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1 INTRODUCTION AND AIMS  1 

 

 

1 INTRODUCTION AND AIMS 

The demographic changes in industrial countries lead to rising numbers of elderly and multi-

morbid patients with an accompanying increase in poorly healing bone fractures, implant 

failures and chronic wounds such as skin ulcers. All of this can not only strongly reduce the 

quality of life of these patients, but also leads to a significant increase in health care costs [1–

3]. Thus, innovative functional materials that promote healing processes in health-compromised 

patients are a step towards both improving quality of life and reducing costs. In this context, 

the development of novel adaptive biomaterials and coatings as well as their characterization 

in terms of their impact on matrix remodeling and angiogenesis are essential.  

One promising approach for the development of, for example, novel implant coatings or wound 

dressings is the use of functional components of the extracellular matrix (ECM) as this will 

provide an environment favorable for the regeneration of vascularized tissues such as bone and 

skin. The organic ECM of skin and bone is characterized by a complex, tissue-specific 

composition of collagen and several non-collagenous components like glycosaminoglycans 

(GAGs). Besides cell-cell interactions, cell-matrix interactions represent key factors that 

influence fundamental biological processes like cell adhesion, proliferation and differentiation 

[4,5]. GAGs like heparin (HEP), chondroitin sulfate (CS) and hyaluronan (HA) are negatively 

charged linear unbranched polysaccharides. Native sulfated GAGs (sGAGs) interact with 

biological mediator proteins like vascular endothelial growth factor-A (VEGF-A), matrix 

metalloproteinases (MMPs) and tissue inhibitor of metalloproteinase-3 (TIMP-3), which are 

crucial for angiogenesis and tissue remodeling during wound healing [6–8], and can modify 

their effects. However, the limited availability as well as the batch-to-batch variability of native 

GAGs are detrimental for clinical translation and the analysis of structure-function relationships 

in their interaction with biological mediators and cells. To overcome these limitations, non-

sulfated HA can be chemically modified with e.g. sulfate groups in a more defined manner. HA 

sulfation has been shown to promote the interaction with several mediator proteins such as 

growth factors and to have direct positive effects on cells relevant to wound healing [9R]. 

Hence, specifically modified GAGs are promising functional compounds for biomaterials 

improving tissue regeneration in bone and skin.  

For the design of functional biomaterials aiming to improve wound healing by directing the 

cellular behavior towards patient-specific needs and to closer mimic the in vivo situation, it is 

necessary to evaluate the impact of GAGs on ECM remodeling and angiogenesis and to develop 

novel, multi-component 2.5-dimensional (2.5D) and 3D artificial ECMs (aECMs) based on 

polymeric GAG derivatives and collagen type I. However, even though native sGAGs are 

known for their protein binding properties, studies on the interplay of GAGs with VEGF-A and 

TIMP-3 as well as their potential consequences on the mediator protein activity and the 

biological consequences of these GAG-protein binding for example on the inhibition of MMPs, 

TIMP-3 endocytosis and VEGF-A signaling are sparse and often restricted to HEP [10,11]. 



2  1 INTRODUCTION AND AIMS 

Thus, only little is known about the structure-function relationship of GAGs in this regard at 

present. This leads to the following aims of this PhD thesis: 1  

(i) Analyze the interaction of native and chemically modified GAGs with TIMP-3 and 

VEGF-A as important mediator proteins involved in tissue remodeling and 

angiogenesis,  

(ii) Determine the impact of the TIMP-3/GAG interplay on the inhibition of matrix 

metalloproteinase-1 and -2, the TIMP-3 complex formation with its endocytic receptor 

low-density lipoprotein receptor-related protein-1 (LRP-1) and on the competition of 

TIMP-3 with VEGF-A for VEGF receptor-2 (VEGFR-2), 

(iii) Study the biological consequences of the GAG interaction with TIMP-3 and VEGF-A 

on the signal transduction via VEGFR-2 and the migration of endothelial cells,  

(iv) Engineer and characterize functional multi-component biomaterials based on aECMs as 

2.5D and 3D biomimetic cellular microenvironments,  

(v) Analyze the impact of GAG derivatives on the enzymatic degradation of native HA and 

HA/collagen-based hydrogels via hyaluronidase (Hyal) and of collagen-based aECM 

coatings via collagenases, 

(vi) Reveal the binding and release profiles of 3D HA/collagen-based hydrogels for 

lysozyme and VEGF-A, 

(vii) Evaluate the potential influence of solute or hydrogel-bound GAG derivatives on the 

proliferation and functional morphology of endothelial cells in the absence or presence 

of VEGF-A. 

 

  

                                                 
1 This work was embedded in the DFG-funded SFB Transregio 67 “Functional biomaterials for controlling healing 

processes in bone and skin - from material science to clinical application” as part of the subproject A3 

“Development and characterization of artificial extracellular matrices based on collagen and glycosaminoglycan 

derivatives”. Parts of this thesis have been already published (compare list of publications, first authorships are 

indicated by a “R” before the number of the cited publications (e.g. R316), while co-authorships are highlighted 

by a “R” after the respective number of the cited publication (e.g. 9R). 
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2 BACKGROUND AND STATE OF KNOWLEDGE 

2.1 Extracellular matrix (ECM) 

The space between cells is filled with the ECM that provides the structural surrounding and 

mechanical support for cells as well as multiple biomechanical and biochemical cues. All this 

has the ability to direct and influence various fundamental biological processes like cell 

differentiation, angiogenesis and tissue homeostasis [5]. Matrix composition and architecture 

is tissue specific and depends on the physiological state, resulting in a strong heterogeneity. For 

example the ECM composition is altered in cancerous tissue compared to healthy ones [12]. 

However, in general each ECM is composed of water, fibrous proteins, glycoproteins, 

proteoglycans (PGs) and GAGs. A schematic overview of the ECM is given in Fig. 2.1. Due to 

the interaction of GAGs with mediator proteins such as growth factors, the ECM also functions 

as reservoir for these proteins. This binding of proteins to the ECM can alter their function in a 

stimulatory or inhibitory way. Cells adhere to the ECM via specific ECM-sensing cell-surface 

receptors, e.g. integrins [13,14], syndecans [15] and discoidin domain receptors [16], which 

influence signal transduction and thus cellular processes such as the cytoskeletal arrangement 

and cell migration [17]. The ECM as a whole is a highly dynamic structure being continuously 

enzymatically or non-enzymatically remodeled and post-translationally modified.  

Fig. 2.1 Schematic overview of the ECM.  

2.1.1 Structural proteins 

Different collagen types and non-collagenous glycoproteins such as elastin, fibronectins (Fns) 

and laminins represent the structural proteins of the ECM [18].  

Collagens 

Collagens are a family with at least 29 different members [19]. They are the major structural 

proteins in the ECM (about 25% of total tissue protein) and essential for tissue stability, 

integrity and structure [20]. The peptide composition of all collagens is special due to the high 

amounts of glycine (every third amino acid) and proline residues, leading to the repeating 

sequence Gly-X-Y in which X and Y are often proline and its post-translational modification 

hydroxyproline. Several lysine and proline residues of collagen are hydroxylated and are 
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important for the formation of the characteristic coiled-coil right-handed triple helices 

composed of three polypeptide α chains. Based on their structural characteristics, three types 

can be distinguished: i) fibril forming collagens, ii) non-fibril forming collagens, and iii) fibril 

associated collagens with interrupted triple helices (FACIT) [19]. Collagens type I, II, III, V, 

XI, XXIV and XXVII are fibril forming collagens. 

The biosynthesis of fibrillar collagen involves several intra- and extracellular steps, which 

determine the properties of the resulting fibrils. The transcription of the respective genes in the 

nucleus induces that preprocollagen α chains are synthesized on the ribosome. After entering 

the lumen of the rough endoplasmatic reticulum (ER), the respective signal peptide is removed 

and post-translational modifications take place. Hydroxylases modify proline to 4- and 

3-hydroxyproline as well as lysine residues to hydroxylysines. Furthermore, some 

hydroxylysine residues are glycosylated to galactosylhydroxylysine and glucosylgalactosyl-

hydroxylysine [21]. Ascorbate, ferrous ions, 2-oxoglutarate and molecular oxygen serve as co-

factors of these reactions. Three collagen chains then associate via their C-propeptides and are 

stabilized by the formation of intra- and interchain disulfide bonds. This process initiates the 

assembly of the triple helix in the direction of the N-terminus. Afterwards, the procollagen triple 

helices are transferred into secretory vesicles within the Golgi apparatus and secreted into the 

extracellular environment, where the propeptides located at the C- and N-termini of procollagen 

are cleaved by proteases [22].  

The supramolecular spontaneous assembly of collagen monomers to fibrils termed 

fibrillogenesis is a complex, entropy driven-process [23]. During the initial lag period the 

monomers form a nucleus and in the following growth phase the fibrils grow in diameter and 

length, a process that can be followed by measuring the increase in turbidity over time [24,25]. 

Electrostatic and hydrophobic interactions between the collagen monomers lead to the 

formation of quarter-staggered complexes that form five-stranded micro-fibrils which then 

assemble into fibrils which are further stabilized by covalent cross-links. This staggered 

arrangement results in the characteristic banding pattern (D-periodicity with D ≈ 67 nm) 

(Fig. 2.2) [23]. Several factors such as the collagen type or the presence of further collagen 

types and proteoglycans (e.g. decorin, biglycan) influence the fibrillogenesis and thereby the 

resulting fibril morphology in vivo [25–27], though different models exist that explain the 

effects of for instance decorin on the collagen organization. Some suggest that the formation of 

interfibrillar GAG bridges may control the interfibrillar distance in collagen [28]. 

The most abundant protein in skin and bone tissue is collagen type I, while collagen type II is 

the main type found in cartilage [29,30]. Type III collagen is known to increase the strength of 

hollow constructs such as the intestine, arteries and the uterus, and type IV collagen builds the 

basal lamina. Collagen type I is important for the mechanical properties of bone as it represents 

the primary matrix component and provides nucleation sites for mineralization. Additionally, it 

influences the osteoblastogenesis by for example promoting the bone morphogenic 
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protein (BMP) induced osteogenesis as well as the osteoclastogenesis by functioning as 

degradable substrate for osteoclasts. Collagen type III is reported to promote bone formation in 

general [31]. An overview on further collagen types and their functions is given by Gelse et al. 

and will not be discussed here in detail [22]. 

Fig. 2.2 Schematic overview on the axial structure of triple-helical collagen type I, III or V 

monomers in a fibril with associated collagen type XII or XIV as present in skin. Adapted from 

[23,32] with modifications according to [33,34]).  

Collagen type I contains two α1 (I) chains and one α2 (I) chain, while collagen type II and 

collagen type III are homotrimers consisting of three α1 (II) chains or three α1 (III) chains, 

respectively. Tropocollagen is composed of three polypeptide chains with about 1000 amino 

acids each that form a triple helix with a diameter of about 1.4 nm and a length of about 300 nm. 

Each turn of the triple helix consists of 3.3 residues with a translational distance between them 

of 0.286 nm, resulting in an extended pitch of the helix of about 0.95 nm [35]. 

Beside their functions in biomechanics, collagens contain binding sites for further ECM 

components such as GAGs [20]. For example, HEP has a high affinity for collagen type I 

(KD ≈ 150 nM) [36] and collagen type V binds CS-E and HEP with KD values of 5 - 40 nM 

[37]. Due to their direct or indirect interplay with cytokines and growth factors, they also 

contribute to the sequestering of mediator proteins within the ECM. Furthermore, cells are able 

to directly interact with collagens via several specific receptor types like glycoprotein VI and 

integrins that recognize the Arg-Gly-Asp (RGD) sequence. These interactions influence 

fundamental processes such as cell adhesion, growth, differentiation, survival and activity [22].  

Fibronectin (Fn) 

Fn is a ubiquitous homodimeric glycoprotein composed of two 220 - 250 kDa subunits 

connected by two disulfide bonds. Each Fn subunit contains three domains (type I, II and III) 
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[38]. There are two forms of Fn with different functions. The plasma form of Fn is part of the 

fibrin clot, which is formed as provisional matrix after an injury [39]. Cells such as 

keratinocytes, myofibroblasts and endothelial cells secrete cellular Fn, which assembles into a 

fibrillary network for instance in the dermis, the dermal-epidermal basement membrane region 

as well as the bone marrow niche [40]. This network influences several processes such as cell 

adhesion, proliferation and polarization [41], for example through integrin-mediated cell-

binding via a RGD sequence or through interaction with collagen, syndecans, perlecan or HEP 

via specific binding sites [42,43]. Especially the interaction with GAGs and PGs is reported to 

alter the Fn matrix assembly [44].  

2.1.2 Proteoglycans (PGs) and glycosaminoglycans (GAGs) 

PGs are glycosylated proteins that bind high quantities of water thereby forming a hydrogel that 

fills the space in the extracellular environment [45]. Beside their buffering functions and 

importance for water retention and resistance against compressive forces within the ECM, PG 

are known to bind mediator proteins such as growth factors and cytokines and to influence the 

ECM structure. They are composed of one or more GAG chains covalently bound to a core 

protein and have a high variability in their protein sequence as well as their GAG chains, 

resulting in a multitude of different structures and functions [46]. There are three main PG 

families: i) modular PG, ii) small leucine-rich PGs (SLRPs) and iii) cell-surface PGs [47]. 

GAGs are linear negatively charged polysaccharides characterized by repeating disaccharide 

units composed of an acetylated amino sugar (N-acetyl-glucosamine or N-acetyl- 

galactosamine) and most commonly uronic acid (L-iduronic acid or D-glucuronic acid). The 

variety of GAG structures is a result of polymer modifications like acetylation, isomerization 

and sulfation. These variations of the disaccharide sequences may direct the wide range of 

interactions with different proteins, which led to the suggestion of a sulfation code of GAGs. 

However, the term code in this context does not refer to a template driven process comparable 

to transcription and translation but should be interpreted as influence of the GAG structure on 

the specificity of GAG-protein interactions [48].  

GAGs have multiple biological functions and participate in the regulation of e.g. angiogenesis 

(section 2.7.3), development, tissue homeostasis (sections 2.3, 2.4) and cancer progression (an 

overview on different GAG functions is given in Fig. 2.3). Further, they are involved in 

microbial pathogenesis since several pathogens such as viruses (e.g. herpes simplex virus), 

parasites and bacteria are reported to target their host cells via their interaction with cell surface-

bound GAGs [49,51].  

GAGs function as polyelectrolytes and trigger cellular response in different ways: i) indirectly 

by binding and accumulating mediator proteins such as growth factors and ii) directly due to 

their interaction with cells. They are able the binding of signaling proteins to cell receptors and 

thus cell signaling. As shown in Fig. 2.4, two classes of GAGs exist: i) the non-sulfated GAG 
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HA and ii) the sulfated GAGs CS, dermatan sulfate (DS), keratan sulfate (KS), HEP and 

heparan sulfate (HS), with only class ii) members bound to core proteins via a serine containing 

tetrasaccharide linker (GlcA-β1,3-Gal-β1,3-Gal-β1,4-Xyl-β1-O-Ser) [53].  

Fig. 2.3 Schematic overview on the location of GAGs and their biological functions. Adapted from 

[49,50] with modifications).  

2.1.2.1 Chondroitin sulfate (CS) 

CS consists of repeating disaccharide units (D.U.) of D-glucuronic acid β-1,3-linked to 

N-acetylgalactosamine residues that are assembled in the ER/Golgi apparatus. The activity of 

sulfotransferases results in different sulfation patterns of CS that are termed CS-A (sulfate 

residues at the C4 position of N-acetylgalactosamine), -C (sulfation of the C6 position of 

N-acetylgalactosamine), -D (sulfate groups at the C2 of glucuronic acid and the C4 of N-acetyl-

galactosamine) or -E (sulfation of the C4 and C6 position of N-acetylgalactosamine), while the 

non-sulfated derivative is named chondroitin (C) [54]. CS is a major component of arterial walls 

and the dominante GAG in the bone ECM [55,56]. It is ubiquitous on cell surfaces and within 

the ECM in the form of PGs (CSPGs) like versican or aggrecan where CS chains are covalently 

bound to serine residues of the core proteins. These CSPGs strongly vary in the number of CS 

chains as well as in their size from 80 - 3500 kDa [57]. CSPGs are involved in a number of 

different biological events such as morphogenesis and neural development [54,58] and CS 

interacts with several mediator proteins and ECM components such as BMP-4 and Fn [59,60]. 

Commercially available CS is in most cases extracted from shark cartilage or from bovine 

trachea [61]. It is currently used as nutraceutical product for self-medicating patients against 

osteoarthritis even though its effects are discussed controversially and the bioavailability of CS 

after oral up-take is unclear [62].  

2.1.2.2 Dermatan sulfate (DS) 

DS (formerly called CS-B) is a stereoisomer of CS present in skin, blood vessels and heart 

valves and composed of L-iduronic acid bound to D-galactosamine via a β-1,3 linkage. The 
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iduronic acid is sulfated at the C2 position, while the galactosamine residue can be sulfated at 

the C4 or the C6 position. The intracellular epimerization of glucuronic acid to iduronic acid 

leads to the formation of dermatan sulfate from CS. DS is present in DSPG where DS is 

covalently bound to a serine residue of the core protein via an O-xylose linkage. Decorin, 

biglycan, thrombomodulin and versican are examples for DS chain containing PGs [63]. 

Fig. 2.4 Structural characteristics of native GAGs. Adapted from [46,52]. HA, CS, KS, DS, HS and 

HEP are polysaccharides composed of repeating D.U., which are displayed as cartoon representatives 

showing the diversity of possible modifications within one polymer chain (upper panels) as well as 

structural formulas representing the most abundant saccharide compositions with R = H or SO3H (lower 

panels). 

2.1.2.3 Keratan sulfate (KS) 

KS is composed of N-acetyl-glucosamine β-1,3 linked to D-galactose and is present in the ECM 

of for instance cartilage, bone and cornea [64]. It is mostly 6-O-sulfated at the N-acetyl-

glucosamine residue but can be modified at the D-galactose residue as well [65]. Due to its 

structural characteristics, KS is the only GAG without acidic residues and thus less acidic in 

solution compared to the other GAG types. KS can be differentiated in KS I, which is N-linked 

to asparagine residues of a core protein and is the predominant GAG in cornea, and KS II, 

which is O-linked to threonine or serine residues and is for example present in cartilage [66]. 
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Examples for PGs with KS (KSPG) are keratocan, fibromudulin, lumican and osteoadherin, 

which belong to the SLRPs.  

KSPGs in cornea are required to maintain the hydration level and thereby tissue transparency 

[67]. Because of this KS is often used as an eye drop ingredient. KS is also present in aggrecan 

and contributes to the typical hydration properties of cartilage. In bone, osteoadherin expressed 

by osteoblasts binds to hydroxyapatite and promotes an integrin-mediated cell binding [68].   

2.1.2.4 Heparan sulfate/heparin (HS/HEP) 

HS is synthesized by all cells and widely distributed within the matrix and on cell surfaces, 

while HEP is solely produced by connective-tissue-type mast cells and present as PG serglycin 

in their cytoplasmic granules [69,70]. HEP plays a critical role in the intracellular storage of 

granule-localized proteases, serotonin and histamine, in mast cells [71]. HEP is more sulfated 

and epimerized than HS. A typical HS chain has a multidomain structure and contains about 

50 - 250 D.U. resulting in a molecular weight (MW) of 20 - 100 kDa and 0.6 - 1.8 sulfate groups 

per repeating D.U. In contrast, HEP has an average MW of 7 - 20 kDa and about 1.8 - 2.6 sulfate 

residues per disaccharide [48]. Because of this, HEP is the GAG with the highest negative 

charge density [72]. Syndecans with a transmembrane domain and glypicans characterized by 

a glycosyl-phosphatidylinositol anchor represent the main families of cell surface-bound PGs 

with HS (HSPGs), while perlecan, agrin and collagen type XVIII are the major types of HSPGs 

that are located in the ECM [70].  

The biological functions of HSPGs mainly base on the interaction of sulfated chain regions with 

proteins (e.g. morphogens, growth factors) and can affect their localization, biological activity 

or signaling processes. Since the interaction of proteins and HS are crucial for development and 

tissue homeostasis, an in-depth understanding of the structure-function relationship is required 

to clarify for instance their role in several pathophysiologic conditions [70].  

To qualify as a HS-binding protein (HSBP) several criteria have to be met. They have to show 

a significant interaction with HS under physiological conditions regarding pH and ionic 

strength. In general, there should be a detectable protein binding to HEP, e.g. to HEP/sepharose 

columns, which is not disrupted in the presence of isotonic saline concentrations. The same 

criterion must be fulfilled for their interplay with HS. The third criterion for a HSBP is that it 

must be attendant in a relevant biological context such as at the ECM or cell surface [48].  

Up to now, about 300 human proteins are known for their HEP-binding properties and most of 

them are HSBPs [73]. A HS-protein interaction is defined as specific when only a specific 

sequence within the polymer directs the interplay and as non-specific if several sequences 

participate equally [74]. One example for a specific interaction is the pentasaccharide 

GlcNAc/NS6S-GlcA-GlcNS3S,6S-IdoA2S-GlcNS6S that provides the binding site for the serine 

protease inhibitor antithrombin-III (AT-III), which causes the anticoagulant activity of HEP 

[75,76].  
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HEP is widely used in the clinics as intravenous anticoagulant (KD of 3 nM for AT-III) [48], 

and the HEP crisis in 2007 - 2008 highlighted the consequences of HEP contamination with a 

semi-synthetic over-sulfated CS as this led to anaphylactic responses causing hypotension and 

nearly 100 deaths [77]. Furthermore, the availability of animal-derived HEP (mainly from 

porcine intestinal mucosa) is limited, highlighted by the fact that one pig is required to isolate 

one dose of low MW (LMW)-HEP or three doses of unfractionated HEP. This also results in 

high cost for pharmaceutical grade HEP [78].  

2.1.2.5 Hyaluronan (HA) 

HA is unique since it is non-sulfated and not epimerized or covalently linked to any protein 

core. Furthermore, it is the only GAG that is synthesized at the inner surface of the plasma 

membrane catalyzed by HA synthases and not in the Golgi apparatus. There, it is elongated at 

its reducing end by the continuous addition of uridine-diphosphate (UDP)-activated-N-acetyl-

glucosamine and UDP-glucuronic acid, while the chain elongation of sGAGs occurs at the non-

reducing end [79].  

HA is found in the ECM of skin, eye, and cartilage, in synovial fluid and to a lower extent also 

in the ECM of bone and other tissues. It is composed of repeating D.U. of N-acetylglucosamine 

bound via a β-1,3 linkage to glucuronic acid. The respective disaccharides in turn are linked via 

a β-1,4 linkage, resulting in polymers of high MW (HMW) (up to 20000 kDa) [80]. One D.U. 

has a length of about 1 nm resulting in a total length of 10 µm for a HA molecule with 

10000 D.U. [81]. Even though it is known that extracted HA has a random coil conformation, 

the actual conformation of HA in the tissue is not fully elucidated today [82]. 

HA is nowadays mainly obtained by bacterial fermentation (Streptococcus groups A or C) since 

this is much easier and more cost efficient than extraction from tissues like rooster comb [61]. 

It became popular due to its wide use for intradermal injections in cosmetics to treat for instance 

wrinkles. However, HA has much more important functions than just serving as filling material 

[83]. For example, the clinical efficiency of intra-articular HA injections to reduce pain 

associated with osteoarthritis in the knee [84,85]. 

The size of HA mainly dictates its function as signaling molecule. HMW-HA acts as space-

filler within the ECM by incorporating large amounts of water and has anti-angiogenic, anti-

inflammatory and immunosuppressive effects, while smaller HA fragments of 25 - 50 D.U. that 

result from degradation of HMW-HA stimulate the immune response, promote angiogenesis 

and inflammation [82]. Furthermore, both high- and LMW-HA (36000 kDa, 300 kDa) was 

reported to function as antioxidant in vitro by scavenging reactive oxygen species and free 

radicals [86] In addition, HA tetrasaccharides can protect cells from apoptosis and HA 

oligosaccharides are crucial for chondrogenesis [82].  

Further factors determining the function of HA are its concentration and localization as well as 

its interaction with specific HA-binding proteins, the so-called hyaladherins [87]. Examples for 
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such HA-binding proteins are the members of the link module family (e.g. aggrecan, versican, 

brevican, neurocan, cluster of differentiation-44 (CD44)) and non-link module hyaladherins 

such as RHAMM (receptor for hyaluronan-mediated motility, also known as CD168). CD44 as 

the main HA receptor is ubiquitously expressed by cells and responsible for the internalization 

of HA. Furthermore, it can interact with other ligands like Fn, collagen, serglycin, osteopontin 

and laminin. There are different splicing variants of CD44 that are involved in several processes 

like cell signaling and ECM organization by supporting cell-matrix adhesion [88]. RHAMM is 

present in multiple cell compartments like the cell membrane, mitochondria, cell nucleus and 

the cytoskeleton. It contributes for example to the arrangement of the actin cytoskeleton through 

association with actin, functions as an adapter molecule connecting signaling complexes with 

the cytoskeleton and activates several tyrosine and serine/threonine kinases (e.g. focal adhesion 

kinase) by its interaction with HA. Overall it is important for the migration and proliferation of 

cells during physiologic and pathologic conditions [89]. Moreover, HA can be chemically 

modified to tune its properties and functionality, which will be discussed in section 2.8.3. 

2.1.2.6 Enzymatic degradation of GAGs 

An ordered enzymatic degradation of glycosaminoglycans is mandatory to maintain tissue 

properties and functions. Since native sGAGs always occur bound to a protein core, free GAGs, 

except HA, represent degradation products of PGs from the ECM. ADAMTS (a disintegrin and 

metalloproteinase with thrombospondin type I motifs) family members are PG degrading 

proteinases [52]. For example, ADAMTS-5 havs the highest activity to degrade aggrecan and 

cleaves the Glu373 - Ala374 bond of the core protein [90].  

The intracellular GAG digestion takes place in two steps with specific pathway for each GAG 

type. PGs are initially depolymerized in the endosome through endolytic GAG cleavage by 

heparanase, Hyal and endo-galactosidase. The resulting oligosaccharides are desulfated and 

exolytically cleaved into monosaccharides in the lysosome by sulfatases, glycosidases and a 

transferase. Enzyme deficiencies result in the manifestation of seven mucopolysaccharidoses, 

which are reviewed by Coutinho et al. [91]. In contrast to the biosynthesis of GAGs, their 

catabolism is not fully understood today [54]. 

Hydrolases depolymerize GAGs in vivo, while the heparinases, chondroitinases and 

hyaluronidases often used for analytical and preparative purpose are lyases of mainly bacterial 

origin [92]. Lyases cleave the glycosidic linkage by β-elimination at the non-reducing end of 

uronic acids resulting in unsaturated C4-C5 bonds. In contrast, hydrolases can specifically 

cleave either of the two bonds existing in the GAG polymer and leave all carbons saturated. An 

overview of different GAG degrading enzymes is given in Tab. 2.1.  

Two hydrolase types of Hyal can be distinguished based on their mechanisms of substrate 

cleavage. Hyal-I or testicular Hyal randomly cleaves HA and CS by hydrolyzing the β-1,4 

glycosidic bond between the N-acetylglucosamine or N-galactosamine and the glucuronic acid 
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residues, while Hyal-II or leech Hyal catalyze the cleavage of the β-1,3 glycosidic linkage [93]. 

In vivo, HMW-HA is first cleaved by Hyal-II on the cell membrane to generate fragments of 

about 20 kDa [94]. These products are internalized into endosomes and cleaved after their 

transport to lysosomes by Hyal-I into smaller oligosaccharides, which are afterwards degraded 

by the activity of β-N-acetyl-hexosaminidase and β-D-glucuronidase that remove non-reducing 

sugars [81]. These enzymes are present in serum and inside the cells; for example, Hyal-I 

concentrations in the human serum are reported to be about 60 ng/ml [95].  

Tab. 2.1 Overview on GAG degrading enzymes. Adapted from [50]. 

 Enzyme Substrate Cleaved linkage1 

L
y
a
se

s 
(E

C
 4

.2
.2

.X
) 

Heparinase I (X = 7) HEP HNS,6Z-(α-1,4)-I2S (endo, exo) 

Heparinase II  HEP, HS HNY,6Z-(α-1,4)-U2Z (endo) 

Heparinase III (X = 8) HS HNAc-(α-1,4)-I, HNY,6Z-(α-1,4)-G (endo) 

Chondroitinase ABC (X = 4) 
CS-A/-C, 

C, DS, HA 
HNAc,4Z,6Z-(β-1,4)-U2Z 

2 (exo) 

Chondroitinase AC (X = 5) 
CS-A, CS-

C, C, HA 
HNAc,4Z,6Z-(β-1,4)-G (endo or mixed) 

Chondroitinase B (X = 19) DS HNAc,4Z,6Z-(β-1,4)-I2Z 

Chondroitinase C 
CS-C, HA, 

CS-A  
HNAc,6S-(β-1,4)-I2Z 

Hyaluronidase (X = 1) 
HA, DS, 

CS, C 
HNAc-(β-1,4)-G 

H
y

d
ro

la
se

s 
(E

C
 3

.2
.1

.X
) 

Heparanase (X = 166) HEP, HS I2Z-HNY,6Z-G-(β-1,4)-HNY,6Z,3Z (endo) 

Keratanase I (X = 103) KS HNAc,6Z-Gal-(β-1,4)-HNAc,6Z (endo) 

Keratanase II KS HNAc,6S-(β-1,3)-Gal6Z-HNAc,6S (endo) 

Hyal I (X = 35) 
HA, CS, 

DS 
HNAc-(β-1,4)-G (endo) 

Hyal II (X = 36) HA G-(β-1,3)-HNAc (endo) 

β-D-glucuronidase (X = 31) HS, CS G-(β-1,4)/(β-1,3)-HNY,6S or 4S (exo) 

α-L-iduronidase (X = 76) HS, DS I-(α-1,4)/(α-1,3)-HNY,4Z,6Z (exo) 

β-galactosidase (X = 23) KS Gal-(β-1,4)/(β-1,3)-HNAc,6Z (exo) 

α-N-acetyl-glucosaminidase (X = 50) HEP, HS HNAc-(α-1,4)-G2Z (exo) 

β-N-acetyl-hexosaminidase (X = 52) 
HA, KS, 

CS, DS 
HNAc-(β-1,4)/(β-1,3)-G2Z (exo) 

1G = glucuronic acid, H = hexosamine, I = iduronic acid, U = uronic acid, Y = sulfated or acetylated, 

Z = unsubstituted or sulfated  

2At least one sulfate residue at the galactosamine moiety required   
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2.1.3 ECM of skin 

Skin consists of an outer layer, the epidermis, the dermis as an underlying connective tissue 

connected to the epidermis via a basement membrane (Fig. 2.5), and the subcutis. The epidermis 

comprises the multilayered epithelium and the interfolicular epidermis with sebaceous glands 

and hair follicles [96]. 80% of the total collagen in skin is collagen type I and 15% is collagen 

type III, which is located in the dermis and required to maintain the structure and integrity of 

the tissue. Collagen type III is also important for the flexibility, softness and tensility of the 

dermis and modulates the diameter of collagen fibrils [29]. The basement membrane ECM 

mainly contains a network of collagen type IV, which is connected via perlecan and nidogens 

to laminins [97]. Especially laminin 332 is crucial to link the epidermis to the dermis [32].  

Fig. 2.5 ECM of skin. Simplified overview of the layered structure of skin including characteristic cell 

types. Adapted from [98] with modifications. 

The papillary dermis, which is closest to the epidermis as outer skin layer, contains mainly thin 

collagen fibers, while a highly cross-linked, dense collagen network present above the layer of 

subcutaneous fat characterizes the underlying reticular dermis. Beside fibroblasts, mast cells, 

T and B cells and macrophages, blood vessels, nerves and lymphatics are present in the dermis 

[96].  

The major PGs in skin are decorin and versican. With increasing age, the amount of versican 

as a large CS-containing PG decreases, while the amount of decorin as a DS-containing PG 

rises [99]. GAGs make up about 0.1 - 0.3% of the dry weight of skin [100]. HA, DS and CS are 

the main GAGs in skin with approximately 58%, 20% and 21% of the total GAGs, respectively 

[101]. It is of note that about 50% of the total body HA is present in the skin ECM. The HA 

content is higher in the dermis compared to the epidermis [102,103]. 
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2.1.4 ECM of bone  

The mechanical properties of bone are determined by both the hard and rigid inorganic part of 

the ECM that contains mainly hydroxyapatite [Ca10(PO4)6(OH)2] and constitutes about 70% of 

the bone ECM, and the more flexible organic part. This is made up of  90% collagen type I and 

over 100 further ECM proteins like other collagen types, PGs, Fn, osteopontin and osteocalcin 

[104,105].  

Examples of PGs in bone are decorin, biglycan and osteoadherin [68,106]. GAGs constitute 

4 - 5% of the collagen dry weight in the bone ECM [107]. CS-A represents 90% of the GAGs 

present, while HA, DS and CS-C are the remaining parts [56]. It is known that the ECM is an 

important modulator of matrix mineralization, cell function as well as tissue morphogenesis. 

CS-E for example is reported to be critical for the intramembranous ossification and it is 

suggested to function as ligand for the potential CS receptors cadherin-11 and N-cadherin, 

thereby promoting osteogenic differentiation in vitro [108].  

Fig. 2.6 Simplified scheme of the matrix compartments of bone. Adapted from [31] with 

modifications. 

Bone is composed of the following matrix compartments: i) the mineralized bone ECM, 

ii) marrow, iii) endosteum, iv) periosteum and v) osteocyte perilucanar matrix (Fig. 2.6). The 

irregular and loose marrow ECM is required for the support of hematopoietic stem cell 

differentiation, human mesenchymal stromal cells (hMSCs) as well as osteoclast precursor 

cells. In contrast, the endosteum contains bone lining cells with their insufficiently 

characterized ECM and the osteoid that is a non-mineralized ECM produced by osteoblasts. 

During bone maturation, this osteoid will transform into mineralized bone [31]. The periosteum 
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is composed of two histological layers, a fibrous, collagen rich layer and a cell rich cambium 

layer [109].  

The osteocyte non-mineralized perilacunar matrix is embedded in the mineralized bone matrix 

and surrounds the osteocytes. It connects these cells with each other as well as with the 

vasculature and further bone cells located on the bone surface. This matrix is characterized by 

fluid-like mechanical properties due to the matrix proteins such as small integrin-binding 

ligand-linked glycoproteins and matrix extracellular phosphoglycoprotein secreted by 

osteocytes [110].  

2.2 Wound healing 

Wound healing is a well-orchestrated dynamic process which requires the interaction of several 

cell types with the ECM, growth factors and cytokines and can be affected via a variety of 

different factors [111].  

2.2.1 Cutaneous wound healing 

The skin represents the largest organ of the human body and is composed of the three layers: 

epidermis, dermis and subcutis (compare section 2.1.3). It functions as a barrier against the 

environment including microorganisms, provides mechanical protection against traumata, 

protects against physical stress (ultraviolet (UV) light, heat, cold) and loss of water, regulates 

the body temperature, contributes to the immunological protection and is a sensory organ for 

tactile and pain stimulus. Multiple biological processes, which will be described in the 

following section, are required to restore the integrity of the skin after an injury. Disruption of 

these sequential processes can cause several pathologic conditions and diseases [29]. 

Phases of wound healing 

The complex process of dermal wound healing can be divided into five partially overlapping 

phases: hemostasis, inflammation, proliferation/granulation, epithelization and remodeling 

(Fig. 2.7).  

Fig. 2.7 Phases of cutaneous wound healing. The displayed times are approximate values, which can 

differ strongly due to patient specific factors. Adapted from [112] with modifications according to [113]. 
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The hemostasis starts immediately after wounding. Vasoconstrictors (thromboxane A2, 

prostaglandin 2-α) are released and a coagulate consisting of fibrin, collagen, blood platelets, 

thrombin and Fn forms. The damage of associated molecular patterns (DAMPs) such as nucleic 

acids, intracellular proteins from dying cells and fragments of the ECM (e.g. LMW-HA) 

initiates inflammation [114]. Pro-inflammatory cytokines and growth factors like TGF-β 

(transforming growth factor-β), PDGF (platelet-derived growth factor), FGF (fibroblast growth 

factor) and EGF (epidermal growth factor) are released by the platelets from the coagulate and 

the surrounding wound area to initiate the inflammatory phase [111]. After the bleeding is 

stopped, inflammatory cells such as neutrophils, monocytes and lymphocytes start to migrate 

into the wound [115] where the fibrin network functions as scaffold for the arriving cells 

(inflammatory cells, fibroblasts and endothelial cells) and accumulates cytokines and growth 

factors.  

Due to this several hundred genes are activated within one hour after injury. Mechanical signals 

and/or bacterial toxins stimulate mast cells, T-cells and Langerhans cells to produce IL-1 

(interleukin 1), TNF-α (tumor necrotic factor-α), TGF-β and PF-4 (platelet factor-4) which 

attract neutrophils. M1- and M2-macrophages as well as neutrophils degrade and remove the 

detritus and bacteria via the release of proteolytic enzymes like MMPs and the up-take by 

phagocytosis, while also producing reactive oxygen species and nitrogen monoxide. The 

released interleukins and growth factors stimulate angiogenesis and keratinocytes and induces 

fibroblasts to produce collagen during the next phase [116]. 

During the following granulation phase new tissue is formed to fill the wound. PDGF and EGF 

stimulate proliferation and migration of activated fibroblasts. The stimulation of fibroblast with 

TGF-β1 induces their differentiation into myofibroblasts, which produce collagen and stress 

fibers to contract the wound. The provisional ECM mainly consists of collagen type III, PGs 

and Fn. Angiogenesis is further activated during this phase by VEGF-A [117].  

Activated thrombocytes and macrophages release EGF and TGF-α to induce the following 

epithelization phase, which is characterized by the wound closure due to wound contraction and 

formation of scar tissue. Collagen fibrils are produced and crosslinked. Fibroblasts release 

KGF-1 (keratinocyte growth factor-1) and IL-6 to stimulate the migration and proliferation of 

keratinocytes, which leads to the formation of a closed epidermis starting either from the wound 

edges or from an intact basement membrane [118]. 

The final remodeling phase can last weeks until months and completely re-establishes the skin 

properties and functions. Inflammatory cells are removed from the wound and the provisional 

matrix is transformed into a regular skin ECM for example by replacing collagen type III by 

the more stable collagen type I. New cells of skin tissue are produced only in a few isolated 

cases and the formation of new vascular structures is reduced for instance by the activity of 

anti-angiogenic factors like TIMP-3 [119] to maintain a physiological vascular density [120].  
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2.2.2 Bone regeneration 

Bone tissue is continuously remodeled to adapt the loading capacity under mechanical load, to 

maintain its mechanical properties, to repair micro fractures and to regulate the serum calcium 

ion concentration [121]. Locally and systemically released cytokines and growth factors such 

as BMPs together with mechanical and electrical signals control the processes of bone 

remodeling, resorption and formation [122].  

Four cell types mainly characterize bone tissue: the bone-building osteoblasts, the bone-

resorbing osteoclasts, osteocytes and the bone lining cells, with the latter two belonging to the 

osteoblast lineage (Fig. 2.6). Osteoclasts derive from haemopoietic stem cells and are related to 

monocytes and macrophages, while osteoblasts originate from mesenchymal stem cells [31]. 

The communication between osteoblasts and osteoclasts is especially important during bone 

remodeling and is coordinated by several key molecules.  

90% of all bone cells are osteocytes embedded in the mineralized matrix. They have long 

dendritic extensions that form a sensory network able to recognize and communicate 

mechanical stress within the bone. Bone remodeling takes several weeks after bone damage and 

is conducted by clusters of osteoclasts and osteoblasts building basic multicellular units 

(BMUs). 1 - 2 million of such active BMUs are present in the human skeleton [123]. 

The process of bone remodeling is characterized by five sequential phases: activation, 

resorption, reversal, formation and termination [124]. During the activation phase, initial 

signals of bone damage (mechanical stress or other signals) are detected by osteocytes and 

initiate the recruitment of osteoclast precursor cells. Osteoclast precursors require the 

monocyte/macrophage colony-stimulating factor (M-CSF) and receptor activator of NF-κB 

ligand (RANKL)-induced stimulation of receptor activator of NF-κB (RANK) to differentiate 

into active multinucleated osteoclasts. RANKL can be expressed by osteoblasts, stromal cells 

from the bone marrow and T and B lymphocytes. The natural antagonist of RANKL is 

osteoprotegerin (OPG), which can be also produced by osteoblasts.  

The second phase is characterized by mature osteoclasts that resorb bone by creating a sealing 

zone with an acidic pH after attachment to the bone. The release of the proteinase cathepsin K 

leads to collagen degradation, which is mediated by collagen-associated GAGs that are 

suggested to first bind cathepsin K and thereby facilitate the subsequent hydrolysis of collagen 

fibers [125]. During the reversal phase, hMSCs and osteoprogenitor cells are recruited to the 

specific bone site and differentiate into osteoblasts. The remaining undigested demineralized 

collagen matrix is removed by monocytes and other phagocytic cells, the so-called reversal 

cells that originated from the osteoblast lineage. Especially the Wnt/β-catenin pathway is 

crucial for the differentiation into osteoblasts. [124]. 

During the formation phase osteoblasts secrete an ECM composed of collagen type I and non-

collagenous proteins (e.g. osteocalcin, osteonectin and osteopontin), the osteoid, to re-fill the 
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resorption lacuna. Vitamin D and parathyroid hormone can enhance these processes. During 

the termination phase, the osteoid is mineralized and the bone remodeling is completed [123]. 

Some osteoblasts undergo apoptosis, while others terminally differentiate into osteocytes. 

These cells express factors regulating the phosphate metabolism and are the producers of the 

Wnt-pathway inhibitor sclerostin. Secretion of sclerostin inhibits osteoblast differentiation and 

thereby bone formation [126]. At the end of normal bone remodeling, the bone mass and quality 

prior to damage should be completely restored [123].  

2.2.3 Factors influencing wound healing 

Inflammation, changes and/or aging of fibroblasts in case of chronic wounds, local ischemia, 

bacterial load as well as the age of the patient and the wound location direct the course of 

biological processes during wound healing. The influencing factors can be divided into local 

and systemic ones [111]. An overview of these factors, which can also occur simultaneously, 

is given in Tab. 2.2, and selected examples will be discussed in the following section. 

Tab. 2.2 Local and systemic factors influencing wound healing. Adapted from [111,127]. 

Local factors Systemic factors 

Oxygenation, ischemia 

Infection  

Foreign body 

Edema, raised tissue pressure 

Venous sufficiency  

Age, gender 

Sex hormones 

Psychological stress 

Obesity 

Diseases (e.g. diabetes mellitus, hypothyroidism) 

Genetic syndromes (e.g. osteogenesis imperfecta) 

Medication 

Alcoholism, smoking 

Immunosuppression (e.g. AIDS, cancer, radiation therapy) 

Nutrition 

Oxygenation 

A tissue has to be supplied with oxygen for wound healing and cell metabolism [128]. Sustained 

hypoxia can reduce the ability of fibroblasts to produce collagen, lower the activity of 

neutrophils and leukocytes and promote endothelial cell apoptosis, thereby disturbing the 

ordered wound healing process [127,129].   

Infection 

An ongoing inflammatory reaction caused by a chronic bacterial colonization is another local 

factor. Both bacteria and their endotoxins can prolong the inflammation phase by stimulating 

the release of pro-inflammatory cytokines, the cellular phagocytosis and the extensive release 

of reactive oxygen species and ECM-degrading enzymes like MMPs by activated neutrophiles. 

These proteinases partially degrade both ECM and growth factors and can thereby hinder cell 
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migration [130,131]. The formation of a bacterial biofilm for example by Pseudomonas 

aeruginosa shields the bacteria from treatment with antibiotics as well as from phagocytosis 

and alters the natural skin flora. Here especially the type (for example β-hemolytic streptococci) 

and not only the number of pathogens (above 105 organisms per g tissue defines a high bacterial 

load) is crucial for the interference with the wound healing progress [127].  

Age 

Age as systemic factor can influence the course of wound healing. The initial wound healing is 

temporarily delayed in elderly patients [132]. Experiments with mice show an altered ECM 

production, inflammatory response, a retarded angiogenesis and epithelization as well as a 

reduced TGF-β and VEGF expression of aged individuals compared to young ones [133,134]. 

The cutaneous wound healing is disturbed due to the reduced proliferation of aged fibroblasts 

as well as their decreased sensitivity for growth factors [135]. Furthermore these fibroblasts 

show a disrupted autophagy decreasing the expression and release of procollagen type I, elastin 

and HA. Simultaneously MMP-1 expression and activity are increased in vitro, which may 

contribute to an age-dependent rise of skin fragility [136]. In addition the biological and 

mechanical functions of bone are altered with increasing age due to changes in the bone mineral 

density, the cross-linking profile of collagen and the bone morphology making it more fragile 

[137]. 

Diabetes 

Diabetes mellitus is an important systemic factor since according to recent estimates one in 

eleven adults has diabetes (415 million people worldwide, 56 million people in Europe) 

[138,139]. Patients with diabetes show often higher levels of ECM-degrading enzymes like 

MMPs [140]. About 15% of the patients develop diabetic foot ulcers as chronic wounds as 

consequence of for example a decreased sensitivity of cells for growth factors and reduced local 

angiogenesis [141]. These wounds are also insufficiently perfused with oxygen, resulting in 

hypoxia and further delaying wound healing [142]. The function of diabetic fibroblasts is 

altered, leading to a reduced cell migration and VEGF release, a decreased fibroblast 

stimulation under hypoxic conditions as well as an increased MMP-9 level [143]. Furthermore, 

hyperglycemia fosters the development of advanced glycation end-products (AGEs) which may 

influence the wound healing process as well [111]. Patients with diabetes have a higher risk for 

fractures often due to a decreased bone quality [144].  

2.3 Matrix metalloproteinases (MMPs) 

MMPs form a large class of 25 zinc-dependent endopeptidases able to cleave a variety of 

different substrates (Tab. 2.3) [145]. They are produced by several cell types such as fibroblasts, 

endothelial cells, neutrophils and macrophages [146]. Besides their action as matrix-degrading 

enzymes, they are responsible for the release and activation of ECM-bound mediator proteins 

such as growth factors as well as their activation and for the production of matrix degradation 
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products that alter the cell response [147]. They are crucial for several biological processes like 

tissue development, angiogenesis, tissue remodeling and wound healing.  

Tab. 2.3 Overview of matrix substrates and GAG interaction of MMPs. Adapted from [148,149] 

with modifications according to [8]. 

