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Summary  
 

 

Mongolia is currently undergoing a rapid socioeconomic transition with extensive development driven by 

increased mineral resource extraction and large scale agriculture and pastoral expansion. There has also been 

unprecedented urbanisation and continued population growth that has placed added pressure on the ageing public 

infrastructure including power stations and waste water treatment plants. As a result, the country’s pristine 

landscapes, including its vast freshwater ecosystems, are now facing widespread degradation, contamination and 

species losses in the most impacted regions. The proposed large-scale dams and imminent climate change effects 

will further damage these fragile ecosystems. With a number of rivers and lakes deteriorating, resident aquatic 

communities, including unique fish species, have suffered significant population declines. However, a more 

substantial threat currently facing these fish populations is the rapid and largely unregulated rise in fishing 

activities within an emerging recreational fishery. Although historically fish capture and consumption has not 

been a traditional part of the Mongolian diet or culture, this is changing rapidly. Therefore a comprehensive set 

of research projects were developed and implemented across Mongolia, to gather essential information on this 

new fishery, while also addressing existing knowledge gaps regarding the spatial ecology and genetic structure 

of the main target species. In addition, a potential human health risk was evident due to the increased 

consumption of locally caught fish species from a heavily impacted river basin, and thus this was also 

investigated. Overall, the collective aim of this fisheries research was to increase the scientific understanding and 

knowledge across a range of issues and ultimately advise authorities on improving current management 

regulations and conservation strategies. It is hoped that the recommendations can assist in safeguarding the 

future sustainability and resilience of the threatened fish populations and the emerging recreational fishery across 

Mongolia for the future.  

A total of five fisheries related research projects were completed between 2011 and 2014, with the results from 

each used to formulate the conservation and management recommendations presented in this thesis. Due to the 

lack of knowledge regarding the emerging recreational fishery, roving creel surveys were conducted across three 

river basins and covered five key topics including angler demographics, fishing practices, current fishing trip 

data, fishing gear and costs, and angler knowledge and opinions. Fifty-eight fishing groups (n = 154 anglers) 

were interviewed and two angler types were identified: rural anglers with no or low incomes, who reside in the 

basin, fish alone or in smaller groups, fish frequently for shorter periods, and consumed fish more regularly; and 
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urban anglers who have medium to high incomes, live in larger cities, spent more money on fishing gear / trips 

and fished for multiple days at a time. B. lenok was identified as the most targeted and caught species in the 

fishery. The results of the creel surveys confirmed increased fish consumption in the Kharaa River basin, which 

was identified as a potential human health risk due to the widespread heavy metal contamination from both past 

and present mining activities. Thus heavy metal contaminates in river water, sediment and five consumed fish 

species were examined at 11 sites across the basin. Heavy metals were evident in all five sampled species, with 

maximum muscle contents of chromium (Cr), arsenic (As), mercury (Hg) and lead (Pb) detected in fish from the 

middle and lower reaches, while zinc (Zn) was highly elevated in B. lenok from the upper tributaries. Elevated 

median contents of Cr, copper (Cu), Hg and Pb increased with trophic level, with the bioaccumulation of Hg 

posing the greatest threat to human health with over 10 % of all fish sampled exceeded the internationally 

recommended threshold for Hg in consumable fish tissue (> 0.5 µg g-1
 ww). This bioaccumulation in resident 

fish species could lead to chronic toxicity in people who consume them regularly and have additional exposure 

to other sources of contamination e.g. gold mining. 

A further two projects were conducted that utilised passive acoustic telemetry to describe the spatial and 

temporal autecology, habitat use and behaviour of B. lenok in the Eroo River and H. taimen in the Onon/Balj 

rivers under Mongolia’s extreme seasonal conditions. The maximum longitudinal movements (home ranges) 

detected were more extensive than previously reported for both species with 45.3 km for B. lenok and 126.1 km 

for H. taimen. Increased movements were recorded in spring and summer, with individuals entering surrounding 

tributaries and remaining there for between four and 85 days before returning to the main river channel. The 

results highlighted the importance of maintaining the integrity and connectivity of tributary habitats for 

spawning, feeding and overwintering, as well as hydrological and thermal refuges, which will be increasingly 

important for these species in the region with the pending impacts of climate change. This increased knowledge 

relating to the spatial ecology of these threatened species can guide the design and implementation of new 

protective measures such as the introduction of Freshwater Protected Areas (FPAs) across Mongolia. Further 

research was conducted to gain a broader, multigenerational understanding of the interconnectedness between 

conspecific populations of H. taimen, B. lenok and T. baicalensis across the major river basins. Both molecular 

and nuclear markers were used to demarcate the population’s genetic structure and define Evolutionary 

Significant Units (ESUs) and priority populations for these species across their Mongolian distributions. Across 

all species, the most prominent pattern was a strong differentiation among major basins with low differentiation 
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and weak patterns of isolation by distance within basins, which indicates high within-basin connectivity between 

populations, although exact patterns were not completely concordant among species.  

The extensive results produced from the current scientific research has facilitated the development of a 

comprehensive set of key recommendations for implementing new, and enhancing existing, management and 

conservation measures relating to Mongolia’s threatened salmonid species and its emerging recreational fishery. 

These recommendations include: 1. Establishing a series of Freshwater Protected Areas (FPAs) throughout 

Mongolia’s major river basins, with their design and location based upon the spatial ecology and genetic 

population structure determined by the current research results; 2. Shifting the opening date of the fishing season 

to encompass the entire spawning period of B. lenok (the fishery’s main target species), which appears to 

currently not be the case; 3. Adding the blunt-snouted lenok (B. sp.) to the prohibited species list, as it has been 

genetically proven to be an independent species and has a restricted distribution and low abundance in Mongolia; 

and 4. Introducing minimum (and potentially maximum) size limits for B. lenok and T. baicalensis, to better 

protect immature and pre-spawning individuals from being removed from the population. In addition, it is highly 

recommended to commence fisheries dependent and independent assessments in key river basins and conduct 

biomonitoring programs (using a bioindicator species) to track toxic heavy metal contamination and identify 

potential human health risks associated with consuming resident fish species from the more heavily impacted 

regions. The lack of knowledge of the current fishing regulations by anglers as well as the observed and reported 

widespread illegal fishing activities demands a wide-ranging angler education program to improve understanding 

and compliance within the fishery. The future survival of these threatened salmonids and the sustainability of the 

emerging recreational fishery in Mongolia currently hangs in the balance. However, if these scientifically based 

recommendations are implemented in full, and can be adequately enforced, then the responsible authorities can 

take a huge step forward towards reversing the current trends and preserving the country’s imperilled freshwater 

fish populations and their valuable aquatic ecosystems. Mongolia can be a model for freshwater species 

conservation and management throughout the region and the world.  

  



 
xii 

 

Summary in German / Zusammenfassung auf Deutsch 
 

 

Die Mongolei befindet sich derzeit in einem rasanten sozioökonomischen Übergang mit tiefgreifenden 

Veränderungen, die v.a. durch eine Zunahme bergbaulicher Aktivitäten sowie einen Ausbau ackerbaulicher 

Nutzungen wie auch der Viehwirtschaft angetrieben werden. Derzeit vollzieht sich eine noch nie dagewesene 

Urbanisierung und ein weiteres Bevölkerungswachstum, das auf die alternde öffentliche Infrastruktur, 

einschließlich Kraftwerke und Abwasserbehandlungsanlagen, einen zusätzlichen Druck ausübt. Infolgedessen 

zeigen sich in den weitgehend unberührten Landschaften des Landes, einschließlich seiner riesigen Süßwasser-

Ökosysteme, deutliche Anzeichen von Übernutzung natürlicher Ressourcen, Umweltverschmutzung und 

Artenverlusten. Zukünftig geplante große Staudämme werden neben den bevorstehenden Auswirkungen des 

Klimawandels die Hydrologie deutlich verändern. So sind bereits deutliche Beeinträchtigungen der Fluss-und 

See-Ökosysteme erkennbar, insbesondere in Hinblick auf ihre aquatischen Lebensgemeinschaften. Einige der 

weltweit einzigartigen Fischarten haben bereits erhebliche Bevölkerungsrückgänge erlitten. Eine weitere 

existenzielle Bedrohung für diese Fischpopulationen ist der rasche und weitgehend un-regulierte Anstieg der 

Fischereitätigkeiten aus einer aufstrebenden Freizeitfischerei. Obwohl Fischfang und -konsum keine 

traditionellen Elemente der mongolischen Ernährung oder Kultur darstellen, vollziehen sich diesbezüglich 

derzeit tiefgreifende Veränderungen. Daher wurden in der Mongolei umfangreiche Forschungsprojekte geplant 

und durchgeführt, um wesentliche Informationen über diese neue Art der Fischerei zu sammeln und gleichzeitig 

bestehende Wissenslücken in Bezug auf die räumliche Ökologie und die Metapopulationsstruktur der 

wichtigsten Zielarten zu schließen. Darüber hinaus zeigten Untersuchungen, dass sich aufgrund des erhöhten 

Konsums von lokal gefangenen Fischarten aus einem stark beeinträchtigten Einzugsgebiet ein potenzielles 

Risiko für die menschliche Gesundheit ergibt. Insgesamt ist das übergeordnete Ziel dieser Fischereiforschung, 

das wissenschaftliche Verständnis und Wissen zu erweitern und letztlich die derzeitigen 

Managementinstrumente zu verbessern und neue Erhaltungsmaßnahmen zu ergreifen, um die Nachhaltigkeit und 

Widerstandsfähigkeit der bedrohten Fischartenpopulationen und die aufkommende Erholung zu sichern. 

Insgesamt wurden zwischen 2011 und 2014 insgesamt fünf fischereibiologische Forschungsprojekte 

abgeschlossen, wobei die Ergebnisse dieser Arbeiten in Erhaltungs- und Managementempfehlungen münden. 

Wegen des Mangels an Wissen über die aufkommende Freizeitfischerei wurden Anglerbefragungen in drei 

Einzugsgebieten durchgeführt, welche fünf wichtige Themen wie Angler-Demographie, Fischereipraktiken, 
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Reisetätigkeiten, Fanggeräte und Kosten sowie Anglerwissen und Meinungen umfassten. Fünfundsechzig 

Angelgruppen (n = 154 Angler) wurden interviewt und zwei Anglertypen identifiziert: ländliche Angler ohne 

oder niedrige Einkommen, die in dem Becken wohnen, alleine oder in kleineren Gruppen fischen, häufig für 

kürzere Zeiten fischen und regelmäßig Fisch verzehren; und städtische Angler, die mittlere bis hohe Einkommen 

haben, in größeren Städten leben, mehr Geld für Fanggeräte / Ausflüge ausgegeben und typischerweise für 

mehrere Tage am Stück fischen. B. lenok wurde als die bevorzugte und am meisten gefangene Zielarten der 

Fischerei identifiziert. Die Ergebnisse der Anglerbefragungen bestätigten den erhöhten Fischkonsum im Kharaa-

Einzugsgebiet, das aufgrund der weit verbreiteten Schwermetallverunreinigung aus der Vergangenheit und den 

gegenwärtigen Bergbauaktivitäten als potenzielles Risiko für die menschliche Gesundheit identifiziert wurde. So 

wurden Schwermetallverunreinigungen im Flusswasser, Sediment und fünf konsumierten Fischarten an 11 

Standorten im Einzugsgebiet untersucht. Schwermetalle zeigten sich in allen fünf Stichprobenarten, wobei der 

maximale Muskelgehalt von Cr, As, Hg und Pb in Fischen aus dem Mittel- und Unterlauf festgestellt wurde, 

während Zn in B. lenok in den Oberlaufregionen stark erhöht war. Der erhöhte mediane Gehalt an Cr, Cu, Hg 

und Pb nahm mit trophischer Ebene zu, wobei die Bioakkumulation von Hg die größte Bedrohung für die 

menschliche Gesundheit darstellte, wobei über 10% aller Fischproben den international empfohlenen 

Schwellenwert für Hg im verzehrbaren Fischgewebe überstiegen (> 0,5 μg g-1 ww). Diese Bioakkumulation in 

residenten Fischarten könnte zu chronischen Intoxikationen bei Menschen führen, die sie regelmäßig 

konsumieren und zusätzliche Exposition gegenüber anderen Kontaminationsquellen haben, z.B. im 

Goldbergbau. 

Es wurden weitere zwei Projekte durchgeführt, die eine passive akustische Telemetrie zur Beschreibung der 

räumlichen und zeitlichen Autökologie, des Lebensraumnutzens und des Verhaltens von B. lenok im Eroo River 

und H. taimen in den Flüssen Onon und Balj unter den extremen Klimabedingungen der Mongolei verwendeten. 

Die maximalen Längsbewegungen (Heimatbereiche) wurden -umfangreicher als bisher angenommen- für beide 

Arten wurden auf 45,3 km für B. lenok und 126,1 km für H. taimen ermittelt. Im Frühjahr und Sommer wurden 

erhöhte Bewegungen aufgezeichnet, wobei die Individuen in die umliegenden Nebenflüsse eintraten und dort 

zwischen 4 und 85 Tagen verblieben, bevor sie zum Hauptfluss des Flusses zurückkehrten. Die Ergebnisse 

zeigen die Bedeutung der Aufrechterhaltung der Integrität und der Konnektivität von Nebenflüssen für Laichen, 

Nahrungssuche und Überwinterung sowie hydrologische und thermische Schutzräume, die für diese Arten in der 

Region mit den anstehenden Auswirkungen des Klimawandels zunehmend an Bedeutung gewinnen werden. Die 

verbesserten Kenntnisse der räumlichen Ökologie dieser bedrohten Arten kann die Gestaltung und Umsetzung 



 
xiv 

 

neuer Schutzmaßnahmen wie Süßwasser-Schutzgebiete in der Mongolei wissenschaftlich fundieren und leiten. 

Weitere Untersuchungen wurden durchgeführt, um ein breiteres, multigenerationales Verständnis der 

Zusammenhänge zwischen den konkreten Populationen von H. taimen, B. lenok und T. baicalensis über die 

großen Flusseinzugsgebiete zu gewinnen. Sowohl molekulare als auch nukleare Marker wurden verwendet, um 

die genetische Struktur abzugrenzen und definieren, so z.B. evolutionär signifikante Einheiten (ESUs) und 

eigenständige Populationen für diese Arten einschließlich ihrer räumlichen Verteilung in der Mongolei. Über 

alle Arten hinweg war das deutlichste Muster eine starke Differenzierung zwischen den großen Becken mit 

geringer Differenzierung. Dem gegenüber stehen schwache Muster der Isolation durch die Distanz in den 

Becken, die eine hohe einzugsgebietsinterne Konnektivität anzeigen, obwohl exakte Muster nicht vollständig 

unter allen Arten übereinstimmten. Die Prioritäten der Erhaltung müssen sich auf die Verbesserung des Schutzes 

der vorrangigen Bevölkerungsgruppen innerhalb jeder Art und ESU konzentrieren, um die begrenzten 

verfügbaren Ressourcen für die Arten- und Populations-Erhaltung und fischereiliche Bewirtschaftung in der 

Mongolei zu maximieren. 

Die umfangreichen Ergebnisse aus der aktuellen wissenschaftlichen Forschung ermöglichten die Ableitung 

umfassender Empfehlungen für die Umsetzung neuer und die Verbesserung der bestehenden Management- und 

Erhaltungsmaßnahmen in Bezug auf die bedrohten Lachsarten der Mongolei und die aufkommende 

Freizeitfischerei. Diese Empfehlungen beinhalten 1.die Gründung einer Reihe von Süßwasser-Schutzgebieten 

(FPA) in den großen Flussgebieten der Mongolei auf der Grundlage der räumlichen Ökologie und der 

genetischen Bevölkerungsstruktur, die durch die aktuellen Forschungsergebnisse untermauert wird; 2. Eine 

Verschiebung des Eröffnungstermins der Fangsaison, welche im Gegensatz zur aktuellen Praxis die gesamte 

Laichzeit von B. lenok (die Hauptzielspezies der Fischerei); umfassen sollte; 3. Hinzufügen des 

Stumpfschnauzen-Lenok (B. sp.) zur Liste der besonders geschützten Arten, da er sich als eine genetisch 

unabhängige Spezies erwiesen hat, welche eine begrenzte räumliche Verteilung und geringe Populationsdichte in 

der Mongolei hat; und 4. Einführung von minimalen (und potentiell maximalen) Körpergrößenbeschränkungen 

für B. lenok und T. baicalensis, um die unreifen und heranwachsenden Individuen besser vor menschlichen 

Einflüssen zu schützen. Darüber hinaus empfiehlt es sich dringend, in den wichtigsten Flussgebieten 

fischereilich genutzte und nicht genutzte Fischpopulationen zu erfassen und Biomonitoring-Programme (unter 

Verwendung von Bioindikator-Spezies) zu implementieren, um toxische Schwermetallverunreinigungen zu 

verfolgen und potenzielle Risiken für die menschliche Gesundheit zu identifizieren, die mit dem Verzehr Fischen 

aus beeinträchtigten Regionen einhergehen. Schließlich verlangt das Fehlen von Kenntnissen über die 
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derzeitigen Fischereiverordnungen durch Angler sowie die beobachteten und gemeldeten weitverbreiteten 

illegalen Fischereitätigkeiten ein weitreichendes Angler-Bildungsprogramm, um das Verständnis und die 

Einhaltung fischereilicher Regelungen zu verbessern. Das künftige Überleben der bedrohten Salmoniden und die 

Nachhaltigkeit der aufkommenden Freizeitfischerei in der Mongolei sind eng miteinander verbunden. Sofern die 

hier dargestellten wissenschaftlich fundierten Empfehlungen in vollem Umfang umgesetzt werden und 

hinreichend kontrolliert werden können, würden die zuständigen Behörden einen großen Schritt in Richtung der 

Umkehrung der aktuellen Trends machen und die gefährdeten Süßwasserfischpopulationen des Landes und ihre 

wertvollen aquatischen Ökosysteme bewahren. Die Mongolei könnte dann ein Modell für die Erhaltung und 

Bewirtschaftung von Süßwasserarten in der ganzen Region und der Welt werden. 
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Summary in Mongolian / Хураангуй 
 

Монгол орон ашигт малтмалын олборлолт, хөдөө аж ахуй, бэлчээрийн газар нутгийн тэлэлтээр 

хязгаарлагдсан нийгэм-эдийн засгийн шилжилтийн үед оршин байгаа юм. Хотжилт төлөвлөлтгүй тэлж, 

хот суурин газрын хүн амын тоо байнгийн өсөн нэмэгдэж байгаа нөхцөл байдал нь хотын дэд бүтэц, тэр 

дундаа олон жил ашиглагдаж, шинэчлэлт, сэргээн завсарлалт хараахан хийгдээгүй байгаа бохир ус 

цэвэрлэх байгууламжууд, цахилгаан станцуудын ачааллыг улам бүр нэмэгдүүлсээр байгаа бөгөөд үүний 

үр дүнд Монгол орны байгалийн унаган төрхөөрөө байгаа газар нутгууд, түүний дотор цэнгэг усны 

экосистемүүдэд экосистемийн доройтол, бохирдол, биологийн олон янзын байдлын хомсдол бий болох 

заналхийлэл тулгараад байна. Эдгээр заналхийлэлээс гадна уур амьсгалын өөрчлөлт, төлөвлөгдөж байгаа 

усан цахилгаан станцын томоохон төслүүд нь энэхүү эмзэг экосистемүүдэд аюулын харангыг улам бүр 

дэгдүүлж байна. Экосистемийн доройтолд өртсөн гол горхи, нуур мөрний тоо нэмэгдэх бүрт тухайн 

экосистемд тархах организмууд, загасны төрөл зүйл, тэдгээрийн популяцийн тоо толгой буурдаг. 

Ялангуяа загасны төрөл зүйлүүдийн популяийн тоо, толгойн бууралтад ямарваа нэг зохицуулалтгүй 

явагдаж байгаа загасчлах аялал, загас олборлолт нь ойрын үеийн томоохон аюулын нэг болоод байгаа 

юм. Хэдийгээр загас агнуур, загасыг хоол хүнсэндээ хэрэглэх байдал нь Монголын уламжлалт ан агнуур, 

хоол идээ биш боловч энэ төрлийн соёл, хэрэглээ улам бүр хурдацтай хөгжсөөр байна. Иймд Монгол 

орны агнуурын ач холбогдолтой цэнгэг усны загасны зарим зүйлүүдийн орон зайн экологи, генетикийн 

бүтцийн талаархи урьд өмнө хийгдэж байгаагүй судалгааны ажлыг гүйцэтгэх, бусад шаардлагатай 

мэдээлэл, мэдлэгийг бий болгох зорилтуудын хүрээнд томоохон судалгааны ажлуудын саналыг 

дэвшүүлж, хэрэгжүүлсэн юм. Түүнчлэн усан орчны бохирдлын нөлөөлөлд хүчтэй өртсөн голуудад 

тархсан загасыг хоол хүнсэндээ хэрэглэх байдалтай холбогдсон хүн амын эрүүл мэндийн эрсдлийн аюул 

ажиглагдах болсон тул энэ чиглэлд судалгааны ажлыг мөн гүйцэтгэсэн болно. Ерөнхийд нь дүгнэн үзвэл 

эдгээр судалгааны зорилго, зорилтуудыг Монгол орны загас хамгааллын өнөөгийн менежментийн арга 

хэмжээ, төлөвлөгөөг сайжруулахад тус дөхөм болох зөвлөмжийг боловсруулах, шинжлэх ухааны мэдлэг, 

мэдээллийг нэмэгдүүлэхэд зорьсон. Бидний дэвшүүлсэн менежментийн арга хэмжээний зөвлөмж нь 

хүрээгээ улам бүр тэлж буй загасчлалын аялал жуулчлалд зохицуулалт хийх, устаж, ховордож болзошгүй 

загасны төрөл зүйлүүдийн популяцийн тогтвортой байдлыг хангах, хамгаалахад чиглэгдсэн.  

2011-2014 онуудад загасны чиглэлд судалгааны 5 дэд төслийг хэрэгжүүлсэн бөгөөд эдгээр төслүүдээс 

гарсан бүхий л үр дүнг загас хамгаалал, менемжментийн арга хэмжээний зөвлөмжид тусган 
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танилцуулсан.  Эхний дэд төслийн хүрээнд загас агнуур, загасчлалын аялал жуулчлалтай холбоотойгоор 

социологийн буюу санал асуулгын судалгааг Монгол орны 3 голын сав газрын хэмжээнд хэрэгжүүлсэн. 

Санал асуулгаар (i) загасчидын хүн ам зүйн судалгаа, (ii) загасчлах чадвар туршлага, (iii) судалгааг авах 

үед барьсан загасны тоо хэмжээ, баригдсан загасны морфологийн мэдээлэл, (iv) загаслах хэрэгслийн 

төрөл, тэдгээрийн үнэ өртөг, (v) загасчидын загас хамгаалалын талаархи ерөнхий мэдлэг, санал бодолд 

чиглүүлэн асуултуудыг тодорхойлсон. Судалгаанд нийт 58 загасчдын бүлгийг (нийт 154 загасчид) 

хамруулж, санал асуулга явуулсанаас загасчидын эдгээр бүлгүүдийг үндсэн 2 төрөлд  ангилж үзлээ: 

Нэгдүгээр бүлэгт орон нутгийн загасчид буюу өрхийн орлого бага, тухайн голын сав газарт амьдардаг, 

ганцаараа эсвэл цөөн хэдэн хүн нэгдэж богино хугацаагаар тогтмол загасчилдаг, загасыг тогтмол 

хүнсэндээ хэрэглэдэг хэсэг бүлэг багтах бол хоёрдугаар бүлэгт хот суурин газрын загасчид буюу өрхийн 

орлого дунджаас өндөрт хамаарах, хот суурин газарт оршин суудаг, загасчлах хэрэгсэл, загасчлах аялалд 

илүү их мөнгө зарцуулж, нэг удаадаа хэдэн хоногоор загасчилдаг хэсэг бүлэг хүмүүс хамаарч байв. 

Загасчид гол төлөв зэвэг загас (B. Lenok)-ыг агнадаг байна. Санал асуулгын судалгааны үр дүнгээс үзэхэд 

Хараа голын сав газарт загасыг хүнсэнд хэрэглэх байдал өссөн болох нь харагдаж байгаа бөгөөд хуучны 

болон одоогийн уул уурхайн үйл ажиллагаатай холбоотойгоор бий болсон хүнд металлын бохирдлын 

тархалтаас үүдэж болох хүн амын эрүүл мэндийн эрсдлийн асуудлыг тодорхойлж гаргасан. Иймд 

судалгааны удаах дэд төсөл нь Хараа голын сав газрын хэмжээнд мониторингийн 11 цэгт голын ус, 

хагшаас, 5 зүйлийн загасанд хүнд металлын бохирдлын судалгааг гүйцэтгэхэд чиглэгдсэн. Судалгаагаар 

тухайн 5 зүйл загасанд бүгдэд нь хүнд металл илэрсэн ба голын эхэн хэсгийн цутгал голуудад тархсан 

зэвэг загасанд цайр (Zn) харьцангуй өндөр хэмжээгээр агуулагдаж байсан голын дундаас адаг цэгүүдэд 

тархсан загасны булчин маханд хром (Cr), хүнцэл (As), мөнгөн ус (Hg), хар тугалга (Pb) илэрсэн юм. 

Идэш тэжээлийн түвшинд буюу загасны зүйлүүдэд хром (Cr), зэс (Cu), мөнгөн ус (Hg), хар тугалга (Pb) 

илэрч, нэмэгдсэн үзүүлэлттэй, ялангуяа судалгаанд хамрагдсан нийт загасны 10 гаруй хувьд мөнгөн усны 

агууламж загасны маханд агуулагдаж болох дээд хэмжээ (> 0.5 мкг/гр)- нээс давсан байгаагаас дүгнэн 

үзэхэд хүн амын эрүүл мэндэд зохих аюул нүүрлэсэн болохыг харуулж байгаа юм. Иймд уул уурхай 

зэргээс гаралтай хүнд металлын бохирдлын сөрөг үр дагавар нь хүнд металлын хуримтлал бүхий загасыг 

орон нутгийн иргэд хүнсэндээ тогтмол хэрэглэсэнээр ард иргэд хүнд металлын бохирдолоос үүдэлтэй 

өвчлөлд өртөх байдлаар илрэх боломжтой.  

Дараагийн 2 дэд төслүүд нь Ерөө голд тархсан зэвэг (B. lenok), Онон, Балж голуудад тархсан тул (H. 

taimen) загасны орон зай, цаг хугацааны аутэкологи,  амьдрах орчин, зан төрхийн судалгаанд чиглэгдсэн 
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ба акустик телеметрийн аргыг (дохиолол)  ашигласан юм. Өмнө хийгдсэн судалгааны үр дүнгүүдтэй 

харьцуулахад хоёр зүйл загасны аль алинд хамгийн урт шилжилт хөдөлгөөн (байршил нутаг)-ийг 

илрүүлсэн бөгөөд зэвэг загасны хувьд 45.3 км, тул загасны хувьд 126.1 км нүүдэллэж байгааг тогтоов. 

Ялангуяа хавар, зуны улиралд шилжилт хөдөлгөөн эрчимжиж, зарим бодгалиудын хувьд цутгал голууд 

руу нүүдэллэх, тухайн цутгал голууддаа 4-өөс 85 хүртэл хоногоор өнжсөний дараагаар голын үндсэн 

гулдралдаа шилжиж байгааг мөн илрүүлсэн. Эдгээр судалгааны үр дүнгүүдээс үзэхэд цутгал голууд нь 

загасны үржих, идэшлэх, өвөлжих амьдрах орчин болох төдийгүй уур амьсгалын өөрчлөлтөөс үүдэлтэй 

сөрөг нөлөөллөөс эдгээр зүйлүүдийг хамгаалах гидрологийн болоод дулааны хоргодох газар “refuge” 

болох чухал ач холбогдолтой болохыг тэмдэглэх нь зүйтэй. Эдгээр устаж болзошгүй 2 зүйл загасны орон 

зайн экологийн судалгааны үр дүнд бий болсон шинэ мэдлэг, мэдээлэл нь Цэнгэг Усны Тусгай 

Хамгаалалтай Газар Нутаг (ЦУТХГН) –ийг байгуулах гэх мэтчилэн хамгаалалын шинэ арга хэмжээг 

боловсруулах, хэрэгжүүлэхэд үндэслэл болж чадах юм.  

Сүүлийн дэд төсөл буюу 5 дугаар дэд төсөл нь томоохон гурван голын сав газрын хэмжээнд хадран (T. 

baicalensis), зэвэг (B. lenok), тул (H. taimen) загасны зүйлүүдийн популяцуудын өөр хоорондын мульти 

генерацийн ойлголтыг нэмэгдүүлэхэд чиглэгдсэн. Бид молекул болон эсийн бөөмийн маркеруудыг 

ашиглан популяцийн генетик бүтцийг тогтоож, улмаар эдгээр зүйлүүдийн эволюцийн ач холбогдолтой 

нэгжүүд (ESUs), мөн нэн тэргүүнд хамгаалах шаардлага бүхий популяцийг Монгол орны тархац нутгийн 

хүрээнд тодорхойлсон. Сав газрын хэмжэээнд эдгээр гурван зүйл тус бүрийн  популяцуудын генетик 

олон янз байдал бага байгаа нь популяци хоорондын шилжилт хөдөлгөөнийг илэрхийлж байна. Гэвч энэ 

нийтлэг үр дүн нь зүйл хооронд харилцан адилгүй.   

Өргөн цар хүрээтэй хийгдсэн эдгээр судалгааны ажлуудын үр дүнд тулгуурлан Монгол орны загас, 

түүний дотор хулдын овгийн загасны төрөл зүйлийн талаарх одоогийн мөрдөн хэрэгжүүлж буй 

менежмент, хамгаалалын арга хэмжээг сайжруулах, шинээр хэрэгжүүлж болох арга хэмжээг багтаасан 

зөвлөмжийг боловсруулан гаргалаа. Үүнд: 1. Монгол орны томоохон сав газруудын хэмжээнд Цэнгэг 

Усны Тусгай Хамгаалалтай Газар Нутаг (ЦУТХГН) –ийг байгуулах. Газар нутгийн хэмжээ, байршилыг 

тухайн газар нутагт хийгдсэн орон зайн экологийн болоод популяцийн генетикийн бүтцийн судалгаанд 

үндэслэн тогтоох нь зүйтэй; 2. Загасчлах хорионы хугацаа дуусах өдрийн шинэчлэх. Ялангуяа 

загасчидын голлон агнадаг зэвэг загасны үржлийн нийт хугацаанд агнахыг хориглох. Одоогийн 

мөрдөгдөж байгаа загасчлах хорионы хугацаа дуусгавар болох хугацаа нь зэвэг загасны үржлийн 

хугацаатай давхацсан байгаа юм; 3. Морфологи болон генетикийн хувьд алслагдсан, тоо толгой нь 
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хязгаарлагдмал монхор хошуут зэвэг (B. sp.)  загасыг “Агнахыг хориглосон зүйлийн жагсаалт”-анд 

нэмэж оруулах; 4. Зэвэг (B. lenok) болон хадран (T. baicalensis) загасны агнаж болох хамгийн бага биеийн 

уртын хэмжээг тусгаж оруулах. Энэхүү санал болгож буй арга хэмжээний зорилго нь эдгээр загасны 

зүйлүүдийг үржлийн шат болоод үржлийн шатнаас өмнөх шатанд устах, тоо толгой нь хорогдохоос 

сэргийлж байгаа юм. Түүнчлэн томоохон голуудын сав газруудад загас агнуурын хараат болон хараат 

бус үнэлгээг өгөх,  биомониторингийн хөтөлбөрийг (индикатор зүйлүүдийн хүрээнд) хэрэгжүүлэх, 

ялангуяа бохирдлын нөлөөлөлд хүчтэй өртсөн газар нутагт тархсан загасыг хүнсэнд хэрэглэхтэй 

холбогдсон, хүний эрүүл мэндэд эрсдэл учруулж болзошгүй хортой хүнд элементүүдийн бохирдлыг 

илрүүлэх хяналт шинжилгээг гүйцэтгэж байх шаардлагатай байна. Загасчидын загас агнуурын 

зохицуулалтын талаархи мэдлэг дутмаг байдал, хууль бус загас агнуурын өнөөгийн нөхцөл байдлаас 

дүгнэн үзэхэд загасчидын загас агнуур, түүний дагаж мөрдөх дүрэм журмын хүрээнд боловсролын 

хөтөлбөрийг боловсруулах, хэрэгжүүлэх нь зүйтэй. Иймд эрчимтэй хөгжиж буй загасчлах аялал болон 

устаж, ховордож буй хулдын овгийн зүйлүүдийн популяцийг ирээдүйд хадгалж үлдэх гэсэн хоёр үндсэн 

хэрэгцээ шаардлаганы тэнцвэрт байдлыг хангах асуудал чухал болоод байна. Гэвч шинжлэх ухаанд 

суурилсан зөвлөмжүүдийг бүгдийг тусгаж, тодорхой хэмжээнд албадан хэрэгжүүлж байж л өнөөгийн 

нөхцөл байдалд эрс өөрчлөлт хийх, Монгол орны цэнгэг усны загасны популяци болоод тэдний оршин 

амьдрах усан орчны экосистемийг хадгалж, хамгаалж чадна. Эцэст нь тэмдэглэхэд Монгол орон бол 

цэнгэг усны биологийн төрөл, зүйлийн хамгаалал, менежментийн арга хэмжээг бүс нутгийн болоод 

дэлхийн хэмжээнд авч хэрэгжүүлж чадах загвар бүс нутаг болж чадах юм.   



 
 

INTRODUCTION 
 

1 Research Objectives and Hypotheses 
 

Freshwater ecosystems including rivers, lakes and wetlands not only contain vital water resources but provide 

many diverse goods and services of critical importance such as nutrient recycling, flood abatement and climate 

moderation to human societies everywhere (Postel & Carpenter, 1997; Wilson & Carpenter, 1999). Embedded 

within these ecosystems, which combined occupy only 0.8 % of the earth’s surface, are more than 100 000 

aquatic species, including 40 % of the total global diversity of fish species (Gleick, 1996; Lundberg et al., 2000; 

Malmqvist & Rundle, 2002). While these fish populations are an essential source of animal protein and 

micronutrients for millions of people in many developing countries around the world (FAO, 2016), they also 

support extensive commercial and recreational fisheries in almost all industrialized and advancing countries 

(Arlinghaus et al., 2002, 2010; Cowx et al., 2010; Welcomme et al., 2010; Youn et al., 2014). However, on a 

global scale, freshwater environments and their fisheries have been increasingly impacted by a plethora of 

anthropogenic forcings, which have included widespread pollution and contamination, habitat loss, 

fragmentation, flow modification, channelisation, water extraction, invasive species introductions, 

overexploitation and climate change (Gozlan et al., 2010; Welcomme et al., 2010; Cowx & Portocarrero, 2011). 

With the increased impact of these forcings compromising the integrity, resilience and sustainability of both the 

ecosystem and resident fish populations, their accumulative effect has meant that freshwater environments are 

now identified as the most threatened and degraded environments on the planet, having experienced declines in 

biodiversity far greater than those in the most impacted terrestrial ecosystems (Sala et al., 2000; Dudgeon et al., 

2006; Ormerod et al., 2010; Vörösmarty et al., 2010). 

Mongolia, in northern Asia, is one of the few countries in the world that are comprised of largely intact 

freshwater ecosystems and robust fish populations (Jensen et al., 2009; Hofmann et al., 2015; Karthe et al., 

2015). The country’s river and lake networks, especially in its more remote regions, have not suffered from 

widespread water pollution or habitat loss, there has been no major dams constructed or other large-scale 

modifications or diversions, and fish populations have generally resisted previous commercial fishing efforts that 

occurred in the 20th century (Dulmaa, 1999; Chandra et al., 2005; Kottelat, 2006). However, the current 

socioeconomic transition which is being driven by increased mineral resource exploitation and agriculture and 
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pastoralism expansion, along with urbanisation and proposed hydroelectric dam construction, is now threatening 

the ecological status of the country’s freshwater ecosystems and the aquatic fauna more than ever before 

(Hofmann et al., 2015; Malsy et al., 2016; Kasimov et al., 2017). Furthermore, there is an even greater threat also 

facing several of the larger-bodied fish populations, and that is their increased mortality from recreational fishing 

and poaching activities across the country. While more and more Mongolians are now picking up their rods and 

reels and are heading out to fish as part of an emerging recreational fishery, urgent action is required to improve 

conservation and management regulations before these fish population decline further. Anglers are known to 

target several species that have already suffered from widespread declines in abundance and distribution 

including the endangered Siberian taimen (Hucho taimen; Pallas 1773), the vulnerable sharp-snouted lenok 

(Brachymystax lenok; B. lenok; Pallas 1773), and the near threatened Baikal grayling (Thymallus baicalensis; 

Dybowski 1874; nominative species T. arcticus; Ocock et al., 2006). 

The sustainable use of inland fisheries resources requires concerted actions that are adopted by individuals, 

stakeholder groups, non-governmental organisations, regional, state and national governments (Arlinghaus et al., 

2002). These actions must be based on sound scientific knowledge regarding the fishery and its target species 

before adequate regulations can be developed and effective management strategies implemented. However, such 

detailed information is often difficult, time consuming and expensive to obtain, particularly in less developed 

nations or in countries with less advanced fisheries research and monitoring infrastructure (Cooke & Cowx, 

2006). Additional challenges also exist when gathering information related to recreational fisheries that operate 

over an expansive area including in remote and isolated river reaches, contain an undetermined amount of illegal 

activities and / or involve rare and threatened species. Collecting data on Mongolia’s emerging recreational 

fishery and its targeted fish populations encompasses each of these challenges, which has resulted in there being 

limited previous research undertaken on a range of related topics such as ecology, biology and genetic diversity 

of the exploited species, with only minimal information also available regarding basic fisheries parameters or 

potential biocontamination of consumed fish species. This situation has translated to a substantial gap in the 

understanding and knowledge concerning both the fishery and the fish species in Mongolia, and ultimately has 

limited the capacity of the responsible authorities to develop and implement sufficient and effective management 

strategies and prevent species losses. Therefore, the current thesis was undertaken with the aims to gain detailed 

information on five key research topics, which have their specific objectives and hypotheses described below:  
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i. An emerging recreational fishery in Mongolia’s urbanising society: a threat to its pristine fish stocks? 

In order to gain an overview of the expanding recreational fishing activities in Mongolia, roving creel surveys 

were conducted across three river basins known to be popular fishing destinations with anglers. These surveys 

aimed to significantly expand the knowledge and understanding of the fishery as very little information has been 

available for making informed management decisions in the past. There had only been preliminary interviews 

conducted previously with six fishing families in the Eroo River basin already reporting population declines of 

target species eight years earlier (Chandra et al., 2005). Therefore, comprehensive surveys were developed to 

gather a range of data regarding the demographics of the anglers, their fishing history and habits, trip frequency 

and duration, preferred fishing locations, targeted and regularly caught species, fish sizes caught, consumption 

rates, gear use, money spent, knowledge of current fishing regulations and opinions on threatened species and 

conservation. This research is critical and will not only provide a snapshot of the current situation in the fishery 

but also provide a baseline for comparable work in the future. The main hypotheses of the surveys included: 

Hypothesis I: Fishing pressure is higher in the Kharaa River basin, which is closer to Mongolia’s 

urbanising centers (Darkhan and Ulaanbaatar) compared to those that are more isolated (Eroo and Onon 

basins), and 

Hypothesis II: Mongolian anglers are largely unaware of the current fishing regulations, which have led to 

widespread illegal fishing activities and fish population declines across the country.  

ii. Regional patterns of heavy metal exposure and contamination in the fish fauna of the Kharaa River 

basin (Mongolia)  

With recreational fishing activities increasing across the country, potential human health implications associated 

with the regular consumption of locally caught fish species from heavily polluted river reaches has became 

evident and thus urgently needed to be addressed. The past and present mining operations have been identified as 

the source of significant contamination at a number of hotspot locations across the Kharaa River basins, a 

popular fishing location, with several toxic heavy metals detected previously in elevated concentrations in both 

the water and soil at those sites (Hofmann et al., 2010; Batbayar et al., 2017). With elevated contents of Hg 

already detected in Siberian dace (Leuciscus baicalensis, Dybowski, 1874) sampled from the Boroo tributary in 

the Kharaa River basin (Komov et al., 2014), the biocontamination and biomagnification of Hg, and the other 

toxic heavy metals, in the higher trophic level fish species that were being regularly consumed was completely 
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unknown. Thus, Siberian dace and a further four fish species, including B. lenok and T. baicalensis, were 

selected to be sampled from 11 sites across the basin. Heavy metal contents were analyzed in the liver and 

muscle of collected individuals and were evaluated against the internationally recommended thresholds for each 

metal in fish tissue for human consumption. The main hypotheses of this important research included: 

Hypothesis III: Toxic heavy metals have accumulated in the tissue of five consumed fish species across 

the Kharaa River basin, with elevated contents present in higher trophic level fish, and 

Hypothesis IV: Biocontamination of Hg in consumed fish species from the Kharaa River basin currently 

present a risk to human health with their regular consumption. 

iii. Movements and behaviour of an archaic trout, Brachymystax lenok (Pallas, 1773) under extreme 

environmental conditions in Mongolia 

Understanding how fish move spatially within their habitats and temporally under changing seasonal conditions 

is essential for a science based approach to fisheries and threatened species management. Brachymystax lenok is 

listed as vulnerable in Mongolia, yet likely makes up a significant portion of the total harvest in the emerging 

recreational fishery, thus making it a species of high priority for management efforts. Although B. lenok has an 

extensive distribution throughout Eurasia, its autecology, and ecology in general, is largely understudied, with 

only one paper describing the restricted movements (max. 8.17 km) of a closely related species (B. tsinlingensis) 

in a heavily impacted Korean River (Yoon et al., 2015). Thus essential data is missing regarding the spatial 

ecology of B. lenok, with its movements and behaviours (depth and activity) having never before been 

documented in a highly-connected, free-flowing river system. Therefore, passive acoustic telemetry was selected 

as the method to obtain such detailed information from multiple individuals in the upper Eroo River over a 12 

month period. This research aimed to address two main hypotheses: 

Hypothesis V: The home range of B. lenok in an unfragmented river system is extensive (> 8.17 km), with 

significant movements upstream in spring and downstream in autumn, and 

Hypothesis VI: B. lenok are more active during the day and less active at night, with depth occupancy not 

showing any diel variations.  
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iv. Seasonal home range shifts of the Siberian taimen (Hucho taimen, Pallas, 1773): Evidence from passive 

acoustic telemetry in the Onon River and Balj tributary (Amur River basin, Mongolia) 

The Siberian taimen, Hucho taimen, is the largest salmonid in the world and thus a popular target for recreational 

anglers across Mongolia where it is listed as endangered on the country’s Red List of Fishes. Although this 

species is now legally protected, there is an expected significant amount of poaching that still occurs and thus 

populations continue to decline (Ocock et al., 2006; Hogan & Jensen, 2013). Although previous research has 

reported extensive longitudinal movements of mature taimen of up to 93.2 km along a main river channel 

(Gilroy et al., 2010) a thorough understanding of this species’ seasonal home range shifts into critical tributaries 

habitats has not been studied before. Therefore, from a management perspective, further detail relating to the 

spatial ecology of this imperiled, keystone species is essential for developing better conservation and species 

recovery strategies going forward. Passive acoustic telemetry was again chosen to tag and track the movements 

of individual H. taimen over a 12 month period between the Onon River and a major tributary (Balj) in the Amur 

River basin, eastern Mongolia. The hypotheses for this research included:  

Hypothesis VII: H. taimen seasonal home ranges are more extensive in spring and autumn but are largely 

restricted during the summer and winter (ice coverage) months, and 

Hypothesis VIII: All H. taimen descend tributaries (Balj tributary) in autumn after spawning / feeding to 

overwinter in deeper pools within the main river channel (Onon River). 

v. Fish conservation in the land of steppe and sky: evolutionary significant units of threatened salmonid 

species in Mongolia mirror major river basins 

In order to improve fisheries management outcomes, it is often necessary to demarcate the interconnectedness of 

conspecific populations within a river basin by conducting a metapopulation analysis that uses genetic markers 

to define and describe Evolutionary Significant Unit (ESUs) and priority populations. While ESUs represent a 

meaningful cluster of populations that maintain regular gene flow, and therefore represent genetically distinct 

and reproductively independent groups within a species distribution, the identification of priority populations 

based on elevated genetic diversity and differentiation provides for a clearer more targeted approach for 

implementing management strategies within the ESU. Thus, with a comprehensive understanding of the 

connectivity between threatened H. taimen, B. lenok and T. baicalensis populations throughout Mongolia, there 

is a greater chance to protect and conserve higher levels of genetic diversity and thus evolutionary potential 
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within these species, which will improve their capacity to adapt to future environmental changes. In addition, the 

identification of priority populations is particularly important in regions where resources for conservation are 

limited such as in Mongolia. Therefore the main hypotheses for this genetic research were: 

Hypothesis IX: Evolutionary Significant Units of Mongolia’s threatened salmonid species mirror major 

river basins due to high within basin gene flow and connectivity, and 

Hypothesis X: Larger bodied species such as H. taimen display increased genetic homogeneity over larger 

spatial scales compared to smaller bodied species such as B. lenok and T. baicalensis. 

1.1 Overall Thesis Objectives 

The overarching goals of the current fisheries related research conducted in data poor Mongolia (Karthe et al., 

2015) is to not only advance the knowledge and understanding of several aspects related to the country’s 

emerging recreational fishery and its main target species, but also, to collate the anticipated results and devise a 

list of key recommendations for improving the existing management and conservation strategies. In addition, 

methods for mitigating the impact on these threatened fish populations from current anthropogenic forcings and 

substantial imminent threats are discussed along with possible ways to improve angler compliance.  
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2 Mongolia’s Natural Environment 
 

2.1 Geographic Ecoregions 

Mongolia is located in northern Asia, on the central Asian plateau, between the Russia Federation and the 

People’s Republic of China (latitudes 41˚ and 52˚ N and longitudes 87˚ and 102˚ E). It is the second largest land 

locked country in the world and the 19th largest overall with a total land area covering 1 564 116 km2 (Galdan et 

al., 2010). Mongolia’s average elevation is 1580 m above sea level (a.s.l.), with the country’s highest point, 

Khuiten Peak (4374 m), located in the Tavan bogd massif within the Altai Mountains in the far western 

provinces. Along with the Altai, there are also the Khangai Mountains running through the center of the country 

and the Khan Khentii Mountains in northern Mongolia. The country’s lowest point is Hoh Nuur at 518 m a.s.l. in 

the eastern plains. Mongolia’s unique location places it in an ecological transition zone between the Mongolian-

Manchurian steppe, the Siberian taiga forest and the Gobi desert. The steppe ecoregion consists of temperate 

grass and shrub lands that covers 887 300 km2 and forms a crescent around the Gobi desert. Deciduous forests of 

birch (Betula platphylla), Siberian larch (Larix sibirica) and several pine species (Pinus sibirica, P. silvestis, P. 

obovarta), make up between 8 and 10 % of the total area of Mongolia, mostly in the mountainous northern 

regions. The Gobi desert in the south, Asia’s largest desert, occupies 1 295 000 km2 in Mongolia and northern 

China and consists mostly of bare rock and small regions of sand.  

