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1 Background and motivation

The study of the electronic and magnetic structure of solid states of matter is one of the

driving forces of modern physics. It has led to astonishing discoveries, such as supercon-

ductivity or giant magnetoresistance, and has thereby triggered significant technological

advances.

Solids are states of matter in which a large number of atoms or molecules are arranged

in a regular spatial pattern often described in terms of a discrete lattice. Remarkably, the

microscopic interactions between the many particles constituting a solid lead to properties

that cannot be explained by considering the constituents individually. This so-called

principle of emergence, i.e., the whole is more than the sum of its parts, is at the very

basis of the various manifestations of solid phases of matter.

A common theme in solid-state physics is the search for new phases of matter. In this

context, the celebrated Landau theory of phase transitions provides a powerful framework

to identify and understand states of matter in terms of local order parameters and spon-

taneous symmetry breaking. However, the discovery of the quantum Hall effect and the

Kosterlitz-Thouless phase transition, which were both awarded with the Nobel prize in

physics, pushed the well-established theory to its limits. These phases elude Landau’s

paradigm since they do not spontaneously break any symmetry. Ultimately, these find-

ings opened the door to a vast new realm of exotic phases fundamentally different from

everything that was known before: topological phases of matter.

It is remarkable that these novel phases can be described using the language of the

abstract mathematical field of topology, a field which is concerned with the properties

of mathematical spaces that remain invariant under continuous deformations, such as

bending and stretching, but not tearing or gluing. Simply speaking, in this sense, a coffee

mug with a handle is topologically equivalent to a donut since both feature the same

number of holes, where the latter is a so-called topological invariant. How is this connected

to exotic phases of quantum matter? In solids, the space of interest is spanned by the large

ensemble of electronic wave functions which can lead to a highly nontrivial object with

unique mathematical and physical properties. A topological phase is characterized by a
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1 Background and motivation

nonzero topological invariant associated with this object. In contrast to order parameters

of conventional phases, this invariant is a global quantity and assumes only discrete values

leading to a characteristic quantization of physical observables.

The study of topological phases of matter has brought to light a myriad of exceptional

features and remarkable effects which have not only broadened our knowledge of matter

in general but could also potentially lead to a whole new range of technologies and ap-

plications. Most notably, these features include topological surface states, giving rise to

dissipationless charge transport, and exotic quasiparticles like Majorana modes, relevant

for topological quantum computing. Hence, the study of topological states goes beyond

pure scientific curiosity. In this light, it is paramount to find novel topological phases and

to study their unique properties.

This dissertation aims at uncovering novel manifestations of topological states of matter

as they arise when materials are subject to additional symmetries. Even though topolog-

ical phases do not obey Landau’s theory of phase transitions, symmetries can change the

topological space of a system or impose restrictions on physical observables. This impor-

tant insight has led to various classification tables of topological phases classifying systems

according to their symmetries and dimensionality in a general way. Complementarily, this

thesis focuses in more detail on specific classes and systems of topological phases to demon-

strate how symmetries can enrich the topology of a system profoundly. More specifically, it

is demonstrated how symmetries lead to additional nontrivial states in systems which are

already topological, drive trivial systems into a topological phase, lead to the quantization

of formerly non-quantized observables, and give rise to novel manifestations of topolog-

ical surface states. In doing so, this work concentrates on weakly interacting systems

that can theoretically be described in a single-particle picture. In particular, insulating

and semimetalic topological phases in one, two, and three dimensions are discussed using

single-particle techniques.

In more detail, the text is organized as follows: each chapter begins with an introductory

part which lays the foundation for the main objective of each chapter. In Chapter 2, a brief

introduction to the quantum Hall effect, the Chern number and topology in condensed

matter physics is given. Furthermore, the famous Hofstadter model is introduced and it

is shown that a lattice dimerization in this model leads to novel topological states which

arise due to inversion symmetry in lower-dimensional subsystems. Chapter 3 introduces

topological insulators with time-reversal symmetry. It is demonstrated that, for weak

topological insulators in three dimensions, the presence of in-plane time-reversal symmetry

leads to the emergence of topologically protected Dirac lines on the surface of the material.

2



Chapter 4 ventures into the realm of crystalline topological insulators. In particular, one-

dimensional nanowires with both time-reversal and mirror symmetry are identified as a

platform for novel topological states, dubbed topological mirror insulators, for which a

new topological invariant is defined. In Chapter 5, Weyl semimetals are introduced as

the most prominent example of topological semimetals. It is shown that time-reversal

symmetry gives rise to a generic coexistence of Dirac states and Fermi arcs on the surface

of Weyl semimetals. Moreover, a novel multilayer design for Weyl semimetals is presented

based on layers of topological insulating materials with symmetries. Finally, Chapter 6

concludes the discussion of symmetry-enriched topological phases and offers an outlook

towards promising prospects.
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2 Topological edge states with zero

Hall conductivity in a dimerized

Hofstadter model

2.1 Introduction

2.1.1 The quantum Hall effect

The experimental discovery of the quantum Hall effect (QHE) by Klaus von Klitzing

et al. in 1980 [1] represents the starting point of the very successful story of topology in

condensed matter physics [2–4]. To understand the significance and the underlying physics

of this effect let us first briefly review the ordinary Hall effect, which was discovered more

than a century before by Edwin Hall [5].

The Hall effect describes the presence of a voltage, the so-called Hall voltage VH , trans-

verse to an electrical current in a thin-film conductor in the presence of a perpendicular

magnetic field (see Fig. 2.1). The effect can be explained in the framework of classical

electrodynamics [6]: due to the magnetic field B = Bzez, the charge carriers of the current

with current density j = jxex, which could be electrons, holes, or a combination of both,

are deflected by the Lorentz force FL = q(v×B). This leads to a buildup of charges and,

hence, to an electric field E = Eyey transverse to the current. In equilibrium, the force

FE = qE corresponding to this field compensates the Lorentz force FL. For simplicity, let

us assume that the current comprises purely electrons with jx = −envx, where n is the

charge carrier density, and that the sample is a Hall bar of length l, width w, and height

h (see Fig. 2.1). With these assumptions, we immediately see that the Hall resistance,

which is defined as the Hall voltage VH = −Eyw divided by the current Ix = jxhw, is

related linearly to the applied magnetic field,

RH ≡ Rxy =
VH
Ix

= − 1

neh
Bz ≡

RH

h
Bz, (2.1)

4



2.1 Introduction

VH
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l

Figure 2.1: Hall bar with an electrical current j in the presence of a perpendicular
magnetic field B.

where the Hall coefficient RH = −1/ne is a material parameter. For hole currents the

sign of RH is simply reversed. For currents consisting of both electrons and holes, as is

typically the case in semiconductors, a more complex expression, namely

RH =
1

e

pµ2
h − nµ2

e

(pµh + nµe)2
, (2.2)

can be derived [7], where p and n are the charge carrier densities of holes and electrons,

respectively, and µh and µe are the corresponding charge carrier mobilities. These prop-

erties have made the ordinary Hall effect a widely used tool to access transport properties

of conductors and to probe magnetic fields with high accuracy.

The classically derived formula for the Hall resistance reaches its limits once the quantum-

mechanical nature of the charge carriers becomes relevant. This is the case for quasi

two-dimensional Hall systems in the presence of a large magnetic field at sufficiently low

temperatures [6,8]. This was first observed by Klaus von Klitzing et al. [1] in Hall measure-

ments of two dimensional electron gases (2DEGs) formed at the interfaces of semiconductor

heterostructures. For this discovery he was later awarded with the Nobel prize in physics.

Klitzing found out that at large magnetic fields the linear field dependence of the Hall

resistance evolves into steps with well-defined plateaus (see Fig. 2.2). Most remarkably,

at these plateaus the Hall resistance is precisely quantized with

RH =
1

ν

h

e2
, (2.3)

while the longitudinal resistance Rxx vanishes indicating dissipationless charge transport

in the longitudinal direction. Moreover, the constant ν is an integer, which is why this

5



2 Novel topological states in the dimerized Hofstadter model

R
xx

Rxx

RH=Rxy

Figure 2.2: Hall resistance RH and longitudinal resistance Rxx of a two-dimensional
electron gas (2DEG) as a function of the magnetic field B [12]. Note
that RH features discrete plateaus at which the longitudinal resistance
vanishes.

type of Hall effect is dubbed integer quantum Hall effect1.

The origin of the QHE can be understood by treating the 2DEG in a magnetic field

quantum-mechanically [6]. The electronic bands of typical semiconductors have a parabolic

dispersion near the Fermi level. Thus, we can approximate our system of interest by a

free non-relativistic electron gas with renormalized effective mass2 m∗. Let us further

assume a magnetic field B = Bez perpendicular to the 2DEG in the xy plane, and let us

choose a gauge in which the electromagnetic vector potential3 is A = Bxey. By coupling

the electromagnetic field minimally to the momentum of the electrons, the one-particle

Hamiltonian of our 2DEG becomes

Ĥ =
~

2m∗
(p̂− qÂ)2 =

~
2m∗

p̂2
x +

~
2m∗

(p̂y − qBx̂)2. (2.4)

Obviously, the Hamiltonian commutes with p̂y. Therefore, energy eigenstates can be

chosen to be eigenstates of p̂y, and we can replace p̂y in Ĥ by its eigenvalues ~ky in this

gauge. Furthermore, we introduce the cyclotron frequency ωc = q~B/m∗. With this, our

1Note that there exists also a fractional variant of the QHE for which ν can assume certain values in a
sequence of rational numbers. The discovery of the fractional QHE was also awarded with the Nobel
prize in physics and is still subject of intense research [9,10]. In particular, the fractional-QHE phase
gives rise to anyonic quasi-particle excitations with non-Abelian statistics which could potentially be
used to perform quantum computations [11].

2An important exception is for instance graphene whose electrons obey an effective massless Dirac
equation [13]. A careful treatment of this case leads to other interesting features such as the zeroth
Landau level.

3We could of course take any other gauge choice for A as B = ∇×A.
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2.1 Introduction

Hamiltonian becomes

Ĥ =
~

2m∗
p̂2
x +

1

2
mωc

(
x̂− ~2ky

m∗ωc

)2

. (2.5)

This is the Hamiltonian of a quantum harmonic oscillator with a potential shifted by

~2ky/m
∗ωc. The eigenvalues of this Hamiltonian are well-known. Hence, the energies of

our system are

Enky = ~ωc
(
n+

1

2

)
, n ∈ N0. (2.6)

As we can easily see, for fixed n each so-called Landau level is highly degenerate because the

quantum number ky does not appear in the expression for the energies. More specifically,

the number of states per Landau level depends, among others4, on the magnetic field

For small magnetic fields, the degeneracy per Landau level is small and many levels

will be occupied. Furthermore, depending on the field, the occupation of the highest

Landau level nmax can range from completely filled to entirely empty. This gives rise to

characteristic quantum oscillations, such as the de Haas-van Alphen effect.

With increasing magnetic field, each Landau level can accommodate more and more

electrons thereby reducing nmax step-wise until all electrons fit in only a few highly de-

generate Landau levels. This is the regime where the QHE is observed. A plateau in the

Hall resistance corresponds to a situation in which the Fermi level of the quantum-Hall

system lies in between two neighboring Landau levels. A step in the Hall resistance occurs

whenever the Fermi level crosses one of the Landau levels and the number of occupied

Landau levels, thus, changes by one.

The sharp quantization was finally explained theoretically by Thouless et al. who where

able to connect the Hall conductance in the QHE, which is the inverse of the Hall resistance,

to the topology of the occupied Landau levels [14,15]. In particular, they proved that the

Hall conductance is equal to the sum of the Chern numbers of all occupied bands in units of

e2/h. The Chern number, as we will elaborate in the next section, is a topological invariant

characterizing the electronic band structure of a band insulator and can only assume

integer values [16]. If the Fermi level is in between two Landau levels, the corresponding

quantum-Hall system can indeed be considered as a band insulator. In particular, each

Landau level has a nontrivial Chern number of νn = 1. This immediately explains the

quantization of the Hall resistance. Hence, the integer in Eq. (2.3) is simply ν =
∑nmax

n=1 νn.

Another consequence of the nontrivial topology of the Landau levels is the presence of

topologically protected chiral edge states propagating along the boundary of the quantum-

4For a 2DEG sample of area A the degeneracy of each Landau level can be approximated by BAe/h [6].
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2 Novel topological states in the dimerized Hofstadter model

B

B

(a) (b)

Figure 2.3: Chiral edge states propagating along the boundary of a QHE sample. The
direction of propagation is indicated by red arrows. Note how the chirality
depends on the direction of the magnetic field B.

Hall sample [8](see Fig. 2.3). The chirality of the edge channels depends on the direction

of the magnetic field. Moreover, for a Hall conductance of ν (in units of e2/h) there are ν

quasi-1D edge channels confined to each edge of the sample. Remarkably, these states are

immune to backscattering because the backward-scattering channels are always confined

to the opposite edge. In this way, electrons can propagate along the edges of the sample

without dissipation. The topological edge states are also at the basis of the vanishing

longitudinal resistance Rxx [17, 18].

The presence of dissipationless chiral edge states makes quantum-Hall systems promis-

ing candidates for novel electronic devices with low power consumption. However, their

existence is bound to the presence of well-defined and well-separated Landau levels, which

typically5, requires low temperatures large magnetic fields, and samples with high charge

carrier mobility6 [8]. A possible way out is provided by the quantum anomalous Hall

effect (QAHE), which describes a QHE in the absence of a magnetic field. A theoreti-

cal model realizing this effect was first introduced by Haldane [21]. Experimentally, the

QAHE has been realized at the interface between a ferromagnet and a strong topological

insulator [8, 22–24].

2.1.2 Chern numbers and topological invariants

Let us now have a closer look into the topological invariant that characterizes the QHE.

As we have seen in the previous section, each Landau level can be assigned a quantized

5The conditions of the QHE can be relaxed in some materials. In graphene, for instance, the QHE has
been observed at room temperature [19] and at magnetic fields below 1 T [20], owing to the unusual
nature of its charge carriers which behave as massless relativistic particles.

6At finite temperatures, thermal fluctuations broaden the Landau levels and eventually lead to an overlap
of neighboring levels and a break-down of the energy gap. Therefore, the temperature T needs to be
sufficiently low such that all Landau levels are well separated. Therefore, the Landau level spacing
should be as large as possible. Since their spacing ~ωc is proportional to B/m∗, the magnetic field
and the charge carrier mobility µ ∼ 1/m∗ should be high.

8



2.1 Introduction

number, which naturally leads to the quantization of the Hall conductance. This number

is known as the first Chern number of the electronic band.

The Chern number is a quantity borrowed from the abstract mathematical field of

topology, which is concerned with the properties of topological spaces that are invariant

under continuous deformations [25]. A prototypical example is the famous dichotomy of

a torus and a sphere in two dimensions: it is impossible to find a continuous deformation

that transforms one into the other.

For illustrational purposes, let us however have a look at a different example: let us

consider closed curves, or loops, in the two dimensional plane without the origin [25], i.e.,

loops in the space R2\{0}. From the viewpoint of continuous deformations, it is obvious

that not all loops can be transformed into each other. In particular, a loop surrounding the

origin cannot be deformed into a loop that does not contain the origin. In this way, the set

of all loops decomposes into a set of equivalence classes according to how many times the

loops “wind” around the origin [see Fig. 2.4(a)]. Interestingly, it is even possible to define a

group operation on these equivalence classes. With this operation, the group of equivalence

classes of loops defines the first homotopy group of the space R2\{0}. Moreover, this

group is homomorphically equivalent to the integer numbers, which is typically denoted

by π1(R2\{0}) = Z. The winding number of a loop, which is a Z number, is the natural

topological invariant that characterizes a loop in a given equivalence class.

A loop is typically parameterized by a periodic parameter, say k. In this way, a loop can

be viewed as a mapping from the circle S1 to the considered spaceM, and the homotopy

group π1(M) tells us what the nature of the corresponding topological invariant is. In

general, the space M does not need to be a geometrical object. In particular, we could

take the space of all single-particle Hamiltonians in one dimension with certain symmetries,

and exclude all the Hamiltonians with a degeneracy (or gap closing point) in their energy

spectrum. This is where we are going to build the bridge from abstract mathematics to

physics [3, 26–28]: a lattice-periodic condensed matter system is typically described in

terms of its Bloch Hamiltonian H(k). Since the Brillouin zone (BZ) in one dimension is

equivalent to a circle S1, any such system with an energy gap represents a loop in the

space of HamiltoniansMH as defined above. In this way, all the notions of topology, such

as winding numbers or homotopy groups, can directly be carried over to physical systems.

Furthermore, note that this scheme can be generalized to arbitrary dimensions [25–28].

Two topologically distinct systems can only be connected by “leaving” the underlying

space, i.e., by crossing a gap closing point or by breaking the symmetry. This property is at

the basis of the so-called bulk-boundary correspondence of topological systems [3]: at the

9



2 Novel topological states in the dimerized Hofstadter model

n = 1
n = 0

M

(a) (b)
n = 0 n = 1E

x

Figure 2.4: (a) Two distinct loops in a topological spaceM with a hole (e.g. R2\{0} or
a space of HamiltoniansMH): the loops are characterized by their wind-
ing number n which defines a topological invariant. (b) Bulk-boundary
correspondence for two physical systems with different topology: the topo-
logical invariant n can only change if the energy gap (blue lines) is closed.
This leads to a state (red dot) bound to the interface of the two phases.

boundary between two phases with different topology the bulk energy gap must close. In

general, this leads to bound states crossing the Fermi level that are exponentially confined

to the interface between the two phases (see Fig. 2.4). In particular, since the vacuum

is topologically trivial, materials with nontrival topology will generically have conducting

surface states whose presence is topologically protected.

With this in mind, let us go back to the quantum-Hall systems. Each Landau level

represents a fully filled energy band of a two-dimensional system. In general, the (mag-

netic) BZ of such a system is equivalent to a two-dimensional torus T2, i.e., the set of all

H(k) parameterized by k ∈ T2 forms a closed two-dimensional manifold in the space of

gapped Hamiltonians MH [6]. As before, this gives rise to equivalence classes of gapped

systems. Systems in different classes have different topology and can only be connected

by closing the energy gap. In this particular case, the topological invariant characterizing

these systems is the first Chern number ν [6]. For a single band, it is defined as

ν =
1

2π

∫
BZ

d2k Fxy(k), (2.7)

with the Berry curvature

Fxy(k) = [∇×A]z = ∂kxAy(k)− ∂kyAx(k), (2.8)

and the Berry vector potential A = (Ax, Ay, 0) defined as

Aj(k) = i〈uk|∂kj |uk〉. (2.9)

10



2.1 Introduction

In the last equation, uk(r) is the lattice-periodic part of a Bloch eigenstate ψk(r) =

eik·ruk(r). Note that A(k) has an additional gauge freedom because a transformation of

the form A → A + ∇χ does not change the value of the Chern number ν. For several

isolated bands the net Chern number is simply the sum of the individual Chern numbers.

If there are band crossings between the occupied bands, one can apply a weak perturbation

to lift the band crossings. By continuity, the sum of the Chern numbers of the resulting

bands must be equal to the net Chern number of the original system. Alternatively, one

can use the non-Abelian Berry-curvature formulation of the Chern number to treat the

multiplets [29].

The integral in Eq. (2.7) can only assume integer values [16]. Moreover, note that its

value is always equal to zero if Fxy is a continuous function. In that case, we can apply

Stokes’ theorem and obtain∫
BZ

d2k Fxy =

∫
BZ

dS · (∇×A) =

∫
∂(BZ)

dr ·A = 0, (2.10)

because the BZ does not have a boundary. A nontrivial value of the Chern number

therefore indicates that it is impossible to find a gauge in which the Berry potential A(k)

is a continuous function in the entire BZ [16]. In such a case, A can only be defined

continuously “piecewiese”, i.e., in subsets or patches of the BZ. These patches define a

covering of the BZ, where the definitions of A differ from patch to patch. Since A is

continuous in each patch, Stokes’ theorem can be applied to each patch separately and

the integral in Eq. (2.7) becomes a sum of line integrals over the boundaries between the

patches. Finally, the nonvanishing line integrals give rise to a nontrivial Chern number.

For numerical calculations, which typically yield eigenstates with random phases, it is

helpful to find a gauge-invariant formulation of the Chern number. For a system described

by a Bloch Hamiltonian H(k) with energies Enk and eigenstates unk, the Chern number

of the nth band can be computed as [16],

νn = − i

2π

∫
BZ

d2k
∑
m6=n

〈unk|∂kxH(k)|umk〉〈umk|∂kyH(k)|unk〉 − (n←→ m)

(Enk − Emk)2
(2.11)

This formula is apparently gauge-independent and can be applied to any isolated band of

the system.

As we will later see, the concepts used in this section can be applied to a whole range

of physical systems. In particular, depending on the dimensionality and the symmetries

of the systems under consideration, different topological classes and invariants are possi-
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Figure 2.5: Altland-Zirnbauer classification of topological insulators and topological
superconductors: the table lists all symmetry classes of gapped fermionic
single-particle systems and the nature of their topological invariant (0, Z,
2Z, or Z2) subject to their symmetries and their dimension d. The con-
sidered symmetries are time-reversal symmetry Θ, particle-hole symmetry
C, and chiral symmetry S.

ble. This led to the famous Altland-Zirnbauer classification of topological insulators and

superconductors7 [26–28, 30–34], which is shown in Fig. 2.5. Taking into account only

the generic, non-spatial symmetries, which are time-reversal, particle-hole and chiral sym-

metry, there are in total ten different classes differing in whether a symmetry is present

and whether the corresponding operator squares to +1 or −1. It was found that in each

dimension there are five symmetry classes which allow for topologically nontrivial systems

characterized by topological invariants in Z, 2Z, and Z2 = {0, 1}. In the other classes, all

systems are topologically equivalent and therefore trivial by definition. For instance, the

two-dimensional (2D) quantum-Hall systems are in class A without any symmetries. They

are characterized by a Z invariant, which is, as we have seen, the Chern number. However,

for other classes it is not always obvious how to define a suitable topological invariant.

2.1.3 The Hofstadter model

After having introduced the QHE and its topological origin, let us now have a look at a

simple model that captures the physics of the QHE. More specifically, let us consider a

system of non-interacting electrons in a 2D periodic potential with rectangular symmetry

in the presence of a perpendicular magnetic field B. This situation can be described in

a nearest-neighbor tight-binding model of spinless fermions in a rectangular lattice. The

7At the mean-field level, also superconductors can be considered as systems with an excitation gap
described by a single-particle Bogoliubov-de Gennes Hamiltonian.

12
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Figure 2.6: Hopping scheme of the Hofstadter model on a rectangular lattice in the
Landau gauge. All lattice plaquettes of size a × b are penetrated by a
magnetic flux of φ = αφ0 (green rectangle), where φ0 = h/e is a magnetic
flux quantum.

fermions are effectively spinless because we expect the magnetic field to fully spin-polarize

the electrons of the system.

Let us first write down the model in the absence of the magnetic field:

H =
∑
jx,jy

tx c
†
jx+1,jy

cjxjy +
∑
jx,jy

ty c
†
jx,jy+1cjxjy . (2.12)

Here, c†jxjy and cjxjy are electron creation and annihilation operators, tx is the matrix

element for nearest-neighbor hopping in the x direction, and ty is the corresponding matrix

element for the y direction. If we turn on a magnetic field B = Bez perpendicular to the

lattice, each plaquette of the lattice will be penetrated by a magnetic flux

φ =

∫
�
dS ·B =

∫
�
dS · (∇×A) =

∫
∂�
dl ·A, (2.13)

where A is the electromagnetic vector potential. Thus, whenever an electron encircles

one of the plaquettes, it picks up an Aharonov-Bohm phase factor of e2πiφ/φ0 , with the

magnetic flux quantum φ0 = h/e [35]. This has to be incorporated in the tight-binding

model and is typically done via the so-called Peierls substitution [16]: it corresponds to

replacing all hopping matrix elements tij by tije
2πi

∫ j
i dl·A(l)/φ0 . In this way, the hopping

phases around a plaquette add up correctly to the Aharonov-Bohm phase.

Without loss of generality, we choose the Landau gauge in which A = Bxey. By

applying the corresponding Peierls substitution, our tight-binding model becomes

H =
∑
jx,jy

tx c
†
jx+1,jy

cjxjy +
∑
jx,jy

tye
−i2πjxα c†jx,jy+1cjxjy , (2.14)
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2 Novel topological states in the dimerized Hofstadter model

where α ≡ φ/φ0 is the magnetic flux per plaquette in units of the magnetic flux quantum

(see Fig. 2.6). This is the famous Hofstadter model which was studied in detail by Douglas

Hofstadter in 1976 [36].

For irrational values of the magnetic flux α Hofstadter showed that the energy spectrum

of the model can be mapped to the Cantor set: an uncountable set of real numbers in the

unit interval of measure zero constructed by systematically removing the middle thirds in

an infinite sequence of trisections. More specifically, the spectrum consists of uncountably

many points which are all separated by finite energy gaps.

For rational values with α = p/q, where p and q are integers and coprime, the situation

is different. In this case, the model has translational symmetry with a periodicity of one

lattice site in the y direction and q lattice sites in the x direction. This makes it possible

to define a magnetic unit cell and to transform the model into momentum space [6]. The

Hamiltonian reads

H =
∑
kx,ky

q−1∑
n=1

txe
iakxd†kx,ky ,n+1dkxkyn + h.c.

+
∑
kx,ky

q∑
n=1

2ty cos

(
bky +

2πp

q
n

)
d†kxkyndkxkyn, (2.15)

where a and b are the lattice parameters of our rectangular lattice, and d
(†)
kxkyn

are new

creation/annihilation operators in momentum space. For fixed α, this Hamiltonian can

be diagonalized easily to obtain the energy levels of the model. The spectrum has several

key properties [36]: (i) the spectra for α and α + N , where N ∈ Z, are identical. For

this reason, it is sufficient to consider only the interval 0 ≤ α < 1. (ii) The Bloch bands

break up into q distinct energy bands. (iii) For q odd, all energy bands are separated by a

finite energy gap. There are q − 1 energy gaps in total. (iv) For q even, all energy bands

except the central two are separated by finite energy gaps. The two central bands touch

at E = 0. In total, there are q − 2 energy gaps while the half-filling gap is closed.

The Hofstadter spectrum is most beautifully illustrated as a function of the magnetic

flux α = φ/φ0, as is demonstrated in Fig. 2.7(a). As we can see, the graph resembles a

butterfly. This is why the spectrum is usually referred to as the “Hofstadter butterfly”.

Most remarkably, the spectrum has a fractal structure. Particularly, Hofstadter showed

that the graph is similar to itself, i.e., by zooming into certain parts of the spectrum, the

spectrum is mapped onto itself up to a distortion.

Moreover, the Hofstadter bands are topologically nontrivial, i.e., each Hofstadter band
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Figure 2.7: (a) The energy spectrum of the Hofstadter model as a function of the
magnetic flux α = φ/φ0 [37] shows a pattern reminiscent of a butterfly.
(b) The energy gaps of the Hofstadter butterfly can be colored according
to their Hall conductivity σ in units of e2/h [38]. Hall conductivities
between −2 and +2 are indicated.

has a nontrivial Chern number ν [14, 15]. In this way, we can assign a nonzero Hall

conductance σ to each energy gap in the Hofstadter spectrum corresponding to the sum of

Chern numbers of all occupied bands up to the Fermi energy inside the considered energy

gap. In fact, it has been shown that for q and p coprime the Hall conductances of the

Hofstadter model take all nonzero values in the open interval (−q/2, q/2) once and only

once [38].

This is also in agreement with the so-called Diophantine equation [16],

r = qµ+ pσ, (2.16)

an equation from the mathematical field of number theory, which must always hold for

three positive integers r, q, p, where |σ| ≤ q/2, 0 ≤ r ≤ q, and µ and σ are integers. For

fixed magnetic flux p/q, it can be shown that such an equation must be satisfied by the

Hofstadter model, with r denoting the r-th gap such that r bands are occupied, and σ is

the associated Hall conductivity in units of e2/h. The Hall conductances of the Hofstadter

energy gaps are illustrated in Fig. 2.7(b). This shows that the Hofstadter model is indeed

a lattice realization of the integer quantum Hall effect.
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Figure 2.8: Hopping scheme in the Hofstadter model with a period-2 modulation of
the hopping amplitudes in the x direction (dimerization). A magnetic
unit cell for the case α = 1/4 is also shown (red dashed rectangle).

2.2 The dimerized Hofstadter model

After having introduced the standard Hofstadter model as a platform for the QHE, we

are now going to show that the topology of the Hofstadter model can be enriched by

manipulating the underlying lattice. In particular, we will demonstrate that a moderate

lattice dimerization causes a topological phase transition. The resulting topological phase

is fundamentally different from the QHE phases since it features counter-propagating edge

states not contributing to the Hall conductivity which have yet a topological origin. The

work presented in the following sections is based on Ref. [39].

Recall the tight-binding model of the Hofstadter model introduced in the previous sec-

tion. In addition, we consider the possibility of a lattice dimerization along one direction

which leads to a modulation of hopping amplitudes as indicated in Fig. 2.8. For simplic-

ity, we neglect a modulation of the magnetic fluxes, which would be present in a realistic

system due to the change of the lattice parameter a. However, it can be verified that such

a modulation leads to the same general results [39].

After performing a Fourier transformation only along the “undimerized” direction y,

the new tight-binding Hamiltonian in mixed momentum-position space reads:

H =
∑
jx,ky

[tx − (−1)jxδt] (c†jx+1,ky
cjxky + c†jxkycjx+1,ky)

+
∑
jx,ky

2ty cos(bky + 2παjx) c
†
jxky

cjxky , (2.17)

where α is, as before, the magnetic flux in units of the magnetic flux quantum φ0, a

and b are the lattice parameters of the rectangular lattice, tx,y are the average nearest-
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2.2 The dimerized Hofstadter model

neighbor hopping amplitudes, while δt parametrizes the dimerization strength. In the

previous section, we have seen that the standard Hofstadter model can be easily studied

and diagonalized for rational values of the magnetic flux α = p/q. To demonstrate the key

consequences of a lattice dimerization, let us for the moment focus on a particular value

of the magnetic flux, namely α = 1/4. Later on, we will generalize our observations to

arbitrary rational α values.

The magnetic unit cell of the α = 1/4 dimerized Hofstadter model contains four inequiv-

alent lattice sites (see Fig. 2.8). Therefore, the corresponding Bloch Hamiltonian in full

momentum space can be written in terms of the Dirac matrices Γi and their commutators

Γij [40]. For a unit cell going from jx = 1 to jx = 4, the Hamiltonian reads

H(k) = ty(cos bky − sin bky) Γ5 + ty(cos bky + sin bky) Γ21 + (tx + δt) Γ45

+
1

2
(tx − δt)(1− cos 4akx) Γ41 +

1

2
(tx − δt)(1 + cos 4akx) Γ23

− 1

2
(tx − δt) sin 4akx(Γ24 + Γ31). (2.18)

Since the prime physical consequence of non-trivial topological states is the existence of

chiral edge states, we study the dimerized Hofstadter model in a ribbon geometry with

periodic boundary conditions in the y direction and open boundary conditions with a finite

number of magnetic unit cells Nx in the x direction. Thus, the ribbon with α = 1/4 is

of width W = 4Nxa and terminated by two boundaries perpendicular to the dimerization

direction. The band structure of the ribbon is then determined via exact diagonalization

of the first-quantized 4L × 4L Hamiltonian corresponding to Eq. (2.17). The eigenstate

weights at different lattice sites are used to identify possible edge states. Fig. 2.9 shows

the ensuing band structure for ty = tx/2.

