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ABSTRACT

Modern agile software development methods allow to continuously evolve software systems by easily
adding new features, fixing bugs, and adapting the software to changing requirements and conditions
while it is continuously used by the users. A major obstacle in the agile evolution is the underly-
ing database that persists the software system’s data from day one on. Hence, evolving the database
schema requires to evolve the existing data accordingly—at this point, the currently established solu-
tions are very expensive and error-prone and far from agile.

In this thesis, we present InVerDa, a multi-schema-version database system to facilitate agile database
development. Multi-schema-version database systems provide multiple schema versions within the
same database, where each schema version itself behaves like a regular single-schema database. Cre-
ating new schema versions is very simple to provide the desired agility for database development.
All created schema versions can co-exist and write operations are immediately propagated between
schema versions with a best-effort strategy. Developers do not have to implement the propagation
logic of data accesses between schema versions by hand, but InVerDa automatically generates it.

To facilitate multi-schema-version database systems, we equip developers with a relational complete
and bidirectional database evolution language (BiDEL) that allows to easily evolve existing schema
versions to new ones. BiDEL allows to express the evolution of both the schema and the data both
forwards and backwards in intuitive and consistent operations; the BiDEL evolution scripts are orders
of magnitude shorter than implementing the same behavior with standard SQL and are even less likely
to be erroneous, since they describe a developer’s intention of the evolution exclusively on the level
of tables without further technical details. Having the developers’ intentions explicitly given in the
BiDEL scripts further allows to create a new schema version by merging already existing ones.

Having multiple co-existing schema versions in one database raises the need for a sophisticated phys-
ical materialization. Multi-schema-version database systems provide full data independence, hence
the database administrator can choose a feasible materialization, whereby the multi-schema-version
database system internally ensures that no data is lost. The search space of possible materializations
can grow exponentially with the number of schema versions. Therefore, we present an adviser that re-
leases the database administrator from diving into the complex performance characteristics of multi-
schema-version database systems and merely proposes an optimized materialization for a given work-
load within seconds. Optimized materializations have shown to improve the performance for a given
workload by orders of magnitude.

We formally guarantee data independence for multi-schema-version database systems. To this end,
we show that every single schema version behaves like a regular single-schema database independent
of the chosen physical materialization. This important guarantee allows to easily evolve and access
the database in agile software development—all the important features of relational databases, such
as transaction guarantees, are preserved. To the best of our knowledge, we are the first to realize such
a multi-schema-version database system that allows agile evolution of production databases with full
support of co-existing schema versions and formally guaranteed data independence.
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DANSK RESUMÉ (SUMMARY IN DANISH)

Moderne agile software udviklings metoder gør det muligt at kontinuerligt videreudvikle software sys-
temer ved at tilføje ny funktionalitet, fjerne fejl og tilpasse systemet til at opfylde nye krav samtidig
med at det bliver brugt af dets brugere. En stor udfordring i den agile software udviklinger er den
underliggende database der indeholder systemets data, fordi at foretage ændringer af database ske-
maet kræver også at alt data bliver ændret. At foretage sådanne ændringer i nuværende etablerede
løsninger er meget ressourcekrævende og risikoen for fejl er høj og hele processen er langt fra agil.

I denne afhandling, præsentere vi InVerDa, en multi-skema-version database der muliggøre agil vide-
reudvikling af databasen. Multi-skema-version databasesystemer har flere versioner af database ske-
maet, hvor hvert skema version fungere som en standard enkelt-skema databasesystem. Det er meget
simpelt at lave en ny version af et skema og det er passer godt med den agil udviklings filosofi. Flere
skema version kan eksistere samtidigt og skrive operationer bliver propageret mellem alle skemaer.
Software udviklerne behøver ikke at implementere datatilgang logikken mellem skema versioner, det
gør InVerDa automatisk. For at facilitere multi-skema-version systemer, har vi skabt et relationelt
komplet og tovejs database udviklings sprog (BiDEL), det gør det muligt og nemt at lave nye og
videreudvikle eksisterende skemaer. BiDEL gør det muligt at skifte mellem sema versioner både fre-
mad og bagud i tid. Endvidere, er BiDEL sproget flere størrelsesordner kortere end implementationen
af samme opførelse i standard SQL. Der er også langt mindre risiko for at lave fejl ved implementerin-
gen fordi sproget beskriver software udviklerens intentioner, baseret på database tabeller, uden at gå
i unødige tekniske detaljer. At have software udviklernes intentioner beskrevet med BiDEL gør det
muligt at kombinere eksisterende skemaer for at skema helt nye skema versioner.

Det er at have flere database skema versioner i en database kræver sofistikeret fysisk materialisering af
data. Multi-skema-version databasesystemer tager konceptet “data uafhængighed” til et højere niveau.
Databaseadministratoren kan frit ændre den fysiske materialisering og systemet vil sikre at intet data
er gået tabt. Søge rummet af mulige materialiseringer er eksponentielt voksende med antallet af
skemaer. Derfor, har vi udviklet en rådgiver der frigør databaseadministratoren for at beskæftige sig
med komplekse ydeevne karakteristikker ved at foreslå den optimale materialisering af skemaer for
en givet arbejdsbelastning på få sekunder. Denne optimale materialisering forbedre ydeevnen for en
givet arbejdsbelastning med flere størrelsesordner.

Vi kan formelt garantere at multi-skema-version databasesystemet er data uafhængigt, altså, vi viser at
hver eneste schema version opfører sig som en standard enkelt-skema database, uafhængig af den val-
gte fysiske materialisering. Denne garanti gør det nemt at videreudvikle og tilgå databasen som en del
af agil softwareudvikling, fordi all vigtige funktioner fra relationelle databaser, såsom transaktionelle
garantier, er bevaret. Vi er de første til at realisere sådan et multi-skema-version databasesystemer der
muliggøre en løbende udvikling af produktions databaser med fuld understøtning af skema versioner-
ing og formelt garantere data uafhængighed.

Thanks to Kim Ahlstrøm Meyn Mathiassen (AAU) for the translation.
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1
INTRODUCTION

1.1 Motivation

1.2 Contributions



1.1 MOTIVATION

Software systems are omnipresent in our daily life. Examples range from small sensors and whiteware
in the household, over smartphones, smartwatches, smart home devices, or self-driving cars, up to
big enterprise BI solutions. Since software systems are part of our daily life, they are directly exposed
to the constantly changing conditions, requirements, and expectations towards them, which change
just as often as people change their mind or their contexts or their rules. In other words: the only
constant is the change [82].

Software needs to be aware of its current context. For instance, a self-driving car transporting peo-
ple behaves differently than a car transporting construction waste. Smart homes can be in comfort-,
party-, or emergency-mode, and a smart phone presents content differently when used for outdoor
activities compared to a normal business day. Above this physical context, software systems are also
exposed to different logical contexts, which comprise different cultures, countries, legislations, eco-
nomic systems, etc. For instance, a self-driving car from France needs to change from the right to the
left lane after passing the Channel Tunnel. In sum, software systems need to be aware of their situa-
tion and need specialized models and behavior. Software systems are evolved to multiple variants to
serve all the different logical and physical contexts.

Software is not only omnipresent in logical and physical contexts but also over time; productive soft-
ware systems are usually bug-fixed or extended but not replaced as a whole. Following the mantra
"Evolution instead of Revolution" [18, 7], software systems often comprise e.g. decades-old legacy sys-
tems with brand new web front ends or innovative analytics pipelines. For instance, self-driving cars
get upgrades to learn driving in cities instead of highways only, apply new speed limits, or improve
the board-entertainment system. In sum, software systems are evolved over time in order to meet
changing environments, requirements, or legislation and to incorporate new features, fix bugs, or
improve non-functional features like performance, robustness, security, or safety.

The described software systems comprise multiple versions both from the evolution to variants and
their evolution over time. In such software systems, it is very hard to orchestrate the evolution to
new versions of all subsystems, since they are typically run by different stakeholders with different
development cycle and different upgrade policies. For instance, the vendor of the image processing
and traffic detection unit for self-driving cars changes the detection of vehicles in general to a more
fine-grained detection of cars, trucks, motorbikes, and bicycles each having special properties. How-
ever, the vendor still needs to support the plain recognition of vehicles in order to be compatible to
the original simple drive-control. Moreover, not only components of a software system rely on other
versions of subsystems but also human users often decide to defer updates to stay with a familiar ver-
sion a little longer. According to the technology adoption life cycle [16], the majority of users waits
for the early innovators to test a new technology, before adopting it themselves and some laggards
refuse any change as long as possible. In sum, an important requirement for software systems is that
different versions co-exist at the same time.

The majority of software systems is backed by a database to persist all the application’s states and
data. The database is the single point of truth for all applications within the software system and
gives persistence and transaction guarantees. In this position, the database is exposed to the same
evolution as the software system as a whole. Developers evolve the database schema to different
variants to match different physical and logical contexts and developers evolve the database schema
over time to react to changing requirements, to fix bugs, or to add features. However, the database
persists the data in a software system over time, so changes at the database schema level also require
to evolve the currently existing data. In practice, this is a major bottleneck in IT projects; according
to a study from 2011, 31% of the project’s budget is spent for data migration tasks [66].
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Let us summarize the requirements posed on software systems and databases so far: There are differ-
ent variants of subsystems that adapt to the logical/physical context, all these variants evolve indepen-
dently over time, and different versions have to co-exist at the same time. To achieve this, the software
technology community established agile development methods to handle the continuous evolution
and e.g. build management systems or software product lines to handle variants. Another promis-
ing approach is role-based software development, which is a new programming model that praises
adaptation of variants to the current context and their continuous evolution [71, 78, 83, 79, 106].

Agile development methods make big upfront planning obsolete, which significantly speeds up the
development process. While the fast development and management of multiple application versions
is state-of-the-art, the same is hard at the database end, though. Typically, a relational database is used
to persist the data within a software system and to guarantee the ACID properties. Therefore, develop-
ers have to sit down and analyze the information to be stored and carefully design a feasible database
schema, which covers all the important data and ensures consistency. This fully contradicts the ag-
ile development of applications: Data of a running application is persisted according to the designed
schema and changing this schema subsequently endangers the consistency of the already persisted
data. Data is sticky and evolutions with schema changes also require the corresponding consistency-
preserving evolution of the existing data. While the data is stored in exactly one schema version, the
agile and continuous evolution of software systems requires co-existing versions, as discussed before.
So, all schema versions—both the original one and the evolved versions—need to be fully accessible
and represent the same conceptual data set, but in different schema versions. Unfortunately, current
Database Management Systems (DBMSes) do not support the management of different schema ver-
sions properly; there is neither support to easily create, evolve, merge, or drop schema versions, nor
to migrate the database physically to a specific schema version, nor to let them co-exist.

For practitioners, valuable tools, such as Liquibase1, Rails Migrations2, and DBmaestro Teamwork3,
help to manage schema versions outside the DBMS and generate SQL scripts for migrating to a new
schema version. They mitigate data migration costs, but focus on the plain forward schema evolution;
support for e.g. merging different schema versions or for co-existing schema versions is very limited.

To manage different schema versions and let them co-exist in the same database, developers are es-
sentially forced to migrate a database completely in one haul to a new schema version. Keeping older
schema versions or variants alive to continue serving all database clients independently from their
adoption time is very costly and error-prone. Before and after a one-haul migration, manually written
and maintained delta code is required. The term delta code refers to any implementation of prop-
agation logic necessary to run an application with a schema version different to the version used by
the database. Delta code may consist of view and trigger definitions in the database, propagation
code in the database access layer of the application, or ETL jobs for update propagation for a database
replicated in different schema versions. Either way, schema version management, physical migration,
and co-existing schema versions require considerable development resources [66]. In short, handling
different schema versions is very costly and error-prone and forces developers into less agility, longer
release cycles, riskier big-bang migration, etc.

NoSQL systems attempt to provide a more flexible data model and thereby reduce the need for evolv-
ing the database in the first place [84]. Common solutions are role-based DBMSes like RSQL [70, 71],
document stores like MongoDB [32] and CouchDB [9], key-value-stores like Amazon’s Dynamo [44],
wide-column stores like Google’s BigTable [29] and Cassandra [81], etc. They all structure their data
and this structure will evolve eventually [82, 102]—evolving a NoSQL store is typically even more
cumbersome as the schema information is often spread out in the whole code.

1http://www.liquibase.org/
2http://guides.rubyonrails.org/migrations.html
3http://www.dbmaestro.com/
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The consistency, integrity, and durability of a company’s business data is just as mission critical as a
high performance for providing this data. Relational databases provide all these features in a simple
and robust manner—at least for common single-schema databases. This does not include the support
of multiple schema versions within one database: Applyingmanually written delta code, to e.g. realize
co-existing schema versions, breaks the robustness, endangers the data’s correctness, and negatively
impacts the performance. The current manual solutions are expensive and error-prone and call for
a more sophisticated support of database evolution within the DBMS. Researchers are well aware of
this research potential and published a large body of literature [98, 99, 97, 87] surveying the need and
promising solution approaches for database evolution support.

We envision multi-schema-version database systems. Such DBMSes inherently support the evo-
lution of databases, particularly the creation/evolution, management, and deployment of different
schema versions, to keep the pace with flexible and agile software development. New schema ver-
sions are evolved from existing ones using a simple and intuitive Database Evolution Language (DEL).
A DEL provides Schema Modification Operations (SMOs) that evolve both the schema and the data
in intuitive and consistent steps, like e.g. adding a column or partitioning a table. To manage the
set of different schema versions, we envision an easy-to-use Schema Versions Management Language
(VML) to create, drop, and merge schema versions, to specify the degree of synchronization between
schema versions, and to migrate a database physically. Particularly, multi-schema-version database
systems allow a single database to have multiple co-existing schema versions that all can be accessed
at the same time. New schema versions become immediately available. Applications can read and
write data through any schema version concurrently; writes in one version are reflected in all other
versions but each schema version itself behaves like a regular single-schema database. Old schema
versions can be easily dropped without losing any data that is visible in other schema versions. Fur-
thermore, the database administrator (DBA) can easily configure the primary materialization of the
data; for convenience multi-schema-version database systems should also equip the DBA with an ad-
viser that proposes an optimized materialization for the current workload. Changing the physical
materialization of the co-existing schema versions does not affect the availability of any schema ver-
sion but may significantly speed up query processing.

The envisioned DBMS-integrated database evolution support completely eliminates the need to write
a single line of delta code and thereby makes database evolution and migration just as agile as appli-
cation development but also as robust as traditional database development. Within this thesis, we
focus on relational multi-schema-version database systems, since relational databases are very well-
established and the de facto standard for data management with a wide range of powerful features
and tool support. Nevertheless, the need for multi-schema-version database systems also emerges for
all other kinds of structured data management—we leave the respective adaption of our concepts for
future work.

1.2 CONTRIBUTIONS

In this thesis, we present the concepts of InVerDa (Integrated Versioning of Databases), a system
that realizes the envisioned multi-schema-version database system. InVerDa lets developers create
multiple schema versions within the same database. New schema versions are created from scratch,
derived from existing ones using a comprehensive and formally sound DEL, or created by merging
two existing schema versions. Further, InVerDa allows to configure the degree of data propagation
between schema versions as well as to migrate and optimize the physical database schema. The under-
lying DEL, which we call BiDEL (Bidirectional DEL), is relationally complete and bidirectional, which
facilitates the creation of evolved schema versions and the propagation of data accesses between co-
existing schema versions within the same database. Alternatively, developers can create new schema
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versions by merging existing ones. For this purpose, we present miX (semi-automatic consolidation
algorithm), which uses the rich semantics of BiDEL to semi-automatically merge the intentions of
evolutions to different schema versions. The key for supporting multiple schema versions in a multi-
schema-version database system is to decouple the physical table schema from the availability of the
logical schema versions. We create a solid formal basis, showing that the physical data can bemanaged
independently of the logical schema versions: no matter how often the developers or DBAs evolve and
change the database, each schema version acts like a full-fledged single-schema database and no data
is ever lost, so all the important features and characteristics of relational databases are maintained.
Our detailed contributions are:

Architectural blueprint for system integration To the best of our knowledge, we are the first to
present end-to-end support for co-existing schema versions in a multi-schema-version database
system. InVerDa provides developers and DBAs with an intuitive interface to write and execute
evolution/migration scripts and automatically generate all required delta code to manage and per-
sist multiple schema versions at the same time. We show how to integrate the InVerDa concept
into an existing DBMS by reusing existing database functionality as much as possible. (Chapter 2)

Relational complete database evolution language We provide a formal definition of the seman-
tics of BiDEL’s SMOs as well as an SQL-like syntax. We formally evaluate the relational com-
pleteness of BiDEL by showing that all operations of the relational algebra can be expressed with
BiDEL. (Chapter 4)

Bidirectional database evolution language We introduce a bidirectional extension for BiDEL,
which enriches the SMOs’ semantics to translate data accesses between schema versions both for-
wards and backwards. We show that BiDEL requires orders of magnitude less code than evolutions
and migrations manually written in SQL. (Chapter 4)

Semi-automatic variant co-evolution We realize semi-automated variant co-evolution based on
BiDEL, which allows to create a new schema version by merging the intentions of two existing
schema versions. (Chapter 5)

Co-existing schema versions InVerDa generates delta code from BiDEL-specified schema evo-
lutions to allow reading and writing on all co-existing schema versions, each providing an indi-
vidual view on the same shared data set. Each schema version is a full-fledged database schema,
which transparently hides the versioning from the user. In the evaluation, we show that delta code
generation is really fast (<1 s) and the generated delta code shows query performance comparable
to handwritten delta code. (Chapter 6)

Data independence for co-existing schema versions All co-existing schema versions are fully
accessible and independent of the physical materialization, which can be changed by the DBA
and may also include redundancy. With a single-line migration command, the DBA can instruct
InVerDa to run the physical data movement as well as the adaptation of all involved delta code.
In any case, we formally evaluate and guarantee that each schema version behaves like a regular
single-schema database. In the evaluation, we show that this data independence can be used to
achieve performance improvements by orders of magnitude. (Chapter 6)

Adviser for optimization of physical table schema InVerDa allows to change the materializa-
tion to any potentially redundant subset of the evolution history. With growing evolution histories
and diverse workload mixes it becomes increasingly complex for the DBA to determine the opti-
mal physical materialization. To this end, InVerDa automates this task: the DBA merely triggers
InVerDa to analyze the current workload and propose an optimized materialization, which can
then be confirmed by the DBA to actually run the physical migration. (Chapter 7)
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In the remainder of this thesis, we first discuss related work in Chapter 3. Afterwards, we present
two ways to create new schema versions within the database: first by evolving an existing schema
version with BiDEL in Chapter 4, and second by merging two existing schema versions in Chapter 5.
Having multiple—potentially co-existing—schema versions within one database raises research ques-
tions on how to physically store the data and guarantee correctness for each single schema version.
We answer those questions in Chapter 6 by exploiting BiDEL’s bidirectionality for full data indepen-
dence: the DBA can freely move the data along the schema version history and all schema versions
stay fully alive. In chapter 7, we analyze the DBA’s search space of physical materialization in detail
and present a workload-dependent adviser. We apply InVerDa in many specific database evolution
scenarios in Chapter 8 and discuss to which extent InVerDa is already a feasible solution and identify
open promising research questions, before concluding the thesis in Chapter 9.
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In this chapter, we specify the goal of multi-schema-version data management based on a detailed
requirement analysis and we derive a suitable architecture for InVerDa, which is our multi-schema-
version database system. Therefore, we analyze typical evolutions in software systems in Section 2.1
and derive general requirements for agile database development. This serves as a basis for a detailed
description of the envisioned multi-schema-version database systems in Section 2.2. Afterwards, we
introduce the envisioned functionality of InVerDa with the help of an exemplary user scenario in
Section 2.3. The envisioned database evolution support requires significant extensions to the DBMS
architecture as, e.g., there is currently no mean for the management of multiple schema versions. To
this end, we use the collected requirements and the envisioned functionality to extend a DBMS archi-
tecture for InVerDa and thereby facilitate multi-schema-version data management in Section 2.4.

2.1 EVOLVING SOFTWARE SYSTEMS

Software systems evolve continuously. This is a widely accepted fact these days but has already been
formulated as laws back in the seventies by Meir M. Lehman [82]. These laws are based on the ob-
servation that software systems that solve real-world problems or are used for real-world applications
need to be evolved continuously in order to maintain a high quality. Lehman’s laws state that

• software has to evolve continuously, otherwise its quality appears to decrease,

• software becomes increasingly complex as it evolves, and

• the change rate is nearly constant over the life time of a software system.

These laws have been extensively reality-checked and revised by the research community [48, 122].
In a recent study from 2013, Liguo Yu [122] analyzed open source projects like Apache Tomcat1 and
Apache Ant2 and found basically the same pattern as predicted by Lehman back in 1974. The soft-
ware’s quality (indicated by number of reported bugs) decreases when no effort is spent and can be
kept on a constant level by continuously evolving the software.

Changes of the application layer usually require changes at the database layer and vice versa. In 2013,
Qui analyzed the publicly available evolution history of ten open source projects and confirmed that
70% of all database schema changes are reflected in application code as well. The remaining changes
comprise documentation, indices, etc. Specifically, each atomic evolution step at the database is
connected to 10–100 changed lines of application code, where each database revision comprises two
to five of these atomic changes on average [95]. The database of a software system follows Lehman’s
laws as well—with its own special characteristics. This has been analyzed by Skoulis in 2014 based
on eight open source projects [104]. In contrast to the continuous evolution of software in general,
databases face evolutions in bursts throughout their whole life time. The authors attribute this to
the fact that changing the database schema may break running code and therefore is only applied
if necessary and then in one haul. This greatly underpins the necessity for our envisioned database
evolution support. Further, the growth in complexity is often not observable at the database layer—
instead the size of database schemas increases a lot in early stages but in the analyzed projects it tends
to stabilize after roughly five years. According to the authors, the database is still changed frequently
in the latter phase, but developers are more careful and prefer to perform slighter changes as the
maintenance of surrounding code gets increasingly complex and error-prone—again an observation
calling for agile database evolution with multi-schema-version database systems.

1http://tomcat.apache.org/
2http://ant.apache.org/
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Figure 2.1: Statistics about database schema evolution and database schema complexity.

As a prerequisite for identifying the correct and most important requirements for such multi-schema-
version database systems, we dive into a deeper analysis of database evolution and figure out typical
evolution pattern within the database. To this end, we analyze 171 schema versions of the evolution
of Wikimedia3, the backend of e.g. Wikipedia4. Thanks to Carlo A. Curino et al. [40], this evolution
is easily available in the web and already analyzed to a large extent—however, he had a different focus
and different definitions of database evolution steps. Hence, we conduct the analysis again but back
it up with Curino’s findings as well as with another study of eight open source projects performed by
Vassiliadis et al. in 2015 [113].

Figure 2.1(a) shows the number of new schema versions per month between December 2003 and
September 2007 [40]. As can be seen, the database schema continuously evolves; there are multi-
ple new schema versions nearly every month throughout the whole life time. Further, Figure 2.1(b)
shows the number of atomic schema modification operations (SMOs) per new schema version, so the
schema is frequently changed. An SMO may e.g. add or delete a table/columns or partition or join
tables. In fact, 55% of all evolutions contain SMOs while the remaining evolutions change documen-
tation or indices; hence, evolving the database schema and the stored data is done frequently during
software development. There are 209 SMOs in total (65% additive, 14% subtractive, 21% changing).
As can be seen in Figure 2.1, the complexity of the database schema increases over time. In the Wiki-
media example, the number of tables stabilizes temporarily after 120 schema versions (Figure 2.1(c))
while the number of columns continuously grows (Figure 2.1(d)). Thus, at a certain point all relevant
concepts have been represented and merely these concepts are refined further.

3https://www.wikimedia.de/
4https://www.wikipedia.org/
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Figure 2.2: Life duration of non-surviving columns.

Having a deeper look at the life cycle of tables and columns reveals that they are either removed shortly
after their birth or have a high chance to survive, which makes perfect sense since tables and columns
that are around for a while are widely used by application code and therefore hard to remove. In the
Wikimedia example, 12 tables are removed during the first 50 versions of their life—all other 34 tables
survived the sampled evolution. Similar patterns can be observed for columns. Figure 2.2 shows the
age of columns at the moment they are removed. Except of one outlier the 45 non-surviving columns
have been removed within the first 80 versions after their birth; all other 240 columns survived. All
the collected numbers match the findings of Curino et al. [40] and Vassiliadis et al. [113]. As the study
of Vassiliadis covers more projects, there are interesting extensions to our observations: wide tables
have a higher chance to survive, and surviving tables undergo many changes during their life time,
while tables with less changes are more likely to be removed eventually.

In sum, it is essential to continuously evolve the database along with the application. We observed that
the increasing complexity of the schemas induces a higher effort for developers to keep data and code
consistent—hence, we conclude that developers urge for an improved support of database evolution to
replace the error-prone and expensive manual solutions. Developers want evolve a database schema
to a new version just as easy and agile as they can evolve application code. The agile evolution of
production databases particularly includes the corresponding evolution of already existing data. In
order to prevent from conflicts with other developers, users, and DBAs, all created schema versions
should be available in the database at the same time. Developers want to test and further evolve
new schema versions and alsomanage the schema versions, which might include to merge different
schema versions or to drop unused versions. Users want to run applications in their preferred versions,
so multiple schema versions have to co-exist in the database, but all should represent the same
conceptual data set. Finally, DBAs want to independently manage the physical materialization of
all the schema versions, since it is not acceptable that developers have to rewrite their applications
or users cannot use their application any longer just because the DBA performs slight changes on
the physical schema. In contrast, the current best practice is that big teams of developers and DBAs
carefully implement all the kinds of evolution and migration between schema versions and execute
them in big-bang migrations hoping that no data will be lost and all applications continue running,
which consumes vast development resources and is highly error-prone [27]. While all the discussed
features would improve the agile database development, theACID properties of traditional relational
databases are not negligible and have to be guaranteed in multi-schema-version database systems at
any time. This particularly means that every single schema version behaves like a full-fledged single-
schema database—a single application does not notice that its data is managed in a multi-schema-
version database system.
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Figure 2.3: Envisioned multi-schema-version database system.

2.2 MULTI-SCHEMA-VERSION DATABASE SYSTEMS

Multi-schema-version database systems facilitate multi-schema-version data management. Theyman-
age multiple co-existing schema versions within one database to support the continuous evolution of
the database schema and the underlying data as shown in Figure 2.3. Therefore, multi-schema-version
database systems provide an evolution language that allows evolving an existing schema version to a
new one just as fast as agile developers evolve an application. Each schema version consists of a set
of table versions and the evolution language evolves these table versions in the given schema version
to new table versions in the new schema version. Multi-schema-version database systems store the
evolution of the table versions explicitly within the database catalog. A schema version is a subset
of all table versions in this catalog—table versions that do not evolve between schema versions are
shared among those schema versions.

Multi-schema-version database systems expose the data throughmultiple schema versions, while each
single schema version can be accessed by applications just like a regular single-schema database.
Hence, multi-schema-version database systems ensure that the transaction and consistency guaran-
tees still hold for each single schema version. After developers create a new schema version in the
multi-schema-version database system, this new schema version becomes immediately available to
the applications and co-exists with all other schema versions. Data written in any schema version
is correctly visible when reading the respective schema version again; further the write operation is
propagated to all other schema versions along the schema version history in a best-effort manner. To
facilitate the meaningful propagation of data between all schema versions both forwards and back-
wards, the evolution language needs to be bidirectional.

Having multiple schema versions upon one data set naturally raises the challenge to find a good phys-
ical materialization that serves all schema versions and provides the best overall performance for a
given—potentially changing—workload. Having a materialization tailored to the current workload
and adjusted when the workload mix changes, calls for full data independence: Multiple logical
schema versions that are accessible for the applications represent the same conceptual data set (logical
data independence) and the physical materialization of this conceptual data set can be freely changed
(physical data independence) without limiting accessibility of any logical schema version. Hence, the
logical and physical data independence for databases defined within the ANSI-SPARC architecture [1]
have to be provided by a multi-schema-version database systems, as well.
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TasKy TasKy2Do!

Task author task prio
1 Ann Organize party 3
2 Ben Learn for exam 2
3 Ann Write paper 1
4 Ben Clean room 1

ToDo author task
3 Ann Write paper
4 Ben Clean room

Task task prio fk_author
1 Organize party 3 5
2 Learn for exam 2 6
3 Write paper 1 5
4 Clean room 1 6

Author name
5 Ann
6 Ben7 Ben Organize Party

7 Ben Organize Party 1
7 Organize Party 1 6

8 Zoe Visit Ben 2
8 Visit Ben 2 9

9 Zoe

Figure 2.4: The exemplary evolution of TasKy.

Multi-schema-version database systems need only a subset of the table versions to be materialized.
Generally speaking, read operations are fastest when the accessed table versions are materialized.
The further away the next materialized table version, the higher the overhead for reading. The obvi-
ous solution of materializing every single table version implies a high overhead for writing and may
hit memory limits, hence an adviser tool to solve the challenging optimization problem to find the
best materialization for the current workload could be a helpful extension for multi-schema-version
database systems. Since a chosen subset of all table versions does not necessarily cover the whole
conceptual data set, the multi-schema-version database system also identifies and persists the other-
wise lost information; this auxiliary information is persisted in auxiliary tables along the material-
ized table versions. The multi-schema-version database system needs to guarantee that the managed
auxiliary tables cover the whole conceptual data set and no data is lost. Putting it all together, multi-
schema-version database systems allow creating, managing, and accessing multiple logical schema
versions upon one shared conceptual data set with an independent physical materialization.

2.3 USER STORY – THE TASKY EXAMPLE

InVerDa is a multi-schema-version database system developed in this thesis. We will use the running
example of a task management software called TasKy (Figure 2.4) to illustrate both the requirements
and our solution InVerDa. TasKy is a desktop application which is backed by a central database. It
allows users to create new tasks as well as to list, update, and delete them. Each task has an author and
a priority between 1 and 3. Tasks with priority 1 are the most urgent ones. The first release of TasKy
stores all its data in a single table Task(author,task,prio). At this point, there is only one existing
schema version, hence it matches exactly the physical table schema without any delta code. TasKy

has productive go-live and users begin to feed the database with their tasks.

Creating new schema versions: TasKy gets widely accepted and after some weeks it is extended
by a third-party phone app called Do! to allow users accessing their most urgent tasks anywhere with
their mobile. However,Do! expects a different database schema than TasKy is using. TheDo! schema
consists of a table Todo(author,task) containing only tasks of priority 1. Obviously, the initial schema
version needs to stay alive for TasKy, which is broadly installed. Traditionally, we would use a view
to create an external schema fitting Do!. Since views are not necessarily updatable this likely also
includes writing triggers for the propagation of writes inDo! back to what TasKy sees in the database.
InVerDa greatly simplifies the job as it handles all the necessary delta code for the developer. The
developer merely executes the following BiDEL script to create the new schema version Do!:
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1: CREATE CO-EXISTING SCHEMA VERSION Do! FROM TasKyWITH
2: PARTITION TABLE Task INTO Todo WITH "prio=1";
3: DROP COLUMN prio FROM Todo DEFAULT "1";

It instructs InVerDa to derive a new schema version Do! from the schema version TasKy by creating
a horizontal partition of Task with prio=1 and dropping the priority column. Executing the script
creates a new schema including the view Todo as well as delta code for propagating data changes.
When a user inserts a new entry into Todo, this will automatically insert a corresponding task with
priority 1 to Task in TasKy. Equally, updates and deletions are propagated back to the TasKy schema.
Hence, the TasKy data is immediately available to be read and written through the newly incorporated
Do! app by simply executing the above BiDEL evolution script. At this point InVerDa has already
simplified the developer’s job significantly.

Rolling upgrade: Assume the TasKy application is further refined to make it more useful for its
users. For the next release TasKy2, it is decided to normalize the table Task and store the authors
in a separate Author table. For a stepwise roll-out of TasKy2, the old schema of TasKy has to remain
alive until all clients have been updated. Again, InVerDa does the job after the developer executes
the following BiDEL script:
1: CREATE CO-EXISTING SCHEMA VERSION TasKy2 FROM TasKyWITH
2: DECOMPOSE TABLE Task INTO Task(task,prio), Author(author) ON FK fk_author;
3: RENAME COLUMN author IN Task TO name;

InVerDa creates the new schema version TasKy2 and decomposes the table version Task to separate
the tasks from their authors while creating a foreign key, called fk_author, to maintain the depen-
dency. Additionally, the column author is renamed to name. InVerDa generates delta code to make
the TasKy2 schema immediately available. Write operations to any of the three schema versions are
propagated to all other schema versions. Figure 2.4 shows two examples: First, Ben uses the mobile
Do! app to note that he will organize a party. This todo item is also visible in the two desktop versions
with the priority 1. Second, Zoe uses the initial TasKy application to note down that she will visit
Ben. When she moves to the new TasKy2 application this entry will be visible as well; Zoe is created
as a new author and linked to the added task using the foreign key fk_author. Further, assume user
Ann has already upgraded to TasKy2 and changes the priority of Organize party to 1, then this task will
immediately occur in the Do! app on her phone. After the party, Ann deletes this entry using Do!,
which also removes this task from the other schema versions. InVerDa generated three co-existing
schema versions for us and any write operation on any schema version is propagated to all other ver-
sions. The developer merely defines the evolution between the schema versions with BiDEL. BiDEL’s
SMOs carry enough information to generate all the required delta code automatically without any
further interaction of the developer.

Schema version management: Having multiple schema versions within one database calls for
means to manage them by e.g. merging or dropping them. After the successful roll-out, all users
are now using either the new desktop application TasKy2 or the mobile application Do!, so we can
simply drop the former schema version TasKy from the database with a single line of code:
1: DROP SCHEMA VERSION TasKy;

As a result, the schema version TasKy cannot be accessed or evolved any longer and InVerDa can use
this knowledge to generate more efficient delta code.

Assume the developers of theDo! application want to co-evolve their schema with the evolution from
the original TasKy to the new TasKy2. Traditionally, they would sit down, analyze the changes made
from TasKy to TasKy2, try to apply the same changes to theDo! schema version, and finally derive the
new co-evolved schema version DoTwo!. This process is cumbersome and error-prone and calls for
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convenient automation—however, using traditional SQL for database evolution hides the intention
of the developers between the lines of SQL-DDL and SQL-DML statements and makes automation
of the co-evolution process very hard. In contrast, BiDEL’s SMOs capture the developers’ intentions
and facilitate automation in the first place. InVerDa provides the tool miX, which allows developers
to simply execute the following statement to derive the co-evolved schema version DoTwo!:
1: CREATE CO-EXISTING SCHEMA VERSION DoTwo! FROM Do! AND TasKy2;

Upon this statement InVerDa derives and executes the following sequence of BiDEL SMOs:
1: CREATE CO-EXISTING SCHEMA VERSION DoTwo! FROM Do! WITH
2: DECOMPOSE TABLE Todo INTO Todo(task), Author(author) ON FK fk_author;
3: RENAME COLUMN author IN Todo TO name;

The new schema version DoTwo! only contains those tasks with the highest priority and stores them
separated from their authors. The co-evolution is semi-automatic—if there are ambiguities, InVerDa’s
miX asks the developers—however, in our scenario the versions can be merged deterministically. In
sum, InVerDa greatly simplifies a database developer’s life. It facilitates convenient SMO-based evo-
lution from existing to new schema versions that all co-exist within the same database. InVerDa also
supports the developers to manage the multitude of schema versions and e.g. drop them or merge
them with miX. In the evaluation, we show that this saves lines of code in the orders of magnitude—
hence InVerDamakes database evolution more robust and more agile.

Physical data migrating: The data is primarily stored in a physical table matching the Task table of
the initial schema version TasKy. All other schema versions are implemented with the help of delta
code. The delta code introduces an overhead on read and write accesses to new schema versions.
The more SMOs are between schema versions, the more delta code is involved and the higher is the
overhead. In the case of the task management system, the schema versions TasKy2,Do!, andDoTwo!

have delta code towards the physical table Task. Since, the initial schema version TasKy has already
been dropped from the database and the majority of all users runs the new desktop application TasKy2
and the schema versionsDo! andDoTwo! are still accessed but merely by a minority of users, it seems
appropriate to migrate data physically to the table versions of the TasKy2 schema, now. Traditionally,
developers would have to write a migration script, which moves the data and implements new delta
code for all schema versions that have to stay accessible. All that can accumulate to some hundred or
thousand lines of code, which need to be tested intensively in order to prevent it from messing up our
data. With InVerDa, this task can be solved with a single line:
1: MATERIALIZE TasKy2;

Upon this statement, InVerDa transparently runs the physical data migration to schema TasKy2,
while maintaining transaction guarantees and updating the involved delta code of all schema versions.
No developers need to be involved. Since BiDEL’s SMOs are bidirectional, hence agnostic to the
materialization, it is possible to generate the new delta code without any further interaction of any
developer. All schema versions stay available; read and write operations are merely propagated to a
different set of physical tables after the migration.

Adviser for physical migration: InVerDa is not limited to physically migrating to one chosen
schema version. In fact, we can instruct InVerDa to materialize practically any set of table ver-
sions, which are e.g. in different schema versions or even in-between schema versions. While this
can include redundancy to speed up read performance, InVerDa validates that no data will be lost.
On this more fine grained level, there is a huge space of possible physical table schemas, which is
hard to understand and utilize for DBA. Therefore, InVerDa comes with an adviser that takes the
current workload mix across all schema versions and proposes an optimized set of table versions to
store physically. With the click of a button, the DBA execute the respective physical migration.

In sum, InVerDa allows the user to continuously use all schema versions, it allows the developer
to continuously develop the applications, and it allows the DBA to independently adapt the physical
table schema to the current workload or even let InVerDa do this job.
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Figure 2.5: Architecture of current and envisioned DBMS.

2.4 ARCHITECTURE OF INVERDA

The requirements of multi-schema-version database systems are not satisfied by current DBMSes.
Figure 2.5(a) depicts the rough architecture of a state-of-the-art relational DBMS, which we will ana-
lyze to propose an extended architecture for the management of multiple schema versions. Currently,
database developers use SQL-DDL statements to define the database’s schema. Applications use SQL-
DQL and SQL-DML statements to read and write data within this specified schema. The schema
catalog maps database objects from given statements to the actual physical storage and the query ex-
ecution engine determines an efficient access plan for executing the query on the physical tables in
order to respond fast and correctly. Whenever the database developers evolve the database, SQL-DDL
is used to evolve the schema and SQL-DML to evolve the currently existing data accordingly. When-
ever, the DBA wants to change the physical table schema, again SQL-DDL statements are used to
change the schema and SQL-DML statements to migrate the data accordingly. This traditional ap-
proach separates the evolution of the schema (SQL-DDL) from the evolution of the data (SQL-DML);
the intention of the developers or of the database administrator is lost between the lines and when-
ever one of them evolves the database, the work of the respective other gets most likely corrupted
or invalidated. With this state-of-the-art setup, creating and managing multiple co-existing schema
versions or optimizing the physical table schema becomes an error-prone and expensive challenge.

Multi-schema-version database systems, such as InVerDa, let the database developers and the DBA
work independently on their respective tasks and provide robust database evolution support for all of
them. The database developers create and manage table versions in logical schema versions, while
the DBA can independently migrate the database physically to a set of potentially redundant table
versions with the click of a button. This is not supported by current DBMSes, as their architecture
is restricted to one schema version, which is directly mapped to physical tables in the storage. The
developers and the DBA work on the same database objects and cannot evolve them independently.

InVerDa’s architecture is shown in Figure 2.5(b). InVerDa simply builds upon the existing relational
DBMSes and adds schema evolution functionality to support multiple schema versions at the same
time. InVerDa’s functionality is exposed via a Version Management Language (VML) which is two-
layered: (1) the logical VML (lVML, Figure 2.6) allows developers to create multiple schema versions
and manage e.g. the synchronization between them and (2) the physical VML (pVML, Figure 2.7)
allows the DBA to physically manage thematerialization for all co-existing schema versions within the
database. The lVML and the pVML span a space of possible states a multi-schema-version database
system can have. In the following we discuss the two dimensions of this state space in more detail.
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1: CREATE (CO-EXISTING | HOT COPY | COLD COPY)
SCHEMA VERSION namenew [FROM nameold]
WITH SMO1; . . . SMOn;

2: CREATE (CO-EXISTING | HOT COPY | COLD COPY)
SCHEMA VERSION namenew FROM name1 AND name2;

3: ALTER SCHEMA VERSION name TO (HOT COPY | COLD COPY);
4: DROP SCHEMA VERSION versionn;

(a) lVML syntax
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Figure 2.6: Logical Version Management Language (lVML).

lVML: The lVML statements as shown in Figure 2.6(a) allow to create, evolve, and drop logical
schema versions in the multi-schema-version database system as well as to set the degree of syn-
chronization between all managed logical schema versions. For the creation and evolution of schema
versions, the lVML statement (Line 1 in Figure 2.6(a)) takes a sequence of SMOs from a DEL called
BiDEL. When creating a new schema version as an evolution from an existing schema version, de-
velopers need to specify the degree of synchronization between the old and the new schema version.
There are three options and possible transitions between them as can be seen in Figure 2.6(b): (1)
co-existing schema versions working on the same shared data set with write operations being prop-
agated both forwards and backwards along the schema version history, (2) a hot copy with changes
being propagated forwards from the old schema version to the new version but not vice versa, and (3)
a cold copy with the new schema version being merely a copy of the old version’s data at evolution
time but no write operations are propagated in any direction at any time. Developers have to set the
degree of synchronization together with the actual evolution to the new schema version but can also
loosen it subsequently.

When the developers choose the hot or the cold copy, the new schema version becomes available as
soon the data is physically copied to this new schema version. When the developers choose the co-
existing schema versions option, the new schema version becomes immediately available and co-exists
with all other schema versions—the data remains physically in its current state and the new schema
version is merely created virtually. Write operations in any schema version are immediately reflected
in the other schema versions as well. For data access in multi-schema-version database systems, the
applications simply define the schema version to access when connecting to the database and can then
use it like a full-fledged single-schema database.

Subsequently, the developers can alter the degree of logical synchronization (Line 3 in Figure 2.6(a))
by specifying the target schema version of the respective evolution and the intended propagation strat-
egy. Please note that the degree of synchronization can only be reduced (cf. Figure 2.6); whenever the
synchronization has been broken in one direction, we cannot guarantee consistency across schema
versions any longer, so it is e.g. not possible to safely return to co-existing schema versions after the
two schema versions have been independently updated cold copies. Of course, a reconciliation strat-
egy is imaginable but not trivial: Assume that updates to the tasks in our TasKy example (Figure 2.4
on page 28) are not propagated between the schema versions and the priority of Ann’s first task has
been updated from 3 to 2 in TasKy but to 1 in TasKy2. When reinforcing bidirectional propagation
for co-existing schema versions, naïvely we can either decide on one value that is used in both schema
versions or add the ambiguity to the auxiliary information. While the first solution breaks the data in-
dependence, the latter makes any subsequent write operation ambiguous as well. The future research
targeting at the reconciliation problem is promising but out of the scope of this thesis.
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The lVML statement to evolve schema versions (Line 1 in Figure 2.6(a)) takes a sequence of BiDEL
SMOs to describe this evolution and define the data propagation between the created schema versions
in a multi-schema-version database system. BiDEL provides a comprehensive set of bidirectional
SMOs that evolve up to two source table versions to up to two target table versions. Each table version is
created by exactly one incoming SMO and can be further evolved by arbitrary many outgoing SMOs. The
SMOs allow to create or drop or rename both tables and columns, and to split and merge tables both
vertically and horizontally. Specifically, BiDEL offers the following SMOs to describe the evolution of
a database schema version:

• CREATE TABLE, RENAME TABLE, DROP TABLE

• ADD COLUMN, RENAME COLUMN, DROP COLUMN

• DECOMPOSE, JOIN

• PARTITION, MERGE

The first six operations are generally known from standard SQL-DDL and follow the same semantics.
The DECOMPOSE SMO vertically splits a source table version by distributing its columns into two new
target table versions—columns can also occur in both or in no target table version. To preserve the
link between split tuples, the DECOMPOSE SMO also provides to generate a new foreign key between the
two resulting tables. Its inverse SMO is the JOIN SMO as known from standard SQL-DQL. Further,
the PARTITION SMO moves the tuples of the source table version to two new table versions according
to specified selection criteria—the criteria may also overlap and do not necessarily cover all tuples of
the source table. Its inverse SMO is the MERGE SMO, which merely unites the tuples of two source
table versions into a new target table version.

We focus the considered expressiveness of BiDEL on the evolution of tables with the relational al-
gebra; the evolution of further artifacts like constraints and functions is promising future work [37].
Our DEL BiDEL is relationally complete—it allows to specify any forward evolution which can be
expressed with a relational algebra expression—as we will formally evaluate in this thesis.

Another unique feature of BiDEL is its bidirectionality. Whenever, developers need backward prop-
agation of data e.g. for co-existing schema versions, the developers have to provide additional argu-
ments to specify the backward propagation of data. These arguments are optional since backward
propagation is not required for hot and cold copies, but they are mandatory for bidirectional propa-
gation. Bidirectional SMOs are the essential prerequisite for co-existing schema versions within one
database. The arguments of each BiDEL SMO gather enough information to facilitate the automatic
generation of delta code for the full propagation of reads and writes between schema versions in both
directions. For instance, DROP COLUMN requires a function f that computes the value for the dropped
column if a tuple, inserted in the new schema version, is propagated back to an old schema version,
where the dropped column still exists.