Type Protease  Matrix substrates GAG interplay 

C
o

ll
ag

en
as

es
 

MMP-1  
Native collagen types: III > I > II, VII, X; gelatin; 

aggrecan; link protein; entactin, tenascin; perlecan 
HEP, HS 

MMP-8  
Native collagen types: I > II > III, VII, X; gelatin; 

entactin, tenascin; aggrecan 
 

MMP-13  
Native collagen types: II > III > I, VII, X; gelatin; 

entactin; tenascin; aggrecan 
 

MMP-18  Native collagen type I, II, III, gelatin  

G
el

at
in

as
es

 MMP-2  

Denaturated collagens (gelatin); native collagen types I, 

IV, V, VII, X, XI; elastin; Fn; laminin-5; aggrecan; 

brevican; neurocan; decorin; vitronectin 

CS, HEP, HS 

MMP-9  

Denaturated collagens (gelatin); native collagen types I, 

IV, V, VII, X, XI; elastin; Fn; laminin; aggrecan; link 

protein; vitronectin 

CS, HS 

M
em

b
ra

n
e-

an
ch

o
re

d
 M

M
P

s MMP-14  
Native collagen types I, II, III; gelatin; Fn; vitronectin; 

aggrecan 
 

MMP-15  PG  

MMP-16  Native collagen type III, Fn  

MMP-17  Gelatin; fibrin/fibrinogen  

MMP-24  Fn, PG; gelatin  

MMP-25  
Native collagen type IV; gelatin; Fn; PGs with DS 

(DSPG); CSPG; laminin-1; fibrin/fibrinogen 
 

MMP-23  Gelatin  

S
tr

o
m

el
y

si
n

s 

MMP-3  

Aggrecan; laminin; Fn; non-triple helical regions of 

collagen types II, III, IV, V, IX, X, XI; gelatin; entactin; 

perlecan; decorin; tenascin; vitronectin; fibrin/fibrinogen; 

link protein; elastin 

 

MMP-10  Gelatin from collagen types I, II, IV, V; Fn, PG  

MMP-11  Fn; laminin; aggrecan  

M
at

ri
ly

si
n

s 

MMP-7  

Fn; laminin; non-helical segments of collagen types IV, V, 

IX, X, XI; gelatin; aggrecan; entactin; tenascin; 

vitronectin; fibrin/fibrinogen 

CS, HS, HEP 

MMP-26  Native collagen type IV; gelatin; Fn; fibrin/fibrinogen  
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Type Protease  Matrix substrates GAG interplay 
O

th
er

 M
M

P
s 

 
MMP-12  Elastin; Fn; laminin; PG, fibrin/fibrinogen  

MMP-19  
Native collagen type IV; gelatin; laminin; Fn; tenascin; 

entactin; aggrecan, fibrin/fibrinogen 
 

MMP-20  Amelogenin; aggrecan  

MMP-21  Gelatin  

MMP-21  No matrix substrate defined  

MMP-27  No matrix substrate defined  

MMP-28  No matrix substrate defined; degrades casein  

Depending on their location, they can be distinguished in secreted and membrane-anchored 

MMPs. Due to their different substrate affinities some of them are designated as collagenases 

(MMP-1, -8, -13 and -18) and gelatinases (MMP-2 and -9). Collagen type I, II and III 

degradation is catalyzed by collagenases that cleave the peptide bond between Gly775 and 

Leu/Ile776, releasing one quarter of the collagen as a fragment [150,151], while the core protein 

of PGs such as aggrecan can be degraded by ADAMTSs and MMPs [52,152]. The proteolytic 

activity of MMPs is tightly controlled via their transcription/expression, the activation of 

zymogens, the inhibition via extracellular inhibitors such as TIMPs or α2-macroglobulin as well 

as via their endocytic up-take and degradation (Fig. 2.8) [153,154]. Furthermore, glycosylation 

can modulated the enzyme activity as reported for MMP-9 [155]. 

Fig. 2.8 Mechanisms of MMP activity regulation. 

Structure 

MMPs belong to the metzincins superfamily because they have the characteristic zinc-binding 

sequence His-Glu-X-X-His-X-X-Gly-X-X-His as well as a methionine forming Met-turn [156]. 

All MMPs are multidomain enzymes synthesized with a N-terminal signal peptide, which is 

detached in the ER to obtain the zymogen. This contains a propeptide with the conserved 

sequence Pro-Arg-Cys-Gly-X-Pro-Asp that is responsible for their latency after secretion, the 

mechanism based on forming a bridge with the catalytic domain containing the respective zinc 

ion (Fig. 2.9, Fig. 2.10 A). Except MMP-7, -23 and -26, all MMPs have a hemopexin (HPX)-

like domain that is connected via a linker (hinge-region) to the catalytic domain. MMP-2 and -9 

additionally possess three repeats of a Fn type II like module near the zinc-binding motif in the 

catalytic domain. The membrane-type MMPs (MT-MMPs) are connected to the cell membrane 
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either via a type I or type II transmembrane domain or via a glycosylphosphatidylinositol anchor 

[157].  

Fig. 2.9 Multidomain structure of MMP-1 and MMP-2. Adapted from [157].  

Activation and reaction mechanism 

The inactive zymogens are activated stepwise either by the proteolytic removal of the 

propeptide domain or via chemical agents that disrupt the cysteine-zinc interaction of the 

cysteine switch. Examples for such chemical activators are thiol-modifying chemicals like 

4-aminophenylmercuric acetate (APMA), mercury chloride or sodium dodecyl sulfate (SDS) 

and reactive oxygen species [158]. 

For substrate cleavage the carbonyl group of the peptide bond to be cleaved is strongly polarized 

by its interaction with the zinc ion of the catalytic domain after the formation of an 

enzyme/substrate complex (Fig. 2.10 B). Afterwards the catalytic glutamate activates the water 

molecule that is bound to the zinc ion. The activated water molecule reacts with the electrophilic 

carbonyl carbon leading to the formation of a tetrahedral intermediate complex, which is 

stabilized by the catalytic zinc. In addition, one proton of the water molecule is transferred by 

the carboxylate group of the catalytic glutamate to the amino group of the scissile peptide bond. 

Then the peptide bond is cleaved, a further proton is shuttled to the amino group and both 

cleavage products are released from the catalytic domain [153]. 

Fig. 2.10 Interaction of the catalytic domain of MMPs with the propeptide domain and substrates. 

Adapted from [153] with modifications. The MMP is displayed in black and the catalytic glutamate is 

highlighted in green, while the propeptide domain as well as the substrate are shown in brown and 

substrate binding pockets in gray. 
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Functions 

MMP activity is crucial for wound healing since it is required for degrading damaged matrix, 

sloughing out biofilms from bacteria during the inflammation phase and cleaving of the 

capillary basement membrane to allow vessel sprouting [146,159]. Furthermore, it allows the 

migration of endothelial cells, epithelial cells and fibroblasts through the matrix during the 

proliferation phase [160–162]. During the remodeling phase, they contribute to the contraction 

and remodeling of scar tissue [163,164]. In bone, osteoblasts and osteocytes secrete MMP-2 

and -9 to degrade the non-mineralized osteoid for example to facilitate the formation of the 

osteocyte lacunar-canalicular network [31,165].  

MMP-1 is released by a large number of cell types and plays an important role in tissue 

remodeling [166]. Neutrophil granulocytes are the major producers of MMP-8, explaining its 

involvement during the inflammation phase of wound healing [167], while MMP-13 is secreted 

by osteoblasts, osteoclasts as well as hypertrophic chondrocytes [22,168]. The degradation of 

collagen is an important function of MMPs (MMP-1, -8 and -13). Since the catalytic active site 

of the MMPs is too small for the triple helical collagen structure, it is assumed that the HPX-

like domain contributes to the interaction and facilitates the unwinding and bending of the triple 

helix, allowing the collagen degradation [169]. Mechanical loading was also reported to 

influence the enzymatic degradation of collagen tissues by altering the structure of the collagen 

fibers and thereby their accessibility for proteases [170,171]. The importance of MMPs for 

tissue homeostasis is highlighted by the fact that an imbalance between MMPs and TIMPs with 

for instance increased MMP-9 and decreased TIMP-1 levels correlates with a decreased wound 

healing rate in diabetic foot ulcers [172]. 

Interaction of MMPs with GAGs 

Several MMPs are reported to bind to HEP columns with different affinities [173,174], 

however, little is known regarding the interplay of GAGs with MMPs (Tab. 2.3). MMP-1, -2, -7, 

-9 and -13 are suggested to interact with HS, and proMMP-9 is also known to be covalently 

bound via disulfide bonds to the core protein of CSPGs [8,175]. This binding of MMPs to 

GAGs like HS in the ECM may contribute to the localization and regulation of MMP levels by 

function for example as reservoir for proenzymes [8]. Furthermore, the interaction of GAGs 

with MMPs can alter the enzyme activity in vitro as shown for MMP-1, -7 and -13 by 

zymography in the presence of HEP [176]. Crabbe et al. measured a relatively weak interaction 

of HEP with MMP-2 and an increase in MMP-2 activation by APMA in the presence of HEP. 

According to their proposed model, HEP binding to both the active as well as the latent form 

of MMP-2 mimics an elevated local enzyme concentration and thereby promotes the initial 

zymogen activation [177]. In addition, the interaction of GAGs with proMMPs can lead to 

conformational changes initiating the allosteric activation of the enzyme by disrupting the 

cysteine-Zn2+ interaction. The resultant enzyme is transitionally active and can auto-catalyze 

the cleavage of the propeptide domain [149].   
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Structurally GAGs are shown to bind to the HEP binding site located at the HPX-like domain 

of MMP-1, -2 and -9 [178–180]. Since GAGs provide numerous possible interaction sites, they 

can simultaneously bind an active MMP and its substrate by forming a highly coordinated 

trimeric complex [181]. For example, Iida et al. demonstrated that CS-A but not HA, HS or 

CS-C facilitates the proMMP-2 activation by MMP-16, possibly by binding to the C-terminal 

domain of proMMP-2 and thereby effectively presenting the zymogen to MMP-16 [182]. 

Further examples of GAG-proteinase interactions are reviewed by Tocchi and Parks and 

Theocharis et al. [149,181]. 

2.4 Tissue inhibitors of metalloproteinases (TIMPs) 

The native counterparts of MMPs are TIMPs, a family with four homologous members 

(TIMP-1, -2, -3 and -4). TIMP-1, -2 and -3 are widely expressed in many tissues, while TIMP-

4 is only present in heart, ovary, kidney, pancreas, colon, testes, adipose and brain tissue [183]. 

Fibroblasts release TIMP-1 and -3 after stimulation with TGF-β1 [184], osteoblasts and osteo-

cytes express TIMP-1, -2 and -3 during bone formation [165], hMSCs secrete amongst others 

TIMP-3 [185] and human umbilical vein endothelial cells (HUVECs) produce TIMP-1 [186]. 

Structure 

TIMPs are wedge-shaped and possess six disulfide bridges. Their N-terminal section contains 

about 120 amino acids and forms a five-stranded β-barrel, while the shorter C-terminal section 

(about 60 amino acids) forms a β-turn [153]. 

Functions 

An overview on characteristic properties and function of TIMPs is given in Tab. 2.4. As their 

name indicates, they function as inhibitors of metalloproteinases with a high binding affinity 

for these proteinases and inhibition constants in the nM range [183]. They form a 1:1 non-

covalent complex with the catalytic domain of MMPs via their N-terminal part, thereby 

coordinating the zinc ion of the catalytic site, blocking the substrate access and inhibiting their 

catalytic activity (Fig. 2.11, compare Fig. 2.10). The first five amino acids of the N-terminal 

TIMP part are essential for the binding to the catalytic site in a quasi-substrate-like fashion 

[153]. Furthermore, they inhibit ADAM (a disintegrin and metalloprotease) and additionally 

ADAMTS in case of TIMP-3 [187–189]. All TIMPs are able to bind via hydrophobic/polar 

interfaces to the HPX-like domain of pro-gelatinases with their C-terminal part [190–193].  

Their function is strongly controlled by their localization. TIMP-1, -2 and -4 are solute or bound 

to cell surface proteins such as MT-MMPs, while TIMP-3 is the only member of the TIMP 

family that is located in the ECM in vivo due to its interaction with native GAGs [7], which will 

be discussed in the following section. TIMP-1 is further known as a cytokine involved in 

diseases like cancer [194], while TIMP-3 competes with VEGF-A for the binding to VEGFR-2. 

This blocks the VEGF-A-mediated activation of endothelial cells required for angiogenesis 

(section 2.7). Due to its anti-angiogenic effect and the TIMP-3 induced apoptosis in several 
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cancer cell lines, TIMP-3 functions also as tumor suppressor [119,195]. Furthermore, an 

enhanced expression of TIMP-3 is beneficial for reducing the late failure of vein grafts in vivo 

[196]. Reduced TIMP-3 tissue concentrations were described for several pathological situations 

such as diabetic foot ulcerations, atherosclerosis and osteoarthritis [197–199]. 

Fig. 2.11 Interaction of the catalytic domain of MMPs with their inhibitor TIMP-1. Adapted from 

[153,183] with modifications. The MMP is shown in black and the catalytic glutamate is highlighted in 

green, while TIMP-1 is displayed in blue and substrate binding pockets in gray. 

Tab. 2.4 Characteristics and functions of TIMPs. Adapted from [183,200] with modifications 

according to [201]. The asterisk (*) indicates the glycosylated form of TIMP-3. 

Property TIMP-1 TIMP-2 TIMP-3 TIMP-4 

Mw (kDa) 28 22 22 or 27* 22 

Amino acids 184 194 188 194 

Isoelectric point 8.5 6.5 9.1 7.2 

Localization 
Solute, cell 

surface-bound 

Solute, cell 

surface-bound 

ECM and cell 

surface-bound 

Solute, cell 

surface-bound 

Interaction with cell 

surface receptors 

β1 integrin, 

CD63, LRP-1 

α3β1 integrin, 

LRP-1 

VEGFR-2, 

LRP-1, 

Angiotensin-

IIR, EFEMP1 

 

ADAM inhibition ADAM-10 ADAM-12 
ADAM-10/-12/ 

-17/-19/-33 
ADAM-17/-28 

ADAMTS inhibition   
ADAMTS-1/-

2/-4/-5 
 

proMMP binding proMMP-9 proMMP-2 proMMP-2/-9 proMMP-2 

MMP inhibition All All All Most 

MT-MMP inhibition Weak Yes Yes Yes 



26  2 BACKGROUND AND STATE OF KNOWLEDGE 

Interaction of TIMP-3 with GAGs 

TIMP-3 is unique since it binds to HSPGs and further sulfated PGs within the ECM mainly due 

to electrostatic interaction of the positively charged regions present in the N- and C-terminal 

domain of TIMP-3 with the negatively charged GAG chains [7,202]. Thus TIMP-3 is suggested 

to be a main modulator of tissue homeostasis. Recently, Troeberg et al. determined KD values 

in the range of 10 - 39 nM for the binding of TIMP-3 to immobilized HS and CS-E. 

Interestingly, they could show that this TIMP-3 interplay with GAGs is able to reduce the 

TIMP-3 up-take via the endocytic receptor LRP-1 in HTB94 chondrosarcoma cells in vitro. 

They also showed that GAG stabilize TIMP-3/ADAMTS-5 complexes as indicated by a 

decreased dissociation rate [10]. Surface plasmon resonance (SPR) analysis demonstrated the 

direct binding of TIMP-3 to HEP surfaces with an affinity (KD of about 59 nM) almost 

comparable to those of HS and CS-E [203]. However, as native GAGs were used in these 

studies that are not fully characterized (e.g. regarding their sulfation pattern), an in-depth 

analysis of the structure-function relationship of GAGs on their interaction with TIMP-3 is still 

missing. 

2.5 Regulation of ECM remodeling 

ECM remodeling is required for maintaining and restoring the physiological properties of a 

tissue. During development and normal wound healing, matrix degradation is required for 

example for vessel sprouting during angiogenesis and for the release of matrix-bound growth 

factors [204]. A disruption of this ordered process and a resulting dysregulation of the ECM 

structure, stiffness, abundance and composition often lead to the manifestation of pathologic 

conditions such as fibrosis, osteoarthritis and cancer [205]. An overview on different aspects of 

ECM remodeling in skin and bone is displayed in Fig. 2.12. Since MMPs and TIMPs are crucial 

regulators of the ECM proteolysis, their activities and tissue levels have to be strictly controlled 

[206,207].  

Increased ECM deposition 

Even though the activation of fibroblasts via the response of TGF-β1 is mandatory during 

wound healing to reconstitute the dermal ECM, an excessive production of collagen by 

fibroblasts and deposition of further ECM components together with a decreased protease 

activity leads the formation of fibrosis and scars [96]. Fibrosis is a result of an chronic infection 

and characterized by a hardened, overgrown and/or scarred tissue [210]. Since excessive levels 

of growth factors like TGF-β1 can promote the formation of keloids and hypertrophic scars 

[113], these proteins are major targets in the development of new treatment strategies against 

fibrosis [211]. 

Excessive ECM breakdown 

The extensive degradation of matrix components plays an important role in the progression of 

several diseases. The abnormal destruction of cartilage ECM during osteoarthritis is caused to 
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some extent by an overexpression of ADAMTS-4 and -5, leading to an increased aggrecan 

degradation [212].  

Osteoporosis is a disease that is characterized by decreased bone mass and stability leading to 

a high risk for fractures [126]. Postmenopausal osteoporosis (or type I osteoporosis) occurs as 

result of the estrogen deficiency starting at menopause, which increases bone resorption. The 

age-related type II osteoporosis is present in both men and women and characterized by a 

reduced bone formation as well as an accelerated bone resorption [123]. Bisphosphonates are 

established to treat osteoporosis, however, since they not only block the matrix resorption via 

osteoclasts but also induce their apoptosis, they strongly disrupt the essential paracrine 

signaling between osteoclasts and osteoblasts. Nowadays novel strategies for the treatment of 

this disease mainly focus on the development of compounds with anti-resorptive and 

uncoupling effects [126].  

Fig. 2.12 Physiologic and pathologic ECM remodeling of skin and bone tissue. Adapted from 

[208,209] with modifications. 

Chronic wounds like vascular ulcers and diabetic ulcers are further examples for pathologic 

conditions characterized by an altered phenotype and activity of some cells as well as an 

excessive ECM degradation due to increased MMP expression [213,214]. The wound healing 

process is disrupted, the inflammation phase is usually extended and the re-epithelization fails 

as a consequence of for instance the limited migration of keratinocytes and response of 

fibroblast to TGF-β1 [215–217]. The delayed wound healing is the consequence of an increased 

inflammatory response due to factors like a high load of bacterial toxins and proteases. They 
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initiate an increased release of cytokines and free radicals that induce the cells to produce an 

excess of proteases. This leads to an imbalance between proteinases like MMPs and their 

inhibitors TIMPs, resulting in the further damage of tissue through degradation of matrix 

components and mediator proteins such as growth factors, thus fostering a continuous 

inflammation [146]. 

2.6 Low-density lipoprotein receptor-related protein-1 (LRP-1) 

The low-density lipoprotein (LDL) receptor-related protein-1 (LRP-1) is a multifunctional 

endocytic receptor expressed by several cell types like osteoblasts, hMSCs, vascular smooth 

muscle cells, adipocytes, endothelial cells and macrophages [218]. It is reported to be involved 

in a variety of different biological processes such as the up-take and degradation of proteases 

and their inhibitors, the lipoprotein metabolism, integrin function as well as the cellular entrance 

of viruses and bacterial toxins [219]. Up to now more than forty structurally non-related LRP-1 

ligands are known, highlighting its fundamental role in physiology. Besides its function as 

endocytic receptor, recent studies revealed that it also acts as a modulator in signaling pathways 

as for PDGF [220].  

Structure 

LRP-1 consists of a 515 kDa alpha-chain with a modular structure containing cysteine-rich 

Ca2+-binding complement-like domains (CR) organized as clusters, β-propeller domains, EGF 

repeats, and a 85 kDa beta-chain with a transmembrane and a cytoplasmic domain (Fig. 2.13). 

LRP-1 has four clusters designated as cluster I, II, III and IV. They contain the 2, 8, 10 and 11 

CR domains responsible for ligand binding, respectively. Cluster II and IV interact with most 

of the ligands, while only the chaperone receptor associated protein (RAP) is reported to interact 

with cluster I and III [218]. By binding tightly to multiple LRP-1 ligand-binding sites, RAP 

hinders the LRP-1 interaction with other ligands in the ER, thereby facilitating receptor delivery 

through the intracellular space to the cell membrane. Modeling predicted that Tyr-Trp-Thr-Asp 

repeats appear as β-propeller domains [221]. These domains are bound to repeats with a 

homology with the EGF precursor. The EGF and β-propeller domains are required for ligand 

release under low pH conditions in the endosomal compartments [222,223]. The β-propeller 

domain can act as a LRP-1 ligand by binding to CR4 and CR5, possibly facilitating the release 

of other ligands [224]. However, due to the large size of this receptor there is no experimental 

structure of the entire receptor available up to now.  

Functions 

LRP-1 is consecutively active and mediates up to 100 ligand internalization steps within 20 

hours [225]. The high affinity of LRP-1 for numerous different ligands is due to 31 CR domains. 

They create a characteristic surface profile and charge distribution. This allows several inter-

plays between the LRP-1 receptor and the ligands, including a sequential binding of the ligand 

to different combinations of CR domains as well as an interaction with single clusters [218].  
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Fig. 2.13 Structure of LRP-1 and overview of LRP-1 ligands. Adapted from [219]. 

Neels at al. described that the regions CR3 to CR7 of cluster II are of special importance for the 

ligand/receptor interplay [226]. CR7 and CR8 are also required for the binding of RAP to both 

repeats [227,228]. After ligand binding to the receptor the ligand/receptor complex is 

internalized. In the endosom, the ligands dissociate from LRP-1, the receptor is recycled and 

transported to the plasma membrane where a new cycle can start. 

The high number of different ligands results in a multitude of LRP-1 functions, which are 

reviewed in [218,219]. Due to its structural similarity to other LDL receptors, one of the roles 

identified for LRP-1 was its involvement in the lipoprotein metabolism [229]. The clearance of 

chylomicron remnants lipoprotein particles that remain after the removal of triglycerides from 

intestinal chylomicrons by the enzyme lipoprotein lipase is mediated by the binding of 

apolipoprotein E (apo E) to LRP-1 and other LDL receptors as well as to HSPG [230]. LRP-1 

is able to inhibit the canonic Wnt-3a signaling pathway by sequestering the receptor Frizzled-1 

and thereby blocking the receptor/coreceptor complex formation between Frizzled-1 and LRP-

5/-6, which is required for Wnt induced bone formation and remodeling [231].  

Another important function of LRP-1 is the regulation of extracellular proteinase and proteinase 

inhibitor levels, thereby controlling ECM proteolysis and homeostasis [232,233]. Some 

proteinases like ADAMTS-4, -5 and MMP-9 bind directly to LRP-1, while others such as 

MMP-13 require the prior binding to specific co-receptors or the formation of a 

proteinase/inhibitor complex (e.g. MMP-2) before internalization via LRP-1 [234–237]. Recent 
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studies revealed that LRP-1 also mediates the up-take and degradation of TIMP-3 [238], 

however, the distinct protein binding sites involved in this interaction are still unidentified. 

Interplay with GAGs 

LRP-1 is responsible for the endocytosis of the PG decorin via its direct binding to the receptor 

clusters II and IV. Since the protein core or CS alone were less efficient in inhibiting cellular 

decorin up-take compared to a combination of both, the authors suggested a participation of the 

GAG chain and the proteoglycan protein core in this process. They proposed that LRP-1 may 

also be responsible for the up-take of the related PG biglycan [239]. Interestingly, several LRP-

1 ligands are known to interact with GAGs, suggesting a potential modulatory function of GAG 

binding on LRP-1 mediated endocytosis and signaling. Examples of such LRP-1 ligands are 

displayed in Tab. 2.5.  

Tab. 2.5 Selected LRP-1 ligands known to interaction with GAGs.  

LRP-1 ligand Interaction with LRP-1 Interaction with GAGs 

ADAMTS-4 

KD of 51 nM for the ectodomain, 

KD of 98 nM for cluster II, 

KD of 73 nM for cluster IV [234] 

HEP [240] 

ADAMTS-5 

KD of 3.8 nM of ADAMTS-5 w/o TS2 

domain for the ectodomain,  

KD of 3.5 nM for cluster II, 

KD of 9 nM for cluster IV [234] 

CS [241], 

KD of 10 nM for HEP [10] 

ApoE KD of 1.1 - 1.6 nM for LRP-1 [242] HSPG, KD of 0.022 µM for HEP [243]  

Fn 

Direct or sequential binding to other 

cell-surface sites and LRP-1 suggested 

[244] 

HEP [37],  

low-sulfated HA (sHA1) [245] 

MMP-13 
Endocytosis by LRP-1 together with a 

MMP-13 specific receptor [236] 
KD of 34 nM for HEP [246] 

MMP-2 

As MMP-2/thrombospondin-2 complex 

[237],  

As proMMP-2/TIMP-2 complex with a 

KD of 7 x 10-8 M for LRP-1 [232] 

KD of 61.7 nM for HEP [247] 

MMP-9 KD of 53 nM for LRP-1 [235] CSPG [175], HEP [8] 

TGF-β1 KD of 50 - 400 pM for LRP-1 [248,249] 
HS, HEP [250–252], sulfated HA 

(sHA) derivatives [253] 

Thrombo-

spondin-1 
KD of 5 nM for LRP-1 [254] 

KD of 41 nM for HEP, 

KD of 487 nM for cartilage CS [255]  

TIMP-3 KD of 28 nM for the ectodomain [10] 

KD of 29 nM for HS,  

KD of 10-39 nM for CS-E [10],  

KD of 59 nM for HEP [203] 
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The ability of thrombospondin-1 to interact with HEP and its fibroblast-mediated endocytosis 

was shown to be strongly reduced for a truncated recombinant protein. The authors suggested 

that HEP-binding was important for subsequent endocytosis of this protein [256]. However, 

HEP did not affect the binding of protease inhibitor α2-macroglobulin to LRP-1 in vitro [249], 

which correlates with the fact that α2-macroglobulin did not interact with HEP [257]. HEP can 

reduce the binding of ADAMTS-4, ADAMTS-5 and TIMP-3 to LRP-1, and decrease their 

endocytosis, possibly by masking LRP-1 binding sites of the enzymes [240,241,258]. It still 

remains to be studied if GAGs altering LRP-1 mediated protein endocytosis is a general 

mechanism, and what structural requirements GAGs would have to fulfill to interfere with these 

interactions.   

2.7 Angiogenesis 

Angiogenesis describes the sprouting from pre-existing vessels to form a network that is 

subsequently remodeled into arteries and veins [259], while vasculogenesis is the assembly and 

differentiation of angioblasts into endothelial cells to build a vascular system [260]. Only a 

small number of tissues like cartilage contain no blood vessels; the majority of tissue types is 

vascularized [261]. Endothelial cells represent one of the main cells of blood vessels and, form 

a barrier that separates the blood from the surrounding tissue [262]. Matrix degradation, cell 

migration and proliferation as well as morphogenesis are crucial functions of endothelial cells 

during angiogenesis as shown in Fig. 2.14 [204]. Endothelial cells must assemble into vessel 

tubes, then build a new capillary lumen and synthesize a new basement membrane, which is 

afterwards supported by recruited pericytes and smooth muscle cells [263,264]. The 

characteristics and functions of endothelial cells differ with respect to the tissue and size of the 

vessel; for example the expression of growth factor receptors vary between arterial and venous 

endothelial cells [265–267].  

Fig. 2.14 Activities of endothelial cells during angiogenesis. Adapted from [204]. 

The ECM as a 3D cell environment is crucial for angiogenesis since it contains a number of 

stimulatory and inhibitory angiogenesis factors [268,269]. In particular the spatial localization 

of angiogenesis regulating signals in the ECM is critical for the formation of new vascular 

structures [270]. Angiogenesis is also crucial for wound healing; for instance, it delivers the 

osteogenic precursors as well as osteoblast and osteoclast activity modulating mediator proteins 

required for bone remodeling. In bone, angiogenesis and osteogenesis are found to be directly 
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coupled [122,271], and osteoblasts, osteoclasts and osteocytes are reported to release 

angiogenic factors like EGF and VEGF-A [272]. Abnormal angiogenesis is associated with 

several diseases and pathological conditions such as chronic wounds and cancer [273]. The role 

and function of VEGF and their receptors will be discussed in detail in the following section. 

2.7.1 Vascular endothelial growth factor (VEGF) signaling 

Five genes of the human genome encode the information for the five members of the VEGF 

family: VEGF-A (often designated as VEGF), -B, -C, -D and placenta growth factor (PlGF). 

All VEGF family members are homodimers consisting of two subunits with about 120 - 200 

amino acids. VEGF-A is the most important molecule controlling endothelial cell activity and 

thereby blood-vessel morphology [274,275]. It is required for the migration and differentiation 

of angioblasts, the mesoderm-derived endothelial precursor cells [276]. The alternative splicing 

of VEGF-A pre-mRNA results in eight different isoforms, which are termed VEGF111, 

VEGF121, VEGF145, VEGF148, VEGF165, VEGF183, VEGF189 and VEGF206 in accordance with 

their number of amino acids [277,278]. VEGF165 is the major isoform of VEGF-A and partially 

bound to the ECM and the cell surface, while VEGF121 diffuses freely in the extracellular space 

since it is the only isoform without HEP binding properties [279]. VEGF189 and VEGF206 are 

mainly ECM-bound due to their high affinity for HEP [280].  

VEGF receptors 

An overview on the different VEGF forms and their receptors is given in Fig. 2.15. VEGF-A 

interacts with the two specific receptor tyrosine kinases VEGFR-1 (also termed Flt-1) and 

VEGFR-2 (or kinase insert domain receptor (KDR)). VEGF-B and PlGF exclusively bind to 

VEGFR-1, while VEGF-C and VEGF-D have their highest affinity for VEGFR-3 and a lower 

for VEGFR-2 [281]. 

The solute form of VEGFR-1 (sVEGFR-1) can act as VEGF-A inhibitor and plays a role in 

regulating the placenta [275]. VEGF-B and PlGF influence the function of cardiac vasculature 

and play only a secondary role for angiogenesis [282,283]. VEGF-C and -D are mainly involved 

in lymphangiogenesis [284]. The importance of VEGF-A was especially obvious in VEGF-A 

(+/-) mice lacking one VEGF-A allele, as this resulted in embryonic lethality due to diminished 

blood-island formation and angiogenesis [285,286]. Hence, the following sections will focus 

on VEGF-A and its role in angiogenesis. 

VEGFR-1 and -2 are mostly expressed on endothelial cells. Both consists of an extracellular 

domain that binds the ligand and contains seven immunoglobulin-like domains, a 

transmembrane region, a tyrosine kinase sequence with a kinase-insert domain and a down-

stream carboxy terminal region [274,287]. The affinity of VEGF-A to VEGFR-1 (KD ≈ 10 pM) 

is much higher than for VEGFR-2 (KD of 75 - 760 pM) [287,288]. However, VEGFR-2 

functions as a major signal transducer with a high kinase activity, while VEGFR-1 exhibits only 

a weak tyrosine kinase activity and acts mainly as a negative regulator of angiogenesis [289].  
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Fig. 2.15 Overview on the VEGF-VEGFR system. Adapted from [275,281]. 

The binding of VEGF-A to VEGFR-1 occurs at the second immunoglobulin-like domain, that 

to VEGFR-2 at the second and third. The following immunoglobulin-like domains are required 

for the dimerization and activation of the receptors [290]. VEGFR-2 kinase activation is 

initiated by the interaction of the VEGF-A dimer with two monomeric receptors that stimulates 

receptor dimerization. Afterwards, several tyrosines (e.g. residue 951, 1054, 1059, 1175 and 

1214) in the kinase-insert domain and the carboxy terminal region of VEGFR-2 are 

autophosphorylated for signal transduction [291,292].  

Neuropilin Nrp-1 and Nrp-2 are co-receptors of VEGF-A (except VEGF121). Since Nrp-1 is 

reported to increase the binding of VEGF165 to VEGFR-2, it is suggested that the presentation 

of VEGF165 to VEGFR-2 by Nrp-1 results in an improved VEGF-A/VEGFR-2 complex 

formation [293]. 

Since VEGF, VEGFR-1 and -2 are involved in several diseases such as tumor angiogenesis and 

chronic inflammation, inhibitors of the VEGF signal like anti-VEGF antibodies (e.g. 

Bevacizumab, Ranibizumab) have been developed for anti-angiogenic therapies [281,294].  

2.7.2 TIMP-3 as regulator of VEGF-A activity 

Since 2003 it is known that TIMP-3 acts as an inhibitor of angiogenesis. This function is 

independent of its inhibitory function on proteinases. TIMP-3 binds to VEGFR-2 and blocks 

the receptor’s interaction with VEGF-A and subsequent downstream signaling [119]. 

Structurally, mainly the C-terminal domain of TIMP-3 is involved in the interaction with 

VEGFR-2. Furthermore, TIMP-3 inhibits the VEGF-induced actin reorganization in endothelial 

cells [295]. In vivo studies on mice lacking TIMP-3 demonstrated the importance of TIMP-3 as 
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inhibitor of VEGF-A-mediated signaling since these mice exhibited a pathologic 

neovascularization e.g. in the cornea [296]. TIMP-3 can also inhibit tumor growth in mice by 

down-regulating the tumor-induced neovascularization [119].  

2.7.3 Role of GAGs in VEGF-A signaling 

The different isoforms of VEGF-A vary in their affinity for HEP and HSPG (Tab. 2.6). These 

differences are based on the alternative mRNA splicing, which leads to changes in the amino 

acids sequences responsible for the HEP binding encoded on exon 6 and 7 [297]. Interestingly, 

the HS binding site of VEGF-A165 contains only four basic residues (Arg123, Arg124, Arg156, 

Arg159), which are sufficient for a high GAG binding affinity [298].  

Tab. 2.6 Binding affinities of selected VEGF-A isoforms for HEP and HS.  

VEGF-A isoform Affinity for HEP Affinity for HS 

VEGF145 - KD of 50 - 94 nM [299] 

VEGF165 KD of 22 - 42 nM [300] KD of 20 µM [300] 

VEGF189 - KD of 0.1 - 8.8 nM [300] 

In this context, it is well established that the balance between HSPG-bound VEGF-A and its 

freely diffusible form results in the formation of a VEGF-A gradient that is crucial to direct 

angiogenesis [301]. 50 - 70% of VEGF165 for example are associated to HSPGs at the cell 

membrane and within the ECM, while the remaining 30 - 50% are solute. By sequestering 

VEGF-A, HSPGs may protect the protein from enzymatic degradation, and HEP binding to 

VEGF165 can prolong its biological activity by partially protecting the growth factor against e.g. 

free radicals, which could be present during the inflammation phase of wound healing 

[280,302]. The binding of VEGF-A to HSPGs in the matrix can also lead to the release of 

previously HSPG-bound growth factors like basic fibroblast growth factor (bFGF), which can 

further stimulate angiogenesis [303]. Cell surface-bound HSPGs are reported to function as co-

receptors for VEGF-A-mediated signaling [304], meaning HS may have a bridging function 

between VEGF-A and neuropilin [305]. Glypican-1 as a HSPG present on endothelial cells is 

reported to exhibit a chaperone-like function that can restore the receptor binding of VEGF-A165 

after damage by oxidation [306].  

In general the modulating functions of HEP/HS are receptor type as well as VEGF isoform 

dependent [307]. However, there are conflicting reports on the effect of GAGs on the activity 

of VEGF-A. Ashikari-Hada et al. found an enhanced proliferation and increased tube formation 

of HUVECs in the presence of HEP and VEGF165 compared to control cells stimulated with 

only HEP or VEGF165. This was not the case in the presence of 2-O- or 6-O-desulfated HEP 

[308], which indicates that especially the GAG structure and sulfation determine their 

modulatory function on the VEGF-A activity. 0.1 - 10 µg/ml HEP was reported to enhance the 

binding of VEGF165 to its receptors, while higher concentrations showed the opposite effect 
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[309]. Furthermore, the interaction of VEGF121 and VEGF165 with VEGFR-1 can be inhibited 

by 1 µg/ml solute HEP [310,311]. As the findings about the effect of GAGs on VEGF-A 

signaling are partially contradictory, an in-depth analysis of the underlying modes of actions is 

required to assess whether GAGs and especially GAG derivatives could be used to modulate 

this growth factor signaling process and thereby potentially the activation of endothelial cells 

and angiogenesis.  

2.8 Biomaterials for bone and skin regeneration  

As a consequence of a prolonged life expectancy the incidence of bone fractures in the aging 

population due to bone defects and osteoporosis increases. This leads to a growing need for 

biomaterials able to improve bone regeneration, particularly in health-compromised patients 

with impaired wound healing capacities. According to recent estimates up to 5 - 20% of the 

four-million operations involving endoprosthetics per year are accompanied by implant failure, 

delayed healing and complications. Furthermore, malignant diseases and comminuted fractures 

also lead to bone defects, which often require the treatment with biomaterials [312].  

As a further example of vascularized tissue, skin can be damaged and lost as a consequence of 

acute trauma after burns and chronic wounds. This can even lead to death of the patients, 

especially in the case of not successfully treated large, deep wounds [313]. It should be noted 

that all full-thickness skin injuries with a diameter above 1 cm are not able to epithelialize and 

show an abnormal wound healing with extensive scarring. This often results in cosmetic 

deformations and a limited flexibility and mobility. That is why, these wounds require skin 

grafting [314]. 

Autologous bone or skin (epidermis, dermis) are the gold standard for bone or skin replacement, 

but its availability is limited and the harvesting causes pain and creates a further wound. As the 

implant incorporation into bone tissue and the wound healing process in general depend on the 

patient-specific healing potential of the respective tissue as well as the properties of the 

biomaterial, new strategies to improve tissue regeneration are required [315,R316]. Here 

especially the field of tissue engineering is promising since it aims to regenerate instead of 

replace damaged connective tissues or organs. To achieve this, cells and scaffold biomaterials 

are combined to function as biological substitutes that restore, maintain or improve the 

functions of the respective tissue [317]. The following sections will focus on functional 

requirements for biomaterials and will describe selected examples that are of special interest 

for the design of functional biomimetic materials.   

2.8.1 Design criteria for biomaterials  

Independent of tissue type several requirements have to be considered when designing 

biomaterials for regenerative medicine:  
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(i) Non-toxicity and biocompatibility: The biomaterial should neither contain nor release toxic 

compounds (e.g. products of corrosion or degradation, or contaminants of the main 

constituents of the biomaterial). The ability to perform with an appropriate host response 

in a specific application is defined as biocompatibility (Consensus Conference of the 

European Society for Biomaterials, Chester, 1986) [318]. The materials should have a 

surface chemistry suitable for cell attachment, proliferation and differentiation. In case of 

porous 3D scaffolds, especially the pore size and their interconnectivity are important to 

allow cell growth and the transport of nutrients and metabolic waste within the scaffold 

[319]. 

(ii) Mechanical properties: Ideally, the mechanical properties should match those of the 

respective target tissue [319]. For example, it was shown that by adjusting the matrix 

elasticity the stem cell differentiation can be directed into specific lineages [320]. In case 

of bone, however, there is currently no material available that mimics all mechanical 

properties.  

(iii) Biodegradability or chemical stability: The degradation time should be controllable since 

it is advantageous to have a material that initially provides support for cells, but is later 

replaced by the ECM produced by the cells. Since biodegradable scaffolds are not 

permanent, long-term complications associated with the biomaterial are avoided [321]. In 

general, the biodegradation should be proportional to the formation of new matrix, 

matching tissue growth in vivo [322]. In contrast, non-degradable materials in bone 

applications like total joint replacement prostheses should be chemically stabile over time 

since these materials have to stay in the body to provide the required mechanical stability. 

However, such materials do not allow complete regeneration because they cannot be 

replaced by newly formed tissue [318].  

(iv) Specific interaction: Materials exhibiting specific interaction profiles depending on their 

application are desirable. Preferably, a bioactive material should effect the surrounding 

biological system in a defined manner to promote healing processes. Examples for such 

possible bioactive compounds, which can be included in biomaterials are growth factors, 

native GAGs and GAG derivatives [323,324].  

(v) Manufacturing technology: In the end the ability to manufacture the biomaterial with well-

defined, reproducible properties is mandatory for a successful translation into clinical 

practice. The manufacturing process should be scalable and has to fulfill the criteria of 

good manufacturing practice (GMP) [325]. 

(vi) Sterilizability: The material should be sterilizable to avoid contaminations with 

microorganisms (e.g. with bacteria) as these can lead to infections and/or ultimately 

implant or biomaterial rejection. Even though the standard is γ-irradiation with 25 kGray, 

not all materials are resistant against this. If no usual sterilization method (e.g. reduced 

dose of γ-irradiation, ethylene oxide) is suitable, the whole manufacturing process needs to 

be aseptic and sterile which increases the costs and investment for production [326].  
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2.8.2 Artificial extracellular matrices (aECMs) 

An aECM is defined as matrix that contains isolated major components of the native ECM such 

as fibrillary collagen or Fn that have been re-formed using in vitro techniques. The aim is to 

obtain a cellular microenvironment that resembles parts of the ECM and is able to induce a 

specific host response [18]. Numerous strategies are established to mimic distinct properties 

and/or functions of the native ECM. To develop biomimetic materials the use of synthetic 

polymers especially in combination with natural ECM components is a promising approach. 

Collagen, gelatin and HA are examples of classically used biopolymers for wound healing 

applications [18,327,328]. Although nearly 30 types of collagen exist, the main focus is on the 

fibrillar collagen types I and III. Collagen-based biomaterials can be used for clotting, 

hemostasis, platelet aggregation and thrombocyte adhesion and activation. They are usually 

characterized by a sufficient mechanical strength and the required collagen is commonly 

extracted from bovine or porcine skin and tendons. Since the protein structure is highly 

conserved between these species and human, collagen has a low immunogenicity [329]. A 

composite of porcine collagens type I and III which is already used in the clinics for soft tissue 

augmentation is Mucograft® [330]. Comparably new is a study of worm and spider silk and 

resilin as natural polymers for biomaterials [331,332].  

Examples for synthetic polymers used alone or in combination with ECM components like 

collagen and hydroxyapatite are degradable poly(α-hydroxy acids) such as poly(lactic acid) 

(PLA) and copolymers such as poly(lactic-co-glycolic acid) (PLGA) [333–336]. PLA is of 

particular interest since it is biodegradable via hydrolysis within months, has good mechanical 

properties, can be processed using thermoplastic procedures and is eco-friendly. This explains 

its use in biodegradable surgical implant material and sutures, drug delivery systems and porous 

scaffolds for the growth of new tissue [337].  

2.8.3 GAG derivatives  

Sulfated GAGs are important functional components of the native bone and skin ECM (section 

2.1.2) offering a promising potential to functionalize biomaterials. The usage of isolated GAG 

chains instead of PGs is advantageous in this respect as it excludes the risk of an immunological 

response against the protein core of the PG. Even though native GAGs are known for their 

diverse modulatory function through direct or indirect interaction with cells, their usefulness in 

analyzing the structure/function relationship of GAGs with mediator proteins such as growth 

factors is limited. This is due to the often significant batch-to-batch variability and the high 

structural variations regarding sulfation degree and pattern as well as their carbohydrate 

backbone. Furthermore, their broad clinical application is restricted because of their high costs 

and limited availability, which was especially obvious during the HEP crisis [77]. And there 

are additional drawbacks of animal-derived GAGs: for example, patients sensitive against 

poultry can show an antigen response against HA from rooster comb. Moreover, animal-derived 
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GAGs could potential contain unwanted agents (e.g. viruses in HEP from pigs or prions in CS 

samples from cattle) and contribute to the endangerment of distinct species like sharks as source 

for CS. Against this background, there are several strategies to replace animal-derived GAGs 

such as the GAG production via fermentation that is already established for HA [61] as well as 

the chemical and chemoenzymatical synthesis of GAG analogs based on mono- or 

oligosaccharide residues [338,339]. A semi-synthetic over-sulfated CS was first synthesized by 

Maruyama et al. in 1998 [340].  

Fondaparinux (Arixtra®) was developed as antithrombotic agent, which mimics the AT-III 

binding site of HEP (Fig. 2.16). It is a pentasaccharide first synthesized in 55 steps that interacts 

specifically with AT-III, thereby inhibiting the generation of thrombin. In contrast to HEP, its 

anti-factor Xa activity cannot be neutralized in vitro with protamine sulfate but with the cationic 

polymer hexadimethrine bromide (Polybrene) [341]. Furthermore, synthetic HEP and HS 

oligosaccharides are often used to study interactions with proteins [342]. Other strategies 

include the use of various other biopolymers as GAG mimetics, like sulfated cellulose [343], 

sulfated dextran [344,345] and crosslinked, positively charged chitosan [346].  

Fig. 2.16 Structures of the pentasaccharide fondaparinux.  

However, HA as native GAG of the ECM is an ideal starting material for chemical 

modifications. It is non-immunogenic since it contains no protein epitopes, it is biodegradable 

by enzymatic digestion via Hyal [83] and it is the simples GAG molecule that can easily be 

modified by the introduction of functional groups [9,347] as descripted in the following 

sections. Also, HA has no anticoagulative properties since it does not interact with factors of 

the coagulation cascade [348]. Based on reports from Magnani et al., an anticoagulative activity 

could be present for sHA derivatives with a degree of sulfation (D.S.S) ≥ 2.5 per D.U., which 

should be considered when selecting GAG derivatives for a future biomedical application. 

However, they also revealed that this effect can be reversed with protamine and that all 

examined sHA derivatives had a poor antithrombin activity [349]. An overview on selected 

biological effects of HA and CS derivatives as solutions or as components of collagen-based 

aECM coatings on cells relevant for wound healing in skin and bone tissue, which are studied 

by the research consortium Transregio 67 is given in Tab. 2.7. Until now, though, no data 
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regarding the impact of multiple sHA derivatives as well as different GAG to collagen mass 

ratios on the resulting aECM characteristic and the cellular response are available. It remains 

to be shown whether these variations and especially the combination of different sHA 

derivatives improve the potential of biomaterials in adjusting the cellular response towards 

patient specific needs. 

Tab. 2.7 Selected findings of the Transregio 67 obtained with solute or aECM-bound GAG 

derivatives. The GAGs or GAG-containing collagen-based aECMs (coll/GAG) mentioned below are 

those showing the most pronounced biological effects. High-sulfated HA (sHA3), over-sulfated CS 

(sCS3). 

aECM Biological function Ref. 

coll/sHA1, 

coll/sHA3 

Reduced release of aECM-bound TGF-β1 with increasing sulfation of 

HA 
[350] 

coll/sHA3 
Reduced bioactivity of sHA3-bound TGF-β1, prevention of the TGF-

β1-induced differentiation of fibroblasts to myofibroblasts 
[351] 

coll/sHA Increased osteogenic differentiation of hMSCs  [352] 

coll/sHA3 

Increased metabolic activity of hMSCs, enhanced cell functions of 

osteogenic differentiated hMSCs like cell-matrix interaction, cell 

signaling, endocytosis and differentiation 

[353] 

sCS3, sHA3 
Suppression of osteoblast apoptosis, necrosis, reduced osteoblast 

proliferation, impaired paracrine osteoblast-osteoclast signaling  
[354] 

coll/sHA3, 

coll/sCS3 

Increased adhesion of human osteoclast precursors, inhibition of 

osteoclast differentiation and resorption 
[355] 

sCS3, sHA3 
Inhibition of osteocyte apoptosis, no effects on proliferation, reduced 

expression of sclerostin, increased expression of BMP-2 
[356] 

coll/sHA3 

Reduced release of pro-inflammatory cytokines by macrophages, 

enhanced differentiation of monocytes into anti-inflammatory M2 

macrophages, interference with signaling pathways required for 

monocyte polarization into inflammatory M1 macrophages 

[357,358] 

sHA1, sCS3, 

sHA3 
Influence on the Fn and collagen type I matrix assembly [245,359] 

2.8.3.1 Methods to adjust the molecular weight of GAGs  

Since the MW of HA is essential for its function (section 2.1.2.5), several techniques are 

established to generate HA derivatives with defined MW distributions and a reduced 

polydispersity. HA can be degraded by the incubation of an aqueous HA solution with 

0.1 - 2.0 M HCl at 40 - 80°C [360] and HS/HEP and DS are reported to be cleaved by the 

treatment with nitrous acid [361,362]. Since the depolymerization under acidic conditions is 

hard to control and leads to several side reaction like the removal of sulfate residues, 

N-deacetylation  or elimination at the reducing ends, other methods such as the degradation of 
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water-solubilized GAGs by ultrasonic [363] or thermal treatment (e.g. autoclave, 130°C, 

120 min) [364,365] have been developed. The oxidative depolymerization with reactive oxygen 

or nitrogen species is also widely used [366]. A further option is the enzymatic degradation of 

GAGs e.g. with heparinases [367], but this strategy is primarily limited to native GAGs since 

sulfated HA derivatives for instance are only marginally digested by Hyal [368].  

