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Abstract

This thesis explores the possibility of using parallel algorithms to calculate the

dynamics of driven quantum systems prevalent in atomic physics. In this process,

new as well as existing algorithms are considered.

The thesis is split into three parts. In the first part an attempt is made to

develop a new formalism of the time dependent Schrödinger equation (TDSE) in

the hope that the new formalism could lead to a parallel algorithm. The TDSE is

written as an eigenvalue problem, the ground state of which represents the solution

to the original TDSE. Even though mathematically sound and correct, it turns out

the ground state of this eigenvalue problem cannot be easily found numerically,

rendering the original hope a false one.

In the second part we borrow a Bayesian global optimisation method from the

machine learning community in an effort to find the optimum conditions in dif-

ferent systems quicker than textbook optimisation algorithms. This algorithm is

specifically designed to find the optimum of expensive functions, and is used in this

thesis to 1. maximise the electron yield of hydrogen, 2. maximise the asymmetry in

the photo-electron angular distribution of hydrogen, 3. maximise the higher har-

monic generation yield within a certain frequency range, 4. generate short pulses

via combining higher harmonics generated by hydrogen.

In the last part, the phenomenon of dynamic interference (temporal equivalent

of the double-slit experiment) is discussed. The necessary conditions are derived

from first principles and it is shown where some of the previous analytical and

numerical studies have gone wrong; it turns out the choice of gauge plays a crucial

role. Furthermore, a number of different scenarios are presented where interference

in the photo-electron spectrum is expected to occur.
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und ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe; die

aus fremden Quellen direkt oder indirekt übernommenen Gedanken sind als solche

kenntlich gemacht. Die Arbeit wurde bisher weder im Inland noch im Ausland in

gleicher oder ähnlicher Form einer anderen Prüfungsbehörde vorgelegt.

Die Arbeit wurde am Max-Planck-Institut für Physik komplexer Systeme in der

Abteilung “Endliche Systeme” angefertigt und von Prof. Dr. Jan-Michael Rost

betreut.

Ich erkenne die Promotionsordnung der Fakultät Mathematik und Naturwis-

senschaften der Technischen Universität Dresden vom 23.02.2011 an.

———————— ————————

Datum Unterschrift

iv



Acknowledgements

The last four years have been a very influential period of my life. I believe I have

developed as a person in ways that I would never have expected. And for this I

am most thankful to my colleagues and friends.

I am deeply indebted to Jan-Michael Rost for putting his trust in me, and giving

me the opportunity to take advantage of a new environment on the scientific as

well as the social front.

I probably cannot thank Ulf Saalmann enough for putting up with me for such

a long time. I definitely consider him a friend before I call him my supervisor.

I would also like to thank Thomas Pohl for many hours of mostly non-scientific

discussion, and for all the joy and life he brought to our lunch group.

It wouldn’t have been nearly as great a time without my close friends Colm

Murray and Callum Mulhern. You guys definitely took my social life to a whole

new level. On a side note, I don’t even remember any more how many times I had

to explain to newcomers how to distinguish between your names. My Christmas

holiday in England and Ireland was by far one of the best trips I have ever taken.

The memories of our trips to Marktredwitz, Innsbruck, and so many others will

always stay with me.

My Canadian friend, Dylan Rose, belongs to the same group; a simple country

boy with whom I had an unforgettable time. The story of muffins is definitely one

I will tell my grandchildren.

And of course this list wouldn’t be complete without Karsten Leonhardt (aka

Wet Hand), who was an integral part of our group. Our trip to Berlin for the 2014

world cup final was one of our highlights.

My favourite Spanish couple, Anna Deluca & Daniel Viscor (aka Don Daniel),

you guys are just amazing the way you are, and I hope you are doing well wherever

v



vi

you are.

And last but not least, Younes Javanmard. I’m happy you were around, and

it was definitely comforting to get together every now and then and talk out the

frustration we both had once experienced.



Contents

Abstract iii

Declaration iv

Acknowledgements v

1. Introduction 1

2. McLachlian method: TDSE as an eigenvalue problem 4

2.1. Imaginary time Schrödinger equation . . . . . . . . . . . . . . . . . 6

2.2. Full Configuration Interaction Quantum Monte Carlo . . . . . . . . 7

2.3. McLachlian operator: definition . . . . . . . . . . . . . . . . . . . . 12
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1. Introduction

Physics has evolved exceptionally over the past century, so much so that the tools

required today are very different from those needed not so long ago. While all

that was available to a 20th-century theoretical physicist might have been a pen

and paper, today we regularly take advantage of fast computers, the Internet,

instant access to journals from all over the globe, Skype calls, etc.1 Computers

have revolutionised our approach to understanding the world surrounding us so

massively that it wouldn’t be an exaggeration to say that they have helped us

tackle problems we would never have dreamed of without them.

In particular, we have been able to approach systems of unprecedented complex-

ity. For instance, we can now predict the behaviour of large groups of interacting

quantum particles with high accuracy, something that would have been considered

impossible half a century ago. The branch of physics that deals with such compli-

cated systems is known as complex systems [1], and as its name may suggest, it

is concerned with systems showing rich and complex behaviour which is hard (if

not impossible) to predict using only the knowledge of the behaviour of isolated

individual constituents. Clusters are a classic example of complex systems; while

a small cluster of only argon atoms may show a trivial behaviour, a large cluster

of a mixture of argon and hydrogen atoms behaves completely differently [2].

Throughout the second half of the twentieth century, engineers pushed for CPUs

with higher and higher clock speeds in an effort to achieve higher computational

power. But in recent years this trend seems to have stagnated [3] (at the time

of this thesis a standard CPU has a clock speed of around 3 GHz). The main

obstacle appears to be the large energy consumption of higher speed architectures

which are then followed by complicated cooling problems. Even though one way of

overcoming this problem might be to use more complicated cooling techniques, en-

1. We cannot escape the fact that in 20 years from now all these currently exciting developments

will sound just as primitive as the tools from the 19th century sound to us now.

1
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gineers have successfully alleviated the problem by simply stacking multiple slower

CPUs in a single unit; such units are known as multi-core processors. It turns out

a dual-core CPU with a speed clock of 3 GHz consumes considerably less energy

than a single-core CPU with a clock speed of 6 GHz. But the downside is that the

key to computational speed-up in this case is to have programs intricately designed

to take advantage of this parallel architecture.

If done correctly, parallel programming can drive us towards more computational

power and therefore tackling bigger and more complicated problems. It cannot be

stressed enough that having parallel algorithms has never been so crucial before. It

might not have been necessary to write a parallel programme 40 years ago, as the

luckiest of universities had only access to at most one computer, whereas in today’s

world even the slowest smartphones have most likely multi-core processors. This

thesis is an attempt at finding faster and potentially parallel algorithms. Even

though these algorithms might be used for a wide variety of problems, we only

take as examples systems from the field of theoretical atomic physics as this is the

background of our research group. We will take two different approaches here.

The first approach appearing in chapter 2 is an effort to develop a more efficient

algorithm to solve the time dependent Schrödinger equation (TDSE) on a parallel

architecture. We reformulate the TDSE as an eigenvalue problem in the hope of us-

ing efficient parallel eigenvalue solvers, in particular the FCIQMC method [4]. This

attempt is met by an unfortunate consequence causing the FCIQMC method (or

any other diffusion method for that matter) to fail to solve highly quasi-degenerate

eigenvalue problems. Later in the chapter, an analysis of the new eigenvalue for-

mulation of the TDSE is given, proving that in order for this new approach to

be computationally more efficient than textbook time-propagation methods, an

eigenvalue solver with complexity less than that of vector-matrix multiplication

is required. Such an algorithm would be revolutionary. While working on this

project, it came to our attention that in a then recently published paper [5] it was

claimed that it was possible to solve the new TDSE formalism on several processors

in parallel. We end the chapter by showing why such a claim is untrue. It is worth

noting that despite the computational failure of this formalism, it may still be of

academic interest, as it treats time and space on an equal footing.

Given the complexity of the systems of practical interest, finding the optimal

settings can be time consuming and resource intensive. It is of utmost importance

to find such optimal conditions in the fastet possible way, and this is the topic
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of chapter 3. In the particular case of quantum physics, one such attempt has

been the so-called Quantum Optimal Control Theory [6, 7]. Even though elegant,

the output of this algorithm usually shows unrealistic features such as cusps in

the electric component of a laser field as discussed in ref. [8]. To circumvent this

problem, we will take a somewhat different route. We will borrow an algorithm

originally developed in the machine learning community for the optimisation of

expensive functions, and try to apply it to physical systems. Even though the

original algorithm is designed for one CPU, we will make a slight modification

so that multiple CPUs can be used simultaneously. All the systems considered

will be expressed in terms of a few parameters which the optimisation algorithm

will have permission to control in order to find the optimum values. It shouldn’t

be forgotten that the system should be parametrised such that the non-physical

artefacts are prevented to the best of our ability. For instance, instead of allowing

unconstrained pulses we can force the electric component of a laser field to be

smooth. Even though this restriction might reduce the pool of available laser

pulses, it is the price that we have to pay in order to get physically meaningful

results. We apply this optimisation algorithm to four different systems and try in

each case to make sense of the obtained results.

While working on this project, we came across a few papers whose final results we

could not reproduce [9–12], an observation that left us intrigued. We consequently

started investigating what might have gone wrong in the original papers. The

answer turns out to be more complicated than anticipated, and this is the story of

chapter 4, where it is discussed how dynamic interference (the temporal equivalent

of the double-slit experiment) can happen, and what its prerequisites are. A very

delicate balance between different properties of the system seems to be the key.

The mathematical relation governing this balance is derived, which is then followed

by a discussion of different gauges in atomic physics, and how the choice of gauge

can affect numerical convergence. The chapter ends with a list of different scenarios

where an interference pattern in the photo-electron spectrum can be observed.

In view of the very different characters of the chapters of this thesis, we sum-

marise each chapter separately in a section at the end of the corresponding chapter.

This work is non-relativistic throughout. And furthermore, atomic units are

used unless stated otherwise.



2. McLachlian method: time

dependent Schrödinger equation

as an eigenvalue problem

The dream of an all-round efficient solver of the Schrödinger equation is to a physi-

cist what the dream of a generic drug for all illnesses is to a pharmacologist. It

is simply too ambitious. This disappointment, however, has forced physicists over

the years to creatively develop system-specific methods, just as it has forced phar-

macologists to devise illness-specific drugs.

It’s been nearly a century since the discovery of quantum mechanics, and the

search for efficient methods for solving the Schrödinger equation goes on. Quantum

Monte Carlo (QMC) and Rayleigh-Ritz Variational1 (RRV) methods are two of the

main branches of these methods. For reviews of QMC and RRV methods please

refer to refs. [13, 14] and [15, 16], respectively. While QMC methods make use

of random variables in quantum simulations, RRV methods rely on the variational

principle.

The Full Configuration Interaction method (FCI) is one of the methods belonging

to RRV methods. In this method, the full Hamiltonian is expanded in terms of

possible configurations of the system. The energy of the ground state of this

Hamiltonian is an upper bound on the energy of the ground state of the system

under study. One main drawback of any FCI method is that there are usually an

“astronomical” number of configurations available, even for the smallest of systems.

Diffusion Monte Carlo methods (DFC) are on the other hand a branch of QMC

methods. They are based on treating the Schrödinger equation as a diffusion

equation. These algorithms use methods that simulate the phenomenon of diffusion

1. sometimes simply refered to as variational methods

4



2. McLachlian method: TDSE as an eigenvalue problem 5

in order to find the ground state of a quantum system.

In 2009 Booth et al. developed a method based on a mixture of the QMC and

FCI methods [4], which outperformed many if not all of the pre-existing methods

[17–19]. This algorithm has been called Full Configuration Interaction Quantum

Monte Carlo (FCIQMC) and has come a long way ever since. This algorithm has

been extended in many different ways to accommodate different types of systems

[20].

We will take a step in this chapter towards extending the FCIQMC method.

Motivated by the fact that this method is shown to be a method for finding the

ground state of a hermitian matrix [21, 22], we will write down the time dependent

Schrödinger equation (TDSE) in a form similar to the diffusion equation. An

attempt is then made to solve this new diffusion equation using the FCIQMC

method.

The chapter is organised as follows. After introducing the imaginary time

Schrödinger equation in section 2.1, a discussion of the basics of the FCIQMC

method is followed in section 2.2. The new formalism of the TDSE is written in

terms of an operator called McLachlian introduced in section 2.3, which is followed

by a discussion on its properties in the same section. It is explained in section 2.4

how the McLachlian is implemented, and how the initial conditions are applied.

The resulting eigensystem is solved in two ways, 1. direct diagonalisation of the

McLachlian matrix as described in section 2.5, and 2. using the FCIQMC method

as described in section 2.6. While the direct diagonalisation works as hoped, it’ll

be seen that the FCIQMC method fails hopelessly.

It will be shown in section 2.6 that the ground state of the McLachlian eigensys-

tem is highly degenerate in the absence of any initial condition, and the degeneracy

is only lifted when the initial conditions are applied. However, the difference be-

tween the eigenvalues of the ground state and the second state is unfortunately

very small. The smallness of this difference is indeed the main culprit in the fail-

ure of any diffusion based method including the FCIQMC method in finding the

ground state of the McLachlian matrix.

Furthermore, while it has been claimed before that finding the ground state of

such an eigensystem can be easily done in parallel [5], a quick analysis appearing

in section 2.7 shows that the solution of the TDSE starts forming from the initial
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time step (which is where the initial conditions are applied) towards the later time

steps. This fact makes this new formalism in practice no different from a time

propagation method. In fact, as seen in section 2.8 any propagation method can

be reformulated as an eigenvalue problem.

2.1. Imaginary time Schrödinger equation

The time independent Schrödinger equation (TISE) written in atomic units reads

Hφi(x) = Eiφi(x) , (2.1)

where x denotes the generalised (possibly multidimensional) coordinates of the

particle under study, and H is the time-independent Hamiltonian. Ei and φi(x) are

the the eigenenergies and eigenfunctions, respectively. The eigenfunctions form an

orthonormal basis, in terms of which the solution of the time dependent Schrödinger

equation (TDSE)

i
∂ψ(x, t)

∂t
= Hψ(x, t) , (2.2)

can be expanded

ψ(x, t) =
∑

j

ajφj(x) exp(−iEjt) , (2.3)

where the exponentials show the time evolution of each eigenfunction. By replacing

t with −iτ , we obtain the so-called imaginary time Schrödinger equation (ITSE)

[23, 24]
∂ψ(x, τ)

∂τ
= −Hψ(x, τ) . (2.4)

In order to see why this substitution is helpful, we’ll take a closer look at the

solution of this equation. The solution can be found simply by making the same

substitution in the solution of the TDSE in eq. (2.3),

ψ(x, τ) =
∑

j

ajφj(x) exp(−Ejτ)

= exp(−E0τ)

(
a0φ0(x) +

∑

j 6=0

ajφj(x) exp(−(Ej − E0)τ)

)
,

(2.5)

where in the second line the component along the ground state has been taken out

of the sum, and its time evolution has been factored out. In the asymptotic limit
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of τ → ∞ we note that all the terms in the sum vanish due to the presence of

exponentials, leaving us with

lim
τ→∞

ψ(x, τ) −→ a0 exp(−E0τ)φ0(x) . (2.6)

By renormalising the wave function regularly, the ground state is obtained

lim
τ→∞

ψ(x, τ) −→ a0 exp(−E0τ)φ0(x) −→ φ0(x) . (2.7)

In sum, when the ground state of a Hamiltonian is desired, any initial wave

function propagated according to the ITSE for a sufficiently long time converges

to the ground state. Even though the choice of initial wave function does affect

the convergence efficiency, a randomly generated wave function is usually used as

the initial guess. The final wave function is the ground state of the Hamiltonian.2

2.2. Full Configuration Interaction Quantum Monte

Carlo

The method of Full Configuration Interaction Quantum Monte Carlo (FCIQMC)

was first introduced in 2009 by Booth et al. [4]. Since then it’s been applied to a

wide range of chemical systems [17–19], and been extended to cover complex wave

functions of solids [20]. The parallelisability of this method makes it very appealing

to a broad range of scientists [27].

The FCIQMC method is in fact a method developed for multi-particle systems

possessing an extensive configuration space. A configuration is a multi-particle

2. There are many different methods which make use of the ITSE; they are usually called

diffusion methods (for example Diffusion Monte Carlo [25, 26]) as the ITSE is similar in form

to the diffusion equation. More clearly, if the term representing the potential energy in the

Hamiltonian in eq. (2.4) is set to zero, we get

∂ψ(x, τ)

∂τ
=

1

2m

∂2ψ(x, t)

∂x2
, (2.8)

which is reminiscent of the diffusion equation

∂ϕ(x, t)

∂t
= D

∂2ϕ(x, t)

∂x2
, (2.9)

where ϕ(x, t) is the density of the diffusing material, and D is the diffusion coefficient.
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state constructed by the direct product of single-particle states. The eigenfunctions

(e.g. the ground state) of the multi-particle system can then be expressed in terms

of these configurations. Unfortunately, the number of required configurations grows

very quickly even for the smallest of systems. This is the reason why single-particle

methods tend to become inefficient if naively extended to multi-particle scenarios.

Some methods try to overcome this problem by focusing only on a small subset

of the configuration space. On the contrary, the FCIQMC method has essentially

access to the entire configuration space, which is where the first part of its name

(“FCI” short for Full Configuration Interaction) comes from. Given the enormity

of such a space, the FCIQMC method can only sample it randomly, hence the

second part of the name (“QMC” short for Quantum Monte Carlo).

This algorithm has been analysed by W. M. C. Foulkes’s group [21, 22], and it’s

been revealed how the well-known sign problem of fermionic systems is automati-

cally alleviated in the case of the FCIQMC method. An extension to this method

has been put forward by the same group to sample the density matrix instead

of the Hamiltonian [28], paving the way for treating mixed systems. Ten-no has

suggested another modified version of the FCIQMC method [29], where the basis

is divided into two parts, the core and the rest. The core usually includes the

configurations which are suspected to have the biggest role in the ground state.

The Hamiltonian is directly diagonalised in the core, while the FCIQMC method

is used for the rest of the basis.

We will now give a brief description of the inner workings of this method in

its most general form. As discussed in the previous section the general solution

to the ITSE can be expanded in terms of the eigenfunctions of the corresponding

Hamiltonian,

ψ(x, τ) =
∑

k

ck(τ)φk(x) , (2.10)

where ck are complex numbers ck = cRk +i cIk . These coefficients have to be complex

as they entail the time dependent exponentials representing the time evolution of

the eigenfunctions in eq. (2.5). Upon substituting eq. (2.10) in the ITSE we get

dck(τ)

dτ
= −

∑

j

Hkjcj(τ) , (2.11)

where in general the hermitian Hamiltonian can be complex Hkj = HRkj + iHIkj.

If the derivative on the left hand side is approximated by the first order forward
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difference,3 we get an equation governing the evolution of ck,

ck(τ + ∆τ) = ck(τ)−∆τ
∑

j

Hkjcj(τ) , (2.12)

which can be decomposed into real and imaginary parts

cRk (τ + ∆τ) = cRk (τ)−∆τ
∑

j

{HRkjcRj (τ)−HIkjcIj (τ)}

cIk(τ + ∆τ) = cIk(τ)−∆τ
∑

j

{HIkjcRj (τ) +HRkjc
I
j (τ)} .

(2.13)

These are the main equations behind the FCIQMC method. The weight of the

wave function along each component (called sites), i.e. cj(τ), is represented by

singed walkers4 which can have either a (+) or a (−) sign. The number of walkers

on site j determines the value of cj up to a global normalising factor. The terms

inside the curly brackets are interpreted as spawning probabilities. Every time step

each walker has the opportunity to spawn child walkers on other sites (or on its

own site), during which process a new walker is placed on the corresponding site.

When two walkers on the same site have opposite signs, they cancel out, a process

called annihilation. Initially a number of walkers are placed on some sites (which

may be randomly chosen, but don’t have to be), and if the simulation is allowed

to run for long enough, the final distribution of the walkers represents the ground

state of the Hamiltonian.

To correctly describe the complex weights ck, two sets of walkers are imple-

mented, one representing cRk (called real walkers) and one representing cIk (called

imaginary walkers). Going back to eqs. (2.13), the first term in the sum on the

right hand side of the first equation shows the probability of a real walker on site

j spawning a real child walker on site k. The second term shows the probability of

an imaginary walker on site j spawning a real child walker on site k, and so on.

It is stated in the original paper [4] that for the sake of efficiency, instead of

including all the terms in the sums in eqs. (2.13), any walker on site j is only

allowed to appear twice on the right hand side, once in the equation governing the

evolution of site j, and once in the equation governing the evolution of site k where

k is randomly chosen. In other words, every walker is allowed to spawn twice every

time step, once on its own site, and once on a site randomly chosen. The random

3. The first order forward difference is ḟ(t) = f(t+∆t)−f(t)
∆t .

4. Ironically they don’t walk at all.
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number generator in charge of picking the second site generates numbers according

to the probability distribution P (j → k) provided by the user. This probability

distribution represents the probability that site k is chosen to be spawned a child

walker on by the walker on site j. Therefore, the closer P (j → k) mimics the

structure of the j-th row of the Hamiltonian, the more efficient the algorithm is.5

However, most of the time the structure of the Hamiltonian is not known, or is time

consuming to discover, thus a uniform probability is used, i.e. P (j → k) = 1/M

where M is the number of spatial basis functions. Under this modification, a walker

on site j spawns a child walker on site k with slightly different probabilities

PR→Rj→k = −
HRkj∆τ

P (j → k)

PR→Ij→k = −
HIkj∆τ

P (j → k)

PI→Rj→k = +
HIkj∆τ

P (j → k)

PI→Ij→k = −
HRkj∆τ

P (j → k)
,

(2.14)

where, for example, PR→Ij→k is the probability that a real walker on site j spawns an

imaginary child walker on site k. For better convergence, it is advised to use small

enough ∆τ such that none of the probabilities is greater than one. Bigger values

might cause the algorithm to diverge [4].

One point worth mentioning is that if any of the above probabilities turns out

to be negative, the sign should merely serve as a means of determining what the

sign of the child walker will be, and therefore should be ignored when evaluating

the probabilities. The sign of the newly born walker is determined by the product

of three signs, 1. the sign of the mother walker, 2. the sign appearing in front of

the corresponding probability in eqs. (2.14), and 3. the sign of the Hamiltonian.

In the case of a purely real Hamiltonian there will be only real walkers and only

one spawning probability

PR→Rj→k = −
HRkj∆τ

P (j → k)
. (2.15)

5. A similar situation is encountered when using Monte Carlo integration. The choice of proba-

bility distribution plays a key role in the efficiency of this algorithm. And if a good knowledge of

the structure of the integrand is available, the efficiency can be further increased by incorporating

importance sampling.
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Figure 2.1. These three diagrams show the three constituent stages of the

FCIQMC method for a real Hamiltonian. The color of each walker

represents its sign. The diagram on the far left shows the population

of the walkers remaining from the previous time step. Each walker

happens to spawn one child walker. In the middle diagram the three

walkers have spawned on three different sites, the first one on |2〉 with

like sign, the second one on |3〉 with opposite sign, and the third one

on the same site with opposite sign. The two unlike signs on the same

site cancel out. The third diagram shows the distribution of walkers

at the end of the time step.

A simple illustration of the algorithm is shown fig. 2.1.

The FCIQMC method is in fact a diffusion Monte Carlo method for finding the

ground state of a hermitian matrix [21, 22], see fig. 2.2. However, being a Monte

Carlo method based on the diffusion equation, it has two major downsides. The

first one is that assuming the ground state is non-degenerate, the method can

resolve the ground state and the next state separated by an energy difference of

∆E only if it is allowed to run for τ ∝ 1/∆E. More precisely, by taking a look

at eq. (2.5) we see that if the weight of the ground state is one, the weight of the

second state is exp(−∆E τ), and in order for this exponential prefactor to be small,

τ has to be at least of the same order as 1/∆E.

The second drawback comes from the Monte Carlo nature of the FCIQMC

method, i.e. the accuracy of the ground state of a matrix is dictated by the number

of walkers. Imagine the current wave function found by the FCIQMC method is

written as ψ = a0φ0 +a⊥φ⊥, where φ0 is the true ground state and φ⊥ is everything

else. If there are N walkers and we are lucky enough to have all walkers but one
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Figure 2.2. The figure shows the real and imaginary components of the ground

state of a random 50 × 50 hermitian matrix found using direct di-

agonalisation and the FCIQMC method. It is seen from the agree-

ment that the FCIQMC method is indeed an algorithm for finding

the ground state of a hermitian matrix.

on the true ground state, the weights will be given by

a0 =
N − 1√

(N − 1)2 + 1
≈ 1

a⊥ =
1√

(N − 1)2 + 1
≈ 1

N
.

(2.16)

Therefore, the inaccuracy (determined by the weight of φ⊥) is of the order of 1/N .

For instance, for an accuracy of 10−6 at least 106 walkers are needed.

We will soon see how these two drawbacks make it practically impossible to use

the FCIQMC method to solve the dynamics of a system.

2.3. McLachlian operator: definition

Once again we start from the TDSE and move everything to the left hand side to

get 0 = Hψ(x, t)− i∂tψ(x, t) (for brevity, the time dependence of the Hamiltonian

is not explicitly written). This equation has to be exactly satisfied every single

time step in order for us to have the exact time evolution of the wave function.

But we know that using a finite time step ∆t prevents this relation from being

exactly satisfied, and therefore always leaves us with some residue which can be

positive or negative. As becomes apparent soon, we need to redefine this residue
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to make sure it is always non-negative, which is done by squaring it,6

R(x, t) = |Hψ(x, t)− i∂tψ(x, t)|2

= (Hψ(x, t)− i∂tψ(x, t))† (Hψ(x, t)− i∂tψ(x, t)) .
(2.17)

It is obvious that if two different approximate evolutions of the wave function are

given, the one having a smaller residue over the entire space
∫
R(x, t) dx is a better

approximation; the residue of the exact solution is zero. To find the wave function

at the next time step, it is only necessary to minimise this quantity over the entire

space. Since this has to be done at each time step separately and the residue is

never negative, the integral of the residue over space and time has to be minimised,

that is

I =

∫
R(x, t)dxdt ≥ 0 , (2.18)

where the equality sign is only satisfied by the exact solution.

Using the Dirac bra-ket notation in quantum mechanics, we can write ψ(x) ≡
〈x|ψ〉. Similarly, we define a new notation ψ(x, t) ≡ (〈x| ⊗ 〈t|) |ψ〉〉,7 in terms of

which we can rewrite eq. (2.18),

I =

∫
〈〈ψ|

(
H − î∂t

)†
|x〉 ⊗ |t〉 〈t| ⊗ 〈x|

(
H − î∂t

)
|ψ〉〉 dx dt , (2.19)

where î∂t is an operator8 whose representation in the time domain is differentiation

with respect to time, 〈t| î∂t |ψ〉〉 ≡ i∂t 〈t|ψ〉〉. This expression can be simplified with

the help of the closure relation in the position space
∫
|x〉 〈x| dx = 1,

I =

∫
〈〈ψ|

(
H − î∂t

)†
|t〉 〈t|

(
H − î∂t

)
|ψ〉〉 dt , (2.20)

6. In the later stages of the project we found out that this equation had already been derived

by McLachlan in a slightly different way [30]. This is why we have called the operator to follow

the McLachlian.

7. The reason why |· · ·〉〉 is used instead of |· · ·〉 will become clear in subsection 2.3.3. This

notation is often used when tackling periodical systems with Floquet Theory [31].

8. Physicists mostly believe that time appears as a parameter in quantum mechanics, in contrast

to position and momentum which appear as operators. One is usually referred to Wolfgang Pauli’s

book [32] when asking about the reason. Pauli states in a footnote in his book that since having a

time operator requires an energy space covering all energies from −∞ to ∞ (which any choice of

Hamiltonian fails to satisfy), the idea of time operator should be forgotten altogether. However,

as explained by Hilgevoord [33], the energy space does indeed cover all the energies from −∞ to

∞, and the problem arises when the energy space is confused with the energies a system can have.

This is very similar to the momentum of a particle in an infinite potential well; the momentum

is not demoted from an operator to a parameter just because its eigenvalues are discrete.
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Hamiltonian McLachlian

eigenvalue problem H |ψk〉 = Ek |ψk〉 Î |ψk〉〉 = αk |ψk〉〉
variational method 〈ψ|H|ψ〉 ≥ E0 〈〈ψ|Î|ψ〉〉 ≥ 0

diffusion equation ∂τψ(x, τ) = −Hψ(x, τ) ∂τψ(x, t, τ) = −Îψ(x, t, τ)

Table 2.1. TDSE and TISE are similar in a number of ways. They both can

be written as an eigenvalue problem. The ground states of both of

them can be found by either using a variational method, or solving a

diffusion equation.

and using a similar closure relation in the time domain9
∫
|t〉 〈t| dt = 1,

I = 〈〈ψ|
(
H − î∂t

)† (
H − î∂t

)
|ψ〉〉 . (2.21)

We are now in a position to define the term sandwiched between the two wave

functions as a new operator acting in the position space as well as the time domain

Î =
(
H − î∂t

)† (
H − î∂t

)
, (2.22)

which we shall call the McLachlian.10

Expressed in terms of the McLachlian, eq. (2.18) takes a compact form

〈〈ψ|Î|ψ〉〉 ≥ 0 , (2.23)

which bears a clear resemblance to the main equation of the variational theorem

〈ψ|H|ψ〉 ≥ E0 for the TISE [34]. Furthermore, the solution to the TDSE can be

interpreted as the ground state of an eigenvalue problem Î |ψk〉〉 = αk |ψk〉〉, which

is similar to the TISE written as an eigenvalue problem. Analogously, we can

write a diffusion equation which in the limit of τ → ∞ converges to the solution

of the TDSE, ∂τψ(x, t, τ) = −Îψ(x, t, τ), very much like the ITSE. Notice that the

diffusion time τ is indeed different from the real time t. A comparison between the

Hamiltonian and the McLachlian is shown in table 2.1.

In the next two subsections some properties of the McLachlian operator will

9. The reader may convince themself of the validity of this relation simply by thinking of |t〉 as

a set of delta functions spanning the whole time interval.

10. We have chosen McLachlian over McLachlanian because of its easier pronunciation, even

though technically the latter should be used.
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be examined followed by a discussion on the basis needed for accommodating the

McLachlian operator.

2.3.1. Proof of hermiticity of î∂t

One way for the McLachlian to be hermitian is to consist of individually hermitian

terms. The Hamiltonian is hermitian, but let’s see if the same can be said of î∂t.

To prove the hermiticity of î∂t it is sufficient to show

〈〈ψ|
−→̂
i∂t |ψ〉〉 = 〈〈ψ|

←−̂
i∂t |ψ〉〉 , (2.24)

where the arrows indicate if the operator is acting on the state on the right or the

left. We start from the left hand side and will see how the right hand side emerges

automatically. By inserting the closure relation in the time domain in the middle

we get

〈〈ψ|
−→̂
i∂t |ψ〉〉 =

∫ tf

ti

〈〈ψ|t〉 〈t|î∂t|ψ〉〉 dt

= i

∫ tf

ti

〈〈ψ|t〉 (∂t 〈t|ψ〉〉) dt ,
(2.25)

where in going from the first line to the second we have used the notation introduced

in the last section. Using integration by parts yields

i

∫ tf

ti

〈〈ψ|t〉 (∂t 〈t|ψ〉〉) dt = i 〈〈ψ|t〉 〈t|ψ〉〉
∣∣tf
ti
− i
∫ tf

ti

(∂t 〈〈ψ|t〉) 〈t|ψ〉〉 dt , (2.26)

where the first term vanishes because | 〈t|ψ〉〉 | = 1 at all times, and the second

term is nothing but the right hand side of eq. (2.24),

−i
∫ tf

ti

(∂t 〈〈ψ|t〉) 〈t|ψ〉〉 dt =

∫ tf

ti

(i∂t 〈t|ψ〉〉)∗ 〈t|ψ〉〉 dt = 〈〈ψ|
←−̂
i∂t |ψ〉〉 . (2.27)

Therefore operator î∂t is hermitian.

2.3.2. Non-zero eigenvalues of the McLachlian

The McLachlian matrix has other eigenvalues than zero, which might beg the

question of what do their eigenvectors represent. Given that î∂t is a hermitian
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operator, the McLachlian can be rewritten as

Î =
(
H − î∂t

)† (
H − î∂t

)

=
(
H − î∂t

)2

,
(2.28)

giving rise to the eigenvalue equation

(H − i∂t)2ψ = α2ψ , (2.29)

where α is a real number. By taking the right hand side of this equation to the

left, and rewriting the left hand side as the product of two separate terms we get

(H − i∂t − α)(H − i∂t + α)ψ = 0 , (2.30)

with the general solution11

ψ(x, t) = c1e−i(H+α)tψ0(x) + c2e−i(H−α)tψ0(x) . (2.31)

It is seen that the eigenvectors corresponding to higher eigenvalues represent the

same dynamics only with a global shift of energy.

It’ll be shown in the next section that in order for us to be able to apply the

proper boundary conditions in time, which is a requirement for the implementation

of the McLachlian matrix, we will have to sacrifice the hermiticity. As a side-effect,

the eigenvectors corresponding to higher eigenvalues will no longer describe the

same dynamics, as the proof above hinges on the McLachlian being hermitian.

However, if periodic boundary conditions in time are used (see appendix B), the

hermiticity of i∂t is preserved. In this case, the higher eigenvectors indeed represent

the same dynamics with a global shift of energy

2.3.3. Basis required for the McLachlian

In quantum mechanics the wave function is almost always expressed in terms of a

set of complete spatial basis functions φi(x).12 Even though not customary, it is

also possible to express the time evolution of the wave function in terms of a set

of temporal basis functions Tj(t).

11. In the case of a time-dependent Hamiltonian the exponents have to be replaced with appro-

priate integrals.

12. In the simplest case Dirac delta functions δ(x) are used as the basis functions.
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In order to express the McLachlian operator, a complete basis in space and time

is needed. Such a basis is easily constructed by the outer product of the spatial

and temporal bases,

Λ = T ⊗ φ , (2.32)

or when written out explicitly

Λi,j(x, t) = Ti(t)φj(x) , (2.33)

where Λ(x, t)i,j are the basis functions in space-time. The time-dependent wave

function can now be expressed in terms of these basis functions

ψ(x, t) =
∑

i,j

ai,jΛi,j(x, t) , (2.34)

where ai,j have no spatial or temporal dependence.

Normally the wave function is written using the Dirac notation in the absence of

a specific spatial basis, i.e. |ψ(t)〉. Since there is usually no temporal basis, the time

dependence is expressed simply by adding an argument to the ket |ψ〉 → |ψ(t)〉.
On the contrary, we have included a temporal basis in our approach, and in order

to express the wave function in the absence of a specific spatio-temporal basis, we

use a slightly different version of the Dirac notation, i.e. |. . .〉〉 (the same notation is

used by physicists when applying Floquet theory to periodic systems [31]). When

the temporal dependence is needed, the wave function has to be multiplied from

the left by the suitable temporal basis function, i.e. |ψ(t)〉 = 〈t|ψ〉〉. And when

the spatio-temporal dependence is required, it has to be multiplied by the suitable

spatio-temporal basis function, that is ψ(x, t) = (〈t|⊗〈x|) |ψ〉〉. Now we can rewrite

eq. (2.34) using the new notation,

|ψ〉〉 =
∑

i,j

ai,j |Λi,j〉〉 , (2.35)

where |Λi,j〉〉 form the spatio-temporal basis, and ai,j = 〈〈Λi,j|ψ〉〉. To sum, the

space in which |ψ〉〉 is defined has one more dimension than the space required to

express |ψ(t)〉, as the latter is only one slice of the former at a particular time.