The lVML does not only allow creating new schema versions but also to merge two existing schema
versions semi-automatically—e.g. two branches developed by different teams (Line 2 in Figure 2.6(a)).
For this purpose, InVerDa contains the miX tool. Thanks to the SMO-specified evolutions, the de-
velopers’ intention is kept explicitly which facilitates miX to semi-automatically merge the intentions
of two different evolutions in the first place. Further, schema versions can be dropped if not used
any longer, which drops the schema version itself but maintains the table versions if their data is still
needed in other versions (Line 4 in Figure 2.6(a)).
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1: MATERIALIZE {nameversion}+;
2: MATERIALIZE {(nametable, revisiontable)}+;
3: MATERIALIZE AUTOMATICALLY [LIMIT bound];

(a) pVML syntax

Virtualized

Materialized

Redundant

bidirectional     propagation

Limited     propagation

(b) pVML state chart

Figure 2.7: Physical Version Management Language (pVML).

pVML: InVerDa’s pVML commands allow the DBA to change the physical data representation. Co-
existing schema versions, which do bidirectional propagation of data, maintain one conceptual data
set and the DBA can choose its materialization. The syntax of the pVML is shown in Figure 2.7(a);
basically the DBA canmanually choose to materialize a set of schema versions (Line 1 in Figure 2.7(a))
or a set of table versions (Line 2 in Figure 2.7(a)) or the DBA can instruct InVerDa to automatically
determine the best materialization for the current workload and apply it (Line 3 in Figure 2.7(a)).
From the view point of a single evolution between table versions or schema versions, the data can be
primarily stored in the source, or in the target, or in both versions; the respective state space and the
pVML transitions are shown in Figure 2.7(b).

By default data is materialized only in the source schema version. Assuming a table is partitioned in a
schema evolution step, the data remains physically unpartitioned—the evolution is called virtualized.
With a migration command the physical data representation of this evolution can be changed so that
the data is also physically partitioned—the evolution is called materialized then. Further, InVerDa
allows redundant materialization, so the data can be stored both unpartitioned at the source side
and partitioned at the target side—the evolution is called redundantly materialized then. Since not
all evolutions are information preserving, InVerDa uses auxiliary tables that store the otherwise lost
information. These auxiliary tables are initially empty but fed with information whenever needed to
not lose data in the virtualized schema version—e.g. the values of an added column.

Please note that InVerDa is not limited to the materialization of one or two concrete schema versions.
In multi-schema-version database systems, it is feasible to store the data non-redundantly or partial
redundantly in slices of the evolution history and all other versions are virtually provided based on
delta code and auxiliary tables. Basically, we can materialize a subset of all table versions, which spans
a very large solution space of possible materialization. Given the set of table versions to materialize,
InVerDa automatically adds further table versions that are required to cover the whole data set at least
once. Assume, we materialize one schema version with one table, but another schema version has an
additional second table that was created by a CREATE TABLE SMO, InVerDa has tomaterialize this table
version as well. For each table version, a valid materialization ensures that there is a propagation
path through the SMOs that ends up at materialized table versions. Internally, InVerDa translates
the set of materialized table versions to materialization states of SMOs: for each SMO there is one
direction—forwards or backwards—that leads to the closest materialized table versions.
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Further, the pVML allows the DBA to instruct InVerDa to propose an optimized materialization for
the current workload, which calls the adviser that takes the current workload and the schema versions
catalog as input and returns a feasible materialization. The DBA can confirm the proposed materi-
alization and instruct InVerDa to physically migrate the database accordingly. Without any further
interaction of the developers, the physical table schema is optimized for the current workload and all
schema versions continuously co-exists.

The full data independence is exclusively realized for co-existing schema versions with bidirectional
data propagation between these schema versions. In contrast, both the hot and the cold copy separate
the data sets of the two schema versions and do not guarantee any consistencies between them. Thus,
data is replicated at evolution time and updated (partly) independent afterwards. There is no freedom
in the materialization, but we materialize every copy individually. Obviously, we could do this lazily
by storing merely the delta when data is changed in the non-physical version; however, this is a typical
data versioning problem in temporal databases with sophisticated solutions in the literature [119, 80,
120] that are orthogonal to our work and thereby out of scope.

Figure 2.8 illustrates possible combination of the discussed logical states (Figure 2.6(b)) and physical
states (Figure 2.7(b)) for the evolution from one source to one target version. With the pVML, the
DBA has the freedom to change the physical table schema given the developers decided for co-existing
schema versions. Whenever, the developers use lVML statements to switch to a limited propagation
between the schema versions (hot or cold copy), we first need to ensure that data is replicated to both
schema versions and this cannot be undone ever after. In sum, the DBA uses pVML to manage the
physical table schema independently of the logical schema version management done by the database
developers with lVML—so InVerDa realizes full data independence in the context of multi-schema-
version database systems. It allows to physically migrate the database to one or multiple redundant
table versions. When running such a physical migration, the availability of the logically co-existing
schema versions is not affected at any time and all involved delta code is automatically generated from
the given SMOs without any developer being involved.
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System integration: In our prototypical implementation of InVerDa5, we create the co-existing
schema versions with views and triggers in a common relational DBMS. InVerDa interacts merely
over common DDL and DML statements, data is stored in regular tables, and database applications
use the standard query engine of the DBMS. To process data accesses of database applications, only
the generated views and triggers are used and no InVerDa components are involved. The employed
triggers can lead to a cascaded execution, but in a controlled manner as there are no cycles in the
version history. InVerDa’s components are only active during database development and migrations.
Thanks to this architecture, InVerDa easily utilizes existing DBMS components such as physical data
storage, indexing, transaction handling, query processing, etc. without reinventing the wheel. Please
note that InVerDa is by no means limited to generating views and triggers. Alternatively, the con-
cepts of InVerDa could also be used to generate delta code e.g. within the application or as optimized
execution planes within the database.

As can be seen in Figure 2.5(b) on page 31, InVerDa adds three components to the DBMS to facilitate
multi-schema-version data management: (1) The delta code generation creates views and triggers to
expose schema versions based on the current physical data representation. Delta code generation
is either triggered by developers issuing lVML commands to create a new schema version or by the
DBA issuing pVML to change the physical data representation. The delta code itself are standard
commands of the DBMS’s query engine. (2) The migration execution and optimization orchestrates the
actual migration of data from one physical representation to another and the adaptation of the delta
code. It also contains the adviser for the optimized physical materialization for the current workload.
The data migration is done with the help of query engine capabilities as well. (3) The schema versions
catalog maintains the genealogy of schema versions and is the central knowledge base for all schema
versions and the evolution between them. To this end, the catalog stores the genealogy of schema
versions by means of a directed acyclic hypergraph (T, E). Each vertex t ∈ T represents a table
version. Each hyperedge e ∈ E represents one SMO instance, i.e., one table evolution step. An SMO
instance e = (S, T ) evolves a set of source table versions S into a set of target table versions T .
Additionally, the schema versions catalog stores for every SMO instance the SMO type (decompose,
merge, etc.), the parameter set, and its state ofmaterialization. The schema versions catalogmaintains
references to tables in the physical storage that hold the payload data and to auxiliary tables that hold
otherwise lost information of the not necessarily information preserving SMOs. Each schema version
is a subset of all table versions in the system. At evolution time, InVerDa uses this information to
generate delta code that makes all schema versions accessible. At query time, the generated delta
code itself is executed by the existing DBMS’s query engine—outside InVerDa components.

To sum up, we describe the process for multi-schema-version data management with InVerDa: When
developers execute lVML scripts with BiDEL-specified evolutions, the respective SMO instances and
table versions are registered in the schema versions catalog. The materialization states of the SMOs,
which can be changed by the DBA through migration commands, determine which data tables and
auxiliary tables are physically present or not. InVerDa uses the schema versions catalog to generate
delta code for new schema versions or for changed physical table schemas. The materialization state
determines the way InVerDa generates delta code for each specific SMO: data is either propagated
forwards (SMO is virtualized) or backwards (SMO is materialized). Data accesses of applications are
processed by the generated delta code within the DBMS’s query engine—no InVerDa components
but only standard DBMS artifacts like the generated delta code (views and triggers) are involved to
process data accesses. When developers drop an old schema version that is not used any longer, the
schema version is removed from the catalog. However, the respective SMOs are only removed from
the schema versions catalog as well if they are no longer part of any evolution that connects two
remaining schema versions.

5An interactive online demonstrator is available at www.inverda.de
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Figure 2.9: InVerDa architecture with the TasKy example.

Example: Let us revisit the TasKy example to discuss InVerDa’s three-layered architecture as shown
in Figure 2.9. On the upper logical layer, we have all the three schema versions TasKy, TasKy2, and
Do!. InVerDa creates a separate schema for each version containing updatable views that act like
tables in a standard database schema. On the lower physical layer, a subset of the table versions is
physically stored as standard tables in the database. Finally, the conceptual layer interconnects the
materialized table versions with the table versions in the logical schema versions. This conceptual
layer is a representation of the schema versions catalog containing all table versions as well as all
SMO instances. Any incoming read and write operations are propagated from the respective logical
schema version on which they are issued through the SMOs to the materialized tables. Hence, all
schema versions can co-exist in the multi-schema-version database system and write operation in any
schema version are propagated to the materialized tables plus auxiliary tables making the written data
immediately visible in all other schema versions as well.

Initially, the Task-0 table is exclusively materialized, which makes any access to the TasKy schema
version trivial. In contrast, accessing e.g. the Do! schema version requires to propagate both read and
write operations through the DROP COLUMN and the PARTITION SMOs back to the physical table,
which implies an overhead. Assume 99% of the users use Do!, we can easily increase the overall
performance by moving the physical materialization to the Do! schema version with a single-line
pVML statement. Now, any data access in the Do! schema version can be directly mapped to the
materialized tables which significantly speeds up query processing (4 times faster in our evaluation).
Users that access data in the schema versions TasKy and especially TasKy2 now face a higher overhead
for the additional data propagation. Please note that the bidirectional semantics of BiDEL’s SMOs also
allow redundant materialization, so we could e.g. materialize both schema version Do! and TasKy2

to obtain a high read performance in both schema versions. Hence, InVerDa gives us the freedom to
easily adjust the set of materialized table versions to a changing workload: true data independence.

In sum, the proposed architecture for a multi-schema-version database system satisfies the require-
ments that we derived from the analysis of software and database evolution in Section 2.1. Using the
intuitive evolution language BiDEL, developers can easily create new schema versions that are imme-
diately available. The schema versions catalog keeps track of the evolution between schema versions
and thereby allows to propagate any read or write access between the schema versions. The actual
physical materialization can be freely chosen by the DBA and does not affect the availability of the
co-existing schema versions, still, it might greatly affect the performance for accessing these schema
versions. The ACID properties are guaranteed on every single schema version, so developers and ap-
plications can work on one schema version of the multi-schema-version database system just as on a
regular single-schema database.
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After reviewing the related work in Chapter 3, the scientific contribution of InVerDawill be detailed.
In Chapter 4, we consider the problem of designing a bidirectional evolution language to create and
evolve new schema versions in a multi-schema-version database system. In Chapter 5, we discuss how
to merge existing schema version into a new one with miX. So, we present two means to create new
schema versions in the multi-schema-version database system. Afterwards, we focus on the physical
data management: in Chapter 6 we exploit the bidirectionality of BiDEL to achieve full data indepen-
dence but still guarantee to not lose any data at any time. Since the space for possible non-redundant
and redundant physical materializations is huge, we present a respective adviser in Chapter 7. In
Chapter 8, we discover and discuss various application scenarios and promising future work for our
multi-schema-version database system InVerDa.
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Software systems continuously evolve and so does the database in their backend. The need for decent
database evolution support is a pressing challenge ever since databases are used for persisting the data
within software systems. 40 years of intensive research and development aimed at easier, faster, and
more robust database evolution support both by external tools and directly within the database. We
will first detail on the objectives and the most important challenges posed by users, developers and
DBAsw.r.t. multi-schema-version database systems (Section 3.1). Afterwards, we present related work
tackling these criteria both in the fields of software evolution (Section 3.2), and database evolution
(Section 3.3). Finally, we summarize the related work by evaluating the defined objectives for all
discussed approaches and in comparison to InVerDa (Section 3.4).

3.1 OBJECTIVES

We structure and discuss the objectives for multi-schema-version database systems in three major
categories: First, the suitable support for database evolution and co-existing schema versions within
one database. Second, the flexible materialization of co-existing schema versions to guarantee full
data independence. And finally, the comfortable version management focusing on merging different
schema versions. We consider the following objectives for multi-schema-version database systems:

1. Database evolution support

• Database Evolution Language (DEL): While SQL-DDL and -DML carefully distinguish
between the schema evolution and the corresponding data evolution, an SMO-based DEL
couples the data evolution to the schema evolution. Thereby, the actual evolution step and
its intention are explicitly defined and preserved.

• Practical completeness: A DEL is only practically applicable, if it is powerful enough
to express any evolution scenario at hand. Whenever developers have to fall back on
traditional manual implementations, all the problems solved by a multi-schema-version
database system arise again.

• Relational completeness: While practical completeness is an empiric measure, relational
completeness is a formal guarantee stating that the respective DEL is at least as powerful
as the relational algebra.

• Co-Existing schema versions: When schema versions co-exist in the same database, there
are different extents of synchronization between them: While common unidirectional
DELs allow only the forward propagation of data—merely reading in new schema versions
and writing in old schema versions is supported—a bidirectional DEL allows propagating
data both forwards and backwards, which facilitates both reading and writing at both the
old and the new schema version.

2. Full data independence for multi-schema-version database systems

• Flexible materialization: Co-existing schema versions managed in one database require a
materialization that serves the current workload on all schema versions as good as possible,
and is easily adaptable when the workload mix changes. Full data independence allows
changing the materialization without affecting the availability of any schema version.

• Adviser for physical materialization: Since the search space of physical materializations
for a given schema version history and a given workload is huge and difficult to explore
manually, an adviser proposing the optimal materialization is desirable.

• Formally evaluated correctness: The correctness and consistency of the data in multi-
schema-version database systems needs to be formally guaranteed, which requires every
single schema version to verifiably behave like a full-fledged single-schema database.
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3. Schema version management

• Co-evolution of schema versions: After branching the evolution of a database schema—
e.g. when different development teams can work independently—tool support is desired
to merge these branches into one consolidated schema version.

• (Semi-) automatic co-evolution based on intentions: Merging two schema versions can
be based on almost any criteria available for the input models/schemas, like e.g. the struc-
ture, data distribution, phonetics, etc. However, the Holy Grail is to merge the actual
intentions of the developers.

There is plenty of work in the literature for each of these aspects individually. To the best of our knowl-
edge, we are the first to realize a multi-schema-version database system that covers all the discussed
objectives: Using the SMO-based bidirectional DEL BiDEL, our system InVerDa facilitates easy man-
agement of created schema versions, including merging and dropping them, as well as letting them
co-exist within one database with a flexible materialization.

3.2 SOFTWARE EVOLUTION

The whole research field about the proper database evolution naturally originates from advances in
continuously evolving software systems. While software development is already very agile and dy-
namic, database developers still struggle to keep the pace since database evolution is barely supported
with tools and methods these days. Therefore, we take a look into the software technology commu-
nity to learn about the requirements and obtain inspirations from their solutions for fast and agile
software development. Specifically, we discuss support for the continuous evolution of software sys-
tems (Section 3.2.1), tools for co-existing software versions (Section 3.2.2), and existing approaches
for the co-evolution of different artifacts in a software system (Section 3.2.3). Figure 3.1 summarizes
the schematic functionality of all discussed tools and concepts, which we discuss in Section 3.2.4.

3.2.1 Continuous Evolution

Until the turn of the millennium, software developers mainly relied on the waterfall model [21, 14]:
After following the path from a detailed requirement analysis over big upfront modeling and planning
all the way to implementation and testing, the final software product has been released to the cus-
tomer. This methodology quickly became unfeasible, since requirements keep changing and cannot
be fixed in the very beginning of a software project. As a solution,Agile Software Development jump
starts with a first version of the envisioned product very early, which is immediately shipped to the
customer [18, 7]. This way, customers can experience the software live under real conditions and give
valuable feedback to the developers w.r.t. prioritization of new features, bug-fixes, or non-functional
properties like performance and availability. The running software product is continuously improved
in many small iterative steps.

The mantra of agile software development is “Evolution instead of Revolution”, so a running soft-
ware system is continuously improved in many small iterations. This is e.g. supported by Extreme
Programming [17], which is a structured programming method heavily relying on team work and
continuous communication between all stakeholders. One common extent of living it in practice
is pair programming [117], where teams of two developers work together at one screen producing
high-quality code due to the interactive and constantly justified programming.
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Figure 3.1: Related work in software development.

A central technique used to achieve this development speed is the use of Refactorings that allow
changing a working software in a robust and controlled manner [51]. Multi-schema-version database
systems adapt this principle. SMOs are refactorings on the database schema; their main difference
to traditional SQL-DDL statements is their controlled and consistency preserving nature, as they also
cover the evolution of the currently existing data significantly reducing the risk of ending up with
an inconsistent database. In sum, the overall goal is to make database development just as agile as
software development by changing the game from big upfront modeling to an incremental continuous
evolution of the database.

3.2.2 Co-existing Versions

Also in software development multiple versions of the same software need to co-exist so different
developers and different users can independently work on their preferred version of the software.
For developers, the versioning of the code can be achieved with version control systems like SVN
and GIT. For users, co-existing versions of an application can be generated and operated using e.g.
software product lines.

Version control systems such as Apache Subversion1, a.k.a. SVN, allow different developers to work
independently on local copies of the same text or code files—concurrent changes are merged on the
granularity of whole lines when developers commit their changes to the central repository—potential
conflicts are either solved automatically on a syntactic level or manually by the developers if there are
semantic conflicts. Further, different development teams can work on different global branches, so
multiple versions of the same software can co-exist and can be developed independently. Afterwards,
branches can be merged. Multi-schema-version database systems nicely complete this tooling for
database developers. Even though SVN supports branching into different versions and merging them
again, there are no consistency guarantees and the developers are heavily involved to branch and
merge manually. SVN can merely merge SQL evolution scripts on a syntactical level, without any
understanding of the underlying semantics, the currently existing data, and the developers’ intentions.
Multi-schema-version database systems fill this gap.

1https://subversion.apache.org/
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Another widely used version control system for software developers is GIT2. GIT, provides the same
functionality as SVN, plus an additional staging area, which decouples the local versioning from the
global versioning. After implementing e.g. new features, developers commit their changes only locally
into the staging area first. When committing from the staging area to the global repository, which is
also visible to all other developers of the project, all locally performed changes can be reviewed and
selectively pushed to the global repository. This allowsmore comfortable software development, since
developers have the full functionality of a version control system both on a local level and on a global
level. These two levels are decoupled as developers can precisely choose which new features should
be pushed to the globally visible repository at which time.

Agile software development allows to easily adjust and extend applications exactly to the need of the
users. However, the multitude of users can be very heterogeneous. All the users of a software product
need something similar, e.g. a self-driving car, however, this may range from forklifts on company
grounds, over trucks on the highway, all the way to fully automatic cars safely driving through the
rush hours in cities. Most features overlap, so they should be implemented only once. Nevertheless,
there are special features that are only used by a subset of the customers, which calls for one individ-
ual version of the software product per customer. It has to be avoided that, for a new customer, an
existing product is replicated and then customized because of the single source principle. It is hardly
possible to consistently fix potential bugs in each and every customer product individually [92]. As
a consequence, the techniques and methodologies of Software Product Line Engineering [93] are
applied in software development. Software product line engineering defines a family of closely related
software systems consisting of common and variable functionality in order to manage variability. The
variability is commonly described with feature models [73] wherein features are arranged in feature
trees [31]. To generate a specific software product version from the software product line, the cus-
tomer merely chooses the desired set of features, so different customers can have different versions of
the same software at the same time.

Software product line engineering is primarily a concept that simplifies building customized prod-
ucts from the same source code. Once a product is deployed for a customer, there is no back link
from the product to the product line: not for the code and especially not for data that is persistent in
the deployed product. This makes the database evolution in software product lines a tough chal-
lenge. In general, the evolution of a database schema for the concrete software product of a customer
is analyzed in [75]. Delta-Oriented Programming is used to add delta modules, defined by SQL-DDL
statements, to a core module incrementally, based on the product configuration. Database constraints
are generated for the delta scripts to ensure a valid global database schema. Modeling data variabil-
ity in software product lines is typically based on feature modeling as used in software product line
engineering [2]. To define variability of data concepts in the variable data model, the extended Fea-
ture Assembly Modeling Technique is used to specify persistence features in the feature model of the
software product line [3]. However, this technique only considers the initial derivation of a product’s
database schema and not the continuous evolution that includes already existing data.

To the best of our knowledge, there is no published research on the concurrent evolution of both
the schema and the currently existing data in software product lines. Though, this is a major chal-
lenge: Each selectable feature requires a shared or individual database schema to store its data—and
this schema may evolve over time. Since there can be easily thousands of features, composing the
database schema and schema evolutions for one generated product requires tremendous manual work
in practice. These challenges have been discussed in detail and pragmatically solved by DaVe [58].
However, DaVe merely offers tool support for the manual evolution and migration of the database.
An automated and controlled process for database evolution in software product lines is still missing.

2https://git-scm.com/

3.2 Software Evolution 43



3.2.3 Co-evolution

In software development, the co-evolution of different artifacts in a software system has gathered a lot
of attention, especially targeting the co-evolution of artifacts on different abstraction- or architecture-
levels. Abstractly speaking, whenever a meta model evolves, the corresponding model instances need
to be evolved as well [88]. The most commonly applied solutions to tackle thisModel Co-evolution
are transformation-based [114, 64], so the evolution is not derived after the fact from the old and
the new version, but the transformation is explicitly stated by the developers and the new version is
created based on the old version plus the given transformation. Especially, if an artifact is derived
from a given meta model, any transformation on the meta model can be automatically applied to the
artifact without having the developers in the loop [33].

Especially interesting from a database developer’s point of view is the co-evolution of the database
schema and program code accessing this database schema. Cleve et al. [34] present a system that
supports the developers in modifying the database access code from a given database schema. When-
ever the database schema is changed, which may include adding, deleting, or replacing any database
object, the developers get a list of affected code snippets and can easily adapt them to the evolved
schema. However, the supported evolution steps of the database schema do not cover the data at
all. Terwilliger et al. go a step further and enable the automated co-evolution of both the conceptual
model and the physical database and the mappings in between them [108, 109]. Their basic oper-
ation is to add classes within an inheritance hierarchy and the new concepts are immediately and
automatically made available in the database. Multi-schema-version database systems provide an ap-
pealing alternative to the costly evolution propagation between the database schema and application
code. Since former schema versions stay alive even though the database may be physically already
migrated to a new schema version, there is no need to rewrite the application’s data access code in the
first place. Or in other words: For the evolution of database schemas, multi-schema-version database
systems encapsulate the co-evolution of the data access code into the generated views that keep old
schema versions accessible.

3.2.4 Summary

Figure 3.1 summarizes the schematic functionality of all discussed evolution support tools in software
development. At first, we discussed agile development methods that are based e.g. on refactorings
and extreme programming techniques, which facilitate a fast and robust forward evolution of the ap-
plication itself, however, co-existing versions or the agile evolution of the database are not supported.
Secondly, we presented techniques like code version control systems and software product lines that
allow managing multiple co-existing versions of one software. Afterwards, we additionally incorpo-
rated the evolution of the database schema along with the agile evolution of the application within
e.g. software product lines. The main takeaway message is that the evolution of the database schema
along with the evolution of software products in a software product line is very challenging and is only
supported for empty databases without any data. Hence, the initial schema for a software product can
be generated, but potentially already existing data will be lost. The only system that provides tool sup-
port for the database evolution in software product lines is DaVe, which merely guides the developers
through the manual evolution of the database and does not automate it.

In sum, the software technology community developed a wide bouquet of tools and methods for the
agile evolution of software systems and the management of multiple versions of e.g. code and soft-
ware products. Still, most approaches leave out the database evolution, so the discussed related work
merely serves as a motivation and inspiration for agile database development and schema version
management facilities.
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3.3 DATABASE EVOLUTION

Relational databases are the most established and straight forward choice to manage and persist the
data of a software system. This places the relational databases in the center of continuously evolv-
ing software systems, motivating a multitude of research and engineering literature regarding the
database evolution. We will not survey the hundreds and thousands of papers here but just focus on
those aspects that are relevant for multi-schema-version database systems. For the interested reader,
Roddick published a bibliography of database evolution literature back in 1992, which is still a great
starting point into the subject [98]. More recently in 2006, Rahm et al. launched an online bibliog-
raphy that is regularly maintained [97] and Hartung et al. published a survey focusing on database
evolution in both research projects and commercial DBMSes in 2011 [57]. Database evolution is also
a challenge in related fields, e.g. Manousis et al. surveyed database evolution in modern data ware-
houses [87].

Multi-schema-version data management does not exclusively focus on the plain forwards evolution
of the database but uses bidirectional evolutions to continuously serve both old and new schema ver-
sions. However, we did not think up this on ourselves, but a lot of database evolution research moved
forwards to incorporate backward evolution—hence, bidirectional evolution. Terwilliger et al. con-
ducted a survey motivating further work towards the bidirectional database evolution by collecting
and comparing different approaches like SMO-based evolutions, lenses, channels, etc. [110], which
we will discuss in detail in this section. To underline the importance but also the outreach of bidirec-
tional transformation, there was even a Dagstuhl-Seminar held in 2011, where database researchers
met with colleagues from both software engineering and programming language and graph transfor-
mations for interdisciplinary exchange regarding both previous findings and the future research focus
of bidirectional transformations [67].

In this section, we will go through our defined objectives in detail. First, we discuss the evolution
support presented in related works with focus on co-existing schema versions in Section 3.3.1—the
presented approaches are comparatively illustrated in Figure 3.2. Second, we analyze related work
targeting data independence in the context of multi-schema-version database systems in Section 3.3.2
with the approaches being illustrated in Figure 3.3. Third, the co-evolution of different schema ver-
sions is discussed in Section 3.3.3 and illustrated in Figure 3.4. Finally, we comparatively discuss and
summarize all presented approaches in Section 3.3.4.

3.3.1 Database Evolution Support

Continuous evolution: Scott Ambler [8] approaches database evolution from the practical side by
proposing more than 100 Database Refactorings ranging from simple renamings over changing con-
straints all the way to exchanging algorithms and refactoring single columns to lookup tables3. One
essential characteristic of these refactorings is that most of them couple the evolution of both the
schema and the data in consistent and easy to use operations—just as SMO-based DELs do.

The most advanced SMO-based DEL we are aware of, is PRISM by Carlo Curino et al. that includes
eleven SMOs [38]. The proposed SMOs are very intuitive and easy to learn, also because they evolve
a maximum of two source tables to a maximum of two target tables. Specifying a database evolution
with SMOs opens a whole new field of interesting research challenges, which we just started explor-
ing. A milestone in this process was the introduction of PRISM++, which extends the DEL to also in-
clude Integrity Constraint Modification Operations (ICMOs) that allow to create and drop both value

3List of refactorings is freely available: http://databaserefactoring.com/ (Accessed on 30.08.2017)
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Figure 3.2: Related work regarding database evolution support.

and primary key and foreign key constraints with the same charm and simplicity as SMOs [41, 37].
Further, PRISM++ facilitates update rewriting, which allows to automatically adapt applications
working on an old schema version to correctly access the data of a new SMO-evolved schema ver-
sion. PRISM and PRISM++ are by design restricted to the plain forward evolution, however, they
can serve as a solid starting point for more advanced SMO-based DELs. Another interesting research
project originating from PRISM targets at the performance optimization of the actual evolution pro-
cess [91]: the result is that column-oriented databases are—performance vice—perfectly suited for
database evolution, since most evolution scenarios merely add or remove columns. This motivates to
integrate the database evolution support deeper in the system and to utilize physical optimizations.

Since, both PRISM and PRISM++ merely focus on the forward evolution of the database, the data is
physically always stored in the newest version which is also the only accessible schema version. An
extension of this approach, called PRIMA [90], also allows querying historical data, which can be seen
as a first step towards co-existing schema versions based on an SMO-based DEL. In order to increase
the archive quality of a database, information from old schema versions is not physically transformed
to a new schema version, as this may entail information loss for non-information preserving SMOs,
but the data remains in the schema version where it has been created. Developers can now write
temporal queries according to the newest schema version and PRIMA automatically translates them
unidirectionally backwards to the former schema versions and incorporates their results. PRIMA
does not support co-existing schema versions with bidirectional data propagation and enforces one
fixed materialization. Nevertheless, the concept of decoupling the physical schema from the query
execution on the logical schemas is very appealing.

In comparison to manually evolving a database with standard SQL, an SMO-based DEL is way eas-
ier to learn and to use. However, it still requires a technical understanding of the database evolu-
tion process. Therefore, the CRIUS project provides simple database evolution where non-technical
users are equipped with an intuitive graphical user interface to easily extend a running database [94].
The database evolution is restricted to adding tables and columns which at least allows to grow the
database with the application and prevents from common mistakes. Another interesting compromise
between expressiveness and user-friendliness is model-driven database evolution withMeDEA [45].
MeDEA equips developers with an editor to specify schema changes in an Entity-Relationship diagram
and the respective changes are automatically mapped to the underlying relational database model.

Co-existing versions: Traditionally, developers would create new virtual schema versions by merely
writing views that represent the new schema version manually. Using standard SQL seems to be the
natural way to describe the new schema version depending on the old schema version. The major
challenge with this approach is the View Update Problem. While the views of the newly created
schema version are obviously readable, they are not necessarily writable: Assume a view as a hori-
zontal partition of the Task table that only contains tasks with the highest priority 1 similar to our
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running example from Figure 2.4 on page 28. This selection predicate is not necessarily a constraint
on the new partition, so users can add a new task with the priority 2 to this partition view. Translating
this view update to the base table seems to be trivial as the new task can be simply written back to the
base table Task. However, when reading the view again, the newly inserted tuple will be lost, since it
does not satisfy the selection predicate of the view any longer. To resolve such issues, developers find
themselves manually writing delta code, e.g. instead-of triggers and auxiliary tables and more fine-
tuned view definitions, to explicitly make views writable. Hence, it is not surprising that simplifying
and automating the view update problem is a long studied topic in the database research community.

Back in 1978, Dayal defined specific criteria which need to be satisfied by an updatable view [43].
Most importantly, the update must be performed correctly and there must be no side effects. Assume
a view is defined by v(D) on the base tables D, and Δ is an update issued on the view, and Δt is
the transformed update that is physically executed on the base tables. The view on the updated base
tables should be identical to virtually applying the update Δ directly on the view:

Δ(v(D)) = v(Δt(D)) (3.1)

Thus, the view update problem is to find the correct Δt for a given Δ. From a user’s perspective,
this means that an updatable view behaves exactly like a standard table in a standard database. So any
data inserted to a view must occur in the view; any data updated in a view must remain updated, and
any data deleted from a view must not be visible when reading the same view again. Moreover, the
intended update of the user’s write operation must be the only change visible in the view—there must
be no side effects like additionally occurring tuples and so on.

In 1981, Bancilhon et al. introduced the notion of a view’s complement as “the information not
visible within the view” [15]. For side-effect-free updates, this complement must not be affected
by any write operation on the view. This can be conceptually validated by defining a second view
that contains all information from the source schema minus the information in the first view. This
auxiliary view must not be changed when writing to the actual view and propagating the changes to
the actual table. Three years later, Cosmadakis et al. studied algorithms to compute a correct and
side-effect-free update propagation and showed that the calculation of the view’s complement is an
NP-complete problem [36].

Since then, the view update problem is under constant investigation, e.g. Keller et al. proposed an
interactive view definitionmechanism, which polls developers when writing a view for the intended
update propagation strategy [74] and more recently, Franconi et al. defined formal criteria for the
updatability of given view definitions as well as an algorithm for the efficient computation of view
updates [52]. In practice, common DBMSes make certain views automatically updatable as long as
they satisfy a set of conditions. The respective documentations are accordingly long and complex:
E.g. MySQL4 requires a one-to-one relationship between the view’s and the table’s tuples, so there is
a long list of restrictions ranging from the obvious exclusion of aggregation to complex restriction on
joins and subqueries. In sum, after 40 years of intensive research, an easy-to-understand and powerful
solution for the view update problem is still missing.

We will not review the whole body of research literature regarding the view update problem here,
but point the interested reader to the book “View Updating and Relational Theory – Solving the View
Update Problem” from Date [42]. Date summarized the research on the view update problem in his
pointed remark “There is no magic”. It is inherently hard to retrieve the correct and side-effect-free
translation of updates from views to the base tables automatically, when the view is specified with
relational algebra or SQL expressions. The initial intention of the view definition is lost between the
lines and view definitions do not contain information on how to propagate data backwards from the

4https://dev.mysql.com/doc/refman/5.7/en/view-updatability.html (Accessed on 31.08.2017)
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view to the tables. The bidirectional SMOs used to describe the evolution in multi-schema-version
database systems change these fundamental restrictions by design and allow to create updatable views
immediately. Developers merely have to accept the overhead of learning an SMO-based DEL and of
defining the view as a bidirectional evolution from the source tables.

An advanced formal approach to define and solve the view update problem are lenses, which are a
well recognizes theoretical framework using the intuition of an optical lens between a source and
a target data structure that can be transformed into each other [50]. Particularly, Relational Lenses
assume a lens between the view and its base tables, which allows to describe and solve the view update
problem and further facilitates co-existing schema versions [26]. Relational lenses guarantee that data
written in the view survives the round trip over the base tables unchanged. The relational lenses can
be composed of lenses that correspond to the relational algebra operations selection, projection, and
join but are bidirectional. Thereby, they carry an explicit update policy for the backward propagation
from the view to the base table and solve the view update problem—at least for those evolutions that
can be expressed with the given set of lenses. The limitations of using relational lenses for multi-
schema-version data management are their restricted expressiveness and the fixed materialization of
the data at the source side of an evolution.

Similar to the discussed relational lenses, further approaches for co-existing schema versions within
the same database have been proposed in the literature. For instance, Terwilliger et al. introduced the
concept of Channels that allow creating multiple virtual databases all based on one physical database
underneath [111, 107]. The authors define similar bidirectionality conditions as the discussed rela-
tional lenses—however, on different meta levels, particularly (1) between the database and the appli-
cation: data written in the application and persisted in the database should be identical when reading
it again in the application and vice versa; and (2) between the virtual database schema and the physical
database schema: data written on any side needs to survive one roundtrip completely and correctly.
The central idea of channels is to have virtual databases that behave like common relational databases
from the application’s perspective at run time. At development time, the developers use so called Vir-
tual Databases Channels, similar to our SMOs, to stepwise map the envisioned virtual database to the
one fixed physical database schema. Those channels can merge and partition a table both vertically
and horizontally as well as pivoting and unpivoting a table as well as calculating columns based on an
invertible function. This allows the virtual databases to process any read/write access as well as simple
schema modifications in the virtual databases as if they were real physical ones. Under the hood, all
accesses are transformed through the channels to the physical database schema, which lays special
focus on the efficient implementation of the transformation of read/write accesses. This has been ex-
tensively studied in [20]. In contrast to multi-schema-version database systems, channels require one
fixed physical database schema by design; changing it would require to redefine all channels defined
so far. Multi-schema-version database systems enable full data independence which allows co-existing
schema versions independently from the actual physical database schema.

The wish for co-existing schema versions occurs in different areas with different flavors: Interesting
research areas targeting at co-existing schema versions as e.g. multi-schema querying support and
multitenancy databases. Let us shortly discuss these two representatives. To persist and query mul-
tiple schema versions within the same database, Grandi published Multi-schema Querying already
back in 2002: He proposes both a data model and an SQL extension to support multiple schema ver-
sions within one database [55]. The data model relies on one physical schema for each logical schema
version, but data objects occurring in multiple versions are not necessarily replicated. So, for querying
this data, an SQL extension for querying multiple schema versions adds a schema version identifier
for each table in the SQL query. When accessing a specific table in a specific schema version, the data
is collected from all other related physical schema versions as well by propagating it along the schema
version history.
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In Multitenancy Databases, the data of multiple customers of a cloud application is stored within
the same database. Based on the observation that the data of thousands of similar applications can be
managed best within one database schema instead of thousands of database schemas, the challenge is
to consolidate those thousands of similar but slightly different schemas into one. In 2008, Aulbach
et al. proposed a set of generic schema designs ranging from base tables that all tenants share with
extensions for groups of tenants, over pivot tables and universal tables, all the way to chunk tables
that split up the individual schemas into common chunks [11]. A major criteria for choosing the right
schema design for a given set of tenants, is the performance for the individual tenants, which has
been extensively studied and evaluated in [12]. In multitenancy databases, multiple applications can
access different schema versions, however, each tenant sees only the individual subset of the data
and the physical table schema is fixed at development time, which clearly distinguishes them from
the envisioned multi-schema-version database systems. In 2011, the authors took the next step and
allowed also data sharing between all tenants [13]. To this end, a Polymorphic Table is introduced
that can grow in two directions: First, there is a shared common schema, but each tenant can add
individual columns to the polymorphic table. Second, there is a shared set of tuples that all tenants
see and each tenant can add individual tuples to the polymorphic table. The individual columns and
tuples are exclusively visible for the respective tenant while the shared columns/tuples are visible for
all tenants. Polymorphic tables enable co-existing schema versions on the same data set, however,
the physical table schema is still fixed and the expressiveness of the evolution of a tenant’s schema is
basically restricted to adding columns.

NoSQL stores use more flexible schemas to easily persist heterogeneous and changing data [84]. One
anticipated benefit was to make schema evolution obsolete and thereby greatly support agile software
development, since no big upfront modeling of the database schema is required anymore. Neverthe-
less, all data stores—even NoSQL stores—have a schema that may be hidden in the data itself or in
the application and this schema will evolve eventually leaving developers with the same problems as
relational database evolution but with even less tool support. Scherzinger et al. consider the schema
evolution in NoSQL stores that have identifiable entities with attribute-value pairs similar to the
Google Datastore [69] and propose a general evolution language for such stores [101]. Special empha-
sis is laid on the actual migration of the data after a schema evolution. It is not always necessary to
migrate an entity eagerly to a new schema version, but the entities can bemigrated lazily as well [102].
As each entity is individually identifiable, the lazy data migration allows migrating individual entities
just when they are accessed. Scherzinger et al. translate the schema evolution into sets of Datalog
rules; when accessing an entity in a new schema version, it is propagated through these Datalog rules
to the current schema version in a very safe and robust manner.

Document stores for e.g. XML or JSON data are another commonly used flexible data storage. Klettke
et al. developed a conceptual model for the XML schema evolution providing a graphical editor for
the developers to intuitively specify the schema evolution. The instances, so all XML documents, are
then automatically evolved to match the new schema version [76]. Further, Geneves et al. provide a
framework that takes an XML schema evolution and analyzes its actual effect on the XML documents
as well as on queries that were written against the old schema version [53]. To have co-existing schema
versions in an XML store, we merely need to apply the concept of relational updatable views to XML
views [85]. A comprehensive survey regarding the view update problem in XML views was published
by Chen in 2011 [30].

The problem of database evolution for Data Warehouses is studied almost as much as for relational
databases in general. The special data model of data warehouses with facts, dimensions, and hierar-
chies etc. calls for specialized database evolution support. There are at least 15 different evolution
languages for data warehouses that all support different aspects; they are all carefully compared and
presented in a survey published by Arora et al. in 2011 [10]. For instance Kaas et al. propose a lan-
guage that allows adding and deleting both dimensions and levels and measures as well as connecting
and disconnecting attributes to/from dimension levels [72]. A step towards co-existing schema ver-
sions is taken e.g. by Golfarelli who supports queries spanning multiple schema versions within a data
warehouse [54]. The underlying evolution language allows adding and deleting attributes as well as
functional dependencies.
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Figure 3.3: Related work regarding data independence for multi-schema-version database systems.

3.3.2 Full Data Independence for Multi-Schema-Version Database Systems

After discussing related work on creating and accessing multiple co-existing schema versions within
a single database, we will now focus on the materialization of the data that is shared among multiple
schema versions. The solution space ranges from fully redundant materialization of all schema ver-
sions to non-redundant materialization in a freely configurable subset of the table versions. Exploiting
this solution space and freely changing the physical materialization without limiting the availability
of any co-existing schema version is Data Independence lifted to the requirements of multi-schema-
version database systems.

Symmetric Relational Lenses as introduced by Hofmann et al. take a step towards data indepen-
dence on the solid formal ground of relational lenses [65]. Symmetric relational lenses maintain a
complement, as introduced for the view update problem in the previous section, on both sides of the
lens. Hence there is no explicit data table and view side any longer, but both sides can store the exact
same information—with different structures—and can be mapped to each other. The only difference
between the two sides of the symmetric relational lens is that evolution-wise there exists an old (the
source) and a new (the target) schema version. There are two conditions that need to be satisfied for
any symmetric relational lens. Assume γtrg(D, C) maps source data D and the complement C to
the target-side data D′ and an updated complement C ′. Intuitively speaking, we store data from the
source side at the target side which requires the complement, as lenses are not necessarily informa-
tion preserving. When reading back this data at the source side with γsrc(D′, C ′), the lens guarantees
that we can completely and correctly read the data D as it was in the first place—the data survives
one round trip. Further, the complement C ′ reaches a fix point when propagating the data back to its
origin, so we do neither lose nor gain any data during a round trip. The same conditions needs to hold
vice versa.

γtrg(D, C) = (D′, C ′)
γsrc(D′, C ′) = (D, C ′) (3.2)

γsrc(D, C) = (D′, C ′)
γtrg(D′, C ′) = (D, C ′) (3.3)

Hence, these two conditions ensure that, no matter on which side of a lens we actually store the data,
both sides behave like regular database tables and write operations are side-effect free and persisted
correctly. In this thesis, we adapt these two conditions to formally define and guarantee the data
independence of a bidirectional SMO-based DEL. Symmetric relational lenses are a sound formal
framework for robust co-existing schema versions; however, relational lenses are very limited in their
expressiveness and do not capture the developers’ intentions like SMOs do. Hence, they are not very
appealing for multi-schema-version database systems from a practical point of view.
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The ScaDaVer [116, 115] system allows comfortable version management for database schemas simi-
lar to version control systems like SVN and GIT. Particularly, ScaDaVer allows to evolve the database
schema by adding, renaming and removing both columns and tables. The core schema version can
be evolved to branches as well, which can be merged back into the core later on. This bridges the
gap in the continuous version management of database development and the actual application de-
velopment. Any data from an old schema version will be propagated forwards to the newer schema
versions, which raises the question, how to store the data physically: redundantly in both the new
and the old version or non-redundantly only in the old version. The author of the ScaDaVer system
extensively evaluates these two possibilities [115].

Storing the data redundantly in multiple schema versions is tightly coupled to the problem of Ma-
terialized View Maintenance. We already discussed techniques to solve the view update problem;
so within the boundaries of updatable views, we can create co-existing schema versions merely by
defining new schema versions as updatable views on the initial schema version. Assume we store the
data redundantly by materializing the view. Then, updates to the base table can become very expen-
sive when using the naïve approach of recalculating the whole view from scratch. There is an active
research community aiming at making this update incremental and more efficient. Specifically, an
update to the base tables should be translated into a minimal update on the materialized views with-
out recalculating the whole view. For instance Gupta et al. gave a detailed overview of the literature on
materialized view maintenance [56]. A recent advance isDBToaster [77], especially focusing on very
frequent changes to the base tables. It statically analyses the view definitions using recursive finite
differencing, to obtain small and incremental update rules for the materialized views. This technique
allows the authors to refresh tens of thousands of views within a second.

Idris et al. propose an algorithm to update materialized views in linear time—at least for certain
classes of conjunctive query views [68]. The presented algorithm is based on the well-established
Yannakakis Algorithm [121], which e.g. minimizes joins and allows enumeration in constant time for
many queries. The authors present a dynamic version of the Yannakakis Algorithm, which can be
used to maintain materialized views in linear time w.r.t. the size of the base tables. Another more
general approach has been published by Behrend et al., which uses the formal notion of Datalog rules
for the view definition and thereby facilitates simple and efficient calculation of incremental updates
to a recursively defined view based on Datalog [19]. When updates occur on the base tables—the
facts of the Datalog rules—these changes are propagated through the Datalog rule using Magic Sets.
The computation of propagating updates through the Datalog rules from the facts to the final view is
simplified on different levels of granularity and accuracy, which can be used to simplify the repeated
evaluation of complex subqueries and thereby significantly reduces the number of tuples produced by
the Datalog rules during the computation. All discussed approaches for (incremental) materialized
view maintenance are important for multi-schema-version data management, since the ideas can be
applied for the incremental propagation of updates between schema versions as well. If we combine
the discussed techniques with updatable views, we already have co-existing schema versions with a
flexible materialization underneath—however, we are still forced to materialize the base tables, so
the oldest version will always be materialized. Further, the expressiveness of the view definitions is
limited to languages for updatable views. Hence, materialized updatable views are powerful but still
clearly differ from true multi-schema-version database systems such as InVerDa.

