the benchmark results shown for
the test functions. In particular, the results of the Bumps and Doppler bench-
marks appear to show two regions of the MSE likely corresponding to the
relative sizes of the noisy convergent component and the bias ((1 + 1

21/d )ε)2.
Therefore, these preliminary results are encouraging. However, they would
appear to warrant further testing and theoretical work.

8.4 Summary

In this chapter, we reflected on the APR and existing methods, comparing the
concepts and ideas of the APR to those found in existing methods. Following
this, we explored two optimality properties of the APR in reference to wavelet
thresholding. The first related to the optimal convergence of the error relative
to the number of particles, and the second with the reconstruction of noisy
functions. Lastly, we provided preliminary theoretical work on the statistical
properties of the APR. We provide a summary of the key points in the table
below.

211



Chapter 8. Comparison with previous methods and optimality

Summary of the chapter

• Reflected on the main components of the APR and how they are the
same or similar to existing ideas in the literature

• Highlighted the Resolution Bound, and the direct focus on the Reso-
lution Function using Particle Cells as the main novel contributions
of the APR.

• Provided empirical evidence that the APR is of similar Besov norm
optimality as the Haar wavelet in the L1 error norm, but not the L2

norm as E →∞.

• Found the APR produced high-quality noisy reconstructions with
different MSE convergence properties when compared to wavelet re-
construction from the results presented in Donoho and Johnstone
[47].

• Proved that given a Resolution Function R(y) that satisfies the Reso-
lution Bound, the APR MSE converges at the optimal statistical rate
1
N

to a biased estimate within a constant factor of E of the noise-free
APR reconstruction.
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9 APR extensions in space
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9.4 Summary and main points . . . . . . . . . . . . . . 226

In the above work, we focused on a specific case of an adaptive representa-
tion that bounded the reconstruction error of the function value using a broad
case of reconstruction methods. In this chapter, we show how the APR can be
generalized to adapt to a function while bounding the reconstruction of arbi-
trary derivatives of the function. Further, the representation can be restricted
to require additional properties on the reconstruction method and hence reduce
the number of particles. Following the derivation of these extended class of
models, we then briefly explore their properties using a 1D test function. After
we show an example of where these extended APR reconstruction conditions
could be useful for the numerical solution of Partial Differential Equations.
Lastly, we show that the APR can also be used in tasks where the adaptation
is not guided by the reconstruction of a function using an example of particle
generation for complex geometries.
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9.1 Higher-order reconstruction APR

Let us consider the same set up as outlined in Chapter 5, where we instead
consider a m times differentiable function f : Ω → R. We represent the
function for a given P and R(y) in the following way

f̂(y) =
∑

xp∈N (y,R(y))

f(xp)ξp(y,xp) (9.1)

where N (y, R(y)) = {x ∈ Ω : |x − y| ≤ R(y)}, now further restrict our
reconstruction function such that the coefficients now have to satisfy∑

xp∈N (y,R(y))

(xp − y)k

εk
ξp(y,xp) =

{
1 |k| = 0
0 0 < |k| < m

(9.2)

and now assume #(xp ∈ N (y, R(y))) > Q for all y ∈ Ω, where Q is some
minimum required number of particles to be able to satisfy the above condition.
These are the moment conditions from the DC-PSE operators [115]. Now if
we again consider the reconstruction error,

ε(y) = f(y)−
∑

xp∈N (y,R(y))

fpξp(y,xp) (9.3)

that we wish to satisfy the Reconstruction Condition for some E and σ(y), by
again applying the integral form of the remainder [103], we have

ε(y) = f(y)−
∑

xp∈N (y,R(y))

( m−1∑
|k|=0

(y − xp)
k

k!

∂|k|f(x)

∂x|k|
|x=y

+
∑
|k|=m

(y − xp)
k |k|

k!

∫ 1

0

(1− s)|k|−1 ∂
|k|

∂x|k|
f(y + s(xp − y))ds

)
ξp(y,xp).

(9.4)

now using the conditions on a reconstruction function 9.2 we have

ε(y) =
∑

xp∈N (y,R(y))

∑
|k|=m

(y − xp)
k |k|

k!

∫ 1

0

(1− s)|k|−1 ∂
|k|

∂xk
f(y + s(xp − y))dsξp(y,xp),

(9.5)

now we can then again bound this term in the familiar way as

|ε(y)| ≤ max
|k|=m

max
x∈N (y,R(y))

|∂
|k|f(x)

∂xk
| |k|
k!
γ(m)R(y)m|ξm,p| (9.6)
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where |ξm,p| =
∑

xp∈N (y,R(y)) |ξp(y,xp)|, since we no-longer have the constraint

of positive coefficients and γ(m) =
∑
|k|=m 1. Then if we again require the

R(y) satisfies the Reconstruction Condition we get,

R(y) ≤

(
Eσ(y)

|ξm,p|γ(m) max|k|=m maxx∈N (y,R(y))|∂
|k|f(x)
∂xk | |k|k!

) 1
m

. (9.7)

which then if we make a similar assumption on σ(y) we have for all |k| = m

1

σ(y)
max

x∈N (y,R(y))
|∂
|k|f(x)

∂xk
| ≈ max

x∈N (y,R(y))
|∂
|k|f(x)

∂xk

1

σ(x)
| (9.8)

which again is only guaranteed to hold for constant σ. We again get the
familiar form of the Resolution Bound

R(y) ≤ min
x∈N (y,R(y))

(Lm(x)) (9.9)

where now

Lm(y) =

(
Eσ(y)

|ξm,p|γ(m) max|k|=m|∂
|k|f(x)
∂xk | |k|k!

) 1
m

. (9.10)

Hence, this is a problem of the correct form to be solved by the Pulling Scheme
using Particle Cells. (Note, that this is a slightly worse bound than the one
we used previously for m = 1 by using ∇f).

9.1.1 General derivative conditions

In the previous derivations, we have placed conditions on the reconstruction of
the function value everywhere. Here we show that the same procedure allows
bounds on arbitrary derivatives of f .

So now we wish to calculate some high order derivative α, with order m
derivative operators. This requires that f is m+ |α| times differentiable. Here,
we replace the classic Reconstruction Condition with the (α,m)-Reconstruction
Condition, defined as

|
∑

xp∈N (y,R(y))

fpξα,p(y,xp)−
∂|α|f(x)

∂xα
| ≤ σα(y)Eα,m (9.11)
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where α uses multi-index notation, to represent the desired derivative and
ξαp (y) is the derivative reconstruction kernel with convergence order m. Fol-
lowing the same steps as above, if we require the following conditions

∑
xp∈N (y,R(y))

(xp − y)kξα,p(y,xp) =


1 if,k = α
0 elseif, |k| < m+ |α|
bounded otherwise

then we have the following,

εα(y) =
∑

xp∈N (y,R(y))

∑
|k|=m+|α|

(y − xp)
k |k|

k!

∫ 1

0

(1− t)|k|−1 ∂
|k|

∂xk
f(y + s(xp − y))dsξα,p(y,xp)

(9.12)

which we can bound by,

|εα(y)| ≤ γ(m+ |α|) max
|k|=m+|α|

max
x∈N (y,R(y))

|k|
k!

(∣∣∣∣∂|k|f(x)

∂xk

∣∣∣∣)R(y)m+|α||ξm+α,p|

(9.13)

where |ξm+α,p| =
∑

xp∈N (y,R(y)) |ξα,p(y,xp)|. Now here, the coefficients, will

be proportional to of 1
R(y)|α|

, hence we replace this with the following global

bound of |ξm+α,p| ≤ Cα
1

R(y)|α|
, where Cα is some constant that depends on the

reconstruction function and local particle orientations, giving us now

|εα(y)| ≤ γ(m+ |α|) max
|k|=m+|α|

max
x∈N (y,R(y))

|k|
k!

(∣∣∣∣∂|k|f(x)

∂xk

∣∣∣∣)R(y)mCα. (9.14)

Next, by making this reconstruction error satisfy our (α,m)-Reconstruction
Condition 9.11 we get

R(y) ≤

(
Eα,mσα(y)

Cαγ(m+ |α|) max|k|=m+|α|
|k|
k!

maxx∈N (y,R(y))|∂
|k|f(x)
∂xk |

)1/m

. (9.15)

which if we again apply a smoothness assumption on σα making the usual
substitution giving again

R(y) ≤ min
x∈N (y,R(y))

(Lα,m(x)) (9.16)

where now

Lα,m(y) =

(
Eα,mσα(y)

Cαγ(m+ |α|) max|k|=m+|α|
|k|
k!
|∂|k|f(y)

∂xk |

)1/m

(9.17)

which is again in the correct form for using Particle Cells and the Pulling
Scheme. We can see the condition in the previous section is simply the α = 0
case.
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9.1.2 Multiple resolution conditions

Above we have shown that we can formulate the Resolution Bound for a range
of (α,m)-Reconstruction Conditions. What if we want more than one Recon-
struction Condition? This case is simply satisfied. If we consider we have a
set of Local Resolution Estimates Li = {Lαi,mi(y)} from i = 1, .., q associ-
ated with q different (m,α)-Reconstruction Conditions (9.11), then we get one
Resolution Bound of the form,

R(y) ≤ min
x∈N (y,R(y))

(
min
i
Lαi,mi(x)

)
(9.18)

using the fact that the minimum operation is associative. Hence, any combina-
tion of Reconstruction Conditions can be solved finding the Implied Resolution
Function R∗(y) using the Pulling Scheme using the minimum across the dif-
ferent (α,m)-Local Resolution Estimates. Hence, all of the results from the
Particle Cells presented for the m = 1, α = 0 case, directly extend without
extra work to the multiple general (m,α)-Reconstruction Conditions case.

9.2 1D validation of higher-order reconstruc-

tions

In this section, we briefly explore the above results in 1D using a simple test
function f : Ω→ R

f(y) = e
−(x−0.5)2

0.005 − e
−(x−0.3)2

5 + e
−(x+5)2

0.1 (9.19)

where Ω = [−10, 10]. We use a constant Local Intensity Scale σ0 = 1. We
will use the same benchmark example throughout the different test cases. The
implementation used for sampling and Pulling Scheme is the same as used for
the 1D test cases in Chapter 6 and described in 6.1.1.

9.2.1 Adding higher order reconstructions

First, we consider what happens if we wish to guarantee that the APR can be
used with reconstruction functions from order m = 1, ..q. This will result in
Local Resolution Estimates of the form

Li,0(y) =

(
E0,iσ0

i
i!
|∂if
∂yi
|

)1/i

(9.20)
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Figure 9.1: The first plot shows the APR satisfying (0,i)-Reconstruction Condition’s from i = 1, 2, 3 for test
function 9.19 and E0,i = 0.1. The second plot shows the same function but represented by an APR only
satisfying the (0,2)-Reconstruction Condition for for test function 9.19 and E0,2 = 0.1. The same sampling
method (1 particle per Particle Cell) was used for both.

with the simplifying assumption that |ξm,p| = 1, which holds for piecewise
linear interpolation used here. We then let L(q) = {L0,1, .., L0,q} and let
Lmin(y) = mini=1,..q(Li,0(y)) where we set E0,i = E. That is we wish all
the higher order reconstructions to also satisfy the (0,i)-Reconstruction Con-
ditions. The APR is then formed as usual simply using Lmin(y) in place of
L(y). The first plot in Figure 9.1 shows the APR for q = 3. For this test func-
tion, and others tried, we find that the APR from adding higher q only slightly
alters the solution in low-resolution areas. The APR for only q = 1 requires
151 particles. The difference is better reflected in the first plot of Figure 9.2,
showing the Local Resolution Estimates and the Implied Resolution Function.
The higher order q Local Resolution Estimates slightly broaden Lmin at higher
function values. This behavior is consistent across test functions tried, with
many having no change in the APR with the increase in q. However, as q
increases so do the required number of particles within the support of R∗(y).
Hence, alternative samplings than those we have used previously would be
required (q = 2 and linear sampling is still satisfied by the classic sampling).

9.2.2 Restricted higher order reconstructions

Next, we consider the case where we forego the lower order construction and
require that our reconstruction is of order m. That is, the APR then satisfies
only a (0,m)-Reconstruction Condition. First, we show results for m = 2 case,
with piecewise linear reconstruction used. The APR for E0,2 = 0.1 is shown in
the second plot in Figure 9.1. We can see compared to the m = 1 restricted
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Figure 9.2: The first plot shows the different Local Resolution Estimates L0,i for the (0,i)-Reconstruction
Conditions, the minimum across them Lmin and the Implied Resolution Function R∗ for i = {1, 2}. The second
plot shows the Local Resolution Estimate for L0,2 case and the Implied Resolution Function R∗(y) for only the
(0,2)-Reconstruction Condition.

case the number of particles is reduced from 151 to 93. The change in sam-
pling is also reflected in the second plot of Figure 9.2 for the Local Resolution
Estimate and Implied Resolution Function. To verify that this new APR does
satisfy the (0,2)-Reconstruction Condition, in the first plot of Figure 9.3 we
show the observed reconstruction error E∗ for changing E0,2. For this, we use
linear piecewise reconstruction that satisfies the m = 2 reconstruction criteria.
Indeed, we find that for all values of relative error the (0,2)-Reconstruction
Condition is satisfied. However, now the (0,1)-Reconstruction Condition no
longer holds, as the piecewise constant and worst-case reconstruction methods
are no longer below the dashed line.

Next, we focus on how the Implied Resolution Function changes as the
reconstruction constraint is increased. That is, how does #V change as we
only restrict the APR to the (0,m)-Reconstruction Condition for increasing
m. We focus here on #V to avoid issues of increases in the number of particles
Np since for higher order models #V 6= Np. We leave considerations of this
trade off to future work.

The second plot of Figure 9.3 shows a log-log plot of #V against E0,m

for the APR formed satisfying the (0,m)-Reconstruction Condition for m =
1, 2, 3, 4, 5, 6. The red arrow indicates the direction of increasing m. We note
that for small E, the higher order models results in orders of magnitudes
reductions in the number of particle cells in #V . However, at values of E ≈ 0.1
(log(0.1) ≈ −2.3), the estimates are all within an order of magnitude. Hence,
for highly accurate reconstructions high order reconstructions appear to be
very efficient, with an affect that reduces as E increases.
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Figure 9.3: The first plot shows the observed reconstruction error E∗ for the worst-case, piecewise constant, and
piecewise linear reconstruction methods against relative error E0,2 for 100 values between 0.001 and 0.5. The
second plot shows the size of the OVPC set V for the APR formed with L0,i for i = 1, 2, 3, 4, 5, 6 in a log-log
plot against the set relative error E0,i. The arrow indicates the direction of increasing recontruction method i.

9.2.3 Derivative reconstruction

Lastly, we explore the bounding of a functions derivative for first order ker-
nels. That is, we wish the APR to now only satisfy the (1,1)-Reconstruction
Condition. We recall that in the 1D benchmarks for the classic APR in 6.1.6,
that for the benchmark function tested the first order kernel did not satisfy a
(1,1)-Reconstruction Condition when the APR was formed using only a (0,1)-
Reconstruction Condition. Now, in the examples above the same Local Inten-
sity Scale σ is used. However, here to make the relative error for E1,1 have
a similar meaning we set σ1 = 12.162, that is the maximum of the absolute
value of the gradient across the domain. For the Local Resolution Estimate,
we use

L1,1(y) =

(
E1,1σ1

2|∂2f
∂y2 |

)
(9.21)

where for the gradient computation we used the DC-PSE [115] kernel and Par-
ticle Cell sampling that gives Cα = 2. In the first plot of Figure 9.4 we show
the linear reconstruction and particle sampling for the (1,1)-Reconstruction
Condition APR for E1,1 = 0.1. We find that the number of particles re-
quired is greater than the (0,1)-Reconstruction Condition. Further, the parti-
cle distribution is different from the previous examples. To assess if the (1,1)-
Reconstruction Condition holds we again test the observed reconstruction error
E∗ of the first order gradient against increasing relative error E1,1. The second
plot of Figure 9.4 shows the that it does indeed hold for the given test function.
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Figure 9.4: The first plot shows the particle sampling and linear reconstruction for test function 9.19 for the APR
satisfying the (1,1)-Reconstruction Condition for E1,1 = 0.1. The second plot shows the observed reconstruction
error E∗ for the first-order gradient and worst-case function reconstruction for an APR satisfying the (1,1)-
Reconstruction Condition for increasing E from 0.001 to 0.5.

In addition to the first order gradient reconstruction error, we also plotted the
worst-case reconstruction of f . We see that the (0,1)-Reconstruction Condition
does not hold for any E1,1.

9.2.4 Summary

In the above section, we briefly explored some examples of extensions of the
APR. We note that although we only showed specific examples and combina-
tions, the work above provides an effective ’toolbox’ such that any combination
of (α,m)-Reconstruction Condition can be used in the above way to adapt to
a function in a specific way. However, with the caveat, that one must find
appropriate bounding constants for the higher order models, and appropriate
sampling strategies. Further, in higher dimensions, the number of derivatives
required as m or α increases can become large. We leave such models to future
research.

9.3 Potential use-cases

Detailed explorations of further use-cases of the APR goes beyond the scope
of this thesis. However, here we briefly detail how the APR could be used for
simulations on particles. First, we briefly show results of how the APR could
be used for the numerical solution of partial differential equations. Second, we
show a simple example of how the Local Resolution Estimate, L(y) need not
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originate from some Reconstruction Condition for generation of particles for a
complex geometry.

9.3.1 Computational partial differential equations

In this section, we provide an example of how the ’toolbox’ of APR repre-
sentations could be useful in practice. We do this by using the classic test
case example of numerically solving the 1D viscous Burgers equation. Here we
numerically solve for a particular initial condition of

∂f

∂t
+

∂

∂y

(
1

2
f 2

)
= ε

∂2f

∂y2
(9.22)

with ε = 0.001 and Ω = [0, 1], t = [0, 0.0625] with Dirichlet boundary condi-
tions f(0, t) = 1 and f(1, t) = 0.1. Where we use the t = 0 of a known exact
solution for the initial condition. The solution is defined as

f(y, t) =
0.1r1 + 0.5r2 + r3

r1 + r2 + r3

(9.23)

r1 = e
−y+0.5−4.95t

20ε

r2 = e
−y+0.5−75t

4ε

r3 = e
−y+0.375

2ε .

(9.24)

Here we use explicit first order Euler time stepping and differential operators
computed using non-uniform finite differences computed as DC-PSE operators
[115] with no exponential window function (for simplicity). The solution is
computed by evolving the solution over APR particles, reforming the APR
every time step using the previous time step solution to compute the new
adaptation and then evolving the solution forward a time step. Cubic in-
terpolation was used for increases and decreases in resolution from the APR
adaptation. Two different forms of the APR were tested. One satisfying the
(0,1)-Reconstruction Condition, and the second adapting to multiple condi-
tions {(0, 1), (1, 1), (2, 1)}. That is, the first used the classic APR, with an
adaptation of only the function error, the second also adapted to the first and
second derivatives. For both cases Ei,i = 0.1 was used and lmax was set by
L(0,1).