In the absence of dimerization, the bulk spectrum is gapped for filling fractions 1/4 and

3/4, but gapless at half filling with four bulk Dirac points. This is in agreement with the

properties of the standard Hofstadter spectrum with magnetic flux ratio α = p/q with

p, q ∈ N and q = 2r even [36,38]. Recall that there are q− 2 bulk energy gaps whereas the

two central bands have q touching points at E = 0. Furthermore, within each bulk energy

gap we observe one pair of counterpropagating edge states traversing the bulk gap localized

at the edges of the system. Those can be attributed to the nontrivial bulk topology for the

corresponding filling levels by bulk-boundary correspondence. Indeed, a calculation of the

Chern number νn [14,15] for each energy band n yields Hall conductivities of σ(1/4) = −1

and σ(3/4) = +1. This gives rise to one topologically protected state per edge.
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Figure 2.9: Band structures for the dimerized Hofstadter model in a ribbon geometry
of width W = 4Nxa: α = 1/4, Nx = 100. Parameters are (in units of
tx): (a) ty = 0.5, δt = 0 (no dimerization). (b) ty = 0.5, δt = 0.4 (trivial
dimerization). (c) ty = 0.5, δt = −0.4 (nontrivial dimerization). States
localized at the edges of the system are highlighted in red. Hall conductiv-
ities σ for Fermi levels inside the bulk energy gaps are displayed in units of
e2/h. Relevant inversion-symmetric Aubry-André-Harper (AAH) cuts are
indicated by dashed vertical lines. Note that in panel (c) there are nontriv-
ial edge states at half filling although the corresponding Hall conductivity
is zero. To explain this, a half-filling ty-δt phase diagram is shown in
panel (d) for the inversion-symmetric AAH model with kyb = −π/4 and
with respect to the 1D invariant N of Eq. (2.22). Points corresponding
to panels (a)–(c) are indicated by red circles, including a possible path
connecting them.

Interestingly, we also find two additional bands of edge states in between the four gap-

touching points around E = 0. This already indicates that an opening of the half-filling

gap might lead to a new topological phase with characteristic edge states. Indeed, for a

finite dimerization mass δt > 0, the modulated hopping amplitude acts as a gap-opening

perturbation yielding an additional insulating phase. However, the two additional bands of

edge states between the touching points of the two central bands of Fig. 2.9(a) are pushed

into the bulk continuum and localized in-gap states are absent [see Fig. 2.9(b)]. This is

not surprising since we calculate a trivial Hall conductivity of σ(1/2) = 0 for the new

half-filling gap. Hence, topological edge states are not expected for this phase. Besides,

the edge states of the non-trivial insulating states in the 1/4 and 3/4 filling gaps are only

slightly deformed signaling that the dimerization mass does not interfere with the bulk

topological properties of the system.

The situation for δt < 0 turns out to be much richer. For small values of the dimer-

ization mass, one again observes the opening of a bulk gap at half filling. However, at a

critical value δt = δtc < 0 [see Fig. 2.9(d) for a phase diagram] another gap closing and

reopening occurs at bky = −π/4 and bky = 3π/4. Furthermore, in close proximity to these
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2.3 1D Hofstadter slices with inversion symmetry

points a pair of counter-propagating chiral edge states [Fig. 2.9(c)] are revealed. Most

notably, the half-filling Hall conductivity still vanishes. This is because the edge states’

contributions to the Hall current is exactly opposite. By further increasing the dimeriza-

tion, the corresponding edge bands are deformed. However, the doublets of in-gap edge

states remain pinned at the momenta bky = −π/4, 3π/4 and remain inside the bulk energy

gap independent of the value of δt and ty.

2.3 One-dimensional Hofstadter slices with inversion

symmetry: an analogy with the Aubry-André-Harper

model

We now show that the presence of such doublets of half-filling in-gap edge states has a

topological origin. In the form of Eq. 2.17, the dimerized Hofstadter model can be viewed

as a collection of 1D chains parameterized by the momentum ky. They are described by

the following Hamiltonian,

Hky =
∑
jx

[tx − (−1)jxδt] (c†jx+1cjx + c†jxcjx+1)

+
∑
jx

2ty cos(bky + 2πα jx) c
†
jx
cjx . (2.19)

Just as the Hofstadter model, these chains are dimerized with a dimerization mass δt.

Moreover, the magnetic field has been translated into a periodically modulated on-site

potential of periodicity 1/α, amplitude 2ty, and phase bky. Intriguingly, these chains

are equivalent to a specific combination of diagonal and off-diagonal Aubry-André-Harper

(AAH) models [41–44]. AAH models have been the subject of intensive research because of

their correspondence to a number of fundamental models, such as 2D lattice models with

magnetic flux [44], the Kitaev model [45], or the Su-Schrieffer-Heeger (SSH) model [46]. For

any value of ky the AAH models possess time-reversal symmetry with Θ = K, kx → −kx,
and Θ2 = +1, where K is complex conjugation. Furthermore, we are now going to show

that all dimerized Hofstadter models with rational α = p/q, with p, q ∈ N and coprime,

possess at least two distinct AAH cuts with inversion symmetry.

Let us start with the undimerized case, where the hopping amplitudes tx are constant

throughout the lattice. The kinetic term of the Hamiltonian always preserves inversion
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2 Novel topological states in the dimerized Hofstadter model

symmetry, which is the reason why we have to focus on the on-site potentials. For given

α = p/q, one period of the on-site potential modulation is q lattice spacings. Without loss

of generality, let us pick a unit cell that goes from j = 1 to j = q. To have an inversion

center in the unit cell, the on-site potentials need to satisfy the following condition,

cos
(

2π
p

q
j + bky

)
!

= cos
(

2π
p

q
(q − j + 1) + bky

)
. (2.20)

This is always true, if we choose bky = −pπ
q

as is straight-forward to verify. In addition,

there is always a second point with bky = −pπ
q

+ π = q−p
q
π at which the system obeys

inversion symmetry. This case corresponds to substituting ty → −ty.
Let us now check whether this statement also holds for the dimerized Hofstadter model.

If q is even, a dimerization does not change the size of the magnetic unit cell, which consists

of an even number of sites. The inversion center is exactly in the middle between the two

central sites. Thus, an alternating hopping amplitude does not break inversion symmetry.

If q is odd, a dimerization doubles the unit cell. Thus, the unit cell comprises 2q lattice

sites, which is an even number. Before adding the dimerization, the inversion center is

exactly at the central lattice site of the undoubled unit cell. With the dimerization, it is

between the two central sites of the doubled unit cell. Hence, we readily see that if the

old unit cell preserves inversion symmetry, so does the new dimerized unit cell.

Therefore, the values of ky for which the corresponding AAH chains have inversion

symmetry are

bky = −pπ
q

and bky =
q − p
q

π. (2.21)

Note that, in the case of periodic boundary conditions, these are not the only chains with

inversion symmetry. The missing chains are those for which the chosen unit cell itself does

not have inversion symmetry but the overall system does. The inversion center could,

for instance, be exactly in between two adjacent unit cells. In such a system, however,

the insertion of boundaries, i.e, taking a finite number of unit cells with open boundary

conditions, would inevitably break inversion symmetry. Hence, any implications based

on bulk-boundary correspondence would no longer hold and we, therefore, exclude these

cases from our discussion. On the contrary, inversion symmetry is preserved also in the

finite chain if the corresponding unit cells are themselves inversion-symmetric, i.e., for the

ky values in Eq. (2.21) above.

More generally, it can also be seen straight-forwardly that for any finite dimerized Hof-

stadter model with an even number of lattice sites in the direction of dimerization, there
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are at least two ky cuts with inversion symmetry. In this case, the system consists of a

certain number of complete unit cells plus an even number 2m of additional lattice sites.

Let us choose the unit cells such that there are m of the additional sites at both ends

of the chain. We already know that there must be two ky values for which the chosen

unit cells are inversion symmetric. From this, we immediately see that our arrangement

of unit cells plus additional lattice sites is inversion symmetric for the same values of ky.

On the contrary, if the chain consists of an odd number of sites, the additional lattice

sites cannot be arranged symmetrically around the unit cells. Thus, inversion symmetry

is always broken.

In conclusion, we have shown that any dimerized Hofstadter model has two inversion-

symmetric cuts in momentum space as long as the system has an even number of lattice

sites in the direction of dimerization. Going back to our example of α = 1/4, the inversion-

symmetric 1D cuts are at kyb = −π/4 or 3π/4, with the 1D parity operator described by

P = σx ⊗ τx, σi and τ i being Pauli matrices.

2.4 Topological invariant for one-dimensional systems

with inversion symmetry

We have seen that for momenta at which the dimerized Hofstadter ribbon exhibits pairs of

degenerate mid-gap edge states at half filling the corresponding AAH chains have inversion

symmetry. However, by going away from these points inversion symmetry is broken and

the edge-state degeneracy is lifted. This indicates that the edge states might have a

topological origin related to the presence of inversion symmetry.

In Sec. 2.1.2, we introduced the standard Altland-Zirnbauer table of topological insula-

tors [26,30–34] which lists all possible topological phases based on the presence or absence

of generic non-spatial symmetries and based on the dimension of the systems under con-

sideration. Later, it was realized that the presence of additional spatial symmetries, such

as point-group symmetries, can enrich the topology of a system. This led to the discovery

of the so-called topological crystalline insulators (see Chapter 4) and various extensions of

the standard Altland-Zirnbauer table. For these systems, the bulk-boundary correspon-

dence is more restrictive: only the boundaries not breaking the defining spatial symmetries

exhibit topological states!

In this light, the effective 1D inversion-symmetric AAH Hamiltonians fall into the or-

thogonal class AI with inversion symmetry of topological insulators with additional inver-
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Figure 2.10: Bulk band structures for inversion-symmetric AAH models with and
without dimerization: α = 1/4, ty = 0.5tx; δt = 0.4tx in (a) and (d),
δt = δtc = −1/8tx in (b) and (e), δt = −0.4tx in (c) and (f). The parities
at the inversion-invariant momenta kx = 0 and π/4a are indicated by
green circles (ζ = +1) and red squares (ζ = −1). The topological
invariants N , corresponding to Fermi levels inside the respective bulk
energy gaps, are also displayed.

sion symmetry introduced by Lu et al. [47]. Note that class AI of the original Altland-

Zirnbauer table is trivial in 1D. With inversion symmetry, since inversion operator P

(P 2 = +1) and time-reversal operator Θ (Θ2 = +1) commute, the 1D Hamiltonians now

allow for a Z topological invariant. Such an integer invariant can be defined as follows [48].

Let us consider a 1D system on a chain with inversion symmetry described by the Bloch

Hamiltonian H(k), k ∈ (−π/a, π/a]. Inversion symmetry implies P−1H(k)P = H(−k)

where P is a matrix representation of inversion. In particular, H(k) commutes with P at

the inversion-invariant momenta 0 and π/a. Thus, eigenstates of H(k) have a well-defined

parity ζi(kinv) = ±1 at those points. The eigenvalues of an operator cannot be changed by

continuous deformations of the Hamiltonian, up to the order. However, a change of the

order is only possible by closing and reopening the energy gap between two states. For a

1D inversion-symmetric system, an integer invariant is therefore defined by [48],

N := |n1 − n2|, (2.22)

where n1 and n2 are the number of negative parities at k = 0 and k = π/a, respectively.

Let us now apply this to the inversion-symmetric AAH cuts of our exemplary Hofstadter
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2.5 Dimerized Hofstadter models with rational flux

model with α = 1/4. Fig. 2.10 shows 1D bulk spectra of the inversion-symmetric cuts

corresponding to Fig. 2.9 for different values of the dimerization mass. Furthermore, the

parities of the bulk states at the inversion-invariant momenta kx = 0 and kx = π/4a are

displayed. This enables us to calculate the topological invariant N .

As an example, we discuss the results for bky = −π/4 and ty > 0 [see Fig. 2.10(a)–(c)].

Independent of the dimerization mass, we find N = 1 for 3/4 filling, and N = 0 for

1/4 filling. This means the system is topologically nontrivial with one pair of degenerate

end modes if the Fermi level is in the upper gap. On the contrary, we have a trivial

system without end modes for 1/4 filling. Going back to the full Hofstadter model, this

explains why the crossing of the 3/4 filling quantum Hall edge states are pinned to the

point bky = −π/4.

At half filling, the situation is more subtle. For δt > δtc, our calculations yield N = 0,

rendering the system topologically trivial. Indeed, we do not observe end modes in this

case. In contrast to that, for δt < δtc the system is topologically nontrivial with N = 1

and we find a pair of degenerate end modes in the finite system. The reason for this is

that the kx = 0 parities of the two central bands are switched while going from δt > δtc

to δt < tc: a band inversion takes place.

This explicitly explains the observed pinning of the degenerate edge states of the dimer-

ized Hofstadter model at half filling. They originate from specific 1D cuts of the Hofstadter

BZ corresponding to topologically nontrival inversion-symmetric AAH models. Notably,

the corresponding Hall conductivity is zero.

2.5 Dimerized Hofstadter models with rational flux

In the following, we are going to explore other dimerized Hofstadter models with different

rational values of the magnetic flux α = p/q. In particular, we will discuss models with

odd q which require a separate treatment. Finally, this will lead us to a generalization of

our findings to arbitrary rational α.

2.5.1 Hofstadter models with half-integer flux: an analogy with the

Su-Schrieffer-Heeger model

First of all, let us have a look at another interesting special case with even q, namely the

dimerized Hofstadter model with α = 1/2. It is worth a separate discussion since it can

be mapped to the famous Su-Schrieffer-Heeger (SSH) model [46] with an additional mass
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Figure 2.11: Two different configurations of polyacetylene. The two configurations
are topologically distinct which gives rise to a topological state bound
to any interface between them.

term. More specifically, in this case the Hofstadter model can be viewed as a collection

of SSH models parameterized by ky, in analogy with the general correspondence between

Hofstadter and AAH model.

The SSH model is a simple model to describe the π electrons of a polyacetylene chain

(see Fig. 2.11). Polyacetylene is an organic polymer consisting of long zigzag-shaped

carbon chains with alternating single and double bonds in between them. In addition, one

hydrogen atom is bonded to each carbon atom. This structure gives rise to two distinct

configurations of polyacetylene, shown in Fig. 2.11, which can be transformed into each

other by interchanging single and double bonds. Early electron spin resonance studies of

polyacetylene suggested the presence of single unpaired electrons bound to domain walls

of these two configurations. This was first explained in terms of domain-wall solitons,

but was later revisited and understood in the language of topology. More specifically, the

two polyacetylene configurations are topologically distinct such that an interface between

them inevitably leads to a topological boundary state.

The physics of polyacetylene is captured by the SSH model, which is a nearest-neighbor

tight-binding model for spinless fermions on a 1D chain subject to a dimerization, where

the dimerization models the alternating single and double bonds of the carbon atoms.

The 1D chains of our dimerized Hofstadter model with α = 1/2 have an additional on-site

potential term. The corresponding Bloch Hamiltonian is8

Hky(kx) = [(tx + δt) + (tx − δt) cos(2akx)]σ
x − (tx − δt) sin(2akx)σ

y

− 2ty cos(bky)σ
z, (2.23)

where σx,y,z are Pauli matrices. The 1D inversion operator is P = σx with kx → −kx. It is

easily checked that the system preserves inversion symmetry for bky = ±π/2, in agreement

8The SSH model with an additional staggered on-site potential is also known as the Rice-Mele model [49].
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2.5 Dimerized Hofstadter models with rational flux

with Eq. (2.21).

Fig. 2.12 shows band structures of the dimerized Hofstadter model with α = 1/2 in a

ribbon geometry, similar to the one considered above for the case α = 1/4. As expected

from the general properties of the standard Hofstadter model, without dimerization the

system is gapless with two bulk Dirac points [see Fig. 2.12(a)]. Furthermore, the Dirac

points coincide with the inversion-symmetric cuts of the Hofstadter model.

For δt > 0, the Dirac points are gapped out without revealing any edge states [see

Fig. 2.12(b)]. This is readily explained by a topological analysis: the Hall conductivity at

half filling is σ(1/2) = 0, and also the 1D invariants for the inversion-symmetric cuts at

bky = ±π/2 are trivial with N = 0. Hence, no topological edge states are expected by

bulk-boundary correspondence.

On the contrary, for δt < 0 the topological analysis yields N = 1 for both inversion-

symmetric cuts, giving rise to one pair of end modes each, as can be seen in Fig. 2.12(c).

However, the corresponding Hall conductivity is still zero.

This is in perfect agreement with the results presented above for α = 1/4. It also reflects

what is known for the SSH model [50]: at the inversion-symmetric cuts, the symmetry-

breaking mass term associated with σz vanishes. In this case, the SSH model features

topological end modes for a negative dimerization mass. However, away from those points

the SSH model contains a σz term that gaps out the end modes. This is exactly what

happens in Fig. 2.12(c).

2.5.2 Hofstadter models with odd-denominator fluxes

The dimerized Hofstadter model with α = p/q and q odd requires a separate analysis. This

is primarily due to the doubling of the magnetic unit cell in the presence of a dimerization.

We will first start with a general discussion based on an analysis of numerous Hofstadter

models with different α. After that, we will discuss the case α = 1/3 in more detail.

In the Hofstadter model, hopping amplitudes with respect to the y direction are modu-

lated along the x direction with a period of q lattice sites, giving rise to a magnetic unit cell

of exactly this size. However, if q is odd, such a period is no longer reconcilable with the

periodicity of the hopping amplitudes with respect to the x direction once a dimerization

has been turned on. The greatest common divisor of the two periods is 2, which is the

reason why the magnetic unit cell must be doubled in the dimerized case.

Without dimerization, the bulk band structure of the Hofstadter model with odd q

consists of q bands with q − 1 full energy gaps separating them. In particular, the Fermi
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Figure 2.12: Band structures for the dimerized Hofstadter model in a ribbon geometry
of width W = 2Nxa: α = 1/2, Nx = 200. Parameters are (in units of
tx): (a) ty = 0.4, δt = 0 (no dimerization). (b) ty = 0.4, δt = 0.1
(trivial dimerization). (c) ty = 0.4, δt = −0.1 (nontrivial dimerization).
States localized at the edges of the system are highlighted in red. Hall
conductivities σ for Fermi levels inside the bulk energy gaps are displayed
in units of e2/h. The inversion-symmetric AAH cuts are indicated by
dashed vertical lines. The 1D invariants N for the inversion-symmetric
cuts are also shown. Note that the latter is only nontrivial for δt < 0.

level of a half-filled system can never be inside one of the gaps. Furthermore, as for the

case with even q, a Diophantine equation can be used to infer that the Hall conductivities

σ, associated with Fermi levels inside the various gaps, assume every value in the open

interval (− q
2
, q

2
) once and only once [38].

Due to the doubling of the magnetic unit cell in the presence of a dimerization, the

magnetic BZ is folded in the direction of kx. This leads to a doubling of the energy bands in

the new magnetic BZ, which now features 2q bulk energy bands. A closer inspection shows

that related bands touch along the kx = ±π/2qa edges of the new BZ, if we artificially set

the dimerization mass to zero. In this case, we have q pairs of bands separated by q − 1

bulk energy gaps, while the associated Hall conductivities must be the same as before.

By turning on the dimerization, the touching points within the pairs of bands are gapped

out, revealing q additional bulk energy gaps. In total, we thus have 2q − 1 bulk energy

gaps. In particular, there is now also a half-filling gap. We again find that the half-filling

gap is associated with a Hall conductivity of σ = 0.

Independent of the sign of the dimerization mass δt the Hall conductivity vanishes at

half filling. Nevertheless, the gap closing at δt = 0 switches the parities at kx = ±π/2qa in

the inversion-symmetric cuts, giving rise to two different topological sectors with respect

to the 1D invariant N . Consequently, there are topological edge states for δt < 0 with

zero Hall conductivity solely due to inversion symmetry in the 1D cuts.
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Figure 2.13: Band structures for the dimerized Hofstadter model in a ribbon geometry
of width W = 6Nxa: α = 1/3, Nx = 60. Parameters are (in units of
tx): (a) ty = 0.4, δt = 0 (no dimerization). (b) ty = 0.4, δt = 0.4
(trivial dimerization). (c) ty = 0.4, δt = −0.4 (nontrivial dimerization).
States localized at the edges of the system are highlighted in red. Hall
conductivities σ for Fermi levels inside the bulk energy gaps are displayed
in units of e2/h for (c) (equivalent gaps in (b) and (c) have the same Hall
conductivity). The relevant inversion-symmetric AAH cuts are indicated
by dashed vertical lines.

Let us now demonstrate the general results for a specific system, namely the dimerized

Hofstadter model with α = 1/3. The 6× 6 Bloch Hamiltonian H(kx, ky) has the following

components,

Hnn = 2ty cos(
2π

3
n+ bky), n = 1, . . . , 6 (2.24)

Hn,n+1 = Hn+1,n = tx − (−1)nδt, n = 1, . . . , 5 (2.25)

H1,6 = H∗6,1 = (tx − δt)ei6akx , (2.26)

while all other components are zero. The relevant 1D inversion operator P for this repre-

sentation is simply the matrix with ones along the anti-diagonal and zeros elsewhere.

In Fig. 2.13, band structures of this Hofstadter model in a ribbon geometry are shown.

Furthermore, 1D bulk band structures for the corresponding AAH models are plotted in

Fig. 2.14 to explain the 1D topology of the relevant inversion-symmetric cuts.

As expected, without dimerization we see two bulk energy gaps with nontrivial Hall

conductivities of σ = ±1, giving rise to the pairs of counterpropagating edge states we

observe in Fig. 2.13(a). Moreover, they are pinned to the inversion-symmetric cuts. This

is in agreement with the topological analysis in Fig. 2.14.

For nonzero δt, the gaps attributed to the folding of the magnetic BZ open. Looking at

the behavior of the inversion-symmetric cuts in Fig. 2.14, we observe that the kx = π/6a
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Figure 2.14: Bulk band structures for inversion-symmetric AAH models with and
without dimerization: α = 1/3, ty = 0.4tx; δt = 0.4tx in (a) and (c), δt =
−0.4tx in (b) and (d). The parities at the inversion-invariant momenta
kx = 0 and π/6a are indicated by green circles (ζ = +1) and red squares
(ζ = −1). The topological invariants N , corresponding to Fermi levels
inside the respective bulk energy gaps, are also displayed.

parities of three pairs of bands, including the two central bands, switch by going from

δt > 0 to δt < 0. This is a characteristic feature of Hofstadter models with odd q. For

even q, this generically happens only for the two central bands. At half filling, this leads

to topological edge states with zero Hall conductivity, but nontrivial N = 1, for δt < 0.

The Hall conductivities at 1/6 and 5/6 filling are nontrivial with σ = ±1, independent

of δt. However, due to the change of the 1D topology at δt = 0 their behavior is different

for negative and positive δt. For instance, the crossing of the 1/6-filling edge states is at

bky = −π/3 for δt > 0, where it is forced to stay inside the bulk energy gap due to the

nontrivial 1D invariant N = 1. On the contrary, for δt < 0 the crossing is expected at

bky = 2π/3, but it can disappear into the bulk since the 1D invariant N is trivial.
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2.5 Dimerized Hofstadter models with rational flux

2.5.3 Generalization to arbitrary rational flux

The results presented above, and the analysis of dimerized Hofstadter models with other

rational values of the magnetic flux α = p/q, suggest a generalization of the observed

features.

For even q, the situation is very similar to the cases α = 1/4 and 1/2: without dimeriza-

tion, the corresponding Hofstadter models are gapless at half filling because the two central

gaps touch at zero energy. These bulk Dirac points are gapped out by a mass induced by

the dimerization and a bulk energy gap with zero Hall conductivity opens. Furthermore,

the system always possesses two inversion-symmetric 1D cuts. Generically, we find two

situations: either two of the Dirac points coincide with the inversion-symmetric cuts, or

the inversion-symmetric cuts are between two Dirac points. In the former case, the system

exhibits one pair of topological edge states for δt < 0, whereas the system is trivial for

δt > 0 (c.f. the model with α = 1/2). In the other case, for instance α = 1/4, the bulk gap

closes and reopens a second time at some ty-dependent δtc < 0. This is the point where

the phase transition from N = 0 to N = 1 takes place. Apart from the shifted transition

point, the observations are qualitatively the same for both cases.

For odd q, the situation is more subtle, as we have discussed in the previous section.

First of all, the magnetic unit cell is doubled due to the dimerization, giving rise to an

even number of bands in the folded magnetic BZ. In this BZ, the nonzero dimerization

mass opens a full half-filling gap with zero Hall conductivity as in the case with even q.

For δt < 0, we again find topological edge states pinned to the inversion-symmetric cuts of

the BZ which are characterized by a nontrivial 1D invariant N . In contrast to that, there

are no edge states for δt > 0. This can be attributed to both the zero Hall conductivity

and the trivial value for N .

We conclude that a dimerization in the Hofstadter model with rational magnetic flux α

opens an energy gap at half filling (see Fig. 2.15). The Hall conductivity associated with

this energy gap is zero. However, topological mid-gap edge states appear, if the dimer-

ization mass δt is negative and its magnitude is sufficiently large. The topological states

originate from 1D inversion-symmetric momentum-space cuts for two specific momenta

ky. The values of these momenta depend on α and on the way the system is terminated.

29



2 Novel topological states in the dimerized Hofstadter model

0

0

1

-1

2

-2

0.2 0.4 0.6 0.6 1

E/
t

ϕ/ϕ0

3

-3

σ = 0,  N = 1
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2.6 Possible experimental realization and detection

In order to detect the topological edge states discussed in this chapter, it would be desirable

to realize one of the simpler Hofstadter models with magnetic fluxes 1/2, 1/3 or 1/4, simply

because the total number of bands is small and the energy gaps are large. However, it

was already pointed out by Hofstadter for his original model that this would require an

enormous magnetic field [36]. To understand that, recall the definition of α as the ratio

of magnetic flux per plaquette to magnetic flux quantum, i.e.,

α =
φ

φ0

=
Bab e

h
. (2.27)

In real crystals, typical lattice spacings are of the order of several Å. In order to reach,

for instance, a magnetic flux of φ0/4 per lattice plaquette, we would need an enormous

magnetic field of the order of 105 T. Therefore, the experimental realization of the Hofs-

tadter model and its remarkable features seem to be out of reach. Nevertheless, significant

technological advances in the last decades have revived the experimental and theoretical

research on the Hofstadter model and other related models.

One approach to realizing the Hofstadter model is the preparation of moiré superlat-

tices [37]. This was first realized for the Hofstadter model on a honeycomb lattice [51–53].

For that, bilayer graphene was placed on top of hexagonal boron nitride (hBN) under a

relative angle θ. The lattice constants of graphene and hBN also differ by approximately
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2%. This creates a lattice mismatch and the ensuing superstructure forms a periodic pat-

tern with a much larger lattice constant of the order of 10 nm, which can be tuned by the

misalignment angle θ. Thus, the required magnetic field for sizable flux values per unit cell

shrinks down to several Tesla, which can be reached easily in the lab. Following the same

line of thought, two different rectangular lattices could be used to realize the Hofstadter

model on a rectangular lattice. Edge states could than be detected by performing tunnel-

ing probe measurements at the edges with a bias voltage tuned to one of the Hofstader

energy gaps.

Another promising experimental platform for the realization of the dimerized Hofstadter

model is an ultracold-atom setup [54–56]. In such a system, a neutral bosonic or fermionic

quantum gas is cooled down close to abolsute zero and then loaded into an optical trap.

In addition, the gas is subjected to two overlapping counterpropagating laser beams. In

this way, the laser beams form an optical standing wave and the particles of the quantum

gas condensate to the minima of the resulting periodic potential: a 1D optical lattice is

formed. By adding more pairs of mutually orthogonal laser beams, also two-dimensional

and three-dimensional lattices can be realized. Furthermore, additional lasers can be used

to induce tunneling of atoms between lattice sites with an arbitrary phase. Effectively,

this realizes a system of quantum particles hopping in an optical lattice. In particular, by

tuning the lasers to implement nonzero phases for the hopping processes of the particles

also effective magnetic fluxes, as required for the Hofstadter model, can be simulated.

Besides, experimentalists have come up with even more sophisticated setups to realize

effective interactions, artificial gauge fields, and artificial spin-orbit coupling in ultra-cold

atom setups [54, 55, 57, 58]. In this way, systems of ultracold atoms in optical lattices

have become a very rich playground for the realization of various theoretical models. In

particular, these systems feature an exceptional tunability which brings a much wider

range of accessible model parameters into reach.

Also the Hofstadter model and its topological features have been studied in such a

setup [59–61]. Starting from there, a dimerization of the hopping parameters can be easily

implemented by using additional lasers. The topological edge states studied in this chapter

could then be detected with optical diagnostics or with time-of-flight measurements [55].

For the former, the atomic cloud is illuminated with a laser beam and images of the shadow

cast by the atoms are used to infer the spatial distribution of the atomic cloud. For the

latter, the confining trap potential and the additional lasers are switched off abruptly, such

that the atomic cloud can expand freely subject to its initial momentum distribution. In

this way, the edge states can be identified directly.
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We have seen that the Hofstadter model can also be viewed as a collection of one-

dimensional AAH models. Therefore, a promising route towards the experimental detec-

tion of the pinned degenerate topological states would be the realization of the inversion-

symmetric AAH models. This could be done in an ultracold-atom setup with a 1D op-

tical lattice, similar to the Hofstadter experiment described above. Alternatively, AAH

models can be realized in another, highly tunable experimental platform: photonic crys-

tals [62,63]. For that, a periodic lattice of coupled single-mode waveguides can be prepared

on a 2D substrate, where each waveguide corresponds to a lattice site of the finite 1D AAH

model [43, 63]. The small spacing between waveguides allows a light wave, propagating

through one of the guides, to tunnel between neighboring waveguides thereby simulating

a hopping process. Furthermore, the width of a waveguide determines the propagation

properties of a light wave, which is used to simulate and vary the on-site potentials for

different lattice sites. In this way, all the model parameters of Eq. (2.17) could be imple-

mented and adjusted. By injecting light into one of the outermost (boundary) waveguides

and by measuring the outgoing intensity distribution, the localized topological end states

could then be detected directly.
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3 One-dimensional Dirac electrons on

the surface of weak topological

insulators

3.1 Introduction

3.1.1 The quantum spin-Hall effect

The discovery of the QHE, with its potential applications for new electronic devices and

its importance for quantum metrology9, spawned the search for other related physical

effects [3, 4, 8]. One of these effects, namely the quantum spin-Hall effect (QSHE), is at

the basis of the family of time-reversal invariant (TRI) topological insulators (TIs), which

are the focus of this chapter.

Before introducing the QSHE, let us recall the main features of the “charge” QHE. The

hallmark of the QHE is the presence of a quantized current transverse to an electric field,

i.e., jx = σHEy. Furthermore, the Hall conductance σH is directly related to the topology

of the occupied electronic states via the Chern number10 n. A consequence of this nontrivial

topology is the existence of chiral edge states, which give rise to dissipationless charge

transport. In conventional semiconducting materials, the QHE typically requires a strong

external magnetic field11 that limits its potential for technical applications. However, as

9Quantum metrology is the study of quantum techniques and quantum effects that allow to perform
measurements of physical parameters with much higher precision as compared to purely classical
approaches [64]. In particular, the precise quantization of the quantum-Hall resistance in multiples of
e2/h to almost one part in a billion has led to a definition of a new practical standard for electrical
resistance [65, 66]. Furthermore, the QHE can be used to determine the fundamental fine structure
constant with an extremely high precision [1].

10From now on, we are going to denote the Chern number by n instead of ν. This is to avoid confusion
with the Z2 invariants introduced in this chapter, which are typically denoted by ν in the literature.

11We note again that graphene represents an important exception. In graphene, the QHE has been
observed at magnetic fields far below 1 T, which can be reached with permanent magnets at low
temperatures [20].
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Figure 3.1: Illustration of the helical edge states in the QSHE.

we have mentioned in the previous chapter, it is also possible to realize the QHE in the

absence of an external magnetic field, an effect which is called the quantum anomalous

Hall effect (QAHE). Note that such systems still break time-reversal symmetry due to

nonvanishing local magnetic fluxes.

It can be shown that the Chern number n of an isolated band reverses its sign under the

operation of time reversal Θ, i.e., Θn = −n [67]. For insulating systems with time-reversal

symmetry, the Chern number must therefore be zero. Hence, materials with nonzero net

Chern number, such as QAHE systems, necessarily break time-reversal symmetry.

The theoretical prediction [68–71] and subsequent experimental discovery [72] of the

quantum spin-Hall effect showed that quantized topological features are not only restricted

to magnetic systems with broken time-reversal symmetry. In the QSHE, a pair of spin-

polarized edge states counterpropagate at each edge of a 2D sample. In this way, the

direction of propagation is locked to the spin of the edge states, which is why they are

usually referred to as helical12 edge states [8] (see Fig. 3.1). Similar to the “charge”

QHE, the edge states give rise to a quantized current transverse to an external electric

field. However, there is an important qualitative difference: the helical nature of the edge

states leads to a quantized spin accumulation at the two edges transverse to the current

direction13. This property makes the QSHE particularly interesting for novel devices in

spintronics, a branch of electronics that seeks to exploit the electron’s spin degree of

freedom for data storage and transfer. Besides, there is no charge accumulation at the

edges, as opposed to the QHE.

