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Zusammenfassung

Die vorliegende Arbeit behandelt Quantensimulationen von stark wechselwirkenden

Systemen ultrakalter Atome in optischen Gittern. Dabei fokussiert sich diese theo-

retische Arbeit auf die Möglichkeit, diese Systeme mit Hilfe eines hochfrequenten

Antriebs kohärent zu kontrollieren. Diese Form des Quantenengineering nennt

man Floquet-Engineering. Experimentell wurden mit Hilfe eines zeitperiodischen

Antriebs des optischen Gitters bereits viele physikalische Phänomene und Modelle

realisiert, insbesondere im Bereich geringer Wechselwirkungen. Hier beschreiben

wir zwei neue Vorschläge für interessante Phänomene im Bereich starker Wech-

selwirkungen, welche durch zeitperiodisches Gitterschütteln ermöglicht werden:

Das Schmelzen eines Mott-Isolators in einen angeregte superfluiden Zustand durch

kohärentes Koppeln von Bloch-Bändern, sowie die Erzeugung von eindimension-

alen Gitter-Anyonen. Außerdem wird die Rolle von Multiphoton-Übergängen in

angetriebenen Gittern untersucht, da diese Prozesse zu ungewolltem Heizen und

damit zur Verhinderung von erfolgreichem Floquet-Engineering führen können.

Das einleitende Kapitel 1 gibt einen Überblick über das Feld der Quantensimula-

tionen mit ultrakalten Atomen und beschreibt den experimentellen Fortschritt der

letzten Jahre auf diesem Gebiet. In Kapitel 2 wird die Floquet-Theorie eingeführt,

die einen exzellenten Rahmen dafür bietet zeitperiodische Hamiltonians zu behan-

deln und die Grundlage für die folgenden Kapitel ist. Kapitel 3 stellt den Vorschlag

vor, Bloch-Bänder in optischen Gittern durch das Schütteln des Gitters koharänt

miteinander zu koppeln. Insbesondere wird im Detail gezeigt, wie dieses Band-

koppeln zu einem orbital getriebenen Phasenübergang von einem Mott-Isolator zu

einem Suprafluid führen kann. In Kapitel 4 wird der Vorschlag erläutert, wie eindi-

mensionale Anyonen durch stark wechselwirkende Bosonen erzeugt werden können,

indem das Gitter gekippt und geschüttelt wird. Außerdem wird vorgeschlagen,

Friedel-Oszillationen im Ortsraum als im Experiment messbare Signatur für die

Anyonisierung zu nutzen. Schließlich werden in Kapitel 5 Multiphoton-Übergänge in

höhere Bloch-Bänder untersucht, im Falle eines geschüttelten und eines Amlituden-

modulierten Gitters. Die Stärke und die Lage der Resonanzen, welche zu Heizen

führen, werden hierbei theoretisch und numerisch beschrieben.
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Abstract

The present thesis is devoted to quantum simulation of strongly interacting systems

of ultra-cold atoms in optical lattices. It is a theoretical work which focuses on

the possibility to employ strong time-periodic forcing for the coherent control of

these system. This form of quantum engineering is called Floquet engineering.

Experimentally, time-periodic forcing has been successfully applied to realize

a variety of physical models and phenomena, especially in the regime of weak

interactions. We describe two novel proposals for interesting phenomena in the

regime of strong interactions that rely on lattice shaking: melting of a Mott-

insulator into an excited-state superfluid via coherent coupling of Bloch bands and

the creation of 1D lattice anyons. Furthermore, the role of multiphoton excitations

in a driven lattice is analyzed since these processes can lead to unwanted heating

and thereby impeding of successful Floquet engineering in the experiment.

The introductory Chapter 1 gives an overview over the field of quantum simulations

with ultra-cold atoms in optical lattices and describes the experimental progress

that has been made in the recent years. In Chapter 2, Floquet theory is reviewed,

which provides an excellent framework to deal with time-periodic Hamiltonians and

which is the basis of the analysis presented in the following chapters. Chapter 3

deals with the proposal of coherently coupling Bloch bands of an optical lattice via

resonant lattice shaking. In particular, the orbital-driven phase transition from a

Mott insulating to a superfluid ground state is described in detail. In Chapter 4, a

proposal of realizing 1D lattice anyons from strongly interacting bosons in a shaken

and tilted lattice is worked out. Furthermore, Friedel oscillations are proposed to

provide a measurable real-space signature for the anyonization. Finally, in Chapter

5 multiphoton excitations to higher Bloch bands are analyzed for the cases of a

shaken and an amplitude-modulated lattice. The strength and the location of

resonances, which are associated with heating, are described theoretically and

numerically.
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1. Introduction

The title of this work is “Many-Body Floquet Engineering in Periodically Driven

Optical Lattices”. About each of these key words one can fill entire books and this

has aleady been done. However, the composition of these words and the underlying

physics is a new and very specific issue and needs to be discussed. The purpose of

this introduction is to explain the title, the background, and the purpose of this

work. Moreover, the reader is invited to embrace the fascination for the mentioned

quantum experiments, which has captured the author and many scientists before

him and which has thereby driven their efforts.

1.1. Experiments with Ultra-Cold Atoms - A

Quantum Playground

For many years after its discovery, quantum physics has been a primarily theoretical

construct. Performing a “standard“ experiment - characterized by preparation,

execution and read-out - in a quantum system, is generally limited by the short

time- and high energy scales that we encounter therein. Especially many-body

quantum experiments, i.e. those where the collective behavior of a lot of quantum

particles is investigated, has been a special challenge. This is because it is very hard

to cool down an atomic gas into the quantum degenerate regime and to control it

therein. With the advances in the field of quantum optics and the fabrication of

the first Bose-Einstein condensates in 1995 [1–3], predicted Einstein more than 70

years earlier [4, 5], physicists created a quantum matter that could be used as a

“quantum playground“ for single-, few- and many-body experiments [6].

In this class of experiments, isolated neutral atoms are trapped with the help of
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1. Introduction

electromagnetic fields and cooled down to the regime of nanokelvin. Consequently,

the 103 to 108 atoms occupy a very limited number of low-energy quantum states.

These atomic gases are very dilute such that their interactions are rather weak and,

moreover, can simply be described by contact interaction. The systems have energy

scales in the lower kilohertz regime, which makes them easily addressable. Their

intrinsic time evolution happens on the order of milliseconds, which is slow enough

to allow the study of the gases out of equilibrium. At the same time, the coherence

of the atomic cloud could last up to seconds. For a large class of experiments, this

provides enough time for the preparation and execution process. The length scales

in cold-atom experiments are in the order of micrometer, such that the atoms can

be accurately addressed and their states easily read out. The experimentalists can

control the atoms via lasers, whose amplitude, frequency and phase can be tuned

with extremely high precision and speed. Furthermore, because of their collective

occupation of states and because ultra-cold atom experiments can be repeated

automatically hundreds of times in a row, the state of the system can often be read

out with high accuracy. Altogether, quantum experiments with ultra-cold atoms

are very clean, tunable and measurable. This makes the quantum playground very

lively.

Cold-atom experiments are especially interesting as they serve as analog quantum

simulators for text-book models [7]. By this we mean that quantum systems

realized in a cold atom experiment are described by simple models, with which a

broad class of physical phenomena can be explained. Whereas such a model might

be difficult to simulate on a classical computer, its dynamics or its static proper-

ties can thus be simulated in a cold-atom experiment, at least with satisfactory

accuracy. By this, the quantum simulator can help to confirm or to improve our

theoretical understanding of quantum physics. This is especially helpful if a system

consists of many interacting quantum particles implying a huge number of degrees

of freedom [8]. Then, the large size of the Hilbert space and the quick entanglement

between the particles makes it often impossible to solve the Schrödinger equation by

any means. In many of these situations, the quantum simulator is a unique tool to

address unsolved problems in physics, without any classical counterpart. Prominent

examples of physical problems where quantum simulators with ultra-cold atoms

are believed to find solutions, are many-body localization [9] and the BEC-BCS
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crossover [10].

A striking tool for a quantum simulation is an optical lattice. Here, equally colored

lasers from different angles form standing waves1. If additionally the frequency

of the lasers is slightly detuned to an allowed transition in the electron shell of

the atoms, the particles see, via the AC stark shift, the intensity of the standing

laser waves as a periodic potential. The atoms, attracted e.g. by the minima of

the lattice potential, can be compared to electrons moving in a crystalline struc-

ture of ions. Hence, ulta-cold atoms in optical lattices can be used to simulate

defect-free solids [8]. This analogy is astonishing. The nature of the attraction

of the neutral atoms to the lattice minima, or of the electrons to the ions, is

very different. Likewise, the lattice constant differs by a factor of around 103 and

the mass of the particles by a factor of 105. Nevertheless, basic phenomena, for

example the transition between insulating and conducting phases, are in both

cases described by the celebtrated Hubbard model [11], which can be addressed

by quantum simulations. Hence, ultra-cold atoms in optical lattice can be used to

answer questions in solid state physics and material sciences.

Another important area where tunable many-body quantum systems, like those of

ultra-cold atoms in laser fields, have a great potential, are quantum devices. By

this we mean applications of quantum mechanics outside of science. A famous

but rather long-term goal in this category is the realization of a scalable quantum

computer. Trapping atoms and encoding qubits in a clever and stable way in this

system, a quantum computer could be used to perform quantum algorithms. A

quantum algorithm is an algorithm whose execution on a quantum computer scales

only polynomially with the system size and which would require exponentially more

ressources (e.g. time, number of gates) on a classical machine. Important quantum

algorithms are Shor’s algorithm to factorize any composite number [12] and Grover’s

algorithm to search for a single entry in a database [13]. Other important quantum

devices with cold-atom systems include high-precision measurement devices, like

for example gravimeters [14] and clocks [15].

1This includes laser beams that are reflected by mirrors to overlap with themselves.
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1. Introduction

1.2. Milestones in the Field

The popularity and broad applicability of cold-atom experiments of today were

enabled by an impressive experimental and theoretical progress in the last twenty

years. Consecutive cooling mechanisms, namely Doppler, Sysiphus and evaporative

cooling, allow to reach temperatures of only a few nanokelvin [16]. By this, ultra-

cold quantum gases with e.g. isotopes of Li, Na, K, Cr, Rb, Cs, Yb have been

achieved, each coming with its own set of opportunities and challenges. While the

present work focuses on the case where the atoms are bosons, fermi gases have

attracted a similar level of interest [17]. There are also experiments comprising

both species, the so called Bose-Fermi mixtures [18, 19]. While typical quantum

gas experiments are performed with thousands to millions of atoms, such that

their collective behaviour becomes macroscopic and well measurable, a quantum

microscope provides a complementary approach [20]. Here, atoms are prepared

and addressed individually with high-resolution optical imaging systems, allowing

for the analysis of quantum materials on small scales.

A number of tools have been developed to read out the quantum mechanical state

of the ultra-cold atoms with high precision. The spatial density of the atomic cloud

can be measured via fluorescence imaging or via absorption imaging. In an optical

lattice, this method allows already single-site and single-atom resolution [21]. On

the other hand, the momentum of the atoms can be measured by time-of-flight

expansion. Thereby, all potentials and lasers are suddenly switched off, such that

the atoms freely fall under the force of gravitation. After sufficient time of flight,

the density of the atoms, which can be measured by absorption imaging, reflects

the momentum (i.e. velocity) distribution of their initial state.

When it comes to the investigated physics in the field, in the first years the focus laid

mainly on the weakly interacting regime, where the atomic cloud can be described

by a coherent matter wave (an extensive discussion can be found for example in

Refs. [22–25]). Experimental milestones were the interference of condensates [26],

the measurement of long-range phase correlations in a condensate [27] and the

observation of quantized vortices and vortex lattices [28–30]. The matter wave can

be described by the Gross-Pitaevskii equation [31, 32], which is very similar to the

Schrödinger equation for a single particle. The weak interaction of the particles
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leads to a non-linear term, which explains non-linear effects like vortices or solitons.

Small quantum fluctuations around the macroscopic condensate wave function can

be addressed within the Bogoliubov theory [33], in which the excitations can be

related to non-interacting quasiparticles.

Later, the focus has shifted towards the simulation of strongly interacting systems.

Here, the particles are often strongly correlated, such that the dynamics cannot

necessarily be solved by simple means. Instead, the correlations lead to complex

many-body (ground) states, which are hardly accessible but often of high interest.

Strongly correlated systems include for example high-temperature superconductors,

fractional quantum Hall systems and Luttinger liquids. The regime of strong

interactions could be accessed because of two experimental advances. First of

all, the use of several orthogonal laser beams creating optical lattices in each

direction, could lead to a strong confinement of the atoms within each lattice site.

The interaction of two atoms occupying the same lattice site can be increased

while at the same time the tunneling strength is reduced. This was proposed [34]

and impressively demonstrated in the famous experiment [35] where a deepening

of the lattice depth induced a quantum phase transition from a superfluid to

a strongly interacting Mott insulator. By the same method, a one-dimensional

Tonks-Girardeau gas of hard-core bosons [36] and a Berezinskii–Kosterlitz–Thouless

transition [37] could be investigated.

Another approach to enter the regime of strong interactions was made possible by

the use of Feshbach resonances to tune the atomic interaction [38–40]. By this,

the interaction strength between the atoms could not only be de- or increased

dramatically2, but also its sign could be inverted, making repulsive particles

attractive and vice versa. Using Feshbach resonances, the contact interaction

of chromium atoms in a Bose-Einstein condensate could be reduced such that

the predominant interaction between the particles was dipolar. In that way a

quantum ferrofluid was realized [41]. Another milestone accomplished by Feshbach

resonances was the experimental exploration of the crossover between a Bose-

Einstein condensate (BEC) of tightly bound molecules and a Bardeen-Cooper-

Schrieffer (BCS) pairing [42–44].

2However, the strength of the interaction is limited since the number of three-body losses will
eventually lead to strong heating or even vanishing of the atomic gas
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The combination and interference of several standing laser waves cannot only be used

for spatial confinement. Additionally, they have been applied to form various lattices

in two or three dimensions, like triangular, honeycomb and Kagome lattices (see for

example [45]). In these lattices, the dynamics cannot be dimensionally separated

and solved independently, which could lead to interesting physical phenomena. A

two-dimensional optical lattice with a honeycomb structure can, for example, be

used as an analouge and thus quantum simulator of graphene, which is regarded as

a super material, for its high stability, conductivity and transparency [46].

On the theoretical side, the simple contact interactions between the particles imply

already a major simplification. Furthermore, ultra-cold atoms in an optical lattice

can be described within the tight-binding approximation [47]. Hereby, the particles

are described by so called Wannier states, which are exponentially localized at a

lattice minimum. The atoms hop between neighbouring lattice sites and interact

only on-site. Higher excitations within a lattice site can be disregarded since they

are energetically well separated from the ground state. The resulting discrete and

low-dimensional models are called Hubbard models [11]. Hubbard models often

allow for a simple physical interpretation of the relevant dynamics and a number

of approximative methods have been developed to solve them.

When it comes to solve many-particle models like e.g. Hubbard models, in some

cases these systems can be analyzed by perturbation theory. This is for example

possible if the ground state is very close to highly symmetric states, e.g. for very

large interactions and away from a quantum phase transition. For the solution in

non-pertubative regimes, numerical methods are indispensible. In this regard, exact

diagonalization of the many-body Schrödinger equation is limited because in general

the Hilbert space dimension grows exponentially with the system size. However,

a number of approximative numerical methods have become standard tools in

the field of cold-atom experiments. These include for example the density matrix

renormalization group (DMRG) [48,49], the time-evolving block decimation (TEBD)

[50–52], the quantum Monte Carlo method [53] and coupled-cluster methods [54].

6



1.3. Periodic Driving of the Optical Lattice

1.3. Periodic Driving of the Optical Lattice

For the quantum simulation in optical lattices, it is desirable to have maximum

degree of control over the parameters in the simulated models, like for example the

tunneling strength or phase of the tunneling matrix element. However, only some of

the experimental parameters, which determine the model parameters, are directly

accessible. For an optical lattice these include for example the lattice depth and

the transversal confinement. Additional light fields in some cases might increase

the level of control, but on the other hand challenge the experimental setup.

Periodically modulating experimental parameters with high frequencies, on the

other hand, provides an easy method to gain additional control over the internal

degrees of freedom. If the frequency of the modulation does not match resonances

leading to uncontrolled dynamics, and if its strength is not too high, it is possible

to further manipulate the Hamiltonian of the system without inducing chaotic

dynamics and significant heating on the experimentally relevant time-scale [55]. This

additional degree of freedom can be used effectively in the realization of interesting

many-body quantum models and has thus been established as a common tool in

the context of quantum simulation with ultra-cold gases.

Because of the periodicity of the time-dependent modulation, the system can be

expanded in generalized stationary states, so called Floquet states. Their existence

is a consequence of the Floquet theorem [56], and they can be viewed as Bloch

states in time. If the frequency of the driving is high enough, in many scenarios the

driven model can be approximated by a simple time-independent effective model

with effective parameters that depend on the tunable strength and frequency of

the driving [57]. Therefore, the advantages of the theoretical description in optical

lattices via Hubbard models can readily be transferred to the driven case.

The experimental parameters that can be modulated in an optical lattice, are

for example the lattice depth, the position of the lattice (lattice shaking) or

the interaction strength of the atoms with the help of time-dependent Feshbach

resonances. All of these modulations can be achieved easily since they only require a

modulation of the phase or the amplitude of the employed lasers and electromagnetic

fields3. While the experimental realization of the modulation of the interaction

3Another possibility to move the lattice periodically in time is the use of piezoelectric crystals.
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1. Introduction

strength have been achieved only recently [58], there have been a number of

proposals that it can be used to study novel physics (e.g. [59, 60]). Amplitude

modulation is often used to access higher lying orbitals (see e.g. Ref. [61]). Lattice

shaking is of special interest since it leads to a reparameterization of the tunneling

strength between the lattice sites. Therefore it is possible to reduce the tunneling

contact or even to make it complex, when the shaking also breaks parity symmetry

in time [62]. Because of this property, lattice shaking has been employed for a

broad number of experiments and theoretical proposals, which we will review in

the following.

The first experiments exploiting periodic driving demonstrated this control of the

tunneling strength by directly measuring the dynamical localization of a Bose-

Einstein Condensate [63–65]. Controlling the tunneling strength via the frequency

and strength of the lattice shaking, it was also possible to induce the quantum phase

transition between the Mott insulator and the superfluid ground state in a driven

lattice [66,67]. Mimicking thereby the experiment that was done by controlling the

lattice depth [35], it demonstrated that periodically driving was also applicable in

the regime of strong interactions.

Another application of lattice shaking is photon-assisted tunnling over potential

barriers, also known as AC-induced tunneling [68–72]. Hereby, the tunneling

strength is also reparamererized. The combination of potential off-sets and photon-

assisted tunnling by periodic shaking has established as a standard tool to gain

dynamical control in optical lattices. Another very similar strategy to accomplish

laser-assisted tunneling is the use of Raman lasers (see e.g. Ref. [73]), which, however

requires additional lasers. Furthermore, photon- or shaking-assisted tunneling in

systems where the interaction energy is similar to the potential off-set, can be used

to make the tunneling of the particles density-dependent [74–77].

The possibility to make the tunneling parameter complex by a shaking function

that breaks spatio-temporal symmetry, has led to a number of interesting proposals

and experiments in two and three dimensions. First of all, by lattice shaking or

by using Raman lasers, it is possible to achieve a net phase over a closed loop of

lattice plaquettes [78, 79]. With these artificial gauge fields it is now possible to

study magnetism even though the atoms originally have no charge [62,73,80–84].

A special class of these models and still a very new and active field of research are

8



1.3. Periodic Driving of the Optical Lattice

topological insulators [85–88]. Whereas these materials are insulating in the bulk,

they are conducting on the surface. These properties make the study of topological

insulators in quantum simulators interesting for material sciences [89].

Other interesting situations, where the interplay of the tunneling parameter and

the geometry of the lattice leads to interesting phenomena, is geometric frustration

[90, 91]. While a sign change of the tunneling parameter due to lattice shaking

does not lead to qualitatively new physics in one dimension or in a bipartite

lattice, an inverted sign of the hopping element in a non-bipartite lattice makes

the configuration of the ground-state wave degenerate. For example, a triangular

lattice might have two ground states and a Kagome lattice infinitely many ones.

This might lead to spontaneous symmetry breaking of the ground state, where a

slight perturbation, e.g. by interactions, can have a huge impact on the properties

of the system.

Another class of quantum models that can be explored by periodic driving are

systems with orbital degrees of freedom. Naturally, higher orbitals are separated

by a large energy gap, which is of advantage if one is only interested in the physics

of the ground band of the lattice. If periodic driving is added to the system

with a frequency well below this band gap, the dynamics remains limited to the

ground band. If, however, the driving frequency is comparable to the energy

difference towards higher orbital states and the coupling is allowed by symmetry,

the dymanics leads to a mixture between several orbital states. For weak coupling,

the dispersion relations are only slightly perturbed. In a weakly interacting scenario,

the condensate might thus be transferred to the higher orbital if the frequency

is varied slowly [92]. In another scenario, due to the admixtures of the higher

orbitals the dispersion relation of the ground band forms a double-well. These

two degenerate potential minima for the condensate can be studied as an effective

ferromagnet [93, 94]. If the resonance condition is only fulfilled for a certain

occupation of a lattice site because of the interaction energy, this leads to an

interaction blockade in the other cases, which could be used as a method for density

measurement [95,96]. Nevertheless, experiments in the strong-interacting regime, in

which higher orbitals are coupled in a coherent fashion, have not yet been realized.

Even if experiments with ultra-cold quantum gases are well isolated and under

control, unwanted heating and loss can occur and has to be accounted for. In
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1. Introduction

non-driven systems, especially three-body scattering can lead to particle excitations

to higher states and consequently to heating and particle loss [97, 98]. Heating can

furthermore be induced by parameter changes, which therefore have to be slow

enough to reduce non-adiabatic energy exchange. Overall, in a non-driven system

these phenomena are well understood and can be limited quite successfully. In

periodically driven systems, the situation changes completely. If the frequency is

close to the difference of two relevant energies, the external driving will couple these

states and thereby pump energy into the system or take it out. These resonances

can occur towards highly excited single-particle orbitals or towards highly excited

collective excitations. These excitations lead to chaotic behaviour or particle loss.

In fact, an unbound driven system, which is in general fully ergodic, is expected

to heat up towards an infinite temperature state [99,100]. However, if unwanted

resonances are minimized successfully, there is a time period where the dynamics in

a periodically driven system follows an effective description, which can be derived

from Floquet physics. This provides a time window for experiments.

1.4. Agenda of the Present Work

Experiments with ultra-cold atoms in optical lattices have proven to be a versatile

toolbox for quantum simulation and offer further potential in the future. A periodic

driving provides additional degrees of freedom to the experimentors and renders new

quantum models possible. While most proposals and experiments with periodically

driven lattices work in the regime of weak interactions, the aim of this work is to

explore theoretical proposals of Floquet engineering in the strong coupling regime,

where the many-body nature of the system is crucial. Additionally, the work

addresses the issue of heating in driven systems, which still poses a big challenge

for experimentalists and is the reason why many proposals with driven systems

have not yet been realized.

First of all, Chap. 2 provides the necessary theoretical framwork for the following

discussion by introducing Floquet theory and the necessary tools therein, which

will be used in the following chapters.

Chap. 3 studies the intriguing possibility of the coherent coupling of Bloch bands

by a periodic lattice shaking. The motivation is to coherently open orbital degrees

10



1.4. Agenda of the Present Work

of freedom in optical lattices, which have until now been widely neglected because

of the energetic gap between the orbitals. The coherent coupling in a shaken optical

lattice is possible since the driving introduces a direct coupling element between

states of different Bloch bands with the same quasimomentum and is significant

as long as the frequency of the driving is resonant with the energy gap separating

the two Bloch bands. To explore the coherent coupling in a minimal and simple

model, we focus on the lowest two Bloch bands and one dimension. To reduce

excitations to even higher lying states, we propose to use a dimerized lattice, such

that the resonance condition towards higher bands is not matched at the same time.

Starting from the driven Hubbard model including two Bloch bands, we derive

an effective Hubbard model, where the high-frequency condition is automatically

fulfilled by the resonance condition. The band distance in this effective model

can be tuned by the driving frequency. Hence, for strongly coupled bosons we

propose to induce an orbital driven quantum phase transition between a Mott

insulator and a superfluid. By presenting numerical results, we demonstrate that

there exist experimentally realistic parameters where this phase transition can

actually happen. These parameters also determine whether the phase transition is

of first or second order. Finally, a real-time simulation of an adiabatic protocol of

the orbital-driven melting of the Mott insulator is presented for small systems and

it is shown that excitations to higher lying bands during the protocol can indeed

be neglected. The chapter elaborates in detail the theoretical proposal that was

published in Ref. [101].

In Chap. 4, we describe the possibility to realize one-dimensional anyons in a

shaken optical lattice and demonstrate how these lattice anyons can be probed in

an experiment. Interpolating between bosons and fermions as their wave function

picks up a non-trivial phase upon particle exchange, anyons play an important role

as quasiparticles of topologically ordered states. Since lattice anyons have not yet

been realized within an optical lattice, we elaborate a simple scheme for this aim,

which does not require additional lasers, in contrast to previous proposals [102,103].

The proposal is based on the possibilty to make the tunneling elements complex

by bi-chromatic shaking on the one hand and to make them density-dependent by

shaking-assisted tunneling combining a lattice tilt and strong on-site interactions of

the atoms on the other. We show for which parameters lattice anyons with a tunable

11



1. Introduction

statistical angle will emerge and how a simple anyonic Hubbard model can be

realized effectively. Furthermore, by solving small systems via exact diagonalization,

we demonstrate how Friedel oscillations in real space can be used as signatures for

the anyonization of the many-particle ground state of the bosons. By simulating

the full shaking protocol, we demonstrate that the preparation of this anyonic

ground state is indeed possible. The work on anyons presented in this chapter is

based on Ref. [104].

Finally, in Chap. 5 we study single-particle, multi-photon heating processes in

periodically driven lattices. Multi-photon excitation processes in optical lattices

have not been analyzed rigorously before but can have a significant strength in

certain situations. We consider these processes in a shaken and in an amplitude-

modulated lattice, which are very common driving schemes and lead to distinct

selection rules and excitation strengths. The strength of the excitations in both cases

is estimated by a Floquet perturbation theory and by a rotating-wave approximation.

Furthermore, for both scenarios we analyze the time-evolution and the excitation

spectrum via numerical simulations. The results for the shaken lattice are compared

to the outcomes of the experiment which was performed in Hamburg and published

together with our results in Ref. [105]. The section on the case of an amplitude-

modulated lattice is based on the theoretical publication Ref. [106].
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2. Basics and Tools of Floquet

Theory

In this chapter we give an introduction to Floquet theory and present the key

tools how a time-periodic Hamiltonian can be handled and solved efficiently. These

methods will be used throughout the following chapters. In Sec. 2.1 we introduce

Floquet theory as the main formalism to solve problems with time-periodic Hamil-

tonians. In Sec. 2.2 we demonstrate how Floquet theory can be used to derive an

effective Hamiltonian, which reduces a time-periodic problem to a time-independent

one. This is a key technique to engineer the properties of a many-body systems in

the context of quantum simulation. Finally, in Sec. 2.3 we explain how to treat a

slow parameter variation within a Floquet system. This is an important ingredient

for many experiments with periodically driven quantum systems. The Floquet

theory and methods presented here refer mainly to Refs. [57] and [55]. More specific

methods in the framework of Floquet theory, like the Floquet perturbation theory,

are introduced in the respective chapters and sections directly.

2.1. Solution of Quantum Systems with a

Time-Periodic Hamiltonian

We start by examing a general quantum system which is time-dependent in a

periodic fashion. This symmetry can be exploited when solving the system and

often allows for a clear physical interpretation.

Hence, we consider a time-periodic Hamiltonian

Ĥ(t) = Ĥ(t + T ) (2.1.1)

13



2. Basics and Tools of Floquet Theory

with frequency ω and time-periodicity T = 2π/ω, which acts in a Hilbert space

H with finite dimension D. Floquet’s theorem [56] relates the symmetry of time-

periodicity to solutions of the time-dependent Schrödinger equation

ih̵
∂

∂t
∣ψ(t)⟩ = Ĥ(t)∣ψ(t)⟩. (2.1.2)

The theorem states that for Eq. (2.1.2) there exists a basis of quasi-stationary

solutions ∣ψn(t)⟩, also called Floquet states, which have the form1

∣ψn(t)⟩ = e
−iεnt/h̵∣un(t)⟩. (2.1.3)

Each of these basic solutions splits into a time-periodic Floquet mode ∣un(t)⟩ =

∣un(t + T )⟩, which governs the micromotion of the state within one time period,

and a linearly increasing phase governed by the quasienergy εn. The ∣ψn(t)⟩ form

a complete basis of the Hilbert space. They are also called generalized eigenstates

since they play the role of stationary states in a time-independent system and are

transformed into them in a stationary limit of Ĥ(t), e.g. when the strength of the

driving term goes to zero. Likewise, the quasienergies generalize the concept of the

eigenenergies. Because of the hermiticity of the Hamiltonian, the quasienergies are

real. Furthermore, they are only defined modulo h̵ω since

∣ψn(t)⟩ = e
−iεnmt/h̵∣unm(t)⟩ (2.1.4)

with

εnm = εn +mh̵ω and ∣unm(t)⟩ = ∣un(t)⟩e
imωt. (2.1.5)

is also a set of basic solutions. The index m is called Fourier or photon index. The

transition from energies to quasienergies is thus equivalent to the transition from

momenta to quasimomenta in a spatially periodic potential.

Eq. (2.1.3) reveals the general structure of the dynamics in a periodically driven

quantum system. Each solution of the Schrödinger equation ∣ψ(t)⟩ can be expanded

1This mathematical result about the solution of a linear differential equation with periodic
coefficient matrix, was independently found by Gaston Floquet, George William Hill, Alexander
Lyapunov and Felix Bloch in the end of the 19th and beginning of the 20th century. For spatially
periodic (time-independent) Hamiltonians it is commonly known as Bloch’s theorem [107].
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2.1. Solution of Quantum Systems with a Time-Periodic Hamiltonian

in the Floquet basis,

∣ψ(t)⟩ =∑
n

cn∣ψn(t)⟩, (2.1.6)

with constant coefficients cn = ⟨ψn(0)∣ψ(0)⟩. If the Floquet basis and the quasienergy

spectrum are known, the time evolution of each state ∣ψ(t)⟩ can be provided.

Furthermore, if one disregards the micromotion and is only interested in the

stroboscopic time-evolution in steps of T , the dynamics becomes

∣ψ(t0 + jT )⟩ =∑
n

e−
i
h̵
εnjT cn∣ψn(t0)⟩, j ∈ Z, (2.1.7)

i. e. it is as simple as in the time-independent case. Especially in a high-frequency

setting, where h̵ω is much higher than other relevant energy scales in the Hamilto-

nian, this is a useful simplification.

The Floquet states ∣ψn(t)⟩ diagonalize the so called monodromy operator

M(t) = Û(t + T, t) = T exp(−
i

h̵ ∫
t+T

t
dτĤ(τ)) (2.1.8)

which is the time evolution operator over one time period, i. e.

M(t)∣ψn(t)⟩ = e
− i
h̵
mεnT ∣ψn(t)⟩. (2.1.9)

Here, T is the time ordering operator. Eq. (2.1.9) provides a method to calculate

quasienergies and Floquet states: A complete, orthonormal basis ∣α⟩ of the Hilbert

space H at a specific time t0 (e.g. t0 = 0) has to be propagated in time over T with

M(t0). The resulting states projected on the initial basis give the monodromy

matrix (the monodromy operator in matrix form)

Mα′α(t0) = ⟨α′∣M(t0)∣α⟩ (2.1.10)

whose eigenvalues eiεnT /h̵ provide the quasienergies εn and whose eigenstates are

the Floquet states ∣ψn(t0)⟩ at time t0. The micromotion of the Floquet states, i. e.

the dynamics of the Floquet modes ∣un(t0 + t)⟩, can be obtained by propagating

each Floquet state with Û(t0 + t, t0).
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2. Basics and Tools of Floquet Theory

There is another perspective on the Floquet dynamics, given by the extended

Hilbert space, which includes an alternative way to compute Floquet states and the

quasienergy spectrum. If we plug in Eq. (2.1.3) into Eq. (2.1.2), we can derive a

differential equation

[Ĥ(t) − ih̵∂t]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Q̂(t)

∣unm(t)⟩ = εnm∣unm(t)⟩ (2.1.11)

for the Floquet modes ∣unm(t)⟩. Here, the operator Q̂(t) is called the quasienergy

operator. Because of the time derivative, the equation is not an eigenvalue problem

in the ordinary Hilbert space, but it can be regarded as one in the extended Floquet

Hilbert space K [108]. This is the product space of the original Hilbert space H and

the (infinite dimensional) Lebesgue space L2(T,0) of square-integrable functions

within one time period, i. e.

K = H ⊗L2(T,0). (2.1.12)

States in K are denoted in the double-bra-ket notation. For example, ∣u⟩⟩ represents

the time-periodic state ∣u(t)⟩ ∈ H for all t ∈ [0, T ]. The scalar product in K between

two states ∣u⟩⟩ and ∣v⟩⟩ is defined as

⟨⟨u∣v⟩⟩ =
1

T ∫
T

0
dt ⟨u(t)∣v(t)⟩. (2.1.13)

One possible complete basis of K is the set ∣nm⟩⟩ belonging to the Floquet modes

∣unm(t)⟩, which fulfill

⟨⟨n′m′∣nm⟩⟩ = δn′nδm′m. (2.1.14)

They are, however, per se not known. Another very convenient complete basis of

K is given by the states ∣αm⟩⟩, representing the time-periodic states ∣α⟩eimωt with

m ∈ Z and ∣α⟩ being a complete basis in H. With regards to the time dimension,

this choice of basis is just the discrete Fourier expansion into plane waves. In this
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2.1. Solution of Quantum Systems with a Time-Periodic Hamiltonian

basis, the quasienergy operator has the simple form

⟨⟨α′m′∣Q̂∣αm⟩⟩ =
1

T ∫
T

0
dt e−i(m

′−m)ωt⟨α′∣[Ĥ(t) − ih̵∂t]∣α⟩

= ⟨α′∣[Ĥ(m′−m) +mh̵ωδm′m]∣α⟩. (2.1.15)

Here we have introduced the Fourier components of the Hamiltonian

Ĥ(m) =
1

T ∫
T

0
dt Ĥ(t)e−imωt (2.1.16)

from the Fourier decomposition

Ĥ(t) =∑
m

Ĥ(m)eimωt. (2.1.17)

Written out with resepct to m, the quasienergy operator takes the form

Q̂ =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⋱ ⋮ ⋰

Ĥ(0) − h̵ω Ĥ(−1) Ĥ(−2)

⋯ Ĥ(1) Ĥ(0) Ĥ(−1) ⋯

Ĥ(2) Ĥ(1) Ĥ(0) + h̵ω

⋰ ⋮ ⋱

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (2.1.18)

Here, we clearly see the block structure of the quasienergy operator: diagonal blocks

comprising the static contribution Ĥ(0) of Ĥ(t), are separated in quasienergy in

steps of the photon energy h̵ω. These diagonal blocks are coupled to each other by

the Fourier components Ĥ(m), m ≠ 0 stemming from the time-dependent part of

Ĥ(t). In the extended Hilbert space, the eigenproblem Eq. (2.1.11) takes the form

Q̂∣nm⟩⟩ = εnm∣nm⟩⟩. (2.1.19)

It resembles the problem of a quantum system where the Hamiltonian Ĥ(0) is

coupled to a photon-like mode. Therein, m plays the role of the photon number

relative to a large background occupation and for this reason we call m the photon-

index in the Floquet context. Remember that for every m, the set of quasienergies

εnm and modes ∣nm⟩⟩ defines an equivalent solution for the dynamics of Ĥ(t). The
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2. Basics and Tools of Floquet Theory

photon index m is just necessary to compute one of these equivalent solutions.

Since m takes any integer value, Q̂ is thus an infinitely large matrix. However,

Eq. (2.1.19) can be solved for the (physically common) scenario that Ĥ(m) goes

to zero rapidly for increasing ∣m∣. In this case, one can choose a sufficiently large

cut-off m∗ such that Q̂ is reduced to to the finite matrix Q̂∗ with −m∗ ≤m,m′ ≤m∗.

One usually then picks the solution {εn0, ∣n0⟩⟩} since it is farest away from the

boundaries. This provides a method to compute Floquet states and quasienergy

spectrum alternative to computing and diagonalizing the monodromy operator.

2.2. Reduction to an Effective Time-Independent

Model

In this section we show how Ĥ(t) or respectively Q̂, can be reduced to an effective,

time-independent Hamiltonian acting in H. By this, the complexity of the problem

is reduced and it is possible to apply standard techniques of stationary quantum

mechanics. Furthermore, the derivation of an effective Hamiltonian makes it possible

to separate the solution of the long-term dynamics from that of the micromotion.

This allows for a clear physical interpretation and opens many possibilities for

quantum simulation with periodically driven Hamiltonians [57].