The first plot of Figure 9.5 shows the solution at four different time points
for the {(0, 1), (1, 1), (2, 1)}-RC APR. The solution adapts to the two steep
fronts of the solution through time. To better show this adaptation in the
second plot of Figure 9.5 we show this adaptation of particles by plotting
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Figure 9.5: The first plot shows a comparison of the {(0, 1), (1, 1), (2, 1)}-RC APR with the exact solution for
four different time steps at intervals of 2000 time steps. The second plot shows the location of the particles as a
function of time for the {(0, 1), (1, 1), (2, 1)}-RC APR plotted every 200 time steps.
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Figure 9.6: The first plot shows the number of particles used for the (0,1)-RC APR (green) and
{(0, 1), (1, 1), (2, 1)}-RC APR (blue) over time. The maximum sampling was equivalent to N = 2048 for a
full mesh solution. The second plot shows a comparison of the L∞ error of the two APR solutions against time.
The (0,1)-RC APR (green) solution continues to grow almost linearly with time to a value of approximately 0.4
across the interval. With the solution being of similar shape, but having a slightly slower speed.
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the distribution of particles through time. The number of particles required
remained relatively constant through time ranging between 120−200 particles,
while the effective maximum resolution used was equivalent to N = 2048. This
is shown for both APRs in the first plot of Figure 9.6. We see that the multiple
conditions APR corresponded to almost twice the amount of particles required
to satisfy the classic {(0, 1)}-RC APR (also in the figure). However, we found
that the solution although stable, was not consistent, with the L∞ error of
the solution diverging linearly with time. However, we found that the L∞ of
the {(0, 1), (1, 1), (2, 1)}-RC APR stayed bounded through time as shown in
the second plot of Figure 9.6. Hence, the multiple conditions seem necessary
for a convergent solution for this problem. We note that care must be taken
with constant time stepping and increases in resolution lmax, as an increase in
local resolution can result in the problem no longer being stable through time.
A simple solution to this would be setting an adaptive global time step set
according to lmax.

For reference regarding the computational time taken we also computed a
homogenous grid solution using the same method for N = 2048, representing
the highest resolution required for the APR. We found that the average time
per time step of the APR was 0.062 seconds and 0.25 for the full grid solution.
Indicating that the APR time step had a PP-ratio of around 1/3. However,
no efforts were made to optimize this solution, and the derivatives were calcu-
lated twice for the APR for the adaptation and then again for time stepping.
Further, of this time calculation of the pulling scheme accounted for only .0012
seconds on average per time step (2% of the computational cost).

We note that the ability to adapt successfully to such 1D equations is not
novel (For example the simple example we showed earlier from Vasilyev and
Bowman [131]). However, the above illustrates the potential benefit of the ex-
tensions of the APR, over the classic case, and indicates that further research
into the application of the APR for the numerical solution of differential equa-
tions is warranted.

9.3.2 Using the APR without a Reconstruction Condi-
tion

In all of the examples giving in the rest of this thesis, the APR has been adapted
using a Local Resolution Estimate L(y) that arose from error analysis from
some Reconstruction Condition of a function f . However, the principles of
Particle Cells and the Pulling Scheme are not dependent on the source of the
Local Particle Cell Set L. Hence, Ls can be used that arise from alternative
sources. One simple example of this is using the APR for mesh generation
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Figure 9.7: An example of the APR and the Pulling Scheme used with a Local Particle Cell set that does not
originate from a Local Resolution Estimate L(y). Instead, here the elements of L came from a boundary of a
complex geometry generated from the Max Planck Institute of Molecular Cell Biology and Genetics official logo.

of complex geometries. In this case, the L can be set to boundary elements
of complex geometry, and then a solution generated, with those Particle Cells
inside the domain used to define a mesh. An example of such an approach is
shown in Figure 9.7 for a complex geometry generated from the binarization
of the logo of the Max Planck Institute of Molecular Cell Biology and Genetics
(where this research was undertaken).

Whether or not such generated particle distributions are useful or not, I
am not sure. However, the example provides an example of the generality of
Particle Cells and the Pulling Scheme to problems beyond function approxi-
mation.

9.3.3 Anisotropic APR neighborhood

The use of the APR with an isotropic neighborhood is not necessary. Further
’non-classical’ APR representations can be generated with slight alternations
of the methods for Particle Cells and the Pulling Scheme. One approach that
would likely lead to significant reduction in total particle number would be the
extension of the Resolution Function from a scalar to a vector valued function.
However, for brevity, we do not explore such extensions here and leave their
exploration to future research.
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9.4 Summary and main points

In this chapter, we have discussed generalizations of the APR in space. First,
we introduced a wider class of adaptive representations that directly use Parti-
cle Cells and the Pulling Scheme but satisfy more general (α,m)-Reconstruction
Conditions. Where α indicates the function derivative that is to be bounded
and m the minimum order of the reconstruction function used. These different
conditions can be easily combined, providing a ’toolbox’ for generating adap-
tive representations using the APR. We then provided three different categories
of benchmark results. First, we used a 1D test function to show the behav-
ior of different (α,m)-Reconstruction Conditions and their resulting APR. We
then used an example of solving the 1D viscous Burgers equations where the
use of the generalized APR was useful. Lastly, we showed how the APR could
be used for applications without an associated Reconstruction Condition us-
ing the example of particle generation for a complex geometry. We provide a
further summary of the key-points of this chapter below.

Summary of the chapter
• Extended the APR to general (α,m)-Reconstruction Conditions uti-

lizing higher order derivatives

• Showed this results in a Resolution Bound solvable by Particle Cells
and the Pulling Scheme with no adaptation simply a change in L(y)

• The results provide a ’toolbox’ for arbitrary combinations of (α,m)-
Reconstruction Conditions APRs

• Validated the results in 1D for a range of combinations of (0,m)-
Reconstruction Conditions

• Provided an example of a pure gradient adapted APR satisfying the
(1,1)-Reconstruction Condition

• Showed a benchmark example of a solution of the 1D viscous Burgers
equation where the use of multiple conditions allowed a consistent
and stable solution through time for a benchmark example where
the classic APR did not.

• Illustrated how the APR could be used for tasks where the L(y) does
not arise from a Reconstruction Condition using particle generation
for a complex geometry.
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In all previous work above we ignored adaptation through time. However,
as discussed in Chapter 2 and Chapter 3, LSFM data also shows varying
temporal scales. Hence, ideally the APR should also be able to adapt to
different temporal scales, as described in the fifth representation criteria:

• RC5: The representation must also be able to similarly account for
varying temporal scales.

Even though time could be considered as ’just another dimension,’ in the con-
text of LSFM data, it has special properties. First, the data is generated in
temporal order, hence if we wish to be able to perform any real-time process-
ing tasks, we should be able to generate the representation without complete
knowledge of the function through time. Real-time processing would not be
possible using the classic APR approach with time treated as an additional
spatial dimension. Further, it would be ideal if the APR in space would main-
tain its present representation such that all the previous processing analysis
could still be valid. Lastly, any Reconstructions should be ’causal’, in that
they only use information from the past. This criterion is justified as to keep
temporal ordering of any events detected in subsequent processing steps.
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10.1 APRt

In this chapter, we outline one possible temporal-method we call APRt that
has the above-mentioned properties. First, it can be constructed through time,
with only information of the current time step, and a current state APR, which
is kept updated through time. Second, the APRt adapts through time, taking
into account different temporal scales, while still allowing the reconstruction
of the classic APR exactly in terms of Particle Cells and within some tolerance
Et regarding the spatial reconstruction error E. Hence, all algorithms on
designed for the classic APR can be directly used. Lastly, the APRt is causal,
only reconstructing the function using information from the ’past’.

In the section below, we will briefly outline the extension of the theory and
give then describe the additional algorithm steps to construct the APRt. We
present this section as a ’proof of principle’, and leave more rigorous treatment,
exposition, and exploration to future work.

10.1.1 Theory

We extend the previous scenario to now consider a time varying function f :
Ω × Ωt → R defined over a spatial domain Ω and temporal domain Ωt and
assume it is once differentiable in both space and time. Now we represent a
function with a set of particles Pt and two time varying Resolution Functions,
one in space defined in the usual way R(y, t) and an additional resolution
function for time T (y, t). Hence, this is an example of an anisotropic APR
formulation. We then reconstruct the function at any point in space and time
in the domain as,

f̂(y) =
∑

xp,t∈N (y,t,R(y,t),T (y,t))

f(xp,t)ξp,t(y) (10.1)

where now xp,t defines both a spatial and time coordinate xp,t = (yp, tp) and
we assume our reconstruction function again sums to one and is positive as
in the original APR case. Now the neighbourhood is isotropic in space, and
backwards in time. That is, N (y, t, R(y, t), T (y, t)) = {(x ∈ Ω, s ∈ Ωt :
|x− y| ≤ R(y, t), 0 ≤ t− s ≤ T (y, t)} which we now wish to satisfy the time
Reconstruction Condition

|f̂(y, t)− f(y, t)|∞ ≤ Et + E (10.2)

where we a spatial relative error E and a temporal relative error Et and we
drop the use of Local Intensity Scale σ for simplicity and the infinity norm is
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across both space and time. We now formulate the error in the usual way, we
shall use the m = 1 case again

|ε(y, t)| ≤ R(y, t) max
x∈Ns(y,t,R(y,t))

(|∇f(y, t)|)+

|
∑

xp,t∈N (y,t,R(y,t),T (y,t))

(t− tp)ξp,t(y)

∫ 1

0

∂

∂t
f(xp, tp + s(tp − t))ds| (10.3)

where the error is decomposed into a time path and space path seperately,
where Ns and Nt correspond to the appropriate restricted in space and time
neighborhoods. Then we can now bound this now using T (y, t) as

|ε(y, t)| ≤ R(y, t) max
x∈Ns(y,t,R(y,t))

(|∇f(y, t)|)+

T (y, t) max
s∈Nt(y,t,T (y,t))

(|∂f(y, s)

∂t
|) (10.4)

now we bound each seperately as,

T (y, t) ≤ Et

maxs∈Nt(y,t,R(y,t))(|∂f(y,s)
∂t
|)

(10.5)

R(y, t) ≤ E

maxx∈Ns(y,t,T (y,t))(|∇f(y, t)|)
(10.6)

given both of these hold, then the time Reconstruction Condition 10.2 holds.
Now we note that both of these are Resolution Bounds of the correct form for
the use of particle cells and the pulling scheme. Further, the first condition is
simply the classic APR condition. Now if we assume that we first integrate
forward in time, then do the spatial step. We can see that we simply need the
time Resolution Function to hold on all particle locations.

10.1.2 Algorithm

Now we describe the basic principles of the formation of the APRt. For each
time step t the classic APR is formed as usual. Following this, V(t) is compared
to V(t − 1), and any additions (unique to V(t)) are added to a set called
ALLt, along with the particle intensity, and removals (unique to V(t− 1)) are
added to a set REMOVEt (Difference in both directions between the sets). For
all those particle cells that are in both V(t) and V(t − 1) are only stored if
they are required to ensure that 10.5 is satisfied. This is done by considering
each Particle Cell in space, as also having a temporal level lt. Because the
reconstruction neighborhood is one sided, the Pulling Scheme is easily adapted,
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and only requires the current particle cell level as input. For brevity, we do
not describe these steps in detail. However, it is O(1) per particle per time
step.

An additional data structure APRc is maintained that contains the previous
particle information, and the type and level lt−1 at the previous time step. The
one difference from spatial Particle Cells, to their time extension, is that we
consider the particle to be sampled at the far edge of the Particle Cell (in
comparison to the particle placed in the center as in the classic case). Such
that, once a new Particle Cell is required by the Pulling Scheme, the particle
will also be sampled. Any time a new Particle Cell is required, the location
and particle intensity is stored in an additional set called UPDATEt.

These steps are summarized in Algorithm 9. The APRt then consists of
three sets, that is APRt={ADDt,REMOVEt,UPDATEt}, combined with the
classic APR at t = 0. We note that the add and update sets require storage of
both the Particle Cell and particle function value, where as the remove, simply
require the removed Particle Cell.

From this APRt, a classic APR for a given t can be reconstructed, with
particle intensities, which are updated such that any reconstruction from this
resulting APR will follow the Reconstruction Condition with the added factor
of Et. Further, additional information is known at each particle location re-
garding the spatial resolution function T (y, t) through the Particle Cell level
that is implicit in the sampling. Reconstructed in this way, the APRt requires
time order access and therefore does not allow O(1) reconstruction of arbitrary
function values in time. However, given data-sets are usually processed and
viewed in time order, I do not believe this is a prohibitive restriction.

10.2 Benchmark 1D

We briefly validate the APRt above in 1D using the following test function of
moving Gaussian pulses, defined as

f(y, t) =
Gn∑
i=1

e
−(y−yi+uit)

2

si (10.7)

defined on Ω = [−10, 10] and Ωt = [0, 2] where for the examples here we have
Gn = 6 and yi ∼ U(−10, 10) and si ∼ U(0, 0.2) and ui ∼ U(−u∗, u∗) and U
is the random uniform distribution. This corresponds to Gaussian pulses of
random width, being placed randomly with speeds that are distributed within
a range set by u∗. In the benchmarks below we use Nt = 1000, and therefore dt
of .002. At each time step, the APR is generated from the new function values
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Data: Sampled function f{x̄, t̄}
Result: APRt={ADDt,REMOVEt,UPDATEt}
Initialize APRc with APR(t0);
for tc = (t0 + dt) : dt : tf do

1.) compute APR(tc) for tc;
2.) compare to APRc;
2.) Add all new Particle Cells and their particle to ADDt;
3.) Add all removed Particle Cells to REMOVEt;

4.) For all Particle Cells present in previous solution, compute |∂f
∂t
|,

and the local Particle Cell level l∗t,i using APRc;

5.) compute (lt,i,it,APRc)=causal pulling scheme(l∗t,i,APRc);
6.) If a new Particle Cell is required, add particle and Particle Cell
to UPDATEt;

7.) Update APRc with current time step particle info from APR(tc);

end
Algorithm 9: Summary of the steps to calculate the APRt, which is repre-
sented by three sets for every time step, ADDt, REMOVEt and UPDATEt.
For these three sets, the APR at any time step can be recreated in temporal
order, with a spatial reconstruction error bounded by Et + E.

at the old particle locations, as if generated as in solution of a differential
equation. All of the results here are consistent with the case where instead at
each time step the new APR is produced from a uniform grid of size N . In
Figure 10.1, we give examples of two time points of this test function for an
early and late time point. The reconstruction from the original APR and the
particles from APRt are shown. Little difference can be seen by eye. However,
if one focuses on the fourth peak in the first plot one can see what looks like
disordered particles in their placement.

Here we only provide a brief survey of indicative results; we again leave
more rigorous benchmarking to future work.

10.2.1 Time Reconstruction Condition

First, we consider the time Reconstruction Condition 10.2. We test the re-
construction by using the fact that a spatial APR for each time step can be
formed. For the particle function values, this corresponds to a ’causal’ nearest
neighbor in time interpolation step followed by the classic spatial reconstruc-
tion step. We test the usual piecewise constant, worst-case, and piecewise
linear construction methods. In Figure 10.2, we present results for E = 0.08
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Figure 10.1: Examples from two time points of the simple test function defined in 10.7, used to validate the
APRt. The first plot shows the fifth time point, and the second plot the 999th with the linear interpolation of
the original APR, and u∗ = 4, E = 0.08 and Et = 0.03, with dt = 0.002. The arrows are added to illustrate the
random direction of movement of the peaks.

and Et = 0.01 in the first plot and Et = 0.03 in the second, where the observed
reconstruction error E∗ is plotted against time. For the time Reconstruction
Condition to hold, all reconstructions should have an error less than E + Et
for all time points. We find this is the case for the three reconstruction meth-
ods presented as they are below the red dashed line for all t. We note the
oscillations reflect the adaptation through time.

Further, in both cases, the worst case reconstruction is above the blue
dashed line represented the classic APR’s Reconstruction Condition. Breach-
ing this bound reflects the lossy adaptation that is now occurring through time.

10.2.2 Temporal adaptation

Now we assess whether this formulation allows the APRt to adapt to spatial
scales. First, we consider the limiting case where u∗ = 0 such that the function
is constant through time. In this case, the temporal scale (one-sided) at each
point, is effectively getting larger and larger as time time passes. Now if we
consider an image data set with N points in space and Nt sample points, we
can then define the Computational Ratio (CR) again as

CR(Nt) =
NNt

#APRt

(10.8)

where # APRt = #ADDt + #REMOVEt + #UPDATEt, i.e. the sum of its
parts. Then for the case where the function is not changing, the perfect case

232



Chapter 10. Extensions in time (APRt)

0 0.5 1 1.5 2
Time (s)

0

0.02

0.04

0.06

0.08

0.1

0.12

O
bs

er
ve

d 
E*

0 0.5 1 1.5 2
Time (s)

0

0.02

0.04

0.06

0.08

0.1

0.12
O

bs
er

ve
d 

E
E
E+Et

Linear
∞

PC
∞

WC
∞

Figure 10.2: The observed reconstruction error E∗ (Infinity norm at N = 1000 evenly spaced locations) for
piecewise linear interpolation, piecewise constant interpolation, and worst-case reconstruction. The first plot is
for E = 0.08 for the classic APR, and Et = 0.01 for the time adaptation, the second plot is for Et = 0.03. The
dsahed red line represents the time Reconstruction Condition 10.2. The maximum speed was set to u∗ = 4.
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Figure 10.3: The first plot shows the number of particles in the classic APR for each time step (blue) and the
equivalent size (# APRt) of the APRt (green) for the time test function with no movement (u∗ = 0). The
second plot shows the Computational Ratio (CR) for the APR and APRt for the same test function.
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Figure 10.4: The first plot shows the number of particles in the classic APR for each time step (blue) and the
equivalent size (# APRt) of the APRt (green) for the time test function with fast movement (u∗ = 4). The
second plot shows the Computational Ratio (CR) for the APR and APRt for the same test function.

would be CR = Nt. That is, only the classic APR for the original time step
would be required. We show the results of the one run of the no-movement
benchmark in Figure 10.3. The first plot shows the size of the classic and time
APR for each time step. We see that the classic APR is indeed constant, and
the APRt is zero except at locations that become more sparse as time increases.
These additional particles represent updates to the function intensity due to
the causal Pulling Scheme. The second plot shows the CR for the classic and
time APR. As expected, we find a constant CR for the APR of approximately
three. In contrast, the CR for the APRt increases with the number of time
steps, reaching a CR of 680 for 1000 time steps. However, it is not quite
linear, or equal to Nt, due to the Particle Cells increasing in size through time.
These extra particle cells in time, are analogous to the filler particle cells in
space. Next, we provide some preliminary results on adaptation to varying
temporal scales. We consider two cases of fast (u∗ = 4) and slow (u∗ = 0.4)
movement. If the time APR is adapting correctly, we should expect the CR
of the APRt to reflect this change. The results are shown in Figure 10.4 for
the fast case, and Figure 10.5 for the slow case. We find that the APRt CR
does reflect these changes in average speed, with CR being 3.72 times larger
than the classic APR in the fast case and 14 in the slow case. Hence in the
slow case, the reductions for the time APR are an order of magnitude greater
than the classic case. Although, between the slow and fast speed example we
find that an increase of approximately 3.8, less than half of the reduction of
the maximum bound of ten. However, that is an upper bound of one random
iteration and does not necessarily accurately reflect the results. Hence, more
detailed analysis is warranted, however, we again leave this to future research.
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Figure 10.5: The first plot shows the number of particles in the classic APR for each time step (blue) and the
equivalent size (# APRt) of the APRt (green) for the time test function with slow movement (u∗ = 0.4). The
second plot shows the Computational Ratio (CR) for the APR and APRt for the same test function.