2.2 Climatic Conditions 

The continental climate in Mongolia produces extremely cold and dry winters that last from November until 

March each year when average air temperatures remain below freezing (-35°C to -15°C) and there is minimal 

precipitation (Batima et al., 2005). However, in certain years blizzards or dzuds bring extreme cold and freezing 

rain to large regions of the country causing significant losses of human life and livestock (Nandintsetseg et al., 

2007). The most recent of these occurred in the winters 2011 when 16 000 livestock died as a result of 

particularly harsh, sub-zero conditions. In contrast, Mongolian summers are short and hot with maximum 

temperatures reaching 38°C in the Gobi desert and 33°C in the capital, Ulaanbaatar. The northern regions receive 

the highest annual rainfall in the country with 300 – 400 mm, typically falling in the warmest months between 

April and September, which generates periodic flooding events (Batima et al., 2005). The southern regions, 

including the Gobi desert, generally receive no rainfall in most years.  
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2.3 Hydrological Networks 

Despite Mongolia’s dry, semi-arid landscape there are extensive rivers and lake systems which are mostly 

located in the northern half of the country (Figure 1). These freshwater ecosystems form three distinct 

hydrological basins that make up only 0.7 % of the total land area in the country. The largest of these in terms of 

area is the Central Asian Basin, which covers 65 % of Mongolia’s most western and southern regions (Dulmaa, 

1999). This basin is endorheic and is thus made up of internal draining watersheds including the Great Lakes 

Depression, the Valley of Lakes and the lowlands of the Gobi Desert. Within this region there are six major 

lakes, both saline and freshwater (Baatar et al., 2017), several major rivers including the Khovd, Zavkhan and 

Tesiin, and important wetlands that support a number of threatened migratory bird species. 

The Selenge River basin in the central north of the country is the largest external discharging river system in 

Mongolia, making up over 90 % of the total Arctic Ocean drainage watershed in Mongolia (447 000 km2). The 

Selenge River is also the main inflow (60 %) for the world’s largest and deepest freshwater lake, Lake Baikal in 

Siberian Russia (Stubblefield et al., 2005; Tornqvist et al., 2014; Kasimov et al., 2017). Mongolia’s two largest 

cities, Ulaanbaatar and Darkhan, are situated within the Selenge River basin on the Tuul and Kharaa rivers 

respectively. Lake Hovsgol, Mongolia’s largest lake by volume drains into the Eg River, a major northern 

tributary of the Selenge. This ultra-oligotrophic lake is 136 km long, 36.5 km wide and has a maximum depth of 

267 m. It holds 70 % of the country’s freshwater and 0.4 % of all the freshwater in the world. Despite its very 

remote location, Lake Hovsgol has recently come under an increasing pollution pressure (Free et al., 2016). The 

remaining 10 % of the Arctic Ocean drainage consists of the very upper reaches of the Yenisei River, with the 

Shishged being the major river in this separate watershed in the Darkhad Depression, a small region located west 

of Lake Hovsgol in the country’s far north-central region. 

The other large river basin in Mongolia includes the upper tributaries of the Pacific Ocean draining Amur River 

in the north east of the country (Figure 1). The Amur River is the 10th longest river in the world and one of the 

last free-flowing rivers of its size. Three tributaries are located in Mongolian territory including the Onon River, 

which flows north-east from the Khan Khentii Mountains 818 km (298 km in Mongolia), the Kherlen River, the 

most southern tributary within the Mongolian Amur catchment, which flows over 1250 km from the Khan 

Khentii Mountains east before entering Hulun Lake in China, and the Khalkhin tributary that runs through far 

eastern Mongolia, close to the Chinese border. This river is 233 km long and flows first into Buir Lake and then 

also on to Hulun Lake in China.  
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Figure 1. Elevation map of Mongolia.  Elevation map of Mongolia showing the Arctic Ocean Basin, the 

Pacific Ocean Basin and the Central Asian Internal Basin. 

2.4 Freshwater Fish Fauna 

Within Mongolia’s freshwater ecosystems there resides a unique fish assemblage made up of approximately 76 

native and two introduced species (with established populations) from 14 families (Kollelat, 2006). However, it 

is expected that this number will continue to increase with additional research as confusion remains surrounding 

the taxonomy of several species (Kollelat, 2006). The highest species diversity is recorded from the Amur River 

basin (~ 44 species), while the Selenge River basin is reported to have only half of that with ~ 24 species. The 

Central Asia basin has the lowest species diversity with only eight species (Dulmaa, 1999). The cyprinids 

(Family Cyprinidae), which includes the carps and minnows, are the most abundant and diverse fish family in 

Mongolia with 41 confirmed species. This is followed by the Family Nemacheilidae with eight species including 

several stone loaches from the genus Barbatula, and the Family Thymallidae with five grayling species 

(Thymallus species). The remaining 11 fish families have only three or less species currently recognised in 

Mongolia. Four of Mongolia’s endemic fish are found in the Central Asian Basin including the Mongolian 

grayling (Thymallus brevirostris), lake Osman (Oreoleuciscus angusticephalus), Dzungarian dace (Leuciscus 

dzungaricus) and the Gobi loach (Barbatula dgebuadzei). 
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The status of many of Mongolia’s fish species have been assessed where possible and included on to the 

country’s Red List of Fishes in 2006 (Ocock et al., 2006). This document considered only 64 native species of 

which 48 were classified into conservation categories according to the guidelines and criteria of the IUCN Red 

List (IUCN, 2001). Sixteen species of were not assessed due to their unconfirmed presence in Mongolia, while 

22 (46 %) species were listed as data deficient (DD) due to insufficient information on basic population biology, 

distribution and abundance. The resulting status of the remaining species highlighted significant declining trends 

and threats to many Mongolian fish species. While only one species, the Siberian sturgeon (Acipenser baerii) 

was listed as Critically Endangered, six species were assigned endangered status (Hucho taimen, Thymallus 

grubii, T. nigrescens, Coregonus pidschian, Leuciscus dzungaricus and Barbatula dgebuadzei), four species 

were listed as vulnerable (Brachymystax lenok, Orecleuciscus angusticephalus, O. humilis, and T. brevirostris) 

and three species as Near Threatened (Acheilognathus asmussi, Leuciscus idus and T. arcticus – re-described as 

T. baicalensis) (Ocock et al. 2006).  
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3 Anthropogenic Forcings 
 

3.1 Current Socioeconomic Transitions   

Mongolia, one of the least densely populated countries in the world (< 2 people / km2), is currently experiencing 

a significant socioeconomic shift (World Bank, 2017; Fan et al., 2016). The vast steppe landscapes that have 

supported the traditional nomadic and semi-nomadic herding lifestyles for millennia are increasingly being 

abandoned as Mongolians, particularly the younger generations, move in large numbers to the urban centres in 

search of better jobs prospects, education opportunities and health care (Fan et al., 2016; Long, 2017). As a 

result, over one third of the 3.027 million people (2016) now live in the capital Ulaanbaatar, with over 60 % of 

the city’s residents living in sprawling, unplanned “ger” (Mongolian tents) settlements on the outskirts of the city 

(Long, 2017). This urbanisation, along with the country’s significant economic growth, which has been driven 

by the expansion in the mining sector and increases of large-scale, commercial agriculture and livestock 

production, has helped to generate a growing middle and upper class. Mongolia is now classified as a lower-

middle income country by the World Bank, even though 21.6 % of Mongolia’s population in 2017 are still living 

in poverty (Asian Development Bank, 2017). However, this rapid transition that has continued across the country 

since the political changes in the early 1990s from a one party socialist system to a multi-party, open market 

democracy has also come at a significant environmental cost. Environmental protection laws and regulations 

have not existed, been inadequate to address the changing conditions or have been intentionally set aside in the 

name of progress. The major anthropogenic forcings that have impacted on Mongolia’s freshwater ecosystems 

and have thus contributed the most to the decline of Mongolia’s threatened fish populations are discussed below. 

3.2 Intensifying Fishing Activities 

The capture and consumption of fish in Mongolia was first documented in the 13th century, with mention of 

hooks and nets made of horse hair harvesting local fish populations to be preserved for winter (Dulmaa, 1999). 

Then approximately 250 years ago, fish stocks began to be commercially exploited by Russian merchants who 

caught fish in Mongolia and transported them to Siberia for sale (Dulmaa, 1999). By the beginning of the 20th 

century, commercial fishing was fully operational across the country with fish from more than 20 species being 

harvested from both rivers and lakes (Dulmaa, 1999). According to the Food and Agriculture Organization 

(FAO), Mongolia’s annual harvest between 1975 and 2008 was highly variable, with maximum catches obtained 

in 1979 and 1999 of more than 500 t, and minimum catches recorded in 1991 and 2008 of 100 t or less (FAO, 
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2017). Since 2008, the annual reported harvest has been 100 t or lower, with the lowest ever recorded catch in 

2014 of 49 t (FAO, 2017). Although there has been a general decline in Mongolia’s annual commercial harvest 

over recent years, there is also believed to be an unknown level of illegal commercial fishing occurring across 

the country with reports that it is significant and driven by the demand for Mongolian fish in both Chinese and 

Russian black markets (Ocock et al., 2006; Hogan & Jensen, 2013).  

While Mongolia’s commercial harvests have been steadily declining, fish capture and consumption within the 

country’s recreational fishing communities have been growing rapidly due to rising economic wealth, 

widespread availability of cheap, imported fishing gear and influence from foreign fishing techniques and 

practices (Chandra et al., 2005). Although there is currently very little data available on this emerging 

recreational fishery, it is expected to consist of a growing proportion of Mongolia’s new middle and upper 

classes who now have the resources to travel extensively to the country’s pristine rivers and lakes to spend their 

leisure time fishing and camping. There is also thought to be a small number of subsistent anglers who rely on 

local catches to supplement both their diet and income, but this is yet to be fully determined. Although, fishing 

laws including licensing and seasonal closures are in place, fishing activities are largely unregulated and as such 

there is an expected significant amount of illegal fishing taking place across the country (Ocock et al., 2006, 

Jensen et al., 2009; Hogan & Jensen, 2013). While compliance and enforcement of the fishing regulations is 

undoubtedly a major issue for authorities, the regulations themselves also need to be updated and expanded in 

order to better protect the threatened fish populations and their critical habitats going forward. For a more 

detailed description of the current Mongolian fishing laws refer to Appendix 1. In addition, there is also a 

growing number of local and foreign fishing outfitters that conduct H. taimen fishing expeditions during summer 

and autumn each year, with most companies operating in the more remote river basins including the Egiin (Eg), 

Delgermoron, Shishged and Onon. While some locally run, budget companies have been accused of operating 

without proper licensing and are rumored to not always adhere to strict catch and release fishing practices, the 

international operators have invested heavily in conserving H. taimen populations and their habitats, as the 

conservation of this species is essential to the success of their businesses. 

3.3 Contamination of Aquatic Ecosystems 

Mongolia’s freshwater ecosystems have suffered a progressive degradation in recent years due to a myriad of 

reasons related to growing urbanisation, mining, industrialisation and shifting land use practices (Onda et al., 

2007; Priess et al., 2011; Hartwig et al., 2016). This degradation now poses serious challenges for Mongolia, as 



 
13 

 

water quality and quantity have been significantly affected along with the ecological services that the rivers and 

lakes provide. In many regions, related public infrastructure such as waste water treatment plants (WWTPs) has 

not kept pace with contemporary changes and thus a large number of “gers” and newly built households in 

smaller towns are not connected to the region’s outdated WWTPs. As a result high amounts of poorly treated 

wastewater have entered the adjacent waterways (Hofmann et al., 2010; Karthe et al., 2015). This increased 

discharge of nutrients and other contaminates has led to serious implications for water quality and the potential 

for significant eutrophication issues in many regions across Mongolia including the lower Kharaa River basin 

(Hofmann et al., 2011). In addition, the massive expansion and intensification of the agriculture sector, has also 

seen an increase in the application of mineral fertilizers and manure to cultivated land, which has additionally 

influenced river water quality due to run-off related impacts (Hofmann et al., 2010; Karthe et al., 2015).  

Following the socio-economic and political changes in Mongolia in the early 1990’s, the national herd consisting 

of goats, sheep, horses, cattle, camels and reindeer was left largely unregulated and thus has grown dramatically, 

currently standing at over 61.5 million animals (National Statistics Office of Mongolia, 2017). As a result of this 

expansion, there has been widespread overgrazing of the steppe, including the adjoining riparian vegetation in 

many river basins, which together with the excessive trampling from livestock, has dramatically reduced the 

riverbank stability and led to increased erosion and fine sediment input into the river channel (Hartwig et al., 

2016). The subsequent effects within these aquatic ecosystems have included increased turbidity and 

sedimentation, which has been reported to have impacted the hyporheic zone dimensions and functioning 

through restricted spatial extent, lowered hydraulic connectivity, lower metabolism and ecological critical 

quality of pore water, with the most prominent ecological response related to decreased biomass of benthic algae 

and altered macroinvertebrate community metrics (Hartwig et al., 2016). Although the resident fish communities 

were not extensively investigated in this regard, high turbidity and sedimentation is known to negatively affect 

most fish species, especially salmonids, by reducing visibility and thus successful prey capture (de Robertis et 

al., 2003), increased physiological stress (e.g. gills trauma) and ultimately reduced survival rates (Bash et al., 

2001). Sedimentation can also prevent eggs in redds from receiving oxygen and inhibiting removal of waste 

products as well as entrapping larvae in the substrate (Everest et al., 1987). At this point, it is unclear if 

Mongolian fish communities in the impacted regions are being negatively affected under the current conditions.  

Over the past 50 years, the mining industry in Mongolia has been experiencing a rapid expansion with extensive 

mineral deposits of copper, coal, molybdenum, tin, tungsten and gold being increasingly discovered, extracted 

and exported (Dallas, 1999).  At its height, mining was responsible for more than 80 % of the country’s trade and 
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21.8 % of the national gross domestic product, with further growth predicted in the near future as continued 

foreign investment and new large-scale mines come online such as Tavan Tolgoi, which contains the world’s 

largest untapped coal deposits (Mongolian Statistical Information Services, 2015).  

In many cases mining activities have also been largely unregulated or illegal and were regularly conducted using 

inefficient and out of date extraction methods. Although legislation was passed in 2012 prohibiting all forms of 

mining activities from being conducted close to a river, stream or lake, many mining operations have continued 

unopposed in impunity, while others have left a lasting legacy of significant environmental damage and 

contamination of air, soil and water at numerous abandoned mining sites around Mongolia (Choi et al., 2004; 

Hofmann et al., 2010; Sorokina et al., 2013; Batbayar et al., 2015; Thorslund et al., 2016). Already in 2003, a 

state inventory for surface water in Mongolia identified 23 rivers in eight provinces as being morphologically 

altered and / or polluted due to mining activities, with several tributaries of the Selenge River including the Tuul 

and Kharaa included on this list (Batsukh et al., 2008). While some commercial companies were involved in 

large scale strip-mining of tributaries, others have used draglines from placer dredges to remove large amounts 

of topsoil, vegetation, and up to 10 m of overlying layers of alluvium so it could be sluiced for gold and later 

deposited into dredge pits (Stubblefeld et al., 2005). With these extensive operations, over 4000 m3 of gravel and 

sand were processed in a day, with several km of floodplain extracted in a year (Stubblefeld et al., 2005). This 

surfacing mining has caused severe disturbances of both the terrestrial and aquatic environment (Choi et al., 

2004).  

Along with increased turbidity and total phosphorus from mining alluvial soils in Mongolia (Stubblefield et al., 

2005; Chalov et al., 2015), one of the biggest environmental issues associated with mineral extraction, 

particularly gold, has been the influx of heavy metals into the surrounding environment due to the natural 

weathering of newly exposed and overburdened soil and rocks e.g. As, as well as the past and present use of 

illegal mining techniques e.g. Hg to extract gold (Grayson et al., 2004; Steckling et al., 2011; Pfeiffer et al., 

2015; Batsaikhan et al., 2017). These toxic heavy metals have been detected in elevated concentrations in certain 

hotspot regions where mining activities have, or are still occurring (Hofmann et al., 2010). However, the extent 

that these heavy metals have been incorporated into the resident fish species remains relatively unknown, with 

preliminary research on the topic having solely investigated the bioaccumulation of Hg in Siberian dace 

(Leuciscus baicalensis) from the Boroo Gol, a tributary of the Kharaa River that has been highly impacted by 

mining activities in the past (Hofmann et al., 2010; Komov et al., 2014; Pfeiffer et al., 2015). Thus, the level of 

this Hg contamination along the aquatic food chain and the subsequent risk to human health from consuming 
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Siberian dace and other higher trophic level species has not yet been determined. Likewise the contamination 

level of other toxic heavy metals, which have also been detected at elevated concentrations in the Kharaa River 

basin (water and sediment) including As, Pb, Cadmium (Cd), Cr, Cu, nickel (Ni) and Zn have also not been 

addressed by the scientific community or health / environmental authorities previously. Therefore, heavy metal 

contamination of consumed fish species in the Kharaa River presents an unevaluated risk to human health as the 

capture and consumption of local species continues to grow across the basin. Urgent investigations are required 

in order to fully describe the content of these toxic heavy metals in consumed fish tissue from the Kharaa River 

basin, one of the more popular fishing locations in Mongolia.  

3.4 Imminent Threats 

As well as the mounting threats that are currently applying pressure to Mongolia’s freshwater ecosystems and 

their resident fish populations, there are two additional major anthropogenic forces that are expected to induce 

significant habitat modifications and fundamentally alter the boreal aquatic environment going forward. These 

include the construction of several, large-scale hydroelectric dams and the imminent effects of climate change.  

The desired expansion of Mongolia’s energy production via hydroelectric power, along with the need to create a 

secure water supply to develop new mining and refining operations in the Gobi Desert, looks set to transform 

several major river systems in both the Selenge and Amur River basins in the near future. Mongolia’s rapid 

urbanisation and development has meant the nation’s energy provisions are under pressure and thus the Ministry 

of Energy is attempting to diversify the county’s power supply to ultimately become self-sufficient (Kohn, 

2015). Although hydropower was introduced to Mongolia as early as the 1950’s, with technical and economic 

assistance from the Soviet Union, only 10 small plants and an additional two larger stations at Dorgon (12 MW) 

and Taishir (11 MW) in western Mongolia are currently operational (WWF Mongolia, 2017; Hydroelectric 

Plants in Mongolia, 2013). However, there are now several major proposals throughout Mongolia that are either 

in the early stages of planning and development or construction including a 300 MW Shuren hydroelectric 

project on the Selenge River main channel and a 315 MW hydroelectric project on the Eg River, as well as a 

dam (with hydroelectric capabilities) and reservoir with substantial water diversion schemes planned for both the 

Orkhon and Kherlen rivers (HydroWorld, 2013; Simonov & Wickel, 2015). While these projects have the 

potential to meet Mongolia’s growing power requirements and reduce the reliance on the heavily polluting coal 

fired power stations, there is also a river basin scale environmental impact expected with significant 

consequences for the aquatic ecosystem both above and below the planned dam walls. These major effects are 
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well known and generally include large scale habitat transformations where lotic species are lost from the newly 

formed lentic environment, habitat fragmentation with the movement of species, nutrient and sediments being 

partially or completely blocked. There is also a dramatic alteration of the natural flow regimes and at certain 

times of the year potential sharp declines in water quantity and quality downstream from the dam (Dynesius et 

al., 1994; Nilsson et al., 2005). The damming of the Selenge River and its tributaries will, in addition, impact the 

world’s largest freshwater lake (by volume), Lake Baikal in Siberia, as the Selenge provides over 50 % of the 

main water inflow (Leermakers et al., 1996).  

Climate change is another major factor that threatens the freshwater environments and fish communities in 

Mongolia, even though the continental climate is already categorized as extreme with long, cold winters; short, 

hot summers and low annual precipitation (Karthe et al., 2015). While Mongolia has already experienced an 

increase in the mean air temperature of 1.8˚C since the 1940’s, with all seasons becoming warmer (Batimaa, 

2006), computer models are predicting a further rise of between 2.6 and 5.1˚C before the end of the century 

(Karthe et al., 2014). Precipitation trends have also shown high spatial and temporal fluctuations throughout the 

country (Liu et al., 2013), with high evapotranspiration in many regions (Priess et al., 2011). Future predictions 

suggest that the mean annual precipitation will increase by 20 to 86 mm per year (Karthe et al., 2014), with 

others indicating there will be a significant decrease (Sato et al., 2007). In any case, increased temperatures and 

variability in precipitation are likely to have various direct and indirect effects on regional hydrology, vegetation 

growth, permafrost persistence and snow coverage (Liu et al., 2013; Karthe et al., 2014). For the fish fauna, this 

could potentially mean a shift to more frequent and extreme high water temperatures, low water levels, 

unseasonal flood events, prolonged extreme winter temperatures and expanded ice coverage, which can all have 

a significant impact on the survival of many of the already threatened fish species (Ocock et al., 2006).  
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4.1 Abstract 

Mongolia’s freshwater fish populations have persisted in a near natural state for centuries. However, over the last 

25 years this has changed substantially as the country has undergone a rapid socioeconomic change following 

the shift in 1990 from a socialist economy to a market based economy. Over the same period, recreational 

fishing has increased in popularity to the point where it is considered to be the primary threat to several targeted 

fish species. Despite this, minimal data is available for management purposes as the fishery has remained poorly 

studied. Therefore creel surveys were conducted across three river basins in 2012, which aimed to provide the 

first overview of the fishery as it relates to five key topics (angler demographics, fishing practices, current 

fishing trip data, fishing gear and costs and angler knowledge and opinions). Anglers could be separated into two 

main types: rural anglers that have no or low incomes, reside in the basin, fished alone or in smaller groups, 

fished more frequently but for shorter periods and consumed fish more regularly; and urban anglers who have 

medium to high incomes, live in the capital city Ulaanbaatar, spent more money on fishing gear and trips and 

fished more intensely for multiple days at a time. B. lenok was targeted and captured most often (63 % of total 

catch) by both angler types. Total catch per unit effort (CPUE) was highest in the Onon River and lowest in the 

Kharaa River. However in all three catchments both legal and illegal fishing was reported to be common, which 

sums up to a significant threat for native fish stocks. Thus authorities need to improve current management 

approaches by implementing scientifically sound strategies in addition to more effective enforcement measures 

and widespread angler education programs. 
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4.2 Introduction 

The human exploitation of freshwater fish stocks from inland waters is virtually ubiquitous on earth (Allan et al., 

2005; Arlinghaus, 2005). While communities in many poor and rural regions, particularly in the developing 

world rely heavily on subsistent harvests as an irreplaceable source of dietary protein, micronutrients and income 

(FAO, 2016; Youn et al., 2014), in economically advancing countries, freshwater catches are increasingly 

dominated by community based recreational fishing (Welcomme, 2001; Arlinghaus et al., 2002). It is the recent 

expansion of these recreational fisheries that has now made them the principal exploiter, and thus the primary 

causal agent in the decline of numerous inland fish stocks within the rivers and lakes where they operate (Post et 

al., 2002; Cooke & Cowx, 2006; Lewin et al., 2006). It is therefore imperative that such emerging recreational 

fisheries are not simply disregarded by authorities as having a negligible impact on resident fish stocks, but are 

monitored and managed carefully to ensure their sustainability and prevent their over exploitation. While 

scientifically sound recreational fishery management strategies demand detailed knowledge relating to various 

biological and ecological components of the target species and system, it is also essential to consider the actions, 

characteristics and behaviours of participating angler groups (Arlinghaus & Mehner, 2004), as recreational 

fisheries management, is in essence, people management (Arlinghaus et al., 2002). 

The challenge to successfully manage exploited fish stocks in countries and regions where resources are often 

limited and fisheries data is typically minimal or completely missing is difficult (Arce-Ibarra et al., 2008; 

Bentley, 2015). Thus this makes the application of common management techniques such as maximum 

sustainable yields or safe biological limits problematic as these tools rely not only on estimates of biological 

parameters such as natural mortality rates and age at first maturity, but also fisheries parameters including total 

harvest levels and fishing effort as well as relevant spatio-temporal patterns of fishing pressure. For recreational 

fisheries, this essential data is often collected from creel surveys where anglers are interviewed and their catches 

measured and recorded over a specific period of time or location (Ellender et al., 2010; Veiga et al., 2010). Inter-

annual creel surveys can also be used to identify long-term fishing trends and related impacts on fish 

communities such as shifts in target species, reductions in population biomass and losses of biodiversity as well 

as the possibility to assess the effectiveness of various management strategies (Dunlop et al., 2012; Wise et al., 

2012). For an emerging recreational fishery, such as the one in Mongolia, conducting comprehensive creel 

surveys is an essential first step in providing this preliminary data in order for establishing a reference point to 

monitor the development of the fishery and its impact on the targeted fish populations as it continues to develop. 
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Mongolia has experienced a comprehensive socioeconomic shift over the past three decades following the 

political transition in the country when high unemployment rates, mass livestock mortalities, inflated food prices 

and increased availability of cheap fishing gear all likely contributed to an increased fishing effort (Dulmaa, 

1999; Chandra et al., 2005). While initially the capture of fish was likely a low cost way to supplement protein in 

regional diets, in more recent years, it has been assumed that fishing has gained popularity due to substantial 

lifestyle changes that include higher incomes and increased leisure time (FAO, 2012). As a result, there is now 

widespread concern that these recreational anglers pose an existential threat to the local fish populations that 

have until recently persisted in a relatively pristine state. Until now, they have never been harvested intensely, 

nor widely impacted by stocking programs or species introductions, nor fragmented by major dams or suffered 

from substantial habitat loss and pollution (Dulmaa, 1999; Kottelat, 2006; Karthe et al., 2017). However, as the 

rapid growth of recreational fishing in Mongolia has been largely unregulated and included a significant amount 

of illegal harvesting, there has also been a corresponding decline in the distribution and abundance of several of 

the main target species including Hucho taimen (Pallas, 1773), Brachymystax lenok (Pallas, 1773) and Thymallus 

baicalensis (Dybowski, 1874) (Ocock et al., 2006; Hogan & Jensen, 2013). Thus, the increased fishing pressure 

has reduced the status of these species to endangered, vulnerable and near threatened (nominative species listed 

as T. arcticus) respectively on the Mongolian Red List of Fishes 2006 (Ocock et al., 2006). 

To date, very little information is available on Mongolia’s emerging recreational fishery as there has been no 

previous detailed assessment undertaken across the country. Only Chandra et al. (2005) has conducted 

preliminary interviews with six local families in the Eroo River who reported that there had already been a 

decline in H. taimen (size and abundance) and sturgeon (Acipenser baerii, Brandt 1869) catches, particularly 

below intensive mining locations. Therefore the current research objectives were to obtain a broader scale 

understanding and insight into Mongolia’s emerging recreational fishery in order to provide information for 

improving national management strategies and promoting sustainability of resident fish stocks. Comprehensive 

creel surveys were conducted across three river basins that are popular fishing locations in Mongolia during the 

open fishing season between mid-June and October 2012. The basins were chosen due to their variation in 

regards to the number of residents, access, fishing potential (id est (i.e.) target species abundance) and past 

observed fishing effort. The surveys consisted of five sections including S1: Angler Demographics, S2: Fishing 

Practices, S3: Current Fishing Trip Data, S4: Fishing Gear and Costs, and S5: Angler Knowledge and Opinions. 
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4.3 Materials and Methods 

Study Basins 

The Kharaa River (362 km) is located in northern Mongolia within the Selenge River basin (Arctic Ocean 

drainage, Figure 2). It is a third order stream with an average annual discharge of 8.3 m3 s-1, although during the 

survey period in 2012, river discharge was significantly below the long-term average (Karthe et al., 2014). The 

14 534 km2 basin is one of the most densely populated in Mongolia containing approximately 147 000 

inhabitants in three main centers, including the country’s second largest city Darkhan (74 000 residents). There 

is substantial agriculture, grazing and mining operations in the middle and lower reaches, which has led to 

increased nutrient input, erosion and heavy metal contamination of surface, sediment and fish fauna (Hofmann et 

al., 2010; Hartwig et al., 2016; Kaus et al., 2016; Batbayar et al., 2017), while the upper reaches are 

characterized by only limited anthropogenic impacts (Kopp et al., 2014; Hofmann et al., 2015). Mongolia’s 

capital Ulaanbaatar, with 1.2 million residents, is also in close proximity to the south-east of the basin with easy 

access by both sealed road and railway. The Kharaa River fish fauna consists of 16 species, with eight being 

caught by anglers including Brachymystax lenok, Thymallus baicalensis, Leuciscus baicalensis (Dybowski, 

1874), Esox lucius (Linnaeus 1758) , Perca flavescens (Mitchill, 1814), Silurus asotus (Linnaeus 1758), Lota 

lota (Linnaeus 1758), and Cyprinus carpio (Linnaeus 1758). H. taimen are rarely caught in the basin and are 

expected to only exist  

The adjacent Eroo River basin is located to the north–east of the Kharaa basin but due to the absence of intensive 

land use, mining operations and major settlements in its upper and middle regions, the Eroo River is one of the 

least polluted in northern Mongolia (Batbayar et al., 2017; Karthe et al., 2017). Khonin Nuga is located in its 

upper reaches and is only accessible by 4WD along an 80 km dirt road from Zuunkharaa (Kharaa basin). The 

ranger and his family are sole permanent residents throughout the year, with forestry workers frequenting the 

area regularly during the survey period. The region is mountainous with large areas of taiga forest and narrow 

river valley sections that are only accessible by inflatable boat. Officially since 2013 the region surrounding 

Khonin Nuga has been included in the extension of the Khan Khentii Strictly Protected Area, although 

recreational fishing has not yet been prohibited. Until recently the resident fish fauna, which is similar to that 

found in the Kharaa basin, had not been heavily fished due to its isolation. Thus larger, mature H. taimen (~ 1m) 

are still present, while B. lenok and T. baicalensis are relatively abundant in extremely low numbers or enter as 

migrants. 
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Figure 2. River basins in Mongolia. Map showing the three river basins including the Kharaa, Eroo and Onon 

(outlined in red) in northern Mongolia where creel surveys were conducted between June and October 2012. 

The Onon River (94 010 km2) is a third order tributary of the Amur River (Pacific Ocean drainage) and is 

located in north-eastern Mongolia, where it flows 298 km until the Russian border (Figure 2). The middle and 

lower reaches of the Mongolian section meanders through rocky outcrops and steppe landscape with patches of 

taiga forest. Several small towns are in close proximity to the Onon River including Batshireet, Binder and Dadal 

(total residence 1000 – 3000), which make the river readily accessible to local residents. A sealed road part of 

the way from Ulaanbaatar also allows city travelers to visit the area relatively easily. The Onon River basin 

contains one of the last robust H. taimen populations in Mongolia, two Brachymystax species including the 

sharp-snouted (B. lenok) and blunt-snouted (B. sp.) lenoks, which are commonly misidentified by anglers, 

Thymallus grubii (Dybowski, 1869) and Esox reichertii (Dybowski, 1869). 

Creel surveys 

Creel surveys were translated into Mongolian language and distributed to all anglers and fishing groups that 

were encountered in the river basins between June 15th and October 1st 2012. Although there was not a constant 
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effort to search for anglers over this time, there were 28 days in total where surveys were conducted, particularly 

on the weekends when fishing effort increased. The survey consisted of a total of 40 questions across five 

sections S1: angler demographics, S2: fishing practices, S3: current fishing trip data, S4: fishing gear and costs 

and S5: angler knowledge and opinions. One survey was completed per fishing group with the explanation to 

provide specific individual details where appropriate e.g. number of fish caught per person. Not all questions 

were answered by all anglers; but all legitimate responses were considered and included in the summary tables 

and analyses. Where an amount range was given e.g. fishing trips or money spent, a mean was taken and used in 

the overall calculations. With respect to the estimated money spent on going fishing over a year, the money spent 

on the current trip was multiplied by the estimated number of trips for 2012. All CPUE estimates were minimum 

values as most surveys were conducted in the middle of each fishing trip, which is why CPUE was calculated per 

hour as well as per day. Data was analysed using Kruskal-Wallis Test and Tukey HSD post-hoc test and was 

visualized in R (R Development Core Team 2010, version 1.0.44) using the package ggplot2. 

4.4 Results  

A total of 58 fishing groups (n = 154 anglers) were surveyed from the three river basins: 17 fishing groups 

(n = 27 anglers) from the Kharaa, 18 groups (n = 59 anglers) from the Eroo and 23 groups (n = 68 anglers) from 

the Onon. There were between one and nine anglers per group with a significantly lower number of anglers per 

fishing group in the Kharaa compared to the other two basins (p < 0.05; 
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Figure 3). The following results are a summary of the responses from the 58 fishing groups to the five survey 

sections. 

Recreational Fisher Demographics 

All anglers interviewed were male (100 %), with 98 % Mongolian (Table A2- 1). Angler age ranged from 16 to 

71 years old with a mean of 38.2 ± 12 years across all basins. The majority of groups in the Kharaa (63 %) and 

Onon (83 %) resided within these basins, with the next largest groups of anglers coming from Ulaanbaatar (26 –

 16 % respectively). In the Eroo, most fishing groups were from Ulaanbaatar (59 %), while four were from the 

adjacent Kharaa basin. 73 % of anglers surveyed were employed, 14 % were retired or unemployed, 9 % were 

students and 3 % herders. All anglers travelled by 4WD to the Eroo, 77 % used a car in the Onon and 65 % were 

on foot or came by public transport in the Kharaa. Surveyed anglers first went fishing in the mid 1990’s, between 

22 and 26 years old, with 64 % responding that neither their fathers nor grandfathers had previously fished 

before them. 

 

 

Figure 3. Boxplot showing the median number of anglers per fishing party in the Kharaa, Eroo and Onon 

basins surveyed in northern Mongolia between June and October 2012. Boxes indicate the median (black 

line) and 10/90 percentile, whiskers 2 x percentile range. Solid black dots indicated data outliers. Asterisks (*, 

p < 0.05) indicate significant differences between two river basins (separated by a horizontal black line). The n 

values above each box illustrate the total number of fishing groups used in the analysis. 
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Fishing Practices 

Thirty-eight fishing groups (70 %) indicated that they went fishing at least once a year (Table A2- 2). The 

median (± SE) number of fishing trips undertaken by Kharaa anglers was significantly higher than anglers in the 

Eroo (p < 0.01) and Onon (p < 0.05) in 2011 (Figure 4). However, the median number of fishing days per angler 

was not significantly different between basins (p > 0.05; Figure 5). Kharaa anglers fished most frequently (> 10 

trips; n = 7), most Onon anglers fished occasionally (4 – 9 trips; n = 12) and Eroo anglers fished rarely (0 – 3 

times) in 2011. Most fishing trips in 2011 occurred in summer (n = 50), with autumn the next most popular time 

(n = 25). Three groups fished in spring and none in winter. The mean (± SE) fishing hours per day was not 

significantly different between basins (p > 0.05). Most anglers in the Eroo and Onon fished in other rivers, while 

less than half of the Kharaa anglers fished in another river (44 %). 77 % of all anglers kept their catch, 15 % 

(n = 10) released it and only 7 % (n = 5) gave it away or sold it. Fish consumption among anglers was rare with 

71 % eating fish 0 - 3 times a month (n = 36). Only eight anglers ate fish frequently or more than 10 times a 

month (16 %), with seven of these in the Kharaa basin. 

 

Figure 4. Boxplot displaying the median number of fishing trips per fishing group across the three river 

basins in Mongolia in 2011. Boxes indicate the median (black line) and 10/90 percentile, whiskers 2 x 

percentile range. Solid black dots indicated data outliers. As asterisk (** = p < 0.01; * = p < 0.05) indicates a 

significant different between river basins (separated by a horizontal black line). The n values above each box 

illustrate the total number of fishing groups used in the analysis. 
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Figure 5. Boxplot displaying the median number of fishing days per angler across the three river basins in 

Mongolia in 2011. Boxes indicate the median (middle line) and 10/90 percentile, whiskers 2 x percentile range. 

Solid black dots indicated data outliers. No significant differences were identified between the basins. The n 

values above each box illustrate the total number of fishing groups used in the analysis. 

 

Current Fishing Trip 

Only 54 % (n = 30) of anglers surveyed had purchased a fishing permit for the current trip, 7 % (n = 4) did not, 

and 39 % (n = 22) had never bought one to go fishing before (Table A2- 3). The mean (± SE) length of the 

current trip was significantly longer for Eroo anglers (3.06 ± 0.36 days, p < 0.001) compared to the Kharaa 

(1.29 ± 0.14 days) and Onon anglers (1.48 ± 0.16 days). B. lenok was identified as the most targeted species 

(n = 32), followed by H. taimen, T. baicalensis and ‘no matter’ which each had all 14 positive responses. 20 % 

of anglers wanted to catch 10 or more fish during a trip, 34 % between four and nine fish and 38 % wanted to 

catch three or less fish. 

B. lenok made up 63 % of the total recorded catch, with 34 individuals retained in the Eroo (32.3 ± 7.9 cm total 

length (TL)), 30 (36.5 ± 7.5 cm TL) in the Onon (B. lenok and potentially some blunt-snouted individuals - B. 

sp.) and 12 in the Kharaa (34.5 ± 4.7 cm TL; Figure 6 & Figure 7). No significant difference (p > 0.05) was 

detected for B. lenok lengths between basins (p > 0.05). T. baicalensis was the second most caught species 

making up 27 % of the total catch with 31 individuals from the Eroo (21.4 ± 5.3 cm TL) and one individual from 

both the Onon (27 cm TL - T. grubii) and Kharaa (32 cm TL; Figure 6 & Figure 7). Eight H. taimen were caught, 

representing 7 % of the total catch (seven in the Onon; 71.7 ± 2.9 cm TL and one in the Eroo; 60 cm TL; Figure 

6 & Figure 7), along with four Leuciscus spp. (3 %, 20 ± 3.8 cm TL) in the Kharaa. The mean (± SE) CPUE for 
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each angler per day of fishing was highest in the Onon followed by the Eroo and Kharaa, but there was no 

significant difference (p > 0.05; Figure 8). The mean (± SE) CPUE for each angler per hour of fishing was again 

highest in the Onon and relatively even in the Kharaa and Eroo, with no significant difference detected between 

basins (p > 0.05; Figure 8). 

Fishing Gear and Costs 

All fishing groups used rods and reels, with one angler also using a net in the Kharaa (Table A2- 4). Artificial 

lures were used by 64 % of anglers, followed by “everything” (14 %), grasshoppers (10 %), rain worms (5 %) 

and live fish (3 %).  Two fishing groups were fly fishing (3 %). 45 % of the fishing gear used was purchased at 

black markets in Ulaanbaatar and Darkhan, with 38 % of sales from Ulaanbaatar fishing tackle shops. Six fishers 

bought equipment from overseas. The median money spent on fishing gear so far in 2012 was 89 600 Ŧ 

($37.20 ± 5.6 USD) per person. Anglers in the Eroo spent significantly more per person (p < 0.05; 158 462 Ŧ / 

$65.78 ± 16.4 USD) than anglers in the Onon (68 000 Ŧ / $28.23 ± 6.2 USD) and Kharaa (61 000 Ŧ / 

$25.32 ± 5.7 USD) (exchange rate of $1 USD to 2409 Ŧ MNT; Figure 9 – dark grey bars). The estimated 

expenditure (median ± SE) in 2012 for anglers on fishing trips was 90 000 Ŧ or $37.36 ± 9.22 USD (Figure 9 – 

light grey bars). Eroo anglers spent significantly more in 2012 with a total of 300 000 Ŧ (p < 0.001; 

$124.57 ± 22.32 USD) per person in comparison to anglers in the Onon and Kharaa who spent 120 000 Ŧ 

($49.82 ± 4.15 USD) and 17 500 Ŧ ($7.27 ± 9.21 USD) per person respectively. 

 

Figure 6. Stacked bar plot displaying the catch composition for each river basin recorded during the creel 

surveys conducted between June and October 2012. The total catch (sum of all three basins) per species is 

also shown to demonstrate the potential overall catch composition in the fishery. 
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Figure 7. Grouped bar plot displaying the mean fish total length (± SE) per species and river basins that 

were captured during the surveyed fishing trips between June and October 2012. No significant difference 

(p > 0.05) was detected for B. lenok lengths caught between river basins. No other species lengths were 

compared due to low numbers in one or two other basins. 

 

Figure 8. Paired bar plot displaying the mean Catch per Unit Effort (± SE) per angler per day and per 

hour in the three river basins between June and October 2012. No significant differences were detected 

between basins for either CPUE per day or CPUE per hour. 
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Figure 9. Paired bar plot displaying the median (± SE) expenditure per person ($USD) in 2012 on fishing 

gear (dark grey bars) and fishing trips (light grey bars) in the three river basins between June and 

October 2012. The asterisk (** = p < 0.01; * = p < 0.05) above the bars indicates significant differences 

between basins. 

Fisher Knowledge and Opinions 

62 % of all anglers indicated that they thought fishing was getting worse, while 27 % thought fishing had not 

changed, and 2 % said it had improved (Table A2- 5). Anglers responded that overfishing (57 %), pollution 

(19 %) and a decrease in water levels (19 %) were responsible for the decline. Illegal fishing had been witnessed 

by over half the fishers (56 %, n = 29) with netting having being seen in all three basins, dynamiting observed in 

the Kharaa and motor boat use in the Onon. In the Kharaa, 71 % of anglers did not know or were unsure of the 

fishing regulations, while this trend was reversed in the Eroo and Onon basins with 80 % and 70 % answering 

that they knew the regulations respectively. Almost all anglers knew H. taimen were under threat and in danger 

of becoming extinct (93 %; n = 52). Most fishing groups said that they released fish alive (97 %; n = 56) because 

they were too small (69 %; n = 22) or for conservation reasons (31 %; n = 10). Across the surveyed river basins, 

60 % of all responses indicated that they would support new fishing laws to improve sustainability and 

conservation of local fish populations, while the remaining 40 % were against additional regulations or were 

unsure. 
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4.5 Discussion 

The current creel surveys represent the most comprehensive investigation to have focused on Mongolia’s 

emerging recreational fishery. The data gathered from these three river basins indicates that there are similarities 

in angler demographics and target species across basins, while fishing group size, number of fishing trips and 

economic outlay showed significant differences. These results can provide a reference point for future research 

to identify longer term trends, quantify growing effort in the fishery and improve management decisions in order 

to achieve sustainability. 

Angler Demographics and Fishing Practices 

This emerging recreational fishery is dominated by Mongolian men below 40 years of age (> 70 %), although 

Russian, Chinese and Kazakh immigrants and some western visitors (not with a tour company) are also known to 

be active in the fishery (Chandra et al., 2005; Ocock et al., 2006; Hogan and Jensen, 2013). Most anglers began 

fishing in the mid to late 1990’s and are thus the ones responsible for the rapid increase in fishing effort observed 

across the country, especially as over 60 % of these anglers responded that neither their fathers nor grandfathers 

had been fishing before them. In Mongolia, like in other developing countries such as India, the rapid increase in 

the number of recreational anglers has been attributed to the improved economic wealth of its citizens, which has 

allowed surplus time and money to be spent on leisure activities such as fishing (FAO, 2012; Gupta et al., 2012). 

As a result, angler income along with place of residence has subsequently defined two angler types: the rural 

angler who was dominant in the Kharaa and Onon basins where they resided in close proximity to the river and 

typically had lower paying jobs or were unemployed, retired, were students or herders; and the urban angler who 

were prominent in the Eroo basin where many had travelled from Ulaanbaatar and worked medium to high 

income jobs and were engineers, bankers, government workers or private business owners. The identification of 

these different angler groups is important for management purposes as each appears to be responsible for 

impacting fish populations to varying degrees and in different regions. 

The Kharaa River flows through one of the more densely populated basins in Mongolia and is thus likely one of 

the most heavily fished regions in the country as there was a significantly higher mean number of fishing trips 

undertaken in 2011 in the Kharaa compared to the other river basins surveyed, although as these trips were 

significantly shorter in length, the median number of fishing days per angler remained comparable across basins. 

The prolonged, elevated fishing pressure over the last 20 – 30 years has no doubt been a major factor in the local 

expiration of H. taimen in the Kharaa basin. This expiration of the largest predatory fish species indicates a 
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potential sequential decline in the captured species within the fishery (Allan et al., 2005). Kharaa H. taimen 

populations have disappeared faster than those in several Russian rivers where trophy-sized individuals of 1 m or 

more have gone in less than 20 years from exploited rivers in which they were formally abundant (Matveyev et 

al., 1998). While it is clear that H. taimen have been overexploited, B. lenok populations may be more resilient to 

the fishing pressure, as they appear to have not been impacted to the same degree. This was evident in the mean 

total lengths of individuals, which were not significantly different compared to those in the Eroo and Onon river 

basins.  However, in contrast, the Kharaa CPUE was the lowest of the three basins, again indicating that the local 

fish populations have been impacted compared to the Onon and Eroo. The fishing pressure in the Kharaa River is 

likely to be one of the highest in Mongolia; the future widespread fishing pressure is expected to have substantial 

impacts on the remaining resident fish community. 

Although rural anglers in the Onon also live within the river basin and work lower income jobs, they reportedly 

fished less frequently but in larger groups compared to anglers in the Kharaa. Onon anglers tended to travel by 

car to fish with bigger groups in more isolated reaches along the river where they could obtain the highest 

CPUE. This difference may be attributed to the more robust fish populations present, including H. taimen, which 

have survived in the Onon due to the historically low human population densities and intact river integrity. Even 

though Onon anglers tended to go fishing only occasionally, the combination of the high CPUE and the larger 

group sizes indicates that the total annual harvest across the basin may be considerable. It appears that the Onon 

is in a much earlier stage of exploitation compared to the Kharaa, but this is likely to change in the near future as 

fishing pressure continues largely unchecked. In addition, illegal catches of H. taimen and the misidentification 

of the B. sp. as the sharp-snouted lenok (B. lenok) that is also caught and retained, will adversely impact on the 

rare and fragmented populations of these threatened species across the Onon basin. 

The wealthier urban anglers such as those identified in the Eroo River basin represent a new threat to the 

Mongolian fish populations. While these anglers tended to go fishing only rarely (0 – 3 times per year), they 

went in large groups and for longer periods at a time and thus there was no statistical difference between the 

median number of fishing days per angler across the three basins. This result highlights the fact that urban 

anglers are also responsible for a considerable amount of fishing pressure across the country, although they tend 

to be focused on the more remote rivers that still hold robust fish populations. Thus, this new threat means that 

even those rivers that have been protected by their isolation in the past are now the target of increased fishing 

pressure from urban anglers as they have the resources to travel to these locations where fish are currently more 

abundant for multiple days at a time. Although, the CPUE results suggest that these urban anglers are less 
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efficient compared to the rural anglers in the Onon, this is likely to change rapidly in the coming years as 

experience and skills improve amongst this group and they capture more fish. 