Materializing a view can significantly speed up read operations The downside is that updating mate-
rialized views along with their base tables implies an overhead for writing. Thus, there is a trade-
off between read performance, write performance, and space constraints. The optimal choice of
materialized/non-materialized views greatly depends on the current workload but is crucial to obtain
a reasonable overall performance. There is a multitude of tools and publications regarding Materi-
alized View Selection presenting a wide range of different approaches. As examples, Mistry et al.
realize materialized view selection based on multi-query optimization techniques [89], and Agrawal
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et al. tuned a cost model-based approach to be robust and to scale [4], so it was incorporated into Mi-
crosoft’s SQL server 2000 [5]. An important objective for multi-schema-version database systems is
an adviser to find the best materialization for a given workload—a problem that is very similar to the
materialized view selection problem and can also be solved cost model-based. The difference, how-
ever, is that there are no base tables in multi-schema-version database systems that are always forced
to be materialized like the base table of potentially materialized views.

3.3.3 Co-Evolution

For the proper evolution management of relational database schemas, Bernstein et al. introduced
Model Management 2.0: concepts and tooling for handling and processing multiple schema ver-
sions during development. This includes a large variety of operation on schema versions like DIFF,
MERGE, and INVERT [25]. With InVerDa, PRISM, ScaDaVer, etc. most systems automatically gen-
erate new schema versions based on the given transformations—e.g. sequences of SMOs—in a “before
the fact” manner. In contrast, Model Management 2.0 allows deriving the actual evolution “after the
fact” from given schema versions [6]. Besides calculating the difference between two given schema
version, Model Management 2.0 also allows merging two schema versions by calculating the map-
pings from the last common schema version and combining these mappings using mapping compo-
sition techniques [23, 46]. A major objective for multi-schema-version database systems is that they
also allow merging two schema versions, however, we do not want them to guess the intended evo-
lutions but let the developers explicitly specify it with the help of SMOs; this allows to maintain the
intended evolution way better in the merged schema version. Also, calculating the inverse of a de-
rived mapping to propagate data backwards through multiple evolution steps is a hard problem due to
the ambiguity of inverses and compositions of mappings [47]. Ideally, we would need to evaluate any
possible inverse or composition of mappings against valid data and queries, which is often not feasible
in practice, so the inverse and composition of mappings can only be estimated as close as possible;
with SMO-based evolution we avoid all these problems by design as the inverse and composition of
SMOs is well-defined in the SMOs’ semantics and obvious to the developers.

To obtain the discussed mapping between two given schema versions, there is a huge research field
about Database Schema Matching [96]. In 2001, three outstanding researchers in the field of
schema matching Jayant Madhavan, Phil Bernstein, and Erhard Rahm, published a schema match-
ing system called Cubid [86]. Cubid relies on linguistic analysis of the two given schema versions
to match columns and tables as well as graph matching algorithm to match the structure of the two
schema versions. Ten years later, the same three authors looked back how the field of schema match-
ing evolved [24]. Their observation was that it is a constantly hot research topic, since there are always
new source of information available to increase the quality of the schema matching. Particularly, they
state that “the problem of schema matching is inherently open-ended”, which assured us in follow-
ing the SMO-based approach where developers explicitly provide the mapping between two schema
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versions as a sequence of SMOs and no schema matching techniques are required. According to
surveys, available schema matching techniques cover linguistic matching, instance based matching,
structure-based matching, rule-based matching, matching based on similarity measures, and deep-
learning approaches as well as all kinds of combined hybrid techniques [103, 96]. So, we can safely
say that schema matching is an important and active research field, but staying clear of rocks by spec-
ifying the evolution between schema versions explicitly with an SMO-based DEL facilitates a more
stable and robust solution.

3.3.4 Summary

As can be seen, there is a wide range of different approaches for database evolution support. Fig-
ure 3.2 summaries the discussed approaches for proper database evolution and co-existing schema
versions. We started out with database refactorings, SMOs, and model-based evolutions as pragmatic
means to describe the forward evolution of a database schema including already existing data. These
techniques allow a robust forward evolution of the database, however, the old schema versions are no
longer accessible after the evolution has been executed. With updatable views, which can be formally
described using e.g. relational lenses, we take a first solid step towards co-existing schema versions, as
both the base tables and the views are fully accessible for applications. Hereby, the view is the evolved
schema version.

Afterwards, we discussed further techniques for co-existing schema versions that all rely on differ-
ent physical materializations of the data—however, none of them offers a flexible materialization so
far. While channels statically map different logical schema versions to one fixed physical schema,
multi-schema query systems, such as PRIMA, maintain the data non-redundantly in those schema
versions where it was written and merely rewrite queries to collect data from all schema version in
the system. Another discussed approach are multitenancy databases, where multiple schema versions
are represented within a more flexible schema; the flexibility is achieved by e.g. having unnamed or
even untyped columns ready to be used by every schema version individually, so the actual schema is
captured at the application layer.

All the approaches presented in Figure 3.2 (partly) support co-existing schema versions, while their
physical schema is always fixed. Therefore, we extended the discussion to related work regarding full
data independence for co-existing schema versions, as summarized in Figure 3.3. Namely, symmetric
relational lenses extend the already discussed relational lenses to have two equally important sides—
there is no distinction between base tables and views any more, but data can be stored at any side and
accessed on both sides of the lens. The main drawback of symmetric relational lenses is their limited
and rather unintuitive expressiveness, which makes them hard to establish in multi-schema-version
database systems. Another step towards data independence for co-existing schema versions has been
taken with ScaDaVer: Having multiple co-existing schema versions, ScaDaVer allows the developers
to decide whether data should be replicated or propagated between these versions. Furthermore,
materialized views also provide an additional degree of freedom in the materialization of co-existing
schema versions given the views are made updatable as discussed before.

Finally, Figure 3.4 summarizes the presented related work regarding the management of different
schema versions within a database system. We discussed schema mapping and schema matching
techniques that are used to extract the evolution between two given schema versions. A famous rep-
resentative is Model Management 2.0, which allows not only to extract the mapping between given
schema versions but also to merge different schema versions. As an alternative approach to extracting
the schemamapping after the fact from given schema versions, we also surveyed transformation based
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Figure 3.5: InVerDa’s features as comparison to related work.

approaches: When developers use SMO-like descriptions in the first place, the transformation is ex-
plicitly given and can be used further for e.g. merging two schema versions without the fuzziness of
automatically extracted mappings. ScaDaVer, for instance, allows merging schema versions based on
the explicitly given transformations—however, only for a very limited set of SMOs. Summing up, the
wide range of discussed related work covers the main objectives for multi-schema-version database
systems individually, but a solution that unites the benefits of all objectives is still missing and not
trivial as we will show in the next section.

3.4 EVALUATION OF OBJECTIVES

As a summary of the discussed related work, we collect the respective evaluation of the objectives in
Table 3.1. There are many practical and theoretical results towards multi-schema-version database
systems, however, to the best of our knowledge and as can be seen in the table, there is currently no
solution that covers all objectives. In the following, we go through the single objectives to summarize
the state of the art and highlight the distinction of InVerDa. For comparison, Figure 3.5 pictures
InVerDa’s capabilities for multi-schema-version data management.

Database evolution support: As motivated before, the envisioned database evolution support in
multi-schema-version database systems should be based on a DEL that explicitly captures the trans-
formation/evolution from one schema version to another. In the surveyed literature, there are many
promising approaches like database refactorings and SMO-based DELs, however, none of the existing
languages is both practically complete and relationally complete. Those approaches that are both
practically and relationally complete, in contrast, do not intuitively couple the evolution of both the
schema and the data, which makes e.g. data propagation and merging of schema versions unnecessar-
ily ambiguous. InVerDa’s BiDEL is SMO-based and has proven to work for practical scenarios and
it is formally guaranteed to be relationally complete, which justifies the claim that there will be no
need to fall back on traditional manual database evolution and the benefits of multi-schema-version
database systems can be used for each and every upcoming scenario. This is an essential requirement
to make multi-schema-version data management practically applicable.

Further the support for co-existing schema versions is still very limited in the literature. While
most of the presented solutions support multiple readable schema versions in one database, write
operations are usually only propagated forwards. So, the existing data is able to follow the evolution
in forward direction, but any data written in newer versions is not visible in older versions. The
only exceptions are updatable views and symmetric relational lenses. Since these approaches have
a very limited expressiveness, so many scenarios cannot be expressed at all, they are not practically
applicable in multi-schema-version database systems, yet. Nevertheless, the research about the view
update problem and symmetric relational lenses defined fundamental requirements for concurrently
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updated schema versions with bidirectional propagation. In a nutshell: each schema version itself
has to act like a full-fledged single-schema database. We formally validate these conditions to hold for
InVerDa, so we guarantee all the established transaction and persistence guarantees known from re-
lational databases also for multi-schema-version database systems based on the powerful SMO-based
evolution language BiDEL.

Full data independence for multi-schema-version database systems: The data independence in
multi-schema-version database systems is not explored in much detail so far, which is not surpris-
ing after all, as the precondition of co-existing schema versions is not even fully explored. Namely,
symmetric relational lenses provide a solid formal framework for a flexible materialization, so data
can be stored either at the source side, or at the target side, or even at both sides of an evolution.
With InVerDa, we apply the power of this flexible materialization to the simplicity and expressive-
ness of the SMO-based BiDEL. This enables DBAs to freely move the physical materialization along
the schema version history without affecting the logical schema versions, so InVerDa provides full
data independence in multi-schema-version database systems—we are not aware of any other work
with this contribution.
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Materialized updatable views � � � � � � � � � �
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INVERDA � � � � � � � � � �

Table 3.1: Contribution and distinction from related work.
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Having the freedom of a flexible materialization calls for an adviser that automatically determines
the best materialization for a given workload. This is a common problem in materialized view selec-
tion; when we consider the views as evolved table versions, the question of finding the best set of
materialized table versions basically boils down to materialized view selection. The problem differs
as materialized view selection always needs to materialize at least the base tables, which does not
hold in a multi-schema-version database system. Thus, InVerDa adopts ideas, like the cost model-
based optimization, but additionally considers the special characteristics of bidirectionally and data
independently propagating data access operations through SMOs.

Another objective resulting from co-existing schema versions with a flexible materialization is the
guaranteed correctness of data accesses to any schema version. This condition is met by updatable
views in any relational database that ensures transaction guarantees for such views. Further, symmet-
ric relational lenses again lay a solid formal foundation to validate the correctness for a restricted class
of view definitions. So, all the solutions discussed in the literature provide correctness for co-existing
schema versions. Their limitations w.r.t. multi-schema-version database systems are both a restricted
DEL and an inflexible materialization. InVerDa brings these worlds together and formally guarantees
that each single schema versions behaves correctly like a common database.

Schema version management: Finally, the objective of co-evolving schema version and to do so
(semi-)automatically based on the developers’ intentions are tough challenges in multi-schema-
version database systems. Code version control systems like SVN and GIT allow to consolidate the
evolution of a local copy and the evolution of the global copy, which basically merges the two versions
into a new one. With ScaDaVer and especially Model Management 2.0 there are also very active re-
search projects around the co-evolution of database schemas; however, these approaches are either
very limited in the expressiveness of the evolution or require a lot of manual effort. To the best of
our knowledge, InVerDa’ miX is the first approach to automate this process based on the developers’
intentions captured in BiDEL’s SMOs.

Summing up, the active research community targeting evolution in software and database devel-
opment came up with significant results for all the individual objectives of multi-schema-version
database systems. To the best of our knowledge, there is no solution that combines all the desired
benefits. InVerDa does so based on the SMO-based evolution language BiDEL. Using the rich se-
mantics of BiDEL’s SMOs, InVerDa can automatically generate all the delta code required to provide
co-existing schema versions with a flexible materialization and formal guarantees like the relational
completeness of BiDEL and the correctness of each single co-existing schema version. Further, merg-
ing schema versions based on their intentions is a unique feature of InVerDa that relies on the rich
semantics of BiDEL’s SMOs as well. This multitude of powerful features in a system that is actually
implemented and practically applicable is the unique contribution of this thesis.
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Multi-schema-version database systems, such as InVerDa, allow handling multiple schema versions
within the same database. Developers create those schema versions either by creating new and empty
tables from scratch or by evolving an existing schema version to a new schema version using a DEL or
bymerging two existing schema versions into a new one. The latter option ofmerging schema versions
will be discussed in Chapter 5. For the creation of new schema versions, we now introduce a DEL that
allows both creating new tables and evolving existing tables and even propagating data between these
table versions in order to let multiple schema versions co-exist. We will discuss the objectives of such
a DEL in Section 4.1, present the syntax and semantics of our language BiDEL in Section 4.2, evaluate
the initial objectives in Section 4.3, and finally summarize the chapter in Section 4.4.

4.1 OBJECTIVES

A comprehensive and powerful DEL can greatly simplify a database developer’s life since it serves as an
intuitive documentation, prevents mistakes, and facilitates to automate further tasks that come along
with the database evolution. We identified threemajor characteristics a DEL needs to satisfy to be suit-
able for multi-schema-version database systems: a DEL should (1) couple schema and data evolution
to explicitly represent the intention of the database evolution, (2) be complete to prevent developers
from falling back on traditional SQL, and (3) be bidirectional to facilitate co-existing schema versions.
SMO-based DELs couple the data evolution to the schema evolution by design—thus, they implicitly
satisfy the first characteristic. The completeness of a DEL can be evaluated frommultiple aspects, par-
ticularly we cover the intuitive practical completeness as well as the formal relational completeness
in more detail (Section 4.1.1). Finally, the bidirectionality of a DEL facilitates the propagation of data
both forwards and backwards which is an essential prerequisite for co-existing schema versions that
all represent the same conceptual data set (Section 4.1.2). To be bidirectional, some SMOs provide
additional parameters, which the developers only need to specify if the bidirectional propagation of
data accesses—hence truly co-existing schema versions—are required.

For the general taxonomy we use within this work, a DEL L is a set of SMOs with parameters to
be instantiated. For instance, the SMO to drop a column from a table requires two parameters: the
name of the table and the name of the column; if bidirectionality is required, we need an additional
parameter: a function calculating the values for the dropped column in the source version when
tuples are inserted in the target version without the respective column. Let inst (L) be the set of
all operation instances of L with valid parameters. Then, a relational database D = {R1, . . . , Rn}
with tables Ri can be evolved to another relational database D′ = {R′

1, . . . , R′
m} with the forward

mapping function γs
trg of an SMO s ∈ inst (L), which is denoted as D′ = γs

trg(D). Given a
sequence of SMOs S ∈ inst (L)+ with S = (s1, s2, ...sn) a given database D is evolved to another

database D′ = γs1
trg(γs2

trg(...γsn
trg(D))), which we formally denote as D

S−→ D′. For bidirectional
SMOs the mapping function γsrc denotes the backward propagation of data analogously to γtrg.
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4.1.1 Completeness

A complete DEL allows the developers to intuitively specify any intended evolution with the given set
of SMOs. Whenever the developers have to fall back on traditional SQL, all the formerly solved prob-
lems return, making completeness an essential requirement for the practical applicability of InVerDa.
We consider two levels of completeness: practical completeness and relational completeness.

Practical Completeness Practical completeness is a general and intuitive measure indicating the
feasibility of a DEL for common database evolution scenarios. Given the evolution history of existing
projects, a DEL must allow to model the same evolution exclusively with the given set of SMOs. As
an example, there is a detailed benchmark provided by Carlo Curino et al. [40] using the evolution
history of 171 versions of Wikimedia—the backend of e.g. Wikipedia. Any practical complete DEL
should allow to model the evolution of both the schema and the data completely and correctly as
originally intended by the developers. Practical completeness evaluates the completeness of a DEL
after the fact with respect to known evolutions; there is no guarantee that prevents developers from
hitting limitations of the DEL for uncommon evolution scenarios.

Relational Completeness Relational completeness is a formal property. It guarantees that any evo-
lution that can be expressed with relational algebra expressions can be expressed with the DEL’s SMOs
as well. We introduce a minimal relational complete DEL, called Lmin. This allows to evaluate the
relational completeness of a DEL later on by showing that it is at least as powerful as Lmin.

The relational completeness of a DEL is a fundamental prerequisite, as the advantages of DELs can
only be used when the developers specify all evolution steps with the given set of SMOs. Therefore,
we have to make sure that there is no need for developers to fall back on traditional SQL in any
situation. We take the relational algebra as the key reference for the expressiveness of traditional
SQL. A minimal language providing relational completeness is Lmin = {Add (·, ·) , Del (·)} with

Add
(
R′, ε

)
→ D ∪

{
R′ = ε (R1, . . . , Rn)

}

Del (R) → D \ {R}

The Add(·, ·) operation adds a new table R′ to the database D based on the given relational algebra
expression ε that works on the relations of D. The Del(·) operation removes the specified table R
from D. A database D can be evolved to any other database D′ with a sequence S ∈ inst (Lmin)+,
where the tables in D′ are computed from D with relational algebra expressions ε in the Add(·, ·)
operation. Thus, Lmin is relationally complete. From a practical standpoint however, Lmin is not very
appealing, because it is rather unintuitive and not oriented on actual evolution steps. However, any
other DEL that is as expressive as Lmin is relationally complete as well.

To the best of our knowledge, one of the most advanced DEL designs is PRISM/PRISM++ [39, 41].
PRISM++ provides SMOs to create, rename, and drop both tables and columns, to divide and com-
bine tables both horizontally and vertically, and to copy tables. The PRISM++ authors claim practi-
cal completeness for their powerful DEL, by validating it against evolution histories of several open
source projects. Although this evaluation suggests that PRISM++ is sufficient also for other software
projects, it does not provide any reliable completeness guarantee—it is not shown to be relationally
complete. For instance, we do not see an intuitive way to remove all rows from a table A, which also
occur in a table B (relational difference) using the PRISM++ DEL, since it does not offer any direct
or indirect outer join functionality. Thus, we consider PRISM++ not to be relationally complete.
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4.1.2 Bidirectionality

The bidirectionality of the DEL is required to facilitate co-existing schema versions with data being
propagated both forwards and backwards between them. While unidirectional DELs describe only
the forward evolution, the SMOs of a bidirectional DEL also contain enough information to propa-
gate data backwards. Let us take the view update problem as an example: the unidirectional view
definitions precisely describe how to compute the view from the base tables. However, the backward
direction is excluded; most views are not implicitly updatable since the initial view definition does
not contain instructions on how to propagate data backwards. While the research community con-
tinuously proposes sophisticated techniques to (semi-)automatically estimate the intended backward
propagation from the given view definition, data distribution, workload, structure, etc., bidirectional
DELs explicitly require the developers to provide the backward propagation of data as well. Thereby,
bidirectional DELs allow generating implicitly updatable views for new table versions, which is the
basis for co-existing schema versions within a multi-schema-version database system.

4.2 SYNTAX AND SEMANTICS

As a practical complete and relational complete and bidirectional DEL, we propose BiDEL, which
is the DEL used by InVerDa. Basically, BiDEL is an evolution language for relational databases to
describe the evolution of both the schema and the data from a source schema version to a target
schema version. As BiDEL also contains an SMO to create new tables from scratch, it can also create
completely new schema versions without a source schema version. In its pure form, BiDEL allows to
describe the forward evolution including the forward propagation of data with the expressiveness of
the relational algebra.

However, BiDEL is not restricted to the plain forward evolution. Co-existing schema versions that
work on the same conceptual data set, require bidirectional semantics—data needs to be propagated
both forwards and backwards between all schema versions. To enable the backward propagation ad-
ditionally to the forward propagation, BiDEL’s SMOs may have additional arguments to provide the
necessary bidirectional semantics. The developers need to provide those additional argument only if
backward propagation is required. Namely the DROP COLUMN SMO, the MERGE SMO, and the DECOMPOSE
SMO additionally require missing parameters of their inverse SMOs to propagate data backwards.
These slight extensions are very limited and do not decrease the beauty and simplicity of BiDEL.

In this section, we define BiDEL’s syntax including bidirectional SMOs—but we focus the discussion
of the formal semantics on the forward evolution. For the semantics of the backward propagation,
we apply the formal semantics of the inverse SMO and only intuitively describe the implications. The
semantics of backward propagation will be formalized in Chapter 6 along with the propagation of read
and write operations to the auxiliary tables.

Similar to the intuitive and field-proven design of PRISM++, BiDEL contains SMOs to describe cou-
pled changes of both the schema and the data as units, which clearly distinguishes it from SQL-DDL
and -DML. BiDEL evolves a maximum of two source table versions to not more than two target table
versions, which keeps the language intuitive and easy to learn. BiDEL operations systematically cover
all possible changes that can be applied to tables. To intuitively cover the whole space of possible evo-
lution operations within a relational database, we first define the basic elements on which evolution
operations are defined: Tables are the fundamental structuring element and the container for payload
data in a relational database. Secondary database objects such as views, constraints, functions, stored
procedures, indexes, etc. should be considered in database evolution as well. However, in this thesis
we focus on the evolution of the primary data.
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Figure 4.1: Structure of BiDEL’s SMOs.

Our DEL BiDEL defines SMOs of the pattern 〈smo〉〈scope〉(Θ), where 〈smo〉 is the type of operation,
〈scope〉 is the general database object the operation works on, andΘ is the set of parameters the SMO
requires. Figure 4.1 gives a systematic overview of all SMOs in BiDEL. A relational database table is
a two-dimensional structure consisting of columns and rows, hence, SMOs can operate on the level
of columns, of rows, or of whole tables. On all three levels there are five basic operations: Add, Del,
Split, Unite, and Rename. We now introduce the meaningful operations, as shown in Figure 4.1.
First, BiDEL has two basic operations to create (Addtable) and drop (Deltable) tables as a whole,
similar to their counterparts in a standard SQL-DDL. Second, BiDEL has a set of operations to modify
a table. BiDEL offers six table modification SMOs 〈smo〉〈scope〉 with 〈scope〉 ∈ {column, row}
and 〈smo〉 ∈ {Add, Del, Split, Unite}. For instance, Delcolumn reduces the column set of a given
table by removing one column and Splitrow partitions a table horizontally by splitting its set of rows,
while Splitcolumn partitions a table vertically by splitting its set of columns. Creating and dropping
rows are data manipulation operations that are already well supported by traditional SQL-DML and
therefore out of scope for a DEL. BiDEL defines no Split or Unite of whole tables since these
operations are restricted to either column or row scope. Third, BiDEL includes two SMOs to rename
a table (Renametable) and a column (Renamecolumn). The renaming of rows is undefined.

Regarding relational completeness, e.g. Renamecolumn, Renametable, and Delcolumn are not neces-
sary, as they are subsumed by the remaining SMOs. However, they are very common [40] and in-
cluded in BiDEL for usability’s sake. To summarize, BiDEL is the DEL LC with:

LC =

⎧⎪⎨
⎪⎩

Addtable, Deltable, Addcolumn, Delcolumn

Splitcolumn, Unitecolumn, Splitrow, Uniterow

Renametable, Renamecolumn

⎫⎪⎬
⎪⎭

All BiDEL SMOs require a set Θ of parameters. Let inst (o, D) be the set of instances of the SMO o
with valid parameters w.r.t. the database D. For instance, the only parameter to remove a table with
Deltable(Θ) is the name of an existing table, so inst (Deltable (Θ) , D) = {Deltable(R)|R ∈ D}.
Further, let inst (L, D) = ⋃

o∈L inst (o, D) be the set of all validly parameterized SMO instances
of the DEL L. Then, a BiDEL evolution script S for a database D is a sequence of instantiated SMOs
with S ∈ inst (LC , Di)+, where Di is the database after applying the i-th SMO.
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In the following, we specify the semantics of all BiDEL SMOs. Table 4.1 summarizes the definition of
the semantics based on Lmin. The table also shows the SQL-like syntax we propose for the implemen-
tation of BiDEL. In the remainder, R.C = {c1, . . . , cn} denotes the set of columns of table R and
Ri specifies the revision i of the table R. Whenever an SMO does not change the table’s name but
its columns or rows, we increment this revision counter i to avoid naming conflicts. BiDEL SMOs
take table versions as input and return new table versions. According to the SQL standard, tables
are multisets. Our Lmin semantics is based on the relational algebra, so tables are sets. Relational
database systems internally manage row identifiers, which are at least unique per table. At the level
of SMO implementation, we consider the row identifiers as part of the tables, hence tables are sets.
The corresponding multiset semantics of the SMOs can be achieved, by adding a multiset projection
of the resulting tables that removes the row identifiers without eliminating duplicates.

Addtable and Deltable: The SMOs Addtable and Deltable are the simplified version of their Lmin

counterparts. Addtable(R, {c1, . . . , cn}) requires two parameters, a table nameR and a set of column
definitions ci. It creates an empty table with the specified name and schema. Deltable(R) takes only
a single parameter, the name of the table to be dropped.

Addcolumn and Delcolumn: The SMO Addcolumn adds a new column to an existing table. As pa-
rameters, Addcolumn(Ri, c, f(c1, . . . , cn)) takes the name Ri of the table where the column should
be added, the column definition c of the new column, and a function f . The resulting table is Ri+1.
Addcolumn applies the function f to each row in Ri to calculate the row’s value for the new column c
in Ri+1. The function f is a standard SQL function that can access the existing values of the row.

Delcolumn removes a column from a table. Specifically, Delcolumn(Ri, c) takes the name Ri of an
existing table and the name c ∈ Ri.C of the column that should be removed from Ri. The resulting
table is Ri+1. For bidirectional semantics, a function f is required as an additional parameter to
calculate the default values for the dropped column according to Addcolumn.

Splitcolumn and Unitecolumn: The SMO Splitcolumn splits a table vertically and removes the
original table. Splitcolumn has a generalized semantics, where the resulting parts are allowed to be
incomplete and to overlap. The SMO Splitcolumn(R, (S, {s1, . . . , sn}) , (T, {t1, . . . , tm})) takes
the name R of the original table, a pair consisting out of a table name S and a set of column names si

as specification of the first partition and optionally a second pair (T, {t1, . . . , tm}) as specification of
the second partition. The two sets of column definitions are independent. In case S.C ∩ T.C �= ∅,
the columns S.C ∩ T.C are copied. In case S.C ∪ T.C ⊂ R.C, the partitioning is incomplete. If
the second partition is not specified, T is not created. BiDEL prohibits empty column sets for S and
T since tables must have at least one column.

Unitecolumn is the inverse operation of Splitcolumn: it joins two tables based on a given condition
and removes the original tables. As parameters, Unitecolumn(R, S, T, cond, o) takes the names R
and S of the original tables, the name T of the resulting table, a join condition cond, and the optional
boolean o to indicate an outer join. The join condition is either the primary key, or a specified foreign
key, or an arbitrary SQL predicate without further nesting, so N:M mappings are explicitly allowed.
The join on the primary key or a foreign key are merely specialized conditions, so the semantics of
Unitecolumn is defined for the most general case of an arbitrary condition cond. In case o = �,
Unitecolumn performs an outer join, so that no rows from the original tables are lost. In case o = ⊥
(or not specified) Unitecolumn performs an inner join. With the inner join, Unitecolumn loses all
rows from R and S that do not find a join partner since R and S are dropped after the join. More
complex join types like e.g. left, right, or full outer joins can be simulated in sequences with other
SMOs [112]. Note that restricting the join to foreign key relations as other DELs do [41], does not
prevent this information loss. A foreign key does not guarantee that every row in the referenced table
is actually referenced by at least one row in the referencing table.
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Table 4.1: Syntax and semantics of BiDEL operations.

SMO: Addtable(R, {c1, . . . , cn})
Semantic: Add(R, πc1,...,cn (∅));
Syntax: CREATE TABLE R (c1,...,cn)

SMO: Deltable(R)
Semantic: Del(R);
Syntax: DROP TABLE R

SMO: Renametable(R, R′)
Semantic: Add(R′, R);

Del(R);
Syntax: RENAME TABLE R INTO R′

SMO: Renamecolumn(Ri, c, c′)
Semantic: Add

(
Ri+1, ρc′/c (Ri)

)
;

Del(Ri);
Syntax: RENAME COLUMN c IN Ri TO c′

SMO: Addcolumn(Ri, c, f(c1, . . . , cn))
Semantic: Add

(
Ri+1, πRi.C∪{c←f(c1,...,cn)} (Ri)

)
;

Del(Ri);
Syntax: ADD COLUMN c AS f(c1,...,cn) INTO Ri

SMO: Delcolumn

(
Ri, c, f(c1, . . . , cn)

)

Semantic: Add
(
Ri+1, πRi.C\{c} (Ri)

)
;

Del(Ri);
Syntax: DROP COLUMN c FROM Ri DEFAULT f(c1,...,cn)

SMO: Splitcolumn(R, (S, {s1, . . . , sn}) , (T, {t1, . . . , tm}) , cond)
Semantic: Add(S, πs1,...,sn (R)); [Add (T, πt1,...,tm (R))];

Del(R);
Syntax: DECOMPOSE TABLE R INTO S (s1,...,sn) [, T (t1,...,tm)

ON (PK | FK fk | cond)]

SMO: Unitecolumn(R, S, T, cond, o)
Semantic: o = ⊥: Add(T, R ��cond S); o = �: Add(T, R � cond S);

Del(R); Del(S);
Syntax: [OUTER] JOIN TABLE R, S INTO T ON (PK | FK fk | cond)

SMO: Splitrow(R, (S, condS) , (T, condT ))
Semantic: Add(S, σcondS

(R)); [Add (T, σcondT
(R))];

Del(R);
Syntax: PARTITION TABLE R INTO S WITH condS [, T WITH condT ]

SMO: Uniterow
(
R, S, T, condS , condT

)

Semantic: Add
(
T, πR.C∪{ω→ai|ai∈S.C\R.C} (R) ∪ πS.C∪{ω→ai|ai∈R.C\S.C} (S)

)
;

Del(R); Del(S);
Syntax: MERGE TABLE R (condR), S (condS) INTO T

Legend: Underlined parameters are only necessary for bidirectional data propagation
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Splitrow and Uniterow: Splitrow partitions a table horizontally. Like its vertical counter part
Splitcolumn, its semantics is more general than standard horizontal partitioning [28]. The SMO
creates at most two partitions out of a given table—with the partitioning allowed to be incomplete and
overlapping—and removes the original table. More precisely, Splitrow(R, (S, condS) , (T, condT ))
takes the name R of the original table, a pair of table name S and condition condS as specification
of the first partition and optionally a second pair (T, condT ) as specification of the second partition.
Both conditions condS and condT are independent. If the original tables contain rows that fulfill nei-
ther of the conditions, the resulting partitioning is incomplete. Rows that fulfill both conditions are
copied resulting in overlapping partitions. In case both conditions hold for all rows, i.e., condS = �
and condT = �, both S and T are complete copies of R. Hence, Splitrow subsumes the function-
ality of a copy operation that can be found in other DELs. If condT is not specified, Splitrow does
not create table T .

Uniterow is the inverse operation of Splitrow; it merges two given tables along the row dimension
and removes the original tables. As parameters, Uniterow(R, S, T ) requires the names R and S of
the original tables and the name T of the resulting table. The schema ofR andS are not required to by
equivalent. In case both schemas differ, T contains null values (ω) in the respective cells. Uniterow

eliminates duplicates in T . In case R and S contain equivalent rows, these rows will show up only
once in T .

Renametable andRenamecolumn: The last two SMOs rename named schema elements. The SMO
Renametable(R, R′) renames the table with the name R into R′. Renamecolumn(Ri, c, c′) renames
the column c in table Ri into c′, which results in table Ri+1 as well known from their SQL-DDL
counterparts.

Now, we have a precise definition of both the syntax and semantics ofBiDEL; summarized in Table 4.1.
Basically, BiDEL allows to create, rename, and drop both columns and table but also to split and
merge table both along the tuples or the columns. In the next section, we show that these SMOs are
powerful enough to cover common evolution scenarios and provide a formal guarantee for relational
completeness.

4.3 EVALUATION

After presenting the syntax and the semantics of BiDEL, we will now discuss the initially set objec-
tives. We evaluate BiDEL’s practical completeness (Section 4.3.1) as well as its relational complete-
ness (Section 4.3.2) to show that it is an appropriate DEL for multi-schema-version database systems
and that developers can express any occurring evolution scenario. In Section 4.3.3, we show how
BiDEL’s bidirectionality reduces the length and complexity of the code to be written by develop-
ers and thereby yields simpler and more robust database evolution support in multi-schema-version
database systems.

4.3.1 Practical Completeness

We use the database evolution benchmark from Carlo Curino et al. [40] that is based on actual evolu-
tion histories of open source projects. The benchmark requires e.g. that a DEL can model an excerpt
of 171 schema versions of Wikimedia in order to be practically complete. We model the benchmark’s
evolution history completely with BiDEL. BiDEL proved to be capable of providing the database
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SMO #occurences

CREATE TABLE 42
DROP TABLE 10
RENAME TABLE 1
ADD COLUMN 93
DROP COLUMN 20
RENAME COLUMN 37
JOIN 0
DECOMPOSE 4
MERGE 2
PARTITION 0

Figure 4.2: SMOs of Wikimedia schema evolution.

schema in each version exactly according to the benchmark and migrate the data in a meaningful
way. Thus, BiDEL is practical complete and feasible to handle such real world scenarios. Figure 4.2
summarizes characteristics of the 209 SMOs long BiDEL evolution history, particularly how often
each SMO has been used in total. We account the dominance of simple SMOs like adding and re-
moving both columns and tables mainly to the restricted database evolution support current DBMSes
provide. Still, there are more complex evolutions requiring the other SMOs as well. So, there is a
need for more sophisticated database evolution support. In general, the characteristics of the evo-
lution with BiDEL is obviously very similar to the same evolution modeled with the also practically
complete DEL PRISM [40]. However, there are slight differences, because the respective sets of SMOs
differ. For instance the complex evolution from version v06696 to v06710 takes 31 SMOs instead of
92 SMOs due BiDEL’s powerful DECOMPOSE SMO.

A major difference in the set of SMOs between PRISM and BiDEL is that PRISM relies on the copy
operation as starting point for many practically relevant scenarios. After initially copying the data, fur-
ther SMOs are used to shape the copy according to the intended evolution. In contrast, BiDEL does
not offer an explicit copy operation at all. While the copy operation is easy and intuitive for forward
evolution, it breaks the backward evolution/propagation of data. Therefore, BiDEL does not provide
an explicit copy operation but implicitly allows copying data within other SMOs—namely PARTITION
and DECOMPOSE. These SMOs already adjust the amount of copied information to the intended evolu-
tion, which shortens e.g. the evolution of 171 schema versions of Wikimedia from 269 SMOs with
PRISM to 209 SMOs with BiDEL. But most importantly, knowing the explicit intention of copying
a table is an essential prerequisite e.g. for backward propagation of data and for merging different
schema versions, as we will demonstrate in this thesis.

4.3.2 Relational Completeness

To show the relational completeness of BiDEL, we argue that it is at least as powerful as Lmin, which
is relationally complete by definition (Section 4.1.1). There is always a semantically equivalent ex-
pression in BiDEL for any expression in Lmin. The Del (R) operation from Lmin is trivial, since it
is equivalent to BiDEL’s Deltable(R). On the contrary, Add (R, ε) from Lmin is more complex, as ε
covers the power of the relational algebra. Since both the relational algebra and BiDEL are closed
and composable languages, it is reasonable to address each operation of the relational algebra sepa-
rately. We show that, for each operation from the relational algebra, there is a semantically equivalent
sequence of SMOs in BiDEL.
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We consider the basic relational algebra [35] and the common extensions outer join and extended
projection. The basic relational algebra contains selection, renaming, projection, cross product, as
well as union and difference of relations. This set of relational operations covers the whole relational
algebra and subsumes further operations like intersection and division [112]. We intentionally exclude
extensions such as the transitive closure and sorting—BiDEL is non-recursive and set-based, which
proves to be a reasonable trade-off between expressiveness and usability, however, extending BiDEL’s
expressiveness with more powerful operations is future research. With respect to implementations
based on current database management systems, the distinction between different types of null values
is not considered [123]. For instance Uniterow adds null values in columns, which existed in only
one input table, losing the information, whether a value was null before or did not exist at all. The
following sections consider the relational algebra operations [112] plus the chosen extensions and
show that BiDEL is capable to obtain the semantically equivalent results.

Relation: R: The basic elements of the relational algebra are relations. They contain the data and
are directly accessible by BiDEL as tables. Whenever one table is required multiple times within a
relational algebra expression, BiDEL allows to copy them using Splitrow(R, (S, �) , (T, �)).

Selection: σcond (R): The relational selection operation returns the subset of rows from R, where
each row satisfies the condition cond. The semantic equivalent is directly provided by BiDEL’s
Splitrow.

Algorithm 1 BiDEL sequence for relational selection.

1: Splitrow(R, (S, cond));

The Splitrow operation with only one output table applies the condition cond to the input table
and creates a new table including this data. Applying the defined semantics, we obtain the expected
relational selection:

S
l.1=σcond(R) (4.1)

Rename: ρc′/c (Ri): Renaming a column is subsumed by the extended projections, however, we
include it here for completeness. BiDEL’s obvious semantic equivalent according to Table 4.1 is the
SMO Renamecolumn.

Algorithm 2 BiDEL sequence for renaming a relation.

1: Renamecolumn(Ri, c, c′);

Ri+1
l.1=ρc′/c(Ri) (4.2)

Extended Projection: πP (Ri): We use the extended projection since it subsumes the traditional
projection. The extended projection defines a new set of columns, whose values are computed by
functions depending on the existing columns. The projection P = {fk (Ri.C) → ak|1 ≤ k ≤ m}
produces a relation with m columns, each being computed by a function fk (Ri.C) taking the n =
|Ri.C| columns from Ri as input. For instance, we can project the Task table in the schema version
TasKy to πtask→task,(prio==1)→isUrgent(Task), so we return the task and a boolean stating whether
its priority is 1 or not. The following algorithm describes the BiDEL sequence for the relational pro-
jection operation in general.
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Algorithm 3 BiDEL sequence for relational projection

1: for k = [1..m] do
2: Addcolumn(Ri+k−1, a′

k, fk (r1, . . . , rn));
3: for rj ∈ Ri.C do
4: Delcolumn(Ri+m+j−1, rj);
5: for k = [1..m] do
6: Renamecolumn(Ri+m+n+k−1, a′

k, ak);

Without loss of generality, we use for-loops to iterate over the attribute sets. Since this is only schema
depending and data independent, it does not extend the expressiveness of the DEL but is simply a
short notation. The first SMO adds a new column, with a masked name, for each column of the output
table. This allows to compute the new values based on all existing ones. Afterwards, we drop the old
columns, rename the new columns to their unmasked name, and remove all intermediate tables. In
our example above, we first add the two columns task′ and isUrgent′ and compute the projected
values. Afterwards, we remove the original columns name, prio, and author and finally rename the
projected columns to task and isUrgent. Applying the semantics definitions of the BiDEL SMOs to
Algorithm 3 results in the desired extended projection, as we will show now. The respectively applied
line of the BiDEL sequence (Algorithm 3) is indicated above the equal signs.

Ri+1
l.2= πr1,...,rn,f1(r1,...,rn)→a′

1
(Ri) (4.3)

Ri+m
l.1,2= πr1,...,rn,f1(r1,...,rn)→a′

1,...,fm(r1,...,rn)→a′
m

(Ri) (4.4)

Ri+m+1
l.4= πr2,...,rn,a′

1,...,a′
m

(Ri+m) (4.5)

Ri+m+n
l.3,4= πa′

1,...,a′
m

(Ri+m) = πf1(r1,...,rn)→a′
1,...,fm(r1,...,rn)→a′

m
(Ri) (4.6)

Ri+m+n+1
l.6= πa′

1→a1,a′
2,...,a′

m
(Ri+m+n) (4.7)

Ri+m+n+m
l.5,6= πa′

1→a1,...,a′
m→am

(Ri+m+n) = πf1(Ri.C)→a1,...,fm(Ri.C)→am
(Ri) (4.8)

In Equation 4.3, we apply Line 2 from Algorithm 3 for the first projected column a′
1, which merely

adds the calculated value and the column name to the projection clause. According to the loop on
Lines 1 and 2 we do this for all projected columns as shown in Equation 4.4. In the second loop
on Lines 3 and 4, we drop the original columns of the table since they are no longer required for
the calculation. Equation 4.5 shows the result after dropping the first column, while Equation 4.6
shows the table after full iteration of the second loop. Finally, we replace the masked names with the
originally intended names of the projected columns on Lines 5 and 6 to first obtain Equation 4.7 and
finally the extended projection in Equation 4.8.

Outer Join: R ������pS: The outer join is a common extension to the traditional relational algebra.
Beyond the rows according to an inner join, it also includes those rows in the result, which did not
find a join partner. The missing values for columns of the other table are filled with null values.
BiDEL’s Unitecolumn(R, S, T, p, �) explicitly offers outer joins, which is semantically equivalent.

Algorithm 4 BiDEL sequence for relational outer join operation

1: Unitecolumn(R, S, T, cond, ⊥);

T
l.1= R � S (4.9)
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Cross Product: R×S: The cross product produces a row in the output table for each pair of rows from
the input tables. Algorithm 5 describes the BiDEL sequence to obtain the relational cross product. We
add a new column j to both tables with j �∈ Ri.C and j �∈ Sk.C. The default value of j is a constant
1, so we can perform an inner join on j, such that there will be one row in the output table for each
pair of rows from the two input tables. Finally, we remove the additional column j and summarize
the outcome to the cross product of R and S. Thereby, we show the semantic equivalence between
the relational cross product and the presented sequence of BiDEL SMOs.

Algorithm 5 BiDEL sequence for relational cross product

1: Addcolumn(Ri, j, 1);
2: Addcolumn(Sk, j, 1);
3: Unitecolumn(Ri+1, Sk+1, T0, Ri+1.j = Sk+1.j, ⊥);
4: Delcolumn(T0, j);

Ri+1
l.1=πr1,...,rn,1→j (Ri) = {(r1, . . . , rn, 1) | (r1, . . . , rn) ∈ Ri} (4.10)

Sk+1
l.2= {(s1, . . . , sm, 1) | (s1, . . . , sm) ∈ Sk} (4.11)

T0
l.3=Ri+1 ��Ri+1.j=Sk+1.j Sk+1

= {(r1, . . . , rn, s1, . . . , sm, 1) | (r1, . . . , rn) ∈ Ri, (s1, . . . , sm) ∈ Sk} (4.12)

T1
l.4= {(r1, . . . , rn, s1, . . . , sm) | (r1, . . . , rn) ∈ Ri, (s1, . . . , sm) ∈ Sk}
=R × S (4.13)

Union: R ∪ S: The relational union operation merges the rows from both input tables to the one
output table including an elimination of duplicates. Using the SMO Uniterow, BiDEL provides a
semantic equivalent to the relational union operation.

Algorithm 6 BiDEL sequence for relational union operation

1: Uniterow(R, S, T );

T
l.1=πR.C (R) ∪ πS.C (S) = R ∪ S (4.14)

Please note that the union in the relational algebra requiresR andS to have identical sets of attributes
(R.C = S.C), which justifies the simplification step.

Difference: R \ S: The relational difference returns all rows, which occur in the first, but not in
the second table. Analogous to the union, it requires R and S to have identical sets of columns
(R.C = S.C). Algorithm 7 describes the BiDEL sequence to obtain the relational difference, where
ω denotes a null value. We add a new column j to Sk with j �∈ Sk.C and the default value 1. The
outer join on all column pairs in {(Ri.ci, Sk.ci)|ci ∈ Ri.C} (remember Ri.C = Sk.C), results in
a table containing all rows which were in at least one of the two input tables. However, all rows that
occurred in Sk have the value 1 in the column j and are removed by the third SMO. All rows which
occurred exclusively in R have a null value ω in the column j and remain as a result. Applying the
semantics definition of the SMOs finally leads to the relational difference operation. Please note that
(r1, . . . , rn) �∈ Sk is equal to (r1, . . . , rn, 1) �∈ Sk+1 due to the first step.
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Algorithm 7 BiDEL sequence for relational difference operation

1: Addcolumn(Sk, j, 1);
2: Unitecolumn(Ri, Sk+1, T0, (Ri.c1 = Sk+1.c1 ∧ . . . ∧ Ri.cn = Sk+1.cn) , �);
3: Splitrow(T0, (T1, j �= ω));
4: Delcolumn(T1, j);

Sk+1
l.1=πs1,...,sm,1→j (Sk) (4.15)

T0
l.2=Ri � Sk+1

= {(r1, . . . , rn, 1) | (r1, . . . , rn) ∈ Ri, (r1, . . . , rn, 1) ∈ Sk+1}
∪ {(r1, . . . , rn, 1) | (r1, . . . , rn) �∈ Ri, (r1, . . . , rn, 1) ∈ Sk+1}
∪ {(r1, . . . , rn, ω) | (r1, . . . , rn) ∈ Ri, (r1, . . . , rn, 1) �∈ Sk+1} (4.16)

T1
l.3=σ¬(j 	=ω) (T0) = σ(j=ω) (T0)
= {(r1, . . . , rn, ω) | (r1, . . . , rn) ∈ Ri, (r1, . . . , rn, 1) �∈ Sk+1} (4.17)

T2
l.4=πR.C (T1)
= {(r1, . . . , rn) | (r1, . . . , rn) ∈ Ri, (r1, . . . , rn) �∈ Sk} = Ri \ Sk (4.18)

In Equation 4.15, we apply Line 1 fromAlgorithm 7 so thatSk+1 contains the added column j with the
value 1. Equation 4.16 shows the joint table T0 according to the outer equi join on all columns except
j, such that T0 is basically a duplicate-eliminating union of R and S, where any tuple occurring is S
has j = 1 (Line 2). In Equation 4.17, we remove those tuples from S (Line 3), so we can drop the
column j in Equation 4.18 (Line 4) and finally end up with the relational difference operation.