10.2.3 Relative size of update, add and remove

In the above, we have provided no insight into the relative proportions of the
three components of the APRt={ADDt,REMOVEt,UPDATEt}. In general,
across benchmark examples, the particle update set represents the majority of
the size of the APRt. We show this for a fast movement example in the second
plot of Figure 10.7, where both the remove and add sets represent less than
ten percent of the total required Particle Cells.

To provide the reader with some insight into how the add, remove and
update events are distributed through space and time, we plot the spatial
location of Particle Cells in the sets through time in Figure 10.6 and the first
plot of Figure 10.7. We find that in all cases, the Particle Cells are located
spatially around the peaks. The first plot of Figure 10.6 shows where Particle
Cells are added and removed, with two trajectories in the center showing higher
density that reflect two fast moving peaks. The same behavior is shown in the
update set in the second plot of Figure 10.6 and first plot of Figure 10.7. Both
plots show the same data, with the first plot in Figure 10.7 showing only a
smaller subset of one hundred time steps to allow observation of the varying
density of update particle cells for the different moving peaks through time.

10.2.4 Summary

Unfortunately, the above results, are not detailed enough to make conclu-
sive statements. We note that a contributing factor to the sparse nature of
the above analysis is the additional complexity and cost of dealing with the
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Figure 10.6: The first plot shows the location in space and time step of Particle Cells in the ADDt set (added
to the APR at time point t) and REMOVEt set (removed from the APR) for a fast movement benchmark
example. The second plot shows the location in space and time of Particle Cells in the UPDATEt (function values
adaptively sampled to satisfy the time Reconstruction Condition). A smaller portion of 100 time-steps is shown
for the update Particle Cells in the first plot of Figure 10.7
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Figure 10.7: The first plot shows only 100 time-steps of the data presented in the second plot of Figure 10.6 for
the location in space and time of Particle Cells in the UPDATEt set for a fast movement example. The second
plot shows the relative size of the UPDATEt, ADDt and REMOVEt sets for the example.
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additional time variable does not allow direct application of the spatial bench-
marking methods used previously. However, I believe the preliminary results
above provide indications that such an APRt scheme has the correct prop-
erties for RC5, allowing a means to include temporal adaptation, while not
complicating the use of methods developed for the classic APR case.

10.3 Extension to LSFM data

The above scheme can be directly applied to arbitrary dimensions in space d.
With the temporal adaptation steps showing little change. Preliminary work
has replicated the noise-free results given above for the 3D LSFM data pipeline
discussed in 6.2. However, the full extension will require the addressing of two
still open issues described below.

10.3.1 Complication of noise

The first open issue is how to correctly deal with the impact of noise in the
time adaptive environment. The introduction of noise results in oscillations
of the classic APRs Implied Resolution Function. These oscillations are then
captured by the temporal APR, hindering effective temporal adaptation. A
possible solution would be the use of temporal information, or additional sta-
bility criteria, in the calculation of the spatial APR at each time step.

10.3.2 Real-time optimizations

The second open issue is related to temporal integration. In the classic APR,
the filtering steps on the full image account for a significant portion of the
computational cost of the classic APR per time step (See 6.5.4). Hence, it
would be beneficial if the knowledge of the spatial distribution of previous time
steps was utilized to speed up the estimation of the function gradient, Local
Intensity Scale, and particle intensity estimation. One approach would be the
calculation of the Local Resolution Estimate L(y) only at particle locations
from the previous time step, as is used in the benchmarks above and the
numerical solution of partial differential equation benchmark (9.3.1). This
would then serve to amortize the extra cost of temporal adaptation.

10.4 Summary and main points

In this chapter, we introduced how the APR can be extended to account for
temporal scales and satisfy the last remaining representation criteria, RC5.
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We summarize the main points of this chapter in the table below.
The treatment here is at a high level, and provides only a rough ’proof of

principle’. However, I believe the presentation of these results is vital for the
full evaluation of the APR and its application the LSFM data. If the above
work can be successfully applied to real-time settings, the APRt would effec-
tively allow acquiring of data that is independent of the original temporal and
spatial sampling. Also, the adaptation of time could be utilized in processing
steps, with great utility for performing joint segmentation and tracking tasks.
Further, the anisotropic nature of the APRt allows a multiplicative factor from
the time scales that are not present in the classic isotropic case. In the classic
isotropic case, the local spatial resolution is effectively the minimum resolu-
tion in each spatial dimension. However, by making the temporal dimension
independent, the APRt can simultaneously have high spatial resolution and
low temporal resolution (and vice-versa). While still allowing for the ’simple’
isotropic data structures and implementation of algorithms in space. There-
fore further advancement of these ideas and extension to the LSFM case would
appear to be vital to full utilization of adaptation with the APR.

Summary of the chapter

• Discussed desired properties of the extension of the APR to account
for temporal scales.

• Derived the two Resolution Bound conditions for the Anisotropic
formulation of the time adaptive APRt for the satisfaction of a time
Reconstruction Condition, now with two error thresholds E and Et.

• Provided a high-level description of the algorithmic steps required to
form the APRt.

• Showed preliminary results for the APRt in 1D using a test function
of moving Gaussian peaks.

• Provided indications that the APRt successfully accounts for tempo-
ral time scales, while still allowing ’classic’ APR processing per time
step.

• Outlined challenges and future work required for the APRt to be
extended for use in LSFM data.
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In this final chapter, we critically summarize, discuss, and reflect on the
work presented in this thesis and its limitations, and speculate on future re-
search directions and challenges.

The chapter is structured as follows. First, we provide an executive sum-
mary of the main conceptual and theoretical contributions of this work. Follow-
ing, we provide a summary and description of the chapters of this thesis. Next,
we critically assess the use of the Adaptive Particle Representation (APR) for
studying spatiotemporal processes in biology (STB) using Lightsheet Fluo-
rescence Microscopy Data (LSFM). We do this by evaluating the APR’s ful-
fillment of the representation criteria and critically discuss limitations of the
results and then highlighting directions of future work and challenges. We
conclude this chapter and thesis, by discussing the potential uses of the APR
as a general purpose adaptive data representation.

11.1 Executive summary

The main contribution of this thesis is the introduction of Adaptive Particle
Representation (APR). The APR is an adaptive function representation that
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represents a function in a spatially adaptive way using a set of Particle Cells
V and a set of function values stored at particle collocation points P∗. The set
of Particle Cells V fully defines both an implicit piecewise constant Implied
Resolution Function R∗(y) and the sampling locations of the particles.

The APR, as an adaptive function representation, can then be used to
improve the storage, computational and memory costs of numerical processing
tasks when compared to the equivalent task using homogeneously sampled
data. The improvement can be achieved by reduction number of elements that
must be computed over, reductions of the required memory for processing, and
reduction in storage costs for both the input and result.

The APR represents a function by allowing reconstruction of function val-
ues at arbitrary locations y using any positive weighted combination of par-
ticles within R∗(y) of y. The combination of {V ,P} are selected such that
the pointwise absolute error between the function and its reconstructed value
is guaranteed to be below a user-defined fixed value Eσ(y) we call the Re-
construction Condition. Where σ(y) is a special function known as the Local
Intensity Scale, that can be used to adjust the allowed reconstruction error
across the spatial domain. The sets {V ,P∗} are selected optimally, such that
they represent the smallest number of Particle Cells #V , and also largest
everywhere Implied Resolution Function R∗(y), such that the APR satisfies
the Resolution Bound. The Resolution Bound relates the derivatives of the
function to an upper bound on the reconstruction error and guarantees the
satisfaction of the Reconstruction Condition.

This optimal solution is found using Particle Cells, and a novel algorithmic
approach we call the Pulling Scheme. The Pulling Scheme allows optimal
solutions of problems defined by a Resolution Bound and requires knowledge,
or computation of, function derivatives across the domain that are used to
construct a Local Particle Cell set L. This Particle Cells set L is then used
to solve for the Optimal Valid Particle Cell set V used to form the APR. The
Pulling Scheme has worst case linear scaling in N , where N represents the
number of function values in a constant resolution sampling at the highest
resolution. The Pulling Scheme utilizes the underlying geometry of problems
defined by a Resolution Bound. The geometry arises from the Resolution
Function R(y) that is optimized being restricted by a bound over a spatial
neighborhood that has its size set to the value of R(y). The pulling scheme
solves this optimization problem by constructing the largest function satisfying
a bound out of regular blocks. Where only one block is allowed to define the
function at each point in space and their widths are restricted to powers of two.
The algorithm relies on many theoretical properties of solving the Resolution
Bound using Particle Cells, which allow for simplification of the problem and
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more efficient computation of the result.

The particle sampling is chosen by placing one particle at the center of
every particle cell in V . Sampling this way is ’in some way’ optimal, in the
sense that it reflects the same integrated density of particles as achieved for a
constant Resolution Function and homogenous sampling (as in a pixel image).

The APR is formulated and derived assuming noise-free knowledge of the
function and its derivatives. However, in practice, the APR is likely to be
formed from input data sampled at discrete locations that are possibly cor-
rupted by noise. However, the Particle Cell and resolution function structures
allow a few theoretical results for the impact of discrete sampling and errors
in both the derivative and function values. First, regarding discrete sampling,
the APR should be valid for all points in the domain, if the derivative function
values at the discrete point represent an upper bound on the derivative be-
tween sampling points. Second, if the derivative input can only be estimated
within a known relative error, this produces a bounded relative increase in the
point wise reconstruction error to E∗. Lastly, if we assume that the Implied
Resolution Function R∗ satisfies the Resolution Bound, then for Gaussian cor-
rupted noisy functions the APR has an MSE that converges at the optimal
statistical rate 1

N
to a biased estimate to the noise-free APR reconstruction.

Where this biased estimate is within a constant factor of E, and convergence
is in the sense of increasing the number of noisy input samples N . This can be
compared to an optimal rate of 1

N1/2 for any fixed size kernel approximation
method to an unbiased estimate.

The general form of the APR, and the use of the Particle Cells and the
Pulling Scheme to find an optimal Implied Resolution Function, can also be
used to create a wider class of representations. One extension is the forming
of APRs that satisfy more general (α,m)-Reconstruction Conditions. Where
α defines the function derivative to be bounded, and m, the required order of
the reconstruction. These different conditions can be used together in arbi-
trary combinations. The isotropic restriction can also be dropped allowing the
formation of APRs with anisotropic isotropic function neighborhoods. These
ideas can be used for the construction of causal time (APRt) adaptive APRs.
Lastly, the Resolution Bound that is solved for does not have to be derived from
a corresponding Reconstruction Condition and can have any source. Hence,
the APR framework provides a ’toolbox’ of representations that can be adapted
to specific functions and computational problems.

The development, and use, of adaptive function representations to improve
the efficiency of numerical processing tasks, is not novel. Similar ideas and
adaptive representations are successfully used in a range of fields. Further, the
main ideas and concepts used in the APR are closely related to those found
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in a variety of existing methods. However, the form of the APR, regarding its
representation and solution, focusing on a Resolution Function and Resolution
Bound, the use of Particle Cells, and the Pulling Scheme appears to be novel.

A second novel aspect of the APR is the incorporation of a Local Intensity
Scale σ(y). The Local Intensity Scale is included to allow the absolute function
value of the reconstruction value to vary across the spatial domain. The feature
was designed for the specific use case of the APR for LSFM data and was
inspired by local gain controls in the human visual system. Critically, although
we have shown above that spatial varying σ(y) to be useful in practice, the
Resolution Bound satisfying the Reconstruction Condition is only guaranteed
to hold for σ(y) that satisfy strict conditions that depend on the solution they
are used to compute. Unfortunately, we have no methods to generate σ(y)
that guarantee this condition beyond constant σ(y) = σc. However, such a
constant Local Intensity Scale negates its original purpose.

Although the APR can be considered optimal some features, in others, it is
sub-optimal. First, the APR is by construction sub-optimal concerning min-
imization of the number of coefficients to represent it (#{V ,P∗}) for a given
function error. The sub-optimality is a result from the fact that the APR can
be losslessly represented by an associated Haar wavelet representation with Ph
where #Ph ≥ #P∗. Second, the Implied Resolution Function is a suboptimal
solution to the Resolution Bound. Sub-optimal in that there exists a contin-
uous resolution function Rc(y) such that Rb(y) ≤ R∗(y) that also satisfies
the Resolution Bound. However, the maximum ratio between Rc and R∗ is
bounded by 4

√
d where d is the dimension. However, R∗ is the largest every-

where (optimal) of all potential Implied Resolution Functions. Also, there is no
guaranteed tightness on the difference between the Resolution Bound and the
Reconstruction Condition. Last, the reconstruction neighborhood as defined
by the Implied Resolution Function is isotropic. The isotropic neighborhood
restricts the adaptation and hence provides sub-optimal spatial adaptation
when compared to a fully anisotropic representation.

However, as a trade-off for sub-optimality in these properties, the APR
has, a predictable and regular structure locally, an explicit local spatial scale
through the Resolution Function, and can be used to provide bounded recon-
structions with a wide range of reconstruction methods. Further, the restric-
tions leading to sub-optimality play vital roles for the efficient calculation of
the APR using Particle Cells and the Pulling Scheme and the construction of
efficient data structures for computation and storage. Also, this formulation
is key to the ability of the APR to be extended to a ’toolbox’ of higher order
models with little modification.

For any given numerical processing problem and data set type, there is a
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large variety of adaptive representations that could be used to provide an im-
provement in computational and memory performance through adaptation to
spatial and temporal scales. Each of these adaptive representations comes with
its unique benefits and trade-offs. Therefore, selection of a particular represen-
tation comes down to an evaluation of the given problems computational de-
mands and scope and how they align with different representations. Evidence
of such a trade off is reflected in the wide range of adaptive representations
that are currently used for different problems and fields of research. Similarly,
the APR appears to have its unique benefits and tradeoffs as discussed above
and throughout this thesis. Hence, its suitability over existing methods is de-
pendent on the task and data set. In any case, the use of the APR will depend
on the development of high-quality software libraries and implementations of
the ideas in algorithms in this thesis that can utilize the range of hardware
acceleration techniques through GPU, shared, and distributed memory based
parallelism.

In this thesis, we focused on the evaluation of the APR to be used for a spe-
cific task. The replacement for pixel images for the study of STB using LSFM
data. We evaluate this shortly in a dedicated section using the representation
criteria.

11.1.1 Chapter Result Summary

First, we provide a summary of the content and results on a per chapter basis.
At the end of each chapter, we provided a more detailed summary and a bullet
point table summarizing the key results, and we direct the reader to these for
more detail. However, the below can be used for reference as to where the
results discussed in the above summary were presented.

In the first Chapter 2, we began by describing how developments in LSFM
hold the promise of being able to study previously unobservable processes
in biology through space and time in high resolution. We then introduced
the key steps involved in this process and highlighted how processing and
handling of the raw data creates a significant bottleneck progress in the field.
We argued that this problem comes from the data exhibiting varying and
dynamic spatial, temporal and intensity scales that result in significant in-
efficiencies when using a homogeneously sampled data representation. We then
surveyed current approaches to processing and reflected on the key concepts
of the human visual system. From this, we concluded that a potential solution
to the bottleneck would be the use of an adaptive data representation, as
an alternative to pixel images, for all steps in pipelines, from acquisition to
analysis. The adaptive data representation would alleviate the bottleneck by
accounting for the dynamic spatial, temporal, and intensity scales in the data
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and remove the inefficiencies generated through homogeneous sampling.

Next, in Chapter 3, we discussed and presented five criteria that an adaptive
data representation should be able to fulfill to meet the goal set out in the
previous chapter. We called these the represenation criteria. Following this,
we reviewed and reflected on existing adaptive data representations. From
the review, we concluded that although almost all the representation criteria
could be fulfilled by existing ideas, there were two main areas that still required
development. First, the inclusion of a local gain control like mechanism that
allowed for the adaptation to dynamic intensity scales of LSFM data. Second,
the demand that the representation ’as close to pixels as possible’ to allow ease
of re-development and implementation of existing methods.

In Chapter 4, we then introduced the key concepts and ideas of the APR.
This chapter focused on presenting the ideas in 1D and taking a didactic
approach to the introduction of new concepts. General dimensional treatment
and technical details and proofs were omitted and left to the following chapter.
The chapter introduced the key ideas of the Reconstruction Condition, and
its link to the Resolution Bound, the Implied Resolution Function and its
construction from Particle Cells, the Local Intensity Scale, and the key ideas
that form the Pulling Scheme that represents the ’Transform’ algorithm for
the APR. Last, in the chapter, we discussed practical aspects of the use of the
APR including the impact of discrete sampling and noise, again using 1D for
simplicity of exposition.

Complementing the previous 1D introductory chapter, in the following
Chapter 5, we presented the technical details, proofs, and extensions of the
ideas of the APR to the general dimension case. Given the concepts had al-
ready been introduced, in this chapter and attempt was made to present the
ideas in a general way, that could allow the possible extension to more com-
plicated models in the future. The core of the chapter is dedicated to proving
the results and properties of Particle Cells that form the basis of the Pulling
Scheme that is used to generate the APR. Following this, we also provide
details of how to form the APR particle graph and a description of function
reconstruction methods used in the following chapters.