2.8.3.2 Synthesis strategies for sulfated GAG derivatives  

The functionalization of GAGs with defined sulfation patterns is challenging [369]. As the 

biological properties of GAGs are strongly influenced by the D.S.S and the sulfate group 

distribution in the polymer, diverse synthesis pathways or strategies for the sulfation of HA that 

allow for control of the D.S.S and regioselectivity were developed. First approaches to introduce 

sulfate groups to HA and CS used relatively harsh reaction conditions with chlorosulfonic acid 

and sulfuric acid as sulfation agents leading to the partial sulfation of free hydroxyl groups but 

also to a partial depolymerization of GAGs [370].   

Nowadays mainly a complex of SO3 with organic amides or amines is utilized for the chemical 

sulfation of poly- and oligosaccharides. The reactivity of the SO3-complexes increases in the 

following order: sulfur trioxide-triethylamine complex (SO3-Et3N) < sulfur trioxide-pyridine 

complex (SO3-pyridine) < sulfur trioxide-N,N-dimethylformamide complex (SO3-DMF) due to 

the different stabilities of the Lewis-acid/base-complexes. This makes it possible to obtain 

defined sulfation degrees in the range of 0 ≤ D.S.S ≤ 4 under mild conditions [340,349,371]. 

For example, the SO3-DMF complex is often used to synthesize products with a high D.S.S, 

while SO3-pyridine leads to products with low or medium degree of GAG sulfation [59]. Here 

sHA1 derivatives with a D.S.S of 1.0 were shown to be exclusively sulfated at the primary 

hydroxyl group (C6 position of the N-actelyglucosamine residues) (Fig. 3.1) [59,349]. 

Another strategy is the desulfation of sGAGs. Silylating agents like 

N,O-bis(trimethylsilyl)acetamide can be used to selectively remove sulfate residues at the C6 

position [372], while a mixture of water and dimethylsulfoxide (DMSO) randomly remove 

sulfate residues [373]. Furthermore, N-sulfate groups can be introduced to CS and HA after 

deacetylation (e.g. with 2.5 N NaOH for 72 h at room temperature (RT)) by the sulfation of the 

resulting free amino groups with SO3 complexes [374,375]. 

Regioselectively functionalized sGAGs can also be synthesized by the application of suitable 

protection strategies [376]. One challenge is that organic sulfates are acid-labile and can be 

cleaved under such conditions. Options are for instance the use of base- or hydrogenation-labile 

protection groups and/or photo-labile protection groups. Benzyl groups can be used as 

permanent protecting groups for aliphatic alcohols during the sulfation step and can be cleaved 

by hydrogenation with palladium on carbon as a catalyst without cleaving the sulfates. To direct 

the anomeric specificity, participating groups like benzoyl or acetyl groups can be introduced 

as permanent protection groups. The base-labile 9-fluorenylmethyl carbonate group and 
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levulinoyl ester can be removed by hydrazine treatment and are temporary protecting groups 

often used in oligosaccharides for site-specific reactions via orthogonal protecting strategies 

[377,378].  

2.8.3.3 Strategies for cross-linkable GAGs and GAG-based hydrogels 

Hydrogels are water-swollen networks of polymers which can be obtained by chemical or 

physical crosslinking of polymers [379] and provide a promising option for the pharmaceutical 

and biomedical application of GAGs. Especially HA-based scaffolds have a high potential in 

regenerative medicine since they provide a 3D cellular microenvironment that is enzymatically 

degradable and non-immunogenic [380]. The cross-linking of molecules in the presence of cells 

requires specific mild non-toxic conditions that ensure cell survival. Cell compatible cross-

linking schemes include Michael-type addition, triazole formation, click reaction, aldehyde 

cross-linking, enzymatic cross-linking and photo-induced polymerization [381]. Functional 

groups for polymerization by a free radical mechanism are for example acrylate, methacrylate, 

fumarate, cinnamoyl ester and vinyl ester. Vinyl sulfone moieties, N-hydroxysuccinimide 

esters, pyridyl disulfides as well as alkynes, azides and maleimides for highly efficient 

cycloaddition reactions are other reactive functionalities for cross-linking or derivatization of 

macromers [382,383].  

Fig. 2.17 Structures of cross-linkable HA derivatives. (A) Methacrylated HA, (B) hydrazido-

modified HA and (C) thiolated HA. 

Methacrylated GAGs (Fig. 2.17 A) as starting material for cross-linked gels can be formed by 

functionalizing the hydroxyl groups of GAGs with glycidyl methacrylate or methacrylic 

anhydride [384,385], while acrylated GAG derivatives are available through a phase-transfer-

based synthesis with acryloyl chloride [365].  Hydrazido-modified HA derivatives (Fig. 2.17 B) 

can be synthesized after activation of the carboxylic groups via carbodiimide chemistry and 

reaction with dihydrazides like adipic dihydrazide, while thiolated derivatives can be 

synthesized by using disulfide-linked dehydrazides such as 3,3’-dithiobis(propanic hydrazide) 

[386,387]. Afterwards the disulfide bonds have to be reduced with dithiothreitol to obtain the 
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corresponding thiol-functionalized HA derivative (Fig. 2.17 C). To form disulfide cross-linked 

hydrogels the thiol groups of this HA derivative can be oxidized on air [386].   

A further option is the synthesis of HA vinylesters with tunable degrees of substitution by a 

lipase-catalyzed transesterification reaction between the hydroxyl groups of HA and divinyl 

adipate. HA vinylester-based hydrogels can be produced by photo-polymerization. These 

hydrogels can be degraded by i) the enzymatic cleavage of the HA sugar backbone into HA 

fragments by Hyal and ii) hydrolysis with poly(vinyl alcohol) and adipic acid as degradation 

products [388].  

Star-shaped poly(ethylene glycol) (starPEG)-GAG hydrogels are widely used as biomaterial 

platforms. They can be produced via Michael addition between a starPEG peptide conjugate 

with terminal thiol groups and a maleimide-functionalized GAG-peptide conjugates [381] but 

require further modifications since PEG is known to limit cell adhesion [389].  

To further adjust hydrogel properties and tune their degradation behavior, additional 

hydrolytically cleavable groups or enzymatically cleavable peptide sequences (MMP-cleavable 

sequences) can be introduced [390,391]. The addition of adhesion sequences like RGD or 

Gly-Phe-Hyp-Gly-Glu-Arg (GFOGER) enables the interaction of defined amino acid segments 

with integrin receptors on the cell surface, which can strongly improve the cell adhesion 

[389,392,393]. Introducing structural proteins such as collagen allows for the tailoring of the 

mechanical properties, and peptide motif presentation mediates cell adhesion [20,394]. 

Moreover, sGAG derivatives can be used to sequester, stabilize and control the release of 

cytokines and growth factors [59,351,395]. This may also make it possible to for instance 

embed growth factors during hydrogel formation without their losing activity, or to use the 

hydrogels as scavenger for pro-inflammatory factors. To tune the mechanical stability and the 

biodegradation behavior of GAG-based hydrogels the degree of substitution is important since 

an increasing density of cross-linkable groups will enhance the stability of hydrogels [365]. 

Pores can be introduced into the polymer networks to enhance the seeding efficiency as well as 

the supply and transport of oxygen and nutrients by different techniques like porogen leaching, 

templating, electrospinning and freeze-drying [396–399]. 

Novel approaches are necessary to translate the promising functions of 2.5D collagen-based 

aECMs (Tab. 2.6) into 3D systems that are able to support healing of vascularized tissues such 

as skin and bone. Even though HA-based hydrogels are widely studied regarding potential 

biomedical applications [327], HA-hydrogels with sHA derivatives are rarely described, and 

mainly for cartilage tissue engineering [400,401]. Hence little is known about the impact of 

defined substitution patterns of HA and the non-covalent incorporation of collagen fibrils on 

the resulting hydrogel properties as well as the interaction with mediator proteins and cells.  
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3 MATERIALS AND METHODS 

3.1 Chemicals, materials and devices 

3.1.1 Chemicals 

Tab. 3.1 Overview of used chemicals. 

Chemical 
Specification, 

catalogue number 
Manufacturer 

1,9-Dimethylmethylene blue 

(DMMB) 
20335 Serva, Heidelberg, Germany 

1-Ethyl-3-(3-

dimethylaminopropyl)carbodiimide 

hydrochlorid (EDC) 

E7750 
Sigma-Aldrich, Steinheim, 

Germany 

2-Propanol ≥ 99.8%, 6752.2 
Sigma-Aldrich, Steinheim, 

Germany 

3,3’,5,5’-Tetramethyl-benzidine 

Substrate for enzyme 

linked immunosorbent 

assay (ELISA), T4444 

Sigma-Aldrich, Steinheim, 

Germany 

4-(Dimethylamino)benzaldehyde 

(DMAB) 
99%, 156477 

Sigma-Aldrich, Steinheim, 

Germany 

4’,6-Diamidino-2-phenylindol (DAPI) > 90%, 10236276001 Roche, Mannheim, Germany 

4-Aminophenylmercuric acetate 

(APMA)  
≥ 90%, A9563 

Sigma-Aldrich, Steinheim, 

Germany 

4-Nitrophenyl phosphate disodium 

salt hexahydrate 
≥ 97%, N4645 

Sigma-Aldrich, Steinheim, 

Germany 

Acetylacetone ≥ 98%, 00909 
Sigma-Aldrich, Steinheim, 

Germany 

Acryloyl chloride ≥ 97%, A24109 
Sigma-Aldrich, Steinheim, 

Germany 

Adipic acid dihydracide ≥ 98%, A0638 
Sigma-Aldrich, Steinheim, 

Germany 

Agarose A9539 
Sigma-Aldrich, Steinheim, 

Germany 

ATTO 488-NH2 AD 488-91 ATTO-TEC, Siegen, Germany 

ATTO 565-NH2 AD 565-91 ATTO-TEC, Siegen, Germany 

Barium acetate 99.999%, 255912 
Sigma-Aldrich, Steinheim, 

Germany 

Bovine serum albumin (BSA) ≥ 98%, A7030 
Sigma-Aldrich, Steinheim, 

Germany 

Brij® L23 (Polyoxyethylene (23) 

lauryl ether, Brij 35) 
P1254 

Sigma-Aldrich, Steinheim, 

Germany 

Bromophenole blue 15375 Serva, Heidelberg, Germany 
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Chemical 
Specification, 

catalogue number 
Manufacturer 

Calcium chloride ∙ 2 H2O CN93.1 Carl Roth, Karlsruhe, Germany 

Carbon for SEM coating 
Ø 6.15 mm x 304 

mm, 61-35 
Plano, Wetzlar, Germany 

Citric acid ≥ 99.5%, 251275 
Sigma-Aldrich, Steinheim, 

Germany 

Collagen type I from rat tail tendon 
3 - 4 mg/ml in 0.02 N 

acetic acid, 354236 
Corning, New York, USA 

Coomassie blue R-250 > 75%, 17525.01 Serva, Heidelberg, Germany 

Copper(II) sulfate ≥ 99.99%, 451657 
Sigma-Aldrich, Steinheim, 

Germany 

Deuterium oxide (D2O) 
99.9 atom% D, 

151882 

Sigma-Aldrich, Steinheim, 

Germany 

Dimethylsulfoxide (DMSO) > 99.9%, 472301 
Sigma-Aldrich, Steinheim, 

Germany 

Disodium hydrogen phosphate  ≥ 99%, P030.1 Carl Roth, Karlsruhe, Germany 

Ethanol (absolute) 99.98%, 20821.321 VWR, Darmstadt, Germany 

Ethanol, denatured 

>99.98%, 1% 

petroleum ether, 

1522P 

Berkel AHK Alkoholhandel 

GmbH & Co. KG, Berlin, 

Germany 

Ethanolamine hydrochloid ≥ 99%, E6133 
Sigma-Aldrich, Steinheim, 

Germany 

Ethylenediaminetetraacetic acid 

trisodium salt hydrate (EDTA) 
ED3SS 

Sigma-Aldrich, Steinheim, 

Germany 

Folin-Ciocalteu´s phenol reagent 2 M, 47641 
Sigma-Aldrich, Steinheim, 

Germany 

Formamide ≥ 99.1%, 24311.291 VWR, Darmstadt, Germany 

Gelatin from porcine skin Type A, G8150 
Sigma-Aldrich, Steinheim, 

Germany 

Glacial acetic acid > 99.9%, A6283 
Sigma-Aldrich, Steinheim, 

Germany 

Glycerol 
≥ 99.5%, ρ = 

1.26 g/cm3, 3783.2 
Carl Roth, Karlsruhe, Germany 

Glycine ≥ 99.5%, 3783.1 
Sigma-Aldrich, Steinheim, 

Germany 

HEPES buffered saline containing 

EDTA and P20 (HBS-EP) 

10x, 0.1 M HEPES, 

1.5 M NaCl, 30 mM 

EDTA, 0.05% v/v 

surfactant P20, 

BR100669 

GE Healthcare Europe GmbH, 

Freiburg, Germany 

Hydrochloric acid  37%, 30721 
Sigma-Aldrich, Steinheim, 

Germany 
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Chemical 
Specification, 

catalogue number 
Manufacturer 

Lithium phenyl-2,4,6-trimethyl-

benzoylphosphinate (LAP) 
> 98%, L0290 

TCI Deutschland GmbH, 

Eschborn, Germany 

Magnesium chloride hexahydrate M2393 
Sigma-Aldrich, Steinheim, 

Germany 

Methanol ≥ 99.8%, 20847.422 VWR, Darmstadt, Germany 

Methyl-/vinylether-maleic acid 

copolymer 
184391000, LMW ACROS, Geel, Belgium 

N,N-dimethylformamide (DMF) 99.8%, 227056 
Sigma-Aldrich, Steinheim, 

Germany 

N-[Tris(hydroxymethyl)methyl]-2-

aminoethanesulfonic acid (TES) 
≥ 99%, T1375 

Sigma-Aldrich, Steinheim, 

Germany 

N-2-Hydroxyethylpiperazine-N’-2-

ethanesulfonic acid (HEPES) 
≥ 99.5%, 54457 

Sigma-Aldrich, Steinheim, 

Germany 

N-Hydroxy succinimide (NHS) 98%, 130672 
Sigma-Aldrich, Steinheim, 

Germany 

N-Isobutyl-N-(4-

methoxyphenylsulfonyl)glycyl 

hydroxamic acid (NNGH) 

99%, 316.4 Da, PI-

115 

Enzo Life Science, Lörrach, 

Germany 

OmniMMPTM Fluorogenic Control 
95%, 444.5 Da,  

P-127 

Enzo Life Science, Lörrach, 

Germany 

OmniMMPTM Fluorogenic Substrate 
> 98%, 1093.2 Da, 

P-126 

Enzo Life Science, Lörrach, 

Germany 

Pentylamine-biotin 21345 
Thermo Fisher Scientific, 

Langenselbold, Germany 

Picric acid 1.2%, 84512.260 VWR, Darmstadt, Germany 

Potassium chloride > 99.6%, 26764.298 
Sigma-Aldrich, Steinheim, 

Germany 

Potassium dihydrogen phosphate 
> 99.5%, 

1.04877.1000 

Sigma-Aldrich, Steinheim, 

Germany 

Sirius red (Direct Red 80) 43665 Fluka, Taufkirchen, Germany 

Sodium acetate buffer 
10 mM, pH 4.5,  

BR100350 

GE Healthcare Europe GmbH, 

Freiburg, Germany 

Sodium azide (NaN3) ≥ 99.5%, S2002 
Sigma-Aldrich, Steinheim, 

Germany 

Sodium carbonate ≥ 99.5%, 222321 
Sigma-Aldrich, Steinheim, 

Germany 

Sodium chloride ≥ 99.5%, S7653 
Sigma-Aldrich, Steinheim, 

Germany 

Sodium citrate tribasic dihydrate 99%, C8532 
Sigma-Aldrich, Steinheim, 

Germany 

Sodium cyanoborohydride ≥ 95%, 23955696 Molekula, Munich, Germany 
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Chemical 
Specification, 

catalogue number 
Manufacturer 

Sodium dodecyl sulfate (SDS), 

Roti®-Stock 
20%, 1057.1 Carl Roth, Karlsruhe, Germany 

Sodium formate ≥ 99%, 247596 
Sigma-Aldrich, Steinheim, 

Germany 

Sodium hydroxide ≥ 99%, 9356.1 Carl Roth, Karlsruhe, Germany 

Sodium hypochloride 
available chloride 

10 - 15%, 425044  

Sigma-Aldrich, Steinheim, 

Germany 

Stains-all 95%, E9379 
Sigma-Aldrich, Steinheim, 

Germany 

Sulfur trioxide/dimethylformamide 

complex (SO3-DMF) 

≥ 97%, active SO3 ≥ 

45%, 84735 

Sigma-Aldrich, Steinheim, 

Germany 

Sulfur trioxide/pyridine complex 

(SO3-pyridine) 
≥ 45% SO3, 84737 

Sigma-Aldrich, Steinheim, 

Germany 

Sulfuric acid  95 - 98%, 258105 
Sigma-Aldrich, Steinheim, 

Germany 

Tetra-n-butyl ammonium fluoride 

hydrate (TBAF) 
98%, 241512 

Sigma-Aldrich, Steinheim, 

Germany 

Thiazolyl blue tetrazolium bromide 

(MTT) 
≥ 97.5%, M5655 

Sigma-Aldrich, Steinheim, 

Germany 

Toluidine blue 80%, T3260 
Sigma-Aldrich, Steinheim, 

Germany 

Trichloroacetic acid ≥ 99.0%, T9159 
Sigma-Aldrich, Steinheim, 

Germany 

Trifluoroacetic acid (TFA) 99%, T6508 
Sigma-Aldrich, Steinheim, 

Germany 

Tris 

(Tris(hydroxymethyl)aminomethane)-

Base 

≥ 99.9%, T6066 
Sigma-Aldrich, Steinheim, 

Germany 

Tris-HCl ≥ 99%, T5941 
Sigma-Aldrich, Steinheim, 

Germany 

Triton-X 100 
Laboratory grade, 

X100 

Sigma-Aldrich, Steinheim, 

Germany 

Tween 20 P2287 
Sigma-Aldrich, Steinheim, 

Germany 

Ultra pure water L0020 Biochrom, Berlin, Germany 
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3.1.2 Mediator proteins, enzymes and antibodies 

Tab. 3.2 Overview of used mediator proteins, enzymes and antibodies. 

Protein 
Specification, 

catalogue number 
Manufacturer 

AlexaFluor-488 Phalloidin A12379 Invitrogen, Carlsbad, USA 

AlexaFluor-568 secondary antibody  
goat anti-mouse, IgG, 

A11004 
Invitrogen, Carlsbad, USA 

Anti-phospho-tyrosine-horseradish 

peroxidase (HRP) 
841403 

R&D Systems, Wiesbaden, 

Germany 

Collagenase from Clostridium 

histolyticum (ChC) 

EC 3.4.24.3, C1639, 

0.4 U/mg (FALGPA) 

Sigma-Aldrich, Steinheim, 

Germany 

HA detection reagent  

biotinylated 

recombinant human 

aggrecan, 842163 

R&D Systems, Wiesbaden, 

Germany 

Human Phospho-VEGFR-2/KDR 

control 
841421 

R&D Systems, Wiesbaden, 

Germany 

Human Phospho-VEGFR-2/KDR 

DuoSet IC - ELISA kit 
DYC1766-2 

R&D Systems, Wiesbaden, 

Germany 

Human TIMP-3 capture antibody  
monoclonal, mouse 

IgG1, 842327 

R&D Systems, Wiesbaden, 

Germany 

Human TIMP-3 detection antibody 
biotinylated, mouse 

anti-human, 842328 

R&D Systems, Wiesbaden, 

Germany 

Human Total VEGFR-2/KDR DuoSet 

IC - ELISA kit 
DYC1780-2 

R&D Systems, Wiesbaden, 

Germany 

Human VEGF capture antibody  
monoclonal, mouse 

IgG2B, MAB293 

R&D Systems, Wiesbaden, 

Germany 

Human VEGF detection antibody  
biotinylated, goat 

IgG, BAF293 

R&D Systems, Wiesbaden, 

Germany 

Human VEGFR-2/KDR capture 

antibody 
841419 

R&D Systems, Wiesbaden, 

Germany 

Human VEGFR-2/KDR detection 

antibody 
841435 

R&D Systems, Wiesbaden, 

Germany 

Hyaluronidase (Hyal) 

Type I-S, bovine 

testis, 607 U/mg, EC 

3.2.1.35, H3506 

Sigma-Aldrich, Steinheim, 

Germany 

NeutravidinTM biotin binding protein 31000 
Thermo Fisher Scientific, 

Langenselbold, Germany 

Papain from papaya latex 
≥ 10 units/mg protein, 

P4762 

Sigma-Aldrich, Steinheim, 

Germany 

Recombinant human LRP-1 cluster II 

Fc Chimera 

> 90%, 136.2 kDa 

homodimer,  

2368-L2-050 

R&D Systems, Wiesbaden, 

Germany 
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Protein 
Specification, 

catalogue number 
Manufacturer 

Recombinant human LRP-1 cluster 

IV Fc Chimera 

> 90%, 153.4 kDa 

homodimer,  

5395-L4-050 

R&D Systems, Wiesbaden, 

Germany 

Recombinant human MMP-1 

> 95%, 52 kDa 

zymogen, 901-MP-

010, EC 3.4.24.7 

R&D Systems, Wiesbaden, 

Germany 

Recombinant human MMP-1 catalytic 

domain 

> 95%, 19.9 kDa, 

BML-SE180 

Enzo Life Science, Lörrach, 

Germany 

Recombinant human MMP-2 

> 90%, 71 kDa 

zymogen, 902-MP-

010, EC 3.4.24.24 

R&D Systems, Wiesbaden, 

Germany 

Recombinant human MMP-2 catalytic 

domain  

> 90%, 40 kDa, 

41.6 U/µl, BML-

SE237 

Enzo Life Science, Lörrach, 

Germany 

Recombinant human TIMP-3 
> 95%, 22 kDa, 973-

TM-010 

R&D Systems, Wiesbaden, 

Germany 

Recombinant human VEGF165 

(VEGF) 

> 97%, 38.4 kDa 

homodimer,  

293-VE-050 

R&D Systems, Wiesbaden, 

Germany 

Recombinant human VEGFR-2 

(KDR) Fc Chimera 

220 kDa homodimer, 

357-KD-050/CF 

R&D Systems, Wiesbaden, 

Germany 

Rhodamine B labelled Lysozyme  
14.3 kDa, LS1-RB-1, 

EC 3.2.1.17 
NANOCS Inc., New York, USA 

Streptavidin-horseradish peroxidase 

(Steptavindin-HRP) 
DY998 

R&D Systems, Wiesbaden, 

Germany 

Total VEGFR-2 standard 841436 
R&D Systems, Wiesbaden, 

Germany 

3.1.3 Glycosaminoglycans 

Tab. 3.3 Overview of used commercially available glycosaminoglycans. 

Glycosaminoglycan Specification, catalogue number Manufacturer 

Chondroitin sulfate 

(CS) 

from porcine trachea, 

Mixture of 30% chondroitin-6-sulfate 

and 70% chondroitin-4-sulfate 

Kraeber & Co. GmbH, Ellerbek, 

Germany 

CS-, HA- and HEP 

oligosaccharides 

degree of polymerization: 6 (dp 6), 

CSO06, HA06, HO06 
Iduron, Manchester, UK 

Heparin (HEP) 
from porcine intestinal mucosa, 

H3149 

Sigma-Aldrich, Steinheim, 

Germany 

HMW-Hyaluronan 

(HMW-HA) 

from Streptococcus 1.1 ∙ 106 g/mol,  

PD = 4.8 
Aqua Biochem, Dessau, Germany 
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3.1.4 Consumables 

Tab. 3.4 Overview of used consumables. 

Consumable Specification, catalogue number Manufacturer 

24 well plate 
transparent, F-bottom, sterile, 

Nunc, 10604903  

Thermo Fisher Scientific, 

Langenselbold, Germany 

24 well tissue culture 

plate 
TPP, sterile, 92024 

Sigma-Aldrich, Steinheim, 

Germany 

48 well plate 
transparent, F-bottom, sterile, 

Nunc, 10644901 

Thermo Fisher Scientific, 

Langenselbold, Germany 

96 well plate 
black, NunclonTM delta surface, 

sterile, 137101 

Thermo Fisher Scientific, 

Langenselbold, Germany 

96 well plate 
transparent, F-bottom, Nunc, 

10194761 

Thermo Fisher Scientific, 

Langenselbold, Germany 

96 well plate 
ELISA plate, high binding, F-

bottom, transparent, 82.1581.200 
Sarstedt, Nümbrecht, Germany 

96 well plate White, half-area, F-bottom, 3992 Corning, New York, USA 

Adhesive sticker for AFM Ø 10 mm, G304  Plano, Wetzlar, Germany 

AFM specimen discs Ø 15 mm,  16218  Ted Pella Inc., Redding, USA 

Biopsy punch sterile, Ø 3 mm, 48301 
Pfm medical, Kai Europe GmbH, 

Solingen, Germany 

Cantilever 

Tap300-G-10, silicon, resonance 

frequency: 300 kHz, force 

constant: 40 N/m 
Ted Pella Inc., Redding, USA 

Carbon tab for SEM Ø 12 mm, G3347 Plano, Wetzlar, Germany 

Cell counting slides EVS-050 NanoEnTek, Seoul, South Korea 

Cell culture dish 
Cellstar®, 60 mm x 15 mm, 

628960 

Greiner Bio-One, Frickenhausen, 

Germany 

Cell culture flask 175 cm2, 83.3912.002 Sarstedt, Nümbrecht, Germany 

Cell scarper 16 cm, 83.1832 Sarstedt, Nümbrecht, Germany 

Centrifuge tubes  15 ml, 188 271; 50 ml, 227 261 
Greiner Bio-One, Frickenhausen, 

Germany 

Cover for 96 well plates 82.1584 Sarstedt, Nümbrecht, Germany 

Mica substrate for AFM 
11 mm x 11 mm, 0.15 mm thick, 

G259-3 
Plano, Wetzlar, Germany 

Microcentrifuge tubes 
low binding: 0.65 ml, 1.7 ml, 

2.0 ml,  

Sorenson Bioscience, Salt Lake 

City, USA 

Microscope cover glasses Ø 12 mm, No.1, ECN 631-1577 VWR, Darmstadt, Germany 

Object slides Glass, 631-1553 VWR, Darmstadt, Germany 

Parafilm M, PM996 Bemis, Neenah, USA 

Pasteur pipette 230 mm, glass, 4522 Carl Roth, Karlsruhe, Germany 

Pipet tips  
50 - 1000 µl, F167658H; 

100 - 5000 µl, F166822H 

Eppendorf AG, Hamburg, 

Germany 
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Consumable Specification, catalogue number Manufacturer 

Pipet tips  

0.5 - 10 µl, 765290;  

20 - 200 µl, 739296; 

low binding, sterile:  

10 µl, 771265; 

300 µl, 738265 

Greiner Bio-One, Frickenhausen, 

Germany 

Pipet tips  

low binding, desoxyribonucleic 

acid (DNA)-, Dnase-, Rnase-free, 

sterile: 

2 - 100 µl, 70.760.212; 

1250 µl, 70.1186.210 

Sarstedt, Nümbrecht, Germany 

Pipet tips for 

multichannel pipette 
1 - 330 µl, 790047 

Biozym Scientific GmbH, 

Hessisch Oldendorf, Germany 

Pipet tips for repetitive 

pipette  

5 ml, 0030 069.455; 

10 ml, 0030 089.677 

Eppendorf AG, Hamburg, 

Germany 

Pipet tips with 

microcapillary for loading 

gels 

1 - 200 µl, 732-0508 VWR, Darmstadt, Germany 

Rubber caps for SPR vials Type 2, ventilated, BR100411 
GE Healthcare Europe GmbH, 

Freiburg, Germany 

Rubber caps for SPR vials Type 3, ventilated, BR100502 
GE Healthcare Europe GmbH, 

Freiburg, Germany 

Rubber caps for SPR vials Type 5, ventilated, BR100655 
GE Healthcare Europe GmbH, 

Freiburg, Germany 

Sample holder for SEM G301, Ø 12.5 mm Plano, Wetzlar, Germany 

Scalpel Nr. 22, 0508 Swann Morton, Sheffield, UK 

Sealing films 
Rotilabo®, microtest plates, PE, 

sterile, thickness 50 µm, EN77.1 
VWR, Darmstadt, Germany 

Series S Sensor Chip C1 BR100535 
GE Healthcare Europe GmbH, 

Freiburg, Germany 

Series S Sensor Chip 

CM5 
BR100530 

GE Healthcare Europe GmbH, 

Freiburg, Germany 

Serological pipettes  2 ml, 86.1252.001 Sarstedt, Nümbrecht, Germany 

Serological pipettes 
5 ml, 4487; 10 ml, 4488; 25 ml 

4489 
Corning, New York, USA 

Silver dag for SEM G3692, ACHESON Plano, Wetzlar, Germany 

Syringe 
sterile: 5 ml, 4606710V;  

20 ml, 4606205V 

B. Braun Melsungen AG, 

Melsungen, Germany  

Syringe sterile: 10 ml, 15E26C8 
Henke-Sass Wolf GmbH, 

Tuttlingen, Germany 

Syringe filters  0.2 µm pores, 83.1826.001 Sarstedt, Nümbrecht, Germany 

Tubes  low binding: 5 ml, D156383K  
Eppendorf AG, Hamburg, 

Germany 

Tubes 
low binding: 0.65 ml, 7137.1; 

1.7 ml, 7154.1; 2.0 ml, 7181.1 
Carl Roth, Karlsruhe, Germany 

Vials for SPR 7 mm, 0.8 ml, PP, BR100212 
GE Healthcare Europe GmbH, 

Freiburg, Germany 
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Consumable Specification, catalogue number Manufacturer 

Vials for SPR 11 mm, 1.5 ml, PP, BR100287 
GE Healthcare Europe GmbH, 

Freiburg, Germany 

Vials for SPR 15 mm, 4 ml, PP, BR100654 
GE Healthcare Europe GmbH, 

Freiburg, Germany 

3.1.5 Devices and software 

Tab. 3.5 Overview of used devices and software. 

Device/software Specification Manufacturer 

Analytical balance  AX105DR 
Mettler Toledo, Greifensee, 

Switzerland 

Atomic force microscope 
Nanoscope IIIa Bioscope with 

Nanoscope software 

Digital Instruments/Veeco, New 

York, USA 

Carbon sputter coater SCD 050 
Oerlikon Balzers Coating GmbH, 

Bingen, Germany 

Cell counter EVE Automatic Cell counter NanoEnTek, Seoul, South Korea 

Centrifuge 5415 D, 5702R, 5804R 
Eppendorf AG, Hamburg, 

Germany 

Desiccator 
2.4 l, 24 782 57; 5.8 l, 24 782 

61 
DURAN Group, Mainz, Germany 

Digital camera  Digimax V700 Samsung, Schwalbach, Germany 

Digital measuring slide 0 - 150 mm TCM, Hamburg, Germany 

Drying cabinet ED 53, type: 15053300002020 
WTB Binder, Tuttlingen, 

Germany 

Electromechanical testing 

system 

Instron 5566 with software 

Merlin IV 

Instron Deutschland GmbH, 

Darmstadt, Germany 

Fluorescence microscope AxioPhot Carl Zeiss, Oberkochen, Germany 

Fluorescence microscope 

camera  
AxioCam MRm Carl Zeiss, Oberkochen, Germany 

Freeze dryer Epsiolon 2-4 LSC Martin Christ, Oserode, Germany 

Freezer, -20°C Liebherr Comfort 
Liebherr, Biberach an der Riß, 

Germany 

Freezer, -80°C HERA freeze Heraeus, Hanau, Germany 

Fridge, 5 - 8°C Liebherr Premium 
Liebherr, Biberach an der Riß, 

Germany 

Gel electrophoresis EasyPhor Page Maxi Wave 
Biozym Scientific GmbH, 

Hessisch Oldendorf, Germany 

GraphPad Prism Version 6 
GraphPad Software Inc., La Jolla, 

USA 

Heating plate MR Hei-End Heidolph, Schwabach, Germany 

Ice dispenser  RF0388A 
Manitowoc Ice Inc., Manitowoc, 

USA 

Incubator  MCO-5AC; MCO-18AC SANYO, Moriguchi, Japan 

Liquid nitrogen tank  Locator 4 Plus 
Barnstead/Thermolyne, Dubuque, 

USA 

Low voltage power 

supply 
Standard Power Pack P25 Biometra, Göttingen, Germany 

Magnetic stirrer  BIG SQUID IKA-Werke, Staufen, Germany 

Microplate reader Infinite M200 PRO TECAN, Männedorf, Switzerland 
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Device/software Specification Manufacturer 

Microscope  Axiovert 25; Axiovert 40 CFL Carl Zeiss, Jena, Germany 

Microscope camera  AxioCam MRm Carl Zeiss, Oberkochen, Germany 

Microscopy software  AxioVision 4.6, ZEN 2 lite Carl Zeiss, Jena, Germany 

Orbital shaker  Unimax 2010 Heidolph, Schwabach, Germany 

pH-meter  pH 526 WTW, Weilheim, Germany 

Photo scanner Epson perfection 4180 
Epson Deutschland GmbH, 

Meerbusch, Germany 

Pipette controllers  Accu-jet pro Braun, Wertheim, Germany 

Repetitive pipette 

(electric) 
HandyStep Brand, Wertheim, Germany 

Scanning electron 

microscope  

ESEM XL 30 with microscope 

control software 

FEI Europe, Eindhoven, The 

Netherlands 

Security workbench  
KR-170 BW, MSC CL-II EN 

12469 

Kojair Tech Oy, Vilppula, 

Finnland 

Spectrophotometer 
NanoDrop 1000 with Program 

ND-1000 

Thermo Fisher Scientific, 

Langenselbold, Germany 

Surface plasmon 

resonance device 
Biacore T100 

GE Healthcare Europe GmbH, 

Freiburg, Germany 

Ultrapure water system  Arium 611 VF 
Sartorius Stedim, Göttingen, 

Germany 

Ultrasonic bath USC1200TH VWR, Darmstadt, Germany 

Ultrasonic horn UP 100 H 
Hielscher Ultrasonics GmbH, 

Teltow, Germany 

UV-device  365 nm 

Sina (via Canbolat 

Vertriebsgesellschaft, Würzburg, 

Germany) 

Vacuum pump  PM 12617-86 Biometra, Göttingen, Germany 

Vortex Vortex-Genie 2 
Scientific Industries, Bohemia, 

USA 

Water bath ED-13A Julabo, Seelbach, Germany 

3.1.6 Cell culture reagents  

Tab. 3.6 Overview of used cell culture reagents. 

Cell culture reagent Specification, catalogue number Manufacturer 

Aprotinin from bovine 

lung 
1.9 mg protein/ml, A6279  

Sigma-Aldrich, Steinheim, 

Germany 

Calcein acetoxymethyl 

ester (Calcein AM) 
≥ 96%, 17783 

Sigma-Aldrich, Steinheim, 

Germany 

Dulbecco´s modified 

eagle´s medium (DMEM) 
F 0415 Biochrom, Berlin, Germany 

Dulbecco´s phosphate 

buffered saline (DPBS) 

10x, + CaCl2, + MgCl2, gibco, 

14080-048 

Thermo Fisher Scientific, 

Langenselbold, Germany 

Fetal bovine serum (FBS) S 0115 Biochrom, Berlin, Germany 

Formaldehyde  36%, 47608 
Sigma-Aldrich, Steinheim, 

Germany 
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Cell culture reagent Specification, catalogue number Manufacturer 

Lactate dehydrogenase 

(LDH) cytotoxicity 

detection kit  

MK401 
TaKaRa Bio Europe, Saint-

Germain-en-Laye, France 

Leupeptin hemisulfate 1167 Tocris Bioscience, Bristol, UK 

L-Glutamine 200 mM, K 0283 Biochrom, Berlin, Germany 

Mitomycin C M4287 
Sigma-Aldrich, Steinheim, 

Germany 

Mowiol 4-88 81381 
Sigma-Aldrich, Steinheim, 

Germany 

NP-40 Alternative 492016 
EMD/Calbiochem, San Diego, 

USA 

OrisTM Cell Migration 

Assay 
CMA1.101, 96 well 

Platypus Technologies via AMS 

Biotechnology (Europe) Limited, 

Frankfurt, Germany 

Penicillin/Streptomycin 

(P/S) 

100x, 10000 U/ml, 10000 µg/ml, 

A 2213 
Biochrom, Berlin, Germany 

PrestoBlue Cell viability reagent, A-13261 Invitrogen, Carlsbad, USA 

Quant-IT PicoGreen 

dsDNA reagent 
P7581 Invitrogen, Carlsbad, USA 

Sodium azide (NaN3) S2002 
Sigma-Aldrich, Steinheim, 

Germany 

Sodium orthovanadate 

(Na3VO4) 
S6508 

Sigma-Aldrich, Steinheim, 

Germany 

Trypan blue 0.4%, EBT-001 NanoEnTek, Seoul, South Korea 

Trypsin/EDTA  10x, 0.5%/0.2%, L 2153 Biochrom, Berlin, Germany 

3.2 Preparation and characterization of GAG derivatives 

Chemically modified GAG polysaccharides were provided by Dr. Stephanie Möller, Dr. Jana 

Becher and Dr. Matthias Schnabelrauch from INNOVENT Jena e.V. (TRR67 subproject A2, 

Z3). HA oligosaccharides were available from Joanna Blaszkiewicz, Sebastian Köhling and 

Prof. Dr. Jörg Rademann (TRR67 subproject A8). All GAGs (Fig. 3.1) were used as sodium 

salts. The characterization of GAGs was performed by the groups of Dr. Schnabelrauch and 

Prof. Dr. Rademann as described in [59,402]. For this nuclear magnetic resonance (NMR) 

spectra were recorded in D2O using a Bruker Advance 400 MHz spectrometer at 373 K. The 

ratio of the proton signals of the acrylic protons (5.9 - 6.4 ppm) and the –CH3 of HA or CS 

(1.9 ppm) in 1H NMR spectra was used to calculate the degree of acrylation (D.S.AC) per D.U. 

of the respective GAG derivative. Additional Fourier transform-infrared (FT-IR) spectra were 

obtained with a FT-IR-Spectrometer FTS 175 (Bio-rad, Krefeld, Germany) using the KBr 

technique. Gel permeation chromatography was used to determine the MW. The polydispersity 

(PD) of the GAGs was calculated by RI detection with standard pullan (PSS, Mainz, Germany) 
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for calibration, while laser light scattering detection was applied to determine the weight-

average Mw of the polymers. The content of sulfur was quantified with an automatic elemental 

analyzer (CHNS-932, Leco, Mönchengladbach, Germany). The determined amount was used 

to calculate the degree of sulfate substitution (D.S.S) of GAG. In addition, the same methods 

were used to characterize the used commercially available native GAGs (Tab. 3.7, Tab. 3.8, 

Tab. 3.9). 

Fig. 3.1 Structures of sulfated HA and CS derivatives.  

3.2.1 Preparation of low molecular weight HA 

Ozonolysis was used to degrade HMW-HA according to [R316]. To this end a 10 mg/ml 

solution of native HA dissolved in water was treated for 120 min with 30 g/m3 O3 at a flow rate 

of 20 - 30 l/h, which was generated via an ozone generator (COM-AD-02, ANSEROS Klaus 

Nonnenmacher, Tübingen, Germany). Free ozone was removed by the treatment with N2 for 

30 min prior to dialysis against water and lyophilization of the remaining solution. Yield: 

75 - 85%. 

3.2.2 Synthesis of low-sulfated HA derivatives  

Sulfated HA derivatives exclusively substituted at the C6 position of the N-acetylglucosamine sugar 

unit of HA (sHA1) were synthesized as described in [59,403]. In brief, the sodium salt of HA was 

transferred into the tetra-butylammonium salt form (TeBA-HA) using a Dowex WX 8 ion 

exchanger. TeBA-HA served as starting material for the sulfation under argon at RT in the 

organic solvent DMF. To obtain sHA1, a SO3-pyridine complex dissolved in DMF was added 



3 MATERIALS AND METHODS  55 

 

 

to a suspension of TeBA-HA in DMF (molar polymer/SO3 ratio: 1:7). Sulfated products were 

precipitated into acetone and neutralized with ethanolic NaOH solution. The formed sodium 

salt of sHA1 was washed with acetone and purified by dialysis against distilled water. Yield: 

65%. 

3.2.3 Synthesis of regio-selectively sulfated HA derivatives  

Selective sulfation of the secondary hydroxyl groups of HA without sulfation of the primary 

hydroxyl group at the C6 position of the N-acetylglucosamine sugar unit (sHA1Δ6s) can be realized 

by using benzoyl ester as protecting group as reported in [404,405]. An ion exchanger was used 

to obtain the TeBA-HA. The primary hydroxyl group at C6 position of the N-acetylglucosamine 

sugar unit was protected by benzoylation using benzoyl chloride dissolved in a mixture of DMF 

and pyridine. The intermediate product was isolated by precipitation in water, then washed and 

dried in vacuum. The C6-benzoylated HA was afterwards sulfated using SO3-DMF (molar 

polymer/SO3 ratio 1:15) as sulfation reagent. The reaction mixture was poured into acetone 

adjusted to pH 10 by the addition of ethanolic NaOH solution and the product was isolated after 

neutralization with HCl. The protection groups were removed under basic conditions with an 

aqueous K2CO3 solution overnight. sHA1Δ6s was purified by dialysis against distilled water. 

Yield: 65%. 

3.2.4 Synthesis of high-sulfated GAG derivatives  

High-sulfated HA (sHA3, sHA4) and over-sulfated CS (sCS3) were synthesized as described in 

[59,406]. 3.22 mmol TeBA-HA (section 3.2.2) suspended in 400 ml DMF were mixed with 

64.4 mmol SO3-DMF complex in 40 ml DMF for 60 min at RT under argon atmosphere 

(polymer/SO3 ratio: 1:20). In case of sCS3, 6.92 mmol TeBA-CS, which was produced as described 

for HA, was suspended in 200 ml DMF before adding 138.35 mmol SO3-DMF complex in 60 ml 

DMF and treating it like the respective HA derivatives. Afterwards, the reaction products were 

isolated by precipitation in aceton and neutralized with ethanolic NaOH. The obtained sodium salts 

were washed with aceton and dialyzed against water prior to lyophilization and drying under 

vacuum. Yield: 76% for sCS3; 70% for sHA3, sHA4. 

3.2.5 Synthesis of acrylated GAG derivatives 

HA, CS, sHA1, sHA1Δ6s acrylates (HA-AC, CS-AC, sHA1-AC, sHA1Δ6s-AC) with acryl 

groups bound directly to the polymer backbone were obtained in a phase-transfer-based 

synthesis [365]. 10 mg tetra-n-butyl ammonium fluoride (TBAF) was added to 100 ml of a 

10 mg/ml aqueous solution of GAG. After cooling to 0°C, a 10-fold (in case of HA) or 50-fold 

(in case of sGAGs) molar excess of acryloyl chloride relative to the D.U. of GAG and 20 ml 

CH2Cl2 were added. After 240 min of stirring at 4°C, aceton was added to the aqueous phase 

for precipitation. The precipitate dissolved in water was dialyzed against water prior to 

lyophilization. Yield: 98%. 
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3.2.6 Fluorescence-labelling of sulfated HA derivatives 

Rhodamine derivatives (ATTO 565-NH2 for sHA1, ATTO 488-NH2 for sHA4) were bound to 

the reducing ends of sHA derivatives as described in [R316] (Fig. 3.2). 500 µg fluorescent dye 

(ATTO 488-NH2 dissolved in water; ATTO 565-NH2 dissolved in DMSO) was added to 

0.4 mmol GAG in 30 ml water after adjusting the pH to 8 - 8.5 with 0.1 M NaOH and incubated 

for 360 min under constant stirring at RT. Then, 0.4 mmol NaCNBH3 was added to the 

respective sHA1 solution with ATTO 565 at pH 7.5. After 72 h of stirring, the solution was 

dialyzed against water at pH 8 - 8.5 and afterwards against water at pH 5.5. The obtained 

products were lyophilized while the solution containing sHA1 with ATTO 488-NH2 was 

directly dialyzed without incubation with NaCNBH3. The content of fluorescent dye was 

calculated by fluorescence measurements using the unbound dye for calibration and the 

unlabeled GAG as blank. Yield: 85%. 

Fig. 3.2 Structure of fluorescence-labeled HA derivatives.  

3.2.7 Biotin-labelling of HA derivatives 

Biotin was introduced to HA and sHA3 at their reducing ends [315] (Fig. 3.3). To this end 

0.37 mmol GAG polymer was dissolved in water and 0.1 M NaOH was added to bring the pH 

to 8.0. Afterwards 3 ml of an aqueous solution containing 0.037 mmol pentylamine-biotin was 

added to the GAG solution. After 6 h of stirring at RT, the pH was adjusted to 7.5. Then 

0.037 mmol NaCNBH3 was added and the mixture was stirred for 72 h at RT. Free biotin was 

removed by dialysis against water at pH 8 - 8.5 and afterwards against water at pH 7. The 

biotinylated GAGs were obtained after filtration and lyophilization. Yield: 75 - 80%. 
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Fig. 3.3 Structure of biotin-labeled HA derivatives. 

3.2.8 Synthesis of sulfated HA oligosaccharides  

Tetra- and hexasaccharides of HA (dp 4, 6) were produced by enzymatic degradation of native 

HA by bovine testis Hyal (17.5 U per mg of HA) for 10 days at 37°C using 0.1 M acidic sodium 

acetate with 0.15 M NaCl (pH 4.5) as buffer. Afterwards, the reaction was stopped by boiling 

the solution for 5 min. The filtered solution was freeze-dried and the products were purified by 

size exclusion chromatography (Bio-Gel P2-column, extra fine, 3.5 cm x 90 cm; 5 psi pressure; 

25% acetic acid as mobile phase) before solvent evaporation and freeze-drying. Yield: 55%. 

To fix the anomeric position at the reducing end of the oligosaccharides and to enable anomeric 

ligation reactions, 0.20 mmol HA oligosaccharide was dissolved in water containing 

12.12 mmol sodium azide and 6.06 mmol N-methylmorpholine prior to adding 2.11 mmol 

2-chloro-1,3-dimethylimidazolinium chloride at 0°C to obtain the anomeric azides. After 

stirring for 15 min at 0°C, the reaction was continued at RT for 30 h. Then the solvent was 

evaporated and the product was desalted (Sephadex G-10 column, 3 cm x 20 cm; water) and 

purified via high pressure liquid chromatography (HPLC) (C-18; 95% water with 0.1% TFA 

and 5% MeCN with 0.1 % TFA; 30 ml/min; UV detection at 214 nm). Yield: 72%. 

1.845 mmol SO3-pyridine complex (5 equivalents per OH group) was added to 0.041 mol HA 

azide dissolved in DMF to synthesize per-sulfated HA (psHA) oligosaccharides where all GAG 

hydroxyl groups were substituted by sulfate esters. After overnight incubation, the mixture was 

supplemented with further 2 equivalents SO3-pyridine complex (0.73 mmol) per OH group of 

HA azide and incubated for 180 min before ending the reaction by adding 5.16 mmol sodium 

acetate in ethanol at 0°C. The precipitated product was filtered and washed with water prior to 

desalting and lyophilization [402]. Yield: 72%. 