Finally, we successfully showed that BiDEL provides a semantic equivalent for each relational algebra
expression, which makes it equally expressive as Lmin. Hence, BiDEL is a relational complete DEL
and a sound foundation for InVerDa and future research.

4.3.3 Bidirectionality

Using the bidirectional DEL BiDEL releases developers from the expensive and error-prone task of
manually writing delta code. We show this using both the TasKy example (Figure 2.4, page 28).
We implement the evolution from TasKy to TasKy2 with handwritten and hand-optimized SQL and
compare this code to the semantically equivalent BiDEL statements. The general setup is a multi-
schema-version database system, so both TasKy and TasKy2 should co-exist at the same time and the
physical materialization will be migrated from TasKy to TasKy2 eventually. Specifically, we manually
implement (1) creating the initial TasKy schema, (2) creating the additional schema version TasKy2

with the respective views and triggers, and (3) migrating the physical table schema to TasKy2 and
adapting all existing delta code. This handwritten SQL code is much longer and much more complex
than achieving the same goal with BiDEL. Table 4.2 shows the lines of code (LOC) required with SQL
and BiDEL, respectively, as well as the ratio between these values. As there is no general coding style
for SQL, LOC is a rather vague measure. We also include the objective number of statements and
number of characters (consecutive white-space characters counted as one) to get a clear picture and
to use the number of characters per statement as an indicator for the code’s complexity. Obviously,
creating the initial schema in the database is equally complex for both approaches. However, evolving
it to the new schema version TasKy2 and migrating the data accordingly requires 359 and 182 lines
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INVERDA Initially Evolution Migration

Lines of Code 1 3 1
Statements 1 3 1
Characters 54 152 19

SQL (Ratio)

Lines of Code 1 (×1.00) 359 (×119.67) 182 (×182.00)
Statements 1 (×1.00) 148 (×49.33) 79 (×79.00)
Characters 54 (×1.00) 9477 (×62.35) 4229 (×222.58)

Table 4.2: Ratio between SQL and InVerDa delta code.

of SQL code respectively, while we can express the same with 3 and 1 lines with BiDEL. Moreover,
the SQL code is also more complex, as indicated by the average number of characters per statement.
While BiDEL is working exclusively on the visible schema versions, with handwritten SQL developers
also have to manage auxiliary tables, triggers etc.—working on multiple technical levels also increases
the code’s complexity and makes the manual solutions error-prone and expensive.

In sum, we have shown that multi-schema-version database systems with an SMO-based DEL, such
as BiDEL, greatly release the developers and DBAs from a lot of manual implementation effort.
SMOs carry enough information to generate delta code for access propagation and migration between
schema versions automatically, which saves orders of magnitude of manual implementations.

4.4 SUMMARY

We designed and presented BiDEL—the practically complete, relationally complete, and bidirectional
DEL of InVerDa. BiDEL is an SMO-based DEL that couples the evolution of both the schema and
the data into intuitive evolution steps, which is an essential requirement to let the multi-schema-
version database system automatically manage the multitude of schema versions. BiDEL provides a
set of SMOs with a comprehensible SQL-like syntax. Further, we defined the semantics of all BiDEL
SMOs based on the relational algebra. We showed that BiDEL’s SMOs are practically complete—it is
possible to model the evolution history of 171 Wikimedia schema versions solely with BiDEL SMOs,
which thereby prove to cover practical scenarios. The semantics definition with relational algebra
expressions also allowed us to formally evaluate the relational completeness of BiDEL: We defined a
minimal relational complete DEL Lmin and showed that BiDEL is at least as expressive as Lmin.

Finally, we propose an extended set of arguments for BiDEL’s SMOs to make them bidirectional.
The pure form of BiDEL describes the forward evolution, and thereby only the forward propagation
of data. In addition, the bidirectional extensions require the developers to specify strategies for the
backward propagation of data for those SMOs where the backward propagation is not intuitively ob-
vious from the forward evolution. We have evaluated that the implementation effort for developers
and DBAs to realize co-existing schema versions can be reduced by orders of magnitude thanks to
the rich semantics of BiDEL. In sum, BiDEL proved to be a feasible DEL to specify the evolution in a
multi-schema-version database system as we can give important completeness guarantees and BiDEL
is powerful enough to automatically generate delta code for data propagation or data migration both
backwards and forwards between schema versions.
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BiDEL is a powerful DEL that couples the evolution of both the schema and the data in simple
SMOs and thereby captures the developers’ intentions. This facilitates valuable simplifications and
supporting tools for database developers. In this chapter, we present a semi-automatic consolida-
tion algorithm, called miX, which takes two existing schema versions and creates a new schema
version by merging them. miX comes in handy, e.g. when different development teams evolve the
database schema in different branches and want to consolidate the respective evolutions to one con-
solidated schema version afterwards. Traditional SQL hides the developers’ intentions between the
lines, namely between DDL and DML and DQL statements. In contrast, SMO-based DELs, such as
BiDEL, represents the intention explicitly, which essentially allows us to semi-automatically consoli-
date the intentions of multiple evolutions in the first place. In Section 5.1, we discuss the objectives
posed on such a functionality. The overall idea of merging two schema versions is based on a local
consolidation of every pair of SMOs from the two evolutions as we describe in Section 5.2. Therefore,
we consider every possible combination of two SMOs and specify the intuitively expected result of
merging these two SMOs in a consolidation matrix as presented in Section 5.3. We extend this lo-
cal consolidation of pairs of SMOs to the consolidation of whole sequences of SMOs in Section 5.4,
which allows the developers to easily create new schema versions. Finally, we conclude this chapter
in Section 5.5.

5.1 OBJECTIVES

The objective of the consolidation algorithm is to merge the intentions of two schema versions into a
new schema version. The two existing schema versions have a common—potentially empty—schema
version from where their evolutions continued independently. Given the two schema versions to
merge, the consolidation algorithm should create a new schema version that represents the intentions
of the evolutions from the last common schema version to these two schema versions as close as
possible. Since these evolutions are given as sequences of SMOs, the developers’ intentions are kept
explicitly, which facilitates to semi-automate the consolidation algorithm.

Obviously, the consolidated sequence of SMOs would need to start at one of the two given schema
versions. Creating it as a merged version that depends on both given schema versions would create
a cycle in the version history, which is by design acyclic to keep the propagation of any data access
deterministic. When issuing the merge operation, the first mentioned schema version should be the
core schema and the intention of the second mentioned schema version should be incorporated as
close as possible. Generally speaking, there is an evolving core database schema and a derived variant.
The variant has been first defined on the initial version of the core and should be semi-automatically
mapped to an evolved version of the core. Merging the intention of one schema version into another
schema version is closely related to the co-evolution problem of database schemas.

Given a sequence of SMOs SV that evolves the core database DCore to a variant DV ariant, and an-
other sequence of SMOs SC′ that evolves the core database DCore to a new version DCore′

, the goal
is to propose a sequence SV ′ that evolves DCore′

to the co-evolved variant DV ariant′
and preferably

maintains the intentions of SV in SV ′ . Thereby, the consolidation algorithm should consolidate the
intentions of SV′ with the intention of SC′ . To summarize the problem of variant co-evolution:

Given : DCore SV−−→ DV ariant and DCore SC′−−→ DCore′

Goal : DCore′ SV ′−−→ DV ariant′

72 Chapter 5 Merging Existing Schema Versions with MIX



TasKy2Do!

DoTwo!

TasKy

author task prio
1 Ann Organize party 3
2 Ben Learn for exam 2
3 Ann Write paper 1
4 Ben Clean room 1

Task

task prio author
1 Organize party 3 5
2 Learn for exam 2 6
3 Write paper 1 5
4 Clean room 1 6

name
5 Ann
6 Ben

author task new
3 Ann Write paper True
4 Ben Clean room True

Todo

Author

Task

task author
3 Write paper 5
4 Clean room 6

name
5 Ann
6 Ben

AuthorTodo

PARTITION TABLE Task INTO Todo WITH prio=1;
DROP COLUMN prio FROM Todo;

DECOMPOSE TABLE task INTO task(task,prio), author(author) ON FK author;
RENAME COLUMN author IN author TO name;

PARTITION TABLE Task INTO Todo WITH prio=1;
DROP COLUMN prio FROM Todo;

CREATE CO-EXISTING SCHEMA VERSION DoTwo! FROM TasKy2, Do!;

MIX

generatescalls     answers questions

Figure 5.1: Merging two branches of the TasKy example.

Let us clarify the envisioned consolidation algorithm using the TasKy example (Figure 2.4, page 28)
with the two different evolution to Do! and TasKy2 both starting at the initial schema version TasKy.
The initial schema version TasKy is obviously the core DCore. The variant DV ariant of this core is
Do!. The variantDo! should bemerged into the core evolutionSC′ , which creates the schema version
TasKy2. The merged schema version DV ariant that starts at TasKy and incorporates the intentions of
Do! is called DoTwo! in our example. Figure 5.1 illustrates how merging the two different evolutions
should work: When the developers create a new schema version by merging two existing ones, the
consolidation algorithm semi-automatically generates a sequence of SMOs SDoT wo! for the evolution
from TasKy toDoTwo! that incorporates the evolutionSDo! as close as possible. Intuitively, we expect
the Task table version in TasKy2 to be evolved to a Todo table with only tasks of the highest priority 1.
Further, the priority column should be dropped as well. The consolidation algorithm should merely
map the PARTITION SMO to the Task table of TasKy2. The same applies to the RENAME COLUMN SMO.
This whole process should be automated as much as possible. As there are situations that cannot be
foreseen when developing the two given schema versions, it should be at least semi-automatic: Dur-
ing the execution of the consolidation algorithm, the developers need to clarify ambiguous situations
whenever they occur. In our example, everything works nicely without further interaction. How-
ever, assuming that e.g. the DECOMPOSE SMO replicates the priocolumn to both target table versions,
the selection criteria of the PARTITION SMO would be applicable to both target table versions of the
DECOMPOSE SMO. In this case, the consolidation algorithm should ask the developers, to which target
table version(s) the PARTITION SMO should be propagated. The asked questions should be very simple,
to make the merging schema versions as easy and robust as possible.

5.2 SMO CONSOLIDATION

We presentmiX, the consolidation algorithm for merging schema versions in InVerDa. miX follows a
two level algorithm: globally consolidating sequences of SMOs by locally consolidating pairs of SMOs.
In this section, we present the local level, wheremiX combines one SMO of the variant with one SMO
of the core evolution. This combination process is backed by a consolidation matrix that defines the
intuitively expected result for any pair of SMOs (Section 5.3). On the global level,miX’s consolidation
algorithm extends the local consolidation of two single SMOs to two sequences of SMOs, which finally
allows semi-automatic variant co-evolution as we show in Section 5.4.
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Combining two BiDEL SMOs from inst
(
LC , DCore

)
, one from the core and one from the variant, is

the very foundation of miX. Therefore, we use the SMO composition operation ◦, which is defined as
◦ : inst

(
LC , DCore

)
× inst

(
LC , DCore

)
→ inst

(
LC , DCore

)∗
and takes a core SMOcore and

a variant SMOvar to return a sequence SMO∗ that can be executed after the SMOcore. Executing
the derived sequence of SMOs after SMOcore should represent the intention of SMOvar as close
as possible. The result of ◦ is a sequence of SMOs since one SMOvar may result in multiple SMOs
after the consolidation. For instance, the core partitions a table and the variant’s evolution has to be
applied to both partitions.

According to our objective, the composition operation ◦ is not commutative. As shown in Figure 5.1,
the core evolution remains unchanged, thus the composition distinguished between core and variant
SMOs. The co-evolved variant SMOs S′

V have to start at the evolved core Core′. On the application
level, this allows to keep the evolved core application unchanged but requires corresponding evolu-
tion of the variant application. Hence, the SMO consolidation ◦ is not commutative to ensure that
SMOCore remains unchanged and the derived sequence SMO∗ is applicable after this SMOCore.

The result of the SMO composition ◦ is the intuitively expected combination of the two input SMOs.
However, the intuitive expectation is hard to grasp formally. Hence, miX stores these intuitive ex-
pectations explicitly: the consolidation matrix represents the consolidation operation ◦ including the
intuitively expected outcome for each possible pair of SMOs. miX can handle any consolidation ma-
trix matching the interface of the composition operation ◦. In this work, we propose one possible
consolidation matrix for the general case, but miX is by no means limited to it.

Based on the example in Figure 5.1, let us consider e.g. the consolidation of the core’s DECOMPOSE with
the variant’s PARTITION SMO. In general, this pair can be consolidated only semi-automatically—the
developers need to specify to which target tables of the core’s DECOMPOSE SMO the variants partitioning
should be propagated:

Splitcolumn(T1, (S1, {A1}), (S2, {A2}), cond) ◦ Splitrow(T1, (R1, cond1) , (R2, cond2))

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(Splitrow(S1, (R1?, cond1) , (R2?, cond2))) Option 1
(Splitrow(S2, (R1?, cond1) , (R2?, cond2))) Option 2
(Splitrow(S1, (R1?, cond1) , (R2?, cond2)) , Option 3

Splitrow(S2, (R1?, cond1) , (R2?, cond2)))

miX will propose to use the same names for the two out coming tables of the partitioning as before,
however, the developers can assign other names if intended (symbolized by e.g. R1?, which asks for
an alternative name of R1). In our specific TasKy example, things are easier since there is only one
target table version of the DECOMPOSE SMO that allows to evaluate the partitioning condition, which
makes it obvious for miX to choose Option 1: So, we end up with the intuitively expected schema,
where the partitioned table is decomposed just as the unpartitioned one before:

Splitcolumn(Task, (Task, {task, prio}), (Author, {author}), FK(fkauthor))
◦ Splitrow(Task, (Todos, prio = 1))
= Splitrow(Task, (Todos, prio = 1)))

In sum, the consolidation of two SMOs is realized with the ◦ operation that takes two SMOs and
applies the intention of the second one as good as possible to the first one. Since, this might involve
ambiguities like e.g. naming conflicts, we keep the developers in the loop to answer very simple ques-
tions. Thanks to the well-defined interface of ◦, miX clearly separates the definition of the intuitive
expectations from the effective consolidation algorithm.

74 Chapter 5 Merging Existing Schema Versions with MIX



Table 5.1: Compatibility matrix for SMO consolidation.
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Addtable ?N � ?N � � � � � � �
Deltable � � � � � � � � � �

Renametable ?N � ?N � � � � � � �
Splitrow � � ?N � ?P � ?P � � �
Uniterow � � ?N � � ?E � � � �
Splitcolumn � � ?N ?P � � � ?P � �
Unitecolumn � � ?N � � ?E � � � �
Addcolumn � � � � � ?E � ?N � ?N

Delcolumn � � � � � � � � � �
Renamecolumn � � � � � � � ?N � ?N

5.3 CONSOLIDATION MATRIX

We propose a consolidation matrix containing each possible combination of SMOcore and SMOvar

and the intuitively expected output for the general case. In specific domains it seems to be reasonable
to adapt this matrix accordingly. However, already the generally proposed co-evolved variant SMOs
greatly simplify the co-evolution and can be individually exchanged or extended when needed. As
SMOs are compact and intuitive, developers can easily adapt the proposed sequence of SMOs and
tweak it to the concretely expected variant.

Table 5.1 shows the compatibility of all combinations of a core SMO and a variant SMO.Most pairs can
be consolidated automatically (�, 71 out of 100 possible combinations). Some combinations of SMOs
are contradicting (�, 11 out of 100 possible combinations), hence the respective SMOvar cannot be
executed at all—which might be just fine in many scenarios—so the resulting consolidated schema
might still match the intention of the variant evolution reasonably. Further, there are three different
kinds of user interaction (?, 18 out of 100 possible combinations). First, the developers have to resolve
naming conflicts (?N , 12 times). Second, the developers have to choose out of two or three possible
paths for a consolidation when the core splits a table (?P , 3 times). And finally, the developers have to
extend the list of columns of an SMOvar=Splitcolumn in case there are newly created columns in
the core (?E , 3 times). All questions are comprehensible and easy to answer by selecting an option or
typing a name, which significantly simplifies the developers’ effort for the variant co-evolution. In the
following, we will explain the consolidationmatrix inmore detail. First, we discuss how to consolidate
SMOs on table level (SMOtable) with any other SMO. Afterwards, we go through the consolidation
matrix line by line to elaborate on the consolidation of an SMOcore both on row (SMOrow) and on
column (SMOcolumn) level with any other SMOvar.
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SMOtable ◦ SMOtable: Consolidating SMOs that work on different input tables is trivial, as they do
not interfere at all, so a core’s or a variant’s Addtable cannot conflict with any other SMO. The only
exception are naming conflicts—if such a naming conflict occurs, miX asks the developers to provide
a new name for the variant’s table. Any combination of Addtable SMOs and Renametable SMOs might
require the developers to assign a new name to the variant table in case it should have the same
name as a core table. Apart from this, Addtable never has overlapping input with another SMO. If the
variant removes a table that is used by SMOcore, miX can easily propagate this to the target tables
of SMOcore and delete those tables as well, e.g. if the variant intents to drop the same table as the
core drops, this intention is implicitly covered. However, if the variant’s developers intent to rename
a table that has been removed in the core evolution, this intention cannot be reflected anymore and
will be ignored. In the remainder of the consolidation matrix, we will focus on those cases where the
SMOs have an overlap in the set of input tables.

SMOtable◦SMOrow,column: Any table that has been added in the core evolution cannot be the input
of any SMOvar, since it does not exist in the variant in the first place, which makes the consolidation
trivial. If the core deletes a table that also serves as input for SMOvar, the consolidation will ignore
SMOvar as the concept was intentionally removed from the database in the core evolution. Finally,
a renamed table in the core evolution can simply be renamed in SMOvar as well.

SMOrow,column ◦ SMOtable: Whenever the SMOvar creates a new table, this will obviously not
conflict with any other SMOcore since the created table does not exist in the core schema at all.
Given the variant’s developers intent to drop a table which has been evolved by the core developers,
miX simply drops all tables resulting from the respective SMOcore. However, this does not apply
when SMOcore is either Splitcolumn or Splitrow on the table to drop: In these cases, we ignore
the variant’s SMO Deltable, as the variant needs to keep the data of the other input table. Given
a Renametable in the variant evolution, we can only consolidate it straight forward with the core
evolution, if the latter does not create any new tables, which holds for adding, removing, and renaming
columns only. For all other SMOcore that split or unite tables, we ask the developers to give names
for the newly created tables as well.

SMOrow ◦ SMOrow,column: The two tables resulting from a core’s Splitrow have the same struc-
ture as the input table, which allows propagating any SMOvar simply to both resulting tables as
well. Merely when consolidating a core’s Splitrow with a variant SMO that has two input tables
(Uniterow and Unitecolumn), the developers need to decide to which output of the SMOcore to
propagate the SMOvar. It is not possible to propagate them to both output tables of SMOcore, as
the respective other input table of SMOvar does exist only once. Further, a core’s Uniterow pro-
duces one output table whose columns are the union of the two input tables. Hence, any SMOvar

working on one input table does also work on the output table and can be propagated naïvely. The
only SMOvar to take special care of is Splitcolumn. We offer the developers to extend the column
sets of the output tables of Splitcolumn as the input table from the updated core may have more
columns, now.

Splitcolumn ◦ SMOrow,column: Finally, we discuss the core SMOs on column level starting with
focusing on the core’s Splitcolumn. A variant’s Splitrow defines a condition on the set of attributes,
which results in three potential scenarios: First, if the condition can be evaluated on only one resulting
table of SMOcore, then the SMOvar is applied to the respective table only. Second, if the condition
cannot be evaluated on any resulting table, miX has to ask the developers to specify a new condition
or it ignores the SMOvar. Third, if the condition can be evaluated on both resulting tables, miX
asks the developers whether to propagate the SMOvar to the first, to the second, or to both resulting
tables. When the variant applies a Uniterow, the developers have to choose which resulting table
of the core’s Splitcolumn to merge within the variant evolution. Again, this cannot be applied to
both resulting tables since the merge-partner exists only once. Given the SMOcore is Splitcolumn,
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it is not possible to also apply a variant’s Splitcolumn since the original set of column might be
incompletely/redundantly distributed over the two output tables. Hence the original concept which
should be decomposed in the variant does not exist any longer. If the variant intents joining a table
which has been decomposed by the core, the variant’s join is applied to that resulting table of the
core’s evolution that allows evaluating the join condition—if this holds for both, the developers have
to choose and if it does not hold for any resulting table, miX will simply ignore SMOvar. Finally,
miX can propagate an Addcolumn through a core’s Splitcolumn by explicitly asking the developers
to which output table(s) to propagate the new column—dropping and renaming a column is always
propagated to the resulting table that contains the respective column.

Unitecolumn ◦ SMOrow,column: When the core joins two tables (Unitecolumn), any SMOvar op-
erating on one of those tables can be applied to the joined table since all columns of the original table
are reflected in the joined one as well. Only if SMOvar is Splitcolumn, the developers are offered to
extend the column sets of the decomposition in order to incorporate the columns of the joined table.

{Addcolumn , Delcolumn , Renamecolumn} ◦ SMOrow,column: Given the SMOcore extends the
set of columns by adding a new one with Addcolumn and the variant decomposes the same table with
Splitcolumn. The developers need to adjust the column set of the variants Splitcolumn. Basically,
they have to decide whether the new column shall be added to the first, the second, both, or none of
the two tables resulting from the decomposition. Further, an added column in the core evolution can
cause naming conflicts, if SMOvar adds or renames a column that should have the same name—miX
asks the developers to adjust the name in the SMOvar. In all other cases, an added column in the
core evolution does not affect any SMOvar since all relevant columns are definitively still available.
In general, if any naming conflict occurs with Addcolumn or Renamecolumn, the developers have to re-
solve this ambiguity by merely providing a new name for the column in SMOvar. Deleting a column
in the core evolution is only crucial if the variant SMO works on the respective column. Particularly,
the dropped column can simply be removed from variant’s Splitcolumn and miX prompts the devel-
opers to specify a new condition if (a) the partitioning criteria of Splitrow or (b) the join condition
of Unitecolumn or (c) the function calculating a new value for Addcolumn cannot be evaluated any
longer. In all other cases, the dropped column does not affect the variants SMO. Finally, renaming
a column in the core evolution simply requires miX to automatically rename the respective column
within all subsequent variant SMOs.

Summing up, we can consolidate most pairs of SMOs automatically. There are destructive SMOcore

that remove either tables or columns, which renders certain SMOvar impossible. Nevertheless, this
can still meet the developers’ intentions. Furthermore, there are a few pairs that require the develop-
ers’ interaction. The questions that miX asks the developers are short and simple, keeping the whole
semi-automatic co-evolution process convenient. Mainly, we ask the developers to clarify naming
conflicts, extend the column sets of Splitcolumn, or to choose output tables of splitting SMOs. The
proposed consolidation results meet the intuitive expectations and should cover the general case.

5.4 EVOLUTION CONSOLIDATION

Both the variant and the core evolution are defined with sequences of SMOs SV and SC′ . To co-
evolve the variant and obtain SV ′ , we extend the SMO composition operation ◦ from single SMOs to
sequences of SMOs. The sequence composition • : SV × SC′ → SMO∗

var′ returns the sequence
of SMOs SV ′ starting at the new core version. To consolidate whole sequences of SMOs, the general
idea is to repeatedly apply the SMO composition ◦. Figuratively speaking, miX takes each variant
SMO from SV and propagates each one through the core evolution SC′ while applying the SMO
composition ◦ at every single step.
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Figure 5.2: Consolidation of sequences of SMOs.

The algorithm for the co-evolution process of a variant V created byC
SV−−→ V with the core evolution

C
SC′−−→ C ′, is illustrated in Figure 5.2. The final result is the co-evolved variant evolutionC ′ SV ′−−→ V ′.

In each depicted step, miX propagates one variant SMO from SV through all core SMOs in SC′ . For
each pair of SMOs, miX first checks, whether their sets of input tables overlap. If not, miX can simply
proceed with the next core SMO. If yes, miX applies the composition operation ◦ presented before.
For the first SMO v1 in Figure 5.2 this works just fine and miX appends the resulting SMOs to SV ′ .

Already in the second step, we cannot immediately propagate the variant SMO v2 through the core
evolution since it potentially works on different tables. The first variant SMO v1 might e.g. rename
a table. To compensate for such evolutions, miX adapts v2 to represent the intended evolution on
the tables of the initial core schema. This tracing process needs to be inverted after propagating the
respective SMOvar through the core evolution to obtain the correct SV ′ . miX continues until all
variant SMOs are propagated through the core evolution and appended to SV ′ .

Mapping variant SMOs to the evolved core table versions is not always trivially possible. Particularly,
this tracing of the tables gets broken by those SMOs that create new tables. The subsequent SMOs
cannot be mapped to core tables naïvely. The best-effort solution to this problem is to immediately
jump to the co-evolved variant and apply the subsequent SMOs of the original variant right there.
This is usually possible as long as all required columns survived the core evolution.

Finally, one remark on the escalation of contradicting SMOs: Whenever miX cannot consolidate a
variant SMO s, because s contradicts the core evolution (marked with � in Table 5.1), all subsequent
variant SMOs that rely on s cannot be consolidated with the core as well. When e.g. the variant adds a
column to a table, however, the core evolution intends to drop this table,miX has to ignore the variant
SMO since the core evolution SC′ must not be changed. This also affects all subsequent variant SMOs
that rely on the added column in the variant. As the core concepts, on which the variant was based,
are removed by the core evolution, the developers have to rethink this part of the variant either way.
Pragmatically, miX simply ignores the variant SMO and leaves it to the developers to integrate the
contradicting variant.

Let us revisit the example in Figure 5.1 on page 73. The PARTITION SMO on the Task table is the
first SMO of the variant evolution from TasKy to Do!. When propagating it through the DECOMPOSE
SMO of the core evolution from TasKy to TasKy2, miX simply applies the partitioning to the target
table Task since the condition requires the prio column, which is not available in the Author table. If
the prio column would have been replicated to both target tables of the DECOMPOSE SMO, miX would
have asked the developers to which target table or target tables that PARTITIONING SMO should be
propagated. Since this is not the case, miX merely asks the developers to confirm or change the
names of the target tables. In our example, the developers confirm the names, so miX can further
propagate the PARTITION SMO through the core evolution’s RENAME COLUMN SMO, which is trivial.
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The final SMO of the variant is the DROP COLUMN of the column prio in Task, which can be consolidated
directly with the core’s DECOMPOSE and RENAME COLUMN SMO. There are neither naming conflicts nor
any other ambiguities, so the DROP COLUMN SMO is merely appended to the final sequence of SMO that
evolves the evolved core schema version TasKy2 to the co-evolved schema version DoTwo! as shown
in Figure 5.1. We obtain the co-evolved variant as expected and miX proposes it to the developers
without any further interaction required.

As a summary, the global consolidation algorithm of miX takes two sequences of SMOs and merges
their intentions. By propagating each SMO of the variant through every SMO of the core evolution,
a sequence of co-evolved variant SMOs is derived. This sequence describes an evolution from the
evolved core to the co-evolved variant. miX’s consolidation algorithm relies on the local consolidation
of pairs of SMOs: In each step, one SMO of the variant is consolidated with one SMO of the core
according to the presented consolidationmatrix. Thereby, the consolidation algorithm allows to easily
create new schema versions in the multi-schema-version database system by merging two existing
schema versions.

5.5 SUMMARY

Summing up, we presented miX, a tool in InVerDa that uses the rich semantics of BiDEL’s SMOs
to semi-automatically create new schema versions by merging the intention of one schema version
(variant) into the intention of another schema version (core). miX’s consolidation algorithm utilizes
the strength of BiDEL: Developers provide all the relevant information explicitly when creating the
new core or variant schema version, which facilitates miX to release developers from the repetitive
task of applying core-evolutions manually to the respective variants. We have introduced a consolida-
tion matrix that contains the expected result for consolidating any pair of two SMOs. By extending
this consolidation of two single SMOs to the consolidation of sequences of SMOs, miX’s consolida-
tion algorithm can create the new merged schema version. To resolve contradictions or ambiguities
of different intents, we choose a semi-automatic approach that keeps the developers in the loop and
clarifies such conflicts by posing very simple questions to the developers. The semi-automatic consoli-
dation algorithm ofmiX releases the developers frommanually merging N evolution steps of the core
evolution with M evolution steps of the variant evolution, which entails N × M pairs that need to
be consolidated and checked for conflicts. miX helps avoiding faulty evolutions and allows the devel-
opers to focus on the actual implementation task, which increases the agility and quality of database
development significantly.
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Multi-schema-version database systems allow to create and manage co-existing schema versions. This
is basically already possible with database versionmanagement tools like e.g. Liquibase, but to the best
of our knowledge, all existing tools are limited to exactly one accessible schema version per database;
there is currently no support to have truly co-existing schema versions within one database that all
access the same conceptual data set. Multi-schema-version database systems, as we envision them,
allow all schema versions to co-exist at the same time within the same database. Write operations
in any schema version are immediately visible in all other schema versions as well—but each single
schema version behaves like a full-fledged single-schema database, such that applications do not notice
that their schema version is part of a multi-schema-version database system. The prerequisite for this
functionality is that developers use a bidirectional SMO-based DEL to describe the evolution in the
first place. These SMOs describe how to propagate any data access both forwards and backwards
between schema versions and facilitate data independence, hence the possibility to independently
change the physical materialization without affecting the accessibility of any schema version.

In this chapter, we will first discuss the specific objectives of full data independence in amulti-schema-
version database system in Section 6.1. In Section 6.2, we define the semantics for propagating data
through SMOs both forwards and backwards, which particularly includes the identification and man-
agement of the auxiliary information that needs to be stored additionally in order to persist the data
of all non-materialized table versions. Using these semantics, we describe the generation of delta
code for co-existing schema versions in Section 6.3. In Section 6.4, we formally evaluate that, in
fact, each single schema version behaves like a regular single-schema database, no matter in which
table versions the data is actually materialized. This is an important guarantee that allows to safely
use multi-schema-version database systems without the risk of corrupting the data. In Section 6.5
we conduct an empiric evaluation of co-existing schema versions in multi-schema-version database
systems focusing on the performance gains facilitated by the independent physical materialization.
Finally, we summarize the chapter in Section 6.6.

6.1 OBJECTIVES

Having multiple co-existing schema versions within the same database raises the challenge to store
the data for all these schema versions efficiently. Obviously, one possibility is to materialize each table
version physically. This fully redundant approach is the easiest to implement as each application can
read the physical table versions just as usual and write operations are propagated to all other table ver-
sions according to the SMOs’ bidirectional semantics (Chapter 4). Apart from this, the fully redundant
materialization is not very appealing, since a lot of storage capacity is required and write operations
are propagated to all replicas, which makes updates more expensive. The contrary possibility is to
materialize merely a non-redundant subset of the table versions; data accesses to non-materialized ta-
ble versions need to be propagated through the SMOs to the materialized table versions. Since not
all SMOs are information preserving, we would not only propagate data accesses to other table ver-
sions according to the bidirectional semantics of the SMOs but also to auxiliary tables that store the
otherwise lost information. Therefore, the bidirectional mapping semantics should be extended to
materialization-independent mapping semantics that additionally cover the persistence of auxil-
iary information, if the respective table versions are not materialized. Based on such materialization-
independent mapping semantics, we could easily create any degree of partially redundantmaterializa-
tions for a multi-schema-version database system where each schema version is guaranteed to behave
like a regular single-schema database. In this chapter, we focus on the non-redundant materialization
and formally evaluate the data independence. Non-redundant materialization is the most difficult
materialization; with additionally materialized table versions in partially or fully redundant materi-
alizations, we merely leave out the management of the auxiliary information and directly access the
materialized table versions.

82 Chapter 6 Data Independence for Co-Existing Schema Versions



TasKy
Do! Task author task prio

1 Ann Organize party 3
2 Ben Learn for exam 2
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Figure 6.1: Data independence criteria in the TasKy example.

To achieve the objective of non-redundant materialization of multiple co-existing schema versions,
the multi-schema-version database system should provide full data independence. Drilling down the
data independence to single SMOs, means that both the source and the target side of an SMO should
be full-fledged database schemas that can be read and written as any common single-schema database.
Particularly, data that has been written in one schema version should be readable unchanged in the
same schema version again, even if the respective schema version is not physically materialized. The
data should be primarily stored at one side of the SMO. Using the bidirectional semantics of BiDEL’s
SMOs for generating delta code, allows to propagate the data between schema versions according
to the developers’ intentions. Data independence of bidirectional SMOs requires that no matter on
which side of the SMO the data is physically stored, both sides should behave like a common single-
schema database.

Storing data non-redundantly at one side of an SMO is a challenge since most SMOs are not informa-
tion preserving. To this end, multi-schema-version database systems should store the otherwise lost
information in auxiliary tables with each SMO. Figure 6.1 zooms into one specific SMO; namely into
the partitioning of the tasks in our TasKy example, which we will use as a running example for the
remainder of this chapter. As can be seen, each SMO has a source schema and a target schema—it
should be possible that only one of them actually stores the data tables and auxiliary tables physically.
Data written at one side of the SMO, which is stored at the opposite side and read back to its origin
side, should survive this round trip without any information loss. To formally evaluate this data inde-
pendence of SMOs, we have to consider three cases depending on the SMO’s materialization state:
data is either (1) stored on the target side (SMO is materialized) or (2) stored on the source side (SMO
is virtualized) or (3) stored on both sides (SMO is redundant). In all cases, data written in any version
should be correctly readable in the same version again without any information lost or gained, which
requires the correct propagation from and to the data tables and auxiliary tables through the SMO if
the respective version is not materialized.

The processing of read and write operations at the materialized side is trivial as data is directly ac-
cessed without any schema transformation. To read and write data at the unmaterialized side, the
bidirectional SMO semantics comes into play. Let’s start with the first case (1); the data is mate-
rialized on the target side. For a correct source-side propagation, the data Dsrc at the source side
should be mapped by the mapping function γtrg to the data tables and auxiliary tables at the target
side (write) andmapped back by the mapping function γsrc to the data tables on the source side (read)
without any loss or gain visible in the data tables at the source side. Similar conditions have already
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been defined for symmetric relational lenses [65]—given data at the source side, storing it at the tar-
get side, and mapping it back to source should return the identical data at the source side. For the
second case (2), the same conditions should hold vice versa. The third case (3) is trivial, because data
can always be read locally and no auxiliary tables are required. Formally, the data independence of an
SMO requires the following two conditions to hold:

Dsrc = γdata
src (γtrg(Dsrc)) (6.1)

Dtrg = γdata
trg (γsrc(Dtrg)) (6.2)

Data tables that are visible to the user need tomatch these data independence conditions. As indicated
by the index γdata, we project away potentially created auxiliary tables. These auxiliary tables are
always empty except for SMOs that calculate new values: e.g. adding a column requires to store the
calculated values when data is stored at the source side to ensure repeatable reads.

The materialized side of the SMO does not necessarily need to exist physically in its whole; while the
auxiliary tables need to be stored physically, the data tables can be provided virtually by another SMO
in the same spirit. This concept allows to create sequences of SMOs—a.k.a. evolutions—where the
data is stored non-redundantly according to the table versions of one specific slice of the evolution
history. All other table versions should be provided virtually using the bidirectional semantics of
our BiDEL SMOs. In sum, DEL’s with SMOs satisfying the discussed data independence criteria
(Equation 6.1 and 6.2) allow co-existing schema versions within the same database where each single
schema version behaves like a regular single-schema database. The SMOs of a multi-schema-version
database system should guarantee this data independence.

6.2 DATA INDEPENDENT MAPPING SEMANTICS

BiDEL’s unique feature is the bidirectional and materialization independent semantics of its SMOs,
which is the basis for InVerDa’s co-existing schema versions with flexible materialization. We high-
light the design principles behind BiDEL SMOs and formally validate their data independence. All
BiDEL SMOs follow the same design principles. Without loss of generality, the PARTITION SMO is
used as a representative example in this section to explain the concepts. The remaining SMOs are
introduced in Appendix A.

Figure 6.2 shows the principle structure of a single SMO instance resulting from the sample statement

PARTITION TABLE T INTO R WITH cR, S WITH cS

which horizontally splits a source table T into two target tables R and S based on conditions cR and
cS . If all the table versions are materialized, then reads and writes on both schema versions can be
simply delegated to the corresponding data tables TD, RD, and SD, respectively. However, we aim
for a non-redundant materialization at one side of the SMO instance, only. If the data is physically
stored on the source side of an SMO instance, the SMO instance is called virtualized; with data stored
on the target side it is called materialized. In any case, reads and writes on the unmaterialized side are
mapped to the materialized side.

The semantics of each SMO is defined by the two functions γtrg and γsrc that precisely describe the
mapping from the source side to the target side and vice versa. Assuming the target side of PARTITION is
materialized, all reads on T are mapped by γsrc to reads on RD and SD; and writes on T are mapped
by γtrg to writes on RD and SD. While the payload data of R, S, and T is stored in the physical
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tables RD, SD, and TD, the tables R−, S+, S−, R∗, S∗, and T ′ are auxiliary tables for the PARTITION
SMO to prevent information loss. Recall that the semantics of SMOs is data independent, if reads
and writes on both the source and the target schema work correctly regardless on which of both sides
the data is physically stored. This basically means that each schema version acts like a full-fledged
database schema; however, it does not enforce that data written in any version is also fully readable in
other versions. In fact, BiDEL ensures this for all SMOs except of those that create redundancy—in
these cases the developers specify a preferred replica beforehand.

Obviously, there are different ways of defining γtrg and γsrc; in this thesis, we propose one way
that systematically covers all potential inconsistencies and guarantees data independence. We aim
at a non-redundant materialization, which also includes that the auxiliary tables merely store the
minimal set of required auxiliary information. Starting from the basic semantics of the SMO—e.g. the
horizontal partitioning of a table—we incrementally detect inconsistencies that contradict the data
independence or the bidirectional semantics and introduce respective auxiliary tables. The proposed
rule sets can serve as a blueprint since they clearly outline which information need to be stored to
achieve data independence. Potential other approaches might be e.g. more compact, but at the end of
the day they have to store the same information.

To define γtrg and γsrc, we use Datalog—a compact and solid formalism that facilitates both a formal
evaluation of data independence and easy delta code generation. Precisely, we use Datalog rule tem-
plates instantiated with the parameters of an SMO instance. For brevity of presentation, we use some
extensions to the standard Datalog syntax: For variables, small letters represent single attributes and
capital letters lists of attributes. For equality predicates on attribute lists, both lists need to have the
same length and same content, i.e. for A = (a1, . . . , an) and B = (b1, . . . , bm), A = B holds if
n = m ∧ a1 = b1 ∧ . . . ∧ an = bn. All tables have an attribute p, which is an InVerDa-managed
identifier to uniquely identify tuples across versions. Additionally, p ensures that the multiset seman-
tics of a relational database fits with the set semantics of Datalog, as the unique key p prevents equal
tuples in one relation. For a table T we assume T (p, _) and ¬T (p, _) to be safe predicates since any
table can be projected to its key.

For the exemplary PARTITION, let’s assume this SMO instance is materialized, i.e. data is stored on the
target side, and let’s consider the γtrg mapping function first. PARTITION horizontally splits a table T
from the source schema into two tables R and S in the target schema based on conditions cR and cS :

R(p, A) ← T (p, A), cR(A) (6.3)

S(p, A) ← T (p, A), cS(A) (6.4)

The conditions cR and cS can be arbitrarily set by the user so that Rule 6.3 and Rule 6.4 are insufficient
wrt. the desired materialization-independent semantics, since the source table T may contain tuples
neither captured by cR nor by cS . In order to avoid inconsistencies and ensure data independence
for the SMO, we store the uncovered tuples with cS(A) ∨ cR(A) =⊥ in the auxiliary table T ′ on the
target side:

T ′(p, A) ← T (p, A), ¬cR(A), ¬cS(A) (6.5)

When we materialize the PARTITION SMO, we do no longer store the table version T but the partitions
R and S as well as the auxiliary table T ′.

Let’s now consider the γsrc mapping function for reconstructing T while the target side is still con-
sidered to be materialized. Reconstructing T from the target side is essentially a union of R, S, and
T ′. Nevertheless, cR and cS are not necessarily disjoint, so there are tuples satisfying the condition
cS(A) ∧ cR(A) = �. One source tuple may occur as two equal but independent instances in R and
S. We call such two instances twins. Twins can be updated independently resulting in separated twins,
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Figure 6.2: Mapping functions of single PARTITION SMO.

i.e. two tuples—one in R and one in S—with equal key p but different value for the other attributes.
To resolve this ambiguity and ensure data independence, we consider the first twin in R to be the
primus inter pares and define γsrc of PARTITION to propagate back all tuples in R as well as those
tuples in S that are not contained in R:

T (p, A) ← R(p, A) (6.6)

T (p, A) ← S(p, A), ¬R(p, _) (6.7)

T (p, A) ← T ′(p, A) (6.8)

The Rules 6.3–6.8 define sufficient semantics for PARTITION as long as the target side is materialized.

Let’s now assume the SMO instance is virtualized, i.e. data is stored on the source side, and let’s keep
considering the γsrc mapping function. Again, R and S can contain separated twins—unequal tuples
with equal key p. According to Rule 6.7, T stores only the separated twin from R. To avoid losing the
other twin in S, it is stored in the auxiliary table S+:

S+(p, A) ← S(p, A), R(p, A′), A �= A′ (6.9)

Accordingly, γtrg has to reconstruct the separated twin inS fromS+ instead ofT (concerns Rule 6.4).
Twins can also be deleted independently resulting in a lost twin. Given the data is materialized on the
source side, a lost twin would be directly recreated from its other twin via T . To avoid this information
gain and keep lost twins lost, γsrc keeps the keys of lost twins from R and S in auxiliary tables R−

and S−, respectively:

R−(p) ← S(p, A), ¬R(p, _), cR(A) (6.10)

S−(p) ← R(p, A), ¬S(p, _), cS(A) (6.11)

Accordingly, γtrg has to exclude lost twins stored in R− from R (concerns Rule 6.3) and those in S−

from S (concerns Rule 6.4). Twins result from data changes issued to the target schema containing
R and S which can also lead to tuples that do not meet the conditions cR resp. cS . In order to ensure
that the reconstruction of such tuples is possible from a materialized table T , auxiliary tables R∗ and
S∗ are employed for identifying those tuples using their identifiers (concerns Rules 6.3 and 6.4).

S∗(p) ← S(p, A), ¬cS(A) (6.12)

R∗(p) ← R(p, A), ¬cR(A) (6.13)
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The full rule sets of γtrg respectively γsrc are now bidirectional and ensure data independence:

γtrg :
R(p, A) ← T (p, A), cR(A), ¬R−(p) (6.14)

R(p, A) ← T (p, A), R∗(p) (6.15)

S(p, A) ← T (p, A), cS(A), ¬S−(p), ¬S+(p, _) (6.16)

S(p, A) ← S+(p, A) (6.17)

S(p, A) ← T (p, A), S∗(p), ¬S+(p, _) (6.18)

T ′(p, A) ← T (p, A), ¬cR(A), ¬cS(A), ¬R∗(p), ¬S∗(p) (6.19)

γsrc :
T (p, A) ← R(p, A) (6.20)

T (p, A) ← S(p, A), ¬R(p, _) (6.21)

T (p, A) ← T ′(p, A) (6.22)

R−(p) ← S(p, A), ¬R(p, _), cR(A) (6.23)

R∗(p) ← R(p, A), ¬cR(A) (6.24)

S+(p, A) ← S(p, A), R(p, A′), A �= A′ (6.25)

S−(p) ← R(p, A), ¬S(p, _), cS(A) (6.26)

S∗(p) ← S(p, A), ¬cS(A) (6.27)

In sum, these bidirectional mapping semantics of the PARTITION SMO allow to propagate data both
forwards and backwards through the SMO and to store auxiliary information if required to correctly
persist the data of a non-materialized table version. The semantics of all other BiDEL SMOs is defined
in a similar way. For brevity, we do not elaborate on all of them here and recommend the interested
reader to consult Appendix A. This precise definition of BiDEL’s SMOs, is the basis for the automated
delta code generation as well as the formal validation of their data independence.

6.3 DELTA CODE GENERATION

To make a schema version available, InVerDa translates the γsrc and γtrg mapping functions into
delta code—specifically views and triggers. Views implement delta code for reading; triggers imple-
ment delta code for writing. In a genealogy of schema versions, a single table version is the target of
one SMO instance and the source for a number of SMO instances. The delta code for a specific table
version depends on the materialization state of the table’s adjacent SMOs, i.e. it depends on where
the data is physically stored.