Target Species 

Like many fish species that inhabit boreal rivers, Mongolia’s fish populations are especially vulnerable to 

overfishing due to their sporadic recruitment, slow growth rates, low natural mortalities, small population sizes 

and longevity (Schindler et al., 1993; Allan et al., 2005; Vander Zanden et al., 2007).  B. lenok was repeatedly 

listed as the intended target species across the three river basins and as a result made up 63 % of the total 

reported catch during the surveys. This level of exploitation represents a considerable threat for this already 

vulnerable species throughout Mongolia, which was previously expected to experience a population decrease of 

at least 30 % over 15 years or three generations from 2006 (Ocock et al., 2006). Thus going forward, 

management measures need to pay particular attention to B. lenok catches in order to avoid future widespread 

overexploitation and possible expiration in the more heavily fished regions. In addition, the targeting of H. 

taimen was also reported in the Eroo and Onon basins (7 % of the reported catch), which is also a potential 

concern for the conservation of this endangered species even though it is legal to catch during the open fishing 

season. While the intentional killing of H. taimen was prohibited in 2012, enforcement is minimal in Mongolia 

(Jensen et al., 2007) and most anglers do not use the recommended single, barbless hooks, which is aimed to 

reduce hooking injuries and post release mortalities. Instead, local anglers typically use two or three large treble 

hooks per lure or spinning bait with these having the potential to severely damage individuals especially if they 

are incidentally hooked deeply in the throat, eye or gill causing severe injuries that have been shown to increase 

post-release mortalities by up to 71 % for some salmonids (Siewert & Cave, 1990; High & Meyer, 2014). In one 

previous study, it was found that hooking mortality in brook trout (Salvelinus fontinalis) increased with fish size 

due to the likelihood of larger fish being hooked in critical locations more often when the fish were caught with 

treble hooks compared to single hooks (Nuhfer & Alexander, 1992), while an another study suggested smaller 

individuals in a targeted rainbow trout population were more vulnerable to injury and mortality from hooking 

related incidences (Meka, 2004). Further concerns also surround the post capture handling of H. taimen due to 

the large body size and aggressive nature of mature individuals that makes them difficult to land, extract the 

hooks and handle out of water for photo opportunities. All of these tasks increase the exposure of fish to air 

which can considerably reduce survival and physical damage as has been shown in other trout species (Meka, 

2004). However, the overarching question remains of what proportion of caught H. taimen are released 

unharmed in the absence of widespread education and enforcement programs, considering there are minimal 
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punitive ramifications for such an incident. On numerous occasions H. taimen have been observed being 

captured and killed across multiple years in the Eroo River, which is one location that actually has a permanent 

ranger on site. 

Fish Lengths and Overfishing 

While no size limit regulations for target species currently exist within the Mongolian fishing laws, information 

regarding the size range of these species along with biological data such as age or length at first maturity, can 

help to determine if individuals are being caught before they have had a chance to reproduce. If this is the case, 

then fish populations may decline at a faster rate than expected, as there are fewer individuals available for 

spawning. It is expected that age at first maturity is generally between 3 to 6 years for Thymallus and 

Brachymystax and 4 to 8 years for Hucho (Holčík et al., 1998; Matveyev et al., 1998; Froufe et al., 2003), 

however, the estimated size ranges at these ages have a wide variation between 20 and 34 cm for T. baicalensis, 

18 and 54 cm for B. lenok and 38 and 97 cm for H. taimen (Holčík et al., 1998; Matveyev et al., 1998; Jensen et 

al., 2007; Tsogtsaikhan et al., 2017). While these estimated size ranges are large, and more age at maturity data 

is urgently required, there is an indication that some of the currently caught individuals are still immature e.g. T. 

baicalensis in the Eroo basin. In any case, this fish length data can be used as a baseline for future studies to 

compare catches and identify long-term trends in the fishery. Clear signs of overfishing will be apparent if mean 

fish lengths become smaller and smaller, as a result of the larger individuals are captured and removed from the 

population at a high rate (Allan et al., 2005). 

Fish Consumption 

Although the majority of recreational anglers in the current study reported that they kept the fish they caught 

(77 %), with very few selling their catch, the level of fish consumption was generally low with 70 % of all 

anglers indicating that they consumed fish rarely (0 - 3 times per month). However, seven rural anglers from the 

Kharaa River basin indicated that they did catch and consume fish frequently (> 10 per month), with the highest 

consumption rate reported as ‘almost daily’ by a retired husband and wife. Such a high frequency of fish 

consumption was unexpected in this fishery and indicates that there is a partial subsistence or reliance on local 

fish populations by a small number of people to supplement their diets for several months each year. This is 

critical information and something that should not be neglected by authorities, especially in the Kharaa basin, 

where there has been heavy metal contamination detected in the ground and surface water, river sediment and 

fish fauna from several sites, a result of both past and present mining activities (Hofmann et al., 2010; Kaus et 

al., 2016). A recent study identified elevated levels of Hg in certain consumed fish species, which could 
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potentially pose a danger to the more sensitive community members including pregnant women and young 

children if those species were consumed more regularly (e.g. Lota lota) or people had already been exposed to 

additional sources of heavy metals e.g. mine workers (Kaus et al., 2016). Monitoring levels of Hg and other toxic 

contaminants such as Pb, Cd and Cr within the Kharaa River fish fauna is vital to prevent future health risks. 

Economic Evaluation 

Recreational fishing is a major economic contributor worth billions of dollars in many developed countries 

around the world (Hickley, 1998). Although an overall economic estimate of the Mongolian recreational fishery 

is not possible to calculate from these results, Hickley (1998) has suggested that an estimated 10 % of the 

population in developed countries is engaged in recreational fishing. If this were the case in Mongolia with a 

population of 2.754 million, then 275 540 people could spend up to $10.6 million USD (26.2 billion Ŧ) every 

year on fishing gear, food and fuel to go fishing (based on average spending per angler). However, the actual 

number of Mongolian anglers, for the moment, is likely to be substantially lower than 10 % and potentially 

somewhere between 1 % (27 540 people) and 0.1 % (2 754 people) of the total Mongolian population. Therefore 

an estimate of the economic value of Mongolia’s emerging recreational fishery with these participation levels is 

likely to be somewhere between $1.06 million USD (2.62 billion Ŧ) and $106 827 USD (262 million Ŧ) per year.  

Although a fishing permit is required by law to be purchased per angler for each trip of up to three days (Article 

10 of the Mongolian Law on Hunting, Compendium of Environmental Law and Practice in Mongolia 2000), 

46 % of anglers surveyed had not bought a fishing permit for their current trip, with 85 % of this group saying 

they had never bought a permit to go fishing previously. Thus almost every second angler group was fishing 

illegally under Mongolian law and is liable for a fine of 10 000 – 25 000 Ŧ per person as per Article 16.1.6. This 

is a substantial loss of revenue for the local authorities, revenue that could be used to fund improved enforcement 

and conservation efforts in each specific region. The Kharaa River rural anglers were the least likely to have ever 

purchased a fishing permit, while in the other basins, the number of fishers without a permit was approximately a 

third. If fishing permits and fines were better enforced across Mongolia, which could be achieved through the 

employment of more officers, then the overall value of this emerging recreational fishery would be considerably 

more. 

Angler Knowledge and Opinion 

Illegal fishing contributes to the overexploitation of fish stocks making it one of the major limiting factors in 

preventing desired management and conservation outcomes (Agnew et al., 2009). In Mongolia, illegal and 
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unregulated fishing activities are reportedly widespread, although few details are available (Ocock et al., 2006; 

Hogan & Jensen, 2013). It is expected that the combined effect of a lack of knowledge or disregard for the 

fishing regulations by anglers, the limited government resources for adequate enforcement over vast regions and 

the absence of substantial fines or punishment, have all combined to minimise compliance and embolden 

poachers. In the current surveys, the majority of anglers in the Kharaa and Onon basins reported that they had 

witnessed illegal fishing, with only three groups having observed it in the Eroo. Netting was the most common 

activity reported, while the use of dynamite was also seen in the Kharaa.  However, the facts that there were no 

reports of illegal fishing in the closed spawning season (1 April to 15 June) or the killing of the protected H. 

taimen (officially prohibited in 2012), both of which have been regularly observed by the authors, indicates a 

lack of knowledge of these more basic fishing regulations within the recreational fishing community. Thus it was 

no surprise that 40 % of all fishing groups responded that they were ‘not sure’ or ‘do not know’ the current 

Mongolian fishing regulations, with over 70 % of all anglers responding this way in the Kharaa. These figures 

highlight a clear need for improved enforcement along with an expansive educational program implemented 

across Mongolia, including Ulaanbaatar, to expand the understanding and ultimately compliance of the fishery 

regulations. At the time of the survey, there was one such program in place in the Onon River basin, which 

involved an NGO working with local anglers to form clubs, which would provide information on the regulations 

and best practices of fish handling, while helping to install a sense of responsibility for the local fish stocks. This 

program appeared to have already made a positive impact with increased awareness and conservation tendencies 

showing through in the survey for Onon River anglers. 

Conclusions 

The information gathered from the creel surveys provides a first insight into Mongolia’s emerging recreational 

fishery. This information can help authorities to evaluate and improve the existing fishery management strategies 

in order to safeguard the sustainable use of targeted populations and better protect threatened species in the 

future. If these fish stocks continue to be undermanaged, then the potential impacts posed by this growing fishing 

pressure may become irreversible with continued population declines and local extinctions. With additional 

threats to water quantity and quality as well as aquatic habitat integrity and connectivity in many parts of 

Mongolia including threats from urbanisation, industrialisation, agricultural expansion and climate change, the 

implementation of new management tools such as FPAs is strongly advised. A series of spatially meaningful 

FPAs, where fishing is prohibited, can conserve critical habitats such as spawning grounds and overwintering 

pools, while also preserving critical genetic diversity if valuable priority populations can be identified across the 
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distribution of each species. This action would allow the limited resources currently afforded to fisheries 

protection in Mongolia to be more effectively distributed. It is also recommended that future creel surveys be 

conducted within the Kharaa, Eroo and Onon basins, as well as other heavily fished rivers, to monitor growth 

and identify negative trends within the fishery. This should be coupled with a broader recreational angler 

education program or fishing licence course to increase awareness of the regulations and improve the handling 

practices of these endangered species.  
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5 Regional patterns of heavy metal exposure and 

contamination in the fish fauna of the Kharaa 

River basin (Mongolia) 
 

Kaus, A., Schäffer, M., Karthe, D., Büttner, O., von Tümpling, W., Borchardt, D. (2016). Regional 

Environmental Change, 16(4). doi: 10.1007/s10113-016-0969-4 

 

5.1 Abstract 

Past and present gold mining operations scattered throughout the Kharaa River basin, Mongolia, have been 

identified as a major source of heavy metal and metalloid contamination. However, the potential accumulation of 

toxic contaminates including Cr, Zn, As, Cd, Hg, Cu, Ni and Pb in the resident fish fauna and the subsequent 

human health risks associated with their consumption, have previously not been quantified. In the current study, 

contaminates in water, sediment and five consumed fish species (Leuciscus baicalensis, Thymallus baicalensis, 

Brachymystax lenok, Lota lota and Silurus asotus) were examined. The results indicated that concentrations of 

As and Hg exceeded the national permissible limits for drinking water in the Gatsuurt tributary of 10 µg L-1 and 

0.05 µg L-1 respectively, while Hg contents detected in the sediment of the Boroo tributary were highly elevated 

(0.78 µg g-1). Heavy metal and arsenic accumulation was evident in all five fish species sampled across the 

basin, with maximum muscle contents of Cr, As, Hg and Pb detected in several species caught in the middle and 

lower river reaches, while Zn was highly elevated in B. lenok collected in the upper tributaries. Elevated median 

contents of Cr, Cu, Hg and Pb increased with trophic level, with Hg accumulation posing the greatest threat to 

humans as 10.7 % of all fish sampled in the study exceeded the internationally recommended threshold for Hg in 

consumable fish tissue. Although recreational fishing is rapidly growing throughout Mongolia, the overall level 

of fish capture and consumption remains relatively low. However, increasing pollution and accumulation in 

resident fish species could lead to chronic heavy metal toxicity in people who consume them regularly from the 

most polluted regions of the basin, while additionally being exposed to other sources of contamination. 
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5.2 Introduction 

Globally, heavy metals and metalloids have been increasingly released into the environment as a result of a 

plethora of anthropogenic activities (von Tümpling et al., 1995; Durrieu et al., 2005; Dhanakumar et al., 2015; 

Pfeiffer et al., 2015). Upon release, these toxic pollutants are often transported to, and concentrated in, nearby 

rivers and lakes where they contaminate the water and sediment, and are ultimately incorporated into the aquatic 

biota (Dušek et al., 2005; Lu¨ et al., 2011; Nyirenda et al., 2012). While trace amounts of Cr, Cu, Ni and Zn are 

biologically essential for normal growth and functioning of organisms, they are damaging in high concentrations, 

whereas As, Cd, Pb and Hg are all nonessential and highly toxic even at low levels (Shukla et al., 2007). Certain 

elements can also potentially accumulate and magnify along the food chain amassing hazardous concentrations 

in higher trophic level species such as fish. If these fish are then regularly consumed by people, potential serious 

health implications can occur including neurochemical and cardiovascular damage, cancers, restrictive lung 

disease, renal and gastrointestinal problems and prenatal abnormalities or death (Weil et al., 2005; Morea et al., 

2007). The risk is amplified if people are simultaneously exposed to elevated levels of heavy metals in drinking 

water, other foods and / or their domestic or occupational environments (Järup, 2003; Tchounwou et al., 2012).  

 

In order to gain a complete overview of the heavy metal contamination within an ecosystem, including the 

potential threat to human health, it is necessary to not only identify the source and extent of the pollution through 

sampling water and sediment, but to also evaluate the magnitude of the bioaccumulation in the consumed fish 

species (Pérez-Cid et al., 2001). Numerous studies have identified elevated concentrations of one or more heavy 

metals in locally consumed freshwater fish, including multiple instances where national and international 

thresholds established for their safe consumption have been exceeded. These studies have also identified both 

biotic (e.g. fish length or age) and abiotic factors (e.g. water or sediment contents) which have influenced the 

heavy metal concentrations in resident fish species. For example, in the Puyango River basin of southern 

Ecuador and the Petit-Saut hydroelectric reservoir in French Guiana, Hg contamination from small-scale gold 

mining has made local piscivorous fish species a potential risk for human consumption (Tarras-Wahlberg et al., 

2001; Durrieu et al., 2005). Tarras-Wahlberg et al., (2001) reported that bottom dwelling species were more 

likely to accumulate higher contents of Hg due to the ingestion of contaminated sediments from the river 

substrate compared to other species. In addition, in Lake Titicaca, pollution from intensive mining activities and 

urban sewage discharge had, elevated levels of Cu, Zn, Cd and Hg in four fish species, prompting 

recommendations by the authors to limit fish consumption in certain heavily polluted parts of the lake (Monroy 
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et al., 2014). It was reported that metal bioaccumulation in fish was only weakly related to metal concentrations 

in the environment (water and sediment), although nonessential elements (Cd, Hg, Pb) were generally more 

consistent with environmental peaks than biologically essential ones, with the exception of Cu (Monroy et al., 

2014). Additionally in France, 60 % of brown trout (Salmo trutta fario) sampled from an historical mining 

region in the Cévennes National Park exceeded the maximum allowed concentrations for human consumption of 

Pb and Cd in fish tissue (Monna et al. 2011). The heavy metals detected in trout from this study reflected the 

high content in the river sediment, although age-related effects were also identified as an influential factor 

determining contamination in fish (Monna et al., 2011). These results highlight the capacity of various heavy 

metals originating from mining operations to contaminate locally consumed freshwater fish stocks to the point 

where they potentially pose a health risk to people consuming them, even if the contamination occurred in the 

past.  

 

In Mongolia, gold mining is currently a driving force in the national economy, with substantial operations 

located in the country’s northern regions including the Boroo and Gatsuurt tributaries of the Kharaa River Basin 

(KRB) (Sandmann, 2012; Karthe et al., 2015a). However, recent reports indicate that these mining activities are 

often major sources of heavy metal and As pollution in both river water and sediment (Hofmann et al., 2010; 

Enkhdul et al., 2010; Oyuntsetseg et al., 2012; Brumbaugh et al., 2013; Pfeiffer et al., 2015). Hg is known to 

have been used extensively in the Boroo River sub catchment by the thousands of illegal small-scale, artisanal 

miners who have used and released Hg into the environment during the gold amalgamation process (Grayson et 

al., 2004; Steckling et al., 2011). This source of Hg has added to the existing pollution that has resulted from a 

factory accident in 1956 where a substantial amount of this highly toxic and persistent element escaped into the 

nearby Boroo River (Tumenbayar et al., 2000). Further upstream in the Gatsuurt tributary, the expanding open-

cut gold mining operations have also been correlated with the release of As from the surrounding soil and rocks 

(Tsetsegmaa et al., 2009), elevating As concentrations in the tributary’s water and sediments (Enkhdul et al., 

2010; Pfeiffer et al., 2015). In addition, the Kharaa River upstream from Darkhan city at Khongor sum has been 

the location of a second industrial accident that occurred at a mining ore post processing plant in 2007, which 

saw both Hg and cyanide escaping in large quantities (Hofmann, 2008). As a result of these past and present gold 

mining operations and accidents, several locations across the KRB have been identified as pollution hotspots as 

they are known to have elevated concentrations of toxic heavy metals in the water and sediment (Hofmann et al., 

2010; Batbayar et al., 2015; Kosheleva et al., 2015). This high level of pollution in certain regions is a cause for 
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concern, as it is also a likely source of contamination for the resident fish species including those that are 

increasingly being captured and consumed by the basin’s small, but growing, recreational fishing community. 

Traditionally, in Mongolia there has been little cultural connection to fishing or consuming fish, although in 

recent decades this has changed rapidly (Chandra et al., 2005; Jensen et al., 2009). Seventeen fish species in 

habitat the KRB including the Siberian sturgeon (Acipenser baerii) and Siberian taimen (Hucho taimen) that are 

listed as critically endangered and endangered, respectively, in the Mongolian Red Book of Fishes. However, 

over recent years both have become extremely rare due to overfishing and are now likely locally extinct. Up to 

eight species of fish are regularly caught by the recreational fishers in the KRB, which fish year round but are 

mostly concentrated in the summer and autumn months between June and November. Fishers typically target 

two salmonid species including the sharp snout lenok (Brachymystax lenok) and the Baikal grayling (Thymallus 

baicalensis), but also consume incidentally caught fish including the Siberian dace (Leuciscus baicalensis), 

burbot (Lota lota) and the introduced Amur catfish (Silurus asotus), among others (Kaus pers. obs.). The catch is 

mostly consumed by the fisher, their family and friends, or sometimes sold to the public in roadside stands or in 

city markets. To date, the human health risks associated with the consumption of these potentially contaminated 

fish species remains unknown, but needs to be urgently determined. This study aimed to quantify the existing 

contents of four nonessential and highly toxic elements (As, Cd, Pb and Hg) and four biologically important, but 

potentially contaminating heavy metals (Cr, Zn, Ni and Cu) in the muscle and liver of five consumed fish 

species, surface water and river sediment from across the KRB. Additionally, the study aimed to identify in 

which species and regions the heavy metal bioaccumulation in fish exceeded the internationally recommended 

thresholds for human consumption of fish tissue and thus evaluate, whether, health warnings are warranted 

considering the current level of fish capture. 

 

5.3 Materials and Methods 

Study site 

The Kharaa River Basin (14,534 km2) is located in northern Mongolia within the Selenga River catchment. The 

main river channel is 362 km long from its source in the Khan Khentii Mountains (2668 m a.s.l.) to its 

confluence with the Orkhon River (654 m a.s.l.). Annual air temperatures fluctuate between -40˚C in winter and 

40˚C in summer, while the average annual rainfall varies between 250 and 350 mm (Karthe et al., 2015a). The 

population in the basin is approximately 147,000 with over half residing in the city of Darkhan. Gold mining 

remains an important industry and key source of income for thousands of people in the basin. Hofmann et al., 



 
40 

 

(2010) has identified nine gold mines in operation, four abandoned gold mines, six main centres of small gold 

mining activities and nine potentially contaminated regions including areas in the Boroo, Gatsuurt and Zagdalin 

tributaries and both upstream and downstream from Darkhan city (Figure 10). 

 

 

Figure 10. Kharaa River basin in northern Mongolia including the 11 sample sites marked with a red 

circle. UP stream reference sites: Sugnugr and Olgin. MID-UP sites: Gatsuurt, Kharaa 8.4 and Kharaa 8. MID 

sites: Boroo and Kharaa 5.5. MID-DOWN sites: Zagdalin and Kharaa 4, and DOWN stream sites: Kharaa 3 and 

Kharaa 1.  

 

Field sampling 

Surface water, river sediment and fish were collected from 11 sites across the KRB in June 2011 (see Figure 

10). In the upstream region, which is largely undisturbed and mountainous (Hofmann et al., 2015a) two 

tributaries were sampled, Sugnugr and Olgin, which were selected as the study’s reference sites (UP). In the 

mid-upper region (MID-UP), three sites were sampled including the Gatsuurt tributary, a small stream flowing 

directly through the Gatsuurt mining area; Kharaa 8.4, the most upstream main channel site, located 

approximately 1 km downstream from the Gatsuurt tributary and the Kharaa River confluence; and Kharaa 8, 

another main channel sampling location, which is a popular fishing spot in a lower impacted area of the basin. 
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The middle region (MID) has two sampling sites including the Boroo River, a heavily polluted tributary draining 

a sub catchment with a high concentration of illegal small-scale mining activities as well as a large open cut 

mine; and Kharaa 5.5, a main channel site located several kilometres downstream from the Boroo and Kharaa 

River confluence. The mid-down region (MID-DOWN) also consists of two sites including the Zagdalin River, 

another tributary with mining and agriculture dominating the sub catchment; and Kharaa 4, a main channel site 

located 2.6 km downstream from the Zagdalin and Kharaa River confluence. Finally, in the downstream region 

(DOWN), sites Kharaa 3 and Kharaa 1 were sampled. Both are main channel sites located either side of Darkhan 

city and are characteristically slow flowing, meandering river reaches with little riparian vegetation and high 

levels of bank erosion (Hofmann et al., 2015a).  

 

Surface water samples were each collected with a new plastic syringe that had been triple-rinsed and strained 

through a single-use 0.45 µm membrane filter. One sample was collected at each site for the Hg analysis in an 

acid washed glass bottle and acidified with hydrochloric acid, while a second sample was taken for analysis of 

the other considered heavy metals (Cr, Zn, As, Cd, Ni, Cu and Pb) in new polyethylene vials and acidified with 

redistilled nitric acid. Water samples were kept chilled during transportation and storage until final analysis at 

the Helmholtz Centre for Environmental Research analytical laboratory in Magdeburg, Germany. Fine surface 

sediment samples were collected from the river’s edge and small backwaters where sediment had accumulated as 

a result of the natural flow regime. A single sediment sample of approximately 0.3 – 0.5 kg was taken with a 

Teflon scoop and kept in plastic containers for transportation back to the laboratory. Fish were captured using 

two backpack electrofishing machines (Hans Grassl GmbH, Germany; Type ELT 60) or obtained via angling 

and sampling catches of local fishers. Total lengths (cm) and weights (gr) were measured, and otoliths were 

taken for ageing purposes. A sample of muscle from the left dorsal fillet and the liver was removed from each 

fish for analysis. In order to avoid cross-contamination, all dissections were conducted using ceramic scalpels 

and pincers on a Teflon cutting board that was cleaned thoroughly between each fish. 

 

Laboratory analysis 

Heavy metal concentrations were obtained from the filtered and acidified water samples prepared in the field 

without alteration. Concentrations of Cd, Cr, As, Zn, Cu, Ni and Pb were analysed with the ICP-MS, while total 

Hg concentrations were determined using the Mercury Analyser (Jena, Germany). Sediment samples were 

freeze-dried at -51˚C for 48 h (Christ Alpha 1–2 lyophiliser, B. Braun Biotech International, Melsungen, 
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Germany) (Margetínová et al., 2008) and sieved to obtain a < 63 µm homogenised fine sediment sample. From 

this sample, a 0.5 g subsample was extracted and digested overnight in acid-washed teflon containers in a 

combined 10 ml mixture of HCL and HNO3 (Aqua Regia) at room temperature. To ensure complete digestion of 

the sediment, the samples were then microwaved on a 40 minute cycle and after diluted with Milli-Q water to 

obtain a standard volume of 20 ml for the final analysis.  

 

Fish tissue samples were cleaned of all remaining skin, scales, bone and blood and a 1.00 g of muscle and 0.50 g 

of liver were subsampled and digested overnight in 2 ml of H2O2 and 8 ml of HNO3 (69 %) at room temperature. 

The acidified samples were further digested in a 40 min microwave cycle of heat and pressure before being 

transferred to new polyethylene vials where Milli-Q water was added to standardise the sample volume to 20 ml. 

Heavy metal analysis was conducted using the ICP-MS and the Mercury Analyser as per the water and sediment 

samples. Due to the small size of L. baicalensis, it was necessary to combine muscle and liver samples from two 

individuals captured at the same site and of similar sizes into a single sample to meet the required minimum 

analytical amount of 0.5 g. The tissues from both individuals were combined at a ratio of 50:50 where possible. 

Thus, as a result, 37 of the 46 L. baicalensis final samples contained two combined individuals. No aggregations 

of tissues were necessary for the other species. L. baicalensis individual ages were estimated using length and 

age data reported for Siberian populations by Loboń-Cerviá et al., (1996). For the remaining species, fish ages 

were obtained by counting annual growth rings of whole otoliths under a stereomicroscope with translucent light 

by two independent readers conducting two blind reads each. 

 

Quality assurance 

For every ten water, sediment or fish tissue samples, one blank and one standard sample was also analysed. The 

analysis of blanks was undertaken to determine potential contamination during the analysis, while the assessment 

of standard reference material was conducted to test the accuracy and precision of the analytical method and 

identify drifting errors. The standard reference materials used were from the National Institute of Standards and 

Technology (NIST) and the National Research Council of Canada (NRC). For sediment samples NIST 2704 was 

used, for fish muscle NRC Dorm-2 was used and for fish liver NBS DOLT was used.  
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Data analysis 

Dissolved water (µg L-1) and fine sediment (µg g-1) results are presented as unaltered analytical values for each 

KRB sample site. Only water concentrations for Ni were taken from a similar 2007 sampling campaign (Ibisch 

unpublished). Heavy metal content data from fish tissue samples were tested for normality and homogeneity of 

variance using both Shapiro–Wilk and Levene’s tests. Significant differences within and between species muscle 

and liver heavy metal contents were calculated using the non-parametric Mann–Whitney U test due to the non-

normal distribution of the data. In order to investigate the relative influence of different biotic and abiotic 

variables on the heavy metal accumulation patterns detected in KRB fish species, a generalised linear model 

(GLM) with a Gaussian distribution was fitted to log-transformed heavy metal data. Included as explanatory 

variables for all elements were fish tissue, fish length, fish age and site sediment contents from the location 

where the fish were caught. Site water concentrations from the fish sampling locations were added for As and Hg 

only, as all other heavy metals considered were below detection limits. Site sediment content and water (for As 

and Hg) concentrations were used to indicate the contamination level of each sampling locations and determine 

whether fish heavy metal content reflected site contamination. Fish length was also included over the highly 

correlated (R2
 = 0.98) fish weight measurements to reflect fish size. Multiple GLMs were completed per species 

and heavy metal, and the best model was selected by first using the automatic ‘step’ function in R which 

removes non-significant elements from full models containing full fixed factors and interactions, then using the 

manual backwards stepwise deletion method of remaining non-significant variables. All figures and statistics 

were produced using R (R Development Core Team 2010, version 3.1.3) or STASTICA 12 (STATSOFT 2013). 

5.4 Results  

Water Concentrations (filtered to <0.45 µm)  

Dissolved water concentrations (µg L-1) of Cr (< 0.5), Ni (< 0.5), Zn (< 5), Cd (< 0.2), Cu (< 0.5) and Pb (< 0.5) 

in the water samples were all below the analytical detection limits (see Table 1). As was detected at every site in 

the basin, with an overall mean concentration of 3.4 ± 4.29 µg L-1
 (mean ± SD). The highest concentrations were 

recorded in the Gatsuurt (15.3 µg L-1) and Boroo (6.9 µg L-1) tributaries, while the lowest concentrations were 

detected in the Sugnugr (0.6 µg L-1) and Olgin (1.0 µg L-1) tributaries. Total dissolved Hg was at or below the 

detection limit of 0.008 µg L-1
 in the surface water at Sugnugr, Zagdalin and Kharaa 1, with the highest 

concentrations in the basin detected at Gatsuurt (0.066 µg L-1), followed by Kharaa 3 (0.031 µg L-1) and Kharaa 

8.4 (0.03 µg L-1). Hg concentrations in the Boroo tributary were 0.025 µg L-1. The mean total dissolved Hg 

concentration for the Kharaa River basin surface water was 0.022 ± 0.02 µg L-1
 (mean ± SD).  



 
44 

 

River Sediment Contents (sieved to < 63 µm)  

All heavy metals and As were detected in the fine river sediment across the basin (see Table 1). Only Hg was at 

or below the detection limit (< 0.05 µg g-1) in eight of the 11 sites. The maximum total Hg content was in the 

Boroo River sediment (0.78 µg g-1), followed by Kharaa 4 (0.08 µg g-1) and Kharaa 5.5 (0.06 µg g-1). The Boroo 

River sediment also contained the highest content of Pb (17.6 µg g-1), Ni (23.6 µg g-1), Cu (21.7 µg g-1) and Cr 

(44.5 µg g-1), with the Gatsuurt tributary recording the next highest measurements for these four metals. The 

maximum total As content was detected in the Gatsuurt tributary sediment (30.8 µg g-1), followed by the Boroo 

tributary sediment (14.5 µg g-1). Sugnugr had the highest content of both Zn (112 µg g-1) and Cd (0.55 µg g-1), 

with Boroo (cZn = 102 µg g-1) and Kharaa 4 (cCd = 0.46 µg g-1), recording the next highest contents in the basin 

for these heavy metals, respectively.  

Table 1. Dissolved surface water concentrations (< 0.45 µg L-1) and river sediment contents (< 63 µg g-1) of Cr, 
Zn, As, Cd, Hg, Pb, Cu and Ni per region and sampling site in June 2011. 

 

Region Site Cr Zn As Cd Hg Pb Cu Ni1 
Surface water concentration [µg L-1] 

UP Sugnugr < 0.5 < 5 0.6 < 0.2 < 0.008 < 0.5 < 0.5 < 0.5 
UP Olgin < 0.5 < 5 1.0 < 0.2 0.009 < 0.5 < 0.5 < 0.5 
MID-UP Gatsuurt < 0.5 < 5 15.3 < 0.2 0.066 < 0.5 < 0.5 < 0.5 
MID-UP Kharaa 8.4 < 0.5 < 5 2.0 < 0.2 0.030 < 0.5 < 0.5 < 0.5 
MID-UP Kharaa 8 < 0.5 < 5 1.7 < 0.2 0.024 < 0.5 < 0.5 < 0.5 
MID Boroo < 0.5 < 5 6.9 < 0.2 0.025 < 0.5 < 0.5 < 0.5 
MID Kharaa 5.5 < 0.5 < 5 1.6 < 0.2 0.009 < 0.5 < 0.5 < 0.5 
MID-DOWN Zagdalin < 0.5 < 5 2.0 < 0.2 0.008 < 0.5 < 0.5 < 0.5 
MID-DOWN Kharaa 4 < 0.5 < 5 2.2 < 0.2 0.019 < 0.5 < 0.5 < 0.5 
DOWN Kharaa 3 < 0.5 < 5 2.1 < 0.2 0.031 < 0.5 < 0.5 < 0.5 
DOWN Kharaa 1 < 0.5 < 5 1.5 < 0.2 0.008 < 0.5 < 0.5 < 0.5 
 River sediment content [µg g-1]   
UP Sugnugr 23.8 112.0 13.2 0.55 < 0.05 13.7 12.3 11.4 
UP Olgin 28.7 77.7 13.0 0.38 0.05 13.4 15.3 14.7 
MID-UP Gatsuurt 40.9 99.2 30.8 0.45 < 0.05 15.9 18.8 19.2 
MID-UP Kharaa 8.4 33.1 79.1 10.5 0.45 < 0.05 14.1 15.1 15.9 
MID-UP Kharaa 8 30.3 78.1 8.2 0.44 < 0.05 12.2 13.0 13.7 
MID Boroo 44.5 102.0 14.5 0.45 0.78 17.6 21.7 23.6 
MID Kharaa 5.5 27.9 67.6 6.1 0.45 0.06 11.6 11.5 11.7 
MID-DOWN Zagdalin 37.7 78.3 4.8 0.42 < 0.05 12.0 12.1 15.5 
MID-DOWN Kharaa 4 39.0 91.1 8.0 0.46 0.08 15.9 19.3 20.5 
DOWN Kharaa 3 30.6 74.6 4.3 0.39 < 0.05 10.9 11.3 13.0 
DOWN Kharaa 1 31.4 77.2 4.4 0.42 < 0.05 11.1 11.1 12.8 

1 Ni water samples are from a June 2007 sampling campaign 

 
 
Fish Muscle and Liver Contents  

A total of 119 muscle samples and 74 liver samples were analysed for their heavy metal and metalloid contents 

from the five fish species captured across the KRB (Table 2). The basin-wide accumulation of heavy metals in 

fish tissue indicated Cr, Hg and Pb were typically present in higher amounts in fish muscle, while As, Zn, Cd 
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and Cu were associated with fish liver (Figure 11). Significant differences (p < 0.05) between heavy metal 

muscle and liver contents were identified for Cr, Zn, As, Cd, Ni, Cu and Hg in L. baicalensis, for Cr, As, Zn, Cd 

and Cu in T. baicalensis, for Cr, As, Hg, Zn, Cu and Pb in B. lenok and for all elements in L. lota, but no 

elements in S. asotus, most likely as a result of the small sample size. Median muscle contents of Cr, Hg and Pb 

generally increased from the lower trophic level species to the higher trophic level species (L. baicalensis < T. 

baicalensis < B. lenok < L. lota < S. asotus), while liver contents of these heavy metals remained lower than the 

levels in the muscle. Extremely elevated (p < 0.05) median liver contents were observed for As in L. lota, Cd in 

S. asotus and Zn in B. lenok, while liver contents of individual B. lenok had the maximum amounts of Ni 

(0.82 µg g-1) and Cu (33.8 µg g-1) detected in the study. In fish muscle, several individuals exceeded the maximal 

permissible limits for human consumption for Zn, Hg and Pb. Four B. lenok (53.2 – 109 µg g-1) had Zn contents 

in their muscle above the 40 µg g-1 threshold. For Hg, six L. baicalensis (0.52 – 1.85 µg g-1), one B. lenok 

(0.58 µg g-1), five L. lota (0.50 – 0.72 µg g-1) and two S. asotus (0.65 – 0.88 µg g-1) had contents in their muscle 

above the 0.5 µg g-1 threshold, and for Pb two B. lenok (0.59 and 0.73 µg g-1) and two L. lota (0.32 and 

0.34 µg g-1) had contents in their muscle above the 0.3 µg g-1 threshold. 

 
Generalised linear model (GLM) 

The GLM determined the influence of five variables in explaining the observed heavy metal patterns detected in 

the sampled fish species (Table A3- 1). The most important explanatory variables across species and heavy 

metals were fish age and length / tissue interactions, followed closely by fish tissue, fish length and site sediment 

contents. Site water concentrations for As and Hg were significant (p < 0.05) for all species except S. asotus for 

Hg. For L. baicalensis, length / tissue interactions were the most important explanatory variable being significant 

for all heavy metals, while for T. baicalensis and B. lenok fish age was the only variable significant for each 

heavy metal and arsenic. Fish length, fish tissue and length / age interactions were all significant for L. lota and 

S. asotus, while fish tissue and fish age were both significant for all but one heavy metal (Pb and Cr), 

respectively. 
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Figure 11. Heavy metal contents (Cr, Zn, As, Cd, Ni, Cu, Hg and Pb) in liver (grey boxes) and muscle 

(white boxes) of five consumed fish species in the Kharaa River basin (L. baicalensis n = 14 liver 

samples / 46 muscle samples, T. baicalensis n = 23 / 24, B. lenok n = 34 / 35, L. lota n = 10 / 11 and S. asotus 

n = 3 / 3) collected in June 2011. Letters (a, b, c, d) above each plot indicate significant differences between 

species groups—grey letters relate to liver, and black letters relate to muscle. Boxes indicate the median and 

10 / 90 percentile, whiskers 2 9 percentile range, open dots are outliers; b.d.l. indicates values are below 

detection limits. Dotted lines indicate international recommended thresholds for human consumption of fish 

tissue where applicable. 

 

 



 
47 

 

Regional Patterns of Heavy Metal Bioaccumulation in Fish Muscle 

The regional differences between the median heavy metal muscle contents of sampled fish species were 

considerable (Figure 12). The median Cr contents were generally low and well below the internationally 

recommended threshold of 1 µg g-1for this heavy metal in consumed fish muscle. For Zn, only B. lenok in the UP 

region had elevated contents close to the 40 µg g-1 threshold, while for all other species and regions Zn 

accumulation remained low (< 10 µg g-1). The highest As median muscle contents were detected in L. lota 

sampled from the DOWN region, although As was also elevated in S. asotus (DOWN) and B. lenok (UP). The 

median As contents in the muscle of all other fish species and regions was below 1 µg g-1, however, no threshold 

has been given for As in consumed fish, as the principle form in fish tissue is organic As (arsenobetaine) and 

thus nontoxic to humans (FAO/WHO 2011). Cd was below the analytical detection limits in all species and 

regions except for B. lenok in the upper tributaries (UP), although median muscle contents were still well below 

the recommended threshold of 0.05 µg g-1 for fish tissue. Median muscle contents of Ni and Cu were negligible 

in all fish species and regions sampled in the KRB. Hg detected in fish muscle exceeded the international 

recommended threshold of 0.5 µg g-1 in three different species and two regions: L. baicalensis in the MID region 

and L. lota and S. asotus in the MID-DOWN region. S. asotus in the DOWN region also recorded an elevated 

median muscle Hg content of 0.46 µg g-1. Pb was very low or below the detection limit for L. baicalensis, T. 

baicalensis and B. lenok in the UP, MID-UP and MID regions. Elevated median Pb contents were detected in 

four fish species (TB, BL, LL, SA) in the MID-DOWN region, although the 0.3 µg g-1 threshold was not 

exceeded. 

 

Table 2. Summary table of sampled species displaying sample size (n), mean total length (TL) in cm (± SD), 

mean total weight (TW) in grams (± SD) and the number of individuals in different age classes (years). 

 

Species n TL  (mean ± SD) TW  (mean ± SD) + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 

L. baicalensis 46 18.16 (± 1.61) 56.33 (± 19.10) 0 0 0 3 17 15 8 3 

T. baicalensis 24 22.73 (± 4.08) 117.75 (± 59.34) 6 3 11 4 0 0 0 0 

B. lenok 35 32.35 (± 8.03) 376.61 (± 334.83) 0 3 12 11 6 2 1 0 

L. lota 11 37.54 (± 24.0) 801.73 (± 975.40) 6 1 0 0 1 1 2 0 

P. asotus 3 52.87 (± 7.04) 949.9 (± 424.44) 0 0 0 0 1 1 0 1 
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Figure 12. Median heavy metal contents with standard error in the muscle of five fish species (L. 

baicalensis, LB; T. baicalensis, TB; B. lenok, BL; L. lota, LL and S. asotus, SA) grouped into five regions 

across the KRB; UP stream (Sugnugr and Olgin), MID UP (Gatsuurt, Kharaa 8.4 and Kharaa 8), MID (Boroo 

and Kharaa 5.5), MIDDOWN (Zagdalin and Kharaa 4) and DOWN stream (Kharaa 1 and Kharaa 3). The dotted 

lines indicate the international recommended thresholds for human consumption of fish tissue. The line of 

numeric values above the bars represents the number of samples included in each region (n). 
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5.5 Discussion 

Several studies of surface water, groundwater and river sediment in the KRB have highlighted the localised 

heavy metal and As pollution associated with gold mining activities (Hofmann et al., 2010, 2015b; Inam et al., 

2011; Pfeiffer et al., 2015; Batbayar et al., 2015). In the current study, maximum surface water concentrations 

for both cAs = 15.3 µg L-1 and cHg = 0.066 µg L-1 were detected in the Gatsuurt tributary downstream from the 

mine site, where these elements were more than double any other concentration detected in the KRB during the 

study, but less than half that of previously reported maximum concentrations for As (30.1 µg L-1) and Hg 

(2.0 µg L-1) (Hofmann et al., 2010; Pfeiffer et al., 2015). However, the 2011 concentrations still exceeded the 

Mongolian drinking water thresholds of 10 µg L-1
 for As and 0.05 µg L-1

 for Hg, indicating a significant health 

risk for the local residents, their livestock and wildlife who rely on this tributary for their drinking water. The As 

content detected in the Gatsuurt tributary sediment was also the highest in the basin at 30.8 µg g-1, although well 

below the previously reported level of cAs = 136 µg g-1sampled from closer to the mine site (Enkhdul et al., 

2010), and still below the recommended threshold for As (cAs B 40 µg g-1) in river sediment recommended for 

German Rivers (Schneider et al., 2003). In contrast to the elevated Hg in river water, Hg in Gatsuurt sediment 

was beneath the analytical detection limit, suggesting a more recent source of Hg pollution is contaminating the 

river water, but had not yet accumulated in the sediment. In any case, the Gatsuurt tributary is one of the most 

polluted in the KRB and considering the future expansion of the mining operations, the potential increased 

pollution could have significant impacts on the usability of the river water for downstream residents as well. 

Mitigating measures should be urgently implemented to minimise As leaching from the overburdened soil and 

rocks during the open-cut mining operations, while attempts should be made to identify the source of the high 

Hg concentration in the tributary water. Current residents must be made fully aware of the hazards of drinking 

the water from the Gatsuurt tributary, as prolonged exposure to even low concentrations of these toxic elements 

can induce serious health problems (Pfeiffer et al., 2015; Steckling et al., 2011).  

 

A second polluted site identified in the KRB was the Boroo tributary. While water concentrations for As and Hg 

were elevated above reference levels, they did not surpass Mongolian drinking water thresholds even with the 

very high content of cHg = 0.78 µg L-1 in the sediment. The Boroo River Hg sediment contamination can be 

characterised as a moderately polluted ecosystem (cHg - < 0.8 µg g-1), according to the German Chemical 

Classifications (LAWA, 1997a), and recorded the same maximum Hg content as Lake Titicaca sediment 

(cHg = 0.78 µg g-1; Monroy et al., 2014), but a lower maximum content compared to the Puyango River in 



 
50 

 

Ecuador (cHg = 0.99 µg g-1; Tarras-Wahlberg et al., 2001), both regions that reported hazardous Hg 

contamination in resident fish tissue. Elevated contents of Cr, Zn, Pb, Cu and Ni were also detected in the Boroo 

tributary sediment; however, all heavy metals there and elsewhere in the KRB were below the German Chemical 

Classifications for river sediment Class I thresholds as related to an aquatic ecosystem without any 

anthropogenic interference (cCr – B 80 µg g-1, cNi B 30 µg g-1 and cPb B 25 µg g-1), or below the Class I–II 

thresholds indicating levels of very low pollution (cZn B 150 µg g-1, cCu B 20 µg g-1and cCd B 0.6 µg g-1; LAWA, 

1997a). Thus, the Boroo tributary was confirmed as a key source of Hg pollution in the KRB owing to the 

contamination related to artisanal, small-scale mining as well as the 1956 Hg industrial accident (Hofmann et al., 

2010; Tumenbayar et al., 2000). Although the use of liquid Hg to amalgamate gold in Mongolia’s small-scale 

mining operations was prohibited in 2008, strict enforcement is lacking and so its use likely continues, 

potentially adding to the already high Hg levels in this sub catchment.  

 

During high rainfall and snow melt events, contaminates are either washed or leached from mining sites into 

nearby streams and tributaries or are infiltrated into groundwater bodies (Chalov et al., 2015; Hofmann et al., 

2015b), where they are influenced by processes including dispersion, sorption, dissolution—precipitation and 

different chemical reactions that ultimately bind them to sediments and suspended loads (Thorslund et al., 2012; 

Chalov & Romanchenko, 2015). As a result, heavy metal concentrations in surface waters fluctuate greatly, 

making a single water sample capable of only providing an approximation of the local contamination at a 

specific point in time, whereas the analysis of the heavy metal sediment content can offer a more robust 

assessment of the long-term pollution status of a local area. Therefore, future water and sediment monitoring 

programmes in the KRB should have an increased temporal sampling regime in order to accurately follow the 

contamination levels stemming from the expanding open cut and illegal, placer mining operations.  

 

Palaearctic riverine fish communities are naturally separated into upstream salmonid-dominated and downstream 

cyprinid-dominated communities due to the species’ ecological and biological preferences for specific habitat 

conditions. Mature individuals of many fish, including the sampled species, typically have extended home ranges 

which include spawning, feeding and winter refuge pools in river reaches separated by up to 100 km. 

Particularly, in the harsh conditions of the prolonged Mongolian winter, individuals are forced to exit the smaller 

tributaries before they freeze solid forcing fish to return to the main river channel and accumulate in the deeper 

pools under the river ice, only re-entering those tributaries in spring to access more optimal spawning and 
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feeding sites. It is expected that for at least B. lenok and T. baicalensis, individuals have likely travelled between 

multiple sampling sites and potentially across adjacent regions during extended seasonal migrations (> 45 km) as 

has been indicated by acoustic telemetry tagging and population genetics studies of these species in Mongolia 

(Research Projects 6). Thus, individuals have potentially been exposed to different levels of heavy metal 

contamination, and therefore, in order to gain a complete understanding of the accumulation pattern of KRB fish, 

it was necessary and reasonable to evaluate fish both at a basin-wide scale by grouping individuals by species, as 

well as at a regional scale by dividing fish into sampling regions.  