To understand the features of the QSHE, let us use the following thought experiment:

consider a insulating system of spin-up electrons in two dimensions which realizes a QAHE

with net Chern number n↑. Next, we add a time-reversed copy of the same system. We

already know that time-reversal flips the spin and reverses the Chern number. Hence,

12The helicity of a state is the normalized projection of its spin onto its momentum.
13Note that the spin accumulation is only quantized if the system has spin-rotation symmetry about one

spin axis, for instance Sz. The presence of helical edge states, however, is a generic topological feature
of these systems as we will see in the next section.
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our copy satisfies n↓ = −n↑. In this way, the two subsystems correspond to two different

spin species subject to opposite “internal” magnetic fields. The two systems individually

break time-reversal symmetry but taken together the overall system is invariant under

time reversal. Its net Chern number n = n↑ + n↓ = 0 vanishes. Moreover, the subsystems

give rise to chiral edge states with opposite chirality, i.e., the two spin channels form a

pair of helical edge states. Hence, we have constructed a system realizing the QSHE. It is

characterized by the so-called spin Chern number [3, 70,73],

nS = n↑ − n↓, (3.1)

which is a number in 2Z, i.e., it only assumes even integer values. The corresponding

spin-Hall conductivity is then given by σS = nS e
2/h.

From the construction above, we can easily explain the observed features of the QSHE:

the transverse conductance assumes even multiples of e2/h because both edges now con-

tribute to the current. The charge accumulation at the edges vanishes because both spin

channels contribute quantum-Hall charge accumulations of the same magnitude but op-

posite sign. However, since the spin of the two channels is different, spin is accumulated

at the two edges.

A few remarks are in order. We have seen that in the QSHE both spin species effectively

see opposite magnetic fields leading to opposite Chern numbers. Without breaking time-

reversal symmetry, such a situation can only be achieved in systems with strong spin-

orbit coupling (SOC), where the SOC acts like a momentum-dependent orbital magnetic

field [69]. Therefore, strong SOC is a necessity for the QSHE. This is the case, for instance,

in hole-doped semiconductors such as Si, Ge, or GaAs [68]. Indeed, the QSHE was first

experimentally observed in HgTe/CdTe semiconductor quantum wells [72].

So far, we have assumed the system to have spin-rotation symmetry about one spin

axis, for instance Sz. In fact, if we relax this assumption, the spin Chern number nS

is no longer well-defined. Does this lead to a break-down of the QSHE? Not quite! It

turns out that a QSHE system still has a robust quantized transverse charge conductivity

even if spin-rotation symmetry is completely broken. Also, it still gives rise to a spin

transfer between the edges which is, however, no longer quantized [70]. In fact, as we will

see in the next section, the QSHE with spin-rotation symmetry is a special case of the

so-called quantum spin-Hall insulator [74]. These systems are protected solely by time-

reversal symmetry and characterized by a Z2 topological invariant. For the QSHE with
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3 1D Dirac electrons on the surface of weak TIs

spin-rotation symmetry, this invariant is simply given by [3]

ν = nS mod 4. (3.2)

If spin-rotation symmetry is broken (but time-reversal symmetry is not), this invariant

retains its value even though n↑ and n↓ are no longer well-defined. Moreover, the 2Z

classification reduces to a Z2 classification because the two spin channels can now mix.

In this way, pairs of helical edge channels can always be gapped out such that only the

evenness or oddness of the number of helical states is a protected topological feature.

3.1.2 The quantum spin-Hall insulator in two dimensions

The quantum spin-Hall insulator (QSHI) is a 2D topological system of spin-1/2 fermions

protected by time-reversal symmetry. For a system of fermions with spin 1/2, the time-

reversal operator Θ typically has the form [75]

Θ = eiπ
1
2
sy K = isyK (3.3)

where sy is a Pauli matrix acting on spin, and K is complex conjugation. We readily see

that Θ2 = −1. Hence, the QSHI is in the symplectic Altland-Zirnbauer symmetry class

AII [34]. In two dimensions, this class allows for a Z2 topological invariant (see Sec. 2.1.2)

with the QSHI being associated with the nontrivial phase. There are several equivalent

formulations of this invariant [16, 74, 75]. In the following, we are going to introduce the

formulation developed by Fu and Kane [75].

Fu-Kane invariant for Z2 insulators in two dimensions

When spin-rotation symmetry is completely broken, it is no longer possible to decompose

the system into two separate spin channels. Nonetheless, a time-reversal invariant system

with Θ2 = −1 must obey Kramers’ theorem which tells us that every state of the system

comes with a time-reversed partner of the same energy. For a lattice-periodic system this

means that for every Bloch state with momentum k there must be a degenerate state at

momentum −k. Thus, a time-reversal invariant system with Θ2 = −1 has an even number

of energy bands that are always decomposable into two time-reversed channels. This is at

the basis of the Fu-Kane invariant.

Let us view the 2D BZ of a time-reversal invariant system as a collection of 1D slices.

Furthermore, let two of the slices go through the time-reversal invariant points (0, 0),
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Figure 3.2: (a) BZ of a 2D system with time-reversal symmetry. Time-reversal in-
variant lines and momenta are indicated by black lines and red dots,
respectively. Dashed lines and dots are connected to their solid counter-
parts by a reciprocal lattice vector G. (b) Schematic band structure of a
1D system with time-reversal symmetry. The occupied bands decompose
into two time-reversed channels I (blue bands) and II (red bands) which
form Kramers doublets at the time-reversal invariant momenta k = 0 and
π.

(π, 0), (0, π), and (π, π) [see Fig. 3.2(a)], which satisfy −k = k+G, where G is a reciprocal

lattice vector14. These two slices represent time-reversal invariant 1D systems. Let us have

a closer look into those. Due to Kramers’ theorem, the energy bands must come in pairs

which are degenerate at the time-reversal invariant 1D momenta k = 0 and k = π [see

Fig. 3.2(b)]. We can then divide the 2N occupied bands into N pairs subject to

|uI
−k,α〉 = −eiχα(k) Θ|uII

k,α〉, (3.4)

where the labels I and II refer to the two time-reversed channels, α = 1, . . . , N labels

the pairs, and χα(k) are smooth functions15. This decomposition allows us to analyze

the two time-reversed channels separately. In particular, let us have a look at the charge

polarization of each channel, the so-called partial polarization,

P s =
1

2π

∫ π

−π
dk As(k), (3.5)

14For clarity, all lattice constants have been set to unity.
15We have assumed that there are no other band crossings except those required by Kramers’ theorem.

This is not a restriction, since any time-reversal invariant system with 2N fully occupied bands can be
continuously connected to this case. Furthermore, we will see that the Fu-Kane invariant is not affected
by additional degeneracies within the occupied bands as long as the bands are defined continuously.
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3 1D Dirac electrons on the surface of weak TIs

which is expressed in terms of the Berry potential

As(k) = i

N∑
α=1

〈usk,α|∂k|usk,α〉, (3.6)

with s = I, II. It is important to note that the polarizations are not gauge-invariant.

More specifically, the polarizations can change by an integer multiple of a lattice constant

under U(2N) gauge transformations of the states |uk,n〉. To proceed further, Fu and Kane

introduced the time-reversal polarization, which is defined as the difference

Pθ = P I − P II . (3.7)

They found that Pθ is an integer which is only defined modulo 2. Moreover, using Eqs. (3.4)

and (3.5), they found the relation

(−1)Pθ =

√
det[w(0)]

Pf[w(0)]

√
det[w(π)]

Pf[w(π)]
, (3.8)

where Pf(A) denotes the Pfaffian of an antisymmetric matrix A, a quantity whose square

is equal to the determinant of the matrix16. The matrix w(k) is a unitary 2N×2N matrix,

defined as

wmn(k) = 〈u−k,m|Θ|ukn〉, (3.9)

which relates time-reversed wave functions. In particular, it is antisymmetric at the time-

reversal invariant momenta k = 0 and k = π.

Eq. (3.8) already looks very promising. However, Pθ alone is not a gauge-invariant

quantity because its value can be changed by an integer under a gauge transformation of

the states |uIkα〉 in one of the time-reversed channels. This issue is resolved by going back to

the original two-dimensional system. Let us look again at the collection of one-dimensional

BZ slices, which we parameterize by q, and let us keep track of the evolution of Pθ(q) from

q = 0 to π. At the end points of this path, the corresponding 1D systems are time-reversal

invariant. Thus, Pθ(0) and Pθ(π) are integers. In between, 1D time-reversal symmetry

is broken and Pθ(q) can assume any value. If we choose a continuous gauge throughout

the 2D BZ, also Pθ(q) changes continuously from 0 to π. The change of Pθ(q), namely

∆ = Pθ(π) − Pθ(0), is gauge-invariant modulo 2 and therefore defines a Z2 topological

invariant ν = ∆ mod 2. This is the Fu-Kane invariant characterizing a 2D insulator with

16Note that Eq. (3.8) is only valid in a gauge in which w(k) is a continuous function.
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Figure 3.3: Schematic edge state spectra between the time-reversal invariant momenta
Λa and Λb of the edge BZ. The blue regions represent the two bulk con-
tinua which are separated by an energy gap. Possible allowed edge state
dispersions are shown in red. Kramers doublets at the time-reversal in-
variant momenta are highlighted by red dots. Note that for the topologi-
cally nontrivial phase in (b) the edge band traverses the bulk energy gap
whereas this is not the case for the trivial phase in (a).

time-reversal symmetry. Particularly, the QSHI is characterized by the nontrivial value

ν = 1. Using Eq. (3.8), it can be written more elegantly as

(−1)ν =
4∏
i=1

√
det[w(Γi)]

Pf[w(Γi)]
, (3.10)

where Γi are the four time-reversal invariant points (0, 0), (π, 0), (0, π), and (π, π). Re-

member that this formula is only valid if the |ukn〉 are chosen to be continuous throughout

the entire BZ. This is always possible for a system with time-reversal symmetry since its

Chern number must be zero, as we have seen in the previous section. If the system has

also inversion symmetry, Eq. (3.10) can be simplified and expressed in terms of the parities

ξ2m(Γi) of the N occupied Kramers pairs17 at the time-reversal invariant points [40]

(−1)ν =
4∏
i=1

N∏
m=1

ξ2m(Γi). (3.11)

Moreover, Fu and Kane established a connection between the value of the Z2 invariant

and the spectrum of edge states for the considered time-reversal invariant system [40]. The

edge BZ of a time-reversal invariant system has two inequivalent time-reversal invariant

17Note that two Kramers-degenerate states have the same parity.
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Figure 3.4: (a) Graphene honeycomb lattice: the unit cell (beige) is spanned by the
two primitive lattice vectors a1 and a2, and consists of two lattice sites
A (blue sites) and B (green sites). (b) Bulk band structure of graphene
in the hexagonal BZ: the two bulk bands touch at momenta K and K′

around which the dispersion is given by a 2D Dirac cone.

momenta Λa and Λb. Any edge state at these momenta must be part of a degenerate

Kramers doublet. In between Λa and Λb, the doublet degeneracy is lifted since the time-

reversed partner is at the opposite momentum in the edge BZ. It is easy to imagine that

there are numerous ways to connect the Kramers doublets to each other and/or with the

bulk continuum. However, there are only two qualitatively distinct spectra of edge states,

which are illustrated in Fig. 3.3. In particular, if we place the Fermi level inside the bulk

energy gap, there are either an odd or an even number of edge states crossing the Fermi

level between Λa and Λb. An even number of crossings can always be removed leading to

an insulating edge. This corresponds to a trivial insulator with ν = 0. On the other hand,

if there is an odd number of crossings, all crossings can be gapped except one. Therefore,

the existence of at least one edge state in half of the edge BZ is a topologically protected

feature. Obviously, this case corresponds to the QSHI phase with ν = 1. Note that

with each edge state at the Fermi level between Λa and Λb there is another time-reversed

Kramers partner in the other half of the edge BZ. Hence, ν distinguishes between an even

and an odd number of edge Kramers pairs at the Fermi level.

Kane-Mele model for quantum spin-Hall insulators

In the previous section, we discussed how two construct a QSHI model by taking two

time-reversed copies of a quantum anomalous Hall insulator. We also mentioned that, in

realistic systems, the requirements on the internal magnetic fluxes seen by the two spin

channels can only be met by strong SOC. Kane and Mele predicted that these ingredients

are naturally provided in graphene [76].
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Graphene is a single layer of graphite in which carbon atoms are arranged on a 2D

honeycomb lattice with a two-site unit cell [13] (sublattices A and B) as is illustrated in

Fig. 3.4(a). If SOC is neglected, the system can effectively be described by a two-band

nearest-neighbor tight-binding model for the π electrons. The two bulk energy bands only

touch at two isolated points, namely at K and K ′, in the hexagonal BZ rendering graphene

a zero-gap semiconducting material [see Fig. 3.4(b)]. Moreover, the low-energy theory of

graphene around the two band touching points is given by a relativistic 2D Dirac equation.

Kane and Mele found that the only symmetry-allowed SOC terms in graphene open a

small bulk energy gap which is topologically nontrivial. The SOC in graphene preserves

spin-rotation symmetry around the z axis. Thus, Sz is a good quantum number and the

system decomposes into two independent spin channels. Remarkably, each spin channel

realizes a QAHE on its own with nontrivial but opposite Chern numbers n↑,↓ = ±1 [76].

Hence, graphene with SOC is a QSHI with ν = 1. Kane and Mele also considered a spin-

symmetry breaking Rashba term, which can arise due to a perpendicular electric field or

interaction with a substrate. In this case, n↑,↓ are no longer well defined but ν retains its

nontrivial value as long as the Rashba term is sufficiently small.

The full Kane-Mele model reads [74,76]

HKM = t
∑
〈i,j〉,σ

c†iσcjσ + iλSO

∑
〈〈i,j〉〉,σσ′

νij c
†
iσs

z
σσ′cjσ′

+ iλR

∑
〈i,j〉,σσ′

c†iσ(s× d̂ij)
z
σσ′cjσ′ + λν

∑
iσ

ξi c
†
iσciσ. (3.12)

The first term describes nearest-neighbor hopping. The second term is Sz-preserving

spin-dependent second-neighbor hopping with νij = (2/
√

3)(d̂1× d̂2)z = ±1, where d̂1 and

d̂2 are unit vectors along the two bonds the electron traverses while going from site j to

i. d̂ij is a unit vector pointing from lattice site j to i. λR parameterizes the Sz-breaking

Rashba term, which also breaks z → −z mirror symmetry. Finally, the model also takes

into account a staggered sublattice potential parameterized by λν which breaks inversion

symmetry in the plane. Note that the si with i = x, y, z are Pauli matrices associated

with the spin degree of freedom of the electrons.

Unfortunately, it turned out that the SOC in graphene is too small to create a sizable

gap18. Hence, the predicted QSHE in pristine graphene has never been observed. Nonethe-

less, recent experimental progress in the preparation of other graphene-like materials has

brought the Kane-Mele model back into focus. In particular, single layers of materials like

18First-principles calculations compute a spin-orbit gap of the order of 10−3 meV [77].
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silicon, germanium or tin are promising candidates to realize the QSHE [78–82]. They

are in the same group of the periodic table as carbon and are therefore expected to have

similar structural properties. Furthermore, since the SOC strength scales like Z4, where Z

is the atomic number, their SOC-induced energy gap is much larger, such that their QSHE

could potentially be observed. In particular, stanene, a monolayer of tin, has a SOC gap

of approximately 0.3 eV, which is, in principle, sufficiently large for practical applications

at room temperature [83].

3.1.3 Topological insulators in three dimensions

The concept of the QSHI in 2D can be extended also to three dimensions (3D). This is

already apparent from the Altland-Zirnbauer table (see Sec. 2.1.2), which tells us that 3D

insulators in symmetry class AII are subject to a Z2 classification. However, as we will see

in this section, the family of Z2 insulators in three dimensions is much more diverse than

their relatives in two dimension.

Topological invariants for three-dimensional insulators with time-reversal symmetry

The BZ of a 3D system has eight time-reversal invariant points, as compared to four in

two dimensions. These points can be expressed in terms of primitive reciprocal lattice

vectors bi as [84]

Γi=(n1n2n3) =
1

2
(n1b1 + n2b2 + n3b3), (3.13)

where nj = 0, 1. We can visualize these points as the vertices of a cube as shown

in Fig. 3.5(a). Moreover, by continuously transforming the reciprocal lattice vectors

(b1,b2,b3) into the orthonormal basis (e1, e2, e3) we can always map any 3D BZ to a

unit cube without changing the topology of the system. To simplify the discussion, we

therefore present the following arguments based on a cubic BZ only [84].

We readily see that any plane going through any four of the time-reversal invariant points

represents a time-reversal invariant 2D system. Thus, each of these planes is characterized

by a Z2 invariant ν given by

(−1)ν =
4∏
i=1

δi, with δi =

√
det[w(Γi)]

Pf[w(Γi)]
. (3.14)

These invariants characterize the topology of the 3D system because they give restrictions

on the number of surface Kramers pairs in the surface-BZ projections of these planes.
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Obviously, there are plenty of possibilities to connect four time-reversal invariant points

using planes. However, their associated Z2 invariants are not independent [67,84,85]. One

way of choosing an independent set of planes is to first consider the six faces of the cube

shown in Fig. 3.5(a). Since the system is gapped throughout the 3D BZ, a homotopy

argument can be used to show that all opposing faces have either the same or different

invariants19 [67, 85]. Hence, there are four independent Z2 invariants that characterize a

time-reversal invariant insulator in three dimensions. The common choice of invariants

goes back to Fu, Kane and Mele [84]. They are typically denoted as ν0; (ν1ν2ν3) and

defined as follows

(−1)ν0 =
∏

nj=0,1

δn1n2n3 , (3.15)

(−1)νi=1,2,3 =
∏

nj 6=i=0,1
ni=1

δn1n2n3 . (3.16)

The so-called weak invariants [40,84] ν1, ν2, and ν3 correspond to the two-dimensional Z2

invariants of the faces with kx = 1, ky = 1, and kz = 1, respectively. Apparently, their

values depend on the choice of the primitive reciprocal lattice vectors. Nevertheless, the

corresponding phase can be uniquely identified with a modulo 2 reciprocal-lattice vector

Gν = ν1b1 + ν2b2 + ν3b3. (3.17)

The so-called strong invariant [40, 84] ν0 is the product of the δi at all time-reversal in-

variant points Γi. Thus, ν0 does not depend on the choice of the reciprocal lattice vectors.

Furthermore, we readily see from its definition that the value of ν0 is equal to the difference

of Z2 invariants of any pair of opposing time-reversal invariant planes.

Strong and weak topological insulators

In total, there are 16 topologically distinct phases. The phases with ν0 = 1 are called

strong topological insulators [84], whereas phases with ν0 = 0 but νi 6= 0 for at least one

i ∈ {1, 2, 3} are called weak topological insulators [84]. The latter are dubbed “weak” be-

cause the weak invariants (ν1ν2ν3) are not robust against translational-symmetry breaking

perturbations. In particular, a weak topological insulator (TI) can be turned into a trivial

insulator in this way. This, on the other hand, is not possible for a strong TI since ν0 is

19This is no longer the case if there are gapless points in the BZ as we will discuss in Chapter 5.
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Figure 3.5: Panels (a) and (b) show the cube formed by the eight time-reversal in-
variant momenta, indicated by black dots, in a 3D BZ. Exemplary values
(+1 or −1) of δi at those points are shown for a weak topological insu-
lator in (a), and for a strong topological insulator in (b). Also shown
are the corresponding surface BZs for systems with (010) terminations.
Projections of nontrivial time-reversal invariant planes are highlighted in
green. Exemplary surface Fermi surfaces, compatible with the topologi-
cal invariants, are shown in red. Typically, the Fermi surface consists of
Fermi pockets associated with a surface Dirac cone. A surface Dirac cone
dispersion is pictorially shown in panel (c). The green arrows indicate the
spin direction which is locked to the momentum of the states.

robust against any time-reversal preserving perturbation that does not close the energy

gap.

The values of the Z2 invariants have important implications on the structure of surface

states [40, 84]. The surface BZ of a time-reversal invariant system in three dimensions

has four inequivalent time-reversal invariant points. Due to Kramers theorem, any generic

band crossing of surface states at these points is a 2D Dirac point with a Dirac-cone

dispersion [see Fig. 3.5(c)]. Remarkably, in the vicinity of the Dirac point, the spin of

the electronic surface states is locked to their momentum, which is commonly referred to

as spin-momentum locking [3, 86]. The Z2 invariants determine how the Dirac points

at different time-reversal invariant points are connected to each other or to the bulk

continuum. More specifically, they determine the number (even or odd) of surface Kramers

pairs in the surface projections of the corresponding time-reversal invariant planes.

For strong TIs this leads to the generic presence of a single surface Dirac cone around one
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of the time-reversal invariant points of the surface BZ [40,84] which is shown in Fig. 3.5(b).

Most importantly, a topologically protected surface Dirac cone has to be present for any

termination of the system. This is a remarkable feature because Dirac fermions usually

come in pairs according to the fermion doubling theorem [87, 88]. In strong TIs, this

apparent contradiction is resolved by the presence of the opposite surface. Strong TIs

have been the subject of numerous experimental and theoretical studies due to their exotic

properties, such as the half-integer QHE on their surface [22] or the Josephson-Witten

effect [89], and due to the growing number of materials, such as Bi2Te3 or Bi2Se3 [90–93].

Weak TIs are qualitatively different from their strong counterparts. First of all, the

arrangement of their Z2 invariants leads to the generic presence of two surface Dirac

cones [40, 84], which are centered around different time-reversal invariant points in the

surface BZ [see Fig. 3.5(a)]. However, this is not true for all terminations of the system.

There are certain surfaces, the so-called “dark” surfaces, which do not exhibit protected

surface states. These are surfaces whose Miller indices are identical to the vector Gν

spanned by the weak indices modulo 2. This can be understood by realizing that a weak

TI is equivalent to a multilayer of 2D QSHIs stacked in the direction of Gν . On the

side surfaces of a stacked QSHI system, the collection of 1D edge states will form the 2D

surface Dirac states. They will occur around time-reversal invariant momenta which can

be connected by Gν/2. The top and bottom surfaces, however, consist of QSHI layers

which are gapped by definition. Hence, the top and bottom surfaces do not accommodate

nontrivial surface states and are in this sense “dark”.

In contrast to strong TIs, surface states of weak TIs are not robust in the presence

of generic time-reversal preserving disorder. The reason is that translational-symmetry

breaking perturbations can couple Dirac states at different time-reversal invariant mo-

menta leading to a gap opening [94]. However, it has been shown that the presence of

Dirac states is robust if translational symmetry is preserved on average [95,96].

Although the stacking of 2D QSHIs to build 3D weak topological insulators is a promis-

ing recipe, the preparation of weak TIs has so far been challenging. Nonetheless, the

material Bi14Rh3I9 has recently been verified to realize a weak TI [97, 98] and also other

candidate materials have been put forward [93,99].

3.2 Dirac line degeneracies in topological insulators

In the previous section, we have seen that the hallmark of 3D topological insulators is

the presence of topologically protected two-dimensional Dirac cones on their surfaces.
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However, an experimental work by Gibson et al. [100] suggests that 3D TIs can also

exhibit Dirac-like line degeneracies on their surfaces corresponding to effectively 1D Dirac

electrons. By angle-resolved photoemission spectroscopy (ARPES) they established the

presence of highly anisotropic surface states on the (113) surface of Ru2Sn3, which show

an almost line-like dispersion along certain high-symmetry directions.

Dirac line degeneracies have been studied in the context of topological semimetals, where

the degeneracies appear in the bulk band structure of the materials [101–103]. However,

1D Dirac states have not been investigated in the context of surface states of 3D topological

insulators. The first question that arises is whether and under what circumstances TIs

can exhibit Dirac-like line degeneracies on their surface, and, secondly, whether they are

protected by any kind of symmetry.

As we will see in the following, weak TIs are the most promising candidates to realize

such Dirac line degeneracies on their surface. To see this, let us use the following thought

experiment in which we will build a weak TI starting from a QSHI.

First of all, let us consider a stack of arbitrary but identical 2D TIs where the stacking

direction is, without loss of generality, the z direction. Furthermore, let the system be finite

in a direction perpendicular to the stacking direction, e.g., the x direction. Generically,

each of the 2D TI ribbons will have topologically protected edge states inside the bulk

energy gap with an edge Kramers doublet at a TRI point [74,75]. Let us first inspect the

case where the layers are completely decoupled and the band structure of the system does

not disperse in the kz direction. Thus, the Kramers doublet of the 1D BZ of the layers

become perfectly flat line degeneracies, more precisely Dirac lines, in the surface BZ of

the stack. With this stacking procedure we have constructed a weak TI with Z2 indices

(ν0; ν1ν2ν3) = (0; 001) [40,84], and with Dirac lines instead of Dirac points on its surfaces.

This is not surprising since the stack of 2D TIs is still an effectively 2D system. Generally,

one would expect the Dirac lines to break up and leave only Dirac points at TRI momenta

once an arbitrary time-reversal invariant interlayer coupling is introduced. This, in turn,

leads to a typical surface band dispersion of a weak TI with an even number of surface

Dirac cones [84].

In the following we will show that this is not necessarily the case and that the presence

of “in-plane time-reversal invariance” leads to topologically protected Dirac lines even in

the full 3D system with coupled layers. Moreover, we will show that this is not possible for

strong TIs making 1D Dirac states an exclusive feature of weak TIs. The work presented

in the following is based on Ref. [104].
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Figure 3.6: (a) Illustration of the in-plane time-reversal operator Θν in momentum
space: the operator flips the spin of an electron and reverses the mo-
mentum component parallel to the plane defined by the weak indices
ν = (ν1, ν2, ν3). As demonstrated, a weak TI with Θν symmetry repre-
sents a QSHI for any fixed kz. This gives rise to topologically protected
Dirac edge states associated with each layer. (b) Typical dispersion of a
2D Dirac electron on the surface of a TI. (c) Typical dispersion of a 1D
Dirac electron on the surface of a weak TI with Θν symmetry.

3.3 In-plane time-reversal invariance

We introduce in-plane time-reversal invariance as the 2D analogue of the conventional

time-reversal symmetry with respect to a specific plane Π [see Fig. 3.6(a)]. The cor-

responding antiunitary operator ΘΠ acts similarly to its 3D analogue except that the

momentum component perpendicular to the plane Π remains unchanged. Without loss of

generality, we choose the plane to be (001). Then, the in-plane time-reversal operator for

spin-1
2

particles reads

Θ(001) := i(1⊗ sy)K with kx, ky, kz → −kx,−ky, kz. (3.18)

Here, sy acts on the spin part of the system, where again, without loss of generality, we have

chosen Sz as the quantization axis of spin and the Pauli matrices as a spin representation.

The identity matrix 1 acts in the space spanned by additional degrees of freedom, such as

orbital or sublattice degrees of freedom. Note that Θ(001) has the same operator structure

as the conventional time-reversal operator Θ. Obviously, for a 2D system Θ(001) and Θ are

identical. When dealing with a weak TI with weak indices ν = (ν1, ν2, ν3), we denote the

in-plane time-reversal operator associated with the (ν1, ν2, ν3) plane by Θν .

Since both types of time-reversal operators appear to be very similar, one expects

the existence of an analogue of Kramers’ theorem for the in-plane time-reversal sym-

metric system. To establish this, recall that a time-reversal symmetric system satisfies
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3 1D Dirac electrons on the surface of weak TIs

ΘH(kx, ky, kz)Θ
−1 = H(−kx,−ky,−kz), i.e., the Bloch Hamiltonian commutes with Θ at

TRI points where (kx, ky, kz) ' (−kx,−ky,−kz). For particles with half-integer spin, this

implies Kramers’ theorem [3]. For an in-plane time-reversal symmetric system, we have

instead

Θ(001)H(kx, ky, kz)Θ
−1
(001) = H(−kx,−ky, kz). (3.19)

Hence, for particles with half-integer spin the energy spectrum must be at least two-fold de-

generate along in-plane time-reversal invariant lines satisfying (kx, ky, kz) = (−kx,−ky, kz).
This gives rise to Kramers lines along which Kramers-like degeneracies are guaranteed and

topologically protected by Θ(001) invariance. Furthermore, a Kramers line always connects

two Kramers points in the BZ because the condition above includes also the 8 TRI points.

By bulk-boundary correspondence, one generically finds topologically protected Dirac

lines on surfaces perpendicular to the stacking direction. The Dirac lines resemble the

dispersion of a 1D Dirac electron in a 2D space: along one direction, it shows the typical

linear Dirac dispersion whereas the dispersion is line-like in the perpendicular direction.

This is illustrated in Fig. 3.6(c). If Θν is broken without breaking conventional time-

reversal symmetry, only degeneracies at the Kramers points in the BZ are still topologically

protected. Therefore, each Dirac line splits and the associated 1D Dirac electron decays

into two 2D Dirac electrons.

It is precisely for this reason that topologically protected Dirac lines cannot exist in

strong TIs. Consider a strong TI with one Dirac point and without any in-plane time-

reversal symmetry. For a strong TI, it is always possible to reduce the number of Dirac

points to one by introducing suitable translational-symmetry breaking and surface poten-

tial terms. Now, choose an arbitrary plane (klm) with respect to which we are going to

establish the corresponding Θklm symmetry. We know that the single Dirac point of the

strong TI must be connected to the bulk continuum along any line that will later become a

Kramers line once in-plane time-reversal symmetry has been established. Otherwise, there

would have to be a second Dirac point at the opposite TRI momentum and the system

would not be a strong TI. In the process of establishing Θklm symmetry, the “arms” of the

Dirac point, therefore, pull down the bulk bands to which they are attached and thereby

close the bulk energy gap. Thus, the final system with in-plane time-reversal symmetry

cannot be an insulator but either becomes a semimetal or a metal. For this reason, the

presence of in-plane time-reversal symmetry, which is essential for the appearance of Dirac

lines, is not reconcilable with a strong TI. A demonstration of this feature will be shown

explicitly in Sec. 3.5.
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There is another appealing point of view which illustrates the connection between in-

plane time-reversal symmetry and Dirac lines in weak TIs. For this, consider a weak

TI with weak indices (001) such that the associated stacking direction is the z direction.

Furthermore, let us treat kz in the corresponding Hamiltonian H(kx, ky; kz) as a parameter.

If further in-plane time-reversal symmetry Θ(001) is present, we conclude that the system

realizes a 2D QSHI for any value of the parameter kz [see Fig. 3.6(a)]. This can be seen

as follows. First, this is clearly the case for kz = 0 and kz = π since the system obeys

conventional time-reversal symmetry and is topologically non-trivial. However, as we move

along kz the 2D systems always preserve time-reversal symmetry in the 2D sense due to

the presence of in-plane time-reversal symmetry in the full 3D system. Moreover, the

bulk gap does not close. Therefore, a topological phase transition does not occur and the

collection of 2D systems stay in the QSHI phase for all kz. This also implies that any such

2D QSHI will have topologically protected (spin-filtered) edge states that form Kramers

doublets at the TRI momenta of the 1D BZ. When we now move along kz, the Kramers

degeneracies remain intact, which implies the existence of Dirac lines along in-plane TRI

lines in the surface BZ of the weak TI.

Moreover, it is possible to associate a ”line” of topological invariants with an insulator

respecting in-plane time-reversal symmetry. Indeed, for each value of the momentum kz

we can define a 2D topological Z2 invariant ν(kz) [75] which does not change as we move

along kz. Hence, the line of topological invariants can only assume two constant values:

ν(kz) = 0 for a trivial insulator, and ν(kz) = 1 for an in-plane time-reversal invariant weak

TI hosting 1D Dirac electrons on its surfaces.