2.4. McLachlian operator: implementation

A suitable choice of spatial basis depends to a large degree on the system under

study. A basis appropriate for one system may be completely inadequate for an-
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other. The temporal basis on the other hand proves to be trickier, as the dynamics

of the system is not known prior to solving the TDSE. The simplest temporal basis

is a grid in time, where each basis function represents a point in time. As will

be soon seen, this choice of basis makes it possible to apply the initial conditions

without any complications.

The first step is to express the time-derivative appearing in the TDSE in the

finite difference language; for a short primer on finite differences please refer to

appendix B. Using the central difference [35], the time derivative is

ḟi ≡
fi+1 − fi−1

2∆t
, (2.36)

or when expressed as a vector

∂tf ≡




ḟ0

ḟ1

...

ḟN−2

ḟN−1




=
1

2∆t




f1 − f−1

f2 − f0

...

fN−1 − fN−3

fN − fN−2



, (2.37)

where it is seen that when the derivative at t = 0 is desired, the value of the

function at t = −∆t is required. Depending on the boundary condition used,

f−1 is replaced with different values. For example, in the case of the Neumann

boundary condition f−1 is replaced with f0; for more details see appendix B. But

none of the boundary conditions in the literature is useful here, as each of them

carries a special meaning unjustified in this case.

What we need to do is express the derivative at t = 0 in a way that no boundary

conditions are assumed. This can be only done by expressing the derivatives at

the boundaries in terms of the points inside the domain. In other words, we have

to use one-sided finite differences to express the derivatives at points t = 0 and

t = N ∆t. The forward difference of second-order accuracy is

ḟi =
−3fi + 4fi+1 − fi+2

2∆t
, (2.38)

and similarly the backward difference

ḟi =
fi−2 − 4fi−1 + 3fi

2∆t
, (2.39)

where these one-sided differences are of the same order as the central difference

introduced earlier. If the derivatives at t = 0 and t = N ∆t in eq. (2.37) are
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replaced with the one-sided differences we obtain

∂tf =
1

2∆t




−3f0 + 4f1 − f2

f2 − f0

...

fN − fN−2

fN−2 − 4fN−1 + 3fN




=
1

2∆t




−3 4 −1

−1 0 1
. . .

−1 0 1

1 −4 3







f0

f1

...

fN−2

fN−1



,

(2.40)

where the differentiation operator is clearly not hermitian any more. However, if

periodic boundary conditions are used (see appendix B) the hermiticity will be

retained.

Having expressed the time-derivative, it is time to write down the McLachlian

matrix, which is easily done given the temporal basis just defined

Î =

(
N−1⊕

i=0

H(ti)− i∂t ⊗ 1φ

)†(N−1⊕

i=0

H(ti)− i∂t ⊗ 1φ

)
, (2.41)

where
⊕

is the direct sum, and † means hermitian conjugation. 1T and 1φ are

the identity matrices in the time domain and position space respectively. To make

sense of this expression, remember that |ψ〉〉 is constructed, using a temporal basis

defined by a grid in time, simply by stacking up |ψ(t)〉 at different times, that is

|ψ〉〉 =




|ψ(t0)〉
|ψ(t1)〉

...

|ψ(tf )〉



. (2.42)

In the case of a time-independent Hamiltonian the McLachlian matrix reduces to

Î = (1T ⊗H − i∂t ⊗ 1φ)† (1T ⊗H − i∂t ⊗ 1φ) . (2.43)
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2.4.1. Initial conditions

Any solution to the TDSE should in principle act as an eigenvector of the McLach-

lian eigenvalue problem. In an M -dimensional spatial space there are M orthogonal

initial conditions, in terms of which any arbitrary initial condition can be expanded.

The solution to the TDSE for any arbitrary initial condition should be expressible

using the solutions for these two orthogonal initial conditions. This is a direct

consequence of the temporal linearity of the TDSE.

In this M -dimensional space, the ground state of the McLachlian matrix is M -

fold degenerate, each of which is the solution to the TDSE for one of the M or-

thogonal initial conditions (see fig. 2.8). This suggests that one way to have the

solution for an arbitrary initial condition is to find all the ground states, in terms

of which any solution can be expressed later.

If the size of the system is large, however, it is not feasible to find all the ground

states first and then find a combination satisfying the initial conditions. Therefore,

it is imperative that we apply the initial conditions prior to finding the ground state.

The initial conditions should lift the degeneracy such that there is only one ground

state left. This can be easily done by adding a penalty term to the McLachlian

matrix [36],

p ≡




〈t = 0| 〈t = 1| . . . 〈t = N |
|t = 0〉 1− |ψ0〉 〈ψ0| 0 . . . 0

|t = 1〉 0 0 . . . 0
...

...
...

. . .
...

|t = N〉 0 0 . . . 0



, (2.44)

where |ψ0〉 is the initial state. Therefore, the new McLachlian matrix is

Î → Î + p . (2.45)

It can be confirmed by direct substitution that only the state satisfying the initial

conditions serves as the ground state of the new McLachlian matrix with eigenvalue

0.

Applying the initial conditions using a penalty term has the side-effect that the

solution is found up to a global phase. To clarify, consider the following element

from the penalty term

1− |ψ0〉 〈ψ0| , (2.46)
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where again |ψ0〉 is the initial state. If a global phase is added to the initial state

|ψ0〉 → exp(iθ) |ψ0〉, the penalty term remains unaltered. In other words, the

solution obtained in this way may have a different global phase to the original

initial state. But this doesn’t have any effect on the validity of the solution, as a

constant global phase is trivial in quantum mechanics.

2.5. Finding the ground state of the McLachlian

matrix: direct diagonalisation

Having the new formalism of the TDSE at our disposal, we would like to solve for

the dynamics of a few systems. We will consider three systems: a two-level system,

a three-level system, and a hydrogen atom in the presence of a laser pulse. First we

will write down the Hamiltonian for each system, and then form the corresponding

McLachlian, the ground state of which is the solution of the TDSE. There are

many methods in the literature for finding the ground state of a matrix. In this

section we will find the ground state by directly diagonalising the McLachlian,

which is then compared with the solution by textbook propagation methods. The

next chapter is an attempt at using the FCIQMC method to find the ground state

of the McLachlian, and it becomes apparent there that diffusion methods won’t

work in this particular case.

2.5.1. Two-level system

First we will consider a two-level system with its two levels at E1 = 0 and E2 = 1.

The two levels are coupled through the term γeiωt where ω = 4 and γ = 1. The

Hamiltonian in matrix form is

H =

(
E1 γeiωt

γ∗e−iωt E2

)
. (2.47)

This system can be solved analytically [34]. The numerical solution obtained by

diagonalising the McLachlian matrix along with the analytic solution are drawn

in fig. 2.3, where a perfect agreement is visible. The system starts off with all its

population in the state corresponding to E1, and is then allowed to evolve from

t = 0 to t = 6 with time step dt = 0.01.
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Figure 2.3. State populations of a two-level system solved by directly diagonalis-

ing the McLachlian matrix compared with the analytic solution [34].
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Figure 2.4. State populations of a three-level system solved by directly diago-

nalising the McLachlian matrix compared with Crank-Nicolson time

propagation method.

2.5.2. Three-level system

The next system we will consider is a three-level system with its levels at E1 =

0, E2 = ω, and E3 = 2ω, and each two consecutive levels are coupled through

γ cos(ωt). The parameters used are ω = 9 and γ = 3. The Hamiltonian is

H =




E1 γ cos(ωt) 0

γ cos(ωt) E2 γ cos(ωt)

0 γ cos(ωt) E3


 . (2.48)

The numerical solution obtained via directly diagonalising the McLachlian matrix,

and a solution by the Crank-Nicolson scheme are shown in fig. 2.4. Again a good

agreement between the two is visible, even though the agreement worsens as time

progresses (no two numerical schemes agree forever, but it is possible to extend the

agreement by decreasing the time step or simply by using higher order schemes).

The system is initially in the state corresponding to E1, and then evolves from

t = 0 to t = 6 with time step dt = 0.01.
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Figure 2.5. State populations of a hydrogen atom in the presence of a time depen-

dent electric field. The electron is initially in the 2p-state φ210. The

gray background shows the magnitude of the laser pulse. States with

non-zero magnetic quantum numbers don’t couple to the 2p state (a

direct consequence of the linear polarisation of the laser pulse along

the z-axis).

2.5.3. Atomic hydrogen in a time dependent electric field

The third and last example is a hydrogen atom exposed to a time dependent electric

field. The Hamiltonian of such a system is

H =
1

2
p2 + V (r) + Ve(r, t) , (2.49)

where p is the magnitude of the momentum operator p, V (r) = −1/r is the

potential of the nucleus, and Ve(r, t) = zE(t) represents the electric potential. The

electric field E(t) is given by,

E(t) =

{
E0 cos2( πt

2τ
) if |t| < τ

0 otherwise ,
(2.50)

where E0 represents the electric field amplitude, and τ is the full width at half

maximum (FWHM) of the pulse. The values used here are E0 = 0.3 a.u. and

τ = 15 a.u.

The first five relevant states of the hydrogen atom are shown in fig. 2.5 (15 states

were included in the simulation), which are obtained by directly diagonalising the

McLachlian matrix. The norm of the wave function remains constant over time

which is expected of any valid simulation.

These three examples should convince us that the ground state of the McLachlian

matrix is indeed the solution to the TDSE.
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2.6. Finding the ground state of the McLachlian

matrix: FCIQMC

Having made sure in the last section that the ground state of the McLachlian

matrix is the solution to the TDSE, we are in a position now to use the FCIQMC

method to find this ground state, as the FCIQMC method is in fact a method for

finding the ground state of a hermitian matrix [21, 22].

By taking a look at the two diffusion equations in table 2.1, it becomes clear that

in order to use the FCIQMC method to find the ground state of the McLachlian

matrix, the Hamiltonian in the FCIQMC method should be replaced with the

McLachlian. Consequently, the McLachlian matrix elements should replace those

of the Hamiltonian in all the probabilities appearing in eqs. (2.14).

After several months of numerous attempts to find the ground state of the

McLachlian using the FCIQMC method, all our attempts failed one after another.

Among the systems we considered were systems as simple as few-level systems all

the way to systems as complex as the quantum harmonic oscillator, see fig. 2.6.

After letting the simulations run for a very long time (of the order of 108 time

steps), there were no sign of convergence in any of the systems. In order to see

why the FCIQMC method had failed in all the systems mentioned, we had to take

a deeper look at the FCIQMC method.

As it was briefly mentioned towards the end of section 2.2, diffusion methods

have to run for a long time if the difference between the eigenstates of the ground

state and the next state is small, i.e. the ground state is quasi-degenerate. In

fig. 2.7 two systems are shown, one with a distinct ground state and one with

a quasi-degenerate ground state; the eigenstates are drawn on a vertical axis to

the right of each plot. FCIQMC was used in both cases with the same number

of time steps and with the same number of walkers. It can be clearly seen that

FCIQMC fails to find the ground state if the ground state is quasi-degenerate. Of

course it might be possible to let the algorithm run for longer until convergence is

achieved, but the question is how much longer. If the two quasi-degenerate are too

close together, the convergence time can be so long that FCIQMC will be rendered

practically ineffective.

Now let’s have a look at the eigenvalues of the McLachlian. In fig. 2.8 the nine
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Figure 2.6. The quantum harmonic oscillator (H = p2/2 + 1/2x2) is solved for 6

time steps (i.e. 6 temporal basis functions) using the FCIQMC method

and direct diagonalisation of the McLachlian matrix (eq. (2.43)). Each

block represents the wave function at each of these 6 time steps. For

instance, the block between 2 and 3 is the wave function at the 3rd

time step. 5000 walkers were used in the FCIQMC method, and the

algorithm was allowed to run for 108 time steps (these time steps

shouldn’t be confused with the 6 time steps mentioned earlier. These

are the time steps used in the FCIQMC method for the evolution

of the walkers), where ∆τ = 5 × 10−4. It is clearly visible that the

solution has started to form from the first time step towards later time

steps (the first time step is where the initial conditions are applied.).

However, the convergence time appears to be unattainably long.
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Figure 2.7. The FCIQMC method has been used to find the ground states of two

random hermitian matrices. The eigenvalues of each matrix are shown

on a vertical axis to the right of each plot. The FCIQMC method fails

to find the ground state of the matrix on the left due to the presence

of two quasi-degenerate ground states. As soon as the degeneracy is

lifted, as in the plot on the right, the FCIQMC method successfully

finds the ground state.
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smallest eigenvalues of the McLachlian of the three-level system considered earlier

are shown. In the four plots the time step is increased while the total time is kept

constant. The three-fold degeneracy of the ground state is obvious in all of these

plots. In fact the ground state prior to the application of the initial conditions is

always M -fold degenerate where M is the size of the Hamiltonian. Each of these

M -degenerate ground states is the solution to the TDSE for the initial condition

that only one of the states is occupied. The solution for any arbitrary initial

condition can be expressed as a superposition of these ground states.

All the eigenvectors of the McLachlian matrix have to be orthogonal due to the

hermiticity of the McLachlian operator. If the time axis is discretised (as was done

in sec. 2.4) into N sections, and the position space is M dimensional, the total

number of eigenvectors is M ×N . In this space there are M orthogonal solutions

corresponding to M orthogonal initial conditions. In order to see how the rest of

these eigenvectors are constructed, we need to consider two different eigenvalues

α2
1 and α2

2. According to eq. (2.31) the corresponding eigenvectors are given by

exp(−iα1t) exp(−iHt)Ψ0(x) and exp(−iα2t) exp(−iHt)Ψ0(x), assuming both of

them satisfy the same set of initial conditions. In order for these two eigenvectors to

be orthogonal, the two prefactors exp(−iα1t) and exp(−iα2t) should be orthogonal

(since they are the only part distinguishing the two eigenvectors), and this only

happens if α1 ∝ k1/T and α2 ∝ k2/T where N is the number of basis functions in

time, T is the total duration of the simulation, k1, k2 = 0, 1, . . . , N − 1 and k1 6= k2

(remember exp(−i2πkt/T ) with k ∈ N form an orthonormal Fourier basis over the

interval of [0, T ]). Therefore, in general we have

α ∝ k

T
with k = 0, 1, . . . , N − 1 . (2.51)

Looking again at eq. (2.31), we can see a general solution has two terms, one with

eigenvalue α2, and the other with (−α)2. If the eigenvalues of the McLachlian are

shown on a plot, there should be then two eigenvalues equal to α2 for each of the

M orthogonal initial conditions. Therefore, there should be M eigenvalues equal

to 0, followed by 2M eigenvalues ∼ 1/T 2, followed by 2M eigenvalues ∼ 22/T 2,

etc. This is indeed the pattern seen in fig. 2.8.

When the initial conditions are applied through the introduction of the penalty

term, eq. (2.44), the degeneracy is lifted as seen in fig. 2.9. There is only one

eigenvalue left unaltered, and that corresponds to the solution for the given initial

condition. The difference between the lowest and second lowest eigenvalues in this
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Figure 2.8. The eigenvalues of the McLachlian matrix of the three-level system

considered in subsection 2.5.2 prior to applying the initial conditions,

shown for various choices of dt while fixing the simulation length T .

The 3-fold degeneracy of the ground state is clearly visible. The

difference between the eigenvalues of the ground state and the next

state scales as 1/T 2 and therefore independent of the time step.

case is smaller than the difference between the two before the application of the

initial conditions (the difference is ∼ 1/T 2 according to eq.(2.51)). However, we can

use the latter as an upper bound, and this upper bound shrinks as ∼ 1/T 2. This is

exactly the reason why the FCIQMC method doesn’t work as expected when set

to find the ground state of the McLachlian. The ground state is highly degenerate,

and the degeneracy worsens as T increases, meaning for practical simulation lengths

we have a multifold degeneracy unresolvable by any diffusion method.

Having realised the severity of the quasi-degeneracy of the McLachlian, one might

be tempted to resort to one last option: increasing the weight of the penalty term,

p→ wp , (2.52)

where p is the penalty term defined in eq. (2.44) and w is the weight. In fig. 2.11

the effect of four different weights on the eigenvalues are shown. It is seen that

the difference in eigenvalue between the ground state and the next state does not

grow beyond a threshold of the order of α2. A similar plot for a two-level system

is drawn in fig. 2.12.
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Figure 2.9. The same as fig. 2.8 except that the initial conditions are applied. It

is seen that the degeneracy of the ground state is lifted, leaving only

the one state that satisfies the initial conditions. Again it is seen that

the difference between the eigenvalues of the ground state and the

next state is determined by the simulation length T and is therefore

independent of dt.
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Figure 2.10. The eigenvalues of the McLachlian matrix of the three-level system

in subsection 2.5.2 with the initial conditions applied. The different

plots are drawn for different values of the simulation duration. It is

clearly seen that the difference between the eigenvalues of the ground

state and the next state scales as 1/T 2 (note the limits of the vertical

axes).
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Figure 2.11. The eigenvalues of the McLachlian of the three-level system in sub-

section 2.5.2 with simulation length T = 2. The initial conditions are

applied by introducing a penalty term. The weight of this penalty

term is increased to investigate if the difference between the eigenval-

ues of the ground state and the next state increases substantially. It

is unfortunately observed that the difference does not grow beyond

a negligible value, rendering the FCIQMC method unusable.
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Figure 2.12. The eigenvalues of the ground state (shown by plus signs) and the

next state (shown by circles) of the two-level system in subsec-

tion 2.5.1 for different weights of the penalty term. The difference

reaches a threshold.
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2.7. Analysis of the McLachlian eigenvalue problem

2.7.1. Complexity

Despite the failure faced while trying to efficiently solve the McLachlian eigenvalue

problem, it is of academic interest to investigate how the complexity of solving this

eigenvalue problem compares with that of textbook propagation methods. In the

discussion to follow, N represents the number of time steps, and the Hamiltonian

matrix is of size M ×M .

Using the big O notation [37], the computational complexity of extracting the

ground state of a matrix is assumed to be O(lα), where l is the size of the ma-

trix. It is further assumed that the computational complexity of matrix-vector

multiplication is O(lβ), where l is the size of the matrix again.

First we will estimate the computational complexity of a typical time propagation

scheme, and then compare it with the complexity of finding the ground state of

the McLachlian. For the sake of argument, the Hamiltonian is considered to be

represented by a full matrix, even though this may not always be the case; it is

hoped that both methods, i.e. time propagation and finding the eigenstate of the

McLachlian, could benefit from a computational speed-up in the case of a sparse

Hamiltonian, and therefore the following argument should be relevant for all types

of Hamiltonians.

Each time step of a usual time propagation method contains a vector-matrix

multiplication13 which in total adds up to N multiplications, thus a complexity of

O(N ×Mβ). On the other hand, the complexity of finding the ground state of the

McLachlian is O((N ×M)α) = O(Nα ×Mα) where the size of the McLachlian is

(N ×M)× (N ×M).

In order for the McLachlian eigenvalue problem to be of a lower complexity, it is

required that NαMα < N Mβ. To put this inequality in perspective, we consider

two different situations:

1. the size of the Hamiltonian remains fixed while the number of time steps

13. It is assumed that an explicit method is used, otherwise the complexity is slightly higher.
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increases. In this case the required inequality reduces to

α < β . (2.53)

2. the size of the Hamiltonian increases while the number of time steps is kept

fixed, yielding

α < 1 . (2.54)

Finding an algorithm satisfying any of these two requirements would be a big

revolution in computer science. Even in the unlikely event that such an algorithm

is found, the memory requirements of the new formalism are much more demanding

than those of a time propagation scheme. While it is required to save an M -

dimensional vector in the case of a time propagation method, the McLachlian

method requires a vector of length N ×M .

2.7.2. Parallelisability

It is claimed [5] that the McLachlian formalism of the TDSE as an eigenvalue

problem has the potential to run on multiple cores in parallel, and therefore by

increasing the number of cores it is possible to beat any textbook time propagation

method. Unfortunately, it is easily seen in fig. 2.6 that once the initial conditions

are applied, the solution starts forming at the neighbouring time step, and then

the next time step, and so on. This is a clear manifestation of the fact that the

McLachlian is a band matrix. To put it another way, once the initial conditions are

applied the task of finding the dynamics of the system is an inherently sequential

problem. Thus introducing extra cores will most likely not help as they will have to

wait until the correct distribution of walkers reaches the corresponding time step.

2.8. McLachlian eigenvalue problem as a time

propagation scheme and vice versa

As it turns out, the McLachlian eigenvalue problem can be reformulated as a

time propagation scheme, and conversely all time propagation schemes can be

rearranged into a McLachlian matrix.
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The time dependent Schrödinger equation is a first order differential equation in

time

ψ̇ = f(t, ψ) with ψ(t0) = ψ0 , (2.55)

where f(t, ψ) = −iH(t)ψ and H(t) is an operator. The solution of such an equation

is usually found using multistep methods. Multistep methods use the value of the

solution from several time steps earlier to approximate the value of the solution

at the current time step. The time propagation methods used in physics and

engineering are an example of such methods. A linear multistep method uses a

linear expression for that purpose. A general linear multistep method using the

previous s steps can be written as [35]

a0ψj + a1ψj−1 + a2ψj−2 + · · ·+ asψj−s

= ∆t (b0f(tj, ψj) + b1f(tj−1, ψj−1) + · · ·+ bsf(tj−s, ψj−s)) , (2.56)

where ai and bi dictate the behaviour of the method. If b0 = 0, the method is called

explicit and can be directly solved. If b0 6= 0, the method is implicit meaning the

value of the solution at the current time is needed to calculate the value of the

solution at the current time. Using an implicit method is usually more involved

than using an explicit method.

A multistep method is said to be consistent if the local error goes to zero faster

than the step size ∆t as ∆t→ 0. This happens if and only if [35]

s∑

k=0

ak = 0 , (2.57)

and
s∑

k=0

bk +
s∑

k=0

kak = 0 . (2.58)

A linear multistep method has order p if the local error is of order O(hp+1) as

∆t goes to zero. This is equivalent to the following condition on the coefficients of

the method [35]

q

s∑

k=0

kq−1bk +
s∑

k=0

kqak = 0, q = 1, . . . , p . (2.59)

Now we can study a few of the usual methods and then go on to express the

McLachlian matrix introduced in this chapter as a multistep scheme. The abbre-

viation Hj = H(tj) is used below.
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1. Forward Euler

The wave function at each time step is calculated according to

ψj = −iHj−1ψj−1∆t+ ψj−1 , (2.60)

which is a linear method with s = 1. The coefficients of this scheme are

a0 = 1, a1 = −1 (2.61)

b0 = 0, b1 = 1 . (2.62)

This scheme is explicit, consistent, and of order 1. The corresponding McLach-

lian is I = A†A where

A =




. . .

1

−1 + iHj−1∆t 1

−1 + iHj∆t
. . .



, (2.63)

where the diagonal is shown in blue. The underlined element marks the j-th

row and the j-th column.

2. Backward Euler

The update scheme is

ψj = −iHjψj∆t+ ψj−1 , (2.64)

which is a linear method with s = 1. The coefficients are

a0 = 1, a1 = −1 (2.65)

b0 = 1, b1 = 0 . (2.66)

This scheme is implicit, consistent, and of order 1. The corresponding

McLachlian is I = A†A where

A =




. . .

1− iHj−1∆t

−1 1− iHj∆t

−1
. . .



, (2.67)

where the diagonal is shown in blue. The underlined element marks the j-th

row and the j-th column.
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3. Crank-Nicolson

The propagation routine is

ψj = − i
2

(Hjψj +Hj−1ψj−1) ∆t+ ψj−1 , (2.68)

which is a linear method with s = 1, and furthermore it is the average of

Euler forward and backward methods. The coefficients are

a0 = 1, a1 = −1 (2.69)

b0 =
1

2
, b1 =

1

2
, (2.70)

giving rise to the McLachlian matrix I = A†A with

A =




. . .

1 + i
2
Hj−1∆t

−1 + i
2
Hj−1∆t 1 + i

2
Hj∆t

−1 + i
2
Hj∆t

. . .



, (2.71)

where the diagonal is shown in blue. The underlined element marks the j-th

row and the j-th column. The Crank-Nicolson scheme is implicit, consistent,

and of order 2.

4. Scheme introduced in sec. 2.4

The McLachlian I = A†A used in sec. 2.4, eq. (2.41), is constructed by

A =




. . . 1

−1 2iHj−2∆t 1

−1 2iHj−1∆t 1

−1
. . .



, (2.72)

where the diagonal is shown in blue. The underlined element marks the

j-th row and the j-th column. This McLachlian can be rewritten as a time-

propagation scheme

ψj = −2iHj−1ψj−1∆t+ ψj−2 , (2.73)

which is obviously a linear method with s = 2. The coefficients of this scheme

are

a0 = 1, a1 = 0, a2 = −1 (2.74)

b0 = 0, b1 = 2, b2 = 0 , (2.75)

which shows that this scheme is explicit, consistent, and of order 2.



2. McLachlian method: TDSE as an eigenvalue problem 35

2.9. Conclusion

The Full Configuration Interaction Quantum Monte Carlo method (FCIQMC)

proves to be a method for finding the ground state of hermitian matrices. Motivated

by this fact, we reformulate the time dependent Schrödinger equation (TDSE) as

an eigenvalue problem. The operator involved in this problem, termed McLachlian,

is shown to have a degenerate ground state which is only lifted when the initial

conditions are applied. The initial conditions are applied through the inclusion of a

penalty term, lifting all the ground states but the one satisfying the desired initial

condition. In this case, by directly diagonalising the McLachlian, it is shown that

the ground state indeed represents the solution of the TDSE.

Upon using the FCIQMC method to find the ground state of the McLachlian

matrix, however, no convergence is reached. The main reason is revealed to be that

the lifting of the degeneracy of the ground state by the penalty term is insufficient

to be detectable by usual textbook diffusion methods in a reasonable time.

A comparison between the McLachlian eigenvalue problem and common text-

book time propagation schemes shows that the complexity of the McLachlian eigen-

value problem, if to be solved using textbook eigensystem solvers, scales unfortu-

nately very unfavourably with the number of time steps and the size of the system.

This revelation along with the failure of the FCIQMC method in extracting the

ground state of the McLachlian matrix, show that the new formalism will most

likely be only of academic interest in the future.

It appears to be possible to transform any time propagation method into an

eigenvalue problem, and conversely to rewrite the McLachlian matrix as a time

propagation method. Even though it is a reasonable idea to assume that the time

propagation version of the McLachlian matrix developed in this chapter may be

used for tackling real problems in the future, in reality it is nothing but a special

case of a wide variety of methods called multistep methods.



3. Optimisation of complex systems

using Gaussian processes

The field of machine learning has been revolutionising almost every aspect of our

lives over the past few years. So much so that it has become almost inevitable

to come across a handful of its applications on any given day. Online shopping

portals nowadays use sophisticated algorithms to provide their customers with

better service. Or news websites use these algorithms to tailor each user’s news

feed to their interests. Similar algorithms have been successfully used to beat the

human expert at a number of different games such as chess [38], and Go [39].

It is only natural that one might think these algorithms should also be given a

chance in areas like physics. On the one hand, there is a fundamental difference

between the examples mentioned above and physics. While there is no known

mathematical formula governing the likes and dislikes of a user, the laws of physics

are all formulated in a mathematically sound way. In the former, complex algo-

rithms are used to model the behaviour of a mathematically inexpressible object

such as the behaviour of a person, whereas in the latter these algorithms may be

used to avoid time consuming simulations. On the other hand, what they both

have in common is that the ultimate goal in either case is to have a simple descrip-

tion of the system. For instance, even though a physical system might be difficult

and time consuming to simulate, it might be easy to predict its output given the

input once a few simulations are done. This simplified description can then be used

for other applications.

Machine learning has been used in physics to accelerate simulation of molecu-

lar dynamics [40], to improve experimental procedures [41], to extract quantum

mechanical properties of materials [42–44], and to approximate complex poten-

tials [45, 46]. There is even a quick review of machine learning from a physicist’s

perspective [47].

36
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Another potential application is the optimisation of the output of a system. Op-

timisation algorithms developed in the field of machine learning can and should

be used in other areas of science if they show better performance. Given the com-

plexity of today’s problems, it is very crucial that we should take advantage of the

fastest algorithms available. Fortunately, over the past few years different groups

have started the motion using different approaches; for example the particle swarm

optimization algorithm has been used to automatically devise quantum measure-

ment policies [48]; the differential evolution algorithm has helped physicists tackle

the so-called oracle decision problem [49]; and in ref. [50] different clustering algo-

rithms are used to optimise the assignment fidelity in a superconducting system.

Methods based on Bayes’ theorem form a very important class of optimisation

algorithms [51]; for a review of Bayesian inference in physics please refer to ref. [52].

Bayes’ theorem turns out to be a natural pathway to learning from acquired data,

and furthermore a recipe for correcting misjudgements [53, 54]. This theorem is

used to develop algorithms which correct their own predictions as new evidence

becomes available (loosely speaking, the process of repeatedly learning from new

data is referred to as active learning [55]). These algorithms are in complete con-

trast to those which stop improving once the training phase is over; neural network

based algorithms are a classic example [56] (this type of learning which completely

ignores the effect of the newly acquired data is called supervised learning [55]).

Historically, most neural networks, once trained, won’t change their prediction no

matter how many counter examples are found. For a textbook on machine learning

please refer to ref. [57].

Bayesian active learning has a very special place in machine learning [58] and

in particulr in optimisation. A good optimisation unit should make use of all the

available data to improve its perception of the latent function (the function to

be optimised) as it progresses towards finding the optimum value. For instance,

the Newton method [59] uses only the last examined point to suggest the next

point, and the Nelder-Mead method [60] (also known as downhill simplex method)

uses the last few examined points (the actual number of points depends on the

dimension of the problem) to suggest the next point. There are other methods

which need all the previously covered points to suggest the next point. Some of

these methods describe the data using what is known as non-parametric models.

While a parametric model has a few parameters which are set in the training

phase once and for all, non-parametric models have no such parameters [57]; each
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data point acts as a separate parameter without which the model cannot make

predictions. Bayesian non-parametric models have the advantage that they make

the most informed guesses about the next point given the available data [61]. But

this comes at a price, i.e. all the previously covered points have to be kept, which

may become a hindrance as the algorithm progresses and the number of covered

points grows.

Complex systems form a main branch of contemporary physics. These are highly

nonlinear systems which are usually very hard to tackle analytically [1]. More

often than not, in such systems, it is necessary to find the optimum conditions for

a particular phenomenon to occur. Thanks to the computational advancements

in the past few decades, it is now possible to simulate these systems with relative

ease. However, simulation runtimes might still be very long, making optimisation

of complex systems demanding, particularly as the complexity of the system grows.

This is where Bayesian optimisation algorithms can be of assistance.

In this chapter we will be mainly concerned with the optimisation of different

atomic systems using a Bayesian optimisation algorithm based on Gaussian pro-

cesses (a Gaussian process is an infinite dimensional Gaussian distribution). The

Gaussian process is a non-parametric model and proves a very flexible and compu-

tationally cheap candidate for modelling generic data [62, 63]. Gaussian processes

have found application in weather forecast [64, 65], time analysis [66], etc. Gaus-

sian processes are particularly efficient when the number of data points n isn’t

too large, as the computational cost of making predictions scales (in the worst

case) with n3 [62] (as will be clear soon, matrix inversion is the bottleneck), which

means Gaussian processes lose their appeal as this number grows. In other words,

optimisation algorithms based on Gaussian processes may be efficiently used for

systems of a relatively small number of variables. This number translates directly

into how many data points are needed in order to find the optimum. As a rule of

thumb, the more flexible the system, the more data points are needed; this is a

manifestation of the so-called curse of dimensionality and the interested reader is

referred to ref. [67] for a brief discussion.

This chapter is organised such that the reader will be first familiarised with

the key concepts underlying Gaussian processes. That is, in section 3.1 a few

basic statistical definitions are explained followed by a short discussion of Bayes’

theorem. In section 3.2 we will see, through an example, how Bayes’ theorem can

be used as a guide to learning in the light of incoming data. This is then used to
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introduce the concept of a fully Bayesian inference in section 3.3. A short primer on

the Gaussian distribution is given in section 3.4 to make the transition to Gaussian

processes smoother; the Gaussian process is defined in section 3.5. In section 3.6

the idea of using Gaussian processes as a Bayesian model is developed, which paves

the way for Bayesian optimisation methods to be presented in section 3.7. A brief

summary of the algorithm developed so far is reiterated in section 3.8. This method

is then used to find the optimum settings in four different systems in sections 3.9,

3.10, 3.11, and 3.12. The chapter is concluded in section 3.13.

3.1. Probability: the basics

We will repeatedly refer to some basic statistical quantities, and to make sure there

is no ambiguity, a list of them is given here. For the rest of this section, let y1, y2,

etc. be random variables each of which can take on values A, B, etc.

Joint probability

The joint probability is the probability of two events happening at the same time.

For instance, p(y1 = A, y2 = B) is the probability that y1 takes on value A, and

simultaneously y2 takes on value B.

Marginal probability

The marginal probability is the probability that one particular event happens re-

gardless of the outcome of other events. That is, p(y1 = A) is the probability that

y1 takes on value A no matter what value y2 might have. Mathematically speaking,

this probability is calculated by integrating variable y2 out of the joint probability

p(y1) =

∫
p(y1, y2) dy2 . (3.1)
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Conditional probability

The conditional probability is the probability that one particular event happens

given that some other event has happened already, i.e. p(y1 = A|y2 = B) is the

probability that y1 is equal to A assuming it is already known that y2 is equal to

B. Note that p(y1 = A|y2 = B) is mathematically and conceptually different from

p(y2 = B|y1 = A); these two are connected by Bayes’ theorem as discussed next.

Bayes’ theorem

Bayes’ theorem is probably best understood through an example. Imagine that one

of the symptoms of a particular type of allergy to peanuts is a rash. Without any

knowledge of Bayes’ theorem, knowing if a patient is allergic or not won’t help us

have a better assessment of the probability that they will get a rash after having

peanuts. That is, our assessment would be the same regardless of the patient’s

medical history. This is indeed very unfortunate because even though we have

access to a relevant piece of information regarding the status of the patient, we

cannot incorporate this knowledge into our judgement. But fortunately this is

exactly where Bayes’ theorem comes to our assistance [68].

Bayes’ theorem modifies the probability of an event in the light of newly gathered

information. If p(y1 = A) is the probability of some event prior to any observation,

the probability of the same event after observing y2 = B is given by [68]

p(y1 = A|y2 = B) =
p(y2 = B|y1 = A)p(y1 = A)

p(y2 = B)
. (3.2)

where p(y1 = A) is called the prior, p(y2 = B|y1 = A) is called the likelihood, and

p(y2 = B) is called the evidence. The posterior p(y1 = A|y2 = B) is in fact the

prior improved in view of the observation.