Formally, for a finite-dimensional Hilbert space there always exists a time-dependent

gauge transformation ÛF (t) which transforms the Hamiltonian Ĥ(t) into a time-

independent effective Hamiltonian

ĤF = Û †
F (t)Ĥ(t)ÛF (t) − ih̵Û

†
F (t)

∂

∂t
ÛF (t), (2.2.1)

see Ref. [109]. The time-evolution operator is thus decomposed as

Û(t0 + t, t0) = ÛF (t) exp(−
i

h̵
(t − t0)ĤF) Û

†
F (t0). (2.2.2)

Note that ÛF (t) is absorbing the micromotion of the Floquet states, which we

described in Floquet’s theorem (2.1.3). For this reason, it is also called the

micromotion operator. On the other hand, ĤF describes the phase evolution due
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2.2. Reduction to an Effective Time-Independent Model

to the quasienergies εn, which do not change under the gauge transformation. We

therefore have the eigenvalue problem

ĤF ∣ũn⟩ = εn∣ũn⟩ (2.2.3)

in H for the time-independent, transformed Floquet modes

∣ũn⟩ = ÛF (t)
†∣un(t)⟩. (2.2.4)

The micromotion operator ÛF (t) is not uniquely defined. From Eq. (2.2.1), we

deduce that we can always multiply the micromotion operator by a time-independent

unitary operator from the right

ÛF (t)→ ÛF (t)Û = Û ′
F (t) (2.2.5)

since it only changes the stationary basis ∣ũn⟩. For example, the unitary Û can

diagonalize ĤF . By choosing Û = Û †
F (t0), the time evolution operator Eq. (2.2.2)

takes the simple form

Û(t, t0) = ÛF (t, t0) exp(−
i

h̵
(t − t0)Ĥ

F
t0) , (2.2.6)

where we define ÛF (t, t0) = ÛF (t)Û
†
F (t0) and

ĤF
t0 = ÛF (t0)ĤF Û

†
F (t0). (2.2.7)

The effective Hamiltonian ĤF
t0

is also called Floquet Hamiltonian. Considering the

dynamics stroposcopically in steps of T , the time-evolution is thus simply governed

by the Floquet Hamiltonian,

Û(t0 + T, t0) = exp(−
i

h̵
T ĤF

t0) , (2.2.8)

which is very convenient in a high-frequency scenario.

However, it is not always obvious how the micromotion operator ÛF (t) for an

arbitrary Hamiltonian Ĥ(t) has to be constructed and it may have many and
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complicated terms. Instead, it is more convenient to look for a gauge transformation

Û(t) that transforms the Hamiltonian

Ĥ ′(t) = Û †(t)Ĥ(t)Û(t) − ih̵Û †(t)
∂

∂t
Û(t) (2.2.9)

such that the time-evolution

Û(t0 + T, t0) ≈ exp(−
i

h̵
T Ĥ ′(0)) (2.2.10)

is approximately governed by the stationary part of the Hamiltonian

Ĥ ′(t) ≈ Ĥ ′(0) = 1/T ∫
T

0
dt Ĥ ′(t). (2.2.11)

This condition does not only depend on the higher Fourier components Ĥ ′(m) with

m ≠ 0 but also on the frequency ω, or respectively the photon energy h̵ω. Let

us consider again the Floquet operator Eq. (2.1.18) and the block structure of Q̂.

The diagonal blocks Ĥ(0) +mh̵ω, corresponding to the stationary part of Ĥ(t),

might overlap with each other in quasienergy and are coupled by the non-diagonal

blocks Ĥ(m). In first order perturbation theory, there are therefore two alternative

possibilities such that the off-diagonal blocks, leading to non-stationary evolution,

can be neglected: first of all, the off-diagonal elements Ĥ ′(m) should not resonantly

couple states from diagonal blocks with different index m. This requirement implies

that no states from different blocks are degenerate or that there exists no coupling

elements between them. The other condition is that also the coupling terms Ĥ ′(m)

should be smaller than the energy differences of the states from different blocks.

If both conditions are fulfilled, the off-diagonal blocks can be neglected and the

eigenvalue problem Eq. (2.1.19) can be reduced to the time-independent Schrödinger

equation

Ĥ ′(0)∣n⟩ = εn∣n⟩ (2.2.12)

in H. Therefore, it is a good strategy to look for all near-resonantly coupled states

and apply a gauge transformation which removes the coupling between them to the

stationary part Ĥ ′(0). This procedure is known as Rotating Wave Approximation
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2.2. Reduction to an Effective Time-Independent Model

(RWA) in this context [110].

Let us demonstrate the RWA with the textbook example of a two-level system

describing an atom with states ∣±⟩ which have energies E± = ±∆/2. The states are

coupled by a single oscillating mode (e. g. light) with strength Ω and resonant

frequency h̵ω = ∆ − δ, δ ≪ ∆. The Hamiltonian

Ĥ(t) =
⎛

⎝

−∆
2 0

0 ∆
2

⎞

⎠
+
⎛

⎝

0 Ω cos(ωt)

Ω cos(ωt) 0

⎞

⎠
(2.2.13)

consists of a stationary part Ĥ(0) and a time-dependent part eiωtĤ(1) + e−iωtĤ(−1),

which cannot be neglected because the driving has a resonant frequency. In the

RWA approximation, the Hamiltonian is transformed into the interaction picture

Ĥ(t) → Ĥ ′(t) =
⎛

⎝

−δ Ω
2

Ω
2 δ

⎞

⎠
+

Ω

2

⎛

⎝

0 exp(2iωt)

exp(−2iωt) 0

⎞

⎠
(2.2.14)

via the gauge transform

Û(t) =
⎛

⎝

exp ( i
2ωt) 0

0 exp (− i
2ωt)

⎞

⎠
(2.2.15)

so that afterwards the two states are almost degenerate in energy, separated by

a small off-set δ = ∆ − h̵ω. Thus, the initial coupling Ĥ(1) is transformed into a

stationary part entering Ĥ ′(0) and a rapid-oscillating part ei2ωtĤ ′(2) + e−i2ωtĤ ′(−2),

which can be neglected if Ĥ(2) ∼ Ω/2 ≪ 2h̵ω. The effective Hamiltonian Ĥ ′(0) can

easily be solved and results in a Rabi oscillation between the original states ∣+⟩ and

∣−⟩, see also App. C.1.

There are further standard approximations that give an effective Hamiltonian

beyond the stationary part of the Hamiltonian Ĥ ′(0), which may or may not

be combined with a preceding gauge transformation. One of them is given by

the high-frequency expansion [57,111–116], which also provides estimates for the

micromotion operator ÛF (t). In this approximation, the photonic part of the

Hamiltonian ⟨⟨α′m′∣ − ih̵∂t∣αm⟩⟩ = δm′mδα′αmh̵ω serves as the unperturbed system

while the Hamiltonian ⟨⟨α′m′∣Ĥ(t)∣αm⟩⟩ is the perturbation. Furtherore, one writes
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the micromotion operator as

ÛF (t) = exp(Ĝ(t)) (2.2.16)

with anti-Hermitian operator Ĝ = −Ĝ†, which can be perturbatively expanded

Ĝ(t) =∑
µ

Ĝ(µ) (2.2.17)

allowing one to derive perturbative terms for ĤF = ∑µ Ĥ
(µ)
F . The first three terms

are given by

Ĥ
(1)
F = Ĥ(0),

Ĥ
(2)
F = ∑

m≠0

Ĥ(m)Ĥ(−m)

mh̵ω
,

Ĥ
(3)
F = ∑

m≠0

[Ĥ(−m), [Ĥ(0), Ĥ(m)]]

2(mh̵ω)2
+ ∑
m′≠0,m

[Ĥ(−m′), [Ĥ(m′−m), Ĥ(m)]]

3mm′(h̵ω)2
.

(2.2.18)

Another approximation to derive an effective Hamiltonian taking into account

higher Fourier modes, is the Floquet-Magnus expansion [117].

In summary, we have demonstrated methods to derive an effective Hamiltonian for

a periodically time-dependent quantum system, which allow for a simplification of

the solution and often allow for an interpretation of the effect of the driving, as

will be seen in the proposals presented in Chap. 3 and Chap. 4.

2.3. Slow Paramater Variation in a Floquet System

Finally, we want to consider the situation where within a periodically modulated

Hamiltonian one or several parameters change slowly in time. This is an important

scenario in a number of experimental protocols, for example in the preparation of

a specific Floquet state which represents the ground state of a target Hamiltonian.

Consider therefore a time-dependent Hamiltonian Ĥ(t, µ(t)), which is almost time-

periodic but also depends on a parameter (or a set of parameters) µ(t) that varies
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2.3. Slow Paramater Variation in a Floquet System

slowly with respect to the oscillation time T and also to the time-scale determined

by the energy scales of the Hamiltonian. Then it is interesting to know how the time

evolution of the system deviates from the Floquet description due to µ(t). Since a

time-periodic system can be reduced to an effective time-independent system, at

least modulo T , it seems intuitive to generalize the adiabatic principle [118] and the

Landau-Zener formula [119–121] from static quantum mechanics also to Floquet

states and quasienergies in the extended Hilbert space K. This intuitive guess is

confirmed by the two-time formalism [122–124]. In this formalism we introduce a

second time τ for the adiabatic parameter change, while the time of the Floquet

problem is still denoted as t. Hence, we introduce instantaneous Floquet states

∣Ψτ
n(t)⟩ = exp(−

i

h̵
mετnmt) ∣uτmn(t)⟩ (2.3.1)

with ∣Ψτ(t)⟩∣τ=t = ∣ψ(t)⟩ and instantaneous operators Ĥτ(t) = Ĥ(t, µ(τ)) and

Q̂τ(t) = Ĥτ(t) − ih̵∂t. Thus, we can write down the instantaneous eigenvalue

problem in the extended Hilbert space

Q̂τ ∣uτmn⟩⟩ = ε
τ
nm∣uτmn⟩⟩. (2.3.2)

By plugging in this relation into the full time-dependent Schrödinger equation, we

see that this operator generates the time evolution with regard to τ ,

ih̵
∂

∂τ
∣Ψτ ⟩⟩ = Q̂τ ∣Ψτ ⟩⟩, (2.3.3)

for a general state ∣Ψτ ⟩⟩ in the extended Hilbert space. The structure of this

equation is analogous to the time-dependent Schrödinger equation for τ , which

justifies the following approximations.

Let us now consider a smooth and finite parameter varation µ(τ) = µ̃(τ/τf) from

µ0 = µ̃(0) to µ1 = µ̃(1) so that 1/τf defines the speed of the parameter variation.

The adiabatic theorem for Floquet systems states that in the limit τf → ∞, i.e.

∂τH(t, µ(τ))→ 0, the system started in Floquet state ∣ψn(0)⟩ with quasienergy εn

remains in the Floquet state with the same index n provided its quasienergy is
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2. Basics and Tools of Floquet Theory

separated by a finite gap from all other quasienergies2. This implies that after the

parameter variation at time τf the Floquet state evolves according to

∣ψn(τf)⟩
τf→∞
ÐÐÐ→ exp(−

i

h̵ ∫
τf

0
dτ ετn) ∣ψn(0)⟩ (2.3.4)

if τf = nT, n ∈ Z and provided the respective Floquet mode is normalized like

⟨⟨uτnm∣uτnm⟩⟩ = 1 (2.3.5)

and

⟨⟨uτnm∣∂τ ∣u
τ
nm⟩⟩ = 0. (2.3.6)

The phase factor appearing in Eq. (2.3.4) is called the dynamic phase, as known

from static quantum mechanics. Practically, if the parameter variation µ(τ) is

very slow, i.e. τf ≫ T , the system follows the Floquet state very closely. An exact

definition of the term slow depends strongly on the specific form and time scale of

the Hamiltonian. The special case where the parameter under variation µ is the

frequency of the Hamiltonian ω is described in Ref. [126].

On the other hand, the Landau-Zener formula makes a quantitative statement in

the important situation where the quasienergies ετA and ετB (A = nm, B = n′m′)

of Floquet modes ∣uτA⟩⟩ and ∣uτB⟩⟩ come very close together in an avoided crossing.

An avoided crossing happens when the two Floquet modes are very close to two

orthogonal modes ∣vτA⟩⟩ and ∣vτB⟩⟩ which are coupled to each other with matrix

element C in the Floquet operator. In a situation where a parameter change

µ(τ) leads to a linear crossing of the states ∣vτA⟩⟩ and ∣vτB⟩⟩, for the Floquet modes

∣uτA⟩⟩ and ∣uτB⟩⟩ this crossing is avoided due to the coupling. Close to the crossing,

the situation can be represented, to good approximation, by the 2-by-2 Floquet

2The finite gap to other quasienergies is a common condition in the proof of the adiabatic
theorem and can be used to give information about how fast the limit is reached. However,
for the adiabatic theorem to hold it is enough to demand that there is a piecewise twice
differentiable spectral projection [125].
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2.3. Slow Paramater Variation in a Floquet System

operator in the basis of ∣vτA⟩⟩ and ∣vτB⟩⟩,

Q̂LZ =
⎛

⎝

ε0 + ε′∆τ C

C∗ ε0 − ε′∆τ

⎞

⎠
(2.3.7)

where ∆τ = τ − τ0, τ0 being the time when the crossing happens. Here ε0 is the

quasienergy of the state ∣vτA⟩⟩ (∣vτB⟩⟩) and ε′ (−ε′) its (constant) derivative with

respect to τ . The quasienergies close to the crossing are thus

ετA,B = ε0 ±
√

(ε′∆τ)2 + ∣C ∣2, (2.3.8)

which implies that their difference at the avoided crossing is exactly 2∣C ∣. The

Landau-Zener formula for Floquet systems states that the probability PA→B for

diabatic transition, i.e. the probability for the system to transfer from state ∣uτ→−∞A ⟩⟩

to state ∣uτ→+∞B ⟩⟩ (or vice versa) is approximately given by

PA→B ≈ exp(−
π∣C ∣2

h̵∣ε′∣
) . (2.3.9)

This value becomes exact when Q̂LZ describes the whole system. The probability

of adiabatic transition PA→A, i.e. the probability that the system remains in the

initial Floquet state, is thus PA→A = 1 − PA→B. The requirement

π∣C ∣2

h̵∣ε′∣
≫ 1 (2.3.10)

provides us an important criterion if an avoided crossing will be passed adiabatically.

It depends on the speed of the parameter change and the strength of the coupling

of both states. The condition for diabatic passage has an inverted comparison sign,

respectively.

For an increasing system size in a time-periodic system, not only the number

of states grows but also the density of states within an interval of quasienergy.

This implies that there is large number of avoided crossings in the quasienergy

spectrum. Most of the states are generally weakly coupled to each other such

that the avoided crossings are tiny and are passed diabatically. Nevertheless, the
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2. Basics and Tools of Floquet Theory

quasienergy spectrum becomes very complex and a parameter variation can result

in the excitation of a lot of Floquet states. This scenario will be discussed in more

detail in Chap. 5.
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3. Coherent Coupling of Orbital

Degrees of Freedom

In this chapter we will demonstrate how lattice shaking can be used to coherently

couple the ground band of a one-dimensional optical lattice to the first excited

band, which is usually separated by a large energy gap. Hence, orbital degrees of

freedom can be opened. We then show how this allows to melt a Mott insulating

ground state adiabatically into a superfluid.

In Sec. 3.1 we start by giving a short introduction to orbital physics in solid state

systems and optical lattices, and describe important experiments with ultra-cold

atoms that include higher Bloch bands in the dynamics. In section 3.2 we derive the

two-band Hubbard model for a dimerized one-dimensional optical lattice and argue

that it is a reliable description of the bosonic dynamics in the tight-binding regime.

Accordingly, in Sec. 3.3 we apply resonant lattice shaking to the system and show

how it can be represented in the Hubbard model. By making a high-frequency

approximation, we derive an effective two-band Hubbard model for the driven

system, where the lowest two Bloch bands are overlapping in energy and coupled by

the periodic driving. For this effective Hubbard Hamiltonian, in Sec. 3.4 we explain

different methods to exactly and approximately calculate the ground state. With

these methods, in Sec. 3.5 we numerically verify the orbital-driven quantum phase

transition between a Mott insulator and a superfluid. In contrast to the well-known

single-band version of this phase transition, we show how in the orbital driven

proposal the transition can be first or second order, depending on the parameter

regime. Finally, we numerically simulate an adiabatic protocol that realizes the

phase transition and demonstrate that in a dimerized lattice heating to higher lying

Bloch bands can be neglected for an adequate choice of parameters.
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3. Coherent Coupling of Orbital Degrees of Freedom

3.1. Orbital Degrees of Freedom in Optical Lattices

In this section we give a short introduction to the physics of orbital degrees of

freedom in solid state physics and optical lattices.

If we consider the orbitals of the electronic wave function in an atom, the attracting

potential of the nucleus can be described by a Coulomb potential. In this case the

electronic orbitals can be classified by the three quantum numbers: the principle

quantum number n, the azimuthal quantum number l and the magnetic quantum

number m [127]. The orbitals are isotropic if l = 0, otherwise they allow for spatial

alignment, for example as hybrid-orbitals encountered in the formation of molecules.

The hybridization of orbitals is also possible since, due to the conservation of the

Laplace–Runge–Lenz vector in the 1/r Coulomb potential, atomic orbitals with

the same n are degenerate. In solid state materials, where the orbitals of the

periodically ordered atoms form Bloch bands, the interplay of orbitals due to

their energetic ordering leads to interesting phenomena. A prominent example

are heavy-fermion compounds that emerge from the interplay between dispersive

conduction-band orbitals and strongly localized orbitals, with a large effective mass

and strong Coulomb interactions [128–131].

In systems of ultracold bosons in optical lattices, the orbital degrees of freedom so

far have played only a minor role. The reason is that there is a crucial difference

between optical lattices and solid state materials, namely the on-site potential. In

contrast to the Coulomb potential, where the Runge-Lentz vector is conserved,

optical lattices resemble on-site often a harmonic potential, for example in the

simple cosine potential [132]. Therefore, eigenstates and -energies resemble rather

those of the harmonic oscillator, where the orbital ordering in energy is different

from those from atomic physics. For example, whereas in the hydrogen atom

there is a genuine degeneracy between the 2s and the 2p states (px, py and pz in

three dimensions), in the harmonic oscillator the p states are energetically isolated

from the s-state. In optical lattices therefore, mixing of s orbitals, related to the

ground band, and p orbitals, related to the first excited band, is in many cases

prevented by an energy gap. Because of this energy gap, at ultra-cold temperatures

bosons all condensate to the ground band, especially in the interesting tight-binding

regime of strong interactions. For many cold-atom experiments within the ground
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3.1. Orbital Degrees of Freedom in Optical Lattices

band [35,62,63,66,71,73,74,133], where one explicitely wants to disregard higher

orbitals, this property is an advantage. This single-band approximation has been

verified by quantifying the perturbative admixture of excited bands to the ground

band in theory [134–141] and experiment [142–147].

Nonetheless, the physics of atoms in higher Bloch bands of optical lattices and

their orbital properties have caught considerable interest recently, especially on

the theoretical side [148–154]. In the p-band of the two-dimensional square lattice

one can, for example, study orbital magnetism and finds orbital ordering similar

to Hund’s rule in atomic physics. The orbital ordering arises from the on-site

repulsion of the atoms and the degeneracy of the px and the py orbitals [149,154].

One possibility to open the orbital degrees of freedom in an optical lattice, is to

transfer atoms non-adiabatically to excited bands, see for example [61,92,96,155–

157]. The life-time of the atoms in isolated higher orbitals, however, is limited

due to resonant scattering processes [158], which transfer atoms back into the

ground band. Furthermore, the energy gap between the bands can be exploited to

coherently couple the orbital degrees of freedom by external fields. Thereby, the

orbitals from the different Bloch bands are coupled with each other, which is not

possible in the case of an abrupt excitation of the atoms. This coherent coupling can

be achieved for example by exploiting magnetic resonances [159]. A simpler scheme,

however, is to achieve the coherent coupling of Bloch bands by periodically forcing

the lattice, e.g. in form of lattice shaking. In the weakly interacting regime, this

has already been achieved experimentally, where the condensation into two possible

momentum states led to domain formation [93]. Theoretically, band coupling

by periodic forcing for non or weakly interacting particles has been studied in

Ref. [160–166].

In this chapter, we analyze the possibility to coherently couple Bloch bands in

an optical lattice by lattice shaking for strongly interacting bosons. To provide a

minimal example, we consider spinless bosons in one dimension. For this system

we show how in the high-frequency regime it is possible to realize a “dressed-lattice”

system, where effectively at every lattice site the strongly localized ground-band

orbital is nearly degenerate and coupled to the much more dispersive first-excited-

band orbital.
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3. Coherent Coupling of Orbital Degrees of Freedom

3.2. The Non-Driven Two-Band Hubbard

Hamiltonian

In this section we show how in the tight-binding regime of a static one-dimensional

optical lattice, a Hubbard model can be derived, which is a simple model to describe

the dynamics of the strongly interacting bosons. In addition to the ground band,

we also include the first excited Bloch band in the calculations, as it will be relevant

in the dynamics due to the resonant periodic driving.

In general, the full non-relativistic three-dimensional Hamiltonian of a cold bosonic

gas of atoms in an optical lattice takes the form

Ĥfull = Ĥsp + Ĥint

= ∫ drψ̂†(r)hspψ̂(r)

+
1

2 ∫
drdr′ψ̂†(r)ψ̂†(r′)U(r′ − r)ψ̂(r′)ψ̂(r) (3.2.1)

and can be divided into a single-particle part Ĥsp with Hamiltonian density

hsp = −
h̵2k2

L

2m
∆ + V (r) (3.2.2)

and an interaction part Ĥint. Here, we have denoted ψ̂(r) the bosonic field

operator, kL the wave vector of the laser, m the mass of the bosons and U(r) the

full interaction potential between two atoms. As energy unit we will use the recoil

energy

ER =
h̵2k2

L

2m
, (3.2.3)

which is needed to localize a particle on a lattice constant a = π/kL. In this chapter

we consider Rb87 atoms and a typical laser wave length of 2π/kL = 852 nm, as it

is used in many experimental groups [35, 71, 167]. These parameters result in a

recoil energy of ER = 2πh̵ ⋅ 3.16kHz. Since the energies are low, the interactions

are approximated by contact potential. The interaction strength is determined

by the s-wave scattering length as of the atom type. Hence, the full interaction
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3.2. The Non-Driven Two-Band Hubbard Hamiltonian

operator U(r) is replaced by a pseudo-potential operator, which eventually gives

the interaction term the simple form [168]

Ĥint ≈
2h̵2as
m ∫ drψ̂†(r)ψ̂†(r)ψ̂(r)ψ̂(r). (3.2.4)

Because of the continuous space variable r, the Hamiltonian has infinitely many

degrees of freedom. However, in an optical lattice which is deep enough, V0 ≫ ER,

where V0 is the difference of potential maxima and minima, we can exploit the

powerful tight-binding approximation [47]. Herein, we project the atomic wave

function on those Wannier orbitals wα(r −R) which are real and exponentially

localized around a lattice site R [169, 170]. Together with the bosonic quantum

operator b̂R,α, which destroys a boson in Wannier state α at site R and which

fulfills the commutation relation

[b̂R,α, b̂
†
R′,β] = δR,R′δα,β, (3.2.5)

the bosonic field operator can be expanded in the Wannier basis via

ψ̂(r) = ∑
R,α

wα(r −R)b̂R,α. (3.2.6)

The Wannier functions can be computed from the Bloch states φk,α(r) of the lattice,

which are the eigenfunctions of the single-particle Hamiltonian with quasimomenta

k, via

wα(r −R) =
1

√
M
∑
k

eiR⋅kφk,α(r). (3.2.7)

Note here that the phase of the Bloch functions with respect to different k is still

arbitrary and results in different sets of Wannier states. Only a special choice of

the normalization of the Bloch functions leads to real and exponentially localized

Wannier states [169]. If the lattice is non-separable, the choice of normalization is

often non-trivial and the maximally localized Wannier states have to be constructed

by numerical methods from the Bloch states [171,172]. In a separable lattice, on
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the other hand, also the Wannier functions separate

wα(r) = w
x
αx(x)w

y
αy(y)w

z
αz(z), (3.2.8)

such that the band index α is a triplet of band indices (αx, αy, αz) of band indices

for each direction. Hence, the Wannier function for each dimension can be computed

independently. For the one-dimensional case, it has been shown how the Wannier

functions can be constructed directly [173]: For an even Wannier state, all Bloch

states should have vanishing imaginary parts, wheres for an odd Wannier state,

the Bloch states should have vanishing real parts.

In this chapter, we consider a one-dimensional lattice (in x-direction) stemming

from a separable three-dimensional lattice, where the lattices in the two orthogonal

directions (y and z) are very deep (V� = 30ER). Because of this, the system in the

orthogonal directions is always in the ground state αy = αz = 0, and furthermore

the dynamics in these orthogonal directions is completely frozen out. Therefore we

consider only direction x and do not explicitely write out the x-index.

After plugging in the Wannier expansion (3.2.6) in the Hamiltonian (3.2.1), we

ignore matrix elements between Wannier states that are separated by more than

one lattice site since they are very small. This reduces the number of terms

dramatically. Hence, we are left only with on-site interaction terms as well as up to

nearest-neighbour terms in the kinetic energy. The resulting Hamiltonian including

all Bloch bands takes the form

Ĥtb = −∑
`

∑
α

(−1)αJα(b̂
†
α(`+1)b̂α` + h.c.) +∑

`

[∑
α

εαn̂α` +∑
{α}

U{α}

2
b̂†α1`

b̂†α2`
b̂α3`

b̂α4`
],

(3.2.9)

where we have introduced the notation b̂jα = b̂(jd,0,0),(α,0,0) for the bosonic creation

and annihilation operators. The band-center energies

Eα = ∫ dx wα(x)hsp(x)wα(x) (3.2.10)
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give the energy levels of the Wannier state with index α. The tunnel parameters

Jα = −(−1)α∫ dx wα(x)hsp(x)wα(x − a) (3.2.11)

quantify the hopping strength between two neigbouring sites. Both quantities fulfill

E0 < E1 < ⋯ and 0 < J0 < J1 < ⋯, respectively. The on-site interaction strengths

U{α} ≡ Uα1α2α3α4 =
2h̵2asa2

⊥
m ∫ dxwα1(x)wα2(x)wα3(x)wα4(x) (3.2.12)

vanish for odd ∑iαi, since wα(x) = (−1)αwα(−x). Here we denote the contributions

from the orthogonal lattice directions by

a� = ∫ dy ∣wyα(y)∣
4
= ∫ dz ∣wzα(z)∣

4
. (3.2.13)

Since we are interested in a minimal two-band model, we explicitely write out

Hamiltonian (3.2.9) with just two Bloch bands, i.e. α = 0 and α = 1. This results in

the two-band bosonic Hubbard model

Ĥ0 = Ĥorbital + Ĥtun + Ĥint

= D
M

∑
i=1

n̂i,1 + ∑
<ij>

(−J0b̂
†
i,0b̂j,0 + J1b̂

†
i,1b̂j,1)

+∑
i

[ ∑
α=0,1

Uαα
2
n̂i,α(n̂i,α − 1) + 2U01n̂i,0n̂i,1 +

U01

2
(b̂†i,0b̂

†
i,0b̂i,1b̂i,1 + h.c.))] ,

(3.2.14)

where we used the short notation Uαβ = Uααββ. Here, D = E1 − E0 denotes the

energy difference between the two Bloch band centers. Note that the second

interaction term in (3.2.14) has an additional prefactor of 2, which results from

four different ways of assigning band indices to the four bosonic operators. The

two-band Bose-Hubbard model is illustrated in Fig. 3.2.1.

Next we specify the lattice potential. In an one-dimensional one-mode optical

lattice with depth V0, created by two counter propagating laser beams of the same

33



3. Coherent Coupling of Orbital Degrees of Freedom

1-band

0-band

Figure 3.2.1.: Illustration of the (undriven) two-band Hubbard Hamiltonian
(3.2.14).

wave length, the potential is simply a cosine [24]

V (x) = −
V0

2
cos(2kLx). (3.2.15)

We first consider the energy bands of the single-particle Hamiltonian with this

potential as a function of the lattice depth V0. Upper and lower edge of the lowest

three bands are plotted in Fig 3.2.2. We observe that the band centers are almost

equidistant. In fact, since cos(x) can be approximated by a harmonic oscillator in

the center of its minima, close to the lattice minima the Wannier states are similar

to the lowest eigenstates of the harmonic potential. In Fig 3.2.3 (left) we show

the Wannier states of the cosine potential for the lowest three bands. In Fig 3.2.3

(right) we also show the same Wannier states with logarithmic axes to demonstrate

their exponential localization.

The almost equidistance of the energy band centers inherited from the harmonic

oscillator functions is problematic if we want to resonantly couple only two bands,

e.g. the ground and the first excited band, without coupling to the second excited

and higher bands. To illustrate this, we plot in Fig. 3.2.2(right) the three lowest

energy bands as a function of the lattice depth, but this time we substract from

the mth excited band m times the energy distance ∆ between the ground and

this first excited band, as if they were resonantly coupled. The energy distance

is rather small and the bands overlap partly. Even if the energies do not exactly

overlap resonantly and even if the states belonging to these energies might have
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Figure 3.2.2.: Left: Minima and maxima of the lowest three bands of the
simple cosine lattice. Right: The same bands but substracted by the energy
difference E1 −E0 as to demonstrate the energy distance to the second excited
band when the lowest to bands are in resonance with each other.
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Figure 3.2.3.: Lowest three Wannier states without dimerization at a lattice
depth of V0 = 10ER. The y-axes are normal (left) and logarithmic (right).

a different quasimomentum, this (almost) degeneracy poses a problem since the

interaction terms shift the energies further and mix states with different quasi-

momenta. Consequently, if in an experiment the system starts solely in the ground

band, the higher lying bands would be excited one by one, which corresponds to

heating.

To avoid this problem, we engineer the band structure with a trick: We consider

a potential with a second mode of half the wave length. This potential forms a

dimerized lattice if both modes have a phase shift of π, taking the form

V (x) = −
V0

2
cos(2kLx) +

V1

2
cos(4kLx). (3.2.16)
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Figure 3.2.4.: Illustration of the lattice without dimerization (V1 = 0, in red)
and with the dimerization (V1 = 0.5V0, in blue) that is used in the calculations.
A constant has been added so that the potential is positive everywhere.

The dimerized potential is illustrated and compared to the cosine potential in

Fig. 3.2.4. For an increasing dimerization ratio V1/V0, the energy bands move

together in pairs, as shown in Fig. 3.2.5 (left). Therefore, the equidistance of the

energy bands is broken: the energy distance between the lowest two bands becomes

smaller than the distance between first and second excited band. In Fig. 3.2.5

(right) we plot again the bands in the case of a resonant coupling between the

ground and the first excited bands: Due to the dimerization, the third band gets

off-resonant, which would suppress unwanted excitations to the third and higher

lying bands and thus minimize heating.

In the extreme case V1/V0 = ∞ (e.g. if V0 = 0), we end up with a simple cosine

lattice of half the wavelength, having half the number of bands, each with twice the

number of states. However, in this case we will lose the orbital degree of freedom

between these two joint bands since the two orbitals would only be the even and odd

superpositions of Wannier states. Thus, for large dimerizations V1/V0 the Hubbard

parameters, like the tunneling coefficents J0 and J1 and the interaction parameters

U00 and U11 become very similar, as it is illustrated in Fig. 3.2.7. We would like to

avoid this regime since we are interested in the scenario where a rather dispersive

band 1 is coupled to band 0 of well localized orbits, i.e. J1 ≫ J0. This difference

can lead to interesting physical phenomena and phase transitions, like the Mott

insulator to superfluid transition described in Sec. 3.5. Hence, there should only be

a slight dimerization coefficient like V1/V0 = 0.5. For this dimerization, the Wannier
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potential with V0 = 10ER. Left: Three lowest lying energy bands. Right: The
same bands as quasi-energy bands if the ground and the first excited band
get resonantly coupled. The ground band is very narrow such that upper and
lower band limits merge to one line.
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Figure 3.2.6.: Wannier states with a dimerization of V1 = 0.5V0 at a lattice
depth of V0 = 10ER. The y-axes are linear (left) and logarithmic (right).

functions are altered only slightly (see Fig. 3.2.6). The band dispersions are still

quite different. At the same time, the equidistance of the energy bands is already

lifted to an often sufficient amount, making a resonant coupling between two bands

feasable with little heating.

We fix the dimerization to V1/V0 = 0.5 in the following since it is an optimal choice.

We have computed the relevant Hubbard parameter for the dimerized, static two-

band Hamiltonian (3.2.14): In Fig. 3.2.8 (left) we plot the tunneling parameters Jα

on a logarithmic axis as a function of the lattice depth V0. All tunneling parameters

fall off exponentially as one increases the lattice depth, as it is the case for an

undimerized lattice [174]. Thus, by increasing the barrier between the lattice sites,
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Figure 3.2.7.: Tunnel parameters (left) and interaction coefficients (right) of
the dimerized lattice as a function of the normalized dimerization V1/V0 for
V0 = 10ER.
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Figure 3.2.8.: Left: Tunnel parameters of the dimerized lattice with V1/V0 =

0.5 as a function of the lattice depth V0. Right: Neglected next-nearest
neighbour tunnel coefficients Jαα (solid lines) compared to the nearest neighbour
tunnel coefficients Jα (dashed lines).

the probablity of a tunnel process to occur falls off dramatically. To justify the

tight binding approximation, where we neglected next-nearest-neighbour (NNN)

tunneling, we plot the NNN tunneling parameters of bands denoted by Jαα for

the lowest three bands α = 0,1,2 in Fig. 3.2.8 (right). We see that for each band

the NNN tunneling parameters are at least one order of magnitude below the

nearest-neighbour tunneling parameters, so that they indeed can be neglected. On

the other hand, the on-site interaction parameters of the lattice bosons increase

only moderately with the lattice depth, see Fig. 3.2.9. Thus, the ratio U00/J0 can

be controlled efficiently by the lattice depth, which makes it easy to drive the phase

transition between a Mott insulating and a superfluid ground state [34,35].
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Figure 3.2.9.: Interaction parameters of the lowest two bands and U0112 in
the dimerized lattice with V1/V0 = 0.5 as a function of the lattice depth V0.

3.3. Effective Two-Band System in a Resonantly

Shaken Lattice

In the tight-binding regime, the band distance D between ground and first excited

band in Eq. (3.2.14) is typically much larger than the energy scales of the kinetics

and the interaction (see Fig. 3.2.2 and Fig. 3.2.5). Therefore, the orbital degree

of freedom stemming from the first and higher excited bands is frozen out. Cold

bosons in non-driven optical lattices in the tight binding regime are described very

accurately already by the ordinary single-band Bose-Hubbard model [34]. However,

we wish to coherently open the orbital degree of freedom by means of time periodic

forcing with near-resonant frequency h̵ω ≈ D. In particular, the lowest band

(α = 0) shall be coupled to the more dispersive first excited band (α = 1), without

creating coupling to even higher-lying bands (α ≥ 2). As described in the previous

section, these higher lying transitions can be made off-resonant by dimerizing

the lattice slightly (see Fig. 3.2.5). Furthermore, we choose a driving scheme,

namely sinusoidally shaking the lattice back and forth, that couples predominantly

only bands α′ − α = n with odd n. On the other hand, for weak forcing the

multi-“photon” interband transitions at resonances Eα′ − Eα ≈mh̵ω are strongly

suppressed, especially for even integers ∣m∣. This will be shown in Chap. 5.

Here, we will describe how an effective, time-independent Hamiltonian can be
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3. Coherent Coupling of Orbital Degrees of Freedom

derived for the shaken lattice. The potential that is shaken back and force in

x-direction, takes the form

V (x, t) = V [x + lkL cos(ωt)] , (3.3.1)

where l =K/(πmω2) is the amplitude of the shaking. It is reasonable to transform

the problem into the comoving frame. There, an inertial force is exerted on

the atoms. The transformation to the comoving frame is accomplished by three

successive gauge transformations

U1 = exp [−
i

h̵
l cos(ωt)p]

U2 = exp [−
i

h̵
mlω sin(ωt)x]

U3 = exp [−
i

h̵

1

2
ml2ω2

∫

t

0
sin2(ωτ)dτ] . (3.3.2)

By these unitaries U = U3U2U1, the single-particle Hamiltonian in (3.2.1) is trans-

formed to

hsp(t)
U
→ h′sp(t) = U †hspU − ih̵U † d

dt
U

= hsp +mlω
2 cos(ωt)x, (3.3.3)

whereas the interaction part is unaltered. Now we shift again to the one dimensional

Wannier representation (3.2.6). For this we write the position as x = j + (x − j)

with site index j. Then the Hamiltonian (3.2.14) generalizes to

Ĥ ′(t) = Ĥ0 + Ĥdr(t)

= Ĥ0 +K cos(ωt)
M

∑
j=1

[ ∑
α=0,1

jn̂αj + ∑
α′α=0,1

ηα′αb̂
†
α′j b̂αj]. (3.3.4)

The interband coupling matrix elements

ηα′α =
kL
π
F ∫ dx wα′(x)xwα(x) (3.3.5)
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Figure 3.3.1.: Band coupling parameters ηij induced by the shaking for the
transitions which are relevant for the stability of the two-band model.

vanish for even α′ + α as indicated before. The coupling matrix elements for the

band transitions 0→ 1, 1→ 2 and 0→ 3 are shown in Fig. 3.3.1. As we can see there,

the coupling from the ground band to the third excited band with strength η03

can be neglected, though not the other two. All other coupling elements from the

ground band are even weaker (not shown). The coupling matrix elements between

higher lying bands are only relevant if the second excited band gets occupied which

is not desirable in the first place.