Low-sulfated HA tetrasaccharides exclusively sulfated at the primary hydroxyl groups (sHA1, 

dp 4) was also produced by the use of SO3-pyridine complexes as sulfating agent. The product 

was extracted by anion exchange chromatography to obtain the GAG derivative as sodium salt. 

Yield: 35%.  

A medium-sulfated HA tetrasaccharide (sHA2Δ6s, dp 4) sulfated at the C2 and C3 position of 

the glucuronic acid unit but not at the C4 and C6 position of the N-acetylglucosamine was 
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synthesized after introducing protection groups to the 4,6-diol moieties with phenyl boronic 

acid. This intermediate product was used for subsequent persulfation. Afterwards the final 

product was extracted by anion exchange chromatography by applying a gradient of NaCl from 

0 - 12 M followed by two desalting steps with Sephadex G-10. Yield: 45%. 

Tab. 3.7 Characteristics of GAG oligo- and polysaccharides used for interaction analyses.  

GAG D.S. Mw (kDa) PD Biotin content dp 

HA (dp 4) - 0.777 - - 4 

HA (dp 6) - 1.204 - - 6 

CS (dp 6) 1.0 1.488 - - 6 

sHA1 (dp 4) 1.0 1.005 - - 4 

sHA2Δ6s (dp 4) 2.0 1.355 - - 4 

HEP (dp 6) 2.0 1.800 - - 6 

psHA (dp 4) 4.0 1.763 - - 4 

psHA (dp 6) 4.0 2.573 - - 6 

LMW-HA - 48.3 2.3 - 240 

sHA1 1.0 31.1 2.2 - 123 

HEP 2.2 18.0 
not 

determined 
- 58 

sHA3 2.8 28.7 1.7 - 84 

sHA3 2.9 21.0 1.7 - 60 

sCS3 3.1 19.9 1.5 - 56 

HA-Biotin - 33.0 2.2 1.96 µg/mg 164 

sHA3-Biotin 3.6 29.0 1.7 5.72 µg/mg 75 

Tab. 3.8 Characteristics of polymeric GAG derivatives used for aECM preparation.  

GAG D.S. Mw (kDa) PD Fluorescent dye 

LMW-HA - 23.0 2.2 - 

sHA1 1.4 20.3 2.8 0.45 µg/mg ATTO 565 

sHA4 3.6 28.6 1.7 0.06 µg/mg ATTO 488 

Tab. 3.9 Characteristics of polymeric GAG derivatives used for hydrogel preparation.  

GAG D.S.S Mw (kDa)* D.S.AC 

HA - 48.3 - 

HA-AC - 145.7 0.6 

CS 0.8 19.8 - 

CS-AC 0.8 19.9 0.6 

sHA1 1.2 26.4 - 

sHA1-AC 1.5 27.0 0.7 
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GAG D.S.S Mw (kDa)* D.S.AC 

sHA1Δ6s 1.4 56.3 - 

sHA1Δ6s-AC 1.5 55.1 0.5 

*The given Mw corresponds to the GAGs prior to acrylation. No information regarding the PD were 

available for these GAG derivatives. 

3.3 Preparation of biomaterials 

3.3.1 aECM coatings composed of collagen type I and GAGs (coll/GAG) 

The entropy-driven self-assembly of collagen type I monomers to collagen fibrils at neutral pH 

in the absence or presence of GAGs was used to prepare 2.5D aECM coatings as described by 

Williams et al. with modifications [407,408].   

Preparation of solutions 

10 mM acetic acid: 286 µl glacial acetic acid was added to 400 ml water and the volume was 

adjusted to 500 ml in a volumetric flask. The solution was autoclaved and stored at 4°C. 

Fibrillogenesis buffer (50 mM Na2HPO4, 10 mM KH2PO4, pH 7.4, I 0.08): 6.719 g 

Na2HPO4 ∙ 7 H2O and 0.760 g KH2PO4 were dissolved in 500 ml water. The solution was 

sterilized by autoclaving and stored at 4°C. 

Collagen type I solution (1 mg/ml): The collagen stock solution was diluted with 10 mM acetic 

acid to obtain 1 mg/ml and stored on ice until use. 

GAG solution (2.5 mM D.U.): The respective amount of GAG related to the Mw of the D.U. 

was dissolved in fibrillogenesis buffer for at least 120 min at 4°C prior to usage to always 

provide the same number of potential protein binding sites.  

Preparation of aECM coatings via in vitro fibrillogenesis of collagen type I  

Equal volumes of 1 mg/ml collagen type I dissolved in acetic acid were mixed with 

fibrillogenesis buffer with or without 2.5 mM D.U. GAGs in multi well plates (105 µg coll/cm2) 

on ice and incubated overnight at 37°C to obtain 1/1 aECMs. 1/0.5 matrices were prepared by 

mixing 1 mg/ml collagen with 1.25 mM D.U. GAG in fibrillogenesis buffer. Afterwards, the 

aECMs were dried at RT and washed with water prior to drying. For cell culture experiments, 

aECMs were prepared under sterile conditions using sterile filtered (0.22 µm) solutions and a 

laminar airflow cabinet.   

3.3.2 Hyaluronan/collagen hydrogels (HA-AC/coll) 

Preparation of solutions 

10 mM acetic acid and the fibrillogenesis buffer were prepared as described in section 3.3.1. 

1% acrylated GAG in water: 10 mg acrylated GAG were dissolved in 1 ml water under 

exclusion of light. The solution was made freshly directly prior to use. 
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2% acrylated GAG in water: 20 mg acrylated GAG were dissolved in 1 ml water in the dark. 

The solution was made fresh directly prior to use. 

1% LAP in water: 1 mg LAP was freshly dissolved in 100 µl water and protected from light. 

Collagen type I solution (2 mg/ml): The collagen stock solution was diluted with 10 mM acetic 

acid to obtain 2 mg/ml and stored on ice until use. 

Preparation of HA-AC/collagen hydrogels  

HA-containing hydrogels were obtained after photocrosslinking of HA-AC as reported by 

Becher et al. [365]. Tab. 3.10 describes the preparation of HA/coll hydrogels in detail, while 

the compositions of the respective polymer formulations are given in Tab. 3.11. 

Tab. 3.10 Preparation of HA-AC/collagen hydrogels. 

Step Procedure  

In vitro 

fibrillogenesis 

Equal volumes of 2 mg/ml collagen type I dissolved in 10 mM acetic acid and 

fibrillogenesis buffer were mixed in low-binding tubes on ice, followed by an 

incubation for 16 hours at 37°C. 

Preparation of 

polymer 

formulations 

20 µl 1% LAP was added to 200 µl 1% HA-AC for the preparation of gels w/o 

collagen and sGAG-AC. Collagen-containing gels were prepared from mixtures 

of 100 µl 2% HA-AC or 75 µl 2% HA-AC and 25 µl 2% sGAG-AC with 100 µl 

of a suspension of 1 mg/ml fibrillar collagen and 20 µl 1% LAP.  

For cell culture experiments, 200 µl polymer mixture containing LAP were 

added per well of a 48 well plate under sterile conditions. For characterization 

studies, the gels were prepared non-sterile with 200 µl polymer mixture in 

96 well plates, with 250 µl polymer mixture in cylindrical silicon casting molds 

or with 50 µl polymer mixture between two glass cover slides (Ø 12 mm).  

Photocrosslinking 
The polymer mixtures were irradiated for 10 min with UV light ( = 365 nm, 

0.17 W/cm2). 

First freeze-

drying 

The gels were frozen for 60 min at -80°C prior to freeze-drying. The following 

program was used: 1) 20 min freezing at -10°C; 2) 105 min drying at -10°C and 

1.030 mbar; 3) 150 min drying at 20°C and 1.030 mbar, 4) 690 min drying at 

20°C and 1.030 mbar; 5) 10 min drying at 20°C and 0.001 mbar; 6) 50 min 

drying at 30°C and 0.001 mbar and 7) 120 min drying at 30°C and 0.001 mbar. 

Washing The freeze-dried gels were washed twice with water to remove salts and LAP.  

Second freeze-

drying 

After the second freeze-drying step under the same conditions as the first one, 

porous HA/coll-gels were obtained with the following sizes: i) from 48 well 

plates: h = 1.1 mm, Ø = 8.5 mm; ii) from 96 well plates: h = 5 mm, Ø = 4 mm; 

iii) from silicon casting molds: h = 3.3 mm, Ø = 5 mm; iv) from glass cover 

slides after punching with a biopsy punch: h = 0.2 mm, Ø = 3 mm. 

 



3 MATERIALS AND METHODS  61 

 

 

Tab. 3.11 Composition of 1 ml aqueous acrylated polymer mixture.  

Hydrogel HA-AC  sGAG-AC  Collagen 

HA-AC 10 mg - - 

HA-AC/coll 10 mg - 0.5 mg 

HA-AC/CS/coll 7.5 mg 2.5 mg 0.5 mg 

HA-AC/sHA1/coll 7.5 mg 2.5 mg 0.5 mg 

HA-AC/sHA1Δ6s/coll 7.5 mg 2.5 mg 0.5 mg 

3.4 Analytical and further methods 

GAGs are polydisperse macromolecules differing in their sugar chain length as well as their 

molecular weight according to their net amount of substitute residues (e.g. sulfate groups). To 

compare similar numbers of potential GAG binding sites, equal molar concentrations related to 

the molecular weight of the respective GAG D.U. were used in all following experimental 

analyses if not stated otherwise. 

3.4.1 Immobilization of GAGs on polystyrene surfaces 

Preparation of solutions 

1% adipic acid dihydrazide solution: 200 mg adipic acid dihydrazide were dissolved in 20 ml 

water. This solution should always be prepared freshly. 

0.5% methyl vinyl ether/maleic acid copolymer solution: 75 mg methyl vinyl ether/maleic acid 

copolymer were dissolved in 15 ml DMSO. This solution should be made freshly before usage.  

25 mM citric acid phosphate buffer (pH 5.0): 480.3 mg citric acid and 445 mg Na2HPO4 ∙ H2O 

were dissolved in 80 ml water. The pH was adjusted to 5.0 by adding 3 N NaOH prior to 

adjusting the volume to 100 ml in a volumetric flask.  

1% sodium cyanoborohydride solution: 20 mg NaBH3CN were freshly dissolved in 2 ml 

methanol. 

Tris buffered saline (TBS) buffer (10 mM Tris-HCl, 50 mM NaCl, pH 7.4): 121 mg Tris-base 

and 292 mg NaCl were dissolved in 80 ml water, the pH was adjusted to 7.4 via the addition of 

6 M and 1 M HCl and water was added to reach a final volume of 100 ml in a volumetric flask. 

2% BSA in TBS buffer: 100 mg BSA were freshly dissolved in 5 ml TBS buffer before use. 

1% BSA in phosphate buffered saline (PBS) buffer: 150 mg BSA were dissolved in 15 ml PBS. 

This solution should be made freshly each day. 

To assess the binding of solute mediator proteins to GAG-coated surfaces or the degradation of 

immobilized HA, GAGs were immobilized according to the following protocols. 
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Covalent immobilization of GAGs via their reducing ends 

The immobilization of GAGs was performed as previously described [59,409]. To introduce 

acid anhydride groups onto polystyrene surfaces (96 well plates Maxi-SorpTM or 24 well plates) 

0.5% methyl vinyl ether/maleic acid copolymer dissolved in DMSO was added for 30 min, 

followed by a treatment with 1% adipic acid dihydrazide for 150 min to functionalize the plate 

with hydrazine groups.  

Afterwards, the plates were washed three times with water before incubating them overnight at 

4°C with 2.5 mM D.U. GAGs dissolved in phosphate buffer containing 25 mM citric acid 

(pH 5.0). The formyl groups of the reducing end of the GAGs then react with hydrazine groups 

on the surfaces. The next day the formed Schiff´s bases were reduced by adding 1% sodium 

cyanoborohydride dissolved in methanol for 30 min via reductive amination. Before use, the 

GAG-coated surfaces were washed with Tris-buffered saline (TBS, 10 mM Tris-HCl, 50 mM 

NaCl, pH 7.4). Non-specific interactions were blocked via the incubation with 2% BSA in TBS 

for 120 min.  

Immobilization of biotinylated GAGs to neutravidin-coated surfaces 

Biotinylated GAGs were immobilized to neutravidin coated 96 well ELISA plates, which were 

pre-treated with 100 µl of 10 µg/ml neutravidin dissolved in PBS overnight at 4°C and washed 

with 0.05% Tween 20 in PBS for three times as described in [315]. 50 µl of a 2.5 mM D.U. 

GAG solution in PBS was added per well and incubated at RT for 120 min. Afterwards the 

wells were washed thrice with 0.05% Tween 20 in PBS and blocked with 2% BSA in PBS for 

120 min. 

3.4.2 Binding of mediator proteins to GAG-coated surfaces 

Preparation of solutions 

TIMP-3 solutions: A 100 µg/ml TIMP-3 stock solution was diluted with 1% BSA in PBS to 

obtain 1.8 nM TIMP-3 as final concentration. 

VEGF-A solutions: A 100 µg/ml VEGF-A165 stock solution was diluted with 1% BSA in PBS 

to obtain 1.8 nM VEGF-A. 

Lysozyme solution: The 1000 µg/ml Rhodamine B labeled lysozyme stock solution was 1:500 

diluted with 2% BSA in PBS to achieve a concentration of 140 nM lysozyme. 

Interaction of proteins with GAG-surfaces 

The binding capacity of GAG-coated surfaces (section 3.4.1) was determined after incubation 

of the GAG-containing wells with the respective protein (TIMP-3, VEGF-A, and fluorescence-

labeled lysozyme) overnight at 4°C. Competitive GAG-binding studies between TIMP-3 and 

VEGF-A were performed with biotinylated HA and sHA3 immobilized to neutravidin-coated 

wells of a 96 well plate, while the binding of TIMP-3 or VEGF-A was studied with GAGs 

covalently immobilized via their reducing ends in wells of a 96 well plate. Since the detection 
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of fluorescence-labeled lysozyme requires significantly higher protein amounts compared to 

the quantification via ELISA, wells of a 24 well plate with covalently immobilized GAGs were 

used to examine their interaction with lysozyme. The added volume of the respective protein 

solution was 100 µl per well of a 96 well plate, while 300 µl were used for wells of a 24 well 

plate. 

The supernatants were analyzed via sandwich-ELISA (section 3.4.4) to quantify the amounts 

of TIMP-3 and VEGF-A that were not bound to GAGs, while the intensity of the fluorescence 

signal (ex = 544 nm, em = 576 nm) was used to measure the amount of lysozyme in the 

supernatants. 

3.4.3 Binding of lysozyme or VEGF-A to hydrogels 

Preparation of solutions 

2% BSA in PBS: 20 mg BSA were dissolved in 1 ml PBS prior to use. 

Lysozyme in 2% BSA/PBS (8 µg/ml): The 1000 µg/ml Rhodamine B labeled lysozyme stock 

solution was diluted with 2% BSA in PBS to obtain a concentration of 8 µg/ml lysozyme. 

1% BSA in PBS: 10 mg BSA were freshly dissolved in 1 ml PBS. 

VEGF-A solution (500 ng/ml): A 100 µg/ml VEGF-A stock solution was diluted 1:200 with 1% 

BSA in PBS to achieve a final concentration of 500 ng/ml. 

Hyal solution (1600 U/ml): A Hyal solution of 1600 U/ml in PBS was freshly prepared prior to 

use.  

Binding and release of lysozyme  

Freeze-dried gels with a diameter of 4 mm and a height of 5 mm prepared from 200 µl polymer 

mixture in 96 well plates were used. The gels were incubated with 500 µl 8 µg/ml Rhodamine B 

labeled lysozyme in 2% BSA/PBS overnight at 4°C. Afterwards, 250 µl of the supernatants 

were collected and replaced by 250 µl freshly prepared 2% BSA/PBS. Then the hydrogels were 

incubated at 37°C under constant shaking (125 rpm) and the supernatants were collected at 

different time points (1 h, 4 h, 24 h, 192 h) and stored at 4°C in the dark until analysis. The 

amount of non-bound lysozyme in the supernatants was determined by measuring the 

fluorescence intensity (ex = 544 nm, em = 576 nm) relative to a lysozyme calibration curve. 

To calculate the amounts of hydrogel-bound lysozyme, the determined lysozyme values in the 

supernatants were subtracted from the initially used lysozyme concentration.  

Binding and release of VEGF-A  

Gels with a diameter of 3 mm and a height of 0.2 mm were obtained from freeze-dried gels 

prepared with 50 µl polymer solution between two glass discs (Ø 12 mm) using a biopsy punch. 

The gels were incubated with 400 µl 500 ng/ml VEGF-A in 1% BSA/PBS overnight at 37°C 

prior to replacing the supernatant by 400 µl freshly prepared 1% BSA/PBS solution. The 
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supernatants were collected at each time point (initial, 1 h, 1 d, 8 d, 21 d, 30 d), stored at -80°C 

until VEGF-A quantification by ELISA (section 3.4.4) and replaced by 400 µl 1% BSA/PBS 

after the respective incubation times. After 30 days of incubation, the gels were degraded in 

200 µl 1600 U/ml hyaluronidase solution and the obtained solution was analyzed via VEGF-A 

ELISA as well. The initial amount of VEGF-A bound to the gels was calculated by adding up 

the remaining VEGF-A amount in the gels after 30 days of incubation and the released amounts 

of VEGF-A over time. 

3.4.4 Quantification of TIMP-3 and VEGF-A via ELISA 

The amount of solute TIMP-3 or solute VEGF-A was quantified via Sandwich-ELISA using 

specific antibodies according to the manufacturer’s protocols (R&D Systems). TIMP-3 and 

VEGF-A concentrations ranging from 62.5 pg/ml to 4000 pg/ml in 1% BSA/PBS were used as 

standards for quantification. 

Preparation of solutions 

Mouse anti-human TIMP-3 capture antibody stock solution: 360 µg lyophilized TIMP-3 

capture antibody were dissolved in 1 ml PBS to a final concentration of 360 µg/ml according 

to the manufacturer’s instructions and 55.5 µl aliquots were stored at -80°C.  

Biotinylated mouse anti-human TIMP-3 detection antibody stock solution: 360 µg lyophilized 

TIMP-3 detection antibody were dissolved in 1 ml 1% BSA in PBS to a final concentration of 

360 µg/ml according to the manufacturer’s protocol and 55.5 µl aliquots were stored at -80°C.  

Mouse anti-human TIMP-3 capture antibody solution: The stock solution was 1:180 diluted to 

achieve a concentration of 2 µg/ml in PBS.  

Biotinylated mouse anti-human TIMP-3 detection antibody solution: The stock solution was 

1:180 diluted to obtain a concentration of 2 µg/ml with 1% BSA in PBS.  

Mouse anti-human VEGF capture antibody stock solution: 500 µg lyophilized VEGF capture 

antibody were dissolved in 1 ml PBS to receive a final concentration of 500 µg/ml according 

to the manufacturer’s instructions and 20 µl aliquots were stored at -80°C.  

Biotinylated goat anti-human VEGF detection antibody stock solution: 50 µg lyophilized VEGF 

detection antibody were dissolved in 250 µl PBS to obtain a final concentration of 200 µg/ml 

according to the manufacturer’s protocol and 5 µl aliquots were stored at -80°C.  

Mouse anti-human VEGF capture antibody solution: The stock solution was 1:500 diluted to 

achieve a concentration of 1 µg/ml in PBS.  

Biotinylated goat anti-human VEGF detection antibody solution: The stock solution was 1:2000 

diluted to obtain a concentration of 0.1 µg/ml with 1% BSA in PBS.  
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Wash buffer (0.05% Tween 20 in PBS, pH 7.4): 250 µl Tween 20 was added to 400 ml PBS and 

the volume was adjusted to 500 ml with PBS in a volumetric flask.  

Reagent diluent (1% BSA in PBS, pH 7.4): 500 mg BSA were freshly dissolved in 50 ml PBS. 

Streptavidin-HRP working dilution: The streptavidin-HRP stock solution was diluted 1:200 

with reagent diluent prior to use. 

Stop solution (1 M H2SO4): 56 ml concentrated H2SO4 was diluted with water to a final volume 

of 1000 ml in a volumetric flask.  

Plate preparation 

100 µl of the respective capture antibody solution was added per well of a 96 well ELISA plate. 

The sealed plate was incubated overnight at RT. The next day the supernatants were removed 

and each well was washed three times with 300 µl wash buffer. The nonspecific binding sites 

were blocked for 60 min by incubation with 300 µl reagent diluent per well. Afterwards, the 

wells were washed thrice.  

ELISA procedure 

100 µl sample or standard solution was added per well and incubated for 120 min at RT. Then 

the wells were washed three times with wash buffer (300 µl) prior to the incubation with 100 µl 

detection antibody solution for 120 min. After three washing steps with wash buffer, 100 µl 

diluted streptavidin-HRP solution was added to each well and incubated in the dark for 20 min. 

The wells were washed again three times with wash buffer, and then 100 µl substrate solution 

(3,3’,5,5’-tetramethyl-benzidine) was added per well. The plates were incubated in the dark for 

5 min - 20 min at RT before stopping the reaction by the addition of 50 µl stop solution. The 

absorbance was measured at 490 nm. 

3.4.5 HA degradation via Hyal in the presence of GAGs 

A direct ELISA was used to detect the remaining amounts of immobilized HA in transparent 

96 well plates after incubation with hyaluronidase in the absence or presence of GAGs. The 

degradation of HA was calculated relative to the absorbance of the non-degraded HA control 

wells during ELISA.   

Preparation of solutions 

Hyal solution: Hyal solutions of 0.02 U/ml in PBS were freshly prepared each day prior to 

usage.  

2M NaCl solution: 11.688 g NaCl were dissolved in 80 ml water and the volume was adjusted 

to 100 ml in a volumetric flask. 

Biotinylated HA detection reagent stock solution: 24 µg lyophilized biotinylated recombinant 

human aggrecan were dissolved in 250 µl PBS to a final concentration of 96 µg/ml according 

to the manufacturer’s instructions and 25 µl aliquots were stored at -80°C.  
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Biotinylated HA detection reagent working solution: The HA detection reagent stock solution 

was diluted with 1% BSA/PBS to achieve a final concentration of 400 ng/ml directly prior to 

use.  

Plate preparation 

Native HA was covalently immobilized via its reducing ends in 96 well ELISA plates by adding 

100 µl 2.5 mM D.U. GAG solution per well as described in section 3.4.1.  

HA degradation via Hyal 

For HA degradation 50 µl 0.02 U/ml Hyal solution with or without 2.5 mM D.U. solute GAG 

was added to each well and the plate was incubated at 37°C for 30 or 120 min. After the 

respective time points, the supernatants were discarded and the wells were washed three times 

with PBS and thrice with 2 M NaCl. Wells incubated with PBS without Hyal, served as control.  

Quantification of remaining HA via ELISA 

100 µl HA detection reagent solution was added to each well for 120 min. After aspirating this 

solution the wells were washed with wash buffer (3x), prior to adding 100 µl diluted 

streptavidin-HRP solution per well and incubation of the plate in the dark for 20 min. The wells 

were washed again (3x) with wash buffer, then 100 µl substrate solution (3,3’,5,5’-tetramethyl-

benzidine) was added to each well. After 5 - 10 min of incubation protected from light the 

reaction was stopped with 50 µl 1 M H2SO4 per well and the absorbance at 490 nm was 

measured.  

3.4.6 Enzyme kinetic analysis 

Preparation of solutions 

Assay buffer for MMP catalytic domains (50 mM HEPES, 10 mM CaCl2, 0.05% Brij-L23, 

pH 7.5): 50 mg Brij-L23, 1.192 g HEPES and 147 mg CaCl2 ∙ H2O were dissolved in 80 ml 

water. The pH was adjusted to 7.5 via the addition of 1 M NaOH. Afterwards, the solution was 

transferred to a 100 ml volumetric flask and the volume was adjusted to 100 ml with water. The 

solution was filtered (0.02 µm) and stored at RT until usage. 

TIMP buffer - assay buffer for full-length MMPs (50 mM Tris, 10 mM CaCl2, 150 mM NaCl, 

0.05% Brij-L23, pH 7.5): 50 mg Brij-L23, 605.7 mg Tris, 147 mg CaCl2 ∙ 2H2O and 876.6 mg 

NaCl were dissolved in 80 ml water. After adjusting the pH to 7.5 by the addition of 0.5 M HCl, 

the solution was transferred to a 100 ml volumetric flask and the volume was adjusted to 100 ml 

with water. The solution was filtered (0.02 µm) and stored at RT until usage. 

100 mM APMA stock solution: 0.3908 g APMA (4-Aminophenylmercuric acetate) dissolved in 

DMSO were adjusted to 10 ml in a 10 ml volumetric flask with DMSO. Aliquots of 200 µl were 

prepared in 0.65 ml low binding tubes and stored at -20°C until use.  

1.3 mM NNGH stock solution: 5 mg NNGH were dissolved in 12.165 ml DMSO to a final 

concentration of 411 µg/ml and stored in aliquots at -80°C. 
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400 µM OmniMMPTM fluorogenic substrate stock solution: 1 mg OmniMMPTM fluorogenic 

substrate was dissolved in 2.288 ml DMSO (437 µg/ml) and 200 µl aliquots of this solution 

were stored at -80°C in the dark until usage. 

Performance of the MMP kinetic analysis 

The remaining enzyme activity of full-length MMP-1 and MMP-2 after allosteric activation 

with APMA according to R&D Systems (Tab. 3.12) and the corresponding catalytic domains 

was determined by measuring the increase of the fluorescence signal (ex: 328 nm, em: 420 nm) 

over time, represented by the cleavage of a fluorescent substrate peptide (Mca-Pro-Leu-Dpa-

Ala-Arg-NH2 [Mca: (7-methoxycoumarin-4-yl)-acetyl, Dpa: N-3-(2,4-dinitrophyenyl)-L-α-β-

diamino-propionyl]). Enzyme kinetics were performed for 10 min with 30 sec time intervals in 

white half-area 96 well plates after 60 min of MMP incubation with the respective GAG 

solution or with preformed TIMP-3/GAG complexes at 37°C according to the manufacturer’s 

protocol (Enzo Life Science) and Tab. 3.13.  

Tab. 3.12 Activation of proMMP-1 and proMMP-2 via APMA. 

Step Activation of proMMP-1 Activation of proMMP-2 

1 Dilution of proMMP-1 to 50 µg/ml in assay 

buffer 

Dilution of proMMP-2 to 100 µg/ml in assay 

buffer 

2 Addition of 100 mM APMA to obtain a final concentration of 1 mM APMA in solution 

3 Incubation for 120 min at 37°C Incubation for 60 min at 37°C 

4 Dilution of the activated full-length MMP with assay buffer to 38.48 nM 

(2 ng/µl MMP-1, 2.73 ng/µl MMP-2) 

5 Immediate performance of enzyme kinetic analysis with 3.8 nM activated MMP 

The remaining enzyme activity was calculated from the slope of a linear regression curve in 

which the increase of the fluorescence signal over time was linear relative to the negative 

control buffer without GAGs or TIMP-3 representing 100% enzyme activity. 10 µl 6.5 µM 

NNGH served as positive control for inhibition and the final volume within the assay was 

adjusted to 90 µl via the addition of assay buffer prior to the addition of the substrate peptide.  

Tab. 3.13 Scheme for the performance of MMP kinetic analysis. The respective solutions were added 

in the described order. 

Step 
Kinetics with catalytic 

domains of MMPs 

Kinetics with activated full-

length MMPs 

Kinetics with activated 

MMPs and TIMP-3 

1 20 µl 12.5 - 125 mM D.U. GAG 20 µl 12.5 mM D.U.  

2 --- 
10 µl 50 nM or 25 nM 

TIMP-3 for MMP-1 or -2 

3 
50 µl assay buffer for MMP 

catalytic domains 

60 µl assay buffer for full-

length MMPs 

50 µl assay buffer for full-

length MMPs 
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Step 
Kinetics with catalytic 

domains of MMPs 

Kinetics with activated full-

length MMPs 

Kinetics with activated 

MMPs and TIMP-3 

4 w/o incubation 
Incubation for 30 min at 

37°C 

5 
20 µl 0.450 U*/µl catalytic 

domain of MMP-1/-2 
10 µl 38.48 nM activated full-length MMP-1/-2** 

6 Incubation for 60 min at 37°C 

7 Addition of 10 µl 40 µM fluorescent substrate peptide and start of fluorescence measurement 

*1 U = 100 pmol/min at 37°C using the Ac-Pro-Leu-Gly-S-Leu-Leu-Gly-OEt as substrate according to 

certificate of analysis (Enzo Life Science); **Equal nM concentrations instead of activities were used 

in case of activated full-length MMPs since the activity U of the activated full-length MMPs could not 

be determined like for the catalytic domains due to the interference of APMA with the substrate 

Ac-Pro-Leu-Gly-S-Leu-Leu-Gly-OEt [410]. 

3.4.7 Surface plasmon resonance (SPR) 

Molecular interaction analysis in real time was performed with a Biacore T100 instrument. 

Preparation of solutions 

All solutions used within SPR measurements were prepared with ultra pure water and filtered 

(0.22 µm) if not stated otherwise.  

HBS-EP buffer (0.01 M HEPES, 0.15 M NaCl, 3 mM EDTA, 0.005% surfactant P20, pH 7.4): 

The commercially available HBS-EP stock solution (GE Healthcare) was diluted 1:10 with 

water for the preparation of the running buffer. 

391.2 mM EDC solution: 750 mg EDC were dissolved in 10 ml water and aliquots (110 µl) 

were kept at -20°C until usage. 

100 mM NHS solution: 115 mg NHS were dissolved in 10 ml water and aliquots of 110 µl were 

stored at -20°C until use.  

1 M ethanolamine-HCl-NaOH (pH 8.5): 4.88 g ethanolamine-HCl were dissolved in 40 ml 

water and the pH was adjusted to 8.5 by adding 1 M NaOH prior to transferring this solution to 

a 50 ml volumetric flask and adjusting the volume with water. The solution was aliquoted (1 ml) 

and stored at -20°C. 

1 M HCl regeneration stock solution: 4.1404 ml HCl (37%) were added to about 40 ml water 

before adjusting the volume to 50 ml in a volumetric flask with water.  

5 M NaCl regeneration solution: 14.61 g NaCl were dissolved in about 40 ml water prior to 

bringing the volume to 50 ml in a volumetric flask. 

Conditioning solution for C1 sensor chips (100 mM glycine-NaOH with 0.3% Triton X-100, pH 

12): 375 mg glycine were dissolved in about 40 ml water, the pH was adjusted to 12 with 
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NaOH (4 M, 1 M) prior to adding 160.5 mg Triton X-100 and bringing the volume to 50 ml in 

a volumetric flask. 

BIAdesorb solution 1 (0.5% SDS): 2.50 ml SDS were dissolved in about 80 ml water before 

adjusting the volume to 100 ml in a volumetric flask. 

BIAdesorb solution 2 (50 mM glycine-NaOH, pH 9.5): 375 mg glycine were dissolved in about 

80 ml water, the pH was adjusted to 9.5 with NaOH (1 M, 0.5 M) prior to volume adjustment 

to 100 ml in a volumetric flask. This solution was stored at 4°C until use. 

BIAdisinfectant solution (sodium hypochloride with 0.7 - 1% active chloride): 3 ml sodium 

hypochloride (10 - 15% active chloride) were mixed with 40 ml water. 

LRP-1 cluster II stock solution: 50 µg lyophilized LRP-1 cluster II were dissolved in 100 µl 

PBS to a final concentration of 500 µg/ml according to the manufacturer’s instructions and 

aliquots (1 - 5 µl) were stored at -80°C. 

LRP-1 cluster IV stock solution: 50 µg lyophilized LRP-1 cluster IV were dissolved in 500 µl 

PBS to a final concentration of 100 µg/ml according to the manufacturer’s instructions and 

aliquots (2 - 10 µl) were stored at -80°C.  

TIMP-3 stock solution: Lyophilized TIMP-3 was dissolved in water to a final concentration of 

100 µg/ml according to the manufacturer and aliquots (1 - 3 µl) were stored at -80°C. 

VEGFR-2 stock solution: 50 µg lyophilized VEGFR-2 were dissolved in PBS to a final 

concentration of 100 µg/ml according to the manufacturer’s instructions and aliquots (2 - 10 µl) 

were stored at -80°C. 

Immobilization of ligands on the sensor chip surface 

The amine coupling reaction according to the manufacturer’s instructions (GE Healthcare 

Europe GmbH, Freiburg, Germany) at 25°C was used to covalently immobilize the respective 

protein on the sensor chip surfaces. The surfaces of C1 sensor chips were washed twice with 

100 mM glycine-NaOH (pH 12) containing 0.3% Triton X-100 for 60 sec each before ligand 

immobilization.  

The carboxyl groups on the SPR sensor chip surfaces (100 nm carboxymethylated dextran 

matrix on CM5 sensor chips, matrix-free carboxymethylated surface on C1 sensor chips) were 

transferred to active esters via the injection of a mixture containing 195.6 mM EDC and 50 mM 

NHS for 420 sec at a flow rate of 10 µl/min of the running buffer. Immediately after this the 

proteins were randomly immobilized via their primary amine groups by injecting them 

according to the conditions given in Tab. 3.14. Afterwards 1 M ethanolamine-HCl-NaOH 

(pH 8.5) was injected for 420 sec with a flow rate of 10 µl/min to react with excessive reactive 

groups on the chip surface. A flow cell treated with EDC/NHS and ethanolamine without 

immobilized protein served as reference. 
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Tab. 3.14 Immobilization conditions used for the different SPR measurements. 

Studied interaction Ligand* 
Sensor 

chip 

Immobilization 

conditions 

Immobilization 

level (RU) 

Polymeric GAG/TIMP-3 TIMP-3 CM5  

120 sec, 5 µl/min,  

10 µg/ml in acetate 

buffer (pH 4.5) 

830 

Oligomeric GAG/TIMP-3 TIMP-3 CM5  

120 sec, 5 µl/min,  

50 µg/ml in acetate 

buffer (pH 4.5) 

4700 

GAG/VEGF-A VEGF-A CM5  

120 sec, 5 µl/min, 

10 µg/ml in acetate 

buffer (pH 5.5) 

5000 - 6500 

TIMP-3/GAG with  

LRP-1 cluster II 

LRP-1 

cluster II 
CM5  

120 sec, 5 µl/min, 

12.5 µg/ml in acetate 

buffer (pH 4.5) 

500 

TIMP-3/GAG with  

LRP-1 cluster IV 

LRP-1 

cluster IV 
CM5  

120 sec, 5 µl/min, 

12.5 µg/ml in acetate 

buffer (pH 4.5) 

380 

TIMP-3/VEGFR-2 TIMP-3 C1  

120 sec, 5 µl/min,  

10 µg/ml in acetate 

buffer (pH 4.5) 

140 

VEGF-A/VEGFR-2 VEGF-A C1  

40 sec, 5 µl/min,  

0.7 µg/ml in acetate 

buffer (pH 5.5) 

30 

TIMP-3/VEGF-A/GAG with 

VEGFR-2 
VEGFR-2 C1  

120 sec, 5 µl/min,  

80 µg/ml in acetate 

buffer (pH 4.0) 

50 

*Immobilized interaction partner on the sensor chip surface 

Performance of SPR measurements 

Sensorgrams as plots of the resonance signal in RU (resonance units) over time were used to 

trace the association, dissociation as well as kinetics of interactions. All SPR analyses were 

performed at 37°C using a flow rate of 30 µl/ml of the respective running buffer. Tab. 3.15 

summarizes the specific analysis and regeneration conditions for each examined interaction. In 

case of competitive SPR experiments, the mediator proteins were pre-incubated with GAGs for 

1 h prior to analysis. GAG solutions and protein solutions were injected after a defined number 

of interaction analyses as controls to ensure a continuous binding capacity of the immobilized 

ligand. Prior to injection the sample solutions were stored at 12°C in the Biacore sample 

compartment to maintain the protein activity. 
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Tab. 3.15 Analysis and regeneration conditions of the different SPR measurements. 

Studied interaction Analysis conditions Regeneration 

GAG/TIMP-3 

Binding analysis, running buffer: 

TIMP buffer, 100 - 600 µM D.U. 

polymeric GAGs, 10 - 500 µM D.U. 

oligomeric GAGs, 300 sec analyte 

injection, 600 sec dissociation phase 

1. 5 M NaCl (60 sec, 30 µl/min),  

2. 1000 sec stabilization 

GAG/VEGF-A 

Binding analysis, running buffer: 

HBS-EP, 10 nM D.U. GAG,  

300 sec analyte injection, 600 sec 

dissociation phase 

1. 60 mM HCl (200 sec, 

5 µl/min), 

2. 5 M NaCl (60 sec, 30 µl/min), 

3. 1000 sec stabilization  

TIMP-3/LRP-1 cluster 

II or IV 

Single cycle kinetics, running buffer: 

TIMP buffer, 12.5 - 200 nM TIMP-3,  

220 sec analyte injection, 1000 sec 

dissociation phase 

1. 5 M NaCl (60 sec, 30 µl/min),  

2. 1000 sec stabilization 

TIMP-3/VEGFR-2 

Single cycle kinetics, running buffer: 

HBS-EP, 1.58 - 25.25 nM VEGFR-2, 

240 sec analyte injection, 600 sec 

dissociation phase 

1. 60 mM HCl (200 sec, 

5 µl/min), 

2. 5 M NaCl (60 sec, 30 µl/min), 

3. 1000 sec stabilization 

VEGF-A/VEGFR-2 

Single cycle kinetics, running buffer: 

HBS-EP, 0.44 - 7.10 nM VEGFR-2, 

240 sec analyte injection, 600 sec 

dissociation phase 

1. 60 mM HCl (200 sec, 

5 µl/min), 

2. 5 M NaCl (60 sec, 30 µl/min), 

3. 1000 sec stabilization 

TIMP-3/VEGF-

A/GAG with 

VEGFR-2 

Binding analysis, running buffer: 

HBS-EP, 20 - 100 nM TIMP-3, 

20 nM VEGF-A, 20 - 100 µM D.U. 

polymeric GAGs, 40 - 80 µM D.U. 

oligomeric GAGs, 120 sec analyte 

injection, 600 sec dissociation 

1. 60 mM HCl (200 sec, 

5 µl/min), 

2. 5 M NaCl (60 sec, 30 

µl/min), 

3. 1000 sec stabilization 

Sequential binding of  

1. TIMP-3, 2. sHA3, 

3. VEGF-A or 

1. VEGF-A, 2. sHA3, 

3. TIMP-3 to 

VEGFR-2 

Sequential binding analysis, running 

buffer: HBS-EP, 40 nM VEGF-A or 

TIMP-3, 40 µM D.U. sHA3, 120 sec 

analyte injection, 30 sec dissociation 

without regeneration after the first 

two injections, 600 sec dissociation 

after the third injection  

1. 60 mM HCl (200 sec, 

5 µl/min), 

2. 5 M NaCl (60 sec, 

30 µl/min), 

3. 1000 sec stabilization 
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The Biacore T100 evaluation software 2.03 was used to study the potential binding of analytes 

to immobilized ligands and to determine specific interaction parameters. The binding levels 

were measured 10 sec before the end of analyte injection. The sensorgram adjustment relative 

to the baseline as well as to the running buffer after subtraction of the reference surface without 

immobilized ligand was conducted according to the literature to improve the sensorgram quality 

[411]. In some cases, the binding was normalized relative to the binding response of the highest 

concentration of sHA3 to enable a ranking between measurements with different 

immobilization levels or between measurements where no complete regeneration of the ligand 

binding capacity could be achieved after the regeneration step. 

After performing single cycle kinetic analyses the kinetic parameters were determined by fitting 

the measured data to the heterogeneous ligand model in case of LRP-1 or to a 1:1 Langmuir 

binding fitting model in case of VEGFR-2 via the Biacore evaluation software 2.03. The 1:1 

Langmuir binding model describes the simplest interaction where one analyte A in solution 

interacts with one immobilized ligand L, thereby forming the complex AL: 

A + L 

𝑘𝑜𝑛

⇌
𝑘𝑜𝑓𝑓

AL 

with kon representing the association rate constant, which describes the number of formed 

complexes per time, and koff being the dissociation rate constant that reflects the stability of the 

complex. At equilibrium, the concentration-independent equilibrium dissociation constant KD 

can be determined according to this formula: 

 KD = 
𝑘𝑜𝑓𝑓

𝑘𝑜𝑛
 . 

The heterogeneous ligand model can be used for more complex binding interactions where the 

same solute analyte A interacts with two independent binding sites B1 and B2 of one ligand: 

A + B1 

𝑘𝑜𝑛1

⇌
𝑘𝑜𝑓𝑓1

AB1   and   A + B2 

𝑘𝑜𝑛2

⇌
𝑘𝑜𝑓𝑓2

AB2. 

To validate the obtained parameters, χ2 was calculated as statistical parameter for assessing the 

quality of the fitted model according to this formula: 

χ2 = 
Σ1

𝑛(𝑟𝑓−𝑟𝑥)2

𝑛−𝑝
 

with rf representing the fitted value at a particular point, rx being the experimental value at this 

point, n reflecting the number of data points and p giving the number of fitted parameters. This 

parameter can be used to assess how well the fitted curve coincides with the measured data. 

Low values indicate a good agreement. Furthermore, the significance of the determined KD 

values for the 1:1 Langmuir binding fitting model was determined via the corresponding 

standard error calculated by the Biacore evaluation software. 
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Cleaning routine and maintenance of the system 

The “Desorb” program was performed weekly, while the “Desorb and Sanitize” cleaning 

program was conducted every four weeks according to the manufacturer’s instructions to ensure 

optimal system performance. 

3.4.8 Enzymatic degradation of aECMs via collagenase  

The degradability of collagen-based aECM coatings can be studied in vitro by incubating the 

matrices with bacterial collagenase (ChC). The amount of degraded matrix could be quantified 

by determining the protein concentration in the supernatant using the method of Lowry (section 

3.4.11).  

Preparation of solutions 

ChC solution: ChC was freshly dissolved in PBS (1x) to a final concentration of 500 µg/ml. 

Prior to use, the ChC solution was incubated for 15 min at 37°C. 

Performance of the enzymatic degradation of aECMs 

Collagen-based coatings were prepared in 24 well plates as descripted in section 3.3.1. Prior to 

use the aECMs were washed two times with water and incubated with PBS for 60 min at 37°C 

to remove non-associated GAGs. 400 µl PBS was added per well prior to incubation of the 

matrices for 30 min at 37°C. Afterwards 100 µl ChC solution was added (0.02 U per well) and 

the matrices were incubated for up to 180 min at 37°C under constant shaking (50 rpm). 

Matrices incubated with 500 µl PBS without ChC served as controls. At the respective time 

points the supernatants were collected on ice and stored at 4°C until usage for the Lowry assay.  

3.4.9 Qualitative analysis of collagen - Sirius red staining 

The interaction of the anionic dye Sirius red with basic groups of the collagen molecule [412] 

was used to visualize the collagen content of 2.5D and 3D aECMs as reported previously [350]. 

Preparation of solutions 

Sirius red staining solution (0.1% in saturated picric acid): 10 mg Sirius red were dissolved in 

10 ml saturated picric acid. The solution could be stored in the dark for several months. 

Wash solution (0.01 M HCl): 1 ml 1 M HCl was diluted with water to a final volume of 100 ml 

in a volumetric flask. 

Staining of collagen 

500 µl Sirius red staining solution were added to each aECM-coated well or hydrogel in a 

24 well plate and incubated for 30 min at RT. Unbound dye was removed by washing the wells 

3 - 4 times with wash solution until the supernatant remains colorless. Afterwards the stained 

collagen was documented via a camera. 
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3.4.10 Qualitative analysis of sulfated glycosaminoglycans - Toluidine blue staining 

The cationic dye Toluidine blue interacts with anionic residues of proteoglycans and GAGs 

leading to the formation a blue-colored complexes [413]. However, non-sulfated HA cannot be 

visualized by Toluidine blue staining [414]. 

Preparation of solutions 

Toluidine blue staining solution (0.04% in 0.1 M HCl containing 2 mg/ml NaCl): 20 mg 

Toluidine blue and 100 mg NaCl were dissolved in 40 ml of water prior to the addition of 5 ml 

1 M HCl and adjusting the volume with water to 50 ml in a volumetric flask.   

Staining of sulfated GAGs 

500 µl Toluidine blue staining solution was added per aECM-coated well or hydrogel in a 

24 well plate and incubated for 240 min at RT. Unbound Toluidine blue was removed by 

washing the wells 3 - 4 times with water. Afterwards pictures of the stained sulfated GAGs 

were taken with a camera. 

3.4.11 Quantification of collagen - Lowry assay 

The amount of proteins such as collagen can be determined via the method of Lowry [415]. 

Preparation of solutions 

2% Na2CO3 in 0.1 M NaOH: 400 mg NaOH and 2 g Na2CO3 were dissolved in 80 ml water 

before bringing the volume to 100 ml with water in volumetric flask. The solution can be stored 

at 4°C for several months. 

0.5% CuSO4 in 1% sodium citrate: 50 mg CuSO4 and 100 mg sodium citrate were dissolved in 

8 ml water before bringing the volume to 10 ml with water in volumetric flask. The solution 

can be stored at 4°C for several months. 

Lowry working solution: Directly before usage, 1 ml 2% Na2CO3 in 0.1 M NaOH was mixed 

with 0.5% CuSO4 in 1% sodium citrate. 

Performance of the Lowry assay 

200 µl sample solution or collagen standard (8 - 500 µg/ml collagen type I dissolved in 10 mM 

acetic acid) was mixed with 1000 µl of the Lowry working solution and incubated for 15 min 

in the dark. Afterwards 100 µl Folin-Ciocalteu´s phenol reagent was added and the mixture was 

incubated for 80 min protected from light. 200 µl of these solutions were then transferred to the 

wells of transparent 96 well plates. The absorbance of the respective solutions was measured at 

700 nm.  

3.4.12 Quantification of sulfated glycosaminoglycans - Dimethylmethylene blue assay 

The amount of sulfated GAGs in aECMs was determined by using the specific interaction of 

the positively charged dye DMMB with negatively charged GAGs [416], which results in the 
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formation of DMMB/GAG complexes with an absorbance maximum at 525 nm and a decreased 

intensity of the DMMB peak at 595 nm. 

Preparation of solutions 

Papain solution (0.1 mg/ml): 5 mg papain were dissolved in 50 ml PBS at RT for 30 min. The 

solution should be made freshly each time. 

DMMB solution: 2.1 mg DMMB were dissolved in 500 µl absolute ethanol before mixing with 

100 ml 0.2 mg/ml sodium formate solution (pH 1.5). This solution can be stored in the dark at 

RT for several month.   

Protein degradation via papain 

Interfering matrix proteins like collagen were degraded via papain to release the aECM-bound 

GAGs prior to their quantification. To this end 500 µl papain solution was added per aECM-

coated well of a 24 well plate and incubated overnight at 60°C. 

Quantification of sulfated GAGs 

The papain-treated sample solutions were cooled down to RT and mixed. 40 µl of sample 

solution was added per well of a transparent 96 well plate prior to the addition of 200 µl DMMB 

solution. The absorbance was measured immediately at 595 nm. GAG solutions with defined 

concentrations of the respective GAG (1 - 75 µg/ml) in PBS served as calibration standards for 

quantification.  

3.4.13 Quantification of glycosaminoglycans - Hexosamine assay 

The Elson-Morgan reaction was used to quantify the amount of GAGs, especially non-sulfated 

HA in aECMs. Here the N-acetylglycosamine as a hexosamine at the reducing end of the GAGs 

reacts with acetylacetone resulting in the formation of a pyrrole derivative which is able to 

interact with DMAB. N-acetyl-glycosamines can convert to glucoxazole and glucoxazoline that 

can react with DMAB. Via the formation of different chromogens a colored product with an 

absorption maximum at 586 nm is obtained [417–419].  