Next, in Chapter 6, we explored the properties of the APR and validated
the theoretical results using empirical benchmarks. In this chapter, we pro-
vided empirical evidence for the evaluation of the first three representation cri-
teria. First, we validated the APR in 1D using functions of a known form with
a constant Local Intensity Scale. Following this, we introduced the 3D imple-
mentation of the APR for LSFM data and a method for generation of synthetic
images. This implementation included a spatially varying Local Intensity Scale
based on a slowly varying estimate of the local scale in the image. Using the
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synthetic images, we explored the APRs properties regarding an increase in
information content, sampling, and noise. Following this, we introduced two
benchmark datasets, the Computational Ratio and Exemplar benchmark data.
These were used to represent a different range of image size and content levels.
We then introduced the APR data structures we use for processing in the next
chapter. Following this, we used the two benchmark datasets to evaluate the
execution time of the different steps of forming the APR, the memory cost
of its transform, and the size of the APR for file storage using simple lossless
compression. Lastly, we reflected on the results, discussed limitations and the
fulfillment of the first three representation criteria (RC1-3).

In Chapter 7, we evaluated a variety of simple processing tasks on the
APR. These results were presented as empirical evidence for the fulfillment
of the fourth representation criteria. We began by discussing how the APR
can be ’interpreted’, or used for processing, and how this relates to similar
concepts for processing on pixels. We then introduced performance metrics
that we used to evaluate the computational and memory performance of the
APR and compare it to pixel image representations. Using these metrics, we
then evaluated the relative performance on the APR on four simple processing
tasks, linear neighbor access, random neighbor access, separable pixel filtering,
and segmentation. Comparing their performance regarding execution time
and memory cost. Then we demonstrated a range of methods for visualization
using the APR and showed how the APR can be used to create novel algorithms
using the example of adaptive APR filters. Lastly, we reflected on these results
regarding the APRs fulfillment of the fourth representation criteria (RC4).

Next, in Chapter 8, we discussed the similarity between the ideas and
concepts of the APR and existing methods in the literature. We did this on
a ’by concept’ basis and discussed a conceptual link between the APR and
wavelet thresholding. Next, we discussed two optimality properties of wavelet
thresholding, first regarding optimal error convergence regarding the size of the
representation and then for optimal representation of noisy signals regarding
the MSE. For both, we compared benchmark results with those presented
in the original wavelet thresholding papers. Motivated by the optimal noisy
representation results, we then derived results on the convergence of the MSE
of the APR for noisy signals.

In Chapter 9, we presented extensions of the classic APR in space. First, we
introduced how the APR can be used satisfy a generalization of the Reconstruc-
tion Condition, to more general (α,m)-Reconstruction Conditions. Where α
represents the function derivative being bounded, and m the order of the recon-
struction method required. We then showed that these (α,m)-Reconstruction
Conditions can be arbitrarily combined to form a single Resolution Bound that
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can be solved by the Pulling Scheme. Next, we briefly validated and explored
some of these extended APRs. Then, we provided a potential use case of these
general APRs by showing preliminary results for the solving of the 1D viscous
Burgers equation. Lastly, we showed that the APR can be used without a
Reconstruction Condition, showing the APR used for particle generation for a
complex geometry.

In the last content Chapter 10 in this thesis, we showed preliminary results
on how the APR can be extended to adapt to temporal time scales and address
the fifth representation criteria (RC5). First, we discussed the desired proper-
ties of the temporal adaptation. Next, we introduced the time Reconstruction
Condition and derived its two separate Resolution Bounds. Then we provided
a high-level overview of how the time extended APR, APRt, can be formed
using a combination of the classic APR and a 1D causal Pulling Scheme. Fol-
lowing, we then validated the model in 1D, showing preliminary results that it
satisfies the APRt has the desired properties for noise-free functions. Lastly,
we discussed the challenges that still need to be addressed for application to
LSFM data and fulfillment of the fifth representation criteria.

11.2 The APR for representation of LSFM data

In this section, we critically evaluate the APRs ability to be used as a replace-
ment for pixels in pipelines for studying spatiotemporal processes in biology
using LSFM data as motivated in Chapter 2. Where, by replace, we mean
that instead of the original pixel image, the APR is stored, and used for all
processing tasks. By storing and then processing solely on the APR, a whole
processing pipeline can utilize the computational and memory benefits of an
adaptive data representation. It is proposed that if the adaptive data repre-
sentation can effectively capture the dynamic spatial, temporal, and intensity
scales the removal of inefficiencies from pixel sampling will alleviate current
processing bottlenecks.

To aid in the evaluation of an adaptive data representation to be used
for this purpose, in Chapter 3 we proposed five representation criteria (RC)
an adaptive representation should fulfill. The objective of the criteria was to
provide a framework to evaluate if an adaptive representation could be used
as a wholesale replacement of pixels. Hence, these criteria are not designed
as to evaluate finding an optimal solution, merely if a representation would
be sufficient. However, we note critically that the representation criteria are
heavily influenced by concepts and the design of the APR. As a result, an
adaptive representation could objectively fail to fulfill these criteria, while
being a valid solution to the LSFM data bottleneck. Thus, our evaluation of
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existing representations in necessarily 3.3 is biased towards the concepts and
the ideas used by the APR. Nonetheless, I believe the representation criteria
provide a valuable tool for evaluating the question ”could the APR be used as
a replacement for pixel images in processing pipelines?”

11.2.1 Critical evaluation of the Representation Crite-
ria

Next, we address each representation criteria separately, providing a summary
of evidence for its fulfillment, and then providing critical comment on limita-
tions and potential future work for each. We direct the reader to Chapter 6,
and 6.6.2, for more details on the results for RC1-3, Chapter 7 and 7.6.1 for
RC4, and Chapter 10, for preliminary results for RC5.

RC 1

• The size of the APR #{V ,P∗} must be proportional to the information
content of an image, accounting for varying spatial scales, and not scale
with the number of pixels.

In Chapter 6, we provided evidence that the size of the APR scales with
information content and not the number of original pixels N . The benchmarks
relied on using the number of objects in the image as a proxy for information
content. Benchmarks showed that the APR would reach a maximum size for a
given number of objects, and hence become insensitive to the number of pixels
in the original image N , or the sampling resolution used. This adaptation
was robust even though the individual objects varied randomly in their local
brightness by an order of magnitude. This was done through the use of a Local
Intensity Scale σ(y) that provided a smooth estimate of the local range in the
image.

However, these results come with many caveats. First, in the presence of
noise, the adaptation becomes sensitive to parameters used. First, regarding
the estimation of the gradient and setting of the B-spline smoothing parame-
ter λ. If this is set too small, the noise will increase the resolution across the
domain limiting adaptation. Too high, and the adaptation could ’miss’ certain
features, and provides less spatial localization. Second, the Local Intensity
Scale requires the setting of a lower bound through σth to provide a minimum
intensity scale. In its absence, in flat regions σ(y)→ 0, and the full capturing
of background noise. Further, although we heuristically motivated the Local
Intensity Scale, we did not provide any rigorous justification, nor effectively
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benchmark its performance in isolation. Third, for real-datasets, images con-
tain background signal b (See 2.2.4), that is not needed to be resolved. To
selectively remove this information requires either addition of extra parame-
ters, such as the intensity threshold we used, or changes in the Local Intensity
Scale. Last, LSFM data also often show additional complications that were
accounted for in the benchmarks. These include anisotropic spatially varying
PSFs, anisotropic sampling, and spatially varying non-Poisson noise-processes.

Another criticism arises for the ability of the APR to ’account for varying
spatial scales’. We provided evidence that the APR can account for spatial
variation and this is explicitly represented in the Implied Resolution Function.
However, this adaptation is isotropic. The isotropic restriction, only allows
the APR to adapt to the local minimum spatial scale in each direction, and
not fully to the scales of the data in each direction.

RC 2

• The APR must guarantee a user-controllable representation accuracy E
for noise-free images, relative to a local intensity scale σ, and not reduce
the signal-to-noise ratio of noisy images.

In Chapter 6, we showed that for noise free functions the APR satisfies the
Reconstruction Condition for a given E for all allowed reconstruction methods.
The result was validated both in 1D with a constant σ and in 3D with a spatial
varying σ. Importantly, the bound still empirically held, despite no guarantee
of the satisfaction of the smoothness criteria for σ (4.3.5). For noisy images,
we found that satisfaction of the Reconstruction Condition was not possible
for small E, as impacts of the noise and bias in the reconstruction dominated
as E → 0. However, regarding PSNR of the reconstruction APR image, we
found a range of E for which the image quality was maximized (≈ 0.08− .15).
Also, in this range of E and lower, the MSE of the reconstruction was less
than half the noise level in the original image. Further, the adaptation of
R∗ was robust to noise, as the Reconstruction Condition was again satisfied
when noisy particle values were replaced by noise free values (Although, likely
over-sampling).

Critically, although we have shown that a lack of guarantee on σ, did not
impact the adaptation, we did not evaluate critically whether this was in any
way a relevant Local Intensity Scale to normalize the error. Further, we did
not assess the negative impact that the choice of Local Intensity Scale had
regarding an increase in particles, beyond what would be optimally required
for more optimal choice of σ.

Another strong criticism can be directed at the representation criteria it-
self. The form is tailored identically almost trivially to the form of the results.
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First, regarding the choice of a pointwise, or infinity norm, for the Reconstruc-
tion Condition. This could have been replaced by a global norm, such as a
weighted L1 or L2 norm. However, the infinity norm does have the comfort
that in the ’eyes’ of the algorithm, all data points are ’treated equal’. This
is not necessarily the case for a set value E with a global norm. An imme-
diate criticism of a set bound E, with any norm, is that in the presence of
noise, in general, can not be guaranteed to be satisfied due to the loss of in-
formation. Instead, as shown by the representation criteria and the results,
one falls on concepts of MSE or the equivalent PSNR of the reconstruction.
This then raises the question ”Why not use an MSE minimization criteria for
adaptation?”. This is a valid criticism, however, in 8.3 of Chapter 8 we showed
that under the assumption of satisfaction of the Reconstruction Condition, the
representation would converge at the optimal statistical rate to an APR re-
construction within a constant factor of that of the optimal E noise-free APR.
Hence, the satisfaction of the Reconstruction Condition does have benefits in
a noisy context. However, these results rely on the robustness of the Implied
Resolution Function, which must itself be estimated from the noisy data.

Therefore, again we have shown promising results, however additional work
is still be warranted. First, further development and investigation of the
smoothness assumption on the Local Intensity Scale, and theoretical work
on guarantees on how its violation impacts the satisfaction of the Resolution
Bound and hence Reconstruction Condition. Second, the further development
of the results regarding the performance of the APR under noisy situations,
including the direct influence of a given noise level through to the Implied
Resolution Function, and then its impact on the bias and optimal convergence
rate of the APR.

RC 3

• It must be possible to rapidly convert a given pixel image to the APR
with a computational cost at most proportional to the number of pixels.

Using the CR benchmark and exemplar data, In 6.5.4 of Chapter 6, we showed
that for our given implementation, the APR could be formed with a linear com-
putational and memory complexity in the number of original pixels N . This
could be broadly broken into two parts, the calculation of the Local Resolution
Estimate L(y) and then the calculation of the APR using the Pulling Scheme.
The first part is inherently linear in both memory and computational complex-
ity, being computed using filtering operations. Further, this cost can be fixed
independently of parameters by the use of recursive implementations. The
Pulling Scheme also has worst-case linear scaling in N . However, the actual
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performance is dependent on the information content of the image. The com-
putational and memory cost is dominated by the first part. Regarding memory
cost, the simultaneous storage of the original image, the gradient magnitude,
and the down-sampled Local Intensity Scale represents the largest overhead.
Given the computational cost was dominated by simple filter operations, that
would often be classed as ’rapid’, we concluded that the overall formation of
the APR is also rapid. Further, this cost is small enough to fall in time ranges
that can be classified as ’real-time’ in certain contexts [5, 110].

However, critically, although the algorithm is not objectively ’slow’ ideally
both the computational and memory cost would be further reduced. Here, we
used a pipeline accelerated using shared memory processing (albeit with some
slight issues). However, ideally, the pipeline would be able to make use of
all available acceleration hardware. This includes both the use of GPU’s and
Xeon-Phi type accelerators. Though, these do place additional memory re-
strictions on computation. Indeed, benchmarking (not-shown) have indicated
that the computational cost can be efficiently reduced for the pixel filtering
steps by both these methods. Further, for expansion to larger problems, it
would also be useful to have a distributed memory implementation. However,
for a distributed implementation special treatment would need to be taken
regarding the recursive steps in the filtering algorithms for calculation of the
Local Resolution Estimate. Although, this does not seem prohibitive. Further,
regarding the Pulling Scheme, this will require correct handling of data struc-
tures and ghost layers, but as a whole, the algorithm appears to be amenable
to distributed extension.

Ideally, the dependence on N of both the memory and computational cost
would be reduced when computing more than one APR in a time varying data
set; we discuss this further below with RC5.

RC 4

• The APR must reduce the computational cost of image-processing tasks
without resorting to the original pixel representation.

In Chapter 7, we considered, and provided benchmark results for, the evalu-
ation of the processing performance of the APR. As discussed in 7.6.1, this
appears an ’ill-posed’ and difficult task to assess given the wide range of types
of image processing tasks, algorithms, and implementations. In 7.6.1 we pro-
vided a more detailed discussion of those issues to which we direct the reader.

In summary, we argued that the APR has many favorable properties re-
garding RC4. First, the APR allows comparable interpretations and oper-
ations to those that form the basis of many pixel algorithms. I argue that
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this property should reduce complexity and implementation costs for adapting
algorithms from pixels to the APR. Second, the APR, except linear neighbor
access, showed improvements in computational costs compared the equivalent
algorithm on pixels. However, the exact degree of this speed up depends both
on the reduction in a number of particles to pixels (CR), and the given task
and implementation. More consistently, the APR provided memory cost re-
ductions across all tasks that were proportional to the CR. Interestingly, in
the case of graph-cuts based segmentation, this allowed a previously infeasible
problem due to memory constraints on pixels, feasible on the APR. Lastly,
with examples in visualization, segmentation, and adaptive APR filters, we
showed that the APR can allow for easy development of novel algorithms,
that would otherwise be costly, or ’complicated’, using a pixel representation.

However, the results also highlighted the trade-off that comes with the use
of an adaptive data representation such as the APR. First, adaptive repre-
sentations require more sophisticated data structures and usually less efficient
memory access patterns for simple tasks than those allowed for a pixel data
representation. This was reflected in the APR’s poor relative computational
performance in the linear neighbor access benchmark. Second, care must be
taken on the suitability of the implementation of an algorithm on the APR.
This point was illustrated with the separable filtering algorithm on the APR.
This algorithm showed good computational and memory performance, how-
ever, for particular filtering tasks, such as large blur operations, qualitatively
poor results. However, there may often be a more natural APR equivalent,
such as adaptive APR filters, in the filtering case, that show better perfor-
mance. However, even in this case, if the spatial length scales of a result or
temporary results differ significantly from the spatial scale of the APR, either
a pixel representation or a new APR sampling, will be required.

The one key area of processing where it is possible that the APR would be
inappropriate may be image enhancement tasks. These lower level tasks, are
more likely to rely on the exact distribution of the pixels, and hence, given the
APR is lossy, the APR equivalents could be sub-optimal. Examples of tasks
where this could be the case are super-resolution, deconvolution or de-noising.
A simple solution to this would be simply to do any pixel sensitive tasks before
the formation of the APR. The second would be to use the APR ’in concert’
with the original image. Hence, providing, APR enhanced, versions of existing
algorithms.

Another criticism for any adaptive representation including the APR is
that many algorithms and implementations cannot be directly used. Requir-
ing additional development and implementation time and costs. This cost is
further exacerbated by the often more complicated data structures and im-
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plementations for the APR when compared to a pixel based algorithm. One
possible means to alleviate this would be the development of an efficient li-
brary that hides the complexity of the APR, presenting an interface that is as
similar to pixels as possible. Hence providing building blocks for rapid and ef-
ficient development on the APR (in the spirit of libraries such as PPM Library
Sbalzarini et al. [107] for distributed parallel simulations). Further, the APR
transform, and the processing implementations would also be ideally accessible
through popular image processing software such as Fiji [109].

Lastly, we did not address the use of the APR for Deep Learning [54] based
approaches to processing. Given the current success [54, 138], and the rise of
deep learning methods, it would seem vital for the APR also to be able to utilize
these approaches. One possible avenue would be the utilization of existing
graph based methods such as Defferrard et al. [39]. However, ideally, efficient
deep learning algorithms could be developed directly for the APR, allowing
for the utilization of the additional spatial information that it provides.

RC 5

• The APR must also be able to similarly account for varying temporal
scales.

Last, in Chapter 10, we provided details of the time extension of the APR,
to allow for adaptation to varying temporal scales. We provided a specific
extension to the classic APR we called APRt, which introduced an additional
temporal relative error Et in addition to the spatial relative error E. The
APRt allows adaptation to temporal scales, by adaptively sampling in time,
as well as space. The adaptation is done anisotropically, such that the classic
spatial APR at any time step can be reconstructed with a known bounded
reconstruction error. Unfortunately, we only provided preliminary results in
1D. However, these limited results were positive indicating that the APRt can
keep the benefits of the spatial APR, while also adapting to temporal time
scales. Note, the lack of more detailed analysis and extension to 3D is a
reflection of the infancy of this work, rather than reflecting challenges to its
development.

The successful application of the ideas of the APRt to LSFM data, would,
in my opinion, present a significant increase in benefit in the use of the APR,
and provide it a unique advantage over existing approaches. Although the
reductions from the APR in a single time step can result in significant reduc-
tions in both memory and computational cost for individual time steps other
approaches still seem feasible. However, given the anisotropic nature of the
time adaptation, any reductions in time are effectively multiplicative. Hence,

252



Chapter 11. Outlook and Discussion

if factors in time, even in the conservative range of 5 − 10 could be realized
this then results of a total CR for the APRt in the range of 25− 1000, rather
than 5− 100 in the classic APR case. These levels of CRs could result in data
sets that in their raw form being in the TB range, being reduced to less than
a GB. Further, the temporal adaptive information could be utilized to provide
novel tracking and segmentation algorithms.

Further, the APRt could be utilized to reduce the memory and computa-
tional cost of forming the APR at each time step. This could be done by focus-
ing the calculation of the Local Resolution Estimate L(y) on high-resolution
areas from the previous time step. Thus, allowing reduction memory and com-
putational cost for calculation of the gradient magnitude and Local Intensity
Scale. Further, the temporal context allows for the development of Local In-
tensity Scales that can utilize the estimate of the local spatial resolution from
a previous time step, potentially allowing methods that could guarantee the
smoothness assumption.

However, development is still needed for the application of the APR, par-
ticularly exploring how to increase the robustness of the time adaptation to
noise, and development of efficient algorithms utilizing ideas discussed in the
previous paragraph.

11.2.2 Conclusions and outlook

From the above, I conclude that the APR has sufficient properties to be used,
in possibly limited use cases, for the replacement of pixels pipelines for the
studying of STB in LSFM data. Above, I have highlighted areas of addi-
tional development and extension to the theoretical basis of the APR. How-
ever, given the existing work, the more significant next steps would appear to
be implementation and use of the APR for real pipelines and problems. Such
applications would still require significant development. However, I believe the
work in this thesis forms an adequate basis from which successfully APR based
pipelines could be designed and built.