Since the shaking frequency will assumed to be almost resonant between the lowest

lying bands, we do another gauge transformation

Û4 = exp [−
i

h̵

M

∑
j=1

∑
α=0,1

n̂α,j αωt] , (3.3.6)

such that the eigenenergies of these two bands get close to each other. The full

effect of the gauge transformation on the Hamiltonian reads

Ĥ ′(t)
Û4
→ Ĥ ′′(t) = Û †

4Ĥ
′Û4 − ih̵Û

†
4

d

dt
Û4. (3.3.7)
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3. Coherent Coupling of Orbital Degrees of Freedom

Combinging the time derivative from the second term with the band distance, it is

reduced by the photon energy like

D
Û4
→ δ =D − h̵ω. (3.3.8)

In the resonant case, the band distance is very small δ ≪D. The transformation

Û4 furthermore changes those terms in the Hamiltonian that alter the occupation

of the energy bands

Ĥdr(t)
Û4
→ K cos(ωt)

M

∑
j=1

[ ∑
α=0,1

jn̂αj + ∑
α′α=0,1

ei(α−α
′)ωtηα′αb̂

†
α′j b̂αj]

U01

2

M

∑
j=1

b̂†j,1b̂
†
j,1b̂j,0b̂j,0

Û4
→ exp(i2ωt)

U01

2

M

∑
j=1

b̂†j,1b̂
†
j,1b̂j,0b̂j,0 (3.3.9)

and the conjugated interaction process, respectively. Finally, we also integrate out

the driving term in Hamiltonian (3.3.4) by the transformation

Û5 = exp [−i
K

h̵ω
sin(ωt)

M

∑
j=1

∑
α=0,1

jn̂αj] (3.3.10)

Since the driving term breaks the translational symmetry, the tunneling terms are

transformed as

b̂†j,αb̂j+1,α
Û5
→ b̂†j,αb̂j+1,α exp [−i

K

h̵ω
sin(ωt)] (3.3.11)

(3.3.12)

In total, the transformed Hamiltonian takes the form

Ĥ ′′′ =
M

∑
j=1

{δn̂j,1 + [e−i
K
h̵ω

sin(ωt) (−J0b̂
†
j,0b̂j+1,0 + J1b̂

†
j,1b̂j+1,1) + h.c.]

+ ∑
α=0,1

Uαα
2
n̂j,α(n̂j,α − 1) + 2U01n̂j,0n̂j,1 + [ei2ωt

U01

2
b̂†j,1b̂

†
j,1b̂j,0b̂j,0 + h.c.]

+K cos(ωt)[ ∑
α′α=0,1

ei(α−α
′)ωtηα′αb̂

†
α′j b̂αj]}. (3.3.13)
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3.3. Effective Two-Band System in a Resonantly Shaken Lattice

For weak forcing K ≪ h̵ω the driving frequency h̵ω ∼ ∆10 is large compared to the

intraband terms as well as to the band coupling. This allows us to average over

the rapidly oscillating terms in the Hamiltonian over one driving period T and to

write down an effective Hamiltonian Ĥeff that describes the dynamics on slow time

scales t≫ T = 2π/ω, to obtain

Ĥeff =
1

T ∫
T

0
dt Ĥ ′′′(t). (3.3.14)

In other words, we keep only the diagonal term m = n in the quasienergy operator

Ĥm,n =
1

T ∫
T

0
dx exp [−i(m − n)ωt] Ĥ ′′′(t) (3.3.15)

or the 0-th term in the Fourier series

Ĥ ′′′(t) =
∞
∑
−∞

exp(imωt)Ĥm, (3.3.16)

see Chap. 2. The resulting effective time-independent two-band Hamiltonian

Ĥ2B = Ĥeff reads

Ĥ2B = δ
M

∑
i=1

n̂i,1 + J0 (
K

h̵ω
)∑
<ij>

(−J0b̂
†
i,0b̂j,0 + J1b̂

†
i,1b̂j,1) +

ηK

2

M

∑
j=1

(b̂†j,0b̂j,1 + b̂
†
j,1b̂j,0)

+∑
i

[ ∑
α=0,1

Uαα
2
n̂i,α(n̂i,α − 1) + 2U01n̂i,0n̂i,1 +

U01

2
(b̂†i,0b̂

†
i,0b̂i,1b̂i,1 + b̂

†
i,1b̂

†
i,1b̂i,0b̂i,0)]

(3.3.17)

and is illustrated in Fig. 3.3.2.

Apart from the tight-binding approximation in the last section, in this section we

made two approximations: the high-frequency approximation and the neglection

of bands above the first excited Bloch band. In the case of coherently coupled

Bloch bands, the high-frequency approximation, where the gauge transformed, time-

dependent Hamiltonian is approximated by its time average, should be reliable.

The reason is that, even for the dimerized lattice, the driving energy h̵ω is typically

of the order of several ER and therefore much larger than the lattice parameters Jα

and Uα,β, as we have seen in Figs. 3.2.5, 3.2.8 and 3.2.9. Also the band coupling
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1-band

0-band

Figure 3.3.2.: Illustration of the effective two-band Hubbard Hamiltonian
(3.3.17). Changes to the original Hubbard Hamiltonain (3.2.14) are marked in
red. Apart from a slight parameterization of the tunneling with a 0-th order
Bessel function, the band distance is reduced D → δ(ω) and the bands are
directly coupled with strength γ ∼K. Also, the two-particle scattering term
does not appear in the effective model anymore.

Kηαβ stays well below 1ER such that the driving amplitude K can go up to 1ER.

For a more systematic derivation of Eq. (3.3.17), Ĥeff is defined as the generator of

the time evolution over one period [109] of the shaking. It can then be computed

using degenerate perturbation theory in the extended Floquet Hilbert space [108],

similar like in Refs. [69,175]. In leading order one recovers Eq. (3.3.17). The leading

correction contains tiny second-order coupling to bands α ≥ 3 of order c2/h̵ω, where

c ≲ 0.1ER is a typical interband coupling matrix element and h̵ω ≳ 3ER.

3.4. Methods to Analyze the Two-Band Many-Body

Ground State

In this section we will present different methods that allow us to analyze the ground

state of the many-body effective two-band Hamiltonian (3.3.17). The ground

state properties give us information about the zero-temperature behavior of the

system, which is most relevant in an experiment with ultra-cold atoms, even at

finite but small temperatures. Here we are especially interested in the quantum

phase of the ground state (Mott insulator or superfluid) since the quantum phase

can be switched coherently by tuning the driving frequency, see Sec. 3.5. First
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3.4. Methods to Analyze the Two-Band Many-Body Ground State

we will consider the single-particle problem and then the exact solution of the

interacting system. However, since the Hilbert space dimension for a bosonic

quantum chain grows exponentially with the system size (both for number of sites

M and number of bosons N) we also need to introduce approximation methods to

get reliable information about the quantum phase. Therefore, we will present also

the Gutzwiller mean-field and the TEBD method in this section.

3.4.1. Solution of the Single-Particle and the On-Site Problem

It is helpful to first consider the single-particle problem of (3.3.17). The single-

particle problem can be solved analytically. The solutions can be used to describe

the many-body eigenstates and eigenenergies of the full interacting system. For

small interactions, they are still a good approximation or can be used as a starting

point for further approximations.

Hence, we consider the single-particle Hamiltonian

Ĥsp = δ
M

∑
i=1

n̂i,1 + J0 (
K

h̵ω
)∑
<ij>

(−J0b̂
†
i,0b̂j,0 + J1b̂

†
i,1b̂j,1) − γ

M

∑
j=1

(b̂†j,0b̂j,1 + b̂
†
j,1b̂j,0) ,

(3.4.1)

where we assume periodic boundary conditions. Because of translational symmetry,

we make the Ansatz for the single-particle wave function

∣ψ±(k)⟩ =∑
j

eikja(ψ±0 (k)∣j0⟩ + ψ
±
1 (k)∣j1⟩). (3.4.2)

where ∣jα⟩ = b̂†j,α∣vac⟩ and k denoting the quasimomentum of the state. With

this Ansatz, the Schrödinger Equation corresponding to Hamiltonian (3.4.1) in

quasimomentum space reads

⎛

⎝

−2J0 cos(ka) −γ

−γ δ + 2J1 cos(ka)

⎞

⎠

⎛

⎝

ψ±0 (k)

ψ±1 (k)

⎞

⎠
= ε±(k)

⎛

⎝

ψ±0 (k)

ψ±1 (k).

⎞

⎠
(3.4.3)
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Diagonalizing this matrix gives the effective dispersion relation of the hybridized

bands

ε±(k) =
δ

2
+ cos(ka)(J1 − J0) ±

√

(
δ

2
+ cos(k)(J1 + J0))

2

+ γ2, (3.4.4)

where the minus denotes the ground state and the plus denotes the excited state.

The corresponding eigenstates take the form

⎛

⎝

ψ−0 (k)

ψ−1 (k)

⎞

⎠
=

⎛

⎝

1
ε−(k)+2J0 cos(ka)

γ

⎞

⎠

1
√

1 + (
ε−(k)+2J0 cos(ka)

γ )
2

⎛

⎝

ψ+0 (k)

ψ+1 (k)

⎞

⎠
=

⎛

⎝

1
ε+(k)+2J0 cos(ka)

γ

⎞

⎠

1
√

1 + (
ε+(k)+2J0 cos(ka)

γ )
2
. (3.4.5)

In Fig. 3.4.1 we illustrate the dispersion relation, i.e. the two emerging eigenvalues

as a function of the quasimomentum in a lattice of V0 = 10ER and K = 0.5ER for

different band distances δ = [1ER,0.5ER,0,−0.5ER]. The color code shows the

ratio of the two bands: Red color indicates a dominant fraction of the 0-band,

whereas blue represents a major fraction of the 1-band. Thus, green stands for a

coherent mixture between 0- and 1-band due to the coupling term with strength

−γ.

In general, one observes that if one decreases the band distance from a large positive

value δ ≫ γ, J1 to a large negative value δ ≪ −γ,−J1, the bands pass each other,

while they hybridize in the intermediate regime. Since the bands are coupled to

each other with strength γ, which is independent of the quasimomentum k, the

hybridization is strongest for those quasimomenta where the quasienergies lie close

to each other. This happens where the bands would cross each other, e.g. at the

border of the Brillouin zone for δ ≈ 0.5ER and in the center for δ ≈ −0.5ER. The

width of the avoided crossing is 2∣γ∣, which can be seen in the dispersion relation

(3.4.4) when the first term in the square root cancels due to band crossing.

Since we are interested in the ground state, we have to find the minimum in the

dispersion relation ε−(k). Note that it is an effective dispersion relation and the

“ground state” is the state that is adiabatically connected to the ground state of the

46



3.4. Methods to Analyze the Two-Band Many-Body Ground State

  

Figure 3.4.1.: Single-particle dispersion relation of Hamiltonian (3.4.1) in
a lattice of V0 = 10ER and K = 0.5ER, for different band distances δ =

[1ER,0.5ER,0,−0.5ER].

non-driven system, via the chosen protocol. If for example, the two effective Bloch

bands are coherently coupled the other way around, i.e. if the 1-band approaches

the 0-band from below in quasi-energy, the effective ground state would be the one

described here as the excited state, with a degenerate minimum in the hybridized

region, see for example Ref. [93]. For δ ≥ δc, we find the ground state at the

center of the Brillouin zone at kgs = 0, whereas for δ < δc, the ground state has

quasimomentum kgs = π/a. Assuming that at δc the dispersion of the ground band

at k = 0 is almost not affected by the hybridization (since J1 ≫ J0), we estimate

from (3.4.4) for γ/J0 ≪ 1 by linearizing the square root,

δc ≈ 2(J1 − J0) +
γ2

4J0

. (3.4.6)

For γ ≫ 4J0 we obtain

δc ≈ 2(J1 − 3J0) + γ +
(γ − 4J0)

2

γ
. (3.4.7)
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Figure 3.4.2.: Dispersion relation of the single-particle solution of Hamiltonian
(3.4.1) at the critical band distance δc for different lattice depths V0/ER =

[3,5,10,15] and K = 0.5ER giving roughly γ ≈ 0.121ER. In color we illustrate
the fraction of 0- (red) and 1-band (blue), respectively.

These give critical values of δc/ER = [0.755,0.637,0.421] for V0/ER = [3,5,10] ac-

cording to Eq. (3.4.6) and δc/ER = 0.238 for for V0/ER = 15 according to Eq. (3.4.7).

In Fig. 3.4.2 we show the dispersion relations for these lattice depths at the es-

timated critical values. As expected, the minima approximately have the same

energy and the hybridization takes place at the border of the Brillouin zone but

not at the center, which justifies the approximations.

We can construct from the single-particle ground state the N -particle many-body

ground state of the effective two-band model (3.3.17) in the limit of vanishing

interactions. Thus, the ground state has the form

∣ψU=0⟩ =
N

∏
j=1

(ψ−0 (kgs)â
†
0,kgs

+ ψ−1 (kgs)â
†
1,kgs

) ∣vac⟩ (3.4.8)

with the bosonic creation operators in momentum space â†
α,k = ∑j exp(ikja)b̂†α,j.

The ground state has energy Nε−,kgs .
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If on the other hand, one is interested in the limit of strong interactions, i.e. the

Mott region where the bosons localize, it is instructive to diagonalize the single-site

problem (3.4.1)

Honsite = δn̂1 − γ (b̂†0b̂1 + b̂
†
1b̂0) ,

(3.4.9)

for N = 1, where we skip the site index and the sum. The on-site energies are found

to be

ε± =
δ

2
±

√
δ2

4
+ γ2 (3.4.10)

and the on-site eigenstates read

⎛

⎝

ψ±0
ψ±1

⎞

⎠
=
⎛

⎝

1
ε±
γ

⎞

⎠

1
√

1 + ( ε±γ )
2
. (3.4.11)

3.4.2. Exact Diagonalization

The most straightforward way to solve the effective Hubbard Hamiltonian (3.3.17)

in any parameter region is by diagonalization. However, the Hilbert space dimension

of a one-dimensional chain of N bosons on M lattice sites with an orbital degree

of freedom of two is

D(M,N) = (
N + 2M − 1

N
), (3.4.12)

which can be estimated for largeM,N using Stirlings formula [176] x! ≈ (x/e)x
√

2πx[1+

O(1/x)] to be

D(M,N) ∼ exp{2 [(M +N) ln (
N

M
+ 1) −N ln (

N

M
)]}

= (1 +
N

M
)

2M

(1 +
M

N
)

2N

. (3.4.13)
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Hence, the size of the Hilbert space grows exponentially with the system size M

and N . Therefore, diagonalization can be accomplished for rather small systems

only. Nevertheless, if one is interested in the full spectrum or in properties of the

ground state away from the theormodynamic limit, an exact diagonalization can

be useful. Also, the exact diagonalization is very helpful to understand the basic

behaviour of a system in the first place since it is straightforward to calculate

expectation values like n-point functions and observables.

In order to perform the exact diagonalization, the first task is to find a proper

ordered basis in the Hilbert space. In App. A we present one possible method to

do so. With this method and by using the Lanczos algorithm for sparse matrices,

the exact groundstate of a lattice with for example N = 7 bosons on M = 7 sites

implying a Hilbert space dimension of D(7, 7) ≈ 105 can be found. For a lattice with

N = 6 bosons on M = 6 sites implying a Hilbert space dimension of D(6,6) ≈ 104,

the full spectrum can be computed.

Note that in the case where the number of particles is not conserved, the Hilbert

space dimension is much higher

Dnc(M,Nmax) =
Nmax

∑
N=1

(
N + 2M − 1

N
). (3.4.14)

In this case the Hamiltonian can simply be constructed by first constructing creation

b̂†j,α, annihilation b̂j,α and number operators n̂j,α for each site j and then computing

and adding all terms in the Hamiltonian (3.3.17).

3.4.3. Gutziller Mean-Field Theory

A simple approach to obtain information about the quantum phase of the ground

state is to apply a Gutzwiller mean-field approximation [177], which ignores quantum

fluctuations between different sites and accounts for the intersite coupling, by

coupling a single site to a mean field. The Ansatz becomes exact for the two

extreme cases U/J ≪ 1 and U/J ≫ 1, as well as in the limit of an infinite

dimensional lattice.

Hence, we introduce the two order parameters ψj,0 = ⟨b̂0⟩ and ψj,1 = (−1)j ⟨b̂1⟩ and

50



3.4. Methods to Analyze the Two-Band Many-Body Ground State

write the bosonic annihilation operators like

b̂j,α = [b̂j,α − (−1)jαψα] + (−1)jαψα (3.4.15)

Here, the alternating sign for the excited band takes into account the different

signs in the hopping in 0- and 1-band. Expanding the tunneling terms

b̂†i b̂j = [b̂†i − (−1)iαψ∗α][b̂j − (−1)jαψα] + (−1)iαψαb̂j,α + (−1)(i+j)α∣ψα∣
2, (3.4.16)

the two-band Hamiltonian (3.2.14) can be decomposed into a sum of decoupled

single-site Hamiltonians. Dismissing the site index j, the mean-field Hamiltonian

for a single site then takes the form

Ĥmf = −µ(n̂0 + n̂1) + δn̂1 − 2J0 (ψ0b̂
†
0 + ψ

∗
0 b̂0 − ∣ψ0∣

2) − 2J1 (ψ1b̂
†
1 + ψ

∗
1 b̂1 − ∣ψ1∣

2)

−
ηKω

2
(b̂†0b̂1 + b̂

†
1b̂0) +U00

n̂0(n̂0 − 1)

2
+U11

n̂1(n̂1 − 1)

2
+ 2U01n̂0n̂1 (3.4.17)

where we have included a chemical potential term. This term is necessary to fix

the particle number.

Within the Gutzwiller mean-field theory, we find the ground state by minimizing

the on-site ground state energy (3.4.17) with regard to both order parameters

ψ0 and ψ1. To achieve this, we parameterize the mean fields like ψ0 = ∣ψ∣ cos(θ),

ψ1 = ∣ψ∣ sin(θ) exp(iφ) and vary ∣ψ∣, θ, φ. The on-site mean-field Hamiltonian (3.4.17)

is then solved in the Fock basis up to a maximum particles per site of Nmax. The

order parameters with the minimal energy give the self consistent solution for the

ground state.

3.4.4. Time-Evolving Block Decimation

Time-evolving Block Decimation (TEBD) is a method that was developed to

efficiently describe and propagate 1D quantum systems that are only weakly

entangled [50, 51]. Note that by time propagating a state in imaginary time it→ τ ,

the state of the system converges asymptotically to the ground state, which we will

make use of. Furthermore, symmetries like particle conservation can be applied to

the formalism. To perform the TEBD calculations, we use an open source TEBD
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3. Coherent Coupling of Orbital Degrees of Freedom

code package [178].

The main idea of the TEBD formalism is to rewrite quantum states in a local tensor

or matrix product form. The coefficient tensor c of a multipartite (or multisite)

quantum state

∣Ψ⟩ =
d

∑
ij=1

ci1i2..iM ∣i1, i2, .., iM⟩ (3.4.18)

can be decomposed by a concatenated Schmidt decomposition into the form

ci1i2..iM =

χS(j)

∑
αj=1,j=1...M−1

Γ
[1]i1
α1 λ

[1]
α1 Γ

[2]i2
α1α2λ

[2]
α2 ⋯ Γ

[M−1]iM−1
αM−2αM−1λ

[M−1]
αM−1 Γ

[M]iM
αM−1 , (3.4.19)

called Vidal decomposition. Here d is the dimension of the “onsite” Hilbert space1.

For a quantum gas, it is on the one hand determined by the number of particles

N2, and on the other hand depends on the internal structure, in our case the

orbital degree of freedom. For example, for two bands and a maximum particle

number of N = 2, we find a onsite dimension of d = 6 (a state with no particles,

two states with one particle and three states with two particles). The Schmidt

index χS(j) = min(dj, d(M−j)) is the lower of the dimensions of the Hilbert spaces

of the two blocks with sites 1 . . . j and j + 1 . . .M , as it is in the ordinary Schmidt

decomposition [179]. Each quantum state ∣ψ⟩ is hence described by a rank 3 tensor

Γ[j] and a vector λ[j] of Schmidt coefficients at every site j, or, if tensor and vector

are glued together, by a matrix product. It is a local construction in the sense

that the Γ’s specify a local basis on each site, whereas the λ link these local states

together and determine their significance. Instead of propagating the coefficient

tensor {ci1i2..iM}, one can then apply the action of the Hamiltonian on the tensors

Γ[j] and the coefficients λ[j].

The Vidal decomposition (3.4.19) is exact. However, in many physical systems

eigenstates are only weakly entangled states, which means that the Schmidt co-

efficients λ
[j]
αj fall off exponentially at each site as a function of αj. Hence, the

weakly entangled eigenstates can be written as a sum of only a small number of

1We assume translational symmetry, i.e. d has no site index.
2In some cases the number of particles per site is truncated to Nmax < N or it is limited due to

the nature of the particles (e.g. fermions).

52



3.5. Orbital-Driven Mott Insulator to Superfluid Phase transition

product states. It is therefore enough to keep only a constant number χ≪ χS of

the Schmidt coefficients λ[j] and the coefficients in the tensors Γ[j] at each site.

With this truncation, a weakly entangled quantum state can be described by only

polynomially (in M) many coefficients {Γ
[j]ij
αj−1αj , λ

[j]
αj } instead of all dM coefficients

{ci1i2..iM}.

Another approximation used in the TEBD formalism is the Suzuki-Trotter expan-

sion [180] for the time evolution operator

Û(t,0) = exp(−i/h̵Ĥt) = exp(−i/h̵(ĤA + ĤB)t)

≈ [exp(−i/h̵tĤAδt/2) exp(−i/h̵tĤBδt) exp(−i/h̵tĤAδt/2)]
n
(3.4.20)

with n = t/δt being the order of the decomposition. Here, ĤA and ĤB are non-

commuting parts of the Hamiltonian, for which the action of the Hamiltonian on

tensors and coefficients in the Vidal decomposition is known, in our case the on-site

and tunneling terms. This decomposition allows for a fast time evolution for the

tensors used in the TEBD formalism.

3.5. Orbital-Driven Mott Insulator to Superfluid

Phase transition

The aim of this section is to demonstrate and analyze an orbital driven adiabatic

quantum phase transition between a Mott insulator and a superfluid merely by con-

trolling the frequency of the periodic driving, which controls the relative occupation

of the excited band with regards to the ground band.

3.5.1. The Mott Insulator to Superfluid Transition in the

Non-Driven Lattice

First we give a short overview about the Mott insulator to superfluid transition

in the non-driven lattice, which can be induced, for example, by tuning the depth

of the optical lattice [177, 181]. In the non-driven lattice, the orbital degrees of

freedom stemming from excited bands can be ignored. In one dimension, the
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3. Coherent Coupling of Orbital Degrees of Freedom

Hubbard model thus takes the simple form

Ĥ1B = −J ∑
<ij>

b̂†i,0b̂j,0 +∑
j

U

2
n̂j,α(n̂j,α − 1) (3.5.1)

and only consists of an tunneling term with strength J and an on-site interaction

of strength U .

In the parameter regime where the interaction energy dominates the tunneling

strength, U ≫ nJ , which for example happens for a large lattice depth V0, in the

ground state the interaction energy is minimized by a very low mutual overlap of the

bosons. In the case of an integer particle density n = N/M ∈ N, this is achieved by

the so called Mott insulating state, where the particles are distributed evenly over

the lattice sites, where they are exponentially localized and almost uncorrelated to

the particles on other lattice sites. For n = 1 for example, in the Mott state we find

a single atom on each site and an almost vanishing interaction energy. For n = 2, we

find exactly two particles per lattice site and an interaction energy of U per lattice

site, and so on. The ground state in the Mott phase has a gap in the spectrum

between ground state and first excited state of size U , since this is the energy to

create a particle-hole pair. For a non-integer particle density in this parameter

regime, the integer Mott state is complemented with the additional particles spread

out over the lattice. If furthermore the particle number is controlled by a chemical

potential µ, the particle density shows plateaus of integer n and is robust against

small changes of µ. Thus, also the compressibility ∂n/∂µ vanishes in the Mott

region.

If, on the other hand, the tunneling strength dominates the interaction energy,

U ≪ nJ , which happens for a rather shallow lattice, the particles are spread out

over the lattice to reduce the kinetic energy. This state is called superfluid. Deep

in the superfluid region, the bosons are only weakly correlated and sit almost

completely in the single-particle ground state at quasimomentum q = 0 (quasi-

condensate). In the thermodynamic limit, N,M →∞, N/M = const, the spectrum

in the superfluid region is gapless. In a setting where the particle number is not

conserved, the particle density changes smoothly with the chemical potential µ and

thus the compressibility is always finite.

Between both regions, where the ground state is strongly correlated, a quantum
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n=1
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Figure 3.5.1.: Left: Phase diagram of the simple one-band Bose-Hubbard
model in the dimerized lattice (V1/V0 = 0.5), controlled by chemical potential µ
and the lattice depth V0/ER, which controls the ratio J/U . The compressibility
∂µn in logarithmic color scale indicates the quantum phase: If it vanishes
(blue), the ground state is Mott insulating. If it has a finite value (blue to red),
the system is superfluid. The ground state was calculated by the Gutzwiller-
Meanfield method, see Sec. 3.4.3. Right: Particle density in the same parameter
regime. The plateaus of integer particle density are clearly visible.

phase transition takes place at a critical value (J/U)c, which depends on the

dimension of the lattice and the particle density n. The phase transition was

confirmed e.g. for a three-dimensional lattice in the experiment Ref. [35]. In one

dimension, the phase transition at n = 1 takes place roughly at (J/U)c ≈ 3.8 [182],

whereas the mean-field result, which becomes exact in the infinite-dimensional

limit, the critical value is (J/U)∞ = 11.66 [183].

To give an overview about the two quantum phases of the ground state, in Fig. 3.5.1

(left) we show the meanfield phase diagram of the ground state of the one-band

Bose-Hubbard model (3.5.1). For the Hubbard model, we plugged in the model

parameters J and U from the dimerized lattice with V1/V0 = 0.5 according to J0

and U00 from Fig. 3.2.8 and Fig. 3.2.9. We plot the compressibility over chemical

potential and lattice depth, which is closely related to the ratio J/U . The Mott

lobes with vanishing compressibility are clearly visible as blue regions, whereas in

the superfluid region the compressibility is finite. For n = 1, the phase transition

roughly happens at a lattice depth of V0/ER ≈ 7.5, where we find J/U ≈ 11.8, close
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to the expected critical value from mean-field theory (11.66). In Fig. 3.5.1 (right)

we plot the particle density n ≡ ⟨n̂i⟩ of the ground state. The particle density

takes integer values in the Mott lobes, which are increasing with the chemical

potential. In contrast, in the superfluid region the particle density increases linearly.

3.5.2. Coherent Control of the Quantum Phase of the Ground

State

In this section we demonstrate the phase transition between a Mott insulating

and a superfluid state can be achieved in a qualitatively different approach, by

coherently coupling the bands via lattice shaking.

This phase transition is possible since in the effective band-coupled Hamiltonian

(3.2.14), the ground and excited band hybridize with strength γ(K) depending

on the driving strength K and, at the same time, their band distance δ(ω) can

be adjusted by the driving frequency ω. In addition, since both bands differ

sufficiently in their tunneling strength, it is possible to find a lattice depth and

dimerization such that in the ground band the ratio J0/U00 < (J/U)c ≈ 0.26 (in

one dimension) [182] is below the critical value and thus favors a Mott-insulating

state, whereas in the first excited band the ratio J1/U11 > (J/U)c is above the

critical value and thus favors a superfluid state. Therefore, for a large positive

band distance δ/∣γ∣ ≫ 1, when band 1 lies below band 0, in the effective ground

state the bosons are mainly occupying the ground band of the undriven system. In

this parameter regime, the ground state of (3.2.14) is a Mott insulating state. For

a large negative band distance −δ/∣γ∣ ≫ 1 in the effective ground band the particles

mainly occupy the first excited band of the undriven system. Here, the quantum

phase is superfluid. In between, there has to be a quantum phase transition between

these two phases, as illustrated in Fig. 3.5.2.

In the following we pick a lattice depth of V0 = 10ER and the dimerization V1/V0 = 0.5

such that J0/U00 ≈ 0.051 < (J/U)c and J1/U11 = 0.34 > (J/U)c and keep the driving

strength constant at K = 0.5ER. Hence, for these parameters the described orbital

driven phase transition between a Mott insulator and a superfluid is theoretically

possible. For comparison we will sometimes also consider the case of V0 = 5ER,
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0-band

1-band → → →

Mott Insulator-Superfluid 
Quantum Phase Transition

Figure 3.5.2.: Illustration of the orbital driven Mott insulator to superfluid
phase transition. Starting with a large positive δ in a Mott insulating state
(right), where the particles mainly occupy the ground band, the reduction of
δ at some point leads to a quantum phase transition to the superfluid at a
transition point δt. This is because the excited band favouring this phase gets
occupied by the bosons.

where we have J0/U00 ≈ 0.152 < (J/U)c and J1/U11 = 0.903 > (J/U)c. For the

lattice depth of V0 = 3ER (V0 = 15ER) we do not expect the phase transition since

for both 0- and 1-band, the ground state is expected to be in the superfluid (Mott

insulating) phase. However, an abrupt phase transition from a superfluid in the

1-band to one in the 1-band is possible.

3.5.3. Exact Spectrum for Small Systems

By calculating exactly the low-energy spectrum of (3.2.14) for a fixed particle

number N and for different band distances δ, we can already see a precursor of

the transition between a Mott insulator and a superfluid. As explained earlier,

in the Mott insulating ground state we expect a gap in the spectrum between

the lowest two energy states of size U . In Fig. 3.5.3 we show plots of the low

energy spectrum of the effective two-band model (3.2.14) for different lattice depths

V0 = [3ER,5ER,10ER,15ER] that result in different ratios J0/U00. The spectrum

was obtained by solving a lattice of N = 6 particles on M = 6 periodically connected
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Figure 3.5.3.: Low-energy spectrum of the exactly solved (see Sec. 3.4.2)
two-band Hubbard Hamiltonian for different lattice depths V0 =

[3ER,5ER,10ER,15ER. The driving amplitude is kept at K = 0.5ER. In
the region dominated by the 0-band, i.e. before the bending down of the
spectrum, we see a clear energy gap between ground state and first excited
state, especially for V0 ≥ 5ER, which becomes less pronounced in the region
dominated by the 1-band.

sites by exact diagonalization. Even though this is a very small system, such

that the signatures of the quantum phase are disturbed by finite size effects, the

quantum phase transition is slightly indicated: For V0 = 5ER (V0 = 10ER) the

energy gap between the ground state and the excited states is rather pronounced

for δ ≫ 0, although it is below the expected gap of U00 ≈ 0.50ER (U00 ≈ 0.58ER).

This indicates signatures of a Mott phase. For δ < 0 the energy gap is larger than

the difference of higher neighbouring energy states, but clearly below U11 ≈ 0.40

(U11 ≈ 0.50), indicating signatures of a superfluid phase. For V0 = 3ER, the gap

closes, indicating a phase transition, even though both phases cannot be clearly

distinguished by the gap in the spectrum. For V0 = 15ER, the differences in the

energy gaps between both regions are less prononced, indicating that no quantum

phase transition takes place.

58



3.5. Orbital-Driven Mott Insulator to Superfluid Phase transition
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n=1

n=0

n=2
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Figure 3.5.4.: Phase diagram (left) and band occupation (right) of the ground
state of the effective band coupled model Eq. (3.2.14). Upper row: Lattice
depth V0 = 10ER. Lower Row: V0 = 15ER. The dimensions of the phase space
are the chemical potential µ and the band distance δ. Here, the ground state
was calculated with the mean-field method, described in Sec. 3.4.3.

3.5.4. Phase Diagram

In this section, we will validate the orbital driven quantum phase transition from

Mott insulator to superfluid by considering the phase diagram of the ground state

of the effective two-band model Eq. (3.2.14). To do so, we consider the parameter

space of chemical potential µ and band distance δ, controlled by the shaking

frequency δ =D− h̵ω, at fixed lattice depths V0/ER. As in Sec. 3.5.1, we distinguish

the phases by plotting the particle density n and the compressibility ∂µn of the

ground state.

In Fig. 3.5.4 (left) we plot the compressibility over band distance δ and chemical

potential µ for lattice depths V0 = 10ER and V0 = 15ER, again using the mean-field
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Figure 3.5.5.: Phase diagram (left) and band occupation (right) of the ground
state of the effective band coupled model Eq. (3.2.14). Upper row: Lattice
depth V0 = 10ER. Lower Row: V0 = 15ER. The dimensions of the phase space
are the chemical potential µ and the band distance δ. The compressibility ∂µn
in logarithmic color scale indicates the quantum phase: If it vanishes (blue),
the ground state is Mott insulating. If it has a finite value (blue to red), the
system is superfluid. The ground state was calculated with imaginary TEBD
(see Sec. 3.4.4) on a system of M = 30 sites and a bond dimension of χ = 14.

method. For V0 = 10ER, only the Mott lobe for n = 1 is present. Nevertheless,

decreasing the band distance δ from left to right, it vanishes at a certain transition

point δt, i.e. the Mott insulator melts into the superfluid state. The reason is, as

described in the previous section, that for this set of parameters the (non-driven)

ground band favors a Mott insulating state, wheras the (undriven) first excited

band favors a superfluid. Hence, the quantum phase transition happens when for

the particles it is energetically favourable to occupy the first excited band, taking

into account the band distance as well as tunneling and interaction processes in
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both bands. After the first band becomes occupied around δ ≈ 0, the Mott lobes

are shifted downwards. This is simply because the energy goes linearly down with

δ if all particles are in band 1. For V0 = 15ER, we see all Mott lobes melting at the

band transition point. From Sec. 3.5.2 we actually do not expect a phase transition

here, since J1/U11 < (J/U)c. However, as mentioned before, the meanfield method

shifts the Mott region to higher J/U , therefore showing a phase transition here.

To demonstrate that the quantum phase transition happens at the transfer of the

particles to the first excited band, we also plot the relative band population n0/n

in Fig. 3.5.4 (right) for the same phase space.

To get a quantatively more accurate description of the orbital driven phase tran-

sition, in Fig. 3.5.5 we show the same plots as before, but calculated with the

quasi-exact TEBD method. We computed the ground state of the effective two-band

Hamiltonian (3.2.14) on a lattice of M = 30 sites and periodic boundary conditions.

We again consider the cases V0 = 10ER and V0 = 15ER. For V0 = 10ER, we observe

the orbital driven phase transition for all Mott lobes. The phase transition point

for n = 1 lies around δt ≈ 0.1ER. This values lies behind the point of particle

transition δc = 0.421ER calculated for the single-particle model in Sec. 3.4.1. The

reason for this is that the bands hybridize strongly due to the coupling with γ

which lowers the energy of the Mott insulating state. For V0 = 15ER, we cannot

observe a phase transition for the Mott lobe with n = 1 since the ratio Jα/Uαα is

below the critical value (J/U)c for both bands (compare with Fig. 3.5.1). However,

for higher particle densities the phase transition takes actually place. The reason

is that extra particles (or holes) tunnel with strength (n + 1)Jα (or nJα), which

increases with the particle density n.

3.5.5. Nature of the Phase Transition

In the phase diagrams calculated by TEBD we can observe another interesting

phenomenon in the phase transition, by comparing Mott lobes with different integer

n. In contrast to the smooth transition for n = 1 at V0 = 10ER, we observe a

discontinuous phase transition for the n = 2 Mott lobe for V0 = 10ER and for the

n = 1 and n = 2 Mott lobes for V0 = 15ER, see Fig. 3.5.5 (bottom). The order
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Figure 3.5.6.: Left: Illustration of the frustrated effective 2-band Hamiltonian.
The horizontal legs in red and blue demonstrate tunneling in the 0- and 1-band,
whereas the vertical leg in violet describes the band coupling. Because of
the ladder structure and since two of the coupling elements are negative, the
single-particle kinetics is frustrated. Right: Illustration of the sign of the
single-particle ground-state wave function for the cases A)-C), roughly located
at the center lattice site. The red crosses signify that the bond is frustrated,
i.e. the energy is increased at this bond.

(first or second) of the phase transition appears to be dependent of parameters

like particle density and lattice depth. This observation is a consequence of the

two-band ladder-like structure of Hamiltonian (3.2.14), which can be understood

by considering the ground state correlation functions

χ`α′α =
⟨b̂†α′`b̂α0⟩
√
nα′nα

. (3.5.2)

We calculate the ground state of the two-band Hamiltonian (3.2.14) with fixed

particle number N = 30 on M = 30 lattice sites by imaginary time TEBD. Setting

M = N corresponds to follow a line of constant density n = 1 in the phase diagrams

Fig. 3.5.5. We have fixed the particle number in this case to increase the numerical

precision in order to calculate also correlation functions of distant sites. Accordingly,

the bond dimension is adjusted in each case such that the error is below 5% (see

App. B). In Fig. 3.5.7, we plot the correlation function χ1
00, χ

1
11, χ

0
01, χ

8
00, χ

8
11

and the relative band occupation n0 − n1 for K = 0.5 and four lattice depths V0 =

[3,5,10,15]ER. The correlation function χ1
00 and χ1

11 indicate the phase between

neighbouring sites within the 0- and 1-band, whereas χ0
01 give us information about
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Figure 3.5.7.: Correlations χ`α′α ≡ ⟨b̂†α′`b̂α0⟩/
√
nα′nα for fixed filling n = 1

versus δ, with V1/V0 = 0.5 and V0/ER = 15,10,5 (from top to bottom).

the on-site phase ordering between both bands. The correlation functions χ8
00

and χ8
11 indicate whether the system is in the Mott insulating or in the superfluid

phase. Since the correlations fall off exponentially with the site distance `, in the

Mott insulating phase one expects χ8
αα ≈ 0 here, whereas χ8

αα should be finite in

the superfluid phase, where the correlations fall off polynomially with ` in one

dimension. Hence, we can confirm in Fig. 3.5.7 that for V0 = 15ER the system

remains in the Mott phase in the whole range of δ. For V0 = 10ER and V0 = 5ER,

a phase transition from a Mott insulating to a superfluid state takes place at

n0 − n1 ≈ 0. For V0 = 3ER the state is always superfluid.