Coming back to our example, suppose the probability that a person gets a rash

after eating peanuts is p(rash) = 0.05, and the probability that a person is allergic

to peanuts is p(allergy) = 0.1. Further assume that the medical statistics show

that 80% of the people getting a rash have reported an allergy to peanuts in their

medical history, i.e. p(allergy|rash) = 0.8. Without Bayes’ theorem, all we could

say at this point is “everyone is 5% likely to get a rash after eating peanuts”. This

judgement is certainly not wrong, but fails to take into account the fact that we
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know that the patient has an allergy. A better judgement can be made using Bayes’

theorem. We will have to consider two cases, 1. the patient is allergic to peanuts,

p(rash|allergy) =
p(allergy|rash)p(rash)

p(allergy)
=

0.8× 0.05

0.1
= 0.4 , (3.3)

and 2. the patient is not allergic,

p(rash|no allergy) =
p(no allergy|rash)p(rash)

p(no allergy)
=

0.2× 0.05

0.9
= 0.011 . (3.4)

The first one is the probability that a person with an allergy gets a rash, and the

second one is the probability that a person without an allergy gets a rash. It is

clear that knowing the medical history of a patient can make a huge difference in

our assessment, and simply ignoring it may not be the best way forward.

Perhaps it is constructive to view this example in a slightly different way. At

first, we didn’t know anything about the patient, and therefore estimated that he

would get a rash with a probability of 5%. However, it was then revealed that the

patient had an allergy (no allergy) to peanuts. Based on this fact, we were able to

have a better assessment of the status of the patient, i.e. he would get a rash with

a probability of 40% (1.1%). If more information was made available to us about

the patient, we could again update the probability accordingly. This process of

incorporating the newly acquired data into our analysis is called learning, and is

the topic of the next section.

3.2. Bayes’ theorem as a guide to learning

Bayes’ theorem lays the perfect mathematical foundation for learning from previous

observations. If Bayes’ theorem is used successively, every single new piece of

information can be taken into account as it becomes available [54]. Imagine we are

asked to investigate the fairness of a coin. We initially assume that the probability

of a coin coming up heads is given by the Beta distribution1

prior(p) = Beta(p;α, β) =
1

B(α, β)
pα−1(1− p)β−1 . (3.5)

1. This choice of prior might seem rather unintuitive, but we’ll soon see it will result in an

analytic posterior. Even though in general it is by no means necessary to worry about the

final form of the posterior, an analytic expression saves us from getting bogged down in the

mathematical detail while learning the basics. This particular type of prior has merely been

chosen to minimise the mathematical clutter. It should be emphasized that a good prior is

always obtained by assuming no more or less than what we know, and it is therefore imperative
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where B(α, β) is the beta function. In the case of no prior information whatsoever,

it is best to use an uninformative prior [69], which is a uniform distribution in this

case, and can be obtained by setting α = 1 and β = 1 in the Beta distribution, i.e.

Beta(p; 1, 1).

After flipping the coin, Bayes’ theorem enables us to learn about the probability

that the coin comes up heads or tails next time, that is, it refines our belief. If

the coin is tossed n-times, and the observed sequence is h, t, t, h, ... consisting of H

times heads and T times tails, the likelihood is given by the Bernoulli distribution

likelihood(h, t, t, h, ...|p) = Bernoulli(p;H,T ) = pH(1− p)T , (3.6)

in terms of which the evidence can be expressed

evidence(h, t, t, h, ...) =

∫
likelihood(h, t, t, h, ...|p)× prior(p) dp

=
B(α +H, β + T )

B(α, β)
.

(3.7)

Putting everything together, it becomes evident that the posterior is a beta distri-

bution with modified parameters

posterior(p|h, t, t, h, ...) = Beta(p;α +H, β + T ) . (3.8)

Using this posterior, it is easy to see what happens to our belief after a large number

of coin flips. For instance, if after flipping a coin 10, 000 times it turns out the coin

has come up heads 4, 899 times and has come up tails 5, 101 times, a bookmaker

is best off taking bets consistent with the updated probability distribution, i.e.

Beta(p; 1 + 4899, 1 + 5101).

The act of using Bayes’ theorem is referred to as “inference” in the statistics

community [70]. Contrary to the example above, it is not always straightforward

to use Bayes’ theorem. For instance, when the likelihood is not exactly known, or

when the data is tainted with noise. In the next section we will see how such cases

can be tackled in a fully Bayesian manner.

that we understand all the consequences a particular choice of prior function might have. For a

more detailed discussion please refer to ref. [69].
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3.3. Fully Bayesian inference

One of the cornerstones of Bayesian statistics is that the uncertainty stemming

from our lack of knowledge is treated no differently from the uncertainty of the

outcome of a random process. Each type of uncertainty is assigned a probabil-

ity distribution and is treated as such [51]. In other words, the behaviour of an

unknown function might be described by a probabilistic model, the same way the

behaviour of a random variable would be. This probabilistic model may have sev-

eral parameters which are referred to as hyperparameters and collectively denoted

by θ; the hyperparameters are just as important in making predictions as the model

itself. Any attempt to make a prediction should take into account all sources of

uncertainty by averaging over their corresponding probability distributions. For

instance, if an exact knowledge of the values of the hyperparameters is not avail-

able, the following integral should be evaluated every time a prediction is made

[51],

p(h) =

∫
p(h|θ) p(θ) dθ , (3.9)

where h is the quantity of interest, and p(θ) is the prior over hyperparameters

containing our belief or expert knowledge over different choices of hyperparameters.

p(h|θ) is provided by the model. There may be more than one model to describe

the data, e.g. a mean-field model, a perturbative model, etc., each of which has its

own hyperparameters. To account for all these models in a fully Bayesian manner,

there should be a similar sum over different models [51],

p(h) =
∑

M

∫
p(h|θ,M) p(θ|M) p(M) dθ , (3.10)

where p(M) is the prior and embodies our expert knowledge regarding the models;

for instance, based on previous observations one user might give a certain model a

higher probability. p(θ|M) is the prior on the hyperparameters of model M, and

p(h|θ,M) is the prediction made by the model given the hyperparameters. It is

indeed this summation over all hyperparameters and models that prevents a fully

Bayesian approach from under- or overfitting [53]. In theory, in a situation where

there are several potential models, all of the models should be considered just as

explained. In practice however, this proves very resource-intensive, and there are

several ways to simplify this integral, the simplest one of which is to consider only

the most probable model. There will be more on this in subsection 3.3.4.
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Having a final probability distribution at hand, we can now go ahead and apply

the Bayes’ theorem every time a new observation/measurement is made,

p(h|D) =
∑

M

∫
p(h|θ,M,D) p(θ|M,D) p(M|D) dθ , (3.11)

where D represents the acquired data. We will soon see how this expression can

be evaluated.

A very important source of uncertainty in many areas of science is the mea-

surement error. Measurement is inherently prone to error, and needs to be dealt

with correctly in a Bayesian setting. An integral is needed over all the values of

the ground truth D that may have given rise to the “reading” on the measuring

device,

p(h|reading) =

∫
p(h|D) p(D|reading) dD , (3.12)

where p(D|reading) is related to the uncertainty of the measurement. If eq. (3.11)

is plugged in this equation we get

p(h|reading) =
∑

M

∫
p(h|θ,M,D) p(θ|M,D)

p(M|D)p(D|reading) dθ dD . (3.13)

This is called the posterior predictive probability distribution, and is the probability

of observing h given the outcome of the previous measurements. Before we can

actually use this probability there are three terms that we need to evaluate, i.e.

p(θ|M,D), p(M|D), and p(D|reading). These three terms give rise to several levels

of Bayesian inference which we will deal with in the forthcoming subsections [62].

3.3.1. Inferring the influence of uncertainty in measurement

The outcome of any measuring device is best described through a probability dis-

tribution whose standard deviation represents the precision of the device. If D is

the ground truth, the outcome is given by conditional probability p(reading|D),

where “reading” is what appears on the device. The normal distribution is a very

common choice for this distribution, i.e. p(reading|D) ∼ N (D, σ2) with σ being

the precision of the measuring device.
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The probability distribution p(D|reading) appearing in eq. (3.13) is related to

the aforementioned probability distribution through Bayes’ theorem

p(D|reading) =
p(reading|D) p(D)

p(reading)
, (3.14)

where p(D) is usually substituted for by a uniform distribution unless there is a

preference for a particular value of the ground truth. The denominator is given by

p(reading) =

∫
p(reading|D) p(D) dD . (3.15)

This integral is almost never evaluated, as it only serves as a normalising factor.

Instead, the nominator is normalised to one. Putting everything together gives

p(D|reading) ∼ N (D, σ2) . (3.16)

It is worth reiterating once more that p(D|reading) and p(reading|D) are concep-

tually different quantities. p(D|reading) is the probability that D is the ground

truth given the reading, while p(reading|D) is the probability that the measuring

device shows “reading” if the ground truth is D. These two might not always be

identical.

3.3.2. Inferring the hyperparameters

The second probability distribution that needs evaluating is p(θ|M,D). This is

the probability that θ is the correct choice of hyperparameters given the model

and the ground truth. This distribution is connected to the prediction made by

the model with the help of Bayes’ theorem [62]

p(θ|M,D) =
p(D|M, θ) p(θ|M)

p(D|M)
, (3.17)

where p(D|M, θ) is the prediction made by the model. Probabilistic models de-

scribe the observed data using probability distributions. Later in the chapter we

will see how Gaussian processes can be used here as a model. p(θ|M) is usually

chosen to be a uniform distribution prior to any observations unless there are some

constraints the hyperparameters have to satisfy, e.g. being non-negative. As ob-

servations are made, the posterior from the last observation serves as the prior for

the next observation. The denominator p(D|M) is obtained by an integral over
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the hyperparameters

p(D|M) =

∫
p(D|M, θ) p(θ|M) dθ . (3.18)

Unfortunately, this integral can almost never be exactly evaluated analytically or

numerically. But fortunately, this integral behaves merely as a normalising factor,

and there are several approximate methods in which this integral is not evaluated

at all. Some of these approximate methods are discussed in section 3.6.2.

3.3.3. Inferring the covariance function

Lastly, the probability p(M|D) is evaluated by yet another Bayes’ theorem [62]

p(M|D) =
p(D|M) p(M)

p(D)
, (3.19)

where p(D|M) was evaluated in the previous subsection. In fact, p(M|D) is the

probability that model M describes the data. A uniform distribution is usually

chosen for p(M) if there is no preference for any model. After each observation,

the posterior of the last observation is used as the prior of the next observation.

And as before, the denominator is given by a summation

p(D) =
∑

M
p(D|M) p(M) . (3.20)

As it will be explained in the next section, this summation is rarely evaluated in

practical applications. Usually only the most probable model is chosen.

3.3.4. Model selection

Model selection is the process of evaluating the probability that each model de-

scribes the data, as a result of which only one is selected [62]. Even though the

name might not suggest directly, this process also covers the tuning of hyperparam-

eters. Model selection only comes about because we cannot consider every possible

model and therefore have to settle for the most promising one.

Evaluating the integral in eq. (3.13) is a very difficult task if done fully, as there

may always be many promising models. For example, a linear model, a second-

order model, and a third-order model might all seem reasonable for a given set
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of data. Furthermore, if the number of data points is very large, evaluating three

models prior to every prediction is hard work, not forgetting the integrals over

their respective hyperparameters. For this reason, the most promising model is

very often selected as the only model, making the summation over different models

disappear.

To evaluate the probability of a given model describing the data, we will take

advantage of a probability evaluated in the previous subsection, that is p(M|D).

This is the probability that modelM is the correct model given the data, and using

Bayes’ theorem it can be written in terms of p(D|M), and p(M). Assuming there

is no preference for any particular model, p(M) is a uniform distribution. Meaning,

the maximum of p(D|M) coincides with the maximum of p(M|D). Hence it suffices

to find the model that maximises p(D|M). Sometimes a generic model is chosen

merely because of its simplicity and flexibility, in spite of its lower probability of

describing the observations.

The same can be said about hyperparameters. It is virtually impossible to carry

out an integral over all the hyperparameters if there are more than a handful

of them. That said, merely choosing the most probable hyperparameters as a

substitute for the integral can lead to pathologies [53, 70]; for example overfitting.

Fortunately, there are some workarounds which we will discuss in a later section.

Should there be any need for choosing one particular set of hyperparameters, the

safest bet is to find the most probable hyperparameters given the data. Similarly

to what was done earlier, we take advantage of the probability introduced in the

last section, i.e. p(θ|M,D). If there is no particular prior on hyperparameters,

i.e. p(θ|M) is a uniform distribution, the maximum of p(D|M, θ) matches the

maximum of p(θ|M,D). Given the model, it should be fairly straightforward to

evaluate p(D|M, θ) for a particular set of hyperparameters. Later in the chapter

we will see how Gaussian processes can be used as a model, and how this quantity

is evaluated.

3.4. Gaussian distribution

To see how the Gaussian process emerges naturally from the Gaussian distribution,

we will first have a look at the d-dimensional Gaussian distribution. The Gaussian
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distribution is fully determined by its mean vector ~µ, and covariance matrix Σ,

~y ∼ N (~µ,Σ) =
1√

(2π)d|Σ|
exp

(
−1

2
(~y − ~µ)>Σ−1(~y − ~µ)

)
, (3.21)

where d is the dimension of the distribution, Σ is the covariant matrix, and |...|
should be understood as the determinant of the matrix. ~y is the outcome of the

distribution when a draw is made. The prefactor makes sure the distribution is

normalised.

3.4.1. Conditional and marginal distributions

The Gaussian distribution is in many ways a very convenient distribution to work

with. In particular, we will take advantage of the fact that the conditional and

marginal distributions of the Gaussian distribution are also Gaussian. In the dis-

cussion to follow in the subsequent sections, we will repeatedly make use of these

two distributions.

If ~y consists of two parts,

~y =

[
~y1

~y2

]
, (3.22)

and the value of one part, say ~y2, is known, the distribution of the value of the

other part is given by what is known as the conditional distribution,

~y1|~y2 ∼ N (~µ∗,Σ∗) , (3.23)

which is a Gaussian distribution with mean

~µ∗ = ~µ1 + Σ12Σ−1
22 (~y2 − ~µ2) , (3.24)

and covariance

Σ∗ = Σ11 − Σ12Σ−1
22 Σ21 . (3.25)

~µ1 and ~µ2 are the two constituent vectors of a similar partitioning of the total mean

vector

~µ =

[
~µ1

~µ2

]
, (3.26)

Σij are the constituent matrices of the total covariance matrix

Σ =

[
Σ11 Σ12

Σ21 Σ22

]
, (3.27)
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and Σ−1
22 is the inverse of Σ22.

The distribution of ~y1 regardless of the value of ~y2 is called the marginal distri-

bution, and is evaluated by integrating out ~y2,

~y1 ∼ N (~µ1,Σ11) , (3.28)

which is again a Gaussian distribution. ~µ1 and Σ11 are defined as before.

3.5. Gaussian processes

Sometimes it is required to increase the dimension of the d-dimensional Gaussian

distribution to infinity. A Gaussian process is nothing but an infinite-dimensional

Gaussian distribution, meaning each draw from a Gaussian process is an infinite-

dimensional vector, just as each draw from a d-dimensional Gaussian distribution

is a d-dimensional vector [62]. Vectors of limited dimension can be fairly easily

visualised, but to visualise an infinite-dimensional vector, we will have to seek the

assistance of functions.

If each component of an infinite-dimensional vector is represented by a point

on the x-axis, the entire vector can be depicted as a function. And conversely,

any function defined along the x-axis will be equivalent to an infinite-dimensional

vector. This is indeed how infinite dimensional vectors are represented in the

discussion of Gaussian processes.

If the value of the function at each point is determined by a draw from a one-

dimensional Gaussian distribution with some mean and covariance, every time that

a new draw is made on the entire axis, a new function is born. Therefore, it is

more intuitive to think of the Gaussian process as a device capable of generating

random functions, just as the Gaussian distribution is a device capable of generat-

ing random numbers. It is further possible to tangle the mean and covariance of

each point on the x-axis to those of other points by introducing a mean function

m(x) and a two-variable covariance function k(x1, x2),

f(x) ∼ GP(m(x), k(x1, x2)) , (3.29)

where GP stands for Gaussian Process. f(x) is the infinite-dimensional vector out-

put of the Gaussian process which is represented as a function here. The covariance
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function determines how the value of the function at one point affects the distri-

bution of the value of the function at other points. Different covariance functions

have different properties and make different assumptions. For a list of different co-

variance functions and their underlying assumptions please refer to ref. [62]. The

mean and covariance functions may have some parameters which are commonly

referred to as hyperparameters in the literature.

Very similarly to the Gaussian distribution, it is possible to calculate the condi-

tional and marginal distributions of the Gaussian process.

3.5.1. Conditional and marginal distributions

In the discussion to appear in the next section, we will need the conditional and

marginal distributions of the Gaussian process. Fortunately, it is very easily to

generalise these distributions from the Gaussian distribution introduced in the

previous section to the case of the Gaussian process.

To calculate the conditional probability, we assume that some observations have

been made and we are interested in the distribution of the unobserved points

affected by the observations. The data gathered so far is collectively represented

by D, consisting of matrix X, whose rows ~x1, ~x2, . . . are the coordinates of the

observed points, and vector ~Y whose elements y1, y2, . . . are the corresponding

observed values. The conditional probability is given by a new Gaussian process

[62] (the arrow accents on xi are omitted for better readability)

f ∗(x)|D ∼ GP(m∗(x), k∗(x1, x2)) , (3.30)

where

m∗(x) = m(x) + ~Σ(X, x)>Σ−1(~Y − ~µ) (3.31)

k∗(x1, x2) = k(x1, x2)− ~Σ(X, x1)>Σ−1~Σ(X, x2) . (3.32)

Σ(X,X) is called the covariance matrix and is given by the covariance function

evaluated at the observed data points, i.e. Σij = k(xi, xj). ~Σ(X, xj) is the j-

th column of the covariance matrix, and the inverse of the covariance matrix is

represented by Σ−1 (for brevity, we use Σ−1 instead of Σ−1(X,X)). ~µ = m(X) is

called the mean vector and is given by the mean function evaluated at the observed

data points.
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The marginal probability at point x regardless of all other points is given by [62]

f ∼ N (m(x), k(x, x)) , (3.33)

where N represents a one-dimensional Gaussian distribution as defined in the

previous section. If the marginal probability is desired at two points simultaneously,

a two-dimensional Gaussian distribution has to be evaluated,
[
f1

f2

]
∼ N

([
m(x1)

m(x2)

]
,

[
k(x1, x1), k(x1, x2)

k(x2, x1), k(x2, x2)

])
. (3.34)

3.6. Gaussian processes as a Bayesian model

Gaussian processes are a powerful and flexible tool to model data. As was briefly

pointed out before, the probability distribution p(D|θ,M) is given by the model.

And in the case of a model based on Gaussian processes [62], we have

p(D|θ,M) =
1√

(2π)d |Σ(X,X)|
exp

(
−1

2
(~Y − ~µ)>Σ−1(~Y − ~µ)

)
, (3.35)

where all the quantities are as defined in the previous section. θ represents the pa-

rameters in the mean and covariance functions. The exact choice of the covariance

and mean functions will be explained later. But before we can use Gaussian pro-

cesses as a prospective model, there are a few steps that we will have to take. These

steps are the three levels of inference explained in section 3.3. These are followed

by different approximate methods that help evaluate the integral in eq. (3.13).

The approximate methods are explained below under their corresponding level of

inference.

It may sound unintuitive, but it turns out it is conceptually easier to start from

the third inference and continue towards the other levels of inference.

3.6.1. Inferring the covariance function

Starting from the third inference, if we restrict ourselves to models based on Gaus-

sian processes, different covariance functions represent different models. According

to the rules of Bayesian statistics, these models have to be summed over. However,

this proves a formidable (if not impossible) task in practice forcing one to include
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only as many covariance functions as there are computational resources for. Quite

often only one covariance function is considered and the summation over different

models in eq. (3.13) is ignored. The choice of the covariance function depends to

a large extend on the problem under study. For instance, if a periodic behaviour

is expected, a covariance function with a periodic component may display better

predicting power. In cases where there is no prior knowledge available about the

underlying structure of the data, it is best to choose a generic covariance function.

The most common generic covariance function in the literature is the so-called

squared exponential covariance function [62]

k(~x, ~x′) = σ2
f exp

(
−1

2

∑

i

(xi − x′i)2

λ2
i

)
, (3.36)

where σf is an overall scaling prefactor, and λi are known as the covariance lengths.

In fig. 3.1 the predictive probability is shown for two different choices of λ. A larger

covariance length means the Gaussian process is more confident making predictions

at points further away from the observed points compared to a smaller covariance

length. The scaling prefactor along with the covariance lengths collectively form

the hyperparameters of the squared exponential covariance function. The analytic

simplicity and numerical flexibility of the squared exponential covariance function

have made it far and away the most common choice in the literature. The squared

exponential covariance function makes the assumption that the output of the Gaus-

sian process can be differentiated an infinite number of times. Since this may not

be a realistic assumption to make about a physical system, it is necessary to in-

crease the uncertainty involved in the first level of inference to compensate for any

artefact this assumption might have (there will be more on this in subsection 3.6.2).

3.6.2. Inferring the hyperparameters

Moving on to the second inference, an integral over all the hyperparameters is

required according to eq. (3.13). This integral is virtually impossible to evaluate

due to the large number of hyperparameters and the relatively large space they

sweep. There are, however, approximate methods to deal with these integrals.

All these approximations are, one way or another, reliant on the maximum of the

posterior probability distribution of the hyperparameters given by eq. (3.17). For

numerical stability, it is customary to work with the log of the posterior,

log p(θ|M,D) = log p(D|θ,M) + log p(θ|M)− log p(D|M) , (3.37)
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Figure 3.1. The effect of the covariance length on the prediction made by a Gaus-

sian process. The covariance length used in the plot on the left hand

side is smaller than that used in the plot on the right hand side. The

larger the covariance length, the more confident the Gaussian process

becomes about points further away from the data.

where p(θ|M) is the prior. The likelihood p(D|θ,M) is a measure of how likely

it is to observe D given the model and its hyperparameters. Note that the likeli-

hood is not a probability function of the hyperparameters, but the observed data

points. The evidence p(D|M) is independent of the choice of hyperparameters and

therefore a constant as long as the model and D remain unchanged.

In the following, four different approximate methods are discussed, each of which

is an attempt at evaluating the integration over the hyperparameters in the pre-

dictive probability distribution given by eq. (3.13).

Maximum Likelihood Estimate (MLE)

The simplest way to deal with the integral over hyperparameters is to replace the

posterior with a delta function, i.e. p(θ|M,D)→ δ(θ−θMLE) [71] (we will soon see

how θMLE is defined). This substitution is justified by the idea that the posterior

will most likely become a delta function in the limit of big data. This approximation

is easily prone to over-/underfitting and should therefore be used with care. If the

prior is a uniform distribution, the only term in eq. (3.37) changing as a function

of the hyperparameters is the likelihood,

L(θ,M|D) ≡ p(D|θ,M) . (3.38)

In this case, to find the maximum of the posterior probability, it suffices to find

the maximum of the likelihood. The maximum can be easily found using textbook
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optimisation algorithms. According to eq. (3.35) the log-likelihood of the Gaussian

process is

logL(θ,M|D) =− d

2
log 2π

− 1

2
log |Σ(X,X)|

− 1

2
(~Y − ~µ)>Σ−1(~Y − ~µ) .

(3.39)

The set of hyperparameters maximising this likelihood will be called θMLE (short for

Maximum Likelihood Estimate), and is the point appearing in the delta function

above. By inserting the delta function in the predictive probability integral in

eq. (3.13) we get

p(h|M,D) =

∫
p(h|θ,M,D) p(θ|M,D) dθ

≈
∫
p(h|θ,M,D) δ(θ − θMLE) dθ

= p(h|θMLE,M,D) .

(3.40)

And when a Gaussian process is used as the model

p(h|θMLE,M,D) = GP(m∗MLE(x), k∗MLE(x1, x2)) , (3.41)

where m∗MLE(x) and k∗MLE(x1, x2) are the mean and covariance functions (eqs. (3.31)

and (3.32)) evaluated at θ = θMLE.

Maximum A posteriori Probability (MAP)

The previous approximation was based on the assumption that the prior is uniform.

But this may not always be the case, for example sometimes the hyperparameters

cannot be negative, hence a non-uniform prior. If the prior is non-uniform, the

maximum of the posterior should be used (denoted hereafter by θMAP) [71],

log p(θ|M,D) = log p(D|θ,M) + log p(θ|M)− log p(D|M) . (3.42)

But since the last term on the right hand side has no dependence on θ, it suffices

to find the maximum of log p(D|θ,M) + log p(θ|M). Again the maximum can be

found using common textbook optimisation algorithms.
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Similarly, the posterior is replaced with a delta function in this approximation,

i.e. p(θ|M,D)→ δ(θ− θMAP). Again by inserting the delta function in the predic-

tive probability integral eq.(3.13) we get

p(h|M,D) =

∫
p(h|θ,M,D) p(θ|M,D) dθ

≈
∫
p(h|θ,M,D) δ(θ − θMAP) dθ

= p(h|θMAP,M,D) ,

(3.43)

which in the case of a Gaussian process yields

p(h|θMAP,M,D) = GP(m∗MAP(x), k∗MAP(x1, x2)) , (3.44)

where m∗MAP(x) and k∗MAP(x1, x2) are the mean and covariance functions, eqs. (3.31)

and (3.32), evaluated at θ = θMAP.

Affine transformation: Linear Mean + Constant Covariance

As will be seen, it is in fact the analytic simplicity of this approximation that has

made it particularly appealing. This approximation has two steps [72],

1. Instead of a delta function, the posterior is approximated by a normal distri-

bution about θMAP, the covariance matrix of which is the Hessian of the log

posterior with respect to the hyperparameters at θMAP,

p(θ|M,D) ≈ N (θ; θMAP; ΣMAP) , (3.45)

where Σ−1
MAP = −∂2 log p(θ|M,D)/∂θi∂θj|θMAP

. In the case of a uniform

prior on hyperparameters, we get θMAP → θMLE and Σ−1
MAP → Σ−1

MLE =

−∂2 logL(θ,M|D)/∂θi∂θj|θMLE
.

2. Furthermore, it is assumed that the mean function of the Gaussian process

is linear in θ, and the covariance matrix is constant throughout the hyperpa-

rameter space,

GP(m∗(x), k∗(x1, x2)) ≈ GP(a(x) · θ + b(x), k∗MAP(x1, x2)) , (3.46)

where

a(x) =
∂m∗(x)

∂θ

∣∣∣∣
θ=θMAP

(3.47)

b(x) = m∗MAP(x)− ∂m∗(x)

∂θ

∣∣∣∣
θ=θMAP

· θMAP . (3.48)
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Since θ represents all the hyperparameters collectively, it should be under-

stood as rather a vector here, and consequently · should be understood as a

dot product.

By inserting the above relations in the predictive probability integral in eq. (3.13)

we get

p(h|M,D) =

∫
p(h|θ,M,D) p(θ|M,D) dθ

≈
∫
GP(a(x) θ + b(x), k∗MAP(x1, x2))N (θ; θMAP; ΣMAP) dθ

= GP(a(x) θMAP + b(x), k∗MAP(x1, x2) + a(x) ΣMAP a(x))

= GP(m∗MAP(x), k∗MAP(x1, x2) + a(x) ΣMAP a(x)) ,

(3.49)

where the new mean function is identical to that of the previous approximation,

but the covariance function has an extra term. This extra term is always positive,

meaning the uncertainty has increased compared to the MAP approximation.

As mentioned before, in Bayesian statistics whenever the integral over different

models or different hyperparameters is approximated by a point estimate, there is

a risk that the predictive distribution might behave unexpectedly in some situa-

tions. For instance, if the peak of the likelihood happens to be in a relatively flat

region, ΣMAP will be a matrix with very large elements. Inserting such a matrix in

eq. (3.49) leads to huge uncertainties which can obviously endanger the stability

of the method. However, if the training set is large enough, it is almost always

guaranteed that the likelihood has a sharp peak. In fact, as the number of ob-

servations grows, this peak becomes even sharper. For this reason, we will safely

use this approximation later in this chapter to evaluate the predictive probability

integral for practical applications.

Taylor Expansion

In 2013 an extension of the previous approximation was put forward by R. Garnett

et al. [73]. However, the derivation seems to lack a mathematically sound founda-

tion. We present a similar but rigorous extension here which leads to a thorough

final expression. Similarly to the previous approximation, the posterior p(θ|M,D)

is approximated by a Gaussian distribution centred at θMAP, with covariance ma-

trix ΣMAP calculated just as before. The difference, however, is that the Gaussian
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process is Taylor expanded to third order about θMAP,

GP(m∗(x), k∗(x1, x2)) ≈ GP(m∗θMAP
(x), k∗θMAP

(x1, x2))

+ f(θ) (θ − θMAP)

+ g(θ) (θ − θMAP)2

+ h(θ) (θ − θMAP)3

+O(θ4) ,

(3.50)

which is then inserted into the expression for the predictive probability, eq. (3.13).

By defining a new Gaussian process whose mean and variance at each point are

equal to the mean and variance of the integral (a procedure known as moment

matching in the literature [74]) we obtain

p(y∗|x∗,M,D) =

∫
p(y∗|x∗, θ,M,D) p(θ|M,D) dθ

≈
∫

(GPθMAP
+ f(θ) (θ − θMAP) + . . . )N (θ; θMAP; ΣMAP ) dθ

≈ GP(mT , kT ) ,

(3.51)

where

mT = m∗θMAP
(x) +

1

2
Tr
(

ΣMAP m
∗′′
θMAP

(x)
)

kT = k∗θMAP
(x, x) +m∗

′

θMAP
(x) ΣMAP m

∗′
θMAP

(x)

+
1

2
Tr
(

ΣMAP k
∗′′
θMAP

(x, x)
)
− 1

4

(
Tr
(

ΣMAP m
∗′′
θMAP

(x)
))2

.

(3.52)

Tr(· · · ) should be understood as the trace operator, and prime and double prime

signs are the first and second derivatives respectively.

As can be seen, this approximation is much more involved than the previous

one. It also proves to be more cumbersome to implement, especially when used

for optimisation purposes. This is the main reason why we will use the previous

approximation in the calculations appearing later in the chapter. This method was

merely mentioned here to show the way for higher order approximations if need

be.

3.6.3. Inferring the influence of uncertainty in measurement

Having done the other two inferences, it is time for the final stage of inference.

In the discussion so far we have assumed that the data represented by D is noise
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free. In other words, the value read off the measuring device is interpreted as the

ground truth. In reality, however, this is rarely the case.

Going back to subsection 3.3.1, we can evaluate the probability distribution of

D when the outcome of the measurement is “reading”,

p(D|reading) =
p(reading|D) p(D)

p(reading)
, (3.53)

where p(reading|D) represents the precision of the measuring device, which is usu-

ally modelled by a normal distribution p(reading|D) ∼ N (D, σ2
n). Assuming there

is no prior, the posterior is

p(D|reading) ∼ N (D, σ2
n) . (3.54)

In the case of a Gaussian process as the model, the only effect this inference has

is that the covariance function k(~xi, ~xj) is replaced by k(~xi, ~xj)+σ2
nδij [62]; this can

be confirmed by direct evaluation of the integral over D in eq. (3.13). Equivalently,

when written in matrix form, Σ(X,X) is replaced by Σ(X,X) + σ2
n1.

It was mentioned earlier that σn should be substituted for by the accuracy of

the measuring device. This is a completely accurate statement if all the potential

models are included in the predictive posterior distribution in eq. (3.13). But as

was explained before, this is not possible due to the sheer number of different

models one could come up with. In practice, it is very common to only pick a

generic model flexible enough to describe the data. This generic model might

make assumptions unwanted by the user. For instance, in fig. 3.2 some synthetic

data (dashed line) is shown along with two fits (red and orange lines). Assume

the precision of the data is given by the width of the line. First, σn is set to a

much larger value than the measurement accuracy (shown in red) in fitting the

model to the data. Obviously, this fit is capable of finding the period of the data

successfully, and captures the overall features correctly. But it does not fall within

measurement accuracy of the data. Now if the same model is forced to describe

the data up to the measurement accuracy during the first cycle (shown in orange,

and done by setting σn to the measurement precision), as shown by model 2, it is

seen that the model completely fails to reproduce any of the characteristics of the

data. The reason why this model never predicts the data “perfectly” has to do

with the choice of model rather than the accuracy of the measurement. This model

can never go through every single data point simply because it expects a different
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Figure 3.2. The synthetic data is shown by the blue dashed line, and the thickness

represents the precision of the measurement. A hypothetical model

has been used to describe the data using two different values of σn; the

red line uses a larger value than the yellow one. The yellow line fails

to capture any of the large scale characteristics of the data, whereas

the red line misses the details. Since we are usually after the general

behaviour, if the model is not capable of reproducing the data exactly,

it is always advisable to use a larger value of σn than the precision of

the simulation or experiment.

behaviour from the data. More often than not, model 1 is preferred in practice as

the large-scale behaviour (as opposed to the small-scale behaviour) is often what

is desired. And since it is almost never possible to come up with a model capable

of describing the data perfectly, it is advisable to consider a larger value for σn

in practical applications than the measurement accuracy [75, 76]. It is hard to

speculate what a good value is without knowing the problem, but our experience

shows a value of a few percent of the range of the data almost always works fine.

This is indeed why we use σn ≈ 0.1 later in the chapter when −5 < y < 5, even

though the uncertainty of the data points dictated by the numerical simulation is

orders of magnitude smaller.

3.7. Heuristic methods of optimisation

If the function producing the outcome is referred to as the latent function, the ob-

jective of an optimisation algorithm is to find the minimum of this function. If the

latent function is fairly cheap to evaluate, any textbook optimisation method could
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be used. But in the limit of expensive functions these methods tend to become

less and less efficient. The ultimate goal of an efficient optimization algorithm is

to find the global minimum2 by making as few latent function calls as possible.

Having learnt about Bayesian statistics, we have at our disposal all the necessary

tools to estimate uncertainties and making predictions. According to the maximum

entropy theorem [77], only the Gaussian distribution makes as few assumptions

about unobserved features as possible. Consequently, Gaussian processes prove

a promising option for what is known as the surrogate model [78], which is a

mathematical model used to mimic the behaviour of the latent function.

In this section, a few of the most popular optimisation algorithms based on

Gaussian processes will be introduced. The list is by no means exhaustive, as

optimisation is still an active field of research [79–85]. They all share the same

procedure in finding the global minimum,

1. The latent function is evaluated for a finite number of random points in the

parameter space; these values are called target values. The parameters along

with their corresponding target values form the training set.

2. A Gaussian process is trained using the training set. The training involves

tuning the hyperparameters following any of the methods introduced in the

previous section. For instance, if the MAP method is used, training is equiv-

alent to finding θMAP.