If both the source and the target side of an SMO are materialized (SMO is redundant), the delta code
generation is trivial since no auxiliary tables are needed. Specifically, we remove all rules that have
an auxiliary table as head or contain auxiliary tables as positive literals; in all other rules, we remove
literals of negated auxiliary tables, which basically leaves us with the regular bidirectional mapping
semantics of BiDEL’s SMOs for redundant materialization. To determine the right rule sets for delta
code generation for non-redundant materialization, consider the exemplary evolution in Figure 6.3.
Schema version Ti is materialized, hence the two subsequent SMO instances, i − 1 and i store their
data at the target side (materialized), while the two subsequent SMO instances, i + 1 and i + 2 are
set to source-side materialization (virtualized). Without loss of generality, three cases for delta code
generation can be distinguished, depending on the direction a specific table version needs to go for to
reach the materialized data.
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Figure 6.3: Three different cases in delta code generation.

Case 1 – local: The incoming SMO is materialized and all outgoing SMOs are virtualized. The
data of the table versions in Ti is stored in the corresponding data table Di and is directly accessi-
ble. The view and the trigger that implement Ti directly propagate reads and writes to data table
Di without any schema translation.

Case 2 – forwards: The incoming SMO and one outgoing SMO are materialized. The data of
Ti−1 is stored in newer versions in the schema versions catalog, so data accesses are propagated
with γsrc (read) and γtrg (write) of SMOi. The view and the triggers implementing Ti−1 propagate
data along the materialized outgoing SMOi to views and auxiliary tables of Ti.

Case 3 – backwards: The incoming SMO and all outgoing SMOs are virtualized. The data of
table version in Ti+1 is stored in older versions in the schema versions catalog, so data access is
propagated with γtrg (read) and γsrc (write) of SMOi+1. The view and the triggers that implement
Ti+1 propagate backwards along the virtualized incoming SMOi+1 to views and auxiliary tables of
version Ti.

In Case 1 delta code generation is trivial. In Case 2 and 3, InVerDa essentially translates the Datalog
rules defining the relevant mapping functions into view and trigger definitions. Figure 6.4 illustrates
the general pattern of the translation of Datalog rules to a view definition. As a single table can be
derived by multiple rules, e.g. Rule 6.20–6.22, a view is a union of subqueries each representing
one of the rules. For each subquery, InVerDa lists all attributes of the rule head in the select-clause.
Within a nested subselect these attributes are either projected from the respective table version or
derived by a function (e.g. values for an added column). All positive literals referring to other table
versions or auxiliary tables are listed in the from-clause. Further, InVerDa adds join conditions to
the where-clause for each attribute that occurs in multiple positive literals. Finally, the where-clause
is completed with conditions, such as cS(X), and negative literals, which InVerDa adds as a NOT
EXISTS(<subselect for the literal>).
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Figure 6.4: SQL generation from Datalog rules.

The generated delta code for writing, are three triggers on each table version—for inserts, deletes,
and updates respectively. To not recompute the whole data of the materialized side whenever a write
operation is executed at the not-materialized side of an SMO, InVerDa adopts an update propagation
technique for Datalog rules [19] that results in minimal write operations. For instance, an insert oper-
ation Δ+

T (p, A) on the table version T propagated back to the source side of a materialized PARTITION
SMO results in the following update rules:

Δ+
R(p, A) ← Δ+

T (p, A),new cR(A), old ¬R(p, A) (6.28)

Δ+
S (p, A) ← Δ+

T (p, A),new cS(A), old ¬S(p, A) (6.29)

Δ+
T ′(p, A) ← Δ+

T (p, A),new ¬cR(A), ¬cS(A), old ¬T ′(p, A) (6.30)

The propagation can handle multiple write operations at the same time and distinguishes between
old and new data, which represents the state before and after applying the write operations. The
derived update rules match the intuitive expectations: The inserted tuple is propagated to R or to
S or to T ′ given it satisfies either cR or cS or none of them. The additional conditions on the old
literals ensures minimality by checking whether the tuple already exists in the respective table. To
generate trigger code from the update rules, InVerDa applies essentially the same algorithm as for
view generation to determine the sets of tuples that need to be inserted, deleted, or updated.

Writes performed on one table version are propagated by an instead-of trigger further to the neighbor-
ing table versions. Thereby the write operations are propagated stepwise along the schema versions
history to all other table versions as long as the respective update rules deduce write operations, i.e.
as long as some data is physically stored with a table version either in the data table or in auxiliary
tables. With the generated delta code, InVerDa propagates writes from any schema version to every
other co-existing schema version in the schema versions catalog.

In sum, the bidirectional mapping semantics specified as sets of Datalog rules can be directly used to
generate delta code for the propagation of both read and write operations along the schema version
history to the physically materialized table versions. We use views for the propagation of read opera-
tions and instead-of triggers on these views for write propagation. Hence, data accesses are exclusively
handled by standard database artifacts, which ensures that the performance and the transaction guar-
antees of a common database system are also given in multi-schema-version database systems. Data
accesses are propagated step-by-step through each SMO individually, which keeps the whole delta
code generation simple and robust.
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6.4 FORMAL EVALUATION OF DATA INDEPENDENCE

The Condition 6.1 and 6.2 for data independence are shown by applying and simplifying the rule sets
that define the mappings γsrc and γtrg. Given any input relation, we apply γsrc and γtrg in the order
according to the respective condition and compare the outcome to the original relation. They have to
be identical in order to satisfy the data independence conditions. As neither the rules for a single SMO
nor the schema versions catalog have cycles, there is no recursion at all, which simplifies evaluating
the combined Datalog rules. The literals for the input data Dsrc or Dtrg are labeled to distinguish
them from the resulting relation and avoid unintended recursion, so e.g. the literal for a source table
R is renamed to RD.

In the following, we introduce some basic notion about Datalog rules as basis for the formal evalu-
ation. A Datalog rule is a clause of the form H ← L1, . . . , Ln with n ≥ 1 where H is an atom
denoting the rule’s head, and L1, . . . , Ln are literals, i.e. positive or negative atoms, representing
its body. For a given rule r, we use head(r) to denote its head H and body(r) to denote its set of
body literals L1, . . . , Ln. In the mapping rules defining γsrc and γtrg, every head(r) is of the form
qr(p, Y ) where qr is the derived predicate, p is the InVerDa-managed identifier, and Y is a poten-
tially empty list of variables. Further, we use pred(r) to refer to the predicate symbol of head(r). For
a set of rules R, Rq is defined as {r | r ∈ R ∧ pred(r) = q}. For a body literal L, we use pred(L)
to refer to the predicate symbol of L and vars(L) to denote the set of variables occurring in L. In
the mapping rules, every literal L ∈ body(r) is either of the form qr

i (p, Y r
i , Xr

i ) or of the form
cr(Y r

i , Xr
i ), where Y r

i ⊂ Y are the variables occurring in L and head(r) and Xr
i are the variables

occurring in L but not in head(r). Generally, we use capital letters to denote multiple variables. For
a set of literals K, vars(K) denotes ⋃

L∈K vars(L). The following lemmas are used for simplifying
a given rule set R into a rule set R′ such that R′ derives the same facts as R.

Lemma 1 (Deduction). Let L ≡ qr(p, Y ) be a literal in the body of a rule r. For a rule s ∈ Rpred(L) let
rn(s, L) be rule swith all variables occurring in the head of s at positions of Y variables inL be renamed to
match the corresponding Y variable and all other variables be renamed to anything not in vars(body(r)).
If L is

1. a positive literal, s can be applied to r
to get rule set r(s) of the form {head(r) ← body(r) \ {L} ∪ body(rn(s, L))}.

2. a negative literal, s can be applied to r to get rule set
r(s) = {head(r) ← body(r) \ {L} ∪ t(K) | K ∈ body(rn(s, L)))}
with either t(K) = {¬qs

i (p, Y s
i , _)} if K ≡ qs

i (p, Y s
i , Xs

i )
or t(K) = {qs

j (p, Y s
j , Xs

j ) | qs
j (p, Y s

i , Xs
j ) ∈ body(rn(s, L)) ∧ Xs

j ∩ Xs
i �= ∅} ∪ {cr(Y s

i , Xs
i )}

if K ≡ cr(Y s
i , Xs

i ).1

For a given p, let r be every rule in R having a literal L ≡ p(X, Y ) in its body. Accordingly, R can
be simplified by replacing all rules r and all s ∈ Rp with all r(s) applications to R \ ({r} ∪ Rp) ∪
(⋃s∈Rpred(L) r(s)).

Figuratively speaking, Lemma 1 applies one rule set to another rule set. For every literal L that is the
head of rule s, we replace every occurrence of L in the body of any rule r with the body of rule s,
hence we replace the literal L ∈ body(r) with its definition according to rule s. Whenever this leads
to a negated list of literals, which is not allowed in Datalog, we resolve this using De Morgan’s law.

1Correctness can be shown with help of first order logic.
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Lemma 2 (Empty Predicate). Let r ∈ R be a rule, L be a literal in the body L ∈ body(r) and the
relation pred(L) is known to be empty. IfL is a positive literal, r can be removed fromR. IfL is a negative
literal, r can be simplified to head(r) ← body(r) \ {L}.
Lemma 3 (Tautology). Let r, s ∈ R be rules andL andK be literals in the bodies of r and s, respectively,
where r and s are identical except for L and K , i.e. head(r) = head(s) and body(r) \ {L} =
body(s)\{K}, or can be renamed to be so. IfK ≡ ¬L, r can be simplified to head(r) ← body(r)\{L}
and s can be removed from R.

Lemma 4 (Contradiction). Let r ∈ R be a rule and L and K be literals in its body L, K ∈ body(r). If
K ≡ ¬L, r can be removed from R.

Lemma 5 (Unique Key). Let r ∈ R be a rule and q(p, X) and q(p, Y ) be literals in its body. Since, by
definition, p is a unique identifier, r can be modified to head(r) ← body(r) ∪ {X = Y }.
Lemma 6 (Spare Literal). Let r ∈ R be a rule and q(_, X) be literals in its body. If X does not occur in
any other literal or in the head head(r), r can be reduced to head(r) ← body(r) \ q(_, X).
Lemma 7 (Subsumed Literal). Let r ∈ R be a rule and qi(_, X, Y ) and qj(_, X, _) be literals in its
body. Since the literal qj(_, X, _) is always satisfied when qi(_, X, Y ) is satisfied, it is subsumed by the
latter and r can be modified to head(r) ← body(r) \ qj(_, X, _).
Lemma 8 (Subsumed Rule). Let r1 ∈ R and r2 ∈ R be two rules from R with r1 �= r2 that have the
same rule head, so head(r1) = head(r2). If the body of the rule r2 is a subset of the body of rule r2, so
body(r2) ⊆ body(r1), the rule r2 can be removed from R.

We use these lemmas to show the data independence criteria for the PARTITION SMO in detail. First,
we show that Criteria 6.1 holds for the materialized PARTITION SMO in Section 6.4.1. Second, we
formally evaluate Criteria 6.2 for the virtualized case in Section 6.4.2 as well.

6.4.1 Data Independence of the Materialized PARTITION SMO

At first, we will show that data written at the unpartitioned source side, but stored at the materialized
target side, can be read at the source side again without any information being lost. For target-side
materialization, Equation 6.1 needs to be satisfied. Writing data TD from source to target-side results
in the mapping γtrg(TD). With target-side materialization, all source-side auxiliary tables are empty.
Thus, γtrg(TD) can be simplified with Lemma 2:

R(p, A) ← TD(p, A), cR(A) (6.31)

S(p, A) ← TD(p, A), cS(A) (6.32)

T ′(p, A) ← TD(p, A), ¬cR(A), ¬cS(A) (6.33)

Reading the source-side data back from R, S, and T ′ to T adds the rule set γsrc (Rule 6.20–6.27) to
the mapping. Using Lemma 1, the mapping γsrc(γtrg(TD)) simplifies to:

T (p, A) ←TD(p, A), cR(A) (6.34)

T (p, A) ←TD(p, A), cS(A), ¬TD(p, A) (6.35)

T (p, A) ←TD(p, A), cS(A), ¬cR(A) (6.36)

T (p, A) ←TD(p, A), ¬cS(A), ¬cR(A) (6.37)

R−(p) ←TD(p, A), cS(A), ¬TD(p, A), cR(A) (6.38)

R−(p) ←TD(p, A), cS(A), ¬cR(A), cR(A) (6.39)

R∗(p) ←TD(p, A), cR(A), ¬cR(A) (6.40)

6.4 Formal Evaluation of Data Independence 91



S+(p, A) ←TD(p, A), cS(A), TD(p, A′), cR(A′), A �=A′ (6.41)

S−(p) ←TD(p, A), cR(A), ¬TD(p, A), cS(A) (6.42)

S−(p) ←TD(p, A), cR(A), ¬cS(A), cS(A) (6.43)

S∗(p) ←TD(p, A), cS(A), ¬cS(A) (6.44)

With Lemma 4, we omit Rule 6.35 as it contains a contradiction. With Lemma 3, we reduce Rules 6.36
and 6.37 to Rule 6.46 by removing the literal cS(A):

T (p, A) ← TD(p, A), cR(A) (6.45)

T (p, A) ← TD(p, A), ¬cR(A) (6.46)

The resulting rules for T can be simplified again with Lemma 3 to the following:

T (p, A) ← TD(p, A) . (6.47)

For Rule 6.41, Lemma 5 impliesA = A′, so this rule can be removed based on Lemma 4. Likewise, the
Rules 6.39–6.44 have contradicting literals on TD, cR, and cS respectively, so that Lemma 4 applies
here as well. The result clearly shows that data TD in Dsrc is mapped by γsrc(γtrg(Dsrc)) to the
target side and back to Dsrc without any information loss or gain:

γsrc(γtrg(Dsrc)) : T (p, A) ← TD(p, A) (6.48)

Thus, Dsrc = γsrc(γtrg(Dsrc)) holds. Remember that the auxiliary tables only exist on the materi-
alized side of the SMO (target in this case). Hence, it is correct that there are no rules left producing
data for the source-side auxiliary tables.

6.4.2 Data Independence of the Virtualized PARTITION SMO

We will now show the opposite direction, so that Condition 6.2 for source-side materialization holds
as well. Writing data RD and SD from the target-side to the source-side is done with the mapping
γsrc(RD, SD). With source-side materialization all target-side auxiliary tables are not required, so
we apply Lemma 2 to obtain:

γsrc(RD, SD) :
T (p, A) ←RD(p, A) (6.49)

T (p, A) ←SD(p, A), ¬RD(p, _) (6.50)

R−(p) ←SD(p, A), ¬RD(p, _), cR(A) (6.51)

R∗(p) ←RD(p, A), ¬cR(A) (6.52)

S+(p, A) ←SD(p, A), RD(p, A′), A �= A′ (6.53)

S−(p) ←RD(p, A), ¬SD(p, _), cS(A) (6.54)

S∗(p) ←SD(p, A), ¬cS(A) (6.55)

Reading the target-side data back from the source-side adds the rule set γtrg (Rule 6.14–6.19) to the
mapping. Using Lemma 1, the mapping γtrg(γsrc(TD)) extends to:
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γtrg(γsrc(RD, SD)) :
R(p, A) ←RD(p, A), cR(A), ¬SD(p, _) (6.56)

R(p, A) ←RD(p, A), cR(A), RD(p, _) (6.57)

R(p, A) ←RD(p, A), cR(A), SD(p, A′), ¬cR(A′) (6.58)

R(p, A) ←RD(p, A), RD(p, A), ¬cR(A) (6.59)

R(p, A) ←SD(p, A), ¬RD(p, _), cR(A), ¬SD(p, A) (6.60)

R(p, A) ←SD(p, A), ¬RD(p, _), cR(A), RD(p, _) (6.61)

R(p, A) ←SD(p, A), ¬RD(p, _), cR(A), ¬cR(A) (6.62)

R(p, A) ←SD(p, A), ¬RD(p, _), RD(p, A), ¬cR(A) (6.63)

S(p, A) ←RD(p, A), cS(A), ¬RD(p, A), ¬SD(p, _) (6.64)

S(p, A) ←RD(p, A), cS(A), ¬RD(p, A), ¬RD(p, _) (6.65)

S(p, A) ←RD(p, A), cS(A), ¬RD(p, A), SD(p, A′), RD(p, A), A′ = A (6.66)

S(p, A) ←RD(p, A), cS(A), SD(p, _), ¬SD(p, _) (6.67)

S(p, A) ←RD(p, A), cS(A), SD(p, _), ¬RD(p, _) (6.68)

S(p, A) ←RD(p, A), cS(A), SD(p, _), SD(p, A′), RD(p, A), A′ = A (6.69)

S(p, A) ←RD(p, A), cS(A), ¬cS(A), ¬SD(p, _) (6.70)

S(p, A) ←RD(p, A), cS(A), ¬cS(A), ¬RD(p, A) (6.71)

S(p, A) ←RD(p, A), cS(A), ¬cS(A), SD(p, A′), RD(p, A), A′ = A (6.72)

S(p, A) ←SD(p, A), ¬RD(p, _), cS(A), ¬RD(p, _), ¬SD(p, _) (6.73)

S(p, A) ←SD(p, A), ¬RD(p, _), cS(A), ¬RD(p, _), ¬RD(p, _) (6.74)

S(p, A) ←SD(p, A), ¬RD(p, _), cS(A), ¬RD(p, _), SD(p, A), RD(p, A′′), A = A′′ (6.75)

S(p, A) ←SD(p, A), ¬RD(p, _), cS(A), SD(p, _), ¬SD(p, _) (6.76)

S(p, A) ←SD(p, A), ¬RD(p, _), cS(A), SD(p, _), ¬RD(p, _) (6.77)

S(p, A) ←SD(p, A), ¬RD(p, _), cS(A), SD(p, _), SD(p, A), RD(p, A′′), A = A′′ (6.78)

S(p, A) ←SD(p, A), ¬RD(p, _), cS(A), RD(p, A′), cS(A′), ¬SD(p, _) (6.79)

S(p, A) ←SD(p, A), ¬RD(p, _), cS(A), RD(p, A′), cS(A′), ¬RD(p, _) (6.80)

S(p, A) ←SD(p, A), ¬RD(p, _), cS(A), RD(p, A′), cS(A′), SD(p, A), RD(p, A′′), A = A′′

(6.81)

S(p, A) ←SD(p, A), RD(p, A′), A �= A′ (6.82)

S(p, A) ←RD(p, A), SD(p, A), ¬cS(A), ¬SD(p, _) (6.83)

S(p, A) ←RD(p, A), SD(p, A), ¬cS(A), ¬RD(p, _) (6.84)

S(p, A) ←RD(p, A), SD(p, A), ¬cS(A), SD(p, A), RD(p, A), A = A (6.85)

S(p, A) ←SD(p, A), ¬RD(p, _), SD(p, A), ¬cS(A), ¬SD(p, _) (6.86)

S(p, A) ←SD(p, A), ¬RD(p, _), SD(p, A), ¬cS(A), ¬RD(p, _) (6.87)

S(p, A) ←SD(p, A), ¬RD(p, _), SD(p, A), ¬cS(A), SD(p, A), RD(p, A′), A = A′) (6.88)
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T ′(p, A) ←RD(p, A), ¬cR(A), ¬cS(A), ¬RD(p, _), ¬SD(p, _) (6.89)

T ′(p, A) ←RD(p, A), ¬cR(A), ¬cS(A), ¬RD(p, _), SD(p, A′), cS(A′) (6.90)

T ′(p, A) ←RD(p, A), ¬cR(A), ¬cS(A), RD(p, A), cR(A), ¬SD(p, _) (6.91)

T ′(p, A) ←RD(p, A), ¬cR(A), ¬cS(A), RD(p, A), cR(A), SD(p, A′′), cS(A′′) (6.92)

T ′(p, A) ←SD(p, A), ¬RD(p, _), ¬cR(A), ¬cS(A), ¬RD(p, _), ¬SD(p, _) (6.93)

T ′(p, A) ←SD(p, A), ¬RD(p, _), ¬cR(A), ¬cS(A), ¬RD(p, _), SD(p, A), cS(A)) (6.94)

T ′(p, A) ←SD(p, A), ¬RD(p, _), ¬cR(A), ¬cS(A), RD(p, A′), cR(A′), ¬SD(p, _) (6.95)

T ′(p, A) ←SD(p, A), ¬RD(p, _), ¬cR(A), ¬cS(A), RD(p, A′), cR(A′), SD(p, A′′), cS(A′′)
(6.96)

Using Lemma 4 we remove all rules that have contradicting literals (marked bold). Particularly, there
remains no rule for T ′ as expected. Further, we remove duplicate literals within the rules according
to Lemma 7, so we obtain the simplified rule set:

R(p, A) ←RD(p, A), cR(A), ¬SD(p, _) (6.97)

R(p, A) ←RD(p, A), cR(A) (6.98)

R(p, A) ←RD(p, A), cR(A), SD(p, A′), ¬cR(A′) (6.99)

R(p, A) ←RD(p, A), ¬cR(A) (6.100)

S(p, A) ←SD(p, A), RD(p, A), cS(A) (6.101)

S(p, A) ←SD(p, A), ¬RD(p, _), cS(A) (6.102)

S(p, A) ←SD(p, A), ¬RD(p, _), cS(A) (6.103)

S(p, A) ←SD(p, A), RD(p, A′), A �= A′ (6.104)

S(p, A) ←SD(p, A), RD(p, A), ¬cS(A) (6.105)

S(p, A) ←SD(p, A), ¬RD(p, _), ¬cS(A) (6.106)

Rule 6.101 is derived from Rule 6.69 by applying the equivalence ofA andA′ to the remaining literals.
Let’s now focus on the rules for R. According to Lemma 8, Rules 6.97 and 6.99 are subsumed by
Rule 6.98, since they contain the identical literals as Rule 6.98 plus additional conditions. Lemma 3
allows us to further reduce Rules 6.98 and 6.100, so we obtain that all tuples in R survive one round
trip without any information loss or gain:

R(p, A) ←RD(p, A) (6.107)

We also reduce the rules for S. Rule 6.103 can be removed since it is equal to Rule 6.102. With
Lemma 3, Rules 6.102 and 6.106 as well as Rules 6.101 and 6.105 can be combined respectively. This
results in the following rules for S:

S(p, A) ←SD(p, A), RD(p, A) (6.108)

S(p, A) ←SD(p, A), ¬RD(p, _) (6.109)

S(p, A) ←SD(p, A), RD(p, A′), A �= A′ (6.110)

Rules 6.108 and 6.110 basically state that the payload data in R (A and A′ respectively) is either equal
to or different from the payload data in S for the same key p. When we rewrite Rule 6.108 to:

S(p, A) ←SD(p, A), RD(p, A′), A = A′ (6.111)
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we can apply Lemma 3 to obtain the two rules:

S(p, A) ←SD(p, A), RD(p, _) (6.112)

S(p, A) ←SD(p, A), ¬RD(p, _) (6.113)

With the help of Lemma 3, we reduce γtrg(γsrc(RD, SD)) to

R(p, A) ←RD(p, A) (6.114)

S(p, A) ←SD(p, A) (6.115)

So, both Condition 6.2 and Condition 6.1 for the data independence of the PARTITION SMO are for-
mally validated by now. Since the MERGE SMO is the inverse of the PARTITION SMO and uses the exact
same mapping rules vice versa, we also implicitly validated the data independence of the MERGE SMO.
This formal evaluation works for the remaining BiDEL SMOs, as well (Appendix A). BiDEL’s SMOs
ensure that given data at any schema version Vn that is propagated and stored at a direct predecessor
Vn−1 or direct successor schema version Vn+1 can always be read completely and correctly in Vn. In
the following, we will also show that the data independence conditions also hold for write operations
(Section 6.4.3) as well as for chains of SMOs (Section 6.4.4).

6.4.3 Write operations

Data independence is also required for write operations: When updating a not-materialized schema
version, this update is propagated to the materialized schema in a way that it is correctly reflected
when reading the updated data again. Given a materialized SMO and data Dsrc at the source side, we
apply a write operation Δsrc(Dsrc) to Dsrc. Thereby, Δsrc(Dsrc) can both insert and update and
delete data. Initially, we store Dsrc at the target side using Dtrg = γtrg(Dsrc). To write at the source
side, we have to temporarily map back the data to the source with γdata

src (Dtrg), apply the write Δsrc,
and map the updated data back to target side with D′

trg = γtrg(Δsrc(γdata
src (Dtrg))). Reading the

data from the updated target γdata
src (D′

trg) has to be equal to applying the write operation Δsrc(Dsrc)
directly on the source side.

Δsrc(Dsrc) = γdata
src (γtrg(Δsrc(γdata

src (γtrg(Dsrc))))) (6.116)

We have already shown that D = γdata
src (γtrg(D)) holds for any data D at the target side, so that

Equation 6.116 reduces toΔsrc(Dsrc) = Δsrc(Dsrc). Hence writes are correctly propagated through
the SMOs. The same holds vice versa for writing at the target-side of virtualized SMOs:

Δtrg(Dtrg) = γdata
trg (γsrc(Δtrg(γdata

trg (γsrc(Dtrg))))) (6.117)

6.4.4 Chains of SMOs

The data independence of BiDEL SMOs also holds for sequences of SMOs: S = (smo1, . . . smon),
where γi,src/trg is the respective mapping of smoi and the source database Dsrc is evolved to the

target database Dtrg: Dsrc
S−→ Dtrg. Analogous to symmetric relational lenses [65], there are no

side-effects between multiple BiDEL SMOs. Thus, BiDEL’s data independence is also guaranteed
along sequences of SMOs:

Dsrc = γdata
1,src(. . . γn,src(γn,trg(. . . γ1,trg(Dsrc)))) (6.118)

Dtrg = γdata
n,trg(. . . γ1,trg(γ1,src(. . . γn,src(Dtrg)))) (6.119)
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This ensures data independence, since any schema version can now be read and written without infor-
mation loss or gain, no matter in which table versions the data is actually materialized. The auxiliary
tables keep the otherwise lost information and we have formally validated their feasibility. With the
formal guarantee of data independence—also along sequences of SMOs and for write operations—we
have laid a solid formal foundation for InVerDa’s delta code generation.

In sum, we can now safely assume data independence for BiDEL-based evolutions: Wherever we
materialize the data physically, it is guaranteed that each table version can be accessed just like a
regular table—no data will be lost or gained. To our best knowledge, we are the first to design a set of
powerful SMOs and validate their data independence according to the criteria of symmetric relational
lenses. This is a strong guarantee and the basis for InVerDa, as we can now guarantee that any schema
version in a multi-schema-version database system will behave like a regular single-schema database,
which allows developers to develop their applications just as usual but quickly evolve the schema of
the underlying database when needed.

6.5 EMPIRICAL EVALUATION

InVerDa’s co-existing schema versions bring great advantages for software systems by decoupling the
different goals of different stakeholders. Users can continuously access all schema versions, while
developers can focus on the actual continuous implementation of the software without caring about
former versions. Above all, the DBA can change the physical table schema of the database to optimize
the overall performance without restricting the availability of the co-existing schema versions or inval-
idating the developers’ code. We have already formally evaluated the correctness of InVerDa’s support
for co-existing schema versions, so developers and DBAs can safely use the provided features without
risking inconsistencies or information loss in the stored data. Now, we further evaluate our prototyp-
ical implementation empirically in more detail to show our success and further potentials. InVerDa
automatically generates the delta code based on the discussed Datalog rules; in Section 6.5.1, we mea-
sure the overhead of accessing data through InVerDa’s delta code compared to a handwritten SQL
implementation of co-existing schema versions and show that it is reasonably small. In Section 6.5.2,
we show that the possibility to easily adapt the physical table schema to a changed workload with
the click of a button outweighs the small overhead of InVerDa’s automatically generated delta code.
Materializing the data according to the most accessed version speeds up the data access significantly.

Setup: For the measurements, we use two different data sets to gather a holistic idea of InVerDa’s
characteristics. We use (1) our TasKy example as a small-sized but comprehensive scenario and, (2)
171 schema versions of Wikimedia [40] as a long real-world scenario. We measure single thread
performance of a PostgreSQL 9.4 database with co-existing schema versions on a Core i7 machine
with 2,4GHz and 8GB memory.

6.5.1 Overhead of Generated Delta Code

InVerDa’s delta code is generated from Datalog rules and aims at a general and solid solution. So
far, our focus is on the correct propagation of data access on multiple co-existing schema versions.
We expect the database optimizer to find a fast execution plan, which is an optimistic assumption in
practice. There will be an overhead of InVerDa compared to hand-optimized SQL but we will show
that it is reasonably small, which we attribute to the simple access pattern InVerDa generates from
the Datalog rules, so the optimizer is not overly challenged with complex and tricky queries.
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Figure 6.5: Overhead of generated code.

TasKy: As already used in the empiric evaluation of BiDEL’s bidirectionality in Section 4.3.3, we
implement the evolution from TasKy to TasKy2 with handwritten and hand-optimized SQL to com-
pare its performance to the semantically equivalent evolution with BiDEL. Again, we assume a multi-
schema-version database system, where both TasKy and TasKy2 co-exist and the physical materializa-
tion will be migrated from TasKy to TasKy2 eventually. Therefore, we implemented (1) creating the
initial TasKy schema, (2) creating the additional schema version TasKy2 with the respective views
and triggers, and (3) migrating the physical table schema to TasKy2 and adapting all delta code.

The automated delta code generation does not only eliminate the error-prone and expensive such a
manual implementation, but it is also reasonably fast. Creating the initial schema version of the TasKy
example (Figure 2.4, page 28) and making it available as a new schema version for applications took
154 ms on our test system. The evolution to TasKy2, which includes two SMOs, requires 230 ms for
both the generation and execution of the evolution script. The same took 177 ms for Do!. Doing the
same with handwritten SQL was equally fast; any differences lay within the measuring inaccuracy.
Please note that the complexity of generating and executing evolution scripts depends linearly on the
number of SMOs N and the number of untouched table versions M . The complexity is O(N + M),
since we generate the delta code for each SMO locally and exclusively work on the neighboring table
versions. This principle protects against additional complexity in longer sequences of SMOs. The
same holds for the complexity of executing migration scripts. It is O(N) since InVerDa merely
moves the data and updates the delta code for the respective SMOs stepwise.

In Figure 6.5, we use the TasKy and thy TasKy2 schema versions with 100 000 tasks and compare the
performance of the InVerDa generated delta code to the handwritten one. The charts show the query
execution time (1) for reading the TasKy schema, (2) for reading the TasKy2 schema, (3) for inserting
a tuple to TasKy, and (4) for inserting a tuple to TasKy2. We evaluate both the initial materialization
according to TasKy and the evolved materialization according to TasKy2. There are two aspects to
observe. First, the hand-optimized delta code causes slightly less (up to 4 %) overhead than the gen-
erated one. Keeping in mind the difference in length and complexity of the code (359 x LOC for the
evolution), a performance overhead of 4 % in average is more than reasonable for most users. Second,
the materialization significantly influences the actual performance. Reading the data in the materi-
alized version is up to twice as fast as accessing it from the respective other version in this scenario.
For the write workload (insert new tasks), we observe again a reasonably small overhead compared
to handwritten SQL. Interestingly, the evolved materialization is always faster because the initial ma-
terialization requires to manage an additional auxiliary table for the foreign key relationship. A DBA
can optimize the overall performance for a given workload by adapting the materialization, which is
itself a very simple task with InVerDa. Since the solution space of possible materializations can grow
very large for long evolution histories, InVerDa also comes with an adviser that takes the current
workload and proposes a feasible materialization with a high overall performance. The adviser will be
presented in Chapter 7.
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Figure 6.6: Benefits of flexible materialization with InVerDa.

6.5.2 Benefit of Flexible Materialization

Although InVerDa introduces a slight overhead when accessing data, it provides a great benefit by al-
lowing for easy adaptation of the physical table schema to the current workload. Adapting the physical
table schema to the current workload is hard with handwritten SQL, but almost for free with InVerDa
(1 LOC instead of 182 in our TasKy example). Let’s assume a development team spares the effort for
rewriting delta code and works with a fixed materialization. Then, InVerDa allows to easily increase
the overall performance, as we will show using the TasKy example and the Wikimedia scenario.

TasKy (macro benchmark): Again, we use the TasKy example with 100 000 tasks. Figure 6.6(a)
shows the accumulated propagation overhead for handwritten SQL with the two fixed materialization
and for InVerDawith an adaptive materialization. Assume, over time the workload changes from 0 %
access to TasKy2 and 100 % to TasKy to the opposite 100 % and 0 % according to the Technology
Adoption Life Cycle. The adoption is divided into 1000 time slices where 1000 queries are executed
respectively. The workload mixes 50 % reads, 20 % inserts, 20 % updates, and 10 % deletes. As soon
as the evolved materialization is faster for the current workload mix, we instruct InVerDa to change
the materialization. As can be seen, InVerDa facilitates significantly better performance—including
migration cost—than a fixed materialization.

This effect increases with the length of the evolution since InVerDa can also materialize intermediate
stages of the evolution history. Assume, all users use exclusively the mobile phone app Do!; but as
TasKy2 gets released users switch to TasKy2 which comes with its own mobile app. In Figure 6.6(b),
we simulate the accumulated overhead for either materializing one of the three schema versions or
for a flexible materialization. InVerDa’s flexible materialization naturally starts at Do!, but moves
to TasKy after several users started using TasKy2, and finally moves to TasKy2 when the majority of
users also did so. Again, InVerDa’s flexible materialization significantly reduces the overhead for data
propagation without any interaction of any developer.

TasKy (micro benchmark): The DBA can choose between multiple materialization schemas. In-
VerDa generates the delta code to move the data and also adapts existing delta code to keep all co-
existing schema versions alive. The number of valid materialization schemas greatly depends on the
actual structure of the evolution. The lower bound is a linear sequence of depending SMOs, e.g. one
table with N ADD COLUMN SMOs has N valid materializations. The upper bound are N independent
SMOs, each evolving another table, with 2N valid materializations. Specifically, the TasKy example
has five valid materializations.
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Figure 6.7: Different workloads on all possible materialization of TasKy.

Figure 6.7 shows the data access performance on the three schema versions for each of the five ma-
terialization schema. The materialization schemas are represented as the lists of SMOs that are ma-
terialized. We use abbreviations of the SMOs: e.g. [D, RC] on the very right corresponds to schema
version TasKy2 since both the DECOMPOSE (D) and the RENAME COLUMN (RC) SMO are materialized. The
initial materialization is in the middle, while the materialization according to Do! is on the very left.
The workload mixes 50 % reads, 20 % inserts, 20 % updates, 10 % deletes in Figure 6.7(c), 100 %
reads in Figure 6.7(a), and 100 % inserts in Figure 6.7(b) on the depicted schema versions. Again,
the measurements show that accesses to each schema version are fastest when its respective table
versions are materialized, i.e. when the physical table schema fits the accessed schema version. How-
ever, there are differences in the actual overhead, so the globally optimal materialization depends on
the workload distribution among the schema version. E.g. writing to TasKy2 is 49 times faster when
the physical table schema matches TasKy2 instead of Do!. This gain increases with every SMO, so for
longer evolutions with more SMOs it will be even higher.

Wikmedia: The benefits of the flexible materialization originate from the increased performance
when accessing data locally without the propagation through SMOs. We load our Wikimedia with the
data of Akan Wiki in schema version v16524 (109th version) that contains 14 359 pages and 536 283
links. We measure the read performance for the template queries from [40] both in schema version
v04619 (28th version) and v25635 (171th version). The chosen materializations match version v01284
(1st), v16524 (109th), and v25635 (171th) respectively. In Figure 6.8, a great performance difference
of up to two orders of magnitude is visible, so there is a huge optimization potential. We attribute the
asymmetry to the dominance of ADD COLUMN SMOs, which need an expensive join with an auxiliary
table to propagate data forwards, but only a comparable cheap projection to propagate backwards.
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Figure 6.8: Optimization potential for Wikimedia.

In sum, the evaluation has shown that the performance overhead of the InVerDa-generated delta code
in comparison to hand-written delta code is very small (4 %) and a reasonable tradeoff for the saved
implementation effort in most scenarios. Further, the data independence of the co-existing schema
versions provides a huge optimization potential: Changing the materialization so that applications do
access materialized table versions mostly directly, increases the performance by orders of magnitude.
Since InVerDa allows to change thematerializationwith the click of button instead of error-prone and
expensive manual migrations, we can safely adapt the materialization to always match the workload as
good as possible. Hence, the data independence provided by InVerDa allows using the optimization
potential easily and without any risk of losing data during the migration.

6.6 SUMMARY

In this chapter, we introduced the materialization-independent mapping semantics of BiDEL, which
especially includes the management of auxiliary information for the non-redundant or partially re-
dundant materializations in multi-schema-version database systems. The major objective was that the
SMOs can propagate data that is written at any non-materialized table version to the physically mate-
rialized table versions without any information loss—since not all SMOs are information preserving,
the other-wise lost information needs to be managed in the auxiliary tables. When reading again in
the non-materialized table version, we expect to see exactly the initially written data again without
any information being lost or gained.

Representing the materialization-independent mapping semantics of BiDEL’s SMOs with sets of Dat-
alog rules allowed us to immediately generate delta code for propagating or migrating data through
SMOs to realize truly co-existing schema versions that can all be accessed at the same time. We
formally evaluated the data independence, so we can now guarantee that no matter which table ver-
sions we materialize, from the applications’ perspective each schema version behaves like a common
single-schema database without any information loss or gain. We have done this formal evaluation for
non-redundant materializations, since this is the hardest. We can apply the results to partial or fully
redundant materializations as well. Starting with a non-redundant materialization, it is straight for-
ward to materialize additional table versions: Instead of reconstructing the table version with the help
of auxiliary tables, we directly access the now materialized table—the remainder of the data access
propagation remains unchanged.

Further, we empirically analyzed the benefits of the independent materialization, which allows to in-
crease the overall performance significantly by basically moving the materialization according to the
current workload with the click of a button. Just like the whole chapter, we focused the evaluation on
non-redundant materializations. In the next chapter, we equip DBAs with an adviser that automati-
cally proposes the best set of table versions to materialize for the current workload, which then covers
partially or fully redundant materializations as well.
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Co-existing schema versions within a multi-schema-version database system are different representa-
tions of the same conceptual data set. Thanks to the bidirectionality ofBiDEL’s SMOs, there is no need
to materialize each and every schema version to let them co-exist, but we can also non-redundantly
store the data in one slice of the schema evolution history. The two extremes of fully redundant
and non-redundant materialization span a huge search space of partially redundant materializations,
which is worth exploring to gain significant speedups as shown before in Section 6.4. However, for a
DBA it is very hard to find the best or at least a good materialization manually—especially when the
workload continuously changes and the database is further evolved to new schema versions, finding
the best materialization in the huge search space is a never ending fight.

In this chapter, we present an adviser for InVerDa that takes the current workload and the current
schema versions catalog and proposes an optimized physical materialization, which yields significant
performance improvements. Whenever the workload changes or whenever developers create or drop
schema versions, the DBA easily calls the adviser again and adapts the database’s materialization to
the new situation. At first, we discuss the objectives for such an adviser in Section 7.1 and detail on the
optimization problem in Section 7.2. Since, we cannot physically create every singlematerialization to
test its performance, we aim for a cost model-based optimization. In Section 7.3, we conduct a detailed
analysis of the characteristics of the overhead for propagating any read or write accesses through
InVerDa’s delta code and derive a stable cost model for SMO-based evolutions. In Section 7.4, we
define the space of all possible materializations for a given schema versions catalog and present an
evolutionary optimization algorithm in Section 7.5 that explores the search space to find the best
materialization based on the discussed cost function. Finally, we evaluate both the cost model and the
optimizer in Section 7.6 and summarize the chapter in Section 7.7.
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Figure 7.1: Possible materializations for our TasKy example from Figure 2.9 on page 37.
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7.1 OBJECTIVES

We will use the freedom of full data independence in multi-schema-version database systems to mate-
rialize a set of table versions that provide the best performance for the current workload. By bringing
the data as close as possible to the actually accessed schema versions, the propagation overhead for
both reading and writing is reduced. When the workload is spread over multiple schema versions,
we can also replicate the data to multiple table versions in the schema versions catalog to obtain
short access paths for reading with a reasonable amount of materialized table versions—however,
with each table version we materialize additionally, the space requirements as well as the overhead
for write operations increases. Figure 7.1 shows three different possible extents of redundancy for our
TasKy example (Figure 2.9, page 37). We can either have no, full, or partial redundancy. In the non-
redundant materialization (Figure 7.1(a)), only one preferred schema version is materialized; accesses
to all other versions are propagated to this preferred version and to the auxiliary tables, e.g. the initial
TasKy version is preferred in the depicted example. In contrast, the fully redundant materialization
(Figure 7.1(b)), physically stores every single table version, which requires way more storage space,
however, no auxiliary tables are needed, which speeds up query processing. Finally, the partially re-
dundant materialization (Figure 7.1(c)) strikes a balance between the two extremes, by materializing
a subset of the table versions that is cost-wise as close as possible to the accessed table versions.

Interestingly, the overhead for writing to additional materialized table versions is not as large as one
would expect: Since every SMO can manage auxiliary tables even if the neighboring table versions
are not materialized, write operations need to be propagated logically through all SMOs either way
to compute the updates on the auxiliary tables as well. The overhead for writing to materialized
table versions is then only the physical write operation to the table version but not the calculation
of the propagated write operation itself. Hence, the penalty for additionally writing the payload data
to a materialized table version might be a reasonable price to pay—we examine this in detail. The
resulting optimization problem that needs to be solved by the adviser is to find the best set of table
versions to materialize, which is a tradeoff between read performance, write performance, and given
space requirements.

An adviser should propose an optimizedmaterialization for the co-existing schema versions in amulti-
schema-version database system based on the workload model for all schema versions, the cost model
for propagating data accesses between schema versions, and an upper bound for the available space
that controls the maximum degree of redundancy. Thereby, the envisioned adviser should roughly
follow a workflow as shown in Figure 7.2. The developers use BiDEL evolution scripts to let InVerDa

7.1 Objectives 103



create co-existing schema versions within the database. When the DBA triggers InVerDa’s adviser,
it should determine the best materialization for the current workload under a given space threshold
based on a cost model that is individually learned for the database. The adviser should be cost model-
based. It is not applicable to temporarily change the materialization to exactly measure the costs,
because the migration to one possible materialization can easily take several minutes to multiple days
in realistic scenarios. Instead, an adviser should use a cost model to quickly estimate the costs. Fur-
ther, InVerDa’s adviser should analyze the workload among all versions in the multi-schema-version
database system and represent it in a workload model which contains the percentage of SQL op-
erations for each individual table version. Given the workload model, the upper space bound, and
the cost model, the optimizer should determine the set of materialized table versions that provides
the best overall performance. Finally, the DBA should be able to confirm the proposed materializa-
tion and instruct InVerDa to migrate the database accordingly and automatically generate new delta
code to keep all table versions in all schema versions alive—the table versions now access the newly
materialized table versions with an increased overall performance. In sum, we expect the adviser to
propose a set of table versions that should be materialized in order to obtain the best performance for
the current workload on the given system with given space boundaries.

7.2 PROBLEM DESCRIPTION

In the following, we discuss all the artifacts shown in Figure 7.2 in more detail to precisely specify
the actual optimization problem—the objective of InVerDa’s adviser. To do so, we introduce a formal
notation:

• SV is the set of all external schema version in the schema versions catalog.

• T V(s) is the set of all table versions within the schema version s ∈ SV .

• T V is the set of all table versions, which particularly includes those table versions that are
merely intermediate steps between schema versions, {t|t ∈ T V(s), s ∈ SV} ⊆ T V .

• O = {select, insert, update, delete} is the set of operations that can be executed on any table
version tv ∈ T V(s) for all s ∈ SV .

• MAT S ⊆ {M|M ⊆ T V} is the set of all valid materialization states, where M is a set of
table versions that is physically materialized in that respective materialization.

• S(M) is the size of the given materialization M ∈ MAT S.

• T is the specified threshold for the maximum size of the materialization.

• E(c) is the set of all directed hyper edges (SMOs) that are connected to the given table version
c ∈ T V .

• N (e, c) is the set of all table versions that are at the opposite end from the directed hyper edge
(SMO) than the given table version c ∈ T V; e.g. given a source table c ∈ T V of an SMO e

then N (e, c) return all target table versions of the SMO e.
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table version select insert update delete sum

Todo-1 50 % 1 % 0 % 9 % 60 %
Task-0 5 % 2 % 2 % 1 % 10 %
Task-1 3 % 15 % 7 % 0 % 25 %
Author-1 2 % 2 % 1 % 0 % 5 %
sum 60 % 20 % 10 % 10 % 100 %

Table 7.1: Exemplary workload description for TasKy.