3.4 Stacked Kane-Mele model

Having established the general consequences of in-plane time reversal invariance, we are

now going to apply our results to stacked Kane-Mele systems. We have introduced the

Kane-Mele model [74, 76] in Sec. 3.1.2. It is known to be a realization of a 2D TI in

certain parameter ranges. Based on this 2D model, we can construct a 3D system by

stacking the Kane-Mele layers along the z direction. This is done in such a way that

corresponding lattice points of the same sublattice but from different layers lie on top of

each other [AA stacking, see Fig. 3.7(a)]. In order to couple the layers, we introduce a

nearest-neighbor interlayer hopping term and an interlayer SOC term. This leads us to
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3 1D Dirac electrons on the surface of weak TIs

the model Hamiltonian

H =
∑
l

HKM,l + τ
∑
〈l,l′〉

∑
iσ

c†ilσcil′σ + iλSO,⊥
∑
〈l,l′〉

∑
iσσ′

µll′ c
†
ilσs

z
σσ′cil′σ′ , (3.20)

where l indexes the layers, and µll′ = ±1 for l ≷ l′. Note that after a Fourier transformation

the corresponding Bloch Hamiltonian H(k) is a 4 × 4 matrix which can be expanded in

terms of Dirac matrices and their commutators similar to Ref. [74]. Furthermore, these

matrices can be written as Kronecker products of Pauli matrices τ i in sublattice space

and Pauli matrices si in spin space. In this way, the interlayer terms of the Hamiltonian

become

Hih(k) = 2τ cos kz (1⊗ 1), (3.21)

HSO,⊥(k) = −2λSO,⊥ sin kz (1⊗ sz), (3.22)

where the interlayer distance has been set to unity. The intralayer terms of the Kane-Mele

Bloch Hamiltonian are [74]

HKM(k) = t(1 + 2 cosx sin y) (τ z ⊗ 1) + 2t cosx sin y (τ y ⊗ 1)

+ λSO(2 sin 2x− 4 sinx cos y) (τ z ⊗ sz) + λR(1− cosx cos y) (τ y ⊗ sx)

+ λR cosx sin y (τx ⊗ sx)−
√

3λR sinx cos y (τ y ⊗ sy)

−
√

3λR sinx cos y (τx ⊗ sy) + λν (τ z ⊗ 1), (3.23)

where x = kxa/2 and y =
√

3kya/2, with a being the distance between A and B sites.

The parameters t, λSO, λR, and λν parameterize nearest-neighbor hopping, Sz-conserving

in-plane SOC, Sz-breaking Rashba SOC, and a staggered sublattice potential, respectively

[see also Eq. (3.12)]. The relevant in-plane time-reversal operator for this model is Θ(001) =

i(1⊗ sy)K with (kx, ky, kz)→ (−kx,−ky, kz).
In particular, we are going to study surface states for a slab of thickness W with (010)

surfaces, where W is the number of bulk unit cells per supercell. The surfaces cut out

zigzag-shaped edges from each Kane-Mele layer [see Fig. 3.7(a)]. In other words, we will

investigate a stack of infinitely many Kane-Mele layers with zigzag termination. The

corresponding Bloch Hamiltonian H(010)(kx, kz) of the slab is a 4W × 4W matrix whose

energies are obtained by exact diagonalization.

In Fig. 3.8, the band structure of the (010) Kane-Mele slab is shown along high-symmetry

lines of the surface BZ for different model parameters. For now, we ignore the sublattice
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Figure 3.7: (a) Illustration of the lattice for the stacked Kane-Mele model: honeycomb
layers are stacked in the z direction following an AA stacking pattern.
The shaded zigzag surface represents the (010) termination studied in
this chapter. (b) Bulk BZ and (010) surface BZ of the stacked Kane-Mele
model with high-symmetry points and notations as used in this chapter.

potential term in HKM. The effect of this term will be discussed at the end of this section.

In addition, Fig. 3.9 also shows the corresponding bulk energy bands along high symme-

try lines of the bulk BZ. The bulk BZ and the considered surface BZ are illustrated in

Fig. 3.7(b).

In Fig. 3.8(a), only in-plane hopping and in-plane SOC are nonzero. For the chosen

parameters the bulk spectrum exhibits an energy gap and we find surface states traversing

the bulk gap. The band structures along ΓMx and LxA are identical to that of the 2D

Kane-Mele model with zigzag edges and the same parameter values (see Ref. [105]). For

each surface, there is one spin-filtered surface band emerging from the bulk. The bands

meet at the TRI momenta Mx and Lx, respectively, where we find two-fold Kramers

degeneracies which are topologically protected by conventional time-reversal symmetry.

Along MxLx we find a two-fold line degeneracy of the topological bands: a Dirac line.

This is easily explained in the light of in-plane time-reversal symmetry. With the chosen

parameters, the 2D Kane-Mele model is a TI with a Dirac point at the Mx point of

the surface BZ. Therefore, a stack of these systems forms a weak TI with Z2 indices

(ν0; ν1ν2ν3) = (0; 001). Since Θ symmetry is preserved for the individual layers and the

layers are not coupled, in-plane time-reversal symmetry Θ(001) is automatically conserved

for the stacked system and, thus, we find topologically protected Dirac lines. The Dirac

line is flat because there is no dispersion along the kz direction.

For Figs. 3.8(b)–(d), different terms are added to the Hamiltonian of the system one

after the other. In Fig. 3.8(b), interlayer hopping has been included, which causes the band

structure to disperse in the kz direction. The bands, in particular the Dirac line, acquire a
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Figure 3.8: Energy bands for the stacked Kane-Mele model: bands of a (010) slab of
width W = 30 are shown along high symmetry lines of the surface BZ for
different model parameters (only nonzero parameters are listed in units
of t): (a) λSO = 0.1, (b) λSO = τ = 0.1, (c) λSO = τ = λR = 0.1, (d)
λSO = τ = λR = λSO,⊥ = 0.1. Surface states are highlighted in red. Note
the Dirac line in panels (a)–(c) which is split into two Dirac points in
panel (d) due to the breaking of Θ(001) symmetry.

cos kz dispersion since the interlayer hopping connects only adjacent layers. However, it is

easy to check that the term preserves Θ(001) symmetry. Therefore, the Dirac line remains

topologically protected and we have found a truly 3D system that exhibits a 1D Dirac

electron on its surface.

It is worth mentioning that the bands of the bulk spectrum [see Fig. 3.9(a)] are two-

fold degenerate in the entire BZ due to the simultaneous presence of conventional time-

reversal symmetry and inversion symmetry. For the surface bands of the slab, however,

those symmetries only imply that corresponding surface states from both surfaces are

degenerate. For line degeneracies on just one surface, in-plane time-reversal symmetry

is essential as can easily be seen by adding an inversion-symmetry breaking term, e.g.,

in-plane Rashba SOC [see Fig. 3.8(c)]. It preserves in-plane time-reversal symmetry but

breaks inversion symmetry as well as the remaining U(1) spin symmetry. Hence, in the

bulk spectrum the two-fold degeneracies are lifted except at the Kramers points and along

the Kramers lines [see Fig. 3.9(b)]. Also on the surface, the degeneracy of the Dirac line is
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Figure 3.9: Bulk energy bands for the stacked Kane-Mele model along high symmetry
lines of the BZ for different model parameters (only nonzero parameters
are listed in units of t): (a) with inversion symmetry: λSO = 0.1 (solid blue
lines), λSO = τ = 0.1 (dashed red lines); (b) broken inversion symmetry:
λSO = τ = λR = 0.1 (solid blue lines), λSO = τ = λR = λSO,⊥ = 0.1
(dashed red lines).

not lifted as shown in Fig. 3.8(c). Interlayer SOC, however, breaks in-plane time-reversal

symmetry while preserving its conventional counterpart. We observe that the effectively

1D Dirac electron decays into two 2D Dirac electrons, one at the Mx point and the other

at the Lx point of the surface BZ, with a small shift in energy [see Fig. 3.8(d)].

So far, we have ignored the staggered sublattice potential term in HKM. However, it

is well known that such a mass term can result in a transition from a topological to a

trivial insulator in the 2D Kane-Mele model [74, 76]. What happens to the Dirac line in

the stacked system if we increase the mass? First of all, it is easy to check that the mass

term preserves the relevant in-plane time-reversal symmetry. Therefore, the Dirac line

cannot be destroyed in the process. But how can the surface states then be trivial in the

trivial sector? The key is the closing of the bulk energy gap. Initially, the surface states

are connected to both the upper and the lower bulk continuum. However, the process of

closing and reopening the gap allows them to change this connectivity. In this way, the

Dirac line remains intact but the surface states do no longer traverse the bulk energy gap

and are, therefore, topologically trivial (see Fig. 3.10).

3.5 Cubic Liu-Qi-Zhang model

Let us now study in-plane time-reversal invariance in the context of another, more involved

model, namely the cubic Liu-Qi-Zhang Hamiltonian [106]. It is derived from a model

introduced by Zhang et al. [107], which has been successfully used to describe the Bi2Se3
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Figure 3.10: Energy bands for the stacked Kane-Mele model with Θ(001) invariance:
bands of a (010) slab of width W = 80 are shown along high symmetry
lines of the surface BZ for different values of the mass term (in units
of t): (a) λν = 0.2, (b) λν = 0.52, (c) λν = 0.8. The mass term does
not break in-plane time-reversal invariance with respect to the xy plane.
The only other nonzero model parameters are λSO = τ = 0.1t. Surface
states are highlighted in red (left surface) and orange (right surface).
Note the transition from a weak TI to a trivial insulator at λν = 0.52.

family of strong TIs. It is a 3D nearest-neighbor tight-binding model on a simple cubic

lattice with two orbital and two spin degrees of freedom per site. The corresponding

Hamiltonian in momentum representation is [106]

H =
∑
k

2∑
a,b=1

∑
σσ′

Haσ,bσ′(k) d†kaσdkbσ′ , (3.24)

with the 4× 4 Bloch Hamiltonian [106]

H(k) = [M0 + 6B − 2B
3∑
i=1

cos ki] Γ5 + A

3∑
i=1

Γi sin ki. (3.25)

Here, Γj denote the Dirac matrices Γ1 = sx⊗ σx, Γ2 = sy⊗ σx, Γ3 = sz ⊗ σx, Γ5 = 1⊗ σz,
as introduced in Ref. [106]. The Dirac matrices are Kronecker products of Pauli matrices

si in spin space and Pauli matrices σi in orbital space. The coordinate system used is

aligned with the edges of the cubic unit cell and we write k = (k1, k2, k3) ≡ (kx, ky, kz).

The model describes a trivial insulator for M0 > 0 and M0 < −12, a strong TI with Z2

indices (1; 000) or (1; 111) for 0 > M0 > −4B or −8B > M0 > −12B, and a weak TI

with Z2 indices (0; 111) for −4B > M0 > −8B [106], where in all cases we have A = B.

In particular, we are going to focus on the weak TI phase (0; 111). In this setup, we will

study the surface states of a slab of thickness W with (001) surfaces. The corresponding
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Figure 3.11: Energy bands for the cubic Liu-Qi-Zhang model: bands of a (001) slab
of width W = 40 are shown along high symmetry lines of the surface
BZ associated with the original cubic unit cell. The model parameters
are M0 = −5.0, A = B = 1.0 for panels (a), (c), and M0 = −2.0,
A = B = 1.0 for panels (b), (d). Shown are the band structures without
(upper panels) and with (lower panels) in-plane time-reversal symmetry
with respect to the yz plane. Surface states are highlighted in red.

Bloch Hamiltonian is a 4W × 4W matrix and the band structures of the system are, as

usual, obtained by exact diagonalization.

Let us first check the weak TI phase for in-plane time-reversal invariance with respect

to the yz plane. The corresponding operator is

Θ(100) = i(sy ⊗ 1)K with kx, ky, kz → kx,−ky,−kz. (3.26)

It is easily verified that this symmetry is broken due to the A sin kx Γ1 term in Eq. (3.25).

In Fig. 3.11, it is demonstrated how the band structure of the system changes when the

symmetry-breaking term is tuned to zero. We see that a two-fold degeneracy is established

for surface states along ΓX. However, the surface states are initially connected to the bulk

along this line. For this reason, the bulk bands are pulled down resulting in a closing of

the bulk energy gap. Hence, the system undergoes a semimetal transition as the in-plane

time-reversal symmetry with respect to the yz plane is established. The same behavior

can also be observed for the xz and the xy plane (not shown).
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Nevertheless, by analogy with the stacked Kane-Mele model, we expect this weak TI,

with Z2 invariants (0; 111), to develop Dirac lines without a semimetal transition if in-

plane time-reversal symmetry with respect to the (111) plane – the plane described by

the weak indices – is established. For convenience, we choose a different unit cell with

a different coordinate system attached to it. Since a weak TI with weak indices (111) is

topologically equivalent to a stack of 2D TIs stacked along the (111) direction, we are

going to construct the new unit cell in this light (see Fig. 3.12).

The Z axis of the new coordinate system points along the (111) direction of the original

coordinate system. We further align the c axis of the new unit cell with the new Z axis. Un-

der these conditions, the new unit cell is hexagonal with a basis comprising three elements.

The primitive lattice vectors of the new unit cell are a1 = a(1,−1, 0), a2 = a(0, 1,−1),

c = a(1, 1, 1) with respect to the original coordinate system, and a1 =
√

2a(1, 0, 0),

a2 =
√

2a(−1,
√

3, 0), c = a(0, 0, 1) with respect to the new rotated coordinates. The

elements of the basis lie in different planes, where corresponding adjacent points are rela-

tively shifted by a vector ∆ = 1/3 (−a1 + a2 + c), as indicated in Fig. 3.12.

After a Fourier transformation of Eq. (3.24) to position space, the model parameters

can be translated to the new coordinate system. Another Fourier transformation back to

momentum space then yields a new Bloch Hamiltonian H̃(k). The new Hamiltonian is a

12×12 matrix due to the additional sublayer degrees of freedom A,B,C (see Fig. 3.12). As

in Ref. [106], the spin and orbital parts of the Hamiltonian can be expanded in terms of Γ

matrices. In addition, the sublayer part can be expanded in 3×3 Gell-Mann matrices [108]

λi,

λ1 =

0 1 0

1 0 0

0 0 0

 , λ2 =

0 −i 0

i 0 0

0 0 0

 , λ3 =

1 0 0

0 −1 0

0 0 0

 , λ4 =

0 0 1

0 0 0

1 0 0

 , (3.27)

λ5 =

0 0 −i
0 0 0

i 0 0

 , λ6 =

0 0 0

0 0 1

0 1 0

 , λ7 =

0 0 0

0 0 −i
0 i 0

 , λ8 =
1√
3

1 0 0

0 1 0

0 0 −2

 , (3.28)

and the corresponding unit matrix I. The components of the crystal momentum k with

respect to the rotated coordinate system are denoted by kX , kY , kZ . With this, the Bloch

Hamiltonian becomes

H̃ = H̃0 ⊗ Γ5 +
A

2

3∑
i=1

H̃i ⊗ Γi, (3.29)
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Figure 3.12: Alternative description of the lattice in the cubic Liu-Qi-Zhang model:
highlighted are the three inequivalent layersA,B,C of the new hexagonal
unit cell. Within the layers, the hexagonal structure of the basal plane is
clearly visible. Also shown are the new primitive lattice vectors a1,a2, c
and the shift vector ∆.

with

H̃0 = (M0 + 6B)I −B(2 cos X̃ + cos Ỹ )(λ1 + λ6) +B sin Ỹ (λ2 + λ7)

− 2B cos X̃ cos Ỹ cos Z̃ λ4 −B cos Z̃ λ4 + 2B cos X̃ sin Ỹ cos Z̃ λ5

+B sin Z̃ λ5 − 2B cos X̃ sin Ỹ sin Z̃ λ4 + 2B cos X̃ cos Ỹ sin Z̃ λ5 (3.30)

H̃1 = sin X̃(λ1 + λ6)− cos X̃(λ2 + λ7) + cos(X̃ + Ỹ ) cos Z̃ λ5

+ sin(X̃ + Ỹ ) cos Z̃ λ4 − sin(X̃ + Ỹ ) sin Z̃ λ5

+ cos(X̃ + Ỹ ) sin Z̃ λ4 (3.31)

H̃2 = − sin X̃(λ1 + λ6)− cos X̃(λ2 + λ7) + cos(−X̃ + Ỹ ) cos Z̃ λ5

+ sin(−X̃ + Ỹ ) cos Z̃ λ4 − sin(−X̃ + Ỹ ) sin Z̃ λ5

+ cos(−X̃ + Ỹ ) sin Z̃ λ4 (3.32)

H̃3 = sin X̃(λ1 + λ6)− cos X̃(λ2 + λ7) + cos Z̃ λ5 + sin Z̃ λ4, (3.33)

where we have used the notations X̃ ≡ kXa/
√

2, Ỹ ≡ kY a
√

3/2, and Z̃ ≡ kZa
√

3. Here,

a denotes the lattice constant of the original cubic unit cell. The underlined terms break

in-plane time-reversal symmetry with respect to the XY plane.

In the following, everything is expressed in terms of the new coordinate system. The

weak indices are now (001). Therefore, we are particularly interested in the in-plane

time-reversal symmetry with respect to the (001) plane. The associated operator reads

Θ(001) = i(I ⊗ sy ⊗ 1)K with kX , kY , kZ → −kX ,−kY , kZ . (3.34)
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Figure 3.13: Energy bands for the cubic Liu-Qi-Zhang model: bands of a (010) slab
(with respect to the rotated coordinate system) of width W = 20 are
shown along high symmetry lines of the surface BZ associated with the
hexagonal unit cell. The model parameters are M0 = −4.5, A = B = 1.0
for panels (a), (c), and M0 = −2.0, A = B = 1.0 for panels (b), (d).
Shown are the band structures without (upper panels) and with (lower
panels) in-plane time-reversal symmetry with respect to the XY plane.
Relevant surface states are highlighted in red.

We will now turn to the analysis of surface states for a slab of thickness W with (010)

surfaces. First, let us have a look at the case where the considered in-plane time-reversal

symmetry Θ(001) is broken. In Fig. 3.13(a), the corresponding band structure is shown

along high symmetry lines of the new surface BZ. We find a Dirac point at A, another

one at Γ, and two line degeneracies along MxLx. However, these line degeneracies come

in pairs and could easily be gapped out. For this reason, they are trivial surface bands.

In Eq. (3.33), all terms of the Bloch Hamiltonian that break in-plane time-reversal

symmetry are underlined. We choose to tune all kZ dependent terms to zero except the

cos kZ λ5 ⊗ Γ3 term which preserves in-plane time-reversal symmetry. This is possible

without closing the bulk energy gap thereby ensuring that the system stays in the weak

TI phase. The result is shown in Fig. 3.13(c). We observe that the trivial line degeneracies

along MxLx are pushed out of the bulk energy gap. Along the other trivial direction AΓ, a

Dirac line forms which is now topologically protected by in-plane time-reversal symmetry.

This is in perfect agreement with the results obtained for the stacked Kane-Mele model.
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3.6 Possible experimental detection

Finally, in the Liu-Qi-Zhang model we can easily check how the surface states of a strong

TI phase are affected by establishing in-plane time-reversal symmetry. This is shown in

Figs. 3.11(b) and (d) for Θ(100) symmetry with respect to the original coordinate system,

and in Figs. 3.13(b) and (d) for Θ(001) symmetry with respect to the rotated coordinate

system. Without the symmetry, we find one Dirac point at the Γ point of the surface BZ

in both cases. However, once we establish the considered in-plane time-reversal symmetry,

the bulk energy gap closes. As already pointed out at the end of Sec. 3.3, this is due to

the connection of the surface states to the bulk continuum: it causes the bulk bands to

be pulled down along ΓX or AΓ. Therefore, it is not possible for strong TIs to realize

topologically protected Dirac lines.

3.6 Possible experimental detection

Experimentally, the surface Dirac lines connecting two time-reversal invariant points in a

weak TI with in-plane time-reversal symmetry can, in principle, be detected by ARPES. A

potential candidate material, which could be investigated in this regard, is Bi14Rh3I9 [97,

98]. It is a weak TI with Z2 invariants 0; (001). Its crystal structure is a periodic alternating

stacking of 2D bismuth-rhodium networks and insulating spacer layers. The former can

be viewed as a decorated honeycomb lattice, which is why the material could be described

by the stacked Kane-Mele model introduced in this chapter. Furthermore, the coupling

between the layers is very weak. Hence, Bi14Rh3I9 is a potential candidate material to

exhibit in-plane time-reversal invariance with respect to its honeycomb layers.

ARPES experiments require very clean and smooth surfaces. For Bi14Rh3I9, the 1D

surface Dirac states would appear on surfaces perpendicular to its layers. Such surfaces

are very challenging to prepare since the material naturally cleaves parallel to the layers

it is composed of. However, their preparation is not impossible [109] and further advances

in preparation processes could bring the direct detection of 1D surface Dirac states into

reach.
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4 Topological mirror insulators in one

dimension

4.1 Introduction

4.1.1 Topological crystalline insulators

In the previous chapters we have discussed different realizations of topological phases of

matter, namely systems realizing the QHE, and time-reversal invariant TIs in two and

three dimensions. The former are characterized by a Z invariant, the so-called Chern

number, whereas the latter are described by a Z2 topological number. Furthermore, the

topological nature of these systems is in perfect agreement with the predictions of the

Altland-Zirnbauer table of topological insulators and topological superconductors [28,34],

which classifies all gapped single-particle Hamiltonians according to their symmetry and

dimensionality (see Sec. 2.1.2).

The topological phases occurring in the Altland-Zirnbauer table are commonly referred

to as “strong” since their topologically nontrivial nature is protected entirely by so-called

generic, non-spatial symmetries20, which are time-reversal, particle-hole, and chiral sym-

metry21. These symmetries are intrinsic properties of the system and cannot be rep-

resented by unitary operators that commute with the Hamiltonian. Specifically, time-

reversal and particle-hole operators are anti-unitary and commute with the Hamiltonian,

whereas the unitary chiral operator anticommutes with it. As a consequence, topologi-

cally protected states appear on all surfaces and interfaces of the system, as well as in the

presence of weak disorder because those are spatial modifications of the system and, thus,

do not affect a non-spatial symmetry.

20We have already seen an important exception: weak topological insulators in 3D also rely on the presence
of translational symmetry. Their topological features are only protected as long as translational
symmetry is preserved.

21In this sense, a QHE system in the unitary Altland-Zirnbauer class A can be considered as the
“strongest” topological phase because it does not rely on any symmetry.
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4.1 Introduction

In the search for novel topological phases of matter, the notion of topological protection

was relaxed to also include ordinary spatial symmetries represented by unitary operators.

This led to the discovery of topological crystalline insulators [110, 111]: novel states of

matter whose topological nature arises from crystal symmetries. Those symmetries are

point-group symmetries, such as inversion [47, 48], mirror [112–115] and rotation [110];

space-group symmetries [116–119], such as glide planes and screw axes; or a combination

of them [120–123]. Recently, this concept has even been extended to include magnetic

space groups [124–126]. It is not difficult to imagine that the discovery of the topological

crystalline insulator (TCI) has opened the door to a plethora of new topological phases

based on the richness and complexity of crystal structures. Besides, crystal symmetries

can also enrich the topology of systems that are already topological in the strong sense [39,

99, 127]. For instance, we have seen in Chapter 2 that inversion symmetry enriches the

topology of the Hofstadter model.

Topological crystalline insulators are “weaker” than their strong relatives which rely on

intrinsic symmetries only. The reason is twofold. First, crystal symmetries are susceptible

to disorder. Therefore, topological features are expected to persist only if the protecting

crystal symmetry is preserved on average [115, 128]. Second, not all surfaces of a TCI

accommodate topological surface states, only those that do not break the protecting crystal

symmetry. For instance, a TCI protected by a C4 rotation symmetry will, in general, have

topological states only on surfaces perpendicular to the axis of rotation [110].

To prepare and find novel TCI phases, it is useful to extend the standard Altland-

Zirnbauer table to include also crystalline symmetries. This has been done for several

cases, such as systems with inversion [47] or reflection symmetry [113,128]. In general, the

resulting tables are much more involved than the standard Altland-Zirnbauer classification

due to the various possible relations between the generic symmetry operators and the

additional unitary symmetries. The corresponding invariants are typically derived from

strong topological invariants associated with symmetry-invariant BZ cuts. An example is

the so-called mirror Chern number [127]. However, later on we will see that this is not

always the case.

In the following sections, we will discuss two examples of topological crystalline insula-

tors and present their topological invariants.
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4 Topological mirror insulators in 1D
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Figure 4.1: (a) Bipartite tetragonal lattice with a C4 axis. (b) Corresponding bulk BZ
with the four bulk momenta invariant under C4 rotation. The red lines
indicate possible paths for the calculation of the topological invariant ν0.
(c) Band structure along high-symmetry lines in the (001) surface BZ as
presented in Ref. [110]. A quadratic surface band is highlighted in red.

4.1.2 Topological crystalline insulators with rotational symmetry

The notion of “topological crystalline insulators” was first introduced by Fu using the

example of a system with C4 symmetry [110]. To obtain a minimal model for a TCI, he

considered a system of spinless electrons on a tetragonal lattice with a unit cell consisting

of two inequivalent atoms A and B stacked along the c axis [see Fig. 4.1(a)]. For this

system, he derived a general four-band tight-binding model taking into account only px

and py orbitals of the electrons. Due to the symmetry of the lattice and the chosen

orbitals, the model has a natural C4 symmetry with respect to a rotation about the z

axis22. Furthermore, it has time-reversal symmetry with Θ = K for spinless electrons.

Fu showed that his model features a gapped phase in a finite parameter range. Most

remarkably, the (001) surface, which preserves the C4 symmetry, exhibits surface states

traversing the entire bulk energy gap in this phase as shown in Fig. 4.1(c). Moreover, the

surface states are doubly degenerate at the M̄ point of the surface BZ. This degeneracy is

not accidental. The M̄ point is a fixed point under fourfold rotation and the two degenerate

states form a two-dimensional irreducible real representation of C4. Hence, the degeneracy

is protected by symmetry and cannot be removed23.

Close to the M̄ point, the two bands of surface states can be represented in terms of px

and py orbitals. In this representation, C4 rotation can be represented by eiσyπ/4, where σy

is a Pauli matrix. In the presence of C4 and Θ symmetry, it can be shown that, to leading

22The same argument works for dxz and dyz orbitals since they transform in the same way as px and py
orbitals under C4.

23Note that there is no Kramers theorem to enforce the degeneracy because Θ2 = +1.
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4.1 Introduction

order, the Hamiltonian of the surface states must be of the form

H(kx, ky) =
k2

2m0

1 +
k2
x − k2

y

2m1

σz +
kxky
2m2

σx. (4.1)

Hence, the symmetry constrains suppress the linear order and lead to a quadratic dispersion

around the M̄ point, as opposed to a linear Dirac dispersion for “conventional” topological

insulators.

Moreover, these surface states are topologically protected. This can be seen as follows:

due to the symmetry of the model, (001) surface states at the C4-invariant momenta

M̄ and Γ̄ must be doubly degenerate. Hence, in analogy with QSHIs in 2D, there are

two topologically distinct ways of connecting these doublets with each other and with

the valance and conduction bands. This gives rise to a Z2 classification, where in the

nontrivial phase the surface bands cross the Fermi level an odd number of times along

a path connecting Γ̄ and M̄ . Note that other surfaces do not feature topological surface

states because they break C4 symmetry.

From a more general perspective, the topological nature of a spinless, time-reversal

invariant insulator with C4 symmetry can be understood in the following way. There

are four C4-invariant momenta ki in the 3D BZ of the system, namely Γ = (0, 0, 0),

M = (π, π, 0), A = (π, π, π), and Z = (0, 0, π) [see Fig. 4.1(b)]. At these points, the Bloch

Hamiltonian H(ki) of the system commutes with the unitary operator U representing a C4

rotation. Hence, the energy states at ki can be chosen to be eigenstates of fourfold rotation

with possible rotation eigenvalues 1, −1, i, and −i. In addition, the momenta ki are

invariant under time-reversal. Due to time-reversal symmetry with Θ = K and Θ2 = +1,

this imposes a reality condition. More specifically, the Bloch Hamiltonian H(ki) at these

points must be real and its eigenstates can always be chosen to be real. Under these

conditions, group theory tells us that whenever there is a state with rotation eigenvalue

±i, there must also be another, degenerate state24 with eigenvalue ∓i. Furthermore, such

a doublet gives rise to an effective Kramers theorem with respect to the operator Θ̃ ≡ UΘ,

because Θ̃2 = UΘUΘ = U2Θ2 = −1, where we have used that, with eigenvalues ±i, the

rotation operator U squares25 to −1.

24The reason is that the cyclic group C4 is a rather peculiar group. It has four one-dimensional irre-
ducible representations. However, the two representations with C4 eigenvalues ±i, which are commonly
grouped under the representation label E, together form a so-called separable degenerate representa-
tion [129]. It can be shown that these representations always appear together and give rise to a
degenerate doublet of states.

25Note that we do not have an effective Kramers theorem for bands with rotation eigenvalues ±1, because
the corresponding rotation operator would square to +1.
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4 Topological mirror insulators in 1D

For simplicity, let us assume that all occupied bands transform as doublets under fourfold

rotation. In this case, we can follow the steps of the derivation of the Fu-Kane invariant for

QSHIs in 2D, just with the operator Θ replaced by Θ̃ and with paths in k space connecting

the C4-invariant momenta ki. Finally this leads to Z2 topological invariants ν0 and νΓM ,

νAZ of the following form [110]:

(−1)ν0 = (−1)νΓM (−1)νAZ , (4.2)

(−1)νk1k2 = exp

(
i

∫ k2

k1

dk ·A(k)

)
Pf[w(k2)]

Pf[w(k1)]
, (4.3)

where A(k) = −i
∑

j〈ujk|∂k|ujk〉 is the U(1) Berry connection and the matrix elements

of w(ki) are defined as wmn(ki) = 〈umki |UΘ|unki〉. This matrix is antisymmetric because

[H(ki), UΘ] = 0 and (UΘ)2 = −1. The line integrals for νΓM and νAZ are along arbitrary

paths connecting Γ,M and A,Z, respectively, that lie within the plane kz = 0 and kz = π,

respectively, as illustrated in Fig. 4.1(b). It can be shown that, in contrast to QSHIs,

(−1)νk1k2 is already a gauge-invariant Z2 quantity, i.e., νΓM and νAZ define topological

invariants for the planes kz = 0 and kz = π, respectively. Due to the relation in Eq. (4.2)

between the three Z2 invariants, a 3D crystalline topological insulator with time-reversal

and C4 symmetry is fully characterized by the strong index ν0 and one of the weak indices

νΓM or νAZ . This is similar to the relation between strong and weak indices for 3D

topological insulators with time-reversal symmetry. However, only the strong phase with

ν0 = 1 gives rise to topological surface states on the (001) surface26.

The Z2 invariants are only defined for doublet bands. Real materials usually have

both doublet and singlet bands. Nonetheless, the Z2 invariants remain well-defined as

long as the doublet bands can be energetically separated from the singlet bands, which is

usually the case. This shows an important fundamental difference between “conventional”

topological insulators and topological crystalline insulators. In the latter, there is an

interplay between symmetry representations and the topology of the corresponding energy

bands. Specifically, in our example the nontrivial topology arises from doublet bands alone

whereas singlet bands are always trivial.

26The reason is that the (001) surface of a system with ν0 = 0 but νΓM = νAZ = 1 would correspond to
a dark surface, similar to the dark surface of weak topological insulators (see Sec. 3.1.3). The weak
indices would have implications only for surfaces perpendicular to the dark surface. However, these
surfaces break the protecting C4 symmetry and, therefore, surface states are not protected. Such
a phase is an example of a topological system without topological surface states. Nevertheless, the
nontrivial topology can manifest itself in other quantities, such as the entanglement spectrum, as
discussed in Ref. [48]
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Figure 4.2: (a) Simple cubic lattice with a mirror plane highlighted in turquoise. (b)
Corresponding bulk BZ with the two mirror-invariant planes highlighted
in blue. The (001) surface BZ is shown on top including the projections
of the mirror-invariant planes. (c) Sketch of a nontrivial surface band
structure along the projection of the kx = 0 mirror-invariant plane.

4.1.3 Mirror Chern number for systems with reflection symmetry

Let us consider a 3D insulating crystal with time-reversal symmetry and reflection sym-

metry with respect to a mirror plane. Without loss of generality, let the mirror plane

be parallel to the yz plane, i.e., the mirror operation takes x to −x. For simplicity, we

further assume that the crystal is a simple cubic lattice [see Fig. 4.2(a)]. Due to reflection

symmetry, the Bloch Hamiltonian H(k) of the system must satisfy

MH(kx, ky, kz)M
−1 = H(−kx, ky, kz), (4.4)

where M is a unitary operator representing the mirror operation. From this equation we

immediately see that the Bloch Hamiltonian commutes with the mirror operator M in the

mirror-invariant planes kx = 0 and kx = π [see Fig. 4.2(b)]. Therefore, in these planes the

Bloch Hamiltonian decomposes into two blocks corresponding to the mirror eigenvalues

m = +i and m = −i, respectively. Since the system has an energy gap, we can associate a

Chern number n±i(kx) with each of the blocks, where kx = 0 or π. Moreover, time-reversal

symmetry requires n+i + n−i = 0. Nevertheless, in analogy with the QSHE, the difference

of the two numbers defines a toplogical invariant for each of the mirror-invariant planes.