 

The heavy metal accumulation observed in KRB fish species was highly variable depending on the contaminate 

and the main depository tissue. S. asotus, like other catfish, are opportunistic predators that feed on most other 

fish species in their habitat (Stolyarov, 1985). Thus, they are at the top of the aquatic food chain, where they tend 

to accumulate elevated contents of heavy metals such as Hg due to biomagnification processes (Paterson et al., 

2009). This has evidently happened with regard to the high S. asotus Hg content in the KRB, and has likewise 

occurred in the lower Selenga River basin near Lake Baikal, where S. asotus accumulated the highest Hg muscle 

content of the 13 fish species investigated there. S. asotus recorded a mean Hg muscle content of ~ 0.216 µg g-1 

wet weight (ww) (1.08 µg g-1dry weight, dw; Komov et al., 2014; Haines et al., 1992), which was 2.4 times 

lower than KRB S. asotus (mean = 0.52 ± 0.43 µg g-1 ww, median = 0.65 µg g-1 ww, n = 3). In addition, a related 

catfish species (Silurus glanis) in the Danube River, Serbia, also accumulated the highest Hg content of the four 

fish species investigated in that study, recording a mean Hg muscle content of ~ 0.326 µg g-1 ww (Subotić et al., 

2013), although this was also less than the Hg detected in KRB S. asotus. The GLM results indicated fish length, 

fish tissue, fish age and site sediment all significantly contributed to the Hg accumulation in S. asotus, 

suggesting that older, larger fish accumulate more Hg in their muscle tissue and that this species close affinity to 

the river substrate has also played a substantial role. The elevated Cd observed in the liver of KRB S. asotus, 

compared to muscle, was related to biotic factors only (e.g. fish length and age), as site sediment was not 

significant. Danube catfish also showed higher mean contents of Cd in their liver (~ 0.004 µg g-1 ww) compared 

to muscle (~ 0.002 µg g-1
 ww) (Subotić et al., 2013), although at far lower levels in relation to KRB S.asotus’ 

liver contents (mean = 0.655 ± 0.58 µg g-1 ww, median = 0.426 µg g1 ww, n = 3). Therefore, in comparison with 

the lower Selenga basin and Danube River catfish, the Kharaa River S. asotus had accumulated considerably 

higher heavy metal contents in the muscle for Hg, Pb, As, Cr and Cd but lower contents of Zn and Cu thus 

highlighting the hazardous heavy metal contamination of this consumed Kharaa River species.  
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Lota lota are also close to the top of the aquatic food chain as they are a predatory species that consumes mainly 

fish, but also invertebrates at smaller sizes (Pääkkönen & Marjomäki, 2000). L. lota have accumulated a median 

Hg muscle content of 0.178 µg g-1
 ww (mean = 0.306 ± 0.28 µg g-1

 ww, n = 11), with four individuals exceeding 

0.5 µg g-1
 ww. However, this was in contrast to L. lota sampled from the Taimyr Peninsula in northern Russia, 

which recorded a mean Hg muscle content of ~ 0.494 µg g-1
 ww (Allen-Gil et al. 2003), or considerably above 

KRB L. lota levels. Although, in the Lena and Mezen rivers, also in Russia, mean Hg muscle contents of L. lota 

were lower with ~ 0.05 and ~ 0.15 µg g-1
 ww, respectively (Castello et al., 2014), or well below KRB L. lota 

contents. The GLM results indicated a complex process of Hg accumulation in L. lota, with fish age appearing to 

play the most significant role. For Cr, L. lota accumulated the highest median muscle content of all KRB species 

with a content of 0.193 µg g-1
 ww (mean = 0.171 ± 0.1 µg g-1

 ww, n = 11), which was elevated compared to 

Danube River L. lota with ~ 0.008 µg g-1
 ww (Subotić et al., 2013). Fish length, fish tissue and site sediment 

along with the interactions of these variables have influenced Cr contents in L. lota muscle as determined by the 

GLM. Arsenic was found to be extremely elevated in the liver of L. lota compared to the other species 

investigated, which was also the case for L. lota in the Danube River, Serbia (Subotić et al., 2013), and from the 

Taimyr Peninsula in Russia (Allen-Gil et al., 2003). KRB L. lota As liver contents (median = 1.2 µg g-1
 ww, 

mean = 0.99 ± 0.56 µg g-1
 ww, n = 11) were 4.6 and 3.5 times higher than the mean As liver contents from this 

species in the Danube River (~ 0.212 µg g-1
 ww) and the Taimyr Peninsula (~ 0.28 µg g-1

 ww), respectively, once 

dry weights were adjusted to wet weights (see Komov et al., 2014; Haines et al., 1992). According to the 

modelling results, As accumulation in L. lota was complex, with all variables and interactions significant, except 

for tissue / age. Previous studies have suggested that elevated As contents in fish can be explained by the 

geomorphological substratum (Rowland et al., 2011), but this does not appear to be the case in the KRB with 

low As sediment contents and water concentrations compared to reference sites detected in the lower basin 

(Kharaa 1 and Kharaa 4) where L. lota with the highest As contents were captured.  

 

B. lenok and T. baicalensis are both benthopelagic species that prefer clearer, faster flowing and well-oxygenated 

waters of the middle and upper KRB basin. The diet of these salmonids includes zoobenthos, 

macroinvertebrates, fish and terrestrial rodents (Chandra et al., 2005), which has, along with their upstream 

habitat preferences, likely contributed to their low heavy metal contents detected in most of the KRB individuals. 

These species typically recorded lower median heavy metal contents in comparison with L. lota and P. asotus for 

all elements, except Zn in B. lenok sampled from the UP region. The reason behind the high Zn content in B. 



 
53 

 

lenok in the upper reference tributaries was undetermined, although elevated levels were generally found in 

individuals sampled from the Olgin tributary site. This site, whilst itself did not have elevated Zn in the water or 

sediment (77.7 µg g-1), is located in the same upstream region as the Sugnugr tributary where the highest Zn 

sediment contents were detected in the KRB (112 µg g-1). This contamination supports the idea that individuals 

of this species undertake extended seasonal movements between the main channel and various spawning and 

feeding tributaries, which was also observed in acoustic telemetry tagging studies (Chapter 6). In other regions 

that have examined heavy metal accumulation in B. lenok, including the Genhe and Ussuri rivers in north eastern 

China, heavy metal contents in the muscle were also very low, being below KRB levels for Cr, Cd, Zn, Ni and 

Pb in both rivers, and for Cu in the Ussuri River (Wang & Mou, 2011). While for T. baicalensis sampled in Lake 

Baikal at the mouth of the Selenga River (0.076 µg g-1
 ww– 0.38 µg g-1

 dw; Komov et al., 2014), mean Hg 

muscle contents were comparably low compared with the KRB individuals (mean = 0.084 ± 0.03 µg g-1
 ww, 

median = 0.086 µg g-1
 ww, n = 24), while further downstream in the Yenisei River near Krasnoyarsk City, 

Russia, the heavy metal burden was investigated in Thymallus arcticus and was again found to have a similar 

low muscle content of Pb, Zn, Ni and Cd, but elevated Cr contents compared to KRB grayling (Anishchenko et 

al., 2009).  

 

L. baicalensis is a small bodied cyprinid that consumes periphyton, zoobenthos and terrestrial insects (Chandra 

et al., 2005) and thus occupies the bottom tier of the KRB food web. However, the elevated contents detected in 

this species are likely due to its benthic feeding behaviour, where it incidentally ingests contaminated fine 

sediments and suspended organic matter, which can increase its uptake of heavy metals, than what would 

generally be the case for a lower trophic level species. This has been previously described in other regions and 

species, where sediment contaminated with heavy metals has posed a direct risk to benthic feeding fish (Köse et 

al., 2015; Monroy et al., 2014). Although the GLM results determined site sediment as a significant factor 

influencing the accumulation of most heavy metals in L. baicalensis, it also identified water concentrations for 

As and Hg, fish length, fish age, fish tissue and multiply interactions of these variables as also being significant, 

thus suggesting that heavy metal accumulation in L. baicalensis in the KRB is more complex than just 

considering heavy metal contamination in the river sediment. In similar studies, L. baicalensis sampled in the 

Russian section of the lower Selenga River basin and nearby lakes were reported as having mean Hg muscle 

contents between ~ 0.136 (0.68 µg g-1
 dw) and ~0.054 µg g-1

 ww (0.27 µg g-1
 dw) (Komov et al., 2014), which is 

substantially lower than in the KRB where the mean muscle Hg content was 0.362 µg g-1
 ww 
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(median = 0.254 ± 0.32 µg g-1
 ww, n = 45). In the Pechora River, northern Russia, Leuciscus idus also had lower 

muscle contents for Cd and Pb, but higher contents for Cu and Zn (Allen-Gil & Martynov, 1995), further 

illustrating the increased bioavailability of contaminating heavy metals in the KRB compared to other similar 

rivers and species. 

 

Regional patterns of heavy metal bioaccumulation in the KRB fish fauna was evident for Cr, Zn, As, Hg and Pb, 

while Cd, Ni and Cu accumulation showed no obvious regional differences in fish muscle content. In the 

unimpacted reference sites (UP region), B. lenok had still accumulated elevated Zn and As due to the increased 

background levels in the sediments. In the upper basin, B. lenok is the largest species and also likely moves 

substantial distances from deeper overwintering pools into smaller tributaries to spawn and feed in spring. Thus, 

the bigger B. lenok sampled in this region has likely been exposed over multiple years to these elevated heavy 

metals during their extensive seasonal movements and through the ingestion of their contaminated prey items. In 

both the MID-UP and MID regions, where only L. baicalensis, T. baicalensis and B. lenok were collected, 

contamination levels were comparable to the upstream reference region, except for Zn and As in B. lenok and the 

elevated Hg levels detected in L. baicalensis in the MID region. As L. baicalensis was the only species collected 

in the heavily polluted Boroo tributary, it was not unexpected that the Hg contamination from the sediment was 

reflected in these individuals. There was also no apparent contamination in the MID-UP region fish fauna from 

the expanding mining operations in Gatsuurt, even with the hazardous As and Hg concentrations detected in the 

tributary’s water. Heavy metal and metalloid contamination was most apparent in the MID-DOWN and DOWN 

regions of the KRB, particularly as the larger trophic species were collected there. Both L. lota and S. asotus 

recorded Hg contents above international thresholds (0.5 µg g-1) in the MID-DOWN region, although the 

number of individuals sampled was very low. As Hg in the sediment was below the detection limits in the 

Zagdalin tributary, it is expected that the Hg recorded in the main channel site (Kharaa 4) had been transported 

downstream from its source in the Boroo tributary and thus the persistent and accumulative capability of Hg in 

the environment has likely contaminated these fish species in the neighbouring MID-DOWN region as well. Pb, 

and to a small degree Cr, contamination was limited somewhat to the MIDDOWN region even though the 

maximum contents in the river sediment was also detected in the Boroo tributary. It is likely that both of these 

heavy metals (Pb and Cr) have also been transported downstream, increasing sediment contents in the adjacent 

MID-DOWN region main channel site and further exposing the higher trophic level species to this 

contamination, which has subsequently accumulated in the individuals that were captured there. However, why 
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T. baicalensis and B. lenok, which were sampled in both regions showed increased Pb and Cr accumulation in 

the MID-DOWN compared to the more polluted MID region is unclear. In the DOWN region, elevated As in 

L. lota and S. asotus was also unexpected as there was low As in both water and sediment sampled in this region. 

Individuals with the higher As contents were also generally smaller (< 20 cm TL; n = 6), as was the case 

concerning L. lota, potentially indicating that a specific nursery area, that was not sampled, contains a higher As 

content than the main river sites sampled in the DOWN region. Only one S. asotus sampled in the DOWN region 

had a high Hg muscle content of 0.88 µg g-1, while a second individual recorded 0.04 µg g-1. Both fish were also 

similar lengths of 49 and 48.6 cm TL respectively. The reason for this elevated Hg content in a single individual 

in the DOWN region is unclear, but it is likely related to either the fish’s own movements or movements of its 

prey items potentially having been exposed to Hg contamination elsewhere. Considering the sediment contents 

were similar for Hg both above and below Darkhan (Kharaa 3 and Kharaa 1), it appears that neither Darkhan city 

nor the 2007 Hg spill has had a major influence on fish contamination in the region, although the Hg 

concentration in the water closest to the spill location remained elevated above references levels (0.031 µg L-1).  

 

The Kharaa River basin fish fauna has been exposed to and accumulated elevated contents of several toxic heavy 

metals in their edible muscle tissue, with Hg posing the greatest threat to human health if fish are consumed 

frequently. Even though, in 2011 only 10.7 % of the total fish sampled from the five species had accumulated Hg 

above the internationally recommended threshold of 0.5 µg g-1
 ww, this low level of contamination should still 

be considered carefully in relation to the amount, frequency and sensitivity of the people consuming fish from 

the KRB. Therefore, information obtained from a recreational fishing survey conducted during the summer of 

2012 (Chapter 4) indicated that while fish consumption was generally low for most fishers, it varied considerably 

from once or twice a year to almost every day in the summer and autumn months for unemployed and retired 

residents. The most common species and mean size caught was B. lenok of 34 cm (25 – 40 cm), which had a 

median Hg muscle content of 0.14 – 0.16 µg g-1
 ww. So considering the average consumption rate of KRB 

recreational fishers was approximately one B. lenok per week during the fishing period, then the Provisional 

Tolerable Weekly Intake (PTWI), as related to the safe human consumption of methyl Hg (~ 80 % of total Hg) in 

fish muscle, these fishers are ingesting between 21 – 24 % of the recommended weekly intake by the WHO 

(MeHg 1.6 µg kg-1
 body weight-1

 week-1). With this weekly threshold potentially being exceeded at the maximum 

consumption rate reported in the survey (5 – 7 fish week-1) or if a highly contaminated L. lota or S. asotus is 

consumed. These potential health risks also need to be seen in the context of other sources of heavy metal 
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exposure, of which several are relevant in Mongolia. If the human body burden for Hg or other heavy metals is 

already elevated due to occupational exposure (e.g. artisanal gold miners) (Steckling et al., 2011), ingestion of 

contaminated water (e.g. Gatsuurt tributary), consumption of other contaminated foods (plant products grown on 

soils enriched in heavy metals; Kasimov et al., 2011), or exposure to significant air pollution (locally elevated 

levels of several heavy metals; Sorokina et al., 2013), then frequently eating contaminated fish species will serve 

to intensify the chronic absorption levels in a person. This is concerning considering the most sensitive 

community members, including pregnant women and young children, may already be facing potential serious 

health implications from other sources of heavy metal contamination as well (Steckling et al., 2011). 

 

Conclusions 

Although the demand for direct intervention (e.g. restrictions of fish consumption) is not immediately warranted, 

it is advisable to implement an investigative monitoring programme in order to quantify pollution levels and 

determine trends of heavy metal contamination within the KRB fish fauna. A meaningful set-up with regard to 

spatial sampling strategies, analytical methods and potential biological indicator species may be derived from the 

results of the current study. In a broader context, the data presented here has filled an important knowledge gap 

for integrative water resource management planning, which in the case of the KRB, has typically been impeded 

by poor data availability (Karthe et al., 2015b). For the first time in the KRB or anywhere in Mongolia, it has 

been shown that heavy metal emissions related to gold mining activities are not only theoretical risks, but that 

accumulation from the environment into consumed fish species is evident and has reached concerning levels in 

the worst affected regions e.g. in the middle and lower river reaches. The described findings from the KRB, as a 

model study area, are also important to better understand mining-related risks across the vast Selenga-Baikal 

basin, which is characterised by a similar natural environment and comparable anthropogenic pressures (Karthe 

et al., 2015). 
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6 Movements and behaviour of an archaic trout, 

Brachymystax lenok (Pallas, 1773) under extreme 

environmental conditions in Mongolia 
 

Kaus, A., Büttner, O., Karthe, D., Schäffer, M., Borchardt, D. (2017). Ecology of Freshwater Fish, 1 – 15. 

doi: 10.1111/eff.12390 

6.1 Abstract 

Knowledge of a species’ spatial and temporal movements along with the way these shift under extreme seasonal 

conditions is vital for understanding its autecology and developing scientifically sound conservation and 

management strategies. The aim of this research was to describe and quantify the diel and seasonal movement, 

acceleration and depth of Brachymystax lenok, a threatened, potadromous salmonid that inhabits the boreal river 

basins of northern Asia and Siberia. Twenty-one mature individuals were implanted with an acoustic transmitter 

and monitored over a 15 month period in the upper Eroo River, Northern Mongolia. Mean (± SD) B. lenok home 

ranges were 19.1 ± 15.1 km, with maximum longitudinal movements detected of up to 45.3 km. Two periods of 

increased longitudinal movements were identified; the first in late summer / early autumn when 10 B. lenok 

moved downstream to deeper, overwintering pools, with the second period occurring in late spring and early 

summer when nine B. lenok were recorded entering surrounding tributaries. Diel activity and depth typically 

increased during daylight followed by decreased activity or resting periods in shallower river sections at night. 

These results highlight the need to maintain a high level of river connectivity by implementing and enforcing an 

expansive spatial management plan to better protect and recover the threatened Eroo River basin lenok 

populations, which can be transferred to similar regions across Mongolia and throughout the species’ declining 

distribution. 

6.2 Introduction 

In subarctic regions of the world, pronounced seasonal weather fluctuations can create extreme environmental 

conditions that shape riverine habitats and regulate aquatic communities (Weber et al., 2013; Resh et al., 1988). 

In order to prevail in such ecosystems, boreal fish species must endure high-intensity disturbances including 

prolonged minimal water temperatures, extended low river discharge, complete river ice coverage and break up, 

reduced light and food availability and major flood events (Prowse, 2001). While such volatilities ultimately 
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increase the susceptibility and mortality of individuals (Power et al., 1993; Brown et al., 2011), resident fish 

populations display specific movement patterns and behaviours in order to survive and reproduce in these harsh 

environments, if migrating away from them is not an option. Thus, acquiring a detailed knowledge of these 

movements and the way they shift under fluctuating conditions is essential for not only understanding a species’ 

autecology, but for developing and implementing scientifically sound conservation and management regimes 

such as spatial and temporal protected areas and periods, river restoration measures and environmental flows 

regimes. In addition, this information is critical in light of the exacerbating climate change effects that are 

already impacting on the world’s most sensitive ecoregions and species, including high latitude and altitude 

ecosystems inhabited by the world’s archaic salmonid genra, such as those found in Mongolia (Shed’ko et al., 

1996; Deng et al., 2015; Malsy et al., 2015; Hartman et al., 2017). 

 

The possibility to quantify free-swimming fish movements and behaviours has progressed significantly in recent 

years with rapid advancements in biotelemetry technology. Miniaturisation of transmitters and improved sensor 

capabilities has enabled a wide range of data to be obtained from smaller fish size classes and over extended 

periods without impact on the welfare and natural behaviours of fish (Cooke et al., 2013). Passive acoustic 

telemetry provides the possibility for increased numbers of individuals to be monitored remotely, with an array 

of receivers deployed over an extensive area (Heupel, 2004). This telemetry technology has been successfully 

used to determine individual home ranges, migration routes, site residency and patterns of activity and depth in 

both freshwater and marine ecosystems, and for numerous species and populations under a variety of conditions 

(Cooke et al., 2013). Worldwide, salmonids have been the focus of numerous telemetry studies (Young et al., 

1997; Ovidio, 1999; Schmetterling, 2001; Gilroy et al., 2010, Yoon et al., 2015, Kaus et al., 2016), due to their 

high economic value as a commercial and recreational fishery resource, as well as their increasingly threatened 

global status. In Mongolia, these reasons have also been the motivation for conducting the current acoustic 

telemetry study that has focused on the B. lenok (Brachymystax lenok, Pallas 1773), as it is one of the main target 

species in the country’s emerging recreational fishery and thus populations have already suffered from 

widespread declines in their abundance and distribution (Ocock et al., 2006). 

 

The sharp-snouted lenok or B. lenok (from here on referred to as lenok) is a potadromous salmonid that can grow 

to a maximum size of 70 cm and 8 kg (Chyung, 1977; IGFA, 2001). This species inhabits the rivers and lakes of 

Eurasia including Siberian Russia, Kazakhstan, China and Mongolia (Dulmaa, 1999; Kottelat, 2006, Esteve & 
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McLennan, 2008). It is one of three in the Brachymystax genus that forms the most basal genetic clade of the 

subfamily Salmoninae (Shed’ko et al., 1996). The current understanding of lenok autecology is limited, as most 

publications concerning this species have focused on phylogenetic origins and relatedness of conspecifics 

(Froufe et al., 2003, 2008). Only a single ecological study has been conducted on a closely related lenok species 

(B. tsinlingensis, reported as a subspecies in the study) in the impacted Nakdong River in South Korea, which 

described individual movements and habitat use during specific seasonal periods (Yoon et al., 2015; Xing et al., 

2015). The authors reported the maximum distance moved by a mature individual was 8.7 km in spring when 

fish were detected moving upstream and entering the surrounding tributaries that contained known spawning 

habitat. During during winter, less extensive movements were detected with individuals displaying limited 

mobility of less than 4.13 km (Yoon et al., 2015). Lenok movements were not monitored during summer or 

autumn and never before have they been investigated in an unimpacted, free-flowing river system. Thus 

fundamental ecological questions remain, regarding their complete range of seasonal movements, as well as their 

annual, unimpeded home ranges sizes. While the finer scale diel and seasonal behavioural patterns and depth use 

has only been previously understood from anecdotal evidence, it has been suggested that the species prefers to 

occupy surface waters down to 30 cm in summer before moving into deeper pools (1 - 2 m) to overwinter 

(Dulmaa, 1999; Yoon et al., 2015).  

 

In recent decades, lenok has become a popular target species for recreational anglers throughout Mongolia where 

the fishing effort has grown rapidly with larger numbers of people catching and consuming fish on a regular 

basis (Chandra et al., 2005; Chapter 4). However, many local and foreign anglers are unaware or uncompliant 

towards the existing fishing regulations and so illegal activities are common and widespread (Bailey, 2012; 

Chapter 4). These regulation breaches threaten the long-term sustainability of lenok populations in Mongolia. 

While this threatened species is already included on Mongolia’s Red List of Fishes (2006) as vulnerable, due to 

the increased fishing harvest, water pollution, habitat destruction and climate change impacts, the local 

populations are expected to decline by at least a further 30 % by 2021 (Ocock et al., 2006). Thus, further 

research, including an improved ecological understanding of this understudied species, is urgently required so 

authorities can improve, develop and implement practical management and conservation strategies. Therefore, 

the aim of this study was to identify and quantify the spatial and temporal shifts in individual movements and 

behaviours of mature lenok over a 15 month period using passive acoustic telemetry in an unimpacted, boreal 

river system in northern Mongolia. The research focused on identifying and describing the diel and seasonal 
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longitudinal movements including linear home ranges and areas of increased occupancy, as well as diel and 

seasonal differences in behaviour (acceleration) and habitat use (depth). It is hypothesized that this species 

maintains a significantly larger home range than what has been previously reported in impacted river systems, 

while specific temporal movements are expected to closely match other boreal salmonids such as Hucho taimen 

(Pallas, 1773).  

6.3 Materials and Methods 

Study site 

The Eroo River (also written as Yeruu / Epɵɵ in the literature) is located in northern Mongolia within the 

Selenge River basin (Figure 1). It flows over 250 km from its source in the Khan Khentii Mountain Ranges 

(< 2799 m a.s.l.) to its confluence with the Orkhon River. The core study reach was located in the upper Eroo 

River basin, where two major tributaries (Sharlan Gol and Khongiyn Gol) converge to form the main Eroo River 

channel at Khonin Nuga Ranger Station. From here, the Eroo River flows through steep sided valleys with a 

characteristic pool (0.5 – 1.5 km long; < 4 m deep) riffle sequence. The regional climatic conditions include 

extreme cold, dry winters with minimum air temperatures of - 40˚C, complete river ice coverage from November 

to April and short, hot summers with a maximum of 40˚C, when most of the 250 – 290 mm annual precipitation 

falls, initiating periodic flooding events (Schlütz et al., 2007).  

 

Transmitter implantation, specifications and receiver deployment 

Lenok were angled using single barbless hooks to minimize potential injury and tagged in the core study reach 

during two periods between the 4th and 20th of July 2011 (n = 20; 33 – 46 cm TL), and on the 23rd of May 2012 

(n = 3; 43 – 49 cm TL) (Table 2). Although sex and maturity could not be determined externally, the age of 

tagged individuals was estimated to be between five and eight years old based on age-length data from the Eroo 

River populations (Kaus, Unpublished Data). Thus it was expected that the majority, if not all, of the tagged 

individuals were sexually mature (3 – 6 years, Froufe et al., 2003). Once captured fish were anaesthetised 

(AQUI-S, New Zealand), TL (cm) and weight (g) were recorded. A 10 – 15 mm incision was made on the 

ventral side of the individual, off centre between the pectoral and pelvic fins for the V9AP transmitter 

(9 x 45 mm; Vemco, Canada) to be inserted into the peritoneal cavity. The incision was closed with 3 - 4 

interrupted, absorbable sutures and the individual was returned to a slow flowing section of the river and 

supported until full swimming ability had resumed approximately 15 min later. The transmitters had a unique 
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alternating identification code for both acceleration (range: 0 - 3.43 m s-1) and pressure (range: 0 – 50 m) and a 

battery life of 377 days. 

 

Figure 13. Map of Mongolia (top) with the location of the core study region (Upper Eroo River) indicated in red. 

Elevation map of the core study reach (bottom) showing the concentrated acoustic receiver array along the main 

river channel and the positions of the upstream receivers in the Sharlan, Ichlig, Khongiyn and Yalbac tributaries. 

Note: An additional two receivers were positioned further downstream, one in the middle basin and another close 

to the Eroo – Orkhon confluence – not shown. 

 

Thirty-one acoustic receivers (VR2W; Vemco, Canada) were deployed in the upper Eroo River and its major 

tributaries (Sharlan, Khongiyn and Yalbac) in July 2011 (Figure 1). All receivers were separated by small riffles 

or bends in the river channel and thus did not have overlapping detection ranges (refer to range testing below). In 

addition, one receiver was placed in the main Eroo River channel downstream (~ 130 km) in the mid-basin, 

while a final receiver was deployed near the Eroo - Okhon river confluence (~ 245 km), in order to detect more 

extensive fish movements during the study. Receivers were deployed into deep, slow flowing pool sections to 

minimize loss and damage from flooding and floating debris and were positioned as far removed from areas of 
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high turbulence as possible to restrict excess ‘noise’ created from entrained air bubbles associated with these 

locations (Cooke et al., 2013). In addition, the deployment of a concentrated receiver array within the core study 

reach, the focus region of fish capture and tagging, was aimed to improve detection of tagged fish as they move 

longitudinally along the river continuum. This was especially important due to the low sampling program of the 

transmitters that were used in order to have an extended battery life of 377 days to sample all seasonal extremes, 

while retaining the possibility of tagging smaller fish (> 340 g) and gathering data on acceleration and depth. 

Tidbit (Onset, USA) water temperature loggers were also placed in the river to record seasonal changes in water 

temperature. Motion sensor cameras (Waldkauz Digital Trail Camera, Germany) were also attached to riparian 

vegetation and used to define the adjusted seasonal periods. Eroo River discharge data was obtained from the 

Mongolian Academy of Sciences, and included daily measurements taken by a gauging station on the main Eroo 

River channel downstream of the core study reach. 

 

Range Detection and Sensor Testing 

In situ range detection tests were conducted on two random days within the core study reach, during river 

discharges of 139 m3 s-1 and 334 m3 s-1. A V9AP test transmitter with a 20 s random delay was placed in the river 

for 10 min each at a distance of 0, 50, 100, 150 and 200 m from the deployed receiver in both an up and 

downstream direction and on both sides of the river. Range detection tests could not be conducted in winter 

under the river ice due to accessibility of the study location. The acceleration sensor was tested for a stationary 

or deceased fish by placing the test transmitter in the river next to a receiver for a 20 min period. A pressure 

(depth) calibration test was also conducted by lowering the test tag into the water at 50 cm intervals for 10 min 

each until a depth of 2.5 m. Pressure values were detected with a manual tracking receiver (VR100, Vemco, 

Canada).  

 

Data Analysis 

All detections from the first 24 h post-surgery for each fish were excluded from the analysis to allow normal 

movements and behaviours to return. Two lenok were detected only once within the study area and so were 

removed from the analysis (Fish ID 73 / 74 and 31 / 32). Fish were assumed to have died or rejected the 

transmitter if the sensor values remained low (as per calibration test values) and constant without any 

longitudinal movements. As a result, Fish ID 45 / 46 was expected to have died or rejected its transmitter on the 

1st of September 2011 (50 days post-surgery). The Residency Index (IR) was calculated by dividing the number 
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of days a fish was detected by the number of days between tagging and the last detection (O’Toole et al., 2010). 

A fish’s linear home range was calculated as the distance from the most upstream to the most downstream 

detection point, including the distance travelled within a tributary, in order to estimate the total area of utilisation 

for each fish (Minns, 1995). Kernel densities (KD) were used to depict the probability of an animal occurring at 

a location within its home range as a function of the relocation points (receiver detection days) (White & Garrott, 

1990; Pillans et al., 2014). A normal KD function with a bandwidth of 0.75 km was used to calculate the 50 % 

and 95 % KD for those fish that had been detected on > 15 days during the study period and on > 2 receivers 

(Worton, 1989; Vokoun, 2003; Duong, 2017). The seasonal periods used in the analysis were adapted to better 

match with local climatic conditions as well as fishery management regulations. Thus the adjusted period for 

autumn was from the first frost (16th of September 2011) until full river ice coverage on the 11th of November 

2011; winter dates related to complete river ice coverage in the Eroo River (12 th of November 2011 until the 1st 

of April 2012); spring was associated with the current closed fishing season dates in Mongolia (1st of April until 

the 15th of June 2012); and the adjusted summer period began on June 16th and lasted until the 15th of September 

2012. The different periods of the day were divided into night (between one hour post sunset to one hour before 

sunrise), day (one hour after sunrise to one hour before sunset), dusk (one hour before sunset to one hour after 

sunset), and dawn (one hour before sunrise to one hour after sunrise). 

 

Statistical differences were tested between season and period of the day for lenok total distance moved, 

acceleration and depth using the Kruskal Wallis test with a Tukey’s HSD post-hoc test with a Bonferroni’s 

adjustment. Correlations were performed to test the relationship between fish length and linear home range, and 

fish weight and linear home range. Linear mixed effect models were used to describe the relationship between 

lenok longitudinal movement, acceleration and depth, which were fixed factors, against water temperature, river 

discharge, photoperiod (period of the day) and fish TL included as co-variables. Fish ID was added as a random 

factor in all models and was used as the null model for comparisons. The Akaike information criterion (AIC) is 

AIC = – 2*logLM + 2*(nc + p + 1), where logLM is the maximized log likelihood (or maximized restricted log 

likelihood) of the model, and nc + p + 1 is the number of parameters estimated in the model. “p” is the number 

of fixed-effects coefficients, and “nc” is the total number of parameters in the random-effects covariance 

excluding the residual variance.  The AIC was used to compare models with the null model and the most 

parsimonious were identified based on the lowest AIC value and its significance (p < 0.005) to the null model. 
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Data analyses and visualisation was performed in R (R Development Core Team 2010, version 1.0.44; package 

ggplot2) and MATLAB (The MathWorks, Inc., Natick, Massachusetts, United States, R2016a). 

6.4 Results  

River Conditions and Range Detection Tests 

The mean (± SD) water temperature in the Eroo River for the study period was 2.3 ± 2.9 °C, with the lowest 

temperature of - 0.09 °C recorded in winter and spring, and the highest temperature of 11.6 °C recorded in 

summer (Table 3). River water temperature was significantly different (p < 0.001) between all seasons. The 

mean discharge in the Eroo River during the study period was 60.9 ± 76.6 m3 s-1, with the lowest discharge 

recorded in winter (0.17 m3 s-1; p < 0.05) and the highest discharge recorded in summer (413 m3 s-1; p < 0.05). 

River discharge was significantly different (p < 0.001) between all seasons. The first range detection test 

indicated the maximum distance a transmitter would be detected during a discharge of 139 m3 s-1 was 60 m, 

while during the second range detection test the maximum detection range was restricted to 5 m during a 

discharge of 334 m3 s-1. Below average discharge (< 60.9 m3 s-1) occurred on 334 days (72 % of the study 

period) where the detection range was estimated to be between 100 and 150 m. Flow conditions greater than 

139 m3 s-1 occurred on 58 days (12.5 %) and flow conditions greater than 334 m3 s-1 occurred on only 7 days 

(1.5 %) out of the 467 day project duration. The accelerometer calibration trial identified that an immobile 

transmitter had a mean (± SD) value of 0.091 ± 0.03 m s-1 (0.041 – 0.163 m s-1). While calibration trials of the 

pressure sensor indicated that transmitted values of 0, 1, 2 and 3 all corresponded to a depth of between 0 –

 25 cm, a pressure sensor value of 4 indicated a depth between 26 – 50 cm, 5 = 51 - 75cm, 6 = 76 - 100 cm etc., 

until the maximum pressure value recorded in the study of 17 equated to a depth of 351 – 375 cm. 

 

Fish Detections & Residency  

Mean (± SD) lenok TL and weight was 41.4 ± 4.3 cm and 711.1 ± 355.0 gr respectively (Table 4). The mean (± 

SD) number of days an individual was detected in the study reach was 65.9 ± 67 days (4 - 209 days; Table 2). IR 

ranged between 0.06 and 1.00 (mean = 0.4 ± 0.3). Tagged fish were detected on every retrieved receiver (n = 26) 

in the array except at the most downstream location (~ 245 km) close to the Eroo - Okhon confluence. The 

median number of receivers visited was nine (mean ± SD, 10.3 ± 5.2). Tagged fish were detected in all seasons 

and discharge levels including under full ice coverage and during flood events (Figure 14).  
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Table 3. Summary table of the water temperature (˚C) including the mean (± SD), median and range, and river 

discharge (m3 s-1) including the mean (± SD), median and range for the Eroo River, Mongolia. Values are 

presented for the entire study period and per adjusted seasonal period between the 4th of July 2011 and the 9th of 

October 2012. Adjusted seasonal dates according to the observed climatic conditions and Mongolian fishing 

laws are presented. Significant differences were found for water temperature between all seasons, and for river 

discharge between all seasons (Kruskal Wallis, p < 0.001). 

 

Eroo River Conditions 
Study Period 
4th Jul 2011-  
9th Oct 2012 

Summer 
16th Jun- 
15th Sep 

Autumn 
16th Sep- 
11th Nov 

Winter 
12th Nov- 

1st Apr 

Spring 
2ndApr- 
15th Jun 

Water Temp. (°C)      
Mean (± SD) 2.3 ± 2.9 5.7 ± 1.7 2.6 ± 2.8 0.02 ± 0.1 2.1 ± 2.5 
Median 0.3 5.5 1.9 0.0 1.0 

Range  - 0.09 - 11.6 2.5-11.6 0.00-9.2 -0.09- 0.3 -0.09 - 10.1 
River Discharge (m3 s-1)      
Mean (± SD) 60.9 ± 76.6 125.9 ± 90.0 39.9 ± 19.1 2.7 ± 3.7 47.5 ± 38.2 

Median 39.1 94.2 33.4 0.91 40.4 

Range 0.17 - 413.0 34.5 - 413.0 14.8 - 88.5 0.17-14.3 2.3 - 223.8 
n (days) 467 168 82 141 76 

 

Longitudinal Movements 

Tagged lenok displayed a mean linear home range (LHR) of 19.1 ± 15.1 km (0.5 – 45.3 km; n = 21, Table 4). 

Thirteen lenok (62 %) had a LHR greater than 10 km, while six individuals (28%) had a home range greater than 

30 km. No correlation was evident between total fish length (cm) and LHR size (km) (r2 = 0.336, p = 0.136), nor 

between fish weight (g) and LHR (km, r2 = 0.387, p = 0.08). The 50 % (core home range) and 95 % KD home 

range estimates extended from 0 – 10.7 km (mean ± SD, 5.8 ± 3.6) and 1.3 – 31.7 km (mean ± SD, 11.7 ± 8.0), 

respectively (Table 4). KD estimates, when considered at higher levels (e.g. 95 %), can be longer than the 

upstream to downstream distance because there is some level of probability that it moved beyond that point 

before or after the detection (Vokoun, 2003). While the largest LHR variance was detected in summer and spring 

compared to autumn and winter, there was no significant difference found for LHR between seasons (Kruskal-

Wallis test, p > 0.05; Figure 15). There was also no significant difference found between the total distance lenok 

moved and season, and the total distance lenok moved and diel period (p > 0.05). The linear mixed effects 

modelling results indicated that the inclusion of temperature in the model produced a significant difference 

compared to the null model (Kruskal-Wallis test, p < 0.01); however the combination of temperature, discharge 

and photoperiod produced the best explanation of lenok total distance (Table 5). 
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Figure 14. Detection plot of B. lenok (n = 21) in the Eroo River, Mongolia, between the 4th of July 2011 and 

the 9th of October 2012. Each solid black point indicates that an individual was detected on a specific day more 

than twice. The Eroo River hydrograph (m3 s-1) is included for reference. The vertical dash lines indicate the 

change of adjusted seasons used for analysis. 

 

Figure 15. Median linear home range (km) detected for B. lenok per season in the Eroo River, Mongolia. 

The boxes represent the 10th and 90th percentile; the whiskers indicate 2 x percentile. The black dots are outliers. 

The total number of fish (n) detected per season and used in the analysis is shown at the top of the figure. No 

significant differences were detected between linear home ranges in each season (Kruskal-Wallis test, p > 0.05). 
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Table 4. Summary table of the tagged Brachymystax lenok including fish number (ID), total length (TL cm), 

total weight (Wt, g), fish tag and released date (TR), final detection date (FD), number of receivers visited (RV), 

total number of days detected (DD), residency index (IR), linear home range (LHR) in km, 50 % and 95 % kernel 

densities (KD) in km (only for lenok detected on more than 15 days), mean acceleration (± SD) in m s-1, and 

mean depth (± SD) in cm. 

Fish 
ID 

TL 
(cm) 

Wt. 
(g) 

TR FD DD IR RV LHR 
(km) 

50% 
KD 

(km) 

95% 
KD 

(km) 

Mean 
Acc. 

(±SD) 

Mean 
Dep. 

(±SD) 
41/42 42 733 04.07.11 14.09.11 63 0.89 6 9.4 9.3 10.6 0.60±0.40 21.2±17.1 
55/56 40.1 621 04.07.11 19.09.11 70 0.91 6 7.8 7.7 9 0.69±0.42 26.7±21.4 
57/58 38.9 496 04.07.11 26.09.11 11 0.13 8 9.4 - - 0.52±0.31 43.0±23.0 
59/60 41.2 719 04.07.11 17.09.11 75 1.0 8 9.4 9.3 10.6 0.56±0.37 32.4±29.0 
67/68 40.3 642 04.07.11 15.07.12 198 0.53 12 23.3 0.2 12.5 0.61±0.36 52.5±34.2 
69/70 39.9 546 04.07.11 19.06.12 121 0.34 15 43.6 9.4 15.9 0.63±0.44 44.5±35.8 
79/80 46.1 847 04.07.11 18.05.12 209 0.66 8 11.5 5.4 7.2 0.49±0.32 33.7±33.7 
61/62 33.4 378 05.07.11 20.05.12 194 0.61 10 11.5 6.5 9 0.40±0.34 76.9±29.1 
63/64 46.8 790 05.07.11 20.06.12 44 0.13 19 45.3 7.5 31.7 0.51±0.38 22.6±23.4 
65/66 35.1 400§ 06.07.11 19.06.12 133 0.38 13 27.3 2.9 6.7 0.47±0.35 34.1±22.7 
49/50 38.4 442 11.07.11 22.09.11 7 0.1 9 10.4 - - 0.58±0.21 24.7±14.3 
73/74† 33.5 340§ 11.07.11 31.07.11 1 - 1 - - - - - 
53/54 44.8 720 12.07.11 16.09.11 23 0.35 5 5.8 5.6 7 0.69±0.42 20.7±20.2 
43/44 47 670 16.07.11 18.06.12 43 0.13 18 33.2 10.7 20.2 0.57±0.34 42.6±30.0 
45/46‡ 45.3 750 16.07.11 30.08.11 19 0.42 2 0.5 0 1.3 - 30.3±16.5 
71/72 40.3 630 16.07.11 09.05.12 24 0.08 3 2.1 0.5 2.3 0.61±0.28 32.7±20.7 
37/38 39.5 550§ 17.07.11 24.07.12 62 0.17 18 38.8 8.2 22.3 0.70±0.40 45.9±34.3 
21/22 34 350§ 20.07.11 10.09.11 5 0.1 3 4.4 - - 0.27±0.23 24.8±12.6 
23/24 39.2 550§ 20.07.11 14.04.12 62 0.23 11 11.7 4.1 9.1 0.41±0.30 41.6±16.9 
31/32† 34.9 340 20.07.11 29.07.11 1 - 1 - - - - - 
85/86 43 900 23.05.12 13.06.12 4 0.19 12 15.3 - - 1.13±0.24 114.6±114 
95/96 49 1200 23.05.12 09.10.12 8 0.06 14 41.3 - - 0.91±0.42 226.5±34.9 
99/100 45 2000 23.05.12 10.06.12 7 0.39 16 39.5 - - 0.83±0.59 54.4±35.1 
Mean 41.4 711.1 - - 65.9 0.4 10.3 19.1 5.8 11.7 0.62 45.13 
±SD 4.3 355.0 - - 67.0 0.3 5.2 15.1 3.6 8.0 0.35 35.13 

†indicates fish was removed from analysis due to only being detected on one day and on one receiver. 
‡ died during the study and only the values are shown when the fish was detected moving.  
§ total body weights estimated from a length – weight relationship. 
 

There were two periods of increased lenok movement detected in the Eroo River. The first occurred at the end of 

summer and beginning of autumn, with the second, more pronounced, period occurring between the middle of 

spring and start of summer (Figure 16 & Figure 17). During the summer / autumn ‘cooling’ period 10 (59 %) of 

17 tagged lenok (4 missing individuals) moved in a downstream direction with falling water temperature (> 14 to 

5 ˚C) and river discharge (100 to 45 m3 s-1). For the remaining lenok, three fish first moved downstream before 

immediately returning back upstream, three fish didn’t move at all and one fish moved upstream > 10 km. All of 

those fish that moved downstream did so on or after the 10th of September 2011 and exited the core study area by 

mid October 2011. There was no mass coordinated movement, with no two lenok moving on the same day. Six 

individuals returned to the study area the following year. The lenok that remained in the study area (n = 5) did 

not record any substantial movements during this summer/autumn period, nor did they move more than 5 km 

while under the winter ice (n = 143 days).  
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Table 5. Summary table of the linear mixed effects modelling results used to describe the effects of season 

(represented by temperature and discharge), photoperiod and fish total length (TL) on mean total distance, 

acceleration and depth for B. lenok. Fish ID was included as a random effect in each model. AIC is the Akaike’s 

Information Criterion; ΔAIC is the difference between the AIC model values; and the P values indicate the level 

of significance between each model and the null model based on the maximum likelihood method. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The second period of increased lenok movements occurred in the ‘warming’ mid-spring / early-summer 

timeframe when individuals moved rapidly upstream as the water temperature was between 5 and 8 ˚C, and there 

was lower discharge between flood pulse events (discharge < 50 m3 s-1; Figure 4 and Figure 5). Nine lenok 

(including fish that had returned from overwintering downstream out of the core study area and three newly 

Model (response and fixed variables) AIC ΔAIC P values 
Distance 
Distance ~  Temperature + Discharge + Photoperiod 4161 0 <0.001 
Distance ~  Temperature + Discharge + Photoperiod + TL 4163 2 <0.001 
Distance ~  Temperature + Discharge 4163 2 <0.001 
Distance ~  Temperature + Photoperiod 4164 3 <0.001 
Distance ~  Temperature + Discharge + TL 4165 4 <0.001 
Distance ~  Temperature + Photoperiod + TL  4166 5 <0.001 
Distance ~  Temperature 4166 5 <0.001 
Distance ~  Temperature + TL  4168 7 <0.001 
Distance ~  Discharge + Photoperiod 4199 38 0,065 
Distance ~  Discharge 4200 39 0,117 
Distance ~  Photoperiod 4200 39 0,077 
Distance ~ 1 4201 40 null model 
Distance ~  Discharge + Photoperiod + TL 4201 40 0,139 
Distance ~  Discharge + TL 4202 41 0,279 
Distance ~  Photoperiod + TL 4202 41 0,207 
Distance ~ TL 4203 42 0,781 
Acceleration 
Mean Activity ~ Temperature + Discharge + Photoperiod -138055 0 <0.001 
Mean Activity ~ Temperature + Discharge + Photoperiod + TL  -138053 2 <0.001 
Mean Activity ~ Temperature + Photoperiod -136066 1989 <0.001 
Mean Activity ~ Temperature + Photoperiod + TL -136064 1991 <0.001 
Mean Activity ~ Discharge + Photoperiod -135534 2521 <0.001 
Mean Activity ~ Discharge + Photoperiod + TL -135532 2523 <0.001 
Mean Activity ~ Temperature + Discharge -134523 3532 <0.001 
Mean Activity ~ Temperature + Discharge + TL -134521 3534 <0.001 
Mean Activity ~ Photoperiod -132957 5098 <0.001 
Mean Activity ~ Photoperiod + TL -132956 5099 <0.001 
Mean Activity ~ Temperature -132687 5368 <0.001 
Mean Activity ~ Temperature + TL -132685 5370 <0.001 
Mean Activity ~ Discharge -130946 7109 <0.001 
Mean Activity ~ 1 -128432 9623 null model 
Mean Activity ~ TL -128431 9624 0,511 
Depth 
Mean Depth ~  Temperature + Discharge + Photoperiod + TL 45349 0 <0.001 
Mean Depth ~  Temperature + Discharge + Photoperiod 45350 1 <0.001 
Mean Depth ~  Temperature + Photoperiod + TL 45476 127 <0.001 
Mean Depth ~  Temperature + Photoperiod 45477 128 <0.001 
Mean Depth ~  Temperature + Discharge + TL 45897 548 <0.001 
Mean Depth ~  Temperature + Discharge 45898 549 <0.001 
Mean Depth ~  Temperature + TL 46043 694 <0.001 
Mean Depth ~  Temperature 46044 695 <0.001 
Mean Depth ~  Discharge + Photoperiod + TL 49620 4271 <0.001 
Mean Depth ~  Discharge + Photoperiod 49620 4271 <0.001 
Mean Depth ~  Photoperiod + TL 49622 4273 <0.001 
Mean Depth ~  Photoperiod 49622 4273 <0.001 
Mean Depth ~  Discharge + TL 49697 4348 0,009 
Mean Depth ~  Discharge 49697 4348 0,007 
Mean Depth ~ 1 49702 4353 null model 
Mean Depth ~ TL 49702 4353 0,14 
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tagged individuals) were detected entering the surrounding tributaries including the Sharlan (n = 5), Khongiyn 

(n = 3) and Yalbac (n = 1). These movements occurred between the 14th of April 2012 and the 26th of June 2012, 

with individuals remaining in the tributaries for between 5 and 37 days at a time.  