Workload description: Since the adviser works on the level of table versions, the workload itself is
also given on the level of table versions. Obviously, if we have a workload given on the schema version
level we can approximately transform this into a workload on table versions. To query the workload
definition, we define a function WL(c, op), which returns the percentage of a given operation op ∈
O on a given table version c ∈ T V—the function is only defined for table versions that are actually
included in at least one schema version, since the other table versions are never explicitly accessed
either way. The workload function’s signature is:

WL(c, op) : {c|v ∈ SV, c ∈ T V(v)} × O → [0; 1] (7.1)

For each table version, we define the global percentage of select, insert, update, and delete accesses.
These percentages sum up to 100% over all table versions and all operations. Table 7.1 depicts an
example workload distribution for our TasKy example (Figure 2.9, page 37). We assume that users
mainly use the mobile Do! application to read their most important tasks and remove them after
completion. While the TasKy versions is only used by a very small fraction of the users, there are
many users that use the TasKy2 desktop application to create and update their tasks. Please note that
Todo-0 and Author-0 are never accessed explicitly since they are in no external schema version.

Costmodel: Propagating read and write accesses through SMOs naturally causes costs that need to be
minimized by InVerDa’s adviser. We define the cost model for the data propagation with the function
C(c, M, op), which takes a set of materialized table versions M ∈ MAT S and returns the costs
for performing the given operation op ∈ O on the given table version c ∈ T V:

C(c, M, op) : T V × MAT S × O → R
+ (7.2)

Since the actual costs for propagating a read or a write operation through an SMO significantly depend
on the underlying hardware and the used DBMS, the cost function will be learned automatically when
initially setting up InVerDa. We will analyze the general characteristics of the cost function and
propose a feasible learning algorithm in Section 7.3.

Optimization objective: Putting everything together, the optimization objective of InVerDa’s ad-
viser is to find the best set of materialized table versions M ∈ MAT S that is within the specified
space threshold T and provides the minimal costs for accessing the data. The costs are calculated as
the sum of all operations op on all table versions c weighted with their share of the overall workload as
given by the workload WL(c, op). Hence, the overall optimization goal is to find the materialization
Mbest ∈ MAT S with:

Mbest = arg min
M∈MAT S

⎛
⎝ ∑

c∈{c|v∈SV,c∈T V(v)}

⎛
⎝ ∑

op∈O
WL(c, op) · C(c, M, op)

⎞
⎠

⎞
⎠ ∧ S(M) ≤ T

(7.3)
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Figure 7.3: Accessing source/target table versions of ADD COLUMN SMO with different materializations.

Intuitively speaking, we minimize the expected query execution time for the given workload. In
sum, we defined the workflow the adviser should follow and formalized all artifacts such as the given
workload, the cost model, etc. to finally specify the optimization problem that should be solved by the
adviser. In the following, we detail on the cost model C(c, M, op) in Section 7.3, the search space
MAT S in Section 7.4 and the actual optimization algorithm to achieve this optimization objective
in Section 7.5 before we evaluate the results in Section 7.6.

7.3 COST MODEL

To estimate the costs occurring for data access propagation in multi-schema-version database systems,
we first have to understand the characteristics of the overhead. Therefore, we analyze a micro bench-
mark for the access propagation through single SMOs in Section 7.3.1 and through short chains of
SMOs in Section 7.3.2. After this quantitative analysis of the data access propagation, we conduct a
qualitative analysis of the data access propagation patterns in Section 7.3.3. Different access patterns
entail different cost computations, hence understanding the access patterns is essential for defining
the cost model. We focus on the analysis of the general characteristics. Since the specific costs largely
depend on the delta code generation, the used DBMS, the used hardware, and so on, we learn the
specific cost function for each system individually. In Section 7.3.4, we finally use the gained insights
to define a general cost model that can be trained for a specific multi-schema-version database system.

7.3.1 Performance Overhead of single SMOs

Most SMOs have an asymmetric overheadw.r.t. thematerialization; this means that the overhead for
the propagation in one direction is smaller than in the other direction. For the adviser, it is essential
to know these characteristics. We examine each Operation op ∈ O for each single SMO. For all
such pairs of SMO and operation there are two dimensions that span a total of six different scenarios
to analyze. First, the workload can access either the source or the target table versions. Second,
we materialize either the source table version (virtualized SMO), or both the source and the target
table version (redundant SMO), or only the target table version (materialized SMO). For each of the
resulting six scenarios, we individually analyze the overhead for any data access operation.

Figure 7.3 shows the query execution for reading, inserting, updating, and deleting data in a very
simple scenario: A table with 2 columns and 100 000 tuples is evolved to a new table version with an
additional column. The experiments have been conducted on a PostgreSQL 9.4 database on a Core
i7 machine with 2.4GHz and 8GB memory. As can be seen in the figure, the data access times in
the discussed six scenarios are more or less constant unless the SMO is virtualized and we access the
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evolved table version. In this case the data is primarily stored without the added column but accessed
with this column; the ADD COLUMN SMO uses an auxiliary table to persist the data of this added column.
As a consequence, reading data at the target side results in a join between the source table version and
the auxiliary table. In all other cases, data is either accessed locally or the added column is merely
projected away, which causes almost no overhead. Particularly, the costs for accessing data locally
is identical no matter whether the respective other side of the SMO is materialized as well or not.
Due to this observation, we boil down the six different scenarios to four scenarios along the two
dimensions: (1) access either at target or at source side and (2) access either locally or remotely with
auxiliary tables. For writing, we see the same pattern: InVerDa’s delta code calculates the effective
write operation for both table versions since writes need to be propagated along the schema version
history either way—the additional overhead for actually persisting the propagated write operation is
negligibly small compared to the involved trigger calls etc. Merely the calculation of the respective
write operation on the auxiliary table causes an overhead as can be seen in Figure 7.3. As a result
the write performance has similar characteristics as the read performance. The asymmetry of the ADD
COLUMN SMO suggest to always materialize or replicate it, as long as space constraints and neighboring
SMOs do not contradict this.

Without loss of generality, we use the ADD COLUMN SMO for explanation, because it is themost common
one; the remaining SMOs behave similarly, however, the tendency of virtualizing or materializing is
not always that clear, because it depends on the set of managed auxiliary tables. The respective mea-
surements are listed in Appendix B. As expected, the DROP COLUMN SMO shows the exactly opposite
behavior of ADD COLUMN, hence there is only a significant overhead when accessing the source version
of the materialized DROP COLUMN SMO. The RENAME COLUMN SMO never causes a relevant overhead at
all since it is realized with cheap projections. Both the JOIN and the DECOMPOSE SMO exist in multiple
variants that all cause different performance characteristics. E.g. writing to the source side of a mate-
rialized DECOMPOSE SMO that creates a new foreign key causes a very high overhead, since new foreign
keys are generated while writing tuples to the second output table—subsequently the newly generated
foreign keys need to be written to the first output table as well. On the contrary, when writing to ei-
ther source or target side of an inner JOIN on an arbitrary condition, the materialization has almost no
impact on the performance, since the most overhead is caused by calculating the write operation on
the data tables while updating the auxiliary tables comes almost for free. Further, there is an overhead
for accessing the target of a virtualized MEGRE SMO, however, the overhead for accessing the source of
a materialized MERGE is even higher. Again, the PARTITION behaves contrary. The asymmetries are not
intuitively obvious for DBAs, as DBAs are not necessarily aware of the managed auxiliary tables that
significantly determine the actual overhead. A cost model-based adviser that hides all the complexity,
releases DBAs from the need to understand the asymmetries in the first place. Using the discovered
asymmetries, we can tell for each SMO whether it is supposedly beneficial to either materialize it
or virtualize it or whether this does not matter at all (like e.g. for renaming a table/column). This
knowledge is a main ingredient for InVerDa’s adviser.

For estimating the costs of the propagation through single SMOs, we further analyze their scaling be-
havior with respect to the size of the table versions. Figure 7.4 shows again the ADD COLUMN SMO with
an increasing number of tuples. The measurements confirm that the already discovered asymmetries
hold independently of the table size and that we can reduce the scenario to four cases of local/remote
access on the source/target side. We further see that the query execution time increases linearly with
the number of tuples in the table versions for read operations and stays almost constant for write op-
erations. As a consequence, we can use functions of the form ax + b with x being the source tables’
size to describe the scaling behavior of access propagation through SMOs. For writing through an ADD
COLUMN SMO, a constant function would be enough for the ADD COLUMN SMO, however, this does not
apply to all SMOs, which motivates using a linear functions for writing as well. For instance, prop-
agating an insert operation through a JOIN SMO requires to scan the whole other table for potential
join partners—hence, the costs grow with the size of the existing tables. Our measurements did not
indicate the need for higher order approximations, though, the presented concepts are not limited to
ax + b and easily support the extension to higher order polynomials as cost functions if needed.
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Figure 7.4: Scaling behavior for accesses propagation through an ADD COLUMN SMO.

7.3.2 Performance Overhead of Sequences of SMOs

To estimate the overhead for propagating data accesses through sequences of SMOs in a whole evolu-
tion, we now consider short evolutions to analyze how the overheads of the single SMOs combine. In
fact, the overheads combine linearly, which confirms that it is always possible to gain a better perfor-
mance by reducing the distances between data access and the materialized data. We conduct a micro
benchmark on all possible evolutions with two subsequent SMOs—except of creating, dropping, and
renaming tables since they do not have a performance overhead in the first place. We generate evo-
lutions with two SMOs and three schema versions: first version v1 – first SMO s1 – second version
v2 – second SMO s2 – third version v3. The second version v2 always contains a table R(a, b, c); the
number of generated tuples in this table is varied in the experiments. In the following, we analyze
the improvement potential of the performance and check whether SMOs do positively or negatively
impact each other or whether their overheads merely combine linearly. We analyze the performance
of propagating both read and write operations through two subsequent SMOs.

Reading: In Figure 7.5, we exemplarily consider all the combinations of any SMO s1 with an ADD
COLUMN as second SMO s2. Again, accessing data locally is up to twice as fast as propagating it through
the SMOs, so the optimization potential exists in all scenarios. The expected performance for the
sequential combination of both SMOs is calculated as the sum of propagating the data access through
each SMO individually minus reading data locally at the second schema version. This is reasonable,
because the source data for the second SMO is already in memory after executing the first one. Fig-
ure 7.5 shows that the measured time for propagating the data through two SMOs is always in the
same range as the calculated linear combination of the two SMOs, so we show that there is great
optimization potential for all combinations of those SMOs and we can safely use it without fearing
additional overhead when combining SMOs. The other combinations behave similarly; the respective
charts are included in Appendix C.
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Figure 7.5: Scaling behavior for the combination of any SMO with the ADD COLUMN SMO.

Writing: Conducting the same analysis for write operations (insert, update, and delete) reveals that
the overhead of write operations also combines linearly which facilitates stable estimations of the
actual costs. Figure 7.6 shows the execution time of insert operations in three exemplary schema
versions that are connected by two ADD COLUMN SMOs. The execution time is close to constant w.r.t. the
number of tuples, so it is mainly determined by the execution of the stored procedures for propagating
the data. We see the same pattern as before: data accesses become more expensive if and only if
we propagate data backwards—from the evolved version with the added column back to the version
without the added column—and the data is exclusively materialized in the old table version. The
reason is that this constellation requires to store the values of the added column in an additional
auxiliary table, which increases the required time. For writing at the third schema version with only
the first version being materialized, we face this overhead two times; once for each add column SMO,
which explains the doubled overhead. The slight difference in the actual overhead is caused by the
different table sizes, since the third table version has one column more than the second table version
and two columns more than the first one.
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Figure 7.6: Insert operations in an evolution with two subsequent ADD COLUMN SMOs.
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Figure 7.7: All materialization states for evolutions with two SMOs.

We conducted the same measurements for all combinations of SMOs and empirically confirmed that
the execution time of write operations through sequences of SMOs is also easily computable by lin-
ear combination of the respective execution times of the propagation through single SMOs. In the
evaluation, we show that this assumption is stable enough to obtain very precise estimations. The
execution time of single write operations is influenced less by the number of tuples in the accessed
tables but is dominated more by an almost constant overhead for propagating the single write oper-
ation through an SMOs. The same holds for longer sequences of SMO. The costs for writing add up
linearly, whichmakes perfect sense, since write operations are propagated stepwise with stored proce-
dures along SMO and simply call the stored procedure of the respectively next SMOs (cf. Section 6.3).

In sum, we have shown that the costs for the propagation through two SMOs can be precisely calcu-
lated as a linear combination of the costs for the propagation through single SMOs. Reading along
SMOs usually requires joins with auxiliary tables and writing requires a stored procedure call. Both
things are independently of other SMOs and explain the linear combination of the costs.

7.3.3 Data Access Patterns

For a deeper understanding and evaluation of the possible materialization states, Figure 7.7 shows all
possiblematerialization states for sequences of two SMOs. We consider all possiblematerializations of
the table versions: each table versions can be materialized or not—however, at least one table version
must be materialized in order to not lose all the data. For most configurations of materialized table
versions it is straight forward to determine in which direction data accesses are propagated through
the SMOs. There is one exception: On the Lines 5a and 5b, both the first and the last schema version
are materialized. This means that read operations on the middle schema version are either propagated
to the first one (Line 5a) or to the last one (Line 5b). Since read operations are propagated to exclu-
sively one side, there is no need to maintain auxiliary tables for both SMOs. In a specific scenario the
decision depends on the cost model itself: we choose to propagate read accesses through the SMO
that entails the least overhead for the current workload. Given a set of materialized table versions for
a multi-schema-version database system, this pattern allows to derive the materialization states of all
the SMOs in the schema versions catalog. The materialization states of the SMOs determine whether
there are auxiliary table for reading forwards (materialized) or backwards (virtualized), or whether
there are no auxiliary tables at all when data is never propagated through the SMO (redundant SMO).
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Figure 7.8: Materialization states for the TasKy example in Figure 7.1(c) on page 102.

In the TasKy example with the materialization shown in Figure 7.1(c) on page 102, we materialize the
table versions Todo-0, Task-1, and Author-0. In Figure 7.8, we take the same materialization states
of the table versions and summarize the resulting materialization states of all SMOs. We make sure
that every single table version can propagate its read and write accesses to a materialized table version.
This also holds for those table versions that are not explicitly accessed in the workload, which contains
all table versions that are intermediate steps between schema versions but not part of any schema
version. Even though those table versions are not explicitly accessed by users, the propagation of
write operations requires to read these intermediate table versions as well.

Obviously, all materialized table versions can directly access the physical data but accesses to all the
non-materialized table versions need to be propagated to the materialized table versions. In that
sense, read operations on the table version Todo-1 are propagated to access table version Todo-0. As a
consequence, the DROP COLUMN SMO is virtualized, which means that data is stored only at the source
side in Todo-0 plus potential auxiliary tables needed for data access at the target site. As can be seen
from the semantics definition of the DROP COLUMN SMO in Appendix A.2, there are no auxiliary tables
required for source-side materialization, so we are lucky in this case. Equally, the RENAME COLUMN
SMO for accessing Author-1 is also virtualized to map data accesses from Author-1 to Author-0. To
access table version Task-0, either the PARTITION or the DECOMPOSE SMO need to be materialized which
includes storing additional auxiliary tables to read and write the Task-0 data correctly without any
information loss. Since the analysis of single SMOs shows that the overhead of the PARTITION SMO is
smaller, we materialize the PARTITION SMO and never use the DECOMPOSE SMO for reading.

Figure 7.9 summarizes the generalized materialization states for table versions and SMO; and it de-
picts the respective access pattern that determine the actual costs for the data access. In Figure 7.9(a),
we see that there are two materialization states for table versions: materialized and non-materialized.
When the table version is materialized, its data is stored physically, so read operations can be executed
locally. Write operations are not only executed locally, but always propagated through all incoming
and outgoing SMOs since other materialized table versions or auxiliary tables can be affected by the
write operation as well. For the same reason, we also propagate write operations to non-materialized
table versions. Read operations on a non-materialized table version are only propagated through ei-
ther the incoming or one outgoing SMO to the cost-wise nearest materialized table versions.

Given the set of materialized table versions, we already discussed how to determine the materializa-
tion state of SMOs and we identified three possible states: materialized, virtualized, and redundant.
Figure 7.9(b) summarizes these three states and depicts the respective access propagation pattern.
Since redundant SMOs are never used for propagating a read operation, there are no auxiliary tables
required. No information will be lost since both the source and the target side can be read without
propagating data through the SMO. Merely write operations need to be propagated through the SMO
to ensure global consistency among all table versions. Virtualized SMOs answer read operations on
the target side by reading from the source side and consolidating the data with the respective auxiliary
tables. The same applies to write operations at the target side. Read operations on the source side are
never propagated through the virtualized SMO. Merely write operations are propagated to the target
side as well, however, they will not affect the auxiliary tables of the SMO. Nevertheless, it is important
to propagate the write operations further through the schema versions catalog, since there might be
further materialized table versions or auxiliary tables to be updated as well. For a materialized SMO,
the same pattern applies vice versa. In sum, we are now able to determine the materialization states
of SMOs and the access propagation patterns based on a given set of materialized table versions.
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Figure 7.9: Access patterns for different materialization states.

7.3.4 Learned Cost Model

From the previous performance study, we got the following four insights that form the basis for the
adviser’s cost model. First, we saw that the query execution times for both reading and writing scale
linearly—some write operations even constantly—with the number of tuples. Second, both read and
write operations are more expensive, when auxiliary tables are involved. Third, the query execu-
tion time of any operation never decreaseswith the number of SMOs through which it is propagated,
so the cost model is monotone w.r.t. the access propagation through chains of SMOs. Last but not
least, the costs for propagating data through multiple subsequent SMOs are the linear combination
of the overheads for propagating data through the single SMOs. Hence, there is no additional cost for
combining SMOs, neither is there a significant benefit.

We now condense this knowledge into a cost model, which is the basis for InVerDa’s adviser. The
cost model returns the estimated costs for executing a given operation on a given table version with a
given materialization schema. These costs are mainly determined by the resulting data access pattern
as discussed in the previous section. Summarizing the possible access propagation patterns from
Figure 7.9(b), we see that there are four corresponding access patterns as shown in Figure 7.10: (1)
forwards without auxiliary tables, (2) backwards without auxiliary tables, (3) forwards with auxiliary
tables, and (4) backwards with auxiliary tables. For each of these four cases, the cost model provides a
function of the form aSMO

op x+bSMO
op for each combination of an SMO and an operation, with x being

the size of the table in bytes. Besides the costs for data propagation through SMOs, we also need a cost
model for reading and writing materialized table versions locally, which is also of the form aopx+bop
and globally applies to any table version. Since the specific parameters a and b may greatly differ
depending on the used hardware, DBMS, etc., we do learn the parameters individually for each
system. The scaling behavior of the propagation overhead follows a linear function. In order to learn
the cost model, we create exemplary scenarios with one SMO respectively and a growing number of
tuples, measure the propagation overhead, and use linear regression to learn the parameters a and b
of the linear cost models.
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Figure 7.10: Cost model for the different access patterns.

The learned functions for the performance of access propagation through single SMOs are the basis
for implementing the cost function C(c, M, op), which returns the estimated costs for executing the
operation op on the table version c with a given set of materialized table versions M. With the given
cost models for the access propagation through single SMO, we can estimate the costs for any given
workload and materialization schema since the overheads combine linearly. The estimated costs are
determined as follows:

1. Given a set of materialized table versions M, we determine the materialization states of the
SMOs. This step contains a nested optimization problem: for each table version, we determine
the cost-wise closest materialized table versions to execute read operation as cheap as possible
with the given materialization. Since the cost function is monotone w.r.t. the length of the
propagation path, we can use the Dijkstra Algorithm to find the cheapest data access path for
each single table version. The Dijkstra Algorithm usesmerely the cost model for the propagation
through chains of SMOs, so there is no cyclic dependency between the shortest path search and
the overall cost estimation for a given materialization.

2. We calculate the costs for each operation op on each table version c in the workload sepa-
rately using the discussed cost function C(c, M, op). The costs are computed as the sum of
the estimated costs for all involved SMOs and table versions. Read operations are directed to
materialized table versions on the cheapest path. Write operations are propagated through the
whole schema versions catalog since auxiliary tables might be affected anywhere.

3. We sum up these single costs and weight them according to the given workload WL(c, op).

This cost model facilitates to estimate the costs of a given workload for a given materialization, which
allows to implement a cost model-based optimizer that proposes the best materialization to the DBA.

To sum up, we analyzed the quantitative and qualitative characteristics of the data access propagation
in detail. Among other insights, we found that the overheads for data access propagation through sin-
gle SMOs combine linearly when we chain up several SMOs to an evolution. This allows to precisely
estimate the costs for accessing data with a given materialization with an error of less than 10 % for
short evolutions, as we will show in the evaluation. Most importantly, the learned cost model allows
to estimate the costs orders of magnitude faster than measuring the actual costs after migrating the
database physically, as we will show in the evaluation as well. This is an essential prerequisite for cost
model-based optimization algorithms. In the next section, we define the search space of all potential
materializations—another key ingredient for InVerDa’s adviser.
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7.4 SEARCH SPACE

To find the best physical materialization, we have to know the whole search space of possible mate-
rializations in the first place. Intuitively speaking, every single table version in the evolution history
can be either materialized or not materialized, which yields 2|T V| possible materializations, with T V
being the set of all table version—however, not all these materializations are valid. When e.g. not a
single table version is selected to be materialized, then the data will be lost. In this section, we first
define the set of valid materialization schemas MAT S and then estimate the bounds of the search
space’s size.

We consider a valid materialization to ensure that each single table version c ∈ T V can propa-
gate its data access to materialized table versions. In this case, we say that the respective table ver-
sion c is covered. A table version c ∈ T V is covered by a materialization M—this means that
isCovered(c, M) = � holds—when there exists a path through the schema versions catalog where
the materialization states along the path aggregate to �: The aggregation of the materialization states
is disjunctive along a sequential path and conjunctive if the path splits at an SMO with two source or
two target table versions. Such paths may even take steps contradicting the direction of the SMOs.

isCovered(c, M) = c ∈ M ∨

⎛
⎝ ∨

e∈E(c)

⎛
⎝ ∧

c′∈N (e,c)
isCovered(c′)

⎞
⎠

⎞
⎠ (7.4)

By enforcing this condition for all table versions of the schema versions catalog, we ensure that the
whole data of all table versions is represented at least once in the materialized schema. Hence, a
materialization M is valid if the following condition holds:

∀c∈T V isCovered(c, M) (7.5)

Building upon this validity check, we define the set of all possible materialization states MAT S as:

MAT S = {M|M ⊆ T V ∧ ∀c∈T V isCovered(c, M)} (7.6)

The resulting search space of possible materializations can grow exponentially with the number of
table versions in the evolution history. The actual scaling behavior of the search space depends on the
graph structure of the schema versions catalog, as we will discuss in the following. A multi-schema-
version database system with N created table versions, which are never evolved, can be persisted in
exactly one way: all created tables must be materialized. If each of these N table versions evolves
with one SMO that e.g. adds a column, we have N independent evolution with the length of one
SMO each, which creates |T V| = 2N table versions. For each of the N independent evolutions,
the data can be persisted in the source, or in the target, or in both table versions, which allows 3N

materializations in total. Further, a longer evolution with M SMOs that all depend on each other by
e.g. adding M columns to one table also allows 2M − 1 possible materializations, as any non-empty
subset of all M table versions can be materialized. Hence, both multiple independent evolutions as
well as sequences of dependent evolutions cause an exponential search space size and this complexity
remains when evolutions of single tables are merged or split by further SMOs.

In sum, we defined the set of all valid materializations MAT S and estimated its size |MAT S|.
This search space size depends on the structure of the schema versions catalog graph and is not neces-
sarily exponentially large, however, even the discussed simple and common scenarios, such as adding
multiple columns to one table, have an exponentially growing number of potential materializations.
Hence, we can safely assume that the search space will grow exponentially with the number of table
versions in many practical scenarios, which calls for sophisticated optimization algorithm that do not
enumerate the whole search space. To provide a generally applicable adviser we tailor the optimiza-
tion algorithm accordingly to a potentially exponentially large search space in the next section.
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7.5 OPTIMIZATION ALGORITHM

As the search space of physical materializations potentially has an exponential size w.r.t. the number
of table versions in the evolution, there is no feasible way to fully explore all possible materializations
and compare their estimated costs to find the best solution. While there are merely 59 possibilities for
the six table versions in TasKy, there are up to 1 × 1061 possibilities for the 203 table versions in the
Wikimedia Benchmark [40] making it impracticable to enumerate the whole search space. Instead,
we can only approximate a good solution. Unfortunately, there is no reliable way to use the presented
cost function as a heuristic to decide whether a specific table version should be materialized or not,
because the cost function can only be evaluated globally and cannot assign costs for materializing
one specific table version locally. Further, the cost model does not behave monotone when extending
or reducing a materialization M, since the actual access propagation paths may change significantly
when table versions are added to or removed from the materialization. Therefore, we cannot assume
that an optimal solution is built upon optimal solutions for subproblems.

The cost function is only globally evaluable for a whole given materialization. It is not possible to
determine the local costs for materializing or not materializing a single table version, since these costs
always depend on the materialization states of all neighboring table versions. Since read operations
are propagated to the cost-wise closest materialized table version, the cost function contains a nested
optimization problem of finding the best propagation path for each table version. Therefore, the ob-
jective of the optimizer is to solve a bi-level optimization problem with a local optimization of the
shortest access paths and a global minimization of the aggregated local costs [49]. The adviser finds
the optimal access path for each table version using the Dijkstra Algorithm. On the one hand side,
the costs for not materializing a specific table version c can be very high assuming this requires to
propagate data through an expensive neighboring SMO. On the other hand side, these costs may fall
almost down to zero if we merely materialize another table version c′ that was e.g. created by renam-
ing a column in table version c. In sum, the cost function estimates the costs of a materialization as a
whole with no means to assign costs to single table versions or SMOs.

Further, when enumerating the search space by e.g. stepwise extending the materialization by newly
materialized table versions, the results of the cost function are not monotone. Let M1 and M2
be two different materializations from the set of all valid materializations MAT S. We can neither
assume that C(c, M1, op) ≤ C(c, M1 ∪ M2, op) holds nor can we assume that C(c, M1, op) ≥
C(c, M1 ∪ M2, op) holds. Since the workload mixes read and write operations any additionally
materialized table version can either increase the overall costs as writes become more expensive or
costs can be reduced as reading requires less propagation.

As a consequence of the global cost function and non-monotone behavior of extending materializa-
tions, the optimization problem cannot be divided in smaller subproblems. Hence e.g. dynamic pro-
gramming algorithms are not an option and the adviser is forced to explorer every corner of the search
space. This is not possible in practice due to its potentially exponential size. Also greedy optimization
algorithms will return solutions that are far from optimal—in the evaluation, we will see that the best
materialization is significantly better than intuitive solutions that could be returned by greedy algo-
rithms. A common approach for such optimization problems is to use evolutionary optimization
algorithms that maintain a population of the currently best solutions and randomly evolve them by
small manipulations but also by more significant mutations [22]. According to Darwin’s Law, only
the best solutions survive and are evolved further to find better and better solutions. While there are
no guarantees that the adviser will find the globally optimal materialization, evolutionary algorithms
have shown very good results currently and are the best option to solve optimization problems as the
one that InVerDa’s adviser faces [49].
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The evolutionary optimization algorithm of InVerDa’s adviser initially creates a set of reasonable ma-
terializations as the initial population. This covers non-redundant materializations of the oldest and
newest table versions as well as full materializations of all table versions. Further initial solutions can
be obtained greedily by materializing the most accessed table versions first and then incrementally
adding more table versions to the materialization until the space budget is used. As evolution steps
we use fine-grained fuzzy modifications that move or copy or merge the materialization of a table
version through a neighboring SMO to/with the next table versions. As coarse-grained mutations, we
randomly select table versions and change their materialization states. Starting with the initial mate-
rializations, we use the discussed evolution steps to generate new materializations in the population.
The presented cost function can efficiently estimate the costs for a given materialization; following
the idea of evolutionary optimization algorithms, we remove those materializations with the highest
estimated costs from our population and continue the optimization until we reach a given maximum
number of considered materializations or do not see any improvement for a certain time.

In sum, InVerDa’s adviser optimizes thematerialization using an evolutionary algorithm. We decided
for the evolutionary optimization, because the cost function behaves non-monotone when adding or
removing table versions from a materialization, which makes other algorithm like dynamic program-
ming inapplicable. The proposed optimization algorithm starts with a set of intuitively promising
materializations and further evolves them with small modifications and bigger mutations to find in-
creasingly better materializations. In the evaluation, we will show that this evolutionary algorithm
finds the optimal solution for small examples such as our TasKy example from Section 2.3 and that it
achieves significant improvements for long evolution histories such as the evolution of Wikimedia.

7.6 EVALUATION

We have presented the problem of finding a good materialization in the potentially exponential search
space of materializations in a multi-schema-version database system and proposed a cost model-based
adviser that returns an optimized materialization for the given workload on a specific system. Now,
we empirically analyze this adviser focusing both on the cost model (Section 7.6.1) and on the actual
optimization algorithm (Section 7.6.2). We conducted the evaluation on a PostgreSQL 9.4 database
on a Core i7 machine with 2.4GHz and 8GB memory.

7.6.1 Cost Model

We analyze scenarios that cover all evolutions with two subsequent SMOs as well as the TasKy exam-
ple to obtain a detailed picture of the strength and weaknesses of the learned cost model.

Evolutions with two SMOs: For this evaluation, we consider all evolutions with two subsequent
SMOs. Thereby, the first SMO always creates a table version R(a, b, c). The second SMO further
evolves this table R(a, b, c), so we end up with three schema versions just as used before (Sec-
tion 7.3.2). We execute read and write operations on the third schema version with the first being
materialized, to obtain the costs for propagating the data access through the two subsequent SMOs.
We also estimate the costs for this propagation using our learned cost model (Section 7.3.4) to com-
pare them to the actually measured costs.
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Figure 7.11: Error of the cost estimation for read and write operations in an evolved database with two
subsequent SMOs, with the second being an ADD COLUMN SMO.

Figure 7.11 shows the estimation error, which expresses the percentage of themisestimation compared
to the actually measured costs. In the figure, we show the estimation error for all scenarios that have
an ADD COLUMN as second SMO while the respective first SMO is shown at the x-axis of the box-plot
charts. For this first SMO of the evolution, we use the following abbreviations: AC (ADD COLUMN),
DC (DROP COLUMN), RC (RENAME COLUMN), J (JOIN), D (DECOMPOSE), M (MERGE), and P (PARTITION). The
deviation shown in Figure 7.11 covers 50 different table sizes from 5000 to 100 000 tuples. As can be
seen, the mean error is very low in the range of 5 %, which is a great basis for the optimizer. Also
the deviation is within reasonable bound. The write operation are precisely estimated in almost all
scenarios. The deviation for read operations is roughly 10 %, which is a bit higher but still a reasonable
basis for the optimizer. As comparison: Typical errors for the cost estimation of a query optimizer in
a common DBMS are two to ten times higher and still allow the optimizer to find good plans [118].

Figure 7.12 shows the results of evaluating the same setup for all evolutions with a JOIN as second
SMO, which basically confirm the behavior we saw for the ADD COLUMN SMO. The same applies to the
evolution with MERGE as second SMO as shown in Figure 7.13. Merely, the deviation for evolutions with
the MERGE SMO, is higher, which we account to the number of auxiliary tables (two to five) that need
to be managed for this SMO. Nevertheless, the mean estimation of all scenarios are very accurate and
allow the optimizer to safely rely on the cost model, which can be evaluated way faster than actually
migrating and analyzing the database physically. We exemplarily choose the ADD COLUMN, the JOIN, and
the MERGE SMO to validate the feasibility of the cost model. The evolutions with the remaining SMOs
behave similarly, which is not surprising as they are the inverses of the depicted SMOs. The respective
measurements are summarized in Appendix D.
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Figure 7.12: Error of the cost estimation for read and write operations in an evolved database with two
subsequent SMOs, with the second being a JOIN SMO.
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Figure 7.13: Error of the cost estimation for read and write operations in an evolved database with two
subsequent SMOs, with the second being a MERGE SMO.
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Figure 7.14: Analysis of the estimation errors in the TasKy example.

TasKy: Now, we apply the cost model to the TasKy example (Figure 2.4, page 28) as a small realis-
tic scenario. Figure 7.14(a) shows the estimated and the measured costs for reading the Do! schema
versions for all possible materializations. In fact, the TasKy scenario allows 59 different materializa-
tions ranging from non-redundant materializations over partially redundant to the fully redundant
materialization. In the shown figure, we sort the materializations by their actually measured costs.
As can be seen, the cost model estimated the actual costs for reading the Do! schema version almost
perfectly; the mean estimation error is 14 %. Most importantly, the order of the estimated costs for
the different materializations is equal to the order of their actual costs, which allows the adviser to
make very precise decisions only based on the cost model and without the need to physically migrate
the database to evaluate specific materializations individually. Figure 7.14(b) confirms these finding
also for the mixed workload that we presented in Figure 7.1 on page 105. The deviation is 24.2 % but
as can be seen, the general order of the materializations is still estimated well. Thus, whenever the
adviser determines a good materialization based on the cost model, chances are very high that this
materialization will also perform well in practice.

Since the optimization algorithm needs to cover a very large search space, the time for calculating
the costs of each specific materialization must be as short as possible. We measure the time required
for the cost model-based estimation in comparison to physically migrating the database to a new
materialization and measuring the actual costs for the given workload and the given materialization.
Exemplary, we assume the database to materialize exclusively the initial TasKy version with 100 000
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entries; to get the costs for executing a workload mix with Do! being materialized, we need 8.21 s to
change the materialization and another 33.32 s to measure the mean execution time for a read/write
workload mix on all schema versions. This sums up to 41.53 s for the whole example. In contrast, the
cost model returns the estimated costs after 132.56 μs, which is a speedup of factor 2.5 × 105. With
growing table sizes, the time for physically migrating and analyzing a database will grow even further
and can easily last hours or even days. At the same time, estimating the costs using our learned cost
model is independent from the size of the tables and thereby has constant time requirements. The cost
model merely requires an initial effort to learn the parameters for the actual system. For this purpose,
we create exemplary tables with a growing number of tuples—the cost model used in the evaluation is
trained with 1000 to 100 000 tuples in 50 steps, which took less than ten minutes. A higher precision
of the cost model can be achieved by increasing the size of the training tables, hence the DBA has
to determine the preferred tradeoff between initialization time and accuracy. In conclusion, the cost
model proved to be reasonably precise to allow the adviser profound decisions. Using the cost model
is orders of magnitude faster than actually measuring the costs for all the different materializations
separately.

7.6.2 Optimizer

The objective of the optimizer is to find the best possible materialization for a given workload on a
given system. Since the search space can grow exponentially large with the number of table versions
in the multi-schema-version database system and the cost function can only be evaluated globally, we
decided for an evolutionary optimization algorithm in Section 7.5. Now, we will run this optimization
algorithm both in the TasKy scenario and in the Wikimedia scenario to evaluate its feasibility.

TasKy: The TasKy example is comparably small, which allows us to enumerate all possible material-
izations for the evaluation. This provides insights into the whole search space and allows to analyze
the most beneficial materializations in detail. Figure 7.15 shows the results for running InVerDa’s ad-
viser for 21 different workloads. The workloads are structured into two dimensions. First, users can
access any non-empty subset of the three schema versions Do!, TasKy, and TasKy2 as depicted in the
vertical dimension of Figure 7.15. Second, the workload can comprise (1) only read operations, (2) a
50 : 50 mix of read and write operations, or (3) only write operations as represented in the horizontal
dimension of the figure. Obviously, the 21 possible workloads that result from combining the two
dimensions are merely representative corner points in the space of all possible workloads, however,
they serve well to understand the potentials and benefits of InVerDa’s adviser. Additionally, we will
validate the findings with a more unstructured workload according to Figure 7.1 on page 105.

For each workload, we have depicted four measured values in Figure 7.15. The first bar represents the
best possible materialization; since the search space is small, we can fully enumerate it and determine
the globally best materialization, which should be found by the adviser. Since the adviser relies on the
learned cost model with its small deviations, it might happen that the materialization proposed by the
adviser (represented by the second bar) may have slightly higher costs than the optimum. The third
bar shows the costs of the best non-redundant materialization to analyze the benefits of allowing
partially or fully redundant materializations as well. Finally, the fourth bar shows the costs of the
worst possible materialization for comparison. Below the bar chart with the costs of the four discussed
materializations, we deep dive into the optimal materializations. As explained in the legend, we show
an abstraction of the schema versions catalog with all six table versions. We manually analyze both
the best non-redundant and the best redundant materialization and summarize which table versions
should be materialized.
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Figure 7.15: Adviser results for TasKy.
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There are many interesting insights to discover in the analysis shown in Figure 7.15. First and fore-
most, there is a significant optimization potential, since the worst materialization is always signif-
icantly more expensive than the best materialization. For read operations the optimization potential
is up to factor 5. Write operations cause a higher overhead which makes a feasible materialization
even more important. As can be seen, the worst materialization can be up to 30 times more expensive
than the best one. Fortunately, InVerDa’s adviser always proposes a materialization that is compara-
bly fast as the best materialization; in fact it is never more than 10 % slower than the optimum. We
conclude that the cost model works for the given scenarios and that the performance for the pro-
posed materialization is actually as good as estimated. Even though the deviation of the cost model
causes the adviser sometimes to pick a materialization that is slightly behind the best possible one,
the cost model-based optimization allows to investigate orders of magnitude more materializations in
the same time, which clearly compensates the deviation in most practical scenarios.

Further, the best non-redundant materialization is up to factor 10 more expensive then the partially
or fully redundant materializations found by InVerDa’s adviser. Hence, we conclude that allowing re-
dundancy enables further significant performance improvement; for longer evolutions this effect will
even increase. Even though it might be counter-intuitive at first glance that especially write opera-
tions can benefit from redundant materializations, there are good reasons for this: partial redundancy
can reduce the number of auxiliary tables that need to be updated during writing. This underlines that
simply using the naïve materialization is often significantlymore expensive than a materialization
proposed by InVerDa’s adviser.

Let us analyze the best materializations in more detail starting with workloads that are restricted to
one single schema versions (first three rows of Figure 7.15). When reading only, we obviously ma-
terialize the accessed table versions, which allows to answer all read queries locally. There is no
need to redundantly materialize further table versions since they would not be accessed anyhow. For
workloads that include write operations, the best materializations are not that obvious to find, which
supports the need for an automated adviser. For pure write workloads, the best non-redundant ma-
terialization always materialized the initial TasKy table version. The reason becomes clearer, when
zooming into the involved SMOs. The propagation of write operations from the Do! schema is cheap
since the virtualized PARTITION SMO requires less auxiliary tables than the materialized one—the vir-
tualized ADD COLUMN SMO even works without any auxiliary table. Therefore, less write operations
on auxiliary tables need to be computed and executed. The same applies to the propagation of write
operations from the TasKy2 schema version. When redundancy is allowed, the best materializations
use partial redundancy to further reduce the number of write operations on data and auxiliary tables.

For the workloads that mix data access at multiple schema versions (last four rows of Figure 7.15),
we see similar patterns. Obviously, read accesses perform best when the accessed table versions are
materialized; since no data needs to be propagated between schema versions, there is no need to
materialize further table versions. When space is bound to a non-redundant materialization, read
accesses perform best, when the data is materialized according to the TasKy2 schema version—at least
when TasKy2 is accessed, otherwise the initial TasKy schema is materialized. This indicates that the
propagation of read operations from TasKy to Do! and from TasKy2 to TasKy is more expensive than
in the opposite directions. For writing, the best materializations are different: For the non-redundant
materializations, it is always beneficial to materialize the initial Task-0 table version, as discussed
before, this is because the virtualized DROP COLUMN, PARTITION, and DECOMPOSE SMOs require the update
of less auxiliary tables. The partially redundant materializations always contain the initial Task-0 table
version as well; however, they also materialize the Author-0 table version, which simplifies updating
auxiliary tables. Especially the partially redundant materializations for the mixed workloads include
other tables as well, which are often not intuitively obvious since the underlying access propagation is
not visible from a user perspective. The proposed partially redundantmaterializations are significantly
better than the naïve non-redundant materializations. This again emphasizes the need for an adviser.
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Figure 7.16: Adviser results for workload mix from Figure 7.1, page 105.

So far, we considered rather homogeneous workloads along the two dimensions in Figure 7.15—the
gathered insights also hold for more heterogeneous workloads. Let us again consider the workload
shown in Figure 7.1 on page 105, where mainly the Do! schema version is used for reading tasks and
removing them after completion, while users use the TasKy2 schema version to create and main-
tain their tasks. The initial TasKy schema version is assumed to be outdated and merely used by a
handful of nostalgic users. Figure 7.16 summarizes the results of the same experiments we ran before
but now with the heterogeneous workload. Figure 7.16(a) shows that our cost model works well, be-
cause InVerDa’s adviser proposes a materialization that performs just as good as the optimum. As
can be seen in Figure 7.16(b), the best non-redundant materialization materializes the initial Task-0
table version—however, the partially redundant materialization proposed by InVerDa’s adviser addi-
tionally materializes Todo-1 as well as Task-1 and one of the Author tables. The speedup gained by the
partially redundant materialization is 2.5 compared to the non-redundant materialization. In sum, we
confirmed that it is very beneficial to use InVerDa’s adviser as it can achieve significant performance
improvements that would be hard to achieve by a human DBA, since the performance of partially
redundant materializations is usually hard to estimate manually.

Wikimedia: We now confirm our findings using the realistic scenario of 171 schema versions of
Wikimedia. The 203 table versions allow a total of up to 1 × 1061 possible materializations, hence
we can obviously not determine the overall best materialization. Instead, we will apply the presented
evolutionary optimization algorithm in theWikimedia scenario and analyze the achieved performance
improvements in comparison to naïve and worst case solutions.

Figure 7.17 shows a run of the optimization algorithm: After 828 mswith 429 evolved members in the
population, there was no significant improvement over the last 30 steps, so the adviser returned the
so far best materialization. The figure depicts the estimated costs of the currently best materialization
as well as the most recently added materialization in the population for each step of the evolutionary
optimization. Further, it shows the actually measured costs for both the best initial materialization
and the finally proposed one to validate the achieved performance improvement. The workload mixes
read and write operations on schema version v04619 (28th version) and v25635 (171th version).

Due to the size of the search space, we do not know the best and the worst possible materialization,
but we can safely say that InVerDa’s adviser achieved an estimated speedup of factor 10 compared to
the naïve initial materializations used by the evolutionary algorithm. Again, the estimations match
the actual costs very well and we also observe a speedup of factor 10 when materializing the co-
existing schema versions according to the adviser’s proposal. Besides several small improvements,
there are few steps that significantly improved the overall performance by introducing redundancy
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Figure 7.17: Adviser for Wikimedia.

to initially non-redundant members of the population. In other scenarios, it might be promising to
search for better materializations longer—however, the Wikimedia evolution mainly uses ADD COLUMN
SMOs, which are materialized already by the most promising initial population members. The ac-
tual optimization potential is merely to create partial redundancy along the evolution especially at
those few SMOs that restructure existing table versions or drop columns. This already allowed the ad-
viser to propose materializations with a significant performance improvement compared to the initial
materializations—according to our detailed analysis, more heterogeneous evolutions provide an even
higher optimization potential since the initial materializations are most likely worse.

In sum, we have shown that the cost model estimates the costs for running a given workload on a
given materialization feasibly well. When the adviser decided for a materialization based on the cost
model, it will also perform well in practice. Even though the cost model has slight deviations, its key
advantage is the very fast calculation of the estimated costs within less than a millisecond. The fast
evaluation of the estimated costs is crucial for the proposed evolutionary optimization algorithm. In
fact, InVerDa’s adviser has shown to approach the best materialization very close for short evolutions
as our TasKy example. For long evolutions such as the Wikimedia scenario, we do not know the glob-
ally best materialization due to the size of the search space. However, we see that the adviser proposes
materializations that perform orders of magnitude better than the initial naïve materializations. This
makes the adviser an important and handy tool for DBAs, as they do not have to dive into the charac-
teristics of data access propagation through SMOs but can simply optimize the materialization for the
current workload with the click of a button.

7.7 SUMMARY

An adviser in a multi-schema-version database system, such as InVerDa, should propose the best ma-
terialization of the co-existing schema versions w.r.t. the current system, the current workload, and
a given upper space limit. After formalizing all these ingredients, we defined the actual optimization
problem, which is a bi-level optimization problem in a potentially exponentially large search space.
To explore as much of this search space as possible within a reasonable time, we decided for a cost
model-based optimization algorithm—as a foundations, we analyzed the performance characteristics
of propagating data accesses in multi-schema-version database systems to define a stable cost model
that can be individually learned for each specific system. Further, we defined the set of valid materi-
alizations, which completes the basics for the actual optimization algorithm.
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We want the optimizer to globally minimize the costs of the overall workload on all table versions but
for each table version we locally search its cost-wise shortest path to materialized table versions. Due
to this characteristic, the cost function does not behave monotone when adding or removing table
versions to/from the materialization. Therefore, we decided for an evolutionary optimization algo-
rithm that handles such adverse conditions by design. In the evaluation, the proposed optimization
algorithm has proven to reduce the costs by orders of magnitude compared to the naïve materializa-
tions, which would be hard to achieve for a human DBA. In conclusion, the adviser is of great support
for DBAs, since they can achieve significant performance improvements even without understanding
the complex characteristics of propagating data accesses through SMOs to materialized table versions
and auxiliary tables.
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InVerDa provides very powerful concepts and tooling to support database evolution within a rela-
tional database. So far, we focused on the conceptual contributions, particularly the creation of new
schema versions by evolution or merging as well as an efficient materialization to let all the created
schema versions co-exists at the same time within one database. However, InVerDa can be applied
in many scenarios beyond this; some scenarios can be already fully covered with InVerDa, others re-
quire further research with InVerDa as a promising starting point. For each application scenario, we
will discuss the problem with the current state-of-the-art, show how InVerDa can solve those prob-
lems, and discuss open research questions in order to achieve this goal. The application scenarios
span a continuum from fully-supported by InVerDa to great research potential with InVerDa.

