
Automating User-Centered Design of
Data-Intensive Processes

Dissertation

zur Erlangung des akademischen Grades
Doktoringenieur (Dr.-Ing.)

vorgelegt an der
Technischen Universität Dresden

Fakultät Informatik

eingereicht von
M.Sc. Vasileios Theodorou

geboren am 21. January 1988 in Athen

Betreuender Hochschullehrer: Prof. Dr. Wolfgang Lehner
Technische Universität Dresden
Fakultät Informatik, Institut für Systemarchitektur
Lehrstuhl für Datenbanken
01062 Dresden

Dresden, im Oktober 2016

ii

ABSTRACT

Business Intelligence (BI) enables organizations to collect and analyze internal and external
business data to generate knowledge and business value, and provide decision support at the
strategic, tactical, and operational levels. The consolidation of data coming from many sources
as a result of managerial and operational business processes, usually referred to as Extract-
Transform-Load (ETL) is itself a statically defined process and knowledge workers have little to
no control over the characteristics of the presentable data to which they have access.

There are twomain reasons that dictate the reassessment of this stiff approach in context of
modern business environments. The first reason is that the service-oriented nature of today’s
business combined with the increasing volume of available data make it impossible for an orga-
nization to proactively design efficient data management processes. The second reason is that
enterprises can benefit significantly from analyzing the behavior of their business processes
fostering their optimization. Hence, we took a first step towards quality-aware ETL process de-
sign automation by defining through a systematic literature review a set of ETL process quality
characteristics and the relationships between them, as well as by providing quantitative mea-
sures for each characteristic. Subsequently, we produced a model that represents ETL process
quality characteristics and the dependencies among them and we showcased through the ap-
plication of a Goal Model with quantitative components (i.e., indicators) how our model can
provide the basis for subsequent analysis to reason and make informed ETL design decisions.

In addition, we introduced our holistic view for a quality-aware design of ETL processes
by presenting a framework for user-centered declarative ETL. This included the definition of
an architecture and methodology for the rapid, incremental, qualitative improvement of ETL
process models, promoting automation and reducing complexity, as well as a clear separation
of business users and IT roles where each user is presented with appropriate views and assigned
with fitting tasks. In this direction, we built a tool —POIESIS— which facilitates incremental,
quantitative improvement of ETL process models with users being the key participants through
well-defined collaborative interfaces.

When it comes to evaluating different quality characteristics of the ETL process design,
we proposed an automated data generation framework for evaluating ETL processes (i.e., Bi-
joux). To this end, we classified the operations based on the part of input data they access for
processing, which facilitated Bijoux during data generation processes both for identifying the
constraints that specific operation semantics imply over input data, as well as for deciding at
which level the data should be generated (e.g., single field, single tuple, complete dataset). Bi-
joux offers data generation capabilities in a modular and configurable manner, which can be
used to evaluate the quality of different parts of an ETL process.

Moreover, we introduced a methodology that can apply to concrete contexts, building a
repository of patterns and rules. This generated knowledge base can be used during the design
and maintenance phases of ETL processes, automatically exposing understandable conceptual
representations of the processes and providing useful insight for design decisions.

Collectively, these contributions have raised the level of abstraction of ETL process compo-
nents, revealing their quality characteristics in a granular level and allowing for evaluation and
automated (re-)design, taking under consideration business users’ quality goals.

iii

iv

CONTENTS

1 INTRODUCTION 1

1.1 ETL Process Quality . 3

1.2 Data-intensive Process Evaluation . 4

1.3 Challenges in ETL Automation . 6

1.3.1 Motivating Experiment . 7

1.4 User-centered Declarative ETL . 8

1.5 Contributions . 11

1.6 Thesis Outline . 12

2 STATE OF THE ART 15

2.1 ETL Modeling . 16

2.2 Quality of Data Intensive Processes 19

2.3 Data Intensive Processes Testing and Evaluation 21

2.4 ETL Patterns . 23

3 QUALITY MEASURES FOR ETL PROCESSES 27

3.1 Extracting Quality Characteristics . 29

3.2 Characteristics with Construct Implications 33

3.2.1 Characteristics and Measures . 33

3.2.2 Characteristics Relationships . 36

3.2.3 Calculating the measures . 37

3.3 Characteristics for Design Evaluation 41

3.3.1 Characteristics and Measures . 41

3.3.2 Characteristics Relationships . 43

vii

3.3.3 Calculating the measures . 43

3.4 Goal Modeling for ETL design . 45

3.4.1 Applying BIM to ETL processes . 47

3.5 User-centered ETL Optimization . 49

3.6 Summary and Outlook . 52

4 DATA GENERATOR FOR EVALUATING ETL PROCESS QUALITY 55

4.1 Overview of our approach . 57

4.1.1 ETL operation classification . 58

4.1.2 Formalizing ETL processes . 61

4.1.3 Bijoux overview . 63

4.2 Bijoux data generation framework . 64

4.2.1 Preliminaries and Challenges . 64

4.2.2 Data structures . 66

4.2.3 Path Enumeration Stage . 68

4.2.4 Constraints Extraction and Analysis Stage 69

4.2.5 Data Generation Stage . 73

4.2.6 Theoretical validation . 74

4.3 Test case . 76

4.3.1 Evaluating the performance overhead of alternative ETL flows 79

4.3.2 Evaluating the data quality of alternative ETL flows 83

4.4 Bijoux Performance evaluation . 84

4.4.1 Experimental setup . 86

4.4.2 Experimental results . 87

4.5 Conclusions and Future Work . 88

5 FREQUENT PATTERNS IN ETL WORKFLOWS 91

5.1 ETL Patterns . 94

5.1.1 Workflow Patterns for ETL Flows . 94

5.1.2 ETL Patterns model . 96

5.1.3 Frequent ETL Patterns . 99

5.2 ETL Patterns Use Cases . 100

5.2.1 Conceptual Representation of ETL Flows 100

viii CONTENTS

5.2.2 Quality-based Analysis of ETL flows 101

5.3 Architecture . 101

5.3.1 Pattern mining . 102

5.3.2 Pattern recognition . 103

5.4 Experimental Results . 106

5.4.1 Mined ETL Patterns . 106

5.4.2 Performance Evaluation of Graph Matching Algorithm 110

5.4.3 Granular ETL Performance Evaluation 110

5.5 Summary and Outlook . 112

6 A TOOL FOR QUALITY-AWARE ETL PROCESS REDESIGN 113

6.1 Addition of Flow Component Patterns 114

6.2 Tool Design . 117

6.3 POIESIS System Overview . 119

6.4 POIESIS Features . 123

7 CONCLUSION 125

7.1 Conclusion . 126

7.2 Future Work . 127

CONTENTS ix

x CONTENTS

1
INTRODUCTION

1.1 ETL Process Quality

1.2 Data-intensive Process
Evaluation

1.3 Challenges in ETL Automa-
tion

1.4 User-centered Declarative
ETL

1.5 Contributions

1.6 Thesis Outline

Business Intelligence (BI) nowadays involves identifying, extracting, and analyzing large a-
mount of business data coming from diverse, distributed sources. Typically, enterprises rely
on complex Information Technology (IT) systems that manage all data coming from opera-
tional databases running within the organization and provide fixed user interfaces through
which knowledge workers can access information. In order to facilitate decision-makers, these
systems are assigned with the task of integrating heterogeneous data deriving from operational
activities into Data Warehouses, for the purpose of querying and analysis. This integration
requires the extraction of data from internal or external sources such as the Web, their trans-
formation to comply with destination syntax and semantics and the loading of the processed
data to Warehouses, in a process known as Extraction Transformation Loading (ETL).

Today, the increasing volume of available data, as well as the requirement for recording and
responding to multiple events coming from participants within Big Data ecosystems that are
characterized by the 3Vs (volume, variety, velocity) (Russom, 2011), pose a serious challenge
for the design of ETL processes. The lack of a common schema for input data that might even be
unstructured, makes it even more difficult to produce useful information for end users in real-
time. Hence, the existence of diversely structured heterogeneous data deriving from multiple
internal and external sources suggest the definition of dynamic models and processes for its
collection, cleaning, transformation, integration, analysis, monitoring and so on.

Like every other business process, ETL processes can be examined using models and tech-
niques from the area of Business Process Management (BPM) (Wilkinson et al., 2010; Akkaoui
et al., 2013), which is a holistic approach that aims to optimize business processes with re-
spect to effectiveness and efficiency. A central activity of BPM is Business Process Modeling,
which concerns representing the structure and workflow of business processes in a way that
is understandable both by business users (BU) and IT. One problem that arises with defining
appropriate models for ETL processes is relating the process model to fitness to use for the end-
user. Analysis of the behavior of business processes is usually conducted by knowledge workers
and business analysts who lack knowledge about underlying infrastructure of IT systems and
related technologies. Therefore, we argue that the modeling approaches defined in (Wilkinson
et al., 2010; Akkaoui et al., 2013) are still too low-level to facilitate the evaluation and incorpo-
ration of process enhancements reflecting business requirements. This gap between end-user
requirements and the low-level activities performed by ETL tools needs to be addressed us-
ing dynamic user-centered tools that can facilitate ad hoc processing of analytical queries with
minimal IT intervention, borrowing techniques from the research area of Requirements Engi-
neering.

The ultimate goal of this thesis has been the development of a user-centered framework
that automates process model enhancement and selection for BI-related data processing. Some
of the key requirements for the design of this framework are usability, efficiency and effective-
ness.

The structure of this introductory chapter is as follows: In the next section, we briefly
discuss current developments in the area of ETL quality and highlight some emerging oppor-
tunities and open issues arising. In addition, we introduce our notion of conflicting quality di-
mensions in ETL design. In Section 1.2, we identify open challenges in data-intensive process
evaluation, stemming from its inherent dynamicity and from the difficulty in finding the right
data for simulation. In Section 1.3, we discuss important challenges in ETL automation and we

2 Chapter 1 Introduction

present a motivating experiment that we conducted, which verifies the problematic nature of
manual ETL modifications and the apparent need for further abstractions and mechanizations.
Subsequently, in Section 1.4, we present a novel architecture for user-centered declarative ETL
that served as the basis for the research presented in this thesis. Finally, we discuss the main
contributions of our work and the thesis structure.

1.1 ETL PROCESS QUALITY

ETL requires the execution of real-time, automated, data-centric business processes in a variety
of workflow-based tasks. The main challenge is how to turn the integration process design,
which has been traditionally predefined for periodic off-line mode execution, into a dynamic,
continuous operation that can sufficiently meet end-user needs.

During the past years, there has been considerable research regarding the optimization
of ETL flows in terms of functionality and performance (Simitsis et al., 2005; Böhm et al.,
2009b). Moreover, in an attempt to manage the complexity of ETL processes on a conceptual
level that reflects organizational operations, tools and models from the area of Business Process
Management (BPM) have been proposed (Wilkinson et al., 2010; Akkaoui et al., 2012). These
approaches make the crucial step of examining data-centric process models in an outlook that
brings them closer to the business core and allows their functional validation and performance
evaluation based on user input.

However, the dimension of process quality (Sánchez-González et al., 2012) has not yet been
adequately examined in a systematic manner. Unlike other business processes, important qual-
ity factors for ETL process design are tightly coupled to information quality while depending
on the interoperability of distributed engines. Added to that, there is increasing need for pro-
cess automation in order to become more cost-effective (Simitsis et al., 2009b) and therefore
there needs to be a common ground between analysts and IT that would allow the seamless
translation of high level quality concerns to design choices.

The identification of different perspectives of ETL processes— i) data-centric view, ii) soft-
ware view and iii) business process view— attaches to them an interdisciplinary character and
enables the consolidation and reuse of tools and practices from multiple well-established re-
search areas for their analysis. Furthermore, recent advancements in the area of Requirements
Engineering offer frameworks targeted to the domain of Business Intelligence that can facili-
tate ETL process analysis on a business level that is backed by measures and runtime behavior
characteristics on the technical level. In addition, the emerging Data Warehousing paradigms
of agile design (Golfarelli et al., 2012) and self-service BI (Berthold et al., 2010) present new
opportunities, denoting the necessity of revisiting existing work in the area, in an angle that
can promote ETL design automation, while exposing multiple quality dimensions.

In Figure 1.1, we depict our notion of the space created by different quality dimensions of an
ETL process. A set Q of quality dimensions {q1, q2, ..., qn} (e.g., performance, data quality,
maintainability) formulate a space where cost is orthogonal to any other dimension; when
cost increases (i.e., more available resources), we assume that any quality dimension can show
improvement for one specific ETL process. This can happen in the form of modifications on
the ETL model during design or management of the deployment configuration (e.g., additional

1.1 ETL Process Quality 3

q2

q3

q4

q5

q1

cost

cj

Figure 1.1: Utility cone of ETL quality

CPU/memory, distribution of threads to process activities). Thus, any quality dimension can
improve at some expense, but we advocate that when cost is fixed (i.e., for some specific cost
value c

j

), the improvement of one quality dimensionmight affect the others either positively or
negatively. The trade-offs between quality dimensions and the limitations to the improvement
of each of them pose some boundaries on the overall quality, which can be referred to as utility
of the ETL process, denoting its usefulness to end-users. In Figure 1.1, the boundaries for a
specific cost value c

j

are sketched as a conic section, only inside which values for the different
quality dimensions are permitted. The cone shape is selected to denote that these boundaries
become larger as cost increases, for the sake of simplicity of the conceptual reference —it
does not signify that such increase is linear. Thus, for a fixed cost c

j

, different design and
implementation decisions about the ETL process form different radar charts (the angles of the
axes are irrelevant) that show how these decisions favor some quality dimension(s) over others
and ultimately, the surface that each of them encompasses, provides some indication of the ETL
process utility. We call this shape a utility cone and although it does not serve as a mathematical
model that can define formally the relationships between different quality dimensions, it is a
cognitive tool that clarifies our notion about ETL quality improvements.

1.2 DATA-INTENSIVE PROCESS EVALUATION

Data-intensive processes constitute a crucial part of complex business intelligence (BI) sys-
tems responsible for delivering information to satisfy the needs of different end-users. Despite
growing amounts of data representing hidden treasury assets of an enterprise, due to dynamic
business environments, data quickly and unpredictably evolve, possibly making the software
that processes them (e.g., ETL) inefficient and obsolete. Besides delivering the right informa-
tion to end users, data-intensive processes must also satisfy various quality standards to ensure

4 Chapter 1 Introduction

that the data delivery is done in the most efficient way, whilst the delivered data are of cer-
tain quality level. The quality level is usually agreed beforehand in the form of service-level
agreements (SLAs) or business-level objects (BLOs).

In order to guarantee the fulfillment of the agreed quality standards (e.g., data quality, per-
formance, reliability, recoverability; see (Barbacci et al., 1995; Simitsis et al., 2009b; Theodorou
et al., 2016)), an extensive set of experiments over the designed process must be performed to
test the behavior of the process in a plethora of possible execution scenarios. Essentially, the
properties of input data (e.g., value distribution, cleanness, consistency) play a major role in
evaluating the resulting quality characteristics of a data-intensive process. Furthermore, to
obtain the finest level of granularity of process metrics, quantitative analysis techniques for
business processes (e.g., (Dumas et al., 2013)) propose analyzing the quality characteristics at
the level of individual activities and resources. Moreover, one of the most popular techniques
for quantitative analysis of process models is process simulation (Dumas et al., 2013), which
assumes creating large number of hypothetical process instances that will simulate the exe-
cution of the process flow for different scenarios. In the case of data-intensive processes, the
simulation should be additionally accompanied by a sample of input data (i.e., work item in the
language of (Dumas et al., 2013)) created for simulating a specific scenario.

Nonetheless, obtaining input data for performing such experiments is rather challenging.
Sometimes, easy access to the real source data is hard, either due to data confidentiality or
high data transfer costs. However, in most cases the complexity comes from the fact that a
single instance of available data, usually does not represent the evolution of data throughout
the complete process lifespan, and hence it cannot cover the variety of possible test scenarios.
At the same time, providing synthetic sets of data is known as a labor intensive task that needs
to take various combinations of process parameters into account.

In the field of software testing, many approaches (e.g., (DeMillo and Offutt, 1991)) have
tackled the problem of synthetic test data generation. However, the main focus was on testing
the correctness of the developed systems, rather than evaluating different data quality char-
acteristics, which are critical when designing data-intensive processes. Moreover, since the
execution of data-intensive processes is typically fully automated and time-critical, ensuring
their correct, efficient and reliable execution, as well as certain levels of data quality of their
produced output is pivotal.

In the data warehousing (DW) context, an example of a complex, data intensive and often
error-prone data-intensive process is the ETL process, responsible for periodically populating
a data warehouse from the available data sources. The modeling and design of ETL processes
is a thoroughly studied area, both in the academia and industry, where many tools available in
the market (Pall and Khaira, 2013) often provide overlapping functionalities for the design and
execution of ETL processes. Still, however, no particular standard for the modeling and design
of ETL processes has been defined, while ETL tools usually use proprietary (platform-specific)
languages to represent an ETL process model.

The correct ETL implementation is generally a very costly procedure (Beyer et al., 2016).
Moreover, the ETL design tools available in the market (Pall and Khaira, 2013) do not pro-
vide any automated support for ensuring the fulfillment of different quality parameters of the
process, and still a considerable manual effort is expected from the designer. Thus, we have
identified the real need for facilitating the task of testing and evaluating ETL processes in a

1.2 Data-intensive Process Evaluation 5

configurable manner. In this respect, we need to generate delicately crafted sets of data to test
different execution scenarios of an ETL process and detect its behavior (e.g., performance) over
a variety of changing parameters (e.g., dataset size, process complexity, input data quality).

1.3 CHALLENGES IN ETL AUTOMATION

ETL processes require heavy investments for their design, deployment and maintenance. With
data being increasingly recognized as a key asset for the success of any enterprise, interest is
growing for the development of more sophisticated models and tools to aid in data process
automation and dynamicity. According to a recent Gartner report (Beyer et al., 2016), the data
integration tool market is growing with a rate above the average for the enterprise software
market as a whole, with an increase of 10.5% from 2014 to 2015 and an expected total market
revenue of $4 billion in 2020.

In this context, ETL requirements are becoming more advanced and demanding with ex-
pectations such as self-service BI (Abelló et al., 2013) and on-the-fly data processing making
ETL projects even more complex. Moreover, ETL users and developers with different back-
grounds, using different models and technologies form a confusing landscape of ETL frame-
works and processes that is hard to analyze and harness. The reply from academia has been the
proposal of models (e.g., using the business process modeling notation (BPMN) (Akkaoui et al.,
2013) or the unified modeling language (UML) (Muñoz et al., 2008)) that classify ETL func-
tionalities in different levels of abstraction, creating some common ground for the description
of ETL operations and fostering design automation and analysis. On the direction of translating
conceptual and logical operations to physical implementations, the design and implementation
of large ETL flows is detached from the use of specific technologies and using tested structures
and best practices, it can become more reliable, efficient and simple. On the opposite direc-
tion, mapping physical to logical and conceptual models allows for the concise representation
and reuse of components, as well as different layers of analysis and comparison of ETL flows.

As already mentioned, it has recently been proposed that to tackle complexity, the level
of abstraction for ETL processes can be raised. ETL processes have been decomposed to ETL
activities (Vassiliadis et al., 2009) and recurring patterns (Castellanos et al., 2009) as the main
elements of their workflow representation, making them susceptible to analysis for process
evaluation and redesign. The proposed ETL modeling as well as the ETL logical view gener-
ated by different open-source and proprietary tools, expose an ETL workflow perspective that
opens the door for the identification and specification of ETL patterns. Although there have
been some approaches on ETL patterns, considering most used ETL tasks or the morphology
of the complete ETL flow, a bottom up methodology that can identify patterns and apply cus-
tomized analysis on a given generic set of ETL processes is still missing, making the practical
exploitation of ETL patterns difficult.