 
Lenok Acceleration and Depth 

Mean (± SD) acceleration for lenok (n = 20) was 0.62 ± 0.35 m s-1, with values ranging from 0.04 - 3.47 m s-1 or 

the entire sensory capacity of the transmitters. Individual mean acceleration (mean ± SD) ranged between 

0.27 ± 0.23 m s-1 and 1.12 ± 0.23 m s-1 (Table 4). Over half of all acceleration detections (55 %) were below 

0.5 m s-1, while over 90 % were under 1.0 m s-1. The diel variation in acceleration for lenok was characterised by 

a significant decrease at night compared to day and dusk (Kruskal-Wallis test, p <0.05; Figure 18a), with no 

other significant differences detected between diel periods (Kruskal-Wallis test, p > 0.05). Between seasons, 

lenok acceleration was significantly higher in summer compared to winter (p < 0.05), with no other differences 

found (p > 0.05). The highest mean acceleration for lenok was in summer at 15:00 (0.78 ± 0.5 m s-1), while the 

lowest mean acceleration was detected at 05:00 in winter (0.13 ± 0.1 m s-1). Linear mixed effects modelling 

results indicated there were interactions between all explanatory variables as temperature, discharge and 

photoperiod were each included in the first two models with considerably lower AIC values compared to the 

other models. All models, except the one with TL only, were significantly different from the null model 

(Kruskal-Wallis test, p < 0.001, Table 5).  

 

Mean (± SD) depth of lenok in the Eroo River was 45.13 ± 35.13 cm including a range from 0 cm to 350 cm 

(Table 4, Figure 18b). However, lenok were most frequently detected between 0 and 25 cm, with 92.5 % of all 

depth detections fewer than one meter. Mean (± SD) depth per individual ranged from 20.7 ± 20.2 cm to 

226.5 ± 34.9 cm (Table 4). Diel variation in depth differed significantly between dawn and dusk (p < 0.05) and 

between day and dusk (p < 0.05). Lenok summer depth was significantly shallower compared to all other 

seasons (p < 0.05). The lowest mean (± SD) lenok depth was detected at 12:00 in winter (97.41 ± 1.14 cm) and 

the shallowest mean depth detected at 22:00 in summer (36.5 ± 0.55 cm). The linear mixed effect models that 

included temperature as an explanatory variable returned the lowest AIC values, with each model significantly 

different to the null model (Kruskal-Wallis test, p < 0.05, Table 5). 
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Figure 16. Average B. lenok (n = 21) movements (± SD) and daily river discharge (m3 s-1), in the Eroo River, 

Mongolia, between the 4th of July 2011 and 9th of October 2012. The vertical dash lines indicate the change of 

adjusted season. 

 

Figure 17. Average B. lenok (n = 21) movements (± SD) and daily water temperature (˚C) in the Eroo River, 

Mongolia, between the 4th of July 2011 and 9th of October 2012. The vertical dash lines indicate the change of 

adjusted seasons. 
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Figure 18. a) Mean hourly acceleration (m s-1) and b) mean hourly depth (cm) for tagged B. lenok (n = 21) in the 

Eroo River, Mongolia, per season between the 4th of July 2011 and 9th of October 2012. 

6.5 Discussion 

This study was the first to describe and quantify the diel and seasonal longitudinal movements (home range), 

acceleration and depth of Brachymystax lenok in an unfragmented river system, while being one of the first 

projects to implant acoustic telemetry transmitters with acceleration and pressure sensors into riverine fish. 

Passive acoustic telemetry was chosen for the study as it had been previously used successfully to collect in situ 

fish movement data remotely and under extreme environmental conditions (Honda et al., 2014; Mathes et al., 

2010; Gilroy et al., 2010; Bass et al., 2014). We found that this threatened species maintained a considerably 

larger mean LHR in this unimpacted, free-flowing and highly connected river system than what has been 

previously reported for this genus in more fragmented habitats. Extensive individual movements were detected 

during the spawning period of upwards of 45 km. Clear diel and seasonal acceleration patterns and depth usage 

were also identified under natural river conditions. 

 

B. lenok Longitudinal Movements 

The mean home range (19.1 ± 15.1 km) for lenok in the Eroo River was close to ten times larger than what was 

previously described for B. tsinlingensis in a Korean River, where radio tagged individuals were found to have a 

mean home range of 2.14 ± 1.92 km, with maximum tracked movements of only 8.17 km (Yoon et al., 2015). 
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Although being considerably smaller than lenok home ranges in the Eroo River, the close proximity of the 

release locations to suitable spawning habitat, infrequent tracking intervals and upstream dam construction in the 

Korean study all likely impacted on the detected movements of the tagged fish (Yoon et al., 2015). Therefore, 

our study has shown that lenok movements in a natural system can be extensive, which is an important 

consideration for the design and implementation of potential spatial protected areas (i.e. Freshwater Protected 

Areas; Abell et al., 2007). It appears lenok is one of the more mobile, potadromous salmonid species as they 

have similar mean home ranges as reported for cutthroat trout (Oncorhynchus clarki lewisi) with 31 km (3 –

 72 km) (Schmetterling, 2001) and taimen (Hucho taimen) with 23 – 27.7 km (0.5 – 126.1 km; Gilroy et al., 

2010; Kaus et al., 2016). In addition, lenok home ranges are larger than other stream-dwelling trouts such as 

brown trout (Salmo trutta) and rainbow trout (Oncorhynchus mykiss), which have reported mean home ranges of 

2.1 and 11.9 km respectively (Ovidio, 1999; Clapp et al., 1990; Young et al., 1997). Although the longitudinal 

movements of tagged lenok in the upper Eroo River did not display a positive allometric relationship between 

home range size and body length, as has been described for many freshwater fish species (Minns, 1995), the  

restricted body length range of lenok included in the study was a likely explanation. No lenok larger than 50 cm 

TL was caught in the Eroo River during the study, which is likely an effect of the increased fishing pressure in 

the region that has reduced the abundance of larger size classes within the lenok population.  

 

Three different home range movement patterns were detected for tagged lenok with each reflecting patterns 

previously described for taimen by Gilroy et al., (2010). While most tagged lenok displayed a restricted core 

home range with separate seasonal departures, there were some individuals that exhibited a restricted core home 

range with no seasonal departures and a restricted home range with a separate seasonal range. The identification 

of a mean core home range of 5.8 ± 3.6 km (50 % KD) suggests that there is no strict, one pool only, site fidelity 

displayed by lenok, as such a range encompasses multiple pools and riffles within the study reach. This extended 

size of a core home range, with respect to body length, likely reflects the larger river distance that is required to 

search for sufficient resources. Although the limited time and detection area in the study minimized the 

possibility of identifying a home range shift behaviour, as has been reported in taimen (Gilroy et al., 2010), it 

was suspected that several individuals did display this behaviour as they left the array in autumn (2011) without 

returning to the detection area for the remaining 12 months of the study. However only a longer, inter annual 

approach would be able to confirm such behaviour in this species. In any case it was confirmed that no tagged 

lenok had exited the basin during the study, as there were no fish detections on the most downstream receiver 
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deployed at the Eroo - Orkhon confluence. It is recommended, however, that additional research such as a large 

scale genetics study be conducted in order to ascertain the level of inter basin connectivity that exists on both a 

spatial and temporal scale for Mongolian lenok populations.  

 

During the ‘cooling’ period (summer – autumn) over two thirds of tagged lenok undertook extended longitudinal 

movements in the Eroo River with most fish moving in a downstream direction. While taimen are also known to 

move extensively during this period (Matveyev et al., 1998; Gilroy et al., 2010), this is the first time 

concentrated lenok movements have been confirmed and described for this species at this time. As with other 

species in boreal rivers, these movements would be associated with fish transitioning from shallower summer 

feeding habitats to more suitable deeper overwintering pools where there is a lower water velocity (Fausch & 

Young, 1995). Although no single en masse migration was detected in the Eroo, the majority of individuals that 

moved did so in a short window of time, starting on the 10th of September. Although there was no obvious, 

single event that appeared to trigger these increased movements, the linear mixed effect modelling suggested that 

there was a combination of the steady decline in water temperature, river discharge and photoperiod that had 

reached some critical threshold for lenok that induces movements. It was not until days later, on the 15th of 

September 2011, that air temperatures first dropped below zero and frost blanketed the river valley, which saw a 

noticeable increase in aggression by resident taimen, but not by lenok (pers. obs. A. Kaus). It is expected that 

those fish that did not move (n = 5) at this time were already in habitats that provided adequate resources to 

survive the extreme winter conditions (Heggenes & Dokk, 2001).  

 

During the harsh Palearctic winter, riverine fishes not only need to endure prolonged low temperatures and 

reduced light intensities, but they also face extensive river ice coverage that can fundamentally alter river 

discharge, hydraulics, habitat availability and gaseous exchange throughout the water column (Prowse, 2001; 

Nykänen et al., 2004). As a result, fish have reduced swimming abilities, depleted energy reserves, as well as an 

overall lower metabolism and physical condition (Brown et al., 2011; Cunjak, 1996; Huusko et al., 2007). Thus 

unsurprisingly, all tagged lenok in the Eroo River displayed limited movement under the ice as they typically 

remained in one or two pools for the entire period in an effort to conserve energy (Cunjak and Power, 1987). The 

radio tagged B. tsinlingensis in Korea were also reported moving short distances in winter of < 4.13 km (Yoon et 

al., 2014), with comparable reduced movements in other stream dwelling salmonids such as cutthroat trout 

(Oncorhynchus clarki lewisi) and bull trout (Salvelinus confluentus) (Schmetterling, 2001, 2003; Jakober et al., 
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1998). Any movements that did occur in winter under the ice were attributed to the need to move due to the 

formation of subsurface frazil and anchor ice in refuge pools, or the requirement to forage further afield for 

increased food resources and predator avoidance. 

 

Spawning migrations in the Eroo River began in late spring and early summer when lenok left the main channel 

overwintering pools and moved upstream in to smaller tributaries in search of shallow, upwelling sites with 

coarse gravel, high dissolved oxygen and low water temperatures (Esteve & McLennan, 2008). Again, lenok 

were not detected moving in any single coordinated event, but instead entered and remained in the tributaries 

from the 27th of April until the 3rd of July 2012. This period falls within the recognised spawning time for lenok, 

which has been reported to be in May in the Eg - Uur River, Mongolia (Gilroy et al., 2010; Esteve & McLennan, 

2008), and between April and May in the Nakdong River, South Korea (Kim & Park, 2002). While more than 

half of the tagged lenok did not move into a tributary during the study period, over a quarter still made a 

substantial movement upstream at this time, suggesting that the main channel is also an important spawning 

location for this species (Esteve & McLennan, 2008). The length of time each lenok remained in a tributary was 

highly variable, with the shorter, faster trips of four and five days likely undertaken exclusively for spawning, 

while the longer visits of 37 and 78 days were related to additional summer feeding opportunities or 

thermal / hydrological refuge. Six lenok were not detected re-entering the Eroo River at all before early July 

when flood waters began to rise rapidly and ultimately limited the detection probability of the transmitters. In 

addition, in the following weeks most lenok transmitters expired, thus it is unknown exactly how long some of 

these individuals remained in the tributaries over the summer period. In Korean rivers, B. tsinlingensis stayed at 

the spawning grounds for 14 to 21 days before returning downstream (Yoon et al., 2015). While not all lenok 

were detected moving extended distances, the sedentary individuals may have been in a resting reproductive 

state or an alternate year spawners such as been observed in both taimen and bull trout previously (Gilroy et al., 

2010; Paragamian & Walters, 2011). 

 

B. lenok Behaviour and Habitat Use 

The extensive data set gathered on the behaviour of lenok revealed clear circadian patterns of activity and rest 

combined with rhythmical changes in depth occupancy. The mean hourly activity was observed increasing in the 

hours before dawn and remaining elevated during the day, before decreasing again at dusk, while the mean 

hourly depth occupancy decreased rapidly at sunrise and gradually got shallower in the afternoon and evening. 



 
75 

 

These elevated daily acceleration levels are typical of diurnal species that rely on sight to capture prey such as 

lenok, and thus is contrasted with lower activity or resting periods during the night. The daily variation in 

photoperiod and its influence on fish depth has been widely documented for fish inhabiting deeper environments 

such as marine and lake ecosystems (Mehner, 2012), but has not been extensively quantified in lotic species. 

These diel vertical migrations exhibited by lenok is more likely to be diel bank migrations, a benthic form of diel 

vertical migration, where depth is transitioned in close association with the river substrate, rather than through 

the water column (Cott et al., 2015). This movement has been observed previously in lake resident salmonids 

(Gorman et al., 2012) and burbot (Cott et al., 2015). Although in the Eroo River, the mean hourly depth change 

between night and day was determined to be in the range of only 10 to 50 cm depending on the season, even 

these small vertical movements are likely to provide certain benefits including minimising energy expenditure by 

resting at night in shallower, more sheltered river margins away from the main river currents. These areas may 

also be more optimal with regards to warmer water temperatures at low river discharge levels, which can aid 

metabolism and digestion (Mehner, 2012). Although the exact spatial location of fish at night could not be 

explicitly determined from acoustic telemetry data, previous fisheries research in the river indicated that there is 

increased lenok capture when electrofishing on the Eroo River margins at night compared to electrofishing the 

same areas during the day (pers. comm. M. Schäffer). The observed systematic pre - dawn movements back into 

deeper habitat in the main river channel is likely driven by improved feeding opportunities as well as enhanced 

predator avoidance from both above and below the river surface. Although lenok are morphologically adapted to 

feeding on the substrate e.g. stomach content analysis has identified benthic macroinvertebrates as a major food 

source (Chanda et al., 2005; Olson et al., 2016), during the late afternoon in summer, lenok appeared to take 

advantage of the hatching aquatic invertebrates drifting on the water surface as is indicated by their shallowest 

mean depth at this time.  

 

Seasonal differences in the mean acceleration and depth of lenok at night, is also attributed to fluctuating river 

discharge and water temperature. Higher flow in summer and spring demand increased locomotory movements 

in order to maintain the same position in the water column, including on the margins. As a result summer mean 

hourly acceleration was generally elevated above all other seasonal means. An unexpected observation regarding 

lenok in winter was the highly elevated mean hourly diurnal acceleration compared to night. This heightened 

activity may indicate the increased effort required to forage adequate food on the substrate during the full river 

ice coverage, a change in diet from macroinvertebrates to fish (e.g. Phoxinus phoxinus) and / or the need to avoid 
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increased predation in the somewhat segregated overwintering pools. In addition, the short sampling period of 

the V9AP transmitters meant that the full range of behaviours, particularly rapid ambush movements has likely 

not been detected at the frequency that would have been determined if longer sampling times were possible 

(O’Toole et al., 2010). Thus the current data likely underestimates the occurrences of these short-term bursting 

movements that have only been captured at a low frequency. The rapid movements that were detected also 

attained the maximum acceleration capacity of the transmitter’s sensor i.e. 3.43 m s-1, thus demonstrating that 

lenok is capable of accelerations greater than the sensor limits. This issue has also been identified with tagged 

barracuda acceleration in the Bahamas (O’Toole et al., 2010). 

 

In regards to the use of passive acoustic telemetry to monitor fish movements in a dynamic lotic system in the 

Palearctic, this method allowed a high number of fish to be monitored in a remote location and across most 

seasonal conditions including when the river reach was not readily accessible such as during the prolonged 

winter period. As long as adequate precautionary measures are taken, such as deploying receivers in deep, 

upright positions on heavy cement blocks and in consecutive pools, then loss of equipment and detections can be 

minimised. While we gained a high number of detections for several tagged fish under a lower river discharge, 

higher discharges remain a challenge. Thus future research will need to carefully consider the trade-offs between 

transmitter sampling period, transmitter power, battery life and size depending on the species studied and the 

objectives of the research. In any case, it is recommended that more comprehensive range detection tests be 

undertaken in such a dynamic riverine environment, along with the deployment of multiply sentinel tags within 

the study reach to more accurately quantify the changing detection range of receivers throughout the entire study 

period particularly during flood events and under winter ice (Payne et al., 2010).  

Conclusions 

This new information detailing the movements and behaviour of Brachymystax lenok can help guide the design 

and development of improved conservation and management regulations for this threatened species throughout 

its distribution. Spatial protection measures, such as the implementation of FPAs, must consider the extensive 

mean home range sizes including upstream movements of > 45 km that have been undertaken by mature lenok 

during the spawning season. Like taimen, these distances are large enough to encompass more than one local 

administrative zone in Mongolia and thus specific coordination and cooperation between authorities will be 

necessary in order to implement adequate protection for river basin populations across several regions. In 

contrast, the mean core home range of less than six km is small enough for lenok populations to benefit from a 
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series of smaller FPAs, which could focus separately on protecting downstream overwintering pool habitats and 

upstream critical spawning tributaries, with carefully enforced fishing zone inbetween. In addition, current 

temporal management measures including national fishing closures from the 1st of April until the 15th of June 

likely needs to be revised and extended as the current results indicate the peak spawning period for the Eroo 

River lenok population occurs after the fish spawning closed season. This means that the influx of local anglers 

that flock to the Eroo and other Mongolian rivers for the opening of the fishing season on the 16 th of June 

represent a significant threat to the long-term sustainability of this threatened species, as a high number of pre-

spawned, ripe individuals are likely caught and removed from the system before they can reproduce each year. 

Although, these results so far only relate to one population and in one season, further reproductive ecological 

research is recommended on lenok populations in other river basins so authorities can be appropriately advised, 

and if need be, can extend the opening date of the close fishing season or consider a ‘floating’ date that would 

depend on the annual seasonal conditions including water temperature and river discharge of specific regions 

across Mongolia. This data can also provide a baseline for future work regarding river restoration design, which 

is urgently needed in certain areas due to the damage from past large scale, alluvial gold mining operations, as 

well as the development of environmental flow regimes, which will be needed if the proposed hydroelectric dam 

projects on several of Mongolia’s largest rivers are approved in the near future.   
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7 Seasonal home range shifts of the Siberian taimen 

(Hucho taimen; Pallas, 1773): Evidence from 

passive acoustic telemetry in the Onon River and 

Balj tributary (Amur River basin, Mongolia) 
 

Kaus, A., Büttner, O., Schäffer, M., Balbar, G., Surenkhorloo, P., Borchardt, D. (2016). International 
Review of Hydrobiology, 101, 1-13. doi: 10.1002/iroh.201601852 

 

7.1 Abstract 

Hucho taimen, the world’s largest salmonid, is a potadromous species that is listed as endangered in Mongolia. 

While mature individuals are known to have extended longitudinal movements of over 90 km along main river 

channels, details of the seasonal movements and residency of individuals within and between tributary habitats 

have been largely undocumented. The current research aimed to detect and quantify the seasonal distances 

moved by adult taimen (65 – 96 cm; n = 10) within and between the Onon River (Amur River basin) and a major 

tributary (Balj) over 12 months using passive acoustic telemetry. The median distance moved by taimen in 

spring was 17.4 km (n = 6), in summer 9.1 km (n = 4), autumn 4.7 km (n = 9) and winter 0.4 km (n = 8). 

However, there were no statically significant differences amongst these median seasonal home range sizes. Two 

taimen traversed between the Onon River and the Balj tributary during the study period, recording overall home 

ranges of 44.5 km and 126.1 km. One of these individuals moved twice, exiting the tributary in autumn and 

returning again in spring where it remained for 36 days, while the second taimen moved only once into the 

tributary in spring and re-entered the main channel in late summer after 85 days. Another two taimen entered 

surrounding smaller tributaries and recorded home ranges of 26.1 km and 29.2 km, while all remaining 

individuals were detected moving only within the waterway where they were originally captured and released 

(0.8 – 20.1 km). Taimen movements within tributaries such as the Balj can be extensive (< 60 km), as they 

provide access to important spawning, feeding and overwintering habitats as well as refuge from adverse thermal 

and hydrological conditions. Thus to enhance population recovery, it is essential that current and future 

management and conservation efforts include preserving or restoring the ecological integrity and hydrological 

connectivity of these critical tributaries and the main river channel throughout the Onon and Amur River basins 

and across the remaining distribution of this endangered species. 
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7.2 Introduction 

The unique aquatic fauna of Mongolia’s vast lake and river networks has faced increasing pressure recently from 

multiple anthropogenic threats. Along with habitat loss (Hartwig & Borchardt, 2014; Hartwig et al., 2016), water 

pollution (Stubblefield et al., 2005; Hofmann et al., 2010, 2011; Thorslund et al., 2012; Pfeiffer et al., 2014; 

Nadmitov et al., 2015; Kaus et al., 2016), water abstraction (Karthe et al., 2015a) and climate change (Menzel et 

al., 2011; Karthe et al., 2013; Malsy et al., 2016), the primary threat facing many resident fish populations is 

their intentional mortality resulting from rapidly growing recreational fishing activities by both local and foreign 

fishers (Chandra et al., 2005; Ocock et al., 2006; Vander Zanden et al., 2007). While these anglers target several 

native species, none are pursued more intensely than the Siberian taimen (Hucho taimen; Pallas, 1773), an 

aggressive fighting salmonid, which in Mongolia has experienced a substantial population decrease of 50 % and 

a range reduction of 60 % since 1985 (Ocock et al., 2006). Due to these declines, taimen have been listed as 

endangered on the Mongolian Red List of Fishes (2006) and as there is an estimated 37 % species wide reduction 

over the past three generations, taimen are now also included as vulnerable on the IUCN Red List of Threatened 

Species (Hogan & Jensen, 2013). Although since 2012 legislation in Mongolia has prohibited the killing of this 

species, widespread illegal poaching continues due to the lack of compliance of these laws (Ocock et al., 2006; 

Bailey, 2012; Free et al., 2016), including an uncertain amount of illicit trade to China (Hogan & Jensen, 2013). 

Any potential poaching is significant as even with a low level catch and kill harvest, computer modelling has 

indicated that there is an elevated probability that a resident taimen population could go locally extinct (Jensen et 

al., 2009). Therefore, the need to continue to improve our autecological understanding of this species is essential 

in order to develop and adapt new and existing conservation and management policies to provide better 

protection and enhance the recovery of this threatened freshwater fish throughout its declining geographic range.  

 

The Siberian taimen is one of four Hucho species and the largest salmonid in the world capable of reaching a 

length of 2 m and weight of 105 kg (Holćík et al., 1988). Taimen are long lived (up to 60 years old), 

potamodromous fish that historically inhabit rivers and streams at low population densities across Russia and 

several northern river basins of Kazakhstan, China and Mongolia (Dulmaa, 1999; Vander Zanden et al., 2007; 

Hogan & Jensen, 2013). Taimen are iteroparous salmonids and so mature individuals can spawn repeatedly over 

the course of their lives, with fish in spawning condition migrating each spring following the winter ice break up 

as water temperatures rise (6 – 10 °C) and river discharge increases (Holćík et al., 1988; Matveyev et al., 1998; 

Dulmaa, 1999; Vander Zanden et al., 2007; Gilroy et al., 2010). To spawn, individuals move into shallow 
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tributaries with clean gravel substrate, fast current or areas with ground water upwellings, where females prepare 

elliptical redds and deposit eggs for a previously paired up male to fertilize (Esteve et al., 2009). Then in late 

spring and summer, depending on water temperatures and river discharge, taimen are either forced back 

downstream due to declining water levels or move further upstream to avoid warming waters (> 14 – 15 °C) 

(Matveyev et al., 1998). A second period of increased taimen movement has been described in autumn when 

individuals in Lake Baikal again ascend rivers to feed on spawning omul (Coregonus autumnalis migratorius) 

(Matveyev et al., 1998), or, in Mongolian rivers, taimen retreat downstream into deeper pools to overwinter and 

escape the freezing upper tributaries (Dulmaa, 1999; Gilroy et al., 2010). 

 

The extent taimen move each season is expected to vary amongst rivers (Matveyev et al., 1998); however, to 

date only one study conducted by Gilroy et al. (2010) has quantitatively measured these movements by tracking 

individuals using modern biotelemetry methods. In that project, the authors successfully documented the broad– 

scale distances travelled and behavioural patterns of adult taimen over an extended period in the Eg - Uur River, 

Selenge basin, Mongolia. Their results indicated that individual taimen can move as much as 93.2 km, although a 

much smaller median home range size of 13.8 km (mean of 23 km) was reported (Gilroy et al., 2010). While an 

expansive study, taimen movements within and between critical tributary habitats and the main river channel 

were not documented. This information gap is significant as tributaries are known to provide important 

spawning, feeding and refuge locations (hydrological and thermal) for resident taimen populations (Holćík et al., 

1988; Matveyev et al., 1998; Dulmaa, 1999) and thus should be considered in such research. Moreover, a 

detailed knowledge of the distances taimen move each season and the inter population and catchment variability 

with regards to these seasonal movements and behaviours is absent from the literature.  

 

This is the first biotelemetry study of an Amur River basin taimen population, a genetically discrete phylogroup 

compared to the Yenisei (Selenge), Volga and Ob river basin taimen (Froufe et al., 2005; Maric et al., 2014). 

This project was conducted within the region of the Onon-Balj National Park in north - eastern Mongolia where 

taimen have been explicitly identified as the focus aquatic species for conservation. The aim of this research was 

to gather information regarding taimen seasonal home range sizes, movements and residency within and between 

the Onon River and a major tributary, the Balj, over a 12 - month period. Knowledge of the distances taimen 

move each season can provide authorities with the capacity to assess the current fishing management approaches 
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in the Onon River region and adapt or customise them with regards to the size and location of protected areas 

and timing of current closed fishing seasons. 

7.3 Materials and Methods 

Study Site 

The Onon River flows from the Khan Khentii Mountain ranges in north central Mongolia eastwards over 800 km 

before converging with the Ingoda River to form the Shilka River, which enters the Amur-Heilong River on the 

Russian – Chinese border. The Amur-Heilong River basin drains into the Pacific Ocean and is the largest river 

system in northeast Asia and the ninth longest river in the world (Bogutskaya et al., 2008). Along the 298 km the 

Onon River is in Mongolian territory, several major tributaries enter from the north including the Balj. In the 

region where the Balj meets the Onon, a 3973 km2 National Park was established in the year 2000, consisting of 

two separate protected zones (A and B) that cover large stretches of both waterways (Figure 19). The climate of 

this region is harsh, with air temperatures ranging from – 40 °C to + 40 °С and low annual precipitation of 350 –

 450 mm (Dorjgotov & Tseveenmyadag, 2006). Complete river ice coverage lasts from November to April each 

year, which is followed by increased river discharge and periodic flooding events in the spring and summer 

months and declining water temperatures and levels in autumn. As well as taimen, the Onon River is home to 

approximately 47 fish species including the Amur grayling (Thymallus grubii), both the sharp and blunt-snout 

lenok (Brachymystax lenok, Brachymystax sp.) and the Amur pike (Esox reichertii) (Shed’ko et al., 1996; 

Kottelat, 2006; Balakirev et al., 2014). 

 

Transmitter Implantation and Receiver Deployment 

A total of 10 taimen ranging in length from 65 to 96 cm (median = 69 cm) were tagged, released and monitored 

between the 10th of September 2013 and the 18th of September 2014, with five individuals tagged in the Onon 

River and five individuals tagged in the Balj tributary. The project’s original intentions were to implant and 

monitor the movements of 15 taimen but due to programming errors, five transmitters could not be utilised. 

Upon capture, individuals were anaesthetise (AQUI-S, New Zealand), measured and weighed before a V13-1L 

acoustic transmitter (Vemco, Canada) was surgically implanted into the fish’s peritoneal cavity. The transmitters 

had a random delay of 30 – 60 s and a battery life of 486 days. Clean river water was continually poured over the 

gills of the fish for the duration of the surgery (3 – 5 min) to maintain health and aid in recovery. The incision 

was closed with three to five interrupted, absorbable sutures before the individual was returned immediately to a 

slow flowing section of the river and supported until full orientation and swimming ability returned. During the 
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same period 25 acoustic receivers (VR2W) were deployed into the Onon (16) and Balj (9) (Figure 19) in deep 

(1.5 – 2.5 m), slow flowing pool reaches to minimise interfering noise associated with turbulent river sections 

and reduce the possibility of damage from river ice formation and break up. Unfortunately, one receiver in the 

Onon River was still lost during the study. The mean distance between acoustic receivers in the Onon River was 

4.8 ± 2.7 km (± SD; 2.2 ≤ x ≤ 12.4 km) and in the Balj tributary it was 5.4 ± 5.1 km (± SD; 0.8 ≤ x ± 15.6 km). A 

total of more than 130 river kilometres made up the complete study range across both rivers. In situ range testing 

of a V13-1L transmitter indicated a detection distance of ≤ 100m during regular flows or more than adequate to 

cover the width of both the Onon and Balj channels (15 – 80 m). In addition, a TidbiT data logger (Onset, USA) 

was also installed in each river to record water temperature at regular intervals throughout the study. 

 

 

Figure 19. Map of the study region where the Onon River and Balj tributary converge in north-eastern 

Mongolia. The position of the deployed acoustic receivers (two with temperature loggers) and taimen tagging 

locations are shown, as is the Onon- Balj National Park Zones A and B boundaries. 

 

Data Analysis 

Seasonal dates used for analysis were adjusted periods that related to specific climatic changes observed in the 

river basin and the Mongolian fishery management regulations. The adjusted seasonal period for autumn was 
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from the first frost on the 10th of September 2013 until complete river ice coverage on the 20th of November 

2013; winter dates related to the complete river ice coverage period from the 21st of November 2013 until the 

31st of March 2014; adjusted spring dates were matched to the closed fishing season in Mongolia and were from 

the 1st of April 2014 until the 15th of June 2014; while the adjusted summer dates in the study lasted from the 

16th of June 2014 until the 9th of September 2014. Water temperature data were converted into mean (± SD) 

seasonal values and reported in Table 6, but displayed as mean daily values in the individual fish timeline plots 

(Figure 22). However, due to the Onon River temperature logger freezing for an 88 day period in winter, false 

water temperatures were recorded and so these values were not included in the analysis. The Mann-Whitney U 

Test was used to determine differences between the daily water temperatures per season in the Onon River and 

Balj tributary.  

 

As most receivers were deployed several days following taimen capture and transmitter implantation, no 

detections were removed from the data set as complete recovery and normal behaviour of tagged taimen was 

expected to have returned by this time. The distance from the most upstream to the most downstream detection 

point over the complete study period as well as for each season, including the distance moved in the Balj 

tributary, was used as an estimation of an individual’s annual and seasonal home range size (Minns, 1995). The 

IR was calculated as per O’Toole et al. (2011), where the total number of days detected for a fish was divided by 

the total number of days in the array (i.e. number of days between the date of release and the last date of 

detection). Due to data non-normality, the Mann-Whitney U Test was also used to assess the differences in home 

range size between the Eg - Urr taimen population as reported in Gilroy et al. (2010) and Onon-Balj taimen from 

the current study. A repeated measures one-way analysis of variance (rm ANOVA) was used to test the 

statistical differences between seasonal home range sizes (km) of Onon-Balj taimen detected in the study reach 

during all seasonal periods. The seasonal home ranges were log2 (x + 1) transformed to adhere to the normality 

assumption for the rm ANOVA. A Spearman’s Rank correlation was used to identify the relationship between 

fish length (cm) and home range size (km), fish length (cm) and the number of days in the array and fish length 

(cm) and the number of days detected. Data analysis and figures were completed in MATLAB (Statistics 

Toolbox Release 2012b, The Math Works Inc., US), R (R Development Core Team, 2010, Version 3.1.3) and 

SPSS (IBM Corp. Released 2013. IBM SPSS Statistics for Windows, Version 22.0. Armonk, NY: IBM Corp.). 
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7.4 Results  

River Conditions 

The daily water temperatures in the Onon River and the Balj tributary were significantly different (p < 0.05) 

between all seasons according to the Mann-Whitney U Test results. Maximum water temperatures in the Onon 

River were detected in summer (21.29 °C), while in the Balj tributary they were detected in spring (17.32 °C). 

Both rivers recorded minimum water temperatures in winter of 0.08 and 0.01 °C, respectively (Table 5).  

 

Taimen Detections and Site Residency  

The median number of days between the tagging date and the date of last detection for taimen was 295 (22 – 367 

days) with the median number of days an individual was detected being 18 (5–98 days; Table 6). The median IR 

for taimen was 0.10 (0.02 ≤ x ≤ 0.73). Tagged taimen visited between one and 18 receivers in the two rivers over 

the study period (median = 4 receivers). In autumn, nine taimen were detected on 12 different receivers over 100 

separate days, although 79 days were recorded on only three receivers (two in the Balj and one in the Onon; 

Figure 20). Out of the 74 days taimen were detected in winter, six of the seven individuals were recorded on 

Onon receivers (two receivers detecting taimen on 44 days) and only one taimen was detected for 13 days in the 

Balj tributary. In spring, taimen were recorded on 20 receivers, with seven days being the maximum a receiver 

recorded tagged fish. Spring was also the only season when the most upstream Balj tributary receiver detected 

taimen. Eleven receivers recorded four fish on 53 separate days in summer. Only one receiver in the Onon and 

one receiver in the Balj detected taimen on more than 10 days during this period. More Balj receivers (n = 7) 

detected taimen than Onon receivers (n = 4) in summer. Four individuals went missing from the middle of the 

detectable area by the 1st of January 2014 and were not recorded again in the study. 

 

Taimen Home Ranges and Seasonal Movements 

The median overall home range of tagged Onon-Balj taimen was 18.2 km (0 – 126.1 km, n = 10) although for 

those individuals detected for more than two-thirds of the study (> 8 months, n = 6) the median home range was 

27.7 km (0.8 – 126.1 km). Spearman’s rank correlation indicated there was no significant relationship between 

fish length and home range size (rS = 0.58, n = 6, p > 0.05), fish length and the number of days in the array 

(rS = 0.29, n = 6, p > 0.05) and fish length and the number of days detected (rS = 0.58, n = 6, p > 0.05). For 

taimen detected in the study reach during each season, the median home range size was 17.4 km 

(0.8 ≤ x ≤ 98.8 km; n = 6) in spring; 9.1 km (0 ≤ x ≤ 45.3 km; n = 4) in summer; 4.7 km (0 ≤ x ≤ 43.6 km; n = 8) 
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in autumn and 0.4 km (0 ≤ x ≤ 19 km; n = 7) in winter (Figure 21). The greatest variance in home range size was 

detected in spring, followed by summer and autumn with the smallest variance detected during winter. 

According to the rm ANOVA, there was an overall significant effect of season on taimen home range size 

(F(1, 2) = 136.28, p = 0.007), but no significant difference (p > 0.05; n = 3) identified by the pairwise comparisons 

for home range size among seasons. Two taimen were detected moving between the Onon River and Balj 

tributary during the study period (Figure 22, a and b). One individual moved from the Balj to the Onon in 

autumn and returned again from the Onon to the Balj and back in spring staying 36 days (Figure 22a), while the 

second individual entered the Balj in spring and remained there for 85 days until returning back to the Onon 

River in summer (Figure 22b). The remaining taimen that were detected for eight months or longer moved only 

within the rivers in which they were originally captured, tagged and released (Figure 22, c – f), although on their 

last detection, one individual moved into the Bokhkhon tributary in the upper Balj (Figure 22e), and another 

individual entered the Agats tributary in the lower Onon (Figure 22c). 

 

Taimen Behavioural Patterns 

For those individuals with sufficient detections (n = 5), one taimen was observed having a restricted home range 

with no seasonal movements (Figure 22f), one taimen had a home range with a separate seasonal range (Figure 

22e), and two taimen displayed a home range with seasonal departures (Figure 22b and 22d) and one taimen 

showed a possible shift in its home range. While this individual overwintered downstream in the Onon, it did not 

display any fidelity to this location, as after embarking on likely spring spawning movements into the Balj and 

re-entering the Onon, this fish instead moved upstream and left the study region without returning to its previous 

overwintering location downstream in the final four months of the project (Figure 22a). 

 



 
 

Table 6. Mean (± SD), median, range (minimum - maximum) and number of days of recorded water temperatures (°C) in the Onon River and Balj tributary (Mongolia) per 

seasonal period during the study from September 2013 until September 2014. 

 Onon River  Balj River 
River Water  Autumn Winter Spring Summer Autumn Winter Spring Summer 
Temp. (°C) 10th Sep- 

20th Nov 
21st Nov-
31st Mar 

1st Apr- 
15th Jun 

16th Jun- 
09th Sep 

10th Sep-
20th Nov 

21st Nov-
31st Mar 

1st Apr- 
15th Jun 

16th Jun- 
09th Sep 

Mean (±SD)  1.0±1.3 0.1±0.0 10.4±5.5 17.6±1.8 1.5±1.4 0.2±0.1 8.3±5.3 13.8±1.3 

Median 0.4 0.1 10.0 17.7 1.1 0.14 8.3 13.7 
Range  0.1-5.4 0.1-0.2 0.1-20.5 13.0-21.3 0.1-5.2 0.1-0.4 0.1-17.3 11.5-16.8 
n (days) 41 43 75 87 41 43 75 87 

 

 

Table 7. Summary table of the tagged taimen in the Onon River and Balj tributary (Mongolia) including Fish ID and the river captured, total fish length, date of capture and 

last detection, number of detections and receivers visited, number of days between capture and last detection, number of days detected in the array, residency index (IR), 

overall home range (km) and seasonal home range (km) during the study from September 2013 until September 2014. 

Fish 
ID 

River 
Captured 

Total  
Lt.(cm) 

Capture 
Date 

Last 
Detection 
Date 

No. of 
Detections 

No. of 
Receivers 
Visited 

No. of 
Days in 
Array 

No. of 
Days 
Detected 

IR Home 
Range 
(km) 

Seasonal Home Range (km) 
Autum
n 

Winter Spring Summer 

152 Balj 85 10.09.2013 15.05.2014 666 18 248 20 0.08 126.1 43.6 16.1 98.8 - 
153 Balj 67 28.09.2013 17.11.2013 11,420 4 51 11 0.22 5.1 5.1 - - - 
154 Balj 65 29.09.2013 15.09.2014 32,596 8 352 33 0.09 26.1 23.1 0.8 18.4 6.4 
157 Balj 66 04.10.2013 25.10.2013 22,651 4 22 16 0.73 5.1 4.2 0 - - 
171 Balj 68 11.10.2013 17.09.2014 2,955 2 342 27 0.08 0.8 0 - 0.8 0 
158 Onon 67 30.09.2013 13.09.2014 2,698 6 349 34 0.10 16.3 0 2.4 16.4 11.8 
159 Onon 96 02.10.2013 06.12.2013 1,917 1 66 5 0.08 4 4 0 - - 
160 Onon 85 03.10.2013 04.10.2014 1,773 4 367 7 0.02 29.2 - 19.1 10.1 - 
162 Onon 71 05.10.2013 01.01.2014 4,611 4 89 13 0.15 20.1 20.2 0 - - 
166 Onon 70 07.10.2013 18.09.2014 27,498 7 347 98 0.28 44.5 0 0 24.6 45.3 
‘-‘ Indicates a taimen was not detected during that season, ‘0’ represents the individual was detected but no movement was recorded



 
 

  

 

Figure 20. Taimen detection frequencies within the acoustic receiver array deployed in the Onon River 

and Balj tributary in autumn (n=9), winter (n=7), spring (n=6) and summer (n=4) between September 

2013 and September 2014. The black circles represent the location of a receiver, while the size indicates the 

total number of days that tagged taimen were detected there in each season (small circles: ≤ 5 detected days; 

medium circle: >5 to ≤10 detected days; and large circle: >10 detected days). 
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Figure 21 Boxplot of the median home range size (km) detected for taimen present in the study reach (n) during 

each seasonal period, in the Onon River and Balj tributary between September 2013 and September 2014. Boxes 

indicate the median and 25th / 75th percentile, whiskers display the minimum and maximum values and an outlier 

is shown as a circle. 

 

7.5 Discussion 

Documenting the distance, timing and conditions when taimen utilise different main channel and tributary 

reaches within their home range is valuable for authorities to help evaluate both spatial and temporal 

management strategies. This is particularly so as river networks in north and central Asia are becoming 

progressively polluted and fragmented, and the impacts of climate change on continental river systems (e.g. 

elevated temperatures and flooding events) are expected to increase further in the future (Cai et al., 2013; 

Hofmann et al., 2015; Hülsmann et al., 2015; Karthe et al., 2015a; Malsy et al., 2015). In this taimen 

biotelemetry study, the first to be conducted on an Amur River basin population, a substantial data set was 

obtained. Seasonal home range sizes and individual behaviour patterns within and between the Onon River and a 

major tributary were identified. This helped to fill an important knowledge gap for regional conservation of this 

endangered species and river basin management in data-scarce Mongolia (Karthe et al., 2015b). The median 

home range estimate across all seasons for Onon-Balj taimen was 18.2 km (n = 10), while for those individuals 

that were detected for eight months or more, the median home range was 27.7 km (n = 6). This larger home 

range distance is a more realistic estimate as it includes all of the detected spring spawning movements. Even 

though the median home range size for Onon-Balj  
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Figure 22. Timeline plots displaying the distance and location of taimen movements detected in the study 

for individuals present for eight months or more. Fish ID 152 (a) and 166 (b) moved between both the Onon 

River and Balj tributary; Fish ID 160 (c) and 158 (d) moved within the Onon River only; and Fish ID 154 (e) and 

171 (f) moved within the Balj tributary only. A grey triangle specifies when the fish was tagged and released. 

The black circles (Onon River receivers) and white squares (Balj tributary receivers) indicate that the individual 

was detected on a given acoustic receiver on a specific day. A dotted line represents a known period when an 

individual left the detectable study area. Water temperature data from the Onon (grey line) and Balj (dashed line) 

during the study period are also displayed.  
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River taimen was more than double that of the median home range size reported for the Eg-Urr River taimen 

population (13.8 km) by Gilroy et al. (2010), there was no statistical difference identified between these river 

basin populations (Wilcox sign rank test p > 0.05). This result suggests that there is potentially home range size 

homogeneity for mature taimen across geographically separate river catchments over short-term (1 – 4 year) time 

frames. Although it is difficult to directly compare projects with largely different tracking methods in separate 

river basins and dissimilar numbers of taimen, one similarity that was identified, was the detection of highly 

transient taimen that moved substantial distances compared to the median home ranges in both studies. In the 

Onon-Balj River, an 85 cm taimen recorded a home range of 126.1 km, while in the Eg - Uur River a 92 cm 

taimen recorded a home range of 93.2 km (Gilroy et al., 2010). This distance of 126.1 km is the largest 

quantified home range recorded for an individual of this species to date and further confirms the ability of 

individual taimen to traverse extensive geographic scales, crossing both local (i.e. National Park) and 

international borders. Although these large scale movements were the exception in both studies, they likely 

provide an important link between separated populations by maintaining gene flow, and helping to increase the 

resistance to local population declines via immigration. A basin wide investigation to identify the existence of 

genetically discrete clusters or stocks of taimen across the upper Amur basin, would be a suitable next step to 

determine the scale of this potential widespread connectivity between geographically separate populations. In 

any case, there must be an emphasis on the need to apply management and conservation efforts on the same 

extensive scale, which is especially difficult for such transboundary rivers as the Onon and Amur. It is essential 

to increase coordination and cooperation between Mongolian, Russian and Chinese authorities, to adequately 

protect the threatened Amur-Heilong River basin taimen, especially as downstream populations are facing even 

greater declines (Zolotukhin, 2013). 

 

Autumn movements are typically associated with individuals repositioning themselves into deeper, low velocity 

overwintering pools, which are more optimal habitats to conserve energy and better survive the pending winter 

conditions (Fausch & Young, 1995). Taimen have been reported to generally move downstream from upper 

tributaries to lowland river courses or return to the littoral zones of lakes at this time (Matveyev et al., 1998; 

Dulmaa, 1999; Gilroy et al., 2010). However, in the Onon-Balj River, most tagged taimen (66 %) did not move 

large distances, with four individuals remaining in the upper tributary being detected on only five receivers 

during this cooling period. This is the first record of taimen remaining in upper tributaries in the autumn period 

and thus demonstrating that mature individuals do not always move downstream into larger river channels before 
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winter. However, two individuals from the Balj River still undertook an extended downstream movement of 

23.1 km and 43.6 km, with one of these individuals entering the Onon River before the complete ice coverage. 

Taimen movement was also limited in the Onon at this time, with only five receivers out of 15 recording fish, 

when river discharge was declining and thus the detection range of the receivers was optimal. Autumn is a period 

of intense taimen feeding and aggression (pers. obs.), a trait that considerably increases the possibility of being 

captured and thus exploited by poachers. Therefore, from mid-September to mid-November, increased patrolling 

of both main channel and tributary reaches by National Park Rangers is needed in order to detect illegal fishing 

parties that pose an even greater risk due to the increased susceptibility of taimen at this time. 

 

During the long, harsh winter months, resident salmonids in boreal rivers typically display restricted movements 

under the river ice where the near freezing water temperatures, the minimal river discharge and the potential 

formation of ice barriers in the water column all impact on an individual’s movements, activity, aggression and 

feeding (Linnansaari et al., 2005; Huusko et al., 2007). Although the median home range in winter for Onon -

Balj taimen was only 0.4 km, three individuals recorded substantial movements under the ice of up to 19 km, 

having been detected on nine receivers. Movements at this time have been reported to be in response to the 

accumulation of frazil and anchor ice in preferred refuge habitats, which has induced under ice movements in 

other salmonids (Lindström & Hubert, 2004). Gilroy et al. (2010) also reported taimen movement of up to 8 km 

under the ice coverage in the Eg - Urr River. As four out of the five tagged taimen in the Balj River appeared to 

have remained in this tributary for the entire winter, there is evidently suitable habitat and adequate resources to 

survive the extreme Mongolian conditions at this time. These observations, whilst preliminary, suggest that 

major tributaries such as the Balj, are important for taimen throughout the year.  

 

Tagged taimen moved a median distance of 17.4 km following the river ice break up in spring. Individuals were 

detected entering the Balj, another small tributary (Agats), or displayed direct movements both upstream and 

downstream in the river where they had spent the winter. Twenty receivers detected five fish moving past them 

at this time, with one individual not recording any longitudinal movement. The largest detected spring movement 

was 58.6 km by one of the taimen that moved into the Balj tributary, although actual spawning was not 

confirmed. This is the longest quantified spring movement reported for a taimen to date, as previous movements 

described have been 12 and 25 km in tributaries of Lake Baikal (Matveyev et al., 1998) and over 40 km up the 

Tompuda and Bolshaya rivers in Russia (Ustinov, 1979 reported in Matveyev et al., 1998). While it is suspected 
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that the first taimen to enter the Balj in April embarked on a typical spawning movement (direct trip upstream 

following the ice break up), the extended stay (85 days) of the second fish potentially indicates it has entered the 

Balj to take advantage of additional feeding opportunities and / or seek thermal refuge in the cooler tributary 

waters. The Onon River was significantly warmer than the Balj tributary in summer, with the Onon obtaining a 

mean temperature of 17.63 °C and thus remaining above 14 – 15°C, the optimal temperature for taimen 

(Matveyev et al., 1998), for a prolonged period of time. In summer the median home range for taimen in the 

Onon-Balj was 9.1 km, which was in contrast to the study by Gilroy et al. (2010) who reported minimal summer 

movements including zero fish passes in the month of July in the Eg - Uur River. However, any taimen 

movements in the surrounding Eg - Uur River tributaries would have been missed as monitoring did not cover 

the tributaries in the region. Given the expectation that climate change will continue to increase temperatures and 

reduce precipitation in Mongolia (Saladyga et al., 2013; Malsy et al., 2015), maintaining the hydrogeological 

connectivity of these tributaries to ensure access to thermal refuge areas during the warming summer months is 

critical for minimising potential future mortalities of many sensitive fish species including taimen.  