3. A cost function is defined based on the predictive mean and variance of the

Gaussian process. The minimum of this cost function is the point to consider

in the next iteration. Note that this minimum is not necessarily the minimum

of the latent function. That is, some steps are merely taken to explore the

less explored areas of the parameter space.

4. The latent function is evaluated at the point suggested by the cost function.

The results are added to the training set.

Then the algorithm goes back to stage 2. This loop continues until a satisfactory

result is obtained. All the different methods appearing in this section differ only

2. Without loss of generality it is assumed that we are after the global minimum rather than

maximum. A maximization problem can be easily converted into a minimization problem by

multiplying the target function by −1.
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in their cost function.

One of the important factors regarding global optimum finders is the balance

between exploitation and exploration maintained by the algorithm.3 Exploration

is the process in which the algorithm picks points in the unexplored regions of the

parameter space. And exploitation, on the other hand, is the process in which

the algorithm picks points in the neighbourhood of the current minima. A good

algorithm should not lose sight of any of the two. Unfortunately, there is no

fundamental law setting the balancing point between the two, and hence trial and

error seems to be the only way forward.

There is no immediate way of determining which one of the methods below

performs best. However, there are studies comparing these methods and many

other methods under different conditions [86]. Based on these studies, we have

decided to pick the one-step lookahead method for our optimisation tasks.

3.7.1. Upper Confidence Bound (UCB) [87]

We assume here that we are interested in the maximum of the latent function (this

is the convention used in ref. [87]); this can be easily converted into a minimisation

problem by multiplying the latent function with −1. If the Gaussian process is

used to model the data, a greedy (completely exploitative) optimisation algorithm

would suggest the maximum of m∗(x) as the next point. Such an algorithm does

not take advantage of the uncertainty provided by the Gaussian process. The

Upper Confidence Bound method tries to alleviate this problem by incorporating

the uncertainty in the following way,

uUCB(x) ≡ m∗(x) + β
1/2
t

√
k∗(x, x) , (3.55)

where βt is the parameter that determines the level of exploration; the value of

βt is determined below. A confidence interval is any interval claiming to contain

the true value of a random variable. For instance, an interval centred at the

mean m∗(x) extending as far as the uncertainty β
1/2
t

√
k∗(x, x) on each side is a

confidence interval. The upper bound of this confidence interval is believed to

represent the maximum value that the latent function can have at that point with

a high probability. Therefore, the maximum of this cost function over the entire

3. Local optimisation algorithms are always completely exploitative.
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search space might in fact be where the maximum of the target function is. Thus,

it is chosen as the next point. It is shown in ref. [87] that the following choice of

βt holds good convergence properties,

βt = 2 log

(
dπ2

6δ
t2
)
, with δ ∈ [0, 1] , (3.56)

where d is the dimension of the space, and t is the lap number, i.e. t = 1, 2, . . .

The ultimate aim of this cost function is to minimise the uncertainty over the

entire search space. To see that, notice that as the algorithm progresses (βt in-

creases), the next point tends to be solely dictated by the uncertainty. That is,

the algorithm becomes completely exploratory in the limit of t → ∞, something

that might sound a good strategy in the case of unlimited resources. However,

our resources are almost always limited in reality, and therefore a resource-friendly

exploration-exploitation trade-off is needed.

3.7.2. Machine Learning Online Optimisation (MLOO) [41]

In contrast to the previous subsection, we are interested in the minimum of the

latent function here. This method is very similar to UCB, except the prefac-

tor b below changes periodically in Q steps from 0 to 1, e.g. if Q = 3 then

b = 0, 1/3, 2/3, 1, 0, . . . [41], rendering different degrees of exploitation-exploration

trade-off,

uMLOO(x) ≡ bm∗(x)− (1− b)
√
k∗(x, x) , (3.57)

where the term containing m∗(x) represents exploitation and the term containing

k∗(x, x) represents exploration. The value of Q is chosen by the user. The minimum

of this function is picked as the next point. The algorithm is completely exploitative

when b is equal to 1, and completely exploratory when b is equal to 0.

One major downside of this scheme is that if the mean function varies over a

wider range than the uncertainty (something that will eventually happen as the

algorithm progresses), there is not much to be gained from the exploratory phase

of the algorithm. Furthermore, since some of the steps are merely taken to reduce

uncertainty, an improvement on the global minimum should not be expected more

than once every Q steps. If the latent function is expensive to evaluate, this might

enforce a huge overhead on the available computational resources.
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Figure 3.3. The prediction mean (shown by blue line) and uncertainty (shown by

the green region) of a synthetic Gaussian process are shown here. The

two points marked by the vertical dotted lines have the same mean

and probability of improvement. However, the one on the right seems

to be a better choice for the next lap.

3.7.3. Probability of Improvement (PI) [88]

Again we are interested in the global minimum here. This method evaluates the

probability that the latent function at a given point has a lower value than the

current minimum η [88], and the maximum of this probability is suggested as the

next point,

uPI(x) ≡ E[θ(η − y)] =

=

∫ ∞

−∞
θ(η − y)N (y;m∗(x), k∗(x, x)) dy

=
1

2
erfc

(
m∗(x)− η√

2k∗(x, x)

)
,

(3.58)

where N (y;m∗(x), k∗(x, x)) is the output of the Gaussian process at point x, and

θ(η − y) is the Heaviside step function. The symbol E means the average of its

argument weighted by the output of the Gaussian process. This cost function

hopes to find the global minimum merely by evaluating the probability that the

latent function has a lower value at any given point. Even though convincing at

first glance, this idea completely fails to distinguish between two points having

identical probabilities of improvement, but different uncertainties, see fig. 3.3.
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3.7.4. Expected Improvement (EI) [89]

Assuming we are again interested in the global minimum, the expected improve-

ment scheme seems to have resolved the problem depicted in fig. 3.3. The cost

function here is different from the previous one in that it is weighted by the differ-

ence between the value of the target function and the current minimum. That is,

the expected improvement is defined as the average of max{0, η − y} weighted by

the outcome of the Gaussian process at point x [89]

uEI(x) ≡ E[max{0, η − y}]

=

∫ η

−∞
(η − y)N (y;m∗(x), k∗(x, x)) dy

= − 1

2
erfc

(
m∗(x)− η√

2k∗(x, x)

)
(m∗(x)− η)

+
1√

2πk∗(x, x)
exp

(
−(m∗(x)− η)2

2k∗(x, x)

)
k∗(x, x) ,

(3.59)

where again η is the current minimum. The next point is given by the maximum of

uEI(x). The first term of the final expression is in charge of exploitation while the

second term is in charge of exploration. This algorithm is by far the most common

choice in the literature.

One piece of information unused by any of the cost functions introduced so far is

the number of laps left. If it was known that the optimisation algorithm would be

terminated in k steps, the optimisation algorithm could take advantage of this fact

by taking a few exploratory shots first before trying to find the minimum. This is

indeed the main drawback of the EI scheme. The next cost function is an attempt

at easing this.

3.7.5. One-Step Lookahead [86]

The main idea behind this algorithm is that there are only enough resources for

one more try, and after that the minimum will have to be reported [86]. If the

value y of the last latent function call is lower than the current minimum η, the

new value y will be reported, otherwise η. Mathematically speaking, min{η, y}
will be reported. Therefore, the original minimisation problem is mapped into the
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optimisation problem of finding the minimum of

Λ1(x) ≡ E[min{η, y}]

=

∫ η

−∞
yN (y;m∗(x), k∗(x, x)) dy +

∫ ∞

η

ηN (y;m∗(x), k∗(x, x)) dy

= η

+
1

2
erfc

(
m∗(x)− η√

2k∗(x, x)

)
(m∗(x)− η)

− 1√
2πk∗(x, x)

exp

(
−(m∗(x)− η)2

2k∗(x, x)

)
k∗(x, x) ,

(3.60)

where subscript 1 shows that there’s only one try left. The second term of the

final expression represents exploitation while the last term represents exploration.

This method is very similar (if not identical) to the EI method introduced above.

However, it sets a clear path towards generalisation of Λ1(x) to the multi-step

case [86]. But unfortunately the final expression for the multi-step version tends

to become very complicated very quickly, leading to multivariate integrals very

expensive to evaluate [86].

We will repeatedly make use of the one-step version of this algorithm (or equiva-

lently the EI method) in the rest of the chapter. To find the minimum of this cost

function, a variety of quasi-Newton methods are used, the specific choice of which

is irrelevant to our discussion. These methods take advantage of the derivatives

of Λ1(x) in order to find the minimum efficiently. The derivatives are derived in

appendix C.

3.8. General procedure of optimisation

A brief rundown of the optimisation method is given here to summarise the points

discussed so far. The method will be used in the subsequent sections.

1. A number of random points are selected in the parameter space, for each of

which a simulation is run and the target value is evaluated; this set is called

the training set. An appropriate size for the training set is dictated by the

dimension and extend of the parameter space, e.g. the higher the number of

parameters, the larger the training set. Care has to be taken to make sure

the random points satisfy the constraints on the parameters. For example,



66 3.8. General procedure of optimisation

in the first application to appear in the next section, the norm of the vector

consisting of the optimisation parameters has to remain equal to one.

2. It is very important to normalise the acquired data before feeding it to the

Gaussian process. Assume that in a two-dimensional parameter space the

first parameter changes between 0 and 1, and the second parameter changes

between 0 and 103. Then the correlation length along the first axis might be

of the order of 1 while it could be as large as 103 along the second axis. This

difference in magnitude endangers the numerical stability of the method.

Therefore, we will always normalise the data to fall in the interval [−5, 5]

along each dimension.

3. A mean function and a covariance function are chosen for the Gaussian pro-

cess. The mean function is usually set to zero (as done in the rest of this

chapter) if the data is normalised to be centred at 0. We will always choose

the squared exponential covariance function.

4. A Gaussian process is trained with the training set. The training phase

entails finding the set of hyperparameters either maximising the likelihood

when using the MLE approximation, or maximising the posterior when using

the MAP approximation; for better stability, the log likelihood/posterior

is maximised. To find the maximum, a handful of random numbers are

generated in the hyperparameter space and used as the initial seed to the

Newton method of optimisation.

5. After the Gaussian process is trained, the one-step lookahead cost function

given in eq. (3.60) is used to investigate what points to consider next. The

minimum of this surface is found using ad hoc quasi-Newton methods which

are fashioned for each specific problem. For instance, in the first application

below, this quansi-Newton method is restricted to find the minimum of the

one-step lookahead cost function on the surface of a sphere.

6. The coordinates of the lowest n local minima of the cost function are passed

on to n nodes, on each of which a simulation is run for the given values of

the optimisation parameters.

7. The new results are first normalised and then added to the training set. The

algorithm goes back to step 4. This loop continues until the termination

criterion is met. For the rest of this chapter a bound on the total number of
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simulations will be used as the termination criterion.

An illustration of the method is shown in fig. 3.4. There, the global minimum of

the one-dimensional Ackley function is found; the Ackley function is given by [90]

f(~x) = −a exp


−b

√√√√1

d

d∑

i=1

x2
i


− exp

(
1

d

d∑

i=1

cos(cxi)

)
+ a+ exp(1) , (3.61)

where d represents the dimension of the vector ~x. An initial training set of 3 points

is used. To train the Gaussian process, the set of hyperparameters maximising

the likelihood should be found. In the case of the squared exponential covariance

function the hyperparameters are λ and σf , see eq. 3.36. The likelihood function at

each step is shown on the right; the brighter colours represent higher values. After

finding the maximum, the prediction of the Gaussian process using the “Affine

Transformation” approximation is shown on the left. The blue line is the mean,

and the green area is the uncertainty at each point (±
√
k∗(x, x) from the mean).

The latent function (which is the Ackley function here) is shown by the black

line. The points evaluated so far are marked by the plus signs. The smaller plot

below this plot in each row shows the one-step lookahead cost function (for better

visibility exp(Λ1(x)) is shown here), and the point to be considered next is marked

by a circle. Between each two rows 3 laps of the aforementioned loop are carried

out, hence a jump of 3 in the number of points.

The plausibility of pointwise estimates such as the MLE and MAP estimates

is based on the conjecture that in the limit of a large number of samples the

distribution of probable hyperparameter values will converge to a delta function.

This behaviour can be seen in the plots on the right hand side of fig. 3.4 where

the size of the peak in the hyperparameter space shrinks as more observations are

made.

The hyperparameter space could in principle have more than one local maxi-

mum, and therefore it is always necessary to explore this space thoroughly before

reporting θMAP.
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Figure 3.4. Finding the minimum of the 1-dimensional Ackley function (black

solid line) with parameters a = 20, b = 0.2, c = 2π, and d = 1. A

training set of three points is used. Left: the predicted mean by the

Gaussian process in blue, and the uncertainty in green. The smaller

plots are the one-step lookahead cost function, the global minimum of

which (marked by a circle) is the next point. The plots share the same

x-axis. Right: the likelihood as a function of the hyperparameters;

the brighter areas show higher values. Between each two rows three

latent function calls have been made. See eq. 3.36 for the definitions

of λ and σf .
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3.9. Maximising the electron yield

As the first application, we will use the optimization method introduced so far to

maximize the electron yield of a hydrogen atom when exposed to a laser pulse.

The envelope of the pulse is modified in search of the optimal pulse shape while

keeping the pulse energy fixed.

In a regime where the first order perturbation theory successfully describes the

behaviour of the system, the final population of the continuum is given by the

Fourier transform of the laser envelope (see section 4.2)

aε(t) = −id1ε

∫ t

−∞
E(t′)e−i(E1−ε)t′ dt′ , (3.62)

where ε is the energy of the continuum state, d1ε is the dipole matrix element

coupling the ground state to the continuum, and E1 is the energy of the ground

state. E(t) = E(t) sin(ωt) is the electric component of the laser pulse, and E(t) is

the envelope. The total ionisation of the atom is the sum of the final populations

of all the continuum states,

Q =

∫ ∞

0

|aε(∞)|2 dε , (3.63)

which according to Parseval’s theorem is equal to (assuming d1ε only changes neg-

ligibly over the populated region of the energy spectrum)

Q ∝
∫ ∞

−∞
|E(t′)|2 dt′ , (3.64)

which is the area under the square of the envelope. This means so long as the area

is unchanged, the amount of ionisation remains unaffected. Therefore, the total

amount of ionisation is completely determined by the area under the square of the

laser pulse.

The first order perturbation regime should be contrasted with the second order

perturbation regime in which the calculation of the final continuum population

is more involved (this expression along with its detailed derivation are given in

section 4.6, which is the central equation of chapter 4)

aε(t) = −id1ε

∫ t

0

dt′ e−i(δ−1)J(t′)E(t′)e−i(E1−ε)t′e−γJ(t′)/2 , (3.65)

where J(t) = 1
ω2

∫ t
0
E2(t′) dt′, and E(t′) is the envelope of the electric field. The

Stark shift of the ground is determined by δ, and γ is the depletion rate of the
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ground state. The highly non-linear dependence of the above equation on the

envelope allows us to affect the total ionisation by changing the envelope.

In this section, first the pulse envelope will be expanded in terms of a finite num-

ber of the quantum harmonic oscillator eigenstates. Thanks to the exponentially

decaying nature of these eigenstates, any envelope represented by such a finite ex-

pansion is a realistic choice of envelope (see subsection E.1 for more details). Then

it will be seen how to engineer the pulse shape in order to have pulses of different

shapes but the same energy. Even though there is no fundamental law requiring us

to use pulses of identical energy, it is certainly more meaningful to talk about the

optimum pulse shape out of a pool of pulses sharing the same energy. The final

goal is to find the pulse maximising the ionisation. The simulations are done using

the SCID package [91] (see appendix F).

3.9.1. Pulse envelope

An expansion in terms of the eigenstates of a quantum harmonic oscillator (QHO)

is used to express the envelope of the laser pulse4

A(t) = A0

d∑

i=1

aiπ
1/4φi(2

√
2 ln 2

t

τ
) , (3.66)

where φi(t) are QHO eigenstates and ai are their corresponding weights.

Each QHO eigenstate consists of a hermite polynomial Hn(x) multiplied by an

exponential term [92],

φi(x) =
π−1/4

√
2i−1 (i− 1)!

e−
x2

2 Hi−1(x), i = 1, 2, 3, . . . (3.67)

The exponential term vanishes in the limit of x→ ±∞; when these eigenstates are

used to express the electric field, this exponential decay makes sure the electric field

is zero before and after the lifetime of the laser pulse. Furthermore, by including

higher eigenstates in the expansion (which is equivalent to including higher hermite

polynomials), it is possible to systematically increase the flexibility of the laser

pulse while avoiding cusps in the electric field. Obviously we have to make sure

4. It is easy to show that a laser pulse expressed in the time domain using such an expansion

(assuming the laser pulse is real-valued), can be expressed in the Fourier domain using the exact

same quantum harmonic oscillator eigenstates with the exact same weights.
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the value of the highest included eigenstate does not undergo considerable change

over one period of the pulse, otherwise the separation of the pulse into a product

of a carrier wave and an envelope might not be very meaningful.

To see why the prefactors π1/4 and 2
√

2 ln 2 are introduced, let’s consider the

simplest choice of envelope, that is, the QHO ground state,

A(t) = A0π
1/4φ1(2

√
2 ln 2

t

τ
) = A0 exp(−4 ln 2

t2

τ 2
) , (3.68)

where it is seen that 2
√

2 ln 2 is introduced to have a full width at half maximum

(FWHM) of τ , and π1/4 is introduced to have an amplitude of A0.

3.9.2. Pulse energy

If the pulse envelope changes slowly with time compared to the carrier frequency

(that is, eq. (E.2) from appendix E is satisfied), the energy of the pulse can be

directly calculated from the vector potential (eq. (E.20) has to be inserted in

eq. (E.22))

U ≈ cε0
2
ω2

∫ +∞

−∞
A2(t) dt . (3.69)

By replacing the vector potential with its expansion from eq. (3.66), we get

U ≈ cε0
2
A2

0ω
2
∑

i

a2
i

∫ +∞

−∞
φ2
i (2
√

2 ln 2
t

τ
) dt , (3.70)

where the cross terms vanish due to the orthogonality of QHO states. The QHO

eigenstates are also normalised, meaning the integral is the same for all φi, and

therefore it suffices to only evaluate it for one, say i = 0,

∫ +∞

−∞
exp2

(
−4 ln 2

t2

τ 2

)
dt =

√
π

ln 4

τ

2
, (3.71)

which when replaced in the expression above yields

U ≈
√

π

ln 4

cε0
4
A2

0ω
2τ
∑

i

a2
i . (3.72)

If the laser parameters (i.e. A0, ω and τ) are kept constant, a variety of pulses of

different envelopes but equal energy can be generated if ai are chosen such that∑
i a

2
i = 1.
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3.9.3. Target function

The function that is minimised here is the remaining bound charge in the hydrogen

atom targeted by the laser pulse. This is equivalent to maximising the electron

yield. The bound charge is calculated by adding up all the bound state populations

y =
∑

i

| 〈φi|ψ(tf )〉 |2 , (3.73)

where i runs over all bound states, |φi〉 are the eigenstates of the hydrogen atom,

and |ψ(tf )〉 is the final wave function.

3.9.4. Procedure & Results

As discussed earlier, fixing the energy of the pulse is achieved by making sure∑
i a

2
i = 1. Therefore, when ai lie on a d-dimensional sphere of radius one, the

pulse energy is completely determined by the overall amplitude, frequency, and

width of the pulse. Therefore, the amplitude, frequency, and width of the pulse

are kept fixed in this optimisation task, while different points on a d-dimensional

sphere are used to represent new envelopes.

First, a training set has to be set up. For this purpose, a few random points

are generated on a d-dimensional sphere, whose coordinates are then used as the

pulse shape expansion coefficients ai. For each envelope a simulation is run and the

target function is evaluated. Each simulation runs from ti = −2.5 τ to tf = 2.5 τ

where τ is the FWHM of the laser pulse. The envelopes and their corresponding

target values form the training set used to train the Gaussian process.

The one-step lookahead scheme is used as the optimisation algorithm. During

each lap of the optimisation algorithm the next four points5 are found by finding

the four lowest local minima of the cost function defined in eq. (3.60). These

four points represent four new envelopes. A simulation is run for each of the new

envelopes giving rise to four new target values. The four envelopes and their target

values are added to the training set before proceeding to the next lap of the loop.

This loop continues until the termination criterion is fulfilled, which in this task is

merely an upper bound on the total number of simulations.

5. The reason why four points are chosen is that there were four cores available on the computer

used for this project
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The optimisation procedure has been done three times with increasing flexibility

of the pulse. The first one is a pulse made up of the first three QHO eigenstates

(referred to as 3-d below), the second one of the first 5 states (referred to as 5-d

below), and the last one of the first 7 states (referred to as 7-d below). The vector

potential amplitude is set to A0 = 3 a.u. for all the cases. This corresponds to an

intensity of 1.3 × 1018 W/cm2. The frequency of the carrier wave is ω = 2 a.u.,

equivalent to a wavelength of λ = 23 nm. And the FWHM is τ = 25 a.u., equivalent

to 0.6 fs. These parameter values are chosen such that the first order perturbation

theory is inadequate to describe the behaviour of the system, and at the same time

the ground state is not completely depleted within a fraction of the pulse.

For the 3-d case, a training set of 40 points is used. The optimisation algorithm

is then allowed to run for 20 laps. These 120 points are shown on a 3-dimensional

sphere in fig. 3.5, where the plus signs are the points for which a simulation is

run, and the colour coding represents the prediction by the Gaussian process. The

fact that there are points all around the sphere is a sign of exploration, whereas

the concentration of points around the minimum is a sign of exploitation. The

optimal pulse is shown in fig. 3.6 along with its decomposition in terms of QHO

eigenstates. This pulse achieves an electron yield of 0.9522. As a side note, it

is worth noting that even though the symmetry of the problem with respect to

the overall sign of ai wasn’t specifically taken into account, its presence is clearly

visible in the prediction by the Gaussian process. However, for larger numbers of

optimisation parameters, it is certainly worthwhile to take advantage of the known

symmetries of the system to reduce the parameter space and therefore enhance

the performance of the optimisation algorithm. As a second note, even though

the minimum of the target function is what is found here by the algorithm, the

prediction by the Gaussian process makes it very easy to find the maximum almost

immediately without any need for further simulations.

For the 5-d case, a training set of 60 points is used, followed by 20 laps. In

total 140 points are considered. The optimal pulse is shown in fig. 3.7. This pulse

achieves an electron yield of 0.9629.

For the 7-d case, the training set has 100 points. The algorithm runs for 60 laps,

hence a total of 340 points are considered. This pulse achieves an electron yield of

0.9643. The pulse and its decomposition are shown in fig. 3.8.
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Figure 3.5. The Gaussian process used to find the optimal pulse shape made up

of three components (d = 3 in eq. 3.66). The colour coding shows

the prediction by the Gaussian process of the remaining charge in the

atom after the pulse is gone. The points for which a function call

has been made are shown by crosses. The minimum is marked by an

arrow.

3.9.5. Analysis

In all of the systems above two things can be seen, 1. it seems that the optimisation

algorithm is trying to create a pulse with a relatively constant envelope everywhere

apart from the rising and falling parts, 2. the optimal pulses have no component

along the even components.

The first observation can be justified by noting that if the intensity is too high

at any given point during the pulse, the atom might enter the stabilisation regime

around that point (in the stabilisation regime the ionisation rate decreases signifi-

cantly [93]). On the other hand, if the intensity is too low the ionisation decreases

according to the perturbation theory. Therefore it is best if the envelope stays

somewhere between these two limits at all times.

As to why the even components do not appear, if an even component is used to

increase (decrease) the intensity during the first half of the laser pulse, the intensity
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Figure 3.6. The optimal pulse and its decomposition in terms of QHO eigenstates.

Note that E0 = A0ω. This pulse is made up of three components

(d = 3 in eq. 3.66), which are shown on the right hand side. The scale

of the smaller plots is the same as that of the main one.

Figure 3.7. The optimal pulse and its decomposition in terms of QHO eigenstates.

Note that E0 = A0ω. This pulse is made up of five components (d = 5

in eq. 3.66), which are shown on the right hand side. The scale of the

smaller plots is the same as that of the main one.
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Figure 3.8. The optimal pulse and its decomposition in terms of QHO eigenstates.

Note that E0 = A0ω. This pulse is made up of seven components

(d = 7 in eq. 3.66), which are shown on the right hand side. The scale

of the smaller plots is the same as that of the main one.

necessarily decreases (increases) during the second half due to the antisymmetry

of the even components. This antisymmetry prevents the envelope from building

up a plateau in the central section of the pulse.

The slight asymmetry in the pulse of the 7-d example is a direct consequence of

the fact that the difference in target value between the current global minimum and

the true global minimum is very small (based on the previous paragraph, we expect

the true global minimum to be completely symmetric), and for the optimisation

algorithm to find the true minimiser, a lot more function calls would have been

needed.

3.10. Maximising the asymmetry in the

photo-electron angular distribution

The photo-electron angular distribution (PAD) is calculated by integrating the

norm of the wave function over the radius and the azimuthal angle,

S(θ) =

∫ 2π

0

dϕ

∫ ∞

0

dr |ψcon(r)|2r2 (3.74)
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s p d

Figure 3.9. The energy structure of the hydrogen atom. The red arrows show

photons of the first laser, and the green arrow shows a photon of the

second laser. The shaded regions represent the continuum. The usual

selection rules apply as a direct consequence of the linear polarisation

of the two laser pulses.

where θ is the polar angle, ϕ is the azimuthal angle, r is the position vector with

r representing its magnitude, and ψcon(r) is the ionised part of the wave function,

i.e. the part that is in the continuum.

Now consider the two ionisation processes below,

1. One-photon above-threshold ionisation using a linearly polarised laser pulse,

where the electron always ends up in the p-continuum if it is initially in the

ground state.

2. Two-photon below-threshold ionisation using a linearly polarised laser pulse,

where the final state of the electron is a mixture of s- and d-continua.

In each of these scenarios the final continuum population is symmetric with respect

to the polar angle (assuming the lasers are polarised along the z-axis), see fig. 3.9.

In other words, the PAD is identical in the northern and southern hemispheres.

However, if these two laser pulses are used simultaneously, we will have access

to both of these ionisation processes, i.e. one-photon and two-photon, and conse-

quently access to populated s-, p-, and d-continua. As a result, the PAD might

not be symmetric any more.

The coupling between the bound p-states and the s-continuum is much weaker

than that between the bound p-states and the d-continuum, meaning the s-continuum
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Figure 3.10. Spherical harmonics Yl,m; Y1,0 is shown on the left and Y2,0 on the

right. Red portions represent regions where the spherical harmonic

is positive, and the blue portions where it is negative. The one-

photon ionisation process gives rise to Y1,0, whereas the two-photon

ionisation process gives rise to Y2,0. By combining the two ionisation

processes it is possible to generate asymmetry along the polar angle.

does not play much of a role in this scenario. The other two competing channels,

i.e. p- and d-channels, are shown in fig. 3.10. The interplay of these two channels

results in an asymmetry in the photo-electron spectrum with respect to the polar

angle. And the goal of the current optimisation task is to maximise this asymmetry

by changing the laser parameters.

The vector potential consisting of two laser pulses sharing the same envelope

A(t) is given by

A(t) = A(t) (A1 cos(ω1t) +A2 cos(ω2t+ δ)) , (3.75)

where A1 and A2 are respectively the amplitudes of the two components. The

frequencies are denoted by ω1 and ω2. And δ is the phase difference between the

two carrier waves. The presence of this phase difference is crucial to the success of

this optimisation task, as a change in this phase leads directly to a change in the

relative phase of the two channels. And the relative phase of the two channels in

turn governs the degree of asymmetry in the photo-electron angular distribution by
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dictating how the two competing channels interfere. The optimisation algorithm

will vary the phase difference as one of its parameters in an attempt to maximise

the asymmetry.

The second important parameter here is the intensity. If the intensity of one

of the two pulses is much higher than the other, the continuum population will

be dominated by the corresponding channel, again resulting in a symmetric photo-

electron angular distribution. Therefore, we will keep the intensity of the first pulse

fixed, while the intensity of the second pulse is used as the second optimisation

parameter by the optimisation algorithm to maximise the asymmetry.

An identical envelope is chosen for both of the pulses to maximise the combined

action of the two lasers. However, in a more complicated optimisation task, the

envelopes of the two pulses may be separately parametrised in a similar fashion to

sec. 3.9.1 and used as extra optimisation parameters. But we will just use a simple

envelope in this section.

In sum, there are two variables that the optimisation algorithm is allowed to

change, the phase difference δ and the amplitude of the second pulse A2.

3.10.1. Target function

The target function is defined as the difference between the continuum populations

of the northern and southern hemispheres,

y = aN − aS , (3.76)

where aN is the population of the continuum states in the northern hemisphere, and

aS is the population of the continuum states in the southern hemisphere. By finding

the laser parameters which minimise this function, it is possible to get a visibly

asymmetric wave function with respect to the polar angle [8]. The population of

the continuum states in the northern hemisphere is obtained by integrating the

photo-electron distribution of the continuum states from θ = 0 to θ = π/2. And

similarly the population of the continuum states in the southern hemisphere is

obtained by integrating the photo-electron distribution of the continuum states

from θ = π/2 to θ = π. The reason why only the continuum states are considered

is that in experiment it is only possible to detect the the continuum part of the

wave function.
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3.10.2. Procedure & Results

An exponential envelope A(t) = exp (−4 ln 2 t2/τ 2) is used where τ is the FWHM

of the pulse. The frequencies are ω1 = 24.5 eV and ω2 = ω1/2; the frequency of

the first laser is chosen such that the frequency of the second laser is just below

the threshold of atomic hydrogen (the threshold is at 13.6 eV). The FWHM of the

envelope is τ = 1.16 fs, and the intensity of the first laser is I1 = 1.0×1015 W/cm2.

The regime defined by these parameter values can be achieved nowadays thanks

to free electron lasers [94, 95].

The training set consists of 20 randomly chosen points in an area defined by

0 < δ < 2π and 1014 < I2 < 1016 W/cm2, which are then passed on to the SCID

package [91] (see appendix F). The simulations run from t = −2.5 τ to t = 2.5 τ .

The target values are calculated according to eq. (3.76). These results collectively

form the training set used for training the Gaussian process.

The one-step lookahead scheme is the method of choice here, and is allowed to

run for 20 laps. In every lap the four most promising points are chosen by finding

the four lowest local minima of the one-step lookahead cost function defined in

eq. (3.60) (we have used a generic quasi-Newton method to find the local minima

of the cost function, but any other textbook gradient-based optimisation algorithm

would equally work). These four points are then given to the SCID package. The

target values and the points are added to the training set before the next lap starts.

The parameter space consisting of the two optimisation parameters, i.e. the

intensity of the second pulse and the phase difference between the two carrier waves,

is shown in fig. 3.11. The crosses show the points for which a simulation has been

run. The colour coding shows the prediction by the Gaussian process. The fact

that there are crosses throughout the entire region shows the exploratory aspect

of the optimisation algorithm, and the fact that the promising regions are more

densely sampled shows the exploitative aspect. The optimum points are shown by

two arrows on the plot. The photo-electron angular distribution obtained using

the optimal pulse is depicted in fig. 3.12, where the asymmetry is clearly visible.

Similarly to the previous example, even though the goal was to find the maximum

asymmetry, it is possible to find the point for which the minimum asymmetry

occurs almost instantly just by looking at the prediction made by the Gaussian

process.
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Figure 3.11. The difference between ionisation into the northern and southern

hemispheres is depicted here as a function of the intensity of the

second laser pulse and the phase difference between the two laser

pulses. The arrows show the optimum regions.
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Figure 3.12. The photo-electron angular distribution having the highest level of

asymmetry. The horizontal axis is the polar angle.
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3.10.3. Analysis

It should be fairly straightforward to justify the obtained optimum values of the

optimisation variables. As to the phase difference, when δ is 0 (π/2) the upper

(lower) halves of spherical harmonics Y1,0 and Y2,0 add up, while the lower (upper)

halves cancel out, see fig. 3.10. Either of these cases results in maximum contrast

between the upper and lower parts.

Regarding the intensity of the second pulse, if the difference between the two

intensities is high, as it was mentioned earlier, only one process dominates, leading

to a significant reduction in the asymmetry. Therefore, the two intensities are

expected to be of the same order when the asymmetry is to be maximised. The

exact prediction of the optimum value is, however, only possible by running the

optimisation algorithm.

3.11. Maximising the HHG yield by incorporating an

XUV laser pulse

A typical radiation spectrum obtained from a high harmonic generator contains a

region where all the radiated harmonics are of equal intensity, see figure 3.13. This

region, called the plateau, extends up to a certain energy called the cut-off energy.

The cut-off energy (in atomic units) is given by [96, 97]

ωcut = Ip + 3.17Up , (3.77)

where Ip is the ionization potential, and Up is the ponderomotive energy. The

ponderomotive energy (in atomic units) of an electron in a laser field of amplitude

E0 and frequency ω reads

Up =
E2

0

4ω2
. (3.78)

If harmonics beyond the cut-off energy are desired, the cut-off energy has to be

somehow extended. This can naively be done in two ways, increasing the inten-

sity of the laser, or decreasing the frequency of the laser. The intensity can only

be increased so much, as at some intensity all the bound charge will be ionised

leaving nothing behind to radiate. As to the frequency, as the wavelength becomes

larger (lower frequencies), so does the quiver amplitude of the ionised electron wave
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Figure 3.13. A (synthetic) typical spectrum obtained from a HHG experiment.

The spectrum has three regions, the perturbative region on the far

left, the plateau in the middle, and the cut-off region on the far right.

The red dotted line marks the cut-off energy. The peaks are at odd

multiples of the frequency of the incident laser.

packet. A larger quiver amplitude means the wave packet has to travel a larger

distance before returning to the nucleaus, and a longer trip in turn means the wave

packet has more time to spread over space. That means, a smaller fraction of the

wave packet has the chance to collide with the nucleus on the return journey, hence

a decline in the efficiency. In other words, even though it is possible to increase

the cut-off energy by decreasing the frequency, the efficiency of such a setup is un-

favourable. But the story isn’t over yet. The envelope of the pulse can be modified

to enhance one particular harmonic beyond the original cut-off energy of the 1d

hydrogen atom [98]. The quantum optimal control theory can also be used to find

the optimum electric field at any instance of time (as opposed to only the enve-

lope) maximising the radiation within a certain energy range of the 1d hydrogen

atom [99, 100]. One further possible way to push the cut-off energy towards higher

energies is to incorporate a second laser [96, 101]. Assuming the first laser operates

in the IR regime,6 the second one can be an XUV laser. This is the setup we are

concerned with in this section, and the goal is to maximise the radiation within a

6. This is a justified assumption as 800 nm lasers are the most common lasers in HHG experi-

ments.
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certain range of frequencies by changing the parameters of the second laser.

The vector potential of two simultaneous laser pulses is given by

A(t) = A(t) (A1 cos(ω1t) +A2 cos(ω2t)) , (3.79)

where A1 and A2 are the amplitudes, ω1 and ω2 are the frequencies, and A(t) is

the envelope shared by both pulses (the reason why the two pulses share the same

envelope is explained in sec. 3.10). If the intensity of one of the lasers is much

higher than the other, the spectrum will resemble that of a single laser setup. We

will therefore fix the intensity of the first laser while the intensity of the second

laser is left to the optimisation algorithm.