It is apparent that there is a need for an automatized process of ETL quality enhancement,
as it would solve many of the above-mentioned issues. Analysts should be in the center of this
process, where the large problem space is automatically generated, simulated and displayed in
an intuitive representation, allowing for the selection among alternative design choices.

6 Chapter 1 Introduction

1.3.1 Motivating Experiment

In order to qualitatively assess the complexity and difficulty of improving ETL process quality
in a manual fashion, we conducted a controlled experiment focusing on the following issues (i)
is it easy using an intuitive GUI, to manually implement improvement actions on an ETL flow
that can improve selected quality characteristics? (ii) can this manual process be efficient and
effective?, and (iii) what are the most commonly occurring mistakes of this manual approach?

The participants of the study were computer science and information technology students
at the Universitat Politécnica de Catalunya, BarcelonaTech, Barcelona, Spain who were en-
rolled in the basic data warehousing class lasting one semester. The students were taught the
basic principles about ETL processes and ETL operations during the lectures and they were ad-
ditionally supplied with training material, which included detailed examples, illustrating how
to implement improvement actions on an ETL flow to enhance its quality characteristics, using
the open-source ETL tool called Pentaho Data Integration tool (also known as Kettle)1. As part
of the practical part of the course, the students had participated in exercises familiarizing with
the Pentaho Data Integration tool. The participants belonged to two categories: (i) 21 bach-
elor students without any prior experience with ETL processes and (ii) 14 masters students
with limited experience with ETL. All of the participants were proficient users of computer
applications and they had experience with application development.

Regarding the experimental materials, the subjects were provided with one ETL model
editable and executable by the Pentaho Data Integration tool, as well as test input data from a
relational database and flat files. They were assigned with two tasks and they were given one
hour to complete them. The tasks were the following:
T1 — Improve the data quality of the produced output data in terms of data consistency and data
completeness
T2— Improve the performance of the ETL process in terms of time efficiency and the reliability of the
ETL process in terms of recoverability and robustness

The initial ETL process included twelve ETL operations of the following types: (i) input
source loading, (ii) filter, (iii) attribute alteration, (iv) join, (v) group-by and (vi) extracting to
output source. The subjects were asked to complete the tasks without changing the functional-
ity of the ETL process.

Bachelor
students

Masters
students

AVG mark Task 1 (/10) 7.5 7.7
AVG duration Task 1 (min) 29.5 27.1
AVG mark Task 2 (/10) 6.5 6.2
AVG duration Task 2 (min) 15.9 12.6

Figure 1.2: Experimental results

The results from the students’ answers were ETL models that they produced and uploaded
to an on-line system. These models were systematically evaluated and graded with regards to

1
http://www.pentaho.com/product/data-integration

1.3 Challenges in ETL Automation 7

http://www.pentaho.com/product/data-integration

their correctness, efficiency, effectiveness and completeness. In addition, the duration of the
tasks for each of the subjects was recorded and the results can be seen in Fig. 1.2.

As can be seen from the results, the performance of both bachelor and masters students
was relatively low in general. The main mistakes that were identified during marking were the
following:

• Wrong configuration of ETL operations: The ETL operators usually have complex parame-
ters, describing not only their properties but also their relationship to the flow and the
other operations. It was common that these parameters were incompletely or mistakenly
configured, resulting to execution issues of the resulting ETL model. For example, in
many cases the paths to the input and output sources were missing or wrong, the con-
figurations for the resource allocation did not take any constrains under consideration,
etc.

• Incomplete exploitation of improvement actions: The improvement actions are configurable
and can be deployed on multiple potential locations on the ETL flow. One common
mistake made by the students was the placement of improvement steps, only once in the
graph. This way many obvious actions that would significantly improve the quality of the
ETL were ignored, for example by filtering null values after one input source but not after
any of the rest.

• Wrong placement of improvement steps: One additional shortcoming that we identified
was that students did not find the placement of improvement steps to the right position
intuitive. For example, one common mistake was the placement of a recovery point
right before the extraction to output source step, which does not produce any actual
improvement of the process quality.

The results indicate that manual implementation of improvement actions is error-prone,
non-trivial, time-consuming and it suffers from incompleteness, inefficiency, and ineffective-
ness. It is apparent that there is a need for an automatized process of ETL quality enhancement,
as it would solve many of the above-mentioned issues.

1.4 USER-CENTERED DECLARATIVE ETL

In this section, we introduce our proposed architecture for a quality-aware framework for ETL
design. The architecture is depicted in Fig. 1.3, where we also show the relationship between
different parts of the architecture and chapters of this thesis.

Our novel methodology for the end-to-end design of ETL processes takes under consid-
eration both functional and non-functional requirements. Based on existing work, we raise
the level of abstraction for the conceptual representation of ETL operations and we show how
process quality characteristics can generate specific patterns on the process design. The archi-
tecture consists of three phases: functionality-based design, quality enhancement by instillation
of user-defined quality characteristics to the process and finally, deployment and execution. The
main drivers of this proposal are the requirements for automation and user-centricity. In ad-
dition, one important dimension is the need for communicating business requirements to the

8 Chapter 1 Introduction

Business User

Analyzer

PlannerProcess
Simulator

IT

Management
Data flow

Control flow

Component

Repository
Patterns

approved

Functionality-based
Design

Phase

Deployment &
Execution

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Quality Enhancement

Figure 1.3: Functional architecture

design, coming from BU who lack the background to understand technical details of the pro-
cess. To provide the means for meeting these requirements, we propose a modular architecture
that employs reuse of components and patterns to streamline the design. Furthermore, we ap-
ply an iterative model where BU are the key participants through well-defined collaborative
interfaces. Following is a description of the different parts of the architecture.

Functionality-Based Design. This part of the architecture only concerns the functional
requirements for the ETL process, producing an ETLmodel that complies with the information
requirements and the characteristics of the target repositories (e.g., star schema with specific
facts and dimensions). Thus, it is not included in our models about quality (or non-functional)
requirements. However, it is presented here to showcase how it guarantees the generation
of a functionally correct ETL process, which can subsequently be provided as input to and be
improved by a quality-enhancement phase.

Recently, several approaches have been proposed for the automation of this phase. For
example, (Romero et al., 2011) uses an ontology of the data sources and their functional depen-
dencies, together with business queries, to semi-automatically generate the ETL steps and the
data warehouse multi-dimentional model at a conceptual level. Similarly, (Bellatreche et al.,
2013) proposes an approach where the domain model along with user-requirements are mod-
elled on the ontological level and subsequently, an ETL process is produced, also modelled as
an implementation-independent ontology. In the same direction, (Jovanovic et al., 2016) takes
as input a set of functional requirements about data intensive processes, which the authors
call information requirements and semi-automatically translate them to concrete implementa-
tion steps, with the objective of reusing existing data flows from already implemented data
intensive processes as efficiently as possible.

Quality Enhancement. The second phase regards the infusion of quality parameters to the
ETL process. Our choice to segregate the functionality of the process from its qualitative per-
spective in two discrete phases does not only stem from a need for separation of concerns, but
also from the fact that BU are the ones qualified to set quality goals and assess process quality.
Nevertheless, the role of IT cannot be neglected, since apart from pro-actively designing all the

1.4 User-centered Declarative ETL 9

aspects of this phase, they should constantly oversee the design process and translate technical
details to business concepts whenever necessary and vice versa. Our architectural design at
this stage is influenced by two paradigms from the areas of Software Development and Busi-
ness Intelligence: agile methods and self-service BI (Berthold et al., 2010), respectively. The
benefits of using agile methods as opposed to the traditional waterfall approach in Data Ware-
housing activities have recently been recognized (Golfarelli et al., 2012). We identify this stage
of the ETL process design as a perfect candidate for the application of agile practices because
of the complexity and uncertainty of translating quality requirements to design choices. Thus,
we adopt the idea of incremental and iterative design with BU in the center of the process.
Likewise, we adopt the concept of strategy-driven business process analysis from the area of
self-service BI, where BU make decisions in a declarative fashion based on strategies, goals and
measures.

Integrating these ideas, we suggest that BU make decisions in stepwise iterations (sprints)
that incrementally improve the quality of the ETL process, until they consider it crosses an
acceptable quality threshold. Following is a description of each component that shows the
means to facilitate this interaction.

The Process Simulator component is assigned with the task of simulating the ETL process
and producing primal and complex analytics about both its static structure and its predicted
execution behaviour. One decision that has to be made at this point by the BU is the level of
detail of the simulation. For example, the analysis can take place on a process level or on a task
level, based on a single process run or on aggregated results of multiple process replications.
Additionally, the simulation methodology should also be decided, especially for the case of
loops, conditions and events (e.g., probabilistic or deterministic).

One obvious issue is the quantification of high level quality characteristics and their map-
ping to measures on the process. According to our approach, BU have access to high level
metrics and statistics about the process quality, where visualization plays a key role. The met-
rics as well as the BU input should be applicable for different parts and levels of detail of the
process, something that is configured by the IT and used as a service by the BU.

Once process measures have been produced, it is time for the Analyzer to come into play.
The Analyzer takes as input user goals and it is responsible for reasoning about which goals
and solution directions are feasible as well as which ones are most fit for use in the specified
context. For the first part, it employs goal modeling techniques from the area of Requirements
Engineering. Apart from concise visual representation, goal models are used for “what-if” anal-
ysis and reasoning. The second process that can be conducted by the Analyzer is the qualitative
evaluation of alternative design patterns application, producing patterns prioritization based
on user’s goals.

The Planner is a core component of the quality enhancement phase, responsible for pro-
ducing patterns on the ETL process that improve its quality, using as input information about
the process structure, current estimated metrics and goals and available patterns prioritization.
The available patterns toolset can be predefined and extended on a per case basis by the IT and
the resultingmodel after the integration of patterns is a logical model. This model includes a set
of configuration andmanagement operations that are not directly related to the functionality of
specific flow components, but are rather external to the process (e.g., security configurations).
These operations are necessary to complete the palette of available improvement steps for the

10 Chapter 1 Introduction

satisfaction of quality goals.
Deployment and Execution. Once users observe satisfactory estimations for their mea-

sures of interest, they will decide that the quality of the process is acceptable and thus it is ready
for deployment and execution.

In Chapter 3, we provide a more detailed view of this architecture, which has been pub-
lished in (Theodorou et al., 2014b). Furthermore, in the following chapters, we delve deeper
into each component of the Quality Enhancement phase of our proposed architecture and inves-
tigate raised research challenges.

1.5 CONTRIBUTIONS

The main objective of this thesis is to bring end-user requirements closer to ETL process im-
plementation and to promote automation and analysis capabilities as inherent attributes of the
process design. In this section, we present the main contributions of our conducted work. The
first contribution stems from the literature review that we realized, enabling us to obtain a
solid understanding of the research field; identify the issues and recognize the opportunities
arising from active research works; and present throughout this document the open challenges
and the state of the art of this field. Moreover, addressing the main objective of this thesis,
we define a user-centered conceptual modeling method for ETL processes that can facilitate
design decisions and runtime evaluation of alternative configurations based on user-defined
goals, as presented in Section 1.4. Following, we further describe the more concrete contri-
butions of this thesis mapped to the corresponding facets of data-intensive process design and
maintenance.

Analysis and Evaluation. As a first step towards quality-aware ETL, we introduce a sound
model for ETL process quality characteristics and the relationships among them, exposing a
perspective of trade-offs between different ETL quality dimensions. The model is complete
with regards to a systematic literature review that we conducted, through which we collected
and classified all the ETL quality aspects that have been proposed in literature. In addition, we
provide for each of these quality dimensions, measures and metrics that are backed by litera-
ture. Furthermore, we describe how this model can facilitate the use of Goal Modeling tech-
niques for reasoning and making informed decisions about alternative ETL implementations,
each of which can provide different fitness-to-use for end-users. We illustrate the latter by em-
ploying a goal model that supports the modeling of indicators and by applying it on alternative
use-case ETL processes with the same functionality but with different quality characteristics.

Simulation. Regarding ETL process simulation, we present a framework for automatic,
flow-aware generation of synthetic data to populate input data sources for supporting ETL pro-
cess quality testing and design processes. To this end, we present an extensive ETL operations
classification based on a review of popular ETL tools and we formalize their semantics for facil-
itating the automation of data generation. We introduce novel algorithms for ETL flow analysis
and operations semantics extraction that largely support our data generation process. Gener-
ated data from our methodology guarantee the coverage of the complete ETL flow or parts of
it, exposing its functional and non-functional properties. Our methodology supports highly
parametrizable data generation and data generation properties (distributions, operations selec-

1.5 Contributions 11

tivities) can be defined at various levels. To validate our approach, we implement a prototype
of our data generation framework following a modular layered architecture that we also de-
fine, for parsing, extraction, analysis and data generation. Using the implemented prototype,
we present experiments that show a linear trend of performance over ETL complexity, which
indicates scalability prospects of our approach.

Maintenance and Redesign. Concerning ETL process maintenance and redesign, we in-
troduce a novel empirical approach for mining ETL structural patterns. We formally define an
ETL pattern model and we illustrate how this model is instantiated using a training set of ETL
workflows to extract frequently reoccurring structural motifs. We provide a pattern-based anal-
ysis of ETL workflows, using themain control flow patterns from theWorkflow Patterns initiative
as a guide and we describe how ETL workflows can be modeled using a graph representation.
This modeling enables the use of graph algorithms, such as frequent subgraph discovery algo-
rithms for the mining phase and graph matching algorithms for the recognition phase. For
the latter, we adapt the VF2 algorithm (Cordella et al., 2001) with some optimizations and we
show through experiments how it can perform very well for ETL workflows. To this end, we
implement ETL processes from the TPC-DI framework to perform our experimental evalua-
tion. In addition, we present the most frequent ETL patterns that we identified in a set of 25
of these implemented processes, as well as the results from different configurations of the used
algorithms. Moreover, we illustrate how ETL patterns can be used for the translation of logi-
cal ETL models to their conceptual representation and for their quality-based evaluation at the
granular level of patterns. Finally, we implement a prototype of the Planner component of our
architecture and showcase how it can be used together with a repository of quality improvement
patterns to facilitate semi-automated quality-aware ETL redesign in a user-centered, iterative
manner.

1.6 THESIS OUTLINE

In Figure 1.3, we illustrate how different chapters of this thesis are related to the different com-
ponents of the Quality Enhancement phase of our architecture. In our view, the Functionality-
Based Design and the Deployment and Execution phases of our architecture have been adequately
covered by existing literature and thus extend beyond the scope of the research work presented
in this thesis. Moreover, the former has recently been extensively addressed in the PhD thesis
of a fellow colleague, Petar Jovanovic (Jovanovic, 2016) and the ETL Process Engine component
of the latter, has been designed and implemented during our collaborative work with a master
student Anton Kartashov, working on his master thesis (Kartashov, 2016).

After presenting the state of the art in our research area in Chapter 2, in Chapter 3, we
take a first step towards quality-aware ETL automation by defining a sound model for ETL pro-
cess quality characteristics and quantitative measures for each characteristic, based on existing
literature. Our model shows the dependencies among quality characteristics and can provide
the basis for subsequent analysis using Goal Modeling techniques. Hence, in this chapter, we
define the conceptual model used in the Analyzer component of our architecture, which is sub-
sequently used for our analysis and evaluation of ETL processes. We showcase the use of Goal
Modeling for ETL process design through a use case, where we employ the use of a goal model

12 Chapter 1 Introduction

that includes quantitative components (i.e., indicators) for evaluation and analysis of alterna-
tive design decisions.

In Chapter 4, we present our proposed automatic data generator (i.e., Bijoux) for ETL pro-
cess evaluation. Starting from a given ETL process model, Bijoux extracts the semantics of data
transformations, analyzes the constraints they imply over input data, and automatically gener-
ates testing datasets. Bijoux is highly modular and configurable to enable end-users to generate
datasets for a variety of interesting test scenarios (e.g., evaluating specific parts of an input ETL
process design, with different input dataset sizes, different distributions of data, and differ-
ent operation selectivities). Thus, the analysis presented in this chapter addresses the issues
related to the Process Simulator component of our architecture. We developed a running pro-
totype that implements the functionality of our data generation framework and we report our
experimental findings showing the effectiveness and scalability of our approach.

In Chapter 5, we propose a bottom-up methodology for the identification of ETL structural
patterns. We logically model the ETL workflows using labeled graphs and employ graph algo-
rithms to identify candidate patterns and to recognize them on different workflows, covering
the creation and utilization of the Patterns repository shown in our architecture. We showcase
our approach through a use case that is applied on implemented ETL processes from the TPC-
DI specification and we present mined ETL patterns. Our results suggest that our approach
can be used for the automatic translation of ETL workflows to their conceptual representation
and to generate fine-grained cost models at the granularity level of patterns. Given a train-
ing set of ETL process models, our methodology can build an ad-hoc repository of patterns
and insights on them. Subsequently, this intelligence can lead to informed design decisions
about ETL (re-)design, facilitating the evaluation of ETL workflows without the need for their
potentially costly execution.

In Chapter 6, we present a tool, called POIESIS, for automatic ETL process enhancement.
POIESIS is the implementation of the Planner component of our architecture and thus, it pro-
vides a user-centered environment for quality-aware analysis and redesign of ETL flows. It
generates thousands of alternative flows by adding flow patterns to the initial flow, in varying
positions and combinations, creating alternative design options in a multidimensional space
of different quality attributes. Through the presentation of POIESIS we introduce the tool’s
capabilities and highlight its efficiency, usability and modifiability, thanks to its polymorphic
design.

Finally, in Chapter 7, we summarize this thesis and discuss future work directions.

1.6 Thesis Outline 13

14 Chapter 1 Introduction

2
STATE OF THE ART

2.1 ETL Modeling

2.2 Quality of Data Intensive
Processes

2.3 Data Intensive Processes
Testing and Evaluation

2.4 ETL Patterns

ETL processes consist of software components and are operated by BU, handling data artifacts
and being themselves business processes that are crucial assets for enterprises at operational,
tactical and strategic levels. In this chapter, we present the state of the art in our research area,
discussing the strengths and limitations of current approaches, as well as opportunities that
arise from taking under consideration the multidisciplinary nature of ETL processes.

In Section 2.1, we visit approaches on ETL modeling, that foster ETL design automation
and expose quality dimensions, which need to be further investigated. The proposed mod-
eling opens up new paths towards ETL analysis and evaluation and offers the possibility to
apply novel optimization techniques to better align ETL processes with business needs. Re-
garding quality attributes, in Section 2.2 we review literature that has examined various quality
concerns in data-intensive activities and data warehousing in specific. We illustrate the contri-
butions of these approaches and we stress some points that need to be extended or examined
more carefully. Subsequently, in Section 2.3 we review interesting projects in the area of data
generation for testing and benchmarking databases, software and workflow processes and we
identify ideas that we can adapt for our case and gaps that have yet to be addressed for ETL pro-
cess evaluation. Finally, in Section 2.4 we discuss the state of the art in pattern-based analysis
of ETL processes and point out the missing angles that our work intends to cover.

2.1 ETL MODELING

Modeling and optimization of ETL processes has been an active research area over the past
few years, as an integral part of Data Warehousing and information discovery. In (Vassiliadis
et al., 2002), ETL activities are formally defined and classified and in (Castellanos et al., 2009)
the foundation for ETL automation is set by recognizing patterns and by defining appropriate
generic templates for populating business process data warehouses as a response to business
events. The authors abstract the warehousing process and introduce a process-based high-level
analysis of ETL design that is independent of concrete implementations. Their comprehensive
approach concerns the conceptual representation of ETL processes as well as its mapping to
the logical design, in an agile way that can support near real-time monitoring and analysis.