Preparation of solutions 

Acetylacetone solution (4% in 1.25 M Na2CO3): 1.324 g Na2CO3 were dissolved in 5 ml water 

prior to adding 400 µl acetylacetone. The volume of this solution was adjusted to 10 ml in a 

volumetric flask. The solution should be prepared freshly each day. 

DMAB solution (2.66% in 3 M HCl containing 47.5% ethanol): 266 mg DMAB were dissolved 

in a mixture of 5 ml 6 M HCl and 5 ml ethanol (95%). The solution should be made freshly. 

Performance of the hexosamine assay 

The GAG content of aECMs was quantified as described in Tab. 3.16. Defined concentrations 

of the respective GAG dissolved in PBS (1 - 100 µg/ml) treated like the samples were used as 

standards for calibration. 
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Tab. 3.16 Sample preparation and performance of the hexosamine assay. 

Step Procedure of the hexosamine assay 

Protein degradation with papain 
The collagen matrix was degraded with 0.1 mg/ml papain in PBS 

as reported for the DMMB assay (section 3.4.12). 

Hydrolyses with HCl 
200 µl of the sample solution after papain treatment was mixed 

with 200 µl 12 M HCl and incubated for 6 h at 100 °C.  

Drying and neutralization  
The samples were cooled on ice after hydrolysis and dried under 

vacuum over NaOH in a desiccator at 40°C for 120 - 168 h.  

Reaction with DMAB 

The dried samples were dissolved in 50 µl water prior to adding 

250 µl acetylacetone solution and incubating for 60 min at 95°C. 

300 µl cooled sample solution was added to 1.25 ml ethanol, 

mixed with 250 µl DMAB solution and incubated for 60 min at 

RT. 

Photometric measurement 
The absorbance of 200 µl solution per well was measured at 

540 nm in a transparent 96 well plate. 

3.4.14 Agarose gel electrophoresis of GAGs 

Preparation of solutions 

Papain solution (0.1 mg/ml): 5 mg papain were dissolved in 50 ml PBS at RT for 30 min. The 

solution should be made freshly each time. 

Trichloroacetic acid (100%): 5 g trichloroacetic acid were dissolved in 2.270 ml water. 

50 mM barium acetate electrophoresis buffer (pH 5.5): For the preparation of 1 l buffer 

12.771 g barium acetate were dissolved in 900 ml water prior to adjusting the pH with glacial 

acetic acid to 5.5 and adjusting the volume to 1000 ml in a volumetric flask. 

Sample loading solution (0.25% bromophenol blue in 40% glycerol): 2 ml glycerol were mixed 

with 3 ml of water before the addition of 12.5 mg bromophenol blue. The solution was stored 

at 4°C until usage. 

Stains-all staining solution: 2.5 mg Stains-all were dissolved in 50 ml 50% ethanol and kept in 

the dark. This solution should be prepared freshly each time. 

Toluidine blue staining solution (0.2%): 400 mg Toluidine blue were dissolved in 200 ml of a 

mixture containing ethanol, water and glacial acetic acid (50/49/1, v/v/v). This solution should 

be made freshly each time. 

Toluidine blue destaining solution: 250 ml ethanol was mixed with 245 ml water and 5 ml 

glacial acetic acid. 
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Sample preparation 

The aECM-associated GAGs were extracted by ethanol precipitation after matrix degradation 

with papain (section 3.4.12) and protein removal according to [420]. To this end 400 µl 

0.1 mg/ml papain in PBS was added to each aECM-coated well of a 24 well plate and incubated 

for 24 h at 60°C. Then 100% trichloroacetic acid was added to a final concentration of 6% 

trichloroacetic acid. The proteins were allowed to precipitate for 120 min on ice before 

centrifugation for 30 min at 4°C with 15000∙g. The remaining GAGs in the supernatants were 

precipitated overnight with 4 times the volume of ethanol at -20°C and obtained after centri-

fugation (30 min, 4°C, 15000∙g). The dried pellets were dissolved in a defined volume of water. 

Performance of the agarose gel electrophoresis 

The separation of GAGs according to their charge was performed as described previously [421] 

(Tab. 3.17). Images of the stained gels were taken with a camera or a photo scanner. The 

electrophoretic mobility µ of the GAGs was calculated according to:  

𝜇 = 𝑙 ∙ 𝑑 𝑡 ∙ 𝑈⁄  

with 𝑙 defining the migration distance of the GAG in cm, 𝑑 representing the distance between 

the electrodes in cm, 𝑡 being the time of electrophoretic separation in hours and 𝑈 as voltage 

in V.  

Tab. 3.17 Sample preparation and performance of the agarose gel electrophoresis. 

Step GAG separation by their charge 

Casting of the gel 
A 1% agarose gel (0.5 cm thick) was cast in 50 mM barium acetate buffer 

(pH 5.5).   

Loading of the gel 

10 µl sample (0.5 mg/ml GAG dissolved in water) were mixed with 3 µl sample 

loading solution. 10 µl of this mixture or 5 µl HA size marker was loaded per 

lane.  

Running of the gel 60 V for 60 min in 50 mM barium acetate buffer (pH 5.5).   

Staining of the gel 
For 30 min with Toluidine blue and destained with destaining solution, 

followed by Stains-all staining 

3.4.15 Determination of the elastic modulus of hydrogels 

Mechanical compression of cylindrical hydrogels (h ≈ 5 mm, Ø ≈ 6 mm) prepared in silicon 

casting molds was measured at RT directly after photocrosslinking. The uniaxial compression 

test (0.05 N, compression speed: 10 mm/min) was done with an electromechanical testing 

system (Instron 5566) using a 2 kg load cell and the Merlin IV software. The linear slope of the 

stress-strain curves was used to calculate the elastic modulus E. The following formulas were 

used to calculate the compressive stress δ, the strain ε and the elastic modulus E of the gels: 

𝛿 = 𝐹𝐵 𝐴0⁄  

휀 = ∆𝐿 𝐿0⁄  

𝐸 = 𝛿 휀⁄  
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with 𝐹𝐵 being the maximal force at gel burst, 𝐴0 representing the initial contact area of the 

hydrogels, ∆𝐿 defined as way until gel burst and 𝐿0 as initial height of the hydrogel. 

3.4.16 Analysis of hydrogel swelling properties and characteristics 

To determine the volume loss of the gels during freeze-drying, the diameter and height of the 

gels were measured before and after freeze-drying using a digital measuring slide. The 

respective water content of the gels was calculated from their weight after crosslinking in 

comparison to their mass after lyophilization. The swelling ratio of the freeze-dried gels was 

determined as described in [422] by measuring their weight after 5, 10, 30 and 60 min of 

incubation with water at RT. The following formula was used to calculate the swelling ratio:  

𝑠𝑤𝑒𝑙𝑙𝑖𝑛𝑔 𝑟𝑎𝑡𝑖𝑜 = (𝑚𝑇 − 𝑚𝐷) 𝑚𝐷⁄  

with 𝑚𝑇 defining the mass of the swollen gel and 𝑚𝐷 representing the initial mass of the gel 

after freeze-drying. 

3.4.17 Degradation of hydrogels via Hyal 

Preparation of solutions 

Hyal solution (1000 U/ml): 16.5 mg Hyal were dissolved in 10 ml of PBS directly prior to use. 

Degradation of hydrogels 

The freeze-dried gels were incubated with 400 µl of Hyal solution (1000 U/ml) at 37°C for up 

to 48 h. After 3, 6 and 24 h, 200 µl of the respective supernatants were removed and replaced 

by 200 µl new Hyal solution. The supernatants and the sample solutions were analyzed 

regarding their GAG content via the hexosamine assay (section 3.4.13) after 48 h of incubation. 

The amount of degraded gels was calculated indirectly by subtracting the released GAG 

amounts in the supernatant from the initial GAG amounts of the gels. 

3.4.18 Scanning electron microscopy (SEM) 

Freeze-dried gels were cut into halves, mounted on carbon tabs onto sample holders and coated 

with a thin carbon layer via a carbon sputter coater. The carbon sputtering was performed by 

Dipl.-Ing. Silvia Mühle (Institute of Materials Science, TU Dresden). Secondary electron 

images of the gel structures were obtained by SEM using a Philips ESEM XL30 under high 

vacuum with a back-scattering electron detector and 3 kV acceleration voltage.   

3.4.19 Atomic force microscopy (AFM)  

The fibril morphology of aECMs was studied via AFM as reported by Miron et al. [359R].  

Sample preparation 

In vitro fibrillogenesis of collagen type I in tubes at 37°C with or without the addition of GAGs 

to the fibrillogenesis buffer was performed as described in section 3.3.1. The formed aECMs 

were washed with 30 mM phosphate buffer (pH 7.4, obtained by a 1:1 dilution of fibrillogenesis 
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buffer with water) after centrifugation (15 min, 25°C, 5000∙g). The aECM pellet obtained after 

a second centrifugation was resuspended in 30 mM phosphate buffer via short pulses with an 

ultrasonic horn. The aECM suspension was then added to a mica substrate (≈ 0.4 µg 

collagen/mm2) and the collagen fibrils were allowed to adsorb to the surface for 15 min. After 

three washing steps with water, the aECM-coated mica was dried at RT.   

AFM analysis 

The fibril morphology was analyzed with a Nanoscope IIa Bioscope in tapping mode in air 

using a silicon cantilever without coating. The height and amplitude images were recorded in 

parallel using the Nanoscope software (scanning rate: 1.0 - 1.2 Hz, 512 lines per image).  

3.5 Cell culture  

The stable transfection of PAE (porcine aortic endothelial) cells with VEGFR-2 was performed 

by Prof. Dr. Johannes Waltenberger (Department of Cardiovascular Medicine, University 

Münster, Germany) as described in [423]. 

3.5.1 Cultivation of endothelial cells (PAE/KDR cells) 

The cultivation of PAE/KDR cells was carried out under sterile conditions using a laminar flow 

cabinet and an incubator (37°C, 5% CO2, humidified atmosphere). Prior to use in cell culture, 

all solutions were heated to 37°C if not stated otherwise. The cell number was determined with 

an automatic cell counter after staining with trypan blue using the following parameters: 

sensitivity level 9, minimal cell size 8 µm, maximal cell size 40 µm and circularity 85%. The 

cells were used between passages 3 - 7 for the cell culture studies. During cell expansion, the 

cells were cultured in cell culture flasks (175 cm2) containing 25 ml cell culture medium with 

serum. The medium was changed every 2 - 3 d. The cells were detached from the flask surface 

after washing with PBS via the addition of 10 ml trypsin/EDTA (1x) for 4 min at 37°C and split 

when they reached 85 - 90% confluence or prior to use in cell culture experiments. The cell 

morphology and confluence were continuously monitored with a microscope. 

Preparation of solutions 

PBS (phosphate buffered saline) stock solution (10x): 80.0 g NaCl, 2.0 g KCl, 14.4 g Na2HPO4 

and 2.4 g KH2PO4 were dissolved in 800 ml water. The volume was adjusted to 1000 ml in a 

volumetric flask. 

PBS solution (136.9 mM NaCl, 2.68 mM KCl, 10.14 mM Na2HPO4, 1.76 mM KH2PO4, pH 7.4): 

The PBS stock solution was diluted 1:10 with water. The pH was checked to be 7.4 prior to 

autoclaving the solution. 

Cell culture medium for PAE/KDR cells with serum (DMEM, 2 mM L-Gln, 100 U/ml penicillin, 

100 µg/ml streptomycin, 10% FBS): 440 ml DMEM were supplemented with 50 ml FBS, 5 ml 
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penicillin/streptomycin (P/S) stock solution (100x) and 5 ml 200 mM L-glutamine. The media 

was stored at 4°C and used within 3 weeks after preparation. 

Cell culture medium for PAE/KDR cells without serum (DMEM, 2 mM L-Gln, 100 U/ml 

penicillin, 100 µg/ml streptomycin, 0.1% BSA): 500 mg BSA were dissolved in a mixture of 

490 ml DMEM, 5 ml P/S stock solution (100x) and 5 ml 200 mM L-glutamine. The filtered 

media (0.22 µm) was stored at 4°C and used within one week after preparation. 

Trypsin-EDTA solution (1x): The 10x stock solution was diluted 1:10 with PBS. Sterile 10 ml 

aliquots were stored at -20°C until use. 

3.5.2 Stimulation of VEGFR-2 phosphorylation on PAE/KDR cells 

The phosphorylation of VEGFR-2 on PAE/KDR cells was stimulated according to [424].   

Preparation of solutions  

Mediator protein solutions were prepared in medium w/o FBS with 0.1% BSA prior to use. The 

GAG/protein solutions were pre-incubated for 30 min on ice. 

200 mM activated Na3VO4: For the activation of sodium orthovanadate 1.84 g were dissolved 

in 40 ml water. The pH was adjusted to 10 via the addition of 1 N NaOH or 1 N HCl resulting 

in a color change of the solution to yellow. This solution was heated to 90 - 100°C for 10 min 

until it appeared colorless and completely dissolved and then cooled down to RT. The pH is 

again adjusted to 10 and the first steps were repeated until pH 10 was constantly reached and 

the solution remained colorless. Afterwards, the final volume of the solution was adjusted to 

50 ml with water. After mixing, aliquots of 1 ml of activated sodium orthovanadate were frozen 

at -20°C until usage. 

100 µM Na3VO4 in PBS: 20 µl 200 mM Na3VO4 were added to 39.980 ml PBS. This solution 

was prepared directly prior to usage. 

Aprotinin stock solution (1 mg/ml): 526 µl 1.9 mg/ml aprotinin solution were mixed with 474 µl 

diluent 1 (section 3.5.3). This solution was stored at 4°C. 

Leupeptin stock solution (1 mg/ml): 1.2 mg leupeptin were dissolved in 1200 µl diluent 1. The 

solution was kept at 4°C. 

Lysis buffer (1 % NP-40 Alternative, 20 mM Tris (pH 8.0), 137 mM NaCl, 10% glycerol, 2 mM 

EDTA, 1 mM activated Na3VO4, 10 µg/ml aprotinin, 10 µg/ml leupeptin): 45 µl 1 mg/ml 

aprotinin and 45 µl 1 mg/ml leupeptin were added to 4.41 ml of diluent 1 (section 3.5.3). 

Stimulation of VEGFR-2 phosphorylation 

VEGFR-2 phosphorylation was induced on PAE/KDR cells as described in Tab. 3.18.  
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Tab. 3.18 Procedure to stimulate VEGFR-2 phosphorylation on PAE/KDR cells. 

Step VEGFR-2 stimulation 

Cell seeding 

(day 1) 

2 ∙ 106 PAE/KDR cells in 3 ml medium containing 10% FBS were seeded in petri 

dishes (Ø 6 cm) and were allowed to adhere. 

Cell starving 

(day 2) 

After overnight incubation of the cells in the incubator with serum-containing 

medium, the supernatant was discarded and the cells were starved for 120 min with 

0.1% BSA/medium without serum.  

VEGFR-2 

stimulation 

(day 2) 

Then the medium was removed and the cells were washed with PBS. Afterwards the 

cells were pre-incubated with 50 nM TIMP-3 for 30 min in the incubator before 

stimulation with 1 nM VEGF in the absence or presence of 200 µM D.U. sHA3 in a 

total volume of 750 µl for 10 min. 

Cell lysis 

(day 2) 

Immediately after cell stimulation, the cells were washed with 2 ml 100 µM Na3VO4 

in PBS and lysed with 250 µl lysis buffer on ice for 15 min. The cell lysates were 

harvested via a cell scraper and collected in tubes. After centrifugation (15 min, 4°C, 

10000∙g), the supernatants were stored at -80°C until use for ELISA (section 3.5.3). 

3.5.3 Quantification of VEGFR-2 and phosphorylated VEGFR-2 via ELISA 

The total amount of VEGFR-2 or phosphorylated VEGFR-2 was quantified with sandwich-

ELISAs according to the manufacturer (R&D Systems). VEGFR-2 and phosphorylated 

VEGFR-2 concentrations ranging from 125 - 4000 pg/ml or 250 - 8000 pg/ml in diluent 1 were 

used as standards for quantification. 

Preparation of solutions 

Diluent 1 (1% NP-40 Alternative, 20 mM Tris (pH 8.0), 137 mM NaCl, 10% glycerol, 2 mM 

EDTA, 1 mM activated Na3VO4): 242.4 mg Tris were dissolved in 70 ml water and the pH was 

adjusted to 8.0. Afterwards, 1 g NP-40 Alternative, 0.80 g NaCl, 10 g glycerol, 71.6 mg EDTA 

and 500 µl 200 mM Na3VO4  were added and the solution was filled up to 100 ml in a volumetric 

flask. The solution was stored at 4°C. 

Diluent 2 (20 mM Tris, 137 mM NaCl, 0.05% Tween 20, 0.1% BSA): 242.4 mg Tris, 801 mg 

NaCl and 50 µl Tween 20 were dissolved in 80 ml water before adjusting the volume to 100 ml 

in a volumetric flask. This solution could be stored at RT. Prior to use, 0.1% BSA was added 

(e.g. 2 mg BSA dissolved in 2 ml 20 mM Tris, 137 mM NaCl, 0.05% Tween 20).  

Block buffer (1% BSA, 0.05% NaN3 in PBS): 300 mg BSA and 15 mg NaN3 were dissolved in 

30 ml PBS directly prior to use. 

Wash buffer (0.05% Tween 20 in PBS, pH 7.4): 250 µl Tween 20 were added to 400 ml PBS 

and the volume was adjusted to 500 ml with PBS in a volumetric flask.  

Stop solution (1 M H2SO4): 56 ml concentrated H2SO4 were diluted with water to a final volume 

of 1000 ml in a volumetric flask.  
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Total VEGFR-2 capture antibody stock solution: 144 µg lyophilized mouse anti-human 

VEGFR-2 capture antibody were dissolved in 200 µl PBS to obtain a final concentration of 

720 µg/ml. 10 µl aliquots were stored at -80°C.   

Total VEGFR-2 detection antibody stock solution: 7.2 µg lyophilized biotinylated goat anti-

human VEGFR-2 detection antibody were dissolved in 1000 µl diluent 2 to obtain a final 

concentration of 7.2 µg/ml. 50 µl aliquots were stored at -80°C.   

Phospho-VEGFR-2 capture antibody stock solution: 288 µg lyophilized mouse anti-human 

VEGFR-2 capture antibody were dissolved in 200 µl PBS to obtain a final concentration of 

1440 µg/ml. 10 µl aliquots were stored at -80°C.   

Total VEGFR-2 capture antibody working solution: The 720 µg/ml VEGFR-2 capture antibody 

stock solution were diluted 1:180 in PBS to achieve a concentration of 4 µg/ml. 

Total VEGFR-2 detection antibody working solution: The 7.2 µg/ml VEGFR-2 detection 

antibody stock solution were diluted 1:36 in diluent 2to have a concentration of 200 ng/ml. 

Phospho-VEGFR-2 capture antibody working solution: The 1440 µg/ml VEGFR-2 capture 

antibody stock solution was diluted 1:180 in PBS to obtain a concentration of 8 µg/ml. 

Anti-phospho-tyrosine-HRP working solution: The stock solution was diluted 1:1500 with 

diluent 2 (e.g. 5 µl stock solution mixed with 7.495 ml diluent 2).  

Phospho-VEGFR-2 control: 195 ng lyophilized recombinant human phosphorylated VEGFR-2 

were dissolved in 500 µl diluent 1 to achieve a final concentration of 390 ng/ml. 10 µl aliquots 

were stored at -80°C.   

Total VEGFR-2 control: 25 ng lyophilized recombinant human VEGFR-2 were dissolved in 

500 µl diluent 1 to achieve a final concentration of 50 ng/ml. 55 µl aliquots were stored 

at -80°C.   

Plate preparation and ELISA procedure 

Each well of a 96 well ELISA plate was coated with 100 µl of the respective capture antibody 

solution overnight at RT as described in section 3.4.4. The ELISA procedure to quantify the 

total amount of VEGFR-2 was similar to section 3.4.4. In case of the phosphorylated VEGFR-2 

ELISA, 100 µl anti-tyrosine-HRP was added to each well and incubated for 120 min at RT 

instead of adding a detection antibody and streptavidin-HRP separately.  

3.5.4 Migration of PAE/KDR cells 

Cell migration was determined after culturing a monolayer of PAE/KDR cells around a physical 

barrier (silicon stopper) by detecting the number of cells which migrated into the exclusion zone 

after removal of the silicon stopper. Cell proliferation was blocked via the pre-incubation of the 

cells with mitomycin C which inhibits the DNA synthesis by forming inter- and intrastrand 

crosslinks [425]. The number of migrated cells at a certain time point was indirectly determined 

by measuring the intensity of the fluorescence signal after cell metabolism of the non-

fluorescent calcein AM to fluorescent calcein by esterases of living cells [426].  
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Preparation of solutions 

Calcein AM stock solution: Calcein AM was dissolved in DMSO to a final concentration of 

1 mg/ml and aliquots (2.5 - 100 µl) were stored at -20°C. 

Mitomycin C stock solution (0.5 mg/ml): 2 mg mitomycin C were dissolved in 4.0 ml PBS. The 

filtered solution (0.22 µm) was aliquoted (100 µl) and stored at -20°C. 

10 µg/ml Mitomycin C in 0.1% BSA/DMEM: 120 µl 0.5 mg/ml mitomycin C were added to 

5.880 ml 0.1% BSA/DMEM directly prior to use. 

Calcein AM working solution: 2.5 µl 1 mg/ml Calcein AM solution were freshly diluted with 

5 ml DPBS containing calcium and magnesium ions and stored in the dark until use.  

Performance of the migration assay 

OrisTM cell migration assay was performed according to the manufacturer’s instructions 

(Platypus Technologies) as described in Tab. 3.19.  

Tab. 3.19 Migration assay procedure. 

Step Procedure 

Cell seeding and 

starving (day 1) 

3 ∙ 105 cells in 100 µl medium containing 10% FBS were seeded per well 

around the silicon stopper and allowed to adhere for 4 h. Afterwards, the 

medium was aspirated and the cells were washed with PBS. The cells were 

starved overnight in 100 µl medium with 0.1% BSA.  

Blocking of cell 

proliferation (day 2) 

2 h prior to the start of the migration assay, the medium was replaced by 

medium supplemented with 10 µg/ml mitomycin C.  

Stimulation of cell 

migration (day 2) 

The silicon stoppers were removed, the medium was aspirated and the cells 

were washed with PBS. 100 µl of medium without FBS containing 10 nM 

VEGF-A, 100 nM TIMP-3 and/or 200 µM D.U. GAG was added per well 

and the cells were allowed to migrate into the exclusion zone for 26 h. 

Fluorescent staining 

of cells  

After aspirating the medium, the cells were washed with PBS. 100 µl calcein 

AM working solution was added per well and incubated for 60 min at 37°C. 

Then, the detection mask was applied to the plate and the fluorescence 

intensity was measured at ex = 485 nm and em = 528 nm.  

3.5.5 Influence of solute GAGs and VEGF-A on the proliferation and tube formation of 

PAE/KDR cells cultivated on collagen coatings  

PAE/KDR cells were cultivated on collagen-coated wells (section 3.3.1) with or without 

stimulation of VEGF-A in the absence or presence of solute GAG derivatives. The effects of 

the respective treatments were assessed via DNA assay (section 3.5.8) and MTT staining. 
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Preparation of solutions 

69.4 ng/ml VEGF-A solution: A 100 µg/ml VEGF-A stock solution was diluted with 0.1% 

BSA/DMEM to a final concentration of 69.4 ng/ml. 

GAG solutions: Solutions containing 416.67 µM D.U. of the respective GAGs in 0.1% 

BSA/DMEM were used after sterile filtration (0.22 µm). Prior to this, the GAGs were allowed 

to dissolve for at least 30 min at RT. 

GAG/VEGF-A solutions: 1 µl 100 µg/ml VEGF-A was added to 1440 µl 416.67 µM D.U. GAG 

in 0.1% BSA/DMEM. The mixture was freshly prepared and allowed to incubate for 60 min on 

ice prior to usage. 

MTT solution: MTT was dissolved in PBS to a final concentration of 5 mg/ml prior to usage 

and filtered (0.22 µm). 

Cell seeding on collagen coatings and stimulation with VEGF-A in the presence of GAGs 

30 µl cell suspension containing 5 ∙ 104 PAE/KDR cells were added per well of a 24 plate, while 

2.5 ∙ 104 cells were used for MTT staining to facilitate the cell visualization even at later time 

points. 720 µl 69.4 ng/ml VEGF-A solution, the same volume of a 416.67 µM D.U. GAG 

solution or a 416.67 µM D.U. GAG solution containing 50 ng VEGF-A were added to the cells 

directly after seeding. The cells were cultivated for up to 3 days. 

Performance of the MTT assay 

50 µl of the MTT solution was added per well to the medium and the cells. Afterwards, the cells 

were allowed to metabolize the MTT dye for 120 min by further cultivation at 37°C. Then, the 

supernatants were removed, the cells were washed with PBS und used for microscopic 

examination of the tube formation. 

3.5.6 Quantification of the protein content in cell lysates - Nanodrop 

2 µl cell lysate after centrifugation (15 min, 4°C, 10000∙g) were used to determine the respective 

protein concentration. The program ND-1000 measuring the absorbance at 290 nm was used 

for quantification. 

3.5.7 Cultivation of PAE/KDR cells on hydrogels 

The direct effects of the hydrogel composition on the cell viability and proliferation were 

studied in the presence of serum, while hydrogels pre-incubated with VEGF-A were used to 

analyze the potential stimulatory effect of hydrogel-bound VEGF-A on endothelial cells. Cells 

cultivated on tissue culture poly styrene (PS) served as reference. 

3.5.7.1 Cell proliferation on hydrogels in the presence of serum 

2 ∙ 105 PAE/KDR cells in 50 µl medium with 10% FBS were seeded per freeze-dried hydrogel 

(h = 1.1 mm, Ø = 8.5 mm) using 24 well plates. The cells were incubated with the gels for 

60 min in the incubator before adding 700 µl medium and cultivating for up to 72 h. After 
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defined time points (2 h, 24 h and 72 h) the medium was discarded, the gels were washed with 

PBS, placed in new wells and stored at -80°C until further analysis.  

3.5.7.2 Effects of VEGF-A-loaded gels on PAE/KDR cells  

To increase the sensitivity of endothelial cells for VEGF-A stimulation, these experiments were 

conducted in the presence of BSA instead of serum. Cell culture experiments with hydrogels 

pre-incubated with medium without VEGF-A as well as cells seeded onto PS served as 

references. 

Preparation of solutions 

100 ng/ml VEGF-A solution: A 100 µg/ml VEGF-A stock solution was diluted 1:1000 with 

medium containing 0.1% BSA to achieve a final concentration of 100 ng/ml directly prior to 

use. 

Loading of hydrogels with VEGF-A 

Freeze-dried hydrogels (h = 1.1 mm, Ø = 8.5 mm) were incubated overnight with 500 µl 

medium with or without 100 ng/ml VEGF-A at 37°C. The next day the supernatant was 

collected and analyzed via ELISA (section 3.4.4). The amount of bound VEGF-A was 

calculated by subtracting the amount of non-bound VEGF-A in the supernatant from the 

initially applied VEGF-A amount (50 ng). The VEGF-A-loaded hydrogels were transferred into 

new wells of a 24 well plate and were used immediately for the cell culture experiment.    

Cell seeding of hydrogels 

24 hours before use, the cells were starved with 0.1% BSA medium. 5 ∙ 104 PAE/KDR cells in 

30 µl medium containing 0.1% BSA were seeded onto each hydrogel and incubated for 60 min 

at 37°C in the incubator prior to the addition of 720 µl medium and cell cultivation for up to 

72 h. Cells which were seeded onto PS and cultivated with 750 µl medium containing 50 ng 

VEGF-A were used as positive controls.  

3.5.8 Determination of the LDH activity and DNA amount 

The LDH activity can be determined using the reduction of NAD+ to NADH/H+ during the 

conversion of lactate to pyruvate, which is catalyzed by LDH. Afterwards H/H+ transfer to 

iodonitrotetrazolium chloride is catalyzed by diaphorase, reducing the yellow tetrazolium salt 

to a red formazan dye. The formation of a fluorescent complex between double-strained DNA 

and the nucleic acid staining dye PicoGreen is used to quantify the amount of DNA. The LDH 

activity and DNA amount were determined according to the manufacturer’s protocols as 

previously reported [427,428].  

Preparation of solutions  

For both assays, DNase free ultra pure water was used for all solutions. The absorbance or 

fluorescence signal of the lysis buffer served as reagent blank value. Cell lysates containing 



86  3 MATERIALS AND METHODS 

defined cell numbers (0 - 4 ∙ 105) were used to correlate the respective LDH activity or DNA 

amount with the number of cells. 

Lysis buffer (1% Triton X-100 in PBS): 1 g Triton X-100 was dissolved in 80 ml PBS before 

adjusting the volume with PBS to 100 ml. The solution was made freshly each time and stored 

on ice until use. 

Tris-EDTA buffer stock solution (200 mM Tris-base, 20 mM EDTA, 20x): 1.2114 g Tris-base 

and 292.2 mg EDTA were dissolved in 40 ml of water, the pH was adjusted to 7.5 by adding 

4 M HCl and the solution was adjusted to 50 ml with water in a volumetric flask. The autoclaved 

solution was aliquoted to 1 ml and stored at -20°C.   

Tris-EDTA buffer (10 mM Tris-base, 1 mM EDTA, 1x): 1 ml Tris-EDTA stock solution (20x) 

was mixed with 19 ml of water. 

Catalyst (diaphorase/NAD+) stock solution: The lyophilisate was dissolved in 1000 µl water 

and 50 µl aliquots were stored at -20°C. 

LDH substrate solution: 250 µl catalyst stock solution were mixed with 11.250 ml 

iodonitrotetrazolium chloride (INT) dye solution directly prior to use.  

PicoGreen working solution: The commercially available PicoGreen ds DNA reagent stock 

solution was diluted 1:800 directly prior to use and protected from light (e.g. 10 µl PicoGreen 

stock mixed with 7.990 ml Tris-EDTA buffer (1x)).  

Cell lysis 

The cells, which were stored at -80°C, were thawed for 10 min on ice. Then, the cells were 

incubated with 500 µl lysis buffer per well for 60 min on ice. Hydrogels were afterwards treated 

for 10 min on ice in an ultrasonic bath. The cell lysates were carefully mixed prior to use. 

Determination of the LDH activity 

50 µl cell lysate were mixed with 50 µl LDH substrate solution from the LDH cytotoxicity 

detection kit (TaKaRa) in a transparent 96 well plate and allowed to incubate for 5 - 10 min in 

the dark. Then, 50 µl 0.5 M HCl were added per well to stop the reaction. The absorbance of 

the solutions was measured at 492 nm. 

Quantification of the DNA amount 

10 µl cell lysate were supplemented with 190 µl PicoGreen working solution in a black 96 well 

plate. The fluorescence intensity (ex: 485 nm, em: 535 nm) was measured after 5 - 10 min of 

incubation in the dark at RT. 

3.5.9 Immunofluorescence staining 

Preparation of solutions 

Fixation solution (3.6% formaldehyde in PBS): 1 ml formaldehyde solution (36%) was mixed 

with 9 ml cooled PBS directly prior to use. 
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0.1% Triton X-100 in PBS: 500 µl Triton X-100 were dissolved in 500 ml PBS. 

AlexaFluor-488 phalloidin working solution: The 1000 U/ml AlexaFluor-488 phalloidin stock 

solution was diluted 1:200 with blocking buffer to achieve 5 U/ml. 

DAPI working solution: The DAPI stock solution (1000 µg/ml) was diluted with blocking 

buffer to 0.2 µg/ml (1:5000 dilution). 

Blocking buffer (0.05% Tween 20, 1% BSA in PBS): 500 mg BSA and 25 µl Tween 20 were 

dissolved in 40 ml PBS before adjusting the volume to 50 ml in a volumetric flask. The solution 

should be made freshly each time. 

Embedding medium (Mowiol 4-88): 6.0 g glycerol and 2.4 g Mowiol 4-88 were mixed with 

6.0 ml water and incubated for 60 min at RT. Then, 12.0 ml 0.2 M Tris-HCl (pH 8.5) was added 

and the solution was heated to 50°C for 10 min. After centrifugation for 1 min at 13000∙g the 

supernatant was aliquoted to 15 ml and stored at -20°C or 4°C until use. 

Performance of the immunofluorescence staining 

The cells were stained with DAPI for their nuclei and with AlexaFluor-488 phalloidin for their 

cytoskeletal F-actin filaments according to Tab. 3.20. In case of cells cultivated on hydrogels, 

the gels were cut into halves prior to embedding with the inner part of the gels visible for 

microscopic examination. 

Tab. 3.20 Immunofluorescence staining procedure. 

Step Procedure of immunofluorescence staining 

Cell fixation 

After removing the cell culture medium, the cells were washed with warm PBS 

prior to the addition of 1.0 ml cooled fixation solution per well. After 30 min of 

incubation at 4°C, 900 µl of the fixation solution were replaced by 900 µl cooled 

PBS. These samples could be stored at 4°C until staining. 

Immuno-

fluorescence 

staining 

The supernatant was aspired before permeabilizing the cell membranes with 0.1% 

Triton X-100 in PBS for 20 min. Then, the samples were washed with PBS and 

incubated with blocking buffer for 10 min. Afterwards they were incubated with 

AlexaFluor-488 working solution for 60 min in the dark. DAPI working solution 

was added for 10 min after washing with PBS. Finally the samples were washed 

three times with PBS. 

Embedding of 

samples 

The samples were embedded in Mowiol 4-88 between two glass cover slides. 

Afterwards the samples were dried in the dark at RT for 48 - 72 h. 

Fluorescence 

microscopy 

Fluorescence filter for DAPI: ex: 350 - 403 nm, em: 420 nm; 

Fluorescence filter for AlexaFluor-488: ex: 473 - 498 nm, em: 515 - 565 nm 
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3.6 Statistics  

All assays were performed at least in triplicates. One-way or two-way ANOVA were applied 

to statistically evaluate the determined data. Tukey and Bonferroni post-tests were used to 

reveal differences between groups. If not stated otherwise, all results are displayed as mean ± 

standard deviation. The standard error is given for KD values, which were determined by SPR 

measurements and fitted to the 1:1 Langmuir binding fitting model.  
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4 RESULTS AND DISCUSSION 

Since the number of pathological conditions like non-healing chronic wounds rises notably in 

the aging population, new strategies for the development of functional materials, which are able 

to restore functions and properties of damaged vascularized tissues such as bone and skin are 

in high demand [261,429]. PG-bound sGAGs and non-sulfated HA are major functional 

components of the native ECM able to interact with several biological mediator proteins 

involved in cellular processes such as wound healing. Many evidences stress that GAG sulfation 

strongly influences these interactions and furthermore has direct effects on cells [9R]. Hence, 

chemically modified GAGs are promising compounds for the described biomaterials.  

One promising option to treat for example chronic wounds is to reduce the extensive matrix 

degradation caused mainly by the continuous production and activity of ECM degrading 

enzymes such as MMPs in combination with low tissue levels of TIMPs, their natural 

counterparts [430]. In this context TIMP-3 is of special interest since it i) binds to HSPGs within 

the native ECM, ii) is suggested to be a major regulator of tissue remodeling and iii) contributes 

to the regulation of angiogenesis by competing with VEGF-A for the VEGFR-2 binding that 

initiates the activation of endothelial cells. It is consequently of great interest to identify GAG 

derivatives that interact with MMP-1 and -2 as well as with TIMP-3 and VEGF-A, and to 

evaluate how these derivatives could modulate matrix degradation and mediator protein activity 

if used as functional component of biomaterials. 

To mimic the in vivo situation more closely, it is necessary to develop new multi-component 

2.5D and 3D aECMs based on polymeric GAG derivatives and collagen type I. The goal is to 

engineer defined aECMs with specific and complex interaction profiles for biological mediators 

and cells. To this end, it is essential to characterize these aECMs regarding their composition, 

topography, enzymatic degradation behavior, their binding and release profiles for mediator 

proteins as well as their influence on endothelial cells.  

4.1 Selection of GAGs and GAG derivatives  

To analyze the effect of the carbohydrate backbone as well as sulfation degree and pattern on 

the interaction of GAGs with mediator proteins and enzymes, native and chemically modified 

GAG polysaccharides were used. GAG oligosaccharides were chosen to further determine the 

minimal structural requirements in case of the MMP-1 activity in the presence of TIMP-3, the 

interplay of TIMP-3 with GAGs as well as the influence of GAGs on the TIMP-3 binding to 

LRP-1 or VEGFR-2 and on the VEGF-A/VEGFR-2 complex formation. Since lysozyme, which 

served as positively charged model protein, and VEGF-A were to be used to load HA/collagen-

based hydrogels, additional binding studies of non- and low-sulfated polymeric acrylated GAG 

derivatives in comparison to their corresponding GAG derivatives were conducted. For the 

development of aECM coatings differently sulfated HA polysaccharides were used.  
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Acrylated HA and CS served as crosslinkable polymers to engineer 3D HA/collagen-based 

hydrogels. To achieve an acrylation degree (D.S.AC) sufficient for the production of 

dimensionally stable hydrogels, only low-sulfated HA derivatives (sHA1, sHA1Δ6s) could be 

used as both chemical modifications (sulfation and acrylation) target the primary and secondary 

hydroxyl groups. 

4.2 Interaction of GAGs with mediator proteins and enzymes 

4.2.1 Influence of GAGs on MMP-1/-2 activity  

Since the matrix degradation via MMPs is crucial for tissue remodeling during wound healing, 

the direct effects of GAG derivatives on the activity of the catalytic domains as well as the full-

length MMP-1 and -2 were analyzed (Fig. 4.1).  

GAG concentrations in the mM D.U. range were necessary to alter MMP activity. This indicates 

that GAGs are less potent than TIMPs in influencing MMP activity, as the latter have IC50 

values in the nM range [432]. MMP-2 was more sensitive to high GAG concentrations 

(25 mM D.U.) compared to MMP-1. The presence of HA, CS, HEP and sCS3 enhanced the 

activity of both catalytic MMP domains in a concentration-dependent manner, while sHA3 led 

to no detectable effects (Fig. 4.1 A, C). However, HEP and sCS3 were able to promote the 

activity of the catalytic domains at a concentration of 2.5 mM D.U. GAG. Only sHA1 slightly 

decreased substrate cleavage by the catalytic domains of MMP-1 and -2.  

The increased activity of the catalytic domains of MMP-1 and -2 in the presence of native GAGs 

like HEP is in accordance with reports from Yu and Woessner demonstrating an enhanced 

detection of pro- and activated full-length MMP-1, -7 and -13 via zymography in the presence 

of HEP within the gel [176]. The authors proposed that HEP may induce conformational 

changes or facilitate refolding of the enzymes leading to higher enzymatic activity, or that HEP 

reduces autolysis. GAGs can also interact with the prodomain of MMPs, which could result in 

the allosteric activation of proMMPs by causing a conformational perturbation of the cysteine 

switch that may disrupt the zinc-thiol binding. This could be a further explanation for the 

proMMP activation by GAGs. 

To closer mimic the conditions in vivo, the full-length enzymes of MMP-1 and -2 were used 

after activation (Fig. 4.1 B, D). Interestingly, nearly all GAGs decreased the enzyme activities 

at 25 mM D.U., which is opposed to the effects detected for their corresponding catalytic 

domains. In line with this Kliemt et al. described a decreased MMP-2 activity for cells 

cultivated on aECMs with sHA3 [353]. The inhibitory effect of GAGs on MMP-1 was found 

to be sulfation-dependent for HA derivatives, with the strongest effects detected for sHA3 and 

the lowest for HA. A similar trend was observed for sCS3 compared to CS (Fig. 4.1 B). Even 

though the remaining activity of MMP-2 in the presence of 25 mM D.U. sHA3 was comparable 

to that of MMP-1 (about 50%), no clear trend regarding the GAG sulfation could be observed 
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for former (Fig. 4.1 D), showing that the effect of GAGs on the MMP activity cannot be simply 

correlated with the overall charge density of the polysaccharides. However, at a lower GAG 

concentration of 2.5 mM D.U. there were no or less pronounced effects of GAGs on the activity 

of full-length MMP-1 and -2. These results agree with previous reports demonstration a weak 

interaction between HEP and MMP-1 or proMMP-2 [8,177].  

Fig. 4.1 Activity of MMP-1 and -2 in the presence of GAG polysaccharides. Enzyme kinetic analysis 

of the activity of the catalytic domains of MMP-1 (A) or -2 (C) and full-length MMP-1 (B) and -2 (D) 

in the presence of solute GAGs. Two-way ANOVA: # (p < 0.05), ## (p < 0.01), ### (p < 0.001) vs. Ctrl; 

* (p < 0.05), ** (p < 0.01) vs. respective treatment, a (p < 0.001) vs. HA, b (p < 0.001) vs. CS, 

c (p < 0.001) vs. sHA1, d (p < 0.001) vs. HEP and e (p < 0.001) vs. sCS3. Adapted from [R431] with 

modifications. 

The conflicting data on the positive or negative effects of GAGs on the activity of active full-

length MMPs between this study and the reports of Yu and Woessner likely result from the 

different presentation of the MMPs (in solution during enzyme kinetics vs. embedded in a gel 

matrix during zymography). As stressed by the authors, a direct contact of the MMP with the 

GAG in the gel is mandatory for an improved zymographic detection [176]. The potential 
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partial denaturation of the MMP due to the denaturing conditions during electrophoresis and its 

limited flexibility when bound within the gel may allow a direct interplay between HEP and the 

catalytic domain that initiates the increased substrate cleavage. However, as soon as solute 

MMPs are used as during enzyme kinetics, the enzymes have more options to interact with 

solute GAGs due to their enhanced flexibility in solution. Furthermore, the access of GAGs to 

the catalytic MMP domain may be sterically hindered by other non-catalytic regions of the 

enzyme. The different effects of GAGs on the MMP activity of full-length enzyme and the 

catalytic domain suggest a potential role of non-catalytic domains such as the HPX-like domain 

or the hinge-region, and these may contribute to the GAG-induced alterations of the enzyme 

activity. An interplay of the HPX-like domain of MMP-2 with HEP was already described 

[180]. Moreover, GAGs may sequester divalent cations like Ca2+ via their sulfate residues, 

albeit a clear proof of a direct binding of Ca2+ to HEP is still missing [48]. Since 2 - 3 Ca2+ and 

one structural Zn2+ are present in the catalytic domain of MMPs [433], any changes of the 

concentrations of these cation may affect MMP activity. 

4.2.2 Interaction of TIMP-3 with GAGs 

TIMP-3 is of particular interest as modulator of matrix remodeling since it occurs GAG-bound 

in the ECM in vivo [7]. With an isoelectric point of 9.1 [434] is is positively charged under 

physiological conditions, suggesting an interaction of GAG derivatives with TIMP-3.  

SPR binding analyses showed immobilized TIMP-3 to have a concentration- and sulfation-

dependent interaction with GAG polysaccharides with (Fig. 4.2). sCS3 and sHA3 exhibited the 

highest binding levels (Fig. 4.2, A-C). There were no significant differences between the 

binding strength of CS compared to sHA1 or sCS3 and sHA3, while non-sulfated HA showed 

almost no binding. To exclude any effects of protein immobilization, additional ELISA 

experiments were conducted with GAG derivatives immobilized to PS and incubated with 

solute TIMP-3 in 1% BSA/PBS. BSA was added to reduce the non-specific protein adsorption 

and can be used in GAG/mediator protein interaction analysis since it is known that sHA has a 

low affinity for albumin [435]. The detected amounts of GAG-bound TIMP-3 confirmed that 

the TIMP-3 binding depends on GAG sulfation (Fig. 4.2 D). High-sulfated GAGs bound most 

of the applied TIMP-3 (≈ 72%), while HA retained significantly less (≈ 34%). The binding 

strength of TIMP-3 to CS, sHA1 or HEP was comparable and lay between these two values. 

BSA-coated reference surfaces bound significantly less TIMP-3 than GAG-coated wells, 

demonstrating the specific interplay of GAGs with TIMP-3. In summary, these data show that 

solute as well as immobilized sGAGs are potent interaction partners of TIMP-3. 

Previous studies regarding the interplay of BMP-2 and TGF-β1 with GAG derivatives also 

revealed an increase in binding strength for HA with an increasing sulfation degree [253,436]. 

In contrast to these data, no significant differences between binding strength of CS and sHA1 

or sHA3 and sCS3 polysaccharides with a comparable D.S.S were found. This indicates that the 
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binding of TIMP-3 to GAGs is driven mostly by electrostatic interactions between the 

positively charged amino acids of TIMP-3 and the negatively charged sulfate and carboxylic 

groups of GAGs [48]. The carbohydrate backbone is of secondary importance. A similar 

sulfation-dependent interaction of TIMP-3 with CS and HEP was detected via SPR by Robinson 

et al. [437] but with no clear trend for the amounts of TIMP-3 bound to HEP and HS. The 

authors suggested that TIMP-3 has different binding sites for GAGs, which may lead to these 

results [437].  

Fig. 4.2 Interaction of GAG polysaccharides with TIMP-3. Representative SPR sensorgrams 

showing the binding response of 600 µM D.U. GAG to immobilized TIMP-3 (830 RU) (A, B) and 

normalized binding levels of 100 - 600 µM D.U. GAG polysaccharides relative to 100 µM D.U. sHA3 

corrected for their molecular weight differences (C). Two-way ANOVA: * (p < 0.05), ** (p < 0.01), 

*** (p < 0.001). Amounts of TIMP-3 bound to GAG-coated surfaces after o/n incubation with 1.8 nM 

TIMP-3 in 1% BSA/PBS as determined via ELISA (D). One-way ANOVA: # (p < 0.05) vs. BSA, 

## (p < 0.01) vs. BSA, ### (p < 0.001) vs. BSA, ** (p < 0.01), *** (p < 0.001). Adapted from [R431] 

with modifications.  

Zhang et al. characterized the TIMP-3 interaction with native GAGs like HEP via competition 

SPR experiments with solute TIMP-3/GAG complexes and HEP-surfaces. They showed that 
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the N-sulfation as well as the sulfation at the C6 position of the glucosamine residue and the 

chain-length have a strong influence on the HEP/TIMP-3 interplay. CS-A, CS-C or HS only 

weakly interfered with the TIMP-3 binding to immobilized HEP [203].  

Defined sHA oligosaccharides (Fig. 3.1) were used in comparison to commercially available 

HA, CS and HEP hexasaccharides (indicated as dp 6) to investigate the impact of sulfation 

pattern and GAG structure in detail and to analyze whether such short GAG sequences are 

already sufficient for an interaction with TIMP-3 (Fig. 4.3). The HA tetrasaccharides revealed 

a sulfation-dependent binding to immobilized TIMP-3 (Fig. 4.3 A). While both non-sulfated 

HA oligosaccharides displayed low binding responses to TIMP-3 surfaces, all sHA tetra- and 

hexasaccharides exhibited significantly higher binding levels in case of 100 or 500 µM D.U. 

GAG (Fig. 4.3 B). In general the binding response increases in a concentration-dependent 

manner. In contrast, very low binding responses with a fast dissociation of TIMP-3-bound GAG 

were measured for HEP and CS (both dp 6). This indicates that a higher number of D.U. is 

necessary to stabilize TIMP-3/GAG complex formation in these cases. This is in contrast to 

findings of Zhang et al., reporting the binding of a HEP disaccharide to TIMP-3 via SPR [203]. 

Structural variations between the used HEP samples may be responsible for these differences. 

Overall, the following ranking of the normalized binding levels was detected at 500 µM D.U.: 

HEP (dp 6) ≈ CS (dp 6) < HA (dp 4) ≈ HA (dp 6) < psHA (dp 6) < sHA1 (dp 4) < psHA (dp 4). 