It turns out, the frequency of the second laser plays a crucial role, and will

consequently be varied by the optimisation algorithm in search of optimum settings.

The phase of the carrier wave of the second laser is irrelevant due to its high

frequency.

In sum, there are two parameters the optimisation algorithm will be in control

of, the intensity and frequency of the second laser.

3.11.1. Target function

The total radiation between frequencies ωl and ωh is calculated by integrating the

radiation spectrum S(ω) (please refer to appendix E.5 to see how the radiation

spectrum is calculated) over the respective range,

y =

∫ ωh

ωl

S(ω) dω , (3.80)

where ωh and ωl are the limits of the window of interest. This quantity will be

maximised by changing the laser parameters.7 The two limits of the target function

are ωl = 30ωIR and ωh = 50ωIR. These two frequencies define a window beyond

the cut-off region of the IR pulse given the parameter values used in this task (see

the next section).

7. In fact − log y will be minimised. When working with quantities that can vary over multiple

orders of magnitude, it’s best to work with their logarithm for better numerical stability.
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3.11.2. Procedure & Results

Both pulses share the same exponential envelope, A(t) = exp (−t2/τ 2), where τ =

2.9 fs. An 800 nm laser is chosen as the first laser (equivalent to ωIR = 0.057 a.u.)

with intensity 1.0 × 1014 W/cm2. These are standard laser parameters used in

HHG experiments [102].

The training set contains 20 randomly chosen points in the region defined by

1 < ωXUV < 3 a.u. and 1010 < IXUV < 1012 W/cm2. The intensity of the second

pulse is chosen low enough to make sure it acts as a small perturbation to the first

laser pulse. A simulation from t = −2.5 τ to t = 2.5 τ is run for each of the points

and the respective target values are evaluated. The SCID package is used for all

the simulations [91] (see appendix F).

One-step lookahead procedure runs for 5 laps on four CPUs. In each lap the

next four points are chosen by finding the four lowest minima of the cost function

defined in eq. (3.60). A simulation is run for each of the four points, and the target

values are evaluated as explained before. The results are added to the training

set before proceeding to the next lap. By the end of the life of the optimisation

algorithm a total of 40 points are considered.

In fig. 3.14 the prediction of the Gaussian process is shown as a contour plot,

and the points for which a simulation is done are shown as crosses. As before, the

degree to which the crosses are scattered all over the parameter space is a sign

of exploration, whereas the fact that there are more crosses around the optimum

value is a sign of exploitation. In this particular case we can see that there is a

flat region, shown by the white arrows, where there are plenty of points. It turns

out these points do not differ much in target value. The spectra from two of these

points (the top most and bottom most arrows) are shown in fig. 3.15.

3.11.3. Analysis

To justify the optimum frequency found by the optimisation algorithm, an analytic

analysis of the system is required. Fortunately, as becomes clear towards the end

of this subsection, a crude analysis succeeds in describing the findings successfully.

The analysis appearing here closely follows that of ref. [103]. The strong field

approximation (SFA) is assumed throughout [104]. That is, the effect of the laser
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Figure 3.14. The region of the parameter space that the optimisation algorithm

had access to. The horizontal axis represents the intensity of the

XUV laser, while the vertical axis represents its frequency. The op-

timum region found by the algorithm is marked by the white arrows.

The spectra obtained using the uppermost and the lowermost ones

are depicted in fig. 3.15.

field on the bound states is neglected, and so is the effect of the atomic potential

on the continuum states.

The evolution of a field-free hydrogen atom is considered first. The IR field is

then added to the analysis, and at the very end the XUV pulse is considered as a

perturbation.

First, the wave function of the hydrogen atom at the time of recombination t

is decomposed into two parts, the bound part ψb(r, t) and the continuum part

ψc(r, t),

ψ(r, t) = ψb(r, t) + ψc(r, t) . (3.81)

The bound part evolves according to the field-free Hamiltonian Hatom = p2/2+V (r)

where V (r) = −1/r and p = |p|, while the continuum part evolves under the

influence of only the external field, Hex = p2/2 + AIR(t) · p + AXUV(t) · p, where

AIR(t) is the vector potential of the IR field and AXUV(t) is the vector potential
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Figure 3.15. The spectra obtained from using the optimum values corresponding

to the uppermost and lowermost arrows appearing in fig. 3.14. The

upper plot corresponds to the uppermost arrow, and the lower plot

to the lowermost arrow. The limits of the integral in the target

function are ωl = 30ωIR and ωh = 50ωIR. The red lines are the

cut-off energy.

of the XUV field.

The evolution of the bound part is given by

ψb(r, t) = e−iE0tφ0(r) , (3.82)

where φ0(r) is the ground state of the field-free Hamiltonian, and E0 is its corre-

sponding energy. The absence of any trace of the applied fields on this state is a

direct consequence of the SFA approximation.

We will now consider the effect of the IR laser only, and then add the XUV pulse

as a perturbation. The continuum states are given by the Volkov solution of the

Schrödinger equation [104],

φIR
v (r, t) = exp

(
ip · r− ip

2

2
t− ip · JIR(t)

)
, (3.83)
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where JIR(t) =
∫ t
t0
AIR(t′) dt′. And if the effect of the XUV laser is included,

φv(r, t) = exp

(
ip · r− ip

2

2
t− ip · (JIR(t) + JXUV(t))

)

= φIR
v (r− JXUV(t), t)

≈ φIR
v (r, t)− JXUV(t) · ∇φIR

v (r, t) ,

(3.84)

where JXUV(t) =
∫ t
t0
AXUV(t′) dt′, and it is assumed the intensity of the XUV pulse

is low.

The continuum wave function at the time of recombination can be expanded in

terms of the Volkov states

ψc(r, t) =

∫
Ω(p)φv(r, t) d

3p

=

∫
Ω(p)φIR

v (r, t) d3p− JXUV(t) ·
∫

Ω(p)∇φIR
v (r, t) d3p

= ψIR
c (r, t)− JXUV(t) · ∇ψIR

c (r, t) ,

(3.85)

where Ω(p) is a function representing the expansion weights for different momenta,

and eq. (3.84) is used in going from the first line to the second, and

ψIR
c (r, t) ≡

∫
Ω(p)φIR

v (r, t) d3p , (3.86)

which is the expansion of the wave function in terms of the Volkov states if only

the IR laser is present (this can be confirmed by letting JXUV(t)→ 0 in eq. (3.85)).

The field radiated by the atom is given by (see appendix E.5)

a(t) = 〈ψ(t)| − ∇V (r) |ψ(t)〉 , (3.87)

where ψ(t) is given by eq. (3.81),

a(t) = (〈ψb(t)|+ 〈ψc(t)|)−∇V (r) (|ψb(t)〉+ |ψc(t)〉)
= 〈ψb(t)| − ∇V (r) |ψb(t)〉+ 〈ψb(t)| − ∇V (r) |ψc(t)〉

+ 〈ψc(t)| − ∇V (r) |ψb(t)〉+ 〈ψc(t)| − ∇V (r) |ψc(t)〉 .
(3.88)

If it is assumed most of the wave function stays largely in the ground state, then

〈ψc(t)| − ∇V (r) |ψc(t)〉 ≈ 0. By using eq. (3.82) it is easily seen that 〈ψb(t)| −
∇V (r) |ψb(t)〉 = 0. The two remaining terms are complex conjugates and we will

only consider one of them, with the presence of the other implied. If both laser
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pulses are polarised along the z-axis, only the z-component of the acceleration

vector is non-zero. Then, if the two parts of the wave function are substituted by

eqs. (3.82) and (3.86), we get

az(t) = 〈ψb(t)| − ∂zV (r) |ψIR
c (t)〉 − JXUV(t) 〈ψb(t)| − ∂zV (r)∂z |ψIR

c (t)〉
= aIR

z (t)− JXUV(t) aXUV
z (t) ,

(3.89)

where in this case JXUV(t) = JXUV(t) ẑ,

aIR
z (t) ≡ 〈ψb(t)| − ∂zV (r) |ψIR

c (t)〉 , (3.90)

and

aXUV
z (t) ≡ 〈ψb(t)| − ∂zV (r)∂z |ψIR

c (t)〉 . (3.91)

The HHG spectrum is given by the Fourier transform of az(t)

FT {az(t)} = FT
{
aIR
z (t)

}
−FT {JXUV(t)} ? FT

{
aXUV
z (t)

}
, (3.92)

where ? represents the convolution operation. The first term is simply the HHG

spectrum generated by the IR pulse. To decipher the second term, let’s assume the

width of the envelope of the XUV pulse is much larger than its period, and therefore

the Fourier transform of JXUV(t) can be approximated by a delta function,

FT {JXUV(t)} ≈ δ
(
ω − ωXUV

)
. (3.93)

Convolution with a delta function is nothing but a shift in the frequency domain,

i.e. if g(y) = δ(y − y0)

(f ? g)(y) =

∫
f(x)g(y − x) dx

=

∫
f(x)δ(y − x− y0) dx = f(y − y0) .

(3.94)

Therefore, what the convolution appearing in eq. (3.92) does is shift FT
{
aXUV(t)

}

by ωXUV. This means in addition to the usual HHG spectrum generated by the

first term, the second term gives rise to a structure around ωXUV.

To analyse the symmetries of the radiated field, suppose two consecutive bursts

of radiation are generated at t and t+ T/2, where T is the period of the IR laser.

And further assume ψIR
c (r, t) was born at some initial time ti from ψb(r, ti) =

φ0(r)e−iE0ti . Then ψIR
c (r, t+ T/2) must have been born at ti + T/2 from ψb(r, ti +
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T/2) = ψb(r, ti)e
−iE0T/2 = φ0(r)e−iE0(ti+T/2) (the bound state has accumulated a

phase of E0T/2 over T/2). Furthermore, the direction of the laser pulse at t+T/2

is opposite that at t, and consequently the two continuum wave functions are

released in opposite directions, i.e. ψIR
c (r, t + T/2) = ψIR

c (−r, t)e−iE0T/2. Plugging

the relations for ψb(r, ti + T/2) and ψIR
c (r, t+ T/2) in eq. (3.90) yields

aIR
z (t+ T/2) = −aIR

z (t) , (3.95)

where we have used the following symmetries

φ0(−r) = φ0(−r) (3.96)

V (−r) = V (−r) (3.97)

∂zV (−r) = −∂zV (r) . (3.98)

The only non-zero components of the Fourier transform of an odd function are the

odd harmonics, ±ω, ±3ω, . . ., where ω = 2π/T is the frequency of the IR laser.

Therefore, it is seen the field radiated by the IR laser has components only along

the odd harmonics.

A similar analysis can be done for aXUV
z (t), yielding

aXUV
z (t+ T/2) = aXUV

z (t) , (3.99)

where ∂zψ
IR
c (r, t+T/2) = −∂zψIR

c (−r, t)e−iE0T/2 has been used. The Fourier trans-

form of an even function only consists of even harmonics, 0, ±2ω, . . . Therefore,

the spectrum from the XUV pulse consists of components at ωXUV, ωXUV± 2ω, . . .

The total spectrum should consequently consist of the spectrum from the IR

field, plus a structure consisting of even harmonics of the IR frequency centred at

the XUV frequency.

Given that ωl is larger than the cut-off energy of the IR laser, and the radiation

due to aXUV
z (t) is symmetric about ωXUV, one may correctly expect to have ωXUV

anywhere between ωl and ωh as the optimum frequency found by the optimisation

algorithm, because at these frequencies the overlap of the radiation due to aXUV
z (t)

with the target window is maximum. That is indeed the frequency range suggested

by the optimisation algorithm.

As to the optimum intensity, the probability that the electron absorbs an XUV

photon is proportional to the intensity of the XUV laser. Therefore, the HHG yield
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within the window of interest increases monotonically as the intensity of the XUV

laser increases.

The findings of the current optimisation task might seem trivial at first glance: if

maximum radiation within a certain frequency window is needed, the frequency of

the XUV laser should lie in that window. However, this task is the first step towards

a more interesting optimisation task, i.e. whenthe XUV laser pulse is allowed to go

beyond a simple perturbation. In such a regime, the behaviour of the system most

likely cannot be easily described using the analysis presented here, and perhaps

higher order terms in eq. (3.84) should be considered.

3.12. Generating short pulses via combining the

higher harmonics generated by multicoloured

pulses

The high harmonic generation (HHG) is a highly non-linear process, and if the

incident laser pulse consists of multiple frequencies (known as colours), it may not

be straightforward to predict the outcome merely based on the outcomes of the

individual pulses. However, it is known that the outcome of such a setup can be

engineered for different purposes [105]. For instance, by delicately shaping the

incident laser pulse, it is possible to single out one of the higher harmonics while

suppressing the others. Such degree of manipulation, even though possible, is very

hard in reality. To facilitate future experiments, we restrict ourselves to a very

simple setup here, that is, a multicoloured pulse consisting of three components at

800 nm, 400 nm, and 200 nm. The three components are given different weights,

governing their relative shares of the pulse. As with section 3.9, it is more relevant

to speak of pulses of identical energy. An optimisation algorithm will be used to

investigate the possibility of creating short bursts of radiation by illuminating a

hydrogen atom with the aforementioned multicoloured pulse.
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3.12.1. Pulse composition

The vector potential of a multicoloured laser pulse is made up of identically shaped

pulses8 with different frequencies

A(t) = A(t)
∑

i=1

ai cos(ωit+ ϕi) , (3.100)

where A(t) is the envelope, ωi are the frequencies, and ϕi are the initial carrier

wave phases. A Gaussian envelope is used here, A(t) = exp(−t2/τ 2), where τ

determines the width of the pulse.

3.12.2. Pulse energy

All the pulses used in the current optimisation task will have the same energy. And

in order to come up with a constraint enforcing that, first the square of the time

derivative of the vector potential is needed. The time derivative of eq. (3.100) in

the slowly-varying envelope regime (see appendix E) is given by

dA(t)

dt
≈ −A(t)

∑

i

aiωi sin(ωit+ ϕi) , (3.101)

which when raised to the power of two yields
(
dA(t)

dt

)2

≈ A2(t)
∑

i,j

aiajωiωj sin(ωit+ ϕi) sin(ωjt+ ϕj) . (3.102)

Since we are only interested in time scales larger than the period of any of the

constituent components, we take the average of the above expression over a few

cycles, 〈(
dA(t)

dt

)2
〉
≈ 1

2
A2(t)

∑

i

a2
iω

2
i , (3.103)

where we have taken advantage of 〈sin(ωit) sin(ωjt)〉 = 1
2
δij. By inserting this in

〈I(t)〉 = cε0

〈(
Ȧ(t)

)2
〉

(see eq. (E.16)), we obtain the mean intensity

〈I(t)〉 ≈ cε0
2
A2(t)

∑

i

a2
iω

2
i . (3.104)

8. This restriction is applied to make it easier for the experimentalist to implement such a pulse.

In experiment, the 800 nm laser pulse is directed into a non-linear crystal to generate the other

two components, i.e. 400 nm and 200 nm. Obviously, they will all share the same envelope.
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In order to calculate the energy of a multicoloured pulse, we only need to inte-

grate the mean intensity over time (see eq. (E.22) in appendix E)

U =

∫ +∞

−∞
I(t) dt =

cε0
2

(∫ +∞

−∞
A2(t) dt

)∑

i

a2
iω

2
i , (3.105)

which means in order to keep the energy of the pulse fixed, one only needs to keep

the sum
∑

i a
2
iω

2
i fixed, in which case the only factor affecting the pulse energy is

the pulse envelope, and the simplest way to change the energy of the pulse is to

multiply the envelope by a prefactor, which is equivalent to increasing the peak

intensity of the pulse. For a general discussion of how a constraint can be imposed

during an optimisation task please refer to [6, 7].

3.12.3. Target function

The field emitted by the atom is given by the second derivative of the dipole

operator with respect to time, i.e. 〈r̈〉 (see appendix E.5). It is our goal to minimise

this radiation everywhere but over a very short space of time. This is done by first

multiplying the radiation field by a window function which is positive over the time

period of interest and negative everywhere else, and second integrating the product

over time,

yt0 =

∫ ∞

−∞
| 〈r̈〉 |wt0(t) dt , (3.106)

where wt0(t) is the window function. Please note that the absolute value of 〈r̈〉 is

used. In order to see what t0 is, let’s first consider a potential window function,

wt0(t) = exp

(
−(t− t0)2

τ 2
1

)
− α exp

(
−(t− t0)2

τ 2
2

)
, (3.107)

which consists of two Gaussian functions centred at t0, with the first Gaussian being

much narrower than the second one. The parameters used in this section are τ1 =

200, τ2 = 20, and α = 8. This window function is depicted in fig. 3.16. The first

term encourages the presence of the burst at t0 while the second one discourages

the fluctuations/noise around the burst. Therefore, t0 represents the time when

the burst is emitted. The weight α is chosen to balance the two competing factors;

if it is too large, the emphasis will be on not getting any fluctuations/noise no

matter how weak the final burst, and if it is too small, the emphasis will be on the

burst no matter the level of fluctuations/noise.
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Figure 3.16. The window function used to separate out one single burst of radi-

ation. The middle peak shows where the prospective burst is going

to be. The negative areas around the peak make sure the final burst

is as isolated as possible.

For this window function to work as hoped, the burst should be emitted at around

t0. But this may not always be the case, and the window function might miss the

exact time of the burst. For this reason, a better target function is achieved if t0

is let to sweep the entire time axis and then the maximum is taken,

y = max{yt0} for −∞ < t0 <∞ . (3.108)

One very important point to bear in mind is that in our experience the choice

of target function plays a very crucial role in the success of the optimisation task.

For instance, we first used yt0 as the target function with t0 being the middle of the

pulse, and were disappointed to discover that the global minimum did not meet

our expectations.

3.12.4. Procedure & Results

The system under study is a hydrogen atom in the presence of a multicoloured

pulse. The envelope is given by exp(−t2/τ 2), where τ = 2.9 fs. The peak intensity

of the pulse is 9.75×1011 W/cm2; these values are chosen such that there is enough

ionisation while there is no saturation. The pulse consists of three components,

ω1 = 0.057 a.u. (λ = 800 nm), ω2 = 2ω1 (λ = 400 nm), and ω3 = 4ω1 (λ = 200 nm).

The amplitudes ai are changed under the constraint that the pulse energy is fixed,

i.e.
∑

i aiωi remains unchanged. The phases are allowed to change freely between
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0 and 2π.

A specific random number generator is devised to make sure every random point

satisfies the constraint of constant energy. This random number generator produces

a vector of length 6, the first three elements of which are the components of a

point on the surface of a sphere. These three elements are used as the values of the

products aiωi. The other three elements of the random vector are the components

of a point picked unconditionally in a 3-d box extending from 0 to 2π in each

dimension. Each of these three elements represents one of the phases mentioned

above.

A training set of size 40 is prepared. Then the optimisation algorithm is allowed

to run for 40 laps. In each lap, the next four points are suggested by the minima

of the one-step lookahead method (eq. (3.60)), and then four simulations are run

on four different nodes. A total of 200 simulations are run by the end of the life of

the optimisation algorithm.

The vector potential of the optimum pulse is shown in the upper plot of fig. 3.17,

which gives rise to the radiation shown in the lower plot. The amplitudes are

a1 = 9.597, a2 = 5.443, and a3 = 2.465 a.u., and the phases are ϕ1 = 0.245,

ϕ2 = 5.456, and ϕ3 = 2.716. The FWHM of the peak marked by the arrows is

3.3 a.u. (or 80 as).

3.12.5. Analysis

As it was mentioned earlier, the radiation by an electron in the presence of an

electric field is proportional to the acceleration vector of the electron a(t) =

〈ψ(t)| r̈ |ψ(t)〉, where r is the position operator, and |ψ(t)〉 is the wave function

of the electron. The acceleration vector is proportional to the exerted force, that

is the electric field. The electric field is the time derivative of the vector poten-

tial. Therefore, in order to get a burst of radiation at a particular time, the time

derivative of the vector potential needs to be large at that point in time. In other

words, in order to have a burst of radiation, we need to have an abrupt change

in the magnitude of the vector potential. That is indeed what is seen here. The

radiation shown in fig. 3.17 contains a high peak marked by two arrows; this peak

corresponds to the time instance pointed to in the upper plot where the slope is

the greatest.
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During the first half of the pulse there is no radiation merely due to the fact

that not much of the initial wave function is ionised. In the second half, however,

a train of bursts can be seen. Each of these bursts corresponds to a point in time

when the slope of the vector potential is large.

3.13. Conclusion

Most traditional optimisation algorithms fail to incorporate all the available in-

formation about the latent function into their analysis (for instance there is no

uncertainty consideration in the gradient descent method), which makes them less

efficient in terms of the number of function evaluations required [106–108]. This

weakness might not be a big problem when optimising cheap functions, but it will

be a main issue when an expensive function is considered [109]. Bayesian methods,

on the other hand, make sure the best decision is made in the light of the acquired

data [61]. Note that the “best decision” of one user might be completely different

from that of another user simply due to the fact that they don’t have access to the

same information. In other words, in Bayesian statistics the concept of probability

is a subjective quantity [68].

It was explained in this chapter how Bayes’ theorem lays the groundwork for

learning algorithms, and how we can improve our beliefs in the light of new data.

In sum, Bayesian statistics has three main cornerstones,

1. Each and every type of uncertainty has to be treated the same way. That

is, the uncertainty stemming from our lack of knowledge is mathematically

equivalent to the outcome of a random process.

2. Bayes’ theorem should be used to infer the posterior probability.

3. The posterior predictive distribution should be used when talking about un-

observed events.

In optimisation, the first item incorporates in our analysis the uncertainty about

the structure of the latent function where it hasn’t been thoroughly explored. The

second item helps us improve our perception of the behaviour of the latent function

as evidence becomes available. And the third item makes it possible to make

predictions in view of the observed data and their corresponding uncertainties.
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Later in the chapter, a Gaussian process was used as a potential Bayesian model,

on top of which a heuristic optimisation algorithm was introduced. It was then

demonstrated how this generic optimisation method can be helpful in not only

finding the optimum parameter values, but also analysing the system under study.

That is, by looking at the predictions made by the Gaussian process, it was possible

to gain insight into the details of the system. For instance in the first application

presented in section 3.9, even though the maximum ionisation was sought, it was

possible to find the minimum without any need for extra simulations. Of course this

cannot always be done, especially if the parameter space hasn’t been thoroughly

covered by the previous simulations. But this has to be contrasted with textbook

optimisation methods in which there is usually no such privilege no matter how

well the parameter space is sampled.

Each case studied here was accompanied by an analysis justifying the optimum

with the help of a simplified picture of the system. Obviously such an analysis

may not always be possible, especially as the complexity of the system grows. For

instance, in the third application presented in this chapter, if higher intensities had

been used for the two laser pulses, this perturbative approach would not have been

enough, or at least higher orders would have been required.

There are several steps in any optimisation task that need very close attention.

Firstly, it is very important that we understand what exactly is being optimised,

i.e. what the target function is actually targeting. Although in certain situations

there might not be many different choices, there are circumstances where the target

function is just as important (if not more) as the optimisation algorithm itself. If

the target function is not fine tuned, the global minimum may not necessarily

represent the desired behaviour.

Secondly, the optimisation algorithm shouldn’t be given too much/inadequate

freedom. For instance, in the first example in section 3.9, the optimisation algo-

rithm was only allowed to pick envelopes from a limited pool. On the one hand,

such a pool definitely does not provide ultimate flexibility of the laser pulse. On

the other, unconditionally flexible pulses are not what can be experimentally re-

alised. If instead of just the envelope, the value of the vector potential at each

time step had been put up for modification, the optimum pulse might not neces-

sarily have represented a physically legitimate pulse. Another peril of using too

much freedom is that as the number of parameters the optimisation algorithm has

access to grows, the probability that the optimisation algorithm will actually find
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the global optimum shrinks. Similar conclustions have been drawn before in other

communities such as the quantum optimal control community [110, 111].

3.14. Outlook

In this chapter we only used the square exponential covariance function, even for

latent functions of periodic behaviour. We expect that using periodic covariance

functions will reduce the amount of required function calls considerably. Further-

more, in cases where one simple covariance function may not be sophisticated

enough to capture the nature of the latent function, it is possible to design com-

pound covariance functions simply by adding/multiplying two simple covariance

functions [62]. This procedure can be automated such that the computer itself de-

cides what combination of the available simple covariance functions performs best;

the computer’s judgement will be based on p(M|D) defined in subsection 3.3.1.

This procedure, if not done very carefully, might result in overfitting. Such a

procedure has been successfully used in the field of machine learning before [112].

As the number of optimisation parameters increases, so does the number of

required function calls. It was seen earlier that matrix inversion is required in

evaluating the prediction of the Gaussian process, which becomes the numerical

bottleneck as the number of available data points increases. Fortunately, there

are various approximate methods which can be useful on this front [62]. The

feasibility of such approximations in physical settings should be studied. There

might also be ways to customise the currently available approximate methods to

systems prevalent in physics, such as periodic systems, systems with short-range

interactions, etc.

The possibility of tailoring general-purpose covariance functions to specific ap-

plications is certainly worth considering. One possible way would be to incorporate

the known symmetries of the system into the covariance function to the best of our

ability. For instance, a covariance function defined only on the surface of a sphere

might show better performance in section 3.9.

Tackling more complicated systems should definitely be on the agenda for future

work. For instance, highly nonlinear systems are a very interesting candidate. In

such systems, the output may not be as predictable as the relatively simple systems
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considered in this chapter.

The only type of latent function used in this chapter was the output from simula-

tion. But the output of experiment can also act as a latent function. This has been

recently done [41] to reduce the preparation time of a Bose-Einstein condensate.

Similar procedures can be used to find the optimum experimental conditions for a

particular outcome.

A range of different techniques can be used to reduce the dimensions of high-

dimensional problems, a procedure known as dimensionality reduction in the lit-

erature [57]. In effect, this procedure helps reduce the number of required data

points, and therefore increase the efficiency of the Gaussian process.

Dimensionality reduction can also be used for visualisation of high-dimensional

data. For instance, the method of Principal Component Analysis (PCA) uses a

unitary transformation to convert a set of possibly correlated optimisation param-

eters into a set of linearly uncorrelated parameters [57]. A few of the uncorrelated

variables can then be visualised using ordinary visualisation methods. Such tech-

niques can provide insight into patterns hidden in the data, or help us have a better

understanding of the inner workings of the system.
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Figure 3.17. Upper plot: the vector potential of the optimum pulse obtained by

the optimisation algorithm. The section marked by an arrow is when

the burst is radiated. Middle plot: the electric field of the optimum

pulse. The arrow marks the corresponding section of the electric

field responsible for the burst. Lower plot: the radiation obtained

by using such a pulse. The FWHM of the burst marked by the

arrows is 3.3 a.u. (or 80 as).



4. Dynamic interference

The interaction of a laser pulse with a simple atom such as hydrogen can be ex-

pressed through the standard minimal coupling Hamiltonian. As uncomplicated

as this Hamiltonian may look, it turns out its solution at one frequency or inten-

sity cannot be easily generalised to other frequencies or intensities. This simple

equation happens to entail rich physics.

The energy diagram of a hydrogen atom interacting with photons of different

frequencies is depicted on the left hand side of fig. 4.1. When this atom is set to

interact with a laser pulse, depending on the frequency and intensity of the laser,

its behaviour varies considerably. At frequencies below the threshold, fig. 4.1a, the

electron can only be ionised by absorbing multiple photons. The corresponding

photo-electron spectrum of the atom shows a prominant peak at an energy equal

to a multiple of the photon energy. As the intensity increases the above-threshold

ionisation (ATI) becomes possible, fig. 4.1b. The ATI is a process in which ionised

electrons absorb further photons (for a review of the ATI please refer to ref. [113]).

The photo-electron spectrum of such a process shows a set of consecutive peaks

separated by the photon energy. If the intensity is increased even further, one of

two things will happen, either the lowest-energy peak in the continuum disappears,

or an interference pattern will be modulated on the spectrum of that peak; both

as a result of what is known as the dynamic Stark effect (DSE). The DSE is a

process in which the energy levels of an atom change in the presence of a laser field

[34]. The DSE will be thoroughly explained later in the chapter. The interference

pattern just mentioned can be understood as a double-slit scenario in the time

domain, that is, a wave packet ionised during the rising part of the laser pulse

interferes with a wave packet released during the falling part of the laser pulse.

This process is known as dynamic interference and is the topic of this chapter.

At higher frequencies of the laser pulse one might naively expect to see a similar

101
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transition from the multi-photon regime (fig. 4.1c) to the ATI regime (fig. 4.1d).1

However, due to the small continuum-continuum coupling, the dynamic Stark shift

takes effect before any ATI is observed, again giving rise to a photo-electron spec-

trum unveiling a unique interference pattern, i.e. dynamic interference.

It is natural to expect to observe dynamic interference at above-threshold fre-

quencies during the transition from the multi-photon regime (fig. 4.1e) to the ATI

regime (fig. 4.1f). But we will be surprised to find out that there is no dynamic

interference in this particular case despite the presence of the dynamic Stark shift.

As will be clear later in the chapter, dynamic interference needs a very delicate

balance between the strength of the dynamic Stark shift and the rate at which

the initial state is depopulated. This balance turns out to be disturbed at above-

threshold frequencies.

The main tool used to study the aforementioned phenomena is the perturbation

theory, in which more and more terms are required to describe the behaviour of the

system as the intensity of the laser increases [34]. Over the years the perturbation

theory has been successfully applied to different systems of various complexity.2

In the case of an atom interacting with a laser pulse, the first order perturbation

theory describes the effect of the applied perturbation on the particle under study

while completely ignoring the interaction of the perturbation with the energy levels

of the potential the particle is in. The second order perturbation theory on the

other hand, takes care of any change the energy levels may undergo. We will

repeatedly take advantage of the second order perturbation theory in this chapter

to discuss the phenomenon of dynamic interference.

This chapter is organised such that the reader will be first familiarised with the

essential tools needed to describe dynamic interference. In section 4.1 the interac-

tion picture is introduced, which is then used to develop the perturbation theory

in section 4.2; even though the discussion of interaction picture and perturbation

theory can be found in almost any textbook on quantum mechanics (for example

ref. [34]), we will reiterate some of the key concepts that we will use later in the

chapter. In multi-level systems it may not always be insightful or even possible

to include all the states in the calculation. The unwanted states can be omitted

using the method of essential states presented in section 4.3. This method is used

1. We are only considering an off-resonant case here.

2. The breakdown of the perturbation theory will not be discussed in this chapter and the

interested reader is referred to ref. [114].
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Figure 4.1. The atomic structure and the threshold of atomic hydrogen are

shown on the left. Depending on the frequency and the inten-

sity of the laser pulse, the response of the atom varies consider-

ably. (a) low-frequency low-intensity multi-photon ionisation, (b) low-

frequency high-intensity multi-photon ionisation leading to above-

threshold ionisation, (c) high-frequency low-intensity multi-photon

ionisation, (d) high-frequency high-intensity multi-photon ionisation

leading to above-threshold ionisation, (e) low-intensity single-photon

ionisation, (f) high-intensity single-photon ionisation giving rise to

above-threshold ionisation

in section 4.4 to derive the Stark shift of the ground and continuum states of the

hydrogen atom in the presence of a laser pulse. Different gauges used in the atomic

physics community are given in section 4.5, where it is shown how Stark shift is a

gauge-dependent quantity. The notion of interference in the time domain assisted

by the dynamic Stark shift is discussed in section 4.6, where it is explained how

some of the previous analytical studies went wrong. This is followed in section 4.7

by a deeper discussion of the aforementioned gauges, where it will be seen why

some of the previous numerical studies falsely reported dynamic interference. The

required conditions for dynamic interference are derived in section 4.8. Section 4.9

deals with a handful of different settings in which interference in the photo-electron

spectrum is possible in a general sense. The chapter is concluded in section 4.10.
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4.1. Interaction picture

Consider a Hamiltonian consisting of two parts H = H0 + V (t), where only the

eigenfunctions of H0 are known, H0 |φn〉 = En |φn〉. The wave function of the

system |ψ(t)〉 evolves according to the Schrödinger equation, and it is customary

to express this evolution in terms of the eigenfunctions of H0,

|ψ(t)〉 =
∑

n

an(t) |φn(t)〉 , (4.1)

where |φn(t)〉 = U0(t, t0) |φn〉, and U0(t, t0) = e−iH0(t−t0) is the time evolution

operator associated with H0. The basis defined by |φn(t)〉 forms the interaction

picture. Substituting the above expansion in the Schrödinger equation for H and

using the Schrödinger equation for H0 to simplify the obtained expression yields

i
∑

n

ȧn(t) |φn(t)〉 =
∑

n

an(t)V (t) |φn(t)〉 , (4.2)

multiplying both sides by 〈φm(t)| from the right to derive the equation of motion

of an(t)

iȧm(t) =
∑

n

an(t) 〈φm(t)|V (t) |φn(t)〉 , (4.3)

where it can be seen that the evolution of the wave function in the interaction

picture is completely determined by the perturbation. This differential equation

can be written as an integral equation

am(t) = am(t0)− i
∑

n

∫ t

t0

dt′ 〈φm(t′)|V (t′) |φn(t′)〉 an(t′) , (4.4)

where am(t0) are the initial conditions. This integral equation is usually solved

perturbatively in atomic physics [34]. In the next section the first and second

order versions of the perturbation theory are presented.

4.2. Perturbation theory

The integral equation introduced in the previous section, eq. (4.4), can be solved

iteratively by substituting the an(t) under the integral with the entirety of eq. (4.4)
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over and over again, yielding the following series [34]

am(t) = am(t0)

− i
∑

n

∫ t

t0

dt′ 〈φm(t′)|V (t′) |φn(t′)〉 an(t0)

− i
∑

n

∫ t

t0

dt′ 〈φm(t′)|V (t′) |φn(t′)〉×
(
−i
∑

k

∫ t′

t0

dt′′ 〈φn(t′′)|V (t′′) |φk(t′′)〉 ak(t0)

)

+ · · · .