 

Onon-Balj River taimen showed no generalised coordinated movements but instead displayed a variety of 

behavioural patterns that could be categorised into four distinct home range types, as previously described for 

taimen by Gilroy et al. (2010). One taimen displayed highly sedentary behaviour, only being detected on two 

receiver stations that were 800 m apart during the entire study. Although it has been reported that mature taimen 

do not produce gametes and thus participate in spring spawning movements every year (Matveyev et al., 1998), 

why this individual did not move any substantial distance during other seasons, e.g. autumn or summer, is 

uncertain. It can only be assumed that this taimen had spawned the year before and thus was in a reproductive 

resting phase, in addition to the river reach providing adequate resources for all seasonal conditions, so there was 

no need for this individual to move any significant distances during the study period (Heggenes & Dokk, 2001). 

Other tagged taimen displayed behavioural patterns consisting of an identifiable home range with either a 

separate seasonal range or a specific seasonal departure. Two individuals appeared to have maintained a 

restricted home range during autumn and winter before embarking on spawning movements or seeking out 

thermal refuge in tributaries during spring and summer, with both taimen returning to the same river reach by 

autumn. A fifth taimen was detected for several weeks post-surgery in one river location before moving 

downstream to overwinter and returning back upstream to the same river location in spring where it remained for 

several more weeks on its way further upstream. In addition, the movement patterns illustrated by another 
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individual that travelled excessively throughout the study region over an eight-month period indicated a potential 

home range shift behaviour pattern. It is possible that this taimen had left the area and shifted its home range 

upstream, as this fish was not detected again in the region in the following four months after it had exited the 

detectable range. A longer monitoring period would have been preferable in order to confirm such behaviour.  

 

Passive acoustic telemetry was successfully used to capture the extent of a broad range of taimen movements and 

behaviours in the remote Onon River and Balj tributary over an extended period of time, although as with most 

telemetry studies conducted in open lotic systems there were several issues of concern. Firstly, it must be 

considered that all detected distances are underestimates as no individual was recorded continuously during the 

entire study period (Heupel et al., 2004; O’Toole et al., 2010) as taimen regularly moved into and out of the 

study’s detectable range. Secondly, passive acoustic telemetry is reliant on fish moving within the detection 

range of a stationary receiver and so if individual taimen displayed more sedentary behaviour, outside the 

detection range of the acoustic receivers, then the individual would not be recorded. Thirdly, it is known that 

during certain environmental conditions such as elevated river discharge or excessive ice formation that the 

detection range of these acoustic receivers is reduced (Cooke et al., 2013), thus lowering the probability of 

detecting a fish moving past during these times. These issues, along with the possibility of illegal fishers 

catching and removing tagged taimen from the river must all be considered as potential explanations as to why 

tagged fish disappeared or were not detected for various lengths of time during the study. In any case, the 

inevitability of missing individuals in such biotelemetry research conducted in a free-flowing river system 

reduced further the already limited number of tagged taimen in the study and ultimately the potential 

interpretation of the results. Thus recommendations for future telemetry research on taimen or other fish species 

living in boreal rivers includes tagging increased numbers of individuals to compensate for missing fish and 

deploying multiple sentinel transmitters to quantify the changes in the detection probability under changing 

environmental conditions (Payne et al., 2010). Future research efforts should focus on smaller taimen size 

classes to determine the autecological requirements and tributary usage of immature individuals, in addition too, 

diel depth and activity investigations of taimen and how these behaviours change under extreme conditions. 

 

Tributaries such as the Balj are important for local taimen populations as they not only provide access to optimal 

upstream spawning habitat, additional feeding locations and critical overwintering pools but also likely offer 

refuge from thermal and hydrological extreme events. In the near future, the significance of such tributaries will 
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increase even further in the region with rising mean air temperatures and greater fluctuations in the annual 

precipitation occurring due to climate change (Jiang et al., 2016). It is therefore, crucial to maintain the 

ecological integrity and hydrological connectivity of multiple spatially separated tributaries throughout the Onon 

River basin to help conserve and recover local taimen populations. In addition, across the Amur River basin and 

throughout most of the remaining distribution of the taimen, the increasing number of dams that have been 

constructed or are planned in major tributaries presents further threats to critical taimen habitat and essential 

movements. Freshwater protected areas have been successfully implemented in many regions around the world 

as a fisheries management tool to protect threatened fish stocks (Demartini, 1993; Abell et al., 2007; Suski & 

Cooke 2007). The Onon - Balj National Park and the newly established Onon River fishing zones (Fishing Game 

Management Plan of Fishing Zones in the Onon and Balj River Basin, 2015; Report for Game Management of 

Fishing Zone of Onon River, 2015), these FPAs can help to safeguard taimen population recovery in the region 

and be a model for taimen conservation throughout north and central Asia and Siberia.  
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8 Fish conservation in the land of steppe and sky: 

evolutionary significant units of threatened 

salmonid species in Mongolia mirror major river 

basins 
 

Kaus, A., Michalski, M., Karthe, D., Hänfling, B., Borchardt, D., Durka, W. Under review at Ecology and 
Evolution 
 

8.1 Abstract 

Mongolia’s salmonids are in decline; therefore genetically valuable populations must be identified so 

management resources can be prioritized. The unfragmented river basins provide unobstructed connectivity for 

resident fish species, so genetic structure is expected to be primarily segregated between river basins. We tested 

this hypothesis by investigating the geographic population structure of three salmonid genera (Hucho, 

Brachymystax and Thymallus), and identified ESUs and priority populations. Genetic markers were used to 

analyse populations from two major basins in Mongolia. H. taimen exhibited a dichotomous population structure 

forming two ESUs, with priority populations identified in five rivers. The Brachymystax genus had three B. 

lenok ESUs and one B. sp. ESU, with priority populations identified in six rivers. While B. sp. was confirmed to 

display divergent mtDNA haplotypes, we report haplotype sharing between B. lenok and B. sp. For T. 

baicalensis, only a single ESU was assigned, with priority populations located in five rivers and Lake Hovsgol. 

Additionally, we showed that T. nigrescens from Lake Hovsgol is a synonym of T. baicalensis. ESUs for both H. 

taimen and B. lenok included their major phylogeographic linages in different river basins. Across all species, the 

most prominent pattern was strong differentiation among major basins with low differentiation and weak 

patterns of isolation by distance within basins corroborating the hypothesis of high within-basin connectivity. 

Conservation priority should focus on priority populations within each ESU, where an ecosystem based 

management approach via the establishment of freshwater protected areas should be implemented.  

 

8.2 Introduction 

Until recently Mongolia’s fish populations inhabited some of the least impacted river basins in the world as they 

were unfragmented by major dams, unaltered for navigational purposes, suffered negligible pollution, had low 
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numbers of introduced fish species and experienced minimal fishing intensities (Kottelat, 2006; Ocock et al., 

2006; Chandra et al., 2005; Hofmann et al., 2015). Thus river connectivity and fish population structure has 

persisted in a near natural state, which is a unique feature for such extensive river systems characterized by 

extreme continental climates in the 21st century (Karthe et al., 2015). However, as Mongolia’s economy 

continues to develop at a fast rate there are a growing number of threats which would have significant impacts on 

the aquatic environment and its fish fauna, including several planned hydroelectric dam projects, increased waste 

water discharge, industrial pollution, mining contamination, nutrient runoff, riverbank erosion and widespread 

illegal fishing (Ocock et al., 2006; Hofmann et al., 2010; Hartwig et al., 2016; Kaus et al., 2016a). In order to 

mitigate these effects on the threatened fish populations, current fisheries management strategies in Mongolia 

need to consider meaningful biological units and identify genetically diverse and differentiated populations 

within the distribution of each species so that the limited resources can be more efficiently implemented to better 

focus protection and conservation efforts. 

The identification of biological or conservation units is an essential first step in exploited species management, 

so authorities and policy makers can be informed about the functional scale of the population/s they are trying to 

manage (Funk et al., 2012). ESUs are a common management tool in conservation biology, which involves the 

identification of an intraspecific group which represents a measurable genetic and / or ecological divergence 

within the species due to sufficiently low or no contemporary gene flow (Avise, 2000; Fraser & Bernatchez, 

2001; Bernard et al., 2009). ESUs can consist of multiple allopatric populations and can cover extensive 

geographic regions depending on the species and its ecology (Moritz, 1994; Palsbøll et al., 2006). Units are 

usually defined based on neutral and sometimes adaptive genetic variation, which represent the effects of both 

historical spatial processes and environmental selection (Moritz, 1994; Crandall et al., 2000; Funk et al., 2012; 

Casacci et al., 2013). For the initial demarcation of an ESU, researchers have focused on genetic markers 

including maternally transmitted, slowly evolving mtDNA and bi-parentally transmitted, quickly evolving 

microsatellites, as both yield relevant information on complementary spatio-temporal scales (Vogler & DeSalle, 

1994; O’Connell & Wright, 1997). The identification of ESUs and genetically distinct populations of threatened 

and exploited fish stocks is increasingly used in modern fishery management to ensure that conservation actions 

and resources can be better matched with biological relevance (Xia et al., 2006. Geist et al., 2009; Zhivotovsky 

et al., 2015). 

Freshwater salmonids from the genera Hucho, Brachymystax and Thymallus (Family Salmonidae) live in 

sympatry throughout the major river basins of northern Eurasia, occurring in the upper Yenisei and Selenge river 
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basins (Arctic Ocean drainages) and the upper Amur River basin (Pacific Ocean drainage) in northern Mongolia. 

While some stable viable populations of these species still exist in the more remote river reaches, they have 

experienced substantial declines and local extinctions over recent decades (Ocock et al., 2006). Three of these 

more widely distributed and recreationally targeted species include the Siberian taimen (Hucho taimen, Pallas 

1773, Classification: Endangered in Mongolia and Vulnerable internationally, IUCN), the largest salmonid in 

the world and the top predatory species in these Palearctic systems (Holčík et al., 1988. Ocock et al., 2006; 

Hogan & Jensen, 2012); the sharp-snouted lenok (Brachymystax lenok, Pallas 1773, Vulnerable), a medium size 

species (Shed’ko et al., 1996; Ocock et al., 2006); and the Baikal grayling (Thymallus baicalensis, Dybowski 

1874, Near Threatened – nominative species T. arcticus, Pallas 1776) (Ocock et al., 2006), which is part of a 

genus that comprises several species across the region (Knizhin et al., 2006; Weiss et al., 2007). In addition the 

blunt-snouted lenok (B. sp., not classified), which is only found in certain tributaries of the Amur basin in 

Mongolia, and the Hovsgol grayling (T. nigrescens, Dorogostaisky 1923, Endangered), which is limited to Lake 

Hovsgol in northern Mongolia, were also considered as both of these species also currently face existential risks 

in the country. 

Phylogeographic research on these threatened salmonid species has revealed population structure across various 

geographic scales, however with little or no data existing for the Mongolian populations. Broad-scale 

phylogroups have been identified between major river basins across Siberia for both H. taimen and B. lenok 

(Froufe et al., 2003, 2005, 2008; Maric et al., 2014), with intra-basin structure also identified for both species in 

Chinese rivers (Xia et al., 2006; Kuang et al., 2009, 2010; Liu et al., 2011). Within the Brachymystax genus, a 

clear genetic divergence was evident between the closely related sharp-snouted (B. lenok) and blunt-snouted 

lenok (B. sp.), with no evidence of shared haplotypes despite natural hybrids occurring between the species in 

regions of sympatry (Ma & Jiang, 2007; Froufe et al., 2008). In the Thymallus genus, Eurasian river basins have 

been described as having a fixed divergence that has resulted in multiple species with restricted distributions 

(Froufe et al., 2003; Weiss et al., 2007; Knizhin & Weiss, 2009; Slynko et al., 2010). In Mongolia, there are five 

Thymallus species currently recognised, although further clarification is required to identify whether T. 

nigrescens from Lake Hovsgol represents a unique species or not, as it has been treated as a separate species by 

some authors (Berg, 1962, Pivnička & Hensel, 1978; Bogutskaya & Naseka, 2004) but not by others (Koskinen 

et al., 2002; Froufe et al., 2005; Knizhin et al., 2006).  

The overall objectives of this research was to identify the previously unknown genetic structure of threatened 

salmonid populations within Mongolia’s extensive river basins by determining and delineating ESUs within 
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species as well as assessing the genetic diversity within and differentiation among populations. We used a 

combination of mtDNA sequencing and microsatellite marker analyses to identify ESUs for each species 

sampled from across their Mongolian ranges, i.e. the upper Yenisei, the Selenge and upper Amur River basins. 

We hypothesise that the hitherto unfragmented river basins in Mongolia allowed for unobstructed connectivity 

between salmonid populations within basins and thus their genetic structure should be primarily segregated 

between basins with minimal differentiation within basins. We also wanted to shed light on the phylogenetic 

relationships of the blunt-snouted lenok (B. sp.) and Hovsgol grayling (T. nigrescens). This research can offer a 

detailed genetic understanding for these threatened freshwater fish in Mongolia, by providing local and national 

authorities a more effective way to disseminate resources and protect rivers that contain the most genetically 

important populations of these species to further safeguard their evolutionary potential for the future. 

8.3 Materials and Methods 

Study area 

Mongolia contains the most upstream regions of several major continental Asian drainages (Figure 23). The 

Selenge River basin drains most of north-central Mongolia before flowing into Siberia and forming the main 

inflow of Lake Baikal, from where water exits via the Angara River to converge with the Yenisei River. The 

Shishged River is a smaller tributary of the upper Yenisei with approximately 100 km in Mongolian territory. 

The Onon and Kherlen rivers are located in eastern Mongolia and are the most upper tributaries of the Amur 

River basin. Although currently disjunct, there is evidence of large scale paleo-hydrological exchange of the 

Yenisei / Selenge, Amur and Lena river basins in the late to post Pleistocene period, having a predominant effect 

on the ichthyofaunal diversity and distribution (Grosswald, 1998, 1999; Koskinen et al., 2002; Froufe et al., 

2003). 

 

Field sampling 

Our sampling design was intended to capture the complete genetic diversity of H. taimen, B. lenok and T. 

baicalensis from across their Mongolian distributions. We sampled fish at 19 sites from the Shishged, Selenge, 

Onon and Kherlen river basins in Mongolia in 2011 and 2012 (Table 7, Figure 23). Sample locations were 

selected due to the species present, the isolation by river distances and river accessibility. Sample sites were 

typically in the upper reaches of each river, but due to the low abundances of some species in certain regions it 

was necessary to cover tens of kilometres along the river in order to collect sufficient numbers of samples. In 
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total we collected fin clips from 127 H. taimen from eight populations, 371 B. lenok from 18 populations, and 

274 T. baicalensis from 11 populations. We also collected samples of blunt-snouted lenok (B. sp.) from the 

Amur basin (12 individuals, 3 populations) and T. nigrescens from Lake Hovsgol (15 individuals). Fish were 

caught using backpack electrofishing units (Hans Grassel GmbH, Germany; Type ELT 60) and angling by 

researchers and international fishing guides, with all individuals being released alive. Several samples were also 

collected from fish caught by Mongolian recreational fishers that were encountered on the river. Fin clips were 

stored in 96 % ethanol prior to analysis.  

.  

 

 

Figure 23. Map of northern Mongolia displaying the rivers and lake where fish were sampled in 2011 and 

2012. The major river basins in Mongolia include the Selenge River basin (Arctic drainage) and the Amur River 

basin (Pacific drainage), while the upper Yenisei River basin also reaches into Mongolian territory (Y1). 

Coloured dots under each sample location ID indicates which species were caught in that river (Hucho taimen – 

red dots with different shades for each river basin; Brachymystax lenok –orange dots for Selenge basin, dark pink 

dots for Amur basin and a light pink dot for the Shishged River; blunt-snout lenok (B. sp.) dark green dots; 

Thymallus baicalensis - dark blue dots and T. nigrescens – a light blue dot).   

 

Genotyping 

Fish DNA was extracted using the DNeasy Blood and Tissue kits (QIAGEN, Hilden, Germany) following the 

manufacturer’s instructions. We sequenced the control region (“D-loop”) of mitochondrial DNA of 31 

individuals from seven populations of H. taimen, 35 samples from 12 populations of B. lenok, 11 samples from 

two populations of the blunt-snout lenok (B. sp.), as well as 20 samples from six populations of T. baicalensis 

and three samples of T. nigrescens from Lake Hovsgol using primers LRBT-25 and LRBT-1195 (Uiblein et al., 
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2001). Further details of the sequencing reactions and protocols are given in Appendix 4. All H. taimen, 

Brachymystax and Thymallus samples were genotyped at eleven, eight and eight microsatellite loci, respectively 

(Table A4- 1). A small number of loci produced multiple bands which could be consistently scored as 

independent loci, one in Brachymystax (BleTri4) and two in H. taimen (BleTri4 and BleTet6). We used a PCR 

protocol with CAG/M13R-tagged forward primers and GTTT-“pigtailed” reverse primers following Schuelke 

(2000). Primer sequences and details of the PCR protocol are given in Table A4- 1 in Appendix 4.  

 

Data analysis 

All analyses were carried out separately for populations from the three different genera. Mitochondrial DNA 

data and additional sequences acquired from GenBank (for Brachymystax spp. and Hucho taimen) were aligned 

using Geneious® Pro 5.6.7 (Kearse et al., 2012) and the built-in multiple alignment option. Haplotype networks 

were obtained by using a median-joining algorithm (Bandelt et al., 1999) implemented in PopART v1.7.2 

(http://popart.otago.ac.nz). For H. taimen and Brachymystax spp., haplotypes were labelled following Froufe et 

al. (2005; Figure 2c) and Froufe et al. (2008; Figure 5), respectively, using new names as necessary. In the 

analysis of Brachymystax we also included sequences of B. tsinglingensis from China (Liu et al., 2012; Xing et 

al., 2015). 

 

From the microsatellite datasets we calculated descriptors of population genetic variation, i.e. the number of 

alleles (A), allelic richness (AR), expected heterozygosity (He) and inbreeding coefficient (FIS) and its 

significance (p-value) using FSTAT v2.9.3.2 (Goudet, 2001). The presence of distinct genetic clusters was 

assessed with STRUCTURE 2.3.4 (Pritchard et al., 2000), where a burn-in period of 100,000 was used and 

1,000,000 Markov-Chain Monte-Carlo repetitions were performed with 10 replicates. This model based 

Bayesian approach excludes prior information on the origins of individuals. The number of clusters run was 

between K = 1 and K = number of populations + 1. The most likely number of clusters was determined by 

evaluating both, the likelihood of models and the ΔK method (Evanno et al., 2005). Independent runs were 

merged with CLUMPP 1.1.2 applying the Greedy algorithm and plotted with Pophelper (Francis, 2016). When 

multiple clusters were found, we reanalyzed these clusters separately as the STRUCTURE software is sensitive 

to hierarchical population structure. Population differentiation was quantified with hierarchical analyses of 

molecular variance (AMOVA) conducted in GeneAlEx 6.5 (Peakall & Smouse, 2006, 2012). We tested for 

isolation by distance within basins, i.e. a correlation between genetic differentiation and distance along the river 

http://popart.otago.ac.nz/
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with Mantel tests in R (R Development Core Team, 2016). River distance was estimated between hydrologically 

connected sites by tracing the main river channel and using the measuring ruler “path” in Google Earth 

7.1.7.2600 (Google Inc., 2016). River distances ranged from 465 km to 4994 km (mean 1637 km) in the Yenisei 

basin (incl. Shishged) and 256 km to 3245 km (mean 1977 km) in the Amur basin. 

 

Populations were assigned to separate ESU’s when the combined evidence of mitochondrial and nuclear genetic 

data indicated genetic isolation. To further identify priority populations, which are the most genetically diverse 

and/or distinct populations within each ESU, we used the microsatellite data with the Contrib Software v1.02 

(Petit et al., 1998). Calculations were based on allelic richness thus correcting for unequal sample sizes. The 

contribution of each population to total diversity is partitioned into two components, the diversity within each 

population and the differentiation from other populations.  

8.4 Results  

mtDNA analysis 

Four haplotypes were identified for Mongolian H. taimen (Figure 24, Table 7). These could be grouped into two 

main clusters, separated by four mutations. The first cluster included Selenge and Shishged populations 

(identified by two different shades of darker red), while the second cluster was made up of Amur H. taimen 

(bright red). All Selenge populations grouped into a single haplotype (H1), while only some Shishged H. taimen 

contained H1. The remaining Shishged individuals displayed two additional and exclusive haplotypes (H6* and 

H7*). H. taimen sampled from the three Amur populations all contained in haplotype H3/4/5.  

 

Eight haplotypes were found in the Brachymystax populations that were sampled in Mongolia (Figure 25, Table 

7). Sharp-snouted lenok showed a separation of the Selenge populations, which have three haplotypes (H16, 

H20*, H21*), from the Amur and Shishged populations, which also displayed three haplotypes (H11/12, H15, 

H22*). Three of the sharp-snouted lenok haplotypes had been found previously, while the other three haplotypes 

(denoted with an asterisk) were closely related but new for the species. Haplotypes identified in blunt-snouted 

lenok belonged to two highly divergent clusters. Some individuals contained two haplotypes from a blunt-snout 

specific cluster (H3/5/8 and H23*), one of which was new. However, most of the blunt-snouted lenok samples 

displayed the common sharp-snout haplotype H15. 
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Figure 24. Mitochondrial DNA haplotype network for Hucho taimen sampled from Mongolia and from 

Froufe et al. (2005), with haplotypes detected in this study labelled using existing haplotype names (Froufe 

et al. 2005, Fig. 2c). New haplotypes found in this study are denoted with an asterisk (*). Note that some of the 

previously identified haplotypes (Froufe et al. 2003, 2005) collapsed into a single haplotype because the total 

alignment was shorter. 

 

Figure 25. Mitochondrial DNA haplotype network of Brachymystax species, i.e. sharp-snouted lenok (B. 

lenok), blunt-snout lenok (B. sp.) and B. tsinlingensis sampled from Mongolia and Genbank. Haplotypes 

found in this study are underlined, haplotype names used in Froufe et al. (2003, 2008) were maintained and new 

haplotypes are denoted with an asterisk (*). Note that some of the previously identified haplotypes (Froufe et al. 

2003, 2008) collapsed into a single haplotype because the total alignment was shorter. 
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Table 8. Genetic diversity of three salmonid genera sampled from the Yenisei, Selenge and Amur rivers 

basins in Mongolia in 2011 and 2012. The table lists the basin and river, the population identification code, 

sample size (n), the average number of alleles (A), the allelic richness (AR) (with a rarefaction sample size of 4 

for Hucho, 6 for Brachymystax and 9 for Thymallus), the expected heterozygosity (He), and inbreeding 

coefficient (FIS) where bold FIS values indicate significance. For mtDNA data, sample size (n) is shown along 

with the haplotypes identified, where those haplotypes with an asterisk (*) are new. The Evolutionary Significant 

Units (ESUs) as identified for each genus according to the microsatellites and mtDNA results is shown along 

with the pirority populations that displayed above average genetic diversity, differentiation as well as those 

populations that exhibited new haplotypes for the species or exclusive haplotypes for Mongolian populations.  

Sample site information Microsatellites 
 

mtDNA 
 

Evolutionary 
Significant Units 

Priority 
Populations 

Basin River Pop. ID n A AR He FIS n Haplotype 
No. 

Micro-
satellite 
clusters 

mtDNA 
groups 

Contribute * 
/ exclusive 

haplotypes** 

Hucho taimen 

Yenisei Shishged Y1 6 2.6 2.03 0.333 0.000 6 H1, H6*, H7* 1 1 ** 
Selenge Delgermoron S1 12 4.0 2.16 0.337 -0.019 3 H1 1 1 * 

Chuuluut S3 4 2.1 1.93 0.269 0.072 2 H1 1 1  
Eg-Urr S6 8 3.1 2.12 0.343 -0.016 2 H1 1 1 * 
Eroo S10 45 5.3 2.01 0.322 0.053 8 H1 1 1  

Amur Onon A2 44 6.3 2.49 0.424 0.077 7 H3/4/5 2 2 * 
Balj A3 4 2.3 2.36 0.361 0.215 - - 2 -  
Khalkhin A5 4 2.7 2.71 0.492 0.153 3 H3/4/5 2 2 * 

Brachymystax species including sharp-snouted lenok (B. lenok) and blunt-snouted lenok (B. sp.) 

Yenisei Shishged Y1 9 2.1 2.13 0.338 0.342 5 H15 2b 2 * 
Selenge Delgermoron S1 16 5.9 4.65 0.634 -0.008 3 H16, H20* 1 1 * 

Ider S2 17 5.4 4.38 0.598 -0.049 - - 1 -  
Chuuluut S3 20 5.6 4.43 0.603 0.073 2 H16, H21* 1 1 ** 
Humen S4 6 4.1 4.89 0.674 0.038 - - 1 - * 
Hovsgol S5 11 5.0 4.65 0.606 0.066 - - 1 -  
Eg-Urr S6 24 6.3 4.66 0.614 0.000 3 H16 1 1  
Orkhon S7 45 6.3 4.37 0.622 0.050 1 H16 1 1 * 
Tuul S8 13 4.4 4.31 0.576 -0.007 - - 1 - * 
Kharaa S9 61 6.4 4.28 0.593 0.024 3 H16 1 1  
Eroo S10 38 6.0 4.14 0.538 -0.002 3 H16 1 1  
Zelter S11 13 5.3 4.50 0.566 -0.132 - - 1 -  
Huder S12 31 6.8 4.40 0.576 -0.007 - - 1 -  
Minj S13 11 3.9 3.78 0.557 0.195 1 H16 1 1  

Amur Barch A1 13 6.0 4.73 0.646 0.145 - - 2c -  
Onon A2 11 6.0 4.76 0.672 0.102 2 H15 2c 2 * 
Onon A2-B.sp 10 4.5 4.01 0.540 0.173 10 H15, H22*, 

H3/5/8, H23* 2a 2, 3 ** 

Balj A3 13 5.5 4.45 0.622 -0.031 1 H15 2c 2  
Balj A3-B.sp 1 1.5 - - - 1 H15 2a 2 * 
Kherlen A4 7 4.0 4.07 0.564 0.042 5 H15 2c 2 * 
Kherlen A4-B.sp 1 1.1 - - - - - 2a - * 
Khalkhin A5 12 5.3 3.98 0.597 0.101 6 H11/12, H15 2c 2 * 

Thymallus species including T. baicalensis and T. nigrescens (Lake Hovsgol) 

Selenge Delgermoron S1 24 10.1 6.75 0.674 -0.093 3 H4 1 1 * 
Ider S2 14 7.6 6.18 0.640 -0.631 - - 1 -  
Chuuluut S3 16 9.6 7.05 0.624 0.010 1 H4 1 1  
Humen S4 15 8.6 6.92 0.662 0.089 - - 1 -  
Hovsgol S5-Tn 15 7.13 5.79 0.633 -0.092 3 H4 1 1 * 
Eg-Urr S6 55 13.9 6.92 0.653 0.043 3 H4 1 1  
Orkhon S7 27 10.4 6.83 0.684 0.081 7 H4, H5, H6 1 1 * 
Tuul S8 10 6.8 6.52 0.682 -0.055 - - 1 - * 
Kharaa S9 24 9.4 6.05 0.607 -0.020 4 H4, H6 1 1  
Eroo S10 54 14.0 6.84 0.641 0.015 2 H4 1 1  
Zelter S11 21 10.3 7.05 0.707 -0.010 - - 1 - * 
Huder S12 14 8.1 6.69 0.699 0.009 - - 1 - * 
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Nine haplotypes were found among five Thymallus species. The haplotype network showed four distinct clusters 

(Figure 26, Table 7). Three of these clusters were comprised of haplotypes from a single species with the T. 

brevirostris cluster having one haplotype (T3), T. svetovidovi having two haplotypes (T1 – T2) and T. grubii 

having three haplotypes (T7 – T9). The fourth cluster comprised of a haplotypes that included T. baicalensis and 

T. nigrescens with both species sharing the most common haplotype (T4), with two additional rarer haplotypes 

(T5, T6) found in T. baicalensis. 

 

Figure 26. Mitochondrial DNA haplotype network for Thymallus species (T. baicalensis, T. grubii, T. 

nigrescens, T. svetovidovi, and T. brevirostris) sampled from the Shishged (Yenisei), Selenge, Amur and Central 

Asia river basins in Mongolia. 

 

Microsatellite analyses  

For the sampled H. taimen populations, mean allelic richness (AR) was 2.23 (SD 0.27) with a range from 1.93 in 

the Chuuluut to 2.71 in the Khalkhin (Table 8). The populations in the Amur displayed a higher mean allelic 

richness (mean = 2.52, SD ± 0.18) than the Selenge (2.06, SD 0.10), while the Shishged population had an AR of 

2.03. Three out of eight H. taimen populations from both the Selenge and Amur showed significant inbreeding 

coefficients (S6, A2 and A3). STRUCTURE analyses revealed H. taimen displayed two genetic clusters 

consisting of the Shishged and Selenge rivers, and the Onon and Kherlen rivers, respectively (Figure 27a, 

Appendix 4: Figure A4. 1). No further genetic structure was evident when each basin cluster was analysed 

separately. The AMOVA for H. taimen indicated that 29 % of the genetic variance was partitioned among 

basins, 1 % among populations within basins, and the rest residing within populations (Table A4- 5a). Separate 

analyses for the Selenge (incl. Shishged River, Yenisei) and Amur basins revealed FST = 0.027 (p = 0.001) and 

FST = 0.052 (p = 0.008), respectively (Table A4- 5b/Table A4- 5c). The overall FST value for H. taimen was 

0.302.  
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In B. lenok, the Shishged population (Y1) recorded an allelic richness (AR) of 2.13 whereas much higher values 

were evident in the Selenge (mean 4.42, SD 0.28) and Amur populations (4.40, SD 0.36). In each river basin, 

there was at least one population that had significant FIS values indicating deviation from Hardy-Weinberg 

Equilibrium (HWE). The blunt-snouted lenok in the Onon had similar values of genetic variation as the sharp-

snouted lenok with significant FIS values. STRUCTURE analyses of all Brachymystax samples (including both 

B. lenok and B. sp.) revealed a total of four genetic clusters. The first analysis displayed two clusters representing 

the separation of populations in the Selenge from the Amur and Shishged (Figure 27b, Figure A4. 2). Notably, 

the sympatric sharp-snouted and blunt-snouted lenok from the Amur clustered together rather than forming 

separate “species” clusters. The Selenge cluster (orange) displayed no further structure in additional analyses. In 

contrast, the ‘green cluster’ comprises the Shishged and Amur populations including blunt-snouted lenok, 

displayed additional substructure (Figure A4. 2 c, Figure A4. 2 d). First, the blunt-snouted lenok was separated 

as a distinct gene pool represented in three rivers (Figure 27b, Figure A4. 2 c). Second, the Shishged population 

was clearly separated from both blunt-snouted lenok (Figure A4. 2 d) and from sharp-snouted lenok in the Amur 

basin (Figure A4. 2e). The latter representing a single cluster (Figure A4. 2 f). Thus, the Brachymystax genus 

comprised four genetic clusters across Mongolia, representing sharp-snouted lenok from the Selenge, Shishged 

and Amur, respectively, as well as the blunt-snouted lenok from the Amur. This structure was also corroborated 

by the pairwise FST values (Table A4- 3). The AMOVA results for the Brachymystax genus (sharp-snouted B. 

lenok only) indicated that 16 % of the genetic variance was among basins, 2 % among populations within basins 

and the rest residing within populations (Table A4- 5) with the overall FST value being 0.181. Population 

differentiation among sharp-snouted lenok was similar in the Amur (FST = 0.056) and the Selenge basin 

(FST = 0.049). Mantel tests indicated a pattern of isolation by distance for sharp-snouted lenok populations in 

both the Selenge (r = 0.41, p = 0.004; Figure A4.5a) and the Amur basin (r = 0.76, p = 0.045; Figure A4.5b).  

 

For T. baicalensis, mean allelic richness was 6.72 (± SD 0.31) across the Selenge populations, with T. nigrescens 

in Lake Hovsgol displaying an AR of 5.79. Four T. baicalensis populations had significant FIS values indicating 

deviation from HWE. The STRUCTURE analysis revealed only one genetic cluster for T. baicalensis and T. 

nigrescens (Figure 27c, Figure A4. 3 & Figure A4. 4). This is corroborated by very weak genetic structure 

amounting to only 1% of molecular variance among populations (Table A4- 5b). The overall FST for T. 

baicalensis and T. nigrescens according to the AMOVA results was 0.014. However, T. nigrescens was more 

strongly differentiated from all T. baicalensis populations as the mean pairwise differentiation among 
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T. baicalensis populations was FST = 0.014 but FST = 0.033 between the two taxa (Table A4- 4). The Thymallus 

populations showed no significant pattern of isolation by distance (r = 0.22, p = 0.12, Figure A4. 6).  

 

Figure 27. Results of model based clustering of microsatellite data of salmonid populations within 

Mongolia. Pie charts show proportional memberships of identified genetic clusters from STRUCTURE (a) 

Hucho taimen, (b) Brachymystax spp. (sharp-snouted, B. lenok, and blunt-snouted lenok, B. sp. (dark green)) and 

(c) Thymallus spp. (T. baicalensis and T. nigrescens). Refer to Table 8 for sample sites and supplementary 

Figures A4.1 - A4.4 for details of the STURCTURE analyses. The coloured shading represents the different 

ESUs determined for each species using mtDNA and microsatellites data. Populations highlighted with a black 

double line are priority populations for conservation due to above average genetic diversity, differentiation or 

presence of new or exclusive haplotypes. 
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Identification of priority populations 

Priority populations within river basins were identified as those that contained high genetic diversity or 

differentiation components in the contribution analysis (Figure 28, Table 8). For H. taimen, two populations in 

the Selenge and two in the Amur were identified as priority populations (Figure 28a & Figure 28b). For sharp-

snouted lenok (B. lenok) four populations were identified in the Selenge (Figure 28c), with two identified in the 

Amur (Figure 28d); and for T. baicalensis (including T. nigrescens), six populations were considered to be 

priority populations (Figure 28c). In most cases total diversity was determined by high diversity contributions 

rather than differentiation contributions, in line with low within basin divergence. 

 

Figure 28. Displays the contribution of each population to total diversity based on allelic richness, thus 

correcting for unequal sample sizes. This figure contains the sampled populations of H. taimen (top), B. lenok 

(excluding the blunt-snouted lenok, B. sp.) (Centre) and T. baicalensis (bottom, including T. nigrescens in S5) 

from the Selenge (left) and Amur (right) river basins, Mongolia. The black dots indicates total genetic diversity 

partitioned into the contribution of genetic diversity within the population (white bar) and contribution of genetic 

differentiation of the population (grey bar). Note that Shishged River (Yenisei basin) populations were not 

included in the analysis due to their large genetic differentiation from the other Selenge River basin populations. 
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8.5 Discussion 

For three taxa of freshwater salmonids with high conservation concern in Mongolia we found that population 

structure was primarily segregated between Mongolia’s major river basins, although exact patterns were not 

completely concordant among species. The genetic differentiation was strong among basins but rather weak 

within basins, with sharp-snouted lenok, the only species to show a clear pattern of within-basin isolation by 

distance. Furthermore, patterns of diversity and differentiation allowed for the identification of priority 

populations across rivers, with some rivers important for multiple species. These results can be used to guide 

conservation and management strategies of threatened salmonid populations across Mongolia. 

 

Genetic population structure and priorities for conservation of H. taimen 

The historical distribution of H. taimen is vast, extending from the Urals Mountains to the Pacific Ocean; 

however despite this extensive range only two major phylogeographic groups have previously been identified 

(Froufe et al., 2005; Maric et al., 2014). Here we showed that the Mongolian populations represent the most 

upstream extents of these two phylogroups, and should be treated as independent ESUs. The Selenge and 

Shishged ESU form part of the western phylogroup that consists of the greater Yenisei, Khatanga, Volga and Ob 

river basin populations, while the Onon and Kherlen ESU is part of the eastern Amur phylogroup together with 

the Lena basin populations (Froufe et al., 2005; Maric et al., 2014). The broad geographic distribution of these 

phylogroups, along with the low allelic richness, exhibited by H. taimen has been attributed to an historical 

population bottleneck that has occurred within the species prior to the relatively recent range expansion 

throughout the region, including into Mongolia during a period of hydrological exchange between river basins 

(Grosswald, 1998; Froufe et al., 2003). It has been hypothesised that if the population bottleneck occurred after 

the species range expansion, then multiple genetic lineages would have likely been the result, which is not the 

case (Froufe et al., 2003). In addition, slow growth, low natural mortality, late maturation and low fecundity, 

along with the ability of mature H. taimen to move and disperse extensive distances particularly during the 

spawning season (Holčík et al., 1988; Matveyev et al., 1998; Jensen et al., 2007; Kaus et al., 2016b) are also 

traits that have likely contributed to the minimal genetic diversity found within this species. While, similar 

patterns of negligible genetic structure across large geographic scales has been observed for other larger bodied, 

mobile freshwater fish (So et al., 2006; Stepien et al., 2009; Ferreira et al., 2017), for one closely related 

anadromous species, the Sakhalin taimen (Parahucho perryi, Brevoot, 1856), substantial population declines 

have reduced immigration rates and created pronounced genetic differentiation between hydrologically 
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connected populations (Zhivotovsky et al., 2015). Thus in order to ensure all possible genetic diversity is 

conserved for this already endangered species across Mongolia, it is imperative that the most genetically diverse 

populations are urgently protected and that large scale river connectivity is preserved between them so the future 

evolutionary potential of H. taimen is maintained.  

 

While ESUs define management regions of genetically distinct and reproductively independent groups within a 

species distribution, the identification of priority populations based on elevated genetic diversity and 

differentiation provides a targeted approach for implementing management strategies within an ESU. Such a 

directed approach for H. taimen conservation and management in Mongolia must therefore start with the 

Shishged River population and include the four additional priority populations that were identified across the two 

basins, which include the Delgermoron, Eg-Uur, Khalkhin and Onon rivers. With anecdotal evidence suggesting 

that these rivers also hold some of the last remaining robust H. taimen populations left the country, their 

complete protection from illegal fishing activities and unsustainable catch and release practices is paramount 

going forward as these populations likely act as a source of immigrant individuals to the neighbouring sink 

populations.  

 

Genetic population structure and priorities for conservation for Brachymystax species 

The Brachymystax genus is distributed from Central Asia to North - East Asia and Siberia, with the literature 

suggesting there are three putative species including B. lenok (sharp-snouted lenok), B. sp. (blunt-snouted lenok) 

and B. tsinlingensis (Ma et al., 2007; Froufe et al., 2008; Xing et al., 2015). For the two species found in 

Mongolia, B. lenok and B. sp., our genetic analysis revealed a total of four distinct ESUs. We identified three 

allopatric ESUs belonging to sharp-snouted lenok from the Selenge, the Shishged, and Amur basins, and 

confirmed blunt-snouted lenok from the Amur as a separate, sympatric ESU. The Selenge ESU formed an 

exclusive genetic cluster based on mtDNA and nuclear markers which are expected to extend downstream as far 

as Lake Baikal according to the findings of Froufe et al. (2008). Such genetic divergence can be attributed to the 

prior isolation of the Selenge basin and Lake Baikal from the Yenisei and Amur basins approximately half a 

million years ago (Mats et al., 2001). This genetically unique B. lenok phylogroup has recently become the focus 

of increased research on the species including studies on feeding ecology (Olson et al., 2016), thermal tolerances 

(Hartman & Jensen, 2016), growth in both lotic and lentic systems (Tsogtsaikhan et al., 2017) as well as diel and 

seasonal movements, depth usage and activity patterns (Chapter 6).  
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The other two sharp-snouted lenok ESUs in the Shishged and Amur basin displayed no distinction at the mtDNA 

level but were genetically separated from each other according to nuclear microsatellite markers. Thus together 

with their geographic isolation, their status as separate ESUs were justified. The shared mtDNA haplotype that 

was found between these ESUs highlighted the relatively recent divergence of these populations, while 

supporting the hypothesis of the late Pleistocene hydrological connectivity between the Amur and Yenisei basins 

(Grosswald, 1998; Froufe et al., 2003, 2008). However, despite this shared haplotype, most of the genetic 

differentiation for sharp-snouted lenok was distributed among basins (Xia et al., 2006; Froufe et al., 2008; Liu et 

al., 2011), which indicated large scale, intra-basin gene flow within Mongolia’s vast, unfragmented river 

networks. However, B. lenok was the only species to demonstrate isolation by distance within both river basins, 

which is in line with the expectation of a reduced dispersal ability compared to the larger bodied H. taimen 

(Gilroy et al., 2010; Yoon et al., 2015; Kaus et al., 2016; Chapter 6). 

 

Blunt-snouted lenok has been shown to represent a genuine biological species that has undergone a long, 

independent evolutionary history (Shed’ko et al., 1996; Froufe et al., 2003; 2008). This is principally confirmed 

by the current results that demonstrate that the sympatric populations of blunt-snouted and sharp-snouted lenok 

from the Amur basin are genetically highly divergent. Thus blunt-snouted lenok represents the fourth ESU for 

the Brachymystax genus in Mongolia. However, and in contrast to previous studies, strong evidence was found 

for nuclear introgression from B. lenok into B. sp. Although this indicates incomplete reproductive isolation, 

there was only one first generation hybrid identified in the low number of samples collected, thus suggesting 

there is a low level of mitochondrial introgression also occurring between these populations in this region. This 

rarity of mixed ancestry in general indicates that hybridisation is infrequent or was largely an ancient event. 

Haplotype sharing could principally be also due to shared ancestral polymorphism, but hybridisation appears 

more likely to be the case, as this is the first such observation reported in these species. Hybridisation between 

congeneric fish is common and molecular markers are highly suited to test specific hypotheses (Hänfling et al., 

2005), however the present data set is too limited to allow for more detailed conclusions. In any case, the blunt-

snouted lenok should be formally recognized on an updated official species list of Mongolian fishes and be 

further afforded comprehensive protection to prevent this already rare and fragmented species from declining 

further or becoming regionally extinct. Our results also rekindles the discussion regarding the species status and 

correct taxonomic classification for the blunt-snouted lenok as the previously used scientific names including 

B. tumensis and B. savinovi have since been revealed to be misidentifications of sharp-snouted lenok in the 
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Tumen River (China / North Korea) and Lake Markakol (Kazakhstan) respectively (Alekseev & Osinov, 2006; 

Ma et al., 2007). Consequently these names are regarded as invalid and thus a new scientific name for the blunt-

snouted lenok in the Amur basin should be assigned (Ma et al., 2007; Froufe et al., 2008).  

 

The priority populations for conservation within the Brachymystax genus not only includes the sharp-snouted 

lenok ESU from the Shishged and the blunt-snouted lenok ESU from the Amur, but also an additional six sharp-

snouted lenok populations identified within the Selenge and Amur basins. With both of these basins being 

extensively sampled, including all major rivers, it was obvious that the overall genetic differentiation of this 

species in Mongolia was low. It was only the Kherlen population that displayed substantial genetic 

differentiation compared to the other basin populations and thus should be earmarked for additional protection 

measures, particularly as the Kherlen River upper reaches are a popular fishing destination for a growing number 

of Ulaanbaatar residents due to its close proximity and easy access from the capital. 

 

Genetic population structure and priorities for conservation of Thymallus species 

Although the genus Thymallus is widely distributed across Eurasia, this taxon often shows divergence on an intra 

basin scale such as T. svetovidovi in the upper Yenisei River basin (Knizhin & Weiss, 2009) and T. burejenis 

from the Bureya River, lower Amur River basin (Anton, 2004). This genetic divergence has been attributed to 

strong natal homing tendencies and poor dispersal abilities that are characteristic of the genus (Koskinen et al., 

2002; Weiss et al., 2002; Froufe et al. 2005). In contrast, Thymallus populations from the Selenge showed no 

clear evidence of genetic structure among populations as far apart as almost 2000 km and should therefore be 

considered a single T. baicalensis ESU within Mongolia. This finding then has implications for the species status 

of the sampled T. nigrescens from Lake Hovsgol. While some authors still recognise it as an independent species 

based on both morphological and biological indices including the number of gill rakers and pyloric caeca (Berg, 

1962; Pivnička & Hensel, 1978; Bogutskaya & Naseka, 2004), other authorities have expressed the need for 

additional analyses or have already outright disregarded T. nigrescens as its own species (Koskinen et al., 2002; 

Knizhin et al., 2006; Weiss et al., 2007). The result from the current research supports the opinion that 

T. nigrescens is not genetically distinct from the other grayling populations across the Selenge basin, and is 

therefore a synonym of T. baicalensis. Our nuclear marker analysis revealed the lack of genetic distinction 

between T. nigrescens and T. baicalensis, which suggests there is a significant amount of gene flow between 

these groups, or else it has ceased only recently. As both forms are present in Lake Hovsgol (Tsogtsaikhan et al., 
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2017), it is likely that these represent two different ecotypes of the same species as is found in many lake 

dwelling salmonids including lake trout (Salvelinus namaycush), Arctic charr (Salvelinus alpinus) and 

coregonids (Coregonus clupeaformis) (Moore et al., 2014; Laporte et al., 2016; Perreault-Payette et al., 2017). 

The morphological differences displayed by individuals that inhabit Lake Hovsgol, including significant 

differences in the length-weight and age-length relationships compared to T. baicalensis populations 

(Tsogtsaikhan et al., 2017), are likely due to the high ecological flexibility and phenotypic plasticity of this 

genus, which has also caused confusion previously between intraspecific forms in Lake Baikal (i.e. black and 

white Baikal graylings, Knizhin et al., 2006). Thus Lake Hovsgol individuals should still be recognised as a 

unique population that is under significant threat and be afforded adequate conservation and protection efforts to 

mitigate the growing impacts of overfishing, pollution and climate change that are currently impacting this 

ancient lake system (Ahrenstorff et al., 2012; Free et al., 2016).   

 
For T. baicalensis, only minimal differences in the genetic diversity and differentiation contributions were 

detected within the Selenge ESU. However, six populations contributed an above average genetic diversity, with 

the Zelter and Huder, and Orkhon and Tuul appearing to share the same genetic contribution of the total diversity 

percentage for each population. This is likely due to the close geographic location of the river confluences that 

allows for regular movement and genetic exchange between these river populations. The contrib analysis and the 

pairwise Fst values also identified the grayling from Lake Hovsgol as being the most genetically differentiated 

from the other grayling populations, thus confirming the genetic importance of the Lake Hovsgol population and 

justifying its status as a priority population within the T. baicalensis ESU. 