Stepping back, it is possible that the current bottleneck in LSFM data
processing will, in essence, ’solve itself’. It is possible that new technological
developments could increase memory capacity and computational power suf-
ficiently such that the bottleneck in processing no-longer exists. This could
result in the lack of need for an adaptive representation such as the APR.
Another approach that could render the adaptive representations irrelevant
could be the advancement of deep learning Goodfellow et al. [54]. Deep learn-
ing, or other machine learning approaches, could advance to a level such that
efficient representations and all processing tasks could be effectively learned.
This could provide tailored representations and processing tasks that provide
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a complete solution to processing pipelines and remove existing bottlenecks.
The author’s hope would be that the APR could form a part of accelerating
progress in this direction, by using the APR and possibly learned variants as
the input representation, rather than pixels, to the neural networks.

11.3 APR as a general purpose adaptive data

representation

The potential applications of the APR are not limited to LSFM data. Although
the APR was motivated, and benchmarked, for acceleration of processing tasks
in LSFM data, the concepts, ideas, and algorithms of the APR, including
Particle Cells, the Implied Resolution Function, and the Pulling Scheme are
more generally applicable. In this last section, we will briefly discuss other
research areas where the APR could be utilized.

11.3.1 Other image modalities

An area that could allow almost direct application of the implementation of the
APR used here would be its use with other image modalities. For example, it
could be for adaptive representation of natural images, as briefly benchmarked
in Chapter 8. However, as shown in benchmarks and discussion, regarding the
reduction of coefficients the APR is inferior to wavelet approaches. Although,
the APR could still be used for processing tasks or the integration of a local
adaptive representation error through the Local Intensity Scale. Further, for
compression exploration of anisotropic APR extensions, or use integration of
ideas such as the Easy Path Wavelet Transform on the APR may be inter-
esting areas of research. Another related application of the APR could be
the exploration of the time extended APRt to video compression or processing
tasks.

Indeed, any contrast technique with ’pixel’ like data could also be used
with the APR. For example, a promising area could include application in
medical image processing such as processing of Magnetic Resonance Images
(MRI). However, it would have to be assessed for any benefits above wavelets
based techniques that are already in use [128].

11.3.2 Numerical solution of differential equations

As reflected in the review of adaptive methods in 3.3.3 of Chapter 3, a range of
adaptive data representations are used for the numerical solution of differential
equations. Therefore, it would be of interest whether or not the unique features
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and trade-offs for the APR can provide a new approach to complement the
existing work. Indeed, in 9.3.1, we illustrated using a simple test case of the
solution of the 1D viscous Burgers equation, that the use of the generalized
(α,m) APR can be used for the spatially adaptive numerical solution of a
partial differential equation. We note, that the solutions in 9.3.1, appear to
provide similar adaptation as in sparse wavelet collocation methods such as
Schneider and Vasilyev [114, 114], Vasilyev and Bowman [131], as shown for
a 1D example in Figure 3.5. This similarity raises the question of there being
any additional utility in the use of the APR as an alternative. Possible benefits
could be the tool-box of (α,m) conditions, simple data structures and similarity
to classical collocation methods, or the memory and computational efficiency
of the Pulling Scheme. We leave such evaluations to future research.

Again, for application of the APR for use in state of the art problems would
require a distributed memory version of the Pulling Scheme that does not rely
on the explicit storage of the Particle Cell tree. A possible avenue would be the
integration and use in distributed memory software libraries such as Sbalzarini
et al. [107].

Lastly, rather than providing adaptation through time, the APR could
be used simply as a method of particle generation for complex geometries as
shown in Figure 9.7. Although, due to the simple nature of this approach I
am not clear if this is in any way novel.

11.3.3 Statistical adaptive regression

As discussed in 8.3, the ’oracle’ based representations [22, 52, 24], used for
adaptive regression models have a similar form to the APR. Therefore, it would
interest to explore whether the APR, or extensions, could be useful in this field.
It would also be interesting to compare the statistical convergence properties
of the APR presented in 8.3 with these existing methods.

11.3.4 Surface approximation in computer graphics

DeVore et al. [43] and Agarwal and Suri [6] both developed adaptive representa-
tions for surface reconstruction for computer graphics satisfying infinity norm
equivalent to the Reconstruction Condition. Given the similarity, it would be
again interesting if the APR could provide benefit for surface approximation
in computer graphics.
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11.4 Concluding remark

This concludes the work in this thesis. The appendix follows after the ref-
erences providing additional technical details that supplement the main text.
All code and raw data are available from the author on request, and all code
is expected to be made available in the future under an open source license.
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A Appendix

A.1 Thought experiment: eye as a camera

Here we present the details of the ’back of the envelope’ heuristic for what
the data rate would be if the human visual system functioned as a traditional
fluorescence microscope. By this we mean if the eye recorded the visual scene
constantly at pixels with a resolution set by the finest resolution detectable,
and field of view set to the effective field of view of the visual system. [32]
reviews the literature and gives an effective image size of 576 Mega Pixels. That
is 576 ∗ 106 pixels, assuming a 120-degree field of view. We then assume that
the eye records this image at 150 fps. This is within the maximum observed
rates of over 500 fps recently shown to be detectable in Davis et al. [36]. We
then assume we are storing color, hence three channels, and we assume this
must be done using 64 bit unsigned as perceived light levels can vary over nine
orders of magnitude in a day [116].

Combining these gives a total number of pixels per second of 576 ∗ 1000 ∗
1000 ∗ 3 ∗ 150 = 2.592 ∗ 1011 or 2075 GB per second. In a day this would
amount to approximately 180, 000 TB per day of data.

A.2 Besov space definition

Here we reproduce the definition of a Besov space as presented in DeVore
et al. [42]. Besov spaces are useful in classification of error and performance of
multiresolution schemes, in particular, the analysis of wavelets. Besov spaces,
are defined as Bα

q (Lp(Ω)), with α > 0, 0 < p < ∞, 0 < q ≤ ∞ and Ω is the
spatial domain. Do define a Besov space we first need the following definitions.
Let the forward difference with h ∈ R2 be

∆k
hf(x) =

{
f(x) k = 0

∆k−1
h f(x+ h)−∆k−1

h f(x) k = 1, .., r
(A.1)

which then is used to define the rth modulus of smoothness in Lp as

ωr(f, t) = sup
|h|≤t

(∫
Ωrh

|∆k
hf(x)|pdx

)1/p

(A.2)
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then a Besov space Bα
q (Lp(Ω)) consists of all f for with the following is bounded

‖f‖Bαq (Lp(Ω)) = ‖f‖Lp(Ω) +

(∫ ∞
0

(t−αωr(f, t)p)
q

t
dt

)1/q

(A.3)

which is a norm for p, q > 1, and a quisi-norm otherwise.

A.2.1 Reconstruction Condition vs. Resolution Bound

First, we consider the relationship between the optimal solution to the Re-
construction Condition Rb(y) and optimal solution to the Resolution Bound
Rc(y). Since the Resolution Bound is derived from an upper bound on the
Reconstruction Condition (given the appropriate assumptions), a Resolution
Function satisfying the Resolution Bound also satisfies the Reconstruction
Condition. Hence the Reconstruction Condition is a tighter bound on R(y)
and Rb(y) ≤ Rc(y) for all y. The difference between Rc and Rb is the results of
bounding the error by taking the uniform estimate of the maximum of the gra-
dient across the interval 5.9, instead of the exact path integral in 5.7. Without
restrictions on both E and the function f , unfortunately, I know of no upper
bound on this difference. However, if we consider f that is infinitely differ-
entiable and the limit as E → 0, we observe that either: f will be constant
in some interval and R(y) will also reach some lower bound with a constant
zero derivative, or, Rb(y), Rc(y)→ 0. In the first case trivially the two bounds
are equal. In the second case, since f is assumed to be infinitely differentiable
from its Taylor series expansion the difference between |Rb(y)−Rc(y)| → 0 as
Rb(y), Rc(y)→ 0. Hence, given assumptions in the small E limit, the solutions
converge.

A.2.2 Bounds for Implied Resolution Function

Next, we consider what the relationship between Rc(y) and the Implied Res-
olution Function R∗(y) generated by the Optimal Valid Particle Cell set V .
Given that Rb(y) and R∗(y) both satisfy the Resolution Bound, but, R∗(y) is
restricted to be piecewise constant then necessarily Rb(y) ≤ R∗(y). The dif-
ference between these two solutions represents the loss in adaptation resulting
from constructing our solution of Particle Cells instead of allowing continuous
adaptation. Since the solutions are both optimal (R∗ over restricted solutions)
for the Resolution Bound, we can bound the worst case difference between
these two solutions.

Let us have some V that satisfies the Resolution Bound for L(y). We then
ask, in the worst case how much larger could Rb be compared to R∗? That is,
what is the bound on Rc(y)

R∗(y)
given only knowledge of R∗.



We can evaluate this question by considering a bound for all particle cells
ci,l ∈ V . Given that ci,l belongs to the optimal set, from Theorem 2, we know
that its parent ci/2,l must violate Theorem 1. Explicitly, that is

{L ∩ ND(ci/2,l)} ⊇ cni,l. (A.4)

Now, there are many combinations of L(y) and Rb(y) that could results in that
this situation. However, the worst case, i.e. that allowing the largest Rb(y)
over the spatial domain of the particle cell is unique (ignoring equivalent con-
figurations). The worst case occurs when L(y) is the largest distance from the
particle cell at y∗, and occurs exactly on the interval between two particle cells
i.e. L(y∗) = Ω

2l−1 and for y∗ ∈ s(cni,l). If we assume that L(y) is a dirac delta,
where y∗ is the only non-zero point (again worst case as it provide minimal
restriction on the solution). In this way the optimal continuous solution of the
Resolution Bound for this is

R∗b(y,y
∗)

{
dist(y,y∗) dist(y,y∗) ≥ L(y∗)

L(y∗) dist(y,y∗) < L(y∗)
(A.5)

where dist(., .) is the Euclidean distance between two points. This can be
trivially proven by directly considering the solution for an R∗b(y,y

∗) + δ for
δ > 0, and noting that the bound no longer holds. We can use this then to
consider the direct upper bound, i.e. within s(ci,l) how large can R∗b(y,y

∗) be?
If we consider the distance of the furthest point from y∗ that is in s(cni,l) we

get a worst case of R∗b(y,y
∗) ≤ (4 Ω

2l
)d1/2 and hence, we have

Rb(y)

R∗(y)
≤ 4
√
d (A.6)

where d is the dimension. Hence this corresponds to ratios bounded by 4,
≈ 5.65 and ≈ 6.93 in 1D, 2D and 3D respectively.

A.2.3 Bounds on particle sampling

Can we construct a similar bound on the Particle Sampling P . Here we con-
sider samplings restricted to those that satisfy

#P =

∫
Ω

1

R(y)d
dΩ. (A.7)

We note that if we assume an analytical form of R(y) then P that are far
smaller then those obeying the above bound can be constructed. However, we
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Figure A.1: The first plot shows the ratio of a numerical estimate of the ratio between the optimal continuous
solutions to the Resolution Bound Rc and Resolution Condition Rb for the benchmark problem in Figure 6.1
plotted against the relative error E. We note that smaller values of E resulted in a prohibitive computational
cost. The second plot shows the relative execution time in 3D of a numerical estimate to Rc and the execution
time of the pulling scheme for a fixed ratio content benchmark plotted against increasing number of pixels N . We
note that the continuous solution became computationally prohibitive beyond a maximum width of 128 (Beyond
which the continuous solution took over 2 hours to estimate compared to less than .01 seconds for the pulling
scheme).

only consider samplings that follow A.7. Given this assumption, we can then
ask if we can also bound #P

#Pc , where Pc is some sampling satisfying A.7 for

Rc(y). If we consider the same worst case scenario as above we get,

#Pc ≤ #P
∫
s(ci,l)

1

(dist(y,y∗))d
dy (A.8)

where ci,l and y∗ are as above, and we note that the argument is independent
of the exact level l, and so we consider the ratio of each individual particle cell
to be the same giving the multiplication factor. In one and two dimensions
this has closed form, in 1D we have

#Pc ≤ #P
∫ 4

3

1

(y)d
dy

= log(
4

3
)#P (A.9)

and in 2D

#Pc ≤ #P
∫ 4

3

∫ 4

3

1

(
√
x2 + y2)d

dydx

= #P(−2G+
1

2
π log(

4

3
) + i

(
PolyLog(2,

−3i

4
)− PolyLog(2,

3i

4
)

)
)

(A.10)



where G is Catalan’s constant and PolyLog is the PolyLogarithm. This cor-
responds to #P

#Pc ratios being bounded by 3.47 in 1D, 24.3 in 2D, and using
numerical integration in 3D 221.252. However, with the exception of possibly
1D, I know of no methods to realize these ratios. Further, there bounds are
also not likely tight in practice, and I am unclear as to their utility.

Observed numerical bounds

To find more likely ratios of #P
#Pc in practice, we numerically estimated the con-

tinuous optimal Resolution Functions using an O(N2) brute force approach.
The brute force approach relies on testing increasing sized R(y) for each loca-
tion. The first plot in Figure A.1 shows the ratio of Rc over Rb for the test
function in Figure 6.1 for decreasing E. We find that as suggested by the dis-
cussion above Rc

Rb
→ 1 as E → 0. Unfortunately, the solving for smaller values

of E than 0.01 was too computationally costly.
To illustrate this high computational cost, in the second plot Figure A.1,

we show a comparison in 3D between the brute force solution to the Resolution
Bound and the pulling scheme for a fixed ratio benchmark. We find that the
brute force solution takes between two and six orders of magnitude longer to
compute. This corresponds to the brute force solution taking over 2 hours
for an image of N = 1283, compared to less than .01 seconds for the pulling
scheme. We note that efforts that the I attempted to optimize the brute
force scheme and the computed time including acceleration using OpenMP to
provide a ’fairer’ comparison with the pulling scheme. This high cost placed a
limit on the numerical analysis that could easily be done comparing the two
solutions.

Next, we explored the relationship between the implied Resolution Function
and the continuous estimate of Rc. We focus here on 3D. The first plot of
Figure A.2, shows the mean ratio of Rc

R∗
, averaged over all pixel locations against

increasing number of objects for both noisy and noise-free original images. We
find the average ratio is less than 3.2 across both benchmarks, with a decrease
in the mean ratio for an increase in objects for the images. Therefore, on
average we find the ratio is two to three times less than the worst-case bound
of ≈ 6.93.

Lastly, we use the estimate of Rc to also estimate the #P
#Pc ratios. From the

above analysis, we found a worst case bound of 225.21. In the second plot of
Figure A.2 we show the estimated ratios against increasing information content
for sampling based on both the isotropic and integral neighborhood sampling
used in the performance benchmarks (5.5.3). We find the ratio becomes con-
stant for increasing information content, with the isotropic sampling having
a ratio of approximately 11, and 5.5 for the integral neighborhood sampling.
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Figure A.2: The first plot shows the mean ratio of the numerical estimate of the optimal continuous Resolution
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the number particles in the APR #P divided by the theoretical sampling #Pc based on Rc. We plot the ratios
for both the isotropic and integral neighborhood sampling (5.5.3) in 3D against the number of objects.

Although this is only for one test example, we find a ratio that is much less
than the worst case bound given above.

A.2.4 Optimal continuous O(N
d−1
d +1) algorithm

Inspired by the form of the pulling scheme, and the functional form of the dirac
delta like solution above, a more efficient algorithm for finding a numerical
approximation to the optimal solution Rc could be considered. This involves
utilizing the geometry of the Resolution Bound. It involves iterating over each
sample location N , then iterating over a d − 1 dimensional sphere centered
at the sample location with radius equal to L(y). At each location, another
function, T (y) should be set to the minimum value of either its current value
or L(y). Where T (y) is initialized to an arbitrary large value. If this is done
over each point, the resulting T (y) should be equal to the numerical estimate
of Rc(y). However, the computational complexity per pixel is then bounded by

O(N
d−1
d ), assuming a square sampling mesh. This then results in a reduced

complexity of worst-case O(N
d−1
d

+1) compared to O(N2) in the brute-force
approach. We do not explore this further here.
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Figure A.3: Resolution Domain analysis of errors in local resolution estimate L(y)

A.3 Impact of noisy Local Resolution Estimate

L(y)

Here we address the impact of error in the estimation of L(y) on the ability
of the APR to reconstruct the function within the Reconstruction Condition.
Now if we suppose that we have the following scenario, as shown in Figure. A.3

L(y) = (1 + β)
Ω

2l
(A.11)

that is subject to some error, such that the observed local resolution estimate
is

L∗(y) = L(y)(1 + κ) (A.12)

for this error to impact the solution such that it reduces the reconstruction
error, the particle cell level must decrease, giving a new particle cell level
l∗ = l − φ which requires

L(y)κ > (1− β)
Ω

2l
(A.13)



which gives us

κ >
1− β
1 + β

(A.14)

and that φ = dκe. Now we wish to consider the worse case change in the
resolution that would occur, given a particular relative error κ. That is we wish
to consider when the error between the true local estimate and the observed
quantized value from the particle cell, given by

∆ =
Ω

2l−φ
− L(y)

=
Ω

2l
(2φ − 1− β) (A.15)

is at its largest, which occurs when

κ =
(2φ − 1− β)

1 + β
. (A.16)

Now for the APR we have L(y) = Eσ(y)
|∇f | , and then our observed local resolution

estimate can be written as

L∗(y) =
Eσ(y)

|∇f |
(1 + κ) (A.17)

and if we now assume that the error in the observed L(y) comes from a un-
derestimate of the gradient magnitude we can re-write this as

L∗(y) =
Eσ(y)

|∇f |(1− α)
(A.18)

where

α = 1− 1

1 + κ
. (A.19)

Now we wish to know how a change in α would impact our observed relative
error bound E∗, compared to our desired relative error bound E, that is

E∗ − E = |∇f |Ω
2l

(2φ − 1− β)
1

σ(y)
(A.20)

and therefore the relative error is

E∗ − E
E

= |∇f |Ω
2l

(2φ − 1− β)
1

Eσ(y)
(A.21)



where we assume that the maximum gradient magnitude occurs at y within
its neighborhood N (y, R(y)). Substituting in for the true gradient magnitude
|∇f | = Eσ

(1+β) Ω

2l

we have

E∗ − E
E

=
(2φ − 1− β)

1 + β

= κ

=
1

1− α
− 1 (A.22)

and similarly

α = 1− 1

1 + (E∗−E)
E

. (A.23)

This is derived for the error occurring occuring across a particle cell. How does
this extend to other particle cells? Unfortunately I only have a word argument
for its extension currently. The above analysis has assumed that the error
occurs at its maximum value across the whole path. Any paths that cover
more than one particle cell, will have contributions proportional to the length
of the path in each cell. The worst case, would be that this largest relative
error occurs everywhere. It is in this case, that this upper bound should hold.
Further development of this bound and analysis in the future seems warranted,
in addition, to the increase in cost for particles through increases in resolution.