This is the so-called mirror Chern number [127],

nM(kx) =
1

2
[n+i(kx)− n−i(kx)]. (4.5)

What are the implications for surface states? First of all, we already know that surface
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4 Topological mirror insulators in 1D
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Figure 4.3: Lattice and BZs of the topological crystalline insulator SnTe as presented
in Ref. [112]: (a) face-centered cubic lattice. (b) Corresponding BZ with
high-symmetry points. Also indicated is the (001) surface BZ and one of
the mirror-invariant planes. (c) Fermi surface of the (001) surface with
four topologically protected Dirac-cone pockets.

states can only be protected on surfaces that do not break reflection symmetry. In our

example, such a surface is for instance the (001) surface. In the corresponding surface BZ

the lines with kx = 0 and kx = π correspond to surface projections of the mirror-invariant

planes above [see Fig. 4.2(b)]. Let us assume that nM is nontrivial for the kx = 0 plane.

Thus, the nontrivial blocks of the Bloch Hamiltonian in this plane give rise to nM pairs

of counterpropagating surface states along kx = 0 by bulk-boundary correspondence [see

Fig. 4.2(c)]. At the crossing point between two counterpropagating states, it is not possible

to couple the states in order to open an energy gap since they belong to two different

reflection-symmetry sectors. Hence, the crossing point is protected by symmetry. Away

from kx = 0, the states no longer have a well-defined mirror eigenvalue and the degeneracy

is lifted. This gives rise to nM topologically protected surface Dirac cones. In contrast to

3D TRI topological insulators, where the Dirac cones are pinned to time-reversal invariant

momenta, the surface Dirac cones of a system with nontrivial mirror Chern numbers can in

principle be anywhere along the line kx = 0 while respecting time-reversal symmetry [112].

A material realization of a topological crystalline insulator with nonzero mirror Chern

number is SnTe [112,130]. The crystal structure of SnTe is face-centered cubic (rocksalt),

as illustrated in Fig. 4.3(a). Moreover, the material is an insulator with trivial Z2 invari-

ants. However, the (011) mirror plane, and other planes equivalent by symmetry, give rise

to a nontrivial mirror Chern number of nM = −2 and, thus, to topologically protected

Dirac cones on certain surfaces [112]. Remarkably, the total number of protected Dirac

cones depends on the considered surface, which is in stark contrast to “conventional”
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4.2 1D topological insulators with TR symmetry

topological insulators in 3D.

The (001) surface is symmetric about the two equivalent (011) and (0-11) mirror planes.

In the surface BZ, these planes are projected onto two perpendicular lines going through

the X̄1 and X̄2 points. Since we have mirror Chern numbers of nM = −2 associated with

both lines, there are in total 2 × 2 = 4 surface Dirac cones around the Γ̄ point of the

surface BZ [see Fig. 4.3(c)]. Similarly, we can deduce the number of surface Dirac cones

for other terminations. The (111) surface preserves three equivalent mirror planes which

are projected onto three mirror-invariant lines in the corresponding surface BZ. Hence,

there are 2 × 3 = 6 topologically protected surface Dirac cones on the (111) surface of

SnTe. Finally, the (110) surface is symmetric about one mirror plane giving rise to two

surface Dirac cones.

4.2 One-dimensional topological insulators with

time-reversal symmetry

As we have seen in the previous sections, crystal symmetries can lead to entirely novel

topological phases of matter which are dubbed topological crystalline insulators. In par-

ticular, classes of systems that are trivial according to the standard Altland-Zirnbauer

classification of topological insulators might reveal a nontrivial topological nature once

crystal symmetries are imposed.

In this light, we are going to turn our attention to one of the most-studied classes of

the Altland-Zirnbauer table, namely the symplectic class AII [34]. This class contains all

time-reversal symmetric systems whose time-reversal operator Θ squares to −1, and thus

systems of spin-1/2 electrons with time-reversal symmetry. Most importantly, as we have

discussed in Chapter 3, the famous QSHIs in 2D and the Z2 topological insulators in 3D fall

into this class. However, in one dimension this class does not allow for a nontrivial topology

in the scope of the standard Altland-Zirnbauer classification. Nevertheless, we will show,

by closely following Ref. [115], that a crystalline symmetry, namely mirror symmetry, leads

to a class of one-dimensional TRI crystalline topological insulators beyond the standard

Altland-Zirnbauer scheme.

We start out by considering a generic system of spin one-half fermions in a 1D crystalline

potential with time-reversal symmetry Θ. In addition, we will consider the crystal to be

mirror symmetric with respect to a 1D mirror point (see Fig. 4.4). The Bloch Hamiltonian

of such a system H(k), where k ∈ (−π, π] with the lattice constant set to unity, then
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4 Topological mirror insulators in 1D

xmirror point

Figure 4.4: One-dimensional lattice with a mirror point.

inherits the two following symmetry constraints:

ΘH(k)Θ−1 = H(−k), MH(k)M−1 = H(−k), (4.6)

where Θ = (1⊗ isy)K is the antiunitary time-reversal operator, while M = I ⊗ isx is the

unitary operator corresponding to the operation of reflection with respect to the 1D mirror

point. Without loss of generality, we assume the latter to be in the x̂ direction. In addition,

the si are the usual Pauli matrices acting in spin space, while I acts only on the spatial

degrees of freedom and thus corresponds to spatial inversion. For this representation of

the symmetry operations, we have that [Θ,M ] = 0 and Θ2 = −1 as required for spin

one-half fermions, and M2 = −1 since spatial inversion must square to the identity, i.e.,

I2 = 1.

4.3 Topological invariant for topological mirror insulators

in one dimension

We will now demonstrate that a 1D system under the constraints defined above is char-

acterized by a Z2 topological invariant. In order to define this invariant, we will make use

of the concept of charge polarization.

4.3.1 Charge polarization and partial polarization

The total charge polarization associated with the 1D Bloch Hamiltonian H(k) is a measure

for the electric dipole moment per unit cell and can be elegantly written in terms of the

Berry connection [131–134]:

Pρ =
1

2π

∫ π/a

−π/a
dk A(k), (4.7)
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4.3 Invariant for topological mirror insulators in 1D

with the U(1) Berry connection

A(k) = i
∑
n

〈uk,n|∂k|uk,n〉, (4.8)

where |uk,n〉 is the lattice-periodic part of a Bloch state at momentum k and band index n,

and the sum is over all occupied bands. Since the right-hand side of Eq. (4.7) is equivalent

to the famous Berry phase [131] times a factor, Pρ is in general only defined up to an

integer and can assume any value in between. Hence, it can in general not serve as a

topological invariant27.

As we have seen in Sec. 3.1, Fu and Kane introduced the notion of partial polariza-

tion [75] to define topological invariants for TRI topological insulators in 2D and 3D.

Remarkably, also for systems in 1D the partial polarization can be used to define a topo-

logical invariant. Let us briefly recall its definition.

The concept of partial polarization is based on the well-known Kramers theorem: for a

time-reversal symmetric system with half-integer total spin, every energy level is evenly

degenerate. For a translationally invariant system this is equivalent to the statement

that every Bloch state at k comes with a time-reversed degenerate partner at −k. In

particular, states at the time-reversal invariant momenta k = 0 and π must be evenly

degenerate. Hence, a fully gapped system must have an even number of occupied energy

bands. Assuming, for simplicity, there are no other degeneracies than those required by

time-reversal symmetry, we can divide the 2N occupied bands into N pairs subject to [75]

|uI
−k,α〉 = −eiχα(k) Θ|uII

k,α〉, (4.9)

where Θ is the antiunitary time-reversal operator with Θ2 = −1, α = 1, . . . , N , and

I, II are the two time-reversed channels. Then, the partial polarizations are simply the

polarizations associated with the two channels, i.e.,

P s =
1

2π

∫ π

−π
dk As(k), s = I, II, (4.10)

27One exception are 1D systems with inversion symmetry. In these systems, the total charge polarization
can only assume the values 0 and 1/2 and, therefore, does serve as a topological invariant [131].
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4 Topological mirror insulators in 1D

where As(k) = i
∑

α〈usk,α|∂k|usk,α〉. It is sufficient to consider P I only, because

P I−P II =
1

2π

∫ π/a

−π/a
dk [AI(k)− AII(k)]

=
1

2π

∫ π/a

0

dk [AI(k)+AI(−k)−AII(k)−AII(−k)]

=
1

2π

∑
α

∫ π/a

0

dk [∂kχα(k)− ∂kχα(−k)]

=
1

2π

∑
α

[χα(π/a)− χα(−π/a)]︸ ︷︷ ︸
=2πm, m∈Z

= m ∈ Z, (4.11)

where we have used that

AI(−k) = i
∑
α

〈uI
−k,α|∂−k|uI

−k,α〉 = −i
∑
α

e−iχα(k)〈ΘuII
k,α|∂k|eiχα(k)ΘuII

k,α〉

= −i
∑
α

〈ΘuII
k,α|∂kΘuII

k,α〉+
∑
α

∂kχα(k)

= −i
∑
α

〈Θ2∂ku
II
k,α|Θ2uII

k,α〉+
∑
α

∂kχα(k)

= −i
∑
α

〈∂kuII
k,α|uII

k,α〉+
∑
α

∂kχα(k) = AII(k) +
∑
α

∂kχα(k), (4.12)

with the properties 〈Θv|Θw〉 = 〈w|v〉 and Θ2 = −1 of the antiunitary time-reversal

operator. Hence, we have P II = P I mod 1.

4.3.2 Quantization of the partial polarization

We are now going to show that, if the system preserves mirror symmetry withMH(k)M−1 =

H(−k) and [M,Θ] = 0, we further have PI = −PI mod 1.

Assume again for simplicity that we have no other degeneracies than those required by

time-reversal symmetry. Then, we can write, similar to Eq. (4.9),

|ũI
α(−k)〉 := −eiβ(k)M |uII

α (k)〉, (4.13)

where |ũI
α(k)〉 is an eigenstate of the Hamiltonian. Moreover, we can always choose |uII

α (k)〉
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4.3 Invariant for topological mirror insulators in 1D

such that |ũI
α(k)〉 is equal to |uI

α(k)〉 up to a phase, i.e.,

|ũI
α(k)〉 = eiλ(k)|uI

α(k)〉. (4.14)

Then, using Eqs. (4.9), (4.13) and [M,Θ] = 0, we easily see that

|uI
α(k)〉 = −ei[χ(−k)+β(−k)]MΘ|ũI

α(k)〉 (4.15)

With this, we get

P I =
i

2π

∑
α

∫ π/a

−π/a
dk 〈uI

k,α|∂k|uI
k,α〉

(4.15)
=

i

2π

∑
α

∫ π/a

−π/a
dk 〈MΘũI

k,α|∂kMΘ|ũI
k,α〉

− 1

2π

∑
α

∫ π/a

−π/a
dk ∂k[χ(−k)+β(−k)]︸ ︷︷ ︸

=2πn, n∈Z

. (4.16)

Since P I is defined only up to an integer, we drop the second term and continue as follows

P I =
i

2π

∑
α

∫ π/a

−π/a
dk 〈(MΘ)†∂kMΘũI

k,α|ũI
k,α〉 = − i

2π

∑
α

∫ π/a

−π/a
dk 〈ũI

k,α|∂k|ũI
k,α〉

(4.14)
= − i

2π

∑
α

∫ π/a

−π/a
dk 〈uI

k,α|e−iλ(k)∂ke
iλ(k)|uI

k,α〉 = −P I +m, m ∈ Z, (4.17)

where we have used that MΘ is antiunitary with properties 〈(MΘ)†v|w〉 = 〈MΘw|v〉 and

(MΘ)†MΘ = 1. Hence, we have shown that P I = −P I mod 1, which means P I can only

assume the two distinct values 0 or 1/2 up to an integer.

4.3.3 Topological invariant

The consequence of the result above is twofold. First, it follows that the charge polar-

ization Pρ of a 1D insulator with a 1D mirror point is an integer quantity. Second, the

quantized nature of the partial polarization allows to define a Z2 topological invariant

ν = 2P smod 2 ≡ 0, 1. This gives rise to two topologically distinct states that cannot

be adiabatically connected without closing the bulk energy gap or breaking the defining

symmetries. Using the U(2N) invariant form of the partial polarization [75], where 2N is
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4 Topological mirror insulators in 1D

the number of occupied energy bands, the topological invariant explicitly reads:

ν :=
1

π

[ ∫ π

0

dk A(k) + i log
(Pf[w(π)]

Pf[w(0)]

)]
mod 2, (4.18)

where A(k) = i
∑

n occ.〈uk,n|∂k|uk,n〉 is the Berry connection of all occupied bands, and

we have introduced the U(2N) matrix wµν(k) = 〈u−k,µ|Θ|uk,ν〉 which is antisymmetric at

k = 0, π and thus characterized by its Pfaffian Pf(w).

A few remarks are in order. First, it has to be emphasized that the quantities in

Eq. (4.18) require a continuous gauge. Such a gauge can be straightforwardly constructed

from numerically obtained eigenstates (see Appendix A). Second, it is worth to note that

the Z2 invariant of Eq. (4.18) cannot be determined from the knowledge of the electronic

wavefunctions only at the mirror invariant momenta, as it usually occurs for topological

crystalline insulators in 2D and 3D. Eq. (4.18) requires the knowledge of the wavefunctions

in the entire BZ. Furthermore, this implies that for a topological phase transition that

occurs via a closing and reopening of the 1D bulk gap at momentum q, q is in general not

a high-symmetry point in the BZ, as we will later see in the discussion of the spin-orbit

coupled AAH model.

Finally, one has to point out that the existence of the Z2 topological invariant does

not contradict the Altland-Zirnbauer classification of topological insulators and supercon-

ductors [34], which does not take into account the point-group symmetries of the system.

In the absence of mirror symmetry, the partial polarizations of a 1D system with time-

reversal symmetry are indeed no longer quantized, and therefore ν does not represent an

invariant. The existence of 1D topological mirror insulators is instead in agreement with

the recent extensions of the original Altland-Zirnbauer classification taking into account

point-group symmetries [47,113,128], in particular with Refs. [113] and [128] which predict

that mirror-symmetric 1D systems in principle allow for a Z2 invariant28.

4.3.4 Bulk-boundary correspondence: quantized end charges

The quantization of the partial polarization has a direct physical consequence. In fact,

the charge polarization of a system is directly connected to the accumulated bound charge

at its surfaces [132]. For a one-dimensional system the end charge Q is simply related to

the polarization P by Qmod 1 = P . Since the partial polarization P I is just the usual

28In this respect, it must be pointed out that certain types of translational-symmetry breaking terms, such
as charge-density waves, can turn the system into a trivial insulator [113], similar to weak topological
insulators in 3D.
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4.4 Spin-orbit coupled AAH models

polarization associated with one of the time-reversed channels, we can assign a partial

bound charge to this channel which is proportional to P I. With two identical time-reversed

channels, the total bound charge per end is then

Qmod 2 = 2PI = ν. (4.19)

This establishes a direct connection between the number of bound charges and the Z2

invariant ν. In particular, systems for which ν = 1 are topological mirror insulators:

they are characterized by the presence of an odd number of integer-valued electronic end

charges at the mirror symmetric boundaries of the system.

4.4 Spin-orbit coupled Aubry-André-Harper models

We are now going to discuss an explicit model that features a 1D topological mirror

insulating phase. In particular, we will consider the following tight-binding Hamiltonian

for spin-1/2 electrons on a 1D lattice

H =
∑
j,σ

[t0 + δt cos(2παj + φt)] c
†
j+1,σcjσ +

∑
j,σ

[V0 + δV cos(2πβj + φV )] c†jσcjσ

+ i
∑
j,σ,σ′

[λ0 + δλ cos(2πγj + φλ)] c
†
j+1,σs

y
σσ′cjσ′ + h.c. (4.20)

This is a generalization of the famous AAH model [39,43,135,136] which we have discussed

in Chapter 2. It contains harmonically modulated nearest-neighbor hopping, on-site po-

tentials and spin-orbit coupling (SOC) with amplitudes δt, δV , δλ, phases φt, φV , φλ,

and periodicities 1/α, 1/β, 1/γ. For simplicity, we restrict the model to rational values

of the periodicities. Moreover, t0, V0 and λ0 are the bond and site independent values

of hopping, potentials and SOC, the operators c†jσ (cjσ) create (annihilate) an electron

with spin σ (σ =↑, ↓) at lattice site j, and the si are Pauli matrices. The Hamiltonian of

Eq. (4.20) possesses time-reversal symmetry whereas mirror symmetry is present only for

specific values of the phases φt, φV and φλ. For the computation of band structures and

eigenstates exact numerical diagonalization is used. In the case of periodic boundary con-

ditions, we are going to exploit the translational symmetry of the system and work with

the corresponding Bloch Hamiltonian in momentum space. For open boundary conditions,

we will take the real-space Hamiltonian with a finite number of unit cells. The Z2 invariant

of Eq. (4.18) is calculated numerically using the aforementioned procedure to construct a
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Figure 4.5: Phase diagram and spectra of the spin-orbit coupled AAH model with
α = γ = 1/2 (dimerization), β = 1/4, V0 = 0, λ0 = 0.5t0, δλ = −0.3t0,
φt = φλ = π: (a) half-filling phase diagram of the bulk for φV = −π/4.
The value of the Z2 invariant ν is indicated by pixel color. Note that it
only assumes two distinct values, 0 and 1. (b)–(d) Bulk band structures
for δV = 0.5t0 and fixed δt with (b) δt = −0.1t0, (c) δt = δtc ≈ 0.025, (d)
δt = 0.1t0. The band structures correspond to systems along the arrow
in (a). Note that the half-filling bulk energy gap closes away from the
mirror-invariant points k = 0 and π.

continuous U(2N) gauge from numerically obtained eigenstates (see Appendix A).

We will consider the model in Eq. (4.20) with α = γ = 1/2, φt = φλ = π, V0 = 0, and

β = 1/4. With this choice of parameters, the unit cell of our model Hamiltonian contains

four lattice sites and the model preserves reflection symmetry for φV = −π/4 and 3π/4.

This is a direct generalization of the model considered in Chapter 2 to the spinful case.

The model can potentially be realized using an ultracold Fermi gas loaded in a 1D optical

lattice [54, 59, 137, 138], while the ensuing end states can be detected using time-of-flight

measurements or optical microscopy [139,140] as outlined in Sec. 2.6. We emphasize that

while state-of-the-art technologies allow to create SOC terms explicitly breaking mirror

symmetry [58, 141], the rapid progress in the field can be expected to bring soon a much

larger variety of SOC terms into reach [58,142,143].

4.4.1 Phase diagram and in-gap end states

We first determine the phase diagram of our system with respect to the Z2 invariant ν of

Eq. (4.18) for the half-filled system at φV = −π/4, i.e., where the model has reflection

symmetry. The phase diagram in the δt-δV parameter space is shown in Fig. 4.5(a). We

identify two phases which are separated by a parabolic phase boundary: a trivial phase

with ν = 0 on the right side and a topological phase with ν = 1 on the left side. Similarly

to the spinless version of the model [39], the bulk energy gap at half filling closes at the
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Figure 4.6: Spectra of the spin-orbit coupled AAH model in a finite geometry for
different φV . Other parameters are α = γ = 1/2 (dimerization), β = 1/4,
V0 = 0, δV = 0.5t0 λ0 = 0.5t0, δλ = −0.3t0, φt = φλ = π: (a) δt = −0.5t0,
(b) δt = 0.5t0. States localized at the ends of the chain are highlighted
in red. Hall conductivities σ of the bulk energy gaps are also indicated in
units of e2/h.

topological phase transition.

Note that the bulk energy gap closes and reopens away from the mirror-invariant mo-

menta, as is shown in Figs. 4.5(b)–(d). This is in contrast to other crystalline topological

phases as pointed out in Sec. 4.1.1.

Moreover, the nontrivial topology of the model manifests itself through the appearance

of characteristic in-gap end states. This is demonstrated in Fig. 4.6, where energy spectra

for the AAH model with open boundary conditions are shown. The phase shift φV of

the on-site modulation is varied smoothly from −π to π thereby passing through the

mirror-symmetric cases at −π/4 and 3π/4. At these points, we find four degenerate in-

gap end states at half filling provided we are in the nontrivial area of the phase diagram of

Fig. 4.6(a). Away from the mirror-symmetric points, the observed states are split into two

degenerate pairs. The two-fold degeneracy remains since the model in Eq. (4.20) preserves

time-reversal symmetry for all values of φV . The half-filling end states are not encountered

for parameters of the model for which we are in the trivial region of the phase diagram,

as can be seen in Fig. 4.6(b).

Taking a different perspective, the appearance of end states at the 1/4 and 3/4 filling

gaps can also be understood by interpreting the phase φV as the momentum of an ad-

ditional artificial dimension. In this case, our model of Eq. (4.20) can be mapped to a

dimerized Hofstadter model [36, 39, 41, 43] for spinful fermions, with SOC in one direc-

tion only. Contrary to models investigated before [144,145], the resulting model explicitly

breaks 2D time-reversal symmetry, Θ−1H(k, φV )Θ 6= H(−k,−φV ), thereby allowing for
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4 Topological mirror insulators in 1D

insulating states with nonzero Chern numbers [14,15,39]. By calculating the Hall conduc-

tivities, we find that they are doubled with respect to the conventional spinless Hofstadter

model [39] indicating that the two spin channels of our model carry the same topological

content. This, in turn, implies that the in-gap states at 1/4 and 3/4 filling, appearing

in Fig. 4.6, correspond to the chiral edge states of a generalized Hofstadter model in a

ribbon geometry. They correspond to insulating states with Hall conductivities ±2. On

the contrary, the insulating phase at half filling has zero Hall conductivity but displays two

quartets of edge states in the topological phase originating from the 1D mirror-symmetric

cuts [see Fig. 4.6(a)]. Furthermore, it is worth noting that these results, as a generaliza-

tion of what was discussed in Chapter 2, can straight-forwardly be extended to arbitrary

rational β = p/q.

4.4.2 Bulk-edge correspondence

We have shown that the appearance of electronic in-gap end states is characteristic of a

topological mirror insulator. However, due to the absence of chiral symmetry, which would

pin the end modes to the center of the gap, symmetry-allowed perturbations can push the

end modes into the continuum of bulk states. Such perturbations could, for instance, be

introduced by surface potentials.

The point above can be demonstrated explicitly by adding a generic on-site surface

potential
∑

σ VLR(c†1σc1σ + c†LσcLσ) to our model with open boundary conditions, and by

analyzing the ensuing energy spectra. Again, let us fix the on-site potential phase φV to

−π/4 such that our model preserves mirror symmetry.

Without the surface potential, we observed two degenerate in-gap Kramers pairs at half

filling in the topological phase [see Fig. 4.6(a)]. This picture changes when we switch on

the surface potential VLR [see Fig. 4.7(a)]. We observe that the end modes in the half-filling

gap are pushed up into the conduction band, while another degenerate pair of Kramers

doublets emerges from the valence band. However, the appearance of these states cannot

be linked to the topological invariant of the system. In fact, these additional states occur

both in the topological and in the trivial phases, as can be seen by comparing Figs. 4.7(a)

and (b) at half filling.

Having established that sufficiently strong symmetry-allowed edge potentials are detri-

mental for the occurrence of in-gap end modes, we now proceed to demonstrate the actual

bulk-boundary correspondence for our model, i.e., the existence of an odd number of

integer-valued electronic end charges (see Sec. 4.3.4).
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Figure 4.7: Spectra and local charge densities of the mirror-symmetric, spin-orbit
coupled AAH model with open boundary conditions and α = γ = 1/2,
β = 1/4, V0 = 0, δV = 0.5t0, λ0 = 0.5t0, δλ = −0.3t0, φt = φλ = π,
φV = −π/4, and a surface potential VLR = 0.6t0: (a) topological phase
with δt = −0.5t0, (b) trivial phase with δt = 0.4t0. The main panels
show the energy spectra with end states highlighted in red. The dashed
line signifies the chemical potential µ used for the calculation of the local
charge densities ρj . The latter are presented in the insets. In addition,
the corresponding values of the electronic end charges QL and QR are
displayed.

We define the end charge of a system to be the net deviation of the local charge density

close to the end from the average charge density in the bulk. Adopting the definition

of Ref. [146], we calculate the left end charge QL and the right end charge QR from the

following limits,

QL = lim
l0<L→∞

L∑
j

Θ(l0 − j)(ρj − ρ̄), (4.21)

QR = lim
l0<L→∞

L∑
j

Θ(l0 − L+ j)(ρj − ρ̄), (4.22)

for sufficiently large l0. Here, L is the length of the chain, Θ(x) is the Heaviside function

and l0 is a cut-off. ρj =
∑N

ν |ψν(j)|2 is the local charge density of the ground state in units

of −e with the sum running over all N occupied states ψν up to the chemical potential µ.

The bulk charge density ρ̄ is treated as a constant background that is fixed by the chemical

potential. In particular, at half filling we have ρ̄ = 1 corresponding to one electron per

site.

The insets in Fig. 4.7 show the local charge densities of the finite AAH chains when the

chemical potential µ is in the half-filling bulk energy gap above or below the end states.

As expected, the local charge density oscillates around ρ = 1 in the bulk. Moreover,
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4 Topological mirror insulators in 1D

in the topological phase there are large deviations from this value near the ends of the

system indicating the presence of electronic end charges. On the contrary, there are no

pronounced features in the trivial phase.

This is confirmed by an explicit calculation of the end charges. In the topological phase

[see Fig. 4.7(a)], we find QL = QR = +1 when µ is placed right above the topological

end states. Conversely, leaving the two boundary states at each end unoccupied leads

to an end charge of −1. Hence, there is a direct correspondence between end states and

end charges. End states always come in degenerate Kramers pairs due to time-reversal

symmetry. From this we see that, regardless of where we put the chemical potential in the

bulk energy gap and regardless of how many pairs of degenerate Kramers pairs are present,

the end charge will always assume an odd value in agreement with the general analysis

of Sec. 4.3.4. Moreover, this is a robust feature which is not affected by the presence of

surface potentials.

In the trivial phase [see Fig. 4.7(b)], we find QL = QR = 0 for a chemical potential above

the trivial end states. Hence, only even values of end charges are possible. For instance,

with the trivial states unoccupied the end charge value is −2.

4.4.3 Effect of disorder

Let us now consider the fate of the in-gap end states and of the topological end charges

under the influence of disorder. The topological nature of a 1D topological mirror insulator

is protected by time-reversal and mirror symmetry. The latter is a spatial symmetry and is,

in general, broken by disorder. However, recent studies on topological crystalline insulators

have shown that their topological features are still present if the protecting symmetry is

preserved on average [128]. We will now demonstrate that this holds also for our class of

systems. To show this, we model the effect of disorder by adding a random nonmagnetic

on-site potential of the form
∑

jWjc
†
jσcjσ to our model, where the Wj are independent

random variables subject to a Gaussian distribution with zero mean and standard deviation

γ. The latter is a measure for the disorder strength.

To analyze the effect of disorder on the end states, we consider the expectation value of

the inverse participation ratio (IPR), which is a quantitative measure of localization [146,

147]. The IPR of a given state ψ is defined as Iψ =
∑L

j |ψ(j)|4 with |ψ(j)|2 being the

weight of the state at site j. The IPR assumes values in the interval (0, 1]. An IPR of

1 corresponds to a perfectly localized state whereas small values indicate a state equally

distributed over the whole length of the system.
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Figure 4.8: Effect of disorder in the half-filled, spinful AAH model with open bound-
ary conditions and α = γ = 1/2, β = 1/4, t = −0.5t0 V0 = 0, δV = 0.5t0,
λ0 = 0.5t0, δλ = −0.3t0, φt = φλ = π, and φV = −π/4 (topological
phase): (a) disorder-averaged IPR 〈Iψ〉 for bulk states and end states, (b)
disorder-averaged end charges 〈QL〉 and 〈QR〉 with the chemical poten-
tial right below the in-gap end states. Shown is the dependence on the
standard deviation γ of the random disorder potential.

Fig. 4.8(a) shows the IPR of occupied states for the finite, half-filled AAH chain of

length L = 200 averaged over 103 random disorder configurations. The model parameters

are chosen such that the disorder-free chain preserves mirror symmetry and is in the

topological phase. We observe that the IPR of the topological end states stays nearly

unaffected at a large value as long as the disorder is weak (γ . 0.01t0). In contrast to

that, the IPR of the bulk states is more than one order of magnitude lower. For stronger

disorder, the topological end modes are still well localized but their IPR starts to deviate

from their previously constant value due to mixing with bulk states. However, this does

not lead to a sizable decrease of the IPR due to the onset of Anderson localization. The

latter also accounts for the substantial increase in the IPR of the bulk states.

Fig. 4.8(b) shows the disorder-averaged values of the boundary charges QL and QR

in the same setting. The chemical potential, which determines the number of occupied

states, is set to be in the half-filling bulk energy gap such that the topological end states

are unoccupied. In the previous section, we saw that the disorder-free values of the end

charges are exactly −1. In the presence of disorder this value is barely affected up to

intermediate disorder strength (γ . 0.1t0). Only for strong disorder we see considerable

deviations.

We conclude that in the presence of nonmagnetic disorder with zero mean the character-

istic end states of a topological mirror insulator remain well localized and its topological

end charges remain sharply quantized.
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Figure 4.9: A semiconductor nanowire setup with perpendicular modulated voltage
gates. The gates induce a modulation of both onsite potentials and
Rashba SOC. Subject to mirror symmetry, such a nanowire hosts localized
in-gap Kramers pairs at its ends.

4.5 Density- and Rashba spin-orbit-modulated

semiconductor nanowires

Finally, we are going to show that the general model of Eq. (4.20) allows for topological

mirror-insulating phases in a large portion of its parameter space. To demonstrate this, we

consider our model with constant hopping parameters (δt = 0), larger but equal periods

of the on-site potentials and SOC (β = γ), and nonzero average values t0, V0, and λ0.

In this parameter regime, the model corresponds to the tight-binding Hamiltonian of a

semiconductor nanowire with Rashba SOC where opportunely designed finger gates can

cause a periodic density modulation as well as a gate-tuned modulation of the Rashba

SOC strength. This is illustrated in Fig. 4.9. In this setup, end states can be detected

using tunneling density of states.

Fig. 4.10(a) shows a quarter-filling δV -δλ phase diagram with respect to the Z2 invariant

of Eq. (4.18) for β = γ = 1/4, where the corresponding unit cell comprises four lattice

sites. The modulation phases are chosen such that the model respects mirror symmetry.

The Rashba term preserves this symmetry for φλ,m = 0 or π, whereas the onsite term

is reflection-symmetric for φV,m = −βπ or (1 − β)π. This can be easily seen from the

related discussions in Sec. 2.3. Again, we identify two distinct topological phases. The

shape of the phase boundary is mainly influenced by the relative magnitude of λ0 and V0.

Moreover, the phase with nontrivial Z2 invariant features characteristic Kramers pairs at

the end points of the corresponding wire. This is demonstrated in Fig. 4.10(b) for a path

through the phase diagram at constant δλ and variable δV . At quarter filling, end states

are absent for small values of δV . However, by increasing δV the bulk energy gap closes
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Figure 4.10: Phase diagram and spectra of a density- and Rashba spin-orbit-
modulated semiconductor nanowire with β = γ = 1/4, V0 = 0.5t0,
λ0 = 0.5t0, δt = 0, φV = 3π/4, and φλ = π: (a) quarter-filling phase
diagram. The value of the Z2 invariant ν is indicated by pixel color. The
arrow shows a path through the phase diagram. (b) Energy spectra of
nanowires with open boundary conditions at fixed δλ = −0.4t0 corre-
sponding to δV values along the path shown in (a). States localized at
the end points of the wires are highlighted in red. Note that there are
end states at filling fractions 1/4, 1/2, and 3/4 in certain ranges of δV .

and reopens again, revealing two degenerate Kramers pairs localized at the end points of

the wire. We also observe localized Kramers pairs at filling fractions 1/2 and 3/4 that can

be attributed to a nontrivial Z2 invariant.

In addition, the nanowires feature end charge values of ±1 for the topological phases at

1/4, 1/2, and 3/4 filling depending on whether the chemical potential is tuned above or

below the degenerate in-gap Kramers pairs. On the contrary, the trivial phases exhibit no

end charges. This once again verifies the bulk-boundary correspondence.

It should be pointed out that the use of finger gates in a realistic system is expected to

produce an equal phase modulation of Rashba SOC and onsite potentials (φV = φλ ≡ φ).

