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Abstract

This thesis presents the Adaptive Particle Representation (APR), a novel adap-
tive data representation that can be used for general data processing, storage, and
simulations. The APR is motivated, and designed, as a replacement representation
for pixel images to address computational and memory bottlenecks in processing
pipelines for studying spatiotemporal processes in biology using Light-sheet Fluo-
rescence Microscopy (LSFM) data.

The APR is an adaptive function representation that represents a function in
a spatially adaptive way using a set of Particle Cells V and function values stored
at particle collocation points P*. The Particle Cells partition space, and implicitly
define a piecewise constant Implied Resolution Function R*(y) and the spatial lo-
cations that particles are sampled. As an adaptive data representation, the APR
can be used to provide both computational and memory benefits by aligning the
number of Particle Cells and particles with the spatial scales of the function. The
APR allows reconstruction of a function value at any location y using any positive
weighted combination of particles within a distance of R*(y). The Particle Cells V
are selected such that the error between the reconstruction and the original function,
when weighted by a function o(y), is below a user-set relative error threshold E.
We call this the Reconstruction Condition and o(y) the Local Intensity Scale. o(y)
is motivated by local gain controls in the human visual system, and for LSFM data
can be used to account for contrast variations across an image.

The APR is formed by satisfying an additional condition on R*(y); we call the
Resolution Bound. The Resolution Bound relates the R*(y) to a local maximum of
the absolute value function derivatives within a distance R*(y) or y. Given restric-
tions on o(y), satisfaction of the Resolution Bound also guarantees satisfaction of
the Reconstruction Condition. In this thesis, we present algorithms and approaches
that find the optimal Implied Resolution Function to general problems in the form
of the Resolution Bound using Particle Cells using an algorithm we call the Pulling
Scheme. Here, optimal means the largest R*(y) at each location. The Pulling
Scheme has worst-case linear complexity in the number of pixels when used to rep-
resent images. The approach is general in that the same algorithm can be used for
general (o,m)-Reconstruction Conditions, where o denotes the function derivative
and m the minimum order of the reconstruction. Further, it can also be combined
with anisotropic neighborhoods to provide adaptation in both space and time.

The APR can be used with both noise-free and noisy data. For noisy data, the
Reconstruction Condition can no longer be guaranteed, but numerical results show
an optimal range of relative error E that provides a maximum increase in PSNR



over the noisy input data. Further, if it is assumed the Implied Resolution Func-
tion satisfies the Resolution Bound, then the APR converges to a biased estimate
(constant factor of E), at the optimal statistical rate.

The APR continues a long tradition of adaptive data representations and rep-
resents a unique trade off between the level of adaptation of the representation and
simplicity. Both regarding the APRs structure and its use for processing. Here,
we numerically evaluate the adaptation and processing of the APR for use with
LSFM data. This is done using both synthetic and LSFM exemplar data. It is
concluded from these results that the APR has the correct properties to provide a
replacement of pixel images and address bottlenecks in processing for LSFM data.
Removal of the bottleneck would be achieved by adapting to spatial, temporal and
intensity scale variations in the data. Further, we propose the simple structure of
the general APR could provide benefit in areas such as the numerical solution of
differential equations, adaptive regression methods, and surface representation for
computer graphics.
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1 Thesis Introduction

In this thesis, we introduce the Adaptive Particle Representation (APR). The
APR is a novel adaptive data representation designed to reduce computational
and memory costs of processing tasks. The APR is a general adaptive data
representation. However, it was motivated by and developed for the high-
throughput processing of Light-sheet Fluorescence Microscopy (LSFM) data
for the study of spatiotemporal processes in biology (STB).

1.1 Format of thesis

This thesis is structured as follows. In Chapter 2 we motivate the use of an
adaptive data representation for studying STB using LSFM data. In Chap-
ter 3, we discuss the desired properties of such an adaptive data representation
and review existing methods. In Chapter 4, we introduce the APR and its core
ideas, concepts and algorithms using 1D for didactic exposition. Compliment-
ing this, in Chapter 5 we then provide a general dimensional treatment of the
APR, including all technical details and proofs of the main results. In Chap-
ter 6, we then empirically validate and explore the properties of the APR,
focusing on the representation of LSFM data. In Chapter 7, we evaluate the
memory and computational performance of using the APR for image pro-
cessing tasks. In Chapter 8, we then discuss the similarities of the APR with
existing adaptive representations and reflect on optimality results from wavelet
thresholding. In Chapter 9, we discuss extensions of the classic APR to more
general representations and briefly explore applications. Then in Chapter 10,
we provide an extension of the APR to adapt in time and provide preliminary
results. In Chapter 11, we conclude by summarizing and the critically evalu-
ating the results of this thesis and discussing future work and applications.

1.1.1 Reading aids

At the end of each chapter, to aid the reader, we provide a conclusion and
summary of the main results of the chapter in a table format. Any information



Chapter 1. Thesis Introduction

that was deemed important but did not fit the flow of the text was placed in
the Appendix (A) following the references. Due to the large size of this thesis,
it is recommended that for reading in pdf form, such that the hyperlinks can
be used for navigation between different areas of this thesis. Also, for reference
at the beginning of this thesis, we have provided a summary of key terms and
abbreviations that are frequently used in this thesis and provided links to their
appropriate definitions in the text.

1.1.2 Notes regarding language

Throughout this thesis, I use extensive use of "we”. The use of "we” was a
stylistic choice and is intended in the sense of you the reader, and myself. In all
cases, unless explicitly stated, the work presented was my own work. I do also
make use of ”I”, this usually restricted to situations where I wish to make it
clear that I am expressing a personal opinion. I also employ liberal use of casual
statements, words, or phrases in single commas 7. These statements are not
meant to be interpreted literally but are used in an attempt to communicate
the ’gist” of an idea in a more concise way.

1.1.3 Statistical data and error bars

Empirical results are presented in this these both, with, and without error
bars. In the case where error bars are included, they represent the estimated
standard error of the data. However, more often than not, they have been
omitted. Where omitted, I have made a judgment that the error estimates
were not meaningful in the given context.
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In this chapter, we introduce the motivation, and scope, of the work pre-
sented in this thesis and formulate the scientific problem addressed. We begin
by describing the need for high-resolution spatiotemporal data to study spa-
tiotemporal processes in biology (STB) at the cellular level. We then introduce
Light-sheet Fluorescence Microscopy (LSFM) and describe how the image data
could be used as the basis for studying STB. Following this, we highlight, how
features of LSFM data, result in processing the data becoming a critical bot-
tleneck to its use. These features include the large data size and dynamic
spatial, temporal and local intensity scales in the data. We then review cur-
rent approaches to processing LSFM data and their common features. From
this, we highlight the need for an alternative representation for LSFM image
data that can be used across specimens and processing tasks. Lastly, we dis-
cuss the human visual system, as an example of features of a desired general
alternative representation, and seek inspiration from its features. Namely, the
use of adaptive sampling and a local gain control.
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2.1 Towards studying spatio-temporal processes
in biology

Gaining a mechanistic understanding of spatiotemporal processes in biology
(STB) requires the ability to both observe and quantify these processes through-
out time and space [80]. These observations and quantifications are essential
for both hypothesis generation, and testing. Such quantification requires the
capacity to track and observe specific structures involved in a process in a live
developing organism consistently in space (3D) and time. For example, under-
standing of the spatiotemporal development of a specific organ, e.g. the gut,
requires the ability to track all cells’ movement, division, and lineage relation-
ships, simultaneously through time across multiple specimens [8]. To achieve
this, high-resolution data in space and time is required. Although useful, data
from individual cell tracking, or, spatial data at distinct time points, do not
provide a sufficient description of the spatiotemporal dynamics, especially in
the presence of stochasticity [28]. Unfortunately, attaining high-resolution spa-
tiotemporal data of developing processes is difficult, and only recently possible

136, 49].

Fortunately, recent developments in fluorescence microscopy [60], chemistry
[87], and genetics [65] now provide tools that have the promise of allowing re-
searchers to extract high-resolution spatiotemporal data for a broad range of
specimens and processes in a high-throughput manner [108, 118]. However,
these fluorescence microscopes do not directly output the shape, and location,
of objects through time, instead they produce raw data (3D images through
time) from which the desired spatiotemporal information is extracted through
computational processing. This field is often called Image-based Systems Bi-
ology [106]. This step of extracting information from the raw microscopy data
is non-trivial and currently creates a significant bottleneck for research into
STB [136, 96, 108].

In this thesis, I develop a novel data representation, namely the Adap-
tive Particle Representation (APR), designed to alleviate the bottleneck in
the processing of LSFM data and enable future research into spatiotemporal
processes in biology. The next section provides a brief introduction to the
required concepts from fluorescent microscopy and image formation necessary
to understand this work.
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2.2 Using Light Sheet Fluorescence Microscopy
(LSFM) to track objects

Light Sheet Fluorescence Microscopy (LSFM) is currently the most promis-
ing and growing class of microscopes for studying STB [86, 118]. This fit
and popularity are due to LSFM’s abilities to image with both high spatial
and temporal resolution deep into tissues while simultaneously causing limited
photodamage to the specimen [60]. Further, they allow long-term imaging of
developing embryos. There has been considerable specialization and develop-
ment across different types of LSFM, e.g. [67, 29, 99], providing improvements
and trade-offs, we direct the reader to the following recent comprehensive re-
views for an overview [86, 118]. However, the basic principles of the original
Selective Plane Illumination Microscope (SPIM), introduced by Huisken et al.
[60] hold across these microscopes, and its description is used here to illustrate
the general principles of modern fluorescence microscopy as used to study STB.

2.2.1 Flouresence as a localisation technique

Fluorescent microscopes, such as LSFM, allow the inference of the location of
objects through space and time using the localization of fluorescent molecules.
Fluorescent molecules can be localized, or stuck, to structures of interest in a
specimen through the use of genetic or chemical techniques. For example, for
development biology embryos can be genetically engineered to attach fluores-
cent proteins on a particular structure of all of their cells, such as a cell’s nuclei,
as it develops. A cell usually has one nucleus per cell located in its interior
that often has a spherical shape making them ideal for tracking. The fluo-
rescent molecules attached to the nuclei become ’excited” when exposed to a
light of particular wavelengths, causing them to emit light at different (longer)
wavelengths. The location and shape of the labeled structures can then be
inferred, by observing, or recording the spatial distribution of the brightness
(intensity) of the emitted light signal.

LSFMs allow the localization of the emitted light signal in 3D in high
spatial and temporal resolution deep into samples using a technique known
as optical sectioning that can be then used to infer position and shape of
labeled objects. To understand how this process works, we will use a simplified
example: consider the task of tracking a population of M cells through time for
a particular specimen and developing process. For simplicity, we can ignore cell
death (removal of cells), or cell division (addition of cells). Therefore, we wish
to find the set of functions C' = {x1(t), zo(t), ..., zar(t)}, where z; € Q C R?,
which for all ¢ € Q; C R tells us the 3D location of the centers of all M

7
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cells. As we cannot directly observe C', we first label the cell nuclei densely
with a fluorescent molecule. We assume the labeling is dense enough that
we can represent it as a piece-wise continuous function with compact support
O : Q2 x€Qy — R. We will call this the Object function. In our simple example,
let

M

O(x,y,2,t) = ZOi(a:,y,z,t) (2.1)

i=1

where O;(x,y, z,t) is a piece-wise constant function, non-zero only at the lo-
cations occupied by the labeled cell nuclei i. Given the cells are distinct,
we assume that there is no overlap between the support of the individual
Oi(x,y, z,t). Then, given O(x,y, z,t), finding the cell tracking C, would en-
tail identifying and tracking all the compactly supported regions O;(x,y, 2, t)
through time, and defining a suitable center. However, we cannot directly
observe O(z,y, z,t) from the microscope. Instead, fluorescence microscopes
allow us to obtain regularly sampled image data I3p,; that we can process to
estimate O(x,y, z,1).

2.2.2 Sampling notation

We now introduce some notation to allow us to deal with functions, pixel im-
ages, and adaptive representations. Although some definitions may be obvious,
we define them here to remove ambiguity.

As above, when dealing with a function, round brackets, for example for
f: R? = R, then f(z,y) denotes the function f evaluated at (z,y). Later,
we also use f(y) and multi-index notation, where for the same example in 2D,
y = (z,y) and f(z,y) = f(y)

We consider a pixel image as the set generated from evaluating a function
at a set of regularly spaced collocation points. For example, we define a 1D
image of size N with spatial resolution h sampled from [a, b] from some function
f:la,b] = R as

Hzy = {f ()i € T} (2.2)

where T = {z;|z; = a+h(i—1),i = 1,2,.., N} are the evenly spaced collocation
points, and h = (b — a)/N. The notation holds not just for pixel images, but
also for arbitrary vectors and samplings with # € RY. To avoid ambiguity
with vector norms, we denote the cardinality of a set by #, so in the 1D image
example we have #z = #f{z} = N.

Pixel images in higher dimensions follow the convention as follows, with a
3D+t pixel image, being defined for f : [a,, b,] X [ay,b,] X [as, b,] X [a, b] —

8
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R, being defined as f{(z, 9,2, 0)} = {f(zi,yi, 2, t:)|(xi,yi,2i,ti) € T X P X
Z x t}. Where the number of samples in each direction is N, Ny, N,, Ny,
with hg, hy, b, b, for the z,y, z,t directions respectively. Therefore, the total
number of samples in the pixel image N = #f{(Z,79,%,t)} = N, N,N.N;,.
When written as f{z,y, z,t}, where the arguments are not explicitly vectors,
or defined constants, the expression can be interpreted as to hold for any of
sampled collocation points.

2.2.3 Imaging a sample

Figure 2.1 shows a schematic of a standard SPIM microscope, a type of LESM,
the figure has been reproduced from Huisken et al. [60]. In the schematic, the
labeled specimen is represented by the bright green fish inside a chamber filled
with an agarose gel that keeps it in place while allowing the sample to grow.
The image data I{Z,¥, z,t} is produced one 2D (x,y) plane at a time. Where
we achieve optical sectioning of one plane by illuminating a given (x,y) section
with a thin sheet of light. The labeled fluorescent molecules in this plane, are
excited, and emit light at a different wavelength that is focused perpendicular
to the light sheet on a camera (shown in the figure by the detection arrow). The
signal is integrated over a fixed time and area of size h, x h, and used to form
an image I{Z, 9, 2o, to} for a fixed 2y and time ;. The size of h, = h,, and is set
by the effective area of the sensor on the camera chip. This integrated signal
is known as the intensity. The full volume of the specimen is then regularly
sampled, by moving the sample stepwise with displacement h, so that for each
step a new plane of the sample is illuminated and imaged. The series of images
I{z,y, z;,to} are combined into a stack, i.e. I{Z,y,Zz,to} = Ufizo {z,y, z,to}
and treated as a 3D image (Shown in bottom left of Figure 2.1). We ignore the
difference in time ¢y, between imaging each slice. This process is then repeated
at regular intervals in time, h;, for NV, steps to produce the 3D+t image data-
set f{(%,7,2,1)} = UY, I{Z, 7, %, t;}. The signal is scaled and quantized most
often to a 16bit integer, given it a range {0, 65536}

2.2.4 Image formation

The relationship between the 3D-+t image dataset I{z,y, z,t} at each location
and our desired object function O(z,y, z,t) can be modelled in the following

9
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Figure 2.1: The figure shows a schematic of the optical setup for a Selective Plane lllumination Microscope
(SPIM), the original design for a Lightsheet Fluorescence Microscope (LSFM) (Reproduced from Huisken et al.
[60]). First, the labeled sample is secured in a movable sample chamber using agarose gel. A thin 2D sheet of laser
light of fixed wavelength is then used to illuminate only a thin section of the specimen. The labeled structures
in the fluorescent sample that the 2D sheet passes through are excited, emitting light of another wavelength
that then is collected by the detection path (perpendicular to the light sheet) and recorded by a camera. The
fluorescence signal is integrated over a fixed time and is used to construct a 2D image. This image gives a read
out of the spatial distribution of the fluorescence label within the 2D sheet. The sample can then be moved
step-wise through the light sheet, illuminating sections of the sample, slice by slice. When done successively, at
a fixed interval, the sequence of 2D images, or slices, known as a stack, is computationally combined to create a

O-ring detection

illumination

microscope
objective

window agarose

medium-
filled
chamber

3D image, as shown in the lower left corner of the figure.
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way

I(2,y, 2 1) :///Q(O(u,v,w,t)+

b(u,v,w,t))PSF(x,y,z,t,x —u,y — v, 2 — w)dudvdw
(2.3)

and then sampled at pixel locations as

x+he/2  py+hy/2  pt+d:
H{x,y 2t} = / I (u,v, z, s)dudvds + n(z,y, z,t) (2.4)

z—hg/2 Jy—hy/2 Jt

where for our example Q C R3 would be all points in the sample chamber,
b(u,v,w,t) is additional background signal, PSF(x,y, z,t,u,v,w) is called
the point spread function (PSF), and n(z,y, z,t) models the pixel wise dis-
tortion of the image by noise [133] and 4, is the integration time (not h;). The
additional background signal b(u,v,w,t) comes from non-labelled structures
either inside, or outside, the specimen that also produce light through a process
known as auto-fluorescence. The point spread function, PSF(z,y, z,t,u, v, w),
represents a spatially varying blur kernel. This blur results from the optical
properties of the microscope due to diffraction, and also the changing refrac-
tive index of the sample and chamber. The shape and size of the PSF depends
on the specific optical setup and lenses used in the microscope for both illu-
mination and detection. When using a single view, as in our example, this
PSF is anisotropic being up to three times wider in the 2z direction than x,y.
A truncated anisotropic Gaussian function (compact support) is often used to
approximate the kernel. The image noise n(z, y, z) results from both, the quan-
tum nature of light, and from noise introduced by the camera and its sensor
[130]. The quantum noise results in the signal following a Poisson distribu-
tion and is unavoidable. The other sources can follow Gaussian or Poisson,
distributions and are camera specific. Also, these additional noise sources can
have a spatially varying mean (non-zero) and variance. Figure 2.2 shows two
examples of both a specific (x, y) slice, and a maximum z projection of a stack
at a particular time step, from A a developing fish (Danio rerio), and B a bee-
tle (Tribolium castaneum), imaged with two different SPIM microscopes. The
"maximum z projection” is simply the image of the largest intensity across all
z for specific z, y.

2.2.5 Processing on images

The next step, given the 3D+t images; is to return to the original task of
tracking the population of M cells. This inference task may, or may not be

11
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practically feasible. In the sense that, recovery of O(x,y, z,t) depends on the
relative contributions and size of distortions resulting from b, PSF and n (drop-
ping arguments). In an ideal microscope, the PSF would be a Dirac delta,
and both b and 7 zero allowing us to measure the object function directly. In-
deed, reducing these factors is the focus of most microscope development. The
processing steps of taking the 3D+t images and obtaining information on the
labeled objects, in our case the cell trajectories C', are done in multiple steps.
First, the 3D image for each time point is often enhanced, by denoising, decon-
volution, and or background subtraction. The aim of each task is to remove,
or at least reduce, the effects of n, PSF', and b respectively. The next step is
typically isolating objects in the image, a process known as segmentation. The
segmentation can be either, binary, or multi-label. A binary segmentation is
effectively trying to find a binary image S1{z,y, z,t;} from I{z,y, z,¢;} such
that

1 O(z,y,zt;) >0

. (2.5)
0 otherwise

Sl{xa Y, z, tz} = {
for some fixed t;. A multi-label task is higher level and involves allocating a
binary segmentation to different labels. For example, in our task, a multi-label
task could be assigning each pixel to a particular cell

k(i) Oi(z,y,2,t;) >0

. (2.6)
0 otherwise

SM{%?/JJ;‘} = {

where k; : {1,2,.M} — {1,2,..M} is a bijection assigning each cell to a
unique label. The index j is added to denote that this mapping will often
change between time steps. The final task in our example is known as tracking
and involves making the assignments across the separate time steps ¢;, such
that there is then one global k for all time steps for each region. After this,
the final task is to estimate the center of each object and infer the position of
all cells through time, C. Ideally, this process would be highly repeatable and
robust, allowing the collection of numerous samples of C with high accuracy
from multiple samples.

In reality, the processing steps described above can be done jointly or in a
different order. Also, additional steps are often involved in the formation of
I{z,y, z,t}, involving multiple views being fused’ together to provide a smaller
and isotropic PSF', also registration can be required either between different
views or between time steps to correct for the sample moving. Other impor-
tant processing tasks include visualization and storage of the image through
compression. Figure 2.2 shows examples of two different visualization tech-
niques, namely a single slice view and maximum 2z projection. Of course, in

12
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practice, the task may not be cell-tracking, but tracking, or estimating the
structure of other features of the sample. However, they likely require similar
steps as our example; requiring the estimation and then inference from some
object function O(z,y, z,t) obtained from I{Z,7, z,t}.

The tasks outlined above are not unique to fluorescence microscopy or im-
ages, and have been, and continue to be, addressed in both the image process-
ing and computer vision communities and literature. However, there are many
unique features to the 3D+t image datasets that result in existing algorithms
and software not being sufficient or adequate. We outline these features below,
discuss current approaches, and then formulate the problem and approach that
is the focus of the rest of this thesis.

2.3 The problem

The first feature of 3D+t image datasets is the number of pixels that are
required to capture spatial-temporal processes in biology using pixels. In both
time and space, the sampling resolutions hy, h,, h., h; are set so that the finest
details of the process in both space and time are captured, in ’some’ Nyquist
sampling sense (It is not always precise). However, the spatial structure of
the specimens, and the temporal dynamics, of biological processes vary across
many length scales across the domain.

In space, the imaging domain {2 is a rectangle; however, the sample usually
is not, resulting in large areas of the domain where the Object function O is
zero. Further, as shown for the two example data sets in Figure 2.2, within the
sample there is a large range of spatial scales describing the Object function.
Combined, this results in a significant portion of pixels contributing little in-
formation about the localization of O. The maximum values of IV, and N, are
effectively set by the camera, and typical values range from 1000 — 2000 for
both. The value for N, is typically set based on the degree of anisotropy in
the PSF'. The values of N, typically range from 50 — 2000, with the tendency
towards isotropic sampling (higher N,) for state of the art LSFMs. Combined,
for one-time step, this results in a single data set with between 107 and 10°
pixels and hence raw size in memory between 100 MegaBytes (MB) and 8 Gi-
gaBytes (GB) when stored is unsigned 16bit integers (as is standard) *. Hence,
a single 3D image for one time-step can have a size that is over a thousand
times larger than typical 2D images in traditional image processing.

The large size of data is further exacerbated with the addition of time.
As with space, the temporal dynamics of an Object function for a biological

"However processing is often done using single floating point precision (32bit)
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Individual image slice

Maximum projection across slices

Figure 2.2: The top panels show a single image slice I(z,y, z0) of a stack for two different specimens and labels
from two different LSFMs. The bottom panels show a maximum projection of the full 3D image stack. The
maximum projection Imaq(,y) is the image formed by taking the maximum value across z for each location
z,y. A shows images of the GFP-labeled vasculature of a developing Zebrafish (Danio rerio) imaged using a
custom built single view SPIM,(Courtesy of Stephan Daetwyler, Huisken Lab - MPI-CBG, Dataset Number: 2
Table A.1). B shows images of GFP-labelled (LifeAct) nuclei of a developing flour beetle embryo (Tribolium
castaneum) imaged using a commercial Ziess Lightsheet Z.1 microscope (Images courtesy of Akanshka Jain,
Tomancak Lab, MPI-CBG, Dataset Number: 16 Table A.1).

process usually exhibits a range of time scales. For cells, for example, both
their movement and division (cell replication) are characterized by random
processes with small sudden changes, amongst larger periods of little activity.
The total time domain under study can vary greatly, with the required total
time of imaging ranging from minutes to days. In practice, NV, can range
from one to thousands, therefore pushing the largest potential datasets up to
10" pixels and TeraBytes (TB) of data. These data volumes can be further
increased by the use of more than one channel for simultaneous imaging of
different labelings, or, by the use of multiple views per time-point to make the
PSF smaller and more isotropic [60].

The potential for data generation over a day by a typical LSFM is shown
in Figure 2.3. The figure compares current LSFM techniques (SPIM with an
sCMOS camera) to old microscopy techniques and cameras (reproduced from
Reynaud et al. [96]). This large data volume has been called the Big Data
Challenge by Reynaud et al. [96] and impacts every part of the processing
steps outlined above, causing issues even for the storage and transferring of
data. Previously the bottleneck to studying spatiotemporal processes was the

14



Chapter 2. APR Motivation

microscope and labeling technology. Now, with the development of LSFM, it
is the data volume and processing challenges that create a bottleneck and limit
the scale and type of experiments [108].

Let us return to our example of tracking a population of M cells by estimat-
ing C' to illustrate the Big Data Challenge. Let us assume that in our example,
we imaged for a day capturing images once a minute of M = 10000 cells (again
ignoring division and death to keep the calculation simple). Such a population
is large, and we assume it would require at least the sampling values previously
discussed to capture the full process (N, = N, = 2000, N, = 1000, N, = 1440).
Therefore, the 3D+t data set could be as large as 8 TB, while our final result
¢ would only require 400 MB when stored as in floating point precision, a
factor of 2000.

The second feature of these image datasets adds to the complexity of pro-
cessing tasks [63, 138]. The Object function (and image), not only include
different spatial (where) and temporal (when) scales but also, differing scales
in "how’ the information is encoded. In detail, this means that each object O;
can have a different range of function values in both the Object function and
Image. We call this local range the local intensity scale. The local intensity
scale has many contributions. The first is the Object function itself. The den-
sity of fluorescent labels (what the Object function is a proxy for) can vary
across objects, in our case, cell nuclei. The change in the range of labeling can
result from random fluctuations, systematic difference between the cells level
of fluorescence molecule (e.g. different expression levels), and reduction of la-
beling by a process known as photo-bleaching. The second factors are a result
of the image formation process, where all three of the functions PSF', b and n
can contribute. The width and height of the PSF impacts how the density at
each location in the object function translates into image intensity. Therefore,
if the PSF' varies across the image, this will also change the imaged brightness
across these regions. The background signal b contributes additional signal to
the local range in the image I that is independent of O. Lastly, the fluctua-
tions in the camera can result in random and deterministic offsets in how the
light that hits the camera is translated into a signal and intensity value.

The combination of the dynamic spatial, temporal, and local intensity
scales combined with the high pixel number in the 3D+t images often leads to
the direct application of software, algorithms, and methods in image process-
ing and computer vision being unable to solve the discussed processing tasks.
This deficiency comes both in practice, due to high computational cost, and
in principle, by the lack of acounting for varying local intensity scales in the
underlying models. Although, other image modalities, often have varying spa-
tial and local intensity scales the magnitude of these variations across a simple

15



Chapter 2. APR Motivation

: 24 h _
- CLSM . g5GB
m 45,000 images
o
= | e G e e G N
[=]
©  SPIM 5718

with EM-CCD 2,000,000 images

% 480 GB solid state drive

4 TB hard drive

SPIM o018
WITH sCMOS 8,600,000 imagas

Figure 2.3: Schematic showing the data produced in 24 hours at maximum data-rates of a current LSFM (SPIM
with sCMOS Camera) producing up to 1 GB/s of image data, compared to a SPIM with older camera technology
(EMCCD Camera) producing 60 MB/s, and older optical sectioning microscopy technique, confocal laser scanning
microscope, 1 MB/s. For perspective the schematic gives the relative sizes of this data volume compared to typical
hard-ware sizes (circa, 2013). (Reproduced from Reynaud et al. [96] which was changed color and adapted from
Schmid et al. [111])
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data set is often smaller. For example, regarding the local intensity scale, this
is directly reflected in need for, and use of, unsigned 16-bit images, as opposed
to 8-bit images that are often sufficient in other image modalities (greyscale).
The smaller magnitude of changes can mean that constant approximations, or
simple models, are adequate for solving most processing tasks. In cases where
they are not adequate, the relatively smaller size of the data sets permits more
sophisticated methods to be successfully used even if they result in a significant
relative increase in computational and memory cost. Whereas, for LSFM data,
such a relative increase in computational and memory cost often exceeds capa-
bilities of current hardware and software [5]. These problems are exacerbated
by the large spatial and temporal scales combined with the high pixel count.
Effectively, any algorithm has to 'find’ the locations of the data set that are
informative, requiring processing across every pixel, before more sophisticated
steps, can be run. Although such steps may be 'cheap’ for small datasets, they
can become prohibitive at the data sizes discussed here. Further, they have to
be repeated across different tasks, or even steps, within an algorithm.

Therefore, these features of 3D+t LSFM data result in the need for the
development of custom algorithms, and methods, to deal with the processing
challenges. From the discussion above, the requirement of such algorithms
would be to have for low computational and memory cost per pixel, while
still allowing for the use of models that can account for the variations in the
temporal, spatial, and intensity scales. Indeed, there has been significant re-
search and development, into the design of methods and software to meet
these requirements. In the next section, we provide an overview of the current
approaches and methods for processing on LSFM data.

2.4 Current approaches to processing for LSFM

At a high level, we can split the research into LSFM processing into two groups,
those focusing on specific processing steps, such as deconvolution, and those
providing pipelines from image to a specific result, e.g. cell tracking, therefore
combining a range of processing steps. We will briefly overview the literature
in the two groups. Following we generalize and discuss the different approaches
and how these relate to the challenges raised above.

The research in the first group has been specifically designed to deal with
general features of LSFM data relevant to a processing task. Implementa-
tions of the methods are often provided as a Plugin for FIJI [109], a pop-
ular image-processing tool used by biologists. The specific processing tasks
include image registration [90, 88], image fusion [121, 100, 89, 91, 88, 100],
image deconvolution [91, 132, 123, 138, 27, 110, 48, 122], image segmentation
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[5, 71, 63, 10, 9, 53, 117, 75|, visualization [64, 84, 98, 11, 82], cell tracking
[140, 10, 117], and storage and compression [56, 111, 11].

The second group of processing pipelines can be further split. First, there
are those pipelines that have been designed for a custom microscope, specimen
and task [132, 70, 125, 119, 127]. Second, there are those pipelines designed for
a wider use and scope [113, 11, 10, 117, 11, 49, 134]. The goal of the general
pipelines is to combine the individual processing methods mentioned above
into workflows and software that is more accessible to biologists [113].

2.4.1 Concepts

Instead of focusing on individual processing tasks, or reviewing each work in
detail, we have attempted to identify the key ideas and elements across the
research. With specific attention on those methods that provide solutions
to address the large size of the images and the spatial, temporal, and local
intensity scales.

Paralellism

A common method for approaching the computational cost of such large im-
age datasets is by increasing the throughput of the method by designing algo-
rithms that can be parallelized and run on graphics processing units (GPUs)
[110, 27, 138, 9, 10, 91, 98, 82]. GPUs are designed to perform thousands of
simple computational operations simultaneously. Utilizing GPUs can provide
significant (For example 25 times in [110]) speed up regarding total execution
time when compared to similar code executed in serial on a CPU. Utiliza-
tion of GPUs has been very successful in reducing computational time. With
their use particularly well suited for processing tasks such as deconvolution
and image fusion. However, GPUs are less suited to higher level tasks, such as
segmentation and cell tracking, where branching or more irregular, computa-
tional patterns may be required. Further, GPUs require the data that is being
computed on to be transferred to and stored in its local memory. The local
memory requirement can limit the size of datasets that can be processed, as
the size of this local memory is often an order of magnitude less, than that
available to a CPU through RAM. The memory restriction can become an is-
sue for higher level tasks that may require the simultaneous storage of multiple
variables per pixel [5].

In contrast, for acceleration of a general segmentation algorithm, Afshar
and Sbalzarini [5] utilized distributed parallelism. Distributed parallelism, si-
multaneously addresses both computational and memory costs, by computing
the solution jointly across multiple computer systems. Using distributed paral-
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lelism allows the amount of computational power and memory to be scaled to
the size of the problem. Therefore, more complicated algorithms can be run on
large datasets. However, a drawback is that development and implementation
of algorithms that solve problems on distributed systems can be difficult.

Real-time processing

A second common concept, often linked to the use of parallelism, is the concept
of real-time or online processing [108, 137, 111, 110, 27, 5, 98, 117, 99]. For
LSFM, real-time processing is the processing of image data sets during the
acquisition process of the microscope. Real-time, in this context, means being
able to perform a processing task on the data set for a given time point before
the imaging of the next time point. The classification of a method being
real-time therefore depends on the particular experiment.

Real-time processing appears to provide two major benefits. The first ben-
efit is that information in the acquired images can be used to monitor or adjust
the experiment while it is running. The monitoring and adjustment can be
done manually by a user viewing the data set, using real-time visualization
such as ClearVolume [98], or automatically, with algorithms adjusting and
monitoring the acquisition [99], resulting in what has been termed a smart mi-
croscope [108]. The second benefit involves reducing the data set size as it is
acquired. By doing this, the full data-set never has to be stored or processed
on all at once. Real-time processing is particularly useful for the fusion of
multiple views, as the dataset can be immediately reduced to one view [110].
A second approach is that the full image data can be no longer stored. In-
stead, only storing a result that has a smaller memory footprint such as the
segmentation [5] or alternative data representation [111].