Whereas the correlation functions change smoothly for V0/ER = 1[0,15] their

change is abrupt for V0/ER = [3,5]. As confirmed Fig. 3.5.7, the nature of the
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phase transition depends on the sign of χ1
11 at the phase transition: If χ1

11 < 0 at

the transition point, which is also the ordering in the superfluid of particles in band

1, the transition is continuous. If on the other hand χ1
11 > 0, the correlations change

abruptly and the transition happens first order. The sign of χ1
00 and χ1

11 can be

classified according to three cases3, which are illustrated in Fig. 3.5.6 (right):

• A) χ1
00 > 0 and χ1

11 > 0

• B) χ1
00 > 0 and χ1

11 < 0

• C) χ1
00 < 0 and χ1

11 < 0

The type of ground state according to this classification depends on the band

distance δ and can be explained by a frustration of the single-particle ground state,

depicted in Fig. 3.5.6 (left). Since −J0 and −γ are negative and J1 is positive, there

is no way that a single-particle wave function gains a negative energy contribution

from every bond at the same time. The reason is that a negative coupling element

will favour a wave function with the same sign between two sites, whereas a positive

coupling element will favour a different sign. Because of the ladder-like geometry,

it is not possible to satisfy all four bonds around a loop to maximally minimize

the energy. The orientation of the single-particle wave functions in the many-body

system is consequently determined by the occupation of the bands: If almost all

particles occupy the ground band, the single-particle wave function will order

according to case A). If almost all bosons are in the excited band, we will find case

C). Dependning on the parameters n, γ, J0, J1, also case B) is possible in between.

Note however, that if the particle is localized strongly around one site (e.g. in the

Mott phase), the frustration will have a lower impact on the state since in this case

the wave function has only little contributions on the neighbouring sites, in contrast

to a spread-out wave function (e.g. in the superfluid phase). Localization of the

particles will favour the hybridization term with strength −γ and the tunneling

terms will be less dominant. Accordingly, since in the superfluid phase the wave

function is very dispersive, the effect of Jα is much stronger than in the Mott phase,

which strongly favors cases A) and C).

Hence, combining the frustration of the single-particle ground state with the particle

3The possibility of a complex wave function of the ground state is ruled out since 2U01 > U00, U11.
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occupation of the two bands, the nature of the phase transition can be described.

In the next section we will employ perturbation theory to estimate the transition

between regions A), B) and C).

3.5.6. Perturbative Approach

The transition point in δ between the regions A),B) and C) in the Mott region can

be estimated by perturbation theory. We start with the transition between MIA

and MIB, where χ1
11 = ⟨b̂†11b̂10⟩/n0 changes its sign from positive to negative. In the

limit δ → −∞ and J0/H00 → 0, the ground state of (3.2.14) is the product state

∣ψ0⟩ =∏
`

b̂†0`∣vac⟩. (3.5.3)

with the vacuum state ∣vac⟩. Starting from this state, the ground-band tunneling

and the coupling can be treated as perturbations. To find the major contribution

to χ1
11 in perturbation theory, we have to compute up to the order in perturbation

theory where the perturbed ground state ∣ψ⟩ acquires a finite value ⟨ψ ∣̂b†10b̂11∣ψ⟩.

We denote ∣ψk⟩ the perturbated state correction appearing in kth order. Since a

particle has to be excited to the first band from ∣ψ0⟩, before it can tunnel to the

neighbouring site, the first non-vanishing contribution to ⟨ψ ∣̂b†10b̂11∣ψ⟩ appears in

third order perturbation theory. Here, the state ψ2 involves two hopping processes,

which implies four bosonic operators. In third order, we then find the contribution

to the correlation function

⟨ψ ∣̂b†10b̂11∣ψ⟩ ≃ ⟨ψ1 ∣̂b
†
10b̂11∣ψ2⟩ + ⟨ψ2 ∣̂b

†
10b̂11∣ψ1⟩

= 2⟨ψ1 ∣̂b
†
10b̂11∣ψ2⟩. (3.5.4)

Both terms are equal because of translation invariance of the ground state. The

relevant term of ∣ψ1⟩ coming from a single hopping process into the excited band is

−γb̂†10b̂00

−δ
∣ψ0⟩ =

γ

δ
b̂†10∏

`≠0

b̂†0`∣vac⟩, (3.5.5)
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where the energy difference of the connected states E1 − E0 = δ appears in the

denominator and the coupling matrix element −γb̂†10b̂00 in the numerator. The

relevant term of ∣ψ2⟩, where a particle either tunnels first to the neighbouring site

in the ground band and then gets excited, or gets excited first and then tunnels in

the excited band, takes the form

(
γb̂†11b̂01 J0b̂

†
01b̂00

(2U01 + δ)U00

−
J1b̂

†
11b̂10 γb̂

†
10b̂00

(2U01 + δ)δ
)∣ψ0⟩ = (

2J0

U00

−
J1

δ
)

γ

2U01 + δ
b̂†11∏

`≠0

b̂†0`∣vac⟩.

(3.5.6)

Here we have also taken into account the additional on-site interaction U00 and

2U01 since a particle-hole excitation is created. Plugging both contributions (3.5.5)

and (3.5.6) into (3.5.4), the correlation function takes the form

⟨b̂†10b̂
†
11⟩ ≃ (

2J0

U00

−
J1

δ
)

2γ2

(2U12 + δ)δ
. (3.5.7)

The sign change which indicates the transition happens at

δ =
U00J1

2J0

, (3.5.8)

where both terms in the round bracket cancel each other. For the parameter regime

in Fig. 3.5.7, the MA to MB transition is thus estimated to happen at around

δ ≈ 1.8ER for V0 = 15ER, for δ ≈ 1.6ER for V0 = 10ER and for δ ≈ 1.2ER for V0 = 5ER,

fitting reasonably well with the numerical values in Fig. 3.5.7.

The perturbative estimation of the MIB-to-MIC transition goes along the same

lines. Assuming sharp filling n = n0 + n1 = 1, we again treat the tunnel terms

−J0b̂
†
01b̂00 + J1b̂

†
11b̂10 as a perturbation. The unperturbed on-site problem in the

limit δ → −∞ is then given by

∣ψ0⟩ =∏
`

∣ψ
(0)
` ⟩ =∏

`

(a0b̂
†
0` + a1b̂

†
1`)∣vac⟩. (3.5.9)
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To obtain the Mott insulating ground state in this limit, we have to solve the

on-site single-particle problem,

ĤMI =∑
`

[δn̂1` + γ(b̂
†
1`b̂0` + b̂

†
0`b̂1`)] =∑

`

Ĥ
(`)
MI (3.5.10)

The solution of the 2-by-2 matrix Ĥ
(`)
MI of each site is the unperturbed state

∣ψ
(0)
` ⟩ = (a0b̂

†
0` + a1b̂

†
1`)∣vac⟩, (3.5.11)

with energy per site

ε0 =
δ

2
−

1

2

√
δ2 + 4γ2. (3.5.12)

We also have a1/a0 = −ε0/γ and the normalization condition a2
0 + a

2
1 = 1. The state

amplitudes give us the densities

n0 ≃ a
2
0 and n1 ≃ a

2
1. (3.5.13)

For each site, we need again defect states with one particle less (a hole) and one

extra particle, stemming from the tunneling processes. For n = 1, the on-site hole

state is simply given by the vacuum

∣ψ(h)⟩ = ∣vac⟩, (3.5.14)

with energy εh = 0. The subspace with two particles on a site contains three states,

depend on the band occupancies. For simplicity, we neglect the hybridization

coupling γ. Thus, we approximate the eigenstates with an additional particle by

states with sharp occupations of the orbitals α,

∣ψ(20)⟩ =
1

√
2
(b̂†0)

2∣vac⟩,

∣ψ(11)⟩ = b̂†0b̂
†
1∣vac⟩,

∣ψ(02)⟩ =
1

√
2
(b̂†1)

2∣vac⟩, (3.5.15)
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where we skipped the site index in the operators. Neglecting the band coupling,

these states with an additional particle have energies

ε20 = U00,

ε11 = 2U01 + δ,

ε02 = 2U11 + 2δ. (3.5.16)

Since ⟨ψ ∣̂b†α0b̂α1∣ψ⟩ has a non-zero contribution for states ψ connected to ψ0 by a

single tunneling process, we have to consider only the first order of the perturbation

expansion with respect to tunneling,

⟨ψ ∣̂b†α0b̂α1∣ψ⟩ ≃ ⟨ψ0 ∣̂b
†
α0b̂α1∣ψ1⟩ + ⟨ψ1 ∣̂b

†
α0b̂α1∣ψ0⟩

= 2⟨ψ0 ∣̂b
†
α0b̂α1∣ψ1⟩. (3.5.17)

The state correction ∣ψ1⟩ includes all states connected to ∣ψ0⟩ by a single hopping

event. The terms relevant for (3.5.17) possess an extra particle in one of the three

possible states on site 1 and a hole on site 0. Therefore, we can use relations

(3.5.15) and (3.5.16) to calculate their contribution

[
a2

0J0

U00 − 2ε0

(b̂†01)
2 −

a2
1J1

U11 + 2δ − 2ε0

(b̂†11)
2 −

a0a1(J1 − J0)

U01 + δ − 2ε0

b̂†11b̂
†
01] ∏

`≠0,1

(a0b̂0 + a1b̂1)∣vac⟩.

(3.5.18)

Plugging this into Eq. (3.5.17) and also using the relation for the densities

Eq. (3.5.13), we arrive at

⟨b̂†00b̂01⟩ ≃
2n0

U00(2U01 + δ − 2ε0)
[2n0J0(2U01 + δ − 2ε0) − n1(J1 − J0)(U00 − 2ε0)]

(3.5.19)

and

⟨b̂†10b̂11⟩ ≃ −
2n1

(U11 + 2δ − 2ε0)(2U01 + δ − 2ε0)

×[2n1J1(2U01 + δ − 2ε0) + n0(J1 − J0)(U11 + 2δ − 2ε0)].(3.5.20)
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The transition from MIB to MIC happens at the sign change of ⟨b̂†00b̂01⟩. We

can approximate 2U01 + δ − 2ε0 ≈ 2U01 since it is consistent with our previous

approximation to neglect γ on doubly occupied sites. Then, the sign change of

(3.5.19) happens when

n0 − n1 ≈
(J1 − J0)U00 − 4J0U01

(J1 − J0)U00 + 4J0U01

. (3.5.21)

Therefore, we estimate the transition for V0 = 15ER at n0 −n1 = 0.30, for V0 = 10ER

at n0 − n1 = 0.29 and for for V0 = 5ER at n0 − n1 = 0.24, which matches reasonably

well with the numerical results in Fig. 3.5.7.

3.5.7. Preparation of the Ground State

Here we give a description how in an experiment the ground state of Hamiltonian

(3.2.14) can be prepared and the orbital-driven Mott insulator-superfluid phase

transition induced.

First of all, the system has to be prepared in (or close to) the undriven ground

state, which would be a Mott insulator. Because of the large energy gap D to the

first excited band, then almost all bosons occupy the ground band. Keeping the

driving frequency constant at a value such that δ =D − h̵ω is still large enough to

suppress any significant occupation of the excited band, the driving strength K

is then ramped up smoothly to the desired value. During this step, the speed of

the ramping has to be low enough to guarantee adiabatic following of the Floquet

state that is (in the two-band model) connected to the undriven ground state [175].

On the other hand, the ramping cannot be too slow since it has to be diabatic

with respect to tiny coupling matrix elements neglected in the high-frequency

approximation leading to Ĥ2B. In any case, a first-order phase transition (as

discussed in section 3.5.5) cannot be crossed adiabatically. For an experimental

protocol therefore, a second-order transition like the one for V0 = 10ER and n = 1

has to be chosen.

Apart from the demanded adiabatic following within the effective 2B model and

the limitation of the high-frequency approximation made in section 3.3, we have to

check that the coupling to higher bands (b > 1) is indeed negligible. As described
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2-band

1-band

0-band

Figure 3.5.8.: Illustration of the energy terms in the effective three-band
Hamiltonian (3.5.22) in the dimerized lattice. Excitation to the second excited
band can occur due to direct coupling from the first excited band with strength
Kη12/2 or due to a photon-conserving scattering event with strength U0112,
where two partices scatter from the first excited band to the ground band and
to the second excited band, respectively.

in section 3.2, the most dominant process is the coupling to the 2nd excited

band. Hence, it is important to make sure that the second excited band remains

unoccupied. In the tight-binding approximation, the effective three-band (3B)

Hamiltonian then takes the form

Ĥ3B = Ĥ2B + ε
M

∑
j=1

n̂j,2 + J0 (
K

h̵ω
)J2 ∑

<ij>
(b̂†i,2b̂j,2 + b̂

†
j,2b̂i,2) +∑

j

[
U22

2
n̂j,2(n̂j,2 − 1)

+ 2U02n̂j,0n̂j,2 + 2U12n̂j,1n̂j,2 +
U0112

2
(b̂†j,1b̂

†
j,1b̂j,0b̂j,2 + b̂

†
j,0b̂

†
j,2b̂j,1b̂j,1)]

+
Kη12

2
∑
j

(b̂†j,2b̂j,1 + b̂
†
j,1b̂j,2) . (3.5.22)

Here, the frequency-dependent band distance to the second excited band is

ε = E2 −E0 − 2h̵ω = E2 +E0 − 2E1 + 2δ. (3.5.23)

All additional terms are illustrated in Fig. 3.5.8. Relevant for the heating are the

two last terms in Eq. (3.5.22) where particles are excited either by possibly resonant

scattering with matrix element U0112 = Ua ∫ w0(x)w1(x)2w2(x)dx or by dipole

coupling from the shaking that contains the matrix element η12 = ∫ w1(x)xw2(x)dx.

The matrix elements U0112 and η12 as a function of the lattice depth V0 are plotted
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in Fig. 3.2.9 and Fig. 3.3.1, respectively. While the scattering strength U0112 is

rather small, the hybridization with the second excited band ∼ η12 is of the same

order of magnitude as η01. Therefore, an experiment that relocates the bosons

adiabatically from the ground to the first excited band can also adiabatically excite

the second excited band, provided there is a respective avoided crossing. By the

dimerization of the lattice with V1/V0 = 0.5 (see section 3.2), however, avoided

crossing to the second excited band are prevented since the second excited band is

energetically well separated from the first two bands in resonance, i.e. ε is relatively

large.

To verify the protocol and to demonstrate that interband heating is indeed negligible

for the chosen parameter set and dimerization, we can simulate the adiabatic

protocol within the effective 3B model (3.5.22) using real time propagation with the

TEBD method. Again we choose V0 = 10ER, V0/V1 = 0.5 and K = 0.5ER (compare

to Fig. 3.5.5 and Fig. 3.5.7), but reduce the particle number to M = N = 16, due to

numerical limitations. The band distance is ramped from δ/ER = 1 to δ/ER = −0.5

within a time Tr = 500h̵/ER ≈ 25ms so that it starts in a Mott insulator almost

fully in the ground band and ends in a superfluid phase almost fully in the first

excited band.

With the help of two observables we show that during the numerical simulation, the

system indeed follows the effective ground state and furthermore can be sufficiently

described by the 2B model. First of all, we consider the absolute value of the

overlap ∣⟨3B − IT∣3B −RT⟩∣ of the many-body wave function of the instantaneous

state ∣3B −RT⟩ in the real time protocol with the exact ground state ∣3B − IT⟩ for

the given δ calculated with imaginary time TEBD in the 3B model. By this, we see

if the time evolved state follows the effective ground state adiabatically in the full

3B model. As the other observable we consider the overlap ∣⟨2B − IT∣3B −RT⟩∣ of

the instantaneous wave function with the ground state ∣2B − IT⟩ of the two-band

model (projected on the larger Hilbert space with three bands). This quantity

additionally estimates the deviation between the ground states of the two-band

and the three-band model. Both overlaps are plotted in Fig. 3.5.9 (top). The

time propagated state accurately follows the full 3B ground state, except for a

tiny dip in the overlap near the phase transition at δ ≈ 0.15ER, which is typical

for the passage of an avoided crossing [184]. On the other hand, the overlap
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Figure 3.5.9.: Band occupations and overlaps of the instantaneous time
evolved state with the (imaginary time-evolved) ground states of the 3B and
2B model. Starting in the ground state at δ = ε1 − ω = 1ER, δ is lowered
linearly to δ = −0.5ER within a time of Tr = 500h̵/ER; for n = 1, V0/ER = 10,
V1/V0 = 0.5, K/ER = 0.5 and M = 16 rungs under periodic boundary condtions.

∣⟨2B − IT∣3B −RT⟩∣ slightly drops to a value of 0.945 at the end of the protocol at

δ/ER = −0.5, indicating a slight occupation of the second excited band of the 3B

ground state. This assumption is verified in the bottom plot of Fig. 3.5.9, where the

band occupations nα of the three bands α = 0,1,2 is plotted on a logarithmic axis

for the ground state of the 3B model (3.5.22). The occupation of the second excited

band n2 starts very low, continuously increases as δ is lowered and reaches a small

value of approximately 1% at δ/ER = −0.5, which explains the slight deviation of

the time propagated state with the 2B ground state.

To analyze the adiabaticity of the procotol further, we plot in Fig. 3.5.10 (left) the

overlap ∣⟨2B − IT∣3B −RT⟩∣ versus TrER/h̵ and K/ER at the end of the protocol

at δ/ER = −0.5 for a lattice with N = M = 10 particles. Obviously, too small Tr

and too small γ ∝K spoil the adiabatic dynamics within the 2B model since the

relevant avoided crossings are not resolved anymore [175]. Furthermore, for too

large K the coupling to the second excited band becomes more relevant, so that
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3.5. Orbital-Driven Mott Insulator to Superfluid Phase transition

Figure 3.5.10.: After-ramp overlap of the imaginary time-evolved ground
states of the 3B. Left: After-ramp overlap in color scale as a function of the
ramp time TrER/h̵ and the shaking amplitude K/ER. Right: After-ramp
overlap as a function of the dimerization V1/V0.

the 2B model describes the system less accurately. For too large K and Tr also

slow second-order loss processes can occur that are, however, not included in the

effective models. The white cross in Fig. 3.5.10 (left) indicates the parameters for

K and Tr that were used in the simulation in Fig. 3.5.9.

To demonstrate the importance of the dimerization in the proposed protocol, we

plot in Fig. 3.5.10 (right) the final overlap for the ramping parameters like in

Fig. 3.5.9 but with altering dimerizations. We clearly see that by lowering the

dimerization below the value of V1/V0 = 0.5, the overlap is significantly reduced

since a larger fraction of the particles sits in the second excited band in the 3B

ground state.

In total, for the demonstrated parameter regime, the coupling to the third band

does not cause detrimental heating, which justifies a description of the driven

system in terms of the 2B model (3.2.14). Hence, the protocol is suitable to

study the orbital driven phase transition from the Mott insulating phase to the

superfluid phase. Note that this protocol can also be used as a preparation of a

stable low-entropy states in the first excited Bloch band. For this purpose one has

to avoid the discontinuous transition.
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4. One-dimensional Lattice Anyons

in a Shaken Optical Lattice

In this chapter we present a theoretical proposal where time-periodic shaking of a

one-dimensional optical lattice filled with ultra-cold bosons is used to realize an

effective Anyonic Hubbard Model (AHM) with tunable parameters. Furthermore,

we describe signatures of these one-dimensional anyons that are easily accessible

in the experiment and propose and test an experimental protocol to prepare the

effective anyonic ground state. The main idea and results presented in this chapter

have been published in [104].

4.1. Introduction to One-Dimensional Lattice

Anyons

Anyons are particles, whose wave function picks up a phase θ ≠ 0, π upon par-

ticle exchange [185–189]. Hence they interpolate between bosons and fermions.

Mathematically, anyons can only exist in two dimensions [185]. As quasi-particles,

they play a major role as topologically ordered states of matter such as fractional-

quantum-Hall states [190–192]. As they might be applied in robust topological

quantum information processing, anyons have caught an increasing attention during

the recent years [193–200]. As shown by Haldane, the concept of anyonic, also called

fractional statistics can be extended to arbitrary dimensions [201], which allows

for (quasi-)anyons for example on a lattice system. One-dimensional anyons have

recently attracted increasing attention. This includes theoretical studies [202–217]

with a special focus on the ground state and on the hard-core limit, and a proposal

to realize anyons in an optical lattice with the help of Raman lasers [102, 103].
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However, the implementation of lattice anyons has not yet been accomplished.

A minimal model to describe interacting anyons in a one-dimensional lattice, is the

anyonic Hubbard model [102], which reads

Ĥ = −J
M

∑
j=2

(â†
j âj−1 + h.c.) +U

M

∑
j=1

n̂j (n̂j − 1) . (4.1.1)

So it has the same form as the Hubbard model for bosons, with a nearest-neighbour

tunneling term with strength J and an on-site interaction term with strength U .

The difference lies only in the anyonic commutation relation of the annihilation

and creation operators, âj and â†
j, at site j that obey

âj â
†
k − e

−iθsgn(j−k)â†
kâj = δjk

âj âk − e
−iθsgn(j−k)âkâj = 0 (4.1.2)

and are parametrized by the statistical or anyonic angle θ ∈ [0,2π). The phase

depends on the position of the lattice sites since we have sgn(k) = −1,0,1 for

k < 0,= 0,> 0, respectively. Importantly, this implies that on-site for j = k, the

particles behave like bosons. Thus, for θ = π the lattice anyons are pseudo-fermions

instead of true one-dimensional fermions and several of them are allowed to occupy

the same site. The anyonic or fermionic nature of the particles matters, however,

in the process of two particles passing each other1.

To make an experimental simulation of lattice anyons possible, the anyonic operators

âj and â†
j have to be mapped to bosons in a way that respects their commuta-

tion relation (4.1.2). This can be achieved via the generalized Jordan-Wigner

transformation [102,207]

âj = b̂j exp
⎛

⎝
iθ

M

∑
k=j+1

b̂†kb̂k
⎞

⎠
(4.1.3)

1Consequently, in the case of a sparsely occupied lattice, where it is very unlikely that two
lattice-anyons occupy a site at the same time, the model of lattice anyons approaches a
hypothetical continuous model of one-dimensional anyons.
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mapping the anyons to bosons with annihilation and creation operaters fulfilling

[b̂j, b̂
†
k] = δjk, [b̂j, b̂k] = [b̂†j, b̂

†
k] = 0. (4.1.4)

The Jordan-Wigner transformation maps the Anyonic Hubbard model (4.1.1) to

its bosonic representation,

Ĥ = −J
M

∑
j=2

(b̂†j b̂j−1e
iθn̂j + h.c.) +U

M

∑
j=1

n̂j (n̂j − 1) . (4.1.5)

The anyonic exchange phase has been translated to a density-dependent Peierls

phase: when tunneling one site to the right (left), a boson picks up a phase given by

θ (−θ) times the number of particles occupying the site it jumps to (from). These

tunneling processes are illustrated in Fig. 4.1.1. Thus, if two particles pass each

other via two subsequent tunneling processes to the right (left), the many-body

wave function picks up a phase of θ (−θ). Note that we implement the model

on a one-dimensional lattice with open boundary conditions2. Since they break

translational symmetry, open boundary conditions lead to density oscillations of

the anyonic ground state, providing signatures for the detection of anyons in an

experiment, as we will see later.

As ultra-cold atoms in optical lattices in the tight-binding regime provide a versatile

tool to realize various quantum lattice models, it appears promising to also imple-

ment the anyonic Hubbard model in this way. One important proposal to realize

the anyonic Hubbard model in its bosonic representation (4.1.5) with cold gases

has been initially proposed by Keilman et al. [102] and has later been improved

by Greschner et al. [103]. In these proposals, the density-dependent hopping is

induced by Raman lasers. Here, the Fock states of neighbouring sites with different

particle occupations, which are energetically decoupled by a lattice tilt, are coupled

with several Raman lasers via photon-assisted tunneling, involving a change of the

internal atomic state. Since laser intensities and state energies differ, the tunneling

elements can be tuned to mimic the density dependence in (4.1.5), at least for tun-

2The use of periodic boundary conditions in the anyonic model (4.1.1) would be problematic
with the Jordan-Wigner transformation since extra boundary terms would emerge in the
transformed Hamiltonian (4.1.5) that cannot be taken care of in the experiment.
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(a)

(b)

Figure 4.1.1.: (a) Basic number-dependent tunneling processes in the bosonic
representation of the anyonic Hubbard model Eq. 4.1.5 involving up to two
bosons. We only depict rightwards tunneling, the leftwards processes are
Hermitian conjugated. (b) Realization of 1-, 3- and (−1)-photon processes in a
tilted lattice with strong on-site interactions U ′.

neling processes involving at maximum two particles per site. However, the scheme

requires additional laser beams and has not been implemented experimentally.

In the next section, we propose an alternative scheme for the realization of the

bosonic representation of the anyonic Hubbard model (4.1.5), where the photon-

induced tunneling is achieved by simple lattice shaking without the need for

additional lasers.

4.2. Realization of the One-Dimensional Anyonic

Hubbard Model in a Shaken Lattice

In this section we will carefully describe how the bosonic Hamiltonian (4.1.5)

with a number-dependent tunneling phase and an effective and tunable on-site
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interaction can be implemented. The main challenge is to realize the density

dependent, complex tunneling coefficients. We present a proposal where these

density dependent Peierls phases are realized in the low-density limit, i.e. only for

tunneling processes involving two particles at maximum. The trick is to control the

tunneling of the atoms via photon-assisted tunneling by a (time-reversal breaking)

lattice shaking applied to a tilted lattice. At the same time the on-site interaction

of the bosons is tuned in resonance with the photon energy, such that the effective

tunneling parameters depend on the occupation of both sites.

To start with, the Hamiltonian of the interacting bosons in a tilted periodically

forced lattice reads

Ĥ(t) =
M

∑
j=1

[ − J ′ (b̂†j b̂j−1 + h.c.) +
U ′

2
n̂j(n̂j − 1) + Vjn̂j + (∆ + F (t)) jn̂j].

(4.2.1)

The terms appearing in the Hamiltonian are illustrated in Fig. 4.1.1 b). Here

J ′ > 0 and U ′ > 0 denote the tunneling and interaction parameters of the bosons

in the undriven and untilted one-dimensional cosine lattice. ∆ > 0 quantifies the

potential tilt, i.e. the potential energy difference between neighbouring sites. The

Vj capture a possible weak additional on-site potential that can also be used to

prepare the bosons in a specific initial state, as we will make use of later. Finally,

F (t) = F (t + T ) incorporates a homogeneous time-periodic force with an angular

frequency of ω = 2π/T , where the cycle average vanishes, 1
T ∫

T

0 dtF (t) = 0. The

driving term can be implemented as an inertial force F (t)/a = −mẍ(t), with lattice

constant a, by shaking the lattice position x(t) back and forth. To achieve photon-

assisted tunneling, we require for the driving frequency the resonance conditions

∆ = h̵ω. (4.2.2)

Furthermore, the interaction strength is set such that it is roughly twice the photon

energy,

U ′ = 2h̵ω +U, (4.2.3)
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with a small and residual detuning U , which will play the role of the effective

on-site interaction parameter later on. We demand the high-frequency condition

J ′, ∣U ∣, ∣Vj − Vj−1∣ ≪ h̵ω, (4.2.4)

such that all processes in the low-energy regime are not affected by the driving up

to a parameter modulation. From Eq. (4.2.2) and Eq. (4.2.3) it becomes clear that

for a vanishing driving force in Hamiltonian (4.2.1) the tunneling is energetically

suppressed since any tunneling process requires at least an energy of ≈ ±h̵ω. More

specifically, when a boson tunnels from site j−1 to site j, the system energy changes

by h̵ων̂j,j−1 with

ν̂j,j−1 = 2(n̂j − n̂j−1) + 3, (4.2.5)

taking values ±1,±3, . . . when applied to Fock states. However, coherent tunneling

processes can be induced by photon-assisted tunneling due to the driving force.

Hereby the driving provides or absorbs ∣ν∣ energy quanta h̵ω, as it is illustrated

in Fig. 4.1.1 b). The strength and phase of the photon-assisted tunneling is

determined by an effective tunneling matrix element Jeff [69, 71], which depends

on the occupation numbers of the two involved sites through ν̂j,j−1. The idea

of number-dependent resonant tunneling is not new but has been investigated

both experimentally [74] and theoretically [60, 77, 102, 103, 218]. The tunneling

coefficients can alternatively also be engineered by a modulation of the interaction

strength [58,59,76,166,219,220]. The aim of the Floquet engineering is to match

the effective tunneling parameters with the number-dependent tunneling phases

appearing in Eq. (4.1.5), at least in the low density limit. To explicitely calculate

the effective tunneling parameters, we once more “gauge away” all terms that are

resonant with the driving, as well as the driving itself. This is done using the

time-periodic unitary operator

Û(t) = exp ( − i∑
j

[ωt n̂j(n̂j − 1) + (ωt − χ(t))jn̂j]), (4.2.6)
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where

χ(t) =
am

h̵
ẋ(t) (4.2.7)

is proportional to the lattice velocity. Hence, h̵χ̇(t) = −F (t) is the applied force

on the driven particles. Crucially, this gauge transformation is number-dependent.

The gauge transformation (4.2.6) integrates out the strong on-site terms including

on-site interaction and lattice tilt, as well as the periodic force. Since Û(t) does not

commute with the tunneling term in Eq. (4.2.1), the tunneling coefficients in the

transformed Hamiltonain Ĥ ′(t) become number-dependent and time-dependent,

Ĥ ′(t) = Û †(t)Ĥ(t)Û(t) − ih̵Û †(t)∂tÛ(t)

= −J ′∑
j

[b̂†j b̂j−1 exp (iωtν̂j,j−1 − iχ(t)) + h.c.] + ∑
j

[
U

2
n̂j(n̂j − 1) + Vjn̂j] .

(4.2.8)

The gauge transformation has moved all resonantly coupled states into a subspace

with identical photon-number in the extended Floquet Hilbert space. This brings

us into the position to neglect the coupling between subspaces with different

photon index, i.e. to perform a rotating-wave approximation keeping only the

zeroth order Fourier mode of the transformed Hamiltonian (4.2.8). It is achieved by

integrating Ĥ ′(t) over one driving period T to obtain the effective time-independent

Hamiltonian

Ĥeff =
1

T ∫
T

0
dt Ĥ ′(t)

= −∑
j

(b̂†j b̂j−1Jeff(ν̂j,j−1) + h.c.) +∑
j

(
U

2
n̂j(n̂j − 1) + Vjn̂j) . (4.2.9)

It contains the number-dependent tunneling parameter

Jeff(ν) =
J ′

T ∫
T

0
dt exp (iωtν − iχ(t)) (4.2.10)

and the effective interaction parameter U = U ′ − 2h̵ω, which can be tuned by

controlling the driving frequency ω such that both negative and positive values are
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possible.

As already mentioned, the tunneling matrix elements Jeff(ν) should match the

number-dependent tunneling parameters of Eq. (4.1.5) in the low density regime,

as depicted in Fig. 4.1.1 a) and b). The tunneling rightwards (leftwards) from

(onto) a singly or doubly occupied site onto (from) an empty site corresponds to

ν = 1 or ν = −1, respectively. Therefore, to realize the anyonic Hubbard model for

low densities the first requirement reads

Jeff(1) = Jeff(−1) = Jeiφg , (4.2.11)

where the tunneling amplitude J is set to be real and positive. The arbitrary Peierls

phase φg reflects the freedom of gauge. On the other hand, tunneling rightwards

(leftwards) from (onto) an empty site onto (from) an occupied site is associated with

ν = 3. Hence, the corresponding tunneling parameter should carry an additional

phase θ, which provides a second requirement:

Jeff(3) = Je
iθ+iφg . (4.2.12)

The necessary degree of freedom to fulfill conditions (4.2.11) and (4.2.12) in the

proposal is the specific time function of the lattice shaking. A simple sinusoidal

lattice shaking is not sufficient. Instead, we make the bichromatic ansatz

χ(t) = A cos(ωt) +B cos(2ωt) (4.2.13)

for the (integrated) driving force. However, other choices comprising more harmon-

ics are also possible. Ansatz (4.2.13) already ensures that Jeff(1) = Jeff(−1). The

additional constraint

∣Jeff(3)∣ = J = ∣Jeff(1)∣ (4.2.14)

defines lines in the A-B plane, as can be seen in Fig. 4.2.1. The thickness of

the line illustrates the tunneling amplitude J whereas the color of the plotted

lines represents the statistical angle θ, respectively. We find three curves in the

parameter regime displayed in Fig. 4.2.1. If B = 0, the solutions cut the axis exactly
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1

2

3

Figure 4.2.1.: Parameter curves that fulfill ∣Jeff(1)∣ = ∣Jeff(3)∣. The color
of the lines represents the statistical angle θ = arg[Jeff(3)/Jeff(1)] and their
thickness the tunneling amplitude J = ∣Jeff(1)∣.

at the points where ∣J1(A)∣ = ∣J3(A)∣, which can be deduced from Eq. (4.2.10). At

these points, the anyonic phase becomes either θ = 0 or θ = π, see also Ref. [85]. On

the other hand, the B-axis is cut whenever ∣J2(B)∣ = ∣J4(B)∣. The amplitude J

of the tunneling vanishes here for symmetry reasons, so again a solution with a

non-trivial θ from only one driving mode is not possible. The trivial solutions at

the A- and B-axes suggest that there are infinitely many curves in the A-B-plane

describing solutions for condition (4.2.14). We focus on the solution where the

driving amplitude is as weak as possible. The three given curves in Fig. 4.2.1

together already cover the full range of possible anyonic angles ∣θ∣ ∈ [0, π]. To have

a closer look, we plot J and θ along the indicated curves 1,2 and 3 Fig. 4.2.1.

The given scheme matches the anyonic Hubbard model Eq. (4.1.5) only for tun-
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1

2

3 1

2
3

Figure 4.2.2.: Effective tunneling strength (left) and anyonic angle (right) as
a function of the path length along the three curves α = 1,2,3 in Fig. 4.2.1.

neling processes involving two particles at maximum, i.e. in the low-density limit.

Tunneling processes with three and more particles will have a different strength

J(ν) ∶= ∣Jeff(ν)∣ and a different relative angle φ(ν) ∶= arg(Jeff)(ν)+φg ≠ njθ, according

to Eq. (4.2.10). In Fig. 4.2.3 we plot tunneling strength and tunneling phase for

processes with ν = 1,3,5,7,9 and for the three given curves as a function of the

path length. Note that processes with an even ν do not appear in the Hamiltonian.

Depending on the strength of these higher tunneling terms and on the particle

density, these processes will cause deviations from the ideal anyonic Hubbard model.

As we can see in Fig. 4.2.3, for curve 1 the strengths of higher tunneling processes

J(ν) (ν > 3) are much lower than the those for the one- and two particle tunneling

J(1) = J(3), indicating that the effective model with the parameter from the first

curve is disrupted least from higher particle tunneling processes.

4.3. Ground-State Properties and Signatures of 1D

Anyons

Anyonic signatures show up clearly in the (quasi-)momentum distribution of the

particles (see e.g. Ref. [216]). While the non-interacting bosons occupy a single

state in form of a Bose-Einstein condensate in the ground state, the ground state

of pseudo fermions resembles the Fermi sea. Anyons interpolate between these two

cases, see for example Ref. [216]. However, in an experiment one cannot measure
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Figure 4.2.3.: Tunneling strengths J
(ν)
α and tunneling phases φ

(ν)
α for photon

numbers ν = 1,3,5,7,9 as a function of the path length along the three curves
α = 1,2,3 in Fig. 4.2.1.

the anyonic momentum distribution, but only that of the atoms, bosons in our case.

The reason for this is that due to the Jordan-Wigner transformation, the momentum

distribution of the anyons is different from the bosonic one as b̂†i b̂j ≠ â
†
i âj for i ≠ j.

In the given proposal, also the gauge transformation (4.2.6) changes the momentum

distribution. Therefore, in the following we will consider only observables that are

invariant under the Jordan-Wigner and the gauge transformation (see Eq. (4.1.3)

and Eq. (4.2.6)). To analyze the ground state, we exactly diagonalize a system

of N = 4 bosons on M = 20 sites with open boundary conditions, both for the

ideal model (4.1.5) and the effective Hamiltonian for driven bosons (4.2.9). This

corresponds to a density of n = 0.2, which lies within the low-density regime. The

interaction of the particles can be parameterized by the angle

φ = 2 arctan(
U

J
) . (4.3.1)

Thus, φ = 0 implies free particles, whereas φ = π implies hardcore particles. The

effective tunneling matrix elements (4.2.10) were obtained for the driving function

corresponding either to path 1 of Fig. 4.2.1 or to path 2 (for ∣θ∣ < 0.4π). The
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Figure 4.3.1.: Density distribution of the ground state in an exactly diago-
nalized chain of N = 4 particles on M = 20 lattice sites with open boundary
conditions for different statistical angles θ. Left: Full anyonic model accord-
ing to Eq. (4.1.5). Right: Driven bosons according to the effective model in
Eq. Eq. (4.2.9) and Eq. (4.2.10). Upper row: Non-interacting particles φ = 0,
i.e. U = 0. Lower row: Particles with effective on-site interaction φ = π/2, i.e.
U = J .

choice of path 1 is motivated by the fact that on the one hand the required driving

amplitudes are the lowest here and on the other hand matrix elements for higher

order tunneling processes are lowest for this choice, as illustrated in Fig. 4.2.3.