Regarding conceptual representation in particular, in (Simitsis et al., 2005), a workflow
paradigm is adopted for the modeling of ETL processes and a searching method is proposed
considering a state space where each workflow is a state. Concerning the peculiar nature of
ETL workflows, the authors consider alternative configurations of ETL processes and exam-
ine their optimization by reassembling the execution of activities within these processes. In
the same direction, in (Vassiliadis et al., 2009), a classification of ETL activities is provided,
through investigating the particular characteristics of ETL workflows. Thus, the authors intro-
duce a formal representation of workflows and activities based on patterns that they identify,
regarding the effect of these activities on data and the dependencies between them. The catego-
rization provided can constitute the basis for ETL process analysis and optimization by exposing
the interrelations between different data operators and the contribution of each activity to the
outcome of the ETL process. Despite the fact that the above-mentioned work provides a solid
conceptual background for ETL processes as workflows that consist of well-defined building
blocks, we believe that the level of abstraction should be raised higher in order for ETL mod-

16 Chapter 2 State of the Art

els to be usable to non-technical business users. In this respect, although these models offer
the capability of reasoning for low-level, logical optimization, it is important to improve ETL
process modeling in order to facilitate their assessment according to end-user requirements.

In an attempt to manage ETL processes on a conceptual level that reflects organizational
operations, it has been suggested that tools and models from the area of Business Process Man-
agement (BPM) should be used. BPM is the holistic approach that considers business processes
as the center of business management in order to improve organization’s performance in agile
and flexible environments, as explained by (Weske, 2012). BPM researchers and practitioners
have developed a wide set of tools and methodologies for business process evaluation, redesign
and automation (Dumas et al., 2013). Thus, ETL processes could benefit from the reuse of
standards and the accumulated knowledge and heuristics that have been successfully applied
and tested in production environments over the past years. One other advantage that BPM can
offer to ETL processes is the use of models that can expose warehousing activities as part of
business operations and provide a useful perspective both to business managers and IT. Follow-
ing this concept, in (Wilkinson et al., 2010), business process models for a conceptual view of
ETL are proposed that can depict the dynamic nature of such processes in a real-time angle.
One important aspect of this work is that it captures business requirements –both functional
and non-functional– to drive the design of ETL processes using the Business Process Model-
ing Notation (BPMN)1. To achieve this conceptual modeling it considers BPMN activities as
ETL data flow and it identifies other patterns that map to control flow specifically for ETL pro-
cesses. In addition, it transfers quality objectives through all design levels by annotating the
model with XML-like constructs that the authors call QoX metrics. Consequently it explains the
relationship between different layers of abstraction for the processes and how the conceptual
level can be mapped to logical level and tool-specific implementations. This modeling frame-
work can be a stepping stone on our way to embed user goal semantics to ETL processes, but
would need to be extended from its current form that focuses on performance metrics.

In a similar manner, (Akkaoui et al., 2013) focuses on the conceptual level and provides
a more specific classification of ETL data flow and control flow by presenting a BPMN-based
meta-model for ETL processes and describing a systematic approach of code generation from
BPMNmodels. The meta-model in this work derives from a study of various existing industrial
ETL tools and their conceptual modeling is illustrated through a running example. These ap-
proaches make the crucial step of examining ETL models in an outlook that brings them closer
to the business core and allows their validation and evaluation based on user input. However,
we believe that these models should be even more flexible and support the definition of quality
parameters at more angles. Thus, the mapping of conceptual representation to logical opera-
tors is not sufficient – neither for the understanding of ETL dynamics from business users nor
for the reasoning for process re-engineering corresponding to requirements.

Several different approaches to ETL modeling and automation have also been proposed.
For example, (Muñoz et al., 2008; Muñoz et al., 2009) proposes anMDA2 approach for the de-
velopment of ETL processes, where ETL activities constitute the block units of UML3 activity
diagrams among which there is control flow. The proposed framework can enable automatic

1http://www.bpmn.org
2http://www.omg.org/mda/
3http://www.uml.org/

2.1 ETL Modeling 17

code generation from the conceptual model, using tools and techniques from the area of Model
Driven Engineering (MDE). Using UML for modeling and QVT4 for model transformation, it
provides an implementation-hiding meta-model for ETL as well as the required methodology
for the development of ETL processes. This approach fosters model checking and automation
for ETL processes, but perhaps makes it challenging to connect them with other business pro-
cesses and organizational resources.

MDA also plays a significant role in (Böhm et al., 2009b,a), which identifies development
effort, portability and efficiency as the main issues regarding integration processes. To tackle
the first two, it proposesmodel-driven generation and the distinction of different levels for inte-
gration processes– conceptual, logical and physical level, however in a different view compared
with (Wilkinson et al., 2010). It considers the generic domain of integration processes and it
assumes that the implementation can be realized using different integration systems (ETL,
FDBMS and others). In order to cope with performance, it makes an additional abstraction on
the logical level that enables platform-independent optimization of integration processes. This
approach is introduced as the GCIP framework for which a macro-architecture is provided.
The proposed framework enables the use of model-driven techniques for the rule-based and
workload-based optimization of complex integration processes, by configuring their internal
logical design as well as by selecting the most efficient target integration system to implement
the process. This framework can provide the baseline for performance-based optimization of
ETL processes on a logical level and propagation of configurations to low level implementation
with minimal user interaction.

Another interesting approach that formalizes data operations is the artifact-centric ap-
proach to design and development of business processes. (Bhattacharya et al., 2007) studies
feasibility issues of artifact-centric models that can couple the data and control flow of busi-
ness processes. Based on business artifacts, rules and services, a business process model is de-
fined that captures the complete life-cycle and semantics of artifacts that are important for the
achievement of business goals. Similarly, (Bagheri Hariri et al., 2011) adopts an artifact-centric
approach specifically for relational artifacts, where data are represented by relational databases.
It uses µ-calculus to represent properties and actions through which business artifacts transit
to different states and it shows how formal analysis concludes about the decidability of reason-
ing over “weakly” acyclic processes. This approach facilitates the formal representation of rules
and states within the business process life-cycle and thus the ground-basis for proving models’
feasibility, decidability, integrity and so on. Nonetheless, besides their theoretical value, the
difficulty of these models to be comprehended and their limited expressiveness as a price for
their completeness, makes it challenging to be used in practice in BI context.

Summing up, it has been suggested in literature that ETL processes can be modeled in var-
ious ways, each exposing some perspective that can take advantage of existing work in related
research areas. Although it has been shown how such modeling can promote performance
optimization and cost-efficiency, a more high-level modeling that can extend these ideas and
make the ETL design process more user-centered, focusing on bridging end user goals to ETL
activities, is still missing.

4http://www.omg.org/spec/QVT/1.1/

18 Chapter 2 State of the Art

2.2 QUALITY OF DATA INTENSIVE PROCESSES

The approaches mentioned so far focus on ETL process executability and performance, but it
is apparent that ETL process models need to be enriched with some notion of data utility to
the business users, as a result of process characteristics. Current research covers the area of
Data Quality, mostly concerning data consistency, data deduplication, data accuracy, informa-
tion completeness and data freshness. For example (Batini et al., 2009) defines the basic data
quality issues that form the basis for data quality assessment and improvement process. Based
on that it compares existing methodologies towards that direction and thus presents the main
techniques that are available as well as their applicability to different situations. Similarly,
(Sadiq et al., 2011) defines and categorizes most important issues of data quality management
through extensive literature study, stressing the interdisciplinarity of the field, where business
analysts, solution architects and database experts all come up with different approaches to-
wards data quality enforcement. It classifies quality concerns, metrics and locate trends and
synergies among different communities in the area over the past two decades.

A more recent approach that focuses on data quality in service-oriented environments
(Dustdar et al., 2012) stresses the importance of quality parameters for today’s data that is
being exchanged between different entities in very high rates. It identifies the challenges of
using Service Oriented Architecture (SOA) concepts such as Service Level Agreements (SLAs)
within data networks and proposes a new research direction for quality-aware data services.
Such an approach can also be followed for ETL processes where the data service is the process-
ing of source data for the destination warehouse. It is obvious that data quality is not the only
concern for the optimal design of ETL processes and other, user-centered requirements should
be considered as well, such as data availability, reliability, security and process cost-efficiency.
Particularly about data quality cost, a comprehensive classification is provided in (Eppler and
Helfert, 2004) that points out the considerable losses –direct as well as indirect– deriving from
low quality of data.

Quality has always been a central concern for data warehouses, mainly due to the costly
resources invested in their development. Focusing on Information Quality, (Naumann, 2002)
provides a comprehensive list of criteria for the evaluation of Information Systems for data inte-
gration. Likewise, (Jarke et al., 2003) identifies the various stakeholders in Data Warehousing
activities and the differences in their roles as well as the importance of reasoning among al-
ternative quality concerns and how that affects design choices. (Jarke et al., 1999) takes the
important step of introducing a business perspective to data warehouse quality, by introducing
an extended architecture with different conceptual levels, which enables separation of con-
cerns as well as traceability from client intentions to physical data models. It also captures the
notion of goal negotiation for conflicting quality goals.

The significance of quality characteristics for the design and evaluation of ETL processes
has also gained attention recently. (Simitsis et al., 2009b) recognizes the importance of con-
sidering not only process functionality but also quality metrics throughout a systematic ETL
process design. Thus, it defines a set of quality characteristics specific to ETL processes (QoX
metrics) and provides guidelines for reasoning about the degree of their satisfaction over alter-
native designs and the tradeoffs among them. A more recent work that has also considered
the ideas from Simitsis et al. (2009b) is (Pavlov, 2013). Based on well-known standards for

2.2 Quality of Data Intensive Processes 19

Feature (Dustdar
et al.,
2012)

(Naumann, 2002) (Jarke et al.,
2003, 1999)

(Simitsis et al.,
2009b)

(Pavlov,
2013)

Highlight data
quality

Yes Yes Yes Yes No

Identification of
quality tradeoffs

No Partially, quality in
multi-dimensional
space

No Yes and tenta-
tive methodol-
ogy proposed

No

Connection to
design and/or
implementation
decisions

Information
service
selection

Data sources selec-
tion

Good practices
for DW

Improvement
steps for spe-
cific quality
aspect

Only connec-
tion to differ-
ent ETL sub-
systems

Figure 2.1: Comparison of approaches on ETL quality

software quality, the author maps software quality attributes to ETL specific parameters which
he calls QoX factors. He defines these factors in ETL context and reasons about the impact that
the different ETL subsystems might have on each characteristic.

In the last years, there has been an effort in the area of Business Process Management to
quantify process quality characteristics and to empirically validate the use of well-defined met-
rics for the evaluation of specific quality characteristics. In this respect, (García et al., 2004)
proposes a framework for managing, modeling and evaluating software processes; defines and
experimentally validates a set of measures to assess, among others understandability and modi-
fiability of processmodels. Similar empirical validation is provided by (Sánchez-González et al.,
2012), which relates understandability and modifiability to innate characteristics of business
process models.

To sum up, the area of ETL process quality characteristics has not yet been studied thor-
oughly enough to take advantage of applicable advances from other research areas. For in-
stance, data quality is a well-studied area and it needs to be highlighted as a core character-
istic, that is directly affected by design choices regarding the ETL process. Although some
approaches have identified the potential of recognizing different perspectives of ETL processes
(e.g., business process perspective), a holistic approach that combines and extends these ideas,
making them applicable to practical ETL analysis and design scenarios, is still missing.

In Figure 2.1, we show a comparative summary of the data-intensive process quality ap-
proaches mentioned in this section. As we show, the tradeoff analysis of how improving some
quality dimension can affect others has not yet been explicitly covered. The same holds for the
relationship between quality measures and actionable process design decisions. Our approach
differs from the above-mentioned ones in that we specifically focus on the process perspective
of ETL processes. Instead of providing some characteristics as examples like (Simitsis et al.,
2009b), we propose a comprehensive list of quality characteristics and we adjust them for our
case, also describing the tradeoffs among them. In addition, for each of these characteristics
we provide quantitative metrics that are backed by literature.

20 Chapter 2 State of the Art

2.3 DATA INTENSIVE PROCESSES TESTING AND EVALUA-
TION

Software development and testing. In the software engineering field, test-driven development has
studied the problem of software development by creating tests cases in advance for each newly
added feature in the current software configuration (Beck, 2003). However, in our work, we
do not focus on the design (i.e., development) of ETL processes per se, but on automating the
evaluation of quality features of the existing designs. We analyze how the semantics of ETL
processes entail the constraints over the input data, and then consequently create the testing
data. Similarly, the problem of constraint-guided generation of synthetic data has been also
previously studied in the field of software testing (DeMillo and Offutt, 1991). The context
of this work is the mutation analysis of software programs, where for a program, there are
several “mutants” (i.e., program instances created with small, incorrect modifications from the
initial system). The approach analyzes the constraints that “mutants” impose to the program
execution and generates data to ensure the incorrectness of modified programs (i.e., “to kill
the mutants”). This problem resembles our work in a way that it analyzes both the constraints
when the program executes and when it fails to generate data to cover both scenarios. However,
this work mostly considered generating data to test the correctness of the program executions
and not its quality criteria (e.g., performance, recoverability, reliability, etc.).

Data generation for relational databases. Moving toward the database world, (Zhang et al.,
2001) presents a fault-based approach to the generation of database instances for application
programs, specifically aiming to the data generation problem in support of white-box testing of
embedded SQL programs. Given an SQL statement, the database schema definition and tester
requirements, the approach generates a set of constraints, which can be given to existing con-
straints solvers. If the constraints are satisfiable, a desired database instances are obtained. Sim-
ilarly, for testing the correctness of relational DB systems, a study in (Chays et al., 2000) pro-
poses a semi-automatic approach for populating the database with meaningful data that satisfy
database constraints. Work in (Arasu et al., 2011) focuses on a specific set of constraints (i.e.,
cardinality constraints) and introduces efficient algorithms for generating synthetic databases
that satisfy them. Unlike the previous attempts, in (Arasu et al., 2011), the authors generate
synthetic database instance from scratch, rather than by modifying the existing one. Further-
more, (Binnig et al., 2007) proposes a query-aware test database generator called QAGen. The
generated database satisfies not only constraints of database schemata, table semantics, but also
the query along with the set of user-defined constraints on each query operator. Other work
(Houkjær et al., 2006) presents a generic graph-based data generation approach, arguing that
the graph representation supports the customizable data generation for databases with more
complex attribute dependencies. The approach most similar to ours (Lakhotia et al., 2007)
proposes a multi-objective test set creation. They tackle the problem of generating "branch-
adequate" test sets, which aims at creating test sets to guarantee the execution of each of the
reachable branches of the program. Moreover, they model the data generation problem as a
multi-objective search problem, focusing not only on covering the branch execution, but also
on additional goals the tester might require, e.g., memory consumption criterion. However,
the above works focus solely on relational data generation by resolving the constraints of the

2.3 Data Intensive Processes Testing and Evaluation 21

existing database systems. Our approach follows this line, but in a broader way, given that Bi-
joux is not restricted to relational schema and is able to tackle more complex constraint types,
not supported by the SQL semantics (e.g., complex user defined functions, pivot/unpivot). In
addition, we do not generate a single database instance, but rather the heterogeneous datasets
based on different information (e.g., input schema, data types, distribution, etc.) extracted
from the ETL flow.

Benchmarking data integration processes. In amore general context, both research and indus-
try are particularly interested in benchmarking ETL and data integration processes in order to
evaluate process designs and compare different integration tools. The vision of invisible deploy-
ment of integration processes (Böhm et al., 2009a) could not be realized effectively without the
use of defined performance metrics that can expose performance characteristics of processes
and constitute concrete toolsets for their evaluation. (Böhm et al., 2008) introduces a scalable
framework for benchmarking of possibly heterogeneous integration systems. Inspired by real-
life scenarios, it identifies three scale factors– datasize, time and distribution– and provides
a platform-independent benchmark that estimates the cost of integration processes. The au-
thors provide a macro- and micro-architecture of their framework and they claim modifiability
and usability of the framework in order to be effortlessly tuned and integrated with existing
systems for specific use-cases. Plenty other tools have also been proposed for benchmarking
of workflow processes and for evaluating integration functionalities. Specifically for ETL pro-
cesses, (Simitsis et al., 2009a) identifies the most common operational constructs in ETL en-
vironments and provides a classification of ETL operations and analysis of how they affect the
functionality of process execution. This approach can be seen as a first step towards formalizing
common ETL operations that are found in multiple ETL tools as well as their functional impli-
cations.Both these works note the lack of a widely accepted standard for evaluating data inte-
gration processes. The former work focuses on defining a benchmark at the logical level of data
integration processes, meanwhile assessing optimization criteria as configuration parameters.
Whereas, the later works at the physical level by providing a multi-layered benchmarking plat-
form called DIPBench used for evaluating the performance of data integration systems. These
works also note that an important factor in benchmarking data integration systems is defining
similar workloads while testing different scenarios to evaluate the process design and measure
satisfaction of different quality objectives. These approaches do not provide any automatable
means for generating benchmark data loads, while their conclusions do motivate our work in
this direction.

General data generators. Other approaches have been working on providing data generators
that are able to simulate real-world data sets for the purpose of benchmarking and evaluation.
(Gray et al., 1994) presents one of the first attempts of how to generate synthetic data used
as input for workloads when testing the performance of database systems. It mainly focuses
on the challenges of how to scale up and speed up the data generation process using parallel
computer architectures. In (Ming et al., 2014), the authors present a tool called Big Data Gen-
erator Suite (BDGS) for generating Big Data meanwhile preserving the 4V characteristics of
Big Data5. BDGS is part of the BigDataBench benchmark (Luo et al., 2014) and it is used to
generate textual, graph and table structured datasets. BDGS uses samples of real world data,

5volume, variety, velocity and veracity

22 Chapter 2 State of the Art

analyzes and extracts the characteristics of the existing data to generate loads of “self-similar”
datasets. In (Rabl et al., 2010), the parallel data generation framework (PDGF) is presented.
PDGF generator uses XML configuration files for data description and distribution and gener-
ates large-scale data loads. Thus its data generation funcionalities can be used for benchmark-
ing standard DBMSs as well as the large scale platforms (e.g., MapReduce platforms). Other
prototypes (e.g., (Hoag and Thompson, 2007)) offer similar data generation functionalities.
In general, this prototype allows inter-rows, intra-rows, and inter-table dependencies which are
important when generating data for ETL processes as they must ensure the multidimensional
integrity constraints of the target data stores. The above mentioned data generators provide
powerful capabilities to address the issue of generating data for testing and benchmarking pur-
poses for database systems. However, the data generation is not led by the constraints that the
operations entail over the input data, hence they cannot be customized for evaluating different
quality features of ETL-like processes.

Process simulation. Lastly, given that the simulation is a technique that imitates the behav-
ior of real-life processes, and hence represents an important means for evaluating processes
for different execution scenarios (Paul et al., 1998), we discuss several works in the field of
simulating business processes. Simulation models are usually expected to provide a qualitative
and quantitative analysis that are useful during the re-engineering phase and generally for un-
derstanding the process behavior and reaction due to changes in the process (Law et al., 1991).
(Becker et al., 2003) further discusses several quality criteria that should be considered for the
successful design of business processes (i.e., correctness, relevance, economic efficiency, clarity,
comparability, systematic design). However, as shown in (Jansen-Vullers and Netjes, 2006) most
of the business process modeling tools do not provide full support for simulating business pro-
cess execution and the analysis of the relevant quality objectives. We take the lessons learned
from the simulation approaches in the general field of business processes and go a step further
focusing our work to data-centric (i.e., ETL) processes and the quality criteria for the design of
this kind of processes (Simitsis et al., 2009b; Theodorou et al., 2016).