A.4 APR 3D processing pipeline

In this paper, we have discussed and implemented one particular implementa-
tion of a pipeline for the APR optimised for large 3D images originally stored
as tiffs. We have attempted to optimise the steps to reduce memory overhead
and computation time, and to reduce the number of parameters and library
dependencies. However, with the exception of requiring an estimation of L(y),
and an implementation of a pulling scheme, we imagine the possibility of use of
vastly different algorithms, implementations and definitions of the estimation
of the local scale function, gradient magnitude, and particle intensity.

A.4.1 Implementation

We have implemented the discussed pipeline in a C++ library. We have
utilized shared memory parallelism across the pipeline where suited using



OpenMP [20]. We have favored the use of shared-memory parallelism over
the use of GPU acceleration, due to the current larger availability of larger
capacities of RAM when compared to GPU-memory allowing the processing
of larger images on a shared-memory CPU implementation than one relying on
fitting the whole pipeline into GPU memory. However, testing has indicated
that the use of hardware acceleration, such as GPUs or Intel Xeon Phi’s, can
provide significant speed ups for particular steps and is left for future work.

The main dependencies of the library, besides OpenMP, are for input and
output. For reading images we use LibTiff, and for output and writing the
APR, we use HDF5 [124] and the plugin for the blosc compression library [7].
Also, a Java wrapper has been created using SWIG.

In the following section, we will briefly go through each of the steps in the
pipeline, discussion the implementation and any parameters or requirements.

Pipeline input and memory requirements

All input images used in this report are read in from 16 bit unsigned int single
channel tiff images. The loaded images are then converted to single floating
precision, for processing in the pipeline. The time taken to load and convert
the image to floating precision is not accounted for in the timing benchmarks in
this paper. The pipeline requires approximately 3.125 floating precision copies
of the original image in terms of memory storage to carry out the pipeline,
given the freeing of temporary variables.

Smoothing B-splines

To be able to estimate function gradients in the presence of noise we fit cubic
smoothing B-splines as introduced in [129]. This introduces a regularisation
smoothing parameter λ that determines how closely the fit splines must fit the
original sample points. We implement these filters using the IIR approach de-
scribed in [129], using the impulse response for setting the recursive boundary
conditions. A strength of this approach is that the algorithm is O(1) regard-
ing parameter choice λ, and O(N) in pixels, therefore displaying consistent
computational performance across parameter values.

The output of the B-spline coefficients are used for gradient estimation and
the local scale function.

Gradient magnitude |∇I|

Using the computed smoothing B-spline coefficients, the gradient in each direc-
tion is computed using the finite difference stencil (−1/2hi, 0, 1/2hi). Where



Implied Resolution Function - No Scale Threshold Octopus Object  Template

Figure A.4: The Resolution Function R∗(y) for the same image shown in Figure 6.10, without the use of any
thresholds for local scale estimation (σth = 0). The color scale is identical to that shown in Figure 6.10. In the
absence of a threshold, the local scale tends to zero in the background, and therefore fully resolves the background
noise. This is mitigated by using a minimum local scale threshold σth. The original data is from exemplar data
set 10 in Table A.1. The second pane shows a volume rendering used for the ocpotus template used to generate
the object function for synthetic images in Figure 6.14

hi is the sampling size in that direction. These are then squared and combined
to form the gradient magnitude as below

|∇I| =

√(
∂I

∂x

)2

+

(
∂I

∂z

)2

+

(
∂I

∂y

)2

. (A.24)

For noise-free benchmarks, simple finite differences on the original image are
performed instead of smoothing B-Splines. Once calculated, the gradient mag-
nitude is then down sampled by a factor of two in each direction, taking the
maximum value over each patch of 8 pixels. Due to the local resolution esti-
mate only being required at this resolution.

Local Intensity Scale σ(y)

For this paper the local intensity scale is intended to be a smoothly varying
function that captures the local range of the input image over a certain length
scale, allowing the adaptation to cope with changes in contrast across the im-
age domain with varying sources. To set this length scale, we use the inherent
length scale provided by the optical process through the point spread func-
tion. This length scale then adjusts the size of the window for the smoothing



box filters used. The resulting filter is similar to a smoothed estimate of the
local standard deviation of the image with filter size adjusted to the estimated
standard deviation of a Gaussian approximation to the PSF, σPSFi in each
direction relative to the sampling size, and was originally inspired by [102].
This parameter σPSFi must be set. Since the Local Resolution Estimate L(y),
is calculated at spatial points down sampled by two, and we wish the function
to be slowly varying, we directly calculate it on the down-sampled smoothed
b-spline image. The local scale function is first calculated as

σ(y)∗ = A0µ(|I∗2 (y)− µ(I2(y))|) (A.25)

where A0 is a scaling constant set by the filter window sizes, wi, and µ repre-
sents a box, or mean, filter on the image, and I∗2 (y), is the smooth B-spline
image I∗(y) down sampled by a factor of 2 in each direction using averaging.
The box filter size in each direction wi is set as,

wi = 1 +
4 ∗
√
−2 log(0.01)σPSFi

hi
(A.26)

where di is the pixel sampling in the same units as σPSF . With the constant
normalisation factor A0, normalising the estimate to that of the local intensi-
ties, and set empirically as

A0 =
1

0.02201r3 − 0.146r2 + 0.3521r − 0.09969
(A.27)

where r =
∏n

i wi/(1 +
2∗
√
− log(0.01)2∗σPSF

hi
), where n is the dimension of the im-

age. The scaling factors and size of arguments was set through use of synthetic
benchmarking data. Then function is thresholded in the following way

σ(y) =

{
max(σ∗(y)), σth) σ∗(y) > σth

2

64000 otherwise
(A.28)

where σth, is set to the scale of the smallest content in the image that is wanted
to be captured, e.g. the difference between the foreground and background of
the dimmest object in the image. Otherwise, for noisy flat regions, as in image
background, σ → 0, resulting in the noise being captured (Figure A.4).

The box filters, are performed in a separable manner, in each direction
using summed area tables [33], also known as integral images, to allow box
filters computationally O(1) with respect to the window size.

For real exemplars, an intensity threshold was also included, to allow the
exclusion of unwanted dim image content in the background of the image or
image camera defects. At this step any additional information, or filters, could



be used to determine which part of the image wish to be captured, this could
include information from different channels in an image, or from, different
time-steps, such additions are use-case specific, but could yield a significant
reduction in particle numbers.

Local Resolution Estimate L(y) and Local Particle Set L

The gradient magnitude |∇I| and local scale function σ(y) are then combined

to create the local resolution estimate L(y) = Eσ(y)
|∇I| and then the local particle

set Ln.

When using the equivalence L(y), is only required at locations that align
with a down-sampled by two image (the maximum of the gradient is used over
the patch at the original resolution).

First we must set the relation between the particle cells and the image
domain. Given an image with N pixels, and image dimensions Nx,Ny and Nz,
such that N = Nx ∗ Ny ∗ Nz, with maximum dimension Nmax, and minimum
dimension Nmin. We can then set the minimum and maximum levels l for the
APR as lmax = ceil(log2Nmax) and lmin = max(2, lmax−blog2Nminc), and then
our augmented domain length |Ω∗| = 2lmaxhmin, set such that the maximum
resolution coincides with the original pixel sampling.

Then for each down-sampled pixel value we calculate, the level l, of the
particle cell ci,l it belongs to as

l = max(lmin, blog2(
|Ω∗|
L(y)

).c)) (A.29)

The spatial co-ordinates i of the particle could also be calculated as i =
{bx 2l

|Ω∗|c, by
2l

|Ω∗|c, bz
2l

|Ω∗|c}. We wish to find all the unique ci,l that then form
L. However, instead of directly computing the co-ordinates, we make use
of the relationship between the levels of the tree structure and parent child
relationships. Each full level l of the Particle Cells corresponds to a down-
sampled version of the full image a fixed number of times, forming a classic
image pyramid. Therefore, the image containing l for each downsampled pixel,
is simply down-sampled again using the max operation, if any of the down-
sampled levels correspond to the current level l, at co-ordinates xl,yl and zl,
then c{xl,yl,zl},l ∈ L, being then indicated as occupied in a binary image pyra-
mid representing Ln. Although this down-sampling results in missing ci,l that
have higher level children in Ln however we know these particle cells can not
be in V , and therefore cannot effect the pulling scheme result (the redundancy
property). This algorithm allows the construction of this reduced Ln in O(N).



Pulling Scheme V

Given the Local Particle Cell set L, that is stored in an image pyramid with
non-zeros indicated the present Particle Cells, we then run the Pulling Scheme
using the full explicit storage of the Particle Cell tree as described in 4.2.3
using Algorithm 10.

The output of the algorithm is also stored in an image pyramid structure,
with non-zero values storing the Particle Cell type.

Data: Local Particle Cell set L
Result: Optimal Valid Particle Cell set V
Function pulling scheme(L)

levelc = levelmax
/* Loop over the resolution levels, from finest to

coarsest (from the maximum level l) */

while levelc >= levelmin do
if levelc! = levelmax then

set ascendant neighbours(levelc);
set fillers(levelc);

fill boundary(levelc);
levelc −− Level done, move to next ;

end
V ← L
return V

Algorithm 10: Generating a Optimal Valid Particle Cell set V from Local
Particle Cell set L

Function fill boundary(levelc)
foreach cell in L[: levelc] do

if cell.type ∈ {SEED, PROPOGATE} then
foreach neighbour of cell do

if neighbour.type == EMPTY then
neighbour.type ← BOUNDARY

end
cell.parent.type ← ASCENDANT

else if cell.type == PARENT then
cell.parent.type ← ASCENDANT

end

Algorithm 11: Filling BOUNDARY and ASCENDANT cells



Function set ascendant neighbours(levelc)
foreach cell in L[: levelc] do

if cell.type == ASCENDANT then
foreach neighbour of cell do

if neighbour.type == EMPTY then
neighbour.type ← ASCENDANT NEIGHBOUR

else if neighbour.type == SEED then
neighbour.type ← PROPOGATE

end

end

Algorithm 12: Filling neighbors of ASCENDANT Particle Cells

Function set fillers(levelc)
foreach cell in L[: levelc] do

if cell.type ∈ {ASCENDANT NEIGHBOUR, PROPOGATE}
then

foreach child of cell do
if child.type == EMPTY then

child.type ← FILLER
end

end

Algorithm 13: Add FILLER Particle Cells



Particles P

Now we have the valid particle cell set, Vn, we then choose our particle sam-
pling. This is done, as described in 5.5.3, where particle cells of type boundary
and filler, have one particle placed in the center, and particle cells of type
seed, are split into 8, higher resolution particle cells with one particle again at
the center of each. The highest resolution particles coincide with the original
image sampling, resulting in the construction of the particle sampling P∗.

Intensity estimation

Any method of estimation of the particle intensities Ip = I(xp), could be
utilized at this step. In the case of noise-free images, the closest, or interpolated
pixel value would be appropriate. However, in the presence of noise, the use
of information from V , to improve the estimate of the intensity using an area
of the original image would be more appropriate with Ip = Î(xp), where Î is
some de-noised image. Here, given each particle is sampled at the center of the
particle cell, we simply take the average of the intensity over all pixels within
the particle cell. In the case of particles at the image resolution, this average
would simply be the original pixel. For these particles we then took the result
of a median filter applied separately over each image direction.

A.5 Data structures

With the above steps, we now have the valid particle cell set V and particles P∗,
that form the APR. The last step is to store this information in memory in a
data-structure that allows its efficient use in a wide range of tasks. The optimal
data-structure will be dependent on the particular use-case, or algorithms, with
which the APR is being used. Given the particle cells being a sub-set of a full
oct-tree decomposition of the domain, for some tasks, a tree decomposition
may be optimal. However, the majority of image processing algorithms have
been designed to be implemented over pixel images stored as large contiguous
arrays of pixels. This format has the advantage of fast and cache efficient local
neighbor access, and the implicit coding of each pixels spatial coordinates from
the pixel data layout, providing performance and memory benefits. Therefore,
we have opted to use data-structures that attempt to mimic these efficient
properties of pixel images, namely, the implicit coding of spatial and resolution
information, and fast neighbor access. In this thesis we use two different data-
structures that are detailed in Figure A.6 and Figure A.5. A 2D example is
used for illustrative purposes with the only difference for the extension to 3D
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Figure A.5: Schematic showing the construction of the data structure, using a 2D APR example for illustration.
The Sparse APR (SA) data structure contains an access structure, similar to Compressed Row Storage sparse
matrix formats, used for determining the y spatial coordinate of the particle, the other spatial co-ordinates (x, z)
and resolution level (l) are implicit in the data layout. Particle properties such as intensity are then stored using
the same data layout. This structure does not allow for random access to particle neighbors. (The red colored
particle is used in Figure A.6)

is the z direction is included and functions in the same way as the x direction
shown (and for 1D only one row need be considered i.e. xl = 0).

A.5.1 Sparse APR (SA) data structure

In the first data structure, called the Sparse APR (SA) data structure, each
level of particles in the APR is stored separately, with the particle cell co-
ordinates used for each particles corresponding particle cell ci,l. The data-
structure is broken into two components, each following an identical memory
layout. First, the particle properties structures, stores the particle intensities
for each level in rows according to their xl and zl coordinates (shown far left
Figure A.6). The second structure allows access to the y coordinate infor-
mation this property is then stored separately and labeled access data, in this
work an unsigned 16bit integer is used, allowing a maximum domain length up
to 64000. Any additional particle properties can be stored in the same layout
as the intensity data. The global coordinates xp of the particle can be directly
calculated from the particle cell information. Essentially, the first structure is
a multi-level implementation classic sparse matrix coding as a list of lists.



Memory Cost

This structure allows for the implicit storage of the x and z co-ordinate infor-
mation and level l, with the explicit storage of y. The memory cost (MC) of
the access data structure is,

MC Access Data = (y coordinate cost per particle)Np

+
22lmax − 1

3
(array overhead per row)

= 2Np + 8
22lmax − 1

3
Bytes (A.30)

and for each particle property,

MC Particle Property = (particle property cost per particle)Np+

22lmax − 1

3
(array overhead per row). (A.31)

Therefore, for storing only the particle intensity in memory as a float, the
cost per particle is at-least 50% more, then an image with N = Np pixels. In
the limiting case where the whole image is represented at pixel resolution, the
data-structure overhead would be simply the 16bit y-coordinate array (50%)
plus array overhead.

For an APR with a specific computational ratio (CR) = (number of original
pixels)/(number of particles), the Relative Memory Cost (RMC) to the original
image would be

RMC = (size in memory of original image)/(size in memory of SA)

= CR ∗ (memory cost of particle)/(memory cost of pixel)

= CR ∗ MD

MD + 2 + 8MO
Np

(A.32)

where O = (array overhead per row)22lmax−1
3

is the array overhead, M the
number of particle properties stored, and D the number of bytes per particle
per property. Therefore we can see that as the number of properties increase,
this amortises the cost of the data-structure, with the relative memory cost
approaching the CR.

This structure is suited for tasks that have regular data access patterns
and only require particle property and spatial information. Face Neighbour
access can be achieved by using this structure in a linear access manner, by
rastering over particles in each row with iterators for the neighbor on the same
level l, and lower resolution l − 1 and above l + 1. However, this structure
cannot provide O(1) random neighbor access, and iterating over all neighbors
can require significant overhead.
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Figure A.6: Schematic showing the construction of the Sparse APR Random Access (SARA) neighbor data
structure, using the 2D APR example from Figure A.5.1. As for the Sparse APR (SA) data structure, the data
structure contains neighbor access data and particle properties with identical memory layout. The neighbor access
data includes both neighbor access nodes, and gap neighbor access nodes, these store the changes in level, and
index location of the face neighbors in each direction. An example of this for the red particle in Figure A.5 is
illustrated on the left side of the figure, with the different face connected neighbors colored for illustration. The
gap node, in addition to the y direction neighbor information, also encodes the jump in y coordinate. In 3D both
these nodes are encoded into unsigned 64-bit integers.

A.5.2 Sparse APR Random Access data structure

For a structure optimizing random neighbor access, we use the Sparse APR
Random Access Neighbour (SARA) data structure, detailed in Figure A.6.
This is similar to the Sparse APR Data Structure. However, the data-layout
is spaced with gap nodes, when a jump in resolution occurs in the y-direction,
and the neighbor access data structure stores information required to access
the face neighbors of the current particle. The addition of these gap nodes
pads the previous data structure, as seen by the gray squares on the left side
of Figure A.6. The particles properties are then placed in the same data layout,
with zero padding values.

An example is again given in 2D for the neighbors of the red particle
indicated in Figure A.5. Because neighbors can only be at most one level below,
or above, the structure, we can decompose any neighbor into, a change in level
({−1, 0, 1}), and an index in the appropriate row. For the face neighbor, or
neighbors, in the negative x direction, the change in level is x−d and index
x−i as shown in the example. For the four faces in the x and z directions, the



change in index and level, are stored for each particle, as shown in Figure A.5
under 3D Neigh Access Node. For increases in resolution, only one of the
four neighbors is directly accessed, then the remaining three from additional
neighbor steps on the new resolution level. These are stored in one unsigned
64-bit integer, in addition to the type, of the particle cell the particle belongs
to. Further, the first bits of the node indicate if it is a gap or regular node.
Each index is encoded in 13 bits, allowing for a maximum original image
dimension of 8192 for this structure. These values can then be accessed through
appropriate bit mask and shift operations. Face neighbors in the y-direction
are treated differently, this is because for neighbors in the same level they
are in the same row, and therefore the index will simply be an offset by ±1
depending on the direction. Therefore, if the next or previous node in the
structure is a regular node, indicated by its first 2 bits, this is the y-neighbour
in that direction. Otherwise, the node is a gap node, and the gap node encodes
the appropriate level change and index for the neighbor. This gap node also
encodes the last, and next y, co-ordinate for each jump. Boundary conditions
are encoded in the type and depth offsets, using the additional bits available.
Therefore, given, any particle, the neighbors can be constructed, although, the
y coordinate is not known but would need to be accessed from the nearest gap
node. However, if particles are accessed in row order, the y coordinate can be
updated as particles are iterated using the gap node.