 

Patterns across species and implications for broader conservation strategies 

Based on genetic markers we identified ESUs and priority populations for three salmonid taxa across Mongolia. 

While the ESUs for both H. taimen and B. lenok included their major phylogeographic linages, the ESU for 

T. baicalensis incorporated a considerable region of the species total distribution. The most prominent genetic 

structure identified in this study existed between river basins, although there was not complete concordance 

among species, likely due to both biological and ecological differences with regards to natal homing tendencies, 

home range sizes and individual mobility. The paleogeography of these extensive river systems appears to have 

been the dominant influence on the genetic structure of these species, with the isolation of the Selenge / Baikal 

basin creating a separate phylogroup of sharp-snouted lenok, as well as the genetically distinct T. baicalensis 
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species. The ancient hydrological connectivity between the Yenisei and Amur basins has also resulted in shared 

genetic material between sharp-snouted lenok populations in these currently disjunct basins. 

 

The identification of genetically important priority populations within each ESU can now provide a focused 

approach for fisheries management and conservation efforts in Mongolia. Protection of the most genetically 

diverse and differentiated populations is critical, especially as all species investigated already displayed a 

remarkable lack of genetic structure across their Mongolian range. Thus as these priority populations retain the 

highest potential for evolutionary adaptations within each ESU, ensuring they are sufficiently protected will 

better facilitate their survival amid future environmental perturbations, which is expected with the imminent 

onset of climate change. A preliminary conservation strategy for Mongolian salmonids may be to link priority 

population protection across species in order to maximise the resources available for management. Therefore, the 

Shishged, Delgermoron, Orkhon, Tuul and Onon rivers were each deemed important for two or even three of the 

species investigated and thus these regions should be made the focus of initial conservation efforts along with 

Lake Hovsgol and the Kherlen River. If fully protected, the local fish population densities are likely to also 

increase with a higher number of individuals then being able to emigrate to nearby sink populations over time. 

This is particularly critical as both the Selenge and Amur rivers are transboundary drainages and downstream 

populations of each of these species are reportedly facing even greater existential threats than they are in 

Mongolia (Kuang et al., 2010; Zolotukhin, 2013). 

 

In order to achieve adequate species conservation in Mongolia, it is recommended to establish a network of 

spatial protected areas throughout the country that focus on specific rivers where priority populations have been 

identified. Such FPAs have been successfully implemented in many regions around the world to conserve 

genetic diversity and aid in the preservation and recovery of threatened and exploited fish populations (Abell et 

al., 2007; Suski & Cooke, 2007). These FPAs must encompass a range of important fish habitats (e.g. spawning 

tributaries and overwintering pools) in each river system and should consist of both total protected zones in the 

most ecologically important regions where all fishing activities are prohibited and strict catch and release only 

zones where each species can only be caught using single barbless hooks during the normal fishing period, with 

all individuals being released unharmed. The purpose behind having specific catch and release only zones is to 

provide a financial incentive for local communities to accept the conservation and protection plan as they would 

benefit from the increased business from anglers coming to their region to shop for food or stay before or after 
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their fishing trips. In addition, any implemented FPA should also contain a buffer zone along the river’s edge 

where logging, mining and grazing are forbidden so habitat quality and river connectivity can be maintained. 

 

Conclusions 

Attaining a detailed knowledge of the genetic structure and diversity of the main target species in Mongolia’s 

emerging recreational fishery will help guide necessary improvements and develop a more comprehensive 

national fisheries conservation and management strategy. This information is particularly important at this time 

with widespread anthropogenic pressures increasingly threatening the resident fish communities and impacting 

the rivers and lakes they inhabit, both throughout Mongolia and further downstream in the Russian and Chinese 

reaches. By acting promptly and incorporating this new genetic information into existing action plans, authorities 

can prevent further losses of genetic diversity by better protecting the most genetically valuable salmonid 

populations that have now been identified. In addition, translocations or introductions of genetically dissimilar 

individuals can be avoided and inbreeding minimized within fragmented populations (Hänfling et al., 2004; 

Hänfling & Weetman, 2006; Balakirev et al., 2014; Slynko et al., 2015; McDougall et al., 2017). 
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DISCUSSION

 

9 Solutions for Sustainable Fisheries in Mongolia 
 

9.1 Overview and Linkages of Key Research Findings 

In order to gain a more complete and detailed understanding of Mongolia’s emerging recreational fishery, roving 

creel surveys were conducted in three river basins known to be popular fishing locations with anglers. The main 

findings highlighted two angler types in the fishery, a rural angler predominant in the Kharaa and Onon river 

basins and an urban angler predominant in the Eroo River basin. These two angler types displayed significant 

differences in several important details including fishing group sizes, number of annual fishing trips and 

economic expenditure, while they were not significantly different in other aspects such as targeted and captured 

species, size of B. lenok caught (main species caught across all basins) and CPUE. The survey results also 

suggested fishing pressure (median number of annual fishing days) was not significantly different between the 

river basins, even though the Kharaa is in close proximity to Darkhan and Ulaanbaatar, while the Eroo and Onon 

river basins are more remote and less accessable to many anglers (Hypothesis I = False). Furthermore, while a 

substantial number of anglers said they did know the fishing regulations, a considerable number still didn’t or 

were unsure of them, especially in the KRB (Hypothesis II = True). Thus there remains a large proportion of 

active anglers, across all three basins, who are fishing frequently but are still unaware of the current fishing 

regulations. This lack of knowledge and education is likely a major contributor to the occurence of illegal fishing 

activities which has been witnessed by more than half (56 %) of all fishing groups surveyed.  

While the creel surveys indicated that fish consumption across the three basins was generally low, almost half of 

respondents in the KRB were still frequent consumers of locally caught species, including one retired couple 

who ate fish almost daily during the ice free period. Thus the potential human health risks associated with the 

regular consumption of contaminated fish due to the heavy metal contamination at numerous ‘hotspot’ locations 

in the basin raised serious concerns. The ensuing sampling program of five consumed fish species revealed 

elevated muscle contents of Cr, As, Hg and Pb in individuals caught from the middle and lower river reaches, 

while there was elevated Zn in B. lenok collected from the upper tributaries. Maximum median muscle contents 

of Cr, Cu, Pb and Hg increased in the higher trophic level species (Hypothesis III = True). Hg posed the most 

serious risk, with 10.7 % of all fish sampled exceeding the internationally recommended threshold for this toxic 
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heavy metal in fish tissue for human consumption, however direct intervention such as restrictions of fish 

consumption was not immediately warranted (Hypothesis IV = False).  

Creel surveys also confirmed H. taimen, B. lenok and T. baicalensis as the three most targeted and captured 

species in the emerging recreational fishery, with each having already suffered from widespread population 

declines across Mongolia (Ocock et al., 2006). Thus filling critical knowledge gaps regarding their spatial 

ecology and genetic population structure was essential to help not only improve the ecological understanding of 

these threatened species, but also enhance and guide management strategies and decisions in the future. The 

autecology of H. taimen and B. lenok was investigated using passive acoustic telemetry in order to identify 

periods of heightened movements, shifts in habitat usage, seasonal behaviours and home range sizes in a highly-

connected river system. The most extensive distances moved by a tagged individual was 126.1 km for H. taimen 

and 45.3 km for B. lenok, with the home range for B. lenok being significantly larger than had been previously 

reported for a species in this genus (Hypothesis V = True). B. lenok also displayed increased activity at a 

greater depth during the day and were less active in shallower habitats during the night across all seasons 

(Hypothesis VI = True for activity / False for depth). Both H. taimen and B. lenok displayed peak movements 

in late spring and early summer during the reproductive period, while a second less pronounced concentration of 

movements were detected in late summer and early autumn (Hypothesis VII = True). However, not all tagged 

H. taimen descended the Balj tributary during the cooling period to overwinter in the Onon River, but instead 

remained during the entire ice coverage in the smaller Balj tributary (Hypothesis VIII = False). In addition, and 

quite concerningly, the majority of B. lenok in the Eroo River basin undertook spawning movements in late June, 

after the opening fishing season start date, which would expose a significant proportion of the spawning 

population to increased fishing pressure during their critical reproductive period. 

In addition, the interconnectedness of conspecific populations, together with the genetic diversity of H. taimen, 

B. lenok and T. baicalensis in Mongolia were investigated. Both nuclear and mitochondrial genetic markers were 

used to demarcate species specific ESUs which formed separate haplotype clusters that mirrored the major river 

basins (Selenge and Amur). These results demonstrated an overall low genetic diversity between populations of 

the same species and thus indicated large scale, intra-basin gene flow and connectivity (Hypothesis IX = True). 

All species displayed large spatial scale genetic homogeneity irrespective of their body size, with only B. lenok 

displaying increased isolation by distance (Hypothesis X = False). Priority populations were also identified 

within each ESU, which were found to contribute an above average genetic diversity and differentiation across 

their Mongolian distributions and thus are deserving of more management resources and enhanced protection.  



 
 

Table 9. Overview of the major recommendations discussed in the following pages for improving the management and conservation strategies for H. taimen, B. lenok and T. 

baicalensis populations across Mongolia, while further enhancing the sustainability of the emerging recreational fishery.

Recommendations Potential Benefits / Outcomes Sub-
Section 

1. Establishing additional FPAs 
(Freshwater Protected Areas) 

Mitigating the impacts from both current and future threats including illegal fishing, overexploitation, water pollution, 
overgrazing, mining, dam construction and climate change. Based on acoustic and genetic data. 9.2 

2. Shifting Open Fishing Season 
Start Dates 

Better protection for resident B. lenok populations from fishing activities being conducted during their critical spawning period. 
Based on acoustic telemetry tracking of B. lenok in the Eroo River. 9.3 

3. New Prohibited Species –  
blunt-snouted lenok (B. sp) 

Molecular research has illustrated that the blunt-snouted lenok is a genetically distinct species in Mongolia. The species’ 
restricted distribution and fragmented populations demands increased protection. Based on genetic data. 9.3 

4. Species Specific Minimum  
(& Maximum) Size Limits 

Protecting immature individuals will increase the resilience of fish stocks to current and future fishing pressure by ensuring all 
fish spawn at least once before they can be legally removed. Based on biomentric data collected for biocontamination work. 9.3 

5. Biomonitoring Program Biomonitoring heavy metal contents using bioindicator species can help to mitigate human health risks associated with fish 
consumption, while lessening the number of threatened species that need to be sacrificed. Based on biocontamination work. 9.4 

6. Widespread and 
Comprehensive Angler 
Education Programs 

Improving angler knowledge of fisheries regulations can increase compliance; help drive shifts in long held bad habits, and can 
create a sense of community responsibility for a specific river and fish population. Based on creel survey results. 9.5 

7. Including Fish Passages / 
Environmental Flows 

Reduce impacts of proposed dams on threatened fish populations by allowing movements to spawn and find thermal refuge, 
maintain gene flow and retain some ecological processes. Based on acoustic and genetic data. 9.6 

8. Fisheries Dependent & 
Independent Assessments 

Guide management decisions based on changes in fishing pressure, evaluating the effectiveness of newly implemented 
management tools, track regional fish population abundances / recruitment, and identify overfishing. Improving management. 9.9 

9. Merging Fish Ecology & Water 
Resource Management Plans 

Improved ecosystem functioning, increased fisheries production and health, preserving water security for human requirements.  
Improving management. 9.9 

10. Improving Transboundary 
Coodination of Fisheries 

ESUs could be managed as a single entity over international boundaries, incongruent domestic policies streamlined, better fight 
illegal fishing and cross border trading, maintaining river connectivity on a meaningful scale. Improving management. 9.9 



 
 

9.2 Freshwater Fish Conservation in a Transitional Society 

The continued growth of human populations, urbanisation and per capita consumption has ultimately resulted in 

the unsustainable exploitation of the Earth’s biodiversity (Adams et al., 2004; Rands et al., 2010). These losses 

have been accelerated in many developing and transitional countries due to the unwavering desire of 

governments to reach national growth targets and endemic corruption, which has often inhibited conservation 

efforts (Peh & Drori, 2010). However, the creation of a global network of protected areas has proven to be one of 

the more effective solutions for reversing these trends (Bruner et al., 2001; Saunders et al., 2002). With 

terrestrial and marine environments commonly designated protected areas, freshwater habitats have usually only 

been incidentally protected as part of their inclusion within terrestrial reserves (Skelton et al., 1995; Abell et al., 

2007). Thus a greater number of protected areas, which specifically target critical freshwater habitats, are 

urgently needed in order to stem the loss of aquatic biodiversity (Saunders et al., 2002). Establishing a series of 

FPAs in a transitional society such as Mongolia may provide the greatest benefits for the threatened fish 

populations. 

Establishing Freshwater Protected Areas across Mongolia 

Although 17.4 % of Mongolia’s total territory already falls under protective legislation (Appendix 5), it has been 

described as ecologically inadequate both in terms of size and inclusion of suitable ecosystems as both riparian 

and riverine habitats currently have a very low representation (UNDP, 2017a). Thus with an ultimate target set 

by the government of achieving 30 % protective area coverage by 2020 (UNDP, 2017b), there is potential for 

increasing the protection of Mongolia’s unique river ecosystems in the near future. Implementing a series of 

FPAs across the Selenge, Amur and Central Asian river basins is highly recommended and urgently needed for 

protecting targeted fish species and critical habitats, and ultimately improving the sustainability of the emerging 

recreational fishery (Abell et al., 2007). Currently the low number of Strictly Protected Areas are the only places 

in the country that prohibit all fishing activities, as fishing still occurs in Mongolia’s National Parks (Appendix 

5). Thus major rivers such as the Kherlen, Orkhon, Kharaa, Chuuluut, Ider and Eg-Urr have zero spatial 

protection, while many others have only minimal areas that are currently protected e.g. Eroo, DelgerMoron and 

Khalkhin.  

The effective design and placement of an FPA is central to its long-term success, but in any case, it should 

ensure the longitudinal continuity of the river, maintain the hydrological connectivity of its tributaries, preserve a 

considerable strip of the riparian vegetation and completely prohibit development, mining, logging and fishing 
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mortality (Saunders et al., 2002). However, strict catch and release fishing can still be allowed in certain areas to 

maintain economic incentives. While larger FPAs encompassing entire river basins or extensive river reaches 

would generally be more conducive to conservation objectives, they are typically seen as less feasible by 

authorities. Thus smaller-scale intra-basin FPAs are proposed for Mongolia, which could protect specific river 

reaches or tributaries. Although the general location of any new FPA should reflect the priority populations for 

each of these species that has been identified in Chapter 8 (Figure 27), the exact sites would need to be selected 

following a detailed habitat assessment to identify suitable intact habitats. The specific size of such an FPA 

would likely vary with the local topography and surrounding human footprint, however, a meaningful minimum 

size should encompass the median longitudinal movements detected in the acoustic telemetry research for both 

H. taimen (27.7 km) and B. lenok (19.1 km; Chapters 6 & 7). While two H. taimen sanctuaries have already been 

established in Mongolia in collaboration between international fly fishing outfitters, NGO’s and local fishing 

clubs, several more are still urgently needed throughout the country, specifically in the Eg-Urr and Kherlen 

rivers which currently have no protection and are facing a substantial threat. 

9.3 Addressing Management Shortfalls to Curb Intensifying Fishing Activities 

Shifting the Open Fishing Season Start Dates 

Closed fishing seasons are a key management tool to protect exploited populations from fishing pressure during 

their critical spawning periods. However, in Mongolia, the dates of the closed season have been based on only 

one species, H. taimen, as the Ministry of Nature and Environment have set the opening date as the latest 

reported spawning of H. taimen in Mongolia i.e. the 15th of June in the Darkhad Depression (Vander Zanden et 

al., 2007). Although a focus on H. taimen is justifiable and highly beneficial to the protection of this endangered 

species, giving little or no consideration for the specific spawning periods of other heavily targeted and 

threatened species, such as B. lenok, may be inadvertently exposing these vulnerable populations to an increased 

risk of overexploitation. Such a potential situation has become evident during the acoustic telemetry research 

that was conducted on B. lenok in the Eroo River (Chapter 6), as two specific dates of increased upstream 

movements were found to occur following the river ice break up. While some movements were detected shortly 

before the 15th of June (the opening date of the fishing season), the second and more predominant period of 

concentrated movements occurred several days after the 15th of June. Although data is only available for a single 

population in a single year, if the spawning period for B. lenok regularly occurs after the start of the opening 

fishing season each year, then a high proportion of the spawning stock are being exposed to the large influx of 

anglers that arrive at their favourite fishing location on the 16th of June. Therefore if B. lenok spawning dates can 
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be confirmed as occurring after the 15th of June in other regions and years, then authorities need to extend the 

opening date by 7 to 10 days in order to better protect B. lenok populations from further declines. 

In addition, there have been calls to implement a staggered opening fishing season across Mongolia, where 

fishing could begin before the 15th of June in certain regions. The proposal is based on computer modelling of 

climate data that predicted H. taimen commence spawning in river reaches that have a lower elevation and thus 

surface water temperatures that increase to 6 – 8 ˚C (the temperature range that triggers H. taimen spawning; 

Holćík et al., 1988) a few weeks earlier (20th of May) than in rivers that are at higher elevations and 

consequently H. taimen spawning later (15th of June; Vander Zanden et al., 2007). By rolling back the ‘over-

protective’ start date in those lower elevation rivers, the authors argue that international fishing companies can 

conduct more catch and release expeditions each year and in turn provide increased conservation benefits for 

H. taimen (Vander Zanden et al., 2007). Although such a proposal may be justifiable in terms of conservation, 

this plan, once again, is only focused on a single species and seems to not have considered the impacts that 

would be associated with recreational fishing being conducted during the critical spawning periods of other 

threatened species, which would be incidentally caught while targeting H. taimen. Furthermore, the proposal is 

based on modelled results with no validation of H. taimen spawning behaviour in the rivers where a roll back 

start date is recommended. However with the current research results of H. taimen movements in the Onon / Balj 

(Chapter 7), a region where Vander Zanden et al., (2007) recommended a rollback start date of the 20th of May, 

upstream movements that are likely associated with spawning behaviour were still detected in individual fish 

after this date and well into June. While there were only a few individuals that demonstrated these movements 

during the study, it generates some doubts over such a proposed rollback plan across Mongolia, especially as the 

anticipated Eroo River start date was also suggested to be the 20th of May, which falls well before B. lenok 

spawning activities that were detected in the basin (Chapter 6). Thus, it is recommended that no such open 

fishing season start date rollback be implemented anywhere in Mongolia, especially not before specific spawning 

dates, for both H. taimen and B. lenok, are confirmed in the proposed rollback rivers. 

New Prohibited Species – blunt-snouted lenok (B. sp.) 

The 2012 federal legislative amendment to prohibit the intentional killing of H. taimen in Mongolia was a 

landmark decision by authorities to help promote population recovery of this endangered species across the 

country. However, recent research and observations suggest that an additional targeted and commonly 

misidentified salmonid should also be afforded total protection status in order to prevent population declines and 

potential expiration in the future. Blunt-snouted lenok (B. sp.) populations in Mongolia have a geographically 
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restricted distribution that is limited to the Onon and Kherlen river basins where they reside in small, fragmented 

populations but are still captured and retained by local anglers (Froufe et al., 2008; pers. observs). As the blunt-

snout lenok has been considered an interspecific form of B. lenok in the past, it has not been included on the 

Mongolian Red List of Fishes (2006). However, the recent molecular research focused on the Mongolian 

populations (Chapter 8), has demonstrated that the blunt-snouted lenok is not just a morphologically different 

form but a genetically distinct and independent species as well, which lives in sympatry with B. lenok. Thus the 

blunt-snout lenok should be formally recognised as a separate species in Mongolian waters and correctly re-

described and added to the official list of Mongolian fishes. This species should then be afforded a formal 

population assessment within the country, which would likely see it included onto an updated Mongolian Red 

List of Fishes with an assigned category relating to its suspected threatened status i.e. endangered.   

Introduction of Species Specific Minimum (& Maximum) Size Limits 

A further proposal to enhance the sustainability of Mongolia’s recreational fishery is the introduction of species-

specific size limits. This management tool is commonly used in many countries around the world in an attempt 

to control the size and thus the age of individual fish that are captured and killed legally within a fishery. The 

strategy is based on the theory that if the limit is set above the size (TL) at first maturity, then an accepted 

proportion of the population should have had a chance to spawn at least once and contribute to the next 

generation before they can be removed. As B. lenok and T. baicalensis make up a considerable proportion of the 

total surveyed catch within Mongolia’s emerging recreational fishery (Chapter 4), these two species are 

considered to be at most risk of being captured before they have reached maturity. Both B. lenok and 

T. baicalensis have been reported to reach maturation between 3 and 6 years of age or approximately 18 and 

48 cm TL for B. lenok, and 22 and 33 cm TL for T. baicalensis (Froufe et al,. 2003; Tsogtsaikhan et al., 2017). 

Therefore, based on the limited published data and the preliminary age-length and maturity investigations of 

both species in the Kharaa and Eroo river basins (Appendix 6b and 6c), potential minimum size limits were 

calculated. If complete protection (100 %) of all immature individuals was deemed to be warranted by 

authorities then a minimum size limit of 48 cm TL for B. lenok and 33 cm TL for T. baicalensis could be set. 

However, if this was the case, then according to the catch data from the creel surveys (Chapter 4) very few 

individuals could have been legally retained. However, managers are generally required to make concessions and 

agree to accept a lower percentage of protection for the spawning population. Therefore, in order to maintain the 

fishery, while protecting a significant proportion of the spawning stock, potential minimum size limits of 34 cm 

TL for B. lenok and 25 cm TL for T. baicalensis could be implemented (Appendix 6b and 6c). These limits 
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would mean that two-thirds (66 %) of all captured and killed individuals reported from the creel surveys 

(Chapter 4) would have had the chance of reaching sexual maturity and have potentially spawned at least once 

before being retained legally. The implementation of these minimum size limits would mean approximately half 

of all current B. lenok catches across the country would need to be returned as the mean length of caught 

individuals was 34.18 cm TL. However, the mean length of caught T. baicalensis individuals was only 21.79 cm 

TL, which is substantially lower than the proposed limit of 25 cm TL. The introduction of minimum size limits 

for the two most commonly caught species in Mongolia would go a long way to increasing the resilience of these 

populations to both current and future fishing pressure by maintaining a higher spawning stock biomass as long 

as all undersize fish are returned to the river and survive.  

The implementation of a maximum size limit for both B. lenok and T. baicalensis would also be hugely 

beneficial to protect the older larger individuals within the population, as larger fish are generally known to 

produce an exponentially higher number of eggs and increased larval quality than younger, smaller but still 

mature individuals (Wootton, 1998; Berkeley et al., 2004; Arlinghaus et al., 2010). Thus protecting highly 

fecund larger fish could represent a powerful strategy for managing fisheries sustainability (Gwinn et al., 2015). 

Although detailed data is currently not available, a maximum size limit for B. lenok would likely be around the 

mid to high 40’s cm TL, while for T. baicalensis a maximum size limit would likely be around the mid to high 

30’s cm TL.  

9.4 Biomonitoring to Mitigate Human Health Risks 

Bioindicator Species 

In addition to the proposed fishery dependent and independent monitoring in Mongolia, there is also an urgent 

need to establish a meaningful biomonitoring program that is focused on quantifying the heavy metal contents in 

consumed fish species from contaminated river basins (Chapter 5). As was identified in the KRB, heavy metal 

biocontamination, specifically Hg, was detected in several fish species and could potentially pose a human health 

risk as fish catch and consumption rates increase across the country (Chapter 4). While the total heavy metal 

concentrations in environmental media (e.g. water and sediment) can indicate the relative degree and extent of 

the contamination, they do not reflect the level of exposure faced by the resident aquatic fauna (Cain et al., 2000) 

or species further up the food chain, including humans. Therefore, studies involving aquatic organisms identify 

the bioavailability of contaminate in the ecosystem and can subsequently help determine the true level and 

impact of the contamination (Costa & Hartz, 2009). Resident aquatic species that accumulate heavy metals from 
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the surrounding environment, in a representative way, make ideal bioindicators and thus can be used to monitor 

the contamination trends over an extended period of time without the need to sacrifice high numbers of targeted 

or threatened species. The proven suitability of selected bioindicator species is essential to the success of such 

important programs. The stone loach, Barbatula spp. (Balitoridae), is a potential suitable candidate as a 

bioindicator species in the Selenge River basin. It is common and widely distributed, small in size, inhabits even 

the smallest tributaries, is benthic and thus closely associated with the substrate (Boscher et al., 2010) and is 

expected to have a restricted home range so would represent the local conditions. While the suitability of 

Barbatula spp. as a heavy metal bioindicator requires confirmation under local conditions, implementing such a 

biomonitoring program in specific hotspot areas is crucial for avoiding more potentially serious human health 

issues in the future.  

9.5 Improving Angler Compliance with Increased Education 

Illegal fishing is a major problem for many recreational fisheries around the globe, with the impacts of these 

activities potentially accumulating to a point where they can render desired management and conservation 

outcomes ineffective (Pinder et al., 2014; Chen et al., 2017). Thus high levels of angler compliance and 

enforcement of regulations are critical for safeguarding the sustainability of exploited fish stocks. However, in 

countries and regions where personnel and resources for implementing adequate enforcement measures are 

limited, increasing angler awareness through community education programs may be one of the best ways to 

mitigate the number of potential offenders (Granek et al., 2008). This description reflects the current situation in 

Mongolia as the emerging recreational fishery is under managed, under resourced and thus illegal fishing 

activities have been allowed to largely continue in impunity. Therefore a comprehensive angler awareness and 

education program could provide, at least, part of the solution.  

Creel surveys not only revealed the widespread occurrence of illegal fishing activities within the three river 

basins but also the lack of knowledge among anglers regarding the Mongolian fishing laws (Chapter 4). Thus as 

a first step to try and improve compliance within the fishery, it was clear that increased numbers of anglers 

needed to be made aware or reminded of these regulations and the science behind them, and the associated fines 

for breaching them. This task was initiated during the current body of research and in collaboration with the 

World Wildlife Fund (WWF) Mongolia, where informative pamphlets were distributed to anglers and posters 

were provided to rangers and gatehouse officers close to popular fishing locations (Appendix 7). These materials 

highlighted the existing fishing laws and fines, as well as additional recommendations such as proposed 
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minimum size limits, best practice methods for handling and releasing H. taimen and various other conservation 

concerns that had been observed during the extensive time spent in the region. This advice related to the use of 

soaps and detergents in the river, discarding rubbish during camping trips and throwing away cigarette filters. 

While only a preliminary project, it was planned that this material will continue to be distributed by WWF 

employees within their existing community outreach work in an attempt to make a more lasting impact. 

In order to make further inroads towards creating a lasting legacy of compliant behaviour and more sustainable 

fishing practices among Mongolian anglers, a comprehensive community engagement project is essential. Any 

efforts should not only focus efforts on rural anglers that reside in the Onon or Kharaa river basins, but also 

urban anglers in Ulaanbaatar, as they have been revealed to be responsible for a significant part of the increasing 

fishing pressure in the more remote, and thus pristine, river reachers (Chapter 4). As has already been successful 

in the Onon River basin, fishing clubs should be created across other Mongolian river basins that experience 

considerable fishing pressure, including an urban chapter in Ulaanbaatar. Regular fishing club meetings could 

provide an avenue to train and support anglers to increasingly adopt catch and release practices, while also 

providing a platform to install compliance for the existing and new fishing regulations recommended in this 

thesis. Such a community project could work to create a sense of ownership and responsibility for a specific 

region, in addition to helping drive a shift in long held environmentally unfriendly habits (Cooke et al., 2013; 

Freed et al., 2016). 

9.6 Preserving Hydrological Connectivity and River Integrity in the Face of 

Imminent Threats 

As hydroelectric dam construction on the Selenge, Orkhon and Eg (Egiin) rivers in Mongolia wait for final 

approval, the government remains eager to increase its power production and meet the rising demands of 

urbanisation and the powerful mining sector (Rapoza, 2017). However, the extensive environmental impacts that 

such dams typically inflict on the river continuum, including ecological processes, regional habitats and aquatic 

communities are often widespread and long lasting (Morita et al., 2009). Dam construction is one of the major 

causes of fish population declines (Dudgeon et al., 2006; Vörösmarty et al., 2010); especially for many riverine 

species that move large distances between spatially distinct habitats to complete their life cycles (Liermann et al., 

2012). Thus the impacts of dam construction on Mongolian river basins will add substantial pressure to the 

already threatened H. taimen, B. lenok and T. bacicalensis populations (Chapter 6, 7 & 8). If these dams are 

constructed, then it is imperative that all necessary measures are taken to mitigate their ecological effects. 
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Fish Passages 

Fish passages including ladders, lifts and ramps, are incorporated in, or added on, to river barriers such as dams 

and weirs so migrating species can move past these obstacles and access critical habitats to complete their life 

cycles (Agostinho et al., 2002). In a recent workshop that focused on the Eg River dam construction, a trap-and-

transport method was proposed as a viable option to facilitate both up and downstream fish movements past the 

planned 90 m high dam wall (FAO, 2015). This method would involve trapping migrating individuals in a 

chamber at the bottom of the dam and periodically transporting them via truck more than 60 km upstream to a 

free-flowing river reach to be released. However such a proposal would likely only provide minimal success as a 

number of potential limitations appear to exist. These include the duration and frequency of the upstream fish 

release trips, increased fish stress during transportation, water quality issues in the transport chamber and the 

potential for increased predation during the extended time in a limited space. There is also likely to be problems 

in maintaining funding for the continuation of such a program over the life of the dam (decades). Thus more 

suitable options for fish passages may include an automatic vertical fish lift or an extensive fish bypass channel 

around the dam wall, although even these methods are likely limited with such a large dam height. They do 

however; present alternative options for inclusion on other smaller dams constructed in Mongolia. For the Eg 

River dam, the best solution in terms of fisheries management, conservation and sustainability would be to not 

build the dam at all. Authorities should first exhaust all other renewable energy options that could be capable of 

increasing power demands, before constructing a dam that would undoubtedly have a severe impact on the health 

of the Eg River, one of the few remaining Mongolian rivers with robust H. taimen populations (Jensen et al. 

2009). 

Implementing Environmental Flows 

The implementation of a suitable environmental flows regime as part of a dam’s management procedure would 

be crucial to the survival of local fish populations. Environmental flows are a relatively new concept that are 

aimed at mitigating the ecological impacts of a dam by intentionally releasing water in a way that mimics the 

river’s natural flow variability in terms of magnitude, frequency, timing, duration, rate of change and 

predictability (Arthington et al., 2006; Olden & Naiman, 2010). Dammed rivers without appropriate 

environmental flows suffer from a myriad of changes with regards to the quality and quantity of water available 

downstream, reduction of sediment transportation and nutrient input, and loss of aquatic habitat and biodiversity 

(Ligon et al., 1995; Kingsford, 2000). For many riverine fish species, the extent and timing of river discharge, 

along with water temperature, can trigger key movements and behaviours such as the timing of spawning runs. 
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Thus a major transformation or the complete loss of the natural flow regime can have significant impacts on 

river dynamics as well as fish populations (Bunn & Arthington, 2002). Appropriate environmental water releases 

can also help to maintain hydrological connectivity during low flows, which is increasingly important 

considering the expected impacts of climate change, which include lower annual rainfall, increased air 

temperatures and elevated evapotranspiration across the region (Batimaa, 2006; Bardach et al., 2009; Preiss et 

al., 2011; Karthe et al., 2014). While environmental flows, in conjunction with suitable fish passages, can help to 

lower the overall impact of dam construction on freshwater communities, by no means can these measures 

completely replicate all of the lost benefits of an unimpacted, free-flowing ecosystem and thus should in no way 

been seen as justification for dam construction. The inclusion of appropriate fish passages and environmental 

flows within the management of any proposed hydroelectric dam in Mongolia is highly recommended, and 

should be legally mandated if dam construction is deemed to be unavoidable. 

Climate Change Impacts 

Alteration of stream thermal regimes is likely to be one of the most important environmental changes that 

aquatic organisms experience, given the strong control that temperature has on distribution, abundance, growth, 

and population persistence (Isaak et al., 2010). Already in northern Mongolia, air temperatures are increasing 

three times faster than the rest of the northern hemisphere and thus resident fish populations, including B. lenok 

and T. baicalensis, are currently experiencing water temperatures close to their upper levels for normal growth 

during the summer months (Hartman & Jensen, 2016). With a further 2˚C rise in mean temperatures, B. lenok 

would experience a reduction in growth of 59 %, while T. baicalensis would suffer from a complete inability to 

grow (if food levels remain unchanged; Hartman & Jensen, 2016). Thus these imminent climate change impacts 

pose a significant threat to Mongolia’s fish populations, particularly the more thermally sensitive salmonid 

species (Rieman et al., 2007). As well as impacts on individual growth, there will likely be large scale 

distributional shifts as well as an increased loss of suitable habitat including critical spawning and early juvenile 

rearing sites in the colder headwaters (Isaak et al., 2010). Therefore, along with the need to maintain riparian 

vegetation via FPAs, which can strongly influence near-stream microclimates (Moore et al. 2005), and 

preserving natural river flows e.g. minimising dam constructions, authorities need to conserve the highest genetic 

potential for evolutionary adaptations which can better facilitate population survival amid these future 

environmental perturbations (Chapter 8). Steps need to be taken to ensure as many priority populations (those 

that have been identified to have above average genetic diversity or differentiation) as possible are protected 

across Mongolia (refer to Figure 27).  
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9.7 Management Avoidances 

Stocking Programs 

In freshwater recreational fisheries, often the default action by managers when stocks have become depleted 

(either perceived or actual) has been to supplement the wild population through a stocking program of artificially 

produced conspecifics (Cooke & Cowx, 2006; Hunt et al., 2014). While such releases can temporarily 

compensate for population declines and help to maintain or increase local catch rates, there are also potentially 

longer lasting negative ecological implications which can have significant impacts on the recipient populations 

(Einum & Fleming, 2001). Hatchery reared fish typically differ from wild individuals in regards to both their 

genotype and phenotype due to propagation using non-local brood stock and the artificial rearing environment, 

which exposes fish to unnatural selection pressures and conditions. Studies on the impacts of these differences 

have shown that wild fish population abundances are often reduced due to density dependent mortality from the 

increased competition for habitat and food resources, as well as the genetic introgression from maladapted 

stocked individuals (Frankham et al., 2002; Kostow, 2009; Araki & Schmid, 2010). In Mongolia, the artificial 

propagation and stocking of threatened fish species, particularly H. taimen, is seen in some circles as a suitable 

solution or easy fix for the current widespread population declines, and as a result, there has already been 

preliminary efforts focused on their captive breeding for restocking purposes (Dulmaa, 1999; Hogan & Jensen, 

2013). However, while the inter-basin genetic differentiation was found to be low for H. taimen, B. lenok and 

T. baicalensis populations (Chapter 8), and thus potentially conducive for basin specific stocking programs, the 

perceived ecological impacts of introducing large numbers of individuals, especially of the highly aggressive 

H. taimen, into Mongolia’s rivers would likely be highly detrimental for the resident fish communities. This is 

due to the effects of increased competition and predation as the natural densities of this top predator are naturally 

very low (Holćík et al., 1988; Matveyev et al., 1998). Thus it is recommended that the future direction for 

Mongolian authorities and fish conservation organisations is to prioritize the protection, conservation and 

recovery of remaining wild populations and riverine habitats before resorting to stocking programs and captive 

breeding and rearing activities which would further jeopardize these already threatened species. 

9.8 Transferability of Research Methods, Results and Recommendations 

The current scientific research conducted in Mongolia utilised common fisheries techniques and state-of-the-art 

technologies to investigate several key, yet previously missing, aspects of the country’s fish and fisheries. While 

these methods are in regular use in contemporary fisheries science around the world, their implementation under 



 
128 

 

Mongolia’s extreme environmental conditions and across such remote and isolated regions was not as common 

in some of these fields. With the main analyses of both the heavy metal biocontamination (Chapter 5) and the 

population genetic structure (Chapter 8) projects conducted in modern laboratories in Germany, the 

transferability of this research should be straight forward, as only the samples would need to be collected in the 

study site. However the use of passive acoustic telemetry in free-flowing, highly connected lotic systems has not 

been extensively trialled previously under such extreme conditions. Thus the success of the current tagging 

projects have clearly demonstrated that this method can be effectively implemented in these harsh environments 

in order to gather detailed fish movement data, as long as potentially problematic issues were adequately 

addressed (Chapters 6 and 7). This method has already been successfully transferred across river basins and 

species within Mongolia, i.e. H. taimen in the Onon/Balj rivers (Amur drainage) and B. lenok in the Eroo River 

(Arctic drainage), and thus the possibility to remotely track other medium and large bodied riverine fishes such 

as T. baicalensis, the Siberian sturgeon (Acipenser baerii) or the blunt-snouted lenok (B. sp.) across river basins 

in northern and Central Asia and Siberia or beyond, is highly possible and achievable. 

Many of the challenges facing Mongolian salmonid populations are also impacting these species across their 

entire range; however, in many parts of Russia and China these challenges are occurring at a far greater intensity 

due to the higher human population densities, a more established fishing culture and past large-scale 

infrastructure development projects (Tong et al., 2013; Zolotukhin, 2013). As a result, populations of these 

species are suffering from even more dramatic losses with H. taimen having gone locally extinct or suffered 

from significant declines in 39 out of the 57 river basins assessed in Russia (M. Skopets unpubl. data, in Hogan 

& Jensen, 2013), while in China, H. taimen populations in the Heilongjiang (Amur) River have declined by 95 % 

over the past 50 years (Tong pers. comms., in Hogan & Jensen, 2013). Thus even more urgent actions are needed 

in these countries to avoid continued widespread declines and more local extinctions. The potential to effectively 

transfer the current Mongolian research results and recommendations to help guide such changes is highly 

plausible and necessary as long as regionally specific conditions are also considered. By establishing additional 

FPAs in the remaining intact regions, immediate impacts could be made to secure the surviving populations and 

last riverine habitats. In addition, legislating for prohibited species, implementing sufficient spawning season 

closures (specific to the local climates), introducing minimum size limits and commencing a focused angler 

education program would all also help immensely in those countries. 
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9.9 Future Research and Management Priorities 

The likelihood of securing the long-term survival and recovery of Mongolia’s threatened fish populations in 

parallel to safeguarding the sustainability and resilience of the emerging recreational fishery, will depend largely 

on the successful implementation and enforcement of the current and proposed management recommendations. 

However, there are also additional key research questions that need to be addressed across a range of topics.  

Future Research Priorities 

With recent legislation prohibiting the intentional killing of H. taimen across Mongolia, incidences of their catch 

and release are now fortunately increasing among local anglers (Chapter 4; G. Balbar pers. comm.). However, 

the physiological impacts associated with this practice and the potential for post-release mortality or sub-lethal 

effects resulting from the mishandling of individuals (pers. observations.), which is critical to the success of this 

management tool, has not yet been investigated in detail. This information is urgent considering previous 

computer modelling has indicated that even a small level of harvest, or in this case post-release mortality, could 

have significant impacts on the resident H. taimen population (Jensen et al., 2009). There may also be hidden 

effects such as increased predations of smaller individuals following release or sub-lethal effects including 

elevated stress, impaired reproductive output, reduced energy levels, increased infections and / or reduced 

growth rates (Davie & Kopf, 2006; Halttunen et al., 2010; Smit et al., 2016). Such research is essential given that 

there are a number of international fishing tour operators that specifically target H. taimen along the same river 

reach on multiple occasions during a season, and year after year. A comprehensive research project would need 

to entail analyzing blood plasma for concentrations of glucose, cortisol and lactate to determine the effects of 

angling duration, air exposure and water temperature on individuals stress post capture, while longer term effect 

studies may require observing post-release mortality of individuals in tanks or in situ cages over a period of 

hours or days. Examining post-release behavioural impairments and mortality over for a longer period of months 

or years could be investigated using biotelemetry methods (Donaldson et al., 2008).  

There are also a number of other important research topics that should be considered including investigating the 

physiological effects of mining induced heavy metal contamination on resident fish species, particularly in 

relation to the survival and development of the more sensitive younger life stages (Jezierska et al., 2009; Barbee 

et al., 2014). Such an experiment would require only a basic laboratory setup to expose embryos and larvae 

collected from the field, to different concentrations and mixtures of heavy metals in the water and sediment. 

Mortality and deformity rates could then be observed over a specific period of time (hours and days). Additional 
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research should focus on climate change effects as it will be a significant factor for the region in the near future. 

The physiological stress (thermal ecology) of various fish species under higher water temperatures needs to be 

determined, including across all life stages. With preliminary research having already begun (Hartman & Jensen, 

2017) and indicating that B. lenok and T. baicalensis are already experiencing temperatures near their upper 

levels for growth during summer, this research is urgent for other species including H. taimen and blunt-snouted 

lenok. Experiments can be run streamside with the metabolic rate of individual fish measured under different 

water temperatures so bioenergetics models can be derived to assess fish responses and impacts on growth and 

maturity (Hartman & Jensen, 2017).  

Long-term Monitoring and Assessment of Mongolian Fisheries 

As well as future research, authorities need to implement a multi-faceted, long-term fisheries monitoring and 

population assessment program to be able to track species abundance, recruitment rates and population size 

structures in selected river basins. Information obtained from such monitoring can be compared to creel survey 

results to better evaluate and manage the fishery by setting appropriate sustainable harvest limits for B. lenok and 

T. baicalensis. Building on from the current creel surveys (Chapter 4), further angler interviews should be 

performed both within the Kharaa, Eroo and Onon river basins, to allow for comparisons, and across additional 

river basins that are a concern due to increasing fishing pressure (e.g. Delgermoron, Tuul, Eg-Uur, Orkhon, etc.). 

These surveys must record important details regarding the fish caught (and released) each trip, including species, 

lengths and quantity. A ‘catch log book’ could be provided to regular anglers or those who are fishing club 

members to get a more complete idea of the annual fishing activities. At the same time, fishery observers (e.g. 

trained university students) could follow specific anglers or closely monitor a particular area to obtain regular 

catch data. Ideally these creel surveys should be done annually or in alternate years so a long-term data set can 

be collected and trends can be identified and managed appropriately. 

Merging Fish Ecology and River Basin Management 

The increased human demand for freshwater has placed severe pressure on inland fisheries productivity and 

aquatic biodiversity (Dudgeon et al., 2006; Cooke et al., 2013). One factor that has contributed to this current 

situation is the historical lack of consideration for ecological issues within water resource management plans, as 

preference has often been given to economically beneficial water allocations that tend to receive much wider 

political or public support (Brummett et al., 2013; Cooke et al., 2016). Although priorities have slowly shifted in 

many regions and countries towards more environmentally friendly policies and regulations (e.g. the European 

Water Framework Directive), fundamental changes are still urgently required to better integrate ecological 
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priorities into river basin management plans particularly in many developing and transitional countries. Such 

changes could result in better functioning ecosystems and more robust inland fisheries, while still maintaining 

water security for human needs (Cooke et al., 2016). As Mongolia is already a water scarce country, it faces 

many challenges with regards to water security (Karthe et al., 2015). Even though the Mongolian government 

has selected an IWRM concept as the legally binding national water resource management plan, within the 

National Water Law of Mongolia, there are substantial shortcomings (Karthe et al., 2015). Currently, the 

implementation of the IWRM plan falls behind political aspirations due to limited funding and capacities both at 

the regional and river basin level, and as fisheries ecology and aquatic biodiversity in general is remarkably 

absent from these legal provisions, fundamental changes are still urgently required. 

Transboundary Coordination of Fisheries Conservation and Management  

Many exploited inland fisheries often cross geopolitical boundaries, therefore increased coordination of 

conservation and management between countries in essential (Welcomme et al., 2010; Cooke et al., 2016). 

However, such watershed-wide management has not been broadly adopted by national fisheries plans due to the 

complexities and challenges associated with coordinating the governance of fish stocks across different 

jurisdictions (Nguyen et al., 2016; Guzmán Mandonado et al., 2017). Nevertheless, the large number of 

transboundary rivers in Mongolia make it an important concept to develop with its neighbors, especially as H. 

taimen, B. lenok and T. baicalensis display extensive individual movements (Chapter 6 & 7) and large scale 

genetic interconnectedness across 1000’s of km (Chapter 8). Thus developing transboundary fisheries and river 

basin management regulations through increased communication, cooperation and collaboration between 

countries and departments would be highly advantageous for these fish population going forward. Species ESUs 

could be managed as a single entity and incongruent domestic policies could be streamlined to better protect 

habitats, fight illegal fishing and cross border trading while maintaining large scale river connectivity (Nguyen et 

al., 2016). In addition, the inclusion of H. taimen and potentially other threatened salmonid species, on to a 

binding international agreement such as the Convention of Migratory Species would be a positive step forward 

to help raise the profile of the current accelerated declines of freshwater fish populations in general, while 

providing an avenue for greater international awareness and support for conservation activities and coordination 

of one of the most imperiled group of vertebrates in the world (Dudgeon et al., 2006; Vörösmarty et al., 2010; 

Hogan & Jensen, 2013).   
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Appendix 1 
 

Overview of the Current Fishing Laws in Mongolia 

The existing laws and regulations as pertaining to extractive fishing activities in Mongolia are included within 

the ‘Mongolian Law on Hunting’ (Compendium of Environmental Law and Practice in Mongolia, Ulaanbaatar, 

Mongolia, 2000). Within this document, all fish are defined as game animals (Article 3.1) and all citizens who 

hunt or trap them, other than rare animals, for household purposes must obtain a permit from the Soum (regional 

council) Governor (Articles 7.1; 10.1). The permit shall list the names and surnames of the authorized citizen, 

the species, quantity, season, location and payment amount (Article 10.2). A onetime permit to hunt or trap game 

animals for household purposes issued to citizens of Mongolia shall be valid for up to three (3) days to fish a 

total of two Hucho taimen, although this has amended in 2012 and is now prohibited, and not more than ten (10) 

other fish (Article 10.3.1; 10.4). Fishing for species other than those specified in 13.2.1 to 13.2.7 (including 

Siberian whitefish, Coregonus lavaretus; fish in Lake Buir; Baikal Omul, Coregonus autumnalis; Omul, 

Coregonus peled; Siberian Ide, Leuciscus leuciscus), must be conducted from June 15th to April 1st (Article 

13.2.8). Article 14 lists prohibited hunting and trapping methods (encompassing fishing activities) and includes 

the use of chemical substances and explosives (Article 14.1.1) as well as nets to fish for household purposes 

(Article 14.1.7).  