(4.5)

If the series is truncated such that only the first and second terms on the right

hand side are left (as a result of which the right hand side will be linear in V (t)),

the result is called the first order perturbation theory. If the first, second, and

third terms are kept (as a result of which the right hand side will be quadratic in

V (t)), the result is called the second-order perturbation theory. Similarly, higher

order versions are constructed by keeping higher numbers of terms on the right

hand side. For small perturbations the series is expected to converge relatively

quickly. In practice, it turns out there is rarely any need for the 3rd order (or any

higher order) perturbation theory; for higher orders please refer to ref. [114]. This

series can be written in a compact form after introducing some new notations,

am(t) = a(0)
m (t) + a(1)

m (t) + a(2)
m (t) + · · · , (4.6)

where

a(0)
m (t) = am(t0) (4.7)

a(1)
m (t) = −i

∑

n

∫ t

t0

dt′ 〈φm(t′)|V (t′) |φn(t′)〉 a(0)
n (t′) (4.8)

a(2)
m (t) = −i

∑

n

∫ t

t0

dt′ 〈φm(t′)|V (t′) |φn(t′)〉 a(1)
n (t′) , (4.9)

or in general

a(j+1)
m (t) = −i

∑

n

∫ t

t0

dt′ 〈φm(t′)|V (t′) |φn(t′)〉 a(j)
n (t′) , (4.10)

where a
(1)
m (t) is the first order correction (known as the first order perturbation the-

ory), a
(2)
m (t) is the second order correction (known as the second order perturbation
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theory), etc. More often than not, the wave function is initially in the ground state,

i.e. am(t0) = δmg, where g is the index of the ground state. In this case, a
(i)
m (t)

reduce to

a(0)
m (t) = δmg (4.11)

a(1)
m (t) = −i

∫ t

t0

dt′ 〈φm(t′)|V (t′) |φg(t′)〉 (4.12)

a(2)
m (t) = −i

∑

n

∫ t

t0

dt′ 〈φm(t′)|V (t′) |φn(t′)〉 a(1)
n (t′) . (4.13)

The sum in the third line runs over all the states available in the system. Some-

times, however, the dynmics of only a few states is of interest (these states will be

referred to as essential states in the discussion to follow), meaning while the other

states (hereafter referred to as non-essential states) are just as important in the

evolution of the system, an accurate knowledge of their evolution is not desired. In

such a scenario, it is possible to reduce the Hamiltonian to an effective Hamiltonian

which describes the essential states fully, while the non-essential states only enter

through their effect on the essential states. This method is called the method of

essential states [115, 116] and will be discussed in more detail in the next section.

4.3. Method of essential states

The evolution of a system under the influence of a perturbation can be expressed

in terms of the eigenstates of the unperturbed system as described before. But it is

not always desirable (or even feasible) to keep track of the population of every single

state. For this reason, the states are often split into two groups, essential and non-

essential states. The essential states are the ones we are interested in monitoring,

while the non-essential states are only felt through their influence on the essential

states. While V (t) is defined on the entire space swept by |φn〉, the dynamics of a

reduced system consisting only of the essential states is governed by V (t)+V DSE(t),

which is only defined in the space swept by |φj〉 where j only runs over the essential

states. The additional potential V DSE(t) entails the effect of all the non-essential

states on the dynamics of the essential states. This additional potential gives rise

to the dynamic Stark effect (see section 4.4). It is worth emphasising that there is

no rule or precondition as to how to label each state essential or non-essential, see

fig. 4.2. The same state might be labelled differently in different situations.
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Essential States
Non-Essential States

ω ω ω ω ω ω

a) b) c)

Figure 4.2. The classification of the states of a system into two groups of essential

and non-essential states. The way the classification is done depends

on the details of the problem. For instance, assume in the pictures

above the two bands represent two electronic bands. The states are

labelled essential or non-essential, because we are only interested in

the dynamics of a) the first electronic band, b) the second electronic

band, c) one particular state from the first band along with some

other state from the second band.

In the disscusion to follow, |φn〉 are the eigenstates of the unperturbed system,

and En are their corresponding eigenenergies. Subscripts j and k run over the

essential states, and subscripts p and l run over the non-essential states. Subscripts

n and m run over all the states (a convention similar to that of ref. [116] is used

here). According to eq. (4.3) the dynamics of an essential state is given by

iȧk(t) =
∑

j

aj(t) 〈φk(t)|V (t) |φj(t)〉+
∑

p

ap(t) 〈φk(t)|V (t) |φp(t)〉 , (4.14)

where the original sum has been split into two; one over the essential states and

one over the non-essential states. Before we can remove the explicit dependence of

the above expression on the non-essential states, we have to consider the dynamics

of a non-essential state

iȧp(t) =
∑

j

aj(t) 〈φp(t)|V (t) |φj(t)〉+
∑

l

al(t) 〈φp(t)|V (t) |φl(t)〉 , (4.15)

where similarly the original sum has been divided into two over essential and non-

essential states. If no transition occurs between any two non-essential states,3

3. Here we are assuming that all the non-essential states play a secondary role. That is, they

are only here to facilitate the transition of population from one essential state to another. As the

intensity increases, the validity of this assumption will eventually break down.
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the second sum disappears immediately. Furthermore, if none of the non-essential

states are initially populated, the solution of the above expression is given by

ap(t) = −i
∑

j

∫ t

t0

aj(t
′) 〈φp(t′)|V (t′) |φj(t′)〉 dt′ . (4.16)

The procedure of writing the population of a non-essential state purely in terms of

the essential states is called the adiabatic elimination. For further details regarding

this topic please refer to ref. [117]. If V (t) = r · E(t), that is, the interaction in

the length gauge of a dipole with a laser pulse defined by E(t) = E(t) cos(ωt), the

solution of this integral equation is given in the case of a slowly-varying envelope

E(t) by [116] (see appendix E for a discussion of the slowly-varying envelopes)

ap(t) =
1

2

∑

j

aj(t)

(
e−i(ωjp−ω)t

ωjp − ω
+
e−i(ωjp+ω)t

ωjp + ω

)
〈φp| r · E(t) |φj〉 , (4.17)

where ωjp = Ej−Ep. Upon substituting this expression in eq. (4.14), and applying

the rotating wave approximation to remove the fast oscillating terms we get

iȧk(t) =
∑

j

aj(t)e
−iωjktV eff

kj (t) , (4.18)

where the effective potential V eff
kj (t) = Vkj(t) + V DSE

kj (t) consists of two terms, the

dipole interaction

Vkj(t) = 〈φk| r · E(t) |φj〉 , (4.19)

and the dynamic Stark effect

V DSE
kj (t) =

1

4

∑

p

(
1

ωjp − ω
+

1

ωjp + ω

)
〈φk| r · E(t) |φp〉 〈φp| r · E(t) |φj〉 . (4.20)

The diagonal elements of this matrix correspond to the so-called dynamic Stark

shift, whereas the off-diagonal elements describe non-resonant two-photon absorp-

tion/emission. This additional potential is only felt by the essential states as a di-

rect consequence of neglecting the non-essential states. Any failure to include this

term jeopardises the validity of the final results. As a side note, if the non-essential

states had been labelled essential, there would be no need for this additional term,

and a similar expression in the dynamics of the states would have emerged from

the second order perturbation theory.

If the system has continuum as well as discrete states, the sum in eq. (4.20)

should be understood as a sum over the discrete states and an integral over the
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continuum. In this case, the denominator of at least one of the two fractions on

the right hand side vanishes at ωjp = ±ω if Ep = Ej ∓ ω happens to lie in the

continuum. The integral can then be evaluated by resorting to complex analysis,

V DSE
kj (t) =

1

4
p.v.

∑∫
p

(
1

ωjp − ω
+

1

ωjp + ω

)
〈φk| r · E(t) |φp〉 〈φp| r · E(t) |φj〉

− iπ1

4

∫ ∞

0

dEp (δ(ωjp − ω) + δ(ωjp + ω)) 〈φk| r · E(t) |φp〉 〈φp| r · E(t) |φj〉 ,

(4.21)

where p.v. indicates the principle value, and the imaginary part is the residue of

the integral. The real part of this potential induces a shift in the energy of the

essential states, and the imaginary part causes the population of the essential states

as a whole to increase/decrease over time. This expression has been derived before

[34].

4.4. Stark shift of the ground and continuum states

If the ground state is the only state labelled essential in a system, all the other

states affect the dynamics of the ground state through the effective potential. We

will soon see what the effective potential looks like in this case if the ground state

is the only state initially populated.

As explained in the last section, the effective potential has two terms, the dipole

interaction and the dynamic Stark effect. The dipole interaction Vgg(t) is zero in

the case of a Hydrogen atom in a laser field due to the selection rules governing the

transitions (the laser pulse cannot couple the ground state to itself). The dynamic

Stark effect resulting from the coupling of the ground state to all the non-essential

states is given by

V DSE
gg (t) =

1

4
p.v.

∑∫
p

(
1

ωgp − ω
+

1

ωgp + ω

)
|〈φp| r · E(t) |φg〉|2

− iπ1

4

∫ ∞

0

dEp δ(ωgp + ω) |〈φp| r · E(t) |φg〉|2 ,
(4.22)

where the term containing δ(ωgp − ω) is neglected because it is zero throughout

the entire region defined by the limits of the integral. Substituting this expression

in eq. (4.18) yields the equation of motion for the ground state

iȧg(t) =
E2(t)

4ω2
(δlen
g − iγlen

g /2)ag(t) , (4.23)
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where

δlen
g = ω2 p.v.

∑∫
p

(
1

ωgp − ω
+

1

ωgp + ω

)
|〈φp| r · ê |φg〉|2 (4.24)

γlen
g = 2πω2

∫ ∞

0

dEp δ(ωgp + ω) |〈φp| r · ê |φg〉|2 , (4.25)

and the unit vector ê is the direction of the electric field. The superscript “len”

reminds us that these quantities are evaluated in the length gauge (in a later section

we will see how these quantities are related to their counterparts from the velocity

gauge). The solution to this differential equation is

ag(t) = exp

(
−i(δlen

g − iγlen
g /2)

1

4ω2

∫ t

E2(t′) dt′
)
, (4.26)

where it is clearly seen that δlen
g represents a shift in the energy experienced by

the ground state (the so-called dynamic Stark shift), and γlen
g is responsible for the

depletion of the ground state.

Naturally we would expect a similar expression for the evolution of the popula-

tion of the continuum states

aε(t) = exp

(
−i(δlen,vel

ε − iγlen,vel
ε /2)

1

4ω2

∫ t

E2(t′) dt′
)
, (4.27)

where the appropriate expressions for δlen,vel
ε and γlen,vel

ε should in principle result

from a similar analysis for the effective potential affecting a continuum state in the

absence of any other state. However, this procedure proves more tedious in practice

that expected. And therefore we will take a somewhat different route which turns

out to be much easier in the particular case of the continuum states. As part of

this procedure, we will have to go to the velocity gauge.

The high energy continuum states of an atom can be safely approximated by free

electron states, which means in the case of an atom in the presence of an oscillating

electric field, the core potential can be neglected, leaving behind the Hamiltonian

of a free electron in an electric field H = (p+A(t))2/2, where p is the momentum

of the electron, and A(t) = A(t) sin(ωt) is the vector potential representing the

oscillating electric field. The eigenstates of such a Hamiltonian are the so-called

Volkov states [104],

Vε(t) = (2π)−3/2 exp

(
−i
∫

1

2
(p + A(t′))2 dt′

)
, (4.28)
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where ε is the energy of the electron and is related to its momentum by ε = p2/2.

The normalising factor makes sure 〈Vε(t)|Vε′(t)〉 = δ(p − p′). If the envelope of

the laser pulse varies only slowly on a time scale of the order of the period of the

carrier wave, the Volkov solutions can be simplified to

Vε(t) = (2π)−3/2 exp

(
−ip

2

2
t− i 1

4ω2

∫ t

E(t′)2 dt′
)
, (4.29)

where E(t) = ωA(t), and the effect of p · A(t) is averaged out. By going to the

interaction picture, the trivial temporal phase p2t/2 caused by the unperturbed

Hamiltonian can be removed, leaving us with

aε(t) = (2π)−3/2 exp

(
−i 1

4ω2

∫ t

E(t′)2 dt′
)
. (4.30)

In other words, the only term from the Hamiltonian affecting the field-free state is

A2/2. By comparing this expression with eq. (4.27), it is clear that δvel
ε = 1 and

there is no depletion of the continuum states, i.e. γvel
ε = 0. Then, the equation of

motion for this state becomes

iȧε(t) =
E2(t)

4ω2
δvel
ε aε(t) , (4.31)

from which the corresponding dynamic Stark effect potential can be derived

V DSE
εε (t) =

E2(t)

4ω2
δvel
ε . (4.32)

It cannot be stressed enough that the effective potentials derived in this section

are only valid if all the other states are labelled unessential. In a situation where

there are other states labelled essential, the effective potentials have to be modified

accordingly.

It is worth reiterating that the Stark shift of the ground state was evaluated in

the length gauge, while the Stark shift of the continuum was derived in the velocity

gauge. In the next section different gauges will be studied, and it will be shown

how quantities from different gauges can be converted to each other.

4.5. Choice of gauge in atomic physics

The choice of gauge in quantum mechanics should be irrelevant as long as a com-

plete basis is used. That being said, it is almost impossible to use a complete basis
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in a numerical simulation. While one gauge might adequately describe a given

problem using a limited basis, another gauge might completely fail to encompass

any of the necessary details of the dynamics using the same basis [118].

There are mainly two gauges used in atomic physics, the length gauge and the

velocity gauge. The interaction of an electron with an electric field in the length

gauge is introduced by adding r ·E to the field-free Hamiltonian, and the velocity

gauge is obtained by making the substitution p→ p+A in the field-free Hamilto-

nian. The vector potential and consequently the electric field should be generally

understood as time dependent, and it is only for brevity that their time dependence

is not explicitly written here.

If the Hamiltonian in the velocity gauge is written out, H = p2/2 + p · A +

A2/2 + V (r), it is seen that there is a spatially independent additive term A2/2

which introduces a trivial phase factor to all states; this term can be easily included

in the simulation merely by adding a phase to the wave function every time step.

In the case of a continuum state, this phase comprises almost the entire Stark shift

(refer to the last section), whereas the Stark shift of any bound state consists of

two contributions, one resulting from p ·A and one caused by the additive term

A2/2.

This additive term can be easily transformed away by the unitary transformation

T (t) = exp
(
i
2

∫ t
A2(t′) dt′

)
[119], giving rise to a new gauge that we shall refer to

as the reduced gauge. The Hamiltonian in this gauge reads H = p2/2+p ·A+V (r).

If |ψvel(t)〉 and |ψred(t)〉 represent the wave function in the velocity and reduced

gauges respectively, the two are related according to

|ψred(t)〉 = T (t) |ψvel(t)〉 . (4.33)

In the reduced gauge the continuum states do not undergo much Stark shift (since

A2(t)/2 is the only term in the Hamiltonian affecting the field-free states; refer to

the last section), i.e. δred
ε ≈ 0, as a result of which we infer δred

g = δvel
g −1 (remember

that δvel
g = 1). And the only term introducing a Stark shift to the bound states is

p ·A.

By contrast, in the length gauge the entire coupling is encapsulated by the

position-dependent term r · E. If the solution to the Schrödinger equation in the

length and velocity gauges are respectively denoted by |ψlen(t)〉 and |ψvel(t)〉, the
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two are related by [119]

|ψlen(t)〉 = eir·A |ψvel(t)〉 , (4.34)

where eir·A is referred to as the gauge operator hereafter. The Stark shift of any

state in the length gauge is identical to its counterpart from the velocity gauge

as a direct consequence of gauge invariance of the time dependent Schrödinger

equation, that is δlen
g = δvel

g and δlen
ε = δvel

ε . One main difference between the length

and velocity gauges is that the coupling in the length gauge cannot be broken up

similarly to what was done in the velocity gauge. This means, the term as a whole

has to be covered by any convergent simulation; the implications of this fact will

be discussed in section 4.7.

It can be confirmed by direct substitution that the Stark shift of any state

relative to another state (e.g. δg ≡ δlen,vel,red
g − δlel,vel,red

ε ) remains unaltered in all

of the above gauges. This difference will be referred to as the effective Stark shift

in later sections. It is seen that the effective Stark shift between a bound state

and a continuum state in the length and velocity gauges is almost identical to the

Stark shift of the bound state in the reduced gauge due to the fact that δred
ε = 0.

The depletion rate introduced in eq. (4.25) is identical in all of the gauges defined

above (γg ≡ γlen
g = γvel

g = γred
g ).

The three gauges are compared in fig. 4.3 where the energies of the ground state

and a continuum state of a hydrogen atom in the presence of a laser pulse are

shown. Recall that the strength of the Stark shift follows the envelope of the

pulse, see eq. (4.20). The Stark shift in the reduced gauge is made up of two parts,

one of which is transformed away to obtain the reduced gauge.

4.6. Notion of dynamic interference: analytics

To reiterate the upshot of the discussion so far, the ground and continuum states

of an atomic system undergo Stark shift to different degrees in the presence of a

laser pulse. As illustrated in fig. 4.3, the effective Stark shift follows the pulse

envelope. Therefore, if a Gaussian envelope is used, the carrier frequency matches

the energy difference between the ground state and each continuum state once in

the rising half of the envelope and once in the falling half. This very observation

lead Demekhin and Cederbaum in 2012 [9] to propose a double-slit setup in the
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Figure 4.3. The Stark shift experienced by the initial bound and final continuum

states as functions of the ponderomotive energy Ep(t) = E2(t)
4ω2 . The

Stark shift follows the envelope of the Gaussian laser pulse, hence the

bell-shaped curves. a) the reduced gauge, b) the velocity gauge, c)

the length gauge. Note that the effective Stark shift (the difference in

energy between the initial bound and final continuum states) remains

identical in all the gauges above. [120]

time domain by having the electron ionised directly to the continuum by an above-

threshold Gaussian laser pulse. Each continuum state would then be dominantly

populated at two points in time, i.e. when the energy difference between the ground

state and the continuum state matches the laser frequency. Depending on the time

delay between these two points, the two contributions interfere constructively or

destructively, giving rise to a distinct interference pattern in the photo-electron

spectrum. The authors further expanded their idea in refs. [10, 11].

Demekhin and Cederbaum described their findings by a minimal model consist-

ing of two states, the ground state and a continuum state of energy ε,

ag(t) = exp
(
−γlen

g J(t)/2
)

aε(t) = −idε
∫ t

t0

dt′ e−iδ
len
g J(t′)E(t′)e−i(Eg−ε)t

′
ag(t) ,

(4.35)

where dε = 〈φp=√2ε| r · ê |φg〉 and J(t) = 1
4ω2

∫ t
t0
E2(t′) dt′. Here the ground state

decays exponentially as a result of its coupling to the continuum. The effect of

all the states not included in the model is thought to have been injected through

the Stark shift of the ground state δlen
g . Another group seems to have followed the

same idea [12].

In the following we will derive this model starting from first principles using
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the method of essential states followed by the perturbation theory. Every state is

labelled non-essential but the ground state and a p-continuum state of energy ε.

The effect of the non-essential states on the essential states are expressed through

the addition of an effective potential introduced in section 4.3. In this two-level

system (the ground state and the single continuum state), the dynamic Stark effect

potential has only three distinct elements, namely V DSE
gg , V DSE

gε , and V DSE
εε . We shall

evaluate these elements one by one.

The first element V DSE
gg has been evaluated before in eq. (4.22) for the case of the

ground state being the only essential state. But that scenario is different from the

current model in that in eq. (4.22) every single continuum state is included in the

sum over non-essential states, but in the current model there is one continuum state

labelled essential which should not appear in that sum. However, the contribution

of this single continuum state to the total sum is considered negligible, and therefore

eq. (4.22) is used as an approximation to V DSE
gg .

The second element V DSE
gε vanishes due to the selection rules governing a hydrogen-

like atom.

The third element can be evaluated similarly to the first element. The Stark shift

of a continuum state when all other states are labelled non-essential was derived

in section 4.4. But here the ground state is also labelled essential. However, if we

assume the contribution of the ground state to the Stark shift of the continuum

state is negligible, we can use eq. (4.32) as an approximation to V DSE
εε .

The real part of V DSE will be used along with the field-free Hamiltonian to

define the interaction picture. That is, the wave function is given by |ψ(t)〉 =

ag(t) |ϕg(t)〉+ aε(t) |ϕε(t)〉, where the two basis functions are defined by

|ϕg(t)〉 = e−iδ
len
g J(t)e−iEgt |φg〉 (4.36)

|ϕε(t)〉 = e−iδ
len
ε J(t)e−iεt |φε〉 . (4.37)

|φg〉 and |φε〉 are the eigenfunctions of the field-free Hamiltonian. The evolution

of the system in the interaction picture is then dictated by the dipole interaction

between the ground state and continuum as well as the imaginary part of V DSE,

iȧg(t) = −iE
2(t)

4ω2

γlen
g

2
ag(t) + 〈ϕg(t)| r · E(t) |ϕε(t)〉 aε(t) (4.38)

iȧε(t) = 〈ϕε(t)| r · E(t) |ϕg(t)〉 ag(t) . (4.39)
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Figure 4.4. The comparison of the two analytic models, i.e. eq. (4.35) (blue) and

eq. (4.42) (red), for I = 7×1016 W/cm2, τ = 3 fs, and ω = 53.6057 eV.

The wrongly observed dynamic interference vanishes as soon as the

Stark shift of the continuum is taken into account.

These equations are not ready for the perturbation theory just yet. They have

to be further simplified by multiplying the first equation from the left by f(t) ≡
exp

(
γlen
g J(t)/2

)
and subsequently making the substitution ãg(t) ≡ f(t)ag(t). After

a few lines of math we get

i ˙̃ag(t) = 〈ϕg(t)| r · E(t) |ϕε(t)〉 f(t) aε(t) (4.40)

iȧε(t) = 〈ϕε(t)| r · E(t) |ϕg(t)〉 f(t) ãg(t) . (4.41)

The perturbation theory can now be used to approximate the solution of these

two coupled differential equations. The solution up to the first order, eq. (4.12), is

(after substituting for ãg(t))

ag(t) = exp
(
−γ(l)

g J(t)/2
)

aε(t) = −idε
∫ t

t0

dt′ e−i(δ
len
g −δlenε )J(t′)E(t′)e−i(Eg−ε)t

′
ag(t) .

(4.42)

It is clearly seen that Demekhin and Cederbaum arrived at the wrong exponent

inside the integral appearing in the expression for the population of the continuum

state (cf. eqs. (4.35)). This mistake is equivalent to no Stark shift for the continuum

state, which caused their model to overestimate the effective Stark shift (defined

as the difference in energy between the Stark shifted ground state and the Stark

shifted continuum). Had the authors used the reduced gauge introduced in the

previous section (δlen
g → δred

g ), their model would have been accurate (remember

that continuum states don’t undergo substantial Stark shift in the reduced gauge).

In fig. 4.4 two spectra are shown, one predicted by eq. (4.35) and one predicted

by eq. (4.42). Dynamic interference is seen in the former due to the overestimation
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of the effective Stark shift, whereas if the latter expression is used there is no

dynamic interference. It will be explained in section 4.8 why this overestimation

gave rise to erroneous dynamic interference.

The integral governing the population of the continuum states can be approxi-

mated by the stationary phase method, in which the integral is approximated by

an expression containing the value of the integrand at a few points [119]. These

points are where the derivative of the phase of the integrand vanishes. Given that

this integral can be numerically evaluated almost instantly on a normal laptop, the

stationary phase approximation may not seem to be of much practical use. How-

ever, it provides much insight into the mechanism behind the dynamic interference.

It presents the phenomenon of dynamic interference as a temporal equivalent of

the double-slit experiment, where the two temporal slits are the stationary points

of the phase of the integrand. The phase of the integrand in the case of a linearly

polarised laser pulse is given by φ(t) = (δlen
g −δlen

ε )J(t)+ωt+(Eg−ε)t, see eqs. 4.42.

The derivative of this phase can be easily calculated,

dφ(t)

dt
= (δlen

g − δlen
ε )

1

4ω2
E2(t) + ω + (Eg − ε)

= (δlen
g − δlen

ε )
E2

0

4ω2
exp(−2t2/τ 2) + ω + (Eg − ε) ,

(4.43)

where it is assumed the pulse has a Gaussian envelope E(t) = E0 exp(−t2/τ 2).

The laser pulse has a second term (resulting from the first term in cos(ωt) =

(eiωt + e−iωt)/2) which is ignored here because the phase of the integrand with

that term never vanishes; that term corresponds to losing a photon in going from

the ground state to the continuum. For any given continuum state, the derivative

vanishes at most at two points given by

t± = ±τ
√
−1

2
ln
ε− Eg − ω

δgEp
, (4.44)

where δg = δlen
g − δlen

ε ≈ δred
g is the effective Stark shift and Ep =

E20
4ω2 is the

ponderomotive energy. Depending on how far apart these two points are, their

contributions to the photo-electron spectrum either add up or cancel out. This

distance is a function of the energy of the continuum state, hence an interference

pattern along the energy axis in the spectrum.
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Figure 4.5. Photo-electron spectra of the hydrogen atom targeted by a Gaus-

sian pulse of width τ = 3 fs, and carrier frequency ω = 53.6057 eV

calculated in ref. [10]. It turns out these spectra are the results of

unconverged numerical simulations. See fig. 4.7 for the converged

results.

4.7. Notion of dynamic interference: numerics

The numerical simulations done in refs. [9, 10] seem to confirm Demekhin and

Cederbaum’s conjecture by showing an interference pattern in the photo-electron

spectrum, see fig. 4.5. The simulations were carried out in the length gauge. The

continuum part of the basis only consisted of the p-continuum, which might seem

to be large enough for the current scenario.4 After all, the electron residing in the

ground state is expected to end up in a p-state after absorbing a photon.

4. No numerical basis is ever complete, as a complete basis would usually contain an infinite

number of basis functions. Therefore, the complete basis is usually reduced to the smallest number

of basis functions required to describe the dynamics of the system correctly. This reduction is

not always trivial and great care is needed not to misjudge the importance of the neglected basis

functions.
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This picture is only true for low intensities of the laser pulse. As the intensity

increases, the two-photon process of dynamic Stark effect becomes so important

that it can no longer be neglected. This means, the Stark shift of any state involved

in the simulation has to be explicitly addressed. Even though it is possible in the

analytics to split the states into two groups of essential and non-essential states,

such a decomposition is not possible in the numerics. And there should be enough

states included in the simulation to account for the Stark shift of the states labelled

essential in the analytics. Demekhin and Cederbaum briefly discuss this issue by

monitoring the effect of the included bound states on the final spectrum [10]. The

discrete part of their basis is gradually expanded from only containing the 1s-state

to containing ns-states with n ≤ 6, mp-states with m ≤ 100, and kd-states with

k ≤ 6. Even though the authors never go beyond the d-states arguing that their

effect is very small, they manage to successfully account for the Stark shift of the

ground state. Remember that in the length gauge both the bound and continuum

states experience Stark shift. But unfortunately, the authors fail to provide a

similar analysis for the Stark shift of the continuum states.

For this reason, we are showing the influence of an increasing set of continuum

states on the final spectrum in fig 4.6, where it can be seen that the observed

dynamic interference is a direct result of non-converged simulation, and depending

on the gauge used in the numerics, the number of partial waves necessary for

convergence varies (see appendix F). These partial waves are in fact needed for an

accurate description of the Stark shift of the continuum during the laser pulse, and

any failure to include these states in the simulation makes the implicit assumption

of no/wrong Stark shift for the continuum. It seems that more partial waves are

needed in the length gauge (there will be more on this soon).

Evidently, the effect of the mistake in the numerical simulation has exactly

matched the effect of the mistake in the analytic model, i.e. they both fail to

describe the Stark shift of the continuum properly, hence the agreement between

them. It does not happen very often that a faulty numerical simulation is corrobo-

rated by a faulty analytic model. And in this case, this false agreement apparently

assured the authors of the validity of their findings. The converged versions of

the spectra shown in fig. 4.5 can be seen in fig. 4.7, where the simulations are

done in the velocity gauge with lmax = 10 (see appendix F). Obviously they look

completely different from their non-converged counterparts. The prediction of the

correct analytical model introduced in the previous section is depicted with the
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Figure 4.6. The photo-electron spectra in the velocity and length gauges for

τ = 3 fs, I = 5 × 1016 W/cm2, and ω = 53.6 eV. lmax is the max-

imum angular momentum considered in the partial wave expansion,

see appendix F. [120]

dash-dotted lines for two intensities.

In order to see why more partial waves are needed in the length gauge than in the

velocity gauge, we have to go back to the gauge operator introduced in eq. (4.34).

In the case of a linearly polarised electric field, i.e. A = Aẑ, the gauge operator

has a simple expansion,

eiAz =
∞∑

l=0

il
√

4π(2l + 1)jl(Ar)Yl(θ) , (4.45)

where jl(x) are the spherical Bessel function of the first kind, and Yl(θ) is a short-

hand for the spherical harmonic Yl,m=0(θ, φ); the dependence on the azimuthal

angle φ drops automatically as a direct cnosequence of the polarisation of the elec-

tric field along the z-axis. Because of this symmetry, the wave function is usually

expanded in numerical packages [91, 121] in terms of spherical harmonics,

ψvel(r, t) =
1

r

lvelmax∑

l=0

uvel
l (r, t)Yl(θ) , (4.46)

where uvel
l (r, t) encompass the radial dependence of the wave function. lvel

max is the

number of partial waves needed for convergence in the velocity gauge. Even though

this upper bound should be in principle infinity, in reality its value is dictated by

the available computational resources and desired accuracy.
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Figure 4.7. Photo-electron spectra from 1s hydrogen exposed to a pulse of τ =

10 fs, ω = 53.6 eV, and Ik = 10k/4× 1015 W/cm2 with k = 0, 1, . . . , 8.

The dashed line marks the energy Eω = E1s + ω = 40 eV. The result

of the minimal model (eq. (4.42)) is shown for two intensities by dot-

dashed lines. [120]

The basis used for numerical simulation usually consists of the eigenfunctions of a

field-free atom. The continuum states of such a system rapidly converge to the wave

function of a free particle as the energy increases. For this reason, continuum states

are approximated by free particle states here. The wave function of a free particle

of linear momentum p, angular momentum l, and magnetic quantum number m is

given in spherical coordinates by [34]

φplm(r, θ, φ) =

√
2

π
jl(pr)Ylm(θ, φ) , (4.47)

where jl(x) are again the spherical Bessel function of the first kind. When the

electric field is polarised along the z-axis, only m = 0 states will be involved, and

therefore there is no need to consider states with m 6= 0 in our analysis,

φpl(r, θ) =

√
2

π
jl(pr)Yl(θ) , (4.48)

where the dependence on the azimuthal angle φ has vanished automatically for

m = 0.

Now, assuming the wave function in the velocity gauge is given by eq. (4.46), it



122 4.7. Notion of dynamic interference: numerics

is desirable to investigate what the largest angular momentum llen
max of a similar ex-

pansion of the wave function in the length gauge would have to be in order to have a

similar accuracy to the velocity gauge. Consider the component along the largest

angular momentum required in the velocity gauge, that is uvel
lvelmax

(r, t)Ylvelmax
(θ)/r.

This component is transformed to the length gauge by using the gauge opera-

tor eiAzuvel
lvelmax

(r, t)Ylvelmax
(θ)/r. The projection of this term on the continuum basis

functions determines what basis functions are occupied in the length gauge,

〈φpllen|ψlen〉 =

∫
φpllen(r, θ)eiAzuvel

lvelmax
(r, t)Ylvelmax

(θ) rdrdΩ , (4.49)

which can be evaluated using the expressions for the wave function of a free particle

and the gauge operator to yield

〈φpllen|ψlen〉 =

√
2

π

∞∑

l′

il
′√

4π(2l′ + 1)×
∫
dΩYllen(θ)Yl′(θ)Ylvelmax

(θ)

∫ ∞

0

dr rjllen(pr)jl′(Ar)u
vel
lvelmax

(r) . (4.50)

Let’s assume that uvel
lvelmax

(r) ≈ 0 for r & R, which is a realistic assumption as the

duration of the simulation is finite and the wave function can only travel so far

within this time. The value of R should be of the order of the distance that the most

energetic part of the wave function travels during the life of the simulation. This

assumption allows us to change the upper limit of the corresponding integral from

∞ to R. To find the upper limit of llen (denoted by llen
max) required for convergence,

we will have to look at the two integrals separately. The angular integral can be

expanded in terms of the Clebsch-Gordon coefficients and can only be non-zero

if the triangle inequality is satisfied, i.e. llen ≤ l′ + lvel
max. The second integral is

slightly trickier. Bearing in mind that the spherical Bessel function jn(ρ) becomes

negligible for ρ . n,5 it is inferred that two conditions have to be simultaneously

satisfied for the integral to be non-zero,

llen . pR (4.51)

l′ . AR . (4.52)

5. Starting from jn(ρ) =
√

π
2ρJn+ 1

2
(ρ), and |Jν | ≤ 1

Γ(ν+1)

(
ρ
2

)ν
, we get jn(ρ) ≤ 1

(n+1)!

(
ρ
2

)n
.

We can now estimate the value of ρ for which jn(ρ) < ε where ε can be arbitrarily small, by

solving n ln
(
ρ
2

)
< ln ε + (n + 1) ln(n + 1). If we assume n is large enough, this relation can be

simplified to ρ . n.
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We can use the triangle inequality introduced earlier to rewrite the second line

yielding

llen . pR (4.53)

llen . AR + lvel
max . (4.54)

The first inequality reveals that partial waves of higher angular momentum have

to be included in the length gauge if the photo-electron spectrum is required to

be accurate for higher energies. This has been numerically observed by Cormier

and Lambropoulos before [122]. The second inequality shows that around AR

more angular momenta are needed in the length gauge, i.e. llen
max = lvel

max + AR,

if lvel
max angular momenta are enough in the velocity gauge. This inequality has

been derived before based on a classical mechanical analysis by Muller [123]. His

analysis hinges upon the fact that the canonical momentum of a free electron in

the velocity gauge is a constant of motion in the absence of any scalar potential

or position-dependent vector potential. The difference between the two gauges has

also been discussed in the context of high-order harmonic generation [124].

To sum, it seems in the regimes where the second order perturbation theory

suffices, the velocity gauge is always a better option for numerical simulation.

4.8. Necessary conditions for dynamic interference

Following the discussion at the end of section 4.6, it is clear that in order for

dynamic interference to happen, there should be two points during the course of

the laser pulse at which the electron is ionised into the continuum. These two

points are given by eq. (4.44). Obviously, the two points should be real-valued,

and they are only real-valued if ε − Eg − ω < δgEp. Note that the left hand side

of this inequality is of the order of the spectral width of the pulse, which can

be approximated by ∼ 1/τ (remember that the envelope is given by exp(−t2/τ 2)

where τ determines the temporal width of the pulse). Therefore, the following

condition has to be satisfied as a prerequisite for dynamic interference,

Epτ &
1

δg
. (4.55)

This inequality can be interpreted in a different way. The effective Stark shift is

of the order of Epδg and should be larger than the bandwidth of the pulse ∼ 1/τ

in order to be energetically resolvable.
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The second quantity affecting the spectrum is the depletion rate of the ground

state. The depletion rate shouldn’t be too high or the initial state will be com-

pletely depopulated in the first half of the laser pulse paralysing the second slit

of the temporal double-slit setup. If the laser pulse is centred at tmid = 0,

the amplitude of the ground state at the end of the first half of the pulse is

ag(0) = exp (−γgJ(0)/2) where J(0) = 1
4ω2

∫ t=0

−∞ E2(t′) dt′ for a Gaussian pulse of

envelope E(t) = E0 exp(−t2/τ 2). Around half of the initial population of the initial

state should reach the second half of the pulse, that is |ag(0)|2 & 1/2, leading to

the following inequality

Epτ .
1

γg
, (4.56)

where Ep =
E20
4ω2 is the ponderomotive energy.

These two inequalities have to be simultaneously satisfied before any dynamic

interference can happen, requiring δg > γg. Let’s have a look at the values these

two quantities take in the case of atomic hydrogen for a wide range of frequencies,

see fig. 4.8. They are evaluated numerically in the reduced gauge using eqs. (4.24)

and (4.25). The frequency used by Demekhin and Cederbaum is marked by an

arrow in the figure. Not surprisingly, the condition is not satisfied, hence the lack

of dynamic interference. However, because they failed to account for the Stark shift

of the continuum, the value of the effective Stark shift that entered their model was

the value marked here plus one, which clearly satisfies the requirement for dynamic

interference, hence their observation of dynamic interference.