The first observable we look at is the local particle density nj = ⟨n̂j⟩ = ⟨b̂†j b̂j⟩ = ⟨â†
j âj⟩

of the ground state. Clearly, the local particle density is invariant under both

transformations (4.1.3) and (4.2.6). In Fig. 4.3.1, we illustrate the density of

anyons (left) and driven bosons (right) as a function of the site index j for different

statistical angles θ in the exactly diagonalized chain. Let us first discuss the

(effectively) non-interacting case φ = 0, which is plotted in the upper row. Whereas

the density distribution in the bosonic case (θ = 0) is rather localized in the center

of the lattice, it flattens when the statistical angle θ is switched on. This effect can

be understood, by noting that the scattering properties of the particles resulting
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from the density dependent tunneling, actually resemble those of repulsive on-

site interactions [103], which favor a flat density. In other words, the statistical

angle θ plays a somewhat similar role as the introduced angle φ from the on-site

interactions. For large θ, approaching the pseudo-fermionic regime, the density

becomes, furthermore, modulated, with one maximum for each particle in the

chain. These density oscillations correspond to Friedel oscillations, which are

a hallmark of fermionic behavior [221]. They are a finite-size effect induced by

the hard-wall boundary conditions which break the translation symmetry and

mirror the Pauli-exclusion principle. Hence, the particle density roughly takes the

form [222]

n(r) ≈ n + δn
cos(2kF r + δ)

r
(4.3.2)

where r is the distance from the wall, n is the average density, δ a phase shift

and δn the oscillation depth that decreases with the lattice size M in a finite

chain [223]. The oscillation wavelength is thus given by π/kF , with Fermi wave

vector kF , the wave vector of the largest occupied quasimomentum state. This

wavelength corresponds to the average particle distance, which in our system is

given by 1/n = 5 ≈ 2λF /a lattice sites. The smooth fermionization via the statistical

angle θ is a fundamentally new way of approaching fermionic behavior [224],

complementary to increasing the on-site interaction. The Friedel oscillations for

the quasi-fermions in the low-density regime are, however, purely phase-driven and

are not a consequence of the Pauli-exlusion principle. In principle, the particles

could also occupy the same site, which happens for higher particle densities, as

shown in the next section.

In the lower row of Fig. 4.3.1 we show the calculated density distribution for the case

φ = π/2, i.e. J = U . Here, both effects coming from anyonic exchange interactions

and on-site interactions add up and lead to a flattened density distrubtion. In

both cases, φ = 0 and φ = π/2, the densities of the driven bosons (Fig. 4.3.1 right)

matches very well the one of the real anyons (Fig. 4.3.1 left), which confirms the

validity of the proposal and justifies the approximations that have been made. To

illustrate the difference of fermionization by on-site interaction (parameterized by

φ) and statistical angle (induced by θ), we show in Fig. 4.3.2 the particle density
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Figure 4.3.2.: Density distribution of the ground state of the same system as
in Fig. 4.3.1 for the full anyonic model. Here, the statistical angle θ is fixed and
the effect of the on-site interaction φ is illustrated. Left: Interacting bosons
θ = 0. Right: Interacting anyons θ = π.

of bosons (θ = 0) and anyons (θ = π/2) with varying interactions 0 ≤ φ ≤ π. The

transition from non-interacting bosons to hardcore bosons (or equivalently hardcore

fermions) is very similar to the transition induced by the statistical angle θ.

The second observable that we consider in order to look for anyonic signatures in

the ground state, is the second Rényi entropy

S` = − ln Tr(ρ̂2
`). (4.3.3)

It is the purity of the reduced density matrix ρ̂` of the subsystem given by the

first ` sites j = 1, . . . , `. This quantity is especially interesting since it has recently

been measured in a small chain of only four bosons on four sites, see Ref. [225].

The second Rényi entropy is a measure for how much a subsystem of the chain is

entangled with the rest of the system. First, let us show that the second Rényi

entropy of a one-dimensional quantum chain is invariant under the Jordan-Wigner

transformation (4.1.3). Applying the Jordan-Wigner transformation, an anyonic

Fock states can be written as

∣n⟩ = ∣n1⟩a∣n2⟩a⋯∣nM⟩a = exp(−iθ
M

∑
j=1

M

∑
k=j+1

nk)∣n1⟩b∣n2⟩b⋯∣nM⟩b (4.3.4)

where ∣nj⟩b is the bosonic Fock state of site j and ∣nj⟩a the anyonic one respectively.

The transformation can also be reinterpreted as an independent site-local transfor-
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Figure 4.3.3.: Second Rényi entropy of the anyonic ground state on the chain
as in Fig. 4.3.1 as a function of the size of the subsystem, for different statistical
angles θ.

mation ∣nj⟩a = exp(−iθ(j − 1)nj)∣nj⟩b. Therefore, tracing out a site k is identical

for bosons and 1D anyons,

∑
nk

a⟨nk∣ ⋅ ∣nk⟩a =∑
nk

b⟨nk∣ ⋅ ∣nk⟩b, (4.3.5)

To obtain the reduced density matrix ρ`, we have to trace out all other sites

k = ` + 1, . . . ,M , thus we find ρ` and consequently S`, which involves further local

traces, invariant. In Fig. 4.3.3, we plot the second Rényi entropy as a function of

the size of the subsystem, again for real anyons (left) and driven bosons (right), for

different statistical angles θ (line color and style) and for the case of non-interacting

particles (upper row) and interacting particles (lower row). Once more we observe

a clear broadening of the distribution and the formation of pronounced Friedel

oscillations. Increasing the statistical angle, the regions on the chain disentangle

from each other, demonstrating that the particles localize and avoid each other.

Thus, the second Rényi entropy provides another real-space observable to track
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Figure 4.3.4.: Real-space two-particle correlations χi,j of the ground state of
the full anyonic system for different statistical angles θ and on-site interactions
φ.

smooth fermionization and anyonic behaviour, applicable to the given proposal of

driven bosons.

The formation of Friedel oscillations allows us to monitor the continuous fermion-

ization of the 1D anyons in our system. However, since Friedel osciallations are a

finite-size effect induced by the hard-wall boundaries, their strength and visibility

diminishes when going to larger systems. Therefore, a small chain like the chosen

one that can be realized in an experiment like in Ref. [226] would be favourable in

an experiment to detect Friedel oscillations of the anyons. An alternative would be

a longer chain with a local defect, providing another form of breaking translational

symmetry.

The third real space variable that reveals anyonic behaviour are the (normalized)
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two-particle correlations

χi,j =
⟨b†ib

†
jbjbi⟩

ninj
. (4.3.6)

This quantity is related to the probability of finding a particle at site j if one has

detected one at site i. In Fig. 4.3.4 we show χi,j of the ground state for the exactly

diagonalized chain for the full anyonic model Eq. (4.1.5), for different statistical

angles θ and on-site interactions φ. The white regions in the plot indicate maximum

correlation, whereas in the black regions this probability vanishes. As expected,

the two-particle correlations for non-interacting bosons (θ = φ = 0) are constant

since the particles form a Bose condensate. While increasing the statistical angle θ

(or the on-site interaction φ), we observe that the diagonal terms χi,i decrease and

even vanish in the (pseudo-)fermionic case. So, even though on-site they behave

like bosons, two pseudo-fermions do not occupy the same site in the low-density

regime. The slight modulations in χi,j away from the diagonal can be explained by

Friedel oscillations. Thus, also the two-particle correlations show clear signatures

of anyonic behaviour in the ground state and indicate smooth fermionization for

increasing θ.

Consequently, we have presented three quantities, particle density, second Rényi

entropy and two-particle correlations, that show clear signatures of an anyonic

ground state. Furthermore, they can directly be observed in an experiment since

these quantities are invariant under the Jordan-Wigner transformation (4.1.3) and

also under the unitary transformations (4.2.6) that are required to realize the

anyonic Hubbard model in the shaken lattice, as presented in the previous section.

4.4. Limitations in the Simulation of Lattice Anyons

As already mentioned, the low-density limit in the effective anyonic Hubbard model

is crucial for our proposal for two reasons: First of all, a large particle density

will lead to multiple site occupations, which does not reflect the nature of anyons

or fermions. Secondly, tunneling processes involving three and more particles in

the effective Hamiltonian Eq. (4.2.9) do not reflect the tunneling of anyons, as
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Figure 4.4.1.: Comparison of the pseudo-fermionic (θ = π) density distrubtion
of the ground state on an exactly solved open chain with the fermionic density
distrubtion obtained from summing up the single-particle states in an open
chain. Left: On the same system as in Fig. 4.3.1 with N = 4 particles on
M = 20 sites, giving n = 0.2. Right: On a chain with N = 4 particles on M = 10
sites, giving n = 0.4.

illustrated in Fig. 4.2.3. In this section, we will distinguish both effects when going

to higher particle densities and we will also estimate the effect of finite temperatures

on anyonic signatures of the anyonic system.

To demonstrate the difference of anyons and (pseudo-)anyons, we consider the

fermionic case θ = π, as it can be solved analytically. Therefore, we compare the

density from Fig. 4.3.1 to the density distribution of real one-dimensional fermions,

which is simply the sum of the densities of single-particle densities of fermions.

Each fermionic single particle state is a superposition of plain lattice waves of

momenta k and −k, in order to match the open boundary conditions. If the number

of lattices sites M is even, the single-particle states take the form

ψk(j) =
1

i
√

2(M + 1)
[exp(ikj) − exp(−ikj)] =

√
2

M + 1
sin(ikj) (4.4.1)

with quasi-momenta k = π
M+1 ,

2π
M+1 , . . . ,

Nπ
M+1 . Since the particles do not interact, the

multi-particle state is simply the Slater determinant of the single particle states.

Hence, the on-site particle density of the many-body state is just the sum of the

squared wave functions of the states (4.4.1) at each site. In Fig. 4.4.1 (left) the

exact fermionic result is compared to that of the quasi-fermions for the given system.

Here, in the low-density regime with n = 0.2, both densities match perfectly. In

Fig. 4.4.1 (right) we also compare densities for fermions and quasi-fermions for a
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Figure 4.4.2.: Density distrubtion for an exactly solved open chain with N = 6
non-interacting particles on M = 20 sites. Left: Full anyonic Hubbard model.
Right: Effective model with driven bosons.

system with 4 particles on 10 sites, i.e. n = 0.4. Here, the quasi-fermions indeed

occupy the same sites to reduce kinetic energy and the density distribution differs

notably from the fermionic one.

Next we want to illustrate the break-down of the anyonic ground state for larger

particle densities due to the limitations of the effective model, i.e. the effect of

tunneling processes involving more than two particles. For this, we plot in Fig. 4.4.2

the particle density of N = 6 non-interacting particles on the open chain with M = 20,

which gives a total particle density of n = 0.3. While we show on the left the plot

for the ayonic Hubbard model (4.1.1), we show on the right the same plot, but for

the effective model (4.2.9). As we can see, because of the tunneling processes with

more than two particles, the Friedel oscillations disappear almost completely in the

effective model and the distribution does not match anymore with the expected

one from the anyonic Hubbard model.

To compare both limitations on the particle density, in Fig. 4.4.3 we plot for

fermions, pseudo-fermions and the effective model with θ = π the local particle

density for a chain of M = 14 sites the local and different particle numbers. We

clearly see that whereas the fermions always show Friedel oscillations, except for

half-filling as a consequence of symmetry (see Eq. (4.4.1)), the Friedel oscillations

break down first for the effective model and then for the Anyonic Hubbard model.

93



4. One-dimensional Lattice Anyons in a Shaken Optical Lattice

(a) (b)

(c) (d)

(e) (f)

site index site index

Figure 4.4.3.: Density distrubtion of fermions (solid line), anyons (dashed
line) and driven bosons (dotted line) for an exactly solved open chain with
M = 6 site and varying numbers of (pseudo-)fermions from a) to f).

Finally, we quantize the effect of finite temperatures on the proposed signatures of

the ground state of the Anyonic Hubbard Model. For this, we compute the particle

density nj(T ) at temperatrue T by calculating the particle densities n
(α)
j of energy

eigenstates with index α (α = 0 corresponds to the ground state) and weighting the

densities in the canonical ensemble

nj(T ) =
1

Z
∑
j

n
(α)
j exp(−

Ej
kBT

) . (4.4.2)

Here,

Z =∑
j

exp(−
Ej
kBT

) (4.4.3)
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site index 

Figure 4.4.4.: Effect of the temperature on the density distribution for a
system of N = 4 interacting pseudo-fermions U/J = 0.5 on M = 20.

is the partition function and kB denotes Boltzmann’s constant. We calculate nj(T )

for the chain with N = 4 particles on M = 20 sites. We choose pseudo-fermions,

i.e. θ = π, where the Friedel oscillations are most prominent and U/J = 0.5, which

is justified in the next section. In Fig. 4.4.4, we show the resulting densities for

temperatures kBT = [0.01J,0.1J, J] compared to the zero-temperature case, i.e.

the exact ground state. While we observe perfect agreement for kBT = 0.01J , the

Friedel oscillations become weaker around kBT = 0.1J and vanish completely for

kBT = J . Hence, in an experiment realizing one-dimensional anyons in an optical

lattice, the temperature has to stay well below 1J . For V0 = 10ER it has to lie in

the lower nK-regime being explored in recent experiments (see e.g. Ref. [227]) but

still a challenge.

4.5. Preparation of the Anyonic Ground State in an

Experiment

In an experiment, the ground state of the effective anyonic Hamiltonian (4.2.9)

has to be prepared starting from the ground state of the undriven bosonic system.

In this section we will describe how this is possible in an adiabatic fashion. We

assume that initially the lattice is untilted, ∆ = F = 0, and the system is prepared

in a Mott-insulator state ∣S⟩. In this state ∣S⟩, the particles are localized in single
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Figure 4.5.1.: Protocol for an experimental preparation of the anyonic ground
state of Eq. (4.2.9). Control parameters include the lattice tilt ∆, the lattice
shaking (1 corresponds to the final amplitudes A and B) and the depth of the
super-lattice W .

sites j ∈ S via a super-lattice, i.e. equally distributed along the chain,

∣S⟩ =∏
j∈S
b̂†j ∣vac⟩. (4.5.1)

Here, ∣vac⟩ denotes the vacuum state. For example, in the chain of N = 4 particles

on M = 20 sites, we consider S = {3, 8, 13, 18}. The choice of equally spaced lattice

sites minimizes mass transport during the adiabatic process, in contrast to, e.g.,

an initial state where the particles are gathered in the center of the chain. This

initial state is the asymptotic ground state in the presence of an external potential

Vj = −Wδj∈S for W,U ′ ≫ J . For finite U , this is also the ground state of the

effective model (4.2.9), with Jeff(ν) = 0. Thus, if U has at least a small value, we

can adiabatically melt the Mott insulator into the ground state of Ĥeff.

Now we will describe step by step how the anyonic ground state can be prepared.

The proposed protocol is depicted in Fig. 4.5.1. Firstly, at time t0 = 0, the lattice

tilt ∆ is ramped up abruptly such that the state remains in a Mott-insulating state.

Secondly, between t0 and t1 the periodic force is ramped up adiabatically. In this

step, the effective tunneling with Jeff(ν) is switched on. Finally, between t1 and t2

the external potential W is switched off continuously, which transforms Ĥeff to the

desired model.
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Figure 4.5.2.: Density distribution of the final state compared to the ground
state of the anyon model (4.1.1). We have chosen realistic parameters for an
optical lattice of depth V0 = 10ER giving J ′ = 0.0192ER, where the recoil energy
ER typically corresponds to frequencies of a few kilo Hertz [6]. Moreover, we
chose h̵ω = ER −U (well below the band gap of ≈ 5ER), U = 0.5J , W = 0.6ER,
t1 = 50T and t2 = 1240T (1300T ) ≈ 50h̵/J for θ = 0.7π(π).

We have simulated this protocol integrating the time evolution of the full time-

dependent Hamiltonian (4.2.1). As anyonic angles we have chosen θ = 0.7π and

θ = π, for which the Friedel oscillations are quite prominent. Furthermore, we have

chosen U = 0.5J as it has to be finite. Note, however, that U is still small enough

such that for bosons (θ = 0) there are no interaction-induced Friedel oscillations

for these parameter values. The times t1 = 50T and t2 ≈ 50h̵/J are picked such

that the instantaneous state follows adiabatically the effective ground state in

the process of switching on the driving and in the process of ramping down the

super-lattice, respectively. The resulting density distribution at the end of the

protocol is compared to the expected one from Eq. (4.2.9) in Fig. 4.5.2. We see good

agreement between the final state and the ground state of Heff. This agreement

confirms both a representation of the anyonic Hubbard model by the effective

Hamiltonian (4.2.9) and the possibility to actually prepare the atoms in the anyonic

ground state.
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Optical Lattices

In this chapter we discuss multi-photon excitation in driven optical lattices. These

multi-photon excitations can lead to unwanted heating. In principal, they can

also be used for a controlled population transfer between Bloch bands. The multi-

photon excitations are analyzed for a shaken and for an amplitude-modulated

lattice, leading to different selection rules and parameter dependencies.

In Sec. 5.1 and Sec. 5.2 we describe how multi-photon excitations emerge in a

periodically driven lattice and how this leads to heating of the atomic gas. In Sec. 5.3

we analyze in detail how these excitations are induced in a shaken lattice. We

calculate and approximate strength and position of the resonances of the excitations,

which depend on amplitude and frequency of the shaking, using Floquet theory

and numerical methods. The results are compared to experimental data. Using

similar methods, in Sec. 5.4 we analyze multi-photon excitations for the case of an

amplitud-modulated lattice.

5.1. Overview over Heating Processes in Periodically

Driven Lattices

As we have seen in Chap. 3 and Chap. 4, high-freqency time-periodic forcing

of the optical lattice is used to realize an effective Hamiltonian, whose overall

form is rather simple and permits a clear interpretation [57, 67, 111, 114, 228].

The high-frequency condition states that the photon energy h̵ω of the driving,

where ω = 2π/T is the driving frequency and T its period, has to be significantly

larger than the parameters of the static lattice Hamiltonian, like for example the
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interaction parameter U or the tunneling coefficient J . An exception from this

condition are those parameters that are deliberately addressed by the driving in a

resonant fashion, like e.g. the lattice tilt ∆ for shaking-assisted tunneling. If the

high-frequency condition is not matched, the periodic forcing leads to undesired

coupling between Floquet states with a different photon index m, such that the

effective description breaks down or is only valid on a time scale that is too small for

the desired experiment [57]. Due to these excitation processes, energy is pumped

into the system in an uncontrolled fashion. Therefore we denote them as heating.

The validity of the high-frequency approximation has been studied for various

scenarios in references [67,69,175,228–233].

Since most experiments in cold atoms are designed to engineer a system within

a single or a small number of Bloch bands, the driving is also limited by a low-

frequency condition: the photon energy h̵ω has to be sufficiently small (or sometimes

just not equal) compared to the energy gap to higher lying Bloch bands. For

example, in Chap. 3 the lowest included Bloch band was the second and in Chap. 4

it was the first excited band. Heating that results from excitations to higher Bloch

bands already occurs for a single particle, hence also for weakly interacting atomic

gases. If the particles are strongly interacting, one has to combine excitation and

scattering processes to describe the occuring heating processes. Previous work in

this direction includes theoretical studies of resonant inter-orbital coupling due

to both single-particle processes [234, 235] and two-particle scattering [165, 236].

Recently, there has been a study about how the interaction of the bosons in an

shaken optical lattice affects (multi-)photon excitations and thus heating [237]. In

this work, heating rates for different shaking amplitudes, frequencies and interaction

strength have been measured and compared to rates obtained from many-body

Floquet theory.

Note that particles can also be excited to higher lying Bloch bands for photon

energies h̵ω much lower than the relevant band gaps. This can happen if the

energy differences of the Bloch states is a multiple of h̵ω. The discussion of these

multi-photon transitions in driven optical lattices, which also lead to unwanted

heating, will be studied in this chapter.
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5.2. Single-Particle Heating Processes for Two

Different Driving Schemes

We limit ourselves to the case of weakly interacting bosonic gases such that the

problem can be addressed on the single-particle level. Furthermore, as long as the

driving force is translationally invariant (in an adequate gauge), quasimomentum is

conserved, which simplifies the analysis further. Since cold-atom experiments often

take place in the lowest Bloch band of an optical lattice, we consider the scenario

where the system is initialized in the ground-state ∣0, q⟩ of the static Hamiltonian

Ĥ0, whose eigenstates we denote by ∣b, q⟩, where b and q are the indices of Bloch

band and quasimomentum, respectively. Typically, we have q = 0 for the ground

state. To quantify heating by single-particle excitations to higher Bloch bands, we

introduce the parameter

hτ = min
t∈[0,τ]

n0(t) (5.2.1)

which is the minimum over of the time-dependent occupation of the (static) ground

state n0(t) = ∣⟨0, q∣ψ(t)⟩∣2 over the time span τ during which the periodic forcing is

switched on. We take the minimum in the time-dynamics since the particles are

likely to leave the atomic cloud once they are excited to higher Bloch bands. Thus,

hτ = 1 means that the system remained in the ground state for the whole time τ

and no heating has taken place. On the other hand, hτ = 0 means that at least at

some point in time t ∈ [0, τ], the system left the ground state completely and the

heating is maximum.

The amount of heating depends of cause on the frequency of the driving, its

strength and the experimentally relevant time scale. Crucially, it also depends on

the manner the periodic forcing is switched on. This can happen rather smoothly or

abruptly. To better understand the implications of this, we consider two cases. In

the first case the forcing strength of the Hamiltonian is switched on and increased

very slowly such that the system remains approximately in a single Floquet state

∣ψn,q(t)⟩. Calculating the Floquet spectrum gives full information about the

contribution of higher Bloch bands to this Floquet state. Smoothly ramping up

the amplitude of the periodic forcing, the quasienergy of the Floquet state will
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Figure 5.2.1.: An illustration of the quasienergy spectrum as a function of
the driving amplitude. Shown are the three Floquet states that arise from the
three lowest eigenstates in the static Hamiltonian. The color code represents
the fraction of the lowest Bloch state. In a) we have marked a pronounced
avoided crossing and three crossings that appear to be non-avoided since the
states are very weakly coupled. As shown in b), if the driving amplitude is
ramped adiabatically with regard to the avoided crossing, the system remains
in the initial Floquet state. In contrast, in c) the ramping is diabatic with
regard to the avoided crossing such that the system will predominantly switch
to the Floquet state that has similar properties like the initial state.

encounter avoided crossings, where the hybridization of the (static) ground state

with higher lying Bloch states takes place. After this passage the Floquet state has

a higher contribution of these excited Bloch states. A diabatic passage leads to

less heating as illustrated in Fig. 5.2.1.

An adiabatic passage of all avoided crossing is, however, not possible: There are

in principal infinitely many excited states. Most of the resulting crossings in the

quasienergy spectrum are very tiny since the coupling of the states is extremely

weak. In these cases, even a slow turning-on of the driving leads to a diabatic

passage of these crossings. Therefore, in a realistic scenario the slow switching-on of

the periodic driving is always accompanied by a mixture of adiabatic and diabatic

processes. This was also described in Sec. 3.5.7, where the orbital-driven quantum

phase transition happened adiabatically with regard to the first excited Bloch band

but diabatically with regard to the second and higher excited Bloch bands.

In the other extreme scenario, the periodic forcing is switched on instantly at t = 0.

This setting corresponds to a quantum quench where the initial state which is a

basis state ∣0q⟩ of the old (static) basis is projected onto the new (Floquet) basis
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a) b)

Figure 5.2.2.: The two driving schemes of the one-dimensional optical lattice
that are analyzed. a) Shaken lattice: The lattice is moved back and forth in
a sinusoidal fashion while the lattice depth remains constant. b) Amplitude-
modulated lattice: The amplitude of the lattice is modulated sinusoidally while
the lattice stays at a fixed position.

∣ψn,q(t)⟩ as

∣ψ(t)⟩ = T exp [i∫
t

0
dt′Ĥ(t′)] ∣0q⟩

= ∑
n

∣ψn,q(t)⟩⟨ψn,q(0)∣0q⟩, (5.2.2)

where each Floquet state propagates independently in time. If more than one of

the coefficients ⟨ψn,q(0)∣0q⟩ is non-vanishing, the system that started in the ground-

state at t = 0, excites subsequently higher lying Bloch states via the dephasing

of Floquet states. Theoretically, this leads to a multi-mode oscillation between

the involved Bloch-states that are also part of the excited Floquet states. In

practice, the oscillations are reduced since the atoms leave the condensate via

incoherent processes over time. This is the reason why we have taken the minimum

in the definition of the heating parameter hτ in Eq. (5.2.1). The amplitudes and

frequencies in the oscillation spectrum after a quench can in principle be computed

by the Floquet states and their quasienergies after the ramp. The strength of the

heating can also be estimated by Floquet perturbative methods in Floquet space,

which we will make use of in this chapter. The most common case, that only two or

three states are driven near their (multi-photon) resonance is discussed in App. C.

In the following, we will consider two scenarios for a periodically driven lattice:

The first one is lattice shaking, which has been considered already in Chap. 3 and

Chap. 4 and other theoretical and experimental works (see Chap. 1). The second
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example is an amplitude modulation of the optical lattice, which has also been

used in many theoretical and experimental works (see Chap. 1). Both schemes

are illustrated in Fig. 5.2.2. For these two examples, we will apply analytical and

numerical methods to understand the excitation processes that occur due to the

periodic driving and compare them with each other.

5.3. Multi-Photon Heating in a Shaken Optical

Lattice

Here we consider the scenario where the lattice is periodically driven by shaking

it back and forth. Initially, the bosons “sit” in the ground state in the lowest

band of the static lattice before the shaking is turned on. Heating is regarded

as excitation of the particles to higher Bloch bands. We start with a Fourier

expansion of the time-dependent Hamiltonian, from which we can then calculate

the effective coupling parameters C that couple the ground state resonantly to

excited states in diabatic heating processes. This will be done with a Floquet

perturbative method and a rotating-wave approximation. Subsequently, we also

compute the quasienergy spectrum of the shaken lattice numerically, in order to

gain more insight into heating by continuous switching on of the shaking amplitude.

A simulation of the shaking, either with continuous or smooth ramping of the

amplitude, gives us then a precise description of the time-dynamics of the system

and the parameters where to expect heating. Finally we will compare the numerical

and analytical findings with experimental results.

5.3.1. Fourier Expansion of the Tight-Binding Hamiltonian

We start with a Floquet analysis of the single-particle Hamiltonian of the peri-

odically shaken lattice in the tight-binding regime. As derived in Sec. 3.3, the

one-dimensional bosonic lattice Hamiltonian in the co-moving reference frame takes

the form

Hsp(t) = −
h̵2

2m
∂2
x + V (x) + xF0 cos(ωt). (5.3.1)
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Figure 5.3.1.: Band structure of the cosine potential. Left: Tunneling coeffi-
cients of the four lowest lying energy band centers. Right: Coupling matrix
elements between the first four excited states.

In contrast to Chap. 3, we consider the common case of a cosine potential V (x) =

V0 cos(2klx) with wave vector kl = π/a of the laser. As derived in Sec. 3.2, in the

tight-binding approximation Hamiltonian (5.3.1) takes the form

Ĥ(t) = ∑
b

M

∑
`=1

[Eb∣b`⟩⟨b`∣ − (−1)bJb (∣b(` + 1)⟩⟨b`∣ + h.c.) +K cos(ωt)(`∣b`⟩⟨b`∣

+∑
b′
ηb′b∣b

′`⟩⟨b`∣)] . (5.3.2)

The tunneling coefficients Jb and the transition elements ηαβ for the lowest four

bands of the (non-dimerized) cosine lattice are depicted in Fig. 5.3.1. Whereas the

coupling coefficients ηαβ are of the same order of magnitude for adjacent bands

α,β = α ± 1, they are significantly lower for distant bands, e.g. η03 ≪ η01, η12, η23.

The former fact leads to strong mixing of several bands at once, in regions where

they are jointly brought in resonance. In the cosine potential this is likely to

happen, as indicated by Fig. 5.3.2, where we plot the almost equidistant band

center (i.e. orbital) energies as a function of the lattice depth.

Since we are interested in non-interacting particles and condensates with a specific

quasimomentum, the precise resonance condition is determined by the dispersion

relation. For a lattice depth of V0 = 10ER, to which we will stick to in the following,

we plot in Fig. 5.3.3 (left) the numerically calculated exact dispersion relation of

the static lattice. Whereas the dispersion relation of the particles in the lowest

105



5. Heating Processes in Driven Optical Lattices

 0

 5

 10

 15

 20

 25

 0  5  10  15  20

E
b
/E

R

V0/ER

E3

E2

E1

E0

 0

 5

 10

 15

 20

 25

 0  5  10  15  20

(E
b
-E

0
)/

E
R

V0/ER

E3-E0
E2-E0
E1-E0

Figure 5.3.2.: Left: Band center energies of the four lowest lying Bloch
bands in the cosine potential. Right: The same bands as quasienergy bands if
the ground and the first excited band get resonantly coupled (with vanishing
amplitude).

bands (b = 0,1) are strongly affected by the lattice and band gaps are clearly

visible, the particles in higher bands (b ≥ 2) are almost free, hardly “feeling” the

lattice. Also shown in the same plot are exemplified multiphoton transitions in

the notation (b,m) referring to the excitation of band b in a process taking m

photons. In Fig. 5.3.3 (right) we illustrate the energy difference of exited bands

b > 0 with the ground band b = 0 as a function of the quasimomentum q. However,

these energy differences only relate to the resonant shaking frequencies in the case

of weak shaking amplitudes α = K/h̵ω ≪ 1. For larger shaking amplitudes the

dispersion relation gets distorted, which also shifts the resonance conditions. We

calculate the resulting effective tight-binding dispersion relation and the resonance

condition later in this section.

Hamiltonian (5.3.2) is not translationally invariant in position space, which makes

a solution very cumbersome. However, the discrete translational invariance can be

achieved by making the gauge transformation

Û(t) = exp(i∑
b`

χ`(t)∣b`⟩⟨b`∣) (5.3.3)

with phases

χ`(t) = −
K`

h̵ ∫
t

0
dt′ cos(ωt′) = −

`K

h̵ω
sin(ωt) (5.3.4)
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Figure 5.3.3.: Dispersion relation in the static cosine potential. Left: Five
lowest lying energy bands. Also shown are exemplified multiphoton transitions
in the notation (b,m) referring to band number b and photon index m. Right:
The difference in energy between higher lying bands and the ground band,
where an experiment typically takes place. These describe the resonance
energies (i.e. frequencies) for single-particle heating in the regime with small
shaking amplitude K.

Hence, we obtain the Hamiltonian

Ĥ ′(t) = Û †Ĥ(t)Û − ih̵Û † d

dt
Û

= ∑
b

M

∑
`=1

[Eb∣b`⟩⟨b`∣ − (−1)bJb (e
iθ(t)∣b(` + 1)⟩⟨b`∣ + h.c.)

+K cos(ωt)∑
b′
ηb′b∣b

′`⟩⟨b`∣] . (5.3.5)

with Peierls phases

θ(t) = χ`(t) − χ`+1(t) =
K

h̵ω
sin(t), (5.3.6)
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which is now quasi-translationally invariant. We skip the apostrophe of the trans-

formed Hamiltonian in the following. In quasimomentum represantion with states

∣bq⟩ with M quasimomenta q = −π/a, π/a(M−1)/M, . . . , π/a, the Hamiltonian reads

Ĥ(t) =∑
b,q

[εb (q −
A(t)

h̵
) ∣bq⟩⟨bq∣ +K cos(ωt)∑

b′
ηb′b∣b

′q⟩⟨bq∣] . (5.3.7)

Here, the vector potential reads

A(t) = ∫
t

0
dt′F0 cos(ωt) =

h̵

a
θ(t) =

h̵

a

K

h̵ω
sin(ωt). (5.3.8)

In Eq. (5.3.7) appears the static (tight-binding) dispersion relation

εb(p) = Eb − 2(−1)bJb cos(ap), (5.3.9)

which is the roughest approximation to the exact dispersion relation plotted in

Fig. 5.3.3. It is only accurate for deep lattices and low band indices where tunneling

between next-nearest-neighbour lattice sites is suppressed.

Next we also expand the time-periodic Hamiltonian (5.3.7) in time by introducing

plane wave states in time,

∣bqm⟩⟩ = {∣bq⟩eiωmt} , (5.3.10)

in the extended Hilbert space (see Chap. 2). Apart from the band and the

quasimomentum index, the basis states have now the additional photon index

m. For K = 0, i.e. the trivial undriven case, these basis states coincide with the

actual Floquet states, which means that they then also diagonalize the quasienergy

operator

⟨⟨b′q′m′∣Q̂∣bqm⟩⟩ = ⟨b′q′∣ (Ĥm′−m + h̵ωδm′,m) ∣bq⟩. (5.3.11)
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However, for finite amplitude K the plane wave states ∣bqm⟩⟩ do not diagonalize Q̂.

The Fourier components of the Hamiltonian appearing in (5.3.11) are found to be

Ĥm =
1

T ∫
T

0
dte−imωtĤ(t)

= ∑
bq

∣bq⟩εbm(q)⟨bq∣ +
1

2
Kδ∣m∣,1∑

b′
ηb,b′ ∣b

′q⟩⟨bq∣, (5.3.12)

where we have written the Fourier components of the now time-dependent dispersion

relation as

εbm(q,α) = Ebδm,0 − (−1)bJbJm (α) [e−ibq + (−1)meibq] . (5.3.13)

Here and in the following we refer to the dimensionless driving strength by

α =
K

h̵ω
. (5.3.14)

The diagonal blocks in the quasienergy operator Q̂ take the form

⟨⟨b′q′m∣Q̂∣bqm⟩⟩ = δb′bδq′q [ε
eff
b (q) +mh̵ω] . (5.3.15)

Here appears the 0th Fourier component of the dispersion relation, that we will

refer to as the effective dispersion relation

εeff
b (q,α) = εb0(q) = Eb − 2(−1)bJbJ0 (α) cos(aq). (5.3.16)

The effective dispersion relation depends on the shaking strength α and determines

quite accurately resonance conditions within the tight-binding model, up to per-

turbative shifts that stem from the coupling of the respective states with states of

other Bloch bands. To increase the accuracy of the effective dispersion relation,

especially for shallow lattices and excitation to higher bands, one has to take into

account also next-nearest-neighbor-, next-next-nearest-neighbor-, etc. tunneling

terms. Including next-nearest-neighbor tunneling with strength Jbb, the effective
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dispersion relation takes the more accurate form

εeff
b (q,α) = Eb − 2(−1)bJbJ0 (α) cos(aq) − 2(−1)bJbJ0 (

2α

h̵ω
) cos(2aq). (5.3.17)

The resonant frequencies for ν-photon transitions (b, ν) from the ground to the bth

excited bands at quasimomentum q and for a driving strength of α are then given

by

ω(b,ν)(q,α) =
εeff
b (q,α) − εeff

0 (q,α)

ν
. (5.3.18)

For α = 0,1,2, we list the resonance frequencies for the ν-photon transitions for

ν = 1 . . .8 in Tab. 5.3.1. Furthermore, in Fig. 5.3.4 we plot the lines of resonant

frequencies according to Eq. (5.3.17) from the ground to the first (straight blue line)

and the second (dotted green line) Bloch band for ν = 1 . . . 8 as a function of shaking

frequency ω and strength α. In the same plot, we also draw thin horizontal lines

(straight and dotted) for the values Eb−E0 neglecting the band dispersion (compare

to Fig. 5.3.2) so that the Bessel function J0 in the effective dispersion relation

can clearly be seen. Note, however, that the plot is not giving any information of

the strength and width of the resonances, which will be examined in the next two

sections. Furthermore, due to double resonances described in Sec. 5.1, overlapping

resonances might form avoided crossing, depending on the presence of a coupling

element and its magnitude. If the ground state is coupled resonantly with two

states at the same time, these states are necessarily coupled to each other, which

does not, however, make any statement about the intensity of the coupling. The

avoided crossings will be seen in the numerical simulation (see Sec. 5.3.5) and the

experimental findings (see Sec. 5.3.6). Together with the direct band coupling

Kηb′b/2, the effective dispersion relation reproduces the effective model that we

have used in Chap. 3. In addition, we have now included the Fourier term in the

off-diagonal blocks that take the form

⟨⟨b′q′m′∣Q̂∣bqm⟩⟩ = δq′,q [δb′bεb(m′−m)(q) +
1

2
Kδ∣m′−m∣,1ηb′b] . (5.3.19)
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Table 5.3.1.: Resonance frequencies in the shaken lattice of depth V0 = 10ER
from the first to the b-th band via a ν-photon process, for different shaking
strengths α = K/h̵ω and for the most important quasimomenta q = 0 and
q = π/a.

111



5. Heating Processes in Driven Optical Lattices

(2,2)(1,1)

a)

b)

(2,3)(1,2)(2,5) (2,4)(1,3)

(2,2) (1,1)(2,3)(1,2)(2,5) (2,4)(1,3)

Figure 5.3.4.: Resonance frequencies in the shaken lattice of depth V0 = 10ER
from the ground to the first (straight blue line) and second (dotted green line)
excited Bloch band via a ν-photon process (ν = 1 . . .8), as a function of the
shaking frequency ω and strength α and for the most important quasimomenta
q = 0 and q = π/a. The resonances can be assigned according to Tab. 5.3.1 and
are partly labeled with (b, ν). Note that the resonance (2,1) is out of range.
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The first term, which is proportional to δb′bεb(m′−m)(q), allows for multiphoton

transitions that we ignored in Chap. 3. These multi-photon transitions only occur

within the same Bloch band. However, combined with single-photon inter-band

transitions they become relevant in higher-order processes. In Eq. (5.3.13), it is

also important to note that for odd photon numbers m = 1, 3, 5, . . . these transitions

scale like e−ibq + (−1)meibq ∼ sin(bq), which vanishes at the borders of the Brilloin

zone q = 0 and q = π/a. On the other hand, for even photon numbers they scale like

e−ibq + (−1)meibq ∼ cos(bq). This means that at q = π/2a even and odd multi-photon

transitions are equally strong.

In summary, we have Fourier transformed the shaken single-particle Hamiltonian,

resulting in the quasienergy operator

⟨⟨b′q′m′∣Q̂∣bqm⟩⟩ = δq′q [δb′bε
eff
b(m′−m)(q) +

1

2
Kδ∣m′−m∣,1ηb′b + δb′bδm′mmh̵ω] .

(5.3.20)

It gives us insight into the dynamics of the system in the extended Hilbert space.

5.3.2. Multi-Photon Heating from Floquet Perturbation Theory

In this section we use the quasienergy operator (5.3.20) to derive the effective

coupling parameters to excited states.