Modelling the image formation process

Algorithms have also been developed to remove the effects of b, PSF, or n) that
occur during image formation (see 2.3). By removing, or reducing, their effects
they make the input image I "closer’ to the desired Object function O and hence
simplify further processing. In particular, methods have been introduced that
reduce the impact of PSF, by performing deconvolution with an estimated
spatially varying PSF' [48, 122]. Weigert et al. [138], goes further, providing
both deconvolution, and ’super-resolution’ using methods from deep learning.
The approach allows the reconstruction of isotropically sampled datasets, from
anisotropically sampled and blurred input data, in a data-specific way. Alter-
natively, Jensen et al. [63], introduce new image models, to allow for different
local intensity scales for segmentation.
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Data representations

The final approach we discuss is using alternative data representations. That
is using alternative representations of the image for processing other than or
in addition to a pixel image.

For visualization the BigDataViewer [84], utilizes multiple down-sampled
versions of the image, with smart-caching schemes, to allow visualization and
basic processing of large datasets. For segmentation and tracking, [10, 117]
use the concept of super-voxels, a 3D extension of super-pixels [2] using optical
flow [9]. The use of super-voxels helps address the different spatial and local
intensity scales, while also reducing computational complexity. The method
groups adjacent pixels together into groups, called super-voxels, where the
number of super-voxels is much less than the number of original pixels N.
Segmentation and cell tracking can then be done on this smaller dataset, giving
improvements in both computational and memory costs. Further, the methods
use local descriptors to group pixels, allowing it to account for changes in local
intensity scale. However, rather than replacing a pixel image, super-pixels
effectively augment it. With the original image still being required for further
processing tasks such as visualization.

Schmid et al. [111] introduces a different approach that translates the orig-
inal image into an alternative data representation in real-time. Specifically
designed for early developing Zebrafish embryos it makes use of their spherical
shape. The 3D images are acquired by the microscope, and in real-time, the
data is processed and projected onto a sphere using a radial maximum projec-
tion operation. The full image data is never stored. Therefore, all subsequent
processing steps are performed on the projected image providing significant
memory and computational benefits. Unfortunately, this approach is limited
to only a subset of species and developmental processes. Further, it is unclear
whether such a maximum radial projection retains all relevant information on
the Object function from the original images. The idea of using 2D projections
has generalized and further extended to work on more general geometries by
Heemskerk and Streichan [56].

2.4.2 Summary

Although the approaches above have been successful in providing methods and
algorithms that have allowed the utilization of LSFM for studying spatial and
temporal processes, there is still room for much development. Unfortunately,
many of these approaches are specific or do not scale sufficiently to make full
use of, current, and likely future, advancements in LSFM. Indeed, although
methods are sufficient to provide analysis of a single large time course of a
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single embryo, the ability to then scale consistently to a larger number of
samples is still hindered by the processing steps. A lacking feature of current
approaches is that the algorithms deal with the large size, and varying scales
individually and by time point. This duplicates the process of identifying and
accounting for the scales and high data volume. The exception to this trend
is the projection methods used by [111].

A successful approach we believe would combine a majority of the features
above. Providing a more general solution in the spirit of Schmid et al. [111]
by providing an alternative data representation that accounts for the differ-
ent scales in the dataset while simultaneously reducing its computational and
memory cost, while still fully capturing the information of the Object function
O. By handling the features of the dataset once in a general way, the repre-
sentation could then be utilized across the whole pipeline without the need for
original pixel data. The approach would ideally also scale to larger data sets
and be able to account for temporal scales.

In the next section, we reflect on biological visual systems and argue that
they provide examples of an approach with the features discussed above. We
then use two key features from visual systems as motivation for our work here.

2.5 DMotivation from the visual system

As humans, our visual system continuously acquires high-resolution informa-
tion on spatial-temporal processes occurring in the world around us. Similar
to fluorescence microscopy, the visual information is gained through the de-
tection and delineation of objects through local variations in photon counts.
However, instead of objects having to be specifically labeled, changes in the
photon levels reflect the specific optical properties of the object, its location,
and local luminescence. Hence, the problem can be framed similar to that of
processing on LSFM data, with an Object function O, which we wish to infer
information about from an input 'image’ I that we perceive.

The comparison with the visual system can be taken further as it shares
many of the same features found in LSFM data and its processing. Typical
visual scenes feature both varying spatial and temporal scales in the Object
function. In space, a visual scene is composed of objects, which feature many
spatial scales, with information on their shape and size largely determined
by their boundary. They also exhibit a range of temporal scales, encountering
both stationary, slow and fast objects at any one time. Visual scenes also show
large variations in their local intensity scale, with luminescence levels varying
over up to nine orders of magnitude in a typical day [116].

To compare the ’size’ of the problem compared to LSFM, we consider the
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following thought experiment. How much data would the human visual system
have to acquire and process if it used a homogenous sampling and processing
strategy as in an LSFM? We provide a ’back of the envelope calculation’, to
estimate the order of magnitude. To estimate a hypothetical rate, we assume
the sampling resolution in space and time to be the maximum resolution, 120
degrees field of view, three color channels stored, across at 64-bit precision.
This would result in a data rate of around 2000 GB/s, or 180,000 TB a day
(See A.1 for calculations). This rough calculation indicates that the effective
data size the visual system deals with is at least comparable to LSFM. However,
it is obvious the visual system does not function in this way, in fact, estimates
on the data-rate from the retina to the visual cortex is as low as 1 MB/s [68].

Two core features of the human visual system are adaptive sampling and
local gain control. This adaptive sampling works by selectively focusing the
attention of the eye on areas with potentially high information content [57].
This adaptation occurs at a higher level, such as detecting faces, but also at
lower levels, adapting to information-rich areas of the scene such as edges [95].
The selective focus enables efficient inference of information about the scene
at a high effective resolution by focusing the processing capacity of the retina
and visual cortex. The local gain control, allows the eye to effectively adapt
to a scene while accounting for luminance ranges of over nine orders of mag-
nitude, even though the firing rate of an optic nerve varies over less than two
[116]. Hence, the local gain control effectively normalizes the signal efficiently
accounting for variations in the local intensity scale. Further, it has been ar-
gued; these features have evolved to provide an efficient data representation,
and the adaptivity optimizes the information transmission efficiency [23]. It
is from the two features of adaptive sampling and local gain control, that we
take inspiration from, for the development of the adaptive representation in
this thesis.

2.6 Summary and main points

In summary, the eye efficiently accounts for the large spatial and temporal
scales through adaptive sampling, while handling varying local intensity scales
through a local gain control. The adaptivity occurs at the lowest level (first
step) in the visual system, allowing all subsequent, and higher level, processing
tasks to benefit from it.

Given the challenges of processing on LSFM data, shares many features
with the visual system. It would seem that a similar approach could be useful.
Indeed, the idea of adaptivity is a feature of both the successful super-voxels
and projection approaches. We follow this approach designing an alternative
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representation that shares these properties. In the next chapter, we formally
outline the desired properties for an adaptive representation and review the
literature. The table below briefly summarizes the chapter.

Summary of the chapter

e Introduced LSFM and how it can be used to study spatiotemporal
processes in biology.

e Discussed the challenging features of LSFM data and outlined the
current bottleneck in processing raw image data

e Identified variations in spatial, temporal, and local intensity scales
as key issues contributing to this bottleneck

e Reviewed and reflected on current processing techniques and con-
cluded the need for an alternative data representation

e Compared the problem and solution from the human-visual system
for inspiration for an efficient data representation

e Concluded adaptive sampling and local gain control as key concepts
for an alternative data representation
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3.1 Introduction

In this chapter, motivated from the previous, we further develop the require-
ments of an alternative representation for LSFM images that could alleviate
processing bottlenecks. First, we outline five representation criteria (RC). We
form the RC from both reflections on the demands of processing, successful ex-
isting methods and algorithms, and ideas of efficient representations from the
visual system. Following this, we review the literature on multi-resolution and
adaptive-representations, focusing on areas are of most relevance. In conclud-
ing, we reflect on existing work and identify those ideas from existing literature
that still require development to fulfill the RC.
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3.2 Representation Criteria (RC)

Here, we present five criteria that I believe an alternative image representa-
tion should fulfill to be able to be used as a general solution for processing
LSFM images for studying spatiotemporal processes in biology. The alterna-
tive representation would be formed from the pixel image data after, or during,
acquisition. Then all preceding processing steps and storage would be done
using this alternative representation without the need for the raw pixel image
data. Motivated by the visual system, the representation would adaptively
sample the image domain while taking into account the local intensity scale.
This sampling would adapt to the range of spatial and temporal scales in the
Object function O while taking into account variations in the local intensity
scale. All following processing steps could then directly benefit from the re-
duction in computational complexity, and identification of scales.

We will first state the five criteria, then describe each and discuss it in
detail. The representation criteria (RC) are as follows:

e RC1: The size of the representation # R must be proportional to the
information content of an image, accounting for varying spatial scales,
and not scale with the number of pixels.

e RC2: The representation must guarantee a user-controllable represen-
tation accuracy E for noise-free images, relative to a local intensity scale
o, and not reduce the signal-to-noise ratio of noisy images.

e RC3: It must be possible to rapidly convert a given pixel image to the
representation with a computational cost at most proportional to the
number of pixels.

e RC4: The representation must reduce the computational cost of image-
processing tasks without resorting to the original pixel representation.

e RC5: The representation must also be able to similarly account for
varying temporal scales.

Of course, such criteria are subjective and broad, and showing a representation
satisfies them in any precise way does not seem possible. However, we find they
do provide a useful tool, both for guiding the development of the work here
and evaluation of the results.

Although, these criteria, may not be sufficient, and it is likely that there
are others that such an alternative representation should fulfill. Also, though
we are attempting to develop the method to be of general use, there are likely
problems where the use of any adaptive representation, regardless of the RC,
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would not be appropriate. For example when the exact pixel noise distribution
is meaningful.

In this section and the immediate chapters, we do not immediately address
adaptation through time, instead focusing on a single time-step and RC1-4.
Later, in Chapter 10 we address RC5 and show how in addition to the spatial
and local intensity scales, how temporal scales can also be addressed using the
same framework.

For now, let us consider a representation R of image I, and we utilize
concepts, notation, and examples from Chapter 2. We again consider that we
have labelled M biological structures, which we model by an Object function
O(y) = oM, Oi(y). Where we consider a single time point and y = (z,y, 2).
Then, the information in the Object function regarding object ¢, is contained in
the support of the object function of 4, that is, supp{O;(y)} = {y € Q|0;(y) #
0}. Again, instead of observing O directly we have an input image I{y}, where
y = (z,9, ), with a total number of sample points N = N,N,N,, where the
image is formed by a process as described by Equation 2.3.

We discuss more details and motivation for each of the RC below.

3.2.1 Representation Criteria 1 (RC1)

Following the visual system, our representation should adaptively sample the
domain 2. Adapting so that all processing tasks can focus their computational
and memory costs proportionally to information rich areas.

We define the information content in I as the data that can be used to
infer the support of O. Therefore, #R < N, the number of elements in, or
size of the representation, should reflect the amount of information content in
the image, and not simply the smallest spatial scale multiplied by the domain
size as in pixel images. Since in most cases, algorithms computational and
memory complexity are of the form O(f(#R)), by aligning the size of #R
with the information content, then the computational and memory costs to
also scale with information content. However, as discussed, the information in
O is encoded in local changes in I, where the scale of these changes, we call the
local intensity scale o(y). As in the visual system, we want the representation
R to account for the changing scale o, as in the eye. Therefore, ideally, the
sampling would scale as

#R~ [ gliy). o)y, (31)
Q
where g : R — R, and ¢ : R — R is an unknown function that describes the

change in local intensity scale. Included, should be the ability to efficiently
losslessly compress the APR for file storage with a cost that reflects #R.

27



Chapter 3. Representation criteria and previous work

3.2.2 Representation Criteria 2 (RC2)

We assume this adaptive sampling will be lossy. That is ||I}g{5f}—]{)—f}| l, >0,
where I is the sampled image reconstructed in some way from R. However,
we wish to be able to control the size of this reconstruction error, and hence
control the loss of information about O.

a priort, we do not know the degree that points in €2 of I contain informa-
tion about O. Therefore, we require that we control the reconstruction error
at all points in the domain similarly. Hence, the use of the infinity norm,
would seem justified. However, as with the adaptation, we know that the ab-
solute value of I, and also the reconstruction errors € at any point, to not have
‘meaning’ without taking into account the local intensity scale o. Therefore,
we propose that our representation should be able to adapt to the information
content while controlling error as

Ky} — I{y}
P e < (3.2)

where |Z|o = max,ez @, I{y} is the reconstruction from the representation and
E is a user-controlled parameter. That is, the reconstruction error is controlled
pointwise across the domain. For noise-free circumstances, we propose that F
can be set arbitrarily small.

However, in the presence of noise, as occurs during image formation for
LSFM, minimizing the difference between the observed noisy image and the
reconstructed image is not desired. Instead, it is the reconstruction error rel-
ative to the noise-free image I* we would wish to control. Therefore, the
representation must be able to account for noise corruption, with an adapta-
tion that is controlled by E, while endeavoring not to lose information on O.
That is instead the representation should adapt such that, as £ decreases the
reconstruction error of the representation relative to the noise-free image I*,
should be equal to, or less, than noise level of the original noisy image.

Ideally, both this adaptation and the noisy reconstruction should be done
optimally (in some sense).

3.2.3 Representation Criteria 3 (RC3)

To be used in general we require to be able to generate R from I{y} in a fast an
efficient way. Further, this process must, scale, such that if datasets continue
to grow, the cost of R will scale at the same rate. Hence, the computational
cost of generating R should be at most linear in N, i.e. O(N).
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Also, this process should be amenable to utilizing current and future par-
allel hardware. Ideally being able to utilize, GPU, shared memory and dis-
tributed parallelism.

Lastly, the process should be fast, regarding execution time, where ’fast’
depends on the application. Specifically, it should be fast enough, with the use
of appropriate hardware, that it can be used in a range of real-time applica-
tions. That is, able to compute R, during acquisition between acquiring each
time step.

3.2.4 Representation Criteria 4 (RC4)

We propose that R is to be used, instead of the pixel image data, for all
processing tasks after its formation. For example, visualization, segmenta-
tion, tracking, and storage. Replacing pixels with an adaptive representation
of the data for all processing tasks, as motivated by the human visual sys-
tem, and the methods of Schmid et al. [111]. In the best case, all existing
algorithms and software could be directly used with R, while fully benefitting
from its adaptive properties from RC1-3. However, this is unrealistic, given
most implementations of algorithms, implicitly depend on the structure of a
pixel image. Although, a more reasonable goal, is that the underlying meth-
ods, and algorithms, can be adapted from their pixel formulation to one for
R, with minimal effort.

Different algorithms and methods, interpret a pixel image in varied ways.
For example, collocation points of a continuous function, voxel elements, a
pixel graph, or nodes in a tree structure. Therefore, we propose that the
representation R should be ’close’ enough to a pixel image, that similar in-
terpretations of R are natural and possible. By sharing the interpretations,
existing algorithms are likely to be able to be more easily adapted.

Furthermore, the computational, and memory performance of these adapted
algorithms should be able to benefit from the adaptation, both regarding size,
since #R < N, and through the information about the spatial scale and local
intensity intrinsic to R through adaptation. For this to be possible requires
that any increase in memory or computational cost of data structures, and
algorithm access patterns, for adapted algorithms, do not exceed the benefits
gained from adaptation.

3.2.5 Representation Criteria 5 (RC5)

Lastly, in addition to adapting to spatial scales, and the local intensity scale,
the representation should extend to time. That is, it should also in a way
consistent with RC1-4, also be able to adapt sampling in time to account for
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the temporal scales in Object function that exist. Further, we suppose that
the time adaptation should be causal. Both, to preserve temporal ordering of
events and allow real-time processing.

Again, note that we first treat space, then address time in Chapter 10.

3.3 Review of existing multi-resolution and adap-
tive representations

In this section, we review the relevant existing literature on alternative data
representations used for processing. First, we introduce our definitions of
multi-resolution and adaptive methods used here.

Representation definitions We define a multi-resolution representation as:

Multi-resolution representation. A method that represents a spatial data
set with a representation with more than one (multi) length-scale in each
spatial direction.

The size of the multi-resolution representation R, i.e. the number of free
parameters # R, or coefficients {ci};#j, that describe it, need not be less than
the number of samples in the original data N. Such representations can be
lossless or lossy. A lossless representation allows perfect reconstruction (per
sample) of the original dataset from R. Whereas, a loss-less representation
does not.

A simple example using a 2D image would be the combination of the orig-
inal image and a downsampled image by a factor two. The size of the repre-
sentation #R for this example would be N + N/4. Whereas, a pixel image by
itself has only one spatial scale in each direction determined by the sampling
distance between pixels.

Building on this defintion, we define an adaptive representation as,

Adaptive representation. A multi-resolution representation that also in-
volves data-dependent selection of non-zero free parameters relating to the
spatial scales.

The size of the representation, need not be less than N, but the determi-
nation of the number of non-zero parameters to describe the representation
depends on the dataset in some way, beyond scaling with N (or simply the
result of the data set being zero). In this definition, there is slight ambiguity
for lossless methods that could have zero coefficients for a given signal, with-
out any active selection. For example coefficients for a lossless transform. In
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this case, if the non-zero coefficients are treated the same as non-zero coeffi-
cients, we consider it only a multi-resolution representation, if however, special
treatment is given to these coefficients (’in some way’) we would define the rep-
resentation as adaptive. Therefore, this ties our definition of representations
also to their use.

Review approach Methods and techniques using both multi-resolution and
adaptive representations, have been developed for, and are used with success,
across a range of fields. These areas include image processing, computational
differential equations, statistics and computer graphics (find a range of specific
references below). Across these different applications, there are similar meth-
ods, ideas, and concepts used. However, there are also differences, diversity,
and specialization, across the fields. It is likely this diversity reflects that the
methods are customized to address the specific demands resulting from the
features of the data and the nature of memory and computational costs in the
processing involved. As discussed in Chapter 2, LSFM data has unique fea-
tures compared to classical natural image data, and processing tasks. Hence,
it would seem necessary also to review literature originally designed for other
applications, as they may share common features with LSFM data or process-
ing. Rather than focus on each field and their approaches separately, here we
have attempted to identify and group similar methods and ideas.

At the highest level, we split techniques into three groups. The groups are
Augmentation Techniques, Sparse Transform Techniques, and Sparse Colloca-
tion Techniques. We define and discuss each group separately in the section
below. In each subsection, we highlight the main ideas, and methods, we have
identified, and then finish in each case by reflecting on the representation cri-
teria RC1-4. These definitions are tied to how the specific method is used,
and a particular method can be in more than one group. For example, Wavelet
methods feature in all three. These groupings were heuristically made to allow
comparison with the representation criteria easier.

In all cases, we consider a function f(x), sampled at locations z, and stored
as N samples f{Z}. In most cases, we will give the notation for a 1D notation
for simplicity, but it is to be assumed the ideas can be applied in 3D unless
otherwise stated.

3.3.1 Processing augmentation techniques

Here, we review multi-resolution representations are not adaptive (not data
dependent) and adaptive techniques that are used in addition to the origi-
nal data. Often, the multi-resolution or adaptive representations are used to
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Figure 3.1: Schematic of a five level image-pyramid, and example of a non-adaptive multi-resolution representation
R of an image. Levels greater than one correspond to blurred down-sampled versions of the original image.
(Source: https://commons.wikimedia.org/wiki/File:Image_pyramid.svg, Used under Creative Commons
Attribution-Share Alike 3.0 Unported, Created by user: Cmglee)

augment a processing step. This is done by simplifying, or regularizing, a
specific processing step. Peyré [83] provides an excellent review of adaptive
and multi-resolution representations for image-processing. In the review, the
representations are viewed as regularizers for ill-posed inversion problems.

Pyramid techniques

Some of the most natural multi-resolution representations are image pyramid
techniques [4]. These techniques involve augmenting the original image with
down-sampled images by a factor of two as shown in Figure 3.1. These down-
sampled images may either be blurred versions of the original image or, the
result of another filtering operation such as Laplacian image pyramids [26].
These multi-resolution representations can aid processing to help identify fea-
tures on different scales and have also been motivated by visual systems [4].
Related to these techniques, are scale-space techniques [139]. Scale-space tech-
niques, also form multiple blurred versions of an image. A convolution with a
Gaussian with smoothing scale s is often used for blurring. A set of images is
then created for a range of values of s. In the case of a 1D signal, the signal
is augmented to 2D with the additional dimension being scale s. This 2D
augmented signal can then be combined with tree structures decompositions
and used to identify different resolution scales in the data.
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Change of basis

Another important approach to identifying different length scales in a function
is the use of a change of basis. If the new basis has different spatial scales, the
size of different coefficients can be used to identify spatial scales in the data.

Discrete Fourier Transform The ’classic’ multi-resolution representa-
tion for signals is the discrete Fourier transform (DFT). The discrete Fourier
transform represents a signal in the following way,

N-1
i2wkn

Hzn} = % Z cge N (3.3)

k=0

where x,, € Z, and the ¢, are calculated as,

=

1 i2wkn

= foe N (3.4)
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=)

so #R = N and i = v/—1. The DFT effectively transforms the signal into
a frequency domain representation. Where {eﬁxm N forms an orthogonal
basis of CV. Where the |c;|, corresponds to the contribution of a certain fre-
quency to the original signal. It is multi-resolution in the sense that the basis
functions e~ have different wavelengths that describe them. In addition
to giving frequency information on a signal, the Fourier transform also can
simplify and speed up certain processing tasks such as digital filtering or con-
volutions. Rather than calculating the DFT using the above definition, the
Fast Fourier Transform is often used allowing the coefficients ¢; to be com-
puted with a computational complexity of O(N log N) instead of O(N?) (the
result of the application of the definition above). Though the DFT allows
identification of frequency, and hence spatial scales in the solution, it does not
allow us to locate where the spatial scales occur in space.

Wavelets Wavelets, in contrast, allow both the identification of length scales
and their location [74, 34]. Wavelets are based on the decomposition of a signal
into basis functions of different sized support placed at regular intervals over
the domain. The basis functions are formed by combinations of two special
functions ¢;(x) = ¢(x — i) and ¢, ;(x) = 221p(22x — i) known as the scale and
wavelets functions respectively, where i determines the location in space and
[ the length scale. The combination of these, {¢;}icz \U{¥i}i ez, forms an
orthonormal basis of L(R) [30].
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When sampling a discrete sampled function f, assuming that N = 2lmes
then wavelets allow the following decomposition of data in what is known as
a Multi-Resolution Analysis (MRA) [74] as

]maz 2jmzn
Z Z d Jd}%] Z az¢z (35)
=Jmin =1

where d; ; are called the detail coefficients and a; are known as the approxima-
tion coefficients. Figure 3.2, shows an example of such a decomposition. The
decomposition can be interpreted in the following way; the approximation co-
efficients generate a low-resolution representation of the function, determined
by Jmin, then the detail coefficients, level by level, add details progressively
to the function. The detail coefficients with lower j, respond to longer length
scales, and higher 7, smaller length scales. Further, for smooth regions of a
function, as j increases, the size of |d; ;| decreases. Whereas, if there is a local
discontinuity or non-smooth region, the |d; ;| will not decay, or not as rapidly.
Hence, different scales and discontinuities can be readily detected in a signal
by analyzing the behavior of |d; ;| across the domain [73].

In contrast, to the pyramid multi-resolution techniques above, the size of
the wavelet transform #R = N, and the coefficients can be computed with
linear computational complexity in N using the Discrete Wavelet Transform
(DWT) [72] (O(N)). A variety of processing steps can then be formulated in
the Wavelet domain, to regularize, or improve various processing tasks [83].
However, wavelets have many additional features when used as an adaptive
representation, through thresholding of coefficients, which we discuss in the
next section.

Superpixels

Superpixels group together similar, by some measure, pixels in an image into
regions larger than a single pixel [2]. In this way, superpixels can be viewed as a
form of over-segmentation. Figure 3.3 shows examples of superpixels generated
with different parameters of two images using the SLIC method in Achanta
et al. [2]. In the figure, the black lines decern the boundaries between super-
pixels. Superpixels are especially well suited for segmentation tasks, where
they reduce the number of computational elements, and hence memory costs,
and help identify spatial, and local intensity scales. These features have been
utilized by for segmentation and tracking using LSFM data using the method
for 3D data, or voxels, introduced by Amat et al. [9]. However, the method is
not designed as a general representation. Instead, the full dataset is retained
and used for all other processing and storage tasks, and may indeed still be
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Figure 3.2: An example of a wavelet decomposition using the wavelet transform used by JPEG2000 [31]. The
small image in the top left corner, represents the approximation coefficients a; and the other six images represent
the detail coefficients d; ; at two different resolutions. (Source: https://commons.wikimedia.org/wiki/File:
Jpeg2000_2-level _wavelet_transform-lichtenstein.png, Used under Creative Commons Attribution-Share
Alike 3.0 Unported, Created by user: Alejo2083)

utilized while processing with the superpixels. So effectively #R > N, since
the original image, is still required in addition to the superpixels.

Reflection on representation criteria

All of the above methods have been highly successful in using multi-resolution
concepts to identify different spatial, and local intensity scales, to improve
processing tasks. However, they do not address our representation criteria. In
particular, since in all cases #R > N, then RCI1 is not satisfied. Further,
as lossless methods, it is unclear of how RC2 is to be satisfied. Effectively,
they are not adaptive representations. Though, adaptive versions of these
representations do exist, in particular for wavelets, which we discuss below.

These methods not fulfilling the representation criteria reflect the features
of the data and problems they were designed for and not a deficiency in the
methods. For example, many of the methods are designed for the typically
small size of natural images. Hence, the methods are not focused on reducing
the computational and memory costs through a reduction in the size of the
data representation. Instead, they are focused on providing "higher quality’
solutions to various processing tasks.
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Figure 3.3: Example of superpixels, reproduced from Achanta et al. [2]. The black borders define the edges
of the Super-pixels. The three sections represent superpixels set to an average size of 64, 256, and 1024 pixels
respectively.

3.3.2 Adaptive sparse transform domain techniques

In this section, we consider adaptive representations, where #R < N, that is,
they are adaptive and have some non-zero coefficients that are ’selected’ and
describe R that is less than N. Such representations we call sparse. These
representations are sparse in the transform domain, as the coefficients {ci}fﬁ:}f,
can not be interpreted as function values of the original data set.

Thresholding of wavelets

Wavelets can be used as an adaptive representation, through a process known
as wavelet-shrinkage, or thresholding Donoho and Johnstone [47]. Threshold-
ing involves first calculating the wavelet transform and set of detail d;; and
approximation coefficients a; for a particular wavelet and scaling function, as
shown in 3.5. Wavelet thresholding, or shrinkage, then involves the reduction
of, or removal, of particular detail coefficients d;; based on a given criteria
based on their value. This produces a new set of coefficients I' = {ci”} which
now provide a lossy representation of the function f. If the procedure sets
certain detail coefficients m coefficients to zero, then, the new f has a rep-
resentation with #R = N — m. This reduced set of coefficients can then be
used to reduce computational and memory costs and is in a sense optimal for
compression [42].

Because wavelets form an orthonormal basis the effect of the removal of
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coefficients on the squared error is as follows

n

Do IfHay = HapP= ) ldiyP (3.6)

=1 di ¢

giving an over-all impact on the approximation error [72]. Although simple,
the representations resulting from such thresholding operations have many
optimal properties and are successful with wide use, including in bio-medical
imaging [128]. We outline some of these optimal properties below.

Optimal error convergence Here we discuss the methods used for com-
paring different compression schemes through a framework around classing
functions in smoothness spaces known as Besov spaces as presented by DeVore
et al. [42]. A Besov space By"'(L9(Q)) is a vector space equipped with the norm
|l B2 (Lr()) (or quasi-norm depending on p and ¢). The definition is involved,
and leave the full definition to Appendix A.2. DeVore et al. [42] indicate that
a Besov norm with « is 'roughly’ equivalent to having « defined derivatives in
L,(©)

Given a function in the o Besov space, they prove, that the optimal rate
of convergence of the error compare to the number of coefficients #R — 0, for
an adaptive representation asymptotically follows

If = fllz, ~ O(#R" %) (3.7)

where ||.||1,, represents a chosen p norm with 1 <p < oo and ; = +¢.
They show that for some threshold €, and using a wavelet that can repro-
duce all polynomials up to degree o that by setting all coefficients

||Ci,l¢i,l||%p(g) S € (38)

to zero produces an adaptive representation with an error convergence as

r a/2 —a
1£ = Fllzy@) < CT2Co#R(| £l por 1oie) (3.9)

which is the stated optimal rate.

Such a scheme does not hold for the infinity norm. However, DeVore et al.
[43] provide an alternative iterative scheme, designed for surface approximation
for setting of coefficients that find optimal representations following

1f(z) = f@)]i <€ (3.10)

for a given e, similar to the form required in RC1.
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Optimal representation of noisy functions A second optimal property
of wavelet thresholding is that it allows for adaptive representations that have
near-optimal de-noising properties [47].

If we consider a noisy signal f{z} = g(z) + n(x) where n ~ N(0,0) is a
normally distributed noise process with zero mean and standard deviation o.
Then define an estimated MSE error of f for the truncated wavelets as

R(g, f) = T[> gle) — F () (3.11)

i=1

and consider the assymptotics of the expected error E as n — oo, where E
is the expectation over all realizations of the noise process. Then the optimal
rate achievable by any adaptive scheme is %, and for a constant width kernel
(fixed bandwidth) will at best achieve . Donoho and Johnstone [47], show
that wavelets using particular shrinkage schemes of the detail coefficients, lead
to near optimal (O(%)) convergence and hence near optimal representation
of noisy functions. (note we used n in replace of N to avoid confusion with
the normal distirbution)

Extensions and applications Due, to these properties, amongst others,
thresholding of wavelets have been used successfully across a wide range of
fields, and applications [128, 114, 85] (The most recognized application being
the wavelet thresholding used in JPEG2000 [31]). Because of their wide use
and success, the literature is immense, in both application, theoretical work,
and extensions. We do not review it here, and direct the reader to Plonka [85]
for a recent survey of developments with a focus on image-processing.

Dictionary learning techniques

Wavelet thresholding can be used to form compression schemes that have the
optimal asymptotic rate for functions in a given Besov space. However, having
optimal asymptotic convergence does not indicate that that the methods pro-
duce the best compression rate of any basis [35]. This point can be illustrated
by considering a function that is exactly the wavelet for some interval and
hence requires only one coefficient. A one-pixel translation of this function
will result in the use of many more coefficients. Ideally, such a translation
could also be represented by one coefficient. However, such basis functions
would no longer be orthogonal. Methods that are developed to find the best
basis from a set of non-orthogonal and redundant basis functions are known
as dictionary learning techniques. In such a way, very sparse representations
(small #R) for a specific dataset can be created. Allowing potentially for sig-
nificantly greater rates of compression than those obtained through use of an
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orthonormal basis such as wavelets. However, as the basis function no longer
form an orthogonal basis, the coefficients can no longer be found through us-
ing the inner-product. In fact, Davis et al. [35] prove that this problem is, in
general, NP-Hard. However sub-optimal methods such as greedy schemes can
be used [35], with Tosic and Frossard [126] providing a recent review.

Compressed sensing

Related to thresholding of sparse bases, are methods known as compressed
sensing [46]. Given a function which is sparse in some transform domain, com-
pressed sensing provides a method by which M < N samples can be used to
recover the original function sampled at N locations using appropriate (pos-
sibly nonlinear) algorithms. These M samples are chosen non-adaptively. In
contrast to thresholding of wavelets or other classic adaptive methods which
depend on the function. That is, their number and location are not set with
any information of the particular function. However, these samples are not
collocation points of the original function, such as pixels, but instead, could be
thought of as a specific set of random samples from the transform coefficients.
Surprisingly, given knowledge of the class of signal, and distribution of coeffi-
cients, the number of M required samples can be shown to be very close to that
which could be achieved by optimal adaptive sampling when using knowledge
of the function [46].

Reflection on representation criteria

From the discussions above, thresholded wavelet transforms appear to have
many of adaptive properties. Including proofs of optimality, that with exten-
sions would allow them to satisfy RC1-3. However, the main drawback of
these methods, including dictionary learning and compressed sensing, is that
the sparse representation exists in the transform domain. Given most process-
ing tasks in LSFM are designed for the pixel domain, many tasks would require
the reconstruction of the original image and therefore return to a data size of
N. Tt is true that many tasks, such as deconvolution [48], or image fusion
[100] can be done efficiently in the wavelet domain. It is not clear, however,
how existing approaches for tasks such as tracking and segmentation could be
adapted when the approaches rely on pixel graphs. A similar argument also
applies to other adaptive compression schemes, such as Zhao et al. [142], al-
though these methods are highly effective at solving the individual processing
task of compression, it is unclear how the spatial adaptation and reduction in
time could be used for general processing tasks.
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3.3.3 Adaptive sparse collocation techniques

The last group of adaptive representations is those that are sparse #R < N and
the coefficients {cl}ﬁ can be interpreted as collocation points of the function.
That is, each coefficient ¢; can be mapped to a location y and ¢; = f(y).