Memory cost

The memory cost for the SARA data structure is greater than the SA data
structure. This comes through the higher memory cost of each node, and also
the padding of the gap nodes. The memory cost is,

MC Neighbour Access Data = (Np +Ng)8 +
22lmax − 1

3
8 Bytes (A.33)

where Ng is the number of gap nodes in the structure, which is specific to
each APR. For the CR benchmark datasets we found an average value of Ng

of below 0.1Np. The particle property memory cost is then,

MC Particle Property = (particle property cost per particle)(Np +Ng)

+
22lmax − 1

3
8 Bytes. (A.34)

Therefore, relative to a comparable sized pixel image with N = Np, and float
data-type, the over-head would be over 200%. Therefore in the limiting case
where all particles are at pixel resolution, Ng = 0, and the size is approximately
3 times the original image.



Again we can consider the relative memory cost (RMC) for a an APR with
a certain CR. For the SARA data structure we have,

RMC = CR ∗ MD

MD + 8 + 8MO
Np

. (A.35)

A.6 APR writing, output and compression

Lastly, for the pipeline, we need to be able to save and read the APR to
disk. Further, we wish the APR file size to be as small as possible, i.e. highly
compressed.

We use the HDF5 [124] file format for reading and writing files, using the
BLOSC plugin [7] for compression that utilizes multithreading. For BLOSC,
the Zstd compression algorithm is used with compression level 6 and shuffling
activated.

When stored the APR is split into two parts; the particle cell information,
and the particle properties (e.g. Intensity). The particle cell information is
stored by re-creating the pyramid representation of the valid particle cell set Vn
that is output from the pushing scheme. This has levels from lmin to lmax− 1,
and is an unsigned 8bit integer, with non-zeros giving the type of the particle
cell. Each level is then stored in a block, due to the low entropy of the sequence,
(0,1,2,3), this data is compressed efficiently. In this way, it implicitly stores
the coordinate information, type, and resolution of all the particle cells. The
particle properties are then stored as a contiguous array for each level l, with
each row from the data structure concatenated together, regarding increasing
xl, then zl coordinate.

As discussed in the main text, for the benchmark data we find that the
Memory Compression Ratio (MCR) is approximately 1.8*CR, when storing
only intensity as the particle property. Implying that the compressed size of
an individual particle is just under 9bits per particle. Although, these results
are just indicative of these results will depend on the original images properties.

A.7 Pipeline parameter Summary

The required parameters for the APR pipeline presented here can be grouped
into two categories, those that reflect information on the properties of the
original image, and those that impact how and what the APR represents in
the image.



A.7.1 Image parameters

The main parameters required for the formation of the APR are the image
dimensions {Nx, Ny, Nz}, the sampling distances in each direction, {hx, hy, hz},
and the standard deviation of a Gaussian approximation to the point spread
function (PSF) in each direction, σPSFx, σPSFy, σPSFz. The first two, are direct
image properties that should be known for a given image, the third, the PSF
properties must often be estimated from the data. We have empirically found
the results are relatively insensitive to the exact value, however, including
some degree of anisotropy between the x, y, and z axis that exists is still
important. Although formally, the PSF standard deviations are in real units,
if the sampling distances are normalized to a pixel, i.e. hx = hy = 1, this value
can be given regarding pixels.

A.7.2 Reconstruction parameters

These parameters impact how the APR is formed from the underlying image
and includes the relative error bound E, the gradient smoothing parameter λ,
and the minimum local scale threshold σth.

Relative error E

The relative error bound E, determines the allowed distance between the orig-
inal image, and the APR representation. As the discussion in the main text
6.4.2 a value in the range of 0.08 − 0.15 seems optimal for across noise levels
that coincide to typical fluorescence imaging. We have found this reflected in
qualitative experience with real data-sets as found in the exemplar data sets.
Further, we found that for highly anisotropically sampled datasets, a value
in the lower range of 0.08 − .1 was usually appropriate, likely compensating
for the resolution loss in one direction, where as for more isotropic data sets,
higher values in the range of 0.1− 0.15 seemed optimal. However, in all cases,
the results are insensitive to the exact value.

Smoothing parameter λ

The gradient smoothing parameter λ controls the how much smoothing is
done in the fitting of B-splines for local resolution function estimation. With
a higher value resulting in greater smoothing. This smoothing is required due
to the amplification of noise properties of standard gradient operators in the
presence of noise [129]. The absence of this smoothing would result in erroneous
high-gradients and over-sampling. How to set this parameter depends on the
signal to noise ratio of the original image. With values ranging from 0.5 to



10, seemingly optimal over standard signal to noise ranges, with lower values
for higher signal to noise ratios. Again, results are not especially sensitive to
this result, with a value too low, resulting in over-sampling and likely fitting
of noise, and a value set too high, resulting in the APR not adapting to the
fine grain structure.

Local Intensity Scale threshold σth

Lastly, the minimum Local Intensity Scale threshold σth represents the mini-
mum local scale that will be allowed across the image domain. This is required
due to the behavior of the Local Intensity Scale σ(y). In flat regions, the re-
sponse tends towards the average noise range. Hence, given the gradient will
be non-zero in these regions it will result in the fitting of the noise by the APR,
due to the normalization of the small gradients as shown in the first pane of
Figure A.4. σth is introduced to curb this effect. To reduce the impact of
noise, the smoothed B-spline image is used as input to the local-scale function
rather than the original. This results in a reduced response of flat background
areas in the Local Intensity Scale, allowing for the threshold to still function
at low signal to noise ratios. Further to a minimum bound, values at half this
value are then set to a maximum response. This is in effect to drive the L(y)
to large values and result in the APR ignoring these regions.

Setting this value is therefore subjective, and image dependent, as real-
images often contain dim signals from sample contamination or auto-fluorescence,
that may or may not wish to be captured. Corresponding to b in our image
formation model (2.3). If the faintest objects that wish to be captured can
be identified in the image, the value can simply be set to the local range
between background and foreground for this object. Unlike the other param-
eters, the setting of this parameter too high can result in significant changes
in the properties of the APR, due to it resulting in signal effectively being ig-
nored. Therefore, a conservative underestimate is suggested. For the exemplar
benchmarks, this was set by simple visual inspection of the original image.

Acting similarly, an image intensity threshold can also be used, where the
Local Scale Estimate is set to a maximal value where the intensity is below
some level Ith. This was not used in the benchmark data, but has proved useful
when dealing with real data. In a similar way, any additional information can
be included into the APR in a similar manner, including information from
other channels, prior knowledge, or extra image processing steps.



A.8 Synthetic image generation

In this section, we provide additional technical details regarding the generation
of synthetic images used in this thesis.

A.8.1 Implementation

The synthetic image generation pipeline is implemented separately in a C++
library known as SynImageGen, with the code available on request and uses
the ArrayFire [12] Library for GPU acceleration for generating the images.
This, therefore, limits the size of generated images to GPU memory, only al-
lowing images up to 10003 to be generated. In fact, the generation of synthetic
images usually accounted for the largest component of benchmarking. The
pipeline is designed such that the parameters describing each synthetic image
are sufficient to recreate any of the images in the pipeline. Below we will
describe additional technical details of the synthetic image generation.

A.8.2 Template image

The template images used here, are piecewise constant images, with objects of
various intensity, size, and location placed within a fixed 3D image size. The
process begins with the generation of a binary object template. This template
is then used for multiple instances of the same object within the image domain.
Objects templates can either be generated as is the case with the used sphere
template. Alternatively, templates can be generated by a binarization of 3D
polygon model files (vrml, obj) using binvox [79, 77]. This is the case with
the more complicated octopus benchmark shown in Figure A.4 and used for
results shown in Figure 6.14. This template was downloaded from 3Ds [1].
However, as mentioned, for all other benchmarks provided here the generated
sphere was used here due to its computational efficiency, and simplicity.

Objects were placed using a uniform random distribution within the vol-
ume, as not to overlap with the boundary, this is to reduce the impact of choice
of boundary conditions for the pipeline on the results. Object intensities were
set again with a uniform random distribution with a minimum and maximum
intensity value set.

A.8.3 Ground truth image

The ground truth image is then generated by convolving the image with a
blur kernel and adding a fixed background intensity. The convolution was
done using separable filtering using 1D Gaussians of set sigma σPSFi in each



direction. This blurred image, then served as the ground truth, as it represents
the fluoresce distribution that we wish would observe if it was not corrupted
by noise.

A.8.4 Original (noisy) image

The last step of the synthetic pipeline is the corruption of the image by noise.
In fluorescence imaging, the image can be corrupted by multiple different noise
sources with different properties including components that have spatial struc-
ture [130]. However, here we only consider the case of Poisson, or shot, noise
arising from statistical quantum fluctuations by using a Gaussian approxi-
mation. This approximation is done due to the high computational cost of
generating numbers from a Poisson distribution and its good approximation
by a Gaussian for the values used here [76]. For each pixel, the following noise
process is used and drawn from

Î(y) ∼ N(I(y), I(y)) (A.36)

where N(I(y), I(y)) is the normal distribution with mean and variance equal
to the image intensity.

A.8.5 Benchmark parameter selection

See A.7 for a detailed discussion of parameters, and their use. For the synthetic
datasets, all image parameters are taken as known from the image generation
process including the blur sizes. For the reconstruction, parameters are set in
the as described below, unless explicitly varied as a parameter for the bench-
mark.

Relative error bound E

Default parameter set to E = 0.1, unless otherwise stated.

Minimum Local Intensity Scale threshold σth

Set to the minimum bound for the random distribution of template intensities.
This is a limitation of the results here and objectively should be set instead by
an automated method. However, there is a large range of values over which
the results are insensitive for this parameter.



Gradient smoothing parameter λ To set this parameter in an automated
fashion, we utilized the fact that we knew the minimum standard deviation of
the noise σnoise of the benchmark image, being the

√
Ib, where Ib is the constant

background intensity. We then ran parameter searches across different noise
levels σnoise, and parameter values λ, to find the minimum λ required to be
still able to get three levels of resolution change with an object with brightness
above the background set at the minimum local scale threshold σth. We then
used the symbolic curve fitting toolbox Eureqa [112] to fit the value λ given
the input variables give us

λ = (
σth
σnoise

0.498763)
−1

0.6161 (A.37)

which was used in the synthetic benchmarks, providing good results in both
low and high PSNR benchmarks.

A.9 Evaluation benchmarks

In this section, we give details of the synthetic benchmarks used to evaluate
the properties of the APR with the results presented in 6.4. For each data
point in the benchmarks, a synthetic image is generated and used as input
to produce an APR that is then reconstructed using the appropriate method
(usually piecewise constant reconstruction) and summary and image statistics
are calculated. This analysis is then saved in an HDF5 file that is then read,
analyzed and plotted using Matlab. All scripts and data for the production of
the plots in this paper are available on request. Further, to aid reproducibility,
each file contains the git hash for the code commit used to produce the results
(for the APR library), the command line input parameters, and an exhaustive
list of parameters used to generate the analysis. The parameters for the syn-
thetic image generation are either as stated explicitly below, or as outlined in
A.8.

In all cases with error bars have been given, they reflect the estimate of the
standard error.

A.9.1 Noise-free Reconstruction Condition

Parameter values for results presented in 6.4.1. Images of fixed size and number
of objects are generated, and the required relative error bound E is varied. The
Reconstruction Condition requires that the observed reconstruction error E∗

is below E for all locations.



Parameters

An image size of 1283 was used with five sphere templates randomly placed
in the domain with brightness Bi varying uniformly between 500 and 5000
with a background intensity b = 1000. The blur kernels used has PSFi =
{0.1, 0.3, 0.6}, corresponding to the low, medium and high blur, with isotropic
sampling as hx = hz = hy = 0.1. The minimum local scale threshold σth =
500. Due to the lack of noise, finite differences were used to approximate
derivatives instead of smoothing B-splines. The relative error bound E, was
run in two linear sections with 40 samples, from 0.001−0.1, then from 0.1−1.0,
with 40 repeats for each relative error bound.

A.9.2 Reconstruction error (noisy)

The same benchmark as above was repeated but with the introduction of
Poisson noise and are discussed in 6.4.2.

Parameters

The image parameters and settings were set as in the no-noise case above.

Image statistics

The average observed relative error for the noisy image was constructed by
taking the average of the infinity norms of the individual original images.

A.9.3 Reconstruction image quality (noisy)

Also in 6.4.2 data was presented for the image quality, measured by the Peak
Signal to Noise Ratio (PSNR) and how it, varies with E, for noisy images.
We do this for original images with different initial image quality (PSNR),
by varying the signal to noise ratio. Further, on the right axis, a comparison
between the reconstruction error from the APR, and the noise level in the
original image is given as measured by the Mean Squared Error (MSE).

Parameters

Different PSNR images were created by fixing the background intensity Ib =
1000, and varying the brightness of the sphere templates, giving an estimated
SNR of σnoise

Iobj
, where Iobj, is the intensity of the original object template. Due to

the Poisson noise corruption, the effective standard deviation of the noise level
will be at-least σnoise =

√
Ib =

√
1000. Therefore, we run the benchmark with



3 different object intensities Iobj =
√

1000, 10
√

1000, 30
√

1000, corresponding
to the low, medium and high PSNR images respectively.

An image size of 1283, was used with 5 sphere templates randomly placed
in the domain, with intensities and background set as discussed above. The
medium blur kernel (PSFi = 0.3) was used and isotropic sampling with hx =
hz = hy = 0.1. The minimum local scale threshold σth, was set to the object
intensity set for the original image. The relative error bound E, was run in
two linear sections with 40 samples, from 0.001−0.1, then from 0.1−0.4, with
10 repeats for each relative error bound.

Image statistics

To measure image quality we use both the PSNR, calculated as

PSNR = 10 log10(
64000

MSE
) (A.38)

where MSE is the mean squared error and is calculated as

MSE =
1

N∗

∑
y∈Ω̂

(I∗(y)− Ī(y))2 (A.39)

where I∗ is the ground truth image, Ī is the image being compared (either
the original image, or reconstructed image), and Ω̂ is the those pixels in the
domain for which the local scale function is less then 60000. This effectively
excludes the calculation of statistics of background areas in the image due to
the action of the minimum local scale threshold σth.

A.9.4 Increasing information content

In this benchmark, discussed in 6.4.3, we assess how well the APR is adapting
to the image content. This is done by increasing the number of objects in the
image and comparing both the image quality and the number of particles, with
results given for the same low, medium, high levels of image quality as for the
reconstruction image quality benchmark.

Parameters

The number of sphere templates randomly placed in the image was increased
from 1− 100 in steps of 4, with 5 repetitions.

An image size of 3003, was used, with a blur kernel between the low and
medium used (PSFi = 0.2) and isotropic sampling with hx = hz = hy = 0.1.
With the object intensity and background set as for the reconstruction image
quality benchmark. The relative reconstruction error was set to E = 0.1.



Image statistics

The ratio of the PSNR for the APR reconstructed image, PSNR(APR), and
the PSNR for the original image PSNR(Original) is given, showing the rela-
tive image quality of the reconstruction to the original image. Computed as
described for the reconstruction image quality benchmark.

A.9.5 Increasing image size

In the last evaluation benchmark, discussed in 6.4.4, we assess the impact of
the original image size, by holding the number of objects fixed, and increasing
the image dimensions.

Parameters

The benchmark was run at three different levels of information content, using
10, 50 and 200 sphere objects placed randomly within the image domain. For
each level of information, the image size was increased from 503 to 10003 in
steps of 50, with 5 repetitions.

A blur kernel with PSFi = .2 was used and isotropic sampling with hx =
hz = hy = 0.1. The template intensity and σth were set as described from the
medium PSNR original image.

A.9.6 Increase sampling

In this benchmark, the sphere template object was held constant and in a fixed
position in the center of the image. The sampling resolution was then increased
while keeping all other variables fixed in real terms. Relative error was set to
E = 0.12, and the PSFi = 1.075. The sampling hi ranged from a minimum of
0.027 to a maximum value of 0.3583 that corresponded to 200 different image

sizes ranging from 503 to 6503. The smoothing parameter λ = 20
(
hi
50

)2
was

heuristically set.

A.10 Benchmark data

In this section, we give additional technical details regarding the CR and ex-
emplar benchmark data.



A.10.1 Computational Ratio (CR) benchmark data

To assess the performance of the APR for different levels of image content,
we choose three different CRs for our synthetic benchmark data and then
vary the original image size N . Given the range of CRs observed in the real
exemplar data below, we choose CRs of 5, 20, and 100, representing high,
medium and low image content respectively. A CR of 5 is lower than all
exemplar benchmark data we tested, and 20 is a below average value, and 100
represents a very low content image, relative to its size.

Parameters

To achieve a certain CR, the number of objects must be changed with the
image size N . The number of objects in the benchmarks was set as N

33400CR
,

that was determined empirically. The actual CR will not exactly be the ratio,
but the above formula was found to provide good results for images of a width
greater than 200. The images were isotropically sampled, and medium blur
and medium PSNR setting were used as described in the benchmark evaluation
section. The relative error bound E = 0.1, the gradient smoothing parameter
λ = 3.098, as set by the automated scheme.

A.10.2 Exemplar datasets

To assess the performance of the APR on real datasets, 19 fluorescent mi-
croscopy datasets were also benchmarked. The datasets are across a range of
image sizes, labels, specimen, and microscopes. A summary of the datasets,
their properties, are given in Table A.1 and the parameters used in Table A.2
to create the APR. Parameters were set by experience and inspection of the
original image. As mentioned in the discussion of parameters (A.7), the param-
eter that can most greatly alter the result is the setting of the minimum local
scale threshold σth, and the intensity threshold Ip. In all cases, I endeavored
to be conservative, including all content we could consider relevant to try and
give lower bounds on the CR. In particular, the presence of auto-fluorescence
influences this decision, and given the ability of the user to discriminate auto-
fluorescents in many cases significantly higher computational ratios could be
achieved.

A.10.3 Performance benchmarks

All examples are intended as a proof of principle and to indicate performance.
Further development would be required to make these algorithms usable to
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the community, and this is left for future research. An effort was made to op-
timize both the APR and pixel code in the same fashion to provide reasonable
comparisons. The impact of optimization is also motivation for the simple
nature of the examples presented here. Shared memory parallelism was used
in all steps cases where it was easily achieved using OpenMP [20]. As for the
evaluation benchmarks, all performance benchmarks code and analysis data is
available on request and are intended to be released open source.

A.10.4 Neighbor access

A core operation in many image-processing algorithms is access to the values
of neighboring pixels. For this benchmark, we contrast the time taken to
access the values of all face-connected neighbors of each pixel, or particle.
In a pixel image, excluding boundaries, there are always 6 face neighbors.
When the pixel image is stored as a contiguous array, accessing these pixels
is simply a fixed memory offset for each pixel. However, for the APR, due to
the adaptive sampling, the number of face connected neighbors can vary per
particles from 6 to 24. However, in practice, the average number of neighbors
per particles in the CR = 5 benchmark data sets was 6.23. The complication
for a particle is that its neighbor can be in either the same, higher or lower
resolution than the current particle. How to address this issue and access
neighbors on particles is described in the discussion of APR data structure in
A.5.2. In both benchmarks used here the Sparse APR Random Access Data
Structure (SARA) is used.