In general, the resonance condition for a ν-photon transition between states ∣bq⟩

and ∣b′q⟩ to occur is

εeff
b′ (q,α) − ε

eff
b (q,α) = νh̵ω + δ, (5.3.21)

with δ being a sufficiently small detuning, compared to the coupling strengths that

we still have to calculate. We will set δ = 0 in the following and refer to App. C

for the case of a finite detuning δ. The resonance condition then corresponds to

a degeneracy of the states ∣bqm⟩⟩ and ∣bq(m − ν)⟩⟩ in the extended Hilbert space.

However, there has to be a (hopping) process linking both states, i.e. a series

of matrix elements in the extended Hilbert space that connects the two states

with each other. Either this happens directly with strength Kηbb′
2 , or there is a

connection between the states across s energetically distant virtual states. In the
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latter case, we can derive the effective coupling strength by degenerate perturbation

theory. The unperturbed states are thus the Floquet states ∣bqm⟩⟩ of the undriven

system, introduced in Eq. (5.3.10). Remember that their quasienergy for a finite

driving strength is the effective dispersion relation Eq. (5.3.17) and not the static

dispersion relation. The perturbation V̂pert is given by the off-diagonal terms in

the quasienergy operator (5.3.11)

⟨⟨bqm′∣V̂pert∣bqm⟩⟩ = ⟨⟨bqm′∣(Q̂ − Q̂0)∣bqm⟩⟩ (5.3.22)

= (1 − δm′m)δq′q⟨b
′q∣Ĥm′−m(q)∣bq⟩.

Here, Q̂0 is the unperturbed quasienergy operator

⟨⟨bqm′∣Q̂0∣bqm⟩⟩ = δm′mδq′qδb′b[mh̵ω + ε
eff
b (q,α)]. (5.3.23)

Following the standard expression for degenerate perturbation theory, the effective

coupling element for the ν-photon transition between two degenerate states ∣A⟩⟩ =

∣bqm⟩⟩ and ∣B⟩⟩ = ∣b′q(m − ν)⟩⟩ is

CA→B ∼

#{paths∶A→B}

∑
j=1

C0

sj

∏
k=1

Ck

εeff
bkmk

(q) − εeff
b0m0

(q)h̵ω
. (5.3.24)

Here, Ck denotes the coupling element between Floquet states with indices k

and k + 1, which is either Kηbk+1bk/2 or εbk,mk+1−mk(q). Also we introduced the

quasienergy

εeff
bm(q) = εeff

b (q,α) +mh̵ω (5.3.25)

without the perturbation, but including the reparameterization by the Bessel

functions. We set m0 = 0 in the following.

Even though there are many paths A→ B possible, only few or just one of them is

significantly contributing. If the shaking fulfills K ≤ h̵ω, we can approximate the

Bessel functions to be Jm(α) ∼ α∣m∣ ≪ 1. Furthermore, since the tunneling term in
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Figure 5.3.5.: Illustration of the single-photon transition towards the first ex-
cited band in the extended Hilbert space. The levels represent the quasienergies
of the Floquet states ∣bkm⟩⟩, where k denotes the quasimomentum.

the tight-binding regime is very small, Jb ≪ ηb(b+1), we can generally assume that

εbk±1(q,α) ≪
Kηbk+1bk

2
(5.3.26)

in the parameter regimes that we are interested in. However, it could be that

εbk±m(q,α) ≈ (
Kηbk+1bk

2
)

m

(5.3.27)

so that for large ν an intra-band m-photon process contributes more significantly

than a series of interband processes.

In the following we exemplify the pertubative estimate of the coupling elements

by calculating the effective ν-photon coupling strengths C(1,ν) between the ground

state (b = 0) and the first excited band (b′ = 1). The single-photon transition is

obviously dominated by the direct coupling with matrix element

C(1,1) =
Kη01

2
. (5.3.28)

We illustrate the transition between two Floquet states with degenerate quasienergy

in the extended Hilbert space in Fig. 5.3.5.

For the ν = 2 photon process, there are two paths that are obviously the most

significant ones, namely ∣0q0⟩⟩→ ∣0q − 1⟩⟩→ ∣1q − 2⟩⟩ and ∣0q0⟩⟩→ ∣1q − 1⟩⟩→ ∣1q − 2⟩⟩,
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Figure 5.3.6.: Illustration of the two-photon transition towards the first
excited band in the extended Hilbert space. The two shortest paths with
respective coupling elements are included.

as illustrated in Fig. 5.3.6. From Eq. (5.3.24) we then find

C(1,2) =
Kη01

2h̵ω
(ε0,−1(q,α) − ε1,−1(q,α))

∼ J1 sin(aq)α2, (5.3.29)

where the asymptotics follow from J1 ≫ J0 so that the contribution of the second

path is larger. Note that δ does not appear in the denominator since we have set it

to zero.

For the three-photon process, the situation is more complicated. On the one

hand, there are the two paths ∣0q0⟩⟩→ ∣1q − 1⟩⟩→ ∣0q − 2⟩⟩→ ∣1q − 3⟩⟩ and ∣0q0⟩⟩→

∣1q − 1⟩⟩ → ∣2q − 2⟩⟩ → ∣1q − 3⟩⟩. On the other hand there are also the two paths

∣0q0⟩⟩→ ∣0q − 2⟩⟩→ ∣1q − 3⟩⟩ and ∣0q0⟩⟩→ ∣1q − 1⟩⟩→ ∣1q − 3⟩⟩ giving in total

C(1,3) = −
(Kη01/2)3

(2h̵ω)2
+

Kη01/2(Kη12/2)2

2h̵ω(εeff
2 (q,α) − εeff

1 (q,α) − h̵ω)
−
ε0,−2(q,α)

2h̵ω
+
ε1,−2(q,α)

2h̵ω
.

(5.3.30)

All four paths are illustrated in Fig. 5.3.7, each in a different color. It depends on

the tight-binding and the shaking parameters which of the paths contribute most
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Figure 5.3.7.: Illustration of the three-photon transition towards the first
excited band in the extended Hilbert space. The two shortest paths with
respective coupling elements are included.

significantly.

Finally, let us also consider the resonant coupling to higher Bloch bands. As

mentioned before, the coupling elements νb,b′ for b − b′ > 1 are very small, but

have to be compared to higher-order processes. To give an example, the 2-photon

process to the second excited band with state ∣2q − 2⟩⟩ has only the intermediate

state ∣1q − 1⟩⟩, as illustrated in Fig. 5.3.8. The coupling element takes the form

C(2,2) =
K2η01η12

4(εeff
1 (q,α) − εeff

0 (q,α) − h̵ω)
. (5.3.31)

However, this expressions makes only sense if the denominator is sufficiently large.

In other words, if the intermediate (Bloch) states (e.g. ∣1q−1⟩⟩ in the example above)

are also degenerate with the ground state (γ = 0), the degenerate perturbation

theory breaks down. In this case one can for example treat the problem by

considering the corresponding 3-by-3 matrix, see for example App. C. A very

important observation that we can generalize from these examples, is that every

path for a ν-photon process with even ν to a band with odd b, will include at least

one εbk±m with an odd m. Since this term always comes with a factor of sin(aq),

there cannot be even-photon resonances for q = 0 and q = π/a, being quasimomenta

where the condensates is often initialized. Similarly, if ν is odd and b is even,
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Figure 5.3.8.: Illustration of the two-photon transition towards the second
excited band in the extended Hilbert space. Here, only the direct coupling
elements are included since they give by far the largest conribution.

the coupling is proportional to a factor of sin(aq), such that e.g. multi-photon

transitions to the second excited band are suppressed at q = 0 if the photon number

is odd.

Summing up, via Floquet perturbation theory we have gained information about

the strength of the heating and thus about the time-dynamics between the ground

state and excited Bloch states.

5.3.3. Multi-Photon Heating from a Rotating-Wave

Approximation

Another way of calculating effective coupling elements between two resonantly

coupled states, is to perform a rotating-wave approximation, which results in a

time-independent effective Hamiltonian. This procedure extends the rotating-wave

approximation we have made in chapter Sec. 3.3. To this end, we will perform a

gauge transformation to remove all time dependencies in the dispersion relation

and then take the 0th order Fourier components of the off-diagonal terms as the

effective coupling elements.

We first take the quasi-translationally invariant and time dependend Hamiltonian

operator (5.3.11) and yet perform another gauge transformation

Û(t) = exp

⎧⎪⎪
⎨
⎪⎪⎩

i∑
b,q

χb,q(t)∣bq⟩⟨bq∣

⎫⎪⎪
⎬
⎪⎪⎭

(5.3.32)
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with time dependent phases

χb,q(t) = ∑
m≠0

χ
(m)
b,q e

imωt (5.3.33)

and Fourier components

iχ
(m)
b,q =

ε1m(q)

mh̵ω
= (−1)mJb (α)

Jb
h̵ω

{
cos(aq), for even m

−i sin(aq), for odd m
(5.3.34)

that we have already calculated in the previous section. The gauge transformation

(5.3.32) removes the full time dependencies of the dispersion relation εb(q −A(t)/h̵)

(see Eq. (5.3.7)) for all Bloch states.

Applying the gauge transformation (5.3.32), the time-dependent Hamiltonian (5.3.7)

is transformed to

Ĥ(t) =∑
b,q

εeff
b (q)∣bq⟩⟨bq∣ + ∑

b,b′q

Kηb,b′ cos(ωt)e−i[χb′,q(t)−χb,q(t)]∣b′q⟩⟨bq∣. (5.3.35)

Calculating the Fourier components in this new basis is not trivial. The coefficients

can be found by expanding the cosine, the exponential and the time dependent

arguement in (5.3.32) at once and compare the coefficients with the general Fourier

expansion (with index µ) of the very same expression:

cos(ωt) exp (iχbq(t)) = (eiωt + e−iωt)
∞
∑
k=0

1

k!
(i∑

m≠0

χ
(m)
bq eimωt)

k

=
∞
∑
µ=−∞

A
(µ)
bq e

iµωt. (5.3.36)

In principle, each A
(µ)
bq has an infinite number of contributions. However, since

χ
(m)
bq ∼ Jb/h̵ω ≪ 1, we can ignore all terms that have more than a single factor of

χ
(m)
bq . The 0th Fourier component is thus

A
(0)
bq =

i

2
[χ

(1)
bq + χ

(−1)
bq − χ

(1)
b′q − χ

(−1)
b′q ]

= i [χ
(1)
bq − χ

(1)
b′q ] . (5.3.37)
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The first Fourier component is an exception since it receives a constant in the

expansion of the exponential. Hence, it is simply

A
(±1)
b′b,q =

1

2
. (5.3.38)

The higher Fourier components read

A
(±∣m∣)
b′b,q =

i

2
[χ

(±(∣m∣−1))
bq − χ

(±(∣m∣−1))
b′q ]. (5.3.39)

With these Fourier components, the direct coupling terms of two bands b and b′

that are resonantly coupled at quasimomentum q by a ν-photon process, can be

calculated. To this end, both states ∣bqm⟩⟩ and ∣bq(m − ν)⟩⟩ that are degenerate

in quasienergy have to be rotated into the same block in the extended Hilbert

space. This can be done by replacing the unitary transformation (5.3.32) by the

transformation

Ûbb′qν(t) = exp

⎧⎪⎪
⎨
⎪⎪⎩

iνωt∣bq⟩⟨bq∣ + i∑
b′,q′

χb′,q′(t)∣b
′q′⟩⟨b′q′∣

⎫⎪⎪
⎬
⎪⎪⎭

. (5.3.40)

The time average, which is the 0th Fourier of the Hamiltonian, results in an effective

Hamiltonian

Ĥeff
sp =∑

b,q

εeff
b (q)∣bq⟩⟨bq∣ +Cν

b,b′(q)∣b
′q⟩⟨bq∣ (5.3.41)

with effective coupling elements Cν
b,b′(q). Here we neglect all other, presumably off-

resonant coupling elements. Comparing with the unitary transformation (5.3.32),

the Fourier components of the transformed Hamiltonian are simply shifted by ν,

which gives the effective coupling

Cν
b,b′(q) =Kηb,b′A

(ν)
bq (5.3.42)
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Figure 5.3.9.: Effective coupling elements from the rotating-wave approxima-
tion (5.3.44) to the first excited band at q = 0 and V0 = 10ER, Cν = C

1
0,1(π/2)/K.

Consequently, the effective 1-photon coupling element between two bands,

C1
b,b′(q) =

Kηb,b′

2
, (5.3.43)

reproduces the result from Sec. 3.3 (see Eq. (5.3.28)). For higher photon numbers

ν we get

Cν
b,b′(q) = Kηb,b′

i

2
[χ

(±(∣ν∣−1))
bq − χ

(±(∣ν∣−1))
b′q ]

= Kηb,b′
Jb′ − Jb

(∣ν∣ − 1)h̵ω
J(∣ν∣−1) (α){

cos(aq), for odd ν

−i sin(aq), for even ν
.(5.3.44)

Note that the formula only provides effective coupling elements for transitions that

are already allowed in the single-photon transition, i.e. whenever ηbb′ ≠ 0. Effective

coupling elements between states with even b− b′ have to be computed with e.g. the

perturbative method from the previous section. Also, we see again in Eq. (5.3.44)

that even-photon processes are suppressed by a factor of sin(aq). In Fig. 5.3.9 we

plot the effective coupling elements

Cν =
C1

0,1(π/2)

K
(5.3.45)

to the first excited band normalized to K for the first for photon numbers ν = 1 . . . 8.
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5.3.4. Quasienergy Spectrum of the Shaken Lattice

In this section we numerically calculate and illustrate the exact quasienergy spec-

trum of the shaken lattice. The quasienergy spectrum is another way to estimate

the single-particle transitions between bands leading to heating processes: At each

avoided crossing, i.e. whenever two or more bands mix with each other, there will

be transitions between Bloch bands in the dynamics of the shaken lattice.

We begin with rewriting the time-dependent Hamiltonian in a way that can be

implemented easily on a computer, without applying any approximations. The

shaken single-particle Hamiltonian (5.3.1) breaks translational symmetry because

of the driving term. However, by applying the gauge transformation

U = exp{−ixA(t)} , (5.3.46)

with the already introduced vector potential A(t) = ∫
t

0 dt
′F0 cos(ωt), we derive at

the discrete translationally invariant form of the Hamiltonian

Hsp(t) =
[p̂ −A(t)]

2

2m
+ V (x). (5.3.47)

Here, we wrote the momentum operator explicitely as p̂ = ih̵∂x. Like in the static

case, Hamiltonian (5.3.47) can be solved for each quasimomentum q independently.

Introducing plane waves

⟨x∣p⟩ =
1

√
Ma

eipx, (5.3.48)

where the momentum is restricted to the values

p = q + P
2π

a
, with −

π

a
< q ≤

π

a
, and P ∈ Z, (5.3.49)

the Hamiltonian can now be written as a matrix

HP,Q(q, t) =
h̵2

2m
[P

π

a
+ q −

A(t)

h̵
]

2

δP,Q +
V0

4
δP,Q+1 +

V0

4
δP,Q−1

= ER {[2P +
qa

π
+ α sin(ωt)]

2

δP,Q +
V0

4ER
δP,Q+1 +

V0

4ER
δP,Q−1}

(5.3.50)
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with P,Q ∈ Z. Choosing a momentum cutoff P ∗ with ∣P ∣ ≤ P ∗, we can compute

the quasienergy spectrum and also the time-evolution of the system. The latter

will be done in the next section.

As we have seen in Chap. 2, there are two methods to compute the quasienergy

spectrum, either by computing and diagonalizing the monodromy operator MT or

by diagonalizing the quasienergy operator Q in the extended Hilbert space. The

quasienergy operator gives us a good insight into the physical processes and energy

transfer in the system and can be treated with perturbation theory. On the other

hand, calculating the eigenstates of the monodromy operator has the advantage

that they can be uniquely projected onto the eigenstates of the non-driven system,

without the degeneracy stemming from the photon index m. Since we are only

interested in the numerical result, we use the monodromy operator to compute the

Floquet states and their quasienergies.

As before, we calculate the quasienergy spectrum on a lattice of depth V0 = 10ER

and focus on the transitions from the ground to the first excited band. We start by

looking at the quasienergies as a function of the quasimomentum q. In Fig. 5.3.10

we plot the quasienergy spectrum of the shaken lattice with shaking frequency

h̵ω = 5ER and for increasing driving strength α = K/h̵ω = 0,0.1,0.5,1,3,5. The

chosen frequency is within the 1-photon resonance to the first excited band between

ω(1,1)(q = 0, α = 0) = 5.632ER and ω(1,1)(q = π,α = 0) = 4.581ER according to the

effective dispersion relation Eq.(5.3.17) (see also Tab. 5.3.1 and Fig. 5.3.4). We

illustrate the overlap of the Floquet bands to the static ground and first excited

band by representing the quantity n0 − n1 of each state by color (red if n0 = 1, blue

if n1 = 1 and green if n0 = n1 or n0 = n1 = 0). We observe that already for a very

small shaking strength the avoided crossing emerges between the lowest two bands

that are coupled directly with strength αh̵ωη01/2. The width of the splitting is

twice the coupling strength αh̵ωη01 ≈ 0.7αER, which is around 0.07ER for α = 0.1.

Note that the quasienergies in the plot are in units of h̵ω = 5ER. Increasing the

driving strength increases the hybridization between the ground and the excited

Bloch states, which can be seen by the gaps opening at the crossings and by the

distribution of red. Additionally, one can see the opening of the gap between the

first and second excited band in the lower part of the plot for α = 0.5 and between

the second and third excited band in the upper part. Other band crossings open
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Figure 5.3.10.: Quasienergy spectrum of the shaken lattice with shaking
frequency h̵ω = 5ER close to the 1-photon resonance at V0 = 10ER and varying
dimensionless driving strength α = K/h̵ω. The calculation was done in the
subspace of the six lowest bands of the non-driven system, therfore at each
quasimomentum six states are shown. The color code illustrates the projection
of each state on the ground minus the first excited (red to blue) state of the
non-driven system. For α = 0, where the Floquet states and the Bloch states
of the static lattice coincide, we have colored each state in the color code used
in all parameter plots.

significantly only for large driving strengths. Furthermore, for very high strenghts

α≫ 1 the static ground (red) and first (blue) excited bands spread over almost the

entire quasienergy spectrum. Hence, for these strengths the heating of the system

is expected to be very strong. Additionally, the Floquet states that correspond to

Bloch states with large indices b = 4 and b = 5 apparently do not couple at all to

each other and other states. The reason is that their kinetic energy is so large that

they almost do not “feel” the lattice and thus also not the lattice shaking.

In Fig. 5.3.11 we plot the same quasienergy spectra, but this time with a shaking

frequency of h̵ω = 2.5ER, i.e. in the vicinity of the 2-photon resonance, which

lies at α = 0 roughly in the middle between ω(1,1)(q = 0, α = 0) = 2.816ER and

ω(1,1)(q = π,α = 0) = 2.290ER. Here, the splitting between the ground and the
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Figure 5.3.11.: Quasienergy spectrum as in Fig. 5.3.10 but with h̵ω = 2.5ER
close to the 2-photon resonance.

first excited band is very weak and happens only for large α. The reason for

this is, as we have seen in Sec. 5.3.2, that the 2-photon coupling element is

suppressed by a factor of J1 sin(aq). This makes the gap at the avoided crossing

much smaller. On the other hand, the splitting between the first and the second

excited band at the band crossing is very pronounced since here the single-photon

resonance is hit which is between εeff
2 (q = 0, α = 0) − εeff

1 (q = 0, α = 0) = 2.224ER

and εeff
2 (q = π,α = 0) − εeff

1 (q = π,α = 0) = 6.3740ER. These values are not shown in

Tab. 5.3.1 but can be deduced from computing e.g. ω(2,1) − ω(1,1).

To get a better overview on the quasienergy spectrum and to examine heating

processes from the continuous ramping, we furthermore consider the quasienergies

as a function of the shaking amplitude α for fixed q. We choose again h̵ω = 5ER and

pick quasimomentum q = 0 where a condensate is formed in the undriven system and

q = π/2a where the Bloch states ∣0⟩ and ∣1⟩ (skipping the quasimomentum q in the

notation) are in resonance at α ≈ 0. In Fig. 5.3.12 we show for both quasimomenta

the quasienergies as a function of α. From left to right we present the same results,

but with the density of the Bloch states with index b = 0, 1, 2 respectively indicated
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Figure 5.3.12.: Quasienergy spectrum as a function of the driving strength
α for h̵ω = 5ER, where the six lowest (in quasienergy) Bloch states were
propagated in time. From left to right the projection to Bloch states b = 0, 1, 2
is colored in red. Upper panel: at quasimomentum q = 0. Lower panel: at
quasimomentum q = π

2 .

by the color in red. Remember that the course of the quasienergies is an interplay

between effective dispersion relation parameterized by Bessel functions and the

coupling between the Floquet states. For h̵ω = 5ER the coupling α, which is

normalized by h̵ω, is thus very strong. Thus, the coupling distorts the eigenenergies

strongly and the Bessel functions are almost not tractable. Furthermore, as we

have seen in Fig. 5.3.4 (upper row), there is a double-resonance at α ≈ 3.5, which

makes it hard to predict the quasienergies at this point. From this plot we can

understand the difference between the two excitation mechanisms: If we quench

the system to α = 5, the ground state density n0 will distribute over two additional

Floquet states. Both states have also fractions n1 and n2 of the first and the second

excited Bloch states. After dephasing, the system would thus oscillate between all

three Bloch states ∣0⟩, ∣1⟩ and ∣2⟩. On the other hand, if we follow adiabatically the

Floquet state connected to ∣0⟩ at α = 0, at α = 5 it has contribution of n2, but not

of n1, even though this was the case in the intermediate regime. Therefore, Bloch
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Figure 5.3.13.: Same plot as in Fig 5.3.12 but for h̵ω = 2,5ER.

state ∣1⟩ will be unoccupied at α = 5. For q = π/2a we see that the two Floquet

states adiabatically connected to Bloch states ∣0⟩ and ∣1⟩ already mix for very small

α.

In Fig. 5.3.13 we plot again the quasienergy spectrum but this time for h̵ω = 2.5ER,

close to the 2-photon resonance between ground and first excited state. Here, the

effective dispersion relation is more visible since the effective couplings between the

Floquet states is weaker. Because of the term JbJ0(α) cos(aq) in the dispersion

relation, the Bessel function renormalization is visible most strongly for q = 0 and

q = π/a and least strongly for q = π/2a, where cos(aq) = 0 and the next nearest

neighbour term ∼ JbbJ0 cos(2aq) becomes dominant. Therefore, for q = 0 the

quasienergies vary strongly for small α, whereas for q = π/2a they start almost

constantly. For q = 0, we really do not see a coupling between n0- and n1-dominated

Floquet states for small α. In contrast, the n1- and n2-dominated Floquet states

mix strongly.
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5.3.5. Numerical Simulation of Multi-Photon Heating

Processes

In this section, we analyze single-particle heating in the shaken lattice by simu-

lating the dynamics. The numerical simulation can easily be implemented based

on Eq. (5.3.50). The ground state ∣0q⟩ of the static lattice with corresponding

plain wave vector u0Q(q) serves as the initial state for the numerical simulation.

Integrating the time-dependent Schrödinger equation

ih̵u̇Q(t) =∑
Q

HP,Q(q, t)uQ(t) (5.3.51)

over a time span of τ , gives the current state of the system ∣ψ(t)⟩ with vector

uQ(q, t). The excited states ∣bq⟩ can be projected to the current system state ∣ψ(t)⟩

to compute the band occupation

nb(t) = ∣⟨bq∣ψ(t)⟩∣2 = ∣∑
Q

u∗Q(t)ubQ(q)∣
2

(5.3.52)

during or at the end of the simulation. As discussed before, we quantify heating by

hτ = mint[n0(t)], the minimum in the occupation of the ground band during the

simulation time, see Eq. (5.2.1).

First we discuss the case where the shaking is turned on immediately at time t = 0

and held for a time τ with constant driving strength α, representing a quantum

quench. Note that there are two possibilities for hτ to have a finite value: either

the coupling of the ground state to higher states is not resonant or it is resonant

but so weak that the oscillation has not reached its minimum within the time τ . In

Fig. 5.3.14 a) we plot the heating parameter hτ as a function of the driving strength

α and frequency h̵ω for q = 0 and shaking time τ = 100/ER. The white regions

correspond to parameters for which the single-particle heating is very strong, i.e.

where system is oscillating between the ground state and one or more excited states.

We see a number of resonance lines that broaden for increasing α ∼K and also for

increasing ω since K ∼ αω. Some of the resonance lines form avoided crossings.

The avoided crossings are asymmetric, i.e. they get broader towards larger α and

larger h̵ω. This happens because of the normalization α =K/h̵ω, as it is discussed
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(2,2)

(1,1)

b)
(2,3)

(1,2)

(2,5) (2,4)
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(1,5)(1,7)(1,9) (1,4)

a)

ab
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cd

e h

Figure 5.3.14.: Heating plot for the shaken lattice: a) Heating parameter hτ
as a function of driving strength α and frequency h̵ω for q = 0, shaking time
τ = 100/ER and V0 = 10ER. The range of h̵ω is chosen such that resonances
up to the single-photon resonance to the first excited band are captured. In b)
we include the resonance lines to the first and second excited band calculated
by Eq. (5.3.17) and already shown in Fig. 5.3.4. Above the plot we assign
the respective resonances (b, ν), cross out the forbidden resonances at q = 0
and also mark the resonances that are expected to couple strongly, forming
a Autler–Townes splitting. Additionally, special pairs {ω,α} are marked and
numerated by a-h. In Fig. 5.3.15 we plot the time evolution corresponding to
these pairs {ω,α}.

in App. C.2.

In Fig. 5.3.14 b) we include the resonance lines (b, ν) to the first (blue) and second

(green) excited band, calculated from the effective dispersion relation Eq. (5.3.17).

These lines help us to assign and label the resonances with (b, ν). Since q = 0, even

(odd) photon resonances to the first (second) excited band are forbidden, which is

confirmed by the heating plot. We also mark some resonance pairs {ω,α}, whose

time evolution we plot in Fig. 5.3.15, though with adapted shaking times τ . For

example, for very small α we see in Fig. 5.3.15 a) and b) cosine-like oscillations

between the ground and the first and second excited band. These oscillations
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a)

b)

c)

d)

f)

g)

h)

e)

Figure 5.3.15.: Time evolution of the Bloch band occupations nb(t) (b = 0 . . . 5)
for the {ω,α} pairs a-h from Fig. 5.3.14, which all lie on resonances of different
types. The shaking time differs according to the oscillation time which depends
on the effective coupling to the excited state(s).

indicate almost perfect two-state resonances between the ground and the first

(second) excited band with one (two) photons.

The observed avoided crossing can be well explained by Autler–Townes splittings,

where the nearby resonances to first and second excited band couple to each other,

forming a double-resonance, as described in App. C.2. We marked in the plot the

resonances which couple with each other. Since η01 < η12 and J1 > J0, typically the

first excited band is coupled stronger to the second than to the ground band, which

a necessary condition for an Autler–Townes splitting. In Fig. 5.3.15 c) and d) we

plot the oscillations that emerge from the Autler–Townes splitting between the

(1, 3) and (2, 6) resonance lines. In both cases we see a simultaneous oscillation of

the ground state with the first and the excited state. Also cases e) and f) show

oscillations corresponding to Autler–Townes splittings for the (1,5)-(2,10) and
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5.3. Multi-Photon Heating in a Shaken Optical Lattice

Figure 5.3.16.: Heating plot for q = 0 for the low-frequency and high-
amplitude regime, where multi-photon transitions for large ν become visible.
To this end, the shaking time is increased to τ = 500/ER. In red, the theoretical
resonance lines to the first excited bands are drawn, which match very will
with the shape of the numerical resonance lines.

the (1,1)-(2,2) double-resonances. In g) and h) we see that the extra resonance

lines which cannot be assigned to the first and second excited band belong to

excitations to higher lying states, in this case the third and fourth Bloch band,

whose occupations n3(t) and n4(t) oscillate significantly.

To have a closer look at the resonances with large photon number ν, we consider

the heating plot in Fig. 5.3.16, zoomed in into the range h̵ω < 1 and for stronger

couplings 2 < α < 9 and longer shaking times τ = 500/ER. Including again the

resonance lines to the first excited band, one can recognize resonances up to ν = 19.

At the same time, all these resonances are crossed by resonances to higher lying

states. This suggests that once the system is excited to the first excited band, it is

very likely to excite also higher lying bands.

Next, we consider in Fig. 5.3.17 the situation at q = π/2a to illustrate the resonances

that are forbidden in the q = 0 and q = π/a case. We see many more resonance

lines compared to the case q = 0 and a main resonance (1, 1) that is much broader.

Again we draw the resonance lines from the effective dispersion, this time also for

b = 2. Since the nearest-neighbour tunneling term with Jb vanishes, the resonances

are less pronounced and have a vertical form. For small α, where the coupling

between the resonances is small, the theoretical resonance lines match very well

with the numerical ones. The cases a), b) and c) for the resonances (1, 2), (2, 3) and
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(2,2)

(1,1)

b)
(2,3)

(1,2)

(2,5) (2,4)
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a b
c

d

Figure 5.3.17.: Heating plot as in Fig. 5.3.14 but for q = π/2a where all
transitions to higher bands are allowed. We again picked specific pairs {ω,α}
whose time evolution is plotted in Fig. 5.3.18.

b)

a)

d)

c)

Figure 5.3.18.: Time evolution of the Bloch band occupations nb(t) (b = 0 . . . 5)
for the {ω,α} pairs a-d from Fig. 5.3.17.

(3, 4) are time-resolved in Fig. 5.3.18. They show very clean cosine-like oscillations.

In contrast, case d) shows the (1,1) resonance for a very strong α = 5. Due to
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5.3. Multi-Photon Heating in a Shaken Optical Lattice

Figure 5.3.19.: Heating plot for q = π/2a as in Fig. 5.3.18, where the transi-
tions to the different Bloch bands are colorized. The color represents the Bloch
band b, where the particle is excited to whereas the circle size illustrates the
maximum occupation maxt∈[b,τ] nb(t) of the respective Bloch band b during
the time span τ .

the strong coupling and the large frequency, the dynamics is complex. However,

the oscillation is almost fully restricted to the four lowest bands and does not

occupy even higher lying bands. To give a better intuition about the proportion

of the differen Bloch bands in the heating process and in order to track better

multi-resonances, in Fig. 5.3.19 we plot the heating plot where we overlay the

maximum of the density of each Bloch band maxt∈[b,τ] nb(t) during the time span τ ,

colorized in the usual color code. Here we see that only for small shaking amplitudes

α ≲ 1.5 the resonances are to a single band only. For higher shaking amplitudes,

the bands strongly mix and several bands get excited at once.

Finally, we want to have a look on the situation where the shaking amplitude

α is switched on in a finite ramping time tr. Here, the avoided crossing in the

quasienergy spectrum (see the previous section, Sec. 5.3.4) are partly resolved such

that whenever an avoided crossing of quasienergies is passed by, higher lying bands

are excited, even if at the final value of α a quantum quench would not lead to

strong heating. In Fig. 5.3.20 we show the heating plot (h̵ω ≤ 3) with a shaking

that is linearly switched on for a time tr = 100/ER before it is kept constant for

another ts = 40/ER to let oscillations dispread. We see that the regions above

diagonal resonances are not dark, i.e. they show heating. To observe the effect of

the ramping time in a specific example, we pick a pair {ω,α} = {1.7/h̵, 3.5} at q = 0,
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Figure 5.3.20.: Heating plot for τ = 40/ER but with an initial ramping time
tr = 100/ER. We set again q = 0 and V0 = 10ER.

b) d)

a) c)

Figure 5.3.21.: Time evolution of the Bloch band occupations nb(t) (b =
0 . . .5) for {ω,α} = {1.7/h̵,3.5} at q = 0 for different ramping times tr =

[0,25,50,100]/ER, while τ = 100/ER.

which lies not exactly on a resonance in the heating plot, and vary the ramping

time tr, while the total time τ = tr + ts = 100/ER remains fixed. The resulting time

dynamics for tr = [0,25,50,100]/ER is plotted in Fig. 5.3.21. As the ramping time

is increased, we see a growing fraction of the third and fourth band. The reason for

this is that a respective resonance is crossed during the ramping, as can be seen in

Fig. 5.3.14.
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5.3.6. Comparison of the Numerical Simulations with

Experimental Findings

Finally, we compare the numerical findings to experimental results on heating in a

weakly-interacting gas of ultra-cold bosonic 87Rb atoms which were obtained in

the group of Klaus Sengstock in Hamburg, see Ref. [105]. There, the optical lattice

was realized by a pair of λL = 830nm wavelength that were arranged at an angle of

117.1○, giving a lattice spacing of a = 486.5nm. We therefore define the effective

recoil energy in this section by the lattice spacing ER = π2h̵2

2ma2 . The lattice depth for

the experiment was V0 = 13.05ER.

In the experiment, the atomic cloud was initially prepared in the ground state of

the static lattice at q = 0. Then the shaking strength was ramped up in a time of

tr = 50ms and kept fixed at the desired value of α for another ts = 20ms, while the

frequency ω was kept constant for the whole time τ = 70ms. Thereafter, all fields

have been switched off so that the atoms fall under the influence of gravity for

40ms time-of-flight until an absorption image was taken. The heating parameter in

the experiment was defined by the optical density of the atoms, which decreases if

atoms leave the cloud due to excitation to higher Bloch bands.

It is important to note that the quasimomenta of the bosons in this experimental

setup are not fully conserved due to small interactions of the atoms and because of

the presence of the trapping potential. As a consequence, during the switching-on

of the shaking amplitude within time ta the interaction of the atoms leads to partly

relaxing of the condensate into the new ground state at q = π/a of the effective

dispersion relation, which happens at the first zero of the 0th order Bessel function

around α ≈ 2.42. Therefore in the numerics we switch at α = 2.42 from the heating

plot at q = 0 to the one for q = π/a. Another consequence of the trapping potential,

the interaction of the atoms and the finite temperature of the atomic cloud is

that the condensate has a finite width of around ωq = 0.1π/a in quasimomentum.

Therefore we assume the cloud to be Gaussian shaped with width ωq. In the

numerics this is addressed by superimposing heating plots for several q around

q = 0.

As the ramp-up time of the driving is rather long (50ms), we will see a mixture of

excitations stemming from adiabatic and diabatic excitation processes. While in
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a)

b)

c)

Figure 5.3.22.: Comparison of numerical and experimental data for heating
of weakly-interacting bosons in a shaken optical lattice. a) Experimental data,
where the heating parameter is the optical density. b) Numerical data. Here,
to describe the finite width of the condensate of around ωq ≈ 0.1π/a, heating
plots for different q are superposed in a Gaussian shape. c) To cover the effect
of adiabatic excitations in the experiment, the heating parameter hτ has been
summed along the α-axis. Furthermore, the resolution has been reduced to
maximize the resemblence with the experimental data.

the single-particle model we can simulate the ramping for fixed q, we cannot do so

if the minimum changes to q = π/a at α = 2.42. To include the adiabatic excitation

processes approximately, we sum the heating parameter hτ upwards along the α

axis

h′τ(αn) =
n

∑
i=1

hτ(αi). (5.3.53)

In Fig. 5.3.22 we compare the experimental data with the numerics. Whereas

Fig. 5.3.22 a) shows the experimental data, in b) we show the numerical heating
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plot as it is expected for the given parameters and with the broadening of the

cloud of ωq, allowing also for resonances which are forbidden at q = 0. In the

experimental data we can recognize resonances up to ν = 7. The odd resonances

show up more clearly, as it is expected since most of the condensate lies around

q = 0. Also, the avoided crossings are visible in the experimental data. Especially

the crossing between band 1 and 2 around ω/2πkHz ≈ 5 that was discussed in the

previous section, is visible and leads to enhanced heating. Even a couple of diagonal

resonances to bands > 2 are visible around ω/2πkHz ≈ 4.5 and ω/2πkHz ≈ 5.5. In c)

we show the heating parameter h′τ to include the ramping procedure. Furthermore,

we have reduced the resolution in both ω and α to maximize the resemblence

between expermiment and numerics, which is astonishing good in total.

To sum up, the experimental data is very well reproduced by the numerical

simulation and can be very well described by the presented theoretical findings.

5.4. Multi-Photon Heating in an

Amplitude-Modulated Lattice

Next we consider the scenario where the lattice is periodically driven by modulating

its amplitude. Again we start with a Fourier expansion of the time-dependent

Hamiltonian, from which we can then calculate the effective coupling parameters

C that couple the ground state resonantly to excited states in diabatic heating

processes. We use the Floquet perturbative method and a rotating-wave approxi-

mation. Subsequently, we also compute the quasienergy spectrum of the shaken

lattice numerically. A numerical simulation, here only for the quenched scenario,

reveals the precise information about where and how strong the heating is taking

place.