2.4 ETL PATTERNS

As described above, there has been considerable work in the area of ETL modeling, in an ef-
fort to promote automation through the definition of structural abstractions and systematic
methodologies for the design and analysis of ETL models. The modeling of ETL processes
using well defined, reusable components interacting as workflow activities has set the founda-
tions for their pattern-based analysis and design. In the Business Process Management (BPM)
community, such analysis has already taken place, with significant work conducted as part of
the Workflow Patterns Initiative (Van Der Aalst et al., 2003; Russell et al., 2005). This work
examines workflows and various different WorkflowManagement Systems (WfMSs) and iden-
tifies a set of recurring features (i.e., patterns). It takes under consideration the modeling lan-
guages used for the design and the modeling notation of business process models and extracts a
number of patterns to describe mostly control-flow and data-flow semantics commonly offered
by WfMSs. In (Gschwind et al., 2008), there is a practical illustration of how such patterns
can be introduced and integrated into an existing business process model and in (Mussbacher

2.4 ETL Patterns 23

Feature (Simitsis et al.,
2009a)

(Oliveira and Belo,
2015; Oliveira et al.,
2014, 2013)

(Van Der Aalst
et al., 2003;
Russell et al.,
2005)

Application on ETL Yes Yes Not straight-
forward

Pattern identification method Expertise Expertise Tools examina-
tion

Pattern granularity Complete ETL
workflow

ETL tasks Atomic steps

Pattern reusability Not supported High Needs configura-
tions

Connection with quality charac-
teristics

Only performance
but not well-studied

Only correctness Not addressed

Figure 2.2: Comparison of pattern-based approaches

et al., 2010), the application of patterns on a business process is linked to the strategic decision
making level, through its mapping to business goals and non-functional requirements (NFRs).

When it comes to patterns in ETL activities, in (Simitsis et al., 2009a) there is a profiling
of ETL workflows with models called Butterflies, based on their form with regards to the distri-
bution of activities relatively to the beginning (i.e., data extraction) and the ending (i.e., data
loading) part(s) of the ETL process. Such categorization captures the idea of linking discrete
ETL components to ETL requirements, e.g., by providing some indication about their compu-
tational or memory needs based on their structural morphology. However, it is not described
in detail how the example ETL archetypes presented can co-exist as different parts of the same
ETL process, nor is any valid methodology for the quantification of the relationships between
Butterflies recognition and implications on the workflow proposed.

More recently, the authors in (Oliveira and Belo, 2015) further extend their line of research
(Oliveira et al., 2014, 2013) on ETL patterns and propose the grouping of ETL operations to ab-
stract their functionality and form known generic ETL activities. To this end, they formulate
a pallet of most used data warehousing tasks in real world and propose the design of ETL pro-
cesses by using workflows that comprise of customizations of these patterns. Although their
work fosters reusability and correctness, one important limitation stems from the definition of
universal patterns in a top down approach. In this respect, the pattern-based analysis of random
ETL workflows that have been designed or implemented with the use of different technologies
might not easily lead to their decomposition in a-priory classified components that are useful
for the specific analysis. In other words, this approach assumes that the ETL workflow models
comply to some arbitrary-built pattern classification, whereas we advocate that it would make
more sense for patterns to be dynamically constructed in an ad-hoc fashion, based on the type
of analysis on one hand and the type of examined workflows on the other.

In Figure 2.2, we show a comparison of the main features of the above-mentioned ap-
proaches, exposing their strengths and the open challenges. To our knowledge, there is cur-
rently nowork suggesting the ETL pattern-oriented analysis using a bottom-up approach, where
patterns are gathered in an evidence-based manner. Thus, our work is the first one to introduce

24 Chapter 2 State of the Art

the idea of mining frequent ETL components to identify valid patterns for the purpose of the
analysis, at an adequate granularity level, instead of relying on experience or expertise to de-
fine some stiff, universal motifs. In addition, it aims to open the door to quantitatively relating
a number of different ETL quality characteristics to ETL patterns, which is not supported by
existing approaches.

2.4 ETL Patterns 25

26 Chapter 2 State of the Art

3
QUALITY MEASURES FOR ETL

PROCESSES

3.1 Extracting Quality Charac-
teristics

3.2 Characteristics with Con-
struct Implications

3.3 Characteristics for Design
Evaluation

3.4 Goal Modeling for ETL de-
sign

3.5 User-centered ETL
Optimization

3.6 Summary and Outlook

ETL processes are centred around artifacts with high variability and diverse lifecycles, which
correspond to key business entities. The apparent complexity of these activities has been ex-
amined through the prism of Business Process Management, mainly focusing on functional
requirements and performance optimization. However, the quality dimension has not yet been
thoroughly investigated and there is a need for a more human-centric approach to bring them
closer to business-users requirements.

In this chapter, we address the challenge of ETL process quality modeling in order to pro-
mote automation and dynamicity, as described in Section 1.1. To this end, we identify the
opportunities stemming from different ETL perspectives in order to bring a common ground
between analysts and IT by connecting end-user requirements to design decisions. We take a
first step towards quality-aware design automation by defining a set of ETL process quality char-
acteristics and the relationships between them, as well as by providing quantitative measures for each
characteristic. For this purpose, we conduct a systematic literature review, extract the relevant
quality aspects that have been proposed in literature and adapt them for our case. Subsequently,
we produce a model that represents ETL process quality characteristics and the dependencies
among them. In addition, we gather from existing literature metrics for monitoring all of these
characteristics to quantitatively evaluate ETL processes. Our model can provide the basis for
subsequent analysis that will use Goal Modeling techniques (van Lamsweerde, 2001) to reason
and make design decisions for specific use cases, as we showcase through the application of a
Goal Model with quantitative components (i.e., indicators) to a running example.

Themodel for ETL qualitymeasures presented in this chapter has been published in (Theodorou
et al., 2014a) and an extended journal version of this paper, including the goal modeling tech-
niques presented in this chapter, has been published in (Theodorou et al., 2016).��������	
����
�����

��
�
���������
���
�����

��

�
��
��
�������
�����
��
�������

�����
��

��

 �������
���������

�	��
��
����

 ������!
"
����!

#������
��
��������

 �������!
�
�����!��������

�����������

 ���
��������

��
�������

 �������
���������
������

$������%
�����������
������

 ����������
�������
��

�������������
�������

Figure 3.1: CM_A: A simple conceptual model of the running example ETL

Running Example. We illustrate how our model works through a running example, based
on the TPC-H benchmark1. The running example is an ETL process, which extracts data from
a source relational database (TPC-H DB) and after processing, loads data to a data warehouse
(DW) and can be described by the following query: Load in the DW all the suppliers in Europe
together with their information (phones, addresses etc.), sorted on their revenue. The tables that are
used from the source database are Supplier, Nation, Region and Lineitem. After Supplier entries
have been filtered to keep only suppliers in Europe, the revenue for each supplier is calculated
based on the supplied lineitems and subsequently, they are sorted on revenue and loaded to the
DW. One simple conceptual model (CM_A) for this process is depicted in Fig. 3.1, using the
Business Process Model and Notation (BPMN2).

1
http://www.tpc.org/tpch/

2
http://www.bpmn.org

28 Chapter 3 Quality Measures for ETL Processes

http://www.tpc.org/tpch/
http://www.bpmn.org

��������	
����
�����������	

��
�
���������
���
�����

��

�
��
��
�����������

�
��
�������

�����
��

��

 ����������
�������	��
�������

 ������

 �������

 ���
��������

��
�������

 ����������
������
������

!������"
�����������
������

 ����������
�������
��

�������������
�������

�
�� �������
�����������������

����

�������
���������

������������
���������#�
��

�������
���������

��
����
�������

��
�
����������
��
��
���

����������
��
��
���

 ��������
��

�������
����� ����������������

�	��
�������
$
����%�&�����

�����������

 �����������������

$
�����%��������

�����������

�
��
��
�����������

�
��
�������

 ����������
������

 ����������
�������
��

�������������
�������

�������
'��������
�"

�
�

����#�����

���()*++(,(
���������-���

Figure 3.2: CM_B: Conceptual model of the running example ETL, including additional tasks

An ETL process can be designed in more than one way, each design offering different ad-
vantages over the other. In Fig. 3.2 we can see an alternative conceptual model (CM_B) for our
example ETL process with the same functionality as CM_A (Fig. 3.1), yet including additional
tasks. It includes a Web Service (WS) call to complete suppliers’ info and improve data com-
pleteness; crosschecking with an external data source to correct information and improve data
accuracy; replication of the revenue calculation step to improve robustness; and the addition
of a recovery point to improve recoverability. In the following sections we will show through
our running example how our proposed models can be used as a basis for i) quality-aware eval-
uation of ETL processes and ii) ETL process re-design that uses as input only the user-defined
importance of different quality characteristics. For the former, we show how the two alterna-
tive designs of the same ETL process, despite having the same functionality, differ in quality
characteristics in a way that can be quantified, using the measures that we have identified. For
the latter, we showcase a user-centered method that starts with the design of CM_A; incremen-
tally generates patterns on the process in order to improve specific quality characteristics; and
(semi)-automatically produces the design of CM_B and its corresponding implementation.

The chapter is organized as follows. In Section 3.1, we present the extraction of our model
from related work. The definitions, measures and dependencies among characteristics are
presented in Section 3.2 and Section 3.3, where we distinguish between characteristics with
construct implications and those only for design evaluation, respectively. In Section 3.4, we
present goal modeling frameworks and in Section 3.5, we validate the usefulness of our models
and showcase through examples how they can be used for quality-based ETL process evaluation
and redesign. Finally, we provide our conclusions in Section 3.6.

3.1 EXTRACTING QUALITY CHARACTERISTICS

Our model mainly derives from a systematic literature review that we conducted, following
the guidelines reported in (Kitchenham et al., 2009). The research questions addressed by this
study are the following:
RQ1) What ETL process quality characteristics have been addressed?
RQ2) What is the definition for each quality characteristic?

Our search process used an automated keyword search of SpringerLink3, ACM Digital Li-

3
http://link.springer.com

3.1 Extracting Quality Characteristics 29

http://link.springer.com

C
haracteristic

B
arbaccietal.(1995)

Sim
itsis

etal.(2009b)
Jarke

etal.(2003)
Pavlov

(2013)
N
aum

ann
(2002)

D
ustdar

etal.(2012)
kim

(cited
January

2014)

Characteristics with construct implications

data
quality

-
data

characteristics
quality

dim
ensions

-
relevancy,reputation

data
quality

data
quality

data
accuracy

data
accuracy

accuracy
accuracy

data
com

pleteness
data

com
pleteness

com
pleteness

com
pleteness

data
freshness

freshness
data

freshness,tim
eliness

tim
eliness

tim
eliness

data
consistency

consistency
data

coherence,
correctness,m

inim
ality

consistentrepresentation
consistency

consistency,
deduplication,data

conform
ance

data
interpretability

interpretability
interpretability

perform
ance

perform
ance

perform
ance

perform
ance,softw

are
efficiency

perform
ance

efficiency
-

perform
ance

-

tim
e
efficiency

latency
latency

tim
e
behaviour

latency,response
tim

e
paralleling

&
pipelining

resource
utilization

resource
utilization

change
data

capture
capacity

capacity,throughput
quality

ofservice
m
odes

m
odes

typesoffacttables
costeffi

ciency
-

cost,affordability
-

-
value-added,price

pricing
-

upstream
overhead

-
overhead

ofsource
system

s
-

upstream
overhead

-
-

-

security
security

-
security

-
security

security
security

confidentiality
confidentiality

com
pliance

m
anagem

ent
integrity

integrity
availability

availability
availability

availability
availability

availability
auditability

-
auditability

-
auditability

-
provenance

lineage
&
dependency

traceability
traceability

traceability
traceability

docum
entation

self-docum
enting

reliability
reliability

reliability
reliability

reliability
-

reliability
reliability

processavailability
availability

responsiveness
availability

availability
faulttolerance

faulttolerance
faulttolerance

robustness
integrity

robustness
robustness

recoverability
recoverability

recoverability
recoverability,problem

escalation

Characteristics for
design evaluation

adaptability
-

-
-

adaptability
-

-
-

scalability
scalability

scalability
scalability

flexibility
flexibility

reusability
portability

reusability
usability

-
-

usability
-

-
-

visibility

understandability
concise

representation,
understandability

understanding
source

data

m
anageability

-
-

-
m
odularity,analyzability

-
-

m
anageability

m
aintainability

m
aintainability

m
aintainability

m
aintainability

m
aintainability

m
aintainability

testability
validation

testability
verifiability

n/a

safety
accessibility,usefulness,

believability

custom
ersupport,

believability,objectivity,
am

ountofdata
licencing

Figure
3.3:ETL

ProcessC
haracteristics

30 Chapter 3 Quality Measures for ETL Processes

brary4, ScienceDirect5 and IEEE Xplore6. Thus, we searched not one, but multiple electronic
resources, following the guidelines from (Brereton et al., 2007). These electronic resources
were chosen because of their popularity within the software engineering community — and
the data warehousing research domain in specific — and because we found during our review
planning phase that other indexing services (e.g., Citeseer library, Google scholar) only include
for our topic of interest, a subset of the material found in our chosen resources. Our goal was to
gather all peer-reviewed studies related to our search and therefore we selected a set of resources
that is complete with respect to international conference publications, journals and books in
the research area of data warehousing.

The search strings were the following:

• (quality attributes OR quality characteristics OR qox) AND (“etl” OR “extraction trans-
formation loading”) AND (“information technology” OR “business intelligence”)

• (quality attributes OR quality characteristics OR qox) AND (“data integration” OR “infor-
mation systems integration” OR “data warehouses”) AND (“quality aware” OR “quality
driven”)

The inclusion criterion for the studies was that they should identify a wide range of quality
characteristics for data integration processes and thus only studies that mentioned at least 10
different quality characteristics were included. The quality characteristics could refer to any
stage of the process as well as to the quality of the target repositories as a result of the process.
We should mention at this point that there exists a large number of studies focusing specifically
on the quality dimension of Data Quality, but the rationale of our search was to gather all
different quality dimensions previously studied, which justifies our inclusion criterion. One
exclusion criterion was that studies should be written in English. Whenever multiple studies
from same line of work were identified, our approach was to include the most recent or the
most extensive version of the study.

The result of our selection process was a final set of 5 studies. Nevertheless, in an attempt
to improve the completeness of our sources, we also considered the ETL subsystems as de-
fined in (kim, cited January 2014) for an industry perspective on the area, as well as standards
from the field of software quality. Regarding software quality, our approach was to study the
work in (Barbacci et al., 1995) and include in our model all the attributes relevant to ETL pro-
cesses, with the required definition adjustments. This way we reviewed a commonly accepted,
generic taxonomy of software quality attributes, while at the same time avoiding the adherence
to more recent, strictly defined standards for practical industrial use, which we are neverthe-
less aware of (Al-Qutaish, 2009). The complete list from the resulting 7 sources, covering the
most important characteristics from a process perspective can be seen in Fig. 3.3. In many
cases we discovered that the same quality characteristic was referenced using a different term
(synonym) and that term is shown at the corresponding table cell under each approach.

Data quality is a prime quality chracteristic of ETL processes. Its significance is recognized
by all the approaches presented in our selected sources, except for (Pavlov, 2013) and (Barbacci

4
http://dl.acm.org

5
http://www.sciencedirect.com/

6
http://ieeexplore.ieee.org

3.1 Extracting Quality Characteristics 31

http://dl.acm.org
http://www.sciencedirect.com/
http://ieeexplore.ieee.org

et al., 1995), since the factors in their analyses derive directly or indirectly from generic soft-
ware quality attributes. Our model was enriched with a more clear perspective of data quality
in Information Systems and a practical view of how quality criteria can lead to design decisions,
after reviewing the work in (Naumann, 2002). Although this framework is intended for inter-
operation of distributed Information Systems in general, many aspects are clearly applicable in
the case of ETL processes where data sources can be found in diverse locations and types.

Performance, was given attention by all presented approaches , which was expected since
time behavior and resource efficiency are the main aspects that have traditionally been exam-
ined as optimization objectives. On the other hand, (Pavlov, 2013) and (Simitsis et al., 2009b)
were the only approaches to include the important characteristic of upstream overhead. How-
ever, (Pavlov, 2013) does not include security, which is discussed in the rest of the works. The
same is true for auditability, which is absent from (Barbacci et al., 1995) but found in all other
works. Reliability on the other hand, is recognized as a crucial quality factor by all approaches.
As expected, the more abstract quality characteristics adaptability and usability are less com-
monly found in the sources, in contrast with manageability which is found in all approaches
except for (Dustdar et al., 2012), which does not discuss about intangible characteristics.

Although we include cost efficiency in Fig. 3.3, in the remainder of this chapter this char-
acteristic is not examined as the rest. The reason is that we view our quality-based analysis in
a similar perspective as (Kazman et al., 2001), who consider cost as a separate concern to the
rest of the attributes, according to which any quality attribute can be improved by spending
more resources and it is a matter of weighting the benefits of this improvement to the required
cost that can lead to rational decisions. In our case, cost is considered to act as a restriction to
the search space of alternative process designs. In addition, we regarded safety as non-relevant
for the case of ETL processes, since these processes are computer-executable, non-critical and
hence the occurrence of accidents or mishaps is not a concern. Similarly, we considered that
the characteristics of accessibility, usefulness, customer support, believability, amount of data and
objectivity found in (Jarke et al., 2003) and (Naumann, 2002) are not relevant for our case, as
they refer to the quality of source or target repositories, yet do not depend on the ETL process.
Likewise, licencing (Dustdar et al., 2012) refers to concrete tools and platforms while our ETL
quality analysis is platform independent.

Thus, we regarded for our models only characteristics that are related to the process per-
spective of the ETL and other aspects, such as characteristics of the source or target reposito-
ries, which are independent of the process, were considered to extend beyond the concern of
this study. In this respect, we disregarded ETL quality dimensions specific to the target data
warehouse, such as the quality of OLAP modeling (e.g., schemata, hierarchies). Nevertheless,
our assumption is that the ETL processes evaluated by our models are functionally correct and
produce output corresponding to the target repositories’ data modeling. Hence, as we will show
in the following sections, our method for process redesign receives as input an ETL process that
has been designed respecting the information requirements of the data warehouse.

Through our study we identified that there are two different types of characteristics —
characteristics that can actively drive the generation of patterns in the ETL process design and
characteristics that cannot explicitly indicate the use of specific design patterns, but can still be
measured and affect the evaluation of and the selection among alternative designs. In the re-
mainder of this chapter we refer to the first category as characteristics with construct implications

32 Chapter 3 Quality Measures for ETL Processes

and to the second as characteristics for design evaluation.

3.2 CHARACTERISTICSWITHCONSTRUCT IMPLICATIONS

In this section, we present our model for characteristics with construct implications. Subse-
quently, we show the relationships between different characteristics and showcase the use of
our model through our running example. The proposed list of characteristics and measures
can be extended or narrowed down to match the requirements for specific use cases. Thus,
our model is extensible and can constitute a template, generically capturing the quality dimen-
sions of ETL processes and their interrelationships, which can be modified and instantiated
per case. The definition of each characteristic can be adjusted; the proposed measures are only
mentioned as valid examples that can be extended or replaced by other more appropriate ones;
users can decide to use only an excerpt of the model; and the quantitative effect that each char-
acteristic can have to another can differ for different cases. The above points also stand for the
model of the following section, about characteristics for design evaluation.