In this benchmark, for each pixel, and particle, the face-connected neigh-
bor’s intensities are summed and stored in with another pixel image, or APR
data-structure. For performance, the order in which pixels, or particles, are
accessed heavily impacts performance through the impact of the various caches
of the processor. Therefore, here we run two benchmarks, one where the pixels,
or particles, can be accessed in order, and the second where random pixels,
or particles, are accessed with a random ordering. The first case we call the
Linear Neighbour Access, and the second Random Neighbour Access bench-
marks. The two examples represent the two extremes of neighbor access in
image processing algorithms, with linear access on a pixel image correspond-
ing to arguably optimal memory access patterns, and random access, the worst
case.

Linear neighbor access

For the pixel linear benchmark, the pixels are iterated over in memory direc-
tion. For each pixel, the neighbors are looped over, again in memory direction,



checking for boundary conditions, accumulating the value in a temporary vari-
able that is then stored in a second array.

For the particle linear benchmark, the particles are iterated over, level
by level, in memory direction of the SARA data-structure. For each particle
the locations of neighbors for each face are first calculated using the SARA
structure, then the neighbor’s intensities are looped over and the value added
to a temporary variable. This temporary variable is stored as an additional
particle property. For both, the results were averaged over 10 consecutive runs.

Random neighbor access

For the pixel random benchmark, instead of iterating over pixels in memory
direction, a pixel is chosen randomly from the dataset, and the neighbors are
summed. For the particle random benchmark, similarly, a random particle is
chosen, and then the neighbors are summed. In both cases, the overhead of
generating the random numbers was attempted to be removed, by calculating
the time separately of generating the random numbers. In the case of particles,
this is complicated by the fact that sometimes a point in the data structure
was selected that was not a particle. The extra points were accounted for in
the number generation compensation.

For the particle random benchmark, the number of particles drawn was
equal to the number of particles in the APR, in the case of the pixel random
benchmark 10000000 accesses were made. The results were corrected for the
relative differences.

Memory overhead For the pixel benchmarks, the memory overhead is the
original image and an array of the same size. For both, the used data-type
of the images was float. Therefore the memory cost MC = N8 Bytes for an
image with N pixels. For the particle benchmark the SARA data-structure,
with float intensity plus an additional float particle property was used. The
memory cost is as described in A.5.2 SARA section.

A.10.5 Separable pixel filtering

In the pixel separable filter, the 1D filter is convolved successively in each
direction. This is done by iterating over the particles in memory direction,
checking the boundary conditions, then looping over the neighbor offsets, mul-
tiplying by the coefficient and accumulating this in a temporary variable. The
temporary variable is then assigned to the output image array.

In the particle separable filter, first, a 2D image slice is interpolated using
piecewise constant interpolation, with the slice translated such that the filter



operation could be done in the contiguous memory direction. Due to the
placement of particles at intervals at powers of 2, only the highest resolution
aligns with a pixel layer, with other being between the intersection of two
layers. All particles that are either aligned with the slice, or intersect, the
slice are iterated over, calculating the filter value through accumulating in a
temporary variable as for the pixels, and then assigning this to the output
particle property. In the case of when the particle intersects between two
layers, the output is then the average of the two filter values.

For the benchmarks given here a large filter 1D constant filter stencil of
length 21 was used. Relative performance results are relatively insensitive
to the size of the filter. For the particle filter, each direction was repeated
10 times to get the timing values. However, for each benchmark image, the
filter on pixels was only run once. This was due to the higher computational
cost restricting a higher amount of repetitions. However, for each CR and N
combination, at least 20 independent repetitions were performed.

Memory overhead

For the pixel benchmarks, the memory overhead is the original image and an
output array of the same size. For both the used data-type of the images was
float. Therefore the memory cost MC = N8 Bytes for an image with N pixels.

For the particle benchmarks, the computation required the SA data-structure,
an additional particle property for the output, and an array for the temporary
2D image slice used. Therefore the memory cost is MC = 6Np + 1622lmax−1

3
+

4N2/3 Bytes. If we ignore the over-head of the SA, and temporary array, the
relative memory cost RMC ≈ 0.8 ∗ CR.

A.10.6 Graph cuts segmentation

For the last performance benchmark, we perform a binary segmentation with
graph cuts using an external library. Here, we show how the APR can be
used with existing techniques and libraries while still realizing computational
and memory benefits due to the reduced number of computational points. For
this, we use the maxflow-v3.04 library implementing the min cut-max flow
algorithm presented in Boykov and Kolmogorov [21].

Further, we use an energy function that is defined using the information
inherent in the APR, as an example of how it could be used. Because of this,
then to compare with the same algorithm on the original pixel image, we first
compute the energy on the particles and then interpolate them to original
images to be then used for the energies for the pixel image.



To use the max-flow algorithm for segmentation, we must define two en-
ergy values for each pixel or particle, Es, giving a likelihood of belonging to
the foreground, and Et, the likelihood of belonging to the background. Addi-
tionally, an energy is specified between neighboring pixels or particles in the
graph. Here, we use again the face-connected pixel or particle neighborhoods,
where we define a symmetric energy between the two neighbors p and p′, as
Ep,p′ .

As discussed we first define the energy on particles, and then to form the
graph for pixel image, we interpolate these energies to a pixel image. For the
background and foreground energy, we use the following

Es = 2000|Ip − Iminp | (A.40)

Et = 2000|Ip − Imaxp | (A.41)

where Iminp and Imaxp are estimates of the local min and max scaled by the
resolution of the particle. This is by treating the APR as a tree structure.
Maximum and minimum values are propagated up the tree, taking the re-
spective min or max of children values. The value is then averaged over the
neighbors at each level in the tree. Then for each particle, the value in the
tree k resolutions above is taken as the value for Imin or Imax respectively.
The algorithm essentially creates an adaptive min or max. As the purpose of
this benchmark is to focus on the computational and memory characteristics
of the algorithm and not propose a new segmentation algorithm or energy, we
do not go into further details here.

The edge energy between any two particles, or pixels, is taken as

Ep,p′ = 100
(spsp′)

2

81
. (A.42)

As discussed, once the energy has been computed over particles, those
were then used to also create a pixel image with the same energies interpo-
lated. Then the appropriate data structures for the max-flow algorithm were
generated, the max-flow algorithm run, and the binary labeling of background
or foreground extracted from the result.

In the benchmark performance analysis, we assess only the computational
time, and memory cost, of the max-flow algorithm, and not the including the
generation of the energy or setting up the graph.

Memory Cost

Due to the use of an external library, we estimated the memory cost by per-
forming memory analysis on the code with different particle and pixel sizes



and empirically evaluating the value. For the performing max-flow on the
pixel graph, we found the memory cost MC = 411.6N and for the particle
graph MC = 436Np. Providing very similar results, this is although the parti-
cles can have up to 24 neighbors, on average for the benchmark data sets there
is only approximately 6.3.

Alternative energy for Exemplar datasets

For applications to exemplar data, we developed a slightly altered energy func-
tion. The background and foreground energy were altered by using one iter-
ation of APR adaptive smoothing (See Section Below), on both the intensity
and adaptive min and max. The edge energy between particles was changed
to be asymmetric to the following

Ep→p′ = 100 exp
Ip − Ip′

d(p, p′)(Imaxp − Iminp )
, (A.43)

where d(p, p′) is the distance between the two particles. We found that this
energy appeared to give reasonable results across a wide range of the exemplar
data-sets with no adjustment of parameters except an intensity threshold for
removal of background objects. Hinting that the information gained in the
APR allows for regularization of the problem that may help with designing
future algorithms with stable parameters across a range of problems.

A.10.7 Adaptive APR Filters

Although smoothing and gradient operations are not well suited to the separa-
ble filtering approach shown earlier, a more natural approach for the APR is to
define filters not over pixels as for traditional filtering, but over particles. With
the filter coefficients acting on the particle neighbors. Using particle neighbors
results in the filter adapting its neighborhood size across the domain to the
resolution given in the APR.

One can then define adaptive gradient filters, similar to standard finite
differences, with the coefficients adjusted for the distance between the particles.
The gradient filter used here is {− 1

2h−
, 1

2h−
− 1

2h+
, 1

2h+
}, where h+ and h− are the

distances between particles in the positive and negative directions respectively.
In the case where a neighbor is of higher resolution, an average of the neighbor
particles is used.

As a second example, we show benchmark results for an adaptive smoothing
filter. As for the classic separable filters, each direction is filtered separately
with a 1D filter {0.1, 0.8, 0.1}, and in succession with a 1D filter. In the case



where the neighbor is of higher resolution, an average of the neighbor particles
is used.

A.11 APR visualization examples

A.11.1 2D slice reconstruction

The reconstruction of 2D slices to be viewed individually can be done using
interpolation of the APR to the individual slice. This is the technique that
has been used for the APR reconstruction images shown in this text. The
computational cost of this operation is cheap such that one could view the
image as is typically done slice by slice in a stack, by reconstructing the new
images in real-time as the slice is changed (on a 2013 laptop, reconstructing a
1000x1000 slice took approximately .002 seconds).

Memory overhead Memory cost for 2D slice reconstruction is the memory
cost of the Sparse APR data structure (SA) plus the cost of storing the 2D
slice. Viewing of a standard pixel image in software such as Fiji [109] requires
the storage of the full image in memory.

A.11.2 Perspective ray-cast

A perspective ray-cast allows for the visualizing 3D content by constructing
a 2D image by simulating rays that would be seen by an observer from a
particular location. However, because an image volume is just intensity values,
an algorithm must be specified for turning the intensities seen by each ray
into an observed value. The most common algorithm is simply to take the
maximum value along the ray, the basis of the maximum projection. This
technique is used in current state of the art visualization software [98]. Here
we have implemented a maximum intensity perspective ray-cast algorithm for
the APR. For comparison, we also implemented the comparable algorithm for
a pixel image.

Following we describe the principle of the pixel algorithm and then use this
as a reference for the description of the APR algorithm. The pixel algorithm
involved rastering over each pixel, then calculating which ray this pixel would
intersect with, and then updating this ray with the value if it is greater than its
current value. This is in contrast to the alternative approach where the image
volume is traversed individually for each ray. Each ray corresponds then to a
pixel in the final viewed image.



For the APR algorithm, the main difference is that we assign each particle
to a ray corresponding to its level l, effectively creating an image view at each
resolution level. Once all particles have been traversed, the maximum oper-
ation is then propagated between levels from lower resolutions to the highest
resolution. Resulting in a final highest resolution image that is viewed. We
find that the APR algorithm has moderate overhead, with a PP ratio of ap-
proximately 0.75, when compared to the pixel algorithm.

The algorithms compute different results, however as discussed in the main
text, they produce in most cases perceptively identical results in normal con-
trast ranges.

Memory overhead When computing the ray-cast on a pixel image, the
memory required is that of the original image and the ray-cast result. This
memory cost is similar to that of the APR ray-cast. The APR ray-cast requires
the Sparse APR data-structure, and the ray-cast result, plus the down-sampled
by two results. For reasonably sized data-sets in both cases the memory cost is
dominated by the original image, and APR data-structure respectively. There-
fore, the memory reduction for a particular dataset will be approximately
CR/1.5 (reflecting the cost of storing the y coordinates).

A.11.3 Direct particle rendering

Given that the extra information, and adaptive sampling, we can also visualise
our dataset by directly rendering the particles of the APR.

Memory overhead

Ideally direct renderings memory overhead should only reflect the cost of the
SA data-structure, however memory efficient algorithms for rendering have yet
to be developed and depend on a GPU implementation and are thus left for
future work. The current visualizations, a very memory inefficient, requiring
the direct storage of the spatial coordinates as floats, in addition to the particle
information.
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Prüfungsbehörde vorgelegt.

Die Dissertation wurde im Zeitraum vom 22.07.2013 bis 11.08.2017 verfasst
und von Prof. Dr. Ivo F. Sbalzarini, Chair of Scientific Computing for Sys-
tems Biology, Faculty of Computer Science, TU Dresden, betreut.

Meine Person betreffend erkläre ich hiermit, dass keine früheren erfolglosen
Promotionsverfahren stattgefunden haben.

Ich erkenne die Promotionsordnung der Fakultät für Mathematik und Natur-
wissenschaften, Technische Universität Dresden an.

——————————————————————
Datum Unterschrift






	Thesis Introduction
	Format of thesis
	Reading aids
	Notes regarding language
	Statistical data and error bars


	APR Motivation
	Towards studying spatio-temporal processes in biology
	Using Light Sheet Fluorescence Microscopy (LSFM) to track objects
	Flouresence as a localisation technique
	Sampling notation
	Imaging a sample
	Image formation
	Processing on images

	The problem
	Current approaches to processing for LSFM
	Concepts
	Summary

	Motivation from the visual system
	Summary and main points

	Representation criteria and previous work
	Introduction
	Representation Criteria (RC)
	Representation Criteria 1 (RC1)
	Representation Criteria 2 (RC2)
	Representation Criteria 3 (RC3)
	Representation Criteria 4 (RC4)
	Representation Criteria 5 (RC5)

	Review of existing multi-resolution and adaptive representations
	Processing augmentation techniques
	Adaptive sparse transform domain techniques
	Adaptive sparse collocation techniques

	Discussion
	Lack of local gain control (RC1)
	Use across a wide range of tasks (RC4)

	Summary and main points

	The Adaptive Particle Representation (APR)
	Adaptive Particle Representation (APR)
	Main results
	Motivation of formulation
	Extensions

	APR description
	Reconstruction Condition and Resolution Bound
	Particle Cells and Implied Resolution Functions
	Pulling Scheme
	Choosing the Particle Set P
	Forming the APR={V,P*}
	Summary

	Practical considerations
	Discrete sampling
	Impact of noisy Local Resolution Estimate L(y)
	Impact of noisy particles (yp)
	Comparison with continuous resolution functions
	Particle Cells and smoothness of the Local Intensity Scale
	Reconstruction of higher order derivatives

	APR transform steps summary
	Summary and main points

	General Dimension APR and Technical Details
	General dimension APR
	Result 1
	Result 2
	Result 3

	Reconstruction Condition and Resolution Bound
	Particle Cells and the Implied Resolution Function
	Particle Cell definitions
	Implied Resolution Function
	Local Particle Cell set
	Optimal Valid Particle Cell sets

	Pulling Scheme
	Self-similarity and production of individual solutions
	Separability
	Redundancy of Particle Cells
	Equivalence
	Algorithm description
	Generic algorithm
	Memory and computational complexity

	Particle sampling
	APR as {Vn,P*}
	Optimality
	Integral neighborhood optimization

	Technical additions
	Function reconstruction and interpolation
	APR particle graph

	Summary and main points

	APR Validation
	1D benchmarks
	Implementation
	1D example
	Reconstruction Condition
	Numeric vs. symbolic gradient
	Number of particles
	Gradient
	Discontinuities
	Summary

	3D florescence image implementation
	Gradient estimation |I|
	Local Intensity Scale 
	Intensity estimation Ip
	Reconstruction methods
	Pipeline and parameters

	3D synthetic data
	Object function
	Image formation
	Summary

	APR properties benchmarks
	Noise-free Reconstruction Condition
	Noise corrupted Reconstruction Condition
	Increasing information content
	Increasing image size
	Increasing sampling rate

	APR performance benchmarks
	Computational Ratio benchmark data
	Exemplar benchmark data
	Data structures
	Execution time
	Memory Cost
	Storing the APR

	Summary and main points
	Limitations of the benchmark results
	Reflection on Representation Criteria


	APR Processing
	Interpretations of the APR for processing
	Collocation points and spatial partition
	Particle graph
	Continuous representation
	Tree structure

	Evaluating performance
	Performance benchmarks
	Limitations
	Neighbor access
	Separable pixel filtering
	Segmentation

	Visualization
	By slice
	By racasting
	By particle rendering

	Novel algorithms
	Adaptive APR filters
	Segmentation and visualization

	Summary and main points
	Reflection on Representation Criteria


	Comparison with previous methods and optimality
	Similarity to other methods
	APR form and Resolution Function
	Reconstruction Condition
	Local Intensity Scale
	Resolution Bound
	Particle Cells and Implied Resolution Function
	Pulling Scheme
	Wavelet thresholding
	Computational and Memory Cost
	Summary and originality

	Comparison to wavelet optimality
	Optimal error convergence
	Optimal representation of noisy signals

	Optimal  convergence of the APR
	APR reconstruction
	Result summary

	Summary

	APR extensions in space
	Higher-order reconstruction APR
	General derivative conditions
	Multiple resolution conditions

	1D validation of higher-order reconstructions
	Adding higher order reconstructions
	Restricted higher order reconstructions
	Derivative reconstruction
	Summary

	Potential use-cases
	Computational partial differential equations
	Using the APR without a Reconstruction Condition
	Anisotropic APR neighborhood

	Summary and main points

	Extensions in time (APRt)
	APRt
	Theory
	Algorithm

	Benchmark 1D
	Time Reconstruction Condition
	Temporal adaptation
	Relative size of update, add and remove
	Summary

	Extension to LSFM data
	Complication of noise
	Real-time optimizations

	Summary and main points

	Outlook and Discussion
	Executive summary
	Chapter Result Summary

	The APR for representation of LSFM data
	Critical evaluation of the Representation Criteria
	Conclusions and outlook

	APR as a general purpose adaptive data representation
	Other image modalities
	Numerical solution of differential equations
	Statistical adaptive regression
	Surface approximation in computer graphics

	Concluding remark

	Bibliography
	Appendix
	Thought experiment: eye as a camera
	Besov space definition
	Reconstruction Condition vs. Resolution Bound
	Bounds for Implied Resolution Function
	Bounds on particle sampling
	Optimal continuous O(Nd-1d+1) algorithm

	Impact of noisy Local Resolution Estimate L(y)
	APR 3D processing pipeline
	Implementation

	Data structures
	Sparse APR (SA) data structure
	Sparse APR Random Access data structure

	APR writing, output and compression
	Pipeline parameter Summary
	Image parameters
	Reconstruction parameters

	Synthetic image generation
	Implementation
	Template image
	Ground truth image
	Original (noisy) image
	Benchmark parameter selection

	Evaluation benchmarks
	Noise-free Reconstruction Condition
	Reconstruction error (noisy)
	Reconstruction image quality (noisy)
	Increasing information content
	Increasing image size
	Increase sampling

	Benchmark data
	Computational Ratio (CR) benchmark data
	Exemplar datasets
	Performance benchmarks
	Neighbor access
	Separable pixel filtering
	Graph cuts segmentation
	Adaptive APR Filters

	APR visualization examples
	2D slice reconstruction
	Perspective ray-cast
	Direct particle rendering


	Declaration