For violations of the hunting legislation, administrative penalties shall be applied by judges, environmental 

inspectors or rangers to guilty persons (Article 16). Penalties should be applied to citizens using an expired 

permit < 10 000 Ŧ (Article 16.1.1), for using a net to fish < 5000 Ŧ (Article 16.1.4), for violations of hunting 

season provisions and exceeding the amount of animals fished < 15 000 Ŧ (Article 16.1.5), and for fishing for 

household purposes without a permit < 25 000 Ŧ (Article 16.1.6). For repeat violations of these laws or for 

hunting or trapping rare animals there shall be a criminal penalty applied to the person found guilty (Article 

16.2). Environmental inspectors shall confiscate all equipment and all animals from those responsible for illegal 

hunting / trapping / fishing (Article 16.3). All guilty persons may also be deprived of their driving license for a 

period of up to two (2) years (Article 16.4). Article 17 states the citizens who reveal persons liable for violations 

of legislation and provide information shall be rewarded by the Governor of the Soum to the amount of 15% of 

the fine imposed or reimbursements for the losses by those liable for the violations.   
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Appendix 2 
 

Table A2- 1. Summary of the demographic characteristics of surveyed anglers from three river basins in 

northern Mongolia between June and October 2012. 

Section 1: 
Angler Demographics Kharaa Eroo Onon Total 
Number of fishing groups 17 18 23 58 
Number of anglers 27 59 68 154 
Nationality Mongolian = 27 Mongolian = 56 

Russian = 3 
Mongolian = 68 Mongolian =151 

Russian = 3 
Mean age of anglers 35.5 years 

(16 – 55 years) 
41.8 years 
(27 – 71 years) 

37.4 years 
(17 – 70 years) 

38.2 years 

Age began to fish? Av. 22 years Av. 26 years Av. 22 years Av. 23.3 years 
Year began to fish? Av. 1999 Av. 1999 Av. 1992 Av. 1996 
Father/ grandfather fished? Yes = 7 

No = 10 
Yes = 6 
No = 11 

Yes = 6 
No = 13 

Yes = 19 
No = 34 

Residence Kharaa basin = 12 
Ulaanbaatar = 5 
Darkhan = 2 

Ulaanbaatar = 10 
Kharaa basin = 4 
Russia = 3 

Onon basin = 15 
Ulaanbaatar = 3 

Ulaanbaatar = 18 
Onon basin = 15 
Kharaa basin = 12 

Occupation Working = 12 
Retired / un = 4 
Student = 3 
Herder = 1 

Working = 22 
Retired / un = 1 
Student = 1 
Herder = 0 

Working = 13 
Retired / un = 4 
Student = 2 
Herder = 1 

Working = 47 
Retired / un = 9 
Student = 6 
Herder = 2 

Transport Car = 6 
Foot = 9 
Train = 2 

Car = 16 
Foot = 0 
Train = 0 

Car = 17 
Foot = 3 
Other = 2 

Car = 39 
Foot = 12 
Other = 4 



 
 

Table A2- 2. Summary of the fishing practices of anglers from three river basins in northern Mongolia between 

June and October 2012.  

 

 

 

  

 

Section 2: 
Fishing Practices Kharaa Eroo Onon Total 
Fish every year? Yes = 14 

No = 3 
Yes = 7 
No = 11 

Yes = 17 
No = 3 

Yes = 38 
No = 17 

Fishing trips in 2011? 
Frequency = > 10 
Occasionally = 4 - 9 
Rarely = 0 - 3 

Frequently = 7 
Occasionally = 4 
Rarely = 3 

Frequently = 0 
Occasionally = 1 
Rarely = 16 

Frequently = 3  
Occasionally = 12 
Rarely = 5 

Frequently = 10  
Occasionally = 17 
Rarely = 24 

Fishing trips in 2012? 
Frequency = > 10 
Occasionally = 4 - 9 
Rarely = 0 - 3 

Frequently = 5 
Occasionally = 5 
Rarely = 3 

Frequently = 1 
Occasionally = 2 
Rarely = 13 

Frequently = 1 
Occasionally = 8 
Rarely = 11 

Frequently = 6 
Occasionally = 15 
Rarely = 27 

What season? 
 
 
 

Summer = 10 
Autumn = 9 
Winter = 0 
Spring = 2 

Summer = 11 
Autumn = 8 
Winter = 0 
Spring = 1 

Summer = 29 
Autumn = 8 
Winter = 0 
Spring =0 

Summer = 50 
Autumn = 25 
Winter = 0 
Spring =3 

How much time do you 
typically spend fishing? 
 

>7 hrs = 5 
4 - 6  hrs = 3 
< 3 hrs = 4 

>7 hrs = 12 
4 - 6  hrs = 2 
< 3 hrs = 0 

>7 hrs = 12 
4 - 6  hrs = 4 
< 3 hrs = 2 

>7 hrs = 29 
4 - 6  hrs = 9 
< 3 hrs = 6 

Do you fish in other rivers? 
 

Yes = 7 
No = 9 

Yes = 11 
No = 4 

Yes = 12 
No = 8 

Yes = 30 
No = 21 

Which rivers do you also 
fish? 
 
 

Eroo = 4 
Orkhon = 4 
Tuul = 1 
Selenge = 1 

Orkhon = 5 
Kharaa = 3 
Kherlen = 3 
Tuul = 4 

Eg-Uur = 4 
Kherlen =2 
Tuul = 2 
Eroo = 1 

Orkhon = 9 
Tuul = 7 
Kherlen = 5 
Eroo = 5 

What do you do with the 
fish you catch? 
 

Keep = 15 
Release = 2 
Give away = 2 

Keep = 13 
Release = 3 
Give away = 3 

Keep = 22 
Release = 5 
Give away = 0 

Keep = 50 
Release = 10 
Give away = 5 

What do you do with taimen  
/small fish if you catch? 

Release = 12 
Keep = 6 

Release = 14  
Keep = 1 

Release = 21 
Keep = 2 

Release = 47 
Keep = 9 

Fish consumption, month-1? 
Frequently = >10  
Occasionally = 4 - 9 
Rarely = 0 - 3 

Frequently = 7 
Occasionally = 2 
Rarely = 7 

Frequently = 0 
Occasionally = 2 
Rarely = 13 

Frequently = 1 
Occasionally = 3 
Rarely = 16 

Frequently = 8 
Occasionally = 7 
Rarely = 36 
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Table A2- 3. Summary of the current fishing trip in the three river basins, northern Mongolia, between June and 

October 2012. 

Section 3: 
Surveyed fishing trip Kharaa Eroo Onon Total 
Did you buy a fishing permit 
for this trip? 

Yes = 5 
No = 1 
Never = 13 

Yes = 12 
No = 1 
Never = 4 

Yes = 13 
No = 2 
Never = 5 

Yes = 30 
No = 4 
Never = 22 

Mean length of fishing trip? 
(mean ± SD) 

1.29 ± 0.59 d / trip 
 

3.06 ± 1.51 d / trip 
 

1.43 ± 0.79 d /trip 
 

1.90 ± 1.28 d / trip 
 

Mean hours fishing per day? 
(mean ± SD) 

5.6 ± 3.6 hrs/ day 5.2 ± 1.7 hrs / day 5.19 ± 2.8 hrs / day 5.34 ± 2.8 hrs / day 

Intended target species this 
trip? 

Lenok = 10 
Grayling = 7 
Taimen = 3 
No matter = 5 

Lenok = 8 
Grayling = 5 
Taimen = 3 
No matter = 7  

Lenok = 14 
Grayling = 2 
Taimen = 8 
No matter = 2 
Pike = 2 

Lenok = 32 
Grayling = 14 
Taimen = 14 
No matter = 14 
Pike = 2 

How many fish do you want to 
catch? 

≥10 fish = 4 
4 - 9 fish = 8 
≤ 3 fish = 6 
No matter = 0 

≥10 fish = 5 
4 - 9 fish = 5 
≤ 3 fish = 2 
No matter = 2 

≥10 fish = 2 
4 - 9 fish = 6 
≤ 3 fish = 13 
No matter = 3 

≥10 fish = 11 
4 - 9 fish = 19 
≤ 3 fish = 21 
No matter = 5 

Number of fish caught per 
species? 
 
 

Lenok = 12 
Grayling = 1 
Taimen = 0 
Dace = 4 
Total fish = 17 

Lenok = 34 
Grayling = 31 
Taimen = 1 
Dace = 0 
Total fish = 66 

Lenok = 30 
Grayling = 1 
Taimen = 7 
Dace = 0 
Total fish = 38 

Lenok = 76 
Grayling = 33 
Taimen = 8 
Dace = 4 
Total fish = 121 

Have you released a fish alive 
this trip? 

Yes = 3 
No / Not yet = 15 

Yes = 10 
No / Not yet = 6 

Yes = 17 
No / Not yet = 6 

Yes = 30 
No / Not yet = 27 

Mean fish total length (cm)? 
 

Lenok = 34.5 ± 4.7 
Grayling = 32 
Taimen = 0 
Dace = 20 ± 3.8 

Lenok = 32.3 ± 7.9 
Grayling = 21.4 ± 5.3 
Taimen = 60  
Dace = 0 

Lenok = 36.4 ± 7.5 
Grayling = 0 
Taimen = 71.7 ± 2.9  
Dace = 0 

Lenok = 34 ± 7.3 
Grayling = 21.8 ± 5.6 
Taimen = 68.8 ±6.3 
Dace = 20 ± 3.8 

 
Table A2- 4. Summary of fishing gear and trip costs of anglers in the three river basins, northern Mongolia, 

between June and October 2012. 

Section 4: Fishing gear 
and trip costs Kharaa Eroo Onon Total 
Fishing gear used? Rod = 16 

Net = 1 
Rod = 17 Rod  = 22 Rod = 55 

Net = 1 
Bait used / preferred? Artificial lures = 15 

Everything = 1 
Netting = 1 

Artificial lures = 4 
Everything = 7 
Grasshopper = 1 
Live fish = 1 

Artificial lures = 18 
Grasshopper = 5 
Rain-worm = 3 
Fly fishing = 2 
Live fish - 1 
Mouse – 1 

Artificial lures = 37 
Everything = 8 
Grasshopper = 6 
Rain-worm = 3 
Live fish = 2 
Fly fishing = 2 

Where do you buy your 
fishing gear? 

Black-market = 12 
UB fishing shop= 4 
International = 2 

Black-market = 9 
UB fishing shop= 8 
International = 1 

Black-market = 4 
UB fishing shop = 9 
International = 3 
From Friend = 4 

Black-market = 25 
UB fishing shop = 21 
International = 6 
From Friend = 4 

How much money do you 
spend on fishing gear per 
year? (per angler) 

61.000Ŧ ($24.6 US) 
Median: 40 000 Ŧ 
Range:15 000 – 250 
000 Ŧ 

158.462Ŧ ($63.9 US) 
Median: 100 000 Ŧ 
Range:10 000 – 550 
000 Ŧ 

68.409Ŧ ($27.6 US)  
Median: 37 500 Ŧ 
Range:10 000 – 300 
000 Ŧ 

89.600Ŧ ($36.1 US) 
Median: 40 000 Ŧ 
Range: 10 000 – 550 
000 Ŧ 

How much money have 
you spent on this fishing 
trip? (per angler) 

45 313Ŧ ($18.3 US) 
Median: 5000 
Range: 0 – 125 000 Ŧ 

291 000Ŧ ($117.3 US) 
Median: 300 000 
Range: 10 000 – 850 
000 Ŧ 

43 260Ŧ ($17.4 US) 
Median: 30 000 
Range: 0 – 200 000 Ŧ 

112 685Ŧ ($45.4 US) 
Median: 45 000 
Range: 0 – 850 000 Ŧ 
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Table A2- 5. Summary of the angler knowledge and opinion in the three river basins, northern Mongolia, 

between June and October 2012. 

Section 5: Angler 
knowledge and opinion Kharaa Eroo Onon Total 
Is fishing getting better? Better = 0 

No change = 2 
Worse = 15 
Don’t know = 1 

Better = 0 
No change = 5 
Worse = 6 
Don’t know = 3 

Better = 1 
No change = 7  
Worse = 11 
Don’t know = 1 

Better = 1 
No change = 14 
Worse = 32 
Don’t know = 5 

What do you think is the 
main reason? 

Overfishing = 6 
Flooding = 3 
Pollution = 2 

Flooding = 1 
Pollution = 1 

Overfishing = 2 
Flooding = 1 

Overfishing = 8 
Flooding = 5 
Pollution = 3 

Have you seen illegal 
fishing? What? 

Yes = 11 
No = 7 
e.g. netting, 
dynamite 

Yes = 3 
No = 14 
e.g. netting 

Yes = 15 
No = 2 
e.g. netting,  no 
permission  

Yes = 29 
No = 23 
 

Do you know the 
Mongolian fishing 
regulations? 

Yes = 5 
No = 2 
Not Sure = 10 

Yes = 12 
No = 0 
Not Sure = 3 

Yes = 16 
No = 2 
Not Sure = 5 

Yes = 33 
No = 4 
Not Sure = 18 

Do you know taimen are 
endangered?  

Yes = 17 
No = 0 
Not Sure = 0 

Yes = 15 
No = 2 
Not Sure = 0 

Yes = 20 
No = 1 
Not Sure = 1 

Yes = 52 
No = 3 
Not Sure = 1 

Do you release fish alive? 
Why? 

Yes = 18 
No = 0 

Yes = 15  
No = 2 

Yes = 23 
No = 0 

Yes = 56 
No = 2 

 Too small = 14 
Conserve = 3 

Too small = 6 
Conserve  = 1 

Too small = 2 
Conserve = 6 

Too small = 22 
Conserve  = 10 

Would you support new 
fishing laws? 
 

Yes = 5 
No = 1 
Unsure = 11 

Yes = 13 
No = 1 
Unsure = 1 

Yes = 14  
No = 1 
Unsure = 6 

Yes = 32 
No = 3 
Unsure = 18 
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Appendix 3 
 

Table A3- 1. Generalised linear model (GLM) results table per species with heavy metal contents as the 

response variable and fish length, fish tissue, fish age, site sediment content and site water concentrations added 

as predictor variables. 

L. baicalensis 
 Cr Zn As Cd Ni Cu Hg Pb 
Fish length 0.004 Not Sig 0.005 0.000 0.005 Not Sig 0.000 Not Sig 
Fish tissue 0.000 0.004 0.000 0.000 Not Sig 0.000 0.000 0.009 
Fish age Not Sig 0.005 0.000 0.000 0.015 0.033 0.000 Not Sig 
Site sediment 0.000 0.009 0.000 0.001 Not Sig 0.028 0.000 Not Sig 
Site water NA NA 0.000 NA NA NA 0.000 NA 
Length/tissue 0.000 0.009 0.002 0.000 0.006 0.000 0.023 0.000 
Length/age Not Sig 0.009 0.016 0.000 0.003 Not Sig Not Sig Not Sig 
Length/sediment 0.003 0.089 0.002 Not Sig 0.024 Not Sig 0.001 Not Sig 
Length/water NA NA 0.001 NA NA NA 0.001 NA 
Tissue/age Not Sig 0.001 0.019 0.000 Not Sig 0.002 Not Sig 0.010 
Tissue/sediment 0.000 0.004 0.000 0.006 Not Sig 0.010 0.000 Not Sig 
Tissue/water NA NA 0.000 NA NA NA 0.000 NA 
Age/sediment Not Sig 0.007 0.002 0.000 Not Sig Not Sig Not Sig Not Sig 
Age/water NA NA 0.000 NA NA NA 0.001 NA 
Sediment/water NA NA 0.000 NA NA NA Not Sig NA 

T. baicalensis 
 Cr Zn As Cd Ni Cu Hg Pb 
Fish length 0.000 0.048 0.007 0.000 0.005 Not Sig 0.000 Not Sig 
Fish tissue Not Sig 0.003 0.000 0.001 Not Sig 0.000 0.000 0.024 
Fish age 0.005 0.004 0.000 0.000 0.011 0.021 0.000 0.027 
Site sediment Not Sig 0.007 0.000 0.002 Not Sig 0.014 0.000 0.046 
Site water NA NA 0.000 NA NA NA 0.000 NA 
Length/tissue 0.001 0.007 0.004 0.000 0.004 Not Sig 0.014 0.000 
Length/age Not Sig 0.006 0.016 0.000 0.003 Not Sig Not Sig Not Sig 
Length/sediment 0.000 Not Sig 0.020 Not Sig 0.022 Not Sig 0.001 Not Sig 
Length/water NA NA 0.013 NA NA NA 0.003 NA 
Tissue/age 0.000 0.000 0.001 0.001 Not Sig Not Sig Not Sig Not Sig 
Tissue/sediment Not Sig 0.003 0.000 Not Sig Not Sig Not Sig 0.000 Not Sig 
Tissue/water NA NA 0.021 NA NA NA 0.000 NA 
Age/sediment Not Sig 0.006 0.001 0.001 Not Sig Not Sig Not Sig Not Sig 
Age/water NA NA 0.000 NA NA NA 0.000 NA 
Sediment/water NA NA 0.002 NA NA NA 0.000 NA 

B. lenok 
 Cr Zn As Cd Ni Cu Hg Pb 
Fish length 0.002 0.043 0.000 0.000 Not Sig 0.003 0.000 Not Sig 
Fish tissue 0.003 0.002 0.000 0.001 Not Sig Not Sig 0.000 0.042 
Fish age 0.000 0.004 0.000 0.000 0.000 0.002 0.000 0.045 
Site sediment Not Sig 0.007 0.000 0.002 0.043 0.010 0.000 Not Sig 
Site water NA NA 0.000 NA NA NA 0.000 NA 
Length/tissue 0.000 0.006 0.000 0.000 Not Sig 0.001 0.013 0.000 
Length/age Not Sig 0.005 0.000 0.000 0.007 0.002 Not Sig Not Sig 
Length/sediment 0.001 Not Sig 0.000 Not Sig Not Sig Not Sig 0.001 Not Sig 
Length/water Not Sig NA 0.000 NA NA NA 0.003 NA 
Tissue/age 0.000 0.000 Not Sig 0.001 0.002 0.000 Not Sig Not Sig 
Tissue/sediment Not Sig 0.003 Not Sig 0.012 Not Sig Not Sig 0.000 Not Sig 
Tissue/water NA NA Not Sig NA NA NA 0.000 NA 
Age/sediment 0.000 0.006 Not Sig 0.001 0.005 0.020 Not Sig Not Sig 
Age/water NA NA Not Sig NA NA NA 0.000 NA 
Sediment/water NA NA 0.000 NA NA NA 0.000 NA 



 
VII 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Results for single and one-way interactions are displayed from full models. 

 

Not Sig indicates a nonsignificant result (p > 0.05) for that variable and contaminate, NA represents all water values for that 

heavy metal were below the analytical detection limits and thus excluded from the model. 

 
  

L. lota 
 Cr Zn As Cd Ni Cu Hg Pb 
Fish length 0.000 0.032 0.000 0.000 0.015 Not Sig 0.028 0.016 
Fish tissue 0.000 Not Sig 0.000 0.000 0.012 0.000 0.026 0.001 
Fish age Not Sig 0.032 0.000 0.000 Not Sig 0.017 0.009 Not Sig 
Site sediment 0.000 0.029 0.000 0.000 Not Sig 0.019 0.010 Not Sig 
Site water NA NA 0.000 NA NA NA 0.010 NA 
Length/tissue 0.000 0.042 0.001 0.000 0.001 0.000 Not Sig Not Sig 
Length/age Not Sig 0.010 0.011 0.000 0.009 0.048 0.018 0.028 
Length/sediment 0.000 Not Sig 0.001 Not Sig Not Sig Not Sig 0.031 Not Sig 
Length/water NA NA 0.001 NA NA NA 0.031 NA 
Tissue/age Not Sig 0.022 Not Sig 0.000 Not Sig 0.002 0.017 0.000 
Tissue/sediment 0.000 Not Sig 0.001 0.005 Not Sig 0.011 0.029 Not Sig 
Tissue/water NA NA 0.000 NA NA NA 0.029 NA 
Age/sediment Not Sig 0.043 0.007 0.000 Not Sig Not Sig 0.011 Not Sig 
Age/water Na NA 0.000 NA NA NA 0.010 NA 
Sediment/water NA NA 0.000 Na NA NA 0.012 NA 

P. asotus 
 Cr Zn As Cd Ni Cu Hg Pb 
Fish length 0.028 0.000 0.020 0.000 Not Sig 0.013 0.003 Not Sig 
Fish tissue 0.007 0.000 0.000 0.000 0.000 0.000 0.001 Not Sig 
Fish age Not Sig 0.000 0.046 0.002 0.000 0.038 0.000 0.011 
Site sediment 0.042 0.000 0.021 Not Sig Not Sig 0.017 0.014 Not Sig 
Site water NA NA 0.031 NA NA NA Not Sig NA 
Length/tissue 0.014 0.001 Not Sig 0.000 0.000 Not Sig 0.011 0.000 
Length/age Not Sig Not Sig 0.022 0.000 0.005 Not Sig Not Sig Not Sig 
Length/sediment 0.020 0.000 0.013 0.000 Not Sig Not Sig 0.006 Not Sig 
Length/water NA NA 0.015 Not Sig NA NA NA NA 
Tissue/age 0.000 0.000 0.007 0.000 Not Sig Not Sig Not Sig Not Sig 
Tissue/sediment 0.005 0.000 Not Sig Not Sig Not Sig 0.044 0.016 Not Sig 
Tissue/water NA NA Not Sig NA NA NA NA NA 
Age/sediment Not Sig Not Sig 0.039 0.005 Not Sig Not Sig Not Sig Not Sig 
Age/water NA NA 0.039 NA NA NA NA NA 
Sediment/water NA NA 0.004 NA NA NA NA NA 
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Appendix 4 

 

mtDNA sequencing 

Sequencing was conducted in a total volume of 20 μL including 5 pMol Primer LRBT-25, 10 pMol Primer 

LRBT-1195 (Uiblein et al. 2001), 200 μM dNTP, 2 μL 10x Dream Taq-buffer, 0.8 U Dream Taq-Polymerase 

and appr. 5 ng DNA. The PCR program involved 3 minutes at 95˚C, then 40 cycles of 95˚C for 30 seconds, 64˚C 

for 40 seconds, 72˚C for 1 minute and a final 10 minutes of 72˚C. PCRs products were purified by centrifuging 

for 3 minutes at 2800 rpm through cross linked dextran gel (Sephadex G-50 Superfine, GE Healthcare Life 

Sciences, Germany). PCR-products were directly cycle-sequenced using the ABI BigDye Terminater v3.1 cycle 

sequencing Kit using the same primers. Products were sequenced on an Applied Biosystems 3130xl Genetic 

Analyser (Applied Biosystems, Foster City, USA). 

Microsatellite PCR 

We used a PCR protocol with CAG/M13R-tagged forward primers and GTTT-“pigtailed” reverse primers 

following Schuelke (2000). Microsatellites primers were combined and amplified in either a multiplex or 

singleplex polymerase chain reactions (PCR) and were fluorescently labelled with FAM, NED, PET or VIC for 

genotyping (see Tab. S1). The PCR amplification was conducted in 5 μL of 2x Qiagen Multiplex PCR kit 

solution, 0.6 pMol tagged (CAG/M13R) forward primer, 2.4 pMol untagged reverse primer, 2.5 pMol CAG/M13 

oligo, and approximately 3 ng DNA. The PCR program conditions consisted of 15 mins at 95˚C, followed by 20 

cycles of a touchdown PCR with 94˚C for 30 s, 60˚C for 30 s minus 0.5˚C per cycle, and 72˚C for 90 s; then 20 

cycles of 94˚C for 30 s, 50˚C for 30 s and 72˚C for 90 s, and a final period of 10 mins at 72˚C (Faircloth et al. 

2009). The PCR product was diluted 1:100 H2O and 2 μL were added to 7 μL of formamide including size 

standard mix (1.5 ml FA + 40 1 μL LIZ 500). Samples were denatured at 95˚C for 3 minutes and placed 

immediately on ice. Fragment analysis was conducted using an Applied Biosystems 3130xl Genetic Analyser 

(Applied Biosystems, Foster City, USA) with genotyping conducted in GeneMapper 4.0 (Applied Biosystems, 

Foster City, USA). 



 
 

Locus Species Repeat  
Motif  

Range  
of alleles F / R Sequence Tag* Dye pigtail Accession 

No. Publication 

BleTri2 HT 
BL/Bsp 

(CAT)11 132-145 
122-165 

CCAGGACATATTCCCTTCTAG / 
CCACAGCTCAGGGCAGGGAGT 

CAG VIC 
 

GTTT AY48448 Froufe et al. 2004 

BleTri4 HT 
BL/Bsp 

(CAT)5 106-196 
94-164 

CTCCTGGAGAGGACACCACTG / 
CCAGCTTCCTCTGGTGGGATG 

CAG FAM 
 

GTTT AY48450 Froufe et al. 2004 

OMM1007 HT 
BL/Bsp 

(TCA)15 165-194 
170-222 

CATCGTTTTCCTGGTTCAC / 
CCCTTAACTGACGCTATT 

M13R PET 
 

GTTT AF346669 Jia et al. 2008 

OMM1011 HT 
BL/Bsp 

(TGA)8 204-210 
193-333 

CAAGGATTCGGGACAT / 
CACCCCTAAAGTAGAGCA 

CAG NED 
 

GTTT AF346672 Jia et al. 2008 

OMM1105 HT 
BL/Bsp 

(AGAC)23(GAT
A)16 

109-127 
116-233 

GCACACTGTCTGGGTAAGAGA / 
GCAGAGCCACACTAAACCA 

CAG NED 
 

GTTT AF352768 Jia et al. 2008 

OMM1077 HT 
BL/Bsp 

(GATA)9 292-399 
291-376 

GGCTGACCAGAGAAAGACTAGTTC / 
TGTTACGGTGTCTGACATGC 

M13R VIC 
 

GTTT AF352748 Jia et al. 2008 

OMM1039 HT (GA)20 140-179 GGGGTAGGAGTAGACTAGACA / 
ATCTTTCCCTCCTTGCAC 

CAG VIC GTTT AF346689 Jia et al. 2008 

BleTet2 HT (CAGA)5 139-180 TGTCAGAGGCCTTGACTGCGT / 
GCTAGGCTGTTTACTCTAGGT 

M13R VIC GTTT AY484452 Froufe et al. 2004 

BleTet5 HT (TGTC)5 179-182 CTTCTTCACCCGCCTGAGTGT / 
TTGAATGGGCTATCTGGCTGT 

CAG FAM GT AY484455 Froufe et al. 2004 

BleTet6 HT (CCTG)7 175-322 AGACAGCATGACAGCACAACG / 
GGCAGACAGACAGGCAAACAG 

M13R FAM GTTT AY484456 Froufe et al. 2004 

BleTet9 HT (TATC)2(TGTC
)12(TATC)3 

167-373 ACTGGATAGAAAGACCTGTGG / 
AGATTCTTGGTAAAAGTGAAG 

CAG FAM GTTT AY486103 Froufe et al. 2004 

BleTri3 BL / Bsp (CAT)7 
(CATT)7 

129-161 CAGACGTGGCGCTTGTTTGGT / 
CTAGTCAGGAAGCAAGTGATG 

M13R FAM GTTT AY48449 Froufe et al. 2004 

OMM1008 BL / Bsp (GAT)11 270-333 GATCCTTTGGGAGATTAACAG / 
CACCACAGTTGCTACTGCC 

CAG NED GTTT  AF346670 Jia et al. 2008 

Tar100 TB /TN (CTTT)23 238 - 350 TTTGGATGTGTCAGACCTG / 
GAGAAAGCAAGGAGAAATCAC 

M13R FAMM2 GTTT EF694937 Diggs and Ardren 2008 

Tar101 TB /TN (CTTT)22 252-452 CAGAGCACACCAAGCAGAG / 
AGGGCAAGTCATTCCAGTC 

M13R VICM3 GTTT EF694938 Diggs and Ardren 2008 

Tar103 TB /TN (ATCC)7 176-252 CGGGGATCAATAAAGTATCC / 
CTTCACTGTCGCTGTGAGTAC 

M13R VICM3 GTTT EF694939 Diggs and Ardren 2008 

Tar108 TB /TN (ATAC)27 179-203 GGGCTTTACCTGGAAACTAGC / 
CCATGAAATTCTTTGGAGTGG 

CAG PET GTTT EF694943 Diggs and Ardren 2008 

Tar112 TB /TN (TATC)7 361-542 CCTGGGAATCAACAAAGTATC / 
AGGAGGTTCAGTGAGTGTTTC 

M13R PETM1 GTTT EF694946 Diggs and Ardren 2008 

Tth419a TB /TN (CAGA)24 107-119 CAATTCCCTCTCAATACTTC / 
CACCAGCCGAGAGTC 

CAG PETM1 GTTT GU225722 Junge et al. 2010 

Tth419b TB /TN (CAGA)24 138-162 CAATTCCCTCTCAATACTTC / 
CACCAGCCGAGAGTC 

CAG PETM1 GTTT GU225722 Junge et al. 2010 

Tth447 TB /TN (TG)19 170-206 CTTGATTGCCATTGGATTGT / 
CAACATCCTTGTCGCCTCTA 

M13R FAMM2 GTTT GU225727 Junge et al. 2010 

Table A4- 1. Microsatellite primers used for H. taimen (HT), B. lenok / B. sp. (BL / Bsp) and T. baicalensis / T. nigrescens (TB / TN) with details including repeat motif, 

size range of alleles in study, forward / reverse sequence, tags added to 5’ end of F primer, pigtail sequence added 5’ to R primer, florescence dye with superscript M 

indicating multiplex sets, Genebank accession number and source reference (* CAG: CAGTCGGGCGTCATCA; M13R: GGAAACAGCTATGACCAT).  



 
 

 

Figure A4. 1. Bayesian cluster analysis with STRUCTURE for the microsatellite data of H. taimen sampled 

from eight populations from the Yenisei, Selenge and Amur river basins, Mongolia. Two genetic clusters were 

identified using the Evanno et al. (2005) method (top). Individual proportional membership at K = 2 (bottom). 

Each identified cluster was again run separately and both displayed K = 1 (Results not shown). 

 

 

Figure A4. 2 a. STRUCTURE analysis for microsatellite data of all B. lenok and blunt-snout lenok (B. sp.) 

populations collected from 19 rivers across the Yenisei (Y1), Selenge (S1 – S13) and Amur river basins (A1 – 

A5) in Mongolia. When all populations were included in the analysis, two genetic clusters were identified;  

K=2. These two clusters are further analysed in Fig. A4. 2b and A4. 2c-A4. 2e. 
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Figure A4. 2 b. Following the reanalysis of the B. lenok “Orange Cluster” from the Selenge River basin (S1 – 

S13), L(K) is highest at K= 1 and decreases with increasing K. Thus, the peak of K at K=2, resulting from the 

Evanno et al. (2005) method is misleading. The plot of individual cluster membership for K=2 shows no 

biologically meaningful pattern. Overall this indicates that there was only a single cluster across the basin  

K=1.  
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Figure A4. 2 c. After a separate analysis of the “Green Cluster”, which included B. lenok from the Shishged 

River (Y1) and Amur River basin (sites A1-A5), plus blunt-snouted lenok (B. sp.) from A2, A3 and A4 

populations, K=2 was identified as the most parsimonious solution, splitting blunt-snouted lenok (dark green 

individuals in sites A2, A3, A4) from B. lenok, with B. lenok from Y1 appearing admixed of these two groups. 

We consider the K peak at K=5 as an artefact and biologically irrelevant. The peak is due to the low variability 

of L(K) at K= 5 together with the a rather large increase of L(K) from K=4 to K=5, which however is due to 

individual runs with particularly low L(K) at K=4. Therefore, K=2 is the most biologically meaningful solution 

of the genetic clustering present. This conclusion is supported by further analyses with different subsets of these 

two groups (see figures below). 
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Figure A4. 2 d. The Shishged River B. lenok population (Y1) and blunt-snouted lenok (B. sp.) individuals 

collected from the Onon (A2), Balj (A3) and Kherlen (A4) rivers also were clearly separated into two genetic 

clusters  K = 2. 

 

 

Figure A4. 2 e. B. lenok from the Shishged River (Y1) and the Amur River basin populations (A1-A5) with all 

blunt-snouted lenok (B. sp.) excluded, also displayed two genetic clusters;  K = 2. 
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Figure A4. 2 f. For B. lenok populations sampled from across the Amur River basin (A1 – A5) excluding all 

blunt-snouted lenok (B. sp.) and the Shishged population, the Evanno method indicated K=2; but this is wrong as 

clearly, L(K) is highest at K=1 resulting in K = 1 as the most parsimonious and biologically meaningful solution 

 K=1. Overall the STRUCTURE runs of Brachymystax, including both B. lenok and B. sp., revealed four 

genetic clusters: 1. Selenge B. lenok (Fig. A2a, A2b); 2.1. Amur B. sp. (Fig. A2c, A2d); 2.2. Shishged B. lenok 

(Fig. A2c, A2d, A2e); 2.3 Amur B. lenok (Fig. A2c, A2e, A2f). 

 

Figure A4. 3. STRUCTURE analysis of the microsatellite data of Thymallus baicalensis (including T. 

nigrescens, S5) in the Selenge River basin Mongolia, according to the Evanno et al. (2005) method. Note that for 

the Kharaa River (S9), not all, but only 24 randomly drawn samples were used (see Fig. A4.4 for an analysis 

including all samples). The reported K is highest at K=2; however, the method is unable to detect the correct 

number of clusters which is K=1, as L(K) is clearly the highest solution at K=1. 
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Figure A4. 4. STRUCTURE analysis of the microsatellite data of Thymallus baicalensis (including T. 

nigrescens, S5) in the Selenge River basin, Mongolia, according to the Evanno et al. (2005) method. Note that 

for the Kharaa River (S9), all 132 samples were used. The analysis indicates two gene pools (K = 2), however is 

very likely an artefact of unequal sample size in S9, which can be seen from the comparison with the analysis 

with only 24 samples from this site (Fig. A4. 3). 

 

 

Table A4- 2. Pairwise estimates of FST values for the eight populations of Hucho taimen sampled in the Yenisei, 

Selenge and the Amur River basins, Mongolia. FST values are below the diagonal and probability (P (rand >= 

data) based on 999 permutations) is shown above the diagonal. 

Pop. Y1 S1 S3 S6 S10 A2 A3 A5 

Y1  0.004 0.010 0.007 0.002 0.001 0.001 0.001 
S1 0.083  0.421 0.443 0.214 0.001 0.001 0.001 
S3 0.118 0.000  0.423 0.423 0.001 0.001 0.001 
S6 0.090 0.000 0.000  0.436 0.001 0.001 0.001 

S10 0.122 0.005 0.000 0.000  0.001 0.001 0.001 
A2 0.238 0.293 0.301 0.279 0.319  0.187 0.008 
A3 0.305 0.361 0.396 0.355 0.384 0.016  0.378 
A5 0.257 0.327 0.335 0.306 0.364 0.088 0.006  



 
 

Table A4- 3. Pairwise estimates of FST values for the 19 populations of Brachymystax lenok sampled in the Yenisei, Selenge and the Amur River basins and blunt-snout lenok 

(B. sp.) sampled from the Amur basin only (including individuals from A2, A3 and A4). FST values are below the diagonal and probability (P (rand >= data) based on 999 

permutations) is shown above diagonal. 

 

 Y1 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 A1 A2 A3 A4 A5 B. sp. 
Y1  0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 

S1 0.339  0.323 0.068 0.167 0.150 0.468 0.016 0.028 0.005 0.003 0.260 0.127 0.017 0.001 0.001 0.001 0.001 0.001 0.001 

S2 0.326 0.002  0.009 0.119 0.010 0.182 0.012 0.002 0.001 0.006 0.066 0.007 0.001 0.001 0.001 0.001 0.001 0.001 0.001 

S3 0.320 0.011 0.019  0.388 0.100 0.053 0.001 0.002 0.001 0.001 0.108 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 

S4 0.336 0.014 0.017 0.002  0.129 0.106 0.099 0.008 0.006 0.003 0.059 0.007 0.002 0.001 0.001 0.001 0.001 0.001 0.001 

S5 0.331 0.009 0.029 0.012 0.016  0.059 0.003 0.003 0.001 0.019 0.270 0.141 0.008 0.001 0.001 0.001 0.001 0.001 0.001 

S6 0.346 0.000 0.005 0.010 0.015 0.013  0.001 0.009 0.001 0.002 0.309 0.018 0.002 0.001 0.001 0.001 0.001 0.001 0.001 

S7 0.317 0.014 0.015 0.023 0.016 0.029 0.019  0.001 0.006 0.001 0.008 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001 

S8 0.385 0.019 0.044 0.032 0.045 0.034 0.023 0.036  0.001 0.001 0.007 0.002 0.002 0.001 0.001 0.001 0.001 0.001 0.001 

S9 0.326 0.017 0.026 0.032 0.035 0.025 0.024 0.009 0.045  0.001 0.012 0.004 0.001 0.001 0.001 0.001 0.001 0.001 0.001 

S10 0.358 0.021 0.020 0.037 0.038 0.019 0.018 0.027 0.051 0.029  0.249 0.021 0.003 0.001 0.001 0.001 0.001 0.001 0.001 

S11 0.375 0.005 0.016 0.011 0.027 0.005 0.003 0.019 0.030 0.017 0.004  0.376 0.064 0.001 0.001 0.001 0.001 0.001 0.001 

S12 0.402 0.011 0.033 0.048 0.049 0.012 0.020 0.037 0.048 0.028 0.019 0.002  0.406 0.001 0.001 0.001 0.001 0.001 0.001 

S13 0.364 0.017 0.032 0.046 0.051 0.025 0.024 0.032 0.034 0.022 0.023 0.012 0.000  0.001 0.001 0.001 0.001 0.001 0.001 

A1 0.344 0.133 0.162 0.141 0.141 0.147 0.147 0.134 0.176 0.127 0.182 0.150 0.152 0.155  0.441 0.344 0.001 0.004 0.001 

A2 0.313 0.137 0.156 0.135 0.137 0.145 0.148 0.142 0.181 0.139 0.186 0.158 0.162 0.166 0.000  0.346 0.001 0.001 0.001 

A3 0.340 0.126 0.159 0.128 0.143 0.133 0.136 0.130 0.170 0.118 0.172 0.136 0.143 0.144 0.002 0.004  0.001 0.001 0.001 

A4 0.369 0.183 0.207 0.166 0.191 0.167 0.182 0.181 0.224 0.179 0.212 0.189 0.191 0.191 0.125 0.121 0.146  0.001 0.001 

A5 0.364 0.159 0.189 0.173 0.167 0.161 0.166 0.159 0.190 0.149 0.203 0.173 0.150 0.165 0.036 0.058 0.055 0.131  0.001 

B. sp. 0.448 0.305 0.329 0.320 0.310 0.329 0.322 0.323 0.357 0.333 0.369 0.344 0.358 0.359 0.307 0.273 0.301 0.344 0.342  



 
 

Table A4- 4. Pairwise estimates of FST values for the eleven populations of Thymallus baicalensis sampled in the 

Selenge River basins and T. nigrescens from Lake Khovsgol (S5). FST values are below the diagonal and 

probability (P (rand >= data) based on 999 permutations) is shown above diagonal. 

 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 

S1  0.197 0.050 0.063 0.001 0.003 0.101 0.175 0.001 0.002 0.074 0.075 

S2 0.006  0.117 0.180 0.001 0.002 0.001 0.061 0.001 0.009 0.047 0.120 

S3 0.011 0.010  0.453 0.002 0.417 0.012 0.013 0.082 0.446 0.205 0.084 

S4 0.011 0.007 0.000  0.009 0.154 0.074 0.039 0.012 0.145 0.260 0.420 

S5 0.036 0.045 0.034 0.024  0.001 0.001 0.034 0.001 0.001 0.005 0.036 
S6 0.015 0.023 0.000 0.005 0.024  0.004 0.003 0.001 0.438 0.252 0.006 
S7 0.006 0.031 0.015 0.009 0.039 0.013  0.012 0.001 0.001 0.041 0.112 

S8 0.007 0.019 0.026 0.022 0.024 0.025 0.029  0.001 0.007 0.042 0.046 

S9 0.033 0.031 0.009 0.018 0.061 0.015 0.035 0.053  0.009 0.005 0.002 
S10 0.014 0.015 0.000 0.005 0.030 0.000 0.017 0.025 0.010  0.180 0.022 
S11 0.008 0.013 0.005 0.003 0.030 0.002 0.010 0.018 0.019 0.003  0.078 

S12 0.010 0.011 0.012 0.000 0.021 0.016 0.008 0.022 0.033 0.012 0.010  
 

 

 

Figure A4. 5. Correlation between the distance along the river and genetic distance of sampled Brachymystax 

lenok populations (a) Selenge River Basin (Mantel’s test statistic = 0.41, p = 0.004); and (b) Amur River Basin 

(excluding blunt-snouted lenok B. sp., Mantel’s test statistic = 0.76, p = 0.045). 
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Table A4- 5. Summary results for the Analyses of Molecular Variance (AMOVA) (a) All H. taimen (FST = 

0.302), (b) H. taimen from the Selenge (FST = 0.027), (c) H. taimen from the Amur basin (FST = 0.052); (d) All 

Brachymystax individuals including both B. lenok and blunt-snouted lenok (B. sp.; FST = 0.177), (e) B. lenok 

only (FST = 0.181), (f) B. lenok from the Selenge (FST = 0.049), and (g) Amur (FST = 0.056) basins; and (h) T. 

baicalensis / T. nigrescens (FST = 0.014) from the Selenge River basin. NA indicated that no p value was 

calculated. 

 

  

 df SS MS Est. Var. % p 
(a) All H. taimen       
Among Basins 2 165.75 82.88 1.15 29% 0.001 
Among Pop. within basins 5 18.80 3.76 0.04 1% 0.060 
Among Individuals 119 349.33 2.94 0.19 5% 0.003 
Within Individuals 127 325.50 2.56 2.56 65% NA 
Total 253 859.39  3.94 100%  
(b) Selenge H. taimen       
Among Populations 4 16.29 4.07 0.07 3% 0.004 
Among Individuals 70 178.10 2.54 0.1 4% 0.058 
Within Individuals 75 176.00 2.35 2.35 93% NA 
Total 149 370.39  2.51 100%  
(c) Amur H. taimen       
Among Populations 2 11.9 5.95 0.17 5% 0.008 
Among Individuals 49 171.23 3.49 0.31 9% 0.002 
Within Individuals 52 149.50 2.88 2.88 86% NA 
Total 103 332.63  3.36 100%  
(d) All Brachymystax spp.       
Among Basins 2 135.78 67.89 0.49 15% 0.001 
Among Pop. within basins 16 113.27 7.08 0.10 3% 0.001 
Among Individuals 364 1089.76 2.99 0.24 7% 0.001 
Within Individuals 383 963.00 2.51 2.51 75% NA 
Total 765 2301.81  3.35 100%  
(e) B. lenok (only)       
Among Basins 2 124.44 62.22 0.52 16% 0.001 
Among Pop. within basins 16 96.95 6.06 0.08 2% 0.001 
Among Individuals 352 1019.94 2.90 0.18 5% 0.001 
Within Individuals 371 940.00 2.53 2.53 76% NA 
Total 741 2181.34  3.32 100%  
(f) Selenge B. lenok       
Among Populations 13 114.81 8.83 0.14 5% 0.001 
Among Individuals 301 860.42 2.86 0.17 6% 0.001 
Within Individuals 315 795.50 2.53 2.53 89% NA 
Total 629 1770.7  2.83 100%  
(g) Amur B. lenok (only)       
Among Populations 4 27.67 6.92 0.17 6% 0.001 
Among Individuals 51 159.59 3.13 0.27 9% 0.001 
Within Individuals 56 144.50 2.58 2.58 85% NA 
Total 111 331.69  3.03 100%  
(h) All Thymallus spp.       
Among Populations 11 51.02 4.64 0.04 1% 0.001 
Among Individuals 277 785.05 2.83 0.19 8% 0.001 
Within Individuals 289 709.00 2.45 2.45 91% NA 
Total 577 1545.07  2.68 100%  
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Figure A4. 6. Correlation between the distance along the river and genetic distance of sampled Thymallus 

baicalensis populations (excluding T. nigrescens from Lake Hovsgol) in the Selenge River basin (Mantel’s test 

statistic = 0.24, p = 0.12. 

Table A4- 6. Additional genbank accessions used for inferring haplotype networks in Hucho taimen and 

Brachymystax spp. 

Hucho taimen Brachymystax spp. 

AY230447 AY230451 DQ017067 EU395728 JN680735 

AY230448 AY230452 DQ017068 EU395729 JN680736 

AY230449 AY230453 DQ017069 EU395730 JN680737 

AY230450 AY230454 DQ017070 EU395731 JN680738 

AY862343 AY230455 DQ017071 EU395732 JX227987 

AY862344 AY230456 DQ017072 EU395733 KC136268 

AY862345 AY230457 DQ017073 EU395734 KC136269 

AY862346 AY230458 DQ017074 EU395735 KC136270 

AY862347 AY230459 DQ017075 EU760490 KF647837 

AY862348 AY230460 DQ017076 EU760491 KF647838 

AY862349 AY230461 DQ017077 FJ713570 KF647839 

AY862350 AY230462 DQ017078 FJ713571 KF647840 

AY862351 AY230463 DQ017079 FJ713572 KF647841 

AY862352 AY230464 EU395717 FJ713573 KF647842 

AY862353 AY230465 EU395718 FJ713574 KF647843 

AY862354 AY230466 EU395719 FJ713575 KF647844 

AY862355 AY230467 EU395720 FJ713576 KF647845 

AY862356 AY230468 EU395721 FJ713577 
 AY862357 AY230469 EU395722 FJ713578 
 AY862358 AY230470 EU395723 JN680730 
 AY862359 AY230471 EU395724 JN680731 
 EU395715 AY230472 EU395725 JN680732 
 EU760489 AY960113 EU395726 JN680733 
 KF703543 DQ017066 EU395727 JN680734 
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Appendix 5 

 

Figure A5. 1 Map of Mongolia’s Protected Areas in 2015 covering 17.27 % of the total land area. Red indicates 

Strictly Protected Areas (n = 20), green represents National Parks (n = 32), yellow are Nature Reserves (n = 34), 

and purple is a National Monument (n = 13). Source: Political Review Bulletin 10.12.2015 

(http://vip76.mn/content/35658).   

http://vip76.mn/content/35658
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Appendix 6 
 

a) 

 

b) 
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c)  

 

 

Figure A6. 1. Biometric data collected from the three salmonid species a) Hucho taimen, b) Brachymystax lenok 

and c) Thymallus baicalensis, during the current research in the Kharaa River basin (B. lenok and T. baicalensis) 

and Eroo River basin (All species). The horizontal red line represents the proposed minimum size limit for B. 

lenok and T. baicalensis respectively. Total lengths were measured in centimetres, total weights in grams and 

ages were counted in years. Otoliths were extracted from sampled individuals (B. lenok and T. baicalensis only) 

or from recreational catches / poaches (H. taimen) that were encountered. The grey shading represents the 95 % 

confidence interval (CI). 
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Appendix 7 

 

Figure A7. 1. A copy of a poster (in Mongolian) that was developed to help educate anglers of the key fishing 

laws, the originally proposed minimum size limits (28 cm TL), best practices for catching, handling and 

releasing H. taimen and some general advice environmental to address some key issues that have been observed 

e.g. disposal of rubbish, use of soap in rivers and the dangers of throwing cigarette butts near to or in rivers.   
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