3.2.1 Characteristics and Measures

In this subsection, we provide a definition for each characteristic as well as candidate metrics
under each definition, based on existing approaches that we discovered coming from literature
and practice in the areas of Data Warehousing and Software Engineering. For each metric
there is a definition and a symbol, either (+) or (�) denoting whether the maximization or
minimization of the metric is desirable, respectively. Similarly to the quality characteristics,
the measures come from the areas of Data Warehousing, ETL, Data Integration and Software
Engineering and Business Process Management.

1. data quality (DQ): the fitness for use of the data produced as the outcome of the ETL
process. It includes:

(a) data accuracy: percentage of data without data errors.

M1: % of correct values (Batini et al., 2009) (+)
M2: % of delivered accurate entities (Batini et al., 2009) (+)

(b) data completeness: degree of absence of missing values and entities.

M1: % of missing entities from their appropriate storage (Simitsis et al., 2009a;
Batini et al., 2009) (�)

M2: % of non-empty values (Batini et al., 2009) (+)

(c) data freshness: indicator of how recent data is with respect to time elapsed since last
update of the target repository from the data source.

M1: Instant when data are stored in the system - Instant when data are updated in
the real world (Batini et al., 2009) (�)

M2: Request time - Time of last update (Batini et al., 2009) (�)
M3: 1 / (1 - age * Frequency of updates) (Batini et al., 2009) (�)

3.2 Characteristics with Construct Implications 33

(d) data consistency: degree to which each user sees a consistent view of the data and
data integrity is maintained throughout transactions and across data sources.

M1: % of entities that violate business rules (Simitsis et al., 2009a; Batini et al.,
2009) (�)

M2: % of duplicates (Batini et al., 2009) (�)
(e) data interpretability: degree to which users can understand data that they get.

M1: # of entities with interpretable data (documentation for important values)
(Batini et al., 2009) (+)

M2: Score from User Survey (Questionnaire) (Batini et al., 2009) (+)

2. performance (PF): the performance of the ETL process as it is implemented on a system,
relative to the amount of resources utilized and the timeliness of the service delivered. It
includes:

(a) time efficiency: the degree of low response times, low processing times and high
throughput rates.

M1: Process cycle time (Majchrzak et al., 2011) (�)
M2: Average latency per entity in regular execution (Simitsis et al., 2009a) (�)
M3: Min/Max/Average number of blocking operations (Simitsis et al., 2009a) (�)

(b) resource utilization: the amounts and types of resources used by the ETL process.

M1: CPU load, in percentage of utilization (Majchrzak et al., 2011) (�)
M2: Memory load, in percentage of utilization (Majchrzak et al., 2011) (�)

(c) capacity: the demand that can be placed on the system while continuing to meet
time and throughput requirements.

M1: Throughput of regular workflow execution (Simitsis et al., 2009a) (+)

(d) modes: the support for different modes of the ETL process based on demand and
changing requirements, for example batch processing, real-time event-based pro-
cessing, etc.

M1: Number of supported modes / Number of all possible modes (+)

3. upstream overhead (UO): the degree of additional load that the process causes to the data
sources on top of their normal operations.

M1: Min/Max/Average timeline of memory consumed by the ETL process at the source
system (Simitsis et al., 2009a) (�)

4. security (SE): the protection of information during data processes and transactions. It
includes:

(a) confidentiality: the degree to which data and processes are protected from unautho-
rized disclosure.

34 Chapter 3 Quality Measures for ETL Processes

M1: % of mobile computers and devices that perform all cryptographic operations
using FIPS 140-2 cryptographic modules (Chew et al., 2008) (+)

M2: % of systems (workstations, laptops, servers) with latest antispyware signa-
tures (kpi, cited January 2014) (+)

M3: % of remote access points used to gain unauthorized access (Chew et al.,
2008) (�)

M4: % of users with access to shared accounts (Chew et al., 2008) (�)
(b) integrity: the degree to which data and processes are protected from unauthorized

modification.

M1: % of systems (workstations, laptops, servers) with latest antivirus signatures
(kpi, cited January 2014) (+)

(c) reliability: the degree to which the ETL process can maintain a specified level of
performance for a specified period of time. It includes:

i. availability: the degree to which information, communication channels, the
system and its security mechanisms are available when needed and functioning
correctly.

M1: Mean time between failures (MTBF) (Simitsis et al., 2009a) (+)

M2: Uptime of ETL process (Simitsis et al., 2009a) (+)

ii. fault tolerance: the degree to which the process operates as intended despite the
presence of faults.

M1: Score representing asynchronous resumption support (Simitsis et al., 2009a)
(+)

iii. robustness: the degree to which the process operates as intended despite unpre-
dictable or malicious input.

M1: # of replicated processes (Simitsis et al., 2009a) (+)

iv. recoverability: the degree to which the process can recover the data directly
affected in case of interruption or failure.

M1: # of recovery points used (Simitsis et al., 2009a) (+)

M2: % of successfully resumed workflow executions (Simitsis et al., 2009a)
(+)

M3: Mean time to repair (MTTR) (Simitsis et al., 2009a) (�)

5. auditability (AU): the ability of the ETL process to provide data and business rule trans-
parency. It includes:

(a) traceability: the ability to trace the history of the ETL process execution steps and
the quality of documented information about runtime.

M1: % of KPIs that can be followed, discovered or ascertained by end users (Leite
and Cappelli, 2010) (+)

3.2 Characteristics with Construct Implications 35

Upstream
Overhead
Limitation

Performance

Time Efficiency Resource
Utilization Capacity Modes

-

-

Data Quality

Data FreshnessData AccuracyData
Consistency

Data
Completeness

+

-

Auditability

Traceability
Security

Confidentiality Integrity

+
-

-

Reliability

Availability Fault Tolerance RecoverabilityRobustness

Data
Interpretability

Positively affects
Includes

Negatively affects

+
-

Figure 3.4: Dependencies among process characteristics with construct implications

3.2.2 Characteristics Relationships

In the same direction as (Simitsis et al., 2009b) and (Barbacci et al., 1995) we also recognise
that ETL process characteristics are not independent of each other and each time a decision
has to be made, the alternative options might affect different characteristics differently, but
that this is not realized in completely ad hoc ways. On the contrary, we argue that there is
an inherent relationship between characteristics and it can be depicted in a qualitative model
that can be instantiated per case for reasoning and automation. Our vision is that this objective
model can be generic yet powerful enough in order to aid in a broad range of ETL process
design decisions.

Our model for the dependencies among characteristics with construct implications can be
seen in Fig. 3.4. In this model we include all the characteristics with construct implications
that we have identified and defined in Sec. 3.1. It consists of first-level characteristics and in
some cases second- or even third-level sub-characteristics and can be read in a cause-and-effect
fashion, i.e., improving one characteristic leads to improvement or deterioration of another
characteristic. We should notice that although traditionally availability is classified directly
under security, for our case availability is in fact a subgoal of reliability. The reason is that we
regard the satisfaction of availability as a necessary but not sufficient condition for reliability.
Reliability additionally requires maintaining specified SLAs for the ETL process and therefore
in our model we place availability under reliability and reliability under security.

Coming back to our running example from Fig. 3.1 and Fig. 3.2, it is clear that the second
design would require more time and more computational resources than the first one in order
to perform the additional tasks. The measures of Process execution time and CPU load measured
in percentage of utilizationwould have higher values indicating worse time efficiency and resource
utilization. Thus, improved Data Quality and Reliabilitywould have to be considered at the price
of decreased Performance and whether or not the decision to select the second design would be
optimal, would depend on the importance of each of these characteristics for the end-user. We
will quantitatively show these effects in the following subsection.

As can be seen in Fig. 3.4 the improvement of any other characteristic negatively affects
performance. That is reasonable since such improvements would require the addition of extra
complexity to the ETL process, diverging from the optimal simplicity that favours performance.
Improving Data Quality would require additional checks, more frequent refreshments, addi-

36 Chapter 3 Quality Measures for ETL Processes

tional data processing and so on, thus utilizing more resources and imposing a heavier load on
the system. In the same manner, improving security would require more complex authentica-
tion, authorization and accounting (AAA)mechanisms, encryption, additional recovery points,
etc., similarly having negative impact on performance. Likewise, improving auditability would
require additional processes for logging, monitoring as well as more resources to constantly
provide real-time access to such information to end-users. In a similar fashion, promoting up-
stream overhead limitation would demand locks and scheduling to minimize impact of ETL
processes on competing resources and therefore time and throughput limitations.

On the other hand, improving security positively affects data quality since data becomes
more protected against ignorant users and attackers, making it more difficult for data and sys-
tem processes to be altered, destroyed or corrupted. Therefore, data integrity becomes easier
to maintain. In addition, improved system availability and robustness leads to improved data
quality in the sense that processes for data refreshing, data cleaning and so on remain undis-
rupted.

Regarding the impact that improving auditability has to security, it is obvious that keeping
track of system’s operation traces and producing real-time monitoring analytics foster faster
and easier threat detection and mitigation, thus significantly benefiting security. On the con-
trary, these operations have a negative impact on upstream overhead limitation, following the
principle that one system cannot be measured without at the same time being affected.

3.2.3 Calculating the measures

In this subsection, we go through the measures that we have defined and apply them on our
running example. We will do the same for the following section about the second category of
measures and for both categories, each measure is represented in the form of:

• <Char_Abbr>.<Subchar_No>.<. . .>.<Measure_Id>(<Model_Id >)

, where Char_Abbr is the characteristic abbreviation (e.g., PF for performance); Subchar_No,
Measure_Id etc., are the indexes of the measures’ enumerations from the related sections; and
Model_Id can take the values CM_A or CM_B, for the simple or the more complex ETL flow, or
can be missing if we refer to both examples.

Through this example we showcase i) how our proposed measures can be used and ii) how
two alternative ETL designs for the same process can differ with regards to different quality
dimensions, as is reflected by the corresponding measures, in a way that qualitatively agrees
with our proposed model.

In Fig. 3.5 we can see the corresponding logical representations of the ETL designs from
Fig. 3.1 and Fig. 3.2, that were drawn using the Pentaho Data Integration7 Visual Designer. We
conducted our experiments using MySQL database that was populated with data generated by
the TPC-H data generator. The number of tuples for each table of the database were as follows:

Data quality can be measured for the data produced and exported to the Data Warehouse.
Obviously, the quality of these data depends not only on the ETL process, but also on the data
quality at the resources that it utilizes, which in our case is the data quality of the TPC-H

7
http://www.pentaho.com/product/data-integration

3.2 Characteristics with Construct Implications 37

http://www.pentaho.com/product/data-integration

(a) Logical representation of initial ETL process that corresponds to CM_A

WS lookup: complete with data
from external data source
Reference CSV file: correct data
by crosschecking with other data
source
Duplicate calculation steps:
replicate flow for redundant
execution
Checkpoint: add recovery point

(b) Logical representation of equivalent ETL process with additional steps that corresponds to CM_B

Figure 3.5: Logical models of alternative ETL processes

Table Supplier Nation Region Lineitem
of tuples 10000 25 5 540189

database, as well as the data quality of the data provided by the WS and the text file, for the
second ETL flow. For illustration purposes, we artificially dirtied the automatically generated
data on the TCP-H database including null values for the phones of suppliers, as well as phone
numbers with wrong formatting, not including country codes. We executed this process ran-
domly, but for a specified percentage of records. We have manipulated the data on the TPC-H
database so that they contain null address values for 10% of all the suppliers, as well as missing
area code at the 10% of non-null phone numbers of the suppliers stored in the database. After
executing CM_A or CM_B, the result is the export of 1987 records about suppliers and their
revenues to the DW.

To measure data accuracy, we count the number of (non-null) exported records that are
incorrect, which for our case translates to missing area codes of phone numbers. Then for each
of the two ETL flows we get the values for DQ.a.M1 as shown in Table 3.1.

We notice here that for the second ETL flow, all the incorrect values have been identified
and corrected by crosschecking with the text file. That is because we assume that the text file
is complete and does not contain any mistakes. This measure could similarly have been used
for the incorrect addresses or names if there was a mechanism to identify them or a record
could be considered correct only if all the considered attribute values were correct and then
the measure could be used in a combined way. The last case would measure the percentage of
delivered accurate tuples, as defined in DQ.a.M2 of data accuracy.

For data completeness, we count the number of null values, which for our case can be found

38 Chapter 3 Quality Measures for ETL Processes

Table 3.1: Data quality measures

Measure DQ.a.M1 DQ.b.M2 DQ.c.M3
Formula correct_tupples

all_tuples
non_null_tupples

all_tuples
1

1�age⇤update_frequency
CM_A 91.5% 90.3% 3
CM_B 100% 95.2% 3

in the suppliers’ phone number field. Thus, we get the values for DQ.b.M2 as shown in Table
3.1.

Again, we observe that data completeness for the second ETL flow is improved, due to
the completion of data using the WS. The reason that completeness for the second ETL flow
is not 100%, is because we have created the WS registry so that approximately only half of
the suppliers can be found there with their details, to resemble the real case situation where
improved completeness could come from a more complete registry, of course at a higher cost.
When it comes to measure DQ.b.M1 of data completeness, incompleteness of that kind could
occur when incorrect or missing values would result in tuples of suppliers not being present on
the final resultset.

Considering data freshness, it would be the same for both ETL flows, unless we assumed
that external data sources (WS registry and text file) contain more/less up-to-date information.
If we assume for example that the data sources were updated 20 days ago where time units are
days, and that they get updated once every month, we can calculate DQ.c.M3 as shown in Table
3.1.

To estimate DQ.c.M1, we would need to know for example when suppliers changed their
phone number and when it was updated in the database. For DQ.c.M2 we would need to know
how much time passed between the last update of a record and when it was actually first re-
quested.

When it comes to data consistency, DQ.d.M2 could be measured by the percentage of tuples
in the resulting dataset that refer to the same supplier, which nevertheless do not exist in our
example since every supplier is uniquely included. In addition, DQ.d.M1 could have been af-
fected if there were entries with different names for the same country (e.g., United Kingdom of
Great Britain and Northern Ireland as opposed to United Kingdom) or values of different format
for the same attribute (i.e., phone number as “424-242-424-242” instead of “424242424242”).

For data interpretability, to measure DQ.e.M1 we would take under consideration the exis-
tence of comment fields for important attributes and their completeness for the resulting data.
We notice that there are plenty such comment fields in our database. For DQ.e.M2, we would
conduct a survey where actual/potential users of the ETL process would describe how well they
understand the meaning and content of each field of the resulting data.

Performance was measured by executing both of the ETL flows on Kettle Engine, running
on Mac OS X, 1.7 GHz Intel Core i5, 4GB DDR3 and kept average values from 10 executions.

In Table 3.2 we can see the calculation of values for measures PF.a.M1 and PF.a.M3 for time
efficiency.

Due to the existence of blocking operators, it is not relevant to calculate measure PF.a.M2
for latency per tuple. As blocking operations, we consider the steps that have to be completed
and all of the values that they process have to be calculated before moving to the succeeding

3.2 Characteristics with Construct Implications 39

Table 3.2: Performance measures - Part 1

Measure PF.a.M1 PF.a.M3 PF.b.M1
Formula Process_cycle_time No_of_aggr +No_of_sort CPU

No_of_logical_processors
CM_A 10.4sec 8 49.25
CM_B 18.9sec 11 55.75

Table 3.3: Performance measures - Part 2

Measure PF.b.M2 PF.c.M1 PF.d.M1
Formula used_memory

total_memory

Input_data_size
Process_cycle_time

No_supported_modes

all_possible_modes

CM_A 0.166 52906 tuples

sec

50%
CM_B 0.181 29179 tuples

sec

50%

operators, which for our case are the aggregation and the sorting steps.
For resource utilization, the calculation of measures PF.b.M1 and PF.b.M2 are shown in Table

3.2 and Table 3.3.
For capacity, we consider the size of the input datasets processed by these ETL flows, di-

vided by the time that they need to execute and calculate measures PF.c.M1 in Table 3.3.
We should notice here that the input size for the two processes slightly differs, because for

the second process we also have to take under consideration the input data that come from
the data cleaning tasks (WS and text file). A possible explanation for the big difference of the
throughput values for the two ETL flows can be that the second flow requires the concurrent
execution of a number of steps, which decreases the available processing power that accounts
for each.

It is clear from all the performance measures shown above, that the design of CM_B is sig-
nificantly worse that that of CM_A with respect to performance. In other words, the measures
agree with our model, according to which the improvement of some quality characteristic(s)
(i.e., data quality and security in our example) negatively affects some other(s) (i.e., perfor-
mance, if we compare CM_B to CM_A).

When it comes to modes, if we consider batch processing and real-time processing as the
two possible modes, our ETL flows are only designed to be executed in a batch mode, as calcu-
lated in measure PF.d.M1 (Table 3.3).

Upstream overhead can be considered as the additional load that comes into play because
of the use of additional services, which in our case can refer to the WS. Therefore, there would
be upstream overhead only for the second ETL flow and it could be measured as such:

• UO.M1(CM_B) = AV G_memory_consumed_by_WS = 426MB

This memory consumption lasted for as long as the interaction of the ETL with theWS that
was an avarage of 12.9sec, which corresponds to: 12.9sec

18.9sec = 68% of the process cycle time.
Security did not play an important role for setting up our tests, except from reliability.

Thus, for confidentiality, SE.a.M1 would be 0, since we are not using any cryptographic opera-
tions and the web service communication is realized over HTTP. SE.a.M2 would refer to the

40 Chapter 3 Quality Measures for ETL Processes

anti-spyware installed in the operation system of the computer where we run the ETL processes
and SE.a.M3 would also be 0 since there was no provisioning for accessing or firing the execu-
tion of the ETL processes remotely. SE.a.M4 would be 100%, since all users could have shared
access to the terminal of the process execution. Similarly for integrity, SE.b.M1 would refer to
antivirus installed in the operation system of the terminal where we run the ETL processes.

When it comes to reliability, the measures for availability and fault tolerance can easily be
extracted from historic traces of the ETL process execution, monitoring the time of failures and
the periods during which the ETL process was available and the periods during which it was not
responsive, for example due to memory limitations in high demand. Of course, such analysis
presumes that the ETL process has a continuous lifecycle, corresponding to changing data in
the data sources. Regarding robustness, in the second ETL flow there is a part that duplicates
the calculation steps to guarantee that even in the presence of unpredictable or malicious input
that could cause the failure of this part of the ETL flow, there will be a duplicate of this part for
the resumption of the execution. Thus, the measure for the second ETL flow is:

• SE.c.iii.M1(CM_B) = No_of_replicated_processes = 1

In a similar manner, recoverability is improved in the second ETL flow, by the addition
of a recovery point. Thus, if for any reason the execution of the ETL flow is interrupted or
terminated, already processed data is not lost and execution can continue, starting from the
latest checkpoint.

• SE.c.iv.M1(CM_B) = No_of_recovery_points = 1

The next two measures SE.c.iv.M2 and SE.c.iv.M3 for recoverability, can again be extracted
from historic traces of the ETL process execution.