5.4.1. Fourier Expansion of the Tight-Binding Hamiltonian

As in the case of a shaken lattice, we start with the single-particle Hamiltonian

Hsp(t) = −
h̵2

2m
∂2
x + V (x, t). (5.4.1)
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The amplitude of the cosine potential is now modulated sinusoidally

V (x, t) = V0 [1 + β sin(ωt)] cos(klx), (5.4.2)

which can be achieved by a modulation of the lattice depth. In contrast to Chap. 5.3,

we take a different approach to expand the Hamiltonian in time and to derive the

quasienergy operator. Namely, we transform the Hamiltonian to the basis of its

instantaneous eigenstates denoted by ∣bq, t⟩ that fulfill

Ĥ(t)∣bq, t⟩ = Eb(q, t)∣bq, t⟩. (5.4.3)

Thus, they are Bloch waves of the lattice system at the instantaneous lattice

depth V0[1 + β sin(ωt)] labeled by the same quantum numbers, quasimomentum

q and band index b, as the eigenstates of the undriven system ∣bq⟩ = ∣bq,0⟩. The

transformation is achieved by the gauge transformation

Û(t) =∑
q,b

∣bq, t⟩⟨bq∣ (5.4.4)

Consequently, the Hamiltonian is transformed to

Ĥ ′(t) = Û †(t)Ĥ(t)Û(t) − ih̵Û †(t)
˙̂
U(t)

= ∑
b

∣bq⟩Eb(q, t)⟨bq∣ +∑
bb′

∣b′q⟩Mb′b(q, t)⟨bq∣ (5.4.5)

with matrix elements

Mb′b(q, t) = −ih̵⟨b
′q, t∣∂t∣bq, t⟩. (5.4.6)

For the sake of a light notation, in the following we will suppress the quasimomen-

tum label q, when denoting states, energies, and matrix elements. Applying the

transformation (5.4.4) is a standard procedure when treating slow parameter varia-

tions in quantum systems. Following this standard procedure further, we can bring

the matrix elements Mb′b(t) in a more convenient form. Their diagonal elements

Mbb(t) describe Berry phase effects. Since we are varying a single parameter only,

the diagonal terms can be removed by a simple gauge transformation. Namely, we
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can write the diagonal matrix elements like

Mbb(t) = −ih̵⟨b, t∣∂t∣b, t⟩ = −h̵Ab(V )V̇ (t) (5.4.7)

in terms of the Berry connection

Ab(t) = i⟨b, V ∣∂V ∣b, V ⟩ (5.4.8)

for a variation of the lattice depth V . Here we have written the eigenstates as

∣b, V ⟩ for a lattice of depth V , so that ∣b, t⟩ = ∣b, V (t)⟩ with V (t) = V0[1+β sin(ωt)].

A gauge transformation

∣b, V ⟩′ = eiθb(V )∣b, V ⟩ (5.4.9)

changes the Berry curvature to

A′
b(V ) = Ab(V ) − ∂V θb(V ), (5.4.10)

which vanishes for the choice

θb(V ) = ∫

V

0
dW Ab(W ). (5.4.11)

Thus, for a suitable definition of the phase of the instantaneous eigenstates, the

diagonal matrix elements vanish,

Mbb(t) = 0. (5.4.12)

Berry phase effects can matter, however, in more complicated driving scenarios

where several parameters are varied.

In order to evaluate the off diagonal matrix elements Mb′b(t) with b′ ≠ b, we consider

the quantity

⟨b′, t∣
d

dt
(Ĥ ′(t)∣b, t⟩) = ⟨b′, t∣

˙̂
H(t)∣b, t⟩ +Eb′(t)⟨b

′, t∣∂t∣b, t⟩

= Eb(t)⟨b
′, t∣∂t∣b, t⟩, (5.4.13)
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where Ĥ ′ denotes the Hamiltonian after the previous gauge transformation. From

this equation we can derive an expression for ⟨b′, t∣∂t∣b, t⟩, which gives in total

Mb′b(q, t) = −i
h̵⟨b′q, t∣

˙̂
H(t)∣bq, t⟩

Eb′(q, t) −Eb(q, t)
(5.4.14)

as long as Eb′(q, t) ≠ Eb(q, t). Here we have reintroduced the quasimomentum q.

All in all, the system is described by the time-periodic Hamiltonian

Ĥ ′(q, t) =∑
b

[∣bq⟩Eb(q, t)⟨bq∣ +∑
b′≠b

∣b′q⟩Mb′b(q, t)⟨bq∣]. (5.4.15)

Note that no approximation has been made so far and that the Hamiltonian in the

present form is valid for a large class of driving schemes with a single parameter

variation.

The properties of the matrix elements (5.4.14) become more transparent, when

expressing the instantaneous Bloch waves in terms of instantaneous Wannier

states ∣b`, t⟩,

∣bq, t⟩ =
1

√
M
∑
`

eiqa`∣b`, t⟩. (5.4.16)

Remember that their wave functions

⟨x∣b`, t⟩ = wb(x − `a, t) (5.4.17)

are real and exponentially localized at the lattice minima x = `a with integer

`. Moreover, wb(x) is even (odd) for b even (odd), wb(−x) = (−1)bwb(x) [173].

As the width of the Wannier orbitals decreases slightly with increasing lattice

depth, the time dependence describes a breathing motion of the Wannier functions.

Transforming to the Wannier states, the numerator on the right-hand side of

Eq. (5.4.14) can be expressed like

h̵⟨b′q, t∣
˙̂
H(t)∣bq, t⟩ = βV0h̵ω cos(ωt)∑

`

eiqa`W
(`)
b′b (t), (5.4.18)
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with matrix elements

W
(`)
b′b (t) = ∫ dxwb′(x + `a, t) cos(klx)wb(x, t). (5.4.19)

Similar to the ηb′b in the shaken lattice, the W
(`)
b′b describe how strong the Wannier

states are coupled with each other by the driving term. Since they obey

W
(−`)
b′b (t) = (−1)b+b

′
W

(`)
b′b (t), (5.4.20)

for even (b′ + b) the sum on the right-hand side of Eq. (5.4.18) reads

W
(0)
b′b (t) + 2W

(1)
b′b (t) cos(qa) + 2W

(2)
b′b (t) cos(2qa) +⋯, (5.4.21)

whereas for odd (b′ + b) the leading ` = 0 term vanishes and one finds

2iW
(1)
b′b (t) sin(qa) + 2iW

(2)
b′b (t) sin(2qa) +⋯. (5.4.22)

These equations indicate that transitions to odd bands are suppressed completely

for q = 0 and q = π/a. This is complementary to the case of lattice shaking, where

excitations from the ground state (b = 0) are only possible to bands with odd b′

at q = 0. The missing ` = 0 term for odd transitions, which is related to parity

conservation within a single lattice site, also leads to a relative suppression of

transitions from the lowest to odd bands for other values of q. Namely, due to

the exponential localization of the Wannier functions, the matrix elements W
(`)
b′b (t)

drop rapidly with `. It is, therefore, reasonable to keep only the leading term and

to approximate

h̵⟨b′q, t∣
˙̂
H(t)∣bq, t⟩ = βV0h̵ω cos(ωt)W

(0)
b′b (t) (5.4.23)

for even (b′ + b) and

h̵⟨b′q, t∣
˙̂
H(t)∣bq, t⟩ = i2 sin(qa)βV0h̵ω cos(ωt)W

(1)
b′b (t) (5.4.24)

for odd (b′ + b).

In the following we will focus on transitions from the lowest to the second excited

band. For small quasimomenta q ≪ π/a these transitions constitute the dominant
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Figure 5.4.1.: Coupling matrix elements W
(0)
b0 and W

(1)
b0 as defined in

Eq. (5.4.19) versus lattice depth V0/ER.

heating channel. The relevant matrix elements W
(0)
b′b and W

(1)
b′b has a rather weak

dependence on the lattice depth (see Fig. 5.4.1), so that we can approximate

W
(0)
b′b (t) ≈Wb′b − βW

′
b′b sin(ωt), (5.4.25)

for even b′ + b and

W
(1)
b′b (t) ≈ Vb′b − βV

′
b′b sin(ωt), (5.4.26)

for odd (b′ + b) neglecting higher harmonics. The coefficients Wb′b, W ′
b′b, Vb′b

and V ′b′b have a very weak dependence on β only and one has W ′
b′b ≪ Wb′b ∼ 1

and V ′b′b ≪ Vb′b ∼ 1. At a ν-photon resonance, we can likewise approximate the

instantaneous energy difference between both bands like

Eb(q, t) −Eb′(q, t) ≈ νh̵ω + βFb′b(q) sin(ωt) (5.4.27)

and its inverse like

1

Eb(q, t) −Eb′(q, t)
≈

1

νh̵ω
− β
Fb′b(q)

(νh̵ω)2
sin(ωt). (5.4.28)
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Taking terms up to β2, the matrix element Mb′b(q, t) then reads

Mb′b(q, t) ≈ −i
V0

ν
[βWb′b cos(ωt) − β2 1

2
Xb′b(q) sin(2ωt)] , (5.4.29)

for even b + b′ and

Mb′b(q, t) ≈ 2 sin(qa)
V0

ν
[βVb′b cos(ωt) − β2 1

2
Yb′b(q) sin(2ωt)] , (5.4.30)

for odd b + b′. Here we used the notation

Xb′b(q) = [W ′
b′b +

Fb′b(q)

∆b′b(q)
], Yb′b(q) = [V ′b′b +

Fb′b(q)

∆b′b(q)
]. (5.4.31)

In the derivation we have explicitely used the resonance condition

∆b′b(q) = εb′(q) − εb(q) = νh̵ω, (5.4.32)

where εb(q) is the static dispersion relation, which has been plotted in Fig. 5.3.3 and

which is not renormalized by a Bessel function as it is the case for the shaken lattice.

At the ν-photon resonance between bands b and b′, it is sufficient to describe the

system within the subspace spanned by these two states, as all other Bloch states

can be neglected. This approximation is justified, as it will be confirmed later in

the numerical simulation, since most of the resonances are between two states only.

Up to a time-dependent energy constant, the relevant Hamiltonian is thus given by

Ĥ ′(q, t) ≈ [νh̵ω + βFb′b(q) sin(ωt)]∣b′q⟩⟨b′q∣

+Mb′b(q, t)∣b
′q⟩⟨bq∣ +M∗

b′b(q, t)∣bq⟩⟨b
′q∣. (5.4.33)

These can be expanded in Fourier components

Ĥ ′(q, t) = ∑
m

Ĥm(q)eimωt, (5.4.34)

Ĥm(q) =
1

T ∫
T

0
dt e−imωtĤ ′(q, t), (5.4.35)
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with driving period T = 2π/ω. For the most relevant transition from the ground to

the second excited band, we find

Ĥ0(q) = νh̵ω∣2q⟩⟨2q∣, (5.4.36)

Ĥ1(q) = −i
βF20(q)

2
∣2q⟩⟨2q∣ +

βV0W20

2ν
(∣2q⟩⟨0q∣ − ∣0q⟩⟨2q∣), (5.4.37)

Ĥ2(q) =
β2V0X20(q)

2ν
(∣2q⟩⟨0q∣ − ∣0q⟩⟨2q∣), (5.4.38)

as well as the conjugated terms Ĥ−m = Ĥ†
m. The terms Ĥm become smaller with

increasing m and depend on the driving strength like β ∣m∣. This applies also to the

higher harmonics that we neglected.

With the Fourier components of the Hamiltonian we can readily write down the

quasienergy operator

⟨⟨b′q′m′∣Q̄∣bqm⟩⟩ = ⟨b′q′∣(δm′mmh̵ω + Ĥ
′
m′−m(q))∣bq⟩, (5.4.39)

of the amplitude modulated lattice. We write Q̂ in the basis ∣bqm⟩⟩ in the extended

Hilbert space, where ∣bqm⟩⟩ represents the time-dependent state ∣bq⟩eimωt in the

original state space. The relevant coupling matrix elements of the perturbation

V̂pert change the photon number m by ±1 or by ±2. At the ν-photon resonance

between states ∣bq⟩ and ∣b′q⟩ they are given by

⟨⟨2(m ± 1)∣V̂pert∣2m⟩⟩ = ∓i
βFb′b

2
(5.4.40)

⟨⟨2(m ± 1)∣V̂pert∣0m⟩⟩ = −i
βV0Wb′b

2ν
(5.4.41)

⟨⟨2(m ± 2)∣V̂pert∣0m⟩⟩ = ±
β2V0Xb′b

2ν
(5.4.42)

for even b + b′ and

⟨⟨2(m ± 1)∣V̂pert∣2m⟩⟩ = ±2 sin(qa)
βFb′b

2
(5.4.43)

⟨⟨2(m ± 1)∣V̂pert∣0m⟩⟩ = 2 sin(qa)
βV0Vb′b

2ν
(5.4.44)

⟨⟨2(m ± 2)∣V̂pert∣0m⟩⟩ = ±i2 sin(qa)
β2V0Yb′b

2ν
(5.4.45)
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for odd b + b′, see Eqs. (5.4.37) and (5.4.38).

Comparing the Fourier components of the Hamiltonian in the amplitude modulated

scenario with that of the shaken lattice scenario, we see that the groundstate cou-

ples stronger to the second than not the first excited band, since W20 ≈W
(0)
20 (t) >

W
(1)
10 (t) ≈ V10, see Fig. 5.4.1. For the transitions to first excited band, the coupling

terms have an additional factor of i2 sin(qa) compared to those to the second

excited band. Also, the Hamiltonian has more non-vanishing Fourier components

than in the case of the shaken lattice, such that direct coupling elements are present

not just for single-photon processes but also for higher m.

5.4.2. Multi-Photon Heating from a Rotating-Wave

Approximation

The rotating-wave approximation for the amplitude modulated lattice is justified if

the coupling matrix element Mb0(q, t) is small compared to the driving frequency

h̵ω. Both quantities scale like 1/ν. Therefore this condition depends mainly on the

driving strength β.

As in the case of the shaken lattice, we first perform another gauge transformation,

with the unitary operator

Û ′(t) = exp ( − i∑
q

[νωt −
βFb0(q)

h̵ω
cos(ωt)]∣bq⟩⟨bq∣). (5.4.46)

such that the resonant states have the same photon index m and such that the

time dependency of the dispersion relation is removed. Assuming the resonance

condition (5.4.32), the transformed Hamiltonian reads

Ĥ ′′(q, t) =M20(q, t)e
iνωt−iβFb0(q)

h̵ω
cos(ωt)∣2q⟩⟨0q∣ + h.c. . (5.4.47)

In the following, we will again drop the label q on all quantities. Employing the

relation

exp(−ia cos(b)) =
∞
∑
k=−∞

(−i)kJk(a)e
−ikb, (5.4.48)
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where Jk(x) denotes the Bessel function of first kind, we find the Fourier components

of the time-dependent matrix element

Mb0(q, t)e
iνωt−iβFb(q)

h̵ω
cos(ωt) =∑

r

M
(ν)
b,r e

irωt (5.4.49)

to be given by

M
(ν)
b,r = −i

βV0Wb

2ν
(−i)ν+1−rJν+1−r(

βFb
h̵ω

) − i
βV0Wb

2ν
(−i)ν−1−rJν−1−r(

βFb
h̵ω

)

+
β2V0Xb

2ν
(−i)ν+2−rJν+2−r(

βFb
h̵ω

) −
β2V0Xb

2ν
(−i)ν−2−rJν−2−r(

βFb
h̵ω

)

(5.4.50)

for even b and

M
(ν)
b,r = sin(qa)[

βV0Vb

ν
(−i)ν+1−rJν+1−r(

βFb
h̵ω

) +
βV0Vb

ν
(−i)ν−1−rJν−1−r(

βFb
h̵ω

)

+i
β2V0Yb
ν

(−i)ν+2−rJν+2−r(
βFb
h̵ω

) − i
β2V0Yb
ν

(−i)ν−2−rJν−2−r(
βFb
h̵ω

)]

(5.4.51)

for odd b. For the rotating-wave approximation, we now neglect the rapidly rotating

phases of the coupling matrix element and keep only the 0th component of the

Fourier expansion of the Hamiltonian

M20(q, t)e
iνωt−iβFb(q)

h̵ω
cos(ωt) ≈M

(ν)
0,b . (5.4.52)

Thus, the effective coupling parameter is given by

C(b,ν) =M
(ν)
0,b . (5.4.53)

In order to interpret this result and estimate the scaling of C(b,ν), it is useful to

make further approximations. First of all, let us consider only the leading order

with respect to the driving strength β. For this purpose, we remember again that

for small arguments x (and k ≥ 0) the Bessel function is asymptotically given by

Jk(x) ≃
1

k!
(
x

2
)
k

. (5.4.54)
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Hence, in leading order only the second and the fourth term of Eq. (5.4.50) and

Eq. (5.4.51) contribute to M0,b and we find

M
(ν)
0,b ≃ (−i)ν

βV0

ν
[
Wb

2
+

(ν − 1)Xbh̵ω

Fb
]
(
βFb
2h̵ω)

ν−1

(ν − 1)!
(5.4.55)

for even b. For large photon numbers ν, we can now use Stirling’s formula

k! ≃
√

2πk(
k

e
)
k

(5.4.56)

valid for large k. Employing Eqs. (5.4.32), we obtain

C(b,ν) ≃ βV0

√
π

2ν3
(Wb +

W ′
b∆b

Fb
+ 1)(

β

βthresh,b

)

ν−1

, (5.4.57)

for even b and

C(b,ν) ≃ βi2 sin(qa)V0

√
π

2ν3
(Vb +

V ′b∆b

Fb
+ 1)(

β

βthresh,b

)

ν−1

, (5.4.58)

for odd b. Here we introduced the threshold value

βthresh,b =
2∆b

eFb
(5.4.59)

for the driving strength. From Eq. (5.4.57) and Eq. (5.4.57) we conclude that for

large a photon-number ν heating occurs in a rather sharp transition when the

driving strength is increased and reaches the threshold. Namely, for β < βthresh,b

the coupling parameter is exponentially suppressed with respect to ν = ∆b/h̵ω.

This result is favorable for Floquet engineering, as it tells us that for sufficiently

low frequencies and not too strong driving, interband heating becomes very small.

However, the predicted threshold is only valid as long as M20(t) is small compared

to h̵ω for β = βthresh,b. If this is not the case, we have to go beyond the rotating-wave

approximation. This can be done using once more the degenerate perturbation

theory in Floquet space, as we will do in the next chapter.
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5.4.3. Multi-Photon Heating from Floquet Perturbation Theory

In this section we use degenerate perturbation theory in the Floquet space to

estimate the effective coupling parameter C(b,ν)(q) for the resonant ν-photon

coupling of the states ∣0q⟩ and ∣bq⟩. We will first explicitely calculate the first

effective coupling parameters for the transition to the second excited band since

this is the most relevant heating channel at q = 0, where the condensate is often

initialized in an experiment. Then we will derive the asymptotics for the general

case and show that there is a cut-off in the driving strengths, below which interband

excitations are suppressed exponentially for large ν.

As in the case of the shaken lattice, we define the perturbation in the extended

Hilbert space is given by the operator

⟨⟨bqm′∣V̂pert∣bqm⟩⟩ = ⟨⟨bqm′∣(Q̂ − Q̂0)∣bqm⟩⟩ (5.4.60)

= (1 − δm′m)δq′q⟨b
′q∣∣Ĥm′−m(q)∣bq⟩.

where the unperturbed quasienergy operator in this case takes the form

⟨⟨bqm′∣Q̂0∣bqm⟩⟩ = δm′m⟨b′q′∣(mh̵ω + Ĥ ′
0)∣bq⟩ (5.4.61)

= δm′mδq′qδb′b[mh̵ω + εb(q)].

The unperturbed quasienergy εbm(q) is thus given by the photonic energy mh̵ω

plus the static dispersion relation

εbm(p) =mh̵ω + εb(p). (5.4.62)

The relevant coupling matrix elements of the perturbation in the quasienergy

operator change the photon number m by ±1 or by ±2 so that for n > 2 necessarily

higher-order processes have to be taken into account in order to describe the

coupling between ∣0m⟩⟩ and ∣2(m−n)⟩⟩. For this we assume that we do not hit any

double-resonance so that the intermediate states do not have a different band index

than b or b′. This assumption is justified since there are only few double-resonances

in the case of the amplitude-modulated lattice, as we will demonstrate in Sec. 5.4.4.

Double-resonances are discussed in App. C. Only with this assumption it is sufficient
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that we have calculated the matrix elements of the quasienergy operator Q only at

the ν-photon resonance.

For the single-photon resonance with ν = 1, hence, both states are directly coupled

by the matrix element (5.4.41), so that the coupling parameter reads

C(2,1) = ⟨⟨2(m − 1)∣V̂pert∣0m⟩⟩ =
βV0Wb

2
. (5.4.63)

For the two-photon resonance with ν = 2, we have two relevant contributions to

the coupling parameter, namely

C(2,2) = C
(1)
(2,2) +C

(2)
(2,2). (5.4.64)

The first contribution directly corresponds to the matrix element (5.4.42) describing

a two-photon process,

C
(1)
(2,2) = ⟨⟨2(m − 2)∣V̂pert∣0m⟩⟩ = −

β2V0Xb

4
. (5.4.65)

The second contribution stems from the second-order processes ∣0m⟩⟩ → ∣2(m −

1)⟩⟩ → ∣2(m − 2)⟩⟩, where both states are coupled via the energetically distant

intermediate state ∣2(m − 1)⟩⟩. The unperturbed quasienergy of this intermediate

state, ε2(m−1) = nh̵ω+(m−1)h̵ω, lies h̵ω above the quasienergy ε0m = ε2(m−n) =mh̵ω

of the degenerate doublet. According to the rules of degenerate perturbation theory

(see Eq. (5.3.24), or e.g., Ref. [57]), the effective coupling element is

C
(2)
(2,2) =

⟨⟨2(m − 2)∣V̂pert∣2(m − 1)⟩⟩⟨⟨2(m − 1)∣V̂pert∣0m⟩⟩

ε0m − ε2(m−1)
(5.4.66)

= −
β2FV0Wb

8h̵ω
.

Let us finally consider the excitation process with ν = 3. The coupling parameter

is a combination of three contributions,

C(2,3) = C
(2)
(2,3) +C

(3a)
(2,3) +C

(3b)
(2,3). (5.4.67)
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The first contribution stems from the second-order process ∣0m⟩⟩→ ∣2(m − 2)⟩⟩→

∣2(m − 3)⟩⟩. The intermediate state ∣2(m − 2)⟩⟩ have a quasienergy lying h̵ω above

the degenerate doublet and the resulting coupling is given by

C
(2)
(2,3) =

⟨⟨2(m − 3)∣V̂pert∣2(m − 2)⟩⟩⟨⟨2(m − 2)∣V̂pert∣0m⟩⟩

ε0m − ε2(m−2)
(5.4.68)

= −
β3F2V0X2

4nh̵ω
.

The second contribution stems from the third-order processes ∣0m⟩⟩→ ∣2(m−1)⟩⟩→

∣0(m − 1)⟩⟩→ ∣2(m − 3)⟩⟩. The quasienergies of both intermediate states ∣2(m − 1)⟩⟩

and ∣0(m − 1)⟩⟩ are separated by 2h̵ω and −h̵ω from the degenerate doublet of

states to be coupled. The matrix element is, thus, is roughly

C
(3a)
(2,3) ≈ ( − i

βV0W2

2ν
)

3
1

(−2h̵ω)(h̵ω)
= −i

β3V 3
0W

3
2

432(h̵ω)2
. (5.4.69)

The third contribution stems from the third order process ∣0m⟩⟩ → ∣2(m − 1)⟩⟩ →

∣2(m−2)⟩→ ∣2(m−3)⟩⟩. The quasienergies of both intermediate states are separated

by 2h̵ω and h̵ω from the degenerate doublet. The corresponding coupling parameter

is roughly

C
(3b)
(2,3) ≈ (

iβF2

2
)

2
−iβV0W2

2ν

1

(−2h̵ω)(−h̵ω)
= i
β3F2

2V0W2

32(h̵ω)2
. (5.4.70)

Extending the perturbative arguments used here to higher orders of the perturbation

theory, one can estimate also the coupling parameters C(2,ν) for multi-photon

transitions with ν > 3. The same approach can also be applied for transitions to the

first excited band or higher lying bands. In leading order in the driving strengths

β, we can again bring the coupling parameters into the very same form

C(b,ν) = βB(b,ν)(
β

β(b,ν)
)

ν−1

(5.4.71)

encountered already within the rotating-wave approximation (5.4.57) and (5.4.58).

Here the coefficient B(b,ν) sets the energy scale. Once more for the driving strength

150



5.4. Multi-Photon Heating in an Amplitude-Modulated Lattice

β we find a threshold value, which we denote β(b,ν). For a driving strength below

the threshold, interband excitation processes are suppressed exponentially for large

photon numbers ν = ∆b/(h̵ω), that is for low frequencies. While Eq. (5.4.71) is of

the same form as the rotating-wave result from Sec. 5.4.2, the coefficient B(b,ν) and

the threshold value β(b,ν) will generally be different.

Finally, let us estimate how β(b,ν) scales when ν becomes large. For that purpose,

the first quantity to be studied are the energy denominators of the perturbatively

computed coupling parameters. They are given by the product of the quasienergy

difference εbkmk(q) of intermediate states with respect to the quasienergy εb0m0(q)

of the degenerate doublet of states. Taking, for simplicity, a sequence of processes

that lower the photon number in steps of one, these denominators provide a factor

of
1

(ν − 1)!(h̵ω)ν−1
≃

1
√

2π(ν − 1)
(

e

(ν − 1)h̵ω
)

(ν−1)

, (5.4.72)

where we have again used Stirling’s formula (5.4.56). This result indicates that

the energy denominators contribute a factor of νh̵ω/e = ∆b/e to β(b,ν), which for

fixed ∆b is independent of ν. Similar results are obtained for sequences involving

individual processes that lower the photon number in steps larger than one.1 Apart

from the energy denominators also the matrix elements contribute to β(b,ν). In the

present example of a lattice with modulated lattice depth, we must expect that the

1/ν-dependence of the matrix elements Eq. (5.4.41)-(5.4.45) leads to an increase

of β(b,ν) with ν. This effect is not captured by the rotating-wave approximation,

which takes these matrix elements into account in linear order only. In order to

systematically improve the result (5.4.57) and (5.4.58) obtained within the rotating-

wave approximation, one can also start from the transformed Hamiltonian Ĥ ′′(q, t)

given by Eq. (5.4.47). In this case we would recover the result (5.4.53) already in

first order. Note that the coupling matrix element (5.4.53) contains infinite powers

of the matrix element (5.4.40) [(5.4.43)] for even [odd] b + b′, while it is linear in

the matrix elements (5.4.41) and (5.4.42 [(5.4.44) and (5.4.45)]. Transforming from

1One example is the case, where for an even value of ν we combine ν/2 processes with matrix
elements ∝ β2 that individually lower the photon number by two. In this case the energy
denominator can take the form (ν − 2)!!(h̵ω)ν/2−1 = (ν/2 − 1)!(2h̵ω)ν/2−1 ≃

√
π(ν − 2)[(ν −

2)h̵ω/e]ν/2−1. It contributes a factor of
√

∆b/e to β(b,ν), which is again independent of ν.
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Ĥ ′(q, t) to Ĥ ′′(q, t), thus, corresponds to a resummation of part of the perturbation

series obtained for Ĥ ′(q, t) to infinite order.

5.4.4. Quasienergy Spectrum

In this section we compute and illustrate the quasienergy spectrum of the amplitude-

modulated lattice. We will describe the spectrum and compare it to the one obtained

for the shaken lattice. The interpretation will be done in the next section.

Introducing again plain waves (see Eq. (5.3.48)) with momenta p = q+P2π/a,−π/a <

q ≤ π/a,P ∈ Z the Hamiltonian matrix takes the form

HP,Q(q, t) = ER {[
qa

π
+ 2P ]

2

δP,Q +
V0

4
[1 + β sin(ωt)] (δP,Q+1 + δP,Q−1)} .

(5.4.73)

where we, for convenience, factored out the recoil energy ER = h̵2π2/2ma2. With a

momentum cut-off ∣P ∣ ≤ P ∗, Eq. (5.4.73) can be diagonalized for each quasimomen-

tum q independently. The quasienergies are computed by solving and diagonalizing

the monodromy operator MT . We choose V0 = 10ER as the lattice depth.

In Fig. 5.4.2 we plot the quasienergy spectrum of the amplitude-modulated lattice

for h̵ω = 8ER, which lies close to the important transition to the second excited band

between ω(2,1)(q = 0, β = 0) = 7.856ER and ω(2,1)(q = π, β = 0) = 10.955ER, as a func-

tion of the quasimomentum q for increasing driving strength β = 0, 0.1, 0.5, 1, 1.5, 2.

Note that it is difficult to compare the driving strengths β of the shaken lattice

and β of the amplitude modulated lattice since the former is normalized by h̵ω

and also since the relation between the driving strengths and the resulting effective

couplings strengths between the states are of very different nature. Whereas ground

and first excited bands are well separated in quasienergy for β = 0, the second

band is crossed close to q = 0. Already for a small driving strength of β = 0.1 this

crossing opens and the bands hybridize. At the same time the first and the third

excited band hybridize close to q = ±π/a. For a larger driving strength the density

of the Bloch band with index b = 0 distributes fairly over several Floquet states,

indicating strong heating processes in a quantum quench scenario. In general the

Floquet states increasingly deform for increasing β. Only the Bloch states with
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Figure 5.4.2.: Quasienergy spectrum of the amplitude-modulated lattice with
shaking frequency h̵ω = 8ER close to the 1-photon resonance to the second
excited band at V0 = 10ER and varying driving strength β. The calculation
was done in the subspace of the six lowest bands of the non-driven system
and their continuiation in Floquet space, therfore at each quasimomentum six
states are shown. The color code illustrates the projection of each state on the
ground (red) and first excited (blue) state of the non-driven system.

index b = 4 and b = 5 do not mix with the other Bloch bands since their kinetic

energy is so large that the lattice modulation hardly affects them.

In Fig. 5.4.3 we plot the quasienergies corresponding to the same Floquet states

but as a function of β for q = 0 and q = π/2a. For q = 0 the Bloch states with b = 0

and b = 2 start close together at β = 0 and therefore mix already for small β. For

q = π/2a the states lie further apart in quasienergy and therefore start to mix only

for larger β. Also here the Floquet state connected with the ground state at β = 0

passes two avoided crossings with the Floquet states stemming from the Bloch

states with b = 3 and b = 4. This would be relevant in an adiabatic protocol, where

a smooth switching-on of the driving strength would excite to these two Bloch

states.

In Fig. 5.4.4 we plot the quasienergy spectrum of the amplitude-modulated lattice
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Figure 5.4.3.: Quasienergy spectrum of the Floquet states shown in Fig. 5.4.2
as a function of the driving strength β for h̵ω = 8ER. From left to right
the density of the Bloch states b = 0,1,2 is colored in red. Upper panel: at
quasimomentum q = 0 where the coupling between bands with odd b+b′ vanishes
completely. Lower panel: at quasimomentum q = π

2 .

for h̵ω = 5ER, close to the 1-photon resonance to the first excited band and the

2-photon resonance to the second excited band. Since the frequency is smaller,

the photon number of most couplings is higher, making the couplings smaller in

general. Apart from the 2-photon resonance with the first excited band for small

β, however, it is very difficult to draw further information from these plot.

Finally we consider in Fig. 5.4.5 the quasienergy as a function of β for h̵ω = 5ER.

We observe that at q = 0, which is slightly off-resonant with respect to the transition

between ground and second excited band, only for large driving strength β the

Bloch bands with b = 0 and b = 2 mix. At the same time they do not couple to

other bands, even for strong driving strengths β ≈ 2 which implies that the lattice

amplitude is modulated three times as high as the depth of the static lattice. At

q = π/2a the situation is different: Already for small β the Bloch states with b = 0

and b = 1, which lie very close together at β = 0, mix. For large β the density n0 is

distributed over three Floquet states. Again we see avoided crossings with Floquet
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Figure 5.4.4.: Same plots as in Fig. 5.4.2 but with h̵ω = 5ER, close to the
1-photon resonance to the first excited band and the 2-photon resonance to
the second excited band.

states stemming from Bloch bands with high band index.

5.4.5. Numerical Simulation of Multi-Photon Heating

Processes

Finally we will consider the numerical simulation of the amplitude-modulated lattice

in the quench scenario and the respective heating plots that can be understood well

with the analyical and numerical results from Sec. 5.4.1 - Sec. 5.4.4 and App. C.

We compare the resonances to those of the shaken lattice.

To this end we integrate the time-dependent Schrödinger equation Eq. (2.1.2) over

a time span of τ , starting from the initial ∣0q⟩ with corresponding vector u0Q(q).

In Fig. 5.4.6 a)-e) we plot the heating parameter hτ as a function of both driving

strength β and driving frequency h̵ω within the range of the 1-photon resonance

to the first excited band. Again we assign the respective multiphoton resonances

(b, ν) via the resonance condition Eq. (5.4.32). The resonance lines do not shift
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Figure 5.4.5.: Same figure as Fig. 5.4.3 but with h̵ω = 5ER, close to the
1-photon resonance to the first excited band and the 2-photon resonance to
the second excited band.

for increasing β, as in the shaken case, since the bands are not renormalized with

Bessel functions. This happens only slightly if resonances repel each other. The

resonances only shift with q where the resonance condition follows the dispersion

relation of both states. Furthermore, the driving strength is not reparameterized

by h̵ω. Therefore the width of the resonance (b, ν) is directly proportional to the

effective coupling element C(b,ν). Remember that the coupling from the ground

state to bands with odd b is parameterized by a factor of 2 sin(qa), so it vanishes

at the edges of the Brilloin zone at q = 0 and q = π/a, which explains the vanishing

resonance lines at those quasimomenta. On the other hand, and in contrast

to the shaken lattice, there is no such factor depending on the photon index ν.

Therefore, resonance lines for even and odd ν are visible for all q and their thickness

decreases monotoneosly for increasing ν for each band. Furthermore, we see that

the resonance lines appear rather abruptly for a specific β ≈ β(b,ν), below which the

heating is suppressed. This β(b,ν) apparently increases with ν and can be identified

with the threshold value that we predicted by the rotating-wave approximation

and the Floquet perturbation theory.
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Figure 5.4.6.: Heating plot for the amplitude-modulated lattice: Minimum
occupation of the ground state min∆t[n0(t)] during a time span of τ = 418/ER
(corresponding to 20ms for ER = 3.33⋅2πh̵kHz), plotted versus driving frequency
h̵ω/ER and driving amplitude β in a) for q = 0, in b) for q = π/2 and in c)
versus quasimomentum q with β = 0.4 . The lattice depth is again V0/ER = 10.
Resonances corresponding to an ν-photon transition from band 0 to b are
visible as white stripes and labeled by (b, ν). For the points marked by a, b, c,
d and e the evolution of the probabilities nb(t) is depicted in panels a), b), c),
d) and e) of Fig. 5.4.7, respectively. Above the plot we assign the respective
resonances (b, ν) and cross out the forbidden resonances at q = 0.

Let us now compare the resonance lines with b = 1 and b = 2 for intermediate

0 < q < π/a. Remember that in the amplitude modulated lattice the most dominant

matrix element coupling the ground state to the first excited band is much smaller

than the one to the second excited band, W
(0)
02 ≈ 5W

(1)
01 at V0 = 10ER, see Fig. 5.4.1.

With the additional factor of 2 sin(qa), the direct (single-photon) coupling elements
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b)

a)

c)

d)

e)

Figure 5.4.7.: Time evolution of the populations nb(t) of the six lowest bands.
From top to bottom, the five plots correspond to the parameters marked by
a, b, c, d and e in Fig. 5.4.6, respectively. The plotted time-span has been
adapted to optimize visibility.

to the first excited band will be similar to that to the second excited band. However,

the driving frequency suppresses the effective coupling for multiphoton transitions

with ν > 1, see Eq. (5.4.57)-(5.4.58) and Eq. (5.4.69)-(5.4.70). Therefore, the

ν-photon resonance to the second excited band is additionally suppressed with

respect to the resonance to the first excited band since the latter happens always at

a lower frequencies. This is best visible for q = π/2a, where the (2, ν) resonances are
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Figure 5.4.8.: Heating plot for q = π/2a as in Fig. 5.4.6 b), where the
transitions to the different Bloch bands are colorized. The color represents the
Bloch band b, where the particle is excited to whereas the circle size illustrates
the maximum occupation maxt∈[b,τ] nb(t) of the respective Bloch band b during
the time span τ .

strong for ν = 2 and ν = 3 but fall off quickly with ν, whereas the (1, ν) resonances

are visible even until ν = 9.

In Fig. 5.4.6 f) we plot for fixed β = 0.4 the heating parameter hτ as a function of

h̵ω and the quasimomentum q. Again we see that the resonances (2, ν) for ν > 1

become weaker for increasing ω, as q is increased, shifting the resonances towards

higher frequencies. This is best visible for the (2,2) resonance and the (2,4)

and (2,5 resonances that are even invisible above a certain ω, since the threshold

value β(2,ν) has then become lower. Furthermore, we observe how resonances cross

and avoid crossings. As explained in App. C, this depends on how the three

involved states are coupled to each other. If the excited states belonging to the

two resonances are coupled stronger to each other than to the ground state, they

form an avoided crossing. If, otherwise, the strongest coupling involves the ground

state, the resonances cross, but can still be deformed.

In Fig. 5.4.7 we plot the time evolution for four isolated multiphoton resonances to

each of the first four excited bands, which are marked in Fig. 5.4.6. We observe

very clean sinusoidal oscillations, which are rather difficult to find in the case of the

shaken lattice. This enables us to extract easily the coupling strength from the time

evolution and compare it to the estimations from the rotating-wave approximation

and Floquet perturbation theory. From the evolution shown in Fig. 5.4.7(a), we can
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5. Heating Processes in Driven Optical Lattices

extract the period T sim
(2,2) ≈ 2.56 ms for β = 0.3, h̵ω = 3.9ER, q = 0, V0/ER = 10 and

ER = 3.33 ⋅ 2πh̵kHz. For these parameters, we obtain ∆2 ≈ 7.77ER, F (0) ≈ 5.51ER,

W ≈ 0.345, as well as W ′ ≈ 0.12. Using the rotating-wave approximation for the

coupling parameter (5.4.55) and (5.4.53), we obtain the estimate TRW
(2,2) ≈ 2.03 ms

for the oscillation period, which lies about twenty percent below the numerically

observed value. In Fig. 5.3.19 we plot the heating plot again with colorized Bloch

band occupation maxt∈[b,τ] nb(t). In contrast to the shaken case, for the amplitude-

modulated lattice the resonances most of the times are really isolated, i.e. only a

single Bloch band is getting excited at a resonance.
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6. Conclusion

In this work, we have presented two proposals where periodic driving of an optical

lattice leads to interesting many-body phenomena in the strongly-interacting regime.