Interestingly, psHA (dp 4), where all hydroxyl groups are transferred to sulfate esters, displayed 

a significantly higher binding response to TIMP-3 than psHA (dp 6), indicating different 

binding profiles for TIMP-3.  

Fig. 4.3 Binding of GAG oligosaccharides to TIMP-3. Representative SPR sensorgrams displaying 

the binding response of 500 µM D.U. GAG oligosaccharides to immobilized TIMP-3 (4700 RU) (A) 

and normalized binding levels of 10 - 500 µM D.U. GAG oligosaccharides relative to 100 µM D.U. 

psHA (dp 4) (B). Two-way ANOVA: *** (p < 0.001). Adapted from [R431] with modifications. 

Thus, distinct structural properties of GAGs determine their interaction with TIMP-3. Only one 

sulfate residue per D.U. at the C6 position as in case of sHA1 (dp 4) was already sufficient to 
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strongly increase the binding to TIMP-3 compared to HA (dp 4). Since sHA1 (dp 4) showed a 

higher binding level to TIMP-3 than HEP or CS even though the D.S.S was lower or 

comparable, these results demonstrate that the sulfation pattern as well as the sugar backbone 

further alter the TIMP-3 interaction with GAG oligosaccharides and cannot be simply 

correlated to the overall negative charge density of the respective GAG oligosaccharides. In 

contrast, a sulfation-dependent increase of the GAG/TIMP-3 complex formation was observed 

for the corresponding GAG polysaccharides. Due to missing data regarding the exact 

distribution of sulfate residues in case of CS (dp 6) and the HEP polysaccharide, a coherent 

interpretation of this factor is challenging. However, differences between their sulfation 

patterns are possible reasons here as well.  

Moreover, the results for psHA (dp 4 vs. dp 6) indicate that an elongated GAG chain does not 

automatically enhance or stabilize the binding to TIMP-3. This suggests that the short and 

highly negatively charged psHA tetrasaccharide is accessing and binding further small GAG 

binding regions on the TIMP-3 surface. Accordingly, amide hydrogen/deuterium exchange 

mass spectrometry with psHA (dp 4) and TIMP-3 and molecular modeling experiments 

demonstrated that the N- and C-terminal domains of TIMP-3 contain a number of amino acids 

that form three GAG binding sites [R431]. In particular the contribution of Lys-76, Arg-163 

and Lys-165 is in line with previous mutagenesis studies conducted by Lee et al. [202]. 

4.2.3 Interaction of acrylated GAGs with lysozyme 

GAG acrylation is necessary to prepare hydrogels via photocrosslinking (section 4.4.1). To 

examine the potential influence of acrylation on the protein binding capacity, Rhodamine B 

labeled lysozyme was incubated with GAG-coated wells (Fig. 4.4). Since native sGAGs are 

reported to bind lysozyme [438,439], it served as model protein to estimate the impact of GAG 

modification on protein binding. Lysozyme is comparable to several proteins involved during 

the wound healing process due to its pI of 11.35, positive net charge and molecular weight of 

14.3 kDa. The good availability and comparatively low cost are further advantages [440,441]. 

However, the possible additional influences of GAGs on the enzymatic activity of lysozyme, 

as reported for HEP [438], were not considered in these studies. 

BSA-coated control wells retained only low lysozyme amounts (about 6%), while surfaces with 

sGAGs captured significantly more protein than the control or HA-coated surfaces (about 

22 - 39% vs. about 17%). Based on these values it is likely that the binding capacity of GAG-

coated surfaces for lysozyme is exhausted under the chosen experimental conditions. The 

lysozyme binding capacity of GAG-coated surfaces showed a ranking as follows: BSA < HA 

≈ HA-AC < sHA1-AC ≈ sHA1 < sHA1Δ6s-AC ≈ CS-AC ≈ CS < sHA1Δ6s.  

Interestingly, lysozyme preferred the binding to CS and sHA1Δ6s over HA or sHA1. Hintze et 

al. also detected a higher binding level of sHA1Δ6s compared to sHA1 for BMP-2 surfaces in 

SPR measurements [436]. In case of HA, CS and sHA1, no significant differences could be 
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detected compared to their acrylated forms. In contrast, acrylation of sHA1Δ6s markedly 

decreased the amount of GAG-bound lysozyme. This indicates that the introduction of acryl 

residues at the C6 position of the glucosamine moiety of sHA1Δ6s hinders the interplay with 

this protein, while the acrylation of secondary hydroxyl groups has no apparent effects on the 

GAG/lysozyme interaction. 

Fig. 4.4 Binding of lysozyme to immobilized GAGs. Each GAG-coated well was incubated with 

600 ng fluorescence-labeled lysozyme in 2% BSA/PBS overnight at 4°C. The amount of non-bound 

lysozyme was determined in the supernatants via fluorescence measurements and the amounts of bound 

lysozyme were calculated by subtracting these values from the initially used concentrations. One-way 

ANOVA: ### (p < 0.001) vs. BSA and * (p < 0.05), ** (p < 0.01), *** (p < 0.001) vs. respective group. 

4.2.4 Interaction of acrylated GAGs with VEGF-A 

The potential influence of acrylation on the interaction profile of GAG derivatives with 

VEGF-A (pI of ≈ 8.5) [442] was analyzed via ELISA with immobilized GAGs and SPR 

measurements with immobilized VEGF-A (Fig. 4.5, Fig. 4.6). The amount of GAG-bound 

VEGF-A increased with the presence of sulfate residues to HA (Fig. 4.5 A). Likewise, 

Anderson et al. described that VEGF-A binds to HEP surfaces mainly via electrostatic inter-

action [443]. Interestingly, sHA1Δ6s bound almost all VEGF-A, suggesting that the sulfation 

of the secondary hydroxyl groups favors the binding of VEGF-A compared to sHA1, where the 

C6 position is completely sulfated. There was no significant difference between the VEGF-A 

binding of HA and CS. Acrylation of sHA1Δ6s significantly reduced the amount of VEGF-A 

bound, while this was only seen by trend for HA and sHA1. sHA derivatives released less 

VEGF-A compared to HA (Fig. 4.5 B). HA and sHA1 acrylation led to a significantly enhanced 

retention of VEGF-A, possibly due to a partial crosslinking of GAGs during the unavoidable 
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short exposure of the GAG-coated plate to light. In the case of CS and sHA1Δ6s, no significant 

differences in the release of VEGF-A were apparent compared to their acrylated counterparts. 

Fig. 4.5 Interaction of VEGF-A with immobilized GAG derivatives. The amounts of VEGF-A were 

quantified via sandwich ELISA. The amounts of GAG-bound VEGF-A after o/n incubation with 1.8 nM 

VEGF-A in 1% BSA/PBS at 4°C are displayed in (A) and the amounts of released VEGF-A after 

incubation with 1% BSA/PBS at 37°C for 120 hours in (B). One-way ANOVA: # (p < 0.05), 

### (p < 0.001) vs. BSA and * (p < 0.05), ** (p < 0.01), *** (p < 0.001) vs. respective group. 

Additional SPR measurements with an immobilization set-up reversed compared to ELISA 

studies were performed to analyze the potential impact of GAG acrylation on their binding to 

immobilized VEGF-A (Fig. 4.6). Representative sensorgrams display a reduced binding 

response of sHA1Δ6s-AC compared to the respective GAG without acrylation (Fig. 4.6 A). 

However, after analyte injection all sHA derivatives revealed only a slight dissociation over 

time, indicating a high stability of the formed sHA/VEGF-A complexes. In summary, the 

binding responses increased in the following order: HA ≈ HA-AC < CS ≈ CS-AC < sHA1-AC 

≈ sHA1Δ6s-AC < sHA1 < sHA1Δ6s (Fig. 4.6 B). Hintze et al. also detected higher binding 

levels for sHA derivatives than for HA or CS during SPR binding studies with TGF-β1, BMP-2 

and -4 [59,253,436]. In contrast to these findings, Ono et al. reported that desulfation of HEP 

at the C6 position strongly decreased the interaction with VEGF-A compared to non-modified 

HEP [444]. Compared to lysozyme, which preferentially binds to CS and not to sHA1, VEGF-A 

exhibited an opposed preference, clearly demonstrating that the carbohydrate backbone is an 

important factor that can direct the mediator protein/GAG interaction profiles. 

The decrease of the VEGF-A binding capacity due to the acrylation of sHA derivatives is in 

line with the ELISA findings, implicating that the introduction of acrylate residues into the 

carbohydrate backbone, especially at the C6 position as in case of sHA1Δ6s-AC, strongly affect 

the binding affinity for VEGF-A. This was also observed for lysozyme. In contrast, SPR 

showed a significant increase of the binding level for CS and CS-AC compared to HA or 
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HA-AC. This was not apparent in the ELISA studies for the examined VEGF-A concentration, 

possibly due to the higher sensitivity of the SPR technique.  

Fig. 4.6 Interaction of solute GAG derivatives with immobilized VEGF-A. Representative 

sensorgrams showing the binding response of 10 nM D.U. GAG to a VEGF-A surface (5159 RU) (A) 

and normalized binding levels of 10 nM D.U. GAG relative to 10 nM D.U. sHA1 (B). One-way 

ANOVA: # (p < 0.05), ## (p < 0.01), ### (p < 0.001) vs. HA and * (p < 0.05), ** (p < 0.01), 

*** (p < 0.001) vs. respective treatment. 

4.3 Consequences of GAG/protein interactions on protein functions, receptor 

binding and intracellular signaling  

4.3.1 Influence of GAGs on the TIMP-3 induced MMP inhibition 

As shown in section 4.2.2, native as well as chemically modified GAGs are able to interact with 

TIMP-3. However, the biological consequences on MMP inhibition by TIMP-3 remain unclear. 

For this reason, the effect of GAGs on the inhibitory activity of TIMP-3 was investigated by 

analyzing the activity of MMP-1 and -2 as native targets in the presence of TIMP-3 and GAGs. 

The enzyme activity in the presence of pre-formed GAG/TIMP-3 complexes compared to 

TIMP-3 without GAGs is displayed in Fig. 4.7. To decrease the MMP-1 or -2 activity to about 

40%, 5 or 2.5 nM TIMP-3 were required, respectively. Neither the presence of 2.5 mM D.U. 

GAG polysaccharides nor 2.5 mM D.U. HA or psHA tetrasaccharides had a significant effect 

on the TIMP-3 mediated MMP-1 and -2 inhibition. This is in accordance with molecular 

modeling results showing no overlapping of the suggested GAG binding regions on the TIMP-3 

surface with the known binding site for proteases like ADAM-17 or MMPs [R431]. In 

conclusion, these findings suggest that GAG binding to TIMP-3 does not alter protease/TIMP-3 

interactions. However, Butler et al. detected a slightly decreased MMP-2 activity in the 

presence of TIMP-3 and HEP, and Troeberg et al. reported an enhanced affinity of TIMP-3 for 
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ADAMTS-5 in the presence of native GAGs like HS and HEP due to a reduced dissociation 

rate of the formed TIMP-3/ADAMTS-5 complex. The different results concerning the impact 

of HEP on the MMP-2 inhibition via TIMP-3 could be attributed to the different protein sources 

as well as batch-to-batch variations of the used HEP. In accordance with these data, however, 

Butler et al. found no or only marginal alterations of the MMP-2 inhibition by TIMP-3 in the 

presence of HA, HS, dermatan sulfate and de-N-sulfated HEP [193].  

Fig. 4.7 MMP activity in the presence of TIMP-3 and GAGs. Inhibition of MMP-1 (A, B) and 

MMP-2 (C) by 5 nM TIMP-3 or 2.5 nM TIMP-3 in case of MMP-2 in the presence or absence of 2.5 mM 

D.U. GAGs. One-way ANOVA: ### (p < 0.001) vs. Ctrl w/o TIMP-3 and GAG or vs. HA 

tetrasaccharides in the absence of TIMP-3. Adapted from [R431] with modifications.  

4.3.2 Interaction of TIMP-3 with LRP-1 cluster II and IV 

Since tissue homeostasis and remodeling as complex processes have to be strictly regulated by 

the presence, activity and interplay of several factors [5,445], TIMP-3 concentrations must be 

tightly controlled depending on the biological requirements. Even though it is known that the 
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up-take and degradation of TIMP-3 via the endocytic receptor LRP-1 is an important 

mechanism to adjust extracellular TIMP-3 levels, available results on the TIMP-3/LRP-1 

interaction are restricted to binding experiments using the whole LRP-1 ectodomain (≈ 80% 

purity) [10]. Hence, it had to be clarified whether LRP-1 clusters II and/or IV are responsible 

for the binding of TIMP-3 as these are the clusters known to be required for the interaction 

between LRP-1 and most of its ligands [226,446]. Kinetic parameters for the TIMP-3 binding 

to LRP-1 clusters II and IV were determined via SPR single cycle kinetics (Fig. 4.8, Tab. 4.1).  

Fig. 4.8 Kinetic analyses of the TIMP-3/LRP-1 cluster II and IV interaction. 12.5 - 200 nM TIMP-3 

were sequentially injected over LRP-1 cluster II (A) (738 RU) and cluster IV (B) (354 RU) surfaces 

without regeneration between the injections. The fitted curves according to the heterogeneous ligand 

model are displayed in blue. Adapted from [R447] with modifications.  

Tab. 4.1 Kinetic parameters characterizing the TIMP-3 interaction with LRP-1.  

Interaction 
kon1 

(M-1s-1) 

koff1 

(s-1) 

KD1 

(nM) 

kon2 

(M-1s-1) 

koff2 

(s-1) 

KD2 

(nM) 
χ2 

TIMP-3/LRP-1 

cluster II 
1.98 ∙ 104 1.11 ∙ 10-4 5.6 5.30 ∙ 106 6.99 ∙ 10-3 1.3 2.25 

TIMP-3/LRP-1 

cluster IV 
2.76 ∙ 104 1.94 ∙ 10-4 7.0 6.48 ∙ 106 12.2 ∙ 10-3 1.9 1.51 

In line with previous reports [10], nM TIMP-3 concentrations were sufficient for a detectable 

binding to LRP-1 cluster II and IV surfaces. The binding response of TIMP-3 to both clusters 

increased in a concentration-dependent manner. The heterogeneous ligand model was used 

assuming the potential binding of TIMP-3 to multiple binding regions. Compared to the KD for 

the whole LRP-1 ectodomain (≈ 28 nM) [10], the KD values for LRP-1 cluster II and IV were 

slightly lower indicating a higher affinity of TIMP-3 for the distinct clusters. The calculated 

parameters like complex stability (koff1) were comparable for both examined LRP-1 clusters. 

Likewise, Neels et al. did not detect major differences between the interaction of apolipoprotein 

E, RAP or α2-macroglobulin with these two receptor fragments [226]. 
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4.3.3 Influence of GAGs on the TIMP-3/LRP-1 interplay 

After revealing the interaction of TIMP-3 with GAG derivatives (section 4.2.2) and the direct 

binding of TIMP-3 to LRP-1 cluster II and IV, the potential impact of GAGs on the 

TIMP-3/LRP-1 complex formation was analyzed via SPR (Fig. 4.9) to study their influence on 

the endocytic regulation of extracellular TIMP-3 levels. Control experiments measuring the 

binding response of 100 µM D.U. GAG polysaccharides to LRP-1 cluster II and IV surfaces 

showed no detectable binding for the GAGs alone (Appendix Fig. 7.1). Hence, any alterations 

of the TIMP-3/LRP-1 interaction after pre-incubation of TIMP-3 with GAGs should be a 

consequence of the GAG binding to TIMP-3.  

Fig. 4.9 Influence of GAG polysaccharides on the interaction of TIMP-3 with LRP-1 cluster II and 

IV. Representative sensorgrams showing the interference of high-sulfated GAG derivatives with the 

TIMP-3/LRP-1 cluster II (A) or cluster IV (C) complex formation. Binding levels relative to 100 nM 

TIMP-3 alone for the interaction with immobilized LRP-1 cluster II (B) or cluster IV (D) after pre-

incubation with 100 µM D.U. GAGs. One-way ANOVA: ** (p < 0.01), *** (p < 0.001) vs. respective 

treatment; # (p < 0.05), ### (p < 0.001) vs. TIMP-3 alone. Adapted from [R447] with modifications. 
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The binding of TIMP-3/GAG to LRP-1 cluster II (Fig. 4.9 A, B) and cluster IV (Fig. 4.9 C, D) 

decreased with an increasing degree of GAG sulfation in the following order: HA < CS < HEP 

≈ sHA1 < sCS3 ≈ sHA3. Only HA showed a slight trend of enhancing the TIMP-3 binding 

response, while all other sGAGs revealed an inhibitory effect on the TIMP-3/LRP-1 cluster 

interaction. In particular the high-sulfated GAGs sCS3 and sHA3 markedly reduced the protein 

association to the endocytic receptor clusters, interfering stronger with the TIMP-3/LRP-1 

cluster II and IV binding than native GAGs. It is of note that 100 µM D.U. CS significantly 

lowered the binding response of TIMP-3 to LRP-1 cluster IV, while this was only a trend for 

cluster II (Fig. 4.9 B, D). Interestingly, the interference of sHA1 and HEP were comparable for 

both clusters even though sHA1 had a lower D.S.S. These binding analyses demonstrated a 

comparable ranking for both clusters, indicating no cluster-specific differences between the 

GAG effects on the TIMP-3/LRP-1 interplay. 

HA tetrasaccharides were used to study whether such short GAG sequences are already 

sufficient to alter the binding of TIMP-3 to the LRP-1 clusters (Fig. 4.10). As for the GAG 

polysaccharides, HA (dp 4) and sHA1 (dp 4) alone displayed no or only marginal binding 

responses to both clusters. psHA (dp 4) showed a concentration-dependent interaction with 

LRP-1 cluster II, implying an interaction of psHA (dp 4) with regions other than the 

complement-like domains (Appendix Fig. 7.2). However, this was not very pronounced for 

cluster IV, where 100 and 400 µM D.U. psHA (dp 4) displayed only binding responses of about 

12.3 - 13.6% relative to TIMP-3. Pre-incubation of 100 nM TIMP-3 with 100 µM D.U. sHA1 

(dp 4) and psHA (dp 4) significantly decreased the TIMP-3 binding to LRP-1 cluster II in a 

comparable manner, while only sHA1 (dp 4) interfered with the TIMP-3/LRP-1 cluster IV 

interaction at this concentration. However, the contribution of the psHA (dp 4)/cluster II 

interplay to the binding response of TIMP-3/psHA (dp 4) cannot be readily assessed since the 

used method cannot distinguish between the two binding events. For psHA (dp 4), higher GAG 

concentrations were necessary to interfere with the TIMP-3/LRP-1 cluster IV interplay 

(Appendix Fig. 7.3), which could correspond to the additional psHA (dp 4) binding to this 

cluster. This is supported by the altered sensorgram curvature of the mixture of TIMP-3 with 

psHA (dp 4) injected over a LRP-1 cluster IV surface (Fig. 4.10 C). Compared to TIMP-3 alone, 

this curve is characterized by a higher slope during the association phase, suggesting that the 

binding of psHA (dp 4) and of TIMP-3 to this cluster are two independent events.  

Since comparable concentrations of HA tetra- and polysaccharides were used, the enhanced 

interference of the latter indicates that longer GAG chains are more efficient in blocking the 

TIMP-3 binding to LRP-1 (Fig. 4.9, Fig. 4.10). The sHA1 polysaccharide (dp 123) for example 

resulted in an about 3 - 3.8-fold higher decrease of the TIMP-3 binding response than the 

corresponding tetrasaccharide. Similar effects of the GAG size on the TIMP-3 endocytosis were 

described for HEP, where HEP (dp 9, 14, 36) but not HEP (dp 5) inhibited the interaction with 

this endocytic receptor [10]. Taken together, this indicates a stabilizing effect of longer GAG 
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chains on the GAG binding to TIMP-3, which corresponds with the inhibitory potential of 

GAGs on the TIMP-3/LRP-1 complex building. Possibly, such negatively charged GAG 

polysaccharides are more efficient in preventing the binding of TIMP-3 to negatively charged 

CR LRP-1 domains.   

Fig. 4.10 Influence of HA tetrasaccharides on the TIMP-3/LRP-1 cluster II and IV interaction. 

Sensorgrams showing the influence of HA tetrasaccharides on the binding of TIMP-3 to LRP-1 cluster 

II (A) and cluster IV (C). The relative binding levels of TIMP-3 pre-incubated with 100 µM D.U. HA 

tetrasaccharides compared to 100 nM TIMP-3 w/o GAG are displayed in (B) for LRP-1 cluster II and 

in (D) for cluster IV. One-way ANOVA: # (p < 0.05) vs. TIMP-3 w/o GAG; * (p < 0.05) vs. respective 

treatment. Adapted from [R447] with modifications.  

Besides the binding of TIMP-3 to native GAGs such as HS, CS and HEP, only limited data are 

available regarding the influence of GAG binding on biological processes like the LRP-1-

mediated endocytosis of TIMP-3. In accordance with these SPR findings, Troeberg et al. 

demonstrated that HS, HEP and CS-E can decrease the TIMP-3 endocytosis via LRP-1 in vitro 

for HTB94 chondrosarcoma cells [10]. Likewise, HEP can decrease the up-take of 

thrombospondin-1 via LRP-1 as shown for endothelial cells [448,449].  
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Regarding the structural requirements of GAGs to interfere with the TIMP-3/LRP-1 cluster II 

and IV interaction, especially the sulfation at the C6 of the glucosamine residue seems to be 

important. This is highlighted when comparing the inhibitory effects of sHA1 and CS 

polysaccharides. Even though their D.S.S is comparable, sHA1, which is exclusively sulfated 

at the mentioned position, had a much stronger impact on the receptor binding than CS, which 

is mainly sulfated at the C4 position. A similar effect was apparent for TGF-β1 and BMP-2, 

where CS showed lower binding responses compared to sHA1 [253,436]. Interestingly, this 

difference was only seen as a trend during SPR binding analysis of the TIMP-3/GAG interaction 

(Fig. 4.2).  

Despite the importance of sulfation location, an additional role of the sugar backbone as well 

as the GAG size cannot be excluded. Even sHA1 (dp 4) was sufficient to significantly decrease 

the TIMP-3/LRPR-1 binding, underlining the role of sulfate residues at the C6 position. In line 

with this Troeberg et al. described that the desulfation of HEP at the C6 position reduced the 

binding capacity for TIMP-3 as well as the blocking effect on the TIMP-3 up-take. It is of note 

that they observed no binding of TIMP-3 to CS-A or CS-C [10], while the SPR and ELISA 

studies performed here clearly demonstrate an interaction of TIMP-3 with CS (Fig. 4.2) as well 

as a partially blocked receptor interaction with TIMP-3.  

It can be hypothesized that the formation of TIMP-3/GAG complexes blocking the binding of 

TIMP-3 to LRP-1 cluster II and IV is a general GAG-mediated mechanism that could result in 

a decreased cellular up-take and degradation of TIMP-3 via LRP-1. This hypothesis is 

supported by results detecting increased TIMP-3 concentrations in the media of hMSCs after 

cultivation with sHA1 but not with CS or HA. Furthermore, slightly lower protein levels of 

LRP-1 are observed after the hMSC treatment with sHA1 compared to CS by proteomic 

analysis [450], which could be a further regulatory effect of the altered LRP-1 functions in the 

presence of sHA derivatives.  

4.3.4 Interaction of TIMP-3 and VEGF-A with VEGFR-2 

VEGFR-2-mediated signaling that activates endothelial cells and thereby stimulates 

angiogenesis must be tightly controlled e.g. via the interplay of pro- and anti-angiogenic factors 

such as VEGF-A and TIMP-3 [119,292]. Since VEGF-A and TIMP-3 are both able to interact 

with native as well as chemically modified GAG derivatives (section 4.2.2, 4.2.4) and compete 

for the binding to VEGFR-2, the potential influence of GAG derivatives on the TIMP-3 and 

VEGF-A interplay with VEGFR-2 is analyzed to obtain a deeper understanding of this complex 

signaling process.  

Single cycle kinetic measurements with SPR were performed to determine the kinetic 

parameters characterizing the interplay of TIMP-3 or VEGF-A with VEGFR-2 in the absence 

of GAGs (Fig. 4.11). The calculated parameters are summarized in Tab. 4.2. Here for the first 

time we determined the KD value with about 215 pM for the TIMP-3/VEGFR-2 interaction. 
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The KD value of 737 pM for the VEGF-A/VEGFR-2 complex formation is in accordance with 

previously determined values [287,288,300,451,452]. Interestingly, these data show that the KD 

values for the binding of TIMP-3 as well as VEGF-A to VEGFR-2 are both in the same pM 

range.  

Fig. 4.11 Kinetic analyses of TIMP-3/VEGFR-2 and VEGF-A/VEGFR-2 interactions. 

0.44 - 7.10 nM VEGFR-2 were sequentially injected over TIMP-3 surfaces (A) (142 RU), while 

1.58 - 25.25 nM VEGFR-2 were injected over VEGF-A surfaces (B) (33 RU). The fitted curves 

according to the 1:1 Langmuir binding fitting model are displayed in blue. Adapted from [R453] with 

modifications.  

Tab. 4.2 Kinetic parameters of the TIMP-3/VEGFR-2 and VEGF-A/VEGFR-2 interplay.  

Interaction kon (M-1s-1) koff (s-1) KD (pM) χ2 

TIMP-3/VEGFR-2 (4.89 ± 0.06) ∙ 106  (1.05 ± 0.01) ∙ 10-3 215 2.26 

VEGF-A/VEGFR-2 (3.40 ± 0.02) ∙ 105 (2.50 ± 0.01) ∙ 10-3 737 0.63 

4.3.5 Influence of GAGs on the TIMP-3/VEGFR-2 interaction  

To study the consequences of the TIMP-3/GAG complex formation on the TIMP-3/VEGFR-2 

binding, SPR measurements were conducted. Additional effects of a potential direct interaction 

of GAGs with VEGFR-2 could be excluded since control experiments showed no detectable 

binding response for the used GAGs (Appendix Fig. 7.4). Binding analysis revealed a sulfation-

dependent blocking of the TIMP-3 binding to VEGFR-2, which was most pronounced for the 

high-sulfated derivatives sHA3 and sCS3 (Fig. 4.12). In accordance with this Robinson et al. 

also measured a higher binding of TIMP-3 to CS surfaces compared to HA surfaces [437]. 

Overall, the TIMP-3 binding signal decreased in the presence of GAG polysaccharides as 

follows: HA < CS < HEP ≤ sHA1 < sHA3 ≈ sCS3, which corresponds well with the detected 

ranking of the TIMP-3/GAG interaction (section 4.2.2) as well as the interference of GAGs on 

the TIMP-3/LRP-1 docking (section 4.3.3). However, in contrast to the latter interaction where 

HA did not significantly altered the receptor binding, even non-sulfated HA reduced the 

TIMP-3/VEGFR-2 interplay. Additional experiments using a broader range of sHA3 
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concentrations showed that even 2 nM D.U. were sufficient to lower the TIMP-3 binding 

response to VEGFR-2 (Appendix Fig. 7.5 A).   

Fig. 4.12 Influence of GAG polysaccharides on the binding of TIMP-3 to VEGFR-2. Representative 

sensorgrams (A) and relative binding levels (B) displaying the binding response of 100 nM TIMP-3 

with or without pre-incubation with 100 µM D.U. GAG polysaccharides to immobilized VEGFR-2 

(A: 124 RU; B: 124 RU, 69 RU). One-way ANOVA: ### (p < 0.001) vs. TIMP-3 w/o GAG; * (p < 0.05), 

** (p < 0.01) vs. respective treatment; a (p < 0.001) vs. TIMP-3 + HA; b (p < 0.001) vs. TIMP-3 + CS; 

c (p < 0.001) vs. TIMP-3 + HEP. Adapted from [R453] with modifications.  

GAG oligosaccharides were also analyzed using the same experimental set-up. Here a four 

times higher GAG to TIMP-3 ratio (4 µM D.U. to 1 nM TIMP-3) (Fig. 4.13, Appendix Fig. 7.6) 

compared to the studies with GAG polysaccharides was examined since even for a 2:1 GAG to 

TIMP-3 ratio (2 µM D.U. to 1 nM TIMP-3) significant effects were only apparent for sHA1 

(dp 4), HEP (dp 6) as well as psHA (dp 4, dp 6) (Appendix Fig. 7.6). HA (dp 4, dp 6) and CS 

(dp 6) revealed no or only a slightly interference with the TIMP-3/VEGFR-2 binding. In 

contrast, HEP (dp 6) and all examined sHA oligosaccharides significantly reduced the receptor 

binding of TIMP-3. The exception was sHA2Δ6s (dp 4), which contains two sulfate residues at 

the glucuronic acid unit but non at the glucosamine unit. It is of note that psHA (dp 4) blocked 

the TIMP-3/VEGFR-2 complex building more efficiently compared to psHA (dp 6), which is 

in line with the observed lower binding response of the latter compared to its corresponding 

tetrasaccharide during TIMP-3/GAG binding analyses (Fig. 4.3). Zhang et al. also detected a 

more pronounced competition by HEP disaccharides with unknown sulfation pattern for the 

TIMP-3/HEP binding than by HEP tetrasaccharides. However, they found no significant 

differences between the effects of HEP tetra- and hexasaccharides [203].   
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Fig. 4.13 Effects of GAG oligosaccharides on the TIMP-3/VEGFR-2 interaction. Relative binding 

levels are shown for the binding of 20 nM TIMP-3 after pre-incubation with 80 µM D.U. GAG 

oligosaccharides to VEGFR-2 surfaces (124, 69 RU). One-way ANOVA: ## (p < 0.01), ### (p < 0.001) 

vs. TIMP-3 w/o GAG; * (p < 0.05), *** (p < 0.001) vs. respective treatment; a (p < 0.001) vs. HA (dp 4, 

dp 6), CS (dp 6), sHA1 (dp 4), HEP (dp 6), sHA2Δ6s (dp 4). Adapted from [R453] with modifications.  

4.3.6 Influence of GAGs on the VEGF-A/VEGFR-2 interaction 

Since VEGF-A165, as a natural ligand of VEGFR-2 that contains a HEP-binding domain [454], 

was proven to interact with native GAGs and chemically modified HA derivatives (section 

4.2.2), the influence of the GAG/VEGF-A interaction on the growth factor/receptor docking 

was examined via SPR as well. Sulfated GAG derivatives and HEP blocked the interaction of 

VEGF-A with VEGFR-2 in a sulfation-dependent manner, while HA and CS had no significant 

influence on the receptor binding of VEGF-A (Fig. 4.14). The high-sulfated GAG 

polysaccharides sHA3 and sCS3 completely diminished the VEGF-A binding response. Further 

binding analyses revealed that sHA3 concentration-dependently affect the VEGF-A/VEGFR-2 

interplay in the range of 0.2 to 200 µM D.U., while 2 nM D.U. sHA3 had no significant effect 

(Appendix Fig. 7.5 B). Compared to the TIMP-3/VEGFR-2 interplay (Appendix Fig. 7.5 A), 

the VEGF-A/VEGFR-2 was less sensitive against 2 nM D.U. sHA3. 

Additional SPR studies with pre-formed VEGF-A/GAG oligosaccharide complexes likewise 

showed that HEP (dp 6), sHA1 (dp 4) and psHA (dp 4, dp 6) partially block the 

VEGF-A/VEGFR-2 complex building (Fig. 4.15, Appendix Fig. 7.7). All other used 

oligosaccharides did not alter this interaction. It is of note that HEP (dp 6) but not sHA2Δ6s 

(dp 4) interfered strongly with the VEGF-A/receptor binding, although they have a comparable 

D.S.S. This is in line with the fact that HS oligosaccharides exclusively sulfated at the C2 

position were reported to be weak competitors for the HS/VEGF-A interplay [455]. In contrast, 

the SPR binding studies with GAG polysaccharides and immobilized VEGF-A revealed the 
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highest binding response for sHA1Δ6s (section 4.2.4). However, these differences could be a 

result of the GAG chain length as well as the additional presence of sulfate residues at the C4 

position of the glucosamine unit in the latter case. 

Fig. 4.14 Interference of GAG polysaccharides with the VEGF-A/VEGFR-2 binding. Sensorgrams 

obtained for the binding of 20 nM VEGF-A after pre-incubation with 20 µM D.U. GAG polysaccharides 

to VEGFR-2 surfaces (53 RU) are displayed in (A). The relative binding levels for this interaction is 

shown in (B). One-way ANOVA: ### (p < 0.001) vs. VEGF-A w/o GAG; * (p < 0.05), ** (p < 0.01) 

vs. respective treatment; a (p < 0.001) vs. VEGF-A + HA; b (p <0.001) vs. VEGF-A + CS; c (p < 0.001) 

vs. VEGF-A + sHA1. 

Interestingly, a lower binding response was observed in the presence of psHA (dp 6) compared 

to psHA (dp 4), suggesting an enhanced affinity of psHA for VEGF-A with increasing GAG 

chain length. A similar effect of the GAG chain length was reported for HEP, where HEP 

(dp 40) exhibited a higher affinity for VEGF-A (KD ≈ 22 - 42 nM) than HEP (dp 10) 

(KD ≈ 660 - 840 nM) [300]. Teran and Nugent likewise observed an altered interplay between 

VEGF-A and its receptors in the presence of HEP. In contrast to the obtained findings, these 

authors reported that the addition of HEP to a VEGF-A solution without an explicitly mentioned 

pre-incubation time increased the interaction of VEGF-A with immobilized VEGFR-2. They 

assumed that HEP induced the formation of a new high affinity ternary complex between HEP, 

VEGF-A and VEGFR-2. It has to be noted that apart from the molecular weight of the GAGs, 

no additional information regarding the chemical characteristics of the used GAGs are provided 

within this study [11]. Clear conclusions are challenging since HEP is known for its high 

structural variability depending on the source, and this may cause these opposed effects on the 

VEGF-A/VEGFR-2 complex formation.  
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Fig. 4.15 Effects of GAG oligosaccharides on the VEGF-A/VEGFR-2 interplay. The binding levels 

after pre-incubation of 20 nM VEGF-A with 80 µM D.U. GAG oligosaccharides relative to the binding 

response of VEGF-A w/o GAGs to VEGFR-2 (53, 69 RU) are displayed. One-way ANOVA: 

# (p < 0.05), ### (p < 0.001) vs. VEGF-A w/o GAG; * (p < 0.05) vs. respective treatment; a (p < 0.001) 

vs. VEGF-A + HA (dp 4, dp 6), VEGF-A + CS (dp 6), VEGF-A + sHA1 (dp 4) and VEGF-A + 

sHA2Δ6s. 

4.3.7 Influence of GAGs on the TIMP-3/VEGF-A/VEGFR-2 interaction  

To better reflect the native situation, binding analyses were conducted to evaluate the impact 

of GAG poly- and oligosaccharides on the TIMP-3/VEGF-A competition for the VEGFR-2 

binding. To this end solutions containing VEGF-A and TIMP-3 were pre-incubated with GAGs 

before SPR analysis. This ensured that any detected changes of the protein/receptor interaction 

were a consequence of direct binding of sGAGs to VEGF-A and TIMP-3, as we could exclude 

any GAG binding to VEGFR-2 (Appendix Fig. 7.4) under the chosen experimental conditions 

as well as an interplay between VEGF-A and TIMP-3. 

Similar data were described previously [11,119], although Di Benedetto et al. found an 

interaction between VEGFR-2 and HEP-albumin [456]. TIMP-3 alone revealed a higher 

binding response than VEGF-A alone in accordance with the measured kinetic parameters 

(section 4.3.4, Tab. 4.2), while the TIMP-3/VEGF-A mixture exhibited a comparable binding 

level to TIMP-3 alone (Fig. 4.16 A, B). The latter can be explained with the competition 

between VEGF-A and TIMP-3 for the binding to VEGFR-2 [119], which precludes a 

cumulative binding response compared to the binding levels of both proteins alone.  

Like the GAG effects on the VEGF-A or TIMP-3 binding to VEGFR-2 (sections 4.3.5, 4.3.6), 

sHA polysaccharides concurrently induced a sulfation-dependent reduction of the binding 

response of VEGF-A together with TIMP-3. Non-sulfated HA and the lowest examined 
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concentration of 5 nM D.U. sHA3 had no significant impact on the VEGF-A/TIMP-3 interplay 

with VEGFR-2. This is in line with findings of Hintze et al., demonstrating that sHA derivatives 

block the binding of BMP-2 to its receptor IA in a sulfation-dependent manner [457].  

Fig. 4.16 Interference of GAG polysaccharides with the TIMP-3/VEGF-A competition for 

VEGFR-2. Representative sensorgrams showing the binding response of a mixture of 50 nM TIMP-3 

and 50 nM VEGF-A in comparison to TIMP-3 or VEGF-A alone or in the presence of 50 µM D.U. 

sHA3 during injection over a VEGFR-2 surface (53 RU) (A). The binding levels normalized to the 

binding level of the TIMP-3/VEGF-A mixture in the presence of HA and sHA derivatives is displayed 

in (B). One-way ANOVA: ### (p < 0.001) vs. TIMP-3 + VEGF-A; ** (p < 0.01) vs. respective 

treatment; a (p < 0.001) vs. TIMP-3; b (p < 0.001) vs. VEGF-A; c (p < 0.001) vs. TIMP-3 + VEGF-A + 

HA; d (p < 0.001) vs. TIMP-3 + VEGF-A + sHA1; e (p < 0.001) vs. TIMP-3 + VEGF-A + 5 nM D.U. 

sHA3; f (p < 0.001) vs. TIMP-3 + VEGF-A + 500 nM D.U. sHA3. Adapted from [R453] with 

modifications.  

Similar to the previous results (sections 4.3.5, 4.3.6) enhanced GAG to protein ratios were 

necessary for GAG oligosaccharides compared to GAG polysaccharides to induce significant 

alterations of the binding levels (Fig. 4.17). This indicates a stabilizing effect of a longer GAG 

chain on the protein/GAG binding and possibly an increased sterical hindrance that enhance the 

efficiency of receptor blocking. Here only sHA1 (dp 4) and psHA (dp 4, dp 6) but not native 

GAG oligosaccharides significantly blocked the binding of both proteins to VEGFR-2. It should 

be noted that this effect was just seen as trend for HEP (dp 6). Overall these data correspond 

well with the obtained findings that show the influence of GAG polysaccharides on the 

TIMP-3/VEGFR-2 complex building (section 4.3.5). They potentially result from the enhanced 

negative net charge of high-sulfated GAGs that may enhance the electrostatic part of the 

GAG/protein interplay. Accordingly, sCS3 and sHA3 revealed higher binding levels to TIMP-3 

surfaces than native GAGs such as HEP (section 4.2.2). A comparable trend was also observed  
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for the GAG effect on the VEGF-A/VEGFR-2 binding, even if there were no significant 

differences between sCS3, sHA3 and HEP (section 4.3.6). However, additional alterations due 

to the different carbohydrate backbones of these GAGs cannot be excluded.   

Fig. 4.17 Interference of GAG oligosaccharides with the TIMP-3/VEGF-A competition for 

VEGFR-2. Normalized binding levels relative to the binding level of 20 nM TIMP-3 and 20 nM 

VEGF-A in the presence of 80 µM D.U. GAG oligosaccharides to VEGFR-2 surfaces (53 RU) are 

shown. One-way ANOVA: # (p < 0.05), ### (p < 0.001) vs. TIMP-3 + VEGF-A; * (p < 0.05) vs. 

respective treatment; a (p < 0.001) vs. TIMP-3+ VEGF-A + HA (dp 4); b (p < 0.001) vs. TIMP-3 + 

VEGF-A + HA (dp 6); c (p < 0.001) vs. TIMP-3 + VEGF-A + CS (dp 6); d (p < 0.001) vs. TIMP-3 + 

VEGF-A + sHA2Δ6s. Adapted from [R453] with modifications.  

In summary, a mainly sulfation-dependent interference of GAGs was demonstrated for all 

examined protein interaction with VEGFR-2. Even sHA tetrasaccharides were potent enough 

to significantly block the receptor binding, if at a high molar excess. Furthermore, the results 

of these SPR measurements showed that sulfate residues at the C6 position of the glucosamine 

residues of HA play a particular role in the inhibitory potential of GAGs on the 

VEGF-A/VEGFR-2 and TIMP-3/VEGFR-2 complex building. This was especially evident for 

HA tetrasaccharides, where sHA1 (dp 4) significantly decreased the binding of TIMP-3, 

VEGF-A or of a TIMP-3/VEGF-A-mixture (Fig. 4.13, 4.15, 4.17), whereas sHA2Δ6s (dp 4) 

and CS (dp 6) with a higher or comparable D.S.S had no or at least lower effects compared to 

sHA1 (dp 4). This is in line with previous observations where HEP without sulfation at the C6 

position exhibited no interaction with VEGF-A and possessed a decreased affinity for TIMP-3 

compared to unmodified HEP [203,444]. However, an additional effect of the sugar backbone 

on the protein/VEGFR-2 binding could be a considerable factor that might contribute to the 

differences between sHA1 (dp 4) and CS (dp 6) as well. 
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Molecular modeling techniques support these SPR results. They suggest that VEGF-A and 

TIMP-3 use similar binding regions on the VEGFR-2 surface and show that negatively charged 

regions of VEGFR-2 compete with the negatively charged GAGs for the docking to positively 

charged TIMP-3 regions. This may be the underlying mechanism for the observed inhibitory 

effects of GAGs on the receptor binding [R453], and agrees with literature data where three 

distinct GAG binding regions present at the N- and C-terminal domains of TIMP-3 were 

identified earlier, and especially the C-terminal of TIMP-3 is reported to compete with VEGF-A 

for the VEGFR-2 binding [295,R431]. 

To provide further insights into the molecular interplay, additional SPR binding studies were 

performed to examine whether the order of binding events affects the receptor binding. When 

injecting solutions with only one analyte present (VEGF-A or TIMP-3 or sHA3) after each 

other without regeneration after the first or second analyte injection over VEGFR-2 surfaces, 

comparable binding levels were recorded for the respective analyte independent of the order of 

analyte injection (Fig. 4.18 A compared to B). Thus, the order of protein injection has no 

significant influence on the detected binding levels. Furthermore, these sequential binding 

analyses revealed that sHA3 does not bind or only marginally binds to pre-formed 

TIMP-3/VEGFR-2 (Fig. 4.18 A) or VEGF-A/VEGFR-2 (Fig. 4.18 B) complexes. This clearly 

indicates that the GAG binding regions of VEGF-A as well as of TIMP-3 are already occupied 

after the binding to VEGFR-2, explaining why sHA3 shows a strongly decreased protein 

binding capacity and is no longer able to significantly interact with TIMP-3 or VEGF-A during 

sequential injection.  

Fig. 4.18 Sequential interaction analysis of TIMP-3, sHA3 and VEGF-A binding to VEGFR-2. The 

SPR binding levels relative to the binding level of 40 nM VEGF-A are shown for the sequential injection 

of first 40 nM TIMP-3, second 40 µM D.U. sHA3 and third 40 nM VEGF-A (A) or of first 40 nM 

VEGF-A, second 40 µM D.U. sHA1 and third 40 nM TIMP-3 (B) over VEGFR-2 surfaces (53 RU, 

69 RU, 51 RU). Adapted from [R453] with modifications.  
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Displacement ELISA experiments with immobilized GAGs were conducted to study whether 

the presence of VEGF-A and TIMP-3 together as potential GAG interaction partners influences 

their GAG binding (Fig. 4.19). The retardation of VEGF-A (Fig. 4.19 A) and TIMP-3 alone 

(Fig. 4.19 B) by GAGs increased with the degree of GAG sulfation (white bars). The presence 

of additional TIMP-3 did not significantly affect the VEGF-A recovery in the supernatants 

(Fig. 4.19 A, grey bars) for the examined surfaces compared to VEGF-A alone. It is of note that 

the presence of VEGF-A enhanced the recovered TIMP-3 amounts in the supernatants (grey 

bars, striped) after incubation with sHA3-coated wells from about 23% to about 62% (Fig. 4.19 

B), while the TIMP-3 recovery remained unaffected in case of the BSA-coated control wells 

and non-sulfated HA. Thus, these data demonstrate that VEGF-A represents the preferred sHA3 

binding partner, which is able to reduce but not to eliminate the interaction of TIMP-3 with 

sHA3. This is in accordance with findings showing an 1.4 - 2.7 times enhanced affinity of HEP 

for VEGF-A compared to TIMP-3 with a KD of about 59 nM [203,300]. This corresponds also 

with the increased interference of HEP poly- and oligosaccharides with the VEGF-A/VEGFR-2 

interplay compared to the TIMP-3 binding to VEGFR-2 during SPR measurements, where 

80 µM D.U. HEP (dp 6) reduced the VEGF-A binding level to 40%, while equal GAG 

concentrations decreased the TIMP-3 binding level only to about 58%. 

Fig. 4.19 Binding of VEGF-A or TIMP-3 to GAG surfaces. Wells with immobilized HA or sHA3 

were incubated o/n at 4°C with 1.8 nM VEGF-A, 1.8 nM TIMP-3 or a solution containing both proteins 

dissolved in 1% BSA/PBS. Afterwards, the amounts of non-bound VEGF-A or TIMP-3 were quantified 

via ELISA. BSA-coated wells served as control (Ctrl). Two-way ANOVA: *** (p < 0.001) vs. 

respective treatment. Adapted from [R453] with modifications.  

4.3.8 Biological consequences on the VEGFR-2 signaling 

Though sGAGs were shown to have a blocking effect on VEGF-A and TIMP-3 binding to 

VEGFR-2, the biological consequences of this on VEGFR-2 signaling remained unknown. To 

investigate how sHA3 affects the VEGF-A-induced VEGFR-2 phosphorylation as first 
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intracellular step of VEGF-A signaling in the presence or absence of competing TIMP-3 in vitro 

cell culture experiments using confluent endothelial cells that represent the physiological state 

in adults [262] were conducted (Fig. 4.20 A). Cell migration was used to study angiogenic and 

anti-angiogenic effects in parallel to assess whether HA or sHA3 alter the biological activity of 

VEGF-A and TIMP-3 in a way that modulates endothelial cell behavior (Fig. 4.20 B). Since 

human endothelial cells like HUVECs since they typically require a cultivation with HEP-

containing cell culture media [458] and this means that potential GAG-induced side effects 

cannot be excluded, porcine aortic endothelial cells which heterotopically express VEGFR-2 

(PAE/KDR cells) were used instead. The expression of VEGFR-2 by PAE/KDR cells was 

verified and quantified via a specific VEGFR-2 ELISA, showing that on average 1347 ± 167 

VEGFR-2 are detectable on each cell surface.  

Fig. 4.20 Effects of sHA3 on the VEGF-A/TIMP-3 controlled phosphorylation of VEGFR-2 and 

on endothelial cell migration. (A) After PAE/KDR cell stimulation with 1 nM VEGF-A in the absence 

or presence of 50 nM TIMP-3 and/or 200 µM D.U. sHA3, the VEGFR-2 phosphorylation was quantified 

via ELISA and normalized to the total amount of VEGFR-2, which is also determined via ELISA 

relative to total protein concentrations of the respective cell lysates. (B) PAE/KDR cells were initially 

seeded around a physical barrier, after its removal the cells were stimulated with 10 nM VEGF-A to 

migrate into the exclusion zone for 26 hours in the presence of 100 nM TIMP-3 and/or 200 µM D.U. 