Auditability and traceability can be measured, arguing that all of the KPIs or measures
that have been considered so far can be monitored and followed for both ETL flows. Therefore,
assuming that these are all the KPIs that we are interested in, the correspondingmeasure would
be:

• AU.a.M1 = %_of_observable_KPIs = No_of_observable_KPIs

No_of_important_KPIs

= 31
31 = 100%

3.3 CHARACTERISTICS FOR DESIGN EVALUATION

In this section we show our model about characteristics for design evaluation. These charac-
teristics are the most difficult ones to analyze as they are more abstract and intangible. As
mentioned above, the intention of this model is to be used as an extensible, modifiable tem-
plate that can be adjusted per case. Similarly to Sec. 3.2 we first define the characteristics and
then show the relationships among them.

3.3.1 Characteristics and Measures

In this subsection we provide a definition for each characteristic for design evaluation, as well
as proposed metrics deriving from literature.

3.3 Characteristics for Design Evaluation 41

1. adaptability (AD): the degree to which ETL process can effectively and efficiently be
adapted for different operational or usage environments. It includes:

(a) scalability: the ability of the ETL process to handle a growing demand, regarding
both the size and complexity of input data and the number of concurrent process
users.

M1: Ratio of system’s productivity figures at two different scale factors, where pro-
ductivity figure = throughput * QoS/ cost (Jogalekar and Woodside, 2000) (+)

M2: # of Work Products of the process model, i.e., documents and models pro-
duced during process execution (García et al., 2004) (�)

(b) flexibility: the ability of the ETL flow to provide alternative options and dynamically
adjust to environmental changes (e.g., by automatically switching endpoints).

M1: # of precedence dependences between activities (García et al., 2004) (�)
(c) reusability: the degree to which components of the ETL process can be used for

operations of other processes.

M1: % of reused low level operations in the ETL process (Frakes and Terry, 1996)
(+)

The following measure is valid in the case where there are statistical data about
the use of various modules (e.g., transformation or mapping operations) of the ETL
process:

M2: Average of howmany times low level operations in the ETL process have been
reused per specified time frame (Frakes and Terry, 1996) (+)

2. usability (US): the ease of use and configuration of the implemented ETL process on the
system. It includes:

(a) understandability: the clearness and self-descriptiveness of the ETL process model
for (non-technical) end users.

M1: # of activities of the software process model (García et al., 2004) (�)
M2: # of precedence dependences between activities (García et al., 2004) (�)

3. manageability (MN): the easiness of monitoring, analyzing, testing and tuning the imple-
mented ETL process.

(a) maintainability: the degree of effectiveness and efficiency with which the ETL pro-
cess can be modified to implement any future changes.

M1: Length of process workflow’s longest path (Simitsis et al., 2009a) (�)
M2: # of relationships among workflow’s components (Simitsis et al., 2009a) (�)
M3: # of input and output flows in the process model (Muñoz et al., 2009) (�)
M4: # of output elements in the process model (Muñoz et al., 2009) (�)
M5: # of merge elements in the process model (Muñoz et al., 2009) (�)
M6: # of input and output elements in the process model (Muñoz et al., 2009) (�)

42 Chapter 3 Quality Measures for ETL Processes

(b) testability: the degree to which the process can be tested for feasibility, functional
correctness and performance prediction.

M1: Cyclomatic Complexity of the ETL process workflow (Gill and Kemerer, 1991)
(�)

3.3.2 Characteristics Relationships

Understandability

Usability

Manageability Adaptability

Scalability Flexibility Reusability

++

-

Maintainability Testability

Positively affects
Includes

Negatively affects

+
-

Figure 3.6: Dependencies among characteristics for design evaluation

In Fig. 3.6 we show the dependencies among characteristics for design evaluation. In-
creased usability favors manageability because a more concise, self-descriptive system is easier
to operate and maintain. Similarly, adaptability positively affects usability, since an easily con-
figured system is easier to use and does not require specialized skill-set from the end user. On
the other hand, adaptability can be achieved with more complex systems and therefore it neg-
atively affects manageability. This negative relationship might appear counter-intuitive, but
it should be noted that our view of adaptability does not refer to autonomic behavior, which
would possibly provide self-management capabilities. Instead, we regard manageability from
an operator’s perspective where control is desirable and the addition of unpredictable, “hidden”
mechanisms would make the process more difficult to test and maintain. Regarding the appar-
ent conflict between the negative direct relationship among Adaptability and Manageability
and the transitive positive relationship between Adaptability, Usability and Manageability, our
qualitative model allows for different direct and indirect influences between characteristics. If
the model is instantiated and extended with measurable components to quantitatively specify
these influences (i.e., weights on the edges of the Digraph), then the compound effect that
the improvement of one characteristic has to another will depend on the elicitation techniques
used.

3.3.3 Calculating the measures

Similarly to the previous section and using the same notation, we show in this subsection how
our measures can be calculated for the characteristics for design evaluation, for the two alter-
native designs of Fig. 3.5.

Adaptability was measured as such: for the first measure AD.a.M1 of scalability, we can
calculate the throughput, cost and QoS for two different scale factors, for example for different
allocation of resources (CPU, memory etc.) to the system for the ETL process execution. As
QoS we can consider any of the measures that we have examined so far. The calculation of
measure AD.a.M2 is as follows:

3.3 Characteristics for Design Evaluation 43

• AD.a.M2(CM_A) = No_of_work_products = 1

• AD.a.M2(CM_B) = No_of_work_products = 2

The difference is due to the fact that the second ETL flow exports data not only to the DW,
but also to the checkpoint and so it has 2 work products.

To measure flexibility, we have to count the precedence dependences between activities,
for example for every Join operation, the incoming data streams must be sorted, which dictates
precedence dependences between Join and Sort operators. Essentially, the way that both of
these ETL flows have been designed, there are precedence dependences between each opera-
tion and its predecessor(s), so this measure will equal to the number of edges, if we view the
ETL process as a Directed Acyclic Graph (DAG):

• AD.b.M1(CM_A) = No_of_precedence_dependencies = 20

• AD.b.M1(CM_B) = No_of_precedence_dependencies = 44

Regarding reusability, we can calculate measures AD.c.M1 and AD.c.M2 with respect to the
ability of operations to be reused in other ETL flows. For example, using the GUI for Pentaho
Data Integration (PDI), some operators can simply be copied/pasted to/from the clipboard and
function normally as part of different flows. These operators could be considered to have local-
ity among the different flows. This is not true for example for Table input/output operations,
since the database connectivity and data source to be used must be explicitly defined for every
flow. For measure AD.c.M1, we can compare the two ETL flows and identify the operators that
have been reused from the first to the second flow, which for our case are all of the operators
from the first flow:

• AD.c.M1(CM_B) = %_of_reused_operators = No_of_reused_operators
No_of_operators = 20

20 =
100%

Usability and understandability were evaluated using the following measures:

• US.a.M1(CM_A) = No_of_activities = 20

• US.a.M2(CM_A) = No_of_precedence_dependencies = 20

• US.a.M1(CM_B) = No_of_activities = 41

• US.a.M2(CM_B) = No_of_precedence_dependencies = 44

Manageability can be measured, if we consider the ETL flow as a DAG, where each ETL
logical operation corresponds to a node and each control flow precedence relationship corre-
sponds to a directed edge. Hence, we have the measures for maintainability as shown in Table
3.4 and Table 3.5.

Regarding testability, we can measure Cyclomatic Complexity (CC) for each flow:

• MN.b.M1(CM_A) = CC = No_of_nodes�No_of_edges+No_of_cycles =
20� 20 + 0 = 0

44 Chapter 3 Quality Measures for ETL Processes

Table 3.4: Maintainability measures - Part 1

Measure MN.a.M1 MN.a.M2 MN.a.M3
Formula Length_of_longest_path No_of_activity_relationships No_of_i/o_flows
CM_A 9 20 5
CM_B 23 44 8

Table 3.5: Maintainability measures - Part 2

Measure MN.a.M4 MN.a.M5 MN.a.M6
Formula No_of_outputs No_of_merge No_of_i/o_elements
CM_A 1 4 5
CM_B 2 8 8

• MN.b.M1(CM_B) = CC = 44� 41 + 0 = 3

From the above measures, we can clearly see how the design of CM_B is less usable, man-
ageable and adaptable than CM_A. This is not only an intuitive impression from looking at
a more complex process model, but can also be quantitatively measured in an automatic and
straightforward fashion, thanks to the gathered metrics.

3.4 GOAL MODELING FOR ETL DESIGN

The research area of Requirements Engineering has been active over the past years, offering a
plethora of frameworks and methodologies to bridge the gap between stakeholders’ (early and
late) design goals and specific decisions. The field of Goal-Oriented Requirements Engineering
additionally depicts the alignment between requirements and goals and their relationship to
strategic decisions.

A goal constitutes an objective of a business, for example Increase revenue, Improve customer
satisfaction and so on. A goal can be satisfied or not, depending not only on the success of
the corresponding tactical steps undertaken but also on factors external to the goal, such as
environmental conditions or the satisfaction or not of other goals that can affect it. Hence, a
goal can be decomposed (or refined as found in literature) to other more simple goals — its
subgoals — in different ways, the most common being AND and OR decomposition. Examples
of subgoals for the goal Increase revenue, can be the goals Reduce production costs and Increase
sales.

In general, the semantics of an AND-decomposition is that if all of the subgoals of a goal G
that participate in the same AND-decomposition are satisfied, then G is satisfied. Regarding OR-
decomposition, it introduces the possibility of alternative ways to satisfy one goal. That is, if
any of the (groups of AND-)subgoals of a goal G that participate in an OR-decomposition is satisfied,
then G is satisfied. Furthermore, the satisfaction of a goal might be influenced by the satisfaction
of another goal, either positively or negatively.

It is natural that goals and their interrelationships are usually depicted diagrammatically
using goal-models, with goals being represented as boxes and arrows connecting them to show

3.4 Goal Modeling for ETL design 45

relationships for goal elicitation. For our case, goals are quality goals about the ETL process
(e.g., Improve performance, Improve data quality) and as we have mentioned above, the satisfac-
tion of one such goal might affect negatively or positively the satisfaction of another, which can
be shown in the model using arrows of positive or negative influence. In addition, quality goals
can be decomposed to subgoals, for example the goal Improve reliability can be satisfied either
by satisfying the goal Improve robustness OR the goal Improve recoverability. These refinements
can be directly derived by our model of quality characteristics and subcharacteristics, where
the improvement of the latter can play the role of subgoals to the goals of improvement of the
former. We can see for our use case, goals, subgoals and influences in Fig. 3.7, but more de-
tails about this model will be provided below, where we describe the specific goal modeling
paradigm that has been used.

Goal models are used not only to lighten for business users the cognitive load of managing
multiple goals but also to aid in their analysis through reasoning. By defining specific rules
for satisfaction propagation through different parts of the goal model (e.g., if any of the AND-
subgoals is denied! the goal is denied), users can assume given values for part of the model
and test the feasibility of different what-if scenarios; they can see what implications (if any) are
applied to the other parts of the model; in some models they can even make decisions about
specific actions to be taken, in a top down approach where they select which goal(s) they would
like to satisfy. Different goal modeling paradigms offer different levels of expressiveness.

A thorough review of goal-oriented approaches is provided in (van Lamsweerde, 2001,
2003), which presents the basic concepts of goal-oriented requirements engineering and shows
through examples how goals can be refined for the selection among alternative architectural de-
signs. The author illustrates the use of the KAOS framework for modeling, specifying and an-
alyzing requirements in order to decide about system architectures. KAOS provides the ability
to model business goals and objectives, as well as goal decomposition and hierarchies to reflect
the strategic business objectives. Additionally to goal decomposition, contribution links and
partial negative or positive contribution among goals, the NFR (non-functional requirement)
modeling framework (Chung et al., 2000) also introduces the concept of softgoals: intangible
goals without clear-cut criteria. The i* framework (Yu, 1996) integrates these concepts with
resources, and dependencies between actors to facilitate the modeling for identifying stake-
holders and for examining the problem domain while exposing early phase system design re-
quirements.

In a more recent work, (Horkoff and Yu, 2013) compares several existing approaches on
goal oriented requirements analysis and shows how different modeling of the same goals can
lead to different evaluation and decisions. To reach that conclusion, the authors use different
models for the same goal-analysis procedures and through the comparison they expose different
assumptions concerning goal concepts and propagation.

Goal modeling approaches have also been suggested to aid with decision making for Busi-
ness Intelligence. An application of the Tropos goal modeling methodology (Bresciani et al.,
2004) to data warehousing is suggested in (Giorgini et al., 2008), which introduces a tech-
nique to map requirements with facts, dimensions and measures to relevant data schemata and
decisions. This technique can be seen as a first step towards requirements-oriented data ware-
housing, concentrating on functionality and early phase design. (Teruel et al., 2014) presents
a goal modeling framework to support Collaborative BI systems requirements elicitation and

46 Chapter 3 Quality Measures for ETL Processes

the business intelligence model (BIM) (Horkoff et al., 2014) is a goal modeling paradigm, spe-
cific to BI context that is used to represent, in an object-centered way the interaction among
different goals and situations.

3.4.1 Applying BIM to ETL processes

We applied the BIM Model for our running example (Fig. 3.7), in order to aid in ETL Pro-
cess design decisions. In the BIM model, a goal is an intentional situation that is desired by the
(viewpoint) organization and BIM models the positive or negative relationship among them,
their elicitation from other goals (subgoals) and from tasks (or processes as they are referred
in newer versions), which are processes or set of actions that are related to some goal and can
achieve it, to provide a “how” dimension. The satisfaction of a goal can be inferred from the
satisfaction level of other goals. For our case, goals are quality goals for the ETL process (e.g.,
Improve reliability) and tasks are some patterns that can be applied to the ETL process in order
to improve some quality dimensions (e.g., Add recovery point to improve recoverability).

The BIM core also includes indicators to evaluate the satisfaction of goals and measure the
use of processes. Indicators act as the measurable component to bridge the gap between busi-
ness objectives and real, actual data that support or decline their satisfaction. For our case, our
defined quality measures (the actual metrics) from Section 3.2 and Section 3.3, can play the
role of indicators (e.g., % of correct values). It also includes internal and external situations to
model state information and at the lowest refinement level. For our case, situations can rep-
resent states internal or external to the ETL process, which can be favorable or unfavorable to
the goals (e.g., an external situation to the ETL process can be the Quality of HW/SW resources).

To put it all together, the main elements of the goal model can be derived in a very straight-
forward and intuitive manner from the classification and the models that we have introduced
in Section 3.2 and Section 3.3.

• The improvement of each quality characteristic constitutes a goal.

• The improvement of characteristic a that is a subcharacteristic of characteristic b consti-
tutes an OR-subgoal of the goal Improve b.

• The positive/negative influences between goals can be directly derived from the positive/neg-
ative influences that we have shown in the characteristics relationships (Fig. 3.4 and
Fig. 3.6).

• The measures (metrics) that we have defined for each quality characteristic can play the
role of indicators, evaluating the goals related to the corresponding characteristics. It
should be noted here that indicators must be unique for each goal, according to the spec-
ification of BIM. Thus, in cases where there is more than one measure that can be used
for the evaluation of a goal, they should be aggregated (e.g., using simple additive weight-
ing method) into one compound indicator.

Unlike the above-mentioned elements, the tasks and the situations are not directly derived
from our models. Tasks represent an arsenal of possible (reusable) actions that can be taken
and their definition as well as their impact on goals require domain knowledge and evidence to

3.4 Goal Modeling for ETL design 47

be supported. For our case, the tasks depicted in our model have been collected from literature
and validated by experiments that we have conducted with multiple ETL processes. They have
also been translated to patterns in order to be automatically integrable to any ETL flow using our
tool implementation, about which we discuss in the following section. Modeling of situations
also requires domain knowledge, as well as contextualization to match the state information
of specific use cases. This stands not only for tasks and situations, since for different use cases
and contexts, different quality characteristics and metrics can be used, which can be different
subsets of the elements of our models, and/or different, new ones defined in a similar fashion,
thus resulting in different goal models.

As mentioned above, apart from concise visual representation, goal models are used for
what-if analysis and reasoning, which for the case of the BIMmodel is straightforward, since it
can be directly translated to the OWL 2 DL (owl, cited August 2015). As example of translation
of (Fig. 3.7) to OWL we show the following facts:

\textbf{Class}: ImproveDataQuality SubClassOf: Goal and OR_Thing

Class: ImproveDataCompleteness SubClassOf: (refines some ImproveDataQuality)

Class: ImproveDataCompleteness SubClassOf: Goal and AND_Thing

Class: ReduceTuplesWithNullValues SubClassOf:
(refines some ImproveDataCompleteness)

Class: ImproveDataQuality SubClassOf: (-_influences some ImprovePerformance)

Class: ImprovePerformance SubClassOf: (-_infBy some ImproveDataQuality)

Class: ImproveReliability SubClassOf: (+ _influences some ImproveDataQuality)

Class: ImproveDataQuality SubClassOf: (+ _infBy some ImproveReliability)

Class: ImproveDataQuality SubClassOf: (refinedBy exactly 2) and
(refines exactly 0) and (influences exactly 1) and (infBy exactly 2)

Listing 3.1: OWL facts for running example

For more information about the BIM and its translation to OWL, interested readers are
referred to (Horkoff et al., 2012).

Increase # of
replicated
processes

Improve
performance

Improve
security

Improve
data quality

- -

+

Improve data
completeness

Improve
robustness Improve

recoverability

Improve data
accuracy

Quality of
HW / SW
resources

+

+

Complete
with data from external

data source

Correct data by
crosschecking with other

data source

Add
recovery

point

Replicate
flow for redundant

execution

% of tuples that
violate business

rules
% of correct
values

OR

Goal

Task

Indicator

Situation
(External)

Situation
(Internal)

AND
Influences
Evaluates

Reduce tuples
with null values

Increase # of
recovery points

Increase % of
correct values

of recovery
 points
 used

of replicated
 processes

Improve
reliability

Figure 3.7: Goal modeling for running example

48 Chapter 3 Quality Measures for ETL Processes

3.5 USER-CENTERED ETL OPTIMIZATION

In this section, we showcase how our model can provide the conceptual and practical base,
upon which a user-centered method can be applied to translate user goals about ETL process
quality to specific implementation steps. Thus, we present a more detailed view of the archi-
tecture that we introduced in Fig. 1.3 and we illustrate how our user-centered declarative ETL
approach can be applied to our running example. The description of this architecture has been
published in (Theodorou et al., 2014b).

In Fig. 3.8, we can see the architecture for quality-aware end-to-end design of ETL pro-
cesses. As can be seen from Fig. 3.8, which is labeled with a number for each step, our method-
ology consists of three phases: design of an ETL process based on functional requirements
(steps 1–3); improvement by instillation of user-defined quality characteristics to the process
(steps 4–13); and finally deployment and execution (steps 15–17). As mentioned before, in or-
der to promote automation and user-centricity, our architecture is highly modular and is based
on patterns to automate the design process. In the following we describe the application of
interesting components of the architecture to our running example.

Functionality-Based Design. This part of the method (steps 1–3 in Fig. 3.8) only concerns
the functional requirements for the ETL process. Thus, the ETL Process Designer component
is responsible for the design of an ETL process model that implements the basic ETL func-
tionality: extraction of data from the original data sources, transformation of data to comply

Process
Simulator

Analyzer

Goal
Models

Patterns

Planner

User

ETL Process
Designer

ETL Process
Engine

platform
specific
model

approved3

6

9

12

utility
models

measures
quality

Deployment
Generator

Data flow
Control flow

Component
Artifact
Repository
Annotation

Visualization

historical
analytics

goals

model
logical

decision

simulation
results

Statistical
Models

top options as
BPMN models

domain
metadata

functional
requirements

7

10

11
13

14

15

16

17

1 2

simulation
preferences

4

5

IT

Management

prioritization
feasibility &

1.
2.
3.
X

8

�������	
��

FUNCTIONALITY-BASED

DESIGN

DEPLOYMENT & EXECUTION

QUALITY ENHANCEMENT

Figure 3.8: Functional architecture

3.5 User-centered ETL Optimization 49

with functional requirements and finally loading into target repositories. The required input
at this step is an accurate representation of the domain, including information about business
requirements (step 1). Concerning our running example, the input would be a description of
the TPC-H relational source tables — schemata and constraints — as well as the appropriate
modeling of the query: Load in the DW all the suppliers in Europe together with their information
(phones, addresses etc.), sorted on their revenue, for example using description logics or a struc-
tured description (XML, JSON etc.). We argue that naturally, the former can be modeled by IT
with technical competencies for data and knowledge representation, while the latter can be in-
troduced on a high level by BU, since they are the experts for the context of use of the resulting
data processes.