Apparently, this breaks the mirror symmetry in our tight-binding description. However,

in the β → 0 continuum limit one has φV,m → φλ,m, which shows that a density- and

Rashba SOC-modulated mirror-symmetric semiconductor nanowire can be realized in

practice. Intriguingly, the end states of such a nanowire render an effective spin-orbit

coupled quantum-dot system which can potentially be implemented to realize spin-orbit

qubits [148,149].
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5 Weyl semimetals with time-reversal

symmetry

5.1 Introduction

The exceptional features and unconventional physical properties of topological insulators

arise from the nontrivial topology of their bulk band structure. Their features are protected

as long as the relevant symmetries are preserved, and as long as the system remains in a

gapped state. Remarkably, relaxing these two requirements gives rise to a plethora of novel

topological phases: on the one hand, we have already seen in Chapter 4 how additional

lattice symmetries lead to the emergence of topological crystalline insulators. On the other

hand, also gapless systems can exhibit topological features. This important insight paved

the way to the discovery of topological semimetals [103,150].

The bulk energy bands of topological semimetals cross at isolated points or along nodal

lines in the BZ thereby rendering the system gapless. These “diabolical” points or lines

represent topologically nontrivial objects by themselves and give thus rise to topological

features. In this chapter, we are going to focus on the perhaps most celebrated materials

class of this kind: Weyl semimetals.

5.1.1 Weyl fermions as solutions of the Dirac equation

To understand the origin of the term “Weyl” semimetal, let us first recall one of the most

important quantum-mechanical equations which is the Dirac equation [151]. The Dirac

equation was derived by Paul Dirac in search for a theory reconciling quantum mechanics

with Einstein’s special theory of relativity. It reads

i~ ∂tψ(x, t) =
(
βmc2 − ic~

d∑
i=1

αi∂xi

)
ψ(x, t) = HD ψ(x, t), (5.1)
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where d labels the spatial dimension of the system, HD is the Dirac Hamiltonian, and β,

αi are Hermitian matrices satisfying

β2 = α2
i = 1, (5.2)

αiαj + αjαi = {αi, αj} = 0 for i 6= j, (5.3)

αiβ + βαi = {β, αi} = 0. (5.4)

The minimum size of the β and αi matrices depends on the dimension of the system.

In d = 3, for instance, the above algebraic relations are satisfied by four 4 × 4 gamma

matrices: β = σz ⊗ 12, α1 = σx ⊗ sx, α2 = σx ⊗ sy, α3 = σx ⊗ sz, where σi, si are

Pauli matrices29. In particular, the si are associated with the spin degree of freedom of

the particle. The solutions of the corresponding Dirac equation are four-component Dirac

spinors with energies E satisfying E2 = (pc)2 + (mc2)2, where p represents eigenvalues

of the momentum operator p̂ = −i~∇. In this form, the Dirac equation describes 3D

relativistic, massive spin-1/2 particles, such as electrons, and their corresponding anti-

particles.

Hermann Weyl realized that the Dirac equation can be simplified in odd spatial dimen-

sions for massless particles30 [153]. He found that in any odd spatial dimension d = 2k+1,

there exists a Hermitian matrix γ5 = −ikα1 . . . αd that commutes with the “kinetic” ma-

trices αi but anticommutes with the “mass” matrix β. Furthermore, γ2
5 = 1 which means

that γ5 has eigenvalues ±1. Hence, the massless Dirac Hamiltonian with m = 0 commutes

with γ5 and its eigenspace decomposes into two sectors associated with the γ5 eigenvalues

±1. In particular, for d = 3 the Dirac Hamiltonian of a massless spin-1/2 particle is

HD = c

3∑
i=1

p̂i(σx ⊗ si) =

(
0 c p̂ · s

c p̂ · s 0

)
. (5.5)

Apparently, this Hamiltonian commutes with the Hermitian operator γ5 = −σx ⊗ 12. If

we use eigenstates of γ5, i.e., γ5ψ± = ±ψ±, the Dirac equation (5.1) becomes

i~ ∂tψ± = −c (12 ⊗ p̂ · s)γ5 ψ± = (12 ⊗∓c p̂ · s)ψ±. (5.6)

29In d = 2, the algebraic relations can already be satisfied by the 2× 2 Pauli matrices. In particular, one
can choose β = σz, α1 = σx, and α2 = σy.

30Another simplification was proposed by Ettore Majorana [152]. He found a real-number valued solution
of the Dirac equation which describes neutral particles that are their own anti-particles.
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5 Weyl semimetals with time-reversal symmetry

These two equations are expressed more elegantly in the following form,

i~ ∂tψW = HWψW = ∓(c p̂ · s)ψW , (5.7)

where ψW are two-component Weyl spinors and HW = ∓c p̂ · s is the Weyl Hamiltonian.

This equation is commonly known as the Weyl equation. We immediately see that the

Weyl fermions propagate parallel or antiparallel to their spin s depending on their γ5

eigenvalue. Hence, Weyl fermions have a well-defined chirality which is why they are also

termed chiral fermions.

Shortly after Weyl’s proposition of a massless spin-1/2 fermion with definite chirality, a

new fundamental particle, namely the neutrino, emerged as a promising candidate. The

neutrino was first postulated in 1930 by Wolfgang Pauli to explain the beta decay [154],

and finally detected experimentally in 1956 [155]. For a long time, neutrinos were believed

to be Weyl fermions until the discovery of a non-vanishing neutrino mass in the late 90s put

an end to this theory [156,157]. Hence, as of now there are no known “fundamental” Weyl

fermions in nature. Nonetheless, this is by no means the end of the story. Remarkably, it

is possible for Weyl fermions to emerge as quasiparticles in solids [103].

5.1.2 Weyl fermions in condensed matter: Weyl semimetals

In condensed matter physics, the only fundamental particle of interest is the electron.

Nevertheless, the interplay of electrons with the underlying lattice can give rise to a multi-

tude of emergent phenomena as we have already seen in the previous chapters. The energy

spectrum of electrons in solids typically consists of a multitude of energy bands which,

in the ground state, are filled up to the Fermi level. Higher states in energy represent

one-particle excitations of the ground state. These excitations can be described in terms

of quasiparticles whose properties, such as mass or charge, can be quite different from the

“bare” electrons.

A Weyl semimetal (WSM) is a three-dimensional gapless material in which the bulk

energy bands close to the Fermi level coincide only at isolated points k0 in the Brillouin

zone [158–161]. Assuming that the crossing is formed by two non-degenerate bands, the

Hamiltonian of the system can be expanded around k0 in the following form [103]

H(k) ≈ f0(k0) 1 + v0 · δk 1 +
∑
i=x,y,z

vi · δkσi, (5.8)
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Figure 5.1: Weyl semimetals of Type I and Type II: shown are typical dispersions at
kz = 0. (a) Conventional Type I Weyl semimetals with point-like Fermi
surface (Weyl point). (b) Type II Weyl semimetal with a Fermi surface
consisting of conical electron and hole pockets connected at the Weyl
point.

where σi are again 2 × 2 Pauli matrices, and δk = k0 − k. If the Fermi level is close

to the band crossing point, the low-energy excitations of the system, and therefore the

corresponding quasiparticles, are described by this effective Hamiltonian. Moreover, if

we set v0 ≡ 0 and vi ≡ v0ei (i = x, y, z) with v0 = ±c, we immediately see that the

Hamiltonian in Eq. (5.8) is equivalent to the Weyl Hamiltonian HW from Eq. (5.7). Hence,

the quasiparticle excitations of the system are described by a linear Weyl equation, which

is the reason why such systems are dubbed Weyl semimetals.

By comparing Eq. (5.8) with the Weyl Hamiltonian HW , we find that the vi correspond

to effective velocities of the Weyl particles in a potentially anisotropic space. Their energy

spectrum is represented by a three-dimensional cone, a so-called Weyl cone [see Fig. 5.1(a)].

The corresponding bulk Fermi surface consists of a single point or, if the Fermi level does

not coincide with the Weyl node, of a closed Fermi surface. Furthermore, the chirality of

the Weyl fermions can be derived from their velocities through C = sign(vx ·vy×vz) [103].

If we ignore the f0(k0) term in Eq. (5.8), which simply corresponds to a constant shift in

energy, only the v0 term does not appear in the original Weyl equation. The reason is that

such a term is explicitly forbidden by Lorentz symmetry [162]. However, in a linearized

low-energy equation such a term is absolutely allowed and generically appears. More

specifically, it leads to a tilt of the Weyl cone in energy-momentum space. This gives

rise to a new type of Weyl semimetal which does not have an analogue in high-energy

physics [162]. In these so-called Type II Weyl semimetals, the Weyl cone is overtilted such

that the Fermi level cuts out open electron and hole pockets which are connected at the
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5 Weyl semimetals with time-reversal symmetry

Weyl point [see Fig. 5.1(b)]. Correspondingly, Weyl semimetals without this feature are

dubbed Type I Weyl semimetals.

Let us now have a closer look at the topological properties of Weyl semimetals. A

band touching point at k0, a so-called Weyl node, represents a diabolical point of the

Berry connection A(k) =
∑N

n=1 i〈unk|∂k|unk〉 of the N occupied bands because at k0 the

Berry connection is not uniquely defined. This gives rise to a nontrivial topology. Indeed,

it is easily checked that the integral of A(k) over any closed surface in momentum space

enclosing k0 is exactly 2πC, where C is the chirality of the Weyl node. In other words, Weyl

points represent monopoles of the Berry flux and C is also called topological charge [103].

Hence, Weyl nodes are topologically protected bulk features: generic perturbations can

only shift the nodes in energy and momentum space without removing them. From the

view point of the low-energy theory, isolated Weyl nodes are robust because, in contrast to

the Dirac equation, there exists no mass term for the Weyl equation in three dimensions31.

Weyl nodes can only be created or annihilated pairwise by fusing two Weyl nodes of

opposite chirality [163]. Furthermore, the total topological charge of the bulk BZ must

vanish due to the Nielson-Ninomiya theorem [88, 164]. As a consequence, Weyl nodes

always come in pairs of opposite chirality.

It is important to note that Weyl points in a Weyl semimetal represent accidental

degeneracies and thus do not require the presence of a particular symmetry. They are

intrinsic features of the three-dimensional band structure near the Fermi level which is

another reason for their robustness. In contrast, this is not possible in dimensions lower

than three without imposing additional symmetries32. This was already recognized by

Neumann and Wigner [165] who found that, in general, an accidental level crossing of

two bands requires at least three independently tunable parameters in the absence of any

symmetries33. This condition is naturally fulfilled in three dimensions where, as we can

see from Eq. (5.8), the three momentum components kx, ky, kz play the role of tuning

31This can be seen as follows: in Eq. (5.8), all of the three linearly independent Pauli matrices and the
unit matrix are used to describe a Weyl fermion. These matrices span the entire space of Hermitian
2×2 matrices. Hence, any additional term can only contribute to the already utilized matrices thereby
shifting the Weyl node in energy or momentum without the creation of an energy gap.

32A famous example in two dimensions is graphene as discussed in a previous chapter. In graphene, the
2D Dirac cones are protected by inversion symmetry. However, an inversion-symmetry breaking mass
term, such as a staggered sublattice potential, is able to lift the degeneracy at the Dirac point.

33This can be seen very easily in analogy with the Weyl semimetal Hamiltonian from Eq. (5.8): a generic
two-level crossing is described by the Hamiltonian H = a1σx + a2σy + a3σz with an energy gap given

by ∆E = 2
√
a2

1 + a2
2 + a2

3. Therefore, in order to have a degeneracy in the spectrum, we need to
achieve that a1 = a2 = a3 = 0 simultaneously. In general, this can only be accomplished if all three
parameters ai can be tuned independently.
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Figure 5.2: Transition from Dirac semimetal to Weyl semimetal (kz = 0): (a) Dirac
semimetal with P and Θ symmetry consisting of two copies of identical
Weyl cones. (b) Breaking P or Θ symmetry separates the Weyl cones in
momentum space.

parameters in the BZ.

Although the protection of Weyl degeneracies is intrinsic and does not rely on sym-

metries, the existence of Weyl nodes generally demands the absence of certain symme-

tries [103]. This can be seen as follows: consider a system of spin-1/2 electrons with time-

reversal symmetry Θ and inversion symmetry P . For such a system, we have [Θ,P ] = 0,

Θ2 = −1, P2 = 1, and both Θ and P reverse the momentum, i.e., k→ −k. The presence

of both symmetries allows us to form a new antiunitary operator Θ̃ = PΘ with Θ̃2 = −1

and k → k. This gives rise to a Kramers theorem with respect to Θ̃ with Kramers dou-

blets at every k. Hence, in the presence of both time-reversal and inversion symmetry all

energy bands are at least doubly degenerate and it is not possible to have an accidental

level crossing of only two non-degenerate bands. Consequently, in order to create a Weyl

semimetal we have to break at least one of these symmetries. This is also reflected in the

fact that Weyl nodes are always created pairwise: from the theoretical point of view, one

typically induces an energy-gap closing in a time-reversal invariant centrosymmetric sys-

tem. This results in an isolated fourfold degeneracy whose low-energy theory is described

by a 3D Dirac equation34 [see Fig. 5.2(a)]. This 3D Dirac point can be viewed as a pair of

Weyl fermions with opposite chirality. Upon breaking time-reversal or inversion-symmetry

the two Weyl fermions are then separated in momentum or energy leading to two isolated

Weyl nodes as illustrated in Fig. 5.2(b).

There have been several proposals for centrosymmetric magnetic Weyl semimetals such

34Such a system is called a 3D Dirac semimetal. Its Dirac point is in general not stable against generic
perturbations unless additional symmetries are imposed [103].
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as the pyrochlore iridates A2Ir2O7 (with A=Y or a rare earth element Eu, Nd, Sm, or

Pr) [158], or the Co-based magnetic Heusler compounds VCo2Al and VCo2Ga [166]. How-

ever, experimental evidences are still sparse [103].

On the contrary, the complementary approach has been much more successful. A large

number of time-reversal invariant Weyl semimetals, which will be the focus of this chapter,

have been theoretically proposed and confirmed in experiments [103]. The most famous ex-

amples are TaAs, TaP, NbAs and NbP [167–173]. Also candidates for time-reversal invari-

ant Type II Weyl semimetals have been put forward, such as WTe2 and MoTe2 [162,174].

A promising way to search for new time-reversal symmetric Weyl semimetals is to use their

close connection to 3D topological insulators with broken inversion symmetry: typically,

stable Weyl semimetal phases appear at the transition between two such insulating phases

with different topology [175].

Moreover, time-reversal symmetry imposes restrictions on the number of Weyl nodes.

Under time reversal, a Weyl node is mapped onto a different Weyl node with the same

chirality. According to the Nielson-Ninomiya theorem, this requires the presence of two

other Weyl nodes with opposite charge to compensate the topological excess charge. Thus,

in time-reversal symmetric Weyl semimetals the total number of Weyl points must be 4n

with n being an integer [163].

In general, Weyl semimetals give rise to a number of intriguing physical effects [103], such

as the chiral anomaly [176], an anomalous Hall effect [177], or the mixed axial-gravitational

anomaly [178]. Furthermore, their bulk-boundary correspondence is at the basis of one of

the most interesting hallmarks of Weyl semimetals: the existence of open constant-energy

contours in the surface BZ of the material which are called Fermi arcs [158].

5.1.3 Topological surface states: Fermi arcs

In the surface BZ of a Weyl semimetal, Fermi arcs connect the surface projections of Weyl

nodes with opposite chiralities [see Fig. 5.3(a)]. The presence of surface states is directly

linked to the nontrivial topology of the Weyl nodes as we are going to explain below by

closely following Ref. [158].

Without loss of generality, let us consider the (001) surface of a Weyl semimetal. Let C be

an arbitrary closed curve around the surface projection of a bulk Weyl point as illustrated

in Fig. 5.3(a). The curve is parameterized as ks = [kx(s), ky(s)] with s ∈ [−π, π). Let us

now recover the bulk BZ. By adding the bulk momentum kz ∈ [−π, π) as an additional

parameter, we promote our closed curve C in the surface BZ to a 2-torus T in the bulk BZ
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Figure 5.3: (a) Surface BZ of a Weyl semimetal with Weyl node projections (blue
dots) of charge ±1 connected by a Fermi arc (red line). A closed path
C enclosing one of the Weyl nodes has to cross a Fermi arc. (b) Cut
through the surface BZ along C which can be viewed as the edge BZ of a
quantum Hall insulator where chiral edge states (red line) connect the bulk
energy bands (blue continuum). (c) Typical low-energy surface spectrum
of a Weyl semimetal with surface projections of Weyl cones (blue) and
surfaces states (red) forming a Fermi arc at the Fermi energy EF (grey
plane).

enclosing the bulk Weyl point. On this 2D momentum-space surface the system is gapped.

Hence, the Hamiltonian H(s, kz) = H(ks, kz) on this submanifold can be interpreted as

the bulk Hamiltonian of a 2D insulating system in the effective BZ spanned by s and

kz. If the torus is small enough to enclose only one bulk Weyl point, the corresponding

surface integral of the Berry connection A(k) will be proportional to the chirality C of

the enclosed Weyl point. Hence, the 2D system described by H(s, kz) is a quantum Hall

insulator with Chern number n ≡ C.

By bulk-boundary correspondence, this 2D system will have |n| chiral edge states cross-

ing the Fermi level. In particular, let us pick a boundary that breaks translational symme-

try in the z direction only. The corresponding edge BZ of this geometry is then a subset

of the original surface BZ of our Weyl semimetal. More specifically, the edge BZ of T

coincides precisely with the curve C. Therefore, there have to be |n| = |C| surface states

at EF along the curve C in the surface BZ [see Fig. 5.3(b)]. Since C was arbitrary, there

must be |C| surface states for any closed curve around the same Weyl node as long as no

other Weyl node is crossed. By continuity, the collection of these states form |C| Fermi

arcs beginning at the Weyl node and terminating at different Weyl nodes with opposite

chiralities [see Fig. 5.3(c)].

Note that the Fermi arcs are open energy contours. Such a feature is not possible in the

bulk of a 2D material as it would violate the continuity requirement on the Fermi surface.

In a Weyl semimetal, this violation is circumvented due to the presence of the bulk Weyl
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nodes: Fermi arcs associated with opposite surfaces are connected through the bulk Weyl

nodes and thus form a closed Fermi surface globally.

5.2 Generic coexistence of Fermi arcs and Dirac cones on

the surface of time-reversal invariant Weyl

semimetals

In the previous section, we have introduced surface Fermi arcs as one of the characteristic

features of Weyl semimetals. Their existence is demanded by bulk-boundary correspon-

dence as they connect Weyl points of opposite chiralities on the surface.

Recently, it has been theoretically proposed that these Fermi arcs can, under certain

conditions, coexist with surface Dirac cones at the interface between a time-reversal broken

Weyl semimetal and a 3D time-reversal invariant topological insulator [179,180]. The close

relation between Dirac cones and Fermi arcs is also manifest in the fact that Dirac cones

can be created by fusing Weyl points in a specific manner as it occurs during the transition

between two topologically distinct insulating phases [163].

Given these findings, it is natural to ask whether it is possible to realize both Dirac

fermions and Weyl fermions in a single material. In the following, we are going to show

that in time-reversal symmetric Weyl semimetals the coexistence of Dirac cones and Fermi

arcs actually arises naturally. The results presented below are based on Ref. [181].

5.2.1 Topological invariants for time-reversal invariant Weyl

semimetals

In Section 5.1.3, we have explained how the nontrivial topological charge of Weyl nodes

leads to the existence of Fermi arcs. The key idea was to consider a closed 2D momentum-

space surface in the bulk BZ enclosing the Weyl node. This surface was then interpreted as

a quantum Hall system with a nontrivial Chern number equal to the Weyl node chirality

whose chiral edge states then formed the Fermi arcs.

In view of the following considerations, let us adopt a closely related point of view. For

that, we decompose the 3D BZ of a Weyl semimetal in 2D momentum space cuts separating

the Weyl points from each other [see Fig. 5.4(a)]. Most of the momentum-space cuts are

gapped systems and, as before, we can calculate their Chern number. At the Weyl points,

however, the 2D systems undergo a gap closing-reopening phase transition and their Chern
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Figure 5.4: (a) The BZ of a WSM as a collection of 2D insulators with zero (green) or
nonzero (red) Chern numbers. Weyl nodes (blue spheres) separate planes
with different Chern numbers. The bold frames indicate the TRI 2D
insulators characterized by a Z2 invariant. (b) Typical low-energy surface
spectrum of a TRI WSM with an additional surface Dirac cone: surface
states are shown in red, whereas the surface projections of the 3D bulk
Weyl cones are highlighted in blue. (c)–(d) Fermi arc connectivities in
the surface BZ of a TRI WSM with four Weyl points indicated by their
topological charge ±. The surface projections of the 3D TRI planes are
highlighted by dotted black (ν = 0) or dashed green (ν = 1) lines.

number changes. In this way, we can interpret the topological charge of a Weyl node as

the change in the Chern number of the collection of gapped 2D systems associated with

the 3D BZ of the Weyl semimetal. As in Section 5.1.3, the chiral edge states of the 2D

cuts lead to the characteristic surface Fermi arcs of the Weyl semimetal.

Remarkably, time-reversal invariant Weyl semimetals can in general35 be additionally

characterized by six Z2 invariants [183]. The Chern number of the effective 2D insulators

realized by the TRI planes will be zero, but the time-reversal polarizations still allow

to characterize the effective 2D systems in terms of a Z2 topological invariant ν [75].

Contrary to TRI insulators in 3D, where the six νi are not independent and can be reduced

to four using homotopy arguments [67, 85] – the strong and weak indices of 3D TRI

insulators [75, 84] discussed in Sec. 3.1.3 – in a time-reversal invariant WSM all six Z2

35An exception are Kramers-theorem enforced Weyl semimetals, where the Weyl points are pinned to time-
reversal invariant momenta. However, this can only occur in materials with chiral space groups [182]
which we explicitly exclude from this study.
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invariants are independent. The reason is the breakdown of the 3D homotopy argument

[67,85] due to the gapless nature of Weyl semimetals. In particular, the strong topological

index, as defined in Sec. 3.1.3, is no longer well defined and, hence, there are no longer

additional constraints on the values of the six Z2 invariants.

For a generic surface of a WSM, by bulk-boundary correspondence the νi determine

whether an even (νi = 0) or odd (νi = 1) number of Kramers pairs of surface states cross

the Fermi level along the surface projection of the i-th TRI plane. This imposes restrictions

on the structure of the surface Fermi surface but still does not uniquely determine it.

Figs. 5.4(c) and (d) sketch two allowed but qualitatively very different surface Fermi

surfaces of a time-reversal invariant WSM in which the Z2 invariants of the planes ks,2 =

0, π and ks,1 = π have the trivial value 0, whereas the invariant associated with the plane

at ks,1 = 0 has the nontrivial value 1. A surface Fermi surface consisting of only two

open arcs, connecting Weyl points as depicted in Fig. 5.4(c), is entirely allowed. However,

different pairs of Weyl points of opposite chirality can be connected only if an additional

Fermi pocket, enclosing a time-reversal invariant point, is created [see Fig. 5.4(d)]. The

latter situation is a unique signature of Fermi arcs coexisting with a surface Dirac cone [see

Fig. 5.4(b)], which is an exclusive feature of TRI Weyl semimetals. This surface Dirac cone

is protected for a given connectivity of the Fermi arcs since its corresponding Fermi pocket

can only be removed by connecting it to the Fermi arcs, which would lead to another

reconnection of the Weyl nodes. We emphasize that while this transition does not change

the Z2 invariants of the time-reversal invariant WSM, the change of the Fermi surface

topology does imply a Lifshitz transition on the surface of the material [184, 185]. Before

studying this Lifshitz transition in an explicit Hamiltonian, we will first determine the

generic consequences for quasiparticle interference (QPI) which are relevant for scanning

tunneling experiments. We will then compare this to explicit QPI calculations for the

explicit Hamiltonian in Sec. 5.2.3.

5.2.2 Phenomenological quasiparticle-interference patterns

Having established the coexistence of Fermi arcs and Dirac cones in a time-reversal in-

variant WSM, we now proceed to analyze their fingerprints in QPI patterns, which can be

observed in scanning tunneling spectroscopy (STS) experiments [186–190]. In STS exper-

iments, the differential conductance between the tip and the surface of a material is used

to obtain a spatial map of the electronic local density of states (LDOS) at a certain energy

and temperature [186, 191]. Impurities lead to characteristic modulations in the LDOS
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Figure 5.5: Idealized surface Fermi surface of a time-reversal symmetric Weyl
semimetal: two Fermi arcs with center of curvature at ±K and radius
of curvature Ra, and a circular Fermi pocket originating from a surface
Dirac cone centered at Γ̄ with radius Rp.

that depend strongly on the electronic structure of the host material and on the proper-

ties and distribution of impurities. In particular, impurities break translational symmetry

on the surface thereby enabling scattering between states with the same energy E = EF

but different momentum k and k′. The modulations in the LDOS can be analyzed with

Fourier-transform STS. In this way, the Fourier transformed LDOS is interpreted in terms

of the QPI between diagonal states of the clean host material [186,191].

Typically, the Fourier transformed LDOS is approximated by the joint density of states

(JDOS) [186,191], which is expressed as

J(q, E) =

∫
d2k A(k + q, E)A(k, E), (5.9)

A(k, E) = − 1

2π
Im{Tr[Gs(k, E)]}, (5.10)

where A(k, E) is the spectral function, Gs(k, E) is the surface Green’s function, and k is

the momentum parallel to the surface.

In order to obtain a phenomenological picture of the QPI patterns on the surface of Weyl

semimetals, we consider an idealized Fermi surface consisting of a circular Fermi pocket

around the origin that is surrounded by an open Fermi arc of constant curvature and its

time-reversal partner (see Fig. 5.5). Furthermore, we assume a constant spectral density.

93



5 Weyl semimetals with time-reversal symmetry

The spectral function of the system can then be decomposed as A = Ap +Aa1 +Aa2 with

Ap(k) =

∫ 2π

0

dα′ δ(k−Rp (cosα′, sinα′)]), (5.11)

Aa1,2(k) =

∫ α+∆α

α

dα′ δ(k∓ [K+Ra (cosα′, sinα′)]). (5.12)

Ap is the spectral function associated with the circular Fermi pocket of radius Rp. Aa1,2

are the contributions from the two Fermi arcs. The arcs are cut out from circles centered

at ±K with radius Ra. The end points of the arcs are at angles ±α and ±α±∆α. With

this decomposition, the JDOS of Eq. (5.9) becomes

J(q) =

∫
d2k [Aa1(k + q)Aa1(k) + Aa2(k + q)Aa2(k)︸ ︷︷ ︸

intra-arc

+Aa1(k + q)Aa2(k) + Aa2(k + q)Aa1(k)︸ ︷︷ ︸
inter-arc

+Ap(k + q)[Aa1(k) + Aa2(k)]︸ ︷︷ ︸
arc-pocket

+ [Aa1(k + q) + Aa2(k + q)]Ap(k)︸ ︷︷ ︸
arc-pocket

+Ap(k + q)Ap(k)︸ ︷︷ ︸
intra-pocket

]. (5.13)

We see that there are four different contributions to the total JDOS which can be attributed

to scattering events within each Fermi arc (intra-arc), between the Fermi arcs (inter-arc),

between Fermi pocket and Fermi arcs (arc-pocket), and within the Fermi pocket (intra-

pocket). Inserting Eqs. (5.11) and (5.12), each individual contribution involves integrals

of the form ∫
d2k

∫
dα′ dα′′ δ[k + q− ui(α

′)] δ[k− uj(α
′′)]. (5.14)

This can be written as a convolution of two δ functions, δ ∗ δ. By using that δ ∗ δ ≡ δ, the

integral becomes ∫
dα′ dα′′ δ[q + ui(α

′)] δ[uj(α
′′)]. (5.15)

In general, this integral cannot be simplified further. To obtain qualitative results for the

JDOS, we therefore approximate the appearing δ functions of the form δ(k) ≡ δ(kx)δ(ky)

by Lorentz functions

δε(ki) =
1

π

ε

k2
i + ε2

, ε� 1, (5.16)

with height 1/
√
ε and width

√
ε. The ensuing integrals are then solved numerically. The

results for the different JDOS contributions are shown in Fig. 5.6. Note that in each panel

the color scale is renormalized with respect to the considered contribution.
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Figure 5.6: JDOS contributions from an analytical treatment: (a) intra-arc scatter-
ing, (b) inter-arc scattering, (c) intra-pocket scattering, (d) arc-pocket
scattering. Note that in each panel the color scale is renormalized with
respect to the considered JDOS contribution. The color scale ranges from
white (small JDOS), over blue to black (high JDOS).

Fig. 5.6(a) shows the intra-arc JDOS contributions. We can clearly see a pinch point

at q = 0 which is in the center of a dumbbell-shaped feature aligned with the qx axis.

This is the unique QPI pattern of an open Fermi arc. Since the considered Fermi surface

consists of two of those arcs, we get an additional JDOS (inter-arc) contribution originating

from scattering between the arcs. These features appear around the qy axis at q vectors

corresponding to scattering vectors between the two arcs in the BZ [see Fig. 5.6(b)].

The intra-cone JDOS contribution, shown in Fig. 5.6(c), is strongly peaked at q = 0

and falls off rapidly away from the center. The resulting pattern is rotationally symmetric

reflecting the symmetry of the Fermi pocket. The feature has a sharp boundary with a

slightly enhanced intensity at |q| values corresponding to the diameter of the underlying

Fermi pocket. This is due to scattering events from opposing states of the Fermi pocket.

In Fig. 5.6(d) we present the arc-pocket JDOS contribution which is characteristic of

the coexistence of open Fermi arcs and closed Fermi pockets. It therefore represents

the universal QPI pattern of Weyl semimetals with additional surface Dirac cones. The

kidney-shaped features appear around the qy axis at q vectors corresponding to scattering

vectors that connect the open Fermi arcs to the closed Fermi pocket.
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Figure 5.7: JDOS contributions from an analytical treatment: (a) Fermi surface con-
sisting of two Fermi arcs only. The corresponding JDOS in (b) shows the
characteristic pinch point at q = 0. (c) A Fermi surface with additional
circular Fermi pocket shows additional features in the JDOS as shown
in (d). Most remarkable are the kidney-shaped features stemming from
scattering between Fermi pocket and Fermi arcs.

Finally, Fig. 5.7 shows the accumulated JDOS spectra and the corresponding idealized

surface Fermi surfaces for the cases with [Figs. 5.7(a) and (b)] and without an additional

Fermi pocket [Figs. 5.7(c) and (d)].

5.2.3 The coexistence in a tight-binding model formulation

Next, we introduce a tight-binding model for a time-reversal invariant WSM to investigate,

on a microscopic basis, the coexistence of surface Dirac cones and Fermi arcs. The tight-

binding model is defined on a cubic lattice and reads

H(k) = a (sin kx τ
1s3 + sin ky τ

2s0) + β τ 2s2 + d τ 2s3 + α sin ky τ
1s2

+ [t cos kz + 2b(2− cos kx − cos ky)] τ
3s0 + λ sin kz τ

0s1, (5.17)

where the si are Pauli matrices in spin space, whereas the τ i are Pauli matrices associated

with additional orbital degrees of freedom. The lattice constant has been set to unity.

The Hamiltonian is based on a general tight-binding model introduced in Ref. [187]. The
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5.2 Coexistence of Fermi arcs and Dirac cones in WSMs

model preserves time-reversal symmetry with Θ = iτ 0s2K, k→ −k, where K is complex

conjugation. The β, d and λ terms break inversion symmetry with the inversion operator

P = τ 3s0, k → −k, which is a necessary condition for the existence of a Weyl semimetal

phase.

In the following, we will analyze H(k) in a finite geometry. For the analysis of the en-

ergy spectrum, we choose the system to have open boundary conditions in the y direction

and periodic boundary conditions in the x and z direction. This gives rise to two (010)

surfaces. The energies of the system are then obtained from exact numerical diagonaliza-

tion of the corresponding tight-binding Hamiltonian in mixed position-momentum space

associated with Eq. (5.17). The topological charge of the bulk Weyl nodes is obtained

from the bulk Hamiltonian by integration of the Berry flux over the surface of a BZ vol-

ume containing the Weyl node. The Z2 invariants νi of the time-reversal invariant planes

are instead computed using a Wannier-center formulation of the topological invariant (see

Appendix B). Furthermore, the JDOS corresponding to the (010) surface of a semi-infinite

slab of the system described by Eq. (5.17) will be computed. For that, the (010) surface

Green’s function of the system is determined using an iterative scheme (see Appendix C).