From surveying the literature, historically, the main theoretical contribu-
tions of sparse collocation representations have been in fields outside of image
processing. Namely, the representation of functions for computational differ-
ential equations and statistics. In computational differential equations, the
drive for adaptive collocation representation arises when the problems being
solved have a large range of spatial and temporal scales [58]. As for LSFM
data and processing, for numerically differential equations exhibiting large dif-
ferences in spatial scales, the processing task in can become very costly and
inefficient when using homogeneously sampled grids. As previously, we have
made an effort to isolate the main ideas and attribute references to the original
methods.

Equidistribution techniques for solving differential equations

The first idea we discuss is the general principle of equidistribution that was
originally introduced by de Boor [37], Burchard [25] as a method for the adap-
tive placement of knots for splines. Splines are piecewise polynomials. In
general, the problem that is solved by equidistribution is choosing the loca-
tion, and potentially number, of collocation points & such that are then used
to represent a sampled function f{Z} for some processing task. Depending on
the application, task, and method, a monitor function is defined M (x) over
the domain 2. The monitor function is often related to the error, some other
property of the function, or prior information of the solution. The idea is that
the nodes should be placed such that
Ti+1

M(y)dy = A (3.12)

T

fori =0,..N — 1, and A is some constant.

The concept can be understood by the following simple example. Consider,
the monitor function M (z) as a measure of the error local error 'density’. In
this way, the error between two points is simply then the integral between the
two points. Then by finding a Z that satisfies Equiation 3.12, coincides with
making the error between any two points the same. Therefore, in areas of
the domain where the solution error is likely to be high, the function will be
sampled with high density, and areas with the solution error is likely to be low,
are sampled with lower density. This is exactly the problem that was solved
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in 1D by a simple algorithm in De Boor [38] for the placement of knots for
splines. The algorithm was derived by the following error estimate for splines

of order k

k

17 =A< 5 ([ 1900 ar) (3.13

where || f — f|le is the maximum error over the interval z; and z;,, and f®
is the k-th derivative of f. From this, they derived the monitor function of
M(z) = |f®(r)]"*. De Boor [38]’s proposed method is simple and effective,
however, does not have a simple extension to higher dimensions [58]. Similar
ideas of equidistribution are used by a class of methods known as Adaptive
Method of Lines [105], however, again these methods are largely in 1D.

Additional methods have been developed that use different approaches and
monitor function, but share the equidistribution principle and can extend to
arbitrary dimensions. For example, the class of methods known as Moving
Mesh Partial Differential Equation (MMPDE) methods [59]. MMPDE meth-
ods are similarly based on a monitor function and equidistribution but are
focused on time evolution and extendable to arbitrary dimensions. MMPDE’s
define an additional evolution equation for mesh nodes, that equidistributes
the mesh through time [58]. Instead, using pseudo-forces and node addition
and removal rules, Reboux et al. [93] provided an equidistribution method,
again for arbitrary dimension, based on Lagrangian particles for the adaptive
solution of advection-diffusion equations. See Huang and Russell [58], for a
recent review of different equidistribution techniques and references.

Separately, another class of adaptive methods have been developed based
on a similar equidistribution principle [78] for mesh generation for adaptive
finite element methods [17]. Adaptive Finite ElementMethods involve the
solution of weak-form partial differential equations over elements, often tri-
angulations on mesh nodes [78]. In the approach, instead of setting some
fixed constant A, the problem is posed as finding the placement of fixed IV, in
such a way that integrals, of a similar form to Equiation 3.12, all have some
a posteriori set average value. In addition to adapting by placement of the
mesh nodes (known as h-adaptation), methods also adjust the degree of the
approximation on a given element to again reduce the solution. Babuska and
Guo [15], showed for certain applications the combination, hp-adaptation, this
can result in exponential convergence. These adaptive ideas have also been
generalized to a larger class of methods, without distinct elements, known as
Partition of Unity Finite Element Methods (PUFEM) [15].
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Adaptive Mesh Refinement (AMR)

Another class of successful adaptive collocation schemes is Adaptive Mesh
Refinement (AMR) methods [18]. AMR methods use nested grids of different
resolutions that are refined, or coarsened, through time using an estimate of
the local truncation error of the time stepping error.

Mesh-based adaptive image representations

In recent years, there has been the development of adaptive image represen-
tations using linear triangulations [135, 3, 62, 141, 40, 104]. These methods
rely on representing the image using meshes as often used in FEM discussed
above. These methods have, (with the exception of Yang et al. [141] that was
designed for tomographic projection), been developed as compression meth-
ods. Often, motivated by the poor performance of some wavelet methods for
approximating sharp image edges [40].

Figure 3.4, shows an example of a mesh-based adaptive image representa-
tion, called adaptive thinning, presented in Demaret et al. [40]. These methods
have the advantage of being able to provide highly anisotropic adaptation to
spatial scales. Different methods have been used for the generation of these
meshes, including concepts similar to error equidistribution [141, 3] using error
diffusion [50], greedy point removal schemes [40], and the use of binary span-
ning trees [104]. Sarkis and Diepold [104] reviews a range of these methods.
They find that the greedy point removal method of Demaret et al. [40] provides
the highest compression rates. However, this comes at a significant increase
in relative computational cost. This high compression performance, with high
computational cost, was the motivation of the approaches in Adams [3], that
uses an error equidistributed initialization for the greedy point removal scheme
of Demaret et al. [40] to reduce memory and decrease execution time. Similar
methods, using more general polygons and binary space partitionings have also
been previously developed, see Radha et al. [92].

On an aside Agarwal and Suri [6], in the context of computer graphics,
proves that finding the optimal mesh triangulation similar to above, that sat-
isfies, ||f — fllso < € is a form of an NP-Hard problem.

Collocation based wavelet methods

In the previous section, we discussed sparse adaptive representations in the
wavelet domain. These methods have excellent adaptation properties are can
be proven to be in certain aspects optimal. However, the sparsity is in the
transform domain, and therefore to be utilized processing tasks must be done
there. This requirement can cause issues for specific problems that are more

42



Chapter 3. Representation criteria and previous work

Figure 3.4: Adaptive image representation using triangulated mesh using the Adaptive Thinning Method intro-
duced in Demaret et al. [40]. The left image shows the reconstructed pixel image from the representation and
right a representation of the triangulated mesh. (Reproduced from Demaret et al. [41])

suited to the original function domain. To overcome such issues for solv-
ing PDE’s [19], new wavelet techniques [55, 19, 131, 97] have been developed
based on concepts such as interpolating [45], and second generation, wavelets
[131, 120]. These methods, often called collocation wavelet methods, utilize
the adaptivity properties of wavelets, but the approximation coefficients a; ;
are collocation points of the function, and detail coefficients d; ; a measure
of error in some interpolation scheme. Thresholding of detail coefficients can
then be used to form a grid, that can utilize both wavelet, and function do-
main methods. Schneider and Vasilyev [114] provides a recent review of these
methods.

Collocation wavelet methods, often use dyadic multi-resolution grids [131],
meaning each point at a lower grid resolution is also in all higher grid reso-
lutions. Figure 3.5, shows an example of such an adaptive dyadic grid and
solution for the 1D Burgers equation solved by methods from Vasilyev and
Bowman [131]. The methods allow localization in the function domain, con-
centrating grid points, and hence computational effort, adaptively across the
spatial domain. An example of this adaptation is shown in Figure 3.6, showing
the adaptation grid in 2D for solving for a shock problem from gas dynam-
ics reproduced from Regele and Vasilyev [94]. Instead of simply relying on
thresholding, the methods usually require additional heuristic steps of adding
support nodes, and ghost layers [131, 97|, around the solution to make the
spatial adaptation from the wavelets usable for the processing steps. The use
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Figure 3.5: Example of an adaptive dyadic grid produced by the collocation wavelet method presented in Vasilyev
and Bowman [131] for the 1D Burgers equation. The left plot shows the solution u(z) at t = % and right

1.5

plot shows the dyadic adaptive grid also at ¢ = =2, where j, represents the resolution proportional to 27,

(Reproduced from Vasilyev and Bowman [131])

of interpolating wavelets [45] also allows for the computational of the detail
coefficients independently, allowing for distributed parallel implementations
such as Rossinelli et al. [97], that would likely not be possible with traditional
wavelet domain techniques.

The error of these methods, can be controlled proportional to the threshold
parameter € across the domain by bounds like

I1f = fllz. < Chell £z, (3.14)

where C is a constant that depends on f [131]. f [131]. The method can be
extended for sufficiently regular functions to bound higher order derivatives
[131].

Adaptive statistical methods

In statistics, there has been the development of methods for adaptive smooth-
ing and regression of noisy data using adaptive data-representations [47]. Donoho
and Johnstone [47], surveys these methods, showing that they can be inter-
preted as a combination of some adaptive sampling f{Z} and a smoothing
function d(x), and a reconstruction scheme using the two. Since #& < N,
these methods can be considered as sparse collocation adaptive representa-
tions.

The different methods align with using different reconstruction functions
and definitions of 0(z). The classification and regression trees method (CART)
[22], utilizes a piece-wise constant reconstruction and smoothing function. The
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Figure 3.6: Example of a 2D adaptive dyadic grid produced by the collocation wavelet method presented in
Regele and Vasilyev [94] for solving two-dimensional Richtmyer Meshkov instability problem at Atwood number
of 0.67 with ¢ = 2.65 units. (Reproduced from [94])

adaptive knot placement for spline regression [52, 51], also called MARS mod-
els, use piece-wise polynomial reconstructions, with piece-wise constant §(z).
Kartal Koc and Bozdogan [66] provides a recent review. Lastly, there are
adaptive bandwidth approaches for kernel regression [24]. These methods allow
more general form of reconstruction using compact supported kernel functions,
and continuous §(z). Kohler et al. [69] provides a recent review.

Reflection on RC

The last group of methods appears to be closer to satisfying our representation
criteria. They incorporate adaptation to different spatial scales, while adap-
tively sampling to reduce computational and memory costs to #R < N. Also,
the adaptive sampling is in the function domain, likely making implementation
of classical "pixel’ algorithms ’easier’ across a wide range of tasks.

Across the methods, there is usually a user-specified threshold or parameter
that allows proportional adjustment of the approximation error. However, this
control is usually global, and with exceptions, do not pointwise bound the
error as specified in RC1. Further, as is, they do not provide a means for the
incorporation of a local intensity scale or gain control.

Regarding computational cost and RC3, we require the methods to be
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Ease of use

Performance Sparsity

Figure 3.7: Schematic representing the trade-offs between a representation having high sparsity, i.e. requiring a
low number of coefficients, high performance regarding individual operations, and ease of use regarding developing
and implementing new algorithms.

able to scale to large datasets (> 1000%). From the execution time analysis of
Sarkis and Diepold [104] and Adams [3], the adaptive mesh methods, appear
likely to be too computationally costly. With the methods ranging from .5 —
40 seconds to compute the solution on as small as a 512 x 512 test image
when optimized and implemented in C++. Making them unlikely to efficiently
scale without further development to images up to 4000 times larger. The
methods that have been developed for PDE’s, such as the wavelet collocation
methods, AMR, and AFEM, likely exhibit better scaling behavior. These
methods often have distributed parallel memory implementations [97] allowing
them to scale to very large problems. A caveat here is, is that these algorithms
a largely designed for adaptation of the solution through time. Therefore, the
input for the next time-step is simply the adaptive representation for the last
dataset. Hence they are not optimized, or implemented, for transformation to
an adaptive representation from an arbitrary solution on large regular grids as
is the case for LSFM data.

A final point relates to RC4 and an adaptive representations ability to
translate the sparsity of representation into decreases in memory and com-
putational cost for a range of algorithms. As discussed by, Rossinelli et al.
[97] and Berger and Colella [18], there is often a trade-off between the spar-
sity of the representation #R and the complexity and cost of implementing,
and performing processing tasks, using R. For example, the higher the degree
of relative sparsity a representation can achieve, often comes at the expense
of more complicated data structures, implementation complexity, and costly
individual operations over elements. Hence, for certain representations and
applications, it is more efficient to reduce the level of adaptivity to simplify
data-structures and speed up costs of individual basic operations [97, 18].
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3.4 Discussion

The first observation from the review and discussion is the high popularity and
success of adaptive representations across different areas of application. With
developments ranging from, image processing, computer graphics, statistics,
and computational differential equations. With many core concepts, such as
the use of tree data structures, being common across many approaches, but
the exact implementation and emphasis reflecting the particular features of the
application and data. Hence, although no representation from the review meets
our representation criteria in full, this not through some deficiency. Instead,
reflecting that the combination of features and intended use-case set out by
the representation criteria not matching those of those intended for existing
methods. With LSFM data combining the challenge of varying spatial scales
in image processing with the computational and memory issues faced when
numerically solving particular partial differential equations.

From the three groups of methods discussed above, it seems that sparse
collocation adaptive methods are closest to satisfying the representation crite-
ria. I conclude however, that there are two main concepts are not adequately
addressed in the literature and discuss them below.

3.4.1 Lack of local gain control (RC1)

The first is how to incorporate a local intensity scale into the error control as
outlined in RC1. However, with additional work, it is likely that many of the
above methods could be extended to include such a concept.

3.4.2 Use across a wide range of tasks (RC4)

The second relates to RC4, and determining the appropriate trade-off between
sparsity, performance, and ease of use to all a representation to be used across
a range of tasks originally designed for pixel images. We highlight the trade-off
between these factors in Figure 3.7 with a schematic triangle. Where the basic
intuition is, the greater sparsity the method achieves, the greater complexity
of the basis representation resulting in the higher computational cost per co-
efficient and complexity in use. Further, the more simple the representation is
to use likely comes at the cost of not using highly optimized data-structures
and algorithms. Of course, the ideal representation would provide the highest
of all three. Assessing RC4 is not aided in that the goal of is rather ambigu-
ous. However, in the discussion of RC4, we introduce the notion of different
interpretations of pixels that are utilized by different methods. RC4 can be
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satisfied by a representation both naturally sharing the interpretations of pix-
els while reducing computational and memory costs across them. In essence,
be as close to pixels as possible, while still achieving the other representation
criteria.

Interpreted in this way, subjectively, it seems that representations requiring
the use of basis functions or triangulations for their use, may be 'too far’ from
the original pixel images to be widely used. Ideally, the algorithm would allow
the most simple interpretation of pixels, as local piece-wise constant patches,
and also allow continuous representation as a smooth function, a particle graph,
and also as a tree structure.

3.5 Summary and main points

In the above chapter we have first outlined, and then discussed, five key proper-
ties that we propose a representation should have to as a general representation
solution for studying spatiotemporal processes in biology (STB) using Light-
sheet Fluorescence Microscopy (LSFM) data as described in Chapter 2. We
named these five criteria, the representation criteria (RC). Following this, we
reviewed the different ideas and approaches of existing multi-resolution and
adaptive representations and reflected on how they could meet the represen-
tation criteria. We concluded by discussing the results and highlighting two
areas, local error adaptation and integration of a gain control (RC1), and the
ability to easily be used across a range of process tasks (RC4) as the main
areas requiring further development.

Summary of the chapter

e Introduced the five Representation Criteria RC, outlining desired
properties of an adaptive representation for processing on LSFM data

e Provided definitions and surveyed the literature of multi-resolution
and adaptive-representations, focusing on core ideas, across research
areas

e Identified sparse collocation adaptive representations as closest match
to the representation criteria

e Concluded further development was needed to satisfy RC1 through
local error adaptation including a ’local gain control’, and increased
simplicity and similarity to pixel images for the satisfaction of RC4
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In this chapter, we introduce the Adaptive Particle Representation (APR),
an adaptive sparse collocation representation designed for LSFM data. The
development of the APR represents the main theoretical contribution of this
thesis. The APR is motivated by the processing bottleneck and issues raised
in Chapter 2 and designed to fulfill the representation criteria (RC) outlined
in Chapter 3.
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Chapter 4. The Adaptive Particle Representation (APR)

The chapter is structured as follows. First, I present the mathematical
problem to which the APR is a solution. The explanation takes multiple
steps, first with the derivation of two conditions, the Reconstruction Condition,
and Resolution Bound, that we require the representation to satisfy. Then
using an introduced concept of Particle Cells we derive the Pulling Scheme an
efficient algorithm for satisfying the conditions. The solution is first derived
and explained in 1D, with formal proofs for the general dimensional problem
presented later in the next chapter. I have structured the chapter this way to
first focus on the ideas and concepts, and later focus on the technical details.

4.1 Adaptive Particle Representation (APR)

The Adaptive Particle Representation (APR) takes a regularly sampled input
function, such as pixel images, and resamples it as a set of particles P and a
Resolution Function R(y) defined for all locations y in the domain Q. Where
particles p are collocation points in space, x, that 'carry’ properties evaluated
at that location, for example the function value f, = f(z,) (or an estimate). In
this way, then P is the set carrying all information for describing NN, particles,
ie. P= {{xp};v:”l, {fp}gjl}, being extended to include sets of other properties
if required. The Resolution Function R : 2 — R defines a local isotropic
neighborhood N at each point in the domain @ C R defining a subset of
particles that can be used in the reconstruction of the function at that y.
Therefore, R(y) defines a isotropic spatial length scale at every point in the
domain.

Formally, we consider a differentiable function f : 2 — R, that is known at
sampled location with fixed spacing, and is denoted as f{Z} where #z = N.
We represent the function for a given P and R(y) in the following way

fw=">  fla)sw) (4.1)

where N'(y, R(y)) = {z € Q: |[z—y| < R(y)} and &,(y) = £(y, ©,) are constants
that satisfy -, v, re) Sp(¥) = 1 with &,(y) > 0'. Where z, € N (y, R(y)),
means all particles in P that are in the neighborhood defined by N (y, R(y)).
The Resolution Function is set such that the reconstruction follows,

o

IThis positivity constraint can be relaxed, with a slight adjustment to the results, with
addition of reconstruction dependent constant

o < F (4.2)
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Figure 4.1: The left panel shows the Adaptive Particle Representation (APR) (E = 0.1 and o(y) = 1) (left)

—(y—0.01)2
and pixel representation sampled with h = 0.0078 (right) of a 1D guassian pulse (I(y) = e ‘oos 0.1) in
terms of a resolution function R(y) (bottom), and set of particles P (middle, top).

where ||x||oc = max,,cz x;, E is a user-specified relative error threshold and
o(y) called the Local Intensity Scale (¢ : 2 — R, and is required to satisfy
an additional ’'smoothness constraint’ given in 4.15). We call this bound the
Reconstruction Condition, and this holds for any £ satisfying the conditions
above and any P, where #(z, € N(y, R(y))) > 0 for all y € Q (That is, there
is at least one support particle in the isotropic neighborhood set by R(y)).
Figure 4.1, provides an example of a 1D Gaussian function represented as
described by P and R(y). The left pane shows the Adaptive Particle Repre-
sentation, and the right shows a pixel image also intepreted as above.

4.1.1 Main results

Now we will briefly describe the main result of this thesis. The APR places
two further restrictions on the problem defined above. First, we constrain the
resolution function R(y) to also satisfy

Rly) < min (L(z 4.3

W) < pin (L)) (4.3)

where L(y) = |23 is called the Local Resolution Estimate and we assume
3y

Y
we have access to g—i. We call the constraint 4.3 the Resolution Bound. If
R(y) satisfies the esolution Bound, then it also satisfies the Reconstruction

o1



Chapter 4. The Adaptive Particle Representation (APR)

Condition (for special o). We note, that when % = 0, and hence L(y) is not

defined, we can interpret this simply as the point not placing any constraint on
the global resolution function at that point. Therefore, practically, divergent
L(y) does not present an issue. Second, we constrain R(y) to be an Implied
Resolution Function R*(y), that is, it is constructed out of piecewise constant
blocks we call Particle Cells.

Result 1

Here we present a worst-case linear complexity in N algorithm, known as the
Pulling Scheme, that can find the optimal R*(y) and particle set P that satisfy
problems in the form of the Resolution Bound (4.3) for general L(y). Where
the optimal Implied Resolution Function is the R* that satisfies

argmax/ R*(y)dy (4.4)
Rer* Jo

where R* is the set of all Implied Resolution Functions R*(y) that satisfy the
Resolution Bound 4.3. The optimal P* is then the particle set that satisfies,

#(xp, € N(y, R(y))) > 0, and #P = [, 55y
Result 2

Given the local resolution function o(y) is sufficiently slowly varying (see 4.15),
and L(y) = |Z5%|, then the reconstructions f formed using R*(y) and P will
By

Y
satisfy the Reconstruction Condition 4.2.

Result 3

The Implied Resolution Function R*(y) and Particle Cell set P, can be com-
pletely described by a set of Particle Cells V = {{cip,lp};v:pl](ip, l,) € Z} (ie. it

can be defined by N, length sets of integers) and P* = {{ fp}gﬁl}. The combi-
nation of these two sets {V, P*} we call the Adaptive Particle Representation
(APR). 2

4.1.2 Motivation of formulation

Before explaining and proving the above results in detail, we shall first briefly
reflect on the motivations/advantages for formulating the APR in this way.

2With the difference between P and P* being the explicit storage of the particle locations
in the former
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Reconstruction Condition

First, we consider the Reconstruction Condition and form of function represen-
tation. First, the Reconstruction Condition allows direct fulfillment of RC2
and makes the inclusion of a local intensity scale central to the representation
and pointwise error control. Second, the explicit inclusion of Resolution Func-
tion gives a direct measure of a minimum local length scale at each point. This
Resolution Bound is analogous to the smoothing scale discussed by [47] and
discussed in the previous chapter. We show later in Chapter 6 this adaptation
allows the APR to scale linearly with the information content regarding the
Object function O (RC1).

Function reconstruction

The choice of function reconstruction in 4.1 differs from most representations
discussed in Chapter 3 in that it does not depend on a specific reconstruction
basis or kernel. This form was motivated by RC4, and the need for the APR
to be used across a wide range of processing tasks. This represents an attempt
to be as ’close to pixel images as possible’ while still satisfying the RC. The
formulation of 4.1 allows a wide range of interpolation, or reconstruction, meth-
ods to be used to form f . Ranging from piecewise constant representations
of the image to smooth differentiable representations possibly used B-splines,
wavelets, or Partition of Unity [16] formulations. Formulated in this way the
APR guarantees that all such reconstruction methods will satisfy the Recon-
struction Condition if the coefficients satisfy the stated conditions and only
sample locations within that defined by the Resolution Function. This general
form of reconstruction comes at the cost of the sparsity of the representation.

Implied Resolution Function and Particle Cells

As is detailed below, the use of Particle Cells is central to the development
of the Pulling Scheme and satisfaction of RC3. Further, the use of Particle
Cells allows for efficient storage in memory of both the Resolution Function
and particle locations.

4.1.3 Extensions

The APR as discussed in this and the following three chapters represent the
most simple out of a class of representations that can be formulated similarly
to above. One extension is a series of representations that require the recon-
struction coefficients satisfy an increasing number of moment conditions, and
adapt to higher order derivatives of the function. Other extensions include
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additional reconstruction conditions placed on higher derivatives of the func-
tion and anisotropic resolution functions. These representations are discussed
in Chapter 9. Although these extensions can result in greater sparsity, they
come at the sacrifice of simplicity and generality (The trade-off shown in Fig-
ure 3.7). Because our goal here is a general-use representation, we focus our
attention in the next chapter to the simplest model as proposed above.

Lastly, an important extension is the incorporation of time to allow for
satisfaction of RC5. We discuss the extension of the APR to account for time
in Chapter 10, and it follows the ideas presented here, but adapted to the
unique features of time. The extension is done such that it directly uses this
space-adapted APR presented in this Chapter.

4.2 APR description

In this section, we describe and explain the derivation of the main results
stated above in 1D for simplicity of notation and explaining ideas. The fol-
lowing chapter presents the general dimension case and provides the proofs of
theorems referred to in this section. First, we go through the derivation of the
Resolution Bound, and how it relates to the Reconstruction Condition. Next,
we present Particle Cells, and how they can be used to find Implied Resolution
Functions that satisfy the Resolution Bound. Lastly, we present the Pulling
Scheme, the algorithm that allows efficient formation of the APR.

4.2.1 Reconstruction Condition and Resolution Bound

Let us continue with the problem as outlined above, and consider the function
represented as

f(y) = Z foép(y) (4.5)

zpEN (y,R(y))

where we do not assume any particular distribution of particles P, but as-
sume there is at least one p € N(y, R(y)) for all y. We then consider the
reconstruction error at each point y € Q) as

e(y) = f(y) — f(y), (4.6)

which by assuming the function has a continuous derivative can express this
by taking Taylor series expansions of f,, centered at y and using the integral
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form of the remainder [103] as,

=fw- > (f(y)ép(y)Jr

zpeN (y,R(y))

(y — ) (y) /0 %f(y + s(xp — y))d8> (4.7)

now by using that preN(y,R(y))) &y) =1

Lo
e(y) = E (y —2,)&(y) | = fly+ s(x, —y))ds. (4.8)
) /0 0y

zpeN (y,R(y

We can bound this exact expression of the error, using a uniform estimate,
by bounding each integral using the maximum gradient over the interval and
using the triangle inequality and the fact that by definition |(y — z,)| < R(y)
we get

i< 3 6wl |Re)  max (20

z*eN (y, a
zpeN (y,R(y)) EN(y,R(y)) Y

| (4.9)
and in now assuming® also &, > 0 therefore (preN(y,R(y)) |§p(y)|> =1 so we
get

of (z*)
<R
W)l < Ry) _ _max y

. (4.10)

Now returning to the Reconstruction Condition, we can re-write the infinity
norm as a bound on each y € Q as

le(y)| < Ea(y). (4.11)

So, using 4.10, 4.11 will be satisfied, if

R max < Fo 4.12
) _max (ST < Eoly) (1.12)

3The procedure from here can be done without this assumption, however this leaves the
sum of the coefficients in the resulting expressions
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Figure 4.2: Schematics showing the Reconstruction Condition 4.2 (left) and Resolution Bound 4.3 (right). The
Reconstruction Condition, requires that at each y the reconstruction error for f(y) is below Eo(y) for any
coefficients &; satisfying that stated conditions. The Resolution Bound, instead places a geometric bound on the
relationship between the Local Resolution Estimate L(y). Requiring that a rectangle centered at y, with height
R(y) and width 2R(y) does not intersect L(y*) for all y* € Q. Two possible values of the resolution function at
y are shown. One that satisfies the Resolution Bound, R1(y) and one that does not Ra(y).

which we can formulation in terms of the Resolution Function as

Eo(y)

R(y) < T (4.13)
MaXz+eN (y,R(y)) \a—y
This we can then re-write as
R(y) <o min x” 4.14
W) <oly) _pin (o) (419
where g(z) = % which we can see is almost the Resolution Bound, only
“oy

the local intensity scale o(y) is outside the max.

Restriction on Local Scale Function

To get 4.14, into the form the Resolution Bound requires an assumption that

o(y) Jpin, (9(@) = _ i, (0(y)g(x)) (4.15)
this, therefore, provides a constraint for the information scale o(y) to ensure
this approximation is valid. For this to approximately hold, o(y) must be
sufficiently slowly varying. That is it must be approximately constant over
N(y,R(y)). In general, this can not be guaranteed except in the case where
o(y) = op is a constant. However, in our examples, results are shown in
Chapter 6 reflect that the reconstruction condition still holds when o(y) is a
smoothed local estimate of the range of f(y). Further, the restriction is slightly
relaxed, through the use of Particle Cells, as discussed in 4.3.5.
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Resolution Bound

Then, given this being satisfied, or an approximation, we have the Resolution
Bound,

Ry) = _ R, (L(z)) (4.16)

where, L(y) = ‘Ea‘f’—(%’))l is called the Local Resolution Estimate. The specific
oy

form 4.16 is requireyd for the algorithms used below.

Intuition for Resolution Bound

We shall briefly reflect on the Reconstruction Condition and Resolution Bound
to gain some intuition on their difference. The Reconstruction Condition is the
easier of the two to interpret, and is illustrated in left panel of Figure 4.2. The
Reconstruction Condition requires that at each point y € €2, the reconstruction
by any combination of positive coefficients ¢ summing to one should be within
Eo(y) of the function f(y). In Figure 4.2 ((right)), we illustrate the Resolution
Bound. The Resolution Bound requires that a rectangle centered at y of height
R(y) and width 2 x R(y) does not anywhere intersect with the curve L(y). To
give further intuition on how L then relates to the derivative, and a bound
on f, we show them in Figure 4.3. In the top panel we show an example of a
value of R(y*) that violates the Resolution Bound in red, and a sub-optimal
R(y*) that satisfies the Resolution Bound in blue. It is sub-optimal, as a larger
R(y*) would also satisfy the Resolution Bound. The optimal R(y*) is given in
the bottom panel in green.

Continuous solutions

From the formulation above, we know that the Resolution Bound represents
an equal or tighter bound on R(y) then the Reconstruction Condition. That
is the optimal solution (largest everywhere) to the Resolution Bound R.(y)
will always be less than or equal to the optimal solution to the Reconstruction
Condition Ry(y). This difference comes from the constant approximation to
the integral in 4.8. In the limit as R(y) — 0, the two become equivalent. The
dashed lines in Figure 4.4 show this for the 1D Gaussian example. Where
by continuous in practical examples we mean the solution can take any value
corresponding to ¢ x h, where h is the sampling resolution, and ¢ is a positive
integer. These solutions have been calculated using a brute-force approach.
The Reconstruction Condition can be solved by ensuring the worst-case recon-
struction has an error less than Eo. This can be done by finding the value
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Figure 4.3: An example of the optimization problem for finding the optimal resolution R(y) for a given point
y and function f(y) that satisfies the Resolution Bound and how it relates to the function and its derivative.
The top plots shows a R(y) that is too small in blue, and too large in red. The uppermost plots show the
absolute value of the gradient of the function, and its maximum value in the isotropic interaction neighborhood
N (y, R(y)). The second plots show the function f(y) and also the two error bounds for the reconstruction at
the two different resolutions R(y). The third plots shows the Local Resolution Estimate L(y) and also shows a
graphical description of the Resolution Bound. To be satisfied, the line must always be below L(y) within R(y)
(L(y) cannot intersect with the rectangle). In this way, the (top) red solution does not satisfy the Resolution
Bound, although the blue solution does. However, this is not the largest possible R(y) and hence, not optimal
R(y). We can see that the green solution (bottom) also satisfies the Resolution Bound, and does it optimally, as
any increase in R(y) would violate the Resolution Bound.
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Figure 4.4: The Local Resolution Estimate, optimal continuous resolution function satisfying the Resolution
Bound R.(y) and the continous optimal resolution function satisfying the Reconstruction Condition R;(y) for
the 1D Guassian shown in Figure 4.1

for which |f(y) — f(y*)| is largest for all y* within R(y) of y. This is a re-
sult of the positivity constraint on the coefficients. Using this, a brute-force
approach iterates over a sampling of the function f{Z} and checks the values
of |f(y) — f(y*)| increasing the neighbourhood of the search (R(y)) until it
is larger than Fo. Similarly, for the continuous resolution bound, the brute-
force approach iterates over L{#}, increasing the neighborhood at each point
until R(y) > L(y*). Unfortunately, both of these approaches are O(N?) worst
case complexity and scale very poorly to even moderately sized problems (See
A.2.1 for more discussions relating to continuous solutions). Further, how to
find the optimal P for a general R(y) beyond 1D is, to my knowledge, an
unsolved problem. In 1D an approach similar to that in [38] can be used, how-
ever in practice R{Z} would also have to be stored, meaning the representation
would not be sparse.

4.2.2 Particle Cells and Implied Resolution Functions

The problem is formulated as the Resolution Bound because this allows it to
be solved optimally using a linear in N number of operations from f{z} if
we restrict the resolution function R*(y) to be composed of a particular set of
square blocks. Such a function is shown by the bold black line in Figure 4.5.
In this section, we describe these Resolution Functions and blocks and relate
them to the Resolution Condition.

29



Chapter 4. The Adaptive Particle Representation (APR)

0.5 ————eeeee
0.4 I Particle Cells
. I R (y) 1 =level
Cil Q | i=location
03¢ 0 ‘ 2 a= length of
R [ L= % domain
(y) 02l 2 & 1
I 5
0.1}
C C
-0.5 0 0.5
)

Figure 4.5: An Implied Resolution Function R*(y) (black line) constructed out of blocks called Particle Cells
c;,j. Particle Cells are defined by their location ¢ and level [, as shown in the inset. Implied Resolution Functions
require that there is only one Particle Cell placed in any location y (no overlap).