The output of this step is a conceptual ETL process model, which is described in a high-level
representation. This model must be abstract enough to allow for the incorporation of patterns
reflecting user requirements, but at the same time it can be seamlessly translated to a logical,
implementation independent model. In addition, this model must be directly translatable to
an intuitive visualization for the system user, using for example BPMN. Thus, we suggest that
the model at this step is an ETL-specific extension of the Directed Acyclic Graph, where each
node is one high-level ETL operator. (Akkaoui et al., 2013) provides such a set of high-level ETL
operators as part of their proposed BPMN meta-model. The high level representation output
of our running example at this point, is the BPMN process in Fig. 3.1 and the translation to a
logical model is the process in Fig. 3.5a. Apart from the process model, domain information
about available data sources, entities and their characteristics as well as resource constrains is
also passed on to the next phase (step 3) to allow for design alterations, where needed.

Quality Enhancement. The second phase (steps 4–13 in Fig. 3.8) regards the improvement
of quality characteristics of the ETL process. As explained before, the Process Simulator compo-
nent is responsible for simulating the ETL process and producing analytics regarding its struc-
ture and its expected behaviour. At this point the users provide their simulation preferences
(step 4) that reflect quality characteristics of interest and receive as feedback a user-friendly
representation of quality measures (step 5). To this end, it is important to use representative,
realistic input data to test the process, which can be achieved either by “feeding” the simula-
tor with a sample of real input data or by providing an effective synthetic test data generation
mechanism (Nakuçi et al., 2014). Coming back to our running example, the users decide which
of the quality characteristics that we have defined in our models they would be interested in,
e.g., the quality dimensions of performance, data quality and security. They are also able to
browse through and select among predefined metrics that are related to those dimensions and
are of interest for their analysis. Such examples are the indicators of the goal model in Fig. 3.7
and as explained above, ad-hoc, compound, aggregated measures for specific business needs
are also used, with the capability of being broken down to more simple metrics, where visu-
alization plays a key role for their presentation to the user. Calculating the measures as has
been showcased in previous sections, happens in a completely automated way, thanks to the
machine-readable modeling of the ETL process.

Once the measures calculations about the current version of the process have been pre-
sented to the users, they can evaluate how well they align with the strategic goals that have
been set and decide which of the quality dimensions should be improved, that can be directly
translated to goals in the goal modeling of the following step.

50 Chapter 3 Quality Measures for ETL Processes

Subsequently (step 6), the Analyzer takes as input user goals (step 7) and reasons about goal
satisfaction. Selecting which goals are pursued every time, goal models can allow to answer fea-
sibility questions about the set of tasks that can be performed, forming the palette of quality
patterns that will be used for the optimization problem (step 8). Considering our running ex-
ample, the goal model of Fig. 3.7 can be used for such analysis. For instance, the BIM tool8

can provide “what-if” analysis regarding how given input information about goals, processes,
situations, indicators, and domain assumptions propagates to other elements in the model. As
an example, it can answer questions such as: what happens (in other words, what are the possible
satisfaction values) with the goal “Improve Performance”, if we assume that the goal “Increase # of
replicated processes” is satisfied?. For the model of Fig. 3.7 the answer to such questions might
appear rather obvious, but this is not the case with real use cases that can produce a very com-
plex business model with tens of different quality characteristics. The situation can become
even more complex if we assume some bigger granularity i) in the influences between goals
(e.g., using additionally++ and�� to denote greater positive and negative influence, respec-
tively) and ii) in the possible satisfiability values (e.g., using additionally partial satisfaction and
partial denial of goals).

A top-down reasoning is also possible, where the user can select which goals need to be
satisfied/denied and the tool can provide possible tasks that can be implemented. For example,
selecting the satisfaction of the goals Improve security and Improve performance (at the same
iteration) would return no possible tasks, but selecting the satisfaction of the goal Improve data
qualitywould return the possible tasks of Complete with data from external data source and Correct
data by crosschecking with other data source.

The second process that can be conducted by the Analyzer is the qualitative evaluation of
alternative design patterns application. For this purpose, statistical models can be used that will
take as input user goals and quality measures from the simulation of alternative ETL process
models and will produce as output (step 8) the (quantitative) relationships between goals and
quality patterns, and thus the prioritization of the patterns that should be used, based on user’s
goals.

The Planner is the actuator of the quality enhancement phase, integrating patterns on the
ETL process that improve its quality. For our running example, the palette of available im-
provement steps for the satisfaction of quality goals that are handled by the Planner, are the
tasks of the goal model (Fig. 3.7). Even though the problem space is restricted by estimated
(monetary) cost, the optimization problem of selecting an optimal combination of patterns
to be applied to the process can be formulated as a multi-objective knapsack problem (Thiele
et al., 2009). In order to tackle complexity, we propose the use of goal models and statistical
models on the previous step on one hand; and the application of only one pattern during each
iteration, on the other. In this direction, after reasoning, the Planner recommends to the user
a list of the highest ranked potential patterns (step 10) in a graph-like visualization, together
with utility models, which are annotations denoting the estimated affect of each pattern to the
quality goals. Judging solely from the BPMNmodels and the utility models, users make a selec-
tion decision (step 11) and the Planner implements this decision by integrating a pattern to the
existing process flow. These patterns are in the form of process components and the Planner

8
http://www.cs.utoronto.ca/~jm/bim/

3.5 User-centered ETL Optimization 51

http://www.cs.utoronto.ca/~jm/bim/

carefully merges them to the existing process (Jovanovic et al., 2012). Subsequently, new iter-
ation cycles commence (step 12), until the users consider that the model adequately satisfies
quality goals. The Planner receives feedback from the actual runtime of the executed process
as well as from their simulation (step 13) in order to adjust its heuristics and increase accuracy
when selecting top options. Regarding our running example, after four iterations, where the
user would select the goals to Improve data completeness, Improve data accuracy, Improve robust-
ness and Improve reliability, the resulting ETL logical model would be the one of Fig. 3.5b, which
corresponds to the initial ETL model with added and integrated patterns.

For data completeness, a pattern has been added to complete missing rows and null values
from external data sources. We implemented a simple web application that receives a (HTTP)
request containing the suppliers’ names for suppliers with empty (null) values for their phones.
After matching those names to existing records in its registry, if found the application replies
with information about the suppliers, which contains their phones. The corresponding logical
steps of the ETL process using this service as a client, can be seen in theWS lookup part of the
ETL flow in Fig. 3.5b. Likewise, for data accuracy, a pattern has been applied to correct data,
according to crosschecks with other data sources. We realized this pattern by using a local
text file (CSV) that contained the ISO 3166-2 standard information for all countries. This file
was crosschecked with the suppliers’ records that have missing phone country codes and the
corresponding codes for the suppliers’ countries were filled in to the telephone numbers. The
related logical steps of the ETL process can be seen in the Reference CSV file part of the ETL flow
in Fig. 3.5b. Similarly, to improve reliability and robustness, corresponding patterns of logical
steps of the ETL flow, can be seen in the Duplicate calculation steps and the Checkpoint parts of
the ETL flow in Fig. 3.5b, respectively. It should be noticed that the logical steps of the patterns
have been generically defined within our tool, resulting in highly configurable patterns that can
be integrated to any ETL process with the appropriate configurations (e.g., URLs of available
services, attributes to be joined).

Deployment and Execution. Once users are presented with quality measures’ values that
they consider satisfactory, they give the green light for deployment and execution of the ETL
process (steps 14–17 in Fig. 3.8). The Deployment Generator component processes the logical
model and translates it to a platform-specific model (step 16). This step can be realized using
existing approaches for (semi-)automated transition among different abstraction levels, focus-
ing on cost and performance (Böhm et al., 2009b; Wilkinson et al., 2010). The ETL Process
Engine executes the ETL process and as mentioned above, keeps traces to provide related his-
torical analytics to the Planner and the Process Simulator (step 17).

3.6 SUMMARY AND OUTLOOK

In this chapter, we have proposed a model for ETL process quality characteristics that con-
structively uses concepts from the fields of Data Warehousing, ETL, Data Integration, Software
Engineering and Goal Modeling. One important aspect about our model is that for each and
every characteristic, there has been suggested measurable indicators that derive solely from
existing literature. We have distinguished between characteristics that can provide guidance
for pattern generation and others that are more abstract, but, nonetheless can be measured

52 Chapter 3 Quality Measures for ETL Processes

and evaluated. Our model includes the relationships between different characteristics and can
indicate how the improvement of one characteristic by the application of design modifications
can affect others. We have shown how our defined models can be used to automate the task
of selecting among alternative designs and improving ETL processes according to defined user
goals.

3.6 Summary and Outlook 53

54 Chapter 3 Quality Measures for ETL Processes

4
DATA GENERATOR FOR EVALUATING ETL

PROCESS QUALITY

4.1 Overview of our approach

4.2 Bijoux data generation
framework

4.3 Test case

4.4 Bijoux Performance evalua-
tion

4.5 Conclusions and Future
Work

Obtaining the right set of data for evaluating the fulfillment of different quality factors in the
ETL process design is rather challenging. First, the real data might be out of reach due to
different privacy constraints, while manually providing a synthetic set of data is known as a
labor-intensive task that needs to take various combinations of process parameters into ac-
count. More importantly, having a single dataset usually does not represent the evolution
of data throughout the complete process lifespan, hence missing the plethora of possible test
cases.

In this chapter, we revisit the problem of synthetic data generation for the context of ETL
processes, for evaluating different quality characteristics of the process design, as explained in
Section 1.2. To this end, we propose an automated data generation framework for evaluating
ETL processes (i.e., Bijoux). For overcoming the complexity and heterogeneity of typical ETL
processes, we tackle the problem of formalizing the semantics of ETL operations and classifying
the operations based on the part of input data they access for processing. This largely facilitates
Bijoux during data generation processes both for identifying the constraints that specific oper-
ation semantics imply over input data, as well as for deciding at which level the data should be
generated (e.g., single field, single tuple, complete dataset).

Furthermore, Bijoux offers data generation capabilities in a modular and configurable man-
ner. Instead of relying on the default data generation functionality provided by the tool, more
experienced users may also select specific parts of an input ETL process, as well as desired qual-
ity characteristics to be evaluated using generated datasets. The work presented in this chapter
has been published in (Theodorou et al., 2017).

Running Example. To illustrate the functionality of our data generation framework, we
introduce the running toy example that shows an ETL process (see Figure 4.1), which is a sim-
plified implementation of the process defined in the TPC-DI benchmark1 for loading the Dim-
Security table during the Historical Load phase2. The ETL process extracts data from a file with
fixed-width fields (flat file in the Staging Area), which is a merged collection of financial infor-
mation about companies and securities coming from a financial newswire (FINWIRE) service.
The input set is filtered to keep only records about Securities (RecType==‘SEC’) and then rows
are split to two different routes, based on whether or not their values for the field CoNameOr-

{isNumber
(CoNameOrCIK)?}

{RecType=='SEC'}
FINWIRE

Extract_1
<<Input File>>

Filter_RecType
<<Filter>>

Router_1
<<Router>>

Join_1
<<Join>>

Join_2
<<Join>>

Extract_2
<<Input
DataStore>> Union_1

<<Union>>
Filter_Date
<<Filter>>

DW.Dim
Company

Join_3
<<Join>>

Extract_3
<<Input
DataStore>>

DW.Status
Type

Project_1
<<Project>>

Load
<<Output
DataStore>>

DW.Dim
Security

TRUE

FALSE

{CoNameOrCIK==CompanyID}

{CoNameOrCIK==Name}

{(PTS>=EffectiveDate)
AND

(PTS<=EndDate)}

{ST_ID==Status}

O2 O3 O4

O5

O6

O7
O1

O8

O9

O10 O11 O12

Figure 4.1: ETL flow example: TPC-DI DimSecurity population

1
http://www.tpc.org/tpcdi/

2Full implementation available at: https://github.com/AKartashoff/TPCDI-PDI/

56 Chapter 4 Data Generator for Evaluating ETL Process Quality

http://www.tpc.org/tpcdi/
https://github.com/AKartashoff/TPCDI-PDI/

CIK are numbers (isNumber(CoNameOrCIK)) or not. For the first case, data are matched
with data about companies through an equi-join on the company ID number (CoNameOr-
CIK==CompanyID). On the other hand, for the second case, data are matched with data about
companies through an equi-join on the company name (CoNameOrCIK==Name). In both
cases, data about companies are extracted from the DimCompany table of the data warehouse.
Subsequently, after both routes are merged, data are filtered to keep only records for which the
posting date and time (PTS) correspond to company data that are current ((PTS>=EffectiveDate)
AND (PTS<=EndDate)). Lastly, after data are matched with an equi-join to the data from the
StatusType table, to get the corresponding status type for each status id (ST_ID==Status), only
the fields of interest are maintained through a projection and then data are loaded to the Dim-
Security table of the DW.

For the sake of simplicity, in what follows we will refer to the operators of our example
ETL, using the label noted for each operator in Figure 4.1 (i.e., O1 for Extract_1, O2 for
Filter_RecType, etc.). Given that an ETL process model can be seen as a directed acyclic
graph (DAG), Bijoux follows a topological order of its nodes, i.e., operations (e.g., O1, O2, O3,
O4, O5, O6, O7, O8, O9, 10, O11,and O12), and extracts the found flow constraints (e.g., Rec-
Type==‘SEC’ or CoNameOrCIK==Name). Finally, Bijoux generates the data that satisfy the
given constraints and can be used to simulate the execution of the given ETL process.

Our framework, Bijoux, is useful during the early phases of the ETL process design, when
the typical time-consuming evaluation tasks are facilitated with automated data generation.
Moreover, Bijoux can also assist the complete process lifecycle, enabling easier re-evaluation
of an ETL process redesigned for new or changed information and quality requirements (e.g.,
adding new data sources, adding mechanisms for improving data consistency). Finally, the Bijoux’s
functionality for automated generation of synthetic data is also relevant during the ETL process
deployment. It provides users with the valuable benchmarking support (i.e., synthetic datasets)
when selecting the right execution platform for their processes.

The rest of the chapter is structured as follows. Section 4.1 formalizes the notation of ETL
processes in the context of data generation and presents a general overview of our approach
using an example ETL process. Section 4.2 formally presents Bijoux, our framework and its
algorithms for the automatic data generation. Section 4.3 introduces modified versions of our
example ETL process and showcases the benefits of Bijoux for re-evaluating flow changes. In
Section 4.4, we introduce the architecture of the prototype system that implements the func-
tionality of the Bijoux framework and further report our experimental results. Finally, Section
4.5 concludes the chapter.

4.1 OVERVIEW OF OUR APPROACH

In this section, we present the overview of our data generation framework. We classify the ETL
process operations and formalize the ETL process elements in the context of data generation
and subsequently, in a nutshell, we present the overview of the data generation process of the
Bijoux framework.

4.1 Overview of our approach 57

Table

Value

Row

Dataset

NameDatatype

Field

Schema

comp
liesW

ith

corres
ponds

To

compliesWith

Figure 4.2: Table-access based classification, UML notation

4.1.1 ETL operation classification

To ensure applicability of our approach to ETL processes coming from major ETL design tools
and their typical operations, we performed a comparative study of these tools with the goal
of producing a common subset of supported ETL operations. To this end, we considered and
analyzed four major ETL tools in the market; two commercial, i.e., Microsoft SQL Server Inte-
gration Services (SSIS) and Oracle Warehouse Builder (OWB); and two open source tools, i.e.,
Pentaho Data Integration (PDI) and Talend Open Studio for Data Integration.

We noticed that some of these tools have a very broad palette of specific operations (e.g.,
PDI has a support for invoking external web services for performing the computations specified
by these services). Moreover, some operations can be parametrized to perform different kinds
of transformation (e.g., tMap in Talend), while others can have overlapping functionalities, or
different implementations for the same functionality (e.g., FilterRows and JavaFilter in PDI).
Tables 4.1 and 4.2 show the resulting classification of the ETL operations from the considered
tools.

To generalize such a heterogeneous set of ETL operations from different ETL tools, we
considered the common functionalities that are supported by all the analyzed tools. As a result,
we produced an extensible list of ETL operations considered by our approach (see Table 4.3).
Notice that this list covers all operations of our running example in Figure 4.1, except extraction
and loading ones, which are not assumed to carry any specific semantics over input data and
thus are not considered operations by our classification.