In all calculations the Fermi energy is assumed to be at EF = 0.

To demonstrate the coexistence of surface Dirac cones and Fermi arcs in H(k), we start

from a particular Weyl semimetal phase and, first, vary the parameter β. The results are

presented in Fig. 5.8. With the chosen parameters, the model features four bulk Weyl

points of charge ±1 which are all located away from the time-reversal invariant planes

of the bulk BZ. Hence, all six Z2 invariants are well-defined. In particular, we find that

νkz=π = 1 while the remaining five Z2 invariants are zero. At the (010) surface we therefore

expect an odd number of Kramers pairs at kz = π and an even number of Kramers pairs

at kz = 0 and kx = 0, π. Furthermore, the surface projections of the four Weyl nodes

appear in different quadrants of the surface BZ.

For large values of β, we find that Fermi arcs connect two Weyl nodes in the left half-

plane and two Weyl nodes in the right half-plane [see Fig. 5.8(a)]. The fact that the

Fermi arcs cross only the line kz = π is in agreement with the values of the topological

invariants. In Fig. 5.8(b), the corresponding JDOS is shown. We see an elongated “figure-

eight” feature aligned with the qz axis and two crescent-shaped patterns parallel to it,

which occur at q values corresponding to the mutual distance of the Fermi arcs in the

surface BZ.

By decreasing the parameter β, the Fermi arcs are bent towards each other until they

intersect at a critical value of β [see Fig. 5.8(c)]. This point corresponds to the Lifshitz
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Figure 5.8: Fermi surfaces and JDOS for (010) surfaces in the tight-binding model
with a = b = 1, t = 1.5, α = 0.3, d = 0.1, λ = 0.5, and EF = 0: the
first row shows the Fermi surfaces for different values of the parameter β.
The bulk Weyl nodes are highlighted in blue and their topological charge
is indicated. Surface states are highlighted in red. The second column
shows the corresponding JDOS spectra. In (f), the kidney-shaped features
indicative of the coexistence of Fermi arcs and Dirac cones are clearly
visible in the JDOS. Also note how the Fermi-surface topology changes
with β while passing a surface Lifshitz transition at β = βc ≈ 0.53.

transition at which the connectivity of the Fermi arcs changes. Note that the position of

the Weyl nodes has barely changed. A further decrease in the parameter β reveals the

coexistence of Dirac cones and Fermi arcs [see Fig. 5.8(e)]: surface Fermi arcs connect

two Weyl nodes in the upper half-plane and two Weyl nodes in the lower half-plane of

the surface BZ. In addition to the open-arc features, we find an elliptical Fermi pocket of

surface states around the Z̄ point of the surface BZ. The existence of the Fermi pocket

is required for this particular connectivity of Weyl nodes to satisfy the number of surface

states imposed by the topological invariants νi which have not changed during the Lifshitz

transition.

The JDOS of this configuration is in perfect agreement with the analytical considerations

above [see Fig. 5.8(f)]: we find the elliptical inter-pocket feature with a pronounced central

peak around the origin whose semi-axes are twice as large as those of the associated Fermi

pocket in the surface BZ. We do not clearly see a characteristic intra-arc feature, most
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Figure 5.9: Surface energy spectra along high-symmetry lines in the tight-binding
model with a = b = 1, t = 1.5, α = 0.3, d = 0.1, λ = 0.5: (a)–(c)
energy spectra for different values of the parameter β. Bulk-like states
are highlighted in blue, surface states are highlighted in red and green
indicating different surfaces. The Fermi energy is at EF = 0 (dashed
line). (d) High-symmetry path through the surface BZ corresponding to
the displayed energy spectra.

likely because its intensity is too weak as compared to the Fermi pocket features. Also the

inter-arc features are barely visible due to the small size of the Fermi arcs. However, their

position and shape agree with the expectation from our simple analytical consideration.

Most importantly, we find the kidney-shaped features indicative of scattering between the

Fermi arcs and the Fermi pocket. As expected, the broadening equals the size of the

Fermi pocket whereas their position corresponds to the distance between Fermi pocket

and Fermi arcs. The comparison of Figs. 5.8(b) and (f) shows that the different Fermi arc

connectivities are reflected in distinct universal JDOS features.

In addition, Fig. 5.9 presents energy spectra along high-symmetry lines through the kx-

kz surface BZ, which are indicated in Fig. 5.9(d). Recall that for β = 0.7 the surface Fermi

surface consists of two Fermi arcs only. They cross the kz = π axis in two points which

are related by time reversal. The corresponding energy spectrum along Γ̄Z̄ and Z̄M̄ is

shown in Fig. 5.9(a). For the sake of clarity, let us focus on surface states associated with

only one of the two surfaces. We see that there is an in-gap surface Kramers doublet at Z̄,

relatively far away from the Fermi energy, which is protected by time-reversal symmetry.

Away from this point, the doublet is split but the ensuing non-degenerate states evolve
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Figure 5.10: Surface spectral weight for the (010) surface in the tight-binding model
with a = b = 1, t = 1.5, α = 0.3, d = 0.1, λ = 0.5 and β = 0.7. Note
that the Fermi energy EF is varied while the parameter β is fixed. We
can see how the Fermi arc connectivity is changed by changing the Fermi
energy.

differently depending on the considered direction in k space. Along Γ̄Z̄ both surface bands

terminate at the bulk conduction/valence band. On the contrary, along Z̄M̄ one band

terminates at the conduction band whereas the other terminates at the valence band.

By bulk-boundary correspondence, this behavior is in agreement with the topological

invariants of the 2D bulk systems associated with these lines.

By decreasing β, the Kramers doublet at Z̄ moves closer to the Fermi energy. At

the Lifshitz transition [see Fig. 5.9(b)], one of the surface bands along Γ̄Z̄ intersects the

Fermi-energy plane tangentially. This is the point where the topology of the Fermi surface

changes: below a critical βc, the Kramers doublet, whose low-energy spectrum is a 2D

Dirac cone, is close enough to the Fermi-energy plane to cut out a circular Fermi pocket

[see Fig. 5.9(c)]. To preserve the evenness of the number of crossings, there also has to be

a second crossing along Γ̄Z̄. In contrast, the number of E = 0 states along Z̄M̄ has not

changed. This leads to the formation of new Fermi arcs which only cross the kx = 0 line

of the surface BZ.

Furthermore, note that the Dirac cone appearing on the surface of the considered Weyl

semimetal has a peculiar feature: along one direction, here Z̄M̄ , it connects the bulk va-

lence to the bulk conduction band, as on the surface of a topological insulator. However,

along the perpendicular direction, here Γ̄Z̄, the Dirac cone is connected to the bulk con-

duction band (or to the bulk valence band) only. Such a “dangling” Dirac cone can only

appear on the surface of a Weyl semimetal due to the lack of a global relation between

the Z2 invariants.

Finally, we are going to show that the Fermi arc connectivity can also be changed
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Figure 5.11: (a) Crystal structure of LaPtBi [192]. (b) Bulk BZ of LaPtBi with
schematic Weyl point positions (red and blue spheres) and mirror planes
(red and yellow planes) [192]. Also shown is the projection of the bulk
features onto the (001) surface BZ.

by varying the Fermi energy EF . For that, we analyze the spectral weight on a (010)

surface of the tight-binding model (see Fig. 5.10). Since only the Fermi energy is varied,

the progression can be compared to the energy dispersion of the red surface bands in

Fig. 5.9(a). For EF = 0, the Dirac point is far above the Fermi energy and there are no

surface states at the Fermi energy along Γ̄Z̄. Hence, there is no Dirac Fermi pocket as

can be seen in Fig. 5.10(a). By increasing EF , the Fermi level moves closer to the Dirac

point until it intersects the “dangling” arm of the Dirac cone along Γ̄Z̄. This is where

the Lifshitz transition takes place and the connectivity of the Fermi arcs is changed in

the same way as for varying only the parameter β. In particular, a Dirac Fermi pocket is

formed [see Fig. 5.10(b)]. The linear dispersion of the corresponding Dirac states can be

inferred from Fig. 5.9(a).

5.2.4 Density-functional theory analysis of strained LaPtBi

Having established the coexistence of Dirac cones and Fermi arcs in a generic tight-binding

model of TRI Weyl semimetals, we are now going to show its realization in the half-Heusler

compound LaPtBi (see Fig. 5.11), which possesses both band inversion [193] and lattice

noncentrosymmetry. Under a broad range of in-plane biaxial compressive strain, LaPtBi

realizes a Weyl semimetal phase with eight Weyl nodes residing precisely at the Fermi level

at stoichiometry composition [192]. LaPtBi has a face-centered cubic crystal structure with

a lattice constant of a0 = 6.829Å [192]. Furthermore, it preserves time-reversal symmetry
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Figure 5.12: Bulk energy bands of LaPtBi projected onto the (001) surface BZ along
high-symmetry directions close to the Γ̄ point: (a) (x00) direction (sur-
face projection of ky = 0 plane). (b) (xx0) direction (surface projection
of kx = ky plane). Weyl node projections are marked by grey dots.

which makes it a suitable material for our study.

For the density-functional theory calculations36, the full potential local orbital method

in 4-component relativistic mode [194] was employed, using 123 points for the tetrahedron

integration method. The resulting bands were fitted via maximally projected Wannier

functions including a minimum basis of La 6s6p5d4f, Bi 6s6p6d and Pt 6s6p5d. The

Wannier model was used to prove the existence of the Weyl points via Berry curvature

monopoles and was mapped onto a semi infinite slab with LaBi-plane (001) termination

for the determination of the surface spectral function. Furthermore, compressive in-plane

strain of a = 0.99a0, c = 1.02a0 was applied following [192].

Due to the concomitant presence of time-reversal and two-fold rotations along the x

and y axis, eight Weyl points of charge ±1 are located at the kx = 0 and ky = 0 planes of

the bulk BZ. More specifically, the Weyl points positions are (±k∗x, 0, k∗z) and (0,±k∗y, k∗z),
with k∗x = k∗y = 0.0106Å

−1
and k∗z = 0.041Å

−1
, which agrees very well with the results in

Ref. [192]. In Fig. 5.12, the bulk bands projected onto the (001) surface BZ are shown

along the (x00) and (xx0) direction close to the Γ̄ point. More specifically, the shown

slices correspond to surface projections of the ky = 0 and ky = kx planes of the bulk BZ.

As we can see, there is a bulk gap-closing point at E = 0 along ky = 0 [see Fig. 5.12(a)],

which corresponds to the projection of two Weyl nodes, whereas the system has a full

bulk gap along the ky = kx plane [see Fig. 5.12(b)]. Similar observations can be made for

the planes with kx = 0 and ky = −kx (not shown). Hence, the electronic states in the

kx = ky and kx = −ky planes are all gapped, so that the Z2 topological invariant in these

36The calculations were done in collaboration with Dr. Klaus Koepernik [181].
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Figure 5.13: Surface spectral weight in the (001) surface BZ of LaPtBi for E = 0:
(a) entire surface BZ. Borders of the surface BZ are indicated by white
dashed lines. The region inside the green square is magnified in panel
(b). (b) Magnified region around the Γ̄ point of the surface BZ. The
positions of the projected Weyl nodes are marked by grey dots. For
clarity, the Weyl node projections have been labeled by numbers. Panel
(c) shows the same region with a higher magnification factor. Note how
the surface Fermi arcs connect the Weyl node projections.

time-reversal invariant subsystems is well-defined.

Fig. 5.13 shows the results for the surface spectral weight in the kxky-plane of the LaBi

terminated (001) surface of a semi-infinite slab. In panel (a), the full surface Fermi surface

of the system in the (001) surface BZ is displayed, whereas panels (b) and (c) show a

magnified region around the Γ̄ point with different zoom factors. The four Weyl point

projections along the kx = 0 and ky = 0 lines are highlighted in grey and labeled by

numbers for clarity. We note that each point corresponds to the projection of two Weyl

nodes with the same charge giving each point an effective Weyl charge of ±2. Hence, there

must be two outgoing Fermi arcs for each Weyl-point projection.

From the shown figures we infer the following Fermi arc connectivity: node 1 is connected

to node 2, node 2 is connected to node 3 through the border of the surface BZ, node 3 is

connected to node 4, and node 4 is connected to node 1 again through the border of the

surface BZ. This means that all Weyl node projections are on one closed loop of Fermi

arcs. Furthermore, along kx = −ky we find two trivial Fermi pockets and there are also

two more trivial lines of surface states farther away from the origin.

Let us now analyze the surface Fermi surface in the light of the general coexistence

presented earlier. In Fig. 5.14(a), the Fermi level coincides with the Weyl-point energies.

As demonstrated above, the time-reversal invariant planes kx = ky and kx = −ky have full

energy gaps in the bulk. Therefore, they represent 2D TRI insulators. The corresponding

Z2 invariant can be inferred, by bulk-boundary correspondence, by simply counting the
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Figure 5.14: Surface Fermi surfaces of LaPtBi with (001) termination: shown is the
surface spectral weight. The positions of the four Weyl-point projections
are marked by grey dots. The panels display the transition between
different Fermi-arc connectivities by varying the Fermi level. Note that
the connectivity shown in (c) requires the presence of an additional Fermi
pocket around the origin which resembles Fig. 5.8(e). (d) A further
increase of the Fermi level reveals that the Fermi pocket indeed originates
from a Dirac cone around Γ̄.

number of Kramers pairs in the (001) surface BZ. We count one Kramers pair of surface

states for the kx = ky plane, and three for the kx = −ky plane. Hence, both planes

represent nontrivial 2D insulators with Z2 invariant ν = 1. This agrees with the results

of an explicit computation of the invariants using the Wannier-center formulation of the

Z2 invariant discussed in Appendix B. As we have discussed above, the Z2 invariants give

rise to restrictions on the Fermi surface topology. In this case, the Fermi arcs connect in

a way that does not require an additional Fermi pocket.

Let us now study what happens if we increase the Fermi level, which could for instance

be achieved by electron doping. Note that this corresponds to the procedure discussed at

the end of the previous section in the context of a tight-binding model. The results are

shown in Fig. 5.14. We observe that the Fermi arcs connecting node 1 to node 2 and node

3 to node 4 start to fuse with the trivial Fermi pockets [see Fig. 5.14(b)]. At this point

the Weyl nodes reconnect and a Lifshitz transition takes place [compare Fig. 5.14(b) to

Fig. 5.8(c)]. Starting from the given Fermi arc connectivity, such a reconnection is only

possible by creating an additional Fermi pocket around the origin in order to respect the

constraints imposed by the Z2 invariants of the TRI planes. This is shown in Fig. 5.14(c).

Note that the Weyl point projections are indeed connected in a different way. More

specifically, node 1 and node 4 are now directly connected by two Fermi arcs. The same

holds for node 2 and node 3. This means that the Fermi arcs now form two closed loops

each including two Weyl node projections.

The additional Fermi pocket indeed originates from a Dirac cone as can be seen in
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Fig. 5.14(d), where a sequence of surfaces Fermi surfaces close to the Γ̄ point is shown

for different EF . We observe that the Fermi pocket shrinks as the the Fermi level is

increased. At EF ≈ 1.5 meV, the Fermi pocket has shrunk to a single point, which is the

Dirac point. By tuning EF further, the Fermi pocket expands again. The sequence of

Fermi surfaces is accumulated in Fig. 5.14(d) to indicate the resulting surface Dirac cone.

This demonstrates the close connection between Fermi arc states and Dirac states on the

surface of time-reversal invariant Weyl semimetals.

5.3 Synthesizing Weyl semimetals in weak topological

insulator and topological crystalline insulator

multilayers

An important cornerstone of the success of Weyl semimetals is the growing number of

candidate materials exhibiting Weyl physics. However, available materials typically exhibit

a huge number of Weyl nodes [103] making it difficult to test theoretical predictions,

which are instead based on models with the minimal number of Weyl nodes allowed by

symmetry. Therefore, in view of experimental investigations and potential applications of

Weyl semimetals, it is highly desirable to develop new design principles that allow for the

controlled preparation of Weyl semimetals.

In this section, we are going to discuss a multilayer design for time-reversal invariant

Weyl semimetals based on a heterostructure model introduced by Balents and Burkov [159].

In the latter, only strong TIs with a single Dirac cone per surface as the active layer were

considered. Here, we are going to extend this principle to topological materials with an

even number of surface Dirac cones. In particular, we will consider two distinct cases:

multilayers based on weak TIs with two Dirac cones pinned to TRI momenta, and mul-

tilayers based on TCIs with two unpinned Dirac cones. We will show that both systems

give rise to time-reversal invariant Weyl semimetal phases with the minimal number of

Weyl nodes which exhibit a high degree of tunability. The results presented here closely

follow Ref. [195].
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5.3.1 Balents-Burkov model for strong topological insulator

multilayers

Let us first review the Weyl semimetal model introduced by Balents and Burkov [159].

Generally speaking, it provides an alternative approach to creating new Weyl semimetals

based on other topologically nontrivial materials. The idea is to construct a multilayer

heterostructure consisting of alternating layers of a 3D strong topological insulator (STI),

such as Bi2Se3, and layers of an ordinary insulator (OI) [see Fig. 5.15(a)]. Generically,

there will be a surface Dirac cone at each STI-OI interface. If the layers are sufficiently

thin, Dirac cones from adjacent interfaces are able to hybridize and open an energy gap.

Furthermore, magnetic impurities inserted into the STI layers provide a time-reversal

breaking mechanism as well as another gap-opening term for the interface Dirac cones.

Balents and Burkov found that it is the interplay of these two “mass” terms that leads to

the emergence of a stable Weyl semimetal phase.

The multilayer design described above can be modeled by the following Hamiltonian [159],

H =
∑
k⊥,ij

[
vDσ3(ẑ × s) · k⊥ δi,j +mσ0sz δi,j + ∆Sσ1s0 δi,j

+
1

2
∆Dσ+s0 δi,j+1 +

1

2
∆Dσ−s0 δi,j−1

]
c†k⊥,j

ck⊥,i, (5.18)

where σ0,1,2,3 and σ± = σ1 ± iσ2 are Pauli matrices associated with the two (top and

bottom) surfaces, s0,x,y,z are Pauli matrices corresponding to the spin degree of freedom,

and k⊥ is the momentum parallel to the interfaces. The first term describes the Dirac

cones of the two surfaces, the second represents the magnetic impurities, and the remaining

terms model tunneling between Dirac states of adjacent surfaces. In the following, we will

briefly summarize the key features of the half-filling phase diagram [159].

For m = 0, the model preserves time-reversal symmetry. Balents and Burkov found that

the spectrum is gapped for ∆D 6= ∆S with ∆D < ∆S being a trivial phase and ∆D > ∆S

being a strong TI phase [see Fig. 5.15(b)]. However, along the line ∆D = ∆S the system

has a 3D Dirac point at kz = π. Apparently, this semimetal phase is not stable since any

generic perturbation pushes the system into one of the insulating phases.

For m > 0, time-reversal symmetry is broken leading to a sizable Weyl semimetal phase

in the region (∆S −∆D)2 < m2 < (∆S + ∆D)2 [see Fig. 5.15(c)]. In this region, the Dirac

points are split into two isolated Weyl nodes of chirality C = ±1 separated along the kz

axis in momentum space. Furthermore, the phase diagram also features insulating phases.
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Figure 5.15: (a) Multilayer heterostructure of strong topological insulators (STIs)
separated by ordinary insulators (OI) as spacer layers. The interfaces
(red) each contribute a single 2D surface Dirac cone. (b) Without mag-
netic impurities (m = 0): two gapped phases (STI and OI) are separated
by an unstable Dirac semimetal phase (red line). (b) With magnetic im-
purities (m > 0): a stable Weyl semimetal phase (green) emerges.

For both ∆D −∆S > m and ∆S −∆D > m the system is in a trivial phase because of the

break-down of the STI phase. Around ∆D = ∆S = 0, a new insulating phase emerges.

This phase can be understood as a 3D quantum Hall system in the sense that each STI

layer has a quantized Hall conductivity of σxy = e2/dh, where d is the distance between

two adjacent STI layers.

While this particular model leads to magnetic Weyl semimetals with inversion symme-

try, it can also be used to build time-reversal invariant Weyl semimetals [160, 195]. In

particular, we are now going to show that this design principle can be extended to build

Weyl semimetals from other topologically nontrivial materials, such as weak topological

insulators and crystalline topological insulators.

5.3.2 Weak topological insulator multilayer

Let us briefly recall the main properties and features of time-reversal invariant topolog-

ical insulators in 3D, which we have introduced in Sec. 3.1.3. Time-reversal invariant

topological insulators are realizations of gapped topological phases in Altland-Zirnbauer

class AII [30, 31, 34]. In three dimensions, gapped systems belonging to this class can be

characterized by the four Z2 topological invariants ν0; (ν1ν2ν3) [75, 84]. An insulator with

nonzero ν0 is called strong topological insulator (STI). Its hallmark is the existence of an

odd number of protected surface Dirac cones pinned to TRI momenta [84].

If the strong index ν0 is zero but at least one of the weak indices ν1, ν2, ν3 is non-

zero, the system is dubbed a weak topological insulator (WTI). In contrast to their strong
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(b) Schematic of the coupling terms between the surface Dirac cones
(red). The Dirac cones are pinned to different TRI momenta Γα and Γβ
which are mapped onto each other by translational-symmetry breaking
induced by the dimerization mass m.

relatives, WTIs feature an even number of topologically protected, pinned Dirac cones

only at certain surfaces [84, 104]. More specifically, there exist so-called “dark surfaces”

where surface Dirac cones are absent. These are the surfaces whose Miller indices (modulo

2) are identical to the weak indices (ν1ν2ν3). This property is related to the fact that a

weak TI is topologically equivalent to a stack of 2D TIs with stacking direction [ν1ν2ν3].

Let us now consider a heterostructure consisting of layers of weak TIs as illustrated in

Fig. 5.16(a). Without loss of generality, we consider the invariants of the weak TIs to

be 0; (100), i.e., the weak TIs are equivalent to 2D TIs stacked in the x direction, which

thus corresponds to the “dark direction”. Next, we create a one-dimensional superlattice

in the z direction, which is perpendicular to the dark direction, by inserting spacers of

OIs between the weak TI layers. Due to the bulk-boundary correspondence, there will

be an even number of Dirac cones at each interface between the OI and the weak TI.

For simplicity, we here assume each interface to have the minimal number of two Dirac

cones. Initially, the Dirac cones are pinned to different TRI momenta Γα and Γβ along

the dark direction. However, a dimerization in the weak TI crystal [196] breaks the

translational symmetry along the dark direction x and allows the two Dirac cones to

couple. Furthermore, if weak TI layers and spacer layers are sufficiently thin, also Dirac

states from adjacent surfaces can couple through hybridization.
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5.3 Synthesizing WSMs in weak TI and TCI multilayers

Low-energy theory formulation

The low-energy theory of the multilayer heterostructure described above is given by the

following Hamiltonian,

H =
∑
k⊥,ij

[
vDσ3τ0(ẑ × s) · k⊥ δi,j +mσ0τ2s3 δi,j + ta,1σ1τ0s0 δi,j

+
ta,2

2
(σ− δi,j+1 + σ+ δi,j−1)τ0s0 + tb,1σ1τ1s0 δi,j + δ1σ2τ2s0 δi,j

+
tb,2

2
(σ− δi,j+1 + σ+ δi,j−1)τ1s0

]
c†k⊥,j

ck⊥,i, (5.19)

where σν , τν , and sν are Pauli matrices associated with the top and bottom surfaces of the

weak TIs, the two Dirac cones per surface, and the spin degree of freedom, respectively. In

addition, vD is the Fermi velocity of the Dirac fermions, k⊥ = (kx, ky) is their momentum

in the 2D surface BZ of the weak TIs, m is the “dimerization mass”, and the indices i,

j label the weak TI layers. The parameters of our model are illustrated in Fig. 5.16(b).

Note that we also allow for an inter-valley coupling imbalance δ1. Such an imbalance

is expected to arise naturally when top and bottom surfaces of the weak TI layers are

nonidentical, e.g., when one surface is canted relative to the other. For simplicity, other

imbalances have been omitted since they do not change the results qualitatively.

The model of Eq. (5.19) preserves time-reversal symmetry with the operator Θ =

iσ0τ 0s2K, k→ −k, where K is complex conjugation. The inter-valley coupling imbalance

serves as an inversion-symmetry breaking term. The corresponding inversion operator is

P = σ1τ 0s0, with k → −k. In order to pin down the existence of a WSM phase, the

energies of the system are computed and its half-filling gap is monitored through the pa-

rameter space. This allows to identify gap closing points and their degeneracies. We can

anticipate the existence of a WSM phase qualitatively using the following arguments: the

hybridization of the surface Dirac cones ∝ ta,1, ta,2 leads to two 3D Dirac points in the

3D BZ of the model. The dimerization ∝ m can either gap out these degeneracy points,

leading to fully gapped phases, or shift the two 3D Dirac points in momentum space. Such

an unstable Dirac semimetal phase can in principle be transformed into a stable WSM

phase by breaking inversion symmetry [159–161]. This is accomplished by the inter-valley

coupling imbalance: each 3D Dirac point is split into two separate Weyl points.

Let us first explore the half-filling phase diagram for the inversion-symmetric model

with δ1 = 0 [see Fig. 5.17(a)]. We find several gapped phases, which we dub A and B,

separated by phase boundaries along which the system is semimetallic. More specifically,
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Figure 5.17: Phase diagrams of the weak TI multilayer with vD = m = ta,1 = ta,2 = 1.
(a) With inversion symmetry (δ1 = 0): there are two different gapped
phases, phase A (strong TI) and phase B (OI), and an unstable Dirac
semimetal phase (red lines). (b) Broken inversion symmetry (δ1 = 0.5):
between the strong TI phases, a stable WSM phase (green) with four
isolated Weyl points emerges.

in the semimetallic phase the system exhibits two unpinned 3D Dirac points on the kz

axis related by time-reversal symmetry.

By exploring the parameter space of the model, it can be found that the B phases are

adiabatically connected to a multilayer of fully-decoupled dimerized weak TIs. Since a

dimerized weak TI is topologically trivial, these phases correspond to an ordinary insu-

lator with Z2 invariants 0; (000). In order to determine the nature of the other gapped

phases, the corresponding parity eigenvalues of all occupied states are calculated at the

TRI momenta Γ = (0, 0, 0) and Z = (0, 0, π) [40], assuming that the topologically active

band inversions occur only at these momenta. As a result, a band inversion at the Γ point

occurs by moving from a B phase to an A phase. On the contrary, no band inversion

occurs between the two A phases. Hence, under our assumption, we deduce that the A

phases correspond to strong TIs with Z2 invariants 1; (000). Below, we will confirm these

results by analyzing a lattice regularization of the model.

Let us now turn to the inversion-broken case (δ1 6= 0). With inversion symmetry, the

two strong TI phases are separated by a Dirac-semimetal line. By breaking inversion

symmetry, the Dirac points are split into four separate Weyl points along the kz axis.

In this way, a WSM stability region emerges in the phase diagram [Fig. 5.17(b)]. By

integrating the Berry curvature over a closed momentum-space surface around each of the

Weyl nodes, their topological charges are calculated to be ±1.

In order to synthesize the proposed weak TI multilayer, one could start out with a

dimerized weak TI material, namely Bi13Pt3I7 [98]. Into the dark surface of the material
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5.3 Synthesizing WSMs in weak TI and TCI multilayers

one could then carve an array of sufficiently thin channels, where the channels are alter-

natingly tilted against each other. In this way, opposite weak TI surfaces are nonidentical

thereby providing the required interlayer coupling imbalance. This setup is extremely

challenging but can be accomplished using terraces or creating trenches by, e.g., focused

ion beams. The coupling between the layers can be fine-tuned by varying the channel

spacing, the channel width, and their relative angle. Finally, the channels must be filled

with an insulating spacer material. The resulting sample can be viewed as a dimerized

weak TI with a WSM layer on top of it. The characteristic features of the WSM, such

as surface Fermi arcs, could then be detected by performing angle-resolved photoemission

experiments.

Tight-binding model formulation

Let us now construct a tight-binding model whose low-energy theory is represented by the

Hamiltonian introduced in Eq. (5.19) above. For simplicity, we regularize the continuum

model on a cubic lattice.

We start by taking the momentum-space Hamiltonian corresponding to Eq. (5.19), and

perform the replacements kx,y → sin kx,y. This yields a Weyl semimetal with 16 Weyl

points. In order to get a model with the minimal number of Weyl points allowed by

symmetry, which is four for a time-reversal invariant system, we can annihilate all Weyl

points away from the kz axis. This is accomplished by replacing m with m+ b(2− cos kx−
cos ky), where the additional tight-binding parameter b has been introduced. The Bloch

Hamiltonian of the ensuing model reads

H(k) = vD σ
3τ 0(sin kys

1 − sin kxs
2) +

[
m+ b(2− cos kx − cos ky)

]
σ0τ 2s3

+ ta,1 σ
1τ 0s0 + ta,2(cos kz σ

1 − sin kz σ
2) τ 0s0 + tb,1 σ

1τ 1s0 + δ1 σ
2τ 2s0

+ tb,2 (cos kz σ
1 − sin kz σ

2) τ 1s0 + α sin kz σ
3τ 0(s1 + s2), (5.20)

In agreement with the low-energy model, this Hamiltonian preserves time-reversal sym-

metry and has inversion symmetry for δ1 = 0. In addition, the Bloch Hamiltonian for

α = 0 is invariant under a π rotation around the z axis, with the rotation operator given

by Rz(π) = iσ0τ 0sz, and (kx, ky, kz)→ (−kx,−ky, kz). To break this symmetry explicitly,

a rotational-symmetry breaking term has been introduced parameterized by α.

Around kx = ky = 0 and for α = 0, the Hamiltonian in Eq. (5.20) is identical to the low-

energy model. As a consequence, both models have qualitatively the same phase diagrams
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Figure 5.18: Band structure and EF = 0 surface Fermi surfaces for the WTI mul-
tilayer tight-binding model in a slab geometry with vD = m = b =
ta,1 = ta,2 = 1, tb,1 = tb,2 = 0.7, and δ1 = 0.5 (Weyl semimetal phase).
States localized to the surfaces are highlighted in red. (a) Band struc-
ture along high-symmetry lines of the surface BZ. Note the surface Dirac
cone around Γ̄, and the surface Fermi arcs and bulk Weyl cone projec-
tions along Γ̄Z̄. (b) Surface Fermi surface for α = 0 (with rotational
symmetry). (c) Surface Fermi surface for α = 0.5 (without rotational
symmetry). The topological charges of the Weyl nodes are also indi-
cated.

including Weyl semimetal and STI phases (see Fig. 5.17 above). In particular, for the

gapped phases the Z2 invariants can now be calculated directly. For this, either inversion

symmetry is restored to use the parities of the eigenstates at the six time-reversal invariant

points in the BZ [40], or a Wannier-center formulation of the topological invariants [197]

is used (see Appendix B). Both methods yield the same results and, as expected, the

calculations confirm the invariants of the STI phases to be 1; (000).

Let us now investigate the surface features of our system in the Weyl semimetal phase.

For that, we carry out an inverse Fourier transformation of the Hamiltonian in Eq. (5.20)

with respect to kx and study the resulting mixed position-momentum space Hamiltonian

with open boundary conditions in the x direction. This setup corresponds to a slab

geometry with two surfaces representing the dark surfaces of the underlying WTI layers.

Energies and eigenstates are obtained by exact numerical diagonalization.

In the presence of rotational symmetry, the surface Fermi surface with respect to a Fermi

energy at EF = 0 contains four isolated bulk states along the kz axis which correspond to

the surface projections of the four bulk Weyl nodes [see Fig. 5.18(b)]. The isolated bulk

states are connected pairwise by doubly degenerate Fermi arcs of states localized at the

two surfaces, as expected for a Weyl semimetal. The vanishing curvature of the Fermi

arcs is a consequence of rotational symmetry. Moreover, we find a pair of isolated, doubly

degenerate surface states pinned to the Γ̄ point of the surface BZ. These states belong to
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5.3 Synthesizing WSMs in weak TI and TCI multilayers

the vertex of a surface Dirac cone which happens to coincide with the Fermi level. Hence,

this system is yet another realization of a time-reversal invariant Weyl semimetal with

coexisting Fermi arcs and Dirac cones at its surfaces [181,198].

The dispersion of the energy states along high-symmetry lines of the surface BZ is

illustrated in Fig. 5.18(a). The projections of the bulk Weyl cones are clearly visible along

the kz direction as well as the connecting Fermi arcs. In the ky direction we see the linear

dispersion of the surface Dirac cone. Its dispersion along the kz axis is extremely flat

and terminates at one of the Weyl nodes. When rotational symmetry is broken (α 6= 0),

the Weyl node projections move away from the kz axis and the surface Fermi arcs are no

longer straight lines, as can be seen in Fig. 5.18(c).