It is obvious in the plot that at much higher frequencies the two inequalities can

be simultaneously satisfied, and it is expected that dynamic interference will occur

for a proper choice of laser parameters.

The framework discussed so far is not the only way to accommodate interference

in the photo-electron spectrum. There are other somewhat different scenarios

where such interference can happen more easily. Some of them are discussed in the

next section.
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Figure 4.8. The effective stark shift δg(ω) and the depletion rate γg(ω) for the

hydrogen 1s-state [120]. See eqs. (4.24) and (4.25) for the expressions

for these quentities in the length gauge. Their asymptotic behaviours

are given for ω → ∞ [125]. The green arrows shows the frequency

ω = 53.6 eV used in fig. 4.7 and in some previous publications [9, 10].

4.9. Other scenarios for interference in the

photo-electron spectrum

There are several other schemes, beside the scheme discussed so far, which lead

to an interference pattern in the energy domain. These schemes all share the

same underlying mechanism, that is, the electron wave function is ionised into the

continuum at two different times. The two ionised parts then interfere leaving

behind a unique structure in the photo-electron spectrum.

4.9.1. Double pulse

The first scenario is the trivial case of a double pulse, where two consecutive pulses

delayed by ∆t interact with the atom. The frequency of the laser should be high

enough to excite the electron directly into the continuum, which is ω > 13.6 eV

for atomic hydrogen. The wave packet ionised by the first pulse interferes with the
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wave packet ionised by the second pulse giving rise to an interference pattern in

the spectrum. If the temporal width of each of the two pulses is ∼ T , the spectral

width of the double pulse is ∼ 1/T .

Let ϕ1(ε) represent the phase of the ionised part of the wave function by the first

pulse at the end of the first pulse where ε is the energy of the continuum state,

and let ϕ2(ε) be the phase of the ionised part of the wave function by the second

pulse at the end of the second pulse. Assuming there is no significant Stark shift in

the ground state or the continuum (in contrast to the main scheme of this chapter,

the current setup does not need high intensities), we have ϕ2(ε) = ϕ1(ε) − E0 ∆t

where the second term is the phase picked up by the ground state population (of

energy E0) during the time delay between the two pulses. Furthermore, ϕ1(ε) will

evolve to ϕ1(ε)− ε∆t by the end of the second pulse.

Now the two contributions may interfere constructively or destructively depend-

ing on the relative phase of the two contributions. This relative phase is energy

dependent,

∆ϕ(ε) = (ϕ1(ε)− E0 ∆t)− (ϕ1(ε)− ε∆t) = ε∆t− E0 ∆t . (4.57)

The difference in relative phase at the two ends of the spectrum dictates the number

of fringes visible in the spectrum. Given the spectral width is ∼ 1/T , this difference

is ∼ ∆t/T . Therefore, the number of fringes is ∼ ∆t/(2πT ).

In the upper plot of fig. 4.9 a double pulse is shown where the envelope is given

by E(t) = 2(t/τ) exp(−t2/τ 2). The intensity of the laser pulse is 1012 W/cm2, at

a frequency of 54.44 eV. The pulse width is τ = 0.6 fs. For general details of the

simulation please refer to appendix F. The two peaks of the envelope are located

at t± = ±τ/
√

2. The time delay between the two peaks is therefore ∆t =
√

2τ .

The width of each pulse is T = τ/
√

2. Thus, the number of fringes should be of

the order of 1/π, see the spectrum in the lower plot of fig. 4.9. The fact that this

number is independent of the value of τ is a direct consequence of the particular

choice of envelope. For other types of envelopes this independence may or may not

follow. The careful reader might have noticed that because of the low intensity

of the laser pulse used here, the corresponding photo-electron spectrum can be

obtained simply by taking the Fourier transform of the laser pulse.
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Figure 4.9. Upper plot: a double pulse used to induce a double-slit scenario in

time. The further apart the two pulses are, the more fringes ap-

pear in the corresponding photo-electron spectrum. Lower plot: the

corresponding photo-electron spectrum. The trough resulting from

destructive interference is visible in the middle of the spectrum.

4.9.2. Stabilisation

In the previous example the ionisation mostly occurred around the two peaks of the

double pulse, with no significant ionisation in between merely due to the absence

of the electric field. If the aim is to reduce ionisation, suppressing the electric field

is not the only option. It turns out if the intensity of the laser field exceeds a

certain limit the ionisation rate plummets, a phenomenon known as the atomic

stabilisation effect. It is not the purpose of this subsection to discuss this effect at

length, and the interested reader is referred to ref. [93] for reviews of the topic. We

will only see the atomic stabilisation as a tool to curb the ionisation rate.

If the peak intensity of the laser pulse (∝ E2
0 ) lies in the stabilisation regime,

the pulse can be split into three parts. The rising part in which the instantaneous
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Figure 4.10. Upper plot: a Gaussian pulse. The intensity of this pulse is high

enough to push the atom well into the stabilisation regime, as a

result of which the ionisation rate plummets. Lower plot: the photo-

electron spectrum after a hydrogen atom is targeted by such a pulse.

The interference fringes are clearly visible.

intensity is lower than the threshold, the middle part in which the instantaneous in-

tensity is higher than the threshold, and the falling part in which the instantaneous

intensity is again lower than the stabilisation threshold. Not much ionisation oc-

curs during the middle part, and this leaves the rising and falling parts effectively

separated, each of which independently ionises the electron into the continuum.

Similarly to the last subsection, the ionisation resulting from these two indepen-

dent parts then interfere in the energy domain giving rise to a set of troughs and

valleys in the spectrum.

In the upper plot of fig. 4.10 a pulse of Gaussian envelope E(t) = exp(−t2/τ 2)

is shown. The intensity of the laser pulse is I = 1019 W/cm2, the frequency is

ω = 54.44 eV, and the width is τ = 0.6 fs. These values guarantee that the

stabilisation against ionisation will indeed happen. Such a regime can be reached

using free electron lasers [94, 95]. For general details of the simulation please refer
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to appendix F. The intensity of the pulse is high enough for the instantaneous field

strength around the peak of the pulse to exceed the stabilisation threshold, as a

result of which the ionisation rate plunges. The electron is only ionised during the

first part before the atomic stabilisation starts to take effect, and during the third

part at the end of the pulse after the atomic stabilisation is over. Effectively, this

is again equivalent to a double-slit setup in the time domain, hence interference in

the photo-electron spectrum, see the lower plot of fig. 4.10. The number of fringes

in the spectrum is determined by the duration of each part and the time delay

between the two parts (see the discussion in the previous section).

4.9.3. Chirped pulse

In section 4.8 the criteria required for dynamic interference were discussed and

it was seen that dynamic interference happens only if the effective Stark shift is

stronger than the depopulation of the ground state. These two quantities are the

properties of the system, and cannot be arbitrarily changed by modifying the laser

parameters. However, there might just be another way to compensate for the

smallness of the effective Stark shift. To see matters more clearly, let’s go back

to the final equation governing the population of the continuum states given in

eqs. (4.42),

aε(t) = −idε
∫ t

t0

dt′ e−iδgJ(t′)E(t′)e−i(Eg−ε)t
′
ag(t) , (4.58)

where δg = δlen,vec
g −δlen,vec

ε is the effective Stark shift. As appeared in the discussion

towards the end of section 4.6, there need to be two stationary points in the phase

of the integrand of the above expression if dynamic interference is to happen. One

way to guarantee the existence of two real-valued stationery points is to have a

large enough effective Stark shift as discussed in section 4.8. But in the event that

the Stark shift is not strong enough, it may or may not be possible to alter the

Stark shift merely by changing the carrier frequency. Taking a look at fig. 4.8 once

again, it is apparent that if the frequency of the available laser should lie in the

XUV regime, dynamic interference cannot happen.

There is, however, a second way to guarantee the existence of two real-valued

stationary points. If the laser pulse is modulated with an exponential chirp, i.e.

the instantaneous frequency is given by ω(t) = ω0 +α exp(−2t2/τ 2), the derivative
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Figure 4.11. The photo-electron spectrum for hydrogen in the 1s-state after being

targeted by a chirped laser pulse. The chirp strength is determined

by α = 0.3 a.u.

of the phase of the corresponding integrand is given by

dφ(t)

dt
= δgEp exp(−2t2/τ 2) + ω0 + α exp(−2t2/τ 2) + (Eg − ε) , (4.59)

where it can be seen that the role played before by δg is now played by δg + α/Ep,

suggesting that by increasing the strength of the introduced chirp it is possible to

satisfy eq. (4.55) (with δg replaced by δg + α/Ep) and as a result achieve dynamic

interference. The exponential chirp can be approximated by a parabola,

ω(t) = ω0 + α exp(−2t2/τ 2) ≈ ω0 + α− 2α
t2

τ 2
. (4.60)

The photo-electron spectrum from a parabolicly chirped pulse with α = 0.3 a.u.

is shown in fig. 4.11. The intensity of the pulse is 5.8× 1016 W/cm2, the frequency

is 53.6 eV, and the width is τ = 3 fs. The chosen frequency and width match

those used by Demekhin and Cederbaum [9, 10], and it is seen here that merely

by introducing a chirp on the pulse, it is possible to recover dynamic interference.

Notice that high intensities are by no means necessary in this case. At low in-

tensities, however, the photo-electron spectrum is obtained simply by taking the

Fourier transform of the pulse.

4.9.4. Ionisation from an excited state

So far we have always dealt with the hydrogen atom in its ground state. But a

very interesting instance of dynamic interference happens if the atom is initially
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excited. To be more clear, let’s compare the Stark shift of the ground state of the

hydrogen atom with that of the 2p-state. When the electron is ionised from the

ground state, the frequency needed to excite the electron directly to the continuum

is ω > 0.5 a.u. At such frequencies the first fraction appearing in the expression for

the Stark shift of the ground state, see eq. (4.24), can be safely neglected as all the

non-essential states have higher energies than the ground state, as a consequence

of which the Stark shift of the ground state is always positive.

This should be contrasted to the case of ionising the electron from an excited

state, for example the 2p-state. The Stark shift of such a state is given by a similar

expression to eq. (4.24) with index e (short for excited) replacing g,

δ(l)
e = ω2 p.v.

∑∫
p

(
1

ωep − ω
+

1

ωep + ω

)
|〈φp| r · ê |φe〉|2 , (4.61)

where index p runs over all the non-essential states. In this case the required fre-

quency condition to ionise the electron directly into the continuum is ω > 0.125 a.u.

At such frequencies none of the two fractions appearing in the expression above

can be generally neglected. The first fraction is dominant if 1. |φp〉 = |φg〉, and 2.

the frequency is close to the 1s-2p resonance, otherwise the second fraction is domi-

nant. Since the first fraction has a singularity at the 1s-2p transition frequency, it is

possible to arbitrarily increase the Stark shift by going near resonance, see fig. 4.12.

Depending on what side of the resonance line the frequency lies, the Stark shift

can be positive or negative. In the figure, a particular frequency is marked showing

when the Stark shift of the 2p-state vanishes in the length gauge. Even though

there is nothing fundamentally different about this particular frequency compared

to the frequencies surrounding it, it makes the phenomenon of dynamic interference

conceptually easier to grasp in the length gauge. If this frequency is used as the

laser frequency, the initial state remains untouched in the length gauge throughout

the pulse, whereas the continuum state experiences Stark shift, see fig. 4.13.

In fig. 4.14 the photo-electron spectrum resulting from such a frequency is shown

for increasing laser intensities. The first thing to notice here is that since the

electron is initially in a p-state, in the presence of a linearly polarised laser it can

be ionised into both the s- and d- continua. The main peak is seen to become

red shifted due to the fact that effective Stark shift is negative here. If the laser

frequency was chosen below resonance, the main peak in the spectrum would move

to higher energies for increasing laser intensities.

The numerical predictions of this subsection can be matched with those of a
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Figure 4.12. The dimensionless Stark shift for the 2p state of the hydrogen atom

in the length, velocity, and reduced gauges. The Stark shift in the

reduced gauge is δred = δvel − 1, and δvel = δlen. The green arrows

show the frequency at which δred = 0; this frequency is used in

fig. 4.14. [120]

minimal two-level model similar to what was introduced earlier in the chapter,

except that the ground state should be replaced by the 2p-state, that is

ae(t) = exp
(
−γlen

e J(t)/2
)

aε(t) = −idε
∫ t

t0

dt′ e−i(δ
len
e −δlenε )J(t′)E(t′)e−i(Ee−ε)t

′
ae(t) ,

(4.62)

where dε = 〈φp=√2ε| r · ê |φe〉. The prediction of this model is shown by the dash-

dotted lines in fig. 4.7.

Similarly, dynamic interference can be observed if the electron is ionised from a

Rydberg state directly into the continuum. For instance, if the electron is initially

in the 25p state, the pulse shown in the upper plot of fig. 4.15 results in the spectrum

shown in the lower plot. The peak intensity of the laser is I = 3.5× 1014 W/cm2,

the frequency is ω = 2.72 eV, and the width is τ = 4.36 fs. An accurate description

of the spectrum using a minimalist analytical model should in principle be possible,

if the corresponding Stark shift and the depletion are known.
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Figure 4.13. A similar sketch to fig. 4.3 except here the initial bound state is the

2p state, and the frequency is ω = 12 eV. At this frequency the Stark

shift of the initial state vanishes in the length gauge, see fig. 4.12.

a) reduced gauge, b) velocity gauge, c) length gauge. [120]
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Figure 4.14. Photo-electron spectra for hydrogen in the 2p-state, after being irra-

diated with a 10 fs pulse of carrier frequency ω = 12 eV. Ionisation

into the a) s-channel, and b) d-channel is shown. The intensities from

bottom to top are Ik = 10k/8×1014 W/cm2 with k = 0, 1, . . . , 8. The

dashed line shows the energy Eω = E2p + ω = 8.59875 eV. The dot-

ted line is a fit to energies Eω,k = E2p + ω − Ep(Ik). The s-channel

is scaled by f = dε,s/dε,d ≈ 6.137 so that the two channels have the

same height in the perturbative regime (the lowest intensity shown

here). The result of the analytic model (eq. 4.62) is shown for two

intensities by the dot-dashed lines. [120]
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Figure 4.15. Upper plot: a Gaussian pulse of relatively low frequency used to

excite the electron from a Rydberg state directly into the continuum.

Rydberg states usually undergo stronger Stark shift compared to

highly bound states, as a result of which a lower intensity suffices to

observe dynamic interference. Lower plot: the corresponding photo-

electron spectrum obtained by targeting a hydrogen atom in its 25p-

state.

4.9.5. Resonance frequency

The last scenario that we will cover here is an attempt to make the last subsection

experimentally more appealing (remember that hydrogen had to be initially in

its 2p-state). There is no denying that it is experimentally easier to prepare the

hydrogen atom in its ground state than in any excited state. Therefore, we modify

a setup originally put forward by Demekhin and Cederbaum [126]. The electron is

initially in the ground state, but the laser frequency is tuned near resonance with

the 1s-2p transition frequency, as a consequence of which the energy of a single

photon is not enough to ionise the electron directly into the continuum.

In fig. 4.16 the d-channel of the photo-electron spectrum of a hydrogen atom
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Figure 4.16. The d-channel of the photo-electron spectrum of a ground state

hydrogen atom targeted by a Gaussian laser pulse tuned on reso-

nance with the 1s-2p transition frequency. The interference pattern

is clearly visible.

targeted by a laser pulse of a Gaussian envelope E(t) = E0 exp(−t2/τ 2) with τ = 3 fs

is shown. We will only consider the d-chnnel in what follows, but the analysis can

be easily extended to the s-channel by inserting the proper parameter values. The

intesity of the laser pulse is too low for the Stark shift to play any role. One point

worth mentioning here is that contrary to the original paper [126], there is an

obvious asymmetry in the spectrum about the energy E1 + 2ω (this is the energy

of the ground state plus twice the photon energy). The asymmetry will be soon

described using a simple analytic model, which is an extension of the model used by

the authors of the aforementioned publication (they modelled the hydrogen atom

using a three-level system consisting of the 1s, 2p, and εd states). It will be seen

that they observed the symmetric structure only because of their oversimplification

of the problem.

In the analysis to follow, the electron is assumed to be initially in the ground

state. Given that the laser is on resonance with the 1s-2p transition frequency,

and that the intensity is relatively low, we can safely assume the population stays

mostly in the 1s- and 2p-states, which means a Rabi oscillation is expected between

the two,

a1(t) = cos

(
1

2
d12ζ(t)

)

a2(t) = −i sin

(
1

2
d12ζ(t)

)
,

(4.63)
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where d12 is the dipole matrix element coupling the 1s- and 2p-states, and

ζ(t) ≡
∫ t

−∞
E(t′) dt′ . (4.64)

The d-continuum states couple to the ground state through all the p-states (cf.

eq. (4.21)). This is exactly what the authors of ref. [126] overlooked. If the ground

state is only allowed to couple to the d-continuum through the 2p-state, a sym-

metric photo-electron spectrum follows. However, as soon as other p-states are

included, this symmetry breaks down. For this very reason, we will include the

p-continuum state at energy E1 + 2ω + δ in the model, where δ is a parameter

determining the distance in energy from E1 + 2ω. Therefore, there are four levels,

i.e. 1s, 2p, εp, and εd states.

If the laser pulse is given by E(t) = E(t) sin(ωt), after incorporating the rotat-

ing wave approximation, the interaction term in the interaction picture reads (a

detailed derivation of this term can be found in appendix G)

− i
2
E(t)




0 d12 0 0

−d12 0 0 0

0 −d23e
iδt 0 d34 (eiωt − e−iωt)

−d14e
iδteiωt 0 d34 (eiωt − e−iωt) 0


 , (4.65)

where d23 is the coupling between the 2p- and εd-states, d14 is the coupling be-

tween the 1s- and εp-states, and d34 is the coupling between the εd- and εp-states.

The upper right corner of the matrix is filled with zeros because it is assumed

most of the population is shared between the 1s- and 2p-states, and therefore

any contribution to these two states coming from the continuum is negligible. It

turns out the corresponding Schrödinger equation in the interaction picture can be

analytically solved. The derivation, even though straightforward, is tedious, and

therefore we only give the final solution here (for a detailed derivation please refer

to appendix G). The final population of the εd-state is

a3(∞) =
1

2
d14

∫ ∞

−∞
a1(t′)E(t′)e(δ+ω)t′ sin(d34φ(t′)) dt′

+
1

2
d23

∫ ∞

−∞
a2(t′)E(t′)eiδt

′
cos(d34φ(t′)) dt′

(4.66)

where φ(t) =
∫ t
−∞E(t′) dt′. Since limt→∞ E(t) = 0 for a Gaussian envelope, we can
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use the following approximation 6

φ(t) ≈ E(t)

ω
sin(ωt) . (4.69)

Now using Jacobi-Anger expansion7 we have

sin(d34φ(t)) ≈ 2J1(d34
E(t)

ω
) cos(ωt) (4.73)

cos(d34φ(t)) ≈ J0(d34
E(t)

ω
) . (4.74)

Upon inserting these expressions in eq. (4.66) and neglecting the term with e2iωt

we get

a3(∞) ≈ 1

2
d14

∫ ∞

−∞
a1(t′)J1(d34

E(t′)

ω
)E(t′)eiδt

′
dt′

+
1

2
d∗23

∫ ∞

−∞
a2(t′)J0(d34

E(t′)

ω
)E(t′)eiδt

′
dt′ ,

(4.75)

where Jn(x) is the Bessel function of the first kind. Substituting for a1(t′) and

a2(t′) gives

a3(∞) ≈ 1

4
d14

∫ ∞

−∞

(
e
i
2
d12ζ(t′)+iδt′ + e−

i
2
d12ζ(t′)+iδt′

)
J1(d34

E(t′)

ω
)E(t′) dt′

− i

4
d∗23

∫ ∞

−∞

(
e
i
2
d12ζ(t′)+iδt′ − e− i

2
d12ζ(t′)+iδt′

)
J0(d34

E(t′)

ω
)E(t′) dt′ .

(4.76)

6. Let B(t) = g(t) sin(ωt) where g(t) is a slowly-varying function. The temporal derivative of

B(t) is then given by
dB(t)

dt
= ġ(t) sin(ωt) + ωg(t) cos(ωt) , (4.67)

where the term containing ġ(t) is negligible, therefore

dB(t)

dt
≈ ωg(t) cos(ωt) . (4.68)

7. The Jacobi-Anger expansion is given by [119]

exp(iα sin(x)) =
∞∑

n=−∞
Jn(α) exp(inx) , (4.70)

from which we can derive the following expansions

cos(α cos(ωt)) = J0(α) + 2
∑

n=2,4,...

Jn(α) cos
(
n(ωt+

π

2
)
)

(4.71)

sin(α cos(ωt)) = 2
∑

n=1,3,...

Jn(α) sin
(
n(ωt+

π

2
)
)

(4.72)

and for α� 1 we may only keep the first terms.
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Based on the stationary phase approximation, the value of the integrals can be

evaluated using the stationary points of the phase of the integrand. These points

are the solutions to the following two equations

1

2
d12ζ(t) + δt = 0

−1

2
d12ζ(t) + δt = 0 .

(4.77)

If we assume that the solutions of the first and second equations are t1 and t2

respectively for δ > 0, then their solutions swap for δ < 0, i.e. t2 will be the

solution to the second equation and t1 will be the solution to the first equation.

Consequently, the value of the first integral remains untouched by δ → −δ, whereas

the sign of the second integral changes (note that there is a minus sign between the

two terms inside the brackets in the second integral). Therefore, the final result

depends on the sign of δ. In other words, a3(∞) is asymmetric about δ = 0.

Interestingly, if the p-continuum state is excluded from the model (i.e. d14 = 0),

the asymmetry vanishes, as observed in ref. [126].

4.10. Conclusion

The temporal equivalent of the double-slit experiment was discussed at length in

this chapter. And it was seen how this simple phenomenon is encountered again

and again in different situations. Dynamic interference can be adequately described

by a simple model which can be derived from first principles using the method of

essential states followed by the perturbation theory. The method of essential states

replaces the full Hamiltonian with an effective Hamiltonian defined in a limited

subspace of the original Hilbert space.

The effect of the neglected states is introduced through an extra term in the

effective Hamiltonian. This extra term gives rise to what is referred to as the

dynamic Stark effect in the literature. There are different methods to evaluate

the Stark shift of different states in a system. We evaluated the Stark shift of the

ground state of hydrogen using a few lines of straightforward math, whereas for

the continuum we simply read the Stark shift off the Volkov solutions.

It was further shown how different gauges result in different degrees of Stark

shift for different states, despite the fact that the end result should be identical.
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This observation makes it very crucial to choose a gauge at the beginning of any

task and not change it until the task is done. The difference among the gauges is

even more noticeable in the numerics, where only a limited subspace of the entire

Hilbert space can be used due to limited computational resources. It turns out the

velocity gauge (or its reduced version) is computationally the cheapest and most

reliable for the regime we were concerned with in this chapter.

The necessary conditions for dynamic interference were derived following a few

lines of reasoning, as a result of which it was seen not only a substantial Stark shift,

but also a relatively small depletion rate is required for dynamic interference. These

two conditions are simultaneously satisfied only in very special circumstances.

The chapter ended with a discussion of a handful of setups which could facilitate

interference in the photo-electron spectrum in regimes much more feasible than the

main scenario discussed in the chapter.



A. Atomic units

Length, mass, time, and electric current1 are four independent units of measure.

In the MKSA system (a subsystem of SI) the appropriate units are meter, second,

kilogram, and ampere respectively. In atomic physics, the quantities are often

expressed in terms of another system of units which helps to simplify the numerics

as well as the analytic expressions. This system is called “atomic units” whose

main four units are [119]

• Length is defined by setting the Bohr constant to one, a0 = 1

• Mass is defined by setting the mass of the electron to one, me = 1

• Electric charge is defined by setting the charge of the electron to one, e = 1

• Time is defined by setting the Planck constant to one, ~ = 1

Other quantities can be easily expressed in terms of these four, see table A.1.

One of the most confusing conversion relations is that of between the laser in-

tensity in SI units and the electric field in atomic units,

(E[a.u.])2 =
I[W/cm2]

3.5095× 1016
. (A.1)

To derive this relation, the electric field should be set to one in atomic units or

5.142× 1011 V/m in eq. (E.21),

I =
1

8πα

e2

~
(5.142× 1011)2 = 3.5095× 1016W/cm2 . (A.2)

When the electric field is equal to one atomic unit, the corresponding intensity in

SI units is I0 = 3.5095×1016 W/cm2. This, however, does not mean that I0 is equal

to one atomic unit of intensity. One atomic unit of intensity is easily obtained via

dimensional analysis 6.436× 1015 W/cm2. In practice it is customary to only work

1. The unit of electric charge is defined in terms of the units of time and electric current.
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Table A.1. Some physical quantities in atomic units

Physical Quantity Expression Value (a.u.) Value (SI)

electron charge e 1 1.602× 10−19 C

electron mass me 1 9.109× 10−31 kg

Bohr constant a0 1 5.29× 10−11 m

reduced Planck constant ~ 1 1.055× 10−34 J·s
Coulomb’s constant ke = 1/(4πε0) 1 8.988× 109 N·m2/C2

energy E = mee
4/(4πε0~)2 1 4.360× 10−18 J

time t = ~/E 1 2.419× 10−17 s

velocity v = a0/t 1 2.188× 106 m/s

electric field ε = E/(ea0) 1 5.142× 1011 V/m

with intensity in SI units and electric field in atomic units, and convert them to

one another using the relation given above.



B. Finite difference method

B.1. Basics

Finite difference methods are numerical methods for solving a partial differential

equation (PDE) on a grid. The derivatives are approximated by expressions relat-

ing neighbouring grid points. When expressed on a grid, the original PDE trans-

forms into a system of linear equations which can be easily solved using textbook

methods.

The partial differential equation

∇2f(r) + λ∇f(r)− σf(r) = 0 (B.1)

is a second order differential equation which is defined on a domain shown in

fig. B.1. Similarly to ordinary differential equations, the value of the function

and its derivative are needed on the boundary for a unique solution throughout

the domain [127]. This type of boundary condition is called the Cauchy boundary

condition and is briefly discussed in the subsequent section below. A lack of knowl-

edge of the function value or its derivative results in a class of solutions instead of

a unique solution, which might seem troublesome at first sight. However, a unique

solution is not always what is needed. Should a unique answer be required, it can

always be expressed in terms of all the solutions satisfying the boundary conditions.

There are different ways that such partial boundary conditions can be applied to a

problem, and these different ways usually carry different meanings. For example,

fixing the value of the solution function on the boundaries is equivalent to fixing

the electric potential on the boundary, whereas fixing the normal derivative on the

boundary is equivalent to fixing the electric field. These boundary conditions are

discussed in the rest of this appendix.

For the sake of simplicity only a one-dimensional version of eq. (B.1) is considered
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Figure B.1. domain Ω and its border ∂Ω
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Figure B.2. finite difference in one dimension

hereafter,
d2f(x)

dx2
+ λ

df(x)

dx
− σf(x) = 0 , (B.2)

but all the results are easily generalisable to problems of higher dimensions. A one

dimensional version of the domain is shown in fig. B.2.

To convert the partial differential equation into a system of linear equations, first

we need to express the function on a grid,

fi ≡ f(xi) , (B.3)

where xi = x0 + i∆x are the grid points. The main idea behind any finite differ-

ence method is to approximate the derivatives appearing in the PDE with finite

differences. The accuracy of these methods usually increases as the grid spacing

shrinks. To approximate the first derivative, we write down the definition of the

derivative,

f ′(x) =
f(x+ ∆x)− f(x−∆x)

2∆x
+O((∆x)2) (B.4)

and when expressed on a grid,

f ′i ≡ f ′(xi) ≈
fi+1 − fi−1

2∆x
. (B.5)

The same has to be done with the second derivative. We write the definition,

f ′′(x) =
f(x+ ∆x)− 2f(x) + f(x−∆x)

(∆x)2
+O((∆x)2) (B.6)
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and express it on the same grid,

f ′′i ≡ f ′′(xi) ≈
fi+1 − 2fi + fi−1

(∆x)2
. (B.7)

The careful reader may have noticed that we have used the second order central

differences for the first and second derivatives. It is possible to use higher orders,

or left and right differences [35]. But this choice depends on the problem at hand

and the desired accuracy.

As will become apparent soon, it’ll be convenient to write the function as a

vector,

f ≡




f0

f1

...

fN



, (B.8)

the size of which varies between N − 1 and N + 1 depending on the type of the

boundary conditions applied. In a very similar fashion it is possible to define the

first and second derivative vectors,

f ′ ≡




f ′0
f ′1
...

f ′N




=
1

2∆x




f1 − f−1

f2 − f0

...

fN+1 − fN−1




(B.9)

and

f ′′ ≡




f ′′0
f ′′1
...

f ′′N




=
1

(∆x)2




f1 − 2f0 + f−1

f2 − 2f1 + f0

. . .

fN+1 − 2fN + fN−1



. (B.10)

We are now in a position to rewrite the original PDE, eq. (B.2), as a system of

linear equations,

f ′′ + λf ′ − σf = 0 , (B.11)

where we have replaced each derivative with its corresponding vector. After the

boundary conditions are applied, this system of linear equations can be solved

using textbook methods.
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B.2. Boundary conditions

Cauchy boundary condition

Cauchy boundary condition specifies the values of the solution and its derivative

on the boundary,

f(r) = f(r) for r ∈ ∂Ω

∂f

∂n

∣∣∣
r

= g(r) for r ∈ ∂Ω ,
(B.12)

where n is the normal to the boundary. This is the only boundary condition that

guaranties a unique solution to the problem.

Dirichlet boundary condition

Dirichlet boundary condition (also known as the first-type boundary condition)

is the first type of a category of boundary conditions which do not lead to a

unique solution. This boundary condition specifies the value of the solution on the

boundary,

f(r) = g(r) for r ∈ ∂Ω , (B.13)

where g(r) is a predefined function. Such a boundary condition occurs when the

electric potential between two different media is the quantity of interest.

In one dimension it takes a much simpler form,

f0 = α

fN = β ,
(B.14)
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in terms of which the function and its derivative vectors are expressed as

f =




f1

...

fN−1


 (B.15)

f ′ =
1

2∆x




0 1

−1 0 1
. . .

−1 0 1

−1 0







f1

f2

...

fN−2

fN−1




+
1

2∆x




−α
0
...

0

β




(B.16)

f ′′ =
1

(∆x)2




−2 1

1 −2 1
. . .

1 −2 1

1 −2







f1

f2

...

fN−2

fN−1




+
1

(∆x)2




α

0
...

0

β



. (B.17)

Note that these vectors are N − 1 dimensional. In general, fixing the value of the

function on a boundary reduces the size of the vectors by one.

Neumann boundary condition

Neumann boundary condition (also known as the second-type boundary condition)

specifies the derivative of the solution on the boundary,

∂f

∂n

∣∣∣
r

= g(r) for r ∈ ∂Ω , (B.18)

where n is the normal vector to the boundary. This boundary condition is used

when the electric field between two different media is the quantity of interest.

Regarding the derivatives on the boundaries of a one-dimensional domain, it

is possible to use central differences at both ends, or use a left (right) difference

at the right (left) end (left and right differences are called forward and backward

differences if used in the time domain). It should be kept in mind that to maintain

the level of accuracy throughout the domain, it is important to use one-sided (i.e.

left or right) differences on the boundary which are of the same accuracy as the

central difference used inside the domain. However, for more clarity we use the
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simplest differences in each case regardless of the order. All the results are easily

generalisable to an arbitrary order.

If the central differences are used at both ends,1

−f ′0 =
f−1 − f1

2∆x
= α

f ′N =
−fN−1 + fN+1

2∆x
= β .

(B.19)

The derivative vectors will be given by

f ′ =
1

2∆x




0 0

−1 0 1
. . .

−1 0 1

0 0







f0

f1

...

fN−1

fN




+




−α
0
...

0

β




f ′′ =
1

(∆x)2




−2 2

1 −2 1
. . .

1 −2 1

2 −2







f0

f1

...

fN−1

fN




+
2

∆x




α

0
...

0

β



.

(B.20)

And if the backward difference is used for f ′0, and the forward difference for f ′N ,

i.e.

−f ′0 =
f−1 − f0

∆x
= α

f ′N =
−fN + fN+1

∆x
= β ,

(B.21)

1. The reason why there is a minus sign on the left hand side of the first line as opposed to

the second line, is that the normal vector always points outwards from the domain, i.e. n|left =

−n|right.
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the derivative vectors will be given by,

f ′ =
1

2∆x




−1 1

−1 0 1
. . .

−1 0 1

−1 1







f0

f1

...

fN−1

fN




+
1

2




−α
0
...

0

β




f ′′ =
1

(∆x)2




−1 1

1 −2 1
. . .

1 −2 1

1 −1







f0

f1

...

fN−1

fN




+
1

∆x




α

0
...

0

β



.

(B.22)

Robin boundary condition

Robin boundary condition (or the third-type boundary condition) specifies a linear

combination of the values of the solution and its derivative on the boundary of the

domain,

Af(r) +B
∂f

∂n

∣∣∣
r

= g(r) for r ∈ ∂Ω , (B.23)

where n is the normal vector to the boundary. In general the values of A and B can

vary along the boundary. It is easily seen that in the limit of A → 0 and B → 1

this boundary condition becomes identical to the Neumann boundary condition,

whereas in the limit of A→ 1 and B → 0 it converges onto the Dirichlet boundary

condition.

In one dimension and using central differences at both ends2

Af0 −Bf ′0 = Af0 +B
f−1 − f1

∆x
= α

AfN +Bf ′N = AfN +B
−fN−1 + fN+1

∆x
= β

(B.24)

2. See the footnote in the Neumann boundary condition section to understand why there is a

minus sign in the middle of the left hand side of the first line while there is a plus sign in the

second line.
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gives rise to the following derivative vectors,

f ′ =
1

2∆x




2A∆x
B

0

−1 0 1
. . .

−1 0 1

0 −2A∆x
B







f0

f1

...

fN−1

fN




+
1

B




−α
0
...

0

β




f ′′ =
1

(∆x)2




−2A∆x
B
− 2 2

1 −2 1
. . .

1 −2 1

2 −2A∆x
B
− 2







f0

f1

...

fN−1

fN




+
2

B∆x




α

0
...

0

β



.

(B.25)

If the backward difference is used for f ′0 and the forward difference for f ′N ,

Af0 −Bf ′0 = Af0 +B
f−1 − f0

∆x
= α

AfN +Bf ′N = AfN +B
−fN + fN+1

∆x
= β ,

(B.26)

the derivative vectors will be given by,

f ′ =
1

2∆x




A∆x
B
− 1 1

−1 0 1
. . .

−1 0 1

−1 −A∆x
B

+ 1







f0

f1

...

fN−1

fN




+
1

2




−α
0
...

0

β




f ′′ =
1

(∆x)2




−A∆x
B
− 1 1

1 −2 1
. . .