A similar study of typical ETL operations inside several ETL tools has been performed be-
fore in (Vassiliadis et al., 2009). However, this study classifies ETL operations based on the
relationship of their input and output (e.g., unary, n-ary operations). Such operation classifica-
tion is useful for processing ETL operations (e.g., in the context of ETL process optimization).
In this chapter, we further complement such taxonomy for the data generation context. There-
fore, we classify ETL operations based on the part of the input table they access when process-
ing the data (i.e., table, dataset, row, schema, field, or field value; see the first column of Table 4.1

58 Chapter 4 Data Generator for Evaluating ETL Process Quality

Ta
bl
e
4.
1:
Co

m
pa
ri
so
n
of
ET

L
op
er
at
io
ns

th
ro
ug
h
se
le
ct
ed

ET
L
to
ol
s-

Pa
rt
1

O
pe
ra
tio

n
Le
ve
l

O
pe
ra
tio

n
Ty
pe

Pe
nt
ah
o
PD

I
Ta
le
nd

D
at
a
In
te
gr
at
io
n

SS
IS

O
ra
cl
e
W
ar
eh
ou
se

Bu
ild

er

Fi
el
d

Fi
el
d
Va
lu
e
A
lte
ra
tio

n

A
dd

co
ns
ta
nt

Fo
rm

ul
a

N
um

be
rr
an
ge
s

A
dd

se
qu
en
ce

Ca
lc
ul
at
or

A
dd

a
ch
ec
ks
um

tM
ap

tC
on
ve
rt
Ty
pe

tR
ep
la
ce
Li
st

C
ha
ra
ct
er

M
ap

D
er
iv
ed

Co
lu
m
n

Co
py

Co
lu
m
n

D
at
a
Co

nv
er
si
on

Co
ns
ta
nt

O
pe
ra
to
r

Ex
pr
es
si
on

O
pe
ra
to
r

D
at
a
G
en
er
at
or

Tr
an
sf
or
m
at
io
n

M
ap
pi
ng

Se
qu
en
ce

D
at
as
et

D
up
lic
at
e
Re

m
ov
al

U
ni
qu
e
Ro

w
s

U
ni
qu
e
Ro

w
s(
H
as
hS

et
)

tU
ni
qR

ow
Fu
zz
y
G
ro
up
in
g

D
ed
up
lic
at
or

So
rt

So
rt
Ro

w
s

tS
or
tR
ow

So
rt

So
rt
er

Sa
m
pl
in
g

Re
se
rv
oi
rS

am
pl
in
g

Sa
m
pl
e
Ro

w
s

tS
am

pl
eR

ow
Pe
rc
en
ta
ge

Sa
m
pl
in
g

Ro
w
Sa
m
pl
in
g

A
gg
re
ga
tio

n
G
ro
up

by
M
em

or
y
G
ro
up

by
tA
gg
re
ga
te
Ro

w
tA
gg
re
ga
te
So
rt
ed
Ro

w
A
gg
re
ga
te

A
gg
re
ga
to
r

D
at
as
et
Co

py
tR
ep
lic
at
e

M
ul
tic
as
t

Ro
w

D
up
lic
at
e
Ro

w
C
lo
ne

Ro
w

tR
ow

G
en
er
at
or

Fi
lte
r

Fi
lte
rR

ow
s

D
at
a
Va
lid

at
or

tF
ilt
er
Ro

w
tM

ap
tS
ch
em

aC
om

pl
ia
nc
eC

he
ck

Co
nd

iti
on
al
Sp
lit

Fi
lte
r

Jo
in

M
er
ge

Jo
in

St
re
am

Lo
ok
up

D
at
ab
as
e
lo
ok
up

M
er
ge

Ro
w
s

M
ul
tiw

ay
M
er
ge

Jo
in

Fu
zz
y
M
at
ch

tJo
in

tF
uz
zy
M
at
ch

M
er
ge

Jo
in

Fu
zz
y
Lo
ok
up

Jo
in
er

Ke
y
Lo
ok
up

O
pe
ra
to
r

Ro
ut
er

Sw
itc
h/
Ca

se
tM

ap
Co

nd
iti
on
al
Sp
lit

Sp
lit
te
r

Se
tO

pe
ra
tio

n
-I
nt
er
se
ct

M
er
ge

Ro
w
s(
di
ff
)

tM
ap

M
er
ge

Jo
in

Se
tO

pe
ra
tio

n
Se
tO

pe
ra
tio

n
-D

iff
er
en
ce

M
er
ge

Ro
w
s(
di
ff
)

tM
ap

Se
tO

pe
ra
tio

n

Se
tO

pe
ra
tio

n
-U

ni
on

So
rt
ed

M
er
ge
A
pp
en
d
st
re
am

s
tU
ni
te

M
er
ge

U
ni
on

A
ll

Se
tO

pe
ra
tio

n

4.1 Overview of our approach 59

Table
4.2:Com

parison
ofETL

operationsthrough
selected

ETL
tools-Part2

O
peration

Level
O
peration

Type
Pentaho

PD
I

Talend
D
ata

Integration
SSIS

O
racle

W
arehouse

Builder

Schem
a

Field
A
ddition

Setfield
value

Setfield
value

to
a
constant

String
operations

Stringscut
Replace

in
string

Form
ula

SplitFields
ConcatFields
A
dd

value
fieldschanging

sequence
Sam

ple
row

s

tM
ap

tExtractRegexFields
tA
ddC

RC
Row

D
erived

Colum
n

C
haracterM

ap
Row

Count
AuditTransform

ation

ConstantO
perator

Expression
O
perator

D
ata

G
enerator

M
apping

Input/O
utputparam

eter

D
atatype

Conversion
SelectValues

tConvertType
D
ata

Conversion
A
nydata

CastO
perator

Field
Renam

ing
SelectValues

tM
ap

D
erived

Colum
n

Projection
SelectValues

tFilterColum
ns

Table
Pivoting

Row
D
enorm

alizer
tD
enorm

alize
tD
enorm

alizeSortedRow
Pivot

U
npivot

U
npivoting

Row
N
orm

alizer
Splitfield

to
row

s
tN
orm

alize
tSplitRow

U
npivot

Pivot

Value
Single

Value
A
lteration

Iffield
value

isnull
N
ullif

M
odified

Java
ScriptValue

SQ
L
Execute

tM
ap

tReplace
D
erived

Colum
n

ConstantO
perator

Expression
O
perator

M
atch-M

erge
O
perator

M
apping

Input/O
utputparam

eter

Source
O
peration

Extraction

C
SV

file
input

M
icrosoftExcelInput

Table
input

Textfile
input

X
M
L
Input

tFileInputD
elim

ited
tD
BInput

tFileInputExcel

A
D
O
.N
ET

/D
ataReaderSource

ExcelSource
FlatFile

Source
O
LE

D
B
Source

X
M
L
Source

Table
O
perator

FlatFile
O
perator

D
im

ension
O
perator

Cube
O
perator

TargetO
peration

Loading

Textfile
output

M
icrosoftExcelO

utput
Table

output
Textfile

output
X
M
L
O
utput

tFileO
utpu

tD
elim

ited
tD
BO

utput
tFileO

utputExcel

D
im

ension
Processing

ExcelD
estination

FlatFile
D
estination

O
LE

D
B
D
estination

SQ
L
ServerD

estination

Table
O
perator

FlatFile
O
perator

D
im

ension
O
perator

Cube
O
perator

60 Chapter 4 Data Generator for Evaluating ETL Process Quality

Table 4.3: List of operations considered in the framework

Considered ETL Operations

Aggregation Intersect
Cross Join Join (Outer)
Dataset Copy Pivoting
Datatype Conversion Projection
Difference Router
Duplicate Removal Single Value Alteration
Duplicate Row Sampling
Field Addition Sort
Field Alteration Union
Field Renaming Unpivoting
Filter

and Table 4.2) in order to assist Bijoux when deciding at which level data should be generated.
In Figure 4.2, we conceptually depict the relationships between different parts of input data,
which forms the basis for our ETL operation classification. In our approach, we consider the
Name of a Field to act as its identifier.

4.1.2 Formalizing ETL processes

The modeling and design of ETL processes is a thoroughly studied area, both in the academia
(Vassiliadis et al., 2002; Muñoz et al., 2008; Akkaoui et al., 2013; Wilkinson et al., 2010) and
industry, where many tools available in the market often provide overlapping functionalities
for the design and execution of ETL processes (Pall and Khaira, 2013). Still, however, no par-
ticular standard for the modeling and design of ETL processes has been defined, while ETL
tools usually use proprietary (platform-specific) languages to represent an ETL process model.
To overcome such heterogeneity, Bijoux uses a logical (platform-independent) representation of
an ETL process, which in the literature is usually represented as a directed acyclic graph (DAG)
(Wilkinson et al., 2010; Jovanovic et al., 2014). We thus formalize an ETL process as a DAG
consisting of a set of nodes (V), which are either source or target data stores (DS = DS

S

[DS
T

)
or operations (O), while the graph edges (E) represent the directed data flow among the nodes
of the graph (v1 � v2). Formally:

ETL = (V,E), such that:
V = DS [O and 8e 2 E : 9(v1, v2), v1 2 V ^ v2 2 V ^ v1 � v2

Data store nodes (DS) in an ETL flow graph are defined by a schema (i.e., finite list of
fields) and a connection to a source (DS

S

) or a target (DS
T

) storage for respectively extracting
or loading the data processed by the flow.

On the other side, we assume an ETL operation to be an atomic processing unit responsible
for a single transformation over the input data. Notice that we model input and output data of
an ETL process in terms of one or more tables (see Figure 4.2).

4.1 Overview of our approach 61

We formally define an ETL flow operation as a quintuple:

o = (I,O,X,S,A), where:

• I = {I1, . . . , In} is a finite set of input tables.
• O = {O1, . . . , Om

} is a finite set of output tables.
• X (X ✓ Attr(I)) is a subset of fields of the input tables I required by the operation.
Notice that the function Attr for a given set of input or output tables, returns a set of
fields (i.e., attributes) that builds the schema of these tables.

• S = (P,F) represents ETL operation semantics in terms of:

– P = {P1(X1), . . . Pp

(X
p

)}: a set of conjunctive predicates over subsets of fields in
X (e.g.,Age > 25).

– F = {F1(X1), . . . F
f

(X
f

)}: a set of functions applied over subsets of fields in X
(e.g., Substr(Name, 0, 1)). The results of these functions are used either to alter
the existing fields or to generate new fields in the output table.

• A is the subset of fields from the output tables, added or altered during the operation.

Intuitively, the above ETL notation defines a transformation of the input tables (I) into
the result tables (O) by evaluating the predicate(s) and function(s) of semantics S over the
functionality schema X and potentially generating or altering fields in A.

An ETL operation processes input tables I, hence based on the classification in Figure
4.2, the semantics of an ETL operation should express transformations at (1) the schema (i.e.,
generated/projected-out schema), (2) the row (i.e., passed/modified/generated/removed rows),
and (3) the dataset level (i.e., output cardinality).

In Table 4.4, we formalize the semantics of ETL operations considered by the framework
(i.e., operations previously listed in Table 4.3). Notice that some operations are missing from
Table 4.4, as they can be derived from the semantics of other listed operations (e.g., Intersec-
tion as a special case of Join, Unpivoting as an inverse operation to Pivoting, and Datatype
Conversion as a special case of Field Alteration using a specific conversion function).

In our approach, we use such formalization of operation semantics to automatically extract
the constraints that an operation implies over the input data, hence to further generate the
input data for covering such operations. However, notice that some operations in Table 4.4
may imply specific semantics over input data that are not explicitly expressed in the given
formalizations (e.g., Field Addition/Alteration, Single Value Alteration). Such semantics may span
from simple arithmetic expressions (e.g., yield = divident ÷ DM_CLOSE), to complex
user defined functions expressed in terms of an ad hoc script or code snippets. While the
former case can be easily tackled by powerful expression parsers (Jovanovic et al., 2014), in
the later case the operation’s semantics must be carefully analyzed to extract the constraints
implied over input data (e.g., by means of the static code analysis, as suggested in (Hueske
et al., 2012)).

3n is the number of replicas in the Replicate Row operation semantics

62 Chapter 4 Data Generator for Evaluating ETL Process Quality

Table 4.4: Table of ETL operations semantics

Op. Level Op. Type Op. Semantics

Value Single Value Alteration
8(I,O,X, S,A)(F (I,O,X, S,A)! (Attr(I) = Attr(O) ^ |I| = |O|))
8t

in

2 I(P
i

(t
in

[X])!9t
out

2 O(t
out

[Attr(O) \ A] = t
in

[Attr(I) \ A] ^ t
out

(A) = F
j

(t
in

[X])))

Field Field Alteration
8(I,O,X, S,A)(F (I,O,X, S,A)! (Attr(I) = Attr(O) ^ |I| = |O|))
8t

in

2 I, 9t
out

2 O(t
out

[Attr(O) \A] = t
in

[Attr(I) \A] ^ t
out

(A) = F
j

(t
in

[X])))

Row

Duplicate Row
8(I,O,X, S,A)(F (I,O,X, S,A)! (Attr(I) = Attr(O) ^ |I| < |O|))
8t

in

2 I, 9O0 ✓ O, |O0| = n 3 ^8t
out

2 O0, t
out

= t
in

Router
8(I,O,X, S,A)(F (I,O,X, S,A)! 8j(Attr(O

j

) = Attr(I) ^ |I| � |O
j

|))
8j, 8t

in

2 I(P
j

(t
in

[x
j

])!9t
out

2 O
j

, (t
out

= t
in

)

Filter
8(I,O,X, S,A)(F (I,O,X, S,A)! (Attr(O) = Attr(I) ^ |I| � |O|))
8t

in

2 I(P
j

(t
in

[X])!9t
out

2 O, (t
out

= t
in

)

Join
8(I,O,X, S,A)(F (I,O,X, S,A)! (Attr(O) = Attr(I1) [Attr(I2) ^ |O| |I1 ⇥ I2|))
8t

in1 2 I1, tin2 2 I2, (P (t
in1 [x1], tin2 [x2])!9tout 2 O(t

out

= t
in1 • tin1)

Union
8(I,O,X, S,A)(F (I,O,X, S,A)! (Attr(I1) = Attr(I2) ^Attr(O) = Attr(I1) ^ |O| = |I1|+ |I2|))
8t

in

2 (I1 [I2)!9tout 2 O(t
out

= t
in

)

Difference
8(I,O,X, S,A)(F (I,O,X, S,A)! (Attr(I1) = Attr(I2) ^Attr(O) = Attr(I1) ^ |O| |I1|))
8t

in

(t
in

2 I1 ^ t
in

/2 I2)!9tout 2 O(t
out

= t
in

)

Dataset

Aggregation
8(I,O,X, S,A)(F (I,O,X, S,A)! (Attr(O) = X [A ^Attr(O) Attr(I)))
8I0 2 2I(8t

in1 2 I0(8t
in2 2 I0(t

in1 [X] = t
in2 [X]) ^ 8tink 2 I \ I0, t

in1 [X] 6= t
ink [X]))!

! 9!t
out

2 O(t
out

[X] = t
in1 [X] ^ t

out

[A] = F
j

(I0))

Sort
8(I,O,X, S,A)(F (I,O,X, S,A)! (Attr(I) = Attr(O) ^ |I| = |O|))
8t

in

2 I, 9t
out

2 O(t
out

= t
in

)
8t

out

, t
out

0 2 O(t
out

[X] < t
out

0[X]! t
out

� t
out

0)
Duplicate Removal

8(I,O,X, S,A)(F (I,O,X, S,A)! (Attr(I) = Attr(O) ^ |I| � |O|))
8t

in

2 I, 9!t
out

2 O(t
out

= t
in

)

Dataset Copy
8(I,O,X, S,A)(F (I,O,X, S,A)! 8j(Attr(O

j

) = Attr(I) ^ |I| = |O
j

|))
8j, 8t

in

2 I, 9t
out

2 O
j

, (t
out

= t
in

)

Schema

Projection
8(I,O,X, S,A)(F (I,O,X, S,A)! (Attr(O) = Attr(I) \ X ^ |I| = |O|))
8t

in

2 I, 9t
out

2 O(t
out

[Attr(O)] = t
in

[Attr(I) \ X]))
Field Renaming 8(I,O,X, S,A)(F (I,O,X, S,A)! (Attr(O) = (Attr(I) \ X) [A) ^ |I| = |O|))
Field Addition

8(I,O,X, S,A)(F (I,O,X, S,A)! (Attr(O) = Attr(I) [A ^ |I| = |O|))
8t

in

2 I, 9t
out

2 O(t
out

[Attr(O) \ A] = t
in

[Attr(I)] ^ t
out

[A] = F (t
in

[X]))

Table Pivoting
8(I,O,X, S,A)(F (I,O,X, S,A)! (Attr(O) = (Attr(I) \ X) [A ^ |O| = |I|

a

^ |I| = |O|
a

))
8t

in

2 I, 8a 2 Attr(I), 9t
out

2 O, 9b 2 Attr(O)(t
out

[b] = t
in

[a]))

4.1.3 Bijoux overview

Intuitively, starting from a logical model of an ETL process and the semantics of ETL opera-
tions, Bijoux analyzes how the fields of input data stores are restricted by the semantics of the
ETL process operations (e.g., filter or join predicates) in order to generate the data that satisfy
these restrictions. To this end, Bijoux moves iteratively through the topological order of the
nodes inside the DAG of an ETL process and extracts the semantics of each ETL operation
to analyze the constraints that the operations imply over the input fields. At the same time,
Bijoux also follows the constraints’ dependencies among the operations to simultaneously col-
lect the necessary parameters for generating data for the correlated fields (i.e., value ranges,
datatypes, and the sizes of generated data). Using the collected parameters, Bijoux then generates
input datasets to satisfy all found constrains, i.e., to simulate the execution of selected parts of
the data flow. The algorithm can be additionally parametrized to support data generation for
different execution scenarios.

Typically, an ETL process should be tested for different sizes of input datasets (i.e., different
scale factors) to examine its scalability in terms of growing data. Importantly, Bijoux is extensible
to support data generation for different characteristics of input datasets (e.g., size), fields (e.g.,
value distribution) or ETL operations (e.g., operation selectivity). We present in more detail the
functionality of our data generation algorithm in the following section.

4.1 Overview of our approach 63

4.2 BIJOUX DATA GENERATION FRAMEWORK

The data generation process includes four main stages (i.e., 1 - path enumeration, 2 - constraints
extraction, 3 - constraints analysis, and 4 - data generation). In what follows, we first discuss some
of the important challenges of generating data for evaluating general ETL flows, as well as the
main structures maintained during the data generation process. Subsequently, we present the
path enumeration and constraints extraction algorithms and discuss about the data generation
stage. Finally, we provide the theoretical validation of our approach.

4.2.1 Preliminaries and Challenges

The workflow-graph structure of the ETL logical model that we adopt for our analysis consists
of ETL operations as graph nodes, input data stores as graph sources and output data stores as
graph sinks. In particular, input data stores, as well as routing operations (e.g., Routers) that
direct rows to different outputs based on specified conditions, introduce alternative directed
paths of the input graph (in the rest of the chapter referred to as paths), which can be followed
by input data. Hence, there are two properties of the generated input data that can be defined:

1. Path Coverage: Input data are sufficient to “cover” a specific path, i.e., each and every
edge (or node) that is on this path is visited by at least one row of data.

2. Flow Coverage: Input data are sufficient to “cover” the complete flow graph, i.e., each and
every edge (or node) of the flow graph is visited by at least one row of data.

The apparently simple case of Path Coverage hides an inherent complexity, deriving from the
fact that some joining operations (i.e., joining nodes; e.g., Join, Intersection) require the in-
volvement of multiple paths in order to direct data to their output. In addition, new fields are
introduced to the flow either through input data stores or Field Addition operations (see Table
4.4), while the fields from different paths are fused/joined together through joining operations.
This in turn implies two facts: i) Path Coverage is not guaranteed by generating the right input
data only for the input data store that is involved in a specific path; instead, data generation
should be conducted for a combination of paths (i.e., their included input data stores), and ii)
during the Path Coverage analysis, referring to a field solely by its name is not sufficient; the
same field might participate in multiple paths from a combination of paths, in each path hold-
ing different properties coming from extracted constraints of different operations. Thus, the
name of a field should be combined with a pathid to identify one distinct entity with specific
properties.

In Figure 4.3, we show some notable cases of graph patterns that require special attention
during the coverage analysis, as described above.

In Figure 4.3a, we can see how the coverage of Path_1 (O1!O5!O6...) needs multiple
paths to be considered for data generation, because of the joining operation O5 that requires
multiple inputs (e.g., a Join operation). Thus, coverage can be ensured by using alternative com-
binations, either Path_1 in combination with Path_2 (...O2!O4!O5!O6...), or Path_1
in combination with Path_3 (...O2!O4!O5!O6...). It should be mentioned that operation
O4 is of a merging type that does not require both of its incoming edges to be crossed in order

64 Chapter 4 Data Generator for Evaluating ETL Process Quality

O6O5O1

Path_1

Path_2

O4

...

O2

O3

...

Path_3

...

JOIN

UNION

(a) Alternative path combinations for coverage of the same path

O3

O2

O4

O5O1

SO1={a1,a2} {P(a2)}

{NOT(P(a2))}

{e1.a1=e2.a1}

Path_1

Path_2

O6
e2

e1

(b) Multiple rows from same input source required for coverage

Figure 4.3: Notable cases of graph patterns

to pass data to its output (i.e., a Union operation) and thus Path_2 and Path_3 can be used
interchangeably for coverage.

In Figure 4.3b, we show how the coverage of one path might require the generation of
multiple rows for the same input source. For example, for the Path Coverage of Path_1
(O1!O2!O3!O5!O6) it is required to additionally generate data for Path_2 (O1!O2!
O4!O5!O6), because of the existence of the joining operation O5. It should be noticed here
that fields a1 and a2 in Path_1 belong to a different instance than in Path_2, since the con-
dition of the routing operator O2 imposes different predicates over a2 for different paths (i.e.,
P(a2) and NOT(P(a2