Implied Resolution Function

The resolution function composed out of these 'blocks’, R*(y), we call the Im-
plied Resolution Function, and the square blocks we call Particle Cells (see
Figure 4.5). The Implied Resolution Function is the piecewise constant func-
tion described by the uppermost edge of the box, as shown in Figure 4.5.
Particle cells have sides of length %, where € is the size of the domain, and [
is a positive integer we call the Particle Cell level. Hence, particle cell (block)
¢, is uniquely determined by its level [ and location i. Figure 4.5 (inset) il-
lustrates these definitions for a single Particle Cell. The size of the blocks, and
hence levels, are set such that the lowest level is half the size of the domain
Q (lmin = 1), and the highest level [,,4, aligned with the dimension of the
original pixels. For domains that are not powers of 2, this requires extending
the domain €2. If we define the following characteristic function

1y e[, (i+1)27'Q)

, (4.17)
0 otherwise

<b(y, Ci,l) = {

60



Chapter 4. The Adaptive Particle Representation (APR)

0-5 T T T
041 —R(y) /0
b 22 L [ I———" R, (y)
AN 1
N, 4
L™ gt
N, #
N, #
0 3 I b S
. N “ Vs
[ ", 4
\, N, § Va
L . N p -
. N, #
F p s s
N N\, P J
N, N, 4
- \, \, ¢ , .
. N 4 #
N, " + 4
I N, N, g
NN ¢ 4
L N sy
s
NN, 4
1 “ N, S
. B ~, Rad
. e
L A R
o, Ol
L NN -
AR - 221
O I LY anfating i

Figure 4.6: Comparison between the optimal Implied Resolution Function R* and the optimal continuous solutions
to the Resolution Bound R. and Reconstruction Condition Ry.

then the Implied Resolution Function R*(y) for a set of Particle Cells V is

R'(y) =Y oy, ci,z);. (4.18)

CiJEV

The problem of finding the optimal (largest everywhere) Implied Resolution
Function, can be reduced to finding the smallest set of blocks V that defines
a Resolution Function R*(y) that satisfies the Resolution Bound. We call
such a set of Particle Cells V the Optimal Valid Particle Cell (OVPC) set.
Given R*(y) also satisfies the Resolution Bound, then necessarily, R*(y) <
R.(y) < Ry(y) as shown in Figure 4.6 for the 1D Gaussian example. The
Implied Resolution Function is only defined for Particle Cell sets ) that form a
spatial parition of 0, thats is {J,, ¢y, supp{e(., ci;)} = Q and supp{¢(., ¢;, 1, )} N
supp{o(., ¢ip1,)} = 0 for all pairs of Particle Cells in V (i.e. (i1, 1) # (iz, l2)).

To construct an algorithm that finds the OVPC set for a given Local Reso-
lution Estimate L(y) requires the formulation of the Resolution Bound in terms
of Particle Cells. This formulation first requires arranging the set C of all pos-
sible Particle Cells ¢;; by level [ and location ¢ as a tree structure as shown in

Figure 4.7. In 1D this is a binary tree, in 2D a quad-tree and 3D an oct-tree.
This is the same structure as used in the Haar wavelet and pyramid image for-
mulations [4]. When arranged as a tree structure, we can naturally define both
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Figure 4.7: TThe dyadic decomposition of the Particle Cell Set C of Q2 x €2 represented as a tree structure. The
set of neighbors of a Particle Cell are shown in blue, and children in green.

children and neighbor relationships between Particle Cells, as shown in green
and blue in the example. Also, we define the descendants of a Particle Cell, as
the set of all children, and children’s children up to the maximum level [,,,;.
Given these definitions the Local Resolution Estimate can be represented as a
set of Particle Cells £ by iterating over each pixel y, and adding the Particle
Cell with level [ = [log, %J and location i = L%IJ to L if it is not already
in L. Figure 4.8 shows a representation of how L relates to L(y), with £ also
represented in the tree. We call this set of Particle Cells the Local Particle
Cell (LPC) set L. Formally,

;,%)} (4.19)

are set to =2— + 4 such that these areas

Almaz

£= ey € CAW LU v € (i, i+ D] L") €

defines the LPC. Where L(y) < 5,
with generate Particle Cells at [,,,,. In practice an alternative definition is
used, effectively, taking Particle Cells one lower level than above, but gives the
same R* (see 4.2.3). But above, is the more natural definition, and coincides
with taking a truncated lower bound on L(y) at each point. Using this LPC
set L we can now represent the Resolution Bound using Particle Cells.

Theorem 1. A set of Particle Cells V will define an Implied Resolution Func-
tion that satisfies the Resolution Bound for a given L(y), iff, the following
statement is true: for every Particle Cell in V none of the Particle Cells de-
scendants, or neighbours descendants, are in the LPC set L
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Figure 4.8: Schematic showing the formation of a Local Particle Cell (LPC) set £ from the Local Resolution
Estimate L(y)

See the following chapter Theorem 1 for the proof. We call any set of
Particle Cells satisfying this statement valid. The Optimal Valid Particle Cell
(OVPC) set V, is then defined as the set for which the replacement of any
group of Particle Cells with a larger Particle Cell would result in V no longer
being valid (Theorem 2).From these definitions, the OVPC set can be found
using a simple algorithm that explicitly checks the validity and optimality
condition of potential particle configurations. The algorithm involves iterating
from the lowest level [ to higher levels, and replacing larger Particle Cells with
smaller Particle Cells until the whole set is valid. However, such an approach,
although linear in N, does not utilize the regularity and redundancy of Particle
Cells, and as a worst case checks the validity and optimality of every Particle
Cell.

4.2.3 Pulling Scheme

Here we present a novel algorithm for finding the OVPC set called the Pulling
Scheme. The name comes from the way a single small Particle Cell in £, pulls
the Resolution Function down to smaller values (by forcing smaller Particle
Cells) across the domain like a weight placed on a trampoline (See Figure 4.10
and Figure 4.11). The Pulling Scheme finds the OVPC set V directly, without
explicitly checking validity or optimality. Three properties of OVPC sets are
used to derive the algorithm. We list them below:
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Boundary Particle Cell 2.) Add neighbours of boundary pc as filler pc

2

2 ~
N

L={C633}

Figure 4.9: Schematic how an OVPC set V can be generated when £ = {c;;} has only one Particle Cell. We
give Particle Cells an additional property called type, based on how the Particle Cell was added to the set V.
Particle cells that are in both V and L are of type seed. Particle cells that are neighbors to a seed cell are type
boundary. All others, are of type filler. V is created by first adding c; ; (1.), and its neighbors (2.) on the same
level and their neighbors (3.). The domain is then filled, allowing only one level change at once, and ensuring the
resulting set forms a spatial partition.
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1. OVPC sets have a predictable and self-similar structure (See Figure 4.9

and Figure 4.10, is best seen in 2D as in Figure 5.2). The predictability
is reflected in neighboring Particle Cells never differing by more than
by one level and having a common pattern of Particle Cells around the
smallest Particle Cells in the set (highest level (resolution)). This local
structure is independent of absolute level [ and therefore adds the self-
similar structure to the sets. Using these structural features, the OVPC
set V for a LPC set £ with only one Particle Cell ¢;; can be generated
directly for any ¢ and [. This is done by giving each Particle Cell added to
V an additional property called type = {seed,boundary,filler}. Figure 4.9
illustrates the process. The solution is generated starting by with ¢;; and
adding this Particle Cell to V with type seed. Next, the two neighbours of
c;; are added to V with type boundary. Then for these boundary Particle
Cells their vacant neighbours are added with type filler. The last step
fills the rest of the domain with Particle Cells of type filler. Adding
adjacent Particle Cells increasing by at most one level, adding a Particle
Cell at the same level if the higher level Particle Cell would cause an
overlap between cells in V.

. OVPC sets are what we call separable (Lemma 1). This Lemma says

that we can find the OVPC set given an LPC set £, by solving for the
optimal Particle Cell set of each Particle Cell in £ separately and then
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L= { 06‘38}

L= {19}

L= { C6,19, 06,38}

0 0.2 0.4 y 0.6 0.8 1

Figure 4.10: lllustrates three OVPC sets V for three different LPC sets £. The colors of the Particle Cells indicate
their type. The three together illustrate the separable property of OVPC sets, as the OVPC set of the two Particle
Cells (bottom), can be formed by taking the smallest Particle Cell in each location of the top two OVPC sets.

taking the smallest Particle Cells from this set that covers the domain.
Figure 4.10 illustrates this for two Particle Cells in £ (See Figure 5.2 for
illustration in 2D).

3. From Lemma 2 when constructing ) we can ignore all Particle Cells in £
that also have descendants in £. We call this property redundancy and
is a consequence of the descendant Particle Cell providing an equal or
tighter constraint on the resolution function everywhere in the domain
then its ascendant Particle Cell.

The Pulling Scheme uses all these properties to directly construct V by
propagating solutions from individual Particle Cells in £ using property 1,
one level at a time starting from the highest level of the Particle Cells in L.
Figure 4.10 shows a schematic of two solutions being propagated from two
Particle Cells. When two solutions meet at a Particle Cell, the precedence of
one solution depends on the Particle Cells type where they meet. Precedence
is ordered from seed>boundary>filler. This order represents the solution that
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R (y)

Figure 4.11: The basic idea of the Pulling Scheme. R* is propagated outwards from higher levels to lower levels
utilizing property 1 and property 2 of OVPC sets. When two solutions meet, only one needs to be propagated.
Therefore, by propagating solutions from ly,q2 to lin and propagating the solution to higher levels using the
filler type Particle Cells, the solution can be constructed directly, without checking the validity.

provides the ’tighter’ constraint on the resolution function. Then only the
solution with precedence needs to be propagated. The Pulling Scheme can be
implemented in many different ways, and see the next chapter for a general de-
scription 5.4.5. Here, we describe an implementation that uses a data structure
that explicitly stores C the full Particle Cell tree. This is the form of Pulling
Scheme used for the benchmarking sections below, see A.4.1. However, other
forms are possible that do not require the explicit storing of the tree structure
(see 5.4.5 for a discussion). *

Algorithm 1 describes the four steps of the algorithm on each level iterating
from the highest level [,,,, to lowest level [,,;,. Figure 4.12 gives a schematic
representation for each of the steps. This requires extending the definition of
type to also include, ascendant,ascendant neighbour, and propogate, which are
used for Particle Cells that are not in ) but used in the algorithm. The use of
these allows the efficient propagation of the solutions with minimal operations.

Equivalence optimization

In practice, we use an optimization to the above scheme, which produces an
identical solution but reduces the computational and memory cost by a factor
of 24, where d is the dimension (Lemma 3). See 5.4.4 for the proofs extended
to this case. The optimization involves utilizing the difference between the
boundary and seed Particle Cells and filler Particle Cells and uses the exact
pulling scheme as above. However, it uses a different £. We additionally define
the natural LPC £,, as

Q Q

Lo = e € CAW L)) v € (i, (4 D) L) € [orp o)} (420

4The implementation of the algorithm described here, and its parallelization were devel-
oped in collaboration in Mattius Sasuik
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note the change in the last interval from [5, ) to [57, 5) and lnae =

lmaz — 1. This coincides with a Particle Cell being in £, if the function L(y)
passes through it, when represented as in Figure 4.8. If the pulling scheme
is run on £,, and produces V, then, all Particle Cells ¢;; with type seed and
boundary, are replaced by their children to form f}, this is identical to the
solution formed by the pulling scheme directly on £ to produce V. That is
V =V (Lemma 3).

Computational and memory complexity

Here we address the computational and memory complexity of the Pulling
Scheme using explicitly storage of C as described above. We will discuss the
equivalence optimized version described in the previous section as this is used
in practice. Although the above is given in 1D, all results hold in general
dimension d, so we will give this analysis for general dimension d.

First we consider the size of C, for a given problem with [,,;, and [,,q.,
where N = 2%maz then storing C requires a data-structure with

lmaz—1
Vo §
9d(lmaz+1) _ 9dlmin
-1 (4.21)

entries, because the highest level in the structures is l,,.. — 1. If we then
consider the ratio of the size of the data-structure to the original data size N,
we get

Ne 1 1
¢ < 1—— 4.22
N—Qd—1( N) (4.22)

where we have set [,,;, = 0 as a worst case. Therefore, in the large N limit,
we get % ~ 2d1—1' Which gives us upper bounds of N in 1D, % in 2D, and %
in 3D for the size of the required data-structure. Given there are only seven
unique values that are needed for the algorithm, then each only requires 3 bits
of information to be stored. Although this is not likely in practice, due to
available data types, the Pulling Scheme requires at most 237 7 bits in memory.

For the worst-case computational complexity, we can consider L* = C*,
where C* is C restricted to [, — 1. That is every Particle Cell is in £*. Now
each, step requires iteration over the data-structure given O(N¢) operations.
All parent and neighbour operations scale with dimension d, and therefore for

fixed d, have a fixed cost. Therefore, again we can get an upper bound on all
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steps taken across Algorithm 1 as O(N¢). Therefore, the whole algorithm is
worst-case O(N¢) which is O(N).

In practice, the performance of this algorithm is more complicated depend-
ing on N, £ and the spatial distribution of Particle Cells. From the steps above,
we can see that the number neighbor searches at the highest resolution are the
number of seed Particle Cells at that level. The most costly steps scale with
the number of seed Particle Cells (#(£ NV)). This is compared to the neigh-
bor and filler Particle Cells that incur proportionally fewer operations. Hence
tentatively we would expect the performance to scale as O(N + #(L NV)),
with the different term dominating depending on situation. Further, the exact
cost also would depend on the spatial distribution of £. We benchmark the
behavior of these scheme in Chapter 6 below.

Therefore, the above shows how the Pulling Scheme satisfies constructed
R*(y) in worst case N steps as in Result 1. The last point missing is the
formulation of P that we address in the next section.

4.2.4 Choosing the Particle Set P

Given the Implied Resolution Function R* (represented by V) computed by
the Pulling Scheme, the last step of forming the APR (and outlining Results
1-3) is determining the sampling of particles P. We must sample particles such
that at all pixel locations y there is at least one particle within a distance of
R(y) (#(x, € N(y, R(y))) > 0). We satisfy this by placing one particle at the
center of each Particle Cell in V. Specifically, for each Particle Cell ¢;; in V
we add a particle p to P with location

Yp = ;(z +0.5) (4.23)
where we ignore any constant offsets. Within a Particle Cell ¢;; in V the
Implied Resolution Function R*(y) is equal to the width of the Particle Cell.
Therefore, a particle placed in the center is within R*(y) of all y within the
Particle Cell, guaranteeing #(y € N (y, R(y))) > 0. Given the particle loca-
tions y, the last step is to store the intensity at the point I, = I(y,) using an
estimate from the original image. We store these sampled particle intensities
in P*.

Although simple, such a sampling is also in a sense optimal for a given
Implied Resolution Function. We define an optimal sampling of a given R(y)
as the sampling that satisfies

1
#p= [ et (4.24)
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Data: Particle Cell set £
Result: Optimal Valid Particle Cell set V(L)

Function pulling_scheme(L)
Represent all possible Partile Cells C from I,,,4, t0 i in

multi-resolution pyramid mesh and set all Particle Cells to
EMPTY;
forall Particle Cells ¢ € C where c € L do
| p.type = SEED
end
for I, = 1,02 : Linin dO
/* Fill neighbors (Step 1) */
forall neighbors n of ¢ € C(l.) where c.type is (SEED or
PROPOGATE) do

if n.type 1s EMPTY then
| n.type = BOUNDARY

end
/* Set Parents (Step 2) */
forall parents p of ¢ € C(l.) where c.type is (SEED,

PROPOGATE, or ASCENDANT) do
| p.type = ASCENDANT

end

if I. > [,,;, then

/* Set Ascendant Neighbors (Step 3) */

forall neighbors n of c € C(l. — 1) where c.type is
ASCENDANT do

if n.type 1s EMPTY then
| n.type = ASCENDANT_NEIGHBOR

if n.type is SEED then
| n.type = PROPAGATE

end

/* Set Fillers (Step 4) */

forall children d of ¢ € C(l. — 1) where c.type is
(ASCENDANT_NEIGH or PROPOGATE) do

if (d.type is EMPTY then
| d.type = FILLER

end

end
return all type SEED, BOUNDARY and FILLER Particle Cells in C
as V;

Algorithm 1: An example of a Pulling Scheme algorithm for generating a
OVPC set V from local Particle Cell set £ using a temporary pyramid mesh
data structure
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Step 1
l.—1—o—+—0—t : : : o
. HO+O+O+0+0—+o+ f—o—f—o—+—o—+-@+O0—+0
Step 2
lo—1t : : : : : : |
I, HO+O+O0+0+0—+o+ —o—4—0—4—0—+-O—+O—+0
Step 3
l—1t : : : : : : |
l. FO+O+O0+0+0—+o+ —o——o—+—o—+@+O—+0
Step 4
le—1t : : : : : : |
. HO+O+O0+0+0—+0+ —o—+—o—+O-+0+0—+0

Figure 4.12: Schematic illustrating the four different steps in Algorithm 1 for the Pulling Scheme. The colour of
the dots, identifies the type of Particle Cell. Blue dots represent seed, boundary in green, filler in grey, ascendant
in red, ascendant neighbour in yellow. These four steps occur on each level from the highest level I, 44 to lowest
lmin. Step 1, seed Particle Cells, or propogate, add neighbour cells as boundaries on level .. Step 2, seed and
ascendant Particle Cells set their parents (I — 1) to ascendant. Step 3, the ascendant particles on [ — 1 set their
vacant neighbours to ascendant neighbours. Step 4, Particle Cells of type ascendant neighbours and propogate
on level I — 1 set empty children in [ to filler.
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and #(y € N(y,R(y))) > 0 for all y € Q. We have no proof for this being
optimal. Indeed, for arbitrary R(y) you can construct samplings that satisfy
#(y € N(y,R(y))) > 0 and not 4.24. However, intuitively, if we consider %
as the point-wise required density, then ignoring edge effects, this means that
satisfying 4.24 leads to this density being realized. Further, this integral is also
satisfied for a constant regular sampling such as pixels.

If we now consider, the integral 4.24 for the Implied Resolution Function

R (y),

Y= Y
o R*(y) QD e, ev Y, Cit)
=21

Ci,lev

= #V = #P (4.25)

as required, and therefore P* is optimal in the sense of 4.24. Hence, the Pulling
Scheme in addition to providing an optimal Implied Resolution Function also
provides an inherent 'optimal’ sampling.

4.2.5 Forming the APR={V, P*}

The combination of the Particle Cell set V and P* fully define the APR.
Where V = {{cip,lp};vz’ﬂ(ip,lp) € Z}, and requires storing the integer i, and
ly, and P* = {f; = f(u) Z]-\ﬁ'l. The Implied Resolution Function R*(y) and
the particle locations y, do not need to be directly stored as they are both
directly calculatable from V. Alternatively, Vy can be stored instead of V),
however this requires also the additional storage of the type of each Particle

Cell (seed,boundary, or filler).

4.2.6 Summary

Therefore, the above concludes the presentation of the Results 1-3 presented at
the beginning of the chapter. We focused on the 1D case for ease of exposition.
The same results with the formal proofs are given in a more general formulation
in the next chapter.

4.3 Practical considerations

In the above, we have ignored particle considerations of, how do we estimate
of

e and the impact of noise. Here we will briefly discuss these issues, including
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a discussion on the continuous resolution functions. Again, the results here
are presented in 1D but apply to the general dimension case.

4.3.1 Discrete sampling

First, we consider the what the ideal sampling of g—i{i} would be that would
allow reconstruction of all y € €2 then the samples

g—‘;{xz}: ., max of

— 4.26
w€lzi—h/2,3i+h/2) OY (z) ( )

where h is the sampling distance between points for . These estimates would
guarantee the APR reconstructs the function y € €2, and not just at sample
locations. This follows from the fact that this would produce an upper bound,
on the true derivative across every interval.

4.3.2 Impact of noisy Local Resolution Estimate L(y)

However, even in noise-free situations, we do not have the ability to sample

the derivative directly. Instead, we observe |g—£| = |%| + €. Therefore, it is
interesting how errors from the estimation of the derivative translate into the
violation of the Reconstruction Condition for a given relative error bound E.

Therefore, we consider how an error in L(y) translates into the error in the
solution compared to the user-set relative error bound . That is we assume

that instead of L(y) we observe,

. Eo(y)
L*(y) V11— o) (4.27)
where « represents the maximum relative error in |%| (We assume here the
0 > a < 1). We need only consider reductions of the magnitude of the gradient
as increases will not impact the Reconstruction Condition (they simply increase
the resolution wastefully). So then if we consider what the worst-case observed
E* is relative to the desired E for a given « (See A.3 for derivation) we get

Er—FE 1
FE Cl-a

—1 (4.28)

where the error is taken to occur at a local maximum of the derivative such
that the error has an impact on the solution. Interpreting this, we can see
that if @« = 0.1, i.e. ten percent absolute error in the gradient, then the ratio

E*b? E — (.111, and so if E = 0.1 then the observed relative error worst case
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would be 0.111. So a ten percent error has been related to an eleven percent
increase in the realizable relative error.

This bound is insightful, as it tells us that if we have a given o and want
to guarantee some realized E, we can increase the user set F, to retain the
bound despite the error (i.e. such that E* = E). However, this is at the cost
of a higher number of particles. Alternatively, we can re-arrange the bound,

as

1

(B —E)"

a=1-——"—
T+ =

(4.29)

which then tells us how large a relative error in our derivative we can tolerate
if we wish to have a set accuracy for the relative error bound.

The analysis above is based on relative errors. How do we then consider
absolute errors €7 For a given ¢, the relative error will be greatest with the
derivative is small. Interestingly, these are the regions of our solution where
it is likely R*(y) < L(y). That is, the large relative error will not impact the
solution. The y € €2 that are most likely to contribute to V will then also have
a ‘relatively’ smaller «.

4.3.3 Impact of noisy particles f(yp)

Now if we consider that we are only able to sample noisy estimates of the
function for our particles, fp = f(x,) + n(x,), where 7 is some noise process.
If we assume that we are still able to estimate L(y) such that R* is the true
optimal solution we will find our observed error is

B — |f(Y) - ZXPEN(y,R(Z-)()}(’{(XP) + n(xp)>ép(y)| (430)

then given L(y) is the noise-free solution then the Reconstruction Condition
holds and we get

FeAt— Y (x)6W) (4.31)

oY) en )

where we have |A| < E. Therefore as F — 0, A — 0 and therefore the
infinity norm of the observed relative error |E*|,, will tend to the maximum
|$ > sy eN (v R(y)) 1(Xp)Ep(y)] across the domain.

Therefore, the noisy input data, provides an upper bound of the observed
relative error E* regardless of adaptation, and user set E. Note, we provide
a more detailed analysis of the impact of noise later in 8.3 showing that the
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APR converges at an optimal rate to a bias estimate of the noise-free APR
given a non-trivial Resolution Function that satisfies the Resolution Bound.
This is consistent with the simple analysis here.

4.3.4 Comparison with continuous resolution functions

Although we can solve our restricted problem optimally using Particle Cells,
this has been at the cost of fulfillment of the tighter Resolution Bound and not
allowing continuous adaptation. We provide some brief worst-case bounds and
numerical results in A.2.1. Unfortunately, for arbitrary functions, I know of
no bound between the optimal continuous Resolution Function for the Recon-
struction Condition R,(y), and the Resolution Bound R.(y) (Note, the ¢ was
intended to be interpreted as for continuous). However, the ratio of the two
should converge to one as E — 0 for an infinitely differentiable function. We
can, however, find worst-case bounds between the Implied Resolution Func-
tion R* and R.. These are insightful, as they indicate the upper bound on
the ’cost’ of restricting ourselves to Resolution Functions constructed using
Particle Cells. By Considering the largest possible L(y) on a per Particle Cell
basis, we find tha
ratio of 4, = 5.65 and ~ 6 93 in 1D 2D and 3D respectively.

Also, we could use the same method to provide an upper bound on the ratio
where P, corresponds to the evaluation of the sampling integral (4.24 in

#P
#Pc’
1D, or see 5.75 for general dimension d) with R.. We find the following upper

bounds on the ratios of 3.47, 24.3 and 221.25 in 1D, 2D, and 3D. We note that
even given R, I know of no means of sampling in general dimension to achieve
P., and that the bounds are likely not to be tight for practical L(y). Further,
use of a continuous solution numerical solution, without analytical form, would
require storage of N values, and essentially eliminate any reductions in the size
of the representation through P. However, there may be situations where this
is useful.

To test these bounds, we numerically computed optimal continuous solu-
tions. This can be done using the O(N?), 'brute force’ approach. However,
unfortunately, the high computational cost limited the investigations. With
the solution taking several orders of magnitude longer than the Pulling Scheme.

First, we found that the bound between R. and R, in 1D was close to
one for reasonable ranges of ¥ < .3, and tends to one as £ — 0. In 3D
using the later discussed implementation, we found the observed mean ratio
of the implied and continuous resolution functions in 3D was between 2 and 3,
depending on the image content and level of noise. Further, we find that the
worst-case bounds for particle ratlo do not appear to be tight in practice,
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finding ratios of less than 11 in 3D benchmark examples (compared to the
worst-case bound of 225.21).

4.3.5 Particle Cells and smoothness of the Local Inten-
sity Scale

In practice, the use of an Implied Resolution Function relaxes the smoothness
assumption on the Local Intensity Scale o (4.2.1). For a continuous Resolution
Function an equality for the expression

o) _min (o)~ _min (o)) (4.52)

would require a constant o(y) for general f. However, we note when using an
Implied Resolution Function as in the APR we only will detect changes that
would change the Particle Cell level [. Now for a given problem the Particle
Cell level can be calculated as,

[ = [log ('?E’ﬁ)w (4.33)

with a —1 if the equivalence optimization is being used. We find that 4.32 is
then equivalent to

for all z € N (y, R(y)) and y € Q. This is a weaker bound then 4.32 potentially
allowing non-constant o(y). Hence, the situation is not quite as restrictive as
4.32 implies when using an Implied Resolution Function. Further exploration
of this bound in combination with the results on the noisy L(y) (A.3) would
seem a fruitful future research direction.

4.3.6 Reconstruction of higher order derivatives

Later in Chapter 9 we discuss a generalized form of the APR that can be de-
signed to also guarantee bounds on arbitrary function derivatives. However,
can we, in general, provide any bounds on the reconstruction of the derivatives
of the function for the APR by only guaranteeing the Reconstruction Condi-
tion? Here we shall quickly consider the gradient in 1D. However, the principle
extends to higher dimensions and derivatives.
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Lets consider we have constructed the APR for a function f. Now we
consider,

€1 = a—y(y) - a—y(y)l (4.35)

the point wide reconstruction error of the derivative, where g—;(y) is a first order
in h estimate of the gradient (satisfying conditions of a DC-PSE operator
[115]). Following a similar approach to above we get (see later in 9.14 for

derivation of a similar bound from which this can be inferred)
< AR(y) ma (aZf(a:*)) (4.36)
€ X — .
= Rk \ Oy

where A is a constant based on the choice of particles and operator. Now given
the Resolution Bound holds, it can be shown also that

E o2
€1 S A g - Ar}lax (8_.}20(1,*)> ) <437)
maXg*eN(y,R(y)) (8—5(;1:*)) z*eN(y,R(y)) Y

where we assume R(y) is bounded. If we assume an Implied Resolution Func-
tion, this is trivially satisfied. Hence we see that as £ — 0, the error should
go to zero at a rate proportional to E. However, we have no guarantee on
the absolute value as in the Reconstruction Condition. Given restrictions to
a function with appropriate Lipschitz constants, one could achieve a global
bound. However, this would unlikely to be of little practical use.

The same principle holds for higher derivatives and dimensions. So in con-
clusion, the APR satisfying the Reconstruction Condition, does unfortunately
not also bound the error of the derivatives of the function.

4.4 APR transform steps summary

Therefore, here we have described the APR that resamples an image by adapt-
ing a set of Particle Cells V (representing the Implied Resolution Function
R*(y)) and set of particles P to the content of a function. In Algorithm 2, we
outline the main steps for taking a sampled input function f{z} and forming
the APR. These steps are the same for arbitrary dimension; the only main
change is the definition of the Local Resolution Estimate L(y). Which in
general dimension d, for f : R — R becomes

Ly) = o)

= V)] (4.38)
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where Vf represents the gradient of the function, and y €  C R? Also,
to the extension of the concepts for Particle Cells to higher dimensions. An
important observation is that the steps requiring interaction across all pixels
are those in step 2. Except step 5, that requires some estimation at particle
locations. All other steps require only operations on Particle Cells which have
lower memory costs than the original image.

For a detailed description on how all these steps were implimented for the
emperical results shown in Chapter 6 and Chapter 7 see A 4.

Data: Sampled input function f{z}
Result: APR = {V,P*}

1.) Set relative error bound F;

2.) Compute discrete estimate of the gradient magnitude |V f| and o at
locations 7;

3.) Compute L(y) and create Local Particle Cell set L;

4.) Compute Optimal Valid Particle Cell set V from £ using the Puling
Scheme;

5.) Sample particle intensities P* from image at center of Particle Cells

in Y
Algorithm 2: Summary of the steps of computing the APR for a given
function f, sampled homogenously at z.

4.5 Summary and main points

In the above chapter, we have introduced the Adaptive Particle Representation
(APR) and the three theoretical and algorithmic results at its core. Following,
we described the ideas and methods that are introduced to produce them,
and a brief motivation on their form relating to the representation criteria
presented in Chapter 3. This has attempted to be done in a didactic style,
introducing the new ideas, concepts, and principles, using a 1D formulation
and schematics for ease of explanation. The following Chapter 5, provides
a more technical description of the general dimension case. It is intended,
that these two chapters complement each other, and are to be used in unison.
Next, I briefly summarize these concepts discussed in this chapter involved in
forming the APR.

The APR involves the representation of a function, originally given as N
sampled points f{Z}, in a lossy manner, with a user-defined relative error £
to be met point-wise across the domain relative to a Local Intensity Scale o.
The representation involves a collection of sampled points P and a Resolution
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Function R(y). The reconstruction constraint is named the Reconstruction
Condition. The function reconstruction is controlled everywhere by the Res-
olution Function R(y) that dictates the size of the isotropic neighborhood of
points, from the sampling P, which are permitted to be used for function re-
construction. However, when constructing the APR, we do not directly satisfy
the Reconstruction Condition; instead, we satisfy the Resolution Bound. The
Resolution Bound places a direct restriction on the Resolution Function, based
on the magnitude of the derivative and given restrictions on the local intensity
scale, guarantees the fulfillment of the Reconstruction Condition.

In this chapter, we showed that if the Resolution Function is restricted
to a special class of piecewise constant functions, called Implied Resolution
Functions, we provide an algorithm for finding an optimal Implied Resolution
Function R*(y), and associated particle sampling P. This algorithm is called
the Pulling Scheme and has linear complexity in the original number of sampled
point N. The algorithm relies on the concept of Particle Cells, blocks that use
tree-structures common to multi-resolution and adaptive methods. Instead of
explicitly storing the Implied Resolution Function and particle locations y,,
the APR is fully described by {V, P}, where V is a set of Particle Cells, and
P* is a set of the function intensity values sampled at collocation points of the
function.

Following this, we briefly touched on practical considerations of how to
evaluate the derivative and the impact of noise on the formation of the APR
and satisfaction of the Reconstruction Condition. Further, we also discussed
the cost of restricting the resolution function to an Implied Resolution Func-
tion. Lastly, we briefly outlined the practical steps required for the formation
of the APR, from a sampled input function.

Summary of the chapter

e Introduced the Adaptive Particle Representation (APR), using 1D,
and the main theoretical and algorithmic results of this thesis.

e Derived the Resolution Bound and Reconstruction Conditions in 1D

e Introduced Particle Cells and how they can be used to construct an
Implied Resolution Function

e Outlined the Pulling Scheme, that effeciently produces the optimal
Particle Cell set V and particle sampling P* that form the the APR.
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e Discussed practical issues arising from discrete sampling and noise
piece-wise constant resolution function

e Outlined the main steps in practice for transforming a given f{z}
into the APR {V, P*}.
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Chapter 5. General Dimension APR and Technical Details

This chapter extends the main results for the Adaptive Particle Represen-
tation (APR) presented in the previous chapter to general dimension. Here, we
also include technical details and proofs. For a more didactic introduction to
the ideas and concepts used in forming the APR, the reader is directed first to
the previous chapter. It is intended for this current chapter to be used in addi-
tion to the previous, and therefore, some repeated explanations or definitions
have been omitted.

This chapter is structured as follows. First, we restate the definition of the
APR and the main results from the previous section in a general dimension
setting. We then derive and discuss, the Resolution Condition, Particle Cells
and Implied Resolution Function, and the Pulling Scheme in a general dimen-
sion setting. Definitions are given in a more general way than the previous,
to allow consideration of extensions beyond those discussed here. Lastly, we
introduce possible reconstruction functions and the APR particle graph.

5.1 General dimension APR

Here we re-state the formulation of the APR in a general dimension d setting.

As in the 1D setting the Adaptive Particle Representation takes a regu-
larly sampled input function, such as pixel images, and resamples it as a set
of particles P and a resolution function R(y). Where particles p are now col-
location points in d dimensions, x, and carry function values f, = f(x,). The
resolution function R : © — R defines a local isotropic neighborhood N at
each point in the domain 2 C R%.