5.3.3 Topological crystalline insulator multilayer

The essential ingredient used in the setup introduced in Sec. 5.3.2 is the presence of two

Dirac cones per surface that are coupled to each other. The question that arises is whether

this idea is also applicable to systems in which surface Dirac cones are not pinned to TRI

momenta. This occurs, for instance, in the topological crystalline insulators in the SnTe

material class which we have introduced in Sec. 4.1.3. They allow for an even number of

unpinned surface Dirac cones protected by mirror symmetry [112].

Let us briefly recall the main features of TCIs. TCIs are similar to “conventional” TIs

except that topological states are protected by additional discrete symmetries, such as

mirror, inversion or space group symmetries [48,110,113,115,120,128]. For systems in the

SnTe material class, we can define mirror Chern numbers nM for each mirror-invariant

plane, which represent Z topological invariants. By bulk-boundary correspondence, a

nonzero mirror Chern number implies the presence of |nM | Dirac cones on surfaces which

preserve the protecting mirror symmetry M [112].

In following, we are going to show that also TCI multilayers give rise to WSM phases. In

analogy with weak TI heterostructures, let us consider a multilayer consisting of alternating

layers of TCIs and OIs [see Fig. 5.19(a)]. Moreover, we will use a minimal TRI TCI with

mirror Chern number nM = 2 protected by a yz mirror plane. Thus, on surfaces parallel to

the xy plane there will be two unpinned Dirac cones at momenta related by time-reversal

symmetry. Without loss of generality, let them be at k⊥ = ±d = (0,±d). As opposed

to a dimerized weak TI multilayer, the Dirac cones can be gapped even in the absence of

intravalley scattering by breaking mirror-symmetry with respect to the yz mirror plane.

This can be accomplished, for instance, by a ferroelectric distortion [112, 199]. Moreover,
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Figure 5.19: TCI multilayer: (a) cartoon of the multilayer design. The surfaces of the
TCI layers (red) contribute two unpinned surface Dirac cones each, which
are protected by a yz mirror plane. (b) Schematic of the coupling terms
between the surface Dirac cones (red). The Dirac cones are connected
by time reversal Θ and can be gapped by a mirror-symmetry breaking
mass m.

let the stacking direction of the TCI layers coincide with the z axis.

Low-energy theory formulation

As in the previous section, let us start with a low-energy description of our heterostructure.

Taking into account a ferroelectric Dirac mass parameterized by m, which breaks the

mirror symmetry of the system, the low-energy theory of the TCI multilayer can be written

down in analogy with the weak TI heterostructure. The model parameters are illustrated

in Fig. 5.19(b). The corresponding Hamiltonian is

H =
∑
k⊥,ij

[vD
2
σ3(τ 0 + τ 3)(ẑ × s) · (k⊥ + d) δi,j +

vD
2
σ3(τ 0 − τ 3)(ẑ × s) · (k⊥ − d) δi,j

+ t1σ
1τ 0s0 δi,j +

t2
2

(σ− δi,j+1 + σ+ δi,j−1)τ 0s0 +mσ0τ 3s3 δi,j

]
c†k⊥,j

ck⊥,i. (5.21)

The reflection operator is Mx = iσ0τ 0s1 with kx → −kx. Time-reversal symmetry is

preserved for all parameters with Θ = iσ0τ 1s2K, and k → −k. The operator of spatial

inversion is represented by P = σ1τ 1s0 (with k → −k) and does not commute with the

ferroelectric Dirac mass. Hence, the ferroelectric distortion also breaks inversion symmetry,

which will enable us to create a stable WSM phase similar to the weak TI multilayer.

In Figs. 5.20(a) and (b), the t1-t2 phase diagrams of the heterostructure are shown. For

m = 0, the system preserves inversion symmetry. In this case, we find gapped phases for

t1 ≶ t2, as well as a gapless phase along the line t1 = t2, as is shown in Fig. 5.20(a). In
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Figure 5.20: Phase diagrams of the TCI multilayer with vD = 1 and d = (0, 1).
(a) With inversion symmetry (m = 0): there are two gapped phases A
(weak TI) and an unstable Dirac semimetal phase (red line). (b) Broken
inversion symmetry (m = 0.5): a new gapped phase B (OI) emerges.
Between the gapped phases, there is a stable WSM phase (green) with
four isolated Weyl points.

the latter, the system has two isolated bulk Dirac points at k = (0,±d, π).

For nonzero m, a WSM phase with four isolated Weyl points emerges in the phase

diagram [see Fig. 5.20(b)]. The Weyl nodes have topological charges of ±1. Furthermore,

a new gapped phase appears around (t1, t2) = (0, 0).

Let us briefly comment on the gapped phases in Figs. 5.20(a) and (b). For m 6= 0, the

point (0, 0) in the phase diagram represents a multilayer of decoupled, mirror-symmetry

broken TCIs with gapped Dirac cones. This is a topologically trivial system. Hence, the B

phase corresponds to a phase of OIs with Z2 invariants 0; (000). To determine the nature of

the A phases, let us assume our model describes the low-energy theory of a lattice model.

Then, an analysis of the change of parities, by going from one A phase to the other in

the inversion-symmetric case (m = 0), shows that both A phases are identical. For the

inversion-symmetry broken case, let us consider the transition from A phase to B phase

along the t1 or along the t2 axis. The bulk energy gap of the system closes along lines in

momentum space at (kx, ky) = (0,±d). Such a gap closing transition can only change the

weak Z2 invariant ν3 relative to the B phase while the others remain unchanged. Hence,

the A phases correspond to weak TIs with Z2 invariants 0; (001), i.e., their dark direction

coincides with the stacking direction of the multilayer. We will verify this conclusion below

by comparing these results to a lattice regularization of the model.

As opposed to the weak TI multilayer, the heterostructure based on TCI layers could

be prepared in the form of a superlattice. The coupling between the surface Dirac cones

can be adjusted by choosing a particular thickness for the layers of TCIs and OIs. To

break mirror symmetry on the surfaces of the TCI layers, one could use an insulating,
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5 Weyl semimetals with time-reversal symmetry

ferro-electric material for the layers in between the TCIs.

A concrete material candidate is a heterostructure of alternating layers of PbTe and

SnTe stacked in the [110] direction [112]. SnTe is a TCI and hosts two Dirac cones on

(110) surfaces protected by a (11̄0) mirror plane, whereas PbTe is an OI. Moreover, SnTe

undergoes a ferroelectric distortion at low temperatures [112]. The distortion is along

the [111] direction. This breaks the (11̄0) mirror plane thereby providing an intrinsic

mechanism to gap out the surface Dirac cones. Hence, this superlattice is expected to

realize a WSM phase.

Tight-binding model formulation

Following the same procedure as before, we now construct a tight-binding model based

on the TCI multilayer Hamiltonian of Eq. (5.21) above. To achieve this, we first perform

the following substitutions: kx → sin kx, ky ± d → sin(ky ± d). As before, this leads to a

multitude of Weyl points. Another substitution, namely

m σ0τ 3s3 → [m+ b(2− cos kx)]σ
0τ 3s3 − b

2
cos(ky + d)σ0(τ 3 + τ 0)s3

− b

2
cos(ky − d)σ0(τ 3 − τ 0)s3 (5.22)

finally yields a tight-binding model with only four Weyl nodes, whose low energy theory

is thus identical to the Hamiltonian of Eq. (5.21). The Bloch Hamiltonian reads

H(k) =
vD
2
σ3(τ 0 + τ 3)[sin(ky + d)s1 − sin kxs

2]

+
vD
2
σ3(τ 0 − τ 3)[sin(ky − d)s1 − sin kxs

2]

+
1

2

(
m+ b[2− cos kx − cos(ky + d)]

)
σ0(τ 3 + τ 0)s3

+
1

2

(
m+ b[2− cos kx − cos(ky − d)]

)
σ0(τ 3 − τ 0)s3

+ t1 σ
1τ 0s0 + t2(cos kz σ

1 − sin kz σ
2) τ 0s0

+ α sin kz σ
3τ 0(s1 + s2). (5.23)

Similar to the tight-binding model for the WTI multilayer, this model is invariant under a

π rotation about the z axis (for α = 0). For this reason, an additional rotational-symmetry

breaking term parameterized by α has been incorporated.

First of all, the phase diagram of the tight-binding model is computed by keeping track

of all the gap-closing and reopening transitions. Those happen approximately at the same
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Figure 5.21: EF = 0 surface Fermi surfaces for the TCI multilayer tight-binding
model with vD = b = 1, t1 = t2 = m = 0.5 and d = 1 (Weyl semimetal
phase). The surface projections of the bulk Weyl nodes are highlighted
in blue: (a) with rotational symmetry (α = 0). (b) broken rotational
symmetry (α = 0.5). The topological charges of the Weyl nodes are also
indicated.

points and for the same parameter values as for the low-energy model. In particular, there

are gapless Weyl semimetal phases and also insulating phases (see Fig. 5.20 above). For

the insulating phases, the four Z2 invariants are again calculated explicitly. They are in

agreement with the values determined before solely based on adiabaticity arguments, i.e.,

the invariants of the WTI phases are 0; (001) whereas those of the trivial phase are 0; (000).

Furthermore, the Weyl semimetal phase has four Weyl nodes of charge ±1.

To investigate the structure of the Fermi arcs in the Weyl semimetal phase, the (100)

surface Green’s function of the tight-binding model in Eq. (5.23) is determined for a

semi-infinite slab [200] (see Appendix C). This allows to calculate the spectral function

A(k, E) = −1/2π Im{Tr[Gs(k, E)]} at the Fermi level E = EF . Since our Hamiltonian

is bilinear, the spectral function is sharply peaked whenever there is an eigenstate of the

Hamiltonian at the Fermi level. Hence, the spectral function can be used to determine the

surface Fermi surface of the semi-infinite slab.

The results are shown in Fig. 5.21. In the rotation-symmetric case [Fig. 5.21(a)], two

straight lines of surface states connect the surface projections of the Weyl nodes. By

breaking rotation symmetry, as shown in Fig. 5.21(b), the Weyl nodes are displaced and

the Fermi arcs acquire a finite curvature.
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6 Outlook and conclusions

In this dissertation, the interplay of topology and symmetry in weakly-interacting materials

has been explored on a theoretical level. In particular, it has been shown how additional

symmetries can enrich the topology of insulating and semi-metallic systems considerably.

In Chapter 2, the celebrated Hofstadter model, a lattice realization of the quantum Hall

effect, has been considered in the presence of a lattice dimerization. It has been shown that

depending on the sign of the dimerization mass, this model exhibits topological edge states

at half filling. Remarkably, the edge states arise from topologically nontrivial, inversion-

symmetric slices of the two-dimensional Hofstadter Brillouin zone. Most importantly,

these novel topological states are different from the well-known quantum-Hall edge states

because their Hall conductivity is zero and they are, thus, solely subject to inversion

symmetry in the one-dimensional subsystems. To uncover the topological nature of the

edge states, an integer topological invariant for the inversion-symmetric cuts has been

defined and calculated. From a more general perspective, a two-dimensional insulating

system has been presented where lower-dimensional physics enriches the global topological

structure of the system.

Chapter 3 has dealt with surface states of time-reversal symmetric topological insulators.

In particular, the presented results show how effectively one-dimensional Dirac electrons

appear on the surface of weak topological insulators in the presence of in-plane time-

reversal invariance. The corresponding Dirac lines are topologically protected by this

symmetry and connect time-reversal invariant momenta in the surface Brillouin zone of

the material. The surface states are, thus, qualitatively different from those in conventional

weak topological insulators which exhibit pairs of surface Dirac points. Furthermore, it

has been shown that these line features cannot appear on the surface of strong topological

insulators and are, therefore, an exclusive feature of weak topological insulators. This

example demonstrates how an additional symmetry enriches the structure of surface states

in a topological insulator.

Going one step further, Chapter 4 has inspected how the celebrated family of time-

reversal symmetric topological insulators in two and three dimensions can be extended
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to one dimension by imposing an additional symmetry. More specifically, it has been

shown that one-dimensional spin-1/2 fermionic systems with both time-reversal and mirror

symmetry give rise to nontrivial topology. In these systems, the partial polarization can

only assume two distinct values and, therefore, defines a topological Z2 invariant. If this

number is nonzero, the system is a topological mirror insulator whose hallmark is an

odd number of topologically protected electronic end charges. These findings have been

checked against a class of models that realize topologically nontrivial Z2 phases and can

potentially be realized in ultracold Fermi gases loaded in periodic optical lattices, as well

as in semiconductor nanowires with perpendicular modulated voltage gates. The results

of this analysis show how systems previously considered to be trivial may be turned into

topological phases by imposing additional symmetries.

Chapter 5 has ventured into the realm of topological semimetals, particularly Weyl

semimetals with time-reversal symmetry. In the first part of the chapter, a generic co-

existence of Dirac cones and Fermi arcs on the surface of time-reversal invariant Weyl

semimetals has been revealed. It has been argued that the coexistence is due to the ex-

istence of six Z2 invariants that additionally characterize such a semimetallic system: the

invariants impose restrictions on the number of surface Kramers pairs along time-reversal

invariant lines in the surface BZ and, therefore, also on the structure of the Fermi arcs.

Nevertheless, a remaining modulo-two ambiguity gives rise to many possible and quali-

tatively different Fermi-arc connectivities. It has been shown that certain connectivities

require the creation of a Dirac Fermi pocket which is connected to the presence of a surface

Dirac cone pinned to a time-reversal invariant momentum. Consequently, a change of the

connectivity changes the topology of the Fermi surface and is, thus, accompanied by a

Lifshitz transition. It is crucial to note that this transition does not change the Z2 invari-

ants of the material and is, therefore, generic to all Weyl semimetals with time-reversal

symmetry. Moreover, by means of density-functional theory calculations, the half-Heusler

compound LaPtBi under compressive strain has been proposed as a candidate material

to realize the coexistence of Fermi arcs and Dirac cones. Generally speaking, it has been

demonstrated how time-reversal symmetry enriches the structure of surface states in a

topological semimetal.

Finally, the second part of Chapter 5 has looked into multilayer heterostructures, based

either on weak topological insulators or on topological crystalline insulators, as a novel

platform for the study of time-reversal invariant Weyl semimetals. In the proposed de-

signs, thin layers of the materials are stacked on top of each other while inserting spacer

layers of ordinary insulators in between. At the interfaces, pairs of pinned or unpinned
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6 Outlook and conclusions

Dirac cones, which are coupled to each other, provide the main ingredient of the multilayer

designs. Weyl phases are then stabilized by breaking inversion symmetry. Moreover, the

corresponding phase diagrams also indicate the possibility of strong topological insula-

tor phases in the weak topological insulator multilayer, and of weak topological insulator

phases in the topological crystalline insulator heterostructure. As a result, the multi-

layers may also provide a novel way of designing artificial three-dimensional topological

insulators.

Building upon these results, there are several promising research directions to pursue

from this point. First of all, the focus of this dissertation has been entirely on insulating

and semimetalic materials. Nevertheless, as already indicated in the main body of the

thesis, also superconductors can be classified using the language of topology [201,202]. In

particular, topological superconductors give rise to exotic quasiparticle excitations which

are realizations of Majorana particles in a condensed matter setup. Most remarkably, Ma-

jorana modes obey anyonic non-Abelian statistics which makes them potential building

blocks for topological quantum computers [203]. In the light of this thesis, the effect of

symmetries on the properties of topological superconductors and on their exotic quasipar-

ticles would be an interesting route to follow.

From the material perspective, topological superconductivity can be induced at the in-

terface between a topological material and a normal superconductor using the proximity

effect [204–206]. This gives rise to a plethora of possible platforms for topological super-

conductivity which could be explored in future research. Also in this context, symmetry

plays an essential role and potentially leads to novel unexplored features. More specifically,

interfaces between various topological systems with symmetries, such as the topological

crystalline insulators or Weyl semimetals discussed in this thesis, and superconductors

with different pairing symmetry could be studied. Other systems of interest are Majorana

nanowires [207] or systems featuring topological bulk superconductivity [208–210].

Another promising research direction is the study of interaction-enabled topological

phases with symmetries. This dissertation has dealt with weakly-interacting systems only,

i.e., systems that can effectively be mapped to a non-interacting picture. Nonetheless,

the on-set of interactions can reduce [211] or even enrich the topological content of a

system [212–214]. This can lead to novel phases, such as fractional quantum-Hall systems,

topological Kondo insulators or topological Mott insulators. Building on the results of

the non-interacting case, it could be studied how electron-electron interactions affect the

topological features of the systems considered in this thesis.
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A Smooth gauge for one-dimensional

systems

The Z2 topological invariant defined in Eq. (4.18) of Chapter 4 requires a continuous

gauge. In the following, a method to construct such a gauge from numerically obtained

eigenstates of a 1D system is going to be presented. The discussion closely follows the

appendix of Ref. [215].

Let us consider an isolated set of N bands, i.e., the bands can cross each other but shall

have no crossings with other bands outside the considered set. Furthermore, consider a

discrete uniform k mesh of M + 1 points {kj}, j ∈ [1,M + 1], where kj+1 = kj + ∆ and

kM+1 = k1 +G with a reciprocal lattice vector G. We label the corresponding eigenstates

along the mesh by |ũnkj〉, where n is the band index. If these states are obtained from a

numerical diagonalization routine, they will in general have random phases. It is easy to

see that in the limit M →∞ such a choice of phases is highly non-differentiable.

In order to construct a smooth numerical gauge, we have to define what we mean by

“smooth” for a discrete mesh. This can be done by requiring that the states remain as

parallel as possible as we move along a path from k1 to kN+1. In other words, the change

in the states should be orthogonal to the states themselves. The corresponding gauge is

called parallel transport gauge. For a single isolated band this can be realized by choosing

the phases of the Bloch states such that the overlap 〈unkj |unkj+1
〉 is real and positive. For

N bands, one has to require that the overlap matrix Lmn = 〈umkj |unkj+1
〉 is hermitian

with only positive eigenvalues.

We are now going to discuss how a parallel-transport gauge can be constructed in

practice. We start from the initial point j = 1 where we set |u′nk1
〉 = |ũnk1〉. Then, at

each subsequent kj+1 we have to rotate the states |ũnkj+1
〉 by a unitary matrix U in such

a way that the overlap matrix L̃ becomes hermitian and positive. This is accomplished

by employing a singular value decomposition. More specifically, L̃ can be written as

L̃ = V ΣW †, where V and W are unitary and Σ is positive real diagonal. If we now set
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A Smooth gauge for one-dimensional systems

U = WV † and transform the states as

|u′nkj+1
〉 =

N∑
m

Umn(kj+1)|ũmkj+1
〉, (A.1)

the new overlap matrix becomes L′ = V ΣV †, which is hermitian and positive. Repeating

this for the entire k mesh, we finally get a set of states |u′nkj〉 that are smooth in the

sense specified above. However, states at k1 and kN+1 will in general differ by a unitary

transformation Λ and are, thus, not mapped onto themselves via parallel transport. The

matrix Λ corresponds to a non-Abelian analogue of the Berry phase and has eigenvalues

of the form λl = eiφl .

The periodicity can be restored in the following way: we first determine the unitary

matrix S that diagonalizes Λ. We then rotate all states, for all kj, by S. This results in a

gauge in which the new states correspond to a diagonal Λ with eigenvalues eiφl . At last,

we spread the residual phase differences over the k mesh,

|ulkj〉 = ei(j−1)φl/M |u′lkj〉. (A.2)

Eventually, we have constructed a smooth, periodic gauge for the set of N bands. Note,

however, that the new states |ulkj〉 are in general not eigenstates of the Hamiltonian.

Nevertheless, at each kj they span the eigenspace corresponding to the N bands. They

can therefore be used for the calculation of U(N)-invariant quantities like the partial

polarization.
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B Wannier-center formulation of the

topological invariant

This section reviews a method [197] that enables one to calculate the Z2 topological in-

variant of a general 2D insulator with time-reversal symmetry. This method allows to

calculate the Z2 number without choosing a gauge-fixing condition, which makes it par-

ticularly appealing for numerical studies.

The central notion of this method is the time-reversal polarization [75]. In a time-

reversal invariant 1D band insulator, the 2N occupied bands can be decomposed into

two sets which are connected by time reversal. The time-reversal polarization is then the

difference in the net charge polarization of the two sets of bands. Furthermore, it can be

shown that the time-reversal polarization can only assume the values 0 or 1 (modulo 2)

as long as the system preserves time-reversal symmetry.

A 2D TRI band insulator can be thought of as a collection of 1D insulators in momentum

space parametrized by, say, ky. In this collection, only the effective 1D systems at ky =

0 and π preserve 1D time-reversal symmetry. Thus, the time-reversal polarization can

assume non-integer values in between. The key idea is now to determine how the time-

reversal polarization changes with ky. It was shown that this leads to a well-defined

Z2 invariant for a 2D band insulator [75, 197]. Moreover, the charge polarization of an

occupied band is related to its Wannier center in position space. For this reason, the

change in time-reversal polarization can also be understood as a shift of the Wannier

centers.

The Wannier centers of the occupied bands at fixed ky are defined as the eigenvalues of

the position operator projected onto the occupied subspace. By using localized Wannier

functions |αj〉 as a basis, where α is an orbital index and j denotes the lattice site, the

position operator for a 1D lattice system with periodic boundary conditions can be written

as

X̂ =
∑
αj

e−i
2πj
Nx |αj〉〈αj|, (B.1)
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B Wannier-center formulation of the topological invariant
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Figure B.1: Evolution of the Wannier centers θm as a function of k for the TRI planes
of the tight-binding model with a = b = 1, t = 1.5, α = 0.3, d = 0.1,
λ = 0.5 and β = 0.7. k denotes a momentum parallel to the considered
plane in the 3D BZ. The corresponding value of the Z2 invariant ν, as
inferred from the winding number of the Wannier pair, is also indicated.

where Nx is the number of unit cells. Furthermore, the projection operator onto the

occupied bands o at fixed ky is defined as

P̂ (ky) =
∑
n∈o,kx

|Ψnkxky〉〈Ψnkxky |, (B.2)

with the Bloch state |Ψnk〉 = eik·r|nk〉. The projected position operator can be written as

follows

X̂P (ky) = P̂ (ky)X̂P̂ (ky) =
Nx∑
j=1

∑
mn∈o

|Ψn,kx,j ,ky〉〈Ψn,kx,j+1,ky |F nm
j,j+1(ky), (B.3)

with kx,j = 2πj/Nx being the discrete kx points taken along the x axis. The Fj,j+1(ky) are

2N × 2N matrices with matrix elements

F nm
j,j+1(ky) = 〈n, kx,j, ky|m, kx,j+1, ky〉. (B.4)

The eigenvalues of X̂P (ky) can be obtained by the transfer matrix method. For this

purpose, we define the 2N × 2N matrix

T (ky) = F1,2F2,3 · · ·FNx−1,NxFNx,1. (B.5)

T is unitary and has the following eigenvalues

λm(ky) = eiθm(ky), m = 1, 2, . . . , 2N, (B.6)
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Figure B.2: Evolution of the Wannier centers θ as a function of kz for the time-
reversal invariant planes (a) kx = ky, and (b) kx = −ky of LaPtBi. The
path along kz ranges from Γ (kz = 0) to Z (kz = π) of the bulk BZ. A
reference line (red) is used to determine the Z2 topological invariant of
the planes.

which are gauge invariant under U(2N) transformations of the |nk〉. Furthermore, it can

be shown that in the continuum limit T (ky) corresponds to the U(2N) Wilson loop [197],

T (ky) = P e
−i

∫
Cky

A(kx) dkx
, (B.7)

with the non-Abelian Berry connection A(k) which is a unitary 2N × 2N matrix. The

eigenvalues of the projected position operator X̂P (ky), and thus the Wannier centers of

the occupied bands, are then obtained from the eigenvalues of T as

χm,j(ky) = ei[θm(ky)+2πj]/Nx , j = 1, . . . Nx. (B.8)

Since the Wannier centers of adjacent unit cells differ only by a constant, ky independent

phase shift ei2π/Nx , it is sufficient to look at the evolution of the 2N phases θm(ky) =

Im log λm(ky).

The connection to the Z2 invariant is established as follows. We plot the 2N phases θm

as a function of ky and glue the lines θ = −π and θ = π together, such that the Wannier

centers live on the surface of a cylinder. At ky = 0, the phases have to appear as degenerate

pairs due to time-reversal symmetry. By moving away from this point, the pairs split and

recombine at ky = π (again due to time-reversal symmetry). Because the θm are phases,

the Wannier-center pairs may now differ by an integer multiple of 2π. Hence, the evolution

of the Wannier-center pairs from ky = 0 to ky = π will encircle the cylinder an integer

number of times. The sum of these integers over all pairs of Wannier centers defines a
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B Wannier-center formulation of the topological invariant

winding number. However, an even number of windings can always be removed, whereas

this is not possible for a single winding. Consequently, the total winding number modulo

2 is a topological Z2 invariant. In practice, one draws an arbitrary reference line parallel

to the ky axis and counts how many times the Wannier centers cross this line. The system

is topological (trivial), if the reference line is crossed an odd (even) number of times.

As an example, Fig. B.1 shows the evolution of the θm for the six TRI planes of the

tight-binding model considered in Sec 5.2.3. There are only two occupied bands which

is why we only need to look at a single pair of Wannier centers for each plane. We find

that only the Wannier pair for the TRI plane at kz = π winds non-trivially around the

θ-k cylinder. Hence, we infer that the Z2 invariant of this plane is ν = 1. All other TRI

planes have a trivial Z2 number, i.e., ν = 0.

Furthermore, this scheme was also used to determine the Z2 invariants of the kx = ±ky
planes in the density-functional theory study of LaPtBi in Sec 5.2.4. The evolution of the

Wannier centers is shown in Fig. B.2. In both cases, the chosen reference line is crossed

only once. From this we infer that both time-reversal invariant planes are topologically

nontrivial with Z2 invariants ν = 1.
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C Iterative scheme for the calculation

of surface Green’s functions

The calculation of the surface JDOS of a lattice system, as in Sec. 5.2.3, requires the com-

putation of the surface Green’s function. In the following, an iterative scheme [200] for the

computation of this surface Green’s function is reviewed. For simplicity,the considerations

will be restricted to systems described by tight-binding Hamiltonians with only nearest-

neighbor hopping terms. Note, however, that any solid with a surface can be reduced to

a semi-infinite stack of principal layers with nearest-neighbor interactions [200].

Let us consider a tight-binding model described by the lattice Hamiltonian H. A surface

can be introduced by cleaving the lattice along a principal layer of unit cells. Each unit cell

in this layer may have M degrees of freedom, such as spin, orbital or sublattice degrees of

freedom. Let us further assume that the system preserves translational symmetry parallel

to the surface. Consequently, the momentum k|| parallel to the surface is a good quantum

number and we can form Bloch-state vectors for each principal layer of the form

Ψn(k||) = [ϕ1
n(k||), . . . , ϕ

M
n (k||)], (C.1)

where n labels the layer. By taking matrix elements of the operator equation (ω −
H)G(ω) = I with the Bloch states, we get the following chain of coupled equations for

each k||

(ω −H00)G00 = 1 +H01G10 (C.2)

(ω −H00)G10 = H†01G00 +H01G20 (C.3)
...

(ω −H00)Gn0 = H†01Gn−1,0 +H01Gn+1,0, (C.4)
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C Iterative scheme for the calculation of surface Green’s functions

where the Hnm and Gnm are M ×M matrices defined as

Hnm(k||) = 〈Ψn(k||)|H|Ψm(k||)〉, (C.5)

Gnm(ω,k||) = 〈Ψn(k||)|G(ω)|Ψm(k||)〉, (C.6)

and we have assumed an ideal surface with H00 = H11 = . . . = Hnn and H01 = H12 = . . . =

Hn−1,n. Note that n = 0 corresponds to the surface principal layer. Hence, G00(ω,k||)

defines the surface Green’s function.

The general equation for Gn0 in Eq. (C.4) can be rewritten as (n ≥ 1)

Gn0(ω) = (ω −H00)−1(H†01Gn−1,0 +H01Gn+1,0). (C.7)

If we put n = 1 in this equation and plug it into Eq. (C.2) we get

[ω −H00 −H01(ω −H00)−1H†01]G00 = 1 +H01(ω −H00)−1H01G20. (C.8)

Similarly, we can replace Gn−1,0 and Gn+1,0 in Eq. (C.4) by replacing n → n − 1 and

n→ n+ 1, respectively. The ensuing equations can be written more compactly as (n ≥ 2)

(ω − ε1s)G00 = 1 + α1G20 (C.9)

(ω − ε1)Gn0 = β1Gn−2,0 + α1Gn+2,0 (C.10)

with

α1 = H01(ω −H00)−1H01 (C.11)

β1 = H†01(ω −H00)−1H†01 (C.12)

ε1s = H00 +H01(ω −H00)−1H†01 (C.13)

ε1 = H00 +H01(ω −H00)−1H†01

+H†01(ω −H00)−1H01. (C.14)

These equations only involve next-nearest-neighbor Green’s functions, whereas nearest

neighbors have disappeared completely.

Let us now consider the subset of equations formed by taking only even values for n,
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namely

(ω − ε1s)G00 = 1 + α1G20 (C.15)

(ω − ε1)G20 = β1G00 + α1G40 (C.16)
...

(ω − ε1)G2n,0 = β1G2(n−1),0 + α1G2(n+1),0. (C.17)

This set of equations is isomorphic to Eqs. (C.2)–(C.4) except for the different zeroth-

order matrix elements, ε1s 6= ε1. Thus, we can reiterate the same steps to obtain α2, β2,

ε2 and ε2s. Starting with ε0 = ε0s = H00, α0 = H01 and β0 = H†01, this defines an iterative

sequence in which after the i-th step the system of equations reads

(ω − εis)G00 = 1 + αiG2i,0 (C.18)

(ω − εi)G2i,0 = βiG00 + α1G2i+1,0 (C.19)
...

(ω − εi)G2in,0 = βiG2i(n−1),0 + αiG2i(n+1),0 (C.20)

with

αi = αi−1(ω − εi−1)−1αi−1 (C.21)

βi = βi−1(ω − εi−1)−1βi−1 (C.22)

εi = εi−1 + αi−1(ω − εi−1)−1βi−1

+ βi−1(ω − εi−1)−1αi−1 (C.23)

εis = εi−1,s + αi−1(ω − εi−1)−1βi−1. (C.24)

After the i-th step, this set of equations describes an effective Hamiltonian for a chain with

a unit cell enlarged by a factor of 2i, with nearest-neighbor interactions αi and βi, and

with zeroth-order Hamiltonian matrix elements εi and εis. In each layer of this effective

chain the effects of nearest-neighbor interactions of all the previous chains are implicitly

encoded. The norm of the α’s and β’s typically decreases with i. Once they are small

enough, we have εi ' εi−1 and εis ' εi−1,s. In particular, the right-hand side of Eq. (C.18)

becomes ' 1 and we can finally solve for the surface Green’s function,

GS ≡ G00(ω) ' (ω − εis)−1. (C.25)
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Thus, we have obtained a good approximation for G00. The Green’s function of the dual

(or opposite) surface can be obtained be exchanging the role of αi and βi. In practice,

one usually wishes to determine the retarded or advanced Green’s function. For that, one

simply replaces ω by ω ∓ iη, with η ∈ R sufficiently small, in the iterative scheme.

The great advantage of this scheme is its fast convergence. Typically, one achieves

βi ' 0, αi ' 0 to numerical accuracy in fewer than 10 iterations.
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robust and partly remain in the superconducting gap. Furthermore, Andreev bound

states appear, which coexist with the topological states for small superconducting

gaps and merge with them for larger gap values. The bulk and surface dispersions

are obtained from exact diagonalization for two-orbital and five-orbital models in

strip geometries.
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Abstract: The electronic structure of iron pnictides is topologically nontrivial, leading

to the appearance of Dirac cones in the band structure for the antiferromagnetic

phase. Motivated by the analogy with Dirac cones in graphene, we explore the

possible existence of topologically protected surface states. Surprisingly, bands of

surface states exist even in the paramagnetic state. A realistic five-orbital model

predicts two such bands. In the antiferromagnetic phase, these surface bands survive

but split. We obtain the bulk and surface dispersion from exact diagonalization of

two- and five-orbital models in a strip geometry and discuss the results based on

topology.

This publication has not been included in this dissertation.
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