Particularly, we will use BiDEL’s rich semantics to automate the database evolution in software prod-
uct lines (Section 8.1) and utilize InVerDa’s co-existing schema versions to support multitenancy
application development (Section 8.2) as well as productions-test systems and rolling upgrades (Sec-
tion 8.3). Further, we apply InVerDa’s miX to simplify third-party-component co-evolution in big
software systems (Section 8.4). All these scenarios are already well supported by InVerDa and require
merely minor adjustments. Future extensions of InVerDamight cover zero downtime migration sce-
narios (Section 8.5). Finally, we detail on promising future research, which covers an extensions of
BiDEL’s expressiveness (Section 8.6) and performance tuning (Section 8.7).

8.1 SOFTWARE PRODUCT LINE ENGINEERING

Scenario with State of the Art: Almost every vendor of software systems faces the problem of many
potential customers that all need more or less the same software but individually adjusted to specific
processes, environments, and requirements. Creating an individual software product for every single
customer by copying and adjusting the actual software, is a maintenance nightmare. Software product
line engineering is a solution to this dilemma: different features are implemented separately within
a software product line and a specific software product can be generated for a customer by merely
selecting all desired features. As already discussed in the related work (Section 3.2), software product
line engineering poses new challenges when it comes to the evolution of the database as there are at
least two different dimensions of evolution: First, when customers create or change the configuration
of their specific product, features are added or removed to/from the software product. The underlying
database schema, which represents the consolidation of all the selected feature’s database schemas,
evolves as well since other data needs to be persisted, now. Second, when developers further evolve
single features, their share of the database schema and all depending features may evolve, too.

Currently, it requires extensive manual work to create and evolve the database of each specific product
from a software product line. Particularly, keeping existing data consistent and evolving it with the
database schema is tough in practice since this breaks the beauty and simplicity of software product
line engineering—there is more effort required than simply selecting the desired set of features. In
research, there is upcoming tool support for these tasks [58], helping the developers in finding and re-
solving conflicts and inconsistencies during such evolutions. However, there is currently no solution
facilitating non-expert users to simply evolve an individual software product, including the evolution
of currently existing data, by only selecting the desired features in a graphical user interface.

Scenario with INVERDA: InVerDa provides all the functionality required for database evolution in
software product lines. Assuming every implemented feature of the software product line includes a
BiDEL-specified evolution script with only additive SMOs to create all tables and columns required
to persist the data of the respective feature. To initially create the database schema for a selected
set of features, all their individual evolution scripts are merged. Since they are purely additive and
we can prevent naming conflicts by prefixing every name with the feature’s identifier, the individual
evolution scripts can be merged fully automatically.
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InVerDa can also handle the database evolution occurring from changing a software product’s config-
uration. The sequence of SMOs that describes the database evolution to the new version, can be easily
derived from the SMOs of each involved feature: SMOs of newly selected features are added while
the inverse SMOs are added for deselected features. Thus, BiDEL facilitates fully automatic database
evolution support for software product lines without any interaction of the database developers.

Finally, InVerDa also covers evolving features and the resulting evolution of all products that contain
the respective feature. BiDEL’s SMOs explicitly capture the developers’ intentions for a features evo-
lution, which facilitates applying it to any running product. In case depending features build upon
the old schema version of the evolved feature, we can use the merging functionality of InVerDa to
co-evolve the database schema of the depending feature as well. In sum, the SMO-based database
evolution supported with InVerDa can be used both for the initialization, for the evolution, and for
the removal of product features in a software product line. This greatly simplifies database evolution
in all the different dimensions of software product line evolution.

Future Work: Conceptually, InVerDa fully supports database evolution for software product lines.
However, it is left for future work to validate this claim with an extensive case study. Further work
might be required to create tool support for database evolution that is tightly coupled to the tooling of
software product line engineering.

8.2 MULTITENANCY

Scenario with State of the Art: For many small companies, an own IT infrastructure would not
pay off as it is underutilized most of the time; for such customers a software-as-a-service solution
with an IT infrastructure that is shared among multiple clients is very appealing. Again, we have
multiple similar applications that are individually adjusted for different customers. It has been empir-
ically shown that it is performance-wise very beneficial to store the data of multiple customers within
one database schema with shared tables, instead of creating an own database instance for every sin-
gle customer [12]. Within those shared tables, there can be shared data visible to each and every
customer—some master data like e.g. countries. Further, the shared tables have private individually
added tuples that additionally carry the customer’s identifier to not show this private data to any other
customer. Since the individual data of all customers can be structured in different schemas, there are
shared tables for the common core that all customers share as well as additional universal table, or
pivot tables, or common extension tables, or tables for chunks of data that allow to adjust the database
schema individually for each customer [11].

A major drawback of these approaches is that the individual tables and columns typically follow a
very generic layout without typed columns that are often even unnamed, which implies a significant
performance overhead as established optimizations cannot be applied. Further, the adaptations of the
individual schemas are limited to adding tables and columns—more fundamental schema changes
like merging, partitioning, or joining are not supported at all.

Scenario with INVERDA: With InVerDa, the developers of the multitenant software infrastructure
can easily create and manage a physically materialized schema version for the application’s core. The
individual schema versions of the tenants can be easily created virtually using BiDEL evolution scripts,
which provides the whole expressiveness of the relational algebra and is not limited to additive SMOs.
All columns in the individual schema versions are explicitly named and typed overcoming the major
drawback of traditional multitenancy solutions.
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The distinctions between shared and private data can also be realized with InVerDa by starting the
evolution to any customer schema by partitioning the tables according to the customer’s identity col-
umn. So far, the PARTITION SMO is merely a general solution ignoring the special characteristics and
the optimization potential of supporting shared and private data directly. We leave the specialization
of InVerDa to the well-understood characteristics of multitenancy applications for future work.

FutureWork: The SMO-based evolution in InVerDa facilitates easy and robust evolution support for
multitenancy applications and it is up to future work to conduct case studies and provide comfortable
tool support. Further, the native support of the distinction between shared and private data is very
special to the multitenancy scenario. Of course, InVerDa allows to add a column to each table hold-
ing the tenants’ identifier, however, this does not consider the special characteristics and potentials
for performance optimization of this tenant identifier column. However, this research question is
orthogonal to InVerDa and can be answered stand-alone first.

8.3 PRODUCTION-TEST SYSTEMS AND ROLLING UPGRADES

Scenario with State of the Art: Having multiple co-existing schema versions within one database
is not exclusively a requirement posed by users, but also developers need to have multiple schema
versions accessible during development and deployment, e.g. for production-test systems or for rolling
upgrades.

In production-test systems, the current version of the application continues running, while the de-
velopers can run and test the next version of the application in parallel in their own branch. At the
database layer, both the current and the new schema version need to be fully accessible by the appli-
cations just like a common single-schema database. Thereby, data from the production system is also
visible in the test system, which allows developers together with their customers to test and experi-
ence the new version with the actual data. Traditionally, developers would either copy the database
to a test instance or they would create the new schema version virtually with views. Both cases imply
significant development overhead. Copying the whole database takes a lot of time for large data sets
and the replica is out of sync which becomes crucial if customers are involved in the testing. For
very large databases, not only the data needs to be replicated but also the infrastructure, which is not
acceptable in most cases. This calls for creating the new schema version only virtually with the help
of views. Developers and testers need the new schema version to be fully updatable to adequately test
the new application, however, these changes should not be visible in the production data. All these
features currently need to be implemented manually, which causes a huge development overhead and
is expensive and error-prone in practice [66].

Another common scenario is the rolling upgrade of a new version: A new version is only available for
a chosen subset of the customers, while the majority continues using the previous version. Those cus-
tomers that already use the new version are beta testers to validate the new version of the application
under realistic conditions. Implementing such a rolling upgrade is done by manually implementing
the delta code e.g. in the application itself or with views in the database [100, 105]. Views need to
virtually provide the new schema version for the beta-testers and any updates need to be propagated
back to the materialized previous schema version—as discussed before, the view update problem is
hard to solve and requires significant manual implementation effort. When the remaining users are
moved to the new schema version as well, all the data from physical tables of the old schema version
needs to be evolved to match the new schema version, which is then accessible for all user as a regular
database. Again, this physical migration is very expensive and error-prone. According to a survey in
2011, data migration problems such as production-test systems and rolling upgrades account for 31 %
of the budget in software development projects [66]. InVerDa can significantly reduce this effort and
provide faster and more stable solutions.

128 Chapter 8 Further Applications and Future Work



Scenario with INVERDA: Realizing a production-test system with InVerDa is truly easy. Developers
merely create a new schema version as a hot or cold copy depending on whether updates in the pro-
duction schema version should be visible in the test schema version as well. InVerDa automatically
takes care of providing both schema versions as intended.

For a rolling upgrade to a newly developed version, developers can also use InVerDa to let both
schema versions co-exist at the same time, so both normal users and beta-testers can access their
respective schema version, but any written data is immediately visible in both schema versions for all
of them. As soon as all users moved to the new schema version, the developers can instruct InVerDa
to physically move the data to the new schema version with the click of button and finally remove
the old schema version from the database. InVerDa greatly supports developers in managing the
development and deployment of new application versions with evolving database schemas. InVerDa
easily facilitates robust production-test systems as well as rolling upgrades, releasing developers from
the error-prone manual implementation.

Future Work: A major aspect of production-test systems that is not covered by InVerDa yet, is the
efficient data management for hot and cold copies. A promising direction of future work is to not
create hot and cold copies by initially copying the whole data at evolution time but by storing only the
delta. Creating a test schema version with InVerDa that gets updates from the production database
schema but does not propagate any write operation back, currently requires to fully replicate the
data for the test schema version. A more appealing solution is to create the test schema version
only virtually as a non-materialized schema version with InVerDa; however, the delta of any write
operation performed on the test schema version must be stored and without propagating it back to
the materialized production schema version. Hence, the promising research question is, how to store
only the delta of this write operation in order to obtain a fast but also correct query processing on both
schema versions.

8.4 THIRD-PARTY COMPONENT CO-EVOLUTION

Scenario with State of the Art: Modern software systems are composed of multiple components
each one encapsulating e.g. certain features or services. Often these components are not all devel-
oped by the same stakeholders; assume a big enterprise solution like the SAP business suite, where
SAP provides merely the core application and a whole industry of third-party component developers
is settled around SAP extending the SAP core e.g. for different business fields. These third-party com-
ponents extend andmodify the behavior of the actual core application. Whenever the core application
is further developed to the next version and rolled out to the customer, all the third-party components
require a review as well—otherwise we run into the risk to end up with non-working features, incon-
sistent data or complete crashes. Particularly, the core might apply changes to the database schema—
when the new schema differs from the schema the third-party extension is expecting, queries cannot
be executed correctly and we end up with non-working applications or inconsistent data [66].

Currently, developers co-evolve the extensions manually for every evolution performed on the core’s
database schema, which is an error-prone and expensive task in practice. There is no reasonable
tool support which we blame to the fact that database evolution is not specified with proper DELs
these days but with traditional SQL or even within application code. This makes it notoriously hard
to extract the essence and the intention of a variant or core evolution in the first place. Knowing
the developers’ intentions would be the most important ingredient to apply e.g. the intention of the
variant evolution to the evolved core.
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Scenario with INVERDA: With InVerDa’s miX (Chapter 5), developers get great support in semi-
automatically co-evolving all third-party components with the application’s core. Given that both
the evolution of the core and the evolution of the third-party components are written as sequences
of BiDEL SMOs, we can easily merge the third-party component into the new core, which returns
a co-evolved schema version. This new database schema for the co-evolved third-party component
still represents the intention of the third-party component but now based on the new version of the
core. This might entail that queries of the third-party component cannot be executed any longer, e.g.
when the core drops a table that is accessed by the third-party component. However, this is obviously
intended by the core evolution and therefore needs to be reflected in the third-party component as
well. Currently, miX cannot support this task, so we emphasize this as promising future work.

An alternative option facilitated by InVerDa is to continuously run the third-party component with-
out adjusting its database schema at all. InVerDa is able to propagate any read or write access in
the third-party component through the core evolution to the new evolved version of the core, which
allows to run both the new core version and the old third-party component upon the same logical data
set. Nevertheless, eventually the application logic of the third-party components should be co-evolved
with the core to reduce the propagation overhead and to incorporate the core changes into the third-
party component as well. Refactoring the application code of the third-party component to match the
new schema version is currently not covered by InVerDa but definitively an interesting opportunity
to dig into deeper.

FutureWork: Even thoughwe can already cover large parts of the third-party component co-evolution
with InVerDa’s miX, there are promising future research challenges to further simplify the pro-
cess. Most importantly, queries written in the third-party components may become invalid after
co-evolving the schema. In these cases, it would be desirable to have tool support that uses the inten-
tions captured in BiDEL’s SMOs (semi-) automate the query rewriting. Another interesting research
challenge is to further increase BiDEL’s expressiveness so that the SMOs cover solution strategies for
resolving ambiguities and other conflicts. Currently, miX consults the developers to provide a solu-
tion strategy, however, providing general answers to the possible questions already at evolution time
would allow to fully automate the third-party component co-evolution with miX.

8.5 ZERO DOWNTIME MIGRATION

Scenario with State of the Art: Upgrading a software system and especially the database from one
version to the next is not only error-prone and expensive as intensively discussed in this thesis, but also
very time consuming. Given the upgrade includes an evolution of the database schema with restruc-
turings of the data, the whole currently existing data needs to be migrated to the new schema version.
For common enterprise-sized database this can easily take hours or even days, making the database
unavailable during the whole upgrade process. For most businesses it is simply not acceptable to have
a downtime that temporarily stops the whole business.

The goal is to perform an upgrade including database migration with zero downtime. Currently, de-
velopers have to manually implement the zero downtime migration logic, which is again error-prone
and expensive. The best practice is to keep the old schema version alive and create the new schema
version hidden in the background. While silently copying the data step by step in the background,
additional delta code on the old schema version propagates any updates in the old schema version to
those tuples that have already been copied to the new schema version [100]. After successfully migrat-
ing all the data in the background from the old to the new schema version, the developers can make
the new schema version available and remove the old one without moving any further data, which is
then possible with almost no downtime.
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Scenario with INVERDA: InVerDa decouples the physical migration from one schema version to
another from their logical evolution; so we can postpone a physical migration while already using the
new schema version until a time, when downtime is more acceptable. Zero downtime migration is
currently not supported by InVerDa.

Future Work: BiDEL’s SMOs carry enough information to generate all the delta code for the dis-
cussed manual solution automatically, which is a great potential that should be discovered in future
work. Data can be copied stepwise in the background following the SMOs’ semantics and subsequent
changes on the old schema version can easily be propagated to those tuples already copied to the
new schema version without any further interaction of the developers. There are several challeng-
ing research questions to realize zero downtime migration based on BiDEL. Most interestingly, we
have to find the right granularity for the stepwise migration in the background: There is a continuum
ranging from tuple-per-tuple to table-per-table. While the extremes cause either too much overhead
for copying every single tuple separately or imply downtime for locking a whole table, there might
be better—even adaptive—solutions in between these extremes. Thus, there is a trade-off between
the overall migration time and the performance reduction during the migration, which needs to be
carefully discovered and analyzed. Another interesting research questions addresses the guaranteed
correctness that the data at the new schema version is in the end equivalent to locking the whole
database and migrating the data in one haul, especially when the schema versions are updated during
the physical migration. The currently applied manual implementation of zero downtime migrations
is error prone and expensive. In sum, InVerDa facilitates promising future research to fully automate
zero-downtime migration for BiDEL specified evolution since the SMOs carry all the information to
generate the traditional zero-downtime migration automatically.

8.6 EXTENSIONS OF BIDEL

Scenario with State of the Art: Database evolution is not exclusively limited to the evolution of
tables and the data stored in those tables. During the software development process all artifacts in
a database can be evolved eventually. Beyond the tables, this covers e.g. constraints, views, physi-
cal data structures like indices or materialized views, and especially functional database objects like
stored procedures, user defined functions, or triggers. The evolution of most of these artifacts has
already been proposed as database refactorings [8], however, this does only cover the plain notion
that these artifacts can be changed—an evolution language similar to BiDEL is missing but necessary
to automate further database evolution tasks like the merging of schema versions or the propagation
of data accesses between co-existing schema versions also for the other artifacts in a database.

Considering e.g. the evolution of physical database objects like materialized views: A schema version
realized with the help of updatable views should bematerialized in order to speed up query processing.
However, the delta code (view definitions) for all subsequent schema versions need to be updated
manually now as well, since they can access the materialized view as well. Further, the evolution of
functional database artifacts, like evolving the behavior of stored procedures or simply adapting them
to evolving base tables, poses tough challenges on database developers. The currently applied manual
solutions are very expensive and error-prone in practice.

Scenario with INVERDA: InVerDa is in fact limited to the evolution of tables in a relational database.
We have shown that BiDEL is relationally complete; any evolution of the database schema that can be
expressed with relational algebra expressions can be identically achieved with a sequence of BiDEL
SMOs. The evolution of constraints and views, as well as physical and functional database artifacts
is out of scope for now. To make InVerDa practically appealing, it is important future research to
extend the ideas of InVerDa to the evolution of the remaining artifacts in a relational database.
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Future Work: In the following, we discuss the potential and challenges for future research address-
ing the evolution of the most important database artifacts that are currently not covered by BiDEL.
The evolution of constraints is already partly covered by PRISM++ [41]; however, the support for
merging schema versions and to let them co-exist is still missing and promising future work. For the
evolution of views, there are basically two options: we either preserve the result of the view by invert-
ing the evolution of the tables, which is easily possible with InVerDa, or we co-evolve the view with
the base table evolution. The latter is equal to merging schema versions, as long as the view is speci-
fied with BiDEL—otherwise the co-evolution of views is a hard research problem since the intention
of the view is unclear.

The evolution of physical database artifacts like indices, materialized views, etc. has been out of
scope because in an ideal world they should not be visible to the database developers anyhow. With
InVerDa, we intentionally strengthened the separation between the logical database schema versions
and the physical representation to achieve full data independence. This raises the question to which
extent the DBA should determine the physical database schema—we see three different extents of
physical database evolution, which should be analyzed in future research. First, the DBA is not in-
volved in the physical database design at all but relies on a good adviser that is not limited to choosing
the set of materialized table versions but also creates further physical database artifacts as needed for a
high performance. Second, the DBA can give hints to the adviser that are incorporated to the physical
database design as long as they make sense; e.g. indices for table versions that are not materialized are
not possible. Third, the DBA is equipped with a manual editor that provides tool support for reliable
predictions on performance measures and supports the co-evolution of all other affected artifacts in
the database.

Till now, we only evolved structures but no behavior. In order to evolve functional database artifacts
like stored procedures and triggers as well, we first need to rethink the way of defining them in the
first place. Similar to BiDEL for tables, we need an evolution language that captures the intention
of the functions and allows to co-evolve them with the base tables as well as evolving the functions
itself in a controlled and robust manner. To achieve this goal, there are plenty of interesting research
questions that need to be answered covering different areas like (1) the definition of a feasible evolu-
tion language, (2) the actual evolution of functions and their co-evolution with depending database
artifacts, (3) testing, and (4) formal guarantees regarding the correct execution of evolved functions.

In sum, InVerDa currently focuses on the expressiveness of the relational algebra which covers the
evolution of tables—the primary database artifacts that actually hold the payload data. However, in
order to become practically applicable, InVerDa also needs to cover all other database artifacts that
are well-established in current database systems, which motivates promising future work.

8.7 EFFICIENT SYNCHRONIZATION OF SCHEMA VERSIONS

Scenario with State of the Art: Keeping multiple different schema versions in sync is not only a
matter of correct information preserving propagation and persistence of the data but also a matter of
performance. The overhead for the transformation of data accesses between schema versions tends
to grow with the complexity of the evolution between two schema versions. The current practical so-
lution is to hand-tune the written delta code that propagates data accesses between schema versions
until the performance becomes acceptable. This manual approach is very time consuming and expen-
sive since manual performance optimizations usually involve to deep-dive from the level of relational
tables down to indices, pages, and records. Further, hand-tuned delta code is also more error-prone as
the code’s clarity and maintainability suffers from the technical deep-dive to optimize the delta code.
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Scenario with INVERDA: For reading or writing data at any schema version, InVerDa propagates the
data access through the evolution’s SMOs to the materialized table versions. Thereby, auxiliary tables
represent the information that needs to be stored additionally in order to prevent it from being lost.
We currently map these auxiliary tables from the Datalog rules 1:1 to physical tables in the database,
however, this database design is most likely far from optimal. Further, the current implementation
propagates data access stepwise through each SMO using cascading views for reading and cascading
triggers for writing. As there is one view for each intermediate table version, the propagation logic
covers one SMO at a time, which is great to ensure correctness and yields a robust and maintainable
solution for InVerDa. However, the view mechanism disturbs the database optimizer’s work: We
have seen execution plans in PostgreSQL with unused optimization potential as selection predicated
were not pushed down through cascading views, which results in a significant and truly unnecessary
performance overhead. The same applies to the cascading trigger calls.

FutureWork: Promising future work aiming at an increased performance for data access propagation
should target two major aspects. First, the design of the auxiliary tables is crucial to provide the
auxiliary information in a structure easily digestible by the databases’ query processor. Second, the
composition of SMO can be used to reduce the number of cascading views or triggers. Let us discuss
these two opportunities in detail.

The set of Datalog rules specifying the semantics of the SMOs’ mappings represents the auxiliary
information in a normalized format—keeping the normalized design for the auxiliary tables can imply
unnecessary performance overheads. Assuming an evolution with N subsequent ADD COLUMN SMOs,
InVerDa createsN auxiliary tables holding the values of the respectively added column, which results
in N expensive joins for reading the data. An optimized design of the auxiliary tables could prejoin
all the auxiliary tables reducing the overhead to one single join.

In general, the structure of auxiliary tables and their usage during query processing is not very diverse,
whichmakes a general optimization solution for the design of auxiliary tables a promising future work.
We identify two major types of auxiliary information. First, auxiliary information can simply be a list
of tuple identifiers p used to flag and filter tuples of the data tables. The number of joins can be
reduced significantly, by denormalizing the auxiliary tables and prejoining the auxiliary information
of one or multiple SMOs either with each other or with the actual data tables. Second, other auxiliary
information are sets of tuples with the same attributes as a data table, e.g. tuples that are not matched
by the partitioning criteria. One promising physical table design is to append the auxiliary tuples
to the actual data table and mask them with a flag to be excluded for reading the plain data table.
All alternative physical database designs should be defined, structured, and evaluated in future work.
When designing auxiliary tables, special focus can be laid on choosing beneficial physical structures
for the different types of auxiliary information, like e.g. specialized indices to store and retrieve the
data even more efficiently.

The other research opportunity to increase data access performance is the composition of the SMOs’
mapping semantics for both reading and writing. A promising research opportunity is to avoid the
chaining of views and triggers and let the views/triggers immediately access the data table and auxil-
iary table even when they are multiple SMOs away along the schema version history. This requires
a representation of the propagation logic between schema versions that can be easily composed and
simplified to generate efficient SQL view and trigger definitions for the composed data access propa-
gation. Datalog proved to be a great formalism for the formal evaluation of the SMOs’ bidirectionality
as well as for the generation of views/triggers for the stepwise propagation. However, for combining
and reducing rules in an automated fashion, it turned out that Datalog rules are too far away from
the actual query processing in a relational database and make many optimizations inadequately hard.
E.g. an outer join is expressed with three different Datalog rules for (1) matching tuples, (2) orphan
left tuples, and (3) orphan right tuples. When optimizing such a rule set or generating delta code
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from such a rule set, this outer join is not explicitly visible and will be treated as a union of three
separate select statements, which is not efficient. Therefore, a promising idea for future research
is to use the relational algebra to represent the data propagation of each single SMO. As relational
algebra expressions are trees, they can be easily plugged together and there is an enormous body of
literature regarding their logical optimization. Generating the views and triggers directly from these
optimized relational execution plans removes InVerDa’s cascading execution and should increase the
performance significantly.

As a conclusion, the major research challenges are (1) the physical design of auxiliary tables for the
auxiliary information both of a single SMO and for sequences of SMOs and (2) the composition and
optimization of SMO mappings to shorten the distance between a schema version and the material-
ized data tables. Obviously, these two challenges influence each other: The query processing through
multiple SMOs can be further simplified when auxiliary tables are e.g. already prejoint. Similarly, the
composition of auxiliary tables across SMOs just makes sense when the data propagation of subse-
quent SMOs is executed together in one shot.
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We started out with the goal to make database development just as agile as software development. We
will now look back and conclude this thesis by summarizing our contributions to achieve this goal.
Agile database development calls for an easy and robust schema evolution in a production database—
however, this is not as easy as evolving application code since the database already stores data in the
initial schema version and we need to evolve the existing data accordingly. Evolving a production
database without compromising the data’s correctness and completeness is a tough challenge in prac-
tice that accounts for significant costs in software projects. Further, build systems allow to deploy and
run multiple versions of an application concurrently e.g. to provide different versions for differently
progressive users, to run test and production systems concurrently, or to let multiple different subsys-
tems of software system access the same database with different schema versions. The same is hard
at the database end. The database as single point of truth cannot easily provide co-existing schema
versions as such support is missing in current DBMSes. Instead, developers end up writing delta code
by hand to e.g. provide co-existing schema versions with data access propagation between them or to
physically migrate the database without limiting the availability of any schema version, which is very
expensive and error-prone in practice.

To this end, we proposed multi-schema-version database systems that allow to have co-existing
schema versions within a single database. New schema versions can be created very easily by e.g.
evolving an existing schema version with an intuitive DEL or by merging two existing schema ver-
sions to a new schema version. Newly created schema versions are immediately available and can
be read and written just like any other schema version. Multi-schema-version database systems pro-
vide full data independence, hence the DBA can freely move or replicate the materialization along
the schema versions history without limiting the availability of any schema version. In Chapter 2,
we conducted a detailed analysis of the requirements in multi-schema-version database systems and
derived an architecture that realizes multi-schema-version data management upon any common rela-
tional DBMS. Our proposed system is called InVerDa and generates all the delta code for co-existing
schema versions with full data independence automatically. InVerDa generates views for each table
version in each schema version and makes them updatable using instead-of triggers on those views.
Thanks to this architecture, InVerDa is only active during development and migration time—at run-
time, the applications access the data using standard DBMS technology. Thereby, we ensure that we
do not lose the performance, the transaction guarantees, or any other well-established feature of re-
lational databases. Realizing multi-schema-version database systems comes with a wide bouquet of
research questions that touch both very old fields such as the view update problem and materialized
view maintenance but also more recent topics like SMO-based database evolution. In Chapter 3, we
conducted a detailed literature review and showed that there are many important approaches tack-
ling parts of multi-schema-version database systems, but also that we are the first to provide truly
co-existing schema versions with full data independence.

To describe the evolution from an existing schema version to a new one, we introduced a DEL, called
BiDEL in Chapter 4. BiDEL couples the evolution of both the schema and the data in compact and
intuitive SMOs. BiDEL is a relational complete DEL: Every evolution that can be described with
relational algebra expressions can be expressed with BiDEL as well. We have formally evaluated the
relational completeness and we have also shown thatBiDEL is applicable for realistic scenarios such as
the evolution of 171 schema versions of Wikimedia, which makes BiDEL a great basis for our multi-
schema-version database system InVerDa. Further, we defined additional parameters for BiDEL’s
SMOs tomake them bidirectional. Those parameters need to be provided by the developers if schema
versions should co-exist, which requires bidirectional propagation of data accesses between the co-
existing schema versions. The bidirectional SMOs allow to generate delta code for co-existing schema
versions automatically without any further interaction of any developer—according to our empirical
evaluation, the developers write orders of magnitude less code when they create new schema versions
with BiDEL instead of traditional SQL.
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As a second way to create new schema versions in a multi-schema-version database system, we intro-
duced MIX in Chapter 5. miX is a semi-automatic consolidation algorithm thatmerges two existing
schema versions into a new schema version. The developers provide two schema versions that have
been developed independently and originate from a common source schema—please note that this
common source schema can be the empty one, whichmakes merging trivial. The two BiDEL-specified
evolutions from the common source schema version to the respective schema versions precisely cap-
ture the developers’ intentions, which can then bemerged automatically. During themerging process,
miX basically consolidates every pair of SMOs from the two evolutions stepwise—when manually
merging two schema versions, the developers would have to do the same, which sums up to N × M
combinations with N and M being the lengths of the two evolutions. Hence, miX reduces the effort
for the developers to a minimum: The proposed consolidation algorithm miX is semi-automatically
and merely asks the developers very simple questions in case the two evolutions conflict, e.g. to re-
solve naming conflicts when both evolution create table versions or columns with the same name. In
sum, we presented two means to create new schema versions in a multi-schema-version database sys-
tem, namely the evolution of one existing schema version with BiDEL or the semi-automatic merging
of two existing schema versions with miX.

All the created schema versions co-exist in the multi-schema-version database system and can be ac-
cessed by applications just as any common relational database. If full bidirectional propagation of data
between schema versions is enabled, than all the co-existing schema versions provide different views
on the same conceptual data set. Naïvely, we could materialize every created table version physically
and merely propagate the write operations between them; this fully redundant materialization yields
the highest read performance since there is no need to rewrite any query. However, write opera-
tions face a high overhead for updating all affected table versions and a lot of space is wasted since all
schema versions basically show the same conceptual data set, which is then stored highly redundant.
As a solution, the bidirectionality of BiDEL’s SMOs allows to non-redundantly materialize merely a
slice of the schema versions catalog—since not all SMOs are information preserving, we have to man-
age the otherwise lost information in auxiliary tables. In Chapter 6, we defined the data independent
semantics of BiDEL’s SMOs: Depending on which side of an SMO we actually materialize the data,
different auxiliary information need to be managed—either way, the table versions at each side of the
SMO behave like tables in a common relational database. We formally showed that even the non-
redundant materialization provides co-existing schema versions, where each schema version behaves
like a regular single-schema database. This particularly requires two things: First, data written in a ta-
ble version that is not materialized is propagated through SMOs to materialized table versions—when
reading it again, the initially written data can be read completely and unchanged. Second, a write
operation in one table version of a schema version has no side effects on other table versions of the
same schema version, since this would contradict the developers’ assumptions in common relational
databases. By formally showing that these characteristics hold and that data can be materialized inde-
pendently of the co-existing schema versions in a subset of the table versions, we can now guarantee
full data independence. This allows using a multi-schema-version database system without the risk of
losing the transaction guarantees of relational databases.

We have shown the data independence mainly for the corner case of non-redundant materialization.
We can easily derive the data management of co-existing schema versions with partially redundant
materializations: For all SMOs that have both the source and the target side materialized, we simply
leave out the propagation to auxiliary tables since all the relevant information is stored at either side of
the SMO. For all table versions that are not materialized, we retrieve the data as in the non-redundant
case from the cost-wise closest materialized table versions. This way, we opened up a huge space of
possible materializations and thanks to the formally guaranteed data independence, we know that
any of the possible materializations provides all co-existing schema versions without any information
being lost and without any unexpected side effects.
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The only effect of changing the materialization is a changing performance. According to our eval-
uation, we can execute read and write operations orders of magnitude faster by choosing the right
materialization w.r.t. the current workload. In Chapter 7, we analyzed the detailed characteristics of
the overhead for propagating data accesses throughBiDEL’s SMOs. The overhead for propagating data
accesses through SMOs differs both with the type of the SMO and with the direction of propagation.
The involved auxiliary tables have a major influence on the actual performance overhead. Unfortu-
nately, it is very difficult for DBAs to fully grasp the details of the technical implementation and the
resulting effects on the performance. Especially since the search space of possible materializations
can grow exponentially with the number of table versions, there is no feasible way for a DBA to reli-
ably determine the best materialization whenever the workload changes. Therefore, we introduced a
cost model-based adviser that learns a cost model of the multi-schema-version database system and
proposes a materialization that is optimized for the current workload and stays within given memory
boundaries. In the evaluation, it has proven to significantly improve the performance of changing
workloads by proposing partially redundant materializations that are not trivial to find for DBAs.

The presented multi-schema-version database systems are very helpful for agile database develop-
ment, but there are way more scenarios in practice where the presented concepts can be applied as
we discussed in Chapter 8. Specifically, we discussed how to apply multi-schema-version database sys-
tems in software product line engineering, in multitenancy application development, in production-
test scenarios, as well as for third-party component co-evolution. These scenarios are already fully
realizable with InVerDa or require merely minor extensions. Further, we discussed future research
questions to extend multi-schema-version database systems in general to cover even more scenarios.
For instance, the concept of temporarily co-existing schema versions can be used to implement zero-
downtime migration to new schema versions. Further, the expressiveness of BiDEL is currently lim-
ited to the expressiveness of the relational algebra, but it should be extended to further non-functional
and functional database artifacts in order to cover all practically relevant scenarios. Finally, the prop-
agation of data accesses between schema versions has been considered on a logical level to formally
evaluate the correctness of the data independent data management so far—there is a huge research
potential to speed up data access propagation by fine-tuning the management of auxiliary information
and by combining and reducing the data access propagation through chains of subsequent SMOs.

In sum, multi-schema-version database systems appear to be a useful tool for agile database develop-
ment, as they allow to easily create new schema versions by evolving or merging existing ones; these
new schema versions can co-exist with all other schema versions. Thanks to the formally evaluated
data independence, we can use the presented adviser to find and apply the best materialization for
the given workload without the risk of losing any data. No matter which materialization we chose,
all schema versions are guaranteed to behave like common single-schema databases. The presented
multi-schema-version database systems can be applied inmany practically relevant scenarios and open
up a wide field of promising future research.
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A
REMAINING BIDEL OPERATIONS

A.1 CREATE/RENAME/DROP TABLE AND RENAME COLUMN

The BiDEL operations for creating and dropping tables as well as renaming both tables and columns
have trivial mappings and are implicitly bidirectional. For creating and dropping a table, there is only
one reasonable materialization respectively: we materialize the CREATE TABLE SMO and virtualize the
DROP TABLE SMO by default. So, we always materialize the schema version that actually holds the data
table. As a counter example, a materialized DROP COLUMN SMO would need a single auxiliary table at
the target side, which matches exactly the dropped data table from the source schema, so we can keep
the SMO virtualized in the first place. Further, data accesses will never be propagated through an
SMO that creates or drops a table, since data accesses can only be specified on the very side of the
SMO, where the table really exists.

For renaming either tables or columns the mapping functions γtrg and γsrc are also trivial, since no
structure is changed. We merely rename named elements, which can be handled on the catalog level.
The rewriting of any data access is straight forward: we access a renamed table by exchanging the
table’s name in the respective SQL statement and we rename a column using a simple projection in
read operations or we rename the respective column in write operations.

A.2 ADD COLUMN & DROP COLUMN

SMO: ADD COLUMN b AS f(r1,...,rn) INTO R

Inverse: DROP COLUMN b FROM R DEFAULT f(r1,...,rn)

We will focus the discussion on the ADD COLUMN SMO and formally evaluate its bidirectionality. Due
to the bidirectional nature of the SMOs, we also implicitly evaluate the bidirectionality of the DROP
COLUMN SMO. Adding a column is the only operation that allows calculating new values. It calculates
the values of a new column b as a function over the existing values A and adds them to the table
R(p, A) to obtain the target version R′(p, A, b). The following Datalog rule defines the calculation
of the new table version R′ in γtrg.

R′(p, A, b) ← R(p, A), b = fB(p, A) (A.1)
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The calculation of new values with the function fB hits the limitation of traditional Datalog since ter-
mination can no longer be guaranteed. However, for our rule sets, we can still guarantee termination,
because we do not have recursion at all. When storing this data in the source version, we project away
the additional column b. Obviously, we need an additional auxiliary table B to store the values for the
new column b since the function f does only provide initial values for b but both b and the columns
A can be independently updated afterwards. We describe the γsrc mapping as discussed:

R(p, A) ← R′(p, A, _) (A.2)

B(p, b) ← R′(p, _, b) (A.3)

To complete the γtrg mapping, we ensure that the values for the new column b are only calculated
using the function f if no entry exists already in the auxiliary tableB. So we end up with the following
mapping functions for the ADD COLUMN SMO:

γtrg :
R′(p, A, b) ← R(p, A), b = fB(p, A), ¬B(p, _) (A.4)

R′(p, A, b) ← R(p, A), B(p, b) (A.5)

γsrc :
R(p, A) ← R′(p, A, _) (A.6)

B(p, b) ← R′(p, _, b) (A.7)

Again we formally show that the bidirectionality criteria (Equation 6.1 and 6.2) are satisfied by calcu-
lating the resulting data after one round trip starting at source and target respectively.

A.2.1 RD = γsrc (γtrg (RD))

γtrg(RD) :
R′(p, A, b) ← RD(p, A), b = fB(p, A), ¬B(p, _) (A.8)

R′(p, A, b) ← RD(p, A), B(p, b) (A.9)

Initially, we consider all auxiliary tables to be empty: B = ∅. Hence, we can reduce the first rule and
remove the second one according to Lemma 2.

R′(p, A, b) ← RD(p, A), b = fB(p, A) (A.10)

(A.11)

Now, we apply γsrc to this rule (Lemma 1).

γsrc(γtrg(RD)) :
R(p, A) ← RD(p, A), b′ = fB(p, A) (A.12)

B(p, b) ← RD(p, A′), b = fB(p, A′) (A.13)
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Since the result of the calculation is never used in Rule A.12, we can remove the calculation from the
rule’s body according to Lemma 6.

R(p, A) ← RD(p, A) (A.14)

B(p, b) ← RD(p, A′), b = fB(p, A′) (A.15)

Obviously, the data in R in the source version can be stored according to the target version without
information loss. Reading it from there exactly returns the same tuples and the same values. Please
note that we additionally store the generated values for the new column the auxiliary table B. Once
a tuple has been inserted, the value of the new column is independent from the remaining columns,
hence we have to store it explicitly.

A.2.2 RD’ = γtrg (γsrc (RD’))

To show that the second bidirectionality criteria also holds, we assume to have data RD ’ at the target
side, store it at the source side using γsrc and map it back to the target side with γtrg.

γsrc(R′
D) :

R(p, A) ← R′
D(p, A, _) (A.16)

B(p, b) ← R′
D(p, _, b) (A.17)

There are no auxiliary table at the rules’ right side, so we cannot further reduce empty literals in these
rules and therefore we directly apply γtrg using Lemma 1.

γtrg(γsrc(R′
D)) :

R′(p, A, b) ← R′
D(p, A, _), b = fB(p, A), ¬R′

D(p, _, _) (A.18)

R′(p, A, b) ← R′
D(p, A, _), R′

D(p, _, b) (A.19)

Rule A.18 can never be satisfied, as there are contradicting literals, so it can be removed (Lemma 4).
Using the Lemma 5, we reduce Rule A.19: The common key p uniquely determines the values A and
b, hence both literals can be extended to R′

D(p, A, b) and obviously one of them can be eliminated
using Lemma 7.

R′(p, A, b) ← ∅ (A.20)

R′(p, A, b) ← R′
D(p, A, b) (A.21)

So, we finally end up with the reduced rule set for γtrg (γsrc (RD ’):

R′(p, A, b) ← R′
D(p, A, b) (A.22)

In sum, we have shown that the ADD COLUMN SMO is bidirectional and the data survives any round
trip completely and correctly. The auxiliary table B stores the values of the new column when the
SMO is virtualized to ensure bidirectionality. With the projection to data tables, the SMO satisfies
Conditions 6.1 and 6.2. For repeatable reads, the auxiliary table B is also needed when data is given
in the source schema version.
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Decompose Outer Join Inner Join

ON PK A.4 Inverse of A.4 A.7
ON FK A.5 Inverse of A.5 Variant of A.8
ON Cond. A.6 Inverse of A.6 A.8

Table A.1: Overview of different DECOMPOSE and JOIN SMOs.

A.3 DECOMPOSE & JOIN – GENERAL REMARKS

There are different extents for the DECOMPOSE and its inverse JOIN SMO: a join can have inner or outer
semantics and it can be done based on the primary key, a foreign key, or on an arbitrary condition.
As summarized in Table A.1, each configuration requires different mapping functions, however, some
are merely the inverse or variants of others. The inverse of DECOMPOSE is OUTER JOIN and joining at a
foreign key is merely a specific condition. The column sets of a DECOMPOSE SMO are not necessarily
distinct and not necessarily covering the whole set of attributes of the source table. For those columns
that occur in none of the resulting table versions we precede a drop column SMO and for columns
occurring in both target table versions, we first duplicate the respective columns with an add column
SMO to prevent from ambiguity.

To simplify the formal evaluation, we introduce two new lemmas that allow to apply the Lemma 1 in
two separate steps. In a first step, Lemma 9 applies one rule set to another. In contrast to the previ-
ously used Lemma 1, we do not immediately reduce all rules but keep negated subequations explicitly,
since this allows further reductions and shortens the whole evaluation significantly. Subsequently,
we can use Lemma 10 to resolve the negated subexpressions. Please note that Lemma 1 is merely the
sequential application of Lemma 9 and 10.

Lemma 9 (Application). LetL ≡ qr(p, Y ) be a literal in the body of a rule r. For a rule s ∈ Rpred(L) let
rn(s, L) be rule swith all variables occurring in the head of s at positions of Y variables inL be renamed to
match the corresponding Y variable and all other variables be renamed to anything not in vars(body(r)).
If L is

1. a positive literal, s can be applied to r to get rule set r(s)
of the form {head(r) ← body(r) \ {L} ∪ body(rn(s, L))}.

2. a negative literal, s can be applied to r to get rule set r(s)
of the form {head(r) ← body(r) \ {L} ∪ ¬(body(rn(s, L)))}.

For a given p, let r be every rule in R having a literal L ≡ p(X, Y ) in its body. Accordingly, R can
be simplified by replacing all rules r and all s ∈ Rp with all r(s) applications to R \ ({r} ∪ Rp) ∪
(⋃s∈Rpred(L) r(s)).

Lemma 10 (De Morgan’s Law). Let neg(r) be the set of all negated subexpressions (set of literals) in the
body of rule r. Let sub ∈ neg(r) be a negated subexpression in the body of a rule r. Rule r can be replaced
with a transformed set of rules of the form t(r, sub) = {head(r) ← body(r) \ sub ∪ ¬K | K ∈ sub)}.
A rule setR can be reduced toR\({r | r ∈ R, neg(r) �= ∅}∪(⋃{r|r∈R}

⋃
{sub|sub∈neg(r)} t(r, sub)).

154 Appendix A Remaining BIDEL operations



A.4 DECOMPOSE AND OUTER JOIN ON PRIMARY KEY

SMO: DECOMPOSE TABLE R INTO S(A), T (B) ON PK
Inverse: OUTER JOIN TABLE S, T INTO R ON PK

The decomposition using a foreign key is the simplest form of the DECOMPOSE SMO. The system-
managed primary identifier p from the source table version remains unchanged in the two target
table versions making the identification of corresponding tuples trivial. We construct the two target
tables S and T with the following rules:

S(p, A) ← R(p, A, _) (A.23)

T (p, B) ← R(p, _, B) (A.24)

The inverse operation is an outer join. To fill the gaps potentially resulting from the outer join, we use
the null value ωR. Null values introduced from other SMOs or the user are assumed to be distinguish-
able from ωR and treated as actual data. The outer join semantics are formalized in the following rule
set for γsrc.

R(p, A, B) ← S(p, A), T (p, B) (A.25)

R(p, A, ωR) ← S(p, A), ¬T (p, _) (A.26)

R(p, ωR, B) ← ¬S(p, _), T (p, B) (A.27)

Tuples in R having no values for either A or B need to be excluded from when reconstructing the
decomposed table versions S and T . So, we end up with this rule set for the DECOMPOSE SMO on the
primary key.

γtrg :
S(p, A) ← R(p, A, _), A �= ωR (A.28)

T (p, B) ← R(p, _, B), B �= ωR (A.29)

γsrc :
R(p, A, B) ← S(p, A), T (p, B) (A.30)

R(p, A, ωR) ← S(p, A), ¬T (p, _) (A.31)

R(p, ωR, B) ← ¬S(p, _), T (p, B) (A.32)
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A.4.1 RD = γsrc(γtrg(RD))

Initially, we insert the data RD at the source side and show that we can store it at the target side and
read it again unchanged at the source side.

γtrg(RD) :
S(p, A) ← RD(p, A, _), A �= ωR (A.33)

T (p, B) ← RD(p, _, B), B �= ωR (A.34)

Since we consider existing null values in A and B as part of the data, we set A �= ωR and B �= ωR

in RD (p,A,B). We can remove the not-null conditions from both rules, as they are now implicitly
assumed for RD.