We consider a once differentiable function f : {2 — R, that is sampled on a
grid with fixed spacing as f{x} where the number of samples is #x = N. We
represent the function for a given P and R(y) in the following way

f(Y) = Z f(xp)&(¥) (5.1)

where A(y, R(y)) = {x € Q : x — y| < R(y)} and &(y) = £(y,x,) are
constants that satisfy > . vy riy) &p(¥) = 1 with §,(y) > 0. and assum-

ing #(x, € N(y,R(y))) > 0 for all y € Q. The reconstruction follows the
Reconstruction Condition,

|f—f
ag

| loo < E (5.2)

where o : 2 — R, and satisfies a smoothness assumption 5.11. The Resolution
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Bound is then

R(y) < min L(x). 5.3

W< min L) (53)

We quickly re-state the results of the previous sections, providing the slight
adjustments as required.

5.1.1 Result 1

The Pulling Scheme can find the optimal R*(y) and particle set P that satisfy
problems in the form of the Resolution Bound (5.3) for general L(y). Where
the optimal implied resolution function is the R* that satisfies

argmax/ R*(y)dy (5.4)
Rrer* Jq
where R* is the set of all Implied Resolution Functions R*(y) that satisfy the
Resolution Bound 5.3. The optimal P* is then the particle set that satisfies,

#(x, € N(y, R(y))) > 0, and #P = [, 75y

5.1.2 Result 2

Given the local resolution function o(y) is sufficiently slowly varying (see 5.11),

and then L(y) = ﬁg%) where V f represents the gradient of the function then

the reconstructions formed using R*(y) and P will satisfy the Reconstruction
Condition 5.2.

5.1.3 Result 3

The Implied Resolution Function R*(y) and particle cell set P, can be com-
pletely described by a set of particle cells V = {{cj,, ;V:pl]ip €71, €7} (ie.
it can be define by N, length sets of integers d+1 integers) and P* = {{ fp}gjl}.
The combination of these two sets {V, P*} we call the Adaptive Particle Rep-

resentation (APR).

5.2 Reconstruction Condition and Resolution
Bound

Here we present derivation of the Resolution Bound, it differs little from the
one-dimensional case. We begin with the Reconstruction Condition state point
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wise as

)= D K& (5.5)

which holds must hold for all y € Q2. Therefore again we proceed by considering
the exact formulation of the error as

y)=1y) - >  £&) (5.6)

xpEN (y,R(y))

now if we again assume function is C' can express by taking Taylor series
expansions of f, centered at y and using the integral form of the remainder
for the Taylor series [103]

TR SR Sl e e [ L Iy

xpeN(v,R(y)) [k|=1

where k is using multi-index notation (See [103] for a brief description). In
this case, it simply denotes summing over each spatial direction. Which we
note is equivalent to the fundamental theorem of calculus and can be written
as a path integral, and again using the triangle inequality

Gl Y ey -x)l [ Vit se-y)lds (58
X €N (v,R()) °

where V f(x), represents the gradient operator. Now again given that |y —x,| <

R(y) then

e(y)] < Y. &)l | R(y) _max IV (5.9)

xeN(y,
xpEN (y,R(y)) EN(y,R(y

and so then again given we assume &,(y) > 0 then using this bound, 5.5 will

hold if Eoly)
. o(y

, 5.10

<eN (v R(y)) ( IV f(x)] ) 10

which then assuming sufficient smoothness of o(y), such that the approxima-

tion
A \Vf(x)!) . (|Vf(x)\)

R(y) <
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holds then Eo(x)
o(x
R < min . 5.12
W)= el (!Vf (x)|) 12
which is of the required form
R(y) <  min L(x)) . 5.13
¥)<,_min (L) 5,13
where the local resolution estimate is L(y) = é;g;‘.

5.3 Particle Cells and the Implied Resolution
Function

In this section, we introduce the general dimension treatment of Particle Cells.
We begin with several definitions that will be useful.

5.3.1 Particle Cell definitions

For our given domain 2 C R”, with maximum side length €25. We begin by
extending the €2 to a square domain * € R?, with edge length €, such that
QC Q.

Next we introduce Particle Cells C that form a partition of the extended
spatial domain 2* and R the range of the possible resolution functions, R =
{R : Q — R"}, which we call the resolution domain. Formally we enumerate
the set C, as

C={cy,V(i,1):1€Nip=0,.,2" —1} (5.14)

where i1 = i, .., 7,, is multi-index notation for the spatial indices in each direc-
tion, and [ indicates the level of the Particle Cell resolution. These Particle
Cells form a partition using divisions of powers of 2, as follows,

Qy Q Q. Q
Y(ew) = [2—10, 2,—+01) X H[2k2—?7 (i + 1)2—10) (5.15)

1

where the product is over all spatial indices and therefore,

U (e =2 xR, (5.16)

Ci,ZGC

Each Particle Cell forms regular elements, rectangles in 1D, a half-cubes in 2D,
and half-hypercubes in 3D. The 1D example of these rectangles are given in
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Figure 5.1: Four levels [ of C showing how Particle Cells in 2D ¢; ; partition the domain Q on levels I = {0, 1,2, 3}.

x —
’ 8(€4,0,,)=[0,2,)x[0,Q)
y
Qy €000
QO
=0
c2:°r° Cz,o,1 cz,o,z cz,o,g
0\22
S0 G G2 Gz
C
2,2,0 c2,2,1 c2,2,2 c2,2,3
C
23,0 c2,3,1 c2,3,2 c2,3,3
=2

QN2 I

0,\2'

c1,0,0

o\

C3,0,5 3,0,6

Each square in the figure represents the spatial domain s(c; ;) of a given Particle Cell ¢; ;.
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Figure 4.8. We note, that this is a different, but complimentary interpretation
of Particle Cells to when constructing the implied resolution function out of
particle cells as given in the previous chapter and shown in Figure 4.5. This
partitioning is similar to those often used in quad and octree data structures,
and as used in adaptive particle cell lists [13].

We define further properties of Particle Cells, reflecting their spatial do-
main, and resolution domain separately. The spatial domain of a Particle Cell
is defined as,

Qo

S(Cu) = H[Zk%, (Zk + 1)?) (517)

1

Figure 5.1 shows an example of the spatial domain, s(¢;;) of different Particle
Cells for a range of [ in 2D. The spatial domain of a Particle Cell s(¢;;) is the
area, or volume, of the domain 2* of which it partitions. Effectively forming
dyadic cubes of the domain € [81]. The resolution domain of a Particle Cell
is defined as

Q Q
rein) = 150 o) (5.18)

Further, we define I(c;;) = [, to denote level of ¢;; and i(¢;;) = i for the spatial
coordinate of ¢;;. Now given these definitions we can now define relationships
between the Particle Cells considering them as constructing a tree structure
as shown in Figure 4.7. We define the set of descendants of a particle cell ¢;;
as

D(ciy) = {cgl eC: s(cﬁl) C seig)}t, (5.19)

which is the set of all Particle Cells who’s spatial domain overlaps with ¢;;
but have a smaller resolution than r(c;;). The first set of descendants, called
children, are shown for a cell in green in Figure 4.7. Formally, children of ¢
are those ¢f; € D(ci;) such that I(cf;) = I(ci;) — 1. We also then denote the
parent of ¢;;, as ¢jj2y—1, where ¢;; is simply then the child of ¢;/5;-1.

We also define the set of neighbors of a Particle Cell ¢;;, by first defining
the interaction Particle Set

T(cig) = {ciy € C: Ix e s(cfy),y € s(er) : x € Ny, R(y))} (5.20)

which is the set of all Particle Cells ¢f; for which there is exists a x in its
spatial domain and also a y in the spatial domain of ¢;; such that they could
interact, i.e. x € N(y, R(y)). Then using the interaction Particle Cell set, we
define the neighbor Particle Cell set as

B(ciy) = {c{fl € Z(ciy) - ﬂc?; cl: s(c;fl) C s(c?;)} (5.21)

87



Chapter 5. General Dimension APR and Technical Details

which is the set of all neighboring Particle Cells of highest level that ¢;; can
interact with (including ¢;;). This definition and the theorems proven below
hold across general definitions of the interaction neighborhood N (y, R(y)). For
simplicity of explanation, here we present examples with the isotropic interac-
tion neighbourhood N (y, R(y)) = {x € @ : |x —y| < R(y)}, as introduced
earlier. For the isotropic interaction neighborhood, the neighbor Particle Cell
set is simply the neighboring Particle Cells of ¢;; on the same level. This is
illustrated in Figure 4.7 with a 1D example of a neighbor Particle Cell set
B(Ci’l) in blue.

Using these we define a set N'D € C that contains all descendants of a
particular Particle Cell ¢;; and its neighbors as

ND(e)) = | U 4. (5.22)

c?’lEB(cﬁl) chG'D(ciC’l)

Then any Particle Cell set V C C forms a partition of the spatial domain Q*
iff

Y

U sy =9 (5.23)

c}’,ZEV

Then we can also define the set of Particle Cell sets V that form a spatial
partition as

S={v:vce, [ s)=a1 (5.24)

cilEV

Lastly, we formally introduce an additional property of a Particle Cell called
type, t(ciy), discussed in the previous section for Particle Cells when compared
to a Particle Cell set T in the following way

1, Ci € T
t(Ci,l, T) = 2, Cil ¢ T and HCZl S B(Cu) . C;’fl € T
3, otherwise

where we name the three different Particle Cell types as seed, boundary, and
filler respectively.

5.3.2 Implied Resolution Function

Now we define the Implied Resolution Function for a set of Particle Cells V' that
forms a spatial partition. We begin by now defining a characteristic function
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in general dimension as

0 otherwise

oy, ciy) = {1 y € slei) (5.25)

that is, it is non-zero only at point within the spatial domain of the Particle
Cell. Using this the Implied Resolution Function R*(y) for a set of Particle
Cells V forming a partition of the spatial domain is defined as

R(y,V) = Z ¢(Y7Ci,l)% (5.26)

CNEV

where we often drop the dependence on V below, unless required. One can
interpret this Resolution Function as being built out of cube blocks of length
%, as shown in Figure 4.5 for 1D. In 1D the blocks are squares, 2D cubes,
and 3D hypercubes. (Note: this is different from how Particle Cells are used
to partition the resolution domain)

5.3.3 Local Particle Cell set

Given these definitions, we can now represent the Local Resolution Estimate
L(y) as Particle Cells. We assume that we have the following inequality to
satisfy

AN

R(y) min  L(x). (5.27)

xeN(y,R(y))

We introduce the general dimension Local Particle Cell (LPC) set £ C C that
has members such that

L={c, €C3(Lly),y):y €s(ay), L(y) € r(cyzi-1)}, (5.28)

where c¢;/2;-1 indicates the parent of ¢;;. In words, this takes the Local Reso-
lution Estimate L(y) and finds those Particle Cells ¢;; whose parents intersect
with L(y) at locations inside the spatial domain s(¢;;). An example was given
in the previous section for 1D in Figure 4.8. We also define another set we call
the natural Local Particle Cell (nLPC) set

Ly, ={cy €C:3(Ly)y) € v(a)}, (5.29)

in words takes the Local Resolution Estimate L(y) and finds those Particle
Cells that the function intersects. The second definition comes in use slightly
later for the equivalence optimization and is called 'natural’ due to its simpler
definition. In all except special cases, £ does not form a partition of the spatial
domain.
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Maximum resolution level

In practice it is often useful to specify a minimum level [,,;, and maximum
level l,q.. For a given function we can define a minimum Ly, (y) = 52— and

2lmin

maximum value Ly, (y) = 502, Where for both £ and £, this effectively

Qlmax *

truncates any values with [ below [, t0 Ly, and above e t0 lpae. (See
A.4.1 for a description of implementation and constructing these sets).

5.3.4 Optimal Valid Particle Cell sets

Now we have a way to relate, a Particle Cell set to a Resolution Function,
if now we re-formulate 5.27, in terms of this Implied Resolution Function we
have

R'(y) < min L(x). (5.30)

xEN (y,R(y))

we can now use the Implied Resolution Function and present the following
theorem:

Theorem 1. V will define an Implied Resolution Function R*(y) thats satisfies
Cond. 5.30 for all y € Q*, for a given £, and called wvalid iff it forms a spatial
partition and

L. Ve, €V then {LOAND(¢f)} =0

In words, for all Particle Cells ¢;; in V, the set is valid, if and only if, there
are no Particle Cells that are descendants of ¢;; or its neighbors in L.
Proof -
Given a wvalid Particle Cell set V, we suppose there exists at least one combi-
nation of y € Q* and y* € N (y, R(y)), such that

L(y*) < R*(y) (5.31)

is true and therefore condition 5.30 is violated. In addition, there must exist
c¢;; € V such that y € s(cf;). From 5.26, we have

Q*
QZ(C’iU,l)

R (y) = (5.32)

and therefore if L(y*) < 21?—01) then there must exist some ¢f; € £, for which
I(cf;) < U(cf)) and y* € s(cf;). Now since y* € N(y, R(y)) and I(c};) < I(c};)
it implies that

i € ./\/'D(c}”l) (5.33)
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and therefore
3, €V A{LAND(cf)} # 0 (5.34)
and proves Theorem. 1 by contradiction. [

Now we consider conditions on V that would define it as optimal. Consider
V to be the set of all Particle Cell sets V that satisfy Theorem 1 and are valid.
Then a Particle Cell set V will be optimal if it satisfies

arg max/ R*(y,V*)dQ*. (5.35)
veev  Jor

which is equivalent to finding the largest everywhere R*(y) that satisfies 5.30.
Which is equivalent to

arg max/ R*(y)dQ". (5.36)
R*eR* Jqr

where R* is the set of all Implied Resolution Functions defined as 5.26 (R* :

0* — RT) that satisfy 5.30. We can now state the following theorem for

satisfying 5.35,

Theorem 2. Given V C C, that is wvalid, V will satisfy Cond. 5.35 and be
optimal, iff, there does not exist a W C C where W # V and is valid for £ and
where ) can be formed from the elements of W and its descendants. Formally,
V is optimal, if there does not exist any valid W such that for any ¢’ or ¢,
the following holds

( eW, ¢, €V) ¢, € D(cy). (5.37)

In words, V, is optimal, if there does not exist another arrangement of
Particle Cells that form a spatial partition and is valid while having a larger
resolution anywhere in the domain.

Proof -

Lets consider two Particle Cell sets V and W, where both are wvalid with
respect to £, and W # V, and V is optimal. Now we suppose that, Cond. 5.35
is violated, that is

R(y, V)d" < / R (y, W)d", (5.38)
Q*

Q*
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that we can re-write as

/Q* Z Qb(y,Ci,l)%dQ* < /* Z ¢(y,ci7l)%d9*. (539)

cz',zGV Ci}ZGW

Given the above inequality to hold, there must exist y € (2* where the following
holds for some ¢f; € V and ¢, € W,

0

vy o w
0 < oy, Ci,z)m < ¢y, Ci,z)m (5.40)

which implies that I(c{)) < I(c¢{;) and further that s(cf;) C s(cf) and hence
¢ € D(c}‘jl), (5.41)

which violates Theorem 2, and thus concludes the proof through contradiction.
O

Therefore a Particle Cell set V is an Optimal Valid Particle Cell (OVPC)
set if it satisfies both Theorem 1 and Theorem 2.

5.4 Pulling Scheme

Here we present the additional results based on the above that are used by the
Pulling Scheme. These are the general definitions of the three properties from
the previous chapter. We begin by defining

Definition 1. V*(¢;;) is the optimal Particle Cell set for £ = {¢;;}

That is the OVPC set for a LPC set with only one Particle Cell ¢;.

5.4.1 Self-similarity and production of individual solu-
tions

The first is an observation that the solution V*(¢;;) is highly predictable and
shows self-similarity regarding its relative local structure. This is shown for
two different ¢;; in 2D in Figure 5.2, where the Particle Cells are colored by
their type. As in 1D, the solutions are defined by a central seed Particle Cell,
surrounded by a layer of boundary and then filler cells. The remainder of
the domain is then filled with Particle Cells increasing by one level across
neighbors, adding Particle Cells on the same level when needed to maintain a
spatial partition. In Algorithm 3 we provide a possible pseudo-code for this
process.
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Data: £ = {Cu}
Result: V(ci)

1) add Cil to V;
2.) add cg’,l € B(ciy) to V;
3.) add ci]i | € B(d},) for each neighbour of these ¢}, not already in V add
to T and V;
for lc = l(Ci,l) :—1:0do
propogate_filler;
propogate_filler;
end
Algorithm 3: Produces the OVPC V for an LPC £ with only one Particle
Cell ¢;; with level I(c;y)

Function propogate_filler

foreach ¢f; € T do

foreach cf, € B(c{,) do

if ¢, ¢V and D(c¢f;) € V = () then
if s(cf;) ¢ s(cf),) then

add the parent Cin/Q,l of neighbour cf; ;
Add C?/z,z to 7, and V
else
add the neighbour ¢}, as adding parent would cause
over-lap;
Add ¢ to T; and V
end
end
end
end
Set T « Ti;
Set T; + 0;

Algorithm 4: Propogates filler Particle Cells through the domain
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:m_ :M_

siasss
e

HH

V (c(10,10),6) V (c(20,20),5) V for E ={c(10,10),6 ’C(ZO,ZO),S}

Figure 5.2: Example of the optimal particle cell set V (right) for £ = {c(10,10),6:¢(20,20),5} in 2D, and the
individual optimal solutions V*(c(10,10),6) (left) and V*(c(20,20,5) (right) that can be used to combined using
the separability property to construct V. The particle cells are colored in the following way, a particle cell is blue
if its type is a seed if it is in the local particle cell set, ¢;; € L, a cell is green if it is of type boundary and
therefore has a neighbor that is in the local particle cell set and is grey if it as of type filler.

5.4.2 Separability

We present Lemma 1, that is the basis of the separability property used in
Pulling Scheme.

Lemma 1. Given V C C is optimal, with respect to £, and let V*(¢;,;) C C be
optimal for the local set £*(¢i;) = {ci;}. Then,

VY = minhull { | J V*(c,) (5.42)
céYZEE
where for T C C,
minhull(7) = {¢{, € T : {D(cj;) N T} = 0}. (5.43)

In words, Lemma 1 states that the optimal solution V, for a given LPC set
L, can be constructed by forming the valid and optimal set for each Particle
Cell in £ separately V*(ci;), and then forming a set with the Particle Cells ¢
at each point y with the smallest Implied Resolution Function R*(y, V*(ci;))
(highest level ). We call the above property, separability. Figure 5.2 shows
the property in 2D and Figure 4.10 in 1D. One can intuitively confirm that
the configurations are optimal, by replacing any Particle Cell by its parent,
and then checking if Theorem. 1 holds.
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Proof -
Lets consider V), which is optimal for £, and V= minhull( o er V*(cil)).

Now propose that there exists some c¢;; € V such that
e, € L:¢f; € ND(ciy) (5.44)

and therefore V would not be valid by Theorem 1. However, given that V*(ci))
is valid, it forms a spatial partition, and ¢i; & V*(cf,), therefore

Jciy € V¥(ciy) « ciu € D(ciy) (5.45)
and since V*(cf;) C Uy ec V*(c,;) then,

D(c)n | vidy) 2 (5.46)

1
CUGE

£ 0 (5.47)

therefore violating Lemma 1 as ¢j; € V. Therefore, by contradiction, given

Lemma. 1 holds, V will be valid.
Now, let us propose, that V is not optimal, that is there exists some W
such that

/ R*(y, V)dQ* < / R*(y, W)dQ*, (5.48)
* Q*

following the arguments for the proof of Theorem 2 above this implies there
would exist some G € W and some cj; € V such that

cii € D(ci)). (5.49)

Given that ¢i; € V there exists some ¢, € L such that ¢;; € V*(c;). However,
given ¢y & V*(ci;) and V*(ciy) is optimal then,

(ND(¢)) N V*(ay)) 2 ciy # 0. (5.50)

Since ¢;; € L, then W cannot be valid. Implying that Y must be optimal for
L and given the optimal solution is unique implies

y=y (5.51)
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5.4.3 Redundancy of Particle Cells

The third property relates to the redundancy of Particle Cells in £ that have
descendants in L,

Lemma 2. Given any two Particle Cells ¢;; and cf b

where ¢;; € D(c};) then

minhull({V*(ciyl), V* (Cf,l)}) = V*(Cijl). (552)

In words, the optimal valid solution of Particle Cells for which one is the
descendant of the other will be the individual valid solution of the descendant
Particle Cell.

Proof:
Lets suppose that,

iy € minhull({V*(ci0), V*(ef))}) : cin & V(i) (5.53)
and then
iy € V() (5.54)

and Lemma 2 is violated. However, given the definition of the minhull op-
eration, and the fact that V*(¢;;) must form a spatial partition this implies
that

Jef; € Vi(eiy) g € D(cpy). (5.55)

However, given that V*(¢};) is optimal by definition, then if ¢}, ¢ V*({,), then
by Theorem 2
1 € ND(cf) (5.56)

and since ¢;; € D(c};) by construction then also

Cil € ./\/-D(Cil) (557)

but this results in a contradiction, as then V*(¢i;) would not be valid by
Theorem. 1 .

5.4.4 Equivalence

Here we show that an equivalent solution can be obtained, by solving for a
smaller set of Particle Cells, that can then later be used to directly form V.
First, let us define

Definition 2. Let V,, be the optimal Particle Cell set for the natural Local
Particle Cell set £,, formed from L(y) as in 5.29
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Then we have the following result,

Lemma 3. Given V), is optimal and valid for £, then

V= {Ci,l eC

(ciy € Vi, t(ciy, L) = 3)or (Ci/2,1—1 € Vn, t(cijai-1, Ln) < 3) }
(5.58)

where V is the optimal valid Particle Cell set for £ and c;/;—1 denotes the
parent Particle Cell of ¢;;.

In words, V is constructed by taking all those Particle Cells that have type
filler in V), and taking the children of all Particle Cells in V), that are of type
seed or boundary (Where type is defined relative to L,,).

Which means that finding for V,, with respect to Ly is equivalent to V for
L. This is useful because, #L£ > #L,, and the maximum level [}, . in £, is
one level less than [,,,, of £ by construction (See 4.2.3). See Figure 5.3 below
for a 2D example. Proof:

Here we need to show that if V,, is the OVPC for £,, and we define

f}O}n) = {Ci,l cC

(ciy € Vi, t(ciy, L) = 3)or (Ci/2,l—1 € Vn, t(cija -1, Ln) < 3) }
(5.59)

then V =V where V is the OVPC for £. We do this by relying on Lemma 1.
That we can decompose our solution of

V, =minhull { | ] V*(d) (5.60)
cfyleﬁn
and
V = minhull U V(i) (5.61)
céylEE

then since by construction for ¢f;, € £ there exists a ¢} € L, such that ¢f, €
D(ci7), and I(cj;) = I(¢{}) + 1 that if we can show that V(V*(cﬁk)) =V*(ciy)
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then

Y =minhull (] V(V*(d)) (5.62)

)
QJEEn

— V[ minhull U V*(Ci,z)

1
QJEEn

V(Va)

the operations can be taken out of the union and minhull, due to the operation
always taking the smallest Particle Cell and the direct correspondence between
the two sets (Note: I have no formal proof of this property, but it seems to
follow from the definitions).

Therefore, we consider such a £ = {¢;} and L, = {¢{7} and consider
Vo = V(7) and V = V(V*(cf?)) Now lets assume that V), is valid and
optimal solution with respect to £,, and assume that V is not valid with
respect to L.

If V in not valid, then there must exist G € V such that

¢iy € ND(cf)). (5.63)

Given this holds, then we consider the validity of V,, with respect to £,,. We
treat this in two cases.

First, suppose that I(c{;) < I(¢f;) + 1, and ¢, € V,, which implies that
eff) < 1(cfy). Also, given ¢f; € D(c}}) then

i € ND(cf)). (5.64)

If ¢} € V,, where ¢, is the child of ¢[, then since N'D(c¢{;) C N'D(c}) then
also

i € ND(qY). (5.65)
This leads to V), violating Theorem 1 with respect to L,.

Now in the second case, I(cf;) = I(c};) + 1, implying that I(c}) = I(c{,).
However, this implies that ¢{} € V), as otherwise t(c};, £,) = 1 and I(c};) =
I(c{;). Therefore again since N'D(c};) C N'D(c}}) then also

] € ND(cf7) (5.66)

and V), is invalid with respect to L,,.
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Therefore, given we assume V), is valid w.r.t £,, then V must also be valid
w.r.t L.

The second step is to show that when V is optimal w.r.t £ then also V,
is to £,. So again we assume that V, is optimal, but V' is not. We follow on
from the proof of Theorem 2 which gives us that therefore there exists some
W such that ¢}, € V and ¢} € W and s(cf;) C s(c}}) and hence

¢ € D(c;”l). (5.67)
For this there are again two cases, one where ¢f; € V, and the other where
i} € Vo where ¢f, € D(p™) and I(c}}) = I(cf;) — 1.
First, let us consider the case of ¢f, € V,,. We then have that ¢f;, € D(c{}).
However, since ¢f; € D(c}') and ¢}; ¢ V means that
¢ € /\/’D(cﬁ’l) (5.68)
which directly implies that
¢ € ND(ct)). (5.69)
However, this would make V,, not valid.
Now in the second case we have ¢fj € V,,, and hence t(¢{7, £,) < 3. So we
know that,
¢y € B(dy) (5.70)
such that
¢iy € ND(cf). (5.71)
This now contradicts that VW can be valid for £. Hence given V), is optimal

for £,, V must also be optimal for L.
Now given there is a unique optimal solution then necessarilly,

~

VIVi(ar)) = Vi«r) (5.72)

for any ¢, € D(c}), and I(cf;) = I(¢}) + 1, and from our arguments above
this leads to V(V,) = V and concludes the proof. [
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5.4.5 Algorithm description

The above Theorems and Lemmas are used to form a class of algorithms we
call the Pulling Scheme that computes an optimal particle cell set V from an
LPC set L. In the previous chapter, in Section 4.2.3, we introduced the ideas
and concepts, and do not repeat this here. The algorithm descriptions in the
previous chapter focused on an implementation using explicit storage of the full
particle cell set C. A full algorithmic description of such an approach is given
in A.4.1, and it is the algorithm used in the benchmarking sections below.

As an alternative, we provide an additional pseudo-code for a more general
form of the algorithm that does not rely on explicit storage of the Particle
Cell tree. This form could be useful in situations where the memory cost
of storing the tree becomes prohibitive, or the APR is being iterated through
time. Alternatives to using such a tree include the use of hash tables, or sparse
data-structures to handle the Particle Cells. I foresee that such approaches
could be useful if the Pulling Scheme were used for other applications such as
the numerical solution of differential equations. In fact, in early iterations of
this work, the Pulling Scheme was implemented using a hash-tablestructure.
The mesh-implementation was later developed for its ease of parallelization
and cache-efficiency. In the case of LSFM data, the size of the full Particle
Cell structure is small in comparison to the raw images. Hence, the memory
cost is of little impact to its use; this does not apply in general.

5.4.6 Generic algorithm

The pseudo-code for a generic approach is outlined in Algorithms 5-8 and we
give a description below. We assume that a method exists for propagating
individual solutions on a given level, as in Algorithm 6, and do not describe a
specific implementation here. In the description, either £ could be used or £,
with then the application of Lemma 3. Therefore, if £ is used [,,.,, and if £,,,
l?naa: = lmaaz -1

Given that we can construct individual optimal solutions, the separability
property (Lemma 1), tells us that the optimal solution for the set £ can be
constructed by taking the Particle Cell with the highest level [ of all individual
solutions at each point in space y. Further, from Lemma 2 we can ignore all
ciy € L that have descendants in £. If we construct the set V by starting
from our maximum level [,,,,,. We then know from Lemma 2, that if we add a
Particle Cell, this will be the optimal Particle Cell ¢;; for that location as any
Particle Cells in £ for which ¢;; is a descendant cannot be in V. Therefore,
we can ignore these ¢;; € £ when constructing £. We can achieve this by
introducing a new property, status, which indicates if the cell has descendants
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The pseudo-code for the Pulling Scheme in Algorithm 5. In the algorithm,
a Particle Cell is set to IN-ACTIVE, if it has descendants in £, this is done
each time a seed type Particle Cell is checked (Algorithm 7). The next step
involves propagating the individual solution V*(¢;;) of all seed type Particle
Cells on that level, and adding the Particle Cells in ¢;V*(ci;) to V if they are
not already in V. If the propagation step for ¢;; results in adding a Particle Cell
to V, ¢, is added to a temporary particle set Tpe.t (Algorithm 6). Further, if
c;; 1s added, any ¢;; € £, that for which ¢, is the descendant, are set to PRO-
POGATE unless already IN-ACTIVE (Algorlthm 8). This step is required
because, although these particle cells cannot be in V due to Theorem 1, they
can impact the solution through Lemma 1. The algorithm then iterates to the
next level l,,qp—1., with first assigning Tourrent = Tnewt, and setting Tpeae = 0.
The steps of adding ACTIVE Particle Cells from £ to V and propagating the
solution for ¢;; with status ACTIVE or PROPOGATE is repeated. Then a
final step propagating the solution of those ¢;; in the temporary Particle Cell
set Teurrent, and adding them to Tpe.: if they again add ¢f; € V*(¢iy) to V. This
process is repeated until the minimum level [,,;, is reached, and ) has been
constructed.

5.4.7 Memory and computational complexity

The memory and computational complexity depend on the exact implemen-
tation and data structures used. In 4.2.3 we discussed the complexity of the
mesh pyramid implementation used here. Here we, briefly sketch some argu-
ments that the memory and computational cost for a mesh-free implementation
should be O(#V) and this is worst-case O(IV).

Let’s assume that the data structure has O(1) access for adding and check-
ing for Particle Cells. Also, we have the ability to iterate over Particle Cells
by level; the computational complexity should scale with O(#)V). This scaling
can be seen from the fact that if we assume that all ¢;; in £ that have descen-
dants in £ have been removed (Lemma 2). Then #L£ < #V, since V contains
either the elements of £ or their children. Therefore, given the operations
described per Particle Cell above, are all O(1) respect to #L, then the total
number of operations should be O(#V). Then also if the data structure has
an O(1) over-head per Particle Cell concerning #V then the memory overhead
should also be O(#V). Where we use the fact that the additional entries to £

In the implementation in the previous section, instead of introducing a new property,
we extend the type property (with ascendant, ascendant neighbor, and propagate) their
function is the same
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Data: particle cell set £
Result: particle cell set V

Function pulling_scheme(L)
/* Initialize status property of all particle cells in L
to ACTIVE */

foreach ¢;; € £ do
| status(ciy) <~ ACTIVE

end

lc — lma:c

Trewt < O Temporary particle cell sets for propogating individual
solutions;

%urrent < (Z)
/* Loop over the resolution levels, from finest to

coarsest (from the maximum level [) x/
while [. > [,,;, do
/* Loop over all particle cells in L at level [, */

foreach ¢;; € £ :l(¢;;) == 1. do
if status(ciy) == ACTIV E then
If particle cell is still active, add to set and propogate
solution;
VY {CU, V}
propogate_individual solution_for_level(c;;, L, Trext,V,le)
if status(ciy) # INACTIV E then
| set_parents_inactive(c;;, £)

end
foreach ¢i; € Teyrrent : l(ciy) == 1. do
| propogate_individual_solution_for_level(c;;, £, Tnext,V,lc)

end

Acurrent — 7;zea:t

Apezt < 0

l. — — Level done, move to next;
end
return V

Algorithm 5: Generating a optimal valid Particle Cell set V from the Local
Particle Cell set £
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Function propogate_individual_solution_for_level(ci;, L, T ,V,l)

e

[y

temp « FALSE
foreach cj; € V*(¢1y) @ l(c¢f;) ==l do

if ¢f; ¢ V then
V< {, V}
set,parents,propogate(c;k’ 1 L)
temp < TRUE
nd

f temp == TRUFE then

If the solution adds new elements, add to temporary set to be
propogated to next level;

T <— {Ci,lv T}
Algorithm 6: Add those Particle Cells in V*(¢;,) at level [

Function set_parents_inactive(c;;,L)

e
Algor

lp <— l(CiJ)
ip < i(CiJ)
while [, > [,,;, do

lp 1, —1
i, < | %]
if ¢;,;, € £ then

if status(c;,;,) == INACTIVE then

Has already been set to in-active, so parents have already
been checked;

BREAK:;
else
| status(ci,,,) < INACTIVE
nd
ithm 7: Sets the status of all parent Particle Cells of a seed ¢;; in £

to INACTIVE
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Function set_parents_propogate(c;;,L)
lp — l(CiJ)
ip — i(CiJ)
while [, > [,,;, do
ly < 1,—1
i, < | 3]
if Ci, lp € L then
if status(c;,;,) # ACTIVE then
Has already been set to in-active, so parents have already
been checked;
BREAK;
else
| status(ci,;,) «+ PROPOGATE

end

Algorithm 8: Sets the status of all parent Particle Cells of a boundary or
filler Particle Cell in £ to PROPOGATE

that do not feature in ¥V must be a parent of a node in V and thus represents a
constant cost (based on the isotropic neighborhood restricted one level change
for neighbors).