1 −2 1

1 −A∆x
B
− 1







f0

f1

...

fN−1

fN




+
1

B∆x




α

0
...

0

β



.

(B.27)

Mixed boundary condition

Mixed boundary condition is a mixture of the Dirichlet boundary condition and

Neumann boundary condition applied to different parts of the boundary. This is
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Ω

Γ1

Γ2

Figure B.3. Different types of boundary conditions applied to different parts of

the boundary. This boundary condition is called the mixed boundary

condition.

a special case of the Robin boundary condition with position dependent A and B

coefficients.

If ∂Ω = Γ1 ∪Γ2, see fig. B.3, the solution has to satisfy the following conditions

f(xi, yj) = f(xi, yj) for (xi, yj) ∈ Γ1

∂f(x, y)

∂n

∣∣∣
(xi,yj)

= g(xi, yj) for (xi, yj) ∈ Γ2 ,
(B.28)

where n is the normal to the boundary.

Periodic boundary condition

This type of boundary condition is used when a large system is approximated by

a small part of it, see fig. B.4. The periodic boundary condition for a rectangular

boundary is

f(x, y) = f(x± a, y)

f(x, y) = f(x, y ± b) .
(B.29)

In a one dimensional space this boundary condition is equivalent to a ring with its

ends tied together,

fi = fi±N . (B.30)
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Ω

x

y

(a,b)

(0,0)

Figure B.4. A rectangular domain where the periodic boundary conditions can

be applied.

The derivative vectors are given by

f ′ =
1

2∆x




0 1 −1

−1 0 1
. . .

−1 0 1

1 −1 0







f0

f1

...

fN−2

fN−1




f ′′ =
1

(∆x)2




−2 1 1

1 −2 1
. . .

1 −2 1

1 1 −2







f0

f1

...

fN−2

fN−1



.

(B.31)



C. Further details regarding

Gaussian processes

C.1. Derivatives of m∗(~x) and k∗(~x, ~x)

It is often necessary to find the minimum of a surface made of a linear combination

of the posterior mean and covariance. In order to use textbook gradient based

optimization algorithms, we have to calculate the derivatives of this surface with

respect to ~x (a 1 × n matrix). This means the derivatives of the posterior mean

and covariance are needed. The posterior mean and variance, respectively, are

m∗(~x) = m(~x) + ~Σ(X, ~x)>Σ−1(~Y − ~µ)

k∗(~x, ~x) = k(~x, ~x)− ~Σ(X, ~x)>Σ−1~Σ(X, ~x) ,
(C.1)

where

X =




~X>1
...
~X>N


 (C.2)

is a matrix whose rows are the different training points, and ~Y is a vector of the

corresponding target values. The covariance function is represented by k(~x1, ~x2)

leading to the matrix Σ and vectors ~Σ defined as

Σ(X,X) = k( ~Xi, ~Xj) matrix of size N ×N
~Σ(X, ~x) = k( ~Xi, ~x) vector of size N × 1 ,

(C.3)

where ~x is where the predictive probability is evaluated. Σ−1 is the inverse of

Σ(X,X).
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The derivative of the mean is

dm∗(~x)

d~x
=

d

d~x

{
m(~x) + ~Σ(X, ~x)>Σ−1(~Y − ~µ)

}

=
dm(~x)

d~x
+

(
d

d~x
~Σ(X, ~x)>

)
Σ−1(~Y − ~µ)

=
dm(~x)

d~x
+
∑

i

(
d

d~x
Σ( ~Xi, ~x)

)(
Σ−1(~Y − ~µ)

)
i
,

(C.4)

while the derivative of the the covariance is

dk∗(~x, ~x)

d~x
=
dk(~x, ~x)

d~x
− d

d~x

{
~Σ(X, ~x)>Σ−1~Σ(X, ~x)

}

=
dk(~x, ~x)

d~x
− d

d~x

(
~Σ(X, ~x)>

)
Σ−1~Σ(X, ~x)− ~Σ(X, ~x)>Σ−1 d

d~x

(
~Σ(X, ~x)

)

=
dk(~x, ~x)

d~x
−
∑

ij

(
d

d~x
Σ( ~Xi, ~x)

)
Σ−1
ij Σ( ~Xj, ~x)−

∑

ij

Σ( ~Xi, ~x)Σ−1
ij

(
d

d~x
Σ( ~Xj, ~x)

)
.

(C.5)

C.2. Squared-exponential covariance function

The squared exponential covariance function is the most common covariance func-

tion used in the literature. It’s functional simplicity has made it a very good choice.

k(~x1, ~x2) = σ2
f exp

{
−1

2
(~x1 − ~x2)>Λ−1(~x1 − ~x2)

}
, (C.6)

where Λ is a diagonal matrix with elements λ2
i representing correlation lengths in

different dimensions.

For this choice of covriance function, it is conceivable to write down the deriva-

tives analytically

d

d~x
Σ( ~Xi, ~x) = Σ( ~Xi, ~x)( ~Xi − ~x)>Λ−1 . (C.7)

Substituting this relation in the formula for the derivatives of the mean from
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previous subsection leads to

dm∗(~x)

d~x
=
dm(~x)

d~x
+
∑

i

(
Σ−1(~Y − ~µ)

)
i

d

d~x
Σ( ~Xi, ~x)

=
dm(~x)

d~x
+
∑

i

(
Σ−1(~Y − ~µ)

)
i
Σ( ~Xi, ~x)( ~Xi − ~x)>Λ−1

=
dm(~x)

d~x
+
((

Σ−1(~Y − ~µ)
)
� ~Σ(X, ~x)

)>


~X>1 − ~x>
. . .

~X>N − ~x>


Λ−1 ,

(C.8)

where � is the element wise product.

Similarly for the derivatives of the covariance

dk∗(~x, ~x)

d~x
= −

∑

ij

(
d

d~x
Σ( ~Xi, ~x)

)
Σ−1
ij Σ( ~Xj, ~x)−

∑

ij

Σ( ~Xi, ~x)Σ−1
ij

(
d

d~x
Σ( ~Xj, ~x)

)

= −2
∑

ij

Σ( ~Xi, ~x)Σ−1
ij Σ( ~Xj, ~x)( ~Xj − ~x)>Λ−1

= −2~Σ(X, ~x)>Σ−1




Σ( ~X1, ~x) 0
. . .

0 Σ( ~XN , ~x)






~X>1 − ~x>
. . .

~X>N − ~x>


Λ−1

= −2
((

Σ−1~Σ(X, ~x)
)
� ~Σ(X, ~x)

)>


~X>1 − ~x>
. . .

~X>N − ~x>


Λ−1 .

(C.9)

C.3. Derivative of Λ1(~x)

We need the derivative of Λ1(~x) in order to find the minimum using a gradient

based method. Even though the derivation is not difficult, it is tedious, and here

we only give the final expression

dΛ1(~x)

d~x
=

1

2
erfc

(
m∗(~x)− η√

2k∗(~x, ~x)

)
dm∗(~x)

d~x

− 1√
2πk∗(~x, ~x)

exp

(
−(m∗(~x)− η)2

2k∗(~x, ~x)

)
1

2

dk∗(~x, ~x)

d~x
,

(C.10)

where dm∗(~x)
d~x

and dk∗(~x,~x)
d~x

were derived earlier in the appendix.



D. Fourier transform

It is often desired to take the Fourier transform of a continuous function which has

been sampled at discrete points. For example, the dipole moment of an atom at

each time step given by a numerical simulation. Since all we have access to is a set

of discrete values, sometimes it can be confusing to understand how the discrete

Fourier transform of the discrete samples is connected to the continuous Fourier

transform of the original quantity.

If f(t) is a function of time, its Fourier transform is a function of frequency. One

can be calculated given the other using the following expressions

F (ν) =

∫ ∞

−∞
f(t)e−2πiνt dt

f(t) =

∫ ∞

−∞
F (ν)e2πiνt dν ,

(D.1)

where ν is the frequency in hertz if t is time in seconds. In physics,1 it is customary

to use angular frequency2 ω = 2πν,

F (ω) =

∫ ∞

−∞
f(t)e−iωt dt

f(t) =
1

2π

∫ ∞

−∞
F (ω)eiωt dω .

(D.2)

1. In quantum mechanics a slightly different version is used,

F (ω) =
1√
2π

∫ ∞

−∞
f(t)e−iωt dt

f(t) =
1√
2π

∫ ∞

−∞
F (ω)eiωt dω ,

which is derived by making the substitution F (ω) →
√

2πF (ω) in eqs. (D.2). This version is

unitary and expresses the symmetry between the Fourier transform and its inverse more clearly.

2. Even though ω is technically called the angular frequency, it is almost always referred to as

frequency among physicists.
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t−N/2 t−1 t0 t1 tN/2−1

f−N/2 f−1 f0 f1 fN/2−1

Figure D.1. A function sampled at different points in time. Even though the

original function is continuous, we only have access to discrete mea-

surements done at discrete times. It is crucial that we understand

how the continuous Fourier transform of the original function can be

evaluated from the discrete Fourier transform of the discrete samples.

It can be easily checked that upon plugging any of the various definitions of

the Fourier transform in its corresponding inverse the original function is indeed

reproduced.

D.1. Discrete Fourier transform

Assuming the sampling has been done at points ∆t apart, see fig. D.1, the discrete

Fourier transform (DFT) is defined as

Fm =

N/2−1∑

n=−N/2
fne
−2πimn/N

fn =
1

N

N/2−1∑

m=−N/2
Fme

2πimn/N ,

(D.3)

where fn = f(tn) and tn = n∆t. N represents the total number of samples.

D.2. Continuous limit of DFT

Given that there are N samples at points ∆t apart, the length of the total interval

is

T = N∆t , (D.4)

in terms of which the frequencies obtained from the DFT can be written as

ωm = m∆ω (with ∆ω ≡ 2π

T
) . (D.5)
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For reasons that will soon become apparent we make the substitution

Fm ≡ Fm∆t . (D.6)

Using these new variables, we can rewrite the exponents in eqs. (D.3),

±2πimn

N
= ±i 2πm

N∆t
n∆t = ±i ωmtn , (D.7)

and the prefactor,
1

N
=

2π∆t

2πN∆t
=

∆ω∆t

2π
, (D.8)

and consequently eqs. (D.3) change to

Fm =

N/2−1∑

n=−N/2
fne
−iωmtn∆t

fn =
1

2π

N/2−1∑

m=−N/2
Fme

iωmtn∆ω ,

(D.9)

which are clearly reminiscent of eqs. (D.2). We are now in a position to study the

two continuous limits of the DFT, i.e. ∆t→ 0 and ∆ω → 0.

D.2.1. Fourier series

In the limit of ∆t→ 0 (while N →∞ such that N∆t = T �∞) the summation

in the inverse DFT turns into an integral,

Fm =

N/2−1∑

n=−N/2
fne
−iωmtn∆t → Fm =

∫ T/2

−T/2
f(t)e−iωmt dt

fn =
1

2π

N/2−1∑

m=−N/2
Fme

iωmtn∆ω → f(t) =
1

2π

N/2−1∑

m=−N/2
Fme

iωmt∆ω .

(D.10)

Upon defining Fm = ∆ωFm/2π = Fm/T we get

Fm =
1

T

∫ T/2

−T/2
f(t)e−iωmt dt

f(t) =

N/2−1∑

m=−N/2
Fmeiωmt ,

(D.11)

which is the well-known Fourier series.
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D.2.2. Fourier transform

In the limit of ∆ω → 0 (or equivalently T →∞) the only summation in eqs. (D.10)

turns into an integral,

Fm =

∫ T/2

−T/2
f(t)e−iωmt dt → F (ω) =

∫ ∞

−∞
f(t)e−iωt dt

f(t) =
1

2π

N/2−1∑

m=−N/2
Fme

iωmt∆ω → f(t) =
1

2π

∫ ∞

−∞
F (ω)eiωt dω ,

(D.12)

which is the Fourier transform as defined in eq. (D.2).

D.3. Parseval’s theorem

Parseval’s theorem states that the integral of the square of function f(t) is equal

to the integral of the square of its Fourier transform F (ω), i.e.

∫ ∞

−∞
|f(t)|2 dt =

1

2π

∫ ∞

−∞
|F (ω)|2 dω , (D.13)

where the vertical bars indicate the absolute value. A Similar relation can be

derived for the discrete Fourier transform.

D.4. Convolution theorem

The convolution of function f(t) with function g(t) is denoted by (f ∗ g)(t) and is

defined as

(f ∗ g)(t) ≡
∫ ∞

−∞
f(τ)g(t− τ) dτ . (D.14)

The convolution is in fact the reaction of a linear system with impulse response

function g(t) to input signal f(t).

The convolution theorem states that the Fourier transform of the product of two

functions is equal to the convolution of their Fourier transforms,

FT {f(t) · g(t)} = (FT {f} ∗ FT {g}) (t) , (D.15)
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where FT is the Fourier transform, and . denotes the elementary multiplication

operation. It also works the other way around .

FT {f(t) ∗ g(t)} = FT {f(t)} · FT {g(t)} (D.16)

Similar relations can be written for the discrete Fourier transform,

DFT {fn · gn} = DFT {fn} ∗ DFT {gn}
DFT {fn ∗ gn} = DFT {fn} · DFT {gn}

, (D.17)

where DFT denotes the discrete Fourier transform.

D.5. Windowed Fourier transform

Since computer simulations cannot run from −∞ to ∞, we always have to set a

starting point −τ and an end point τ . This has the effect that the numerical output

is in fact the product of the output we would get if the simulation could run from

−∞ to ∞, and a rectangular window function with value 1 in the interval [−τ, τ ]

and zero everywhere else,

w(t) =





1 if |t| < τ

0 else .
(D.18)

According to the convolution theorem the Fourier transform of the product of

two functions is equal to the convolution of their Fourier transforms, eq. (D.15).

The Fourier transform of the rectangular window function is the sinc function3

FT {w(t)} =
2 sin (ωτ)

ω
= 2τ sinc (ωτ) , (D.19)

which is a very jagged function. The convolution of the Fourier transform of almost

any function with the sinc function results in a jagged function. This is the reason

why the dipole matrix element between two continuum states normalised in a box

shows an oscillatory behaviour when plotted as a function of one of the continuum

state energies, whereas if the Dirac delta normalisation is used the behaviour is

smooth.

3. The prefactor may be different if a different normalisation is used in the definition of the

Fourier transform. This prefactor is correct for the normalisation defined in eq. (D.2)
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Figure D.2. h(ω) is the Fourier transform of i sgn(t); (h ∗ sinc)(ω) is the Fourier

transform of the same function limited to the interval[−τ, τ ]; (h ∗
sinc)(ωm) is the discrete Fourier transform of i sgn(tn).

As an example, consider the Fourier transform below

h(ω) ≡ FT {i sgn(t)} =

∫ ∞

−∞
i sgn(t) e−iωt dt =

2

ω
, (D.20)

where sgn(· · · ) is the sign function. If the time is limited to [−τ, τ ], then

∫ τ

−τ
i sgn(τ) e−iωt dt =

2(1− cos(ωτ))

ω
, (D.21)

which is equal to (h ∗ sinc)(ω). And if the function has been sampled at points ∆t

apart,

DFT {i sgn(tn)} = (h ∗ sinc)(ωm)

=
2(1− cos(ωm τ))

ωm
=





0 for m even

4
ωm

for m odd ,

(D.22)

where ωm = m∆ω with ∆ω = 2π/2τ . The three different eqs. (D.20), (D.21), and

(D.22) are compared in fig. D.2.

Now it should be apparent from the discussion above how crucial it is to use

a well-justified window function in order to avoid troublesome convolutions. The

window method commonly used among physicists is the Gabor transform which is

the subject of the next section.
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D.6. Gabor transform

One of the shortcomings of the Fourier transform is the lack of time resolution,

meaning there is no knowledge of when a certain frequency is emitted and for

how long. The Gabor transform tries to alleviate this problem by introducing a

Gaussian window around the point of interest in time.4 The Gabor transform of

function f(t) is defined as

S(ω, t) ≡
∫ ∞

−∞
w(t′ − t, σ)f(t′)e−iωt

′
dt′ , (D.23)

where S(ω, t) is called the spectrogram, and w(t, σ) = exp(−t2/2σ2) is the win-

dow function with width σ. The smaller the width of the window, the finer the

time resolution of the spectrogram. However, as the time resolution improves, the

resolution along the frequency domain worsens and vice versa; this is the known

Heisenberg uncertainty from quantum mechanics.

By taking the integral of the spectrogram along the time axis, it is possible to

acquire information about a wider region than the original width of the window.

In this case, the effective window function is derived by writing out the integral,

∫ t+T
2

t−T
2

S(ω, t′) dt′ =

∫ ∞

−∞

(∫ t+T
2

t−T
2

w(t′′ − t′, σ) dt′
)
f(t′′)e−iωt

′′
dt′′ . (D.24)

The integral in parentheses can be analytically evaluated

∫ t+T
2

t−T
2

w(t′ − t′′, σ) dt′′ =

√
π

2
σ

(
erf

(
t′ + T

2
− t√

2σ

)
− erf

(
t′ − T

2
− t√

2σ

))
. (D.25)

This effective window needs normalising as it takes on values greater than 1 for

t + T/2 < t′ < t − T/2. The easiest workaround is to include a prefactor equal

to the maximum value of the effective window function (which is at t′ = t) when

integrating the spectrogram over time, i.e.

S(ω, t) ≡
√

2π σ erf

(
T

2
√

2σ

)∫ t+T
2

t−T
2

S(ω, t′) dt′ . (D.26)

The original Gabor window along with the normalised effective window are shown

in fig. D.3.

4. The Gabor transform is in fact a special case of the short-time Fourier transform.
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Figure D.3. The window function used in the Gabor transform is shown for σ = 4.

Also drawn is the normalised effective window function resulting from

integrating the Gabor window along the time axis from −25 to 25.



E. Laser pulses: essentials

It is customary in the literature to split the vector potential of a laser pulse into

two parts: the envelope, and the carrier wave

A(t) = A(t) cos(ωt) , (E.1)

where A(t) is the envelope, and cos(ωt) is the carrier wave. The introduction

of such an envelope is particularly helpful when the rate at which the envelope

changes is small compared to the carrier frequency

d

dt
logA(t) =

1

A(t)

d

dt
A(t)� ω . (E.2)

This regime is known as slowly-varying envelope regime.

The electric field is the time-derivative of the vector potential

E(t) =
dA(t)

dt
= Ȧ(t) cos(ωt)− ωA(t) sin(ωt) , (E.3)

where, based on eq. (E.2), the first term can be neglected in the slowly-varying

regime, yielding

E(t) ≈ −ωA(t) sin(ωt) , (E.4)

and if we define a similar envelope for the electric field as E(t) = E(t) sin(ωt), the

envelope will be

E(t) ≈ −ωA(t) . (E.5)

E.1. Realistic laser pulses

The laser pulse is often introduced by its vector potential rather than its electric

field for a technical reason. To be more clear, imagine a charged particle in free

space, and a laser pulse of width τ set to interact with the particle. It is known
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from classical as well as quantum mechanics that a single electron cannot absorb

or emit a photon in the absence of a second particle.1 This means the velocity of

the electron has to remain unchanged after the pulse has vanished

v(t→ +∞) = v(t→ −∞) . (E.6)

The solution of Newton’s equation of motion v̇(t) = E(t) for the electron (e = 1

since atomic units are used) is given by

v(t) = v(t = −∞) +

∫ t

−∞

dA(t)

dt
dt . (E.7)

Applying the condition mentioned above (eq. (E.6)) to this solution gives rise to a

new constraint on the vector potential
∫ +∞

−∞

dA(t)

dt
dt = 0 . (E.8)

This condition is satisfied for any choice of vector potential as long as it vanishes

at t = +∞ and t = −∞
∫ +∞

−∞

dA(t)

dt
dt = A(t = +∞)− A(t = −∞) = 0− 0 = 0 . (E.9)

The reader is urged to note that if instead of the vector potential the electric field

had been used, the constraint on the electric field would not be as straightforward,

and would be only approximately satisfied by any finite pulse in the slowly-varying

envelope regime.

Using the vector potential has one more advantage. It can be directly used in the

Schrödinger equation written in the velocity gauge. The velocity gauge is usually

preferred over the length gauge. For more details please refer to the discussion at

the end of section 4.7.

E.2. Energy density and intensity of laser pulses

It is known from classical electrodynamics that the density of the energy contained

in an electromagnetic field in the vacuum is given by [128]

u(t) =
1

2

(
ε0E

2(t) +
1

µ0

B2(t)

)
, (E.10)

1. This is in fact why Bremsstrahlung and inverse Bremsstrahlung only happen in the presence

of a nucleus.
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where ε0 is the electric permittivity of vacuum and µ0 is the magnetic permeability

of vacuum.

By taking advantage of the relation E(t)/B(t) = c for an electromagnetic wave,

and the expression for the speed of light in vacuum c = 1/
√
ε0µ0, it is easy to show

that the two constituent parts of the energy density are equal in magnitude. This

makes it possible to rewrite the energy density of an electromagnetic field solely in

terms of the electric field,

u(t) =
1

2

(
ε0E

2(t) + µ−1
0 B2(t)

)

=
1

2

(
ε0E

2(t) +
1

µ0c
E2(t)

)

= ε0E
2(t) .

(E.11)

It is worth noting that if the dipole approximation2 is used prior to this step,

the formalism fails to reproduce the magnetic component of the wave (because

∇ × ẑ = 0), wrongly implying that the magnetic component does not contribute

to the energy of the wave. This discrepancy is a direct consequence of blindly

generalising a local approximation to a global scale. The dipole approximation is

an unrealistic assumption if applied to the entire space as it does not satisfy the

wave equation.

The intensity of the electromagnetic wave is the amount of energy passing

through unit area per unit time. In a plane perpendicular to the propagation

direction it is the product of the energy density and the speed of light,

I(t) = cu(t) = cε0E
2(t) . (E.12)

E.3. Energy density and intensity of laser pulses in

the slowly-varying envelope regime

In order to calculate the energy density (eq. (E.11)) and intensity (eq. (E.12)) of

a laser pulse, we need to know the square of its electric field. By substituting the

2. which assumes the electric field has no spatial dependence, E(x, t) = E(t)
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electric field as given in eq. (E.3), we get

u(t) = ε0

(
dA(t)

dt

)2

(E.13)

I(t) = cε0

(
dA(t)

dt

)2

. (E.14)

Since we are only interested in time scales much larger than the frequency of the

carrier wave, it is easier to work with mean quantities which are the average of

the above mentioned quantities over a few cycles. The mean energy density and

intensity are

〈u(t)〉 = ε0

〈(
dA(t)

dt

)2
〉

(E.15)

〈I(t)〉 = cε0

〈(
dA(t)

dt

)2
〉
. (E.16)

In the slowly-varying envelope regime the time derivative can be replaced with

eq. (E.4), yielding

u(t) ≈ ε0ω
2A2(t) sin2(ωt) ≈ ε0E2(t) sin2(ωt) (E.17)

I(t) ≈cε0ω2A2(t) sin2(ωt) ≈cε0E2(t) sin2(ωt) , (E.18)

and when averaged over a few cycles (
〈
sin2(ωt)

〉
= 1

2
)

〈u(t)〉 ≈ ε0
2
ω2A2(t) ≈ ε0

2
E2(t) (E.19)

〈I(t)〉 ≈cε0
2
ω2A2(t) ≈cε0

2
E2(t) . (E.20)

The intensity of the wave is sometimes expressed in terms of the fine-structure

constant α = 1
4πε0

e2

~c

〈I(t)〉 ≈ 1

8πα

e2

~
E2(t) . (E.21)

The energy of a laser pulse is evaluated by integrating the intensity over time

U =

∫ +∞

−∞
I(t) dt . (E.22)
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E.4. Spectral and temporal widths of pulses

In the discussion of laser pulses, two of the most important parameters are the

temporal and spectral widths of the pulse. As to the temporal width, there are

many definitions but the one we will use here is the full width at half maximum of

the electric field of the laser pulse. And the spectral width that we will use refers

to the full width at half maximum of the Fourier transform of the electric field.

For example, a Gaussian pulse in the Fourier domain is given by

E(ω) = exp

(
−4 ln 2

(ω − ω0)2

Ω2

)
, (E.23)

where ω0 is the carrier wave frequency, and Ω is the spectral width of the pulse

(which is the FWHM of the Fourier transform of the pulse). The temporal profile

of this pulse is given by its inverse Fourier transform

E(t) ∝ exp

(
−4 ln 2

t2

T 2

)
, (E.24)

where T is the temporal width of the pulse (which is the FWHM of the electric

field). The temporal and spectral widths are related by TΩ = 8 ln 2.

E.5. High harmonic generation: inhomogeneous

wave equation

High harmonic generation (HHG) is a non-linear process in which a sample is

illuminated by a laser pulse of frequency ω. The sample then radiates at frequen-

cies equal to odd multiples of the laser frequency, that is ω, 3ω, 5ω, . . .. This

phenomenon has been explained semi-classically and quantum mechanically. For

reviews of HHG please refer to refs. [96, 97].

In order to study and possibly control HHG, a precise calculation of the spectrum

of the radiation field is needed. Now we will try and see how this can be done, and

how to keep to a minimum the numerical artefacts that come about when using

simulations of finite durations.

It is known that when an atom is in the presence of an oscillating electric field, a

dipole moment is induced inside the atom giving rise to a non-zero dipole operator
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expectation value 〈r〉 = 〈ψ|r̂|ψ〉, where r is the position of the negative charge

within the atom with respect to the nucleus. In order to calculate the spectrum

of the radiation field, first it has to be determined if the spectrum is related to

the Fourier transform of 〈r〉, 〈ṙ〉 or 〈r̈〉. The derivation in this subsection closely

follows that of ref. [129].

We start off with the inhomogeneous electromagnetic wave equation derived

directly from Maxwell’s equations [128]

1

c2

∂2E

∂t2
−∇2E = −

(
1

ε0
∇ρ+ µ0

∂J

∂t

)
, (E.25)

where ρ is the source charge density (charge per unit volume), and J is the source

current density (current per unit area). If the only source present in the problem

is a pointlike dipole, then the overall charge density is zero, i.e. ρ = 0, which is

a direct consequence of the charge neutrality of a dipole. In the lack of any free-

charge current density or magnetization current density, the source current density

can be written in terms of the polarisation density

J =
∂P

∂t
, (E.26)

where P is the polarisation density.

The polarisation density is given by P = ρbd, where d is the displacement vector

between the two bound charges measured from the negative charge to the positive

charge. ρb is the bound charge density, and in the case of a pointlike source it is

simply qδ(r− r0) with q being the bound charge and r0 the position of the dipole.

The source current density in the case of a pointlike dipole is therefore

J =
∂P

∂t
=

∂

∂t
qδ(r− r0)d = qδ(r− r0)

∂d

∂t
, (E.27)

where in the last step it is assumed the position of the dipole does not change over

time. Plugging this in the original wave equation, we obtain

1

c2

∂2E

∂t2
−∇2E = −µ0qδ(r− r0)

∂2d

∂t2
, (E.28)

where it is clearly seen that the source of the radiation is q ∂2d/∂t2. Rewriting in

terms of the vectors introduced at the beginning, for the hydrogen atom (in atomic

units) we get

q
∂2d

∂t2
= −〈r̈〉 , (E.29)
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where the minus sign originates from the fact that the displacement vector is mea-

sured from the negative charge to the positive charge while r is measured from the

positive charge to the negative charge.

The radiation spectrum is calculated by using f(t) = −〈r̈〉 in the Gabor trans-

form introduced in appendix D.6 with σ = 70 a.u. The spectrogram is then

integrated over the time window [−T/2, T/2] where T = 3.6τ with τ being the

FWHM of the pulse. The center of the pulse is always assumed to be at t = 0.

This choice of time window makes sure the value of the integrated window func-

tion is negligible at the two ends of the interval (remember the simulations always

run from t = −2.5τ to t = 2.5τ in this thesis) which will cause minimal ringing

artefacts (for more on ringing artefacts please refer to ref. [130]). The spectrum is

then given by

S(ω) = S(ω, t = 0) , (E.30)

where S(ω, t) is defined in eq. (D.26).



F. Numerical propagation

The SCID-TDSE (short for Spherical-Coordinate Implicit Derivatives - Time De-

pendent Schrödinger Equation) package is repeatedly used in this thesis. For a

complete description of the details of the package the reader is referred to the orig-

inal paper acompanying the package [91]. Here we will only discuss the matter

briefly, and report the parameter values used.

The wave function is expanded in terms of spherical harmonics,

ψ(r) =
1

r

lmax∑

l=0

l∑

m=−l
ulm(r)Ylm(r̂) , (F.1)

where r is the position of the electron, r is its magnitude, and r̂ is a unit vector

pointing in the direction of r. lmax represents the maximum angular momentum

included in the simulation and has to be increased until convergence is reached.

When the laser pulse is linearly polarised, only states of identical m couple. That

is, if the electron is initially in the ground state (where m = 0), the wave function

takes a much simpler form,

ψ(r) =
1

r

lmax∑

l=0

ul(r)Yl(r̂) , (F.2)

where all the dependence on m has vanished. The radial components ulm(r) are

expressed on a grid defined by r = 0, dr, 2dr, . . . , Rmax, where dr is the grid

spacing, and Rmax is the maximum radius considered, which should be increased

until no part of the wave function reaches the end of the simulation box over the

course of the simulation. This wave function is then propagated in time using the

Crank-Nicolson scheme with time step dt.

The field-free Hamiltonian H = p2/2+V (r) expressed on this grid is diagonalised

to find the eigenvalues (energies) and the eigenfunctions of the system. At the end

of each simulation, the photo-electron spectrum can be calculated by projecting

the wave function on the eigenfunctions.
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The following parameters are used throughout this thesis unless specifically

stated otherwise, lmax = 30, dr = 0.4, dt = 0.01.



G. Four-level system

The four-level system presented in section 4.9.5 consists of one bound s-state, one

bound p-state, one continuum p-state, and one continuum d-state. This system is

set to interact with laser pulse E = E(t) sin(ωt) where E(t) is the envelope, and ω

is the frequency of the pulse. The energies of the four levels are given by

E1 = 0

E2 = ω

E3 = δ + 2ω

E4 = δ + 2ω ,

(G.1)

where δ is the shift from energy 2ω. It is obvious that the first two states are

coupled resonantly.

The Hamiltonian of such a system in its eigenbasis and in the absence of the

laser pulse reads

H0 =




E1 0 0 0

0 E2 0 0

0 0 E3 0

0 0 0 E4


 . (G.2)

The interaction term resulting from the laser pulse in the same basis reads

V (t) = E(t)




0 d12 0 d14

d12 0 d23 0

0 d23 0 d34

d14 0 d34 0


 . (G.3)

where dij is the dipole matrix element coupling state i and state j. The same
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interaction term can be represented in the interaction picture

Vint(t) = − i
2
E(t)×




0 d12 (1− e−2iωt) 0 d14e
−i(δ+ω)t (1− e−2iωt)

−d12 (1− e2iωt) 0 d23e
−iδt (1− e−2iωt) 0

0 −d23e
iδt (1− e2iωt) 0 d34 (eiωt − e−iωt)

−d14e
i(δ+ω)t (1− e2iωt) 0 d34 (eiωt − e−iωt) 0


 .

(G.4)

Now we assume that the wave function remains mainly in the two bound states

due to the resonant coupling between them. This assumption has the direct conse-

quence that the population in the two continuum states is negligible, and therefore

any transition from the continuum to the discrete states can be neglected. In other

words, the upper right corner of the above matrix can be set to zero yielding

Vint(t) ≈ −
i

2
E(t)×




0 d12 (1− e−2iωt) 0 0

−d12 (1− e2iωt) 0 0 0

0 −d23e
iδt (1− e2iωt) 0 d34 (eiωt − e−iωt)

−d14e
i(δ+ω)t (1− e2iωt) 0 d34 (eiωt − e−iωt) 0


 .

(G.5)

Thanks to the rotating wave approximation, this term can be further simplified

Vint(t) ≈ −
i

2
E(t)




0 d12 0 0

−d12 0 0 0

0 −d23e
iδt 0 d34 (eiωt − e−iωt)

−d14e
i(δ+ω)t 0 d34 (eiωt − e−iωt) 0


 ,

(G.6)

which is identical to eq. (4.65).

The populations of the first two states, i.e. a1(t) and a2(t), can be easily found

by solving the corresponding two-level system. The exact derivation can be looked

up in almost any textbook on quantum mechanics [119]. The final expressions are

a1(t) = cos

(
1

2
d12ζ(t)

)

a2(t) = −i sin

(
1

2
d12ζ(t)

)
,

(G.7)
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where ζ(t) ≡
∫ t
−∞ E(t′) dt′.

In order to calculate the populations of the other two levels, let’s first write the

corresponding Schrödinger equation

i∂t

(
a3(t)

a4(t)

)
= d34E(t)

(
0 1

1 0

)(
a3(t)

a4(t)

)
+
i

2
E(t)eiδt

(
d23a2(t)

eiωtd14a1(t)

)
. (G.8)

These two coupled differential equations can be decoupled using transformation

T = 1√
2

(
−1 1

1 1

)
yielding

i∂tã3(t) = −d34E(t)ã3(t) +
i

2
√

2
eiδtE(t)

(
eiωtd14a1(t)− d23a2(t)

)

i∂tã4(t) = +d34E(t)ã4(t) +
i

2
√

2
eiδtE(t)

(
eiωtd14a1(t) + d23a2(t)

)
,

(G.9)

where

(
ã3(t)

ã4(t)

)
≡ T

(
a3(t)

a4(t)

)
. These two equations can be solved analytically

ã3(t) =

√
2

4

∫ t

−∞
E(t′)eiδt

′
(
eiωt

′
d14a1(t′)− d23a2(t′)

)
eid34(φ(t)−φ(t′)) dt′

ã4(t) =

√
2

4

∫ t

−∞
E(t′)eiδt

′
(
eiωt

′
d14a1(t′) + d23a2(t′)

)
e−id34(φ(t)−φ(t′)) dt′ ,

(G.10)

where φ(t) =
∫ t
−∞E(t′) dt′ and it is assumed that the initial populations are zero,

i.e. ã3(0) = 0 and ã4(0) = 0. The population of the third state can be found by

transforming back to a3(t) yielding

a3(t) =
1

2
d14

∫ t

−∞
a1(t′)E(t′)e(δ+ω)t′ sin(d34(φ(t′)− φ(t))) dt′

+
1

2
d23

∫ t

−∞
a2(t′)E(t′)eiδt

′
cos(d34(φ(t′)− φ(t))) dt′ .

(G.11)

If the envelope of the pulse is Gaussian, then we have limt→∞ E(t) = 0, and con-

sequently limt→∞ φ(t) = 0. Therefore, the final population of the third state reads

a3(∞) =
1

2
d14

∫ ∞

−∞
a1(t′)E(t′)e(δ+ω)t′ sin(d34φ(t′)) dt′

+
1

2
d23

∫ ∞

−∞
a2(t′)E(t′)eiδt

′
cos(d34φ(t′)) dt′ ,

(G.12)

which is identical to eq. (4.66).
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[45] A. P. Bartók, M. C. Payne, R. Kondor, and G. Csányi, “Gaussian Ap-
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