S(p, A) ← RD(p, A, _) (A.35)

T (p, B) ← RD(p, _, B) (A.36)

By simply applying the rules of γsrc to γtrg (Lemma 1), we obtain:

γsrc(γtrg(RD)) :
RD(p, A, B) ← RD(p, A, _), RD(p, _, B) (A.37)

RD(p, A, ωR) ← RD(p, A, _), ¬(RD(p, _, B′)) (A.38)

RD(p, ωR, B) ← ¬(RD(p, A′, _)), RD(p, _, B) (A.39)

The key p uniquely determines the values A and B according to Lemma 5, hence we can reduce
RD(p, A, _) and (RD(p, _, B) to RD(p, A, B) with the help of Lemma 7.

R(p, A, B) ← RD(p, A, B) (A.40)

R(p, A, ωR) ← RD(p, A, B′), ¬(RD(p, A, B′)) (A.41)

R(p, ωR, B) ← ¬(RD(p, A′, B)), RD(p, A′, B) (A.42)

According to Lemma 4, we can remove Rules A.41 and A.42 to finally satisfy the data independence
condition.

R(p, A, B) ← RD(p, A, B) (A.43)
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A.4.2 {SD, TD} = γtrg(γsrc(SD, TD))

To show that the second data independence criteria holds as well for the decomposition on p, we now
assume data in the target table versions S and T with source side materialization. Analogously to RD

in the previous step, we can now assume A �= ωR in SD(p, A) as well as B �= ωR in TD(p, B)

γsrc(SD, TD) :
R(p, A, B) ← SD(p, A), TD(p, B) (A.44)

R(p, A, ωR) ← SD(p, A), ¬TD(p, _) (A.45)

R(p, ωR, B) ← ¬SD(p, _), TD(p, B) (A.46)

We now apply Lemma 1 to calculate the combined rule set for one round trip of the target-side data. If
applying a rule head with ωR for the attributes C, we add the condition C = ωR to make this missing
value explicit.

γtrg(γsrc(SD, TD)) :
S(p, A) ← SD(p, A), TD(p, _), A �= ωR (A.47)

S(p, A) ← SD(p, A), ¬TD(p, _), A �= ωR (A.48)

S(p, A) ← ¬SD(p, _), TD(p, B), A = ωR, A �= ωR (A.49)

T (p, B) ← SD(p, _), TD(p, B), B �= ωR (A.50)

T (p, B) ← SD(p, A), ¬TD(p, _), B = ωR, B �= ωR (A.51)

T (p, B) ← ¬SD(p, _), TD(p, B), B �= ωR (A.52)

We remove those not-null conditions that are implicitly guaranteed by our initial assumptions. Fur-
ther, we remove the Rules A.41 and A.42 with contradicting conditions according to Lemma 4. For
instance A = ωR ∧ A �= ωR will never be true. So, we obtain the following rule set as intermediate
result:

S(p, A) ← SD(p, A), TD(p, _) (A.53)

S(p, A) ← SD(p, A), ¬TD(p, _) (A.54)

T (p, B) ← SD(p, _), TD(p, B) (A.55)

T (p, B) ← ¬SD(p, _), TD(p, B) (A.56)

According to Lemma 3, we combine the two rules respectively and finally obtain:

S(p, A) ← SD(p, A) (A.57)

T (p, B) ← TD(p, B) (A.58)
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A.5 DECOMPOSE AND OUTER JOIN ON A FOREIGN KEY

SMO: DECOMPOSE TABLE R INTO S(A), T (B) ON FK t

Inverse: OUTER JOIN TABLE S, T INTO R ON FK t

When decomposing a table while creating a new foreign key, we have to generate new identifiers.
Given we cut away the addresses from a persons table, we eliminate all duplicates in the new address
table, assign a new identifier to each address, and finally add a foreign key column to the new persons
table. We introduce functions that calculate new, globally unique identifiers, for given data. E.g. the
function idT (B) returns a new identifier that uniquely identifies the payload data B in the table T .
If the data B already exists, the function returns the previously assign identifier. If B did not exist in
T before the id function returns a new globally unique identifier.

Intuitively, we want to decompose a source table version into two target table versions, each with a
subset of the source table’s columns. We eliminate arising duplicates in the second target table version
T and create new identifiers p. These newly generated identifiers are then used in the first target table
version S for the newly created foreign key column, as expressed with the two Datalog rules for γtrg:

T (t, B) ← R(_, _, B), t = idT (B) (A.59)

S(p, A, t) ← R(p, A, B), T (t, B) (A.60)

The original source table R is reconstructed by joining along the generated foreign key in γsrc. Obvi-
ously, the relationship between the original key p and the generated foreign key t is lost for source side
materialization; therefore we introduce the auxiliary table IDT that keeps exactly those two variables
and is defined with the following rules in γsrc:

R(p, A, B) ← S(p, A, t), T (t, B) (A.61)

IDT (p, t) ← S(p, _, t), T (t, _) (A.62)

Since the inverse of the decomposition is an outer join, we extend γsrc with the outer join semantics
both for the data table R and the auxiliary table IDT :

R(p, A, B) ← S(p, A, t), T (t, B) (A.63)

R(p, A, ω) ← S(p, A, ω) (A.64)

R(t, ω, B) ← ¬S(_, _, t), T (t, B) (A.65)

IDT (p, t) ← S(p, _, t), T (t, _) (A.66)

IDT (p, ω) ← S(p, _, ω) (A.67)

IDT (t, t) ← ¬S(_, _, t), T (t, _) (A.68)

The last two rules, for R and IDT respectively, cover the cases that either no foreign key is given
in S or a tuple in T is not matched by a foreign key. The rule bodies for R and IDT are identical,
however, the rule heads of IDT merely store the key information. For reconstructing the target side
data from the materialized source side, we have to extend γtrg accordingly. Therefore, we end up with
the following mapping semantics for the decomposition with a foreign key:
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γtrg :
T (t, B) ← R(p, _, B), IDT (p, t) (A.69)

T (t, B) ← R(p, _, B), ¬IDT (p, t), t = idT (B) (A.70)

S(p, A, t) ← R(p, A, _), IDR(p, t) (A.71)

S(p, A, ω) ← R(p, A, _), IDT (p, ω) (A.72)

S(p, A, t) ← R(p, A, B), ¬IDT (p, _), T (t, B) (A.73)

γsrc :
R(p, A, B) ← S(p, A, t), T (t, B) (A.74)

R(p, A, ω) ← S(p, A, ω) (A.75)

R(t, ω, B) ← ¬S(_, _, t), T (t, B) (A.76)

IDT (p, t) ← S(p, _, t), T (t, _) (A.77)

IDT (p, ω) ← S(p, _, ω) (A.78)

IDT (t, t) ← ¬S(_, _, t), T (t, _) (A.79)

A.5.1 RD = γsrc(γtrg(RD))

According to Condition 6.1 for the data independence of materialized SMOs, any source-side data in
RD that is mapped to the decomposed target side and read back, survives this round trip completely
and correctly. Let us start with the rules γtrg that map the source data to the target side. Since IDT is
empty, we apply Lemma 2 to reduce the γtrg rule set. Further, we use Lemma 1 to apply the Rule A.70
for T in the body of Rule A.73, which result in the following two rules:

T (t, B) ← RD(_, _, B), t = idT (B) (A.80)

S(p, A, t) ← RD(p, A, B), RD(_, _, B), t = idT (B) (A.81)

We can further reduce the latter rule based on Lemma 7.

T (t, B) ← RD(_, _, B), t = idT (B) (A.82)

S(p, A, t) ← RD(p, A, B), t = idT (B) (A.83)

We will now apply γsrc to these reduced rules using Lemma 9.

γsrc(γtrg(RD)) :
R(p, A, B) ← RD(p, A, B), t = idT (B), RD(_, _, B), t = idT (B) (A.84)

R(p, A, ω) ← RD(p, A, ω), t = idT (ω) (A.85)

R(t, ω, B) ← ¬(R(_, _, B′), t = idT (B′)), RD(_, _, B), t = idT (B) (A.86)

IDT (p, t) ← RD(p, A, B′), t = idT (B′), RD(_, _, B′′), t = idT (B′′) (A.87)

IDT (p, ω) ← RD(p, _, ω), t = idT (ω) (A.88)

IDT (t, t) ← ¬(RD(_, _, B′), t = idT (B′)), RD(_, _, B′′), t = idT (B′′) (A.89)
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Now, we will further simplify this rule set. There are rules with the two literals t = idT (B′), t =
idT (B′′). So we can set t = idT (B′) = idT (B′′). According to the definition of the t = idT (B)
function, the resulting key t uniquely identifies the data B, hence B′ = B′′.

R(p, A, B) ← RD(p, A, B), t = idT (B), RD(_, _, B), t = idT (B) (A.90)

R(p, A, ω) ← RD(p, A, ω), t = idT (ω) (A.91)

R(t, ω, B) ← ¬(RD(_, _, B), t = idT (B)), RD(_, _, B), t = idT (B) (A.92)

IDT (p, t) ← RD(p, A, B), t = idT (B), RD(_, _, B), t = idT (B) (A.93)

IDT (p, ω) ← RD(p, _, ω), t = idT (ω) (A.94)

IDT (t, t) ← ¬(RD(_, _, B), t = idT (B)), RD(_, _, B), t = idT (B) (A.95)

Further, we eliminate the calculation of the idT (B) in those rule, which do not use it in any other lit-
eral or in the head according to Lemma 6. Further we eliminate all redundant literals using Lemma 7.

R(p, A, B) ← RD(p, A, B) (A.96)

R(p, A, ω) ← RD(p, A, ω) (A.97)

R(t, ω, B) ← ¬(RD(_, _, B), t = idT (B)), R(_, _, B), t = idT (B) (A.98)

IDT (p, t) ← RD(p, A, B), t = idT (B) (A.99)

IDT (p, ω) ← RD(p, _, ω) (A.100)

IDT (t, t) ← ¬(RD(_, _, B), t = idT (B)), RD(_, _, B), t = idT (B) (A.101)

To reduce Rule A.98, we use Lemma 10 to split it into two rules:

R(t, ω, B) ← ¬RD(_, _, B), R(_, _, B), t = idT (B) (A.102)

R(t, ω, B) ← ¬(t = idT (B)), RD(_, _, B), t = idT (B) (A.103)

Obviously both rules cannot be satisfied, since there are contradicting literals and conditions (Lemma 4).
Rule A.101 follows the same reductions as Rule A.98.

R(p, A, B) ← RD(p, A, B) (A.104)

R(p, A, ω) ← RD(p, A, ω) (A.105)

IDT (p, t) ← RD(p, A, B), t = idT (B) (A.106)

IDT (p, ω) ← RD(p, _, ω) (A.107)

Since ω is just a special value, which the attributes B may have, we can further reduce the rule set
with the help of Lemma 8 and finally obtain the following rules:

R(p, A, B) ← RD(p, A, B) (A.108)

IDT (p, t) ← RD(p, A, B), t = idT (B) (A.109)

Projecting the outcomes to the data tables, again satisfies our data independence Conditions 6.2
and 6.1. Hence, no matter whether the SMO is virtualized or materialized, both the source and the
target side behave like common single-schema databases. Storing data in R implicitly generates new
values to the auxiliary table IDT , which is intuitive: we need to store the assigned identifiers for the
target version to ensure repeatable reads on those generated identifiers.
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A.5.2 {SD, TD} = γtrg(γsrc(SD, TD))

For the opposite direction, we apply the γtrg mapping to the γsrc mapping. For the input data in SD

and TD, we enforce the foreign key constraint, hence SD(p, A, t), TD(t, _) needs to hold. Otherwise
we assume S(p, A, ω). As there are no auxiliary tables in the rules’ bodies of γsrc, there are no
reductions possible at this stage.

γsrc(SD, TD) :
R(p, A, B) ← SD(p, A, t), TD(t, B) (A.110)

R(p, A, ω) ← SD(p, A, ω) (A.111)

R(t, ω, B) ← ¬SD(_, _, t), TD(t, B) (A.112)

IDT (p, t) ← SD(p, _, t), TD(t, _) (A.113)

IDT (p, ω) ← SD(p, _, ω) (A.114)

IDT (t, t) ← ¬SD(_, _, t), TD(t, _) (A.115)

Before we apply the rules γtrg, we first reduce the γtrg rule set. The rule bodies for R and IDT in
γsrc are equivalent, hence for each tuple in R(p, _) there is also one tuple IDT (p, _). So, based on
Lemma 4 we eliminate Rule A.70 and Rule A.73 and obtain a reduced rule set for γtrg:

T (t, B) ← R(p, _, B), IDT (p, t) (A.116)

S(p, A, t) ← R(p, A, _), IDT (p, t) (A.117)

S(p, A, ω) ← R(p, A, _), IDT (p, ω) (A.118)

When applying Lemma 1 in the next step, we apply only those rules for IDT that can match the
pattern according to Lemma 4. Particularly, we exclude the case that we set a value for t �= ω, but
apply IDT (p, ω). This, we obtain:

γtrg(γsrc(SD, TD)) :
T (t, B) ← SD(p, _, t), T (t, B), SD(p, _, t), TD(t, _) (A.119)

T (t, B) ← SD(p, _, t), TD(t, B), ¬SD(_, _, t), T (t, _) (A.120)

T (t, B) ← ¬SD(_, _, t), TD(t, B), SD(p, _, t), TD(t, _) (A.121)

T (t, B) ← ¬SD(_, _, t), TD(t, B), ¬SD(_, _, t), T (t, _) (A.122)

S(p, A, t) ← SD(p, A, t), TD(t, _), SD(p, _, t), TD(t, _) (A.123)

S(p, A, t) ← SD(p, A, t), TD(t, _), SD(p, _, t), t = ω (A.124)

S(p, A, t) ← SD(p, A, ω), SD(p, _, t), TD(t, _) (A.125)

S(p, A, t) ← SD(p, A, ω), SD(p, _, t), t = ω (A.126)

S(p, A, ω) ← SD(p, A, t), TD(t, _), SD(p, _, t), t = ω (A.127)

S(p, A, ω) ← SD(p, A, ω), SD(p, _, t), t = ω (A.128)

According to Lemma 4, we remove Rule A.120 and A.121 due to the contradicting literals on SD.
Further, we eliminate Rule A.124, A.125, and A.127 that require the primary key of a relation to be ω,
since this can never be true. Additionally, we eliminate all subsumed literals according to Lemma 7.
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T (t, B) ← SD(p, _, t), TD(t, B) (A.129)

T (t, B) ← ¬SD(_, _, t), TD(t, B) (A.130)

S(p, A, t) ← SD(p, A, t), TD(t, _) (A.131)

S(p, A, t) ← SD(p, A, ω), t = ω (A.132)

S(p, A, ω) ← SD(p, A, t), TD(t, _) (A.133)

S(p, A, ω) ← SD(p, A, ω) (A.134)

Using Lemma 3, we reduce the rules for T to already match our data independence criteria. Further,
Lemma 8 allows to eliminate all duplicated and subsumed rules for S, so we obtain the following rule
set:

T (t, B) ← TD(t, B) (A.135)

S(p, A, t) ← SD(p, A, t), TD(t, _) (A.136)

S(p, A, ω) ← SD(p, A, ω) (A.137)

Initially, we assumed that the foreign key constraint is enforces for the tuples in S. The defined
foreign key constraint matches exactly the definition of S in Rules A.136 and A.136. Consequently,
Lemma 7 allows us to further reduce the rule set for γtrg(γsrc(SD, TD)).

T (t, B) ← TD(t, B) (A.138)

S(p, A, t) ← SD(p, A, t) (A.139)

Now, both data independence conditions are satisfied for the decomposition and outer join along a
foreign key.
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A.6 DECOMPOSE AND OUTER JOIN ON CONDITION

SMO: DECOMPOSE TABLE R INTO S(A), T (B) ON c(A, B)
Inverse: OUTER JOIN TABLE S, T INTO R ON c(A, B)

To e.g. normalize a table that holds books and authors (N : M ), we can either use two subsequent
DECOMPOSE ON FK to maintain the relationship between books and authors, or—if the new evolved
version just needs the list of authors and the list of books—we simply split them giving up the rela-
tionship. In the following, we provide rules for the latter case. Basically, we use the same rule set as for
the inverse inner join on a condition (Section A.8) extended with the outer join and key-generation
functionality introduced for the outer join along a foreign key (Section A.5). The formal evaluation of
the data independence is just alike, so we do not elaborate on the details now.

γtrg :
S(s, A) ←R(r, A, _), IDsrc(r, s, _) (A.140)

S(s, A) ←R(r, A, _), ¬IDsrc(r, _, _), A �= ωR, s = idS(A) (A.141)

S(r, A) ←R(r, A, _), ¬IDsrc(r, _, _), A = ωR (A.142)

T (t, B) ←R(r, _, B), IDsrc(r, _, t) (A.143)

T (t, B) ←R(r, _, B), ¬IDsrc(r, _, _), B �= ωR, t = idT (B) (A.144)

T (r, B) ←R(r, _, B), ¬IDsrc(r, _, _), B = ωR (A.145)

IDtrg(r, s, t) ←R(r, A, B), S(s, A), T (t, B) (A.146)

R−(s, t) ←¬R(_, A, B), S(s, A), T (t, B), c(A, B) (A.147)

γsrc :
Rtmp(r, A, B) ←S(s, A), T (t, B), IDsrc(r, s, t) (A.148)

Rtmp(r, A, B) ←S(s, A), T (t, B), c(A, B), ¬R−(s, t), ¬IDsrc(_, s, t), r = idR(A, B)
(A.149)

IDsrc(r, s, t) ←S(s, A), T (t, B), c(A, B), Rtmp(r, A, B) (A.150)

IDsrc(r, s, t) ←IDtrg(r, s, t) (A.151)

R(r, A, B) ←Rtmp(r, A, B) (A.152)

R(s, A, ωR) ←S(s, A), ¬IDtrg(_, s, _) (A.153)

R(t, ωR, B) ←T (t, B), ¬IDtrg(_, _, t) (A.154)

γsrc(γtrg(SD, TD)) :
R(r, A, B) ←RD(r, A, B) (A.155)

IDsrc(r, s, t) ←RD(r, A, B), s = idS(A), t = idT (B) (A.156)

γtrg(γsrc(RD)) :
S(s, A) ←SD(s, A) (A.157)

T (t, B) ←TD(t, B) (A.158)

IDtrg(r, s, t) ←SD(s, A), TD(t, B), c(A, B), r = idR(A, B) (A.159)

The Conditions 6.2 and 6.1 for data independence are satisfied. For repeatable reads, the auxiliary
table ID stores the generated identifiers independently of the chosen materialization.
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A.7 INNER JOIN ON PRIMARY KEY

SMO: JOIN TABLE R, S INTO T ON PK

An inner join on the primary key follows a 1:1 relationship on the tuple level. Hence, we will not
replicate any data nor will we remove any duplicates. The naïve mapping function for γtrg is:

R(p, A, B) ← S(p, A), T (p, B) (A.160)

The straight forward mapping γsrc for reconstruction of the source table is:

S(p, A) ← R(p, A, _) (A.161)

T (p, B) ← R(p, _, B) (A.162)

Obviously, all tuples in S or R that do not find a join partner are lost after one round trip. To prevent
from this information loss, we merely need two auxiliary tables to store those tuples from the input
table versions that do not match with a join partner. The auxiliary tables S+ and T + store the whole
lost tuples for target side materialization that can be added after one round trip in the γsrc mapping.
In sum, the inner join on a primary key is described with the following rule sets:

γtrg :
R(p, A, B) ← S(p, A), T (p, B) (A.163)

S+(p, A) ← S(p, A), ¬T (p, _) (A.164)

T +(p, B) ← ¬S(p, _), T (p, B) (A.165)

γsrc :
S(p, A) ← R(p, A, _) (A.166)

S(p, A) ← S+(p, A) (A.167)

T (p, B) ← R(p, _, B) (A.168)

T (p, B) ← T +(p, B) (A.169)
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A.7.1 {SD, TD} = γsrc(γtrg(SD, TD))

At first, we show that data at the source side can be written and read correctly with target side mate-
rialization. Since γtrg does not contain any auxiliary tables in the rule bodies, we cannot reduce γtrg

at this point, so the following rules define the target side materialization.

γtrg(SD, TD) :
R(p, A, B) ← SD(p, A), TD(p, B) (A.170)

S+(p, A) ← SD(p, A), ¬TD(p, _) (A.171)

T +(p, B) ← ¬SD(p, _), TD(p, B) (A.172)

By applying γsrc to γtrg according to Lemma 1, we obtain the following rule set:

γsrc(γtrg(SD, TD)) :
S(p, A) ← SD(p, A), TD(p, _) (A.173)

S(p, A) ← SD(p, A), ¬TD(p, _) (A.174)

T (p, B) ← SD(p, _), TD(p, B) (A.175)

T (p, B) ← ¬SD(p, _), TD(p, B) (A.176)

Using Lemma 3 we can combine both the rules for S and for T , so we finally end up with the satisfied
data independence condition:

S(p, A) ← SD(p, A) (A.177)

T (p, B) ← TD(p, B) (A.178)

A.7.2 RD = γtrg(γsrc(RD))

In the opposite direction—source side materialization of data in R—we can reduce γsrc since the
auxiliary tables S+ and T + are initially empty (Lemma 2).

γsrc(RD) :
S(p, A) ← RD(p, A, _) (A.179)

T (p, B) ← RD(p, _, B) (A.180)

Applying γtrg to these rules results in the following rule set according to Lemma 1:

γtrg(γsrc(RD)) :
R(p, A, B) ← RD(p, A, _), RD(p, _, B) (A.181)

S+(p, A) ← RD(p, A, _), ¬RD(p, _, _) (A.182)

T +(p, B) ← ¬RD(p, _, _), RD(p, _, B) (A.183)

Using Lemma 5 we can reduce the rule body of Rule A.181 to RD(p, A, B). The key p uniquely
identifies the data for the attributes A and B. Further, the bodies of the Rules A.182 and A.183 will
never be satisfied, since there are contradicting literals (Lemma 4).

R(p, A, B) ← RD(p, A, B) (A.184)

Since both data independence conditions hold for the inner join on a primary key, we have formally
shown its data independence.
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A.8 INNER JOIN ON CONDITION

SMO: JOIN TABLE R, S INTO T ON c(A, B)

When performing an inner join on an arbitrary condition we potentially follow a n : m relationship.
For the newly created tuples, we have to generate new identifiers p as well. The initial definition
of the γtrg mapping merely combines the tuples from S and T according to the specified condition.
Additionally, we need to calculate a new identifier r and immediately store it in the auxiliary table
IDtrg along with the keys of the two joint source tables to ensure repeatable reads.

R(r, A, B) ←S(s, A), T (t, B), c(A, B), r = idR(A, B) (A.185)

IDtrg(r, s, t) ←S(s, A), T (t, B), c(A, B), R(r, A, B) (A.186)

For reconstructing the disjoint tables from the joint target table version, we need to project R to the
respective columns and add the previously stored primary key information in γsrc.

S(s, A) ← R(r, A, _), IDtrg(r, s, _) (A.187)

T (t, B) ← R(r, _, B), IDtrg(r, _, t) (A.188)

Further, adding tuples at the disjoint source side is not the only occasion when we have to create
new identifiers. Also when writing at the target side to the joint table R, we need to generate new
identifiers for the disjoint source table versions and immediately store the relationship to the original
identifier in the auxiliary table IDsrc, hence γsrc is extended by the following three rules:

S(s, A) ← R(r, A, _), ¬IDtrg(r, s, _), s = idS(A) (A.189)

T (t, B) ← R(r, _, B), ¬IDtrg(r, _, t), t = idT (B) (A.190)

IDsrc(r, s, t) ← R(r, A, B), S(s, A), T (t, B) (A.191)

Obviously, we only generate new identifiers at the target side, if there are no existing ones for the
respective payload data. Hence, we add two rules to γtrg to use already existing identifiers.

R(r, A, B) ←S(s, A), T (t, B), IDsrc(r, s, t) (A.192)

IDtrg(r, s, t) ←IDsrc(r, s, t) (A.193)

Since we now consider the inner join, for target side materialization we also need auxiliary tables that
store those tuples that did not find a join partner. We use the auxiliary table S+ and T + that are
specified in γtrg as follows:

S+(s, A) ←S(s, A), ¬IDtrg(_, s, _) (A.194)

T +(t, B) ←T (t, B), ¬IDtrg(_, _, t) (A.195)

For reconstruction of those outer join tuples, we add two further rules to γsrc that add the non-
matched tuples from the auxiliary tables:

S(s, A) ← S+(s, A) (A.196)

T (t, B) ← T +(t, B) (A.197)

Finally, the opposite can happen as well—given source side materialization of the disjoint table ver-
sions, there can be tuples in the disjoint tables that match the join condition but have e.g. been ex-
plicitly deleted at the target side. To prevent this information loss, we use the auxiliary table R− that
stores exactly those tuples and make sure that they are excluded when reading data at the target side:

R−(s, t) ← ¬R(_, A, B), S(s, A), T (t, B), c(A, B) (A.198)
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Summing up our discussion so far, we finally use the following rule set to describe the inner join on
an arbitrary condition:

γtrg :
R(r, A, B) ←S(s, A), T (t, B), IDsrc(r, s, t) (A.199)

R(r, A, B) ←S(s, A), T (t, B), c(A, B), ¬R−(s, t), ¬IDsrc(_, s, t), r = idR(A, B) (A.200)

IDtrg(r, s, t) ←S(s, A), T (t, B), c(A, B), R(r, A, B) (A.201)

IDtrg(r, s, t) ←IDsrc(r, s, t) (A.202)

S+(s, A) ←S(s, A), ¬IDtrg(_, s, _) (A.203)

T +(t, B) ←T (t, B), ¬IDtrg(_, _, t) (A.204)

γsrc :
S(s, A) ← R(r, A, _), IDtrg(r, s, _) (A.205)

S(s, A) ← R(r, A, _), ¬IDtrg(r, s, _), s = idS(A) (A.206)

S(s, A) ← S+(s, A) (A.207)

T (t, B) ← R(r, _, B), IDtrg(r, _, t) (A.208)

T (t, B) ← R(r, _, B), ¬IDtrg(r, _, t), t = idT (B) (A.209)

T (t, B) ← T +(t, B) (A.210)

IDsrc(r, s, t) ← R(r, A, B), S(s, A), T (t, B) (A.211)

R−(s, t) ← ¬R(_, A, B), S(s, A), T (t, B), c(A, B) (A.212)

A.8.1 {RD, SD } = γsrc (γtrg (RD, SD))

Now, we formally evaluate the first data independence criteria, checking whether source side dataRD

and SD can be stored at the target side and retrieved completely and correctly. Since the auxiliary
tables R− and IDsrc are empty, we use Lemma 2 to reduce the γtrg rule set. This leaves only one rule
for R and IDtrg respectively. Further, we remove the empty literals R− and IDsrc in Rule A.200.

γtrg(SD, TD) :
R(r, A, B) ← SD(s, A), TD(t, B), c(A, B), r = idR(A, B) (A.213)

IDtrg(r, s, t) ← SD(s, A), TD(t, B), c(A, B), R(r, A, B) (A.214)

S+(s, A) ← SD(s, A), ¬IDtrg(_, s, _) (A.215)

T +(t, B) ← TD(t, B), ¬IDtrg(_, _, t) (A.216)

Now, we apply Rule A.214 to Rule A.213 based on Lemma 1 and immediately eliminate duplicate
literals according to Lemma 7.

R(r, A, B) ← SD(s, A), TD(t, B), c(A, B), r = idR(A, B) (A.217)

IDtrg(r, s, t) ← SD(s, A), TD(t, B), c(A, B), r = idR(A, B) (A.218)

S+(s, A) ← SD(s, A), ¬IDtrg(_, s, _) (A.219)

T +(t, B) ← TD(t, B), ¬IDtrg(_, _, t) (A.220)
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Following Lemma 9, we further apply the rules for S+ and T + to IDtrg.

R(r, A, B) ←SD(s, A), TD(t, B), c(A, B), r = idR(A, B) (A.221)

IDtrg(r, s, t) ←SD(s, A), TD(t, B), c(A, B), r = idR(A, B) (A.222)

S+(s, A) ←SD(s, A), ¬(SD(s, A′), TD(t′, B′), c(A′, B′), r′ = idR(A′, B′)) (A.223)

T +(t, B) ←TD(t, B), ¬(SD(s′, A′), TD(t, B′), c(A′, B′), r′ = idR(A′, B′)) (A.224)

In the rule set γsrc, the rules for T follow the same idea as the rules for S. For brevity, we focus on
the rules for S in detail and apply the same reductions for T as well. Using Lemma 1, we combine and
reduce the rule sets of γtrg and γsrc.

γsrc(γtrg(SD, TD)) :
S(s, A) ←SD(s, A), TD(t, B′), c(A, B′), r = idR(A, B′),

SD(s, A′′), TD(t′′, B′′), c(A′′, B′′), r = idR(A′′, B′′) (A.225)

S(s, A) ←SD(s, A), TD(t, B′), c(A, B′), r = idR(A, B′),
¬(SD(s, A′′), TD(t′′, B′′), c(A′′, B′′), r = idR(A′′, B′′)), s = idS(A) (A.226)

S(s, A) ←SD(s, A), ¬(SD(s, A′), TD(t′, B′), c(A′, B′), r′ = idR(A′, B′)) (A.227)

IDsrc(r, s, t) ←SD(s′, A), TD(t′, B), c(A, B), r = idR(A, B), S(s, A), T (t, B) (A.228)

R−(s, t) ←¬(SD(s′, A), TD(t′, B), c(A, B), r′ = idR(A, B)),
S(s, A), T (t, B), c(A, B) (A.229)

To reduce the rules for S, we first reduce the rules individually, before considering their union. First,
we focus on Rule A.225 for S: Using Lemma 5 we set A = A′′, because the key s uniquely identifies
the data inSD. Further, we setB′ = B′′, since r = idR(A, B′) = idR(A′′, B′′) due to the definition
of the id function. Further, the identifiers t and t′′ are computed, but never referenced again. Hence,
we eliminated them according to Lemma 6.

S(s, A) ←SD(s, A), TD(_, B), c(A, B), r = idR(A, B),
SD(s, A), TD(_, B), c(A, B), r = idR(A, B) (A.230)

Now, we summarize equal literals according to Lemma 7 and remove r = idR(A, B) since it is not
referenced again (Lemma 6). So we finally reduced Rule A.225 to

S(s, A) ←SD(s, A), TD(_, B), c(A, B) (A.231)

Second, we focus on the second Rule A.226 for S:

S(s, A) ←SD(s, A), TD(t, B′), c(A, B′), r = idR(A, B′),
¬(SD(s, A′′), TD(t′′, B′′), c(A′′, B′′), r = idR(A′′, B′′)), s = idS(A) (A.232)

Again, we set A = A′′ and B′ = B′′ since they are determined by equal identifiers (Lemma 5).

S(s, A) ←SD(s, A), TD(_, B), c(A, B), r = idR(A, B),
¬(SD(s, A), TD(_, B), c(A, B), r = idR(A, B)), s = idS(A) (A.233)
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By applying Lemma 10, we obtain four rules—due to Lemma 4 none of them is satisfiable and we
can safely remove Rule A.226 from the rule set. Together with third Rule A.227 we now obtain the
reduced rule set for S:

S(s, A) ←SD(s, A), TD(_, B), c(A, B) (A.234)

S(s, A) ←SD(s, A), ¬(SD(s, A′), TD(t′, B′), c(A′, B′), r′ = idR(A′, B′)) (A.235)

The identifiers r′ and t′ are never referenced, hence we eliminate them based on Lemma 6. Further
A = A′, since the identifier s uniquely determines A and A′ according to Lemma 5.

S(s, A) ←SD(s, A), TD(_, B), c(A, B) (A.236)

S(s, A) ←SD(s, A), ¬(SD(s, A), TD(_, B′), c(A, B′)) (A.237)

We further apply Lemma 10 to Rule A.237 to obtain:

S(s, A) ←SD(s, A), TD(_, B), c(A, B) (A.238)

S(s, A) ←SD(s, A), ¬SD(s, A) (A.239)

S(s, A) ←SD(s, A), ¬(TD(_, B′), c(A, B′)) (A.240)

Rule A.239 is never satisfied and can be removed according to Lemma 4. We combine Rule A.238 and
Rule A.240 using Lemma 3. So, we finally reduced the three Rules A.225 to A.227.

S(s, A) ←SD(s, A) (A.241)

Accordingly, we obtain the same for T .

T (t, B) ←TD(t, B) (A.242)

Further, we apply the remaining Rules A.228 and A.229 to these reduced rules for S and T with the
help of Lemma 9.

IDsrc(r, s, t) ←SD(s′, A), TD(t′, B), c(A, B), r = idR(A, B), SD(s, A), TD(t, B) (A.243)

R−(s, t) ←¬(SD(s′, A), TD(t′, B), c(A, B), r′ = idR(A, B)), SD(s, A), TD(t, B), c(A, B)
(A.244)

We replace those attributes, which are only referenced once with _ or remove respective calculations
according to Lemma 6.

IDsrc(r, s, t) ←SD(_, A), TD(_, B), c(A, B), r = idR(A, B), SD(s, A), TD(t, B) (A.245)

R−(s, t) ←¬(SD(_, A), TD(_, B), c(A, B)), SD(s, A), TD(t, B), c(A, B) (A.246)

Now, we remove subsumed or duplicate literals based on Lemma 7.

IDsrc(r, s, t) ←SD(s, A), TD(t, B), c(A, B), r = idR(A, B) (A.247)

We cannot further reduce this rule producing the identifiers auxiliary table. Obviously we always need
to store the generated identifiers for all tuples that match the inner join. This is reasonable, since we
have to make sure to always assign the same identifiers to the same data. Regarding the rules for R−,
we use Lemma 10 to obtain the three rules:

R−(s, t) ←¬SD(_, A), SD(s, A), TD(t, B), c(A, B) (A.248)

R−(s, t) ←¬TD(_, B), SD(s, A), TD(t, B), c(A, B) (A.249)

R−(s, t) ←¬c(A, B), SD(s, A), TD(t, B), c(A, B) (A.250)
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All three rules are not satisfiable according to Lemma 4. Hence we finally obtain

S(s, A) ←SD(s, A) (A.251)

T (t, B) ←TD(t, B) (A.252)

IDsrc(r, s, t) ←SD(s, A), TD(t, B), c(A, B), r = idR(A, B) (A.253)

A.8.2 RD = γtrg(γsrc(RD))

To show that data independence also holds for the backward direction of the inner join, we now
assume data given at the target side, which we store at source side. Initially, the auxiliary tables IDtrg,
S+, and T + are empty, hence we use Lemma 2 to reduce the γsrc rule set. Further, the identifier r
referenced only once in the rule body and not in the head, hence we replace it with _.

γsrc(RD) :
S(s, A) ← RD(_, A, _), s = idS(A) (A.254)

T (t, B) ← RD(_, _, B), t = idT (B) (A.255)

IDsrc(r, s, t) ← RD(r, A, B), S(s, A), T (t, B) (A.256)

R−(s, t) ← ¬RD(_, A, B), S(s, A), T (t, B), c(A, B) (A.257)

We apply the rules for IDsrc and R− to these reduced rules for S and T using lemma 1.

S(s, A) ←RD(_, A, _), s = idS(A) (A.258)

T (t, B) ←RD(_, _, B), t = idT (B) (A.259)

IDsrc(r, s, t) ←RD(r, A, B), RD(_, A, _), s = idS(A), RD(_, _, B), t = idT (B) (A.260)

R−(s, t) ←¬RD(_, A, B), RD(_, A, _), s = idS(A),
RD(_, _, B), t = idT (B), c(A, B) (A.261)

We further remove subsumed literals, like e.g. R(_, A, _) which is subsumed by R(r, A, B), accord-
ing to Lemma 7.

S(s, A) ←RD(_, A, _), s = idS(A) (A.262)

T (t, B) ←RD(_, _, B), t = idT (B) (A.263)

IDsrc(r, s, t) ←RD(r, A, B), s = idS(A), t = idT (B) (A.264)

R−(s, t) ←¬RD(_, A, B), s = idS(A), t = idT (B), c(A, B) (A.265)

We now apply the rules of γtrg. Again, we make the evaluation easier to follow by using Lemma 9.
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γtrg(γsrc(RD)) :
R(r, A, B) ←RD(_, A, _), s = idS(A), RD(_, _, B), t = idT (B),

RD(r, A′, B′), s = idS(A′), t = idT (B′) (A.266)

R(r, A, B) ←RD(_, A, _), s = idS(A), RD(_, _, B), t = idT (B), c(A, B),
¬(¬RD(_, A′′, B′′), s = idS(A′′), t = idT (B′′), c(A′′, B′′)),
¬(RD(_, A′, B′), s = idS(A′), t = idT (B′)), r = idR(A, B) (A.267)

IDtrg(r, s, t) ←RD(_, A, _), s = idS(A), RD(_, _, B), t = idT (B), c(A, B), R(r, A, B)
(A.268)

IDtrg(r, s, t) ←RD(r, A′, B′), s = idS(A′), t = idT (B′) (A.269)

S+(s, A) ← RD(_, A, _), s = idS(A), ¬IDtrg(_, s, _) (A.270)

T +(t, B) ← RD(_, _, B), t = idT (B), ¬IDtrg(_, _, t) (A.271)

To reduce Rule A.266, we set A = A′ and B = B′, since identifiers functions only return the same
result for the same input values (Lemma 5). The same applies to Rule A.267 where A = A′ = A′′

and B = B′ = B′′. Further, we eliminate the calculations, since the results are not referenced again
according to Lemma 6.

R(r, A, B) ←RD(_, A, _), RD(_, _, B), RD(r, A, B) (A.272)

R(r, A, B) ←RD(_, A, _), RD(_, _, B), c(A, B), ¬(¬RD(_, A, B), c(A, B)),
¬RD(_, A, B), r = idR(A, B) (A.273)

Using Lemma 10 we split the second rule into two rules.

R(r, A, B) ←RD(_, A, _), RD(_, _, B), RD(r, A, B) (A.274)

R(r, A, B) ←RD(_, A, _), RD(_, _, B), c(A, B), RD(_, A, B),
¬RD(_, A, B), r = idR(A, B) (A.275)

R(r, A, B) ←RD(_, A, _), RD(_, _, B), c(A, B), ¬c(A, B),
¬RD(_, A, B), r = idR(A, B) (A.276)

We remove two literals from Rule A.274, since they are subsumed by RD(r, A, B) w.r.t. Lemma 7.
Further, Rules A.275 and A.276 can be eliminated since they contain contradicting literals according
to Lemma 4.

R(r, A, B) ← RD(r, A, B) (A.277)

After reducing the rules for R we apply the result to the two remaining rules for IDtrg.

IDtrg(r, s, t) ←RD(_, A, _), s = idS(A), RD(_, _, B), t = idT (B), c(A, B), RD(r, A, B)
(A.278)

IDtrg(r, s, t) ←RD(r, A′, B′), s = idS(A′), t = idT (B′) (A.279)

The first rule can be reduced by eliminating those literals that are subsumed by RD(r, A, B) with the
help of Lemma 7.

IDtrg(r, s, t) ←RD(r, A, B), s = idS(A), t = idT (B), c(A, B) (A.280)

IDtrg(r, s, t) ←RD(r, A′, B′), s = idS(A′), t = idT (B′) (A.281)
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Since the latter rule is subsumed by the first rule according to Lemma 8, we can remove it as well.

IDtrg(r, s, t) ←RD(r, A, B), s = idS(A), t = idT (B) (A.282)

So, the auxiliary table IDtrg always holds the generated identifiers for any tuple. Finally, we reduce
the two remaining rules for S+ and T +:

S+(s, A) ← RD(_, A, _), s = idS(A), ¬IDtrg(_, s, _) (A.283)

T +(t, B) ← RD(_, _, B), t = idT (B), ¬IDtrg(_, _, t) (A.284)

We apply them to the reduced IDtrg rules with Lemma 9.

S+(s, A) ←RD(_, A, _), s = idS(A), ¬(RD(r′, A′, B′), s = idS(A′), t′ = idT (B′)) (A.285)

T +(t, B) ←RD(_, _, B), t = idT (B), ¬(RD(r′, A′, B′), s′ = idS(A′), t = idT (B′)) (A.286)

According to Lemma 6, unreferenced calculations and attributes may be eliminated.

S+(s, A) ←RD(_, A, _), s = idS(A), ¬(RD(_, A′, _), s = idS(A′)) (A.287)

T +(t, B) ←RD(_, _, B), t = idT (B), ¬(RD(_, _, B′), t = idT (B′)) (A.288)

Using Lemma 10, we eliminate the negation and obtain two rules respectively.

S+(s, A) ←RD(_, A, _), s = idS(A), ¬RD(_, A′, _) (A.289)

S+(s, A) ←RD(_, A, _), s = idS(A), ¬s = idS(A′) (A.290)

T +(t, B) ←RD(_, _, B), t = idT (B), ¬RD(_, _, B′) (A.291)

T +(t, B) ←RD(_, _, B), t = idT (B), ¬t = idT (B′) (A.292)

Lemma 4 states that all four rules bodies can never be satisfied, since each one contains contradicting
literals and conditions. Thus, we have reduced γtrg (γsrc) to finally show that the data independence
is always guaranteed.

R(r, A, B) ←RD(r, A, B) (A.293)

IDtrg(r, s, t) ←RD(r, A, B), s = idS(A), t = idT (B) (A.294)
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B
ASYMMETRIES FOR DATA ACCESS

PROPAGATION THROUGH SMOS

As discussed in Section 7.3.1, the performance overhead for the different SMOs of BiDEL is asym-
metric. This means that the overhead for data access propagation in one direction is higher than in
the opposite direction. For the adviser, it is important to know these characteristics—we therefore
analyze them in detail. In Section 7.3.1, we focus the discussion on the ADD COLUMN SMO and ana-
lyze the empiric measurements in detail. The following charts show the same measurements for the
remaining SMOs. The findings from these additional measurements are already summarized in Sec-
tion 7.3.1. As there are many different extents of the JOIN and the DECOMPOSE SMO, we exemplarily
show the inner join on a condition and the decomposition to two tables that are linked by a foreign
key, here.
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Figure B.1: Accessing table versions of DROP COLUMN SMO with different materializations.
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Figure B.2: Accessing table versions of RENAME COLUMN SMO with different materializations.
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Figure B.3: Accessing table versions of inner JOIN SMO on a condition with different materializations.
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Figure B.4: Accessing table versions of DECOMPOSE SMO on a FK with different materializations.

Source Target

Read

Accessed Version

Q
ET

 [m
s]

0
50

10
0

vi
rtu

al
iz

ed

re
du

dn
an

t

m
at

er
ia

liz
ed

Source Target

Insert

Accessed Version

Q
ET

 [m
s]

0
5

10
15

Source Target

Update

Accessed Version

Q
ET

 [m
s]

0
5

10
15

Source Target

Delete

Accessed Version

Q
ET

 [m
s]

0
5

10
15

Figure B.5: Accessing table versions of MERGE SMO with different materializations.
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Figure B.6: Accessing table versions of PARTITION SMO with different materializations.
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C
SCALING BEHAVIOR OF ACCESS

PROPAGATION THROUGH SMOS

In Section 7.3.2, we measure and estimate the performance for propagating data accesses through up
to two SMOs. However, the shown charts are restricted to the combinations of any SMO with the
ADD COLUMN SMO. The following figures provide the remaining measurements. We do see the same
effects here. There is a significant difference between accessing data locally or propagating it through
an SMO, so there is significant optimization potential the DBA can use by adapting the physical table
schema to the current workload. Further, the DBA can do so, without fearing a penalty for propagating
data accesses through sequences of SMOs. The performance for propagating data through two SMOs
is just the intuitively expected linear combination—hence the performance behaves predictably.
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Figure C.1: Performance for all SMOs combined with the DROP COLUMN SMO.
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Figure C.2: Performance for all SMOs combined with the MERGE SMO.
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Figure C.3: Performance for all SMOs combined with the PARTITION SMO.
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Figure C.4: Performance for all SMOs combined with the DECOMPOSE SMO.
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Figure C.5: Performance for all SMOs combined with the JOIN SMO.
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D
EVALUATION OF INVERDA’S COST MODEL

In Section 7.3.4, we create a cost model to provide the adviser’s optimizer with fast estimates of the
costs for executing a given workload on a given system with a given materialization. We evaluate the
estimation error of the developed cost model in Section 7.6.1. We conduct the empiric evaluation
for all combinations of two subsequent SMO—however, the shown figures are restricted to those
pairs that have an ADD COLUMN, a JOIN, or a MERGE as second SMO, so the following figures show the
same measurements for the remaining combinations as well. The results are already discussed in
Section 7.6.1.
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Figure D.1: Error of the cost estimation for read and write operations in an evolved database with two
subsequent SMOs, with the second being a DROP COLUMN SMO.
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Figure D.2: Error of the cost estimation for read and write operations in an evolved database with two
subsequent SMOs, with the second being a RENAME COLUMN SMO.
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Figure D.3: Error of the cost estimation for read and write operations in an evolved database with two
subsequent SMOs, with the second being a DECOMPOSE SMO.
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Figure D.4: Error of the cost estimation for read and write operations in an evolved database with two
subsequent SMOs, with the second being a PARTITION SMO.
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