HA or sHA3. The migration was measured by determining the fluorescence intensity after cell 

incubation with calcein AM. One-way ANOVA: # (p < 0.05), ## (p < 0.01), ### (p < 0.001) vs. Ctrl 

(media w/o VEGF-A, TIMP-3 and GAG); * (p < 0.05), ** (p < 0.01) vs. respective treatment; in (A): 

a (p < 0.001) vs. VEGF-A and b (p < 0.001) vs. a mixture containing VEGF-A, TIMP-3 and sHA3; 

in (B): a (0.001) vs. VEGF-A, b (p < 0.001) vs. VEGF-A + TIMP-3 and c (p < 0.001) vs. VEGF-A + 

HA. Adapted from [R453] with modifications.  
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Compared to the SPR measurements, higher TIMP-3 concentrations were necessary to 

significantly inhibit the biological activity of VEGF-A during the cell culture experiments. 

Similar observations were reported previously. There it was suggested that just high doses of 

solute TIMP-3 compete with VEGF-A for the binding to VEGFR-2 [119,295]. However, the 

applied protein concentrations should resemble potential in vivo concentrations because sHA 

derivatives were shown to increase the amount of pericellular TIMP-3 [R447] by blocking the 

TIMP-3 endocytosis via LRP-1 (section 4.3.3). No sHA3-induced VEGFR-2 phosphorylation 

could be detected, which corresponds well the SPR data showing no direct interplay of GAGs 

with this receptor (Appendix Fig. 7.4). Based on this it can be suggested that any potential direct 

effects of GAGs on endothelial cells are not VEGFR-2 mediated. Neither HA nor sHA3 alone 

affected the endothelial cell migration. In contrast, the presence of sHA3 strongly decreased the 

VEGF-A-stimulated VEGFR-2 phosphorylation and cell migration, while HA did not alter the 

VEGF-A effects on cell migration, which corresponds well with the SPR results.  

In contrast to these findings, Ashikari-Hada et al. reported that the addition of HEP to VEGF-

A can enhance the VEGFR-2 phosphorylation of human endothelial cells, though no 

information regarding the HEP source is provided by the authors [308]. In accordance with the 

obtained findings, Freudenberg et al. observed a decreased VEGF-A-induced migration of 

HUVECs in the presence of HEP-containing gels compared to gels with desulfated HEP [459] 

and Cole et al. detected that HS oligosaccharides inhibit the VEGF-induced HUVEC migration 

[455].  

It should be noted that the inhibitory effect of sHA3 on the VEGF-A-stimulated VEGFR-2 

phosphorylation was less pronounced than for SPR binding analysis with VEGFR-2 surfaces 

(Appendix Fig. 7.8). This could be explained by the fact that sHA3 can interact with other 

proteins present at the cell surface or released by the cells during the cell culture studies, while 

VEGF-A and TIMP-3 represent the only possible binding partners for sHA3 during the 

conduced SPR approach. The assumed additional sHA3/protein interactions potentially 

decrease the number of free binding sites within the sHA3 polysaccharide chain, which may 

result in the detected lower inhibitory potential of sHA3 in the cell culture assay compared to 

the SPR studies. 

TIMP-3 significantly reduced the VEGF-A-induced VEGFR-2 phosphorylation and endothelial 

cell migration. Interestingly, both increased receptor phosphorylation (≈ 35%) and cell 

migration (≈ 38%) were observed in the presence of sHA3, VEGF-A and TIMP-3 compared to 

the mixture of VEGF-A and TIMP-3. However, 200 µM D.U. GAG did not completely restore 

the bioactivity of VEGF-A. To support the in vitro findings additional SPR experiments were 

conducted using similar VEGF-A, TIMP-3 and sHA3 concentrations as in the VEGFR-2 

phosphorylation stimulation assay (Appendix Fig. 7.8). SPR measurements likewise showed 

significantly decreased binding levels of 50 nM TIMP-3 or 1 nM VEGF-A after pre-incubation 

with 200 µM D.U. sHA3, and at least by trend a slightly higher binding signal for the 
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combination of VEGF-A, TIMP-3 and sHA3 in comparison to VEGF-A/sHA3 or 

TIMP-3/sHA3 complexes was detected.  

Importantly, these data highlight that albeit VEGF-A/sHA3 complexes exhibit a decreased 

biological activity compared to VEGF-A alone, the simultaneous formation of VEGF-A/sHA3 

and TIMP-3/sHA3 complexes enables a partially rescued VEGF-A/VEGFR-2 signaling as 

proven by the VEGFR-2 phosphorylation as well as the endothelial cell migration. As a 

consequence, a co-regulatory role of TIMP-3 and sGAG derivatives on the biological activity 

of VEGF-A can be hypothesized (Fig. 4.21). This might be translated into the development of 

sGAG-containing biomaterials able to rebalance abnormal angiogenesis associated with 

increased levels of VEGF-A and VEGFR-2 as e.g. present in atherosclerosis or rheumatoid 

arthritis [273,460]. 

 

Fig. 4.21 Simplified scheme of VEGF-A/VEGFR-2 signaling in the presence of TIMP-3 and GAGs. 

(A) Successful docking of a VEGF-A dimer to extracellular domains of VEGFR-2 induces the 

dimerization of VEGFR-2, which initiates the autophosphorylation of intracellular tyrosine residues. 

This signaling process activates endothelial cell survival, migration and proliferation. (B) Extracellular 

TIMP-3 as natural VEGF-A competitor binds to VEGFR-2, thereby blocking the VEGF-A/VEGFR-2 

complex formation and consequential the VEGF-A-induced signal transduction cascade and endothelial 

cell activation. (C) VEGF-A and TIMP-3 interact both with extracellular sGAGs. Solute TIMP-3/sGAG 

and VEGF-A/sGAG complexes exhibit a reduced binding to VEGFR-2, which decreases the biological 

activity of TIMP-3 and VEGF-A. However, the simultaneous formation of TIMP-3/sGAG complexes 

partially rescues the successful binding of VEGF-A to VEGFR-2 and allows a controlled 

VEGF-A/VEGFR-2 signal transduction and endothelial cell stimulation. Adapted from [R453] with 

modifications.  
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4.4 Biomaterial coatings functionalized with HA derivatives (2.5D aECMs) 

The native ECM represents a complex system containing a high number of cues that control 

and modulate the cellular response. Thus, model systems that partially replicate this 

biocomplexity are required to analyze biochemical signals that alter for example tissue 

homeostasis. Against this background, aECMs that include GAG derivatives associated with 

collagen fibrils are reported as promising biomaterials with favorable properties that may 

improve the regeneration of skin and bone tissue [9R]. However, these data are restricted to 

aECMs with only one GAG. Only little is known about the potential influence of altered sHA 

concentrations or the presence of multiple sHA derivatives during the in vitro fibrillogenesis of 

collagen type I, potentially altering the biochemical composition, the resulting fibril 

morphology as well as the enzymatic aECM degradation. Especially evaluating whether GAG 

derivatives affect the enzymatic stability of aECMs is of special interest for a future application 

for example as implant coatings. 

4.4.1 Development and characterization of aECMs with one or two GAGs 

HA, sHA derivatives with different sulfation degrees (sHA1 and sHA4) as well as a 

combination of sHA1 and sHA4 were integrated into single-GAG- or multi-GAG-aECMs. To 

systemically modify GAG concentrations during the collagen self-assembly process, the 

collagen amount per aECM was kept constant while altering the number, concentration and 

sulfation degree of the used GAG derivatives. Afterwards, aECMs were dried and analyzed 

regarding their composition and stability at 37°C in PBS (Fig. 4.22) without any additional 

crosslinking to allow a certain release of GAG polysaccharides and degradation of collagen.  

85 - 90% of the initially applied GAG amounts were released from aECMs during their initial 

washing with water (Fig. 4.22 A). During the first 60 min of incubation with PBS an additional 

GAG release occurred, while the GAG contents remaining after this time was comparatively 

stable for up to eight days. These release profiles imply that the association of GAGs to collagen 

fibrils is restricted by a limited number of GAG binding sites on collagen, explaining the burst 

release of non-associated GAGs during early incubation period. Interestingly, the aECM with 

a higher collagen to sHA4 ratio during in vitro fibrillogenesis (1/0.5 stands for 1 mg/ml 

collagen, which is mixed with 1.25 mM D.U. GAG) revealed a higher percentage of remaining 

GAG per matrix than the aECM with a lower collagen to sHA4 ratio of 1/1 (1 mg/ml collagen 

mixed with 2.5 mM D.U. GAG). However, we observed no significant differences between the 

other sHA containing coatings. It is of note that the percentage of remaining GAG in the single-

GAG matrices was comparable to the percentage of integrated GAG determined for the 

multi-GAG aECM, where both sHA1 and sHA4 were present during aECM formation. Since 

the GAG concentrations were related to their D.U. during the aECM preparation and almost 

comparable percentages of remaining GAGs per matrix were calculated, we found that the GAG 

amounts associated to collagen increased with the D.S.S as well as the used GAG concentration, 
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which is in line with previous results [359R,461–463]. However, as reported by Bierbaum et 

al. and Miron et al., the integrated GAG amounts do not linearly correlate with the applied GAG 

amounts [359R,464]. 

Collagen constitutes the main component of the developed aECM coatings. These coatings 

contain about 90 - 95% of the initially applied collagen amount of 200 µg, irrespective of the 

used GAG to collagen ratio or GAG type (Fig. 4.22 B). Importantly, the collagen content 

decreased only marginally over the incubation time, indicating that all aECMs were quite stable 

for at least eight days at 37°C. This is in line with previous reports on the stability of collagen-

based coatings [350]. 

In summary, the developed matrices were characterized by the following GAG to collagen mass 

ratios after 60 min of incubation at 37°C: 1:19 for coll/HA (1/1), 1:27 for coll/sHA1 (1/0.5), 

1:13 for coll/sHA1 (1/1), 1:11 for coll/sHA1/sHA4 (1/0.5/0.5), 1:16 for coll/sHA4 (1/0.5) and 

1:12 for coll/sHA4 (1/1), respectively. van der Smissen et al. revealed a comparable GAG to 

collagen mass ratio for aECMs with LMW-HA, but they reported an increased amount of high-

sulfated HA in their coatings [351]. This may result from differences between the molecular 

weights and sulfation degree of the used sHA derivatives. Interestingly, comparable GAG 

concentrations as in the here prepared aECMs were also found in bone, where the native ECM 

contains about 4 - 5% sGAGs related to the collagen dry weight [107,359R]. Thus, these aECM 

coatings could function as biomimetic materials in a range of applications such as implant 

coatings.  

 

Fig. 4.22 Composition of aECMs. Collagen-based coatings were washed with water (init) and 

afterwards incubated with PBS at 37°C for up to eight days. The remaining GAG (A) and collagen (coll) 

(B) amounts per aECM were indirectly calculated by subtracting the quantified GAG or collagen 

amounts in the supernatants from the initially applied amounts. The legend shown in (A) is also applied 

to (B). Two-way ANOVA: * (p < 0.05), ** (p < 0.01), *** (p < 0.001) vs. respective aECM; # (p < 0.05) 

vs. coll/sHA1/sHA4 (1/0.5/0.5). Adapted from [R316] with modifications.  
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In general the analysis of GAG derivatives is challenging [369]. For example, sHA1 and sHA4 

only differ in their sulfation degree and cannot be distinguished by their sugar backbone. In 

addition, the number of available assays that are sensitive enough to detect GAG concentrations 

in the low µg range as expected for collagen-based aECMs is limited, no antibodies exist that 

reliably recognize chemically sulfated HA derivatives and no fragment-based GAG analysis 

can be performed due to the insufficient degradation of sHA derivatives via hyaluronidase 

[368]. Thus, fluorescence-labeled sHA derivatives were used to quantify them separately within 

the multi-GAG coating (Fig. 4.23 A) since none of the standard methods for sGAGs such as 

the DMMB assay allow any discrimination between such GAGs [416,419]. Also, agarose gel 

electrophoresis was applied for the first time to sHA derivatives to separate sHA1 from sHA4 

(Fig. 4.23 B). Staining of the sGAGs within the gel using the cationic dyes toluidine blue and 

Stains-all visualized sHA1 as blue and sHA4 as purple bands. Both GAGs could be separated 

with this method due to the ion pair formation of the sulfate residues of the GAGs with Ba2+ 

ions present in the electrophoresis buffer. Since formed ion pairs have a decreased 

electrophoretic mobility, sHA4 and sHA1 revealed a mobility of 3.7 cm/(A∙h) or 5.1 cm/(A∙h), 

respectively, when applying an electric field strength of 451 V/m. Here, both sHA derivatives 

could be detected within the multi-GAG aECM even after the incubation with PBS at 37°C, 

indicating that sHA1 as well as sHA4 were integrated into the aECM during in vitro 

fibrillogenesis of collagen type I.   

Fig. 4.23 Quantification and separation of sHA derivatives from the multi-GAG aECM. Multi-

GAG coatings prepared with ATTO-labeled sHA1 and sHA4 were washed twice with water (init) and 

afterwards incubated with PBS at 37°C for up to eight days. The amount of sGAGs was quantified via 

DMMB assay and via fluorescence measurements (A). GAGs were stained with toluidine blue and 

Stains-all after GAG extraction from aECMs and subsequent separation by agarose gel electrophoresis. 

10 µg sHA1 and sHA4 were applied as references. Adapted from [R316] with modifications.  

Negatively charged sHA derivatives within the aECM coatings alter the surface charge of the 

matrices in a sulfation-dependent manner, as shown by ζ-potential measurements, and aECM 
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coll/sHA1/sHA4 (1/0.5/0.5) displayed an pI of 4.25, which is between the pI of coll/sHA1 (1/1) 

and coll/sHA4 (1/1) (pI of 4.65 or 3.95). Interestingly, additional cell culture studies using the 

GAG-containing matrices developed here revealed an enhanced viability of murine osteoclast-

precursor-like RAW264.7 cells on aECMs with sHA4. Furthermore, the presence of sHA 

derivatives inhibited the osteoclast maturation in a defined manner, depending on the GAG 

sulfation as well as the GAG combination [R316]. In summary, these data highlight the 

potential of especially multi-sHA-containing matrices to potentially adjust the activity of bone-

resorbing osteoclasts without completely inhibiting their crosstalk with osteoblasts, which is 

crucial for bone regeneration.    

4.4.2 Morphology of aECMs  

Native GAGs such as CS, HA and HEP function as modulators that alter the structural ECM 

organization e.g. by influencing the assembly of collagen type I into fibrils [359R]. Thus, we 

hypothesized that the presence of GAG derivatives during fibrillogenesis may have an effect 

on the fibril morphology as well.  

AFM analysis revealed that especially sHA derivatives individually altered the structure of the 

resulting collagen fibrils depending on their concentration as well as their D.S.S, while HA had 

no obvious effect on the aECM morphology at the investigated concentration (Fig. 4.24). This 

is in accordance with previous observations revealing a decreased surface roughness of 

collagen-based aECMs with increasing HA sulfation [353].   

Large collagen fibrils showing the characteristic banding pattern were observed for collagen 

and coll/HA (1/1) (Fig. 4.24 A, E). The collagen fibril diameter after in vitro fibrillogenesis in 

the absence of sGAG was comparable to native collagen, which can be 10 - 500 nm depending 

on the tissue and developmental stage [465]. In contrast, concentration-dependently decreased 

fibril diameters were apparent for sHA1-containing matrices (Fig. 4.24 B, C). While coll/sHA1 

(1/0.5) is characterized by thin fibrils, network-like structures with some embedded microfibrils 

were seen for coll/sHA1 (1/1). sHA4 exhibited the strongest interference with the collagen fibril 

formation leading to the development of homogeneous collagen-networks composed of thin, 

fine microfibrils without apparent banding pattern for both coll/sHA1 (1/0.5) and coll/sHA1 

(1/1) (Fig. 4.24 F, G). Previous studies with single GAGs present during in vitro fibrillogenesis 

also reported that enhanced GAG concentrations and sulfation can decrease the fibril diameter 

of collagen type I and II [359R,407].  

A heterogeneous mix of microfibrils and thin fibrils was detected for the multi-GAG aECM 

that contained both sHA1 and sHA4 (Fig. 4.24 D). This suggests that both GAGs individually 

contributed to the fibril organization, as sHA4 alone lead to microfibrils and sHA1 alone to thin 

fibrils.   
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Fig. 4.24 Fibril morphology of aECMs. (A) coll fibrils in the absence of GAGs (z range height 250 nm, 

amplitude 0.8 V); (B) coll/sHA1 (1/1) (z range height 50 nm, amplitude 0.6 V); (C) coll/sHA1 (1/0.5) 

(z range height 300 nm, amplitude 0.8 V); (D) coll/sHA1/sHA4 (1/0.5/0.5) (z range height 50 nm, 

amplitude 0.8 V); (E) coll/HA (1/1) (z range height 200 nm, amplitude 1.1 V); (F) coll/sHA4 (1/1) 

(z range height 50 nm, amplitude 0.5 V) and (G) coll/sHA4 (1/0.5) (z range height 100 nm, amplitude 

1.0 V). Images represent 10 µm x 10 µm details showing height images (left) and amplitude images 

(right). Adapted from [R316].  

In summary, these findings demonstrate that the matrix morphology can be altered by varying 

the GAG sulfation, concentration and composition. Overall, the effects of GAG derivatives on 

the self-assembly of collagen type I were much more prominent for sHA4 compared to HA or 

sHA1, suggesting that the HA sulfation has a stronger influence on the fibril morphology than 

sHA concentration. This indicates that especially the negative net charge of sHA directs the 

fibril formation, which is consistent with previous findings showing that the interplay between 
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GAGs and collagen is mainly driven by their electrostatic interaction [24,466–468]. 

Accordingly, kinetic analyses of fibril formation revealed that sHA3 to collagen mass ratios 

above 1:1000 lead to an altered shape of the fibrillogenesis curve that indicates an aggregation 

rather than an ordered fibril assembly and results in an dose-dependent reduction of the resulting 

fibril diameter [359R]. 

4.4.3 Enzymatic aECM degradation via collagenases 

The enzymatic degradation of aECMs with or without associated GAGs by ChC was analyzed 

to estimate their degradability (Fig. 4.25). After 3 hours of ChC treatment, about 80 - 95% of 

the aECMs were degraded with most of the degradation occurring during the first 60 min. 

Likewise, Shi et al. observed an almost complete degradation of reconstituted human collagen 

type I after overnight incubation with ChC at 37°C [469].  

There were no significant differences regarding the degradability of the analyzed matrices, 

which correlated well with the findings that show no or only a marginal decrease of the 

MMP-1/-2 activity in the presence of 2.5 mM D.U. GAG (Fig. 4.1). Since aECMs contain just 

2 - 7% of the initially applied GAG solution (2.5 mM D.U) [9R], the remaining GAG amounts 

appear to be too low to influence the enzymatic aECM degradation.  

ChC is widely used for in vitro enzymatic degradation studies [170] due to good availability 

and a degradation mechanism similar to MMPs [470], but is known to be more active than 

mammalian collagenases [170] and since it represents a mixture of six collagenases [471] we 

assume a much slower degradation of the aECMs in vivo.  

 

Fig. 4.25 Enzymatic degradation of aECMs. Matrices were incubated with PBS for 1 hour at 37°C 

prior to the treatment with 0.02 U ChC for up to 180 min at 37°C. The amount of degraded collagen was 

quantified via Lowry assay in the supernatants.  
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4.5 Hydrogels as 3D aECMs for mediator protein binding and cell cultivation 

Novel multi-functional 3D biomaterials are needed to meet the growing demands of a rising 

number of multi-morbid patients in the aging population [429], and using natural ECM 

components such as GAGs and structural proteins is advantageous to engineer biomaterials that 

mimic specific ECM properties and functions [5]. To translate the promising effects of GAG-

containing 2.5D aECM coatings [9,R316], HA-based hydrogels crosslinked via HA- and 

sGAG-acrylates with embedded collagen type I fibrils were developed. To this end collagen 

fibrils obtained via in vitro fibrillogenesis were used without additional crosslinking within the 

GAG-based hydrogel network to maintain the characteristic properties and structure of 

collagen.  

An similar combination of preparation techniques was previously described by Guo et al., who 

developed collagen/CS/HA hydrogels based on methacrylated HA and CS derivatives for 

cartilage tissue engineering [472]. These gels had 10 times higher collagen concentrations and 

lower GAG to collagen mass ratios (1:2 vs. 20:1 in the here developed gels). The advantages 

of the compositions used here are i) decreasing the necessary amounts of the animal-derived 

component collagen and at the same time ii) obtaining hydrogels that contain collagen fibrils 

which provide cell adhesion ligands. Moreover, the here prepared gels are iii) characterized by 

much higher sHA to HA mass ratios than those described previously [400,401], providing an 

enhanced number of sulfated GAG residues as potential interaction sites for the interplay with 

mediator proteins and cells.  

The aim is to use these hydrogels as mediator protein binding or scavenging systems as well as 

growth promoting substrates for cells relevant during the healing of vascularized tissues such 

as skin. Against this background, these gels were analyzed to examine their characteristic 

hydrogel parameters, composition, stability, structure, enzymatic degradation and their binding 

and release profiles for lysozyme and VEGF-A. Afterwards endothelial cells were cultivated in 

the gels in the absence or presence of VEGF-A to reveal the effects of the hydrogel composition 

on the adhesion, proliferation and functional morphology of these cells. 

4.5.1 Hydrogel characteristics, composition and structure  

To characterize the developed hydrogels the water content, the volume loss after lyophilization, 

the swelling ratio as well as the elastic modulus were determined as typical hydrogel parameters 

(Fig. 4.26). All gels contained about 97 - 99% water after crosslinking and their volume 

decreased during freeze-drying by about 10 - 40% (Fig. 4.26 A, B). In line with this, Cai et al. 

detected high water contents above 97% for their HEP/HA-PEG hydrogels and concluded that 

this is especially favorable for the exchange of hydrophilic molecules and nutrients for cells 

within the gel [473]. The highest water content, volume loss due to lyophilization and elastic 

modulus were found for pure HA-AC gels without sGAG or collagen (Fig. 4.26 A-C). In 

contrast, significantly decreased values were observed for these three parameters in case of 
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collagen-containing gels. Segura et al. reported a comparable effect of collagen on the water 

content for HA/collagen hydrogels that were crosslinked with poly(ethylene glycol) diglycidyl 

ether [474].  

Fig. 4.26 Characterization of HA/collagen hydrogels. The water content of the respective gels (A), 

the loss of volume due to lyophilization (B), the elastic modulus (C) and the swelling ratio after 

incubation of the freeze-dried gels with water (D) are displayed. One-way ANOVA for (A-C) and two-

way ANOVA for (D): # (p < 0.05), ## (p < 0.01), ### (p < 0.001) vs. HA-AC; * (p < 0.05), 

** (p  <  0.01), *** (p < 0.001) vs. respective hydrogel. Adapted from [R475] with modifications. 

It is of note that HA-AC/sHA1-AC/coll was the gel with the lowest water content as well as the 

lowest loss of volume after freeze-drying compared to HA-AC/coll. However, there were no 

significant differences between the water content and volume loss for gels with CS-AC or 

sHA1Δ6s-AC and HA-AC/coll. The elastic modulus of HA-AC was 43 - 60% higher than for 

HA-AC/coll and those hydrogels with additional sGAG-AC, which all showed elastic moduli 

in the range of 0.15 - 0.22 kPa. This suggests that collagen fibrils may be sterical obstacles that 



4 RESULTS AND DISCUSSION  125 

 

 

partially hinder effective GAG-crosslinking, thereby possibly resulting in the formation of less 

crosslinks per respective gel volume compared to pure HA-AC gels, which in turn leads to 

decreased elastic moduli. The here determined elastic modulus of HA-AC is supported by 

previous studies of Becher et al. [365]. A slightly enhanced elastic modulus was, however, 

detected for HA-AC/CS-AC/coll compared to sHA-AC-containing hydrogels, which could 

correlate to the altered polysaccharides backbone or with the enhanced D.S.S of both sHA-AC 

derivatives.  

The swelling ratio of hydrogels is defined as an increase of the gel weight from the binding of 

water relative to the initial gel mass after lyophilization. In general, all hydrogels absorbed a 

higher mass of water than their dry weight within the first five minutes of incubation. The 

addition of collagen in case of HA-AC/coll significantly decreased the swelling ratio of HA-

AC gels (Fig. 4.26 D) while it was enhanced for all sGAG-AC-containing hydrogels compared 

to HA-AC/coll, reaching swelling ratios almost comparable to pure HA-AC gels. Additional 

collagen fibrils present within the crosslinked HA network could hinder the binding of further 

water molecules to HA, which may explain the decreased swelling ratio of HA-AC/coll. This 

effect was not apparent for hydrogels with additional sGAG-AC derivatives, probably due to a 

compensating effect as a result of their enhanced water binding capacity in comparison to HA 

[476]. Purcell et al. likewise reported an increased swelling ratio for gels containing 10% sHA 

derivatives compared to pure HA hydrogels [400]. After five minutes of gel incubation in 

distilled water, HA-AC/sHA1Δ6s-AC/coll revealed the highest water binding capacity, while 

this was insignificantly increased compared to the other sGAG-AC gels and HA-AC at later 

time points.  

After crosslinking and freeze-drying, the composition and stability of the obtained hydrogel 

scaffolds were analyzed (Fig. 4.27). Almost the whole amount of GAG-AC was integrated into 

the gels during crosslinking (Fig. 4.27 A).  

During the gel incubation in PBS at 37°C for up to 192 hours, only low amounts of sGAG-AC 

(< 10%) were released, mainly within the first 60 min of incubation, while the HA-AC content 

remained nearly unaffected over time. In line with this, Hu et al. observed no release of 

crosslinked HA from hydrogels containing HA, gelatin and CS after 15 days of incubation in 

PBS at 37°C [477]. Here significantly higher percentages of remaining GAGs were found 

compared to non-crosslinked collagen-based aECM coatings with associated GAGs, which 

typically contain only 10 - 50% of the initially used GAG amounts after 60 min of incubation 

with PBS at 37°C.  

The 2.5D aECM had about 90 - 95% of their initial collagen stably incorporated [350] (section 

4.4.1). In contrast, significant amounts of collagen were detected in the supernatants during 

incubation of the hydrogels in PBS (Fig. 4.27 B). This was more pronounced for hydrogels with 

additional sGAG-AC than for HA-AC/coll (≈ 40 - 50% collagen release vs. ≈ 30%). Together 
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with the higher release of sGAG-AC compared to HA-AC, this suggests that the GAG sulfation 

may alter the crosslinking network of the gels. 

Fig. 4.27 Composition of HA/collagen hydrogels. Hydrogels were incubated in PBS at 37°C for up to 

192 hours. The remaining GAG content in the gels (shown in bold) was indirectly calculated by 

measuring the amount of released GAG in the supernatants via hexosamine or DMMB assay (A). The 

collagen content was assessed via the method of Lowry (B). Two-way ANOVA: * (p < 0.05), 

** (p < 0.01), *** (p < 0.001) vs. respective hydrogel. Adapted from [R475] with modifications. 

Additional staining methods were used to qualitatively examine the GAG and collagen content 

of these gels (Appendix Fig. 7.9). Some light blue background staining was observed in case of 

HA-AC and HA-AC/coll, while hydrogels with sGAG-AC displayed a higher color intensity 

after incubation with Toluidine blue indicating a homogeneous incorporation of sGAGs within 

the gels (Appendix Fig 7.9, top). For all collagen-containing gels an uniform distribution of 

collagen was shown after staining with Sirius red (Appendix Fig. 7.9, bottom).  

The resulting GAG-AC to coll mass ratios calculated for the freeze-dried hydrogel scaffolds 

and for gels after incubation in PBS at 37°C are summarized in Tab. 4.3. Overall, the GAG to 

collagen mass ratios of the HA/collagen hydrogels were almost inverted compared to non-

crosslinked collagen-based aECM coatings (section 4.4.1). 

Tab. 4.3 GAG to collagen mass ratios of HA-AC/collagen hydrogels. 

Hydrogel After freeze-drying After 192 hours in PBS  

HA-AC/coll 20:1 26:1 

HA-AC/CS-AC/coll 21:1 38:1 

HA-AC/sHA1-AC/coll 20:1 32:1 

HA-AC/sHA1Δ6s-AC/coll 20:1 39:1 
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SEM was used to analyze the structure of the hydrogel scaffolds after freeze-drying (Fig. 4.28). 

All samples showed a porous structure characterized by pore diameters predominantly above 

100 µm. Gels containing collagen displayed randomly distributed collagen fibrils with 

diameters of about 100 - 300 nm and an apparent banding pattern (red arrows in Fig. 4.28 G-J), 

while smooth surfaces were observed for HA-AC. Similar collagen fibril morphologies were 

reported for collagen type I-based matrices after the in vitro fibrillogenesis of collagen 

monomers as well for collagen fibrils present in native tissue [359R,478]. As expected, there 

were no obvious differences between HA-AC/coll and those gels with additional amounts of 

sGAG-AC (Fig. 4.28 B-E, G-J).  

Fig. 4.28 Morphology of hydrogels. SEM images of lyophilized hydrogel cross-sections. Scaffolds 

without collagen (A/F), with collagen (B/G) and additional CS-AC (C/H), sHA1-AC (D/I) and 

sHA1Δ6s-AC (E/J) are shown. Arrows highlight the typical banding pattern of collagen fibrils. Scale 

bars in the upper panel indicate 400 µm and in the lower panel 2 µm. Adapted from [R475]. 

4.5.2 HA and hydrogel degradation via Hyal  

The enzymatic activity of Hyal can be inhibited by native sGAGs like HEP [478]. We therefore 

investigated how solute and hydrogel-bound sGAG derivatives affect the Hyal-mediated 

degradation of native HA immobilized on PS surfaces as well as of HA-based hydrogels 

(Fig. 4.29). This is of particular interest since the biodegradability of a material is important for 

is potential biomedical application.  

Hyal was shown to time-dependently degrade immobilized HA. The presence of all examined 

sGAGs resulted in decreased amounts degraded HA after 30 min of incubation compared to the 

control without GAGs (about 35 - 51% HA degradation vs. about 66%) (Fig. 4.29 A). It is of 

note that both sHA derivatives revealed a stronger impact on the HA cleavage than native CS. 

HEP retarded HA degradation in a manner comparable to sHA1 and CS, while the presence of 

sHA1Δ6s showed the most pronounced effects on HA degradation. This indicates that all 

examined sGAGs had an inhibitory potential against Hyal activity.  
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Fig. 4.29 Enzymatic degradation of HA coatings and HA/collagen hydrogels via Hyal. (A) Native 

HA was immobilized via its reducing ends onto PS surfaces prior to the incubation with 0.001 U Hyal 

per well in the absence or presence of solute sGAGs at 37°C. The remaining HA was afterwards 

quantified via ELISA. (B) Degradation of HA/collagen hydrogels via 400 U Hyal per gel at 37°C. The 

amount of degraded gels was examined by determining GAG amounts in the supernatants via 

hexosamine assay. Two-way ANOVA: # (p < 0.05), ## (p < 0.01), ### (p < 0.001) vs. Hyal w/o GAG 

or HA-AC; * (p < 0.05), ** (p < 0.01), *** (p < 0.001) vs. respective group. Adapted from [R475] with 

modifications.  

HA sulfation is likewise reported to block the HA degradation by Hyal and native GAGs such 

as CS are suggested to function as modulators of the Hyal activity [368,478]. In line with the 

obtained findings, Suzuki et al. found a decreased Hyal activity in the presence of per-sulfated 

HA [479]. The significantly stronger effect of sHA1Δ6s compared to sHA1 points to an 

influence of the sulfation position, while the comparably lower interference of CS implies that 

the sugar backbone plays a role as well. This is supported by the fact that even though HEP has 

a higher D.S.S it revealed a lower or similar inhibitory effect on the HA cleavage compared to 

sHA derivatives with less sulfate residues per D.U. We observed a trend to a slightly lower HA 

degradation in the presence of HEP than in the presence of CS, which may correlate with the 

previously demonstrated higher binding levels for the HEP interaction with Hyal compared to 

CS-A during SPR analysis [480].  

After a further 90 min of incubation with the respective mixtures of Hyal and sGAGs the 

detected amounts of non-degraded HA were mainly comparable to the control (about 17 - 30% 

remaining HA). The fact that we could not measure a complete HA degradation after 120 min 

of treatment with Hyal may result from the concurrent further degradation of HA present in the 

supernatants after its cleavage from the wells, and from a potential sterical hindrance of 

lysozyme that hampers the cleavage of remaining HA close to the well surface. However, we 

cannot exclude a slight overassessment of the inhibition of the Hyal activity due to a potential 
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additional sHA degradation via Hyal, even though this is suggested to be of secondary 

importance. 

Pure HA-AC hydrogels were quickly degraded within 3 - 6 hours of incubation (Fig. 4.29 B), 

while collagen-containing gels with or without sGAG-AC were only decomposed after 

24 - 48 hours. Feng et al. reported a similar degradation of hydrogels composed of 

methacrylated HA with or without methacrylated sHA during early time points of Hyal 

incubation [401]. In contrast to the obtained findings with collagen-containing HA-hydrogels, 

though, they found a decreased hydrogel degradation for gels with methacrylated sHA 

compared to pure HA-based gels at later stage of their degradation study; however, this does 

not correspond with the sulfation degree of the used GAGs (D.S.S of 0.4 for methacrylated sHA 

vs. D.S.S of 1.5 for sHA1-AC).  

Interestingly, gels with additional sHA1Δ6s-AC were less resistant against Hyal activity than 

HA-AC/sHA1-AC/coll or HA-AC/coll gels. This indicates that the position of acrylation 

strongly affects the hydrogel stability against enzymatic degradation, as we observed a 

diametrically opposed impact for solute, non-acrylated sHA1Δ6s on the degradation of HA 

(Fig. 4.29 A, B). However, there were no significant differences between the degradation rate 

of HA-AC/coll gels with or without additional sHA1-AC or CS-AC.  

In summary, low-sulfated sHA derivatives do not hinder the enzymatic cleavage of 

immobilized HA or of crosslinked HA/collagen hydrogels in general, since native HA was 

degraded within 120 min in the presence of sGAGs and all hydrogel compositions were fully 

decomposed within 48 hours via Hyal activity. Moreover, the presence of collagen fibrils 

significantly enhanced the resistance of the hydrogels against enzymatic degradation. This 

should be favorable regarding the fast HA degradation in vivo that usually limits the biomedical 

application of HA-based hydrogels. Though in vitro data can only give an indication regarding 

degradation time in vivo, it can be assumed to be longer since the Hyal concentrations used here 

were above physiological levels [481]. 

4.5.3 Interaction of lysozyme with hydrogels  

To analyze the protein binding and release profiles of the developed HA/collagen hydrogels 

depending on their composition, the gels were loaded with fluorescence-labeled lysozyme prior 

to incubation in buffer (Fig. 4.30). Lysozyme was used as model protein to analyze the potential 

interaction with GAGs since its size is in the range of several GAG-binding mediator proteins 

such as pro-inflammatory cytokines or growth factors like bFGF, and it is positively charged at 

physiological pH 7.4 [440,441,482].  

Hydrogels with additional sHA1-AC and CS-AC captured significantly higher amounts of 

lysozyme than the respective gels without sGAG-AC (Fig. 4.30 A). This is in accordance with 

previously reported results showing an enhanced interaction of lysozyme with CS-A or CS-E 
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compared to HA [439]. Overall, HA-AC/CS-AC/coll gels bound the highest protein amounts 

even in comparison to sHA-AC containing hydrogels, although their sulfation degree is lower. 

This is in line with the GAG/lysozyme binding studies (Fig. 4.4) and suggests that the sugar 

backbone of GAGs plays an important role for lysozyme binding to GAGs.  

 

Fig. 4.30 Binding and release of lysozyme after incubation with hydrogels. Each hydrogel was 

incubated with 4 µg Rhodamine B-labeled lysozyme dissolved in 2% BSA/PBS o/n at 4°C. Afterwards, 

the gels were incubated in 2% BSA/PBS at 37°C to study their lysozyme release over time. The 

lysozyme binding (A) and release (B) was quantified via fluorescence measurement. One-way ANOVA 

for (A) and two-way ANOVA for (B): # (p < 0.05), ## (p < 0.01), ### (p < 0.001) vs. HA-AC/coll; 

* (p < 0.05), ** (p < 0.01), *** (p < 0.001) vs. respective hydrogel composition. Adapted from [R475] 

with modifications. 

Surprisingly, the addition of sHA1Δ6s-AC had no significant impact on the amount of gel-

bound lysozyme compared to HA-AC/coll, only a tendency for a higher protein binding 

capacity was observed. These results highlight that the type of substitution, their pattern and 

the crosslinking of GAGs strongly alters the protein binding since sHA1Δ6s-coated surfaces 

revealed the highest lysozyme binding capacity. This markedly decreased after acrylation 

(section 4.2.3, Fig. 4.4) and, as seen for HA-AC/sHA1Δ6s-AC/coll gels, seem to further 

decrease after crosslinking. This implies that the introduction and crosslinking of acryl groups 

at the C6 position of HA after sulfation of secondary hydroxyl groups may affect the GAG 

structure and thereby the formed GAG network as well as the gel interaction with lysozyme. 

Since the characteristic hydrogel parameters of the HA-AC/sHA1Δ6s-AC/coll gels were mainly 

comparable to the other sGAG-containing gels, it is not possible to deduce from these 

parameters on the changed lysozyme binding behavior.  
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A time-dependent lysozyme release was observed during the gel incubation with PBS 

(Fig. 4.30 B). The highest percentage of previously gel-bound lysozyme was measured in the 

supernatants after 4 hours of incubation (about 15 - 23%). The amount of lysozyme released 

during the following 188 hours was almost comparable to the initially released amount with 

16 - 25%, indicating a slower lysozyme release. All gels with sGAG-AC showed a retarded 

protein release compared to HA-AC/coll gels, showing that the lysozyme/hydrogel interaction 

is mainly controlled via binding to sGAG derivatives. Cai et al. likewise demonstrated that the 

addition of HEP to HA-PEG or CS-PEG hydrogels significantly decreased the release of bFGF 

from the hydrogels [473]. In addition, the presence of gelatin in HA-PEG-hydrogels containing 

HEP was shown to increase the release of several growth factors like bFGF or VEGF-A. The 

possible reason may be a reduced sterically hindrance that affects the diffusion of the growth 

factors through gelatin-containing gels due to the lower molecular weight of gelatin compared 

to HA [482]. Thus, it can be assumed that the presence of collagen within the gels also 

contributes to the release characteristics. 

4.5.4 Interaction of VEGF-A with hydrogels 

Based on the results with the model protein lysozyme (section 4.5.3) the binding capacity of 

the hydrogels for VEGF-A as well as their growth factor release profiles were examined via 

ELISA (Fig. 4.31). Thin small hydrogels were used for these experiments to enable the 

incubation with VEGF-A amounts above their respective binding maxima.  

All hydrogels bound about 30 - 43 ng VEGF-A (Fig. 4.31 A). Even though there were no 

significant differences between the gels, sGAG-AC-containing gels showed a trend to capture 

higher amounts of VEGF-A compared to HA-AC/coll. Release analysis revealed a sulfation-

dependent VEGF-A retardation (Fig. 4.31 B). While HA-AC/coll and HA-AC/CS-AC/coll 

released about 80 - 90% of the initially gel-bound VEGF-A within eight days of incubation, 

gels with sHA1-AC and sHA1Δ-AC showed a significantly slower VEGF-A release which 

might be favorable for applications that require a long-term delivery of the growth factor. In 

general, the VEGF-A release increased in the following order: HA-AC/sHA1-AC/coll < 

HA-AC/sHA1Δ6s-AC/coll < HA-AC/CS-AC/coll ≈ HA-AC/coll. Feng et al. also demonstrated 

a retarded release of TGF-β1 from hydrogels containing methacrylated sHA compared to pure 

HA-based hydrogels, making an increased electrostatic interaction of the negatively charged 

sulfate residues with positively charged regions of the growth factor responsible [401]. In 

accordance with findings with HA-AC/sHA1Δ6s-AC/coll compared to HA-AC/sHA1-AC/coll, 

binding and release studies with VEGF-A and starPEG-HEP hydrogels containing differently 

desulfated HEP derivatives revealed that gels containing a 6-O-desulfated HEP release higher 

amounts of VEGF-A compared to gels with non-modified HEP, even though their VEGF-A 

binding capacity was similar [459].  
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Fig. 4.31 Binding and release of VEGF-A after incubation with hydrogels. Each hydrogel was 

incubated with 200 ng VEGF-A dissolved in 1% BSA/PBS o/n at 37°C. Afterwards, the gels were 

incubated in 1% BSA/PBS at 37°C to study their VEGF-A release over time. The VEGF-A binding (A) 

and release (B) was measured via ELISA. Two-way ANOVA: * (p < 0.05), ** (p < 0.01) vs. respective 

hydrogel composition; a (p < 0.001) vs. HA-AC/coll, b (p < 0.001) vs. HA-AC/CS-AC/coll. 

There were no differences between the binding of VEGF-A to CS-AC, sHA1-AC or 

sHA1Δ6s-AC containing gels, which agreed with SPR data using acrylated sGAG derivatives 

(section 4.2.4). In contrast, SPR binding analysis demonstrated a higher binding response of 

CS-AC and sHA-AC derivatives compared to HA-AC, suggesting a higher binding capacity of 

hydrogels with sGAG-AC compared to gels with HA-AC. However, all hydrogels with 

sGAG-AC mainly contain HA-AC (75%) regarding their GAG content and only 25% are 

sGAG-AC. This may lead to no significant differences in their VEGF-A binding behavior. This 

could be advantageous for future in vitro and in vivo studies since it allows the direct 

comparison of effects resulting from the different release characteristics of sGAG-AC 

containing gels without considering further effects due to different initial VEGF-A amounts 

within the gels. The comparably high amounts of gel-bound VEGF-A within HA-AC/coll gels 

together with the fast growth factor release indicate that VEGF-A is mainly entrapped in the 

hydrogel meshwork rather than specifically bound in this hydrogel type. 

The retarded VEGF-A release from HA-AC/sHA1-AC/coll and HA-AC/sHA1Δ6s-AC/coll 

compared to the other gels is in accordance with ELISA experiments with the respective 

immobilized GAGs (section 4.2.4). The impact of acrylation at the C6 position of sHA1Δ6s 

lead to a strongly decreased interaction with VEGF-A during SPR and ELISA analyses. This 

was even more pronounced after crosslinking and resulted in a higher release of VEGF-A from 

gels with sHA1Δ6s-AC compared to sHA1-AC-containing ones, something that was not 
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observed for the non-crosslinked GAGs in ELISA studies (section 4.2.4). A similar effect was 

seen for the binding of lysozyme to sHA1Δ6s-AC surfaces compared to sHA1Δ6s surfaces 

(section 4.2.3). Thus, the release profiles of the developed HA/collagen-based hydrogels for 

VEGF-A can be specifically adjusted via the usage of acrylated sHA derivatives with different 

substitution patterns. 

4.5.5 Endothelial cell growth within hydrogels in the presence of serum 

Since endothelial cells are indispensable for angiogenesis during regeneration of vascularized 

tissues such as skin or bone [483], the endothelial cell line PAE/KDR was used to examine the 

biocompatibility of the hydrogels. To this end the cells were cultivated on hydrogels in the 

presence of serum. Their metabolic activity, cell number and cell morphology were analyzed 

over time to reveal the direct effects of the hydrogel composition on the cellular response in 

vitro (Fig. 4.32). Pure HA-AC gels could not be included in cell culture studies since they 

quickly lost their physical stability and were almost decomposed within one day after cell 

seeding.  

About 50% of the seeded endothelial cells were found within the HA-AC/coll gels after 2 hours 

of cultivation. HA-AC/sHA1Δ6s-AC/coll gels had the highest seeding efficiency with about 

99% of the seeded cells determined via DNA assay (Fig. 4.32 A). A similar trend with about 

1.7 - 1.9 and 1.5 - 1.7-fold higher values was detected for the metabolic activity determined via 

LDH assay for PAE/KDR cells cultivated within sHA1Δ6s-AC- or sHA1-AC-containing 

hydrogels (Fig. 4.32 B). This indicates that the presence of sHA-AC derivatives strongly 

enhance the PAE/KDR cell proliferation and metabolic activity. In line with this van der 

Smissen et al. detected an increased adhesion and proliferation of human dermal fibroblast after 

cultivation on collagen-based aECM coatings with sHA derivatives [406]. However, the cell 

counting technique used here do not allow to differentiate between proliferation, survival 

(necrosis or apoptosis) or both. The underlying mechanism how especially sHA derivatives 

exert their effects on cells in not fully understood hitherto.  

The cell numbers time-dependently increased for all gel compositions proving HA/collagen 

gels to be nontoxic. The strongest rise of the cell numbers after 72 hours was observed for both 

gels with sHA-AC derivatives showing an about 1.7 - 2.1-fold increase in cell number for HA-

AC/sHA1Δ6s-AC/coll and an about 2.0 - 2.6-fold increase for HA-AC/sHA1-AC/coll gels.   

Important aspects could be that GAG derivatives affect cell adhesion, which is mediated via 

integrins as well as the actin cytoskeleton signaling processes [353]. The presence of CS-AC 

within the gels led to almost no significant effects on the cell proliferation and none for the 

metabolic activity compared to HA-AC/coll. The only exception was a slightly increased DNA 

content after 72 hours within HA-AC/CS-AC/coll gels compared to HA-AC/coll, which may 

result from the slightly higher initial seeding efficiency. A growth promoting effect of CS 

coatings on endothelial cells compared to HA coatings was also reported by Heng et al. [55]. It 
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is of note that the examined release of collagen from gels over time (section 4.5.1) led to no 

apparent negative effects during the cell culture studies.  

Fig. 4.32 Effects of hydrogel composition on endothelial cells. 200000 PAE/KDR cells were seeded 

per freeze-dried hydrogel (h = 1.1 mm, Ø = 8.5 mm) and cultivated for up to 72 hours in the presence 

of serum. The respective cell number was indirectly calculated by quantifying the DNA content (A) and 

the metabolic activity was determined by measuring the LDH activity (B). The endothelial cell 

morphology on HA-AC/coll (C), HA-AC/CS-AC/coll (D), HA-AC/sHA1-AC/coll (E) and HA-

AC/sHA1Δ6s-AC/coll was visualized after 72 hours by immunofluorescence staining of F-actin (green) 

and the nuclei with DAPI (blue). Two-way ANOVA: # (p < 0.05), ### (p < 0.001) vs. HA-AC/coll; 

* (p < 0.05), *** (p < 0.001) vs. respective hydrogel composition. Adapted from [R475] with 

modifications. 

The PAE/KDR cell morphology after 72 hours of cultivation was examined after 

immunofluorescence staining of the cell nuclei and cytoskeletal F-actin filaments (Fig. 4.32 

C-F). Since the gels were cut into halves and the inner parts of the gels were used for 

microscopic observations, the obtained fluorescence images proved the presence of endothelial 

cells in the inner part of the hydrogels. This indicates that the provided gel structures allow 

PAE/KDR cell migration. The 3D growth of the cells in the gels is also apparent in the images 

where cells are out of the plane of focus.   
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Endothelial cells within hydrogels with CS-AC or sHA1Δ6s-AC (Fig. 4.32 D, F) revealed a 

more spread morphology compared to those within the other gels (Fig. 4.32 C, E) which mainly 

showed bigger cell clusters. This implies an enhanced cell-matrix interaction for gels with 

CS-AC or sHA1Δ6s-AC and a more preferred cell-cell contact in the latter cases. However, 

PAE/KDR cells in gels containing sHA1Δ6s-AC had a more rounded shape than those in gels 

with CS-AC (Fig. 4.32 D, F), which may result from the increased elastic modulus of the latter 

gels compared to the other sGAG-AC-containing hydrogels (Fig. 4.32 C). Only in the latter 

case did endothelial cells show spread F-actin filaments, while the cells within the other gels 

exhibited a denser F-actin network. Heng et al. also observed that endothelial cells cultivated 

on HA coatings had a more rounded and less elongated shape than those on CS surfaces [55].  