In the first proposal, lattice shaking has been used to coherently couple the lowest

two Bloch bands of a one-dimensional, dimerized lattice and thus orbital degrees

of freedom have been opened. Thereby, an orbital driven phase transition from a

Mott insulating to a superfluid ground state could be achieved by controlling the

frequency of the shaking, and thus, the relative occupation of the two Bloch bands.

In the second proposal, we have shown how interacting, one-dimensional lattice

anyons can be simulated by bichromatically shaking a tilted cosine lattice, which

contains strongly interacting bosons. We have demonstrated how real-space Friedel

oscillations can be used as experimental signatures for anyonization, especially in a

system of a small number of atoms using a quantum microscope. The feasibility of

proposals has been tested via real-time simulations, thereby testing the robustness

towards heating and the major approximations that were applied. The experimental

realization of the proposals is thus promising and it would be very interesting to

see the predicted phenomena be observed. Both, the coherent opening of orbital

degrees of freedom, as well as the creation of one-dimensional lattice anyons in

an optical lattice, have a rather fundamental character. Hence, they could trigger

follow-up experiments, which explore more involved many-body quantum models

with similar properties.

Furthermore, we have made a detailed analysis of single-particle, multi-photon

heating processes in a shaken and in an amplitude-modulated lattice. As we have

seen, there are several methods, including numerical and analytical ones, to analyze

and estimate the position and the strength of resonances of particle transitions

from the ground to excited Bloch states. Moreover, the excellent agreement with

the experimental results in the shaken case, even for large photon numbers, as well
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6. Conclusion

as the existence of resonances with high photon numbers with very clean two-state

oscillations, suggest that multi-photon transitions in a driven lattice can possiby

be used to accurately address and excite higher lying Bloch bands.

The results for single-particle, multi-photon heating processes are relevant for the

case of driven systems with weakly interacting particles. However, the much more

involved case of multi-photon heating in a driven system of strongly interacting

particles has to be understood on a similar level. Accomplishing this, optimal

parameter regimes for Floquet proposals with strongly interacting systems can

be provided in a sufficient manner. An important step in this direction has been

made by the experiment described in Ref. [237]. Herein, shaking-induced heating of

interacting bosons was measured as a function of the shaking frequency, the driving

amplitude and the interactiong strength. While the functional dependencies of the

heating rates could be explained quite well with the help of many-body Floquet

theory, other experimentally relevant effects like e.g. the depth of the trapping

potential, multi-scattering of the bosons and the density of states of the whole

atomic cloud, have also been shown to be relevant for the overall multi-photon

heating rates.

All in all, the ever growing toolbox of Floquet theory, the successful realization

of a range of proposals using driven lattices in the recent years, and the better

comprehension of heating processes in these experiments, demonstrate how a

periodic driving has become a standard tool in the field of quantum simulations

with cold atoms, and it will help to understand many more phenomena of many-body

quantum physics.
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A. Implementation of Exact

Diagonalization of the Two-Band

Model

In this section we present one possibility to implement the diagonalization of the

effective two-band Hubbard Hamiltonian (3.3.17). For the two-band bosonic chain

we choose as basis an outer occupation-number basis that counts the particle

occupation of each site and an inner occupation-number basis that locally counts

the occupation of the orbital states. More specifically, each component of the outer

occupation-number basis

∣N1, . . . ,Nj, . . . ,NM⟩ = ∣N1⟩⊗ . . .⊗ ∣Nj⟩⊗ . . .⊗ ∣NM⟩ (A.0.1)

is not a scalar, but a vector from the inner basis

∣Nj⟩ = (n
(Nj ,0)
j , n

(Nj−1,1)
j , . . . , n

(0,Nj)
j ) . (A.0.2)

Here n
(a,b)
j gives the local amplitude of having a particles in orbital 0 and b particles

in orbital 1 on site j with both adding up to the number of particles on site j in

this state a + b = Nj. The outer state is then a tensor product of the inner basis.

So, for example, on a system with N = 6 particles on M = 4 sites we find the state

∣0,3,1,2⟩ = n
(0,0)
1 ⊗ (n

(3,0)
2 , n

(2,1)
2 , n

(1,2)
2 , n

(0,3)
2 )⊗ (n

(1,0)
3 , n

(0,1)
3 )⊗ (n

(20)
4 , n

(11)
4 , n

(02)
4 )

(A.0.3)
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The outer occupation-number basis is numerated according to how much the parti-

cles are remote from the first site, starting with the state where they are all on the

first site:

ψ1 = ∣N,0, . . . ,0⟩

ψ2 = ∣N − 1,1,0, . . . ,0⟩ . . .

⋮

ψα = ∣N1, . . . ,Nj, . . . ,NM⟩ . . .

⋮

ψD(M,N) = ∣0, . . . ,0,N⟩

When constructing the Hamiltonian we have to know which of these states (or

rather set of states) are connected via a tunnel process. While it is easy to construct

from a state ∣N1,N2, . . . ,NM⟩ with index α the state that is connected via the

tunneling process of a particle from site j to site j + 1

∣N1, . . . ,Nj,Nj+1, . . . ,NM⟩→ ∣N1, . . . ,Nj − 1,Nj+1 + 1, . . . ,NM⟩, (A.0.4)

it is not trivial to get the index β of such a state. This index is needed to put the

respective tunneling term (which is a matrix in general) at the respective position

α,β in the Hamiltonian. The formula that gives out the index of a given state for

the indexing (A.0.4) is [238]

fα({N}) =
M

∑
j=1

Γ(N − 1 −
j

∑
i=1

Ni,M + 1 − i) , (A.0.5)

where

Γ(M,N) = (
M +N − 1

N
) (A.0.6)

counts the number of outer occupation-number states for a 1D lattice. Note that

D(M,N) = Γ(2M,N). The local tunneling matrices have to be constructed for

each combination of particle occupations Nj,Nj+1 of two neighbouring sites, i.e.
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Nj +Nj+1 = 1, . . .N . Also for the other terms in the Hamiltonian, like interaction

and band coupling terms, local Hamiltonians depending on possible occupations

Nj = 1, . . .N of a site are constructed. The full Hamiltonian is then constructed by

a tensor product of these local Hamiltonians together, adding the tunneling terms

and summing over all outer occupation-number states.
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B. Relevance of the Bond

Dimension in TEBD Calculations

Here we analyze how the accuracy of the numerical TEBD results, both real and

imaginary time, depends on the bond dimension. The bond dimensions used in

the simulation are limited by the large on-site state space, resulting from both

the facts that we take into account up to three orbital states per site and that we

are dealing with bosonic particles allowing for onsite occupation numbers larger

than one. For the different numerical results, we will therefore show how the reults

converges with respect to the bond dimensions, thereby justifying the choices of

bond dimensions we have made.

In Fig. B.0.1 we demonstrate how the correlations shown in Fig. 3.5.7 behave

if we reduce the bond dimension χ. A bond dimension of χ = 1 disregards all

two-particle correlations. For a bond dimension of χ = 2, short-distance correlations

are captured, though not very accurately. Long-distance correlations like χ8
αα

are disregarded though. In the rage χ = 10 . . .20 we observe the correlations still

alter considerably, especially the long-distance ones. The plots for higher bond

dimensions (χ > 20) can hardly be distinguished from each other.

A closer look at the converngence behavior in the transition region can be found

in Fig. B.0.2 below. Here we plot the correlation functions of Fig. 3.5.7 directly

with respect to the bond dimension, for different values of the detuning close to

the transition.

Let us now illustrate how the results of our real-time simulations change with respect

to the bond dimension. In Fig. 3.5.9 the preparation dynamics is investigated.

In Fig. B.0.3 we compare the numerical results of Fig. 3.5.9 (for which χ = 24

was used) with results for the lower bond dimension χ = 20 and χ = 22. Whereas

the general adiabadicity is captured quite well for both bond dimensions, the
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Figure B.0.1.: Correlations χ`α′α ≡ ⟨b̂†α′`b̂α0⟩/
√
nα′nα as a function of δ for

different bond dimensions χ for V0/ER = 10 (see Fig. 3.5.7).

expected Landau-Zeener oscialltions are only resolved for χ = 24. The oscillations

are expected to be smoother for even higher χ.

For imaginary TEBD, we could go even to χ = 28 on the given system. Therefore,

in Fig. B.0.4 we plot the overlap between the ground states of the two- and the

three-band model comparing results obtained for bond dimesions χ = 20,24,28.

The curves obtained for the larger to bond dimensions are hardly distinguishable.

Therefore we assume that going to a bond dimension of > 24 does not give any

significant improvement of the accuracy of the numerical results.
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Figure B.0.2.: Correlations χ`α′α ≡ ⟨b̂†α′`b̂α0⟩/
√
nα′nα as a function of the bond

dimension χ at different δ close to the phase transition for V0/ER = 10 (see
Fig. 3.5.7).
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Figure B.0.3.: Inner products of ground states of three-band real time evolu-
tion with three- and two-band imaginary time evolved ground state for a linear
decreasing of δ. Upper: bond dimension χ = 20 Middle: χ = 22 Lower: χ = 24
(as in Fig. 3.5.9)
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Figure B.0.4.: Inner product of the imaginary-time evolved ground state of
three- and two-band models for a linear decreasing of δ (see Fig. 3.5.9 for bond
dimension χ = 20,24,28 (χ = 24 in the main text).
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C. Ground-State Dynamics of

Few-State Systems

Here we analyze the time-dynamics for simple two- and three-state quantum systems.

These systems describe simple and double resonances in periodically driven lattices

and can explain their resonance spectrum. Therefore, we are especially interested

in the occupation dynamics of the ground state and its minimal occupation.

C.1. The Rabi Problem for Two Coupled States

If a quantum system is effectively described by only two coupled states ∣0⟩ (“ground

state”) and ∣1⟩ (“excited state”), its Hamiltonian can be written as

Ĥeff =
⎛

⎝

0 C

C∗ δ

⎞

⎠
(C.1.1)

with coupling strength C and detuning δ. Diagonalizing this Hamiltonian results

in the two eigenenergies

ε± =
δ ±

√
∣2C ∣2 + δ2

2
(C.1.2)

for the eigenvectors

⎛

⎝

v
(0)
±

v
(1)
±

⎞

⎠
=
⎛

⎝

C

ε±

⎞

⎠

1
√

∣C ∣2 + ε2±
(C.1.3)

where we used the notation v
(j)
± = ⟨j∣±⟩, j = 0,1. We are interested in the time

evolution of the system that starts in the ground state ∣0⟩ = v
(0)
+ ∣+⟩+ v

(0)
− ∣−⟩ at t = 0
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and then evolves in time as

∣ψ(t)⟩ = v
(0)
+ e−iε+t∣+⟩ + v

(0)
i e−iε−t∣−⟩. (C.1.4)

Consequently, if both states are coupled in perfect resonance δ = 0, we find a perfect

oscillation with frequency Ω0 = ∣2C ∣ between them,

n0(t) = ∣⟨0∣ψ(t)⟩∣2 = cos2 (
Ω0

2
t) , n1(t) = ∣⟨1∣ψ(t)⟩∣2 = sin2 (

Ω0

2
t) . (C.1.5)

For finite detuning δ > 0, we observe the time dynamics

n0(t) =
Ω2

0

Ω2
δ

cos2 (
Ωδ

2
t) + (1 −

Ω2
δ

Ω2
0

) , n1(t) =
Ω2

0

Ω2
δ

sin2 (
Ωδ

2
t) (C.1.6)

with oscillation (Rabi) frequency

Ωδ = ε+ − ε− =
√

Ω2
0 + δ

2. (C.1.7)

Note that there is only an incomplete particle transfer. The ground state is not

depleted anymore but its population has a non-zero minimum

min
t

[n0(t)] = 1 −
Ω2

0

Ω2
δ

. (C.1.8)

Both Eq. (C.1.7) and Eq. (C.1.6) are well-known but nevertheless important results,

since these equations provide the relation between amplitude and frequency (in-

cluding the detuning) of the periodic forcing on the one hand and coupling strength

and detuning of the coupled states on the other hand.

C.2. Three-State Cascade

Next we want to discuss the case of three states ∣0⟩, ∣1⟩ and ∣2⟩ that are coupled

in a cascade, i.e. ∣0⟩ is coupled to ∣1⟩ with strength C1 and ∣1⟩ is coupled to ∣2⟩

with strength C2. This situation appears often in double resonances in the shaken
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C.2. Three-State Cascade

optical lattices, where the coupling between adjacent states is much stronger than

between states more distant in energy. The Hamiltonian for a cascade can be

written as

Ĥeff =

⎛
⎜
⎜
⎜
⎝

−δ C1 0

C∗
1 −γ C2

0 C∗
2 δ

⎞
⎟
⎟
⎟
⎠

(C.2.1)

where we have chosen a parameterization for the detunings δ and γ that is motivated

by a periodically driven system.

For non-vanishing coupling strengths Ci, we always have three distinct eigenvalues

ε− < εX < ε+ with eigenstates ∣−⟩,∣X⟩ and ∣+⟩. Again we use the notation v
(j)
i,X,+ =

⟨j∣−,X,+⟩, j = 0,1,2. Assuming again the initial condition ∣ψ(t = 0)⟩ = ∣0⟩, the

ground state-occupation dynamics is

n0(t) = ∣∣v
(0)
− ∣2e−iε−t + ∣v

(0)
X ∣2e−iεX t + ∣v

(0)
+ ∣2e−iε+t∣

2
(C.2.2)

resulting in three harmonics with frequencies ε− − εX , εX − ε+ and ε+ − ε−. The

analytical expressions of eigenvalues and eigenstates of Hamiltonian (C.2.1) are

in general complicated. However, for δ = 0 the solution does have a simple form.

Therefore we first consider special cases and in the end make statements about the

general case.

If δ = 0, the eigenvalues take the form

ε± = −
γ

2
±

1

2

√
γ2 +Ω2

1 +Ω2
2 =

−γ ±Ωγ

2
, εX = 0 (C.2.3)

with the notation Ω1 = ∣2C1∣, Ω2 = ∣2C2∣ and Ωγ =
√
γ2 +Ω2

1 +Ω2
2. The corresponding

eigenstates read

⎛
⎜
⎜
⎜
⎝

v
(0)
±

v
(1)
±

v
(2)
±

⎞
⎟
⎟
⎟
⎠

=
1

√
Ω2

0 + ε
2
±

⎛
⎜
⎜
⎜
⎝

Ω1

ε±

Ω2

⎞
⎟
⎟
⎟
⎠

,

⎛
⎜
⎜
⎜
⎝

v
(0)
X

v
(1)
X

v
(2)
X

⎞
⎟
⎟
⎟
⎠

=
1

Ω0

⎛
⎜
⎜
⎜
⎝

Ω2

0

−Ω1

⎞
⎟
⎟
⎟
⎠

(C.2.4)
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where Ω0 =
√

Ω2
1 +Ω2

2. Note that if C2 > C1, from ∣v
(0)
− ∣2+ ∣v

(0)
X ∣2+ ∣v

(0)
+ ∣2 = 1 it follows

that

∣v
(0)
X ∣2 > ∣v

(0)
− ∣2 + ∣v

(0)
+ ∣2 (C.2.5)

implying also v
(0)
X > v

(0)
± .

We will consider further special cases to obtain an overview how the parameters

C1, C2, δ and γ determine the dynamics of the ground state. It is instructive to

start with the most simple case.

Case A: γ = δ = 0 and C1 = C2 = C

In this situation both states are in resonance and are coupled equally. The resulting

dynamics is simply

nA0 (t) = cos4 (
Ω0

2
t) (C.2.6)

with the oscillation frequency Ω0 =
√

2∣2C ∣. Here we find a perfect ground state

depletion, i.e.

min
t

[nA0 (t)] = 0. (C.2.7)

Case B: γ = δ = 0, C1 ≠ C2

For a double resonance with different coupling strengths we find

nB0 (t) =
Ω4

1

Ω4
0

[cos(
Ω0

2
t) +

Ω2
2

Ω2
1

]

2

. (C.2.8)

Here, both harmonics add constructively so that again the oscillation frequency

is Ω0. Note that for C1 > C2, the term in the bracket takes negative and positive

values and thus also zeros. This leads to ground state depletion. If C1 < C2, the

bracket is always positive and the minimum of the ground state occupation is finite.
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In total we have

min
t

[nB0 (t)] = max{0,(
Ω2

2 −Ω2
1

Ω2
2 +Ω2

1

)}

2

. (C.2.9)

Case C: γ = δ ≫ ∣Ci∣

In this case states ∣0⟩ and state ∣1⟩ are in resonance whereas state ∣2⟩ is largely

off-resonant. This sitation is a simple two state-resonance and was treated in the

previous section with time evolution

nC0 (t) = cos2 (
Ω1

2
t) , n1(t) = ∣⟨1∣ψ(t)⟩∣2 = sin2 (

Ω1

2
t) . (C.2.10)

Case D: γ ≫ ∣Ci∣, δ = 0

In this case, states ∣0⟩ and ∣2⟩ are in resonance but state ∣1⟩ is separated by a

large energy gap of size γ. Since γ ≫ 0, we have that ∣ε−∣ ≫ ∣ε+∣ ≈ 0 and thus

v
(0)
+ ≫ v

(0)
− ≈ 0. Therefore, in the time evolution is mainly governed by ∣+⟩ and ∣X⟩

and can be approximated by

nD0 (t) =
4Ω2

1Ω2
2

Ω4
0

cos2 (
ε+
2
t) + (

Ω2
2 −Ω2

1

Ω2
2 +Ω2

1

)

2

, nD2 (t) =
4Ω2

1Ω2
2

Ω4
0

sin2 (
ε+
2
t) . (C.2.11)

where the system is oscillating mainly between states ∣0⟩ and ∣2⟩. Therefore, the

situation resembles a two-state system (see previous section) but with an oscillation

slowed down by the energy barrier γ and a ground state minimum occupation of

min
t

[nD0 (t)] = (
Ω2

2 −Ω2
1

Ω2
2 +Ω2

1

)

2

. (C.2.12)

Case E: δ = 0

While we cannot make any statement for C1 > C2, for ∣C2∣ > ∣C1∣ we have that

min
t

[nE0 (t)] > 0 (C.2.13)

177



C. Ground-State Dynamics of Few-State Systems

The reason is from the inequality (C.2.5) it follows that the constant in the bracket

of the time evolution is larger than the prefactor of the oscillating terms altogether.

General Cascade

For the general three-state cascade with finite δ and γ, we will not give analytic

values for the amplitude and frequency of the oscillation. However, we can ask the

question if there is a finite value for ±∣δ∣ that leads to full ground state depletion in

the case ∣C2∣ > ∣C1∣, in contrast to the case δ = 0 when the ground state is always

partly occupied (Case E).

Without loss of generality, we can always choose ε− = −εX by adding a constant to

all eigenvalues. For δ = 0 we have (see Eq. (C.2.5)) that ∣vX ∣ > ∣v+∣, ∣v−∣, whereas

for δ → +∞, we obviously have ∣v
(0)
− ∣ = 1 and v

(0)
+ = v

(0)
X = 0. Since the eigenvalues

change smoothly with δ, there must be a value δ > 0 for which ∣v
(0)
− ∣ = ∣v

(0)
X ∣ > ∣v

(0)
+ ∣

resulting in the dynamics

n0(t) = 4∣v
(0)
− ∣4

RRRRRRRRRRR

cos(tε−) +
∣v

(0)
+ ∣2

2∣v
(0)
− ∣2

e−itε+
RRRRRRRRRRR

2

(C.2.14)

Since ∣v(0)+ ∣2

2∣v(0)− ∣2
< 1 in this situation, we conclude that

lim
t→∞

min
t

[n0(t)] = 0. (C.2.15)

Furthermore, since ε+ > ±ε− it follows that the minimum approaches zero rather

quickly. The same arguement holds for δ < 0 for which ∣v
(0)
+ ∣ = ∣v

(0)
X ∣ > ∣v

(0)
− ∣ giving

another resonance. Thus we confirmed that for ∣C2∣ > ∣C1∣ we see an avoided crossing.

To illustrate this result, in Fig. C.2.1 we plot the minimum of the time dynamics as

a function of both detunings δ and γ for C1 = 4 and C2 = 9. The avoided crossing,

as well as the two resonance lines corresponding to cases C (diagonal resonance)

and D (vertical resonance) are clearly visible. Each of the cases B-E is marked

in the plot. For these cases and case A (C1 = C2 = 4) and a case in the shifted

resonance (case F) we show in Fig. C.2.2 the time evolution of the state occupations

nb(t). Note that we have only presented results about n0(t) and not about the

occupations of the other two states. The avoided resonance crossing can be called
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B
E F

D C

Figure C.2.1.: a) Resonance plot in the δ-γ-parameter space in the (dimen-
sionless) three-state model with fixed coupling C1 = 4 and C2 = 9. The cases
B-E described in this section and a shifted resonance (Case F) are marked.
Their time dynamics is plotted in Fig.C.2.2b) The same plot but with renormal-
ized couplings C1 and C2, mirroring the situation and format that we encounter
in a shaken lattice.

B)

A)

C)

D)

E)

F)

Figure C.2.2.: Examples of the time dynamics in the three-state models for the
cases A-E and the case of a shifted resonance where ∣v−∣ = ∣vX ∣ (case F). Whereas
for cases A-D the frequency and amplitude of the ground-state oscillation
have a simple analytical form, they can always be calculated numerically by
diagonalizing the corresponding 3-by-3 matrix.

an Autler–Townes splitting (see Refs. [239,240]). In the standard Autler-Townes

effect, the states ∣1⟩ and ∣2⟩ are resonantly coupled such that the quasienergies
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a) b)

Figure C.2.3.: a) Resonance plot for varying C2 and δ. If ∣C2∣ < ∣C1∣, the
avoided crossing at δ = 0 is closed. b) In the δ-γ-parameter space for fixed
C1 > C2 we confirm the resonance crossing.

split. This splitting is then observed spectroscopically with a different field from

the initial state ∣0⟩ which is energetically well seperated from states ∣1⟩ and ∣2⟩.

For this energy separation both transitions can be treated independently such that

the problem can be reduced to the Rabi problem. In our case though, the states

are coupled by the same driving field and all states are on the same energy scale.

Therefore, one has to solve the full 3-by-3 matrix. However, for ∣C2∣ > ∣C1∣ we can

understand the avoided crossing like in the Autler-Townes effect, such that states

∣1⟩ and ∣2⟩ form an avoided crossing that is spectroscopically probed by state ∣0⟩.

To illustrate the situation that we encounter in a shaken lattice, we further assume

that a) the resonance condition depends on the coupling strength and b) the plotted

coupling strength is normalized by the frequency ω that leads to the detuning

δ = ω − ω0. To this end, we parameterize C1 = αC
(0)
1 ω/ω0, C2 = αC

(0)
2 ω/ω0 and

γ = −ω0(α − 0.5). In Fig. C.2.1 we plot for ω0 = 20, C
(0)
1 = 4 and C

(0)
2 = 9 the

minimum of the oscillation. From the construction, the couling strengths get

stronger (resonances get broader) if one moves upwards or rightwards in the plot.

Finally, let us examine the variation of the coupling strengths C1 and C2. In

the upper plot Fig. C.2.3 a) we show the minimum of n0(t) when C2 and δ are

varied, keeping γ = 0 and C1 = 4 fixed. We see that for ∣C2∣ < ∣C1∣ the avoided

crossing around δ = 0 vanishes, as we have predicted in case B. To illustrate this in

the parameter space related to the periodic driving, we plot in Fig. C.2.3 b) the

oscillation minimum as a function of α and ω. We see that the two resonances

really cross.
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A D

B

C

a) b)

Figure C.3.1.: Resonance plot for varying δ and γ in the V-type three-level
system. a) C1 = 6 and C3 = 4. b) C1 = 4 and C3 = 6. In both cases we do
not see an avoided crossing. For marked δ- and γ-pairs (A-D) we plot the
time-dynamics in Fig. C.3.2.

B)

A)
C)

D)

Figure C.3.2.: Time-dynamics for marked δ- and γ-pairs (A-D) from
Fig. C.3.1. If C1 > C3 the oscillation of the ground state ∣0⟩ is stronger
to state ∣1⟩ than to state ∣2⟩ and vice versa.

C.3. Three-State V-type

Here we will also shortly discuss the case of a double-resonance, where the ground

state ∣0⟩ is coupled simultaneously to two states ∣1⟩ (with strength C1) and ∣2⟩

(with strength C3) higher lying in energy, resulting in the Hamiltonian

Ĥeff =

⎛
⎜
⎜
⎜
⎝

−δ C1 C3

C∗
1 −γ 0

C∗
3 0 δ

⎞
⎟
⎟
⎟
⎠

(C.3.1)
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This case is called V-type and it is specially relevant in the resonance spectrum of

the amplitude-modulated lattice, where the ground state is coupled to the first and

second excited state with similar strength for some q. Except discussing special

cases we will directly look at the resonance plot that turns out to be simpler than

in the cascade-type. In Fig C.3.1 we plot again the minimum in the ground state

dynamics as a function of δ and γ, a) for C1 > C3 and b) for C1 < C3. In both cases

the resonances cross non-avoided, though being slightly deformed at the crossing.

This finding can be understood intuitively since both excited states are for all C1

and C3 fully “accessible” from the ground state. Nevertheless, the dynamics at the

crossing of the resonances will be more complex than any simple combination of

the Rabi-oscillations stemming from the individual resonances. This is confirmed in

Fig. C.3.2, where we plot some special pairs of δ and γ from Fig. C.3.1. If C1 > C3

the oscillation of the ground state ∣0⟩ is stronger to state ∣1⟩ than to state ∣2⟩ and

vice versa. Only if one state becomes largly off-resonant, the dynamics returns to a

simple sine-like oscilattion, as can be seen in case B).

C.4. Three-State General Case

Finally, we want to discuss what happens if both C2 > 0 and C3 > 0 such that the

Hamiltonian takes the form

Ĥeff =

⎛
⎜
⎜
⎜
⎝

−δ C1 C3

C∗
1 −γ C2

C∗
3 C2 δ

⎞
⎟
⎟
⎟
⎠

. (C.4.1)

We consider the case ∣C2∣ > ∣C1∣, which is the common case in periodically driven

lattices and also since for ∣C2∣ < ∣C1∣ we can expect from Sec. C.2 and Sec. C.3

that the resonance lines simply cross. In Fig. C.4.1 a) we plot the resonance plot

varying δ and γ for a small C3 = 5. We see that the avoided crossing is still there

and that there is additionally a point where one of the resonances even vanishes.

In Fig. C.4.1 b) we keep γ = 0 fixed and vary C3. The avoided crossing vanishes at

the point where ∣C3∣ > ∣C2∣. Therefore, we see that the Autler-Townes splitting only

emerges if both, ∣C2∣ > ∣C1∣ and ∣C2∣ > ∣C3∣. This is the main result of this section.
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C.4. Three-State General Case

a) b)

Figure C.4.1.: a) Resonance plot for varying δ and γ for the general system if
∣C1∣, ∣C3∣ < ∣C2∣. b) Resonance plot for varying C3 and δ if ∣C1∣ < ∣C2∣ and γ = 0.
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André Eckardt for their plentiful advice and for the patience they had with me. André
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[2] C. Sträter, O. Tsyplyatyev, and A. Faribault, “Nonequilibrum dynamics in the

strongly excited inhomogeneous Dicke model,” Phys. Rev. B, vol. 86, p. 195101,

Nov 2012.

[3] C. Sträter and A. Eckardt, “Orbital-driven melting of a bosonic Mott insulator

in a shaken optical lattice,” Phys. Rev. A, vol. 91, p. 053602, May 2015.
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erkläre hiermit, dass keine früheren erfolglosen Promotionsverfahren stattgefunden

haben. Ich erkenne die Promotionsordnung der Fakultät für Mathematik und

Naturwissenschaften der Technische Universität Dresden an.

Dresden, January 2, 2018

189





Bibliography

[1] M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A.

Cornell, “Observation of Bose-Einstein condensation in a dilute atomic vapor,”

Science, vol. 269, p. 198, 1995.

[2] C. C. Bradley, C. A. Sackett, J. J. Tollet, and R. G. Hulet, “Observation

of Bose-Einstein condensation in a dilute atomic vapor,” Phys. Rev. Lett.,

vol. 75, p. 1687, 1995.

[3] K. B. Davis, M. O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee,

D. M. Kurn, and W. Ketterle, “Bose-Einstein condensation in a gas of sodium

atoms,” Phys. Rev. Lett., vol. 75, p. 3969, 1995.

[4] S. Bose, “Plancks Gesetz und Lichtquantenhypothese,” Zeitschrift für Physik,

vol. 26, pp. 178–181, Dec. 1924.

[5] A. Einstein, “Quantentheorie des einatomigen idealen Gases,” Sitz. Ber.

Preuss. Akad. Wiss., vol. 22, p. 261, 1924.

[6] I. Bloch, J. Dalibard, and W. Zwerger, “Many-Body Physics with Ultracold

Gases,” Rev. Mod. Phys., vol. 80, p. 885, 2008.

[7] R. P. Feynman, “Simulating Physics with Computers,” Int. J. Theor. Phys.,

vol. 21, p. 467, 1982.

[8] I. Bloch, J. Dalibard, and S. Nascimbène, “Quantum simulations with ultra-

cold quantum gases,” Nat. Phys., vol. 8, p. 267, 2012.

[9] J. Eisert, M. Friesdorf, and C. Gogolin, “Quantum many-body systems out

of equilibrium,” Nat. Phys., vol. 11, no. 2, pp. 124–130, 2015.

191



Bibliography

[10] W. Zwerger, The BCS-BEC crossover and the unitary Fermi gas, vol. 836.

Springer Science & Business Media, 2011.

[11] J. Hubbard, “Electron Correlations in Narrow Energy Bands,” Proceedings

of the Royal Society of London Series A, vol. 276, pp. 238–257, Nov. 1963.

[12] P. W. Shor, “Algorithms for quantum computation: Discrete logarithms and

factoring,” in Foundations of Computer Science, 1994 Proceedings., 35th

Annual Symposium on, pp. 124–134, IEEE, 1994.

[13] L. K. Grover, “A fast quantum mechanical algorithm for database search,”

in Proceedings of the twenty-eighth annual ACM symposium on Theory of

computing, pp. 212–219, ACM, 1996.

[14] N. Poli, F.-Y. Wang, M. G. Tarallo, A. Alberti, M. Prevedelli, and G. M. Tino,

“Precision Measurement of Gravity with Cold Atoms in an Optical Lattice

and Comparison with a Classical Gravimeter,” Phys. Rev. Lett., vol. 106,

p. 038501, Jan 2011.

[15] M. Takamoto, F.-L. Hong, R. Higashi, and H. Katori, “An optical lattice

clock,” Nature, vol. 435, no. 7040, pp. 321–324, 2005.

[16] S. Chu, “Cold atoms and quantum control,” Nature, vol. 416, no. 6877,

pp. 206–210, 2002.

[17] W. Ketterle and M. W. Zwierlein, “Making, probing and understanding

ultracold Fermi gases,” arXiv, vol. cond-mat, p. 0801.2500, 2008.

[18] M. Lewenstein, L. Santos, M. A. Baranov, and H. Fehrmann, “Atomic Bose-

Fermi mixtures in an optical lattice,” Phys. Rev. Lett., vol. 92, p. 050401,

2004.
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[62] J. Struck, C. Ölschläger, M. Weinberg, P. Hauke, J. Simonet, A. Eckardt,

M. Lewenstein, K. Sengstock, and P. Windpassinger, “Tunable Gauge Poten-

196



Bibliography

tial for Neutral and Spinless Particles in Driven Optical Lattices,” Phys. Rev.

Lett., vol. 108, p. 225304, May 2012.

[63] H. Lignier, C. Sias, D. Ciampini, Y. Singh, A. Zenesini, O. Morsch, and

E. Arimondo, “Dynamical Control of Matter-Wave Tunneling in Periodic

Potentials,” Phys. Rev. Lett., vol. 99, p. 220403, 2007.

[64] A. Eckardt, M. Holthaus, H. Lignier, A. Zenesini, D. Ciampini, O. Morsch,

and E. Arimondo, “Exploring dynamic localization with a Bose-Einstein

condensate,” Phys. Rev. A, vol. 79, p. 013611, 2009.

[65] C. E. Creffield, F. Sols, D. Ciampini, O. Morsch, and E. Arimondo, “Expan-

sion of matter waves in static and driven periodic potentials,” Phys. Rev. A,

vol. 82, p. 035601, 2010.

[66] A. Zenesini, H. Lignier, D. Ciampini, O. Morsch, and E. Arimondo, “Coherent

control of dressed matter waves,” Phys. Rev. Lett., vol. 102, p. 100403, 2009.

[67] A. Eckardt, C. Weiss, and M. Holthaus, “Superfluid-Insulator Transition in

a Periodically Driven Optical Lattice,” Phys. Rev. Lett., vol. 95, p. 260404,

2005.

[68] A. Eckardt, T. Jinasundera, C. Weiss, and M. Holthaus, “Analog of Photon-

Assisted Tunneling in a Bose-Einstein Condensate,” Phys. Rev. Lett., vol. 95,

p. 200401, 2005.

[69] A. Eckardt and M. Holthaus, “AC-induced superfluidity,” EPL, vol. 80,

p. 50004, 2007.

[70] V. V. Ivanov, A. Alberti, M. Schioppo, G. Ferrari, M. Artoni, M. L. Chiofalo,

and G. M. Tino, “Coherent Delocalization of Atomic Wave Packets in Driven

Lattice Potentials,” Phys. Rev. Lett., vol. 100, p. 043602, 2008.

[71] C. Sias, H. Lignier, Y. Singh, A. Zenesini, D. Ciampini, O. Morsch, and

E. Arimondo, “Observation of photon-assisted tunneling in optical lattices,”

Phys. Rev. Lett., vol. 100, p. 040404, 2008.

197



Bibliography

[72] Alberti, V. V. Ivanov, G. M. Tino, and G. Ferrari, “Engineering the quantum

transport of atomic wavefunctions over macroscopic distances,” Nat. Phys.,

vol. 5, p. 547, 2009.

[73] M. Aidelsburger, M. Atala, S. Nascimbène, S. Trotzky, Y.-A. Chen, and

I. Bloch, “Experimental Realization of Strong Effective Magnetic Fields in

an Optical Lattice,” Phys. Rev. Lett., vol. 107, p. 255301, Dec 2011.

[74] R. Ma, M. E. Tai, P. M. Preiss, W. S. Bakr, J. Simon, and M. Greiner,

“Photon-Assisted Tunneling in a Biased Strongly Correlated Bose Gas,” Phys.

Rev. Lett., vol. 107, p. 095301, Aug 2011.

[75] Y.-A. Chen, S. Nascimbène, M. Aidelsburger, M. Atala, S. Trotzky, and

I. Bloch, “Controlling Correlated Tunneling and Superexchange Interactions

with ac-Driven Optical Lattices,” Phys. Rev. Lett., vol. 107, p. 210405, Nov

2011.

[76] S. Greschner, L. Santos, and D. Poletti, “Exploring Unconventional Hubbard

Models with Doubly Modulated Lattice Gases,” Phys. Rev. Lett., vol. 113,

p. 183002, Oct 2014.

[77] L. Cardarelli, S. Greschner, and L. Santos, “Engineering interactions and

anyon statistics by multicolor lattice-depth modulations,” Phys. Rev. A,

vol. 94, p. 023615, Aug 2016.

[78] D. Jaksch and P. Zoller, “Creation of effective magnetic fields in optical

lattices: the Hofstadter butterfly for cold neutral atoms,” New J. Phys.,

vol. 5, no. 1, p. 56, 2003.

[79] A. R. Kolovsky, “Creating artificial magnetic fields for cold atoms by photon-

assisted tunneling,” EPL, vol. 93, p. 20003, 2011.
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varying periodic perturbation,” Phys. Rev. A, vol. 38, pp. 1739–1746, Aug

1988.

[114] T. Mikami, S. Kitamura, K. Yasuda, N. Tsuji, T. Oka, and H. Aoki,

“Brillouin-Wigner theory for high-frequency expansion in periodically driven

systems: Application to Floquet topological insulators,” Phys. Rev. B, vol. 93,

p. 144307, Apr 2016.

[115] A. P. Itin and M. I. Katsnelson, “Effective Hamiltonians for Rapidly Driven

Many-Body Lattice Systems: Induced Exchange Interactions and Density-

Dependent Hoppings,” Phys. Rev. Lett., vol. 115, p. 075301, Aug 2015.

[116] S. Rahav, I. Gilary, and S. Fishman, “Effective Hamiltonians for periodically

driven systems,” Phys. Rev. A, vol. 68, p. 013820, Jul 2003.

[117] F. Casas, J. A. Oteo, and J. Ros, “Floquet theory: exponential perturbative

treatment,” Journal of Physics A: Mathematical and General, vol. 34, no. 16,

p. 3379, 2001.

[118] M. Born and V. Fock, “Beweis des Adiabatensatzes,” Z. Phys., vol. 51, p. 165,

1928.

[119] L. Landau, “Zur Theorie der Energieübertragung II,” Phys. Z. Sowjetunion,
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Nägerl, “Inducing Transport in a Dissipation-Free Lattice with Super Bloch

Oscillations,” Phys. Rev. Lett., vol. 104, p. 200403, 2010.

[134] J. Li, Y. Yu, A. M. Dudarev, and Q. Niu, “Interaction broadening of Wannier

functions and Mott transitions in atomic BEC,” New J. Phys., vol. 8, p. 154,

2006.

[135] D.-S. Lühmann, K. Bongs, K. Sengstock, and D. Pfannkuche, “Self-Trapping

of Bosons and Fermions in Optical Lattices,” Phys. Rev. Lett., vol. 101,

p. 050402, 2008.

[136] P.-I. Schneider, S. Grishkevich, and A. Saenz, “Ab initio determination of

Bose-Hubbard parameters for two ultracold atoms in an optical lattice using

a three-well potential,” Phys. Rev. A, vol. 80, p. 013404.
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