In the worst case #V = % (where d is the dimension and N is full maximal
sampling) if we assume that Lemma 3 is being used, or #V = N if it is not.
Therefore, worst-case scales in both as O(N).

5.5 Particle sampling

As in the 1D case, the last step given V), is to determine the particle locations
and sample them forming P* and the APR. In general dimension, we take the
identical approach to 1D 4.2.4. The set of points in P = {XID};,V:Z’1 are chosen
such that for each Particle Cell ¢;; € P a particle p is added to P as

*

pleis) = o i +1/2)) (5.73)
for i, = 1,..,d and N, = #V. The function, is then sampled at locations
I = f(x,) to form P* = { fp}i,vzpl. Such a sample satisfies the requirement
that #(x, € N(y, R(y))) > 0. Figure 5.3, shows an example of V,, on the left
and then V and P on the (right). #(x, € N(y, R(y))) is in all cases greater
than one, with maximum resolution areas, producing a local grid identical to
a pixel image representation. If different constraints on the reconstruction
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V. {V, P}

Figure 5.3: Left the nOVPC V,, generated using £, and the corresponding V and particle sampling P (right).

function are required, i.e. a different number of particles, or different layout,
these could also be used. Here, we again present the simplest case.

5.5.1 APR as {V,,P*}

From Figure 5.3 and Lemma 3, there is a redundancy in directly storing V),
instead V,, could be stored along with each t(c;;) for each cell (w.r.t £,). In
this way, the particles could be sampled from V), using

L (5.74)
or ik +1/2)} t(eig) =3

where then the locations of P are still implicit now from V), and their type
t(ciy). This representation results in lower memory overhead, but at the cost
of complexity. Again, preference depends on the use-case, but as a solution
to the RC, I believe the more costly, but simpler combination of {V,P*} is
preferable. (However, we use this form for file storage of the APR).

5.5.2 Optimality

For the 1D case, we introduced the concept of P being 'optimal’ for R*(y), and
hence V. We can extend this concept by considering a similar integral where
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a sampling for a given resolution function R(y) that satisfies

1
#P:éﬁgww (5.75)

and #(y € N(y,R(y))) > 0 for all y € Q. Again, intuitively, if we consider
% as the point-wise required density (defined now for the 'hyper-volume’
dependent on the dimension d), then again ignoring edge effects, this means
that satisfying 5.75 leads to this density being everywhere exactly realized.
So again if we consider, the integral 5.75 for the implied resolution function

R*(y), as

/Qﬁdy B /Q (= 1 g)dd 70

ci EV ¢(Y7 Ci,l) ol
Y

221

CiJEV

= #V = #P (5.77)

as required, and therefore P* is optimal in the sense of 5.75. Hence, the Pulling
Scheme in addition to providing an optimal Implied Resolution Function also
provides an inherent ‘optimal’ sampling in general dimension.

5.5.3 Integral neighborhood optimization

From Figure 5.3, we observe that a single ¢;; results in a large, high-resolution
area in the solution. If we instead take ), and create V in the following way

V; = {Cu eC

(cig € Vi, t(ciy, L) > 1) or (Ci/2,1—1 € Vo, t(cija-1, L) = 1) }
(5.78)

where now boundary Particle Cells are also kept at their original resolution,
then, if we use the alternative neighborhood of

1
s(x—y))

NG Ry = e 21y =) [ <1} (.19)

for the representation of the function as in 5.1, instead of the isotropic neigh-
borhood, then R*(y,V;) will also satisfy the Reconstruction Condition 5.2.
This then results in a smaller P* as shown in Figure 5.4. In practice this
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Integal
V. Neighbourhood {(V7 P}

Figure 5.4: Left the nOVPC V), generated using £,, and the corresponding V and particle sampling P (right)
for the integral neighborhood optimization that has been used in Chapter 6 and Chapter 7

results in a &~ 10 — 30% reduction in #V, and is used in Chapter 6 and Chap-
ter 7 below. However, although useful for single time-points, I believe again
the isotropic neighborhood may be superior for satisfying the RC especially
once time is integrated.

As in the isotropic neighborhood case, we can sample directly using V,,
with only slight adjustment

x,(ciy) = { H{%(lk +1/4), & (i + 3/4)} t(c) = {1}

i (5.80)
or(in+1/2)} t(ciy) = 2.3

Fulfillment of Reconstruction Condition

Now we briefly show that Reconstruction Condition is satisfied for the integral
neighborhood definition and R*(V;,y).

We have the integral interaction neighborhood
1
=)

N(y.R(y))i = {x€Q: [(y - x)| / T ds<1}  (5.81)

and show that if we are using the local resolution estimate L(y) = % that
this neighborhood guarantees satisfaction of the Reconstruction Condition 5.1,
given that R(y) > L(y) and the assumption on the Local Intensity Scale o(y)

being sufficiently smooth over the integral path that o(y) ~ o(x) can be used.
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Starting from the following bound as presented above,

1
< Y, ly- Xp)|/ IVF(y +s(x, —y))ldsp(y) (5.82)
PEN(Y,R(Y)) 0
which we wish to satisfy the Reconstruction Condition, so
1
Eo(y)> Y, |ly- Xp)|/ IVI(y +s(xp —y)lds&p(y) — (5.83)
0

PEN(y,R(y))

which we can re-write as

> !(Y—Xp)\/o IVI(y +5(x —y))lds&p(y) <1 (5.84)

Eo(Y) enyme)

and substituting for L(y) and assuming o(y) is O(1) over the interval gives

> %)l | e e <l 68)
) 0 P

PEN (v, R(y

now given our reconstruction kernel conditions, this will hold if for every point,

' 1
A e R (5.56)

now given the assumption that R(y) < L(y) then the above will hold if the
following also holds

! 1
Iy - Xp)|/0 Ry s~y @S] (5.87)

which is the integral interaction neighborhood stated above.

5.6 Technical additions

Here we discuss two additional issues that are useful for the following chapters.
First, we discuss possible choices of reconstruction schemes for f from the APR.
Second, we discuss the APR graph, which is used later for processing.
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5.6.1 Function reconstruction and interpolation

In the discussions in this and the previous chapter, we have not specified &,(y).
Instead, just the two conditions is must fulfill

Y Ly =1, (5.88)

xpEN (y,R(y))
5;0 (Y) > 0.

In essence, any average over points within the neighborhood N (y, R(y)) is
valid. Here we briefly describe three different approaches that are used in
the following chapters, that produce reconstructions f that satisfy the Recon-
struction Condition. Many other possible approaches exist, including using
B-Splines or Wavelets for reconstruction, however, we stick to the following
three simple cases here. Also, Chapter 9 discusses conditions for higher order
reconstruction, these can also be used for the APR as described above.

Piecewise constant reconstruction

This first approach, is practically, the most simple and efficient. A piecewise
constant reconstruction f,. that satisfies 5.88 can be constructed as

fpc(}’> = Z fro(y,cit) (5.89)

Ciylev

where ¢(y,ci;y) is defined as in 5.25. Due to its simple structure, 5.89 can
be very efficiently implemented and has low computational cost. Despite its
simplicity, it seems to produces subjectively 'good’ reconstructions for visual-
ization purposes. Because of these properties, we use it as the default recon-
struction throughout the rest of this work. The draw back of this approach is
not a 'smooth’ reconstruction.

Smooth reconstruction

Instead, in the second approach, smooth reconstructions fs can be used by
utilizing a kernel function ¥ (x) > 0 in the following way

¢ _ ZXPEN(%R()’)) f(x—y)
fly) = 2 eN(y Ry VX —Y)

(5.90)

Such smooth reconstructions could be useful for visualization purposes, when
piecewise constant ’artifacts’ may not be wanted, or for processing applications
requiring a smooth representation.
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Worst-case reconstruction

For the analysis below, it is useful to be able to create the worst-possible recon-
struction that satisfies 5.88, so we can show empirically that the Reconstruction
Condition holds. If we consider any point y € 2, let fiin = minken(y,rey)) (fp)
and fiee = MaXxen(y,R(y)) (fp), then any reconstruction satisfying 5.88 follows

Fin < F(¥) < Frnaa (5.91)

therefore, we define the minimum f,,;, and maximum f,,,., worst case recon-
structions as

Amm = min ) 5.92
Jmin(y) Ny R ( ))<fp) ( )
and
Amam . 3
fmaz(y) = XGNH(la’X(y))<fp> (5.93)

which represent upper and lower bounds on any reconstruction.

5.6.2 APR particle graph

Many processing tasks on images require the formulation of pixel images as
a graph, for example, graph-cut methods [21]. Pixels are set as the nodes,
and edges are created between adjacent pixels. Although the APR has chang-
ing resolution across the domain, a similar symmetric particle graph can be
constructed from the APR by using adjacent particle cells, or formally, an inte-
gral interaction neighborhood. Figure. 5.5 (left), shows such a graph restricting
neighbors across the faces of particle cells, analogous to a Von Neumann (or
face-connected) neighborhood. In a classical pixel image graph, each node
(pixel) would have the same number of neighbors. However, due to the adap-
tive sampling in the particle graph, the number of neighbors can vary as the
resolution adapts. However, the maximum number and the minimum num-
ber of neighbors is bounded. The minimum number of neighbors is 2d, as in
the comparable pixel graph, and the maximum n2? where d is the dimension
(However, empirically in 3D benchmark data the average number of neighbors
is less than 6.3).

In the face connected particle graph is done on a given APR across neigh-
boring Particle Cells, particle pg and p; will be neighbors if the line integral of
the inverse of the Implied Resolution Function is below a certain threshold

1 1
ds < V9 +d—1 (5.94)

1
X 1 —X 0
o6 = )‘/0 B (i + 505, — %50))
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(fp.xp)

Particle Graph

Figure 5.5: The APR paritcle graph, shown in 2D. This aligns with connecting the particles that are in face-
connected Particle Cell neighbours of the current Particle Cell.

where d is the dimension. In 1D this bound is 1, and =~ 1.054 in 2D and
~ 1.105 in 3D. Particle neighbors in the particle graph can be interpreted
as those particle pairs for which the difference between the two value will
be approximately % where y is a position on the line segment between the
points. Note, that these points in dimension greater than 1 exceed the integral
neighbor bound by a small factor. If it is wished that the neighbours be
guarantee a Reconstruction Condition E, the APR can be construction with
E = gfii =. Due to the isotropic nature of the Implied Resolution Function,
this will guarantee that extending the neighborhood, the particles on the edge
can be used for any reconstruction, within F.

5.7 Summary and main points

In this chapter, we have introduced the Adaptive Particle Representation
(APR) for arbitrary dimension and provided the technical details and proofs
for the main theoretical and algorithmic results in this Thesis that were de-
scribed using 1D in Chapter 4.

First, we stated the definition of the APR and the main results from the
previous section in a general dimension setting. Then we derived the Reso-
lution Bound. Following this, we provided the formal definitions of Particle
Cells, Implied Resolution Functions, and the Local and Optimal Valid Parti-
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cle Cell sets. Given these definitions, we then formally stated and proved the
theorems and lemmas on which the formulation of the APR relies. Based on
these results we gave a generic algorithmic description of the Pulling Scheme
and potential optimizations for particle sampling. Lastly, we discussed three
different reconstruction functions and the APR particle graph.

An attempt to provide a general formulation was made in this section,
to allow future development and extensions to be able to utilize the above
results. We provide steps in this direction with the discussions of extensions
in Chapter 9 (space) and Chapter 10 (time).

The ideas and methods given in the last two sections have many similarities
with existing techniques described in Chapter 3 or elsewhere, we discuss this
for the different features of the APR in Chapter 8.

Summary of the chapter

e Formulated APR and stated main results in general dimension
e Derived the Resolution Bound in general dimension

e Formally introduced Particle Cells and their Implied Resolution
Functions

e Stated and proved the main theorems and lemmas used to form the

APR
e Provided a generic description of the Pulling Scheme
e Discussed particle sampling including optimizations
e Detailed three reconstruction approaches used in this work

e Introduced the APR particle graph
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In this chapter, we empirically test and explore the properties of the APR
presented in the previous two chapters. We do this using two implementations.
The first, a simple 1D implementation for analytically defined functions written
in Matlab, and second, a shared memory parallel 3D implementation designed
for 3D LSFM data.

Using the 1D implementation, we first give examples of an APR with a
simple test case and explore the effect of changing the relative error £ (Where
we use a constant local intensity scale). Doing this, we evaluate whether the
APR obeys the Reconstruction Condition. Following, we then look at the
reconstruction error of the gradient of the function and then explore how the
APR handles discontinuous functions.

The introduction and results for the 3D implementation a separated into
multiple sections. First, we outline the implementation and algorithmic choices
used in constructing the APR, where we use a varying Local Intensity Scale,
based on an estimate of the local range of the function (Using the statistical
definition of range). Second; we describe the process of how synthetic data is
created for the benchmarks. Then in the third and fourth section, we provide
the benchmark results using this implementation and synthetic data. In the
first benchmarks, we explore the properties of the APR, regarding the level of
information content, the Reconstruction Condition, and image size. Then we
introduce two benchmark datasets that we use as a proxy for different infor-
mation content and image size ratios. The first set of datasets is a collection of
images and APR with a fixed ratio of information content to image size. The
second dataset is a collection of nineteen real LSFM images of varying size,
specimen, and label. We also introduce the APR data structures that are used
in 3D. Lastly, in the second set of benchmarks, we explore the computational
cost and scaling of forming the APR and the memory cost of storing the APR
in file storage.
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6.1 1D benchmarks

In this section, we explore and test the APR using 1D functions. We use the
most simple case where the Local Intensity Scale o(y) is a constant. First,
we will briefly describe the algorithms that were used and then follow with a
discussion of various results.

6.1.1 Implementation

The results in this section were produced using scripts in Matlab. The code
takes a function f over a fixed domain €2 that can be queried at any point
y € 2. Given a user-set relative error £ and the input function, the APR is
then be computed.

The Pulling Scheme was implemented as outlined in 4.2.3 and A.4.1, using
storage of a full representation of the Particle Cell set C from [,,;, t0 l;pae — 1,
where 5~ represents the smallest distance between sampled particles. The
equivalence optimization 4.2.3 was used. However, the integral neighborhood
optimization was not used. [, was set by finding the numerical maximum
of the absolute value of the gradient, computed using central differences, and
finding its associated particle cell level using | = max(l,n, [logQ(%)J)) and
lmin Was set to one. The natural Local Particle Set, £, was then calculated

by iterating over the domain at a sampling defined by ‘.. £, was created

Tmaw
by calculating L(y) and then determining the associated2 Particle Cells setting
and then setting the values in the C structure to one (For more details see the
description of the 3D pipeline in A.4.1).

We tested this pipeline, using a numeric, and symbolic version. In the
symbolic version, all the function and gradient calls were symbolically evalu-
ated. In the second, the numeric version, the function sampled at a spacing
sz was the input of the function. L(y) was computed either using central
differences for the numerical version. The pulling scheme was then used to
calculate V,, and from this V. Lastly, the particle set P* = {f,} was formed
by sampling the function. As particle locations do not align with the sampling
used in the previous steps when using the numerical computation, linearly in-
terpolated values were used. Unless explicitly stated, all results are shown for
the numerical version.

6.1.2 1D example

Here, we explore the APR for a simple 1D function for a function composed of
a narrow negative and broad positive Gaussian function. Figure 6.1, shows the
APR represented as particles at f, in green, and a piecewise linear interpolation
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Figure 6.1: The APR with E = 0.05 (left) and E = 0.3 (right) for f(y) = e 005  — e~ 0.001  with
o(y) = 1 on the domain Q = [—2,2]. The observed reconstruction errors (normalized infinity norm) are given

inset for E). a piecewise constant reconstruciton, Ej,. worst case reconstruction, and Ej; = piecewise linear

reconstruciton. For E = 0.05, #P* = 176, and lymae = 12, for E = 0.3, #P* =51, and lypae = 9

in blue, for a high relative error £ = 0.05 and low relative error £ = 0.3
(Function definition in caption). We only use this example here; however, the
results are consistent across general differentiable functions that have been
tried. From the two plots, we can see that the particles are adapting to the
different length scales in the problem, having a low density of particles in the
flat areas and resolution increasing near the two peaks. Further, we can see
that the impact of increasing the relative error is an increase in the resolution
in the already higher resolution areas. In the inset, we show the observed
reconstruction errors £* of the two APRs for a range of different reconstruction
methods. We define the observed reconstruction error £* for a set of points
as

E* = max 1f(2) — f(=)] (6.1)

TET 0'(1})
where f is the reconstructed value from the APR. A subscript is usually given
to indicate which reconstruction method was used, and z is the set of all
points sampled at a spacing of *.—. For the 1D examples, we use three

2lmax *

different constructions. E7. is based on a piecewise constant nearest neighbor
reconstruction fpc, E7 . is the worst-case taking the maximum reconstruction
error for both fmm and fmaw as described in 5.6.1, and Ej;, is from a piecewise
linear (between particles) reconstruction. Figure 6.2 shows the reconstructions
for the three cases for the APR with £ = 0.3. For the case of £ = 0.05 the
reconstructions, except the worst-case, are indistinguishable by eye from the
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Figure 6.2: Examples of three different reconstruction methods for the £ = 0.3 APR from Figure 6.1. The left
plot shows the maximum fyqz (light blue) and minimum f,,;, (grey green) worst-case reconstructions (5.6.1)
with the original function plotted in transparent blue. The right plot shows piecewise constant interpolation fpc
(green) and piecewise linear inteprolation. The original function is plotted in transparent blue.

function. From theory, this observed reconstruction error should be less than
or equal to F for all of these methods. Returning to the values in Figure 6.1,
we see that this is the case. As expected, the worst-case reconstruction has
the highest value, followed by the piecewise constant, and then piecewise linear
reconstructions. Next, we show details of the APR formation, and how the
change of resolution between the two relative error values arises. The increase
in E, from 0.3 to 0.05, results in a scaling of the Local Resolution function L(y),
shifting it to a smaller value. The lower values then result in a more constrictive
Resolution Bound resulting then in a smaller Implied Resolution Function.
This is shown in Figure 6.3 where the Implied Resolution Function R*(y)
(green) and the Local Resolution Estimate L(y) (blue). However, across these
figures, discerning the changes in resolution in high-resolution areas (small
R*) is difficult. However, this is easily done instead by directly visualizing the
particle cell level [. Figure 6.4, shows the changes in resolution by particle cell
level [ for the two different relative errors. We note that the particle cell level
[ for the higher relative error £ = 0.05 seems to be more responsive to the
features of the function then £ = 0.3.

6.1.3 Reconstruction Condition

Above we showed that the Reconstruction Condition holds for two values of
relative error /. But, does this also hold for arbitrary values of E7 To address
this, we computed the APR and reconstruction errors E* for 200 values from
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Figure 6.3: Local Resolution Estaimte L(y) (blue) and Implied Resolution Function R*(y) (green) for the
E = 0.05 (right) and E = 0.3 (left) examples from Figure 6.1.
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Figure 6.4: Particle Cell level [, for all ¢;; € V for the E = 0.05 (left) and E = 0.3 (right) examples from
Figure 6.1.
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Figure 6.5: The observed reconstruction errors for the APR and function as in Figure 6.1 for a linear range
of 200 values of relative error E from 0.001 to 1. In both plots the dotted dark blue line indicates E* = E,
the representing Reconstruction Condition that the APR reconstruction should be below. The left plot shows

the observed reconstruction errors for worst case EY, . (blue), piecewise linear Ej; ~(light blue) and piecewise
constant E. (green). The right plot shows the worst case reconstruction error Ej . when the gradient is
computed analytically (green) and numerically using central differences (blue).

0.001 to 1 for the three reconstruction methods. The results are plotted in the
left plot in Figure 6.5. For small values of E the reconstruction errors show a
linear response to F, and for higher values show a piecewise constant response.
Across all values, the worst-case reconstruction, as predicted, is the highest.
Further, although it comes close to the bound, represented by the dotted line,
it never crosses it. These results, therefore, confirm that the Reconstruction
Condition holds across E for our test function.

6.1.4 Numeric vs. symbolic gradient

The derivation of the APR assumes full knowledge of the gradient of the func-
tion %. In 4.3.2, we briefly discussed some theoretical arguments on how
errors in the gradient would affect the observed reconstruction error E*. To
test the impact of this, we compared the worst-case reconstruction error of
the APR computed with exact knowledge of f through symbolic evaluation of
% and the numeric version computed from knowledge of f only at samples of
distance le% All previous results have been with the numeric version. The
result is shown in the right plot of Figure 6.5. For small values of E the results
appear identical, however, for a few points at higher E, there are some differ-
ences. Indeed, the reconstruction error for the numeric code is smaller, except
at isolated points for £ near 1. Arguably, since the bound only requires E be

below the bound, the lower value results from more particles being used, and
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therefore the higher analytical solution is ’better’. However, in this example,
the difference between the two regarding the number of particles was small
(1-2).

6.1.5 Number of particles

Intuitively, we should expect that the smaller the E, the more particles that
should be required to form the optimal solution to the Resolution Bound with
Particle Cells, and therefore the number of particles should increase with in-
creasing E. This is the case, and is shown in the left plot of Figure 6.6. The
plot shows both the numeric and analytic version number of particles against
the relative error E. Only one curve can be seen because the differences are
indistinguishable when visualized this way. The plot shows that not only does
the number of particles increase with decreasing F, that it does so in a non-
linear way. To explore this, in the inset of Figure 6.6 left we show the same
results in a log-log plot. We find what appears to be two different regimes,
corresponding to linear regions in the log-log plot. In the figure, we also show
linear fits for these two regions. For small values of E, the number of particles
N, appears to scale like £~%%¢ and for higher values like F~0-%6.

6.1.6 Gradient

As briefly discussed in 4.3.6, satisfying the Reconstruction Condition, only
guarantees the reconstruction of the function f at a specified relative error F,
and does not bound the derivative. However, the error of the gradient should
still scale with E. We empirically explore the gradients reconstruction error,

defined as

af af
grad sex O grad .

where we set 04,44 to be equal to the maximum absolute value of the gradient
across the interval. The normalization by the maximum absolute value of the
gradient is to make the results comparable to the E bound for f. The results
are shown in the right plot of Figure 6.6, where the gradient is computed using
both 1st order, and 2nd order in h DC-PSE [115] derivative estimates. We find
that in both cases as the error decreases in F. For the first order derivative, the
error is above the bound set by E, however, for the higher order 2nd derivative,
we see that the reconstruction error in the gradient is always below E.
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Figure 6.6: The left plot shows the number of particles (N, = #V) for the APR and function as in Figure 6.1 for
a linear range of 200 values of relative error E from 0.001 to 1. Inset is the same data (blue) on a log-log plot,
with two linear fits (green). The first fit is for E < 0.05, with exponent —0.86 and R-Square: 0.994 and second
for E > 0.05 with exponent —0.56 and R-Square: 0.975. The right plot shows the observed reconstruction error
of the gradient computed on the same series of APRs. The observed reconstruction error of the gradient is the
infinity norm of the gradient normalized by the maximum absolute value of the gradient. The dotted line shows
the relative error bound, the light blue shows a first order gradient, and green second order gradient.

Later in Chapter9, we discuss, and show examples of, how using the same
framework the APR can be extended to guarantee the observed reconstruction
error By, in addition to £*.

6.1.7 Discontinuities

Lastly, for the 1D case, we explore the case where f is no longer in C' and
contains discontinuities. We do this by adding two Heaviside step functions to
the previously used example from Figure 6.1. The existence of discontinuities
violates the assumptions of the formulation of the APR. However, practically
discontinuities can be handled when using the numerical version, given the
introduction of a fixed maximum level [,,,, for the initial sampling. We do
this by using sampling set by the previous example for the input f{z}, but
letting [, for the APR be determined by the numerical computation of the
derivative and L(y). We show the resulting APR’s for the same relative errors
E =0.05 and £ = 0.3 in Figure 6.7, with the observed reconstruction errors
again inset. We find that the two piecewise constant reconstruction meth-
ods still satisfy the Reconstruction Condition, but the worst-case method does
not. The piecewise reconstruction methods meeting the bound is the result of
only computing E* at the sampling points given by Z, which coincides with
the highest sampling distance in the APR. Therefore, at the high-resolution
regions, the reconstruction is simply the particle values f, for these meth-
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Figure 6.7: The APR with E = 0.05 (left) and E = 0.3 (right) for f(y) = e~ 005  —e  o0.001 4+ 0.5 x
Heaviside(x) — 0.3 * Heaviside(—.5 — ) with o(y) = 1 on the domain Q = [—2,2]. The observed reconstruction

errors (normalized infinity norm) are given inset for E*, a piecewise constant reconstruciton, E? = worst case

pc
reconstruction, and El*m piecewise linear reconstruciton. For E = 0.05, #P* = 200, and lmaz = 18, for

E =03, #P* =57, and lymaz = 9.

ods. However, the worst-case reconstruction effectively uses all points within
R*(y). In this case, the reconstruction fails at the discontinuity. However, the
same would occur for any discrete sampling across the discontinuity using an
isotropic kernel with support greater than one point.

6.1.8 Summary

In the above, we have briefly shown that the results from the previous methods
section hold, at-least for the basic noise-free example we have shown. We return
to using this implementation in Chapter 8 in a noisy scenario for comparison of
optimality results with wavelets. However, the results above are representative
of all 1D functions I have explored in work not presented here. We explore
issues regarding how the adaptation relates to information content, noise, and
computational issues, data structures, and storage in the 3D case we present
next.

6.2 3D florescence image implementation

In this section, we briefly outline how we have implemented the steps for form-
ing the APR for noisy 3D fluorescent images. We make use of the optimizations
for the integral neighborhood sampling (5.5.3) and equivalence optimization
(4.2.3). For the Pulling Scheme, we use explicit storage of C as described in
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Figure 6.8: Left compares the adaptive sampling of two regions of labeled cell nuclei in the same image stack
(Dataset number 6 from Table A.1). One of the regions is brighter than the other (left panel). The centre left
panel shows adaptive representations sampling based on the absolute intensity. The right panel shows adaptation
using a Local Intensity Scale calculated from the image and shown in the centre left panel. The use of the Local
Intensity Scale allows both regions to be correctly resolved (right). The schematic on the right shows the basic
idea behind the Local Intensity Scale we use here. The local intensity scale should be slowly varying and reflect
the range of intensities (from highest to lowest) of objects within a set length scale.

4.2.3 in 1D and given in with algorithm steps given in A.4.1. Here we provide
an outline of the implementation choices that differ from the 1D case above.
A.4.1 gives additional technical details for the steps. Note, in this section as
we are now dealing with images, we will use I to represent the original noisy
input image, instead of f as previously used. When implementing the APR for
3D LSFM data, three main choices had to be made. First, how to calculate the
gradient magnitude |VI(y)|, second, what form of Local Intensity Scale o(y)
to use and how to calculate it, and last, how to sample the image intensity at
particle locations I, = I(y,). All decisions have been made with the objective
of meeting the Representation Criteria through optimizing both robustness to
noise and computational efficiency.

6.2.1 Gradient estimation |V/|

To calculate the gradient magnitude |VI| from the image we use smooth-
ing cubic B-splines [129]. Smoothing cubic B-splines provide robust gradient
estimation in the presence of noise. However, they require the setting of a
smoothing parameter A to be set according to the noise level. Further, we
have implemented the fitting of the B-Splines using the recursive IIR approach
[129]. Using the recursive approach provides a computational cost that is O(1)
concerning A, i.e. the computational cost is constant regarding a change in the
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Figure 6.9: Flow chart showing APR pipeline for fluorescent images, first smoothing B-splines are fit to the image,
then the gradient magnitude |V f| and local scale o(y), is computed. The Local Resolution Estimate L(y) is
then computed and used to construct the input for the Pulling Scheme that then computes the OVPC set V.
The particles are then sampled from the original image, forming the APR. Required parameters are given above
the boxes in purple.

smoothing scale \.

6.2.2 Local Intensity Scale o

For the effective adaptation to the content of the LSFM data requires the
addition of a non-constant Local Intensity Scale o(y). We illustrate this need
in the left panel of Figure 6.8. It shows two regions of an LSFM image of
cell nuclei that show a large difference in brightness, despite both showing
comparable cells. The difference is a result of the varying local intensity scale
in LSFM data that was discussed in detail in Chapter 2. In the absence of
a dynamic Local Intensity Scale, only the bright region is correctly resolved,
with the dim nuclei being under-sampled (or no adaptation for a lower constant
scale). To correct for this, we use a spatially varying Local Intensity Scale that
is a smooth estimate of the local range of the image as shown in a schematic
on the right of Figure 6.8. This Local Intensity Scale compensates for the
varying brightness levels across the image and allows for the adaptation to
both bright and dim regions, as seen in the last two panels in the figure. The
Local Intensity Scale for the two different regions is also shown, displaying the
large difference between the two areas of the same image.

To compute and define a local range of intensity in the image requires the
addition of a length scale. For this, we use the intrinsic length scale in the
image from the image formation process. The smoothing window in each di-
rection is set proportional to the average width of the point spread function
(PSF) of the microscope used. Further, two minimum threshold parameters
ory are introduced to prevent the resolving of background noise that would
occur in their absence (Figure A.4). As mentioned, for the Resolution Bound
to hold, the Local Intensity Scale must be sufficiently smooth (See 4.3.5). Prac-
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tically, we can not guarantee this condition for a nonconstant o(y). However,
setting the window proportional to the PSF and calculating o(y) from a once
down-sampled image satisfy this condition sufficiently for the Reconstruction
Condition to hold empirically (see benchmark section below). The calculation
requires a series of local mean window estimates. These are implemented using
the ideas of integral images, also known as summed area tables [33]. Summed
area tables are a recursive approach resulting in the computational cost to be
independent of the length scale (window size) used. A detailed description of
the Local Intensity Scale is given in A.4.1.

6.2.3 Intensity estimation I,

Two methods are used to estimate intensities [, from the image I{y}. Be-
cause the image is noisy, a direct evaluation of the closest pixel value no longer
provides the best estimate of the noise-free intensity value at x,,. For particles
in particle cells at pixel resolution, the intensities are median filtered in each
direction and then sampled. The use of a median filter is based on the edge
preserving properties of the filter and that the high-resolution areas are local-
ized near large gradients. For particles in a larger particle cells, i.e. with level
[ > lq We use the average intensity of the pixels contained in the particle cell
for the value of I,. This then allows for an adaptive estimate of the intensity
I,, that uses the scale information inherent in V. A more detailed description
is given in A.4.1.

6.2.4 Reconstruction methods

For the comparison of the APR with images, a reconstruction method must be
used. In 5.6.1 we discussed the reconstruction methods used in this section.
Unless otherwise explicitly mentioned, it should be assumed that the piecewise
constant reconstruction method is used. This was chosen for its computational
efficiency, simplicity, and effectiveness.

6.2.5 Pipeline and parameters

A summary of the algorithmic steps required to form the APR from an input
image I{y} are shown in Figure 6.10. The parameters that must be set are
shown in purple. These are the smoothing parameter A for gradient estimation,
the threshold parameters for the Local Intensity Scale o7, the point speed
function width PSF,,, and the desired relative error /. A detailed discussion
of all parameters, their interpretation, and how they have been and can be, set
is given in A.7. For all of the benchmarks given below, the parameters that
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Figure 6.10: The figure shows the main steps in the pipeline for creating the APR using a 2D example image
(Dataset number 10 Table A.1). First the Local Scale Function o(y) (Local Scale Function is red where the
value is below the minimum threshold o) and gradient magnitude |VI(y)| are calculated, and then combined
to compute the Local Resolution Estimate L(y) (See *). This is then used to form £ and input to the Pulling
Scheme, the red arrow, to form V. The Implied Resolution function R*(y) is shown (See *). V is then used
to define the particle locations and sample the function and create the APR left panel. The left side of the
last panel shows the APR piecewise constant reconstructed image. (() for both the Local Resolution Estimate
and the Implied Resolution Function, the particle cell level has been interpolated to each pixel, to allow better
visualization)

have been used are described in a section for each in A.9. To give the reader
some intuition of the steps required to form the APR, Figure 6.10 shows the
main steps for a single slice of an LSFM image.

6.3 3D synthetic data

To be able to test the properties of the APR for 3D LSFM data we use syn-
thetically generated image data. We generate synthetic images following our
Object function and image formation model described in 2.2.1 and 2.2.4. Syn-
thetic data is used as it allows us to control image parameters, such as im-
age size, content, and quality in addition to full knowledge of the noise-free,
ground-truth image and Object function. We provide an overview below and
give additional technical details in A.8. The synthetic image generation was
implemented in C++ using the ArrayFire GPU library [12].

6.3.1 Object function

We follow the model of an LSFM image as discussed previously in 2.2.1. Where
we define our Object function (ignoring time) defined on Q@ C R?® with M
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objects as

M

O(z,y,2) = ZOi(x,y,z) (6.3)

=1

where the function is set to zero outside of €2 for simplicity. Each object is
composed as

Oi<x7y72> = Bi0*<x_xiay_yiuz_zi> (64)

where O*(z, y, z) is a piecewise constant function of compact support, that we
call the template object, and B; is a constant we call the brightness of object
7. In all but one case, the template object used below is a sphere.