4.5.6 Influence of solute GAGs on VEGF-A stimulated endothelial cells 

To determine GAG-mediated effects on the VEGF-A-stimulated proliferation and tube 

formation of PAE/KDR cells, the cells were cultivated on collagen type I coatings to facilitate 

adhesion in the absence or presence of VEGF-A and/or solute GAG derivatives under serum 

free conditions (Fig. 4.33).  

No toxic effects were observed for the examined GAG derivatives. PAE/KDR cells cultivated 

in the presence of VEGF-A without GAGs demonstrated an about two-fold increase in cell 

number after 72 hours compared to non-stimulated control cells, but no significant difference 

after 4 hours of seeding (Fig. 4.33 A, B). For native GAGs a slightly enhanced cell number was 

only observed for CS-AC + VEGF-A compared to the cultivation with CS alone (Fig. 4.33 A). 

However, sHA1Δ6s alone and sHA1Δ6s-AC + VEGF-A significantly enhanced the cell 

adhesion after 4 hours compared to the Coll reference (Fig. 4.33 C). The addition of none of 

the other GAGs had a detectable influence on the cell numbers after 4 hours of cultivation (Fig. 

4.33 A, C). It is of note that the calculated cell numbers in the presence of sHA1Δ6s-AC + 

VEGF-A were also higher than those in the presence of sHA1 and sHA1-AC either with or 

without VEGF-A (Fig. 4.33 C).  

After 72 hours of cell cultivation, treatment with HA and sGAGs led to significantly increased 

cell numbers compared to non-stimulated control cells (Fig. 4.33 B, D). This is in line with 

previous studies reporting that the binding of HA (dp 10 - 15) to the HA receptor CD44 

stimulates endothelial cell proliferation [484]. The presence of sHA derivatives alone (white 

bars) led to about 2.2 - 3.0-fold higher cell numbers compared to PAE/KDR cells treated with 

VEGF-A alone (Fig. 4.33 D), while the other GAGs caused only a 1.4 - 1.8-fold increase of the 

cell numbers (Fig. 4.33 B, white bars). An additional GAG-induced stimulatory effect on the 

endothelial cell proliferation was no longer apparent in the presence of VEGF-A for HA, 

HA-AC, CS and CS-AC (Fig. 4.33 B, grey bars). In contrast, about 60% higher cell numbers 

were determined in the presence of sHA1 and sHA1-AC, while sHA1Δ6s and sHA1Δ6s-AC 

caused a rise in cell number of about 80 - 90% compared to the VEGF-A-treated control cells 
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w/o GAGs (Fig. 4.33 D, grey bars). In line with this, Cole et al. found an enhance proliferation 

of HUVECs in the presence of VEGF-A and HS oligosaccharides compared to VEGF-A alone. 

However, no data regarding the effects of these oligosaccharides on endothelial cell 

proliferation in the absence of VEGF-A were provided in the study [455].  

Fig. 4.33 Influence of VEGF-A and solute GAGs on PAE/KDR cells. 50000 PAE/KDR cells were 

seeded on collagen-coated wells and cultivated in the presence or absence of 400 µM D.U. solute native 

GAGs (A, B), sHA derivatives (C, D) in comparison to their acrylated derivatives with (gray bars) or 

without the addition of 50 ng VEGF-A (white bars) per well. The cell number was calculated indirectly 

by determining the DNA content after 4 or 72 hours of cultivation. Two-way ANOVA: # (p < 0.05), 

## (p < 0.01), ### (p < 0.001) vs. Coll. * (p < 0.05), ** (p < 0.01) vs. respective treatment. (B): 

a (p < 0.001) vs. + CS, b (p < 0.001) vs. + HA-AC + VEGF-A. (D): a (p < 0.001) vs. + sHA1, 

b (p < 0.001) vs. + sHA1-AC, c (p < 0.001) vs. sHA1Δ6s, d (p < 0.001) vs. + sHA1Δ6s-AC, 

e (p < 0.001) vs. Coll + VEGF-A.  
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Since GAGs were shown to interfere with the VEGF-A binding to VEGFR-2 (section 4.3.6) 

and potentially causing decreased VEGFR-2 signaling and endothelial cell activation (section 

4.3.8), and since SPR binding analysis and VEGFR-2 phosphorylation studies revealed no 

direct interplay of GAGs with VEGFR-2, it is likely that the VEGF-A activity is altered in the 

presence of GAGs.  

When comparing the VEGF-A-induced increase in cell number of the control with the cell 

numbers determined in the presence of GAGs both without and with VEGF-A (values from 

Fig. 4.33, white bars compared to the respective gray bars), a reduced endothelial cell 

stimulatory activity of VEGF-A was observed for almost all GAGs (Fig. 4.34). It is noteworthy 

that the VEGF-A activity was only partially affected and not completely inhibited by the 

examined GAGs. The addition of sHA1Δ6s-AC had no significant impact on the VEGF-A 

activity whereas sHA1Δ6s reduced the VEGF-A activity, which is in line with the SPR data 

showing that the acrylation of sHA1Δ6s strongly decrease the binding to VEGF-A (section 

4.2.4).  

Fig. 4.34 Endothelial cell stimulatory activity of VEGF-A in the presence of GAGs. The VEGF-A-

induced effects on the cell number of PAE/KDR cells after 72 hours of cultivation in the absence (coll) 

or presence of solute GAGs were shown relative to the determined cell numbers in the absence of 

VEGF-A for the respective treatments. One-way ANOVA: # (p < 0.05), ## (p < 0.01), ### (p < 0.001) 

vs. Coll; * (p < 0.05) vs. respective treatment. 

However, the inhibitory effects of HA, CS and their acrylated counterparts compared to sHA 

derivatives calculated here (Fig. 4.34) were higher than expected based on the results on the 

binding studies done by ELISA and SPR (section 4.2.4). Thus it can be suggested that the 

possibly higher number of formed sHA/VEGF-A complexes decreases the available number of 

D.U. of these sHA derivatives in the medium. As these are required for the direct effects on the 

endothelial cell proliferation, this might lead to an underestimation of the inhibitory effect of 



138  4 RESULTS AND DISCUSSION 

sHA derivatives on the VEGF-A activity when simply comparing the cell numbers in the 

presence or absence of VEGF-A for the respective GAG treatments. 

It should be noted that the direct effects of sGAGs on endothelial cells (Fig. 4.33) do not seem 

to be mediated via VEGFR-2, based on the SPR binding analysis with solute GAGs that showed 

no detectable binding response during injection over VEGFR-2 surfaces (Appendix Fig. 7.4). 

This is in accordance with the results of the VEGFR-2 stimulation assay revealing no sHA3-

induced receptor phosphorylation (Fig. 4.20 A, section 4.3.8). Thus, other mechanism, which 

remain to be elucidated, must be responsible for the detected effects (compare section 4.5.5).  

The effect of the potential VEGF-A/GAG interaction on the angiogenic ability of endothelial 

cells was also qualitatively assessed by examining the in vitro tube formation after staining 

living cells with MTT (Appendix Fig. 7.10). As indicated by the intense blue color of the cells, 

almost all cells present were metabolically active. In line with the determined cell numbers, a 

much higher cell density was observed for cells treated with sHA derivatives. After 72 hours of 

incubation with VEGF-A in the absence or presence of GAGs, all PAE/KDR cells formed tube-

like structures proving that VEGF-A is at least partially active to stimulate the tube formation 

of endothelial cells. Freudenberg et al. observed a similar formation of tubular structures after 

cultivation of HUVECs in the presence of VEGF-A on a collagen type I/starPEG-HEP gel 

sandwich containing desulfated HEP or sulfated HEP, although the tube density was lower in 

the latter case [459]. 

4.5.7 Effects of VEGF-A-loaded hydrogels on endothelial cells  

VEGF-A is crucial for angiogenesis during wound healing, but when administered topically is 

quickly degraded by proteases in the chronic wound fluid. Kleinheinz et al. found that solute 

VEGF-A165 has a biological half-life of only about 90 minutes in aqueous solution [485]. 

Consequently high amounts of expensive growth factors are needed to stimulate wound healing 

for example of chronic foot ulcers, always with the risk of overdosage [486,487]. Thus, 

hydrogel systems that allow a defined binding and thereby protection of the growth factor 

against degradation as well as an adjustable release of VEGF-A could be beneficial to stimulate 

wound healing of vascularized tissues. 

The biological activity of hydrogel-bound VEGF-A was assessed by cultivating PAE/KDR 

cells on pre-loaded gels (Fig. 4.35). Since larger hydrogel volumes were used for cell culture 

experiments than for VEGF-A binding and release studies (200 µl instead of less than 50 µl) 

with a consequently much higher VEGF-A binding capacity, we assume that all applied 

VEGF-A is bound to the gels. This is supported by additionally performed ELISA experiments 

analyzing the VEGF-A contents in the supernatants after incubation of the gels with the growth 

factor, where only marginal amounts (< 0.6%) of solute VEGF-A were found (Appendix 

Fig. 7.11).  
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Fig. 4.35 Influence of VEGF-A on PAE/KDR cells cultivated on HA-AC/collagen hydrogels. 50000 

PAE/KDR cells were seeded on HA/coll hydrogels in the absence of VEGF-A (white bars) or pre-loaded 

with 50 ng VEGF-A per gel (gray bars). In case of the control, cells were seeded onto collagen coated 

surfaces and directly stimulated with solute 50 ng VEGF-A after seeding. The cells were cultivated for 

2 (A) or 72 hours (B). Afterwards, the cell number per gel was determined by quantifying the DNA 

content. Two-way ANOVA: # (p < 0.05), ## (p < 0.01), ### (p < 0.001) vs. Coll, * (p < 0.05), 

** (p < 0.01) vs. respective treatment. (B): a (p < 0.001) vs. HA-AC/coll, b (p < 0.001) vs. 

HA-AC/sHA1-AC/coll + VEGF-A, c (p < 0.001) vs. HA-AC/sHA1Δ6s-AC/coll + VEGF-A. 

An enhanced cell number after 2 hours was detected for gels with sHA1Δ6s-AC in the presence 

or absence of VEGF-A, while there were no significant differences between the other hydrogel 

compositions and the collagen-coated reference wells (Fig. 4.35 A).  

Cell stimulation with solute as well as gel-bound VEGF-A induced a rise of the cell number 

after 72 hours compared to the non-treated samples (Fig. 4.35 B). In both cases the highest cell 

numbers were observed for HA-AC/sHA1-AC/coll and HA-AC/sHA1Δ6s-AC/coll gels. This 

is in line with findings showing a strongly enhanced endothelial cell proliferation in the 

presence of solute sHA1, sHA1-AC, sHA1Δ6s and sHA1Δ6s-AC under serum free conditions 

(section 4.5.6) and after cultivation within HA-AC/sHA1-AC/coll and HA-AC/ 

sHA1Δ6s-AC/coll hydrogels in the presence of serum (section 4.5.5). However, there were no 

significant differences between HA-AC/coll and HA-AC/CS-AC/coll gels for the respective 

conditions. While solute VEGF-A combined with the collagen control lead to an about 2.2-fold 

higher cell number, gel-bound VEGF-A exhibited a lower activity with about 1.3 - 1.5 increase 

compared to the respective gels w/o VEGF-A. This is likely the result of a partial inactivation 

of VEGF-A by binding to GAGs (sections 4.3.6, 4.3.8).  
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Sprouting can be seen by the network formation of branching structures as result of the 

VEGF-A-induced chemotaxis and chemokinesis of endothelial cells [488] and was qualitatively 

assessed (Fig. 4.36). Immunofluorescence staining of PAE/KDR cells within the gels showed 

the sprouting of the cells after pre-loading of CS-AC- and sHA1Δ6s-AC-containing hydrogels 

with VEGF-A (Fig. 4.36 F, H). However, no cell sprouting was detected for VEGF-A-loaded 

hydrogels with sHA1-AC, which may be due to the comparably low release of gel-bound 

VEGF-A (section 4.5.4). Freudenberg et al. also described that the formation of tubular 

structures correlated with the amount of released VEGF-A from HEP-containing hydrogels 

[459]. Cells within HA-AC/coll gels with or without VEGF-A appeared as cell clusters 

(Fig. 4.36 A, E) similar to what was observed under serum containing conditions (section 4.5.5).  

 

Fig. 4.36 Influence of VEGF-A on the morphology of PAE/KDR cells cultivated on 

HA-AC/collagen hydrogels. Cells after 72 hours of cultivation under serum free conditions of initially 

50000 PAE/KDR cells without (A - D) or with 50 ng VEGF-A per gel (E - H) stained for their nuclei in 

blue with DAPI and for F-actin in green. The scale bar represents 20 µm.  

The absence of serum significantly affected the endothelial cell morphology after cultivation 

within hydrogels with CS-AC (Fig. 4.36 B vs. Fig. 4.32 section 4.5.5), while there were no 

apparent differences in case of HA-AC/sHA1-AC/coll or HA-AC/sHA1Δ6s-AC/coll in the 

presence or absence of serum (Fig. 4.36 C, D vs. Fig. 4.32 section 4.5.5). Even though 

HA-AC/coll and HA-AC/CS-AC/coll gels revealed almost comparable VEGF-A binding and 

release profiles (Fig. 4.30 section 4.5.4), tube-like structures were only seen in the latter case. 

This suggests that the binding of VEGF-A to sGAGs like CS-AC protects or maintains the 

VEGF-A functional activity to some extent, for instance by protecting the growth factor against 

proteolytic degradation as reported for native GAGs [280].  

The stiffness (elastic modulus) of hydrogels with about 200 Pa (Fig. 4.26) was in between that 

of the firm and rigid HA/gelatin hydrogels (85 - 780 Pa) prepared by Hanjaya-Putra et al. These 
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authors described that the tube length, area and thickness formed by VEGF-stimulated 

endothelial progenitor cells increased when decreasing the matrix stiffness [489]. Moreover, 

HUVECs were shown to form stable networks only on soft but not on stiffer gels (140 Pa vs. 

2500 Pa) even after stimulation with bFGF or VEGF-A, since in the latter case, cell-substrate 

adhesion is increased while cell-cell adhesion was enhanced on soft substrates [490]. Even 

though the stiffness of HA/collagen-hydrogels is lower than the stiffness of human tissues, 

which usually range from 1 - 100 kPa [491], this property could facilitate the sprouting of 

endothelial cells and thereby possibly promote the regeneration of injured vascularized tissues.  

Overall, pre-loading of sHA-AC-containing hydrogels with VEGF-A enhanced the 

proliferation of endothelial cells compared to hydrogels with sHA-AC or VEGF-A alone. This 

highlights the potential of the gels to stimulate endothelial cells and may result in an improved 

repair of damages vascularized tissues. 

4.6 Potential limitations 

The conducted in vitro studies and the utilized methods have potential restrictions. The 

biophysical interaction analysis via SPR for example requires the immobilization of one 

interaction partner onto the sensor chip surface. Amine coupling was used for this, leading to a 

random immobilization of the proteins, for which reason a potential influence on the protein 

activity and functional availability of binding sites cannot be excluded. However, since 

additional ELISA experiments with immobilized GAGs revealed rankings almost comparable 

to the SPR binding strengths, we assume that these effects are of minor importance.  

Another point is that all binding studies were performed with a strictly limited number of 

interaction partners. The obtained data is thus based on a simplified model that cannot replicate 

the complexity in vivo where other potential GAG interaction partners are present. Further, 

competitive SPR binding studies with two analytes (TIMP-3, VEGF-A) that can bind to the 

immobilized ligand (VEGFR-2) allow no clear distinction between the two possible binding 

events (TIMP-3/VEGFR-2 or VEGF-A/VEGFR-2).  

During cell culture experiments, additional influences of a potential interplay of GAGs with 

serum proteins on the cellular behavior with serum containing media have to be considered. In 

contrast, the cell cultivation under serum-free conditions is more artificial but enables the 

analysis of distinct factors and conditions on the cellular level.  

Overall larger amounts of GAG oligosaccharides would be required to validate the obtained 

SPR data in cell culture models. Further defined GAG oligosaccharides with a broader range 

of different sizes and sulfation patterns would be desirable to allow more conclusions regarding 

the influence of the GAG structure, molecular size and substitution patterns on the interplay 

and activity of biologically relevant mediator proteins with GAGs.  
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Bone fractures and pathologic conditions like chronic wounds significantly reduce the quality 

of life for the patients, which is especially dramatic in an elderly population with considerable 

multi-morbidity and lead to substantial socio-economic costs. To improve the wound healing 

capacity of these patients, new strategies for the design of novel multi-functional biomaterials 

are required: they should be able to decrease extensive pathologic tissue degradation and 

specifically control angiogenesis in damaged vascularized tissues like bone and skin.  

Glycosaminoglycans (GAGs) like hyaluronan (HA) and chondroitin sulfate (CS) as important 

extracellular matrix (ECM) components are involved in several biological processes such as 

matrix remodeling and growth factor signaling, either by directly influencing the cellular 

response or by interacting with mediator proteins. This could be useful in functionalizing 

biomaterials, but native sulfated GAGs (sGAGs) show a high batch-to-batch variability and are 

limited in their availability. Chemically modified HA and CS derivatives with much more 

defined characteristics regarding their carbohydrate backbone, sulfate group distribution and 

sulfation degree are favorable to study the structure-function relationship of GAGs in their 

interaction with mediator proteins and/or cells and this might be used to precisely modulate 

activity profiles to stimulate wound healing.  

By combining collagen type I as the main structural protein of the bone and skin ECM with 

these GAG derivatives, 2.5-dimensional (2.5D) and 3D artificial ECM (aECM) coatings and 

hydrogels were developed. These biomaterials as well as the respective GAG derivatives alone 

were compared to native GAGs and used to analyze how the sulfation degree, pattern and 

carbohydrate backbone of GAGs influence:  

i) the activity of tissue inhibitor of metalloproteinase-3 (TIMP-3) and vascular endothelial 

growth factor-A (VEGF-A) as main regulators of ECM remodeling and angiogenesis,  

ii) the composition and characteristics of the developed 2.5D and 3D aECMs, 

iii) the enzymatic degradation of collagen-based aECMs and HA/collagen-based hydrogels, 

iv) the proliferation and functional morphology of endothelial cells. 

Surface plasmon resonance (SPR) and enzyme linked immunosorbent assay (ELISA) binding 

studies revealed that sulfated HA (sHA) derivatives interact with TIMP-3 and VEGF-A in a 

sulfation-dependent manner. sHA showed an enhanced interplay with these proteins compared 

to native GAGs like heparin (HEP) or CS, suggesting a further impact of the carbohydrate 

backbone and sulfation pattern. sGAGs alone were weak modulators of the matrix 

metalloproteinase-1 and -2 (MMP-1 and -2) activity and did not interfere with the inhibitory 

potential of TIMP-3 against these proteinases during enzyme kinetic analyses. However, the 

formation of TIMP-3/GAG complexes reduced the binding of TIMP-3 to cluster II and IV of 

its endocytic receptor low-density lipoprotein receptor-related protein-1 (LRP-1, mediates the 

up-take and degradation of TIMP-3 from the extracellular environment) in a sulfation- and 
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GAG type-dependent manner. It is of note that the determined complex stabilities of TIMP-3 

with cluster II and IV were almost identical indicating for the first time that both clusters 

contribute to the TIMP-3 binding. Competitive SPR experiments demonstrated that GAG 

polysaccharides interfere stronger with the TIMP-3/LRP-1 interplay than GAG 

oligosaccharides. The importance of the position of sulfation is highlighted by the finding that 

a sHA tetrasaccharide exclusively sulfated at the C6 position of the N-acetylglucosamine 

residues significantly blocked the receptor binding, while CS and HEP hexasaccharides had no 

detectable effects. Thus, sHA derivatives as part of biomaterials could be used to sequester and 

accumulate TIMP-3 in aECMs in a defined manner where sHA-bound TIMP-3 could decrease 

the matrix breakdown by potentially restoring the MMP/TIMP balance. GAG binding might 

extend the beneficial presence of TIMP-3 into wounds characterized by excessive pathologic 

tissue degradation (e.g. chronic wounds, osteoarthritis).  

Mediator protein interaction studies with sHA coated surfaces showed the simultaneous binding 

of TIMP-3 and VEGF-A, even though the sHA/VEGF-A interplay was preferred. Moreover, 

kinetic analysis revealed almost comparable affinities of both proteins for VEGF receptor-2 

(VEGFR-2), explaining their competition that mainly regulates the activation of endothelial 

cells. Additional SPR measurements demonstrated that the binding of sGAGs to TIMP-3 or 

VEGF-A decreases the binding of the respective mediator protein to VEGFR-2. Likewise, a 

sulfation-dependent reduction of the binding signal was observed after pre-incubation of a 

mixture of TIMP-3 and VEGF-A with sGAG poly- and oligosaccharides. The biological 

consequences of GAGs interfering with VEGF-A/VEGFR-2 and TIMP-3/VEGFR-2 were 

assessed in vitro using porcine aortic endothelial cells stably transfected with VEGFR-2 

(PAE/KDR cells). The presence of sHA both decreased VEGF-A activity and the activity of 

TIMP-3 to inhibit the VEGF-A-induced VEGFR-2 phosphorylation. The same decreased 

activities could be observed for the migration of endothelial cells. However, if sHA, TIMP-3 

and VEGF-A were present simultaneously, sHA partially restored the TIMP-3-mediated 

blocking of VEGF-A activity. These findings provide novel insights into the regulatory 

potential of sHA during endothelial cell activation as an important aspect of angiogenesis, 

which could be translated into the design of biomaterials to treat abnormal angiogenesis. These 

sHA-containing materials might control the angiogenic response by modulating the activity of 

TIMP-3 and VEGF-A.  

The in vitro fibrillogenesis of collagen type I in the presence of sHA derivatives led to 2.5D 

collagen-based aECM coatings with stable collagen contents and GAG contents that resemble 

the organic part of the bone ECM. A burst release of GAGs was observed during the first hour 

of incubation in buffer with the GAG content remaining almost constant afterwards, implying 

that the number of GAG-binding sites of collagen restricts the amounts of associated GAGs. 

Moreover, two differently sulfated HA derivatives could for the first time be incorporated into 

one multi-GAG aECM as verified via agarose gel electrophoresis and fluorescence 
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measurements. This illustrates the multiple options to modify the aECM composition and 

thereby potentially their functionality. Atomic force microscopy showed that the presence of 

sHA derivatives during fibrillogenesis significantly reduced the resulting fibril diameter in a 

concentration- and sulfation-dependent manner, indicating an interference of the GAGs with 

the self-assembly of collagen monomers. In line with enzyme kinetic results, none of the GAGs 

as part of aECMs altered the enzymatic collagen degradation via a bacterial collagenase. Thus 

aECMs were proven to be biodegradable independent from their composition, which is 

favorable concerning a potential biomedical usage of the aECMs e.g. as implant coatings. 

HA/collagen-based hydrogels containing fibrillar collagen embedded into a network of 

crosslinked HA and sGAGs were developed as 3D aECMs. Scanning electron microscopy 

demonstrated a porous structure of the gels after lyophilization, which could favor the 

cultivation of cells. The presence of collagen markedly enhanced the stability of the gels against 

the enzymatic degradation via hyaluronidase, something beneficial to clinical use as this is often 

limited by the generally fast breakdown of HA. Binding and release experiments with 

lysozyme, as positively charged model protein for e.g. pro-inflammatory cytokines, and 

VEGF-A revealed that the sulfation of GAGs increased the protein binding capacity for pure 

GAG coatings and retarded the protein release from hydrogels compared to hydrogels without 

sGAGs. Moreover, the additional acrylation of sHA was shown to strongly reduce the 

interaction with both proteins when the primary hydroxyl groups were targets of acrylation. 

This stresses the influence of the substitution pattern on the protein binding properties of the 

GAG derivatives. However, hydrogel characteristics like the elastic modulus remained 

unaffected. The different interaction profiles of lysozyme and VEGF-A with GAGs 

demonstrated a protein-specific preference of different monosaccharide compositions, 

suggesting that the mediator protein binding could be simultaneously adjusted for several 

proteins by combining different GAG derivatives. This might allow the scavenging of pro-

inflammatory cytokines and at the same time a binding and release of wound healing 

stimulating growth factors.  

Since there is a growing demand for biomaterials to regenerate injured vascularized tissues like 

bone and skin, endothelial cells were used to examine the direct effects of solute GAGs and 

hydrogels containing these GAGs in vitro. In both cases, sHA strongly enhanced the 

proliferation of PAE/KDR cells. A VEGFR-2-mediated effect of GAGs on endothelial cells as 

underlying mechanism is unlikely since GAGs alone did not bind to VEGFR-2 and had no 

influence on VEGFR-2 phosphorylation. Other factors like GAG-induced alterations of cell-

matrix interactions and cell signaling could be responsible. In accordance with SPR results, a 

decreased endothelial cell proliferation stimulating activity of VEGF-A was observed in the 

presence of solute GAGs or after binding to hydrogels compared to the respective treatment 

without VEGF-A. However, tube formation could be observed in the presence of solute 

VEGF-A and GAGs and within hydrogels with sGAGs that released sufficient VEGF-A 
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amounts over time. Overall the presence of GAGs and VEGF-A strongly promoted the 

endothelial cell proliferation compared to the treatment with GAGs or VEGF-A alone. Thus, 

HA/collagen-based hydrogels functionalized with sHA derivatives offer a promising option for 

the design of “intelligent” biomaterials that direct and regulate the cellular behavior instead of 

simply acting as inert filling material. They could be used for the controlled delivery and/or 

scavenging of multiple mediator proteins, thus enhancing the local availability or reducing the 

activity of these GAG-interacting mediator proteins, or by directly influencing the cellular 

response. This might be applied to a range of pathological conditions by tuning the biomaterial 

compositions to patient-specific needs.  

However, extensive in vivo validation is required to show whether these in vitro findings could 

be used to control the biological activity of for instance TIMP-3 and VEGF-A, especially under 

the pathological conditions of extended matrix degradation and dysregulated angiogenesis.  
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ZUSAMMENFASSUNG 

Knochenbrüche und pathologische Zustände wie chronische Wunden reduzieren die 

Lebensqualität der Patienten deutlich. Dies ist besonders bei der alternden Bevölkerung mit 

häufiger Multimorbidität dramatisch und geht mit erheblichen sozioökonomischen Kosten 

einher. Zur Verbesserung der Wundheilungskapazität multimorbider Patienten sind neue 

Strategien für die Entwicklung multifunktionaler Biomaterialien nötig. Besondere Bedeutung 

kommt hierbei der Verringerung eines übermäßigen pathologischen Gewebeabbaus und der 

Kontrolle der Angiogenese in geschädigten vaskularisierten Geweben (z.B. Knochen- und 

Hautgewebe) zu.  

Glykosaminoglykane (GAGs) wie Hyaluronsäure (HA) und Chondroitinsulfat (CS) als 

wichtige Komponenten der extrazellulären Matrix (ECM) sind an zahlreichen biologischen 

Prozessen wie der Matrixremodellierung und der Signaltransduktion von Wachstumsfaktoren 

durch die direkte Beeinflussung des zellulären Verhaltens oder durch die Interaktion mit 

Mediatorproteinen beteiligt, weshalb GAGs für die Funktionalisierung von Biomaterialien 

vielversprechend sind. Allerdings zeigen native sulfatierte GAGs (sGAGs) eine stark 

chargenabhängige Variabilität und sind in ihrer Verfügbarkeit begrenzt. Daher sind chemisch 

modifizierte HA- und CS-Derivate mit deutlich definierteren Eigenschaften hinsichtlich ihres 

Kohlenhydratgrundgerüsts, der Sulfatgruppenverteilung und des Sulfatierungsgrades 

vorteilhaft, um die Struktur-Eigenschafts-Beziehungen von GAGs in ihrer Interaktion mit 

Mediatorproteinen und/oder Zellen zu untersuchen. Dies könnte zur präzisen Einstellung von 

Wirkprofilen dienen, welche die Wundheilung stimulieren. Durch die Kombination von 

Kollagen Typ I als Hauptstrukturprotein der Knochen- und Haut-ECM mit diesen GAG-

Derivaten wurden 2,5-dimensionale (2,5D) und 3D artifizielle ECM (aECM)-Beschichtungen 

und -Hydrogele entwickelt. Diese Biomaterialien sowie die jeweiligen GAG-Derivate allein im 

Vergleich zu nativen GAGs wurden verwendet, um zu analysieren, wie der Sulfatierungsgrad, 

das Sulfatierungsmuster und das Kohlenhydratgrundgerüst der GAGs die folgenden Aspekte 

beeinflussen: 

i)  die Aktivität des Gewebeinhibitors von Metalloproteinase-3 (TIMP-3) und des vaskularen 

endothelialen Wachstumsfaktor-A (VEGF-A) als Hauptmodulatoren der ECM-

Remodellierung und Angiogenese; 

ii)  die Zusammensetzung und Eigenschaften der entwickelten 2,5D und 3D aECMs; 

iii)  den enzymatischen Abbau von kollagenbasierten aECMs und HA/kollagen-basierten 

Hydrogelen; 

iv) die Proliferation und funktionelle Morphologie von Endothelzellen. 

Oberflächenplasmonresonanz (Surface Plasmon Resonance (SPR)) und Enzyme-linked 

Immunosorbent Assay (ELISA) Bindungsstudien zeigten, dass sulfatierte HA (sHA)-Derivate 

mit TIMP-3 und VEGF-A sulfatierungsabhängig wechselwirken. Dabei wiesen sHA-Derivate 

eine verstärkte Interaktion mit diesen Proteinen im Vergleich zu nativen GAGs wie Heparin 
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(HEP) oder CS auf. Dies deutet auf einen weiteren Einfluss des Kohlenhydratrückgrats und des 

Sulfatierungsmusters hin. sGAGs allein wirkten als schwache Modulatoren der Matrix 

Metalloproteinase-1 und -2 (MMP-1 und -2)-Aktivitäten und beeinflussten das inhibitorische 

Potential von TIMP-3 gegenüber diesen Proteinasen in enzymkinetischen Messungen nicht. 

Allerdings reduzierte die Bildung von TIMP-3/GAG-Komplexen sulfatierungs- und GAG-typ-

abhängig die Bindung von TIMP-3 an Cluster II und IV seines Endozytose-Rezeptors low-

density lipoprotein receptor-related protein-1 (LRP-1), welcher die Aufnahme und den Abbau 

von TIMP-3 aus der extrazellulären Umgebung steuert. Die ermittelten Komplexstabilitäten 

von TIMP-3 mit Cluster II und IV waren fast identisch und wiesen erstmals nach, dass beide 

Cluster zur TIMP-3-Bindung beitragen. Kompetitive SPR-Experimente zeigten, dass 

GAG-Polysaccharide stärker mit der TIMP-3/LRP-1-Interaktion interferieren als 

GAG-Oligosaccharide. Die Bedeutung der Sulfatierungsposition wird daran deutlich, dass ein 

sHA-Tetrasaccharid, das ausschließlich an der C6-Position der N-Acetylglucosamineinheiten 

sulfatiert ist, die Rezeptorbindung signifikant blockierte, während CS- und HEP-Hexa-

saccharide keine nachweisbaren Wirkungen hatten. Abgeleitet aus diesen Untersuchungen 

könnten sHA-Derivate als Teil von funktionellen Biomaterialien genutzt werden, um TIMP-3 

in aECMs definiert zu sequestrieren und zu akkumulieren. Dabei könnte sHA-gebundenes 

TIMP-3 den Matrixabbau verringern, indem es das MMP/TIMP-Gleichgewicht wiederherstellt, 

und die GAG-Bindung könnte die Anwesenheit von TIMP-3 in Wunden, welche durch einen 

übermäßigen pathologischen Gewebeabbau charakterisiert sind (z.B. chronische Wunden, 

Osteoarthritis), verlängern. 

Mediatorprotein-Interaktionsstudien mit sHA-beschichteten Oberflächen zeigten die 

gleichzeitige Bindung von TIMP-3 und VEGF-A, wobei die sHA/VEGF-A-Interaktion 

bevorzugt war. Darüber hinaus ergaben kinetische SPR-Analysen nahezu vergleichbare 

Affinitäten beider Proteine für VEGF-Rezeptor-2 (VEGFR-2). Dies erklärt deren Kompetition, 

welche im Wesentlichen die Aktivierung von Endothelzellen reguliert. Zusätzlich zeigte sich, 

dass die Interaktion von sGAGs mit TIMP-3 oder VEGF-A die Bindung des jeweiligen 

Mediatorproteins an VEGFR-2 verringert. Ebenso wurde nach der Vorinkubation einer 

Mischung aus TIMP-3 und VEGF-A mit sGAG-Poly- und -Oligosacchariden eine 

sulfatierungsabhängige Reduktion des Bindungssignals beobachtet. Die biologischen 

Konsequenzen dieser Beeinflussung der VEGF-A/VEGFR-2- und TIMP-3/VEGFR-2-

Interaktionen durch GAGs wurden in vitro durch mit VEGFR-2 transfizierte porcine 

Aortenendothelzellen (PAE/KDR-Zellen) untersucht. Die Anwesenheit von sHA verringerte 

die biologische Aktivität von VEGF-A, die VEGFR-2-Phosphorylierung und Migration von 

Endothelzellen zu stimulieren. Des Weiteren hemmte sHA die inhibierenden Effekte von 

TIMP-3 auf VEGF-A, wodurch in einem kombinierten Ansatz mit sHA, TIMP-3 und VEGF-A 

sHA die TIMP-3-vermittelte Blockierung der VEGF-A-Aktivität teilweise wiederherstellte. 

Diese Erkenntnisse liefern neue Einblicke in das regulatorische Potential von sHA zur 
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Aktivierung von Endothelzellen als wichtigen Aspekt der Angiogenese, die in die Entwicklung 

von Biomaterialien umgesetzt werden könnte, um Zustände abnormaler Angiogenese zu 

behandeln. Derartige sHA-haltige Materialien können dazu dienen, die angiogene Antwort von 

Endothelzellen durch Modulierung der Aktivität von TIMP-3 und VEGF-A zu kontrollieren. 

Die in vitro Fibrillogenese von Kollagen Typ I in Gegenwart von sHA-Derivaten führte zu 2,5D 

kollagenbasierten aECM-Beschichtungen mit stabilen Kollagengehalten und GAG-Anteilen, 

die dem organischen Teil der Knochen-ECM ähneln. Eine starke Freisetzung von GAGs wurde 

während der ersten Stunde der Inkubation in Puffer beobachtet, während der GAG-Gehalt 

anschließend nahezu konstant blieb. Demnach beschränkt die Anzahl der GAG-

Bindungsstellen des Kollagens die Menge an assoziiertem GAG. Darüber hinaus verifizierten 

Agarose-Gelelektrophorese- und Fluoreszenzanalysen den erstmaligen Einbau von zwei 

unterschiedlich sulfatierten HA-Derivaten in eine multi-GAG-aECM. Dies verdeutlicht die 

vielfältigen Möglichkeiten zur Modifizierung der aECM-Zusammensetzung und dadurch deren 

Funktionalität. Rasterkraftmikroskopie zeigte, dass die Anwesenheit von sHA-Derivaten 

während der Fibrillogenese den resultierenden Fibrillendurchmesser konzentrations- und 

sulfatierungsabhängig verringert. GAGs beeinflussen hierbei wahrscheinlich die Selbst-

organisation von Kollagenmonomeren. Im Einklang mit enzymkinetischen Ergebnissen änderte 

keines der GAGs als Teil von aECMs den enzymatischen Kollagenabbau durch bakterielle 

Kollagenase. Somit erwiesen sich die aECMs unabhängig von ihrer Zusammensetzung als 

biologisch abbaubar. Hinsichtlich einer möglichen biomedizinischen Verwendung dieser, z.B. 

als Implantatbeschichtungen, ist dies günstig. 

HA/Kollagen-basierte Hydrogele, die fibrilläres Kollagen, eingebettet in ein Netzwerk aus 

vernetzter HA und sGAGs, enthalten, wurden als 3D aECMs entwickelt. Raster-

elektronenmikroskopische Aufnahmen zeigten eine poröse Struktur der gefriergetrockneten 

Gele, die vorteilhaft für die Zellkultivierung sein sollte. Die Anwesenheit von Kollagen erhöhte 

die Stabilität der Gele gegen den enzymatischen Abbau durch Hyaluronidase deutlich. Da die 

klinische Nutzung von HA-Hydrogelen oft durch den schnellen Abbau von HA beschränkt ist, 

sollte dies vorteilhaft sein. Bindungs- und Freisetzungsexperimente mit Lysozym, als positiv 

geladenes Modellprotein für z. B. pro-inflammatorische Zytokine, und VEGF-A zeigten, dass 

die Sulfatierung von GAGs die Proteinbindungskapazität von reinen GAG-Beschichtungen 

erhöht und die Proteinfreisetzung aus Hydrogelen im Vergleich zu Hydrogelen ohne sGAGs 

verzögert. Darüber hinaus wurde ermittelt, dass die Acrylierung der primären Hydroxylgruppen 

von sHA die Wechselwirkung mit beiden Proteinen stark verringert. Dies unterstreicht den 

Einfluss des Substitutionsmusters auf die Proteinbindungseigenschaften der GAG-Derivate. 

Dabei blieben Hydrogel-Charakteristika wie der Elastizitätsmodul unverändert. Beim 

Vergleich der verschiedenen Wechselwirkungsprofile von Lysozym und VEGF-A mit GAGs 

wurde eine proteinspezifische Präferenz verschiedener Monosaccharid-Zusammensetzungen 

beobachtet. Dies deutet darauf hin, dass die Bindung von Mediatoren aus Mischungen durch 
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Kombination verschiedener GAG-Derivate spezifisch angepasst werden kann. Dadurch könnte 

die Sequestrierung von pro-inflammatorischen Zytokinen und gleichzeitig die Bindung und 

Freisetzung von die Wundheilung stimulierenden Wachstumsfaktoren ermöglicht werden. 

Aufgrund des steigenden Bedarfs an Biomaterialien zur Regeneration von verletzten vaskulären 

Geweben wie Knochen und Haut, dienten Endothelzellen zur in vitro Untersuchung der 

direkten Effekte von gelösten GAGs und Hydrogelen, die diese GAGs enthalten. In beiden 

Fällen stimulierten sHA-Derivate die Proliferation von PAE/KDR-Zellen deutlich. Eine 

VEGFR-2-vermittelte Wirkung von GAGs auf Endothelzellen als zugrunde liegender 

Mechanismus ist jedoch unwahrscheinlich, da GAGs selbst nicht an VEGFR-2 banden und 

keinen Einfluss auf die VEGFR-2-Phosphorylierung hatten. Andere Faktoren wie GAG-

induzierte Veränderungen von Zell-Matrix-Wechselwirkungen und der Zellkommunikation 

könnten involviert sein. Übereinstimmend mit SPR-Ergebnissen wurde eine verminderte 

stimulierende Aktivität von VEGF-A auf die Proliferation von Endothelzellen in Gegenwart 

gelöster GAGs oder nach Bindung an Hydrogele im Vergleich zur jeweiligen Behandlung ohne 

VEGF-A detektiert. Dennoch konnte die Tube-Formation von Endothelzellen in Gegenwart 

von gelöstem VEGF-A und GAGs und innerhalb von Hydrogelen mit sGAGs, die ausreichende 

VEGF-A-Mengen freisetzten, beobachtet werden.  

Insgesamt steigerte die Anwesenheit von GAGs und VEGF-A die Proliferation der 

Endothelzellen im Vergleich zur Behandlung mit GAGs oder VEGF-A alleine. So bieten mit 

sHA-Derivaten funktionalisierte HA/Kollagen-basierte Hydrogele eine vielversprechende 

Möglichkeit für die Gestaltung von „intelligenten" Biomaterialien, die die zelluläre Reaktion 

steuern und regulieren, anstatt nur als inertes Füllmaterial zu dienen. Diese Materialien könnten 

z. B. zum kontrollierten Transport und/oder zur Bindung mehrerer Mediatorproteine dienen, 

um eine definiert regulierte Zellantwort durch eine Verbesserung der lokalen Verfügbarkeit 

oder eine Verringerung der Aktivität dieser GAG-interagierenden Mediatorproteine 

auszulösen. Ein solches Prinzip könnte auf eine Reihe pathologischer Bedingungen angewandt 

werden, indem die Biomaterial-Zusammensetzung auf patientenspezifische Bedürfnisse 

abgestimmt wird.  

Insgesamt ist jedoch eine umfangreiche in vivo-Validierung dieser Daten erforderlich, um zu 

zeigen, ob diese in vitro-Befunde zur Steuerung der biologischen Aktivität von z. B. TIMP-3 

und VEGF-A unter pathologischen Bedingungen übermäßigen Matrixabbaus und 

dysregulierter Angiogenese genutzt werden können.  
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6 OUTLOOK 

In vivo studies to validate the results of the conducted in vitro experiments are highly warranted 

especially for health-compromised conditions in appropriate pre-clinical models. These data 

are crucial for a potential future local biomedical application of chemically modified GAG 

derivatives as functional part of aECM coatings or HA/collagen-based hydrogels to regulate 

biological processes at the tissue/biomaterial interface.  

In addition, in vitro studies regarding the interplay of GAGs with further growth factors 

important for the complex process of angiogenesis - like bFGF in combination with for example 

VEGF-A - or a focus on the suggested interplay of HA derivatives with the HA receptor CD44 

could contribute to an in-depth understanding of the multiple functions of GAGs. It might also 

serve to elucidate the molecular mechanism responsible for the detected direct effects of GAGs 

on the proliferation of endothelial cells. Moreover, additional cell types relevant for skin and 

bone healing as well as co-culture studies with these cells need to be performed to further assess 

the properties of the developed biomaterials.  

Another interesting aspect would be to analyze the potential impact of sGAG derivatives on the 

activity of cathepsin K, which is a critical collagenase in bone remodeling that is known to 

interact with native GAGs. Further studies are necessary to address the question whether the 

binding of LRP-1 ligands to GAGs is a general mechanism to post-translationally control their 

LRP-1-mediated endocytosis and intracellular degradation by blocking the ligand/LRP-1 

interplay. MMP-9 and TGF-β1, both known to contain a HEP-binding region, could be 

analyzed in competitive SPR approaches. 

The development of even more complex aECM systems containing multiple GAG derivatives 

with defined spatial distributions of GAGs and mediator proteins as planned for the third 

funding period of the “Transregio 67” could additionally foster the engineering of cellular 

microenvironments that mimics several functions of the native ECM. This may lead to a patient-

specific tailoring of biomaterial properties and interaction profiles in future.  

  



7 APPENDIX  151 

 

 

7 APPENDIX 

 

Fig. 7.1 Influence of solute GAGs on the TIMP-3/LRP-1 complex formation. The binding response 

of 100 µM D.U. GAG solution to LRP-1 cluster II (500 RU) (A) or cluster IV (380 RU) (C) surfaces is 

displayed. Representative sensorgrams showing the binding response of 100 nM TIMP-3 to LRP-1 

cluster II (B) or cluster IV (D) in the presence of 100 µM D.U. non- or low-sulfated GAGs. Adapted 

from [R447] with modifications.  

 

Fig. 7.2 Interaction of HA tetrasaccharides with LRP-1. Binding response of HA tetrasaccharides to 

LRP1-1 cluster II (690 RU) (A) and IV (380 RU) (B) surfaces relative to the response of 100 nM 

TIMP-3. Adapted from [R447] with modifications.  
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Fig. 7.3 Effects of a psHA tetrasaccharide on the TIMP-3/LRP-1 cluster II and IV binding. The 

binding response of TIMP-3 after pre-incubation with 100 - 400 µM D.U. psHA (dp 4) relative to 

100 nM TIMP-3 w/o GAG is shown in (A) for LRP-1 cluster II (690 RU) and in (B) for LRP-1 cluster 

IV (380 RU) surfaces. Adapted from [R447] with modifications. One-way ANOVA: # (p < 0.05), 

## (p < 0.01), ### (p < 0.001) vs. TIMP-3 w/o GAG; * (p < 0.05), *** (p < 0.001) vs. respective 

treatment.  

 

Fig. 7.4 Interaction of solute GAGs with VEGFR-2. Representative sensorgrams showing the binding 

response of 100 µM D.U. GAGs dissolved in HBS-EP in the absence of 100 nM TIMP-3 (A) or in the 

presence of TIMP-3 (B) after injection over VEGFR-2 surfaces (124 RU).  
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Fig. 7.5 Influence of sHA3 polysaccharide concentrations on the TIMP-3/VEGFR-2 and 

VEGF-A/VEGFR-2 interaction. Relative binding levels determined via SPR are displayed for 20 nM 

TIMP-3 (A) or VEGF-A (B) after pre-incubation with 0.002 - 200 µM D.U. sHA3 polysaccharides after 

injection over VEGFR-2 surfaces (63 RU). One-way ANOVA: * (p < 0.05), *** (p < 0.001) vs. TIMP-3 

or VEGF-A w/o sHA3. Adapted from [R453] with modifications.  

 

Fig. 7.6 Effects of GAG oligosaccharides on the TIMP-3/VEGFR-2 interplay. Relative binding 

levels are displayed for 20 nM TIMP-3 after pre-incubation with 40 µM D.U. GAG oligosaccharides 

after injection over VEGFR-2 surfaces (124 RU, 69 RU). One-way ANOVA: # (p < 0.05), 

### (p < 0.001) vs. TIMP-3 w/o GAG; * (p < 0.05), *** (p < 0.001) vs. respective treatment; 

a (p < 0.001) vs. HA (dp 4, dp 6), CS (dp 6), sHA1 (dp 4), HEP (dp 6), sHA2Δ6s (dp 4). Adapted from 

[R453] with modifications.  



154  7 APPENDIX 

Fig. 7.7 Effects of GAG oligosaccharides on the VEGF-A/VEGFR-2 interaction. Relative binding 

levels are displayed for 20 nM VEGF-A after pre-incubation with 40 µM D.U. GAG oligosaccharides 

after injection over VEGFR-2 surfaces (53 RU, 69 RU). One-way ANOVA: ## (p < 0.01), 

### (p < 0.001) vs. VEGF-A w/o GAG; * (p < 0.05), ** (p < 0.01) vs. respective treatment; a (p < 0.001) 

vs. HA (dp 4, dp 6), CS (dp 6), sHA2Δ6s (dp 4). Adapted from [R453] with modifications.  

Fig. 7.8 Effect of sHA3 on the VEGF-A and TIMP-3 competition for VEGFR-2 binding. Relative 

SPR binding levels are displayed for 50 nM TIMP-3 and 1 nM VEGF-A after pre-incubation with 

200 µM D.U. sHA3 polysaccharide after injection over immobilized VEGFR-2 (63 RU). One-way 

ANOVA: ### (p < 0.001) vs. TIMP-3 + VEGF-A, *** (p < 0.001) vs. respective treatment. Adapted 

from [R453] with modifications.  
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Fig. 7.9 Visualization of sulfated GAGs and collagen in hydrogels. Hydrogels were incubated with 

Toluidine blue or Sirius red to stain sGAGs (dark blue) or collagen (red). Adapted from [R475] with 

modifications.  

Fig. 7.10 Influence of VEGF-A and solute GAGs on the tube formation of PAE/KDR cells. Living 

cells after 72 hours of cultivation of initially 25000 PAE/KDR cells on collagen-coatings in the presence 

of 400 µM D.U. GAG with or without 50 ng VEGF-A per sample under serum-free conditions were 

visualized by the incubation with MTT. Red arrows highlight some of the formed tubes. The scale bar 

represents 100 µm.  
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Fig. 7.11 Solute VEGF-A after incubation of hydrogels with VEGF-A in cell culture media. 

Hydrogels were incubated overnight with 50 ng VEGF-A and the amounts of solute VEGF-A in the 

supernatants were afterwards quantified via sandwich ELISA. A solution of VEGF-A in cell culture 

media, which was not incubated with hydrogels, served as control (Ctrl).  
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