6.3.2 Image formation

Given a particular Object funtion, we form an image /{y}, approximating the
image formation process described previously in 2.2.4. The first step involves
the simplified version of Eq 2.3 and discrete approximation of

“(z,y,2 /// (u,v,w) +b)

PSF(x —u,y — v,z — w)dudvdw
(6.5)

where b is set to be a constant and PSF' as set as a non-spatially varying
Gaussian with a standard deviation in each direction of PSF;. For efficiency,
the convolution is only done once over the template object, allowing a high
sampling approximation to the Object function, without explicitly storing it.
The ground truth image is then formed by integrating over the pixel (voxel)
volume (hy, h,, hy) to create the pixel intensity for each location as

x+he/2  py+hy/2 z+hz/2
I{z,y,z} = / / (u, v, w)dudvdw (6.6)
x—hg/2 Jy—hy/2 Jz—h./2

for fixed locations y, the spacing of pixels and pixel volumes does not need to be
the same (isotropic). However, this is the case for the benchmarks here. Note,
we have also integrated of z dimension as a simplification. Again a discrete
approximation to the integral is used. The last step involves the corruption of
the image by noise as

[{xvya Z} = gt{x7y72} +77(3773/727[gt{3773/72}) (67)
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Object Function Ground Truth Image Original (Noisy) Image APR Reconstructed Image

Figure 6.11: Flow chart showing the generation of synthetic images used for benchmarking the APR. First
template objects are generated of a certain size, given locations (x;,¥;,2;) , and brightness B;, to define the
Object function O(y) (left). The Object function is then blurred through convolution with a Gaussian kernel
PSF, and then sampled to produce the Ground Truth Image I4:{y} (center left). This ground truth image is then
corrupted by a Gaussian approximation to Poisson Noise 7, to generate the Original Image I{y} (center right).
This original image is then transformed into an APR. The APR can be then used to produce a reconstructed
image f{y} that can be compared with both the original and ground truth image for benchmarking.

where n(x,y, z, [p{z,y,2}) ~ N(u{z,y,2},4{z,y,z}) a Gaussians noise
with mean and variance equal to the intensity of the pixel as an approxi-
mation to Poisson noise [76]. The image I{z,y, z} at locataions y we denote
as I{y}, it is this image that is transformed into the APR.

6.3.3 Summary

Figure 6.11 provides an example of 2D slices of the steps in the synthetic image
generation pipeline. Throughout the benchmarks below, we alter the synthetic
images regarding image size, information content, quality, and sampling. We
will briefly describe how this is done for each, relating to the parameters men-
tioned above. Figure 6.12, provides examples of what the original image of a
fixed sphere template looks like under different conditions.

Image size

The image size can be changed by setting the appropriate size of the domain
(1, pixel locations y and pixel size hy, hy, h..

Information content

Given our Object function model of the image, we can define the level of
information content to be proportional to the number of objects M in the
image. Therefore, we can scale the image content for a given size image and
sampling, by increasing the number of objects M. The objects are given
random locations uniformly distributed across the domain and often have a
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random uniform distribution of brightness B;, within the range B,,;, and B4 .
An example is shown in the right image in Figure 6.12.

Image blur

We alter the degree of image blur and its shape using the width of the Gaussian
kernel and its standard deviation parameters PSF;. Here, we show results for
three levels of blur; we call small, medium, and large blur. They correspond to
a standard deviation in terms of pixels of 1, 3, and 6 respectively. Figure 6.12
in the left most column provides an example of how these blur kernels impact
the same template.

Image quality

Here we consider either noise-free, that is 7 is set to zero, or the noisy case
using a Poisson noise approximation. The image quality can be then altered, by
changing the relative magnitude of the n compared to the object brightnesses
B;. The mean of n within any object ¢ can be approximated by a combination
of b+ B;. Therefore, we can increase or decrease the image quality by increasing
or decreasing the ratio of Bﬁ'b. This is done by keeping a fixed average object
brightness B; and then changing the background b. Hence, we are altering the
average Peak Signal to Noise Ratio (PSNR) of the image. We show results here
for three levels of image quality we call low, medium and high Image Quality
(Abbreviated to Qual in figures). Figure 6.12, third column gives examples for
these levels of image quality.

Sampling

Lastly, the degree of sampling can be changed. This involves decreasing the
pixel size hg, hy, h, and sampling y while keeping all other variables fixed in
real variables. Practically, this means the PSF width PSF; defined in pixels
has to be appropriately increased. The increase in sampling can be thought of
as zooming in on the object, as with a camera lens.

6.4 APR properties benchmarks

All benchmarks were run using the 3D pipeline described above that has been
implemented in a C++ Library using OpenMP shared memory parallelism for
most algorithm steps. A workstation running Ubuntu, Xeon E5-2660 v3 (25M
Cache, 2.60 GHz), 64 GB ram was used to run all benchmark and applications
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Figure 6.12: A summary of the different groups of synthetic images used in the benchmarks. The first column
shows the three levels of blur used. The second column shows examples of the APR reconstruction using Ip. for
three relative errors E, for the medium blur noise-free case for a close up of a sphere object template. The third
and forth columns show the original image, and APR reconstruction (E = 0.1) for noisy images for the medium
low and high image quality levels used. The left image shows the original image and reconstruction for medium
blur and image quality with E' = 0.1, showing the random distribution of object location and brightness B;.

below. In this section, we will give a description of each benchmark and
describe the results and give the exact parameters used in A.9.

6.4.1 Noise-free Reconstruction Condition

In the first set of benchmarks, we assess if the Reconstruction Condition holds
for noise-free synthetic images. The benchmarks are similar to those run in
the 1D case above. The details of all the parameters used are given in A.9.1.
For these benchmarks, we again show the observed reconstruction error which
as for the 1D case above is

E* — max |f{X} — [yt{x}‘ (68)

xey o(x)

that is the infinity norm of the pointwise reconstruction error relative to the
computed Local Intensity Scale ¢ at that point. The observed reconstruction
error was calculated at all pixel locations in the original image .

In these benchmarks, the number of objects is held fixed (five), and for a
given F an image is generated with randomly placed objects with brightnesses
that vary randomly over an order of magnitude. The first plot in Figure 6.13
shows the observed reconstruction error E* for piecewise constant reconstruc-
tion and for 40 values of E, and 40 repetitions for small, medium and large
blur. For all blurs and F, the reconstruction error is below the dotted line that
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Figure 6.13: The first plot, on the /eft axis shows the observed reconstruction error E*, I4; the ground truth and

piece-wise constant reconstructed image fpc for a noise-free input image, the dotted line is E* = E, representing
the Reconstruction Condition. The shaded areas represent an estimate of the standard deviation and the solid line
the mean. The right axis shows the mean number of particles in the APR. Both are plotted against the relative
error bound E shown for synthetic data small, medium, and large levels of blur as shown in Figure 6.12. The
second plot shows the medium level of blur benchmark, but showing the observed reconstruction error for worst-
case, piecewise constant and smooth reconstruction methods (See 5.6.1). Each cross represents an individual
APR and Image comparison.

represents £ = E* the Reconstruction Condition. The second plot in the figure
shows the medium blur benchmark but using the three different reconstruc-
tion methods. The piecewise constant and smooth reconstruction methods
obey the Reconstruction Condition. However, for the worst-case reconstruc-
tion, we find three points out of 1600 realizations do not satisfy the bound, and
they sit slightly above it the dotted line. This breaking of the Reconstruction
Condition could arise from the smoothness assumption for the Local Inten-
sity Scale failing at these points, or enter through a numerical error in L(y)
or other transform steps. Another important observation is the tightness of
the Reconstruction Condition when assessed by the worst-case reconstruction.
This implies that the APR is effectively adapting, as the worst-case recon-
struction is almost exactly E. These two benchmarks used sphere template
objects, to test whether the results were affected by the geometry of the tem-
plate, we used an anisotropic 'Octopus’ template (See Figure A.4), shown in
the first plot in Figure 6.14. Comparing the results to the sphere template
results, we see little qualitative, except the response appearing more linear for
higher E for the octopus template. These results are consistent with running
other benchmarks with a variety of templates. Based on this, for the rest of
the benchmarks presented here, we only use our sphere templates, due to their
computational simplicity.

In summary, except a few points, we find the Reconstruction Condition
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Figure 6.14: The first plot is a repetition of noise-free benchmark in Figure 6.13 with octopus template image
(see Figure A.4) used instead of the sphere template for the Object function. The second plot shows the observed
reconstruction error E* for piecewise constant reconstruction for a noisy image. The blue line shows the infinity
norm of the observed relative error E* in response to changing relative error bound E with a noisy image (medium
quality and blur) as input to the APR against the desired bound E. The Reconstruction Condition E = E* given
by dark blue dotted line. We see the observed reconstruction error reaches a lower bound which it does not
decrease below and therefore is above the bound for small E. The green line shows the result when noisy
intensities f;, are replaced with noise-free ground-truth intensities fg¢,,, but the noisy sampling is used. In this
case, the observed relative error now obeys the bound for all E. The solid blue line shows the average observed
infinity norm of the observed relative error E* for the original images

holds, despite no guarantee on this due to the non-constant Local Intensity
Scale 0. Because, the worst-case reconstruction (almost) meets the bound,
then any reconstruction method using a weighted average of points will also
meet the Reconstruction Condition. Therefore, in the noise-free case, the APR
guarantees a user set reconstruction error F relative to a local intensity scale,
and therefore we conclude that for these cases it satisfies RC2. In addition to
the reconstruction error, for the first and third plot, we also provide the average
number of particles for the APR for a given relative error E. As expected
intuitively, like in the 1D case, the average number of particles monotonically
decreases as F increases. However, in these examples, instead of having two
regimes, there appear to be multiple scaling regimes that depend on both the
template and the size of the blur kernel used. One observation is that for low
blur, the number of particles is much less sensitive to E, then for the higher
blur images that show much larger gradients in response to F.

6.4.2 Noise corrupted Reconstruction Condition

In reality, however, LSFM data is corrupted by noise. In 4.3.3, we gave an
argument that we would expect the observed reconstruction error £* to reach
a lower bound as F — 0. Indeed, we see this in practice. In the first plot of
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Figure 6.15: The left axis of the first plot shows the PSNR of the reconstructed APR from a noise corrupted
image, normalized by the PSNR of the APR with E = 0.001. The right axis shows the ratio of the mean squared
error (MSE) of the APR reconstructed image over the MSE of the original image compared to the ground truth,
plotted against relative error bound E. The second plot also shows the observed PSNR against the relative error
but for medium image quality and small, medium and large image blur.

Figure 6.14 we repeat the same experiment for medium blur case presented
in Figure 6.13 right, but for a noisy input image with medium image quality.
We see that for values of F > 0.2 the observed reconstruction error decreases
with E, however, beyond this point it reaches a lower bound and no longer in-
creases. For values of F < 0.1, the observed reconstruction error is then above
E violating the Reconstruction Condition. Although, the analysis, relies on
the adaptation being correct, and the lower bound arising only from the uncer-
tainty of the noise-free values of f,. To discriminate the source of the bound,
we also calculated the observed reconstruction error when the noisy f, are re-
placed with intensities from the ground truth image f,, (i.e. without noise),
but still with the noisy construction of V and particle placement. We find that
in this case (shown by the green curve) the Reconstruction Condition is again
satisfied. We find similar results for the low and high image quality results,
with the lower bound shifting appropriately. These results indicate that the
approximation of V, and the Implied Resolution Function R*(y) are relatively
robust to noise in our benchmarks. Then, given the observed reconstruction
error E* reaches a lower bound, how should we choose E in the presence of
noise? To explore this question, we look at the observed Peak Signal to Noise
Ratio (PSNR) of the reconstructed image. Here, we have calculated the ob-
served PSNR as

64000

(6.9)
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where M SFE is the Mean Squared Error which we calculated as

MSE = 37 (Hyd — Iuly} (6.10)

Yi€y

where as previously /V is the number of pixels in the original image. As we are
only concerned about the relative change of the observed PSNR with respect
to E, we use the Normalized PSNR, which is simply the observed PSNR at
E divided by the average observed PSNR of an APR with £ = 0.001 for the
same type of image. The Normalized PSNR allows us to compare the results
across different image qualities and blur levels.

The first plot in Figure 6.15 shows Normalized PSNR against relative error
E for low, medium, and high image quality with medium blur. For the different
image qualities, we see different dynamics. However, the cases have some
common features. Interestingly, the maximum PSNR does not occur as £ — 0.
Instead, all qualities show a nonlinear behavior as E gets small. For the low and
medium quality images, the PSNR has a maximum in E between 0.08 — 0.15.
For the low image quality case, there is a positive relationship for larger £ and
the Normalized PSNR. This is likely due to the image being so noisy, that the
improvement in image quality from downsampling the image dominates.

In the second plot, we show the same benchmark, but for medium image
quality, and changing blur. Here, the medium and high blur images show
similar dynamics, reaching a maximum PSNR between £/ = 0.05—.1. The low
blur images, however, show almost no dependence on E. This low dependence
is similar to that seen in the average particle number. Therefore, for noisy
images, there seems to be an optimal range of E between 0.05 — 0.15 across
medium to high image blur and medium to high image quality. Fortunately,
from observation, this appears to align with the image quality and blur of
common LSFM data. Because higher values of F are preferred as this leads to
a lower number of particles being used by the APR, in cases where non-prior
information is known we use a default value of E' = 0.1 seems appropriate.

Lastly, we address the how the image quality of the reconstruction from the
APR compares to the original noisy image. For the optimal range of E do we
find a higher or lower image quality than the original? To address this on the
right axis of the first plot in Figure 6.15, we show the ratio of the MSE of the
reconstructed APR image, to the MSE of the original image for the medium
image quality and varying blur. The results show that in the optimal range
the MSE of the APR is four to five times lower than the MSE of the original
image. We find similar results across image qualities (not shown). Therefore,
we can conclude, that in this range, the errors made due to optimization are
'within’ the error of the noise of the original image.
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Figure 6.16: The first plot on the left axis shows the ratio of the PSNR of the APR reconstructed image, compared
to the PSNR of the noisy original image (Only computed for areas above local information scale threshold o).
On the right axis, the number of particles, against the information content set by the number of template objects
M in the original image (parameter details: A.9.4). Only the mean is given as the confidence interval was
indistinguishable on the plot. The second plot on the /eft axis shows the number of particles, and the right
right axis the number of pixels, plotted against the original image width, for 10,50 and 100 objects in the image
(parameter details: A.9.5).

These results indicate that for our benchmarks the APR can satisfy the
second part of RC2, in that given an appropriate F, the APR adapts, while
not reducing the signal-to-noise ratio compared to the original noisy image.

6.4.3 Increasing information content

In the following benchmark, we address how the APR adapts to image con-
tent. We can test this through increasing the number of objects M we use to
construct the Object function O for a fixed size image. The first plot of Fig-
ure 6.16 on the left axis shows the average number of particles for an increasing
number of objects for low, medium, and high image quality with medium blur.
We find an approximately linear relationship between the number of objects
and the average number of particles across image quality. Notably, the low
image quality images require a higher number of particles on average, likely
reflecting over-sampling due to uncertainty in L(y). The relationship is not
exactly linear, due to the fixed size of the domain. As the number of objects
increases the likelihood of them over-lapping increases, given that the maxi-
mum resolution is fixed to pixel resolution this reduces the required number of
particles, leading to a sub linear relationship. Therefore, for our benchmarks,
the APR appears to be adapting to the information content of the image.
However, how does the image quality change with the number of objects?
We address this, by plotting the observed PSNR of the reconstructed image
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normalized by the observed PSNR of the original image for non-background
regions (see Figure 6.16). The right axis of the plot shows that this ratio is
nearly constant when plotting against the number of objects, with a slight neg-
ative trend. However, across all, the ratio is always greater than 1, with lower
quality images shower a higher ratio. We restrict the PSNR to non-background
regions because otherwise the PSNR is dominated by the proportion of the im-
age that does not have any objects. This is due to the reconstruction error
being near zero in these flat regions. The near zero reconstruction error in the
background results in a strong negative correlation with the number of objects
and is un-informative. Instead, the restricted ratio provides us an informative
lower bound. From the constant response, we, therefore, can conclude that
for our benchmark data the APR effectively adapts to the information content
while maintaining image quality.

6.4.4 Increasing image size

We have shown that for a fixed image size, the size of the APR scales with
the information content, but what about for fixed information content and
increasing size? The second plot in Figure 6.16 addresses this question, plotting
the number of particles for 10, 50 and 100 objects against increasing image
width W (N = W3). That is, the size and number of the objects are held
constant and the size of the domain they are placed in increases. The three
curves all show similar, but scaled and shifted, dynamics. In all cases, the
number of particles increases towards a limiting fixed number of particles. That
is, beyond a given image size, the number of particles in the APR becomes
constant. The growing number of particles for lower image sizes likely reflects
the objects overlapping due to the confined domain, resulting in the increase in
the number of particles as the objects become less over-lapped on average. To
provide perspective, the number of pixels IV is also plotted on the right axis.
From the above, we conclude that the size of the APR reflects the number and
distribution of objects and not the original image size N. Therefore, when
combined with the conclusions of the last benchmark, we assess that the APR
fulfills RC1 for the data presented here.

6.4.5 Increasing sampling rate

In the last benchmark of this section, we explore how the APR of a fixed object
distribution and blur responds to a change in sampling. That is, does the APR
becomes independent of the originally chosen sampling? Conceptually, this is
equivalent to deciding what resolution of the image to set when using a digital
camera to capture a fixed scene. Here, we ignore any practical issues that
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would result from the reduction in the number of photons per pixel. For
this benchmark, we place a single object in the center of the image and then
increase the sampling by decreasing h, = h, = h,, while keeping the PSF
and domain constant in real terms (but increasing in terms of pixels). The
smoothing parameter A is also increased as to represent a fixed smoothing
length in real terms. In the first plot of Figure 6.17 we show the number of
particles plotted against the width W. For small image sizes, we see a linear
increase in the number of particles. However, above an image width W of
approximately 100, the number of particles oscillates around a fixed value.
The equivalent noise-free benchmark shows similar dynamics; where it is clear
the oscillations show a distinct pattern increasing between consecutive widths
that are a power of 2. Therefore, these oscillations appear to be reflecting the
changing relationship between the quantization and L(y). Hence, on average
the number of particles reaches a 'maximum’ sampling. We note that an image
with high blur was used to result in the APR reaching a maximum resolution [
at a low image size to aid computational simplicity. This effectively decreases
the image size for which the fixed size ’kicks in’ (See A.9.6 for additional details
on the benchmark).

Given that some limiting APR is reached, how is the image quality of
the reconstruction affected by further increases in sampling? We address this
question in the second plot in Figure 6.17, showing the PSNR of the same
benchmark against image width. Here, we find that the reconstructed image
quality increases as the sampling rate is increased until an image width of
approximately 400. Beyond this width, the value begins to oscillate, possibly
indicating that the gains from in improvement of image quality from an increas-
ing number of samples are smaller error induced by the sampling technique.
The above results show that the APR can utilize an increase in sampling to
increase image quality while keeping the resulting size of the representation
constant.

6.5 APR performance benchmarks

In this next section, we give results of "performance’ benchmarks for the trans-
forming, and the memory and file storage costs of the APR. From the results
in the previous section, we know that the size of the APR, in terms of the
number of particles (or Particle Cells), depends on the information content.
However, the cost of transforming, and representing the APR in memory, also
depends on the original image size N. The dependence of memory and storage
cost on N arises through the pixel sampling limiting the highest resolution /.
of the representation. Although in the previous benchmark we showed that
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Figure 6.17: The two plots show the number particles N, and PSNR of the APR for an image with fixed image
content and blur size, but increased sampling, and hence width W. The benchmark is equivalent to choosing the
resolution of a natural image for a fixed scene. (See A.9.6 for parameters)

the APR becomes independent of the initial sampling resolution, most images
do not appear to be sampled in this regime. Therefore, to understand the
performance requires understanding the dependence on both the level of infor-
mation content, the number of objects, and the original image size N. Instead
of discussing absolute particle numbers, it seems more intuitive to discuss the
ratio of particles N, to original pixels N. Hence we define the Computational
Ratio (CR) as

number of input pixels

CR =

number of output particles

- (6.11)

where an image with a high amount of information content for its size will
have a small CR, and an image with a low amount of content for its size a
large ratio.

In the analysis below, and in Chapter 7 which explores processing with the
APR, we use two groups of test datasets. The first, we call the Computational
Ratio benchmark data, and consists of synthetic data, with the CR set to three
levels, high, medium and low. The second, we call the Exemplar benchmark
data, consists of nineteen LSFM datasets of various size, species, and labeling.

Following we will first describe the CR and Exemplar benchmark data, then
introduce the APR data structures we have used and then provide results for
the computational cost of forming the APR, and its storage cost.
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Figure 6.18: Maximum intensity projection of examples of the Computational Ratio (CR) benchmark data that
are used to represent low (CR100), medium (CR20) and high (CR5) levels of information content (N = 4003).

6.5.1 Computational Ratio benchmark data

To represent low, medium, and high image content relative to image size,
we generate data sets for varying image size N and number of objects M that
approximately correspond to CRs of 100, 20, and 5 respectively. In Figure 6.18,
we show the maximum projection for examples of a CR5, CR20, and CR100
synthetic data sets with image size N = 4003 (We use this CR’X’ notation in
figures and the remaining text). However, we could not determine a procedure
for generating a precise CR for a given image. Instead, the datasets were
generated using a linear estimate of the number of objects required to reach a
certain ratio (See A.10.1). Generated in this way, the CR does vary across N,
and the average CR values for N = 200% to N = 10003 are 5.8, 19.3, and 89.4
for the CR5, CR20, and CR100 cases respectively. However, I do not believe
this detracts from the analysis. The values of CR were set as to span realistic
values as seen in the Exemplar benchmark data discussed next.

6.5.2 Exemplar benchmark data

To add to the analysis using the CR benchmark data, we also run benchmarks
on a corpus of nineteen LSFM datasets. The Exemplar data is intended to
give real examples of ratios and times that can be achieved for the APR with
our current implementation. In Figure 6.19 we show an example of a 2D
section of the original image, APR in particles, and reconstruction for data set
7 of nuclei from an early developing Zebrafish. The datasets are summarized
in Table A.1 and parameters used in Table A.2. How parameters was set
is discussed in A.10.2. The first plot in Figure 6.21, shows the CR for the
exemplar benchmark data. The CRs for the exemplar data sets range from
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Figure 6.19: A 2D slice showing the original image I (left), particles of the APR coloured by intensity (middle),
and reconstructed image fpc (right) of labelled cell nuclei for a developing Zebrafish (Images courtesy of Gopi
Shah, Huisken Lab, MPI-CBG Dataset number: 7 Table A.1) The insets show a close up of the same region. The
particle rendering was created by rendering all particles from Particle Cells from which the image plane intersects.

a minimum of 5.6 to a maximum of 180, with a mean of 42.1 and median of
28.5. The numbering in figures corresponds to the number in Table A.1.

6.5.3 Data structures

Appropriate data structures must be used to be able to store, and process on,
the APR. Ideally, these structures allow fast memory access at low overhead.
Here, we propose two different multi-level data structures for the APR, with
each level, encoded similar to sparse matrix schemes [101] and are described in
detail in A.5. Alternative data structures could be used for the APR, and we
do not claim those we use here are optimal. However, I have tested alternative
data structures (not shown) including those based on hash tables and tree
data structures and found the two proposed here provided superior all-around
performance. The choice of data-structure is critical to the performance of
using a data representation for processing, and I leave further investigations
and comparisons for future research.

The data structures both efficiently encode ¥V and P* in memory by only
storing one spatial coordinate per Particle Cell in a sparse matrix like repre-
sentation. The Particle Cells are stored in structures by level [. On each level,
the Particle Cells ¢;; are stored in vectors according to the last two of the co-
ordinates of i, and ordered by the first spatial coordinate. We refer to the first
coordinate as y, and this represents the memory access direction. The data
structures are split into two components, one representing V' called the access
data structure, and the second storing the particle intensities P* with in an
identical memory layout. The data structures are called the Sparse APR (SA),
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described in A.5.1, and shown in Figure A.5, and Sparse APR Random Access
(SARA) data structure, described in A.5.2 and shown in Figure A.6. The SA
requires linear in y iteration for neighbor access, and the second permits ran-
dom access of neighbors at the cost of a higher memory overhead. The SARA
achieves random access by an efficient storing or neighbors and also stores the
Particle Cell type.

The memory cost of storing the APR for the two data structures is discussed
in detail in A.5. In summary, when storing intensity as float, the SA data
structure requires 50 % extra memory in addition to the particle intensity,
and the SARA structure 200 %, compared to storing an image that had N,
pixels. Therefore, the memory cost of storing the APR will only be less than
the original image in memory if the CR is greater than 1.5 for the SA, and 3
for the SARA. However, this high overhead is not incurred on any additional
properties to the particle intensity that needs to be stored (there is a slight over-
head see A.5.1). For example, when performing processing tasks, additional
variables are needed to be stored per pixel, or for the APR per particle. For an
image, these additional variables scale directly with V. However, for the APR
these directly scale with IV, and therefore will have a lower memory cost will
be lower by the factor approximately equal to the CR. Therefore, in practice,
the access over-head per particle is usually amortized by the use of multiple
particle properties. Examples of this are shown in the next chapter.

In this chapter, we only provide benchmarking of the computational cost of
forming the SARA structure. However, the formation of the SA structure has
a lower cost. Further benchmarks regarding the computational performance
and memory cost of using the SA and SARA structures for processing is the
subject of Chapter 7. Although neighbor access can be done using the SA, the
SARA data structure was used in all benchmarks where neighbor access was
required.

6.5.4 Execution time

In this section, we analyze the computational cost, or execution time, for
forming the APR from an original image with N pixels. The steps of forming
the APR have been summarized the schematic in Figure 6.9 earlier in the
chapter. The pipeline can be broadly grouped into three steps, first calculating
the Local Resolution Estime L(y) using filtering operations on the original
image, then forming £,, and finding V,, using the Pulling Scheme and lastly
constructing an APR data structure. Below, we first address the overall cost
and then provide more detailed analysis for the three steps. We have not
included the time taken to load the image in memory in the analysis here.

141



Chapter 6. APR Validation

8 : : 8 : :
Full Pipeline Pixel Operations

7t 70

6 6l

5} 5}
847 84 o
g3} g3} g —CR20
= = s CR100

2l 2f A

e
1L 10~
x =
0 ‘ ‘ ‘ ‘ 0 ‘ ‘ ‘ ‘
0 2 4 6 8 10 0 2 4 6 8 10
Number of Pixels N x 108 Number of Pixels N x108

Figure 6.20: The first plot shows the execution time to produce the APR from the original image, to the APR
data structure in seconds, for images from size N from 503 to 10003 using the CR5 (dark blue), CR20 (light
blue) and CR100 (light green) benchmark data. The second plot shows the time taken for the filtering steps on
the original image for the same benchmark data. These are the steps to calculate L(y) and median filtering on
the whole image. The standard deviation is shown by the error bar.

Full pipeline

The first plot in Figure 6.20 shows the total execution time for forming the
APR from an input image for the CR benchmark data. The time taken shows
a linear dependence on N, with a slight increase in computational cost for
decreasing CR. The time corresponds to an average of 130 MegaPixels per
second for processing CR5 input images or taking 7.2 seconds to form the
APR from an input image of size N = 1000® and CR5. The execution time for
the Exemplar data is shown in the second plot in Figure 6.21. The execution
times range from 1 second to 16 seconds for the largest datasets. With an
average execution time of 6.7 seconds.

Pixel steps

In the second plot of Figure 6.22, we show the execution time of the filter-
ing steps on the original image. From comparison with the first plot, we can
see that this represents a majority of the computational cost and that these
steps do not depend on the CR. These steps include the calculation of the
gradient magnitude, calculation of o(y), construction of £ and median filter-
ing for intensity estimation. The contribution of each of these steps to the
total execution cost is shown in the first plot of Figure 6.22. On average,
these steps account for over 80% of the total computational cost. With the
calculation of the gradient magnitude using B-splines accounting for over 50%
of the computational cost. I believe this relatively high cost of the full image
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Figure 6.21: The first plot shows the Computational Ratio (CR) of the Exemplar benchmark data, plotted against
the images average width (N'/3)). The number corresponds to that given for each dataset in Table A.1. The
second figure shows the total execution time to form the APR for the Exemplar benchmark data, again plotted

against the average width.
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Figure 6.22: The first plot shows the proportion of the total execution time taken by each the different pixel
operation steps against image width W for the CR benchmark data. The second plot shows the total execution
time for steps forming L(y), for a range of different parameter values, plotting against the number of pixel in
the original image. The lines are indistinguishable, reflecting that the steps execution time is independent of the

parameter values.
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Figure 6.23: The first plot shows the percentage of the total execution time taken by the Pulling Scheme
algorithm, that takes £, as input and calculates V,, against image width W for the CR benchmark data. The
second plot shows the same data but plots instead the average execution time. The error bars in both cases
represent the estimated standard deviation. (Note the dynamics for small image sizes are an artifact of the CR
for small images being inflated to near 5 for all datasets.)

pixel operations is not a consequence of expensive operations (as all filters have
efficient algorithms and implementations). Instead, it is a reflection of the al-
gorithms scaling with N, for very large N, compared to the pulling scheme
and data structure formation scaling with the number of required particles.

Pulling Scheme

In the first plot of Figure 6.23 we show the proportion of the total execution
time taken by the Pulling Scheme taking the natural Local Particle Cell set
L, and forming V,. For large images N > 6003 we find that across different
CR levels the step accounts for less the 2.5% of the total execution time.
Where as expected the higher CR leads to a higher cost, as the number of
operations scale with the number particle cells in #L£,,. In the second plot,
we plot the absolute execution time for the CR benchmark data. We note the
small execution times even at the largest image sizes for CR5. Further, the
scaling for each dataset shows a weak sub-linear scaling in practice. However,
we note that both of these plots show sporadic variation in the observed timing
that hinders analysis. This variation is a result of a deficiency in the OpenMP
parallelism used here. However, it does not result in an incorrect solution.
Unfortunately, I have not yet addressed this issue.

Additional benchmarks To avoid this issue, and to allow for further anal-
ysis, we also present additional benchmarks here using only serial execution.
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Figure 6.24: In the first plot, we show the Pulling Scheme execution time against image size for four different fixed
ratios of %Z£. The Particle Cells in £ where randomly generated and the results averaged across 10 realizations.
All ratios showed linear scaling that was confirmed in a log-log plot. The yellow line corresponds to £ containing
all particle cells between [, and lymaa, representing the worst-case performance. The second plot shows the
average execution time for three different fixed image sizes NV, plotted against the number of seed Particle Cells in
V. The number of seed Particle Cells is simply #(V N L) and hence increases linearly with #L. The relationship
does not represent a polynomial scaling.

Independently from the CR benchmark analysis in this section, we also tested
the Pulling Scheme for randomly generated £. This allows the ability to di-
rectly alter inputs to the Pulling Scheme without having to consider the whole
pipeline and how to generate the appropriate synthetic image. In the first plot
of Figure 6.24, we show the scaling of the Pulling Scheme for a fixed ratio
of #L£ and N. In all benchmarks are run with Particle Cells in £ sampled
uniformly and randomly from level [,,;, to [, With a set probability. This
benchmark is similar, but not exactly equivalent, to the fixed CR benchmarks.
First, we find confirmation of the worst case linear scaling represented by the
Worst-case curve. This benchmark corresponds to the largest #.L for a given
image size N. We also ran three other ratios, .1, .01, and .001, finding linear
scaling for all. Each of these benchmarks corresponds to scaling together both
the image size and the number of particle cells in L.

In the second benchmark, we fix the image size and increase the number
of Particle Cells in £ that are randomly generated. In the second plot of
Figure 6.24, we plot the number of seed Particle Cells in V for three different
image sizes N. The number of seed Particle Cells is the number of Particle Cells
given by #(L£NV). We find this is the appropriate variable when compared to
V because the number of neighbor search operations is directly proportional
to the number of seed Particle Cells, and not simply the absolute #). For
all image sizes N we find non-polynomial scaling. With the rate of increase
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Figure 6.25: In the first plot, we show the average execution time against N four sizes of #L. The values
were set at fixed ratios of the number of Particle Cells in the N = 100 case. The arrow notes the direction of
increasing #L. The second plot shows the same data on a log-log plot. Linear regression shows sub-linear scaling
for all plots for large N. We find that the polynomial scaling coefficient appears to decrease with increasing #L.
The yellow line for the smallest value of #L for the highest five N values had a gradient of 0.975 and Rsquare
of 1, and the purple curve representing the largest value of #L had a gradient of 0.667 and Rsquare again of 1.

in execution time decreasing as #(L£ N V) increases. We note that the same
relationship is seen for #L (they are proportional), but arguably its is the
number of seed cells that is the relevant variable. Empirically the relationship
does not seem to be a polynomial nor logarithmic. In the last benchmark, we
instead fix the total number of Particle Cells in £ and consider the execution
time as the image size N is increased. The results are shown in the first plot
of Figure 6.25 for four different numbers of Particle Cells. The four levels
were set at ratios of 0.001,0.01,0.1 and 1 of the maximum number of Particle
Cells in the N = 100 image. For all four levels, we find sub-linear scaling in
N. That is, the execution time increases at a decreasing rate as N increases.
This is confirmed in the second plot, that shows the log-log plot of the same
data. Interestingly, the polynomial growth coefficient decreasing as the number
of Particle Cells in £ increases. With the smaller number of Particle Cell

benchmark being almost linear, scaling at ~ N%97® and the largest number of
Particle Cells at ~ N-667,

I do not have a concrete explanation for this scaling behavior. However, it
also coincides with slightly sub-linear scaling that can be observed in fixed CR
benchmark data. One point of insight comes from the fact that a fixed #L
does not imply a fixed #V. In fact, as IV increases so do the number of particle
cells in V. However, from the fixed N benchmark we find that the dominant
component of the computational cost comes from the number of seed Particle
Cells in V. However, the number of seed Particle Cells is constant across N.
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Figure 6.26: The first plot shows the percentage of the total execution time taken to form the SARA data
structure from V), and sample the particles intensity for the CR benchmark data plotted against the image width
W. The second plot shows the execution time in seconds of the same step, but for a fixed image size and
increasing number of particles.

Therefore, as N increases only the 'cheaper’ steps of adding boundary and
filler Particle Cells are increased. However, this is not satisfactory, but we
leave further investigations to future research.

Pulling scheme summary In summary, we have confirmed that the Pulling
Scheme has worst case linear scaling in N. Further, the computational cost
for fixed N is proportional to the level of information content through the
number of seed Particle Cells. However, we have no exact form for this scaling
behavior, but it is sub linear. Further, for fixed size of £ and increased N we
find sub linear behavior, with a scaling rate that is inversely proportional to
the number of Particle Cells in L.

APR data structure

In the last step of the pipeline, the SARA data structure is formed from V,,;
this includes the particle sampling step. The first plot of Figure 6.26 shows
the proportion of the total execution time for this step. Forming the data
structure and sampling the particles, took on average 2, 5 and 13 percent of
the total execution time for the CR100, CR20, and CR5 datasets. Therefore,
showing a strong dependence on the total number of particles. This is also
reflected in the second plot, showing the execution time for a fixed image size,
and increasing number of particles. The dependence on N likely arises through
both the maximum resolution and therefore [,,,,, and also the slow down in
cache efficiency when sampling the particles from a larger image.
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Execution time summary

Hence we have outlined the computational cost of forming the APR, showing
an overall linear scaling in N for a fixed CR, with the Pulling Scheme showing
sub linear scaling. I believe the above results show that the APR can be
formed efficiently, as the largest computational cost has been reduced to the
estimation of the image gradient. With the computational cost of the Pulling
Scheme being relatively low.

The above results have been on a single CPU machine, utilizing OpenMP
for parallelization. Preliminary work for scaling on multi-core machines and
GPU implementations indicate that the pipeline is amenable to scaling through
further parallelization. Especially, acceleration of the pixel steps. However,
here we have preferred a shared memory implementation due to ease of devel-
opment, and the typically considerably larger amount of RAM available then
GPU memory. We leave these investigations to future work.

A particular task being classified as 'fast’ is always relative. However, the
implementation here is within the real-time values that have been given in
the literature [110, 5. However, real-time applications will entail temporal
datasets. Therefore the transform would also have to include the time step,
which involves additional steps, but also optimizations. If we here limit our-
selves to the processing of stand alone large datasets, the above results appear
to be ’fast’ as they are O(1) with the calculation of the gradient magnitude, a
simple computational task.

Therefore, for the results here, I claim that the APR can be rapidly formed
with a linear scaling in the number of pixels, and hence RC3 is satisfied.

6.5.5 Memory Cost

The total amount of memory required to run the pipeline is approximately 3.25
copies of the original image stored as a float. This is a result of having to store
the original image, and the temporary variables for calculation of the Local
Resolution Estimate L(y), and then finally sample the intensities from the
original image. I am uncertain of how to reduce this further, beyond change
of datatype, while processing only a single time point.

6.5.6 Storing the APR

Last, in this section, we assess the efficiency of lossless compression of the
APR for file-storage. We store the APR using the HDF5 file format [124] and
BLOSC HDF5 plugin [7] for lossless compression. This is done by storing V,
per level as a sparse matrix using an unsigned 8bit integer array, with nonzero
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Figure 6.27: The first plot shows the Memory Compression Ratio (MCR), the ratio of the APR file-size to the
original uncompressed image file size for the CR benchmark data against image width W. The second plot shows
the same data, but instead plotting the ratio of the Memory Compression Ratio (MCR) and the Computational
Ratio (CR).

entries set to the Particle Cell type. The particle intensities are then stored
again per level unsigned 16bit integer. Therefore, in addition to storing the
Particle Cell set V and particle intensities P*, we also store the Particle Cell
type. Stored in this way the Particle Cell information is highly compressed.
The high compression is reflected in that on average 92 % of the bytes are used
storing the particle intensities. Further, in the limiting case where the number
of particles is equal to the number of input pixels, the particle intensities
account for 99.9 % of the storage cost. A.6 gives more technical details. Given
the fact that the size of the APR depends linearly on image content, raw
compression ratios are not necessarily informative for the storage cost of the
APR without reference to its CR. Hence, we define the Memory Compression

Ratio (MCR) as

Size of the input image in bytes

MCR (6.12)

~ Size of the compressed APR in bytes

We are interested in the ratio J\/é%R , that is, how well for a given CR the

data set is compressed. In the first plot Figure 6.27 shows the MCR for the
CR benchmark data. We can see that the MCR for images larger than 4003
becomes constant across CR. In the second plot, we show the ratio MC—CRf{ also
for larger images the ratio becomes constant, with a value of approximately
1.8 for the three CRs. This result tells us that for a data set with a given CR,
we can expect the file storage to be 1.8 times smaller than the CR ratio when
compared to the original data size. Despite, the requirement of the additional

storage of the particle cell locations, level, and type, that are not required in
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Figure 6.28: The Memory Compression Ratio (MCR) for the exemplar benchmark datasets against the geometric
average width (N1/3), where the numbers coincide with those given in Table A.1. The two plots show the same
data, with the first showing a zoomed subset omitting two outlier data points.

the original image.

Figure 6.28 shows the MCR for the exemplar benchmark data. The same
data is plotted twice with different scales as the variation is quite large across
the data sets. The median MCR of the exemplars is 55.2 and mean 109.
Regarding actual file sizes, the average size of the uncompressed input images
is 1.87 GB, and the compressed APR, 36 MB.

We note that more sophisticated compression schemes should be able to
be used to compress the size of the intensity data down further. In particular
extensions of the Easy Path Wavelet Transform, would seem like a good fit for
the APR [85]. However, we leave this to future work.

Therefore, the APR can be efficiently compressed with a filesize propor-
tional to the image content a requirement of RCI1.

6.6 Summary and main points

In this chapter, we presented the main empirical results of this thesis regarding
the properties, and computational cost of forming, the APR.

We began by showing results for a 1D analytically defined function. There,
we showed that the Reconstruction Condition held across a range of reconstruc-
tion functions, and also showed the scaling behavior of the gradient computed
from the APR. We also explored the impact of discontinuities in the solution.

In the second portion of this chapter, we provided results for the APR for
3D LSFM data. First, we introduced the 3D pipeline including the choice of
Local Intensity Scale o and also the method of synthetic image generation used
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for benchmarking. Then we assessed the properties of the APR, both regarding
reconstruction error, noise, image content, image size, and image sampling. In
the last section evaluated the performance of transforming an image into the
APR, regarding memory and computational costs. For this analysis, we used
two datasets, called the Computation Ratio (CR) and exemplar benchmark
data. Next, we discuss limitations of these results and then reflect on the
representation criteria. Following this summary of the main results of the
chapter is given in bullet form.

6.6.1 Limitations of the benchmark results

Here we discuss limitations of the above benchmark results, and the ability to
make inferences from them on the performance on 'real’ LSFM data.

Local Intensity Scale

A key limitation for the results arises from the Local Intensity Scale used here.
First, we have heuristically defined an estimate of the local range of the func-
tion with a length scale. We have shown that the APR can effectively adapt
taking this scale into account. We have not addressed whether or not this scale
is in any way relevant or appropriate. Specifically, in the benchmarks above E*
incorporates the observed . Ideally, we should define a ground truth adapta-
tion, and o, and compare our results to these. This ignores deficiencies in the
Local Intensity Scale that could lead to loss of information content. Indeed,
this does occur through a lowering of resolution on the interface between bright
and dim objects.

Further, the Local Intensity Scale given here requires empirical re-scaling
A 4.1 and the setting of minimum thresholds in the presence of noise. These
actions seem unsatisfactory, and although similar concepts may be required,
ideally they would have a sound theoretical basis.

Despite these limitations, the results, both across benchmarks and real
data are encouraging. Showing that the Local Intensity Scale does indeed
‘achieve’ its intended purpose, and I think they serve as a proof of principle.
However, given the limitations above, and the lack of theoretical guarantee
of the Reconstruction Condition, further development of the Local Intensity
Scale seems warranted.

Synthetic data

Limitations also arise regarding the simplifications that were made for the gen-
eration of synthetic data. Although the synthetic data showed varying spatial
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and local intensity scales, it did not include other of LSFM data discussed
in 2.2.4. This includes a lack of spatially varying PSF, more sophisticated
noise models, and extraneous background signal. Qualitative evidence from
real benchmark data indicates that the APR can still 'work well ” in the pres-
ence of these additional features. However, without ground truth images, it
is unclear how to accurately assess the APR in these situations. A practi-
cal route would be the incorporation of these additional features into more
realistic synthetic data for testing. Indeed, concurrent unpublished research
has been successfully undertaken by colleagues at the MPI-CBG to generate
such data sets. Hence, evaluation using this resource would seem invaluable
to addressing these issues and also those of the Local Intensity Scale.

Parameters

Another limitation of the above results includes the use of knowledge of the syn-
thetic benchmark to set parameters. For example, for the B-Spline smoothing
parameter A, using the background intensity level for a noise estimate. Fur-
ther, for the Local Intensity Scale, the minimum object brightness was used for
os,. The use of this information would seem to bias the above results, as such
information is not 'readily’ available from real data. However, we have found
that the results above are relatively insensitive to the exact setting of these
values. With the exception, of o4, being set below the smooth noise level, or
greatly above the brightness of the objects in the image.

Ideally, these parameters would all be estimated from the input image. This
is an issue that is linked to both the generation of more realistic synthetic data,
and the form of the Local Intensity Scale, and could be addressed jointly in
future research.

Conclusions

From these results above, we can see that additional development is still re-
quired for any confident inference of the results regarding the properties of the
APR from the benchmarks to real datasets. However, I do believe they provide
a promising proof of principle that could form the basis of a robust solution.

6.6.2 Reflection on Representation Criteria

The results for both the properties and performance of the APR shown above
were designed to test the first three representation criteria RC1-3. Here, we fo-
cus on the benchmark results, largely ignoring the limitations discussed above.
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Below we assess whether the APR appears to have the correct properties for
our synthetic benchmark data to fulfill the representation criteria.

Representation Criteria 1

We showed in 6.4.3, that the size of the APR, i.e. #V scales linearly with an
increase in objects in a fixed size image. Where we defined the information
content of an image to be a function of the number of objects it contains.
We then showed that as the image size is increased for fixed image content,
the size of the APR (6.4.4) becomes constant. These results indicating that
the adaptation becomes independent of the original image size. Lastly, in
Section 6.4.5, we showed that as the sampling resolution for a fixed scene is
increased, the size of the APR also becomes constant.

Hence, for our synthetic data, we conclude that the size of the APR reflects
the information content of the image, and not the image size or sampling and
RC1 is satisfied.

Representation Criteria 2

In 6.4.1, we showed that the Reconstruction Condition holds for noise-free
images, for a range of reconstruction methods while using a non-constant Local
Intensity Scale o. For noisy images, in 6.4.2, we showed that the APR is still
effectively adaptive to the image, but, the Reconstruction Condition does not
hold. However, we showed that for an optimal range of relative error F, the
errors made in the approximation of the APR are within the level of the noise.
Further, the reconstructed APR results in an increase in PSNR compared to
the original image.

Therefore, we again conclude that for the synthetic images presented here
the APR satisfies RC2.

Representation Criteria 3

In 6.5.4, we analyzed the execution time of transforming a pixel image into
the APR. The results showed the whole pipeline is linear in the number of
original pixels N. With the computational cost being dominated by simple
filtering operations on the full image. The pulling scheme, the basis of the
adaptation, represents a small proportion of the cost, representing less than
2.5% of the total execution time. Further, the pulling scheme is worst-case
linear performance, and actual performance proportional to the information
content in the image. Given the computational time is within time ranges given
within the literature for 'real-time’ for LSFM datasets [5, 110], we conclude
the transform step is fast’.
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Therefore, we conclude that the described implementation of the APR on
our test system satisfies RC3.

Summary

The above chapter has presented evidence that the APR satisfies the first three
representation criteria for our benchmark data. In the next chapter, we address
the fourth representation criteria regarding using the APR for processing tasks.

Summary of the chapter

e Provided a 1D exemplar, showing the adaptation of the APR, and
the impact of the relative error F.

e Confirmed that the Reconstruction Condition holds in 1D for the
benchmark example, and showed a reconstruction of the gradient of
the function from the APR, and the impact of discontinuities.

e Introduced the APR pipeline for 3D LSFM data

e Described synthetic data generation process used to benchmark the
APR

e Showed that for noise-free images the Reconstruction Condition holds
and that for noisy images, there exists an optimal range of E that
reduce the PSNR of the original image.

e Showed that the size of the APR scales linearly with information
content while maintaining image reconstruction quality.

e Showed that the size of the APR becomes independent of both the
original image size IV, and the sampling resolution used, as both are
increased.

e Introduced the Computational Ratio benchmark and examplar
benchmark data sets that are used to assess the performance of the

APR.

e Introduced and described the data structures that are used for the
APR
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Showed that the worst-case execution time for transforming an image
to the APR is linear in N, and that it is linear in N for a fixed
ratio of % For a fixed size N the cost scales sub-linearly with the
number of seed Particle Cells in V. For fixed for fixed size of #L the
computational cost is sub-linear in N at a rate inversely proportional
to the number of Particle Cells.

Showed that the APR can be efficiently losslessly stored at a rate
larger than the Computational Ratio (CR) of the given APR.

Discussed limitations of the Local Intensity Scale, synthetic data, and
setting of parameters

Reflected on representation criteria (RC1-3) and the evidence of the
APR fulfilling them for the synthetic benchmark data.
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In this chapter, we present results for a selection of basic image processing
tasks using the APR. Here we directly investigate RC4, and whether the
adaptation of the APR can be used to reduce memory and computational
costs, and possibly complexity, of a range of image processing tasks. Ideally,
we wish to show that if the input image has been transformed into an APR, the
input image is no longer needed, and all processing, storage, and visualization

can be done

This chapter is structured as follows. First, we discuss the different inter-
pretations of the APR, and how this relates to different processing tasks for

directly using the APR.
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pixels. Next, we discuss how to evaluate the performance of processing tasks
on the APR, and propose evaluation metrics. Then, we present four perfor-
mance benchmarks. Namely, linear neighbor access, random neighbor access,
separable pixel filtering, and segmentation. For all these examples we evaluate
the performance with respect to comparable pixel algorithms and use both the
CR (6.5.1) and exemplar (6.5.2) benchmark data defined in the previous chap-
ter. Following that, we show various methods for visualization of the APR.
Lastly, we discuss briefly how the APR can be used to create novel algorithms
that utilize its adaptation, giving an Adaptive APR filter and segmentation as
examples.

7.1 Interpretations of the APR for processing

Traditional processing tasks have been developed using, and rely on, a range
of interpretations of images. By this, we mean the same pixel image could
be interpreted in many ways. For example as a graph, collocation points
of a continuous function, spatial partitioning of square pixels, or the highest
resolution of a tree structure.

Just like pixels, we can also, interpret and use, the APR in different ways
depending on the particular processing task. These interpretations align with
many of those commonly used in pixel-based processing. Figure 7.1, shows
a schematic representation of the four main APR interpretations we discuss
below.

7.1.1 Collocation points and spatial partition

The top right schematic shows the APR formulated as an adaptive spatial
partition, from the Particle Cells V), and point estimates of the intensities, from
the particles. Represented in this way, we could view the APR as adaptively
sized pixels, or restricted superpixels [2]. Similarly, a lower resolution partition
can be used, utilizing V,,, combined with particle cell type. This interpretation
is utilized the APR raycasting example below.

7.1.2 Particle graph

The bottom right shows the APR formulated as a particle graph (as described
and defined in 5.6.2), where particles are nodes, and neighbors and edges
are defined using the Resolution Function. This provides an analog to face-
connected graphs on pixels often used for graphical models [21]. We use this
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Collocation points and volumes  Continuous Reconstruction
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Figure 7.1: In the top right we show the APR represented as a spatial partition from the Particle Cells in V and
a set of particles, which are collocation points. In the bottom right schematic we show the APR represented as
a graph, where the particles are nodes, and edges link particles as discussed in 5.6.2. In the schematic in the top
left, we show how the APR can be used to provide a continuous reconstruction of an image everywhere across
the domain. Lastly, in bottom left we show a schematic of the APR as a pruned binary tree (quadtree in 2D, or
octree in 3D)), where the links, are between parent and child Particle Cells.
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interpretation in the APR segmentation and APR adaptive filter examples
below.

7.1.3 Continuous representation

The top left schematic shows how the APR interpreted as a continuous function
represented adaptively at collocation points. The continuous function can then
be reconstructed at any point using 5.1. This reconstruction can be done
locally, such that a full reconstruction of a high-resolution pixel image is not
necessary. We use this interpretation in the separable pixel filters below.

7.1.4 Tree structure

Lastly, the bottom left shows the APR represented as a pruned tree structure.
The APR has a natural tree representation due to the parent child relationships
of Particle Cells (as seen in Figure 4.8). If a tree is constructed using the
Particle Cells of an APR, and including all parents of Particle Cells in V
then, the resulting tree structure, can be interpreted as an adaptively pruned
tree. This tree structure could be useful for using the APR with wavelets, or
multi-resolution methods such as pyramid methods [4]. We utilize such a tree
structure in the calculation of an energy term in the segmentation below.

7.2 Evaluating performance

The APR can reduce the cost of existing algorithms in two ways. First, by
decreasing the total processing time by a reduction in the number of opera-
tions that have to be executed, and second by reducing the amount of memory
required to run the algorithm. The relative importance of the two and the
degree of reductions depend on the nature of the algorithm and its implemen-
tation. Below we introduce quantitative evaluation metrics to evaluate the
improvements in different algorithms and input images.

The first evaluation metrics relate to the computational performance, or
speed up, of the algorithm. For a given algorithm and implementation we
define the SpeedUp (SU) as,

SU — Processing time of the algorithm on pixels
~ Processing time of the algorithm on particles’

(7.1)

Which is useful to relate to the Computational Ratio (CR, see 6.11), by

SU = CR * PP, (7.2)
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where PP is the Pixel-Particle Speed Ratio and defined as

PP Time to compute the operation on a pixel

. 7.3
Time to compute the operation on a particle (73)

The PP reflects the relative cost of computing an operation on a particle from
an APR vs. a pixel from the input image for the equivalent task (value less
than one indicates pixels are faster). The value of PP depends on many factors,
including memory access patterns, data structures, hardware and absolute size
of the required data in memory. Consequently, even for a set algorithm running
on fixed hardware, the PP will be a function of both the input image size N,
and Computational Ratio CR. Therefore, for tasks where PP < 1, as in most
low-level tasks, there will be a minimum value of CR for which the algorithm
is faster on the APR than pixels. Therefore, understanding the speed up for
algorithms requires knowledge of PP, CR, and N.

The second set of evaluation metrics relates to the reduction in memory.
We define the Memory Reduction Ratio (MRR) as

Memory Cost (MC) for pixel algorithm

MRR = Memory Cost (MC) for particle algorithm (7.4)
Expressed using the CR gives
MRR = CR « MPP (7.5)
where
MPP — Memory required per pixel (7.6)

Memory required per particle’

and reflects the relative memory cost of a single pixel vs. particle. For an
algorithm on a pixel image, the Memory Cost (MC) in Bytes usually scales
directly with the number of pixels NV and variables, as

MCyizeis = (Number of variables) * (Data type in Bytes) * N. (7.7)

In comparison, the APR additionally requires storage of additional information
for location and neighbor access. This overhead depends on the specific data
structure used. We provide a detailed analysis of the MC for the two data
structures used here in A.5. In summary, for the APR in Bytes,

MC4pr = (Number of variables) * (Data type in Bytes) x N,
+ (Cost of data structure per particle) * N, (7.8)
where NN, is the number of particles, and the cost of the data structure per
particle depends on N. Therefore, as the number of variables increases, the

additional overhead of the APR data-structures is amortized so that MPP will
approach 1 and the MRR the CR.
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7.3 Performance benchmarks

To demonstrate potential range of performance, we analyze three low-level and
one higher-level processing task below. The three low-level tasks are linear and
random neighbor access and separable pixel filtering, and the higher-level task
is segmentation. These low-level tasks, in addition to being core to many pro-
cessing algorithms, also represent a lower-bound for the performance benefits
of the APR due to their simple operations and access patterns that are well
suited to processing on pixels. In contrast, for the segmentation task, we use
an external min-cut library with more irregular computation and access pat-
terns provides an example of an algorithm more suited to the APR. A.10.3
describes the implementation and details of the benchmarks, and in the main
text, we focus on discussion of the results.

For the four performance benchmarks, we provide results for the compu-
tational and memory evaluation metrics and total execution time for the CR
benchmark data for input images from N = 200% up to N = 1000% and summa-
rize the performance on the exemplar data sets. ! We also discuss differences
between the APR and pixel algorithms, and where appropriate provide addi-
tional results.

7.3.1 Limitations

We note that all these results are highly implementation dependent, for both
the APR and pixel results. Ideally, exactly equivalent algorithms could be
constructed and compared. Unfortunately, due to differences between the data
structure used for an image, a contiguous array, and the more complicated
data structure of the APR, this is not realizable. We have endeavored here
only to provide equivalent optimization across both APR and pixel algorithms.
Further, this is in part the motivation for the simple nature of the benchmarks
used below. We only show results here using the SA, and SARA APR data
structures. It is likely that alternative data structures or improvements could
provide improved results. In this way, the results below can be thought of as
an indicative lower bound on performance. The same argument can be applied
to the pixel implementation and data structures. However, it is likely that the
pixel algorithms are closer to their ’optimal’ form.

!Note, that smaller sized original images have been omitted from the results as the CR
could not be accurately adapted to reflect the CR of each benchmark dataset and hence
confused the results.
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Figure 7.2: The first plot on the left axis shows the mean Speed Up (SU) for the CR benchmark data against
image width for linear neighbor access in green (The dashed lines follow the same convention for both datasets).
The right axis shows the Memory Cost (MC) of the algorithm in GB plotted in blue for the APR and pixel
implementations. The second plot for the same data shows the Pixel to Particle Speed (PP) ratio against image
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Figure 7.3: The first plot shows the Memory Reduction Ratio (MRR) for the CR benchmark data against the
image width for linear neighbor access. The second plot shows the natural logarithm of the average execution

time for the same data.
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Figure 7.4: The first plot on the /left axis shows the mean Speed Up (SU) for the CR benchmark data against image
width for random neighbor access in green (The dashed lines follow the same convention for both datasets).
The right axis shows the Memory Cost (MC) of the algorithm in GB plotted in blue for the APR and pixel
implementations. The second plot for the same data shows the Pixel to Particle Speed (PP) ratio against image
width.

7.3.2 Neighbor access

The first task we benchmark is that of neighbor access. Neighbor access is at
the core of many image processing algorithms. For each pixel and particle, the
task involved accessing, and then summing, the intensity of all face-connected
neighbors and storing the result. The APR neighbors were defined using the
3D the APR particle graph as described in 5.6.2. The particle graph is simply
the face-connected neighbors of the Particle Cells. We benchmarked two forms
of neighbor access. The first we call linear access requires iterating over all
pixels, or particles, in memory order and accessing all neighbors. The second,
we call random access, involved randomly iterating over pixels, or particles,
and accessing the neighbors. These two benchmarks allow us to assess the two
‘extremes’ of neighbor access patterns. See A.10.4 for an description of the
implementations.

Computational cost

The left axis of the first plot of Figure 7.2 shows the SU for the linear access
benchmark for the CR benchmark data. The average SU for CR5 is 0.897,
CR20 is 2.386, and CR20 is 7.77. These low SUs and slow down for CR5
reflect the relative efficiency of performing neighbor access on pixel images.
The PP values also reflect this, with average values showing it is between six
and ten times faster to perform neighbor access on pixels (Figure 7.2 second
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Figure 7.5: The first plot shows the Memory Reduction Ratio (MRR) for the CR benchmark data against the
image width for random neighbor access. The second plot shows the natural logarithm of the average execution
time for the same data.

plot). Interestingly, the higher the CR, the higher the PP. In the second plot
of Figure 7.2, we show the natural logarithm of the execution times. For the
CR20 and CR100, we see the positive SU values reflected in faster execution
times for the APR. However, for CR5 for larger images, as reflected in the SU,
the linear access is slower (although comparable magnitude) on the APR than
on pixels. The first plot in Figure 7.6 gives the SU values for the exemplar
data sets. One dataset, the smallest, shows a slowdown (SU< 1), with an
SU value of 0.7075. However, all other exemplars show speedups with a mean
SU of 4.28 and median 2.76. In contrast, although significantly slower for
both pixels and particles in total execution time, the random neighbor access
benchmark showed larger SUs for the APR. The left axis of the first plot in
Figure 7.4 shows the SU across CR and image size. The average SU for CR5
is 1.4, CR20 is 8.5, and CR100 is 28. We can understand the increase in
SU compared to linear access further from the PP values shown in the second
plot. The increase relative to linear access reflects the change in memory access
patterns. With the pixel image no-longer having a cache advantage due to the
layout of pixels in memory. Further, the smaller data set size for the APR
likely improves cache efficiency. However, we see that the SU and PP values
reduce as the original image size increases. This likely reflects the decrease in
cache benefits from the small size of the APR. In the second plot of Figure 7.5
we show the natural logarithm of the execution times. In contrast, the APR
total time is less than the pixels across image size and CR. For the exemplar
SU, shown in the second plot in Figure 7.4 also reflects the increased relative
performance with a mean SU value of 18.8 and median of 12.25.
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Figure 7.6: The first plot shows the Speed Up (SU) for the exemplar benchmark data plotting against image
width for the linear neighbor access performance benchmark. The second plot shows the same data but for the
random neighbor access performance benchmark.

Memory Cost

We present the absolute values in GB of the memory cost on the right axis of
the first plots in Figure 7.2 and Figure 7.5 for the linear and random neighbor
access benchmarks respectively. The memory cost for both benchmarks is
identical, as they both required the original data and storage of the result.
The impact of the CR on the MC can be seen, with the CR20 and CR100
datasets requiring roughly an order of magnitude less memory. The first plots
in Figure 7.3 and Figure 7.5 show the Memory Reduction Ratios (MRR).
Across image sizes and CRs, consistent reductions in memory were observed.
The average MRR of 2.751 for CR5, 8.376 for CR20, and 40.96 for CR100.
The MRR values for the exemplar datasets, not plotted here, also show an
improvement in memory cost with a mean MRR value of 24.4 and median of
12.2.

7.3.3 Separable pixel filtering

In the third performance benchmark, we assess the task of separable image
filtering, using a Gaussian blur. The Gaussian blur kernel is taken to be
defined in 3D and over pixels. The filtering is separable in that we perform
the task using three consecutive filtering steps applying a 1D filter in each
direction. Doing this sequence of filter steps gives the same result as using the
full 3D kernel once, and is commonly used as the computational cost scales
as 3L compared to L? when L is the filter length in one dimension (although,
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Figure 7.7: The first plot on the left axis shows the mean Speed Up (SU) for the CR benchmark data against
image width for separable pixel filtering in green (The dashed lines follow the same convention for both datasets).
The right axis shows the Memory Cost (MC) of the algorithm in GB plotted in blue for the APR and pixel
implementations. The second plot for the same data shows the Pixel to Particle Speed (PP) ratio against image
width.

not all 3D filters are separable). Since the APR does not have particles at
each pixel location, for these sites, we use a reconstructed intensity. However,
instead of interpolating the full image, only the appropriate slice needs to be
reconstructed at any time. We then compute the filter on the reconstructed
slice only at particle locations. We only present results for a fixed filter length
L, however, the comparative results for different L are similar. For simplicity
and performance, we have used the piecewise constant interpolation. A more
detailed description is given in A.10.5.

Computational cost

The left axis of the first plot of Figure 7.7 shows the SUs for the separable pixel
filtering task for the CR benchmark data. We find a mean SU value of 6.923
for CRb5, 13.16 for CR20, and 24.93 for CR100. The results all show a peak
SU for mid range image widths 200 — 400 then converging to lower values as
W increases. These dynamics are likely the result of the slice reconstruction.
This step has a fixed cost with respect to N, not CR, and the cost becomes
proportionally more expensive with an increase in image size. The dynamics
with W are more clearly illustrated with the PP, showing a peak and then
decrease of performance as shown in the second plot of Figure 7.7. Again,
we see that the PP ratio is higher for higher CR, reflecting cache efficiency
benefits of larger high-resolution regions, and the lower per particle cost of the
reconstruction step. In the second plot of Figure 7.8 we show the natural log of
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Figure 7.8: The first plot shows the Memory Reduction Ratio (MRR) for the CR benchmark data against the
image width for separable pixel filtering. The second plot shows the natural logarithm of the average execution
time for the same data.

the execution times for the APR and pixel algorithms, showing the consistent
SUs across W. The SU for the exemplars benchmark data is shown in the first
plot of Figure 7.9 with a mean SU of 12.27, and mean time of 1.23 and 14.13
seconds for the pixel and APR algorithms respectively.

Memory Cost

Regarding the memory cost, we find similar results as the neighbor access task.
For the pixel algorithm, the memory requirements are again simply the input
image and result. The APR similarly requires storage of the APR input and
result but also an image slice for the reconstruction step. The MC reductions
shown on the right axis of the first plot in Figure 7.7 and Figure 7.8. For the
fixed CR datasets, the MRR values are 4.35 for CR5, 12.35 for CR20, and
38.02 for CR100. These results, reflect the additional overhead of the image
slice having lower impact per particle for a larger CR. The exemplar data sets
had a mean MRR value of 24.48 and median 19.09. In absolute values, this
corresponds to an average memory cost for pixels of 7.47 GB and the APR
359 MB.

Comparison between approaches

However, the results from these two approaches are different and do not present
a fair comparison. To evaluate differences we compared the result of the pixel
filter, and the APR filter interpolated to an image, to the ground truth image
filtered by the pixel filter for 100 realizations for a fixed image size (2502,
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Figure 7.9: The first plot shows the Speed Up (SU) for the exemplar benchmark data plotting against image
width for the seperable pixel filtering performance benchmark. The second plot shows the execution time for
the segmentation performance benchmark for the exemplar benchmark data. The SU was not available, due to
the pixel algorithm being unable to be run on the benchmark machine due to memory constraints. The numbers
coincide with those in Table A.1.

CR5). For comparison, we also computed the result of the pixel filtering on
a piecewise constant reconstruction from the APR. We did this for a small
o = 0.5 and larger 0 = 2 blurred kernel.

Examples of the results are shown in Figure 7.10. For the small blur kernel,
the mean APR PSNR was 30.68 with a standard deviation of 1.49, for the orig-
inal image 23.38 with a standard deviation of 0.395, and for the reconstructed
APR 30.71 with standard deviation 1.26. Therefore, the APR filter provided
accurate results. However, in the large blur kernel, the mean APR PSNR was
31.883 with a standard deviation of 2.89, for the original image 42.93 with a
standard deviation of 0.6, and for the reconstructed APR 42.56 with standard
deviation 1.14. These results indicate that the APR filter no longer produces
accurate results. The poor performance can also evident in the bottom right
image in Figure 7.10 where distinct artifacts can be seen. This is the result of
the Implied Resolution Function not being valid for the intermediate filtering
results in the separable scheme. In such cases, it seems it would be necessary to
result to pixel filtering on a reconstructed APR, as those results are equivalent
for larger filters. This also indicates that the failing is not due to the piece-wise
constant reconstruction. The poor performance is not a pure function of filter
size, but depends on the spatial scales of the resulting function, with large
filters designed for edge detection not showing similar issues (not shown).

Hence we conclude, that the above approach is only of specific use, and
does not represent a direct replacement for pixel filtering. The example also
illustrates the care that must be taken when adapting algorithms from pixels
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Figure 7.10: Example images of the validation for separable filtering benchmark. The APR and pixel algorithms
were run using a narrow Gaussian (top) and broad Gaussian (bottom), for the pixel filter for noise-free ground
truth image (left), the original image (center) and the APR filter the reconstructed to an image (/eft). The mean
and standard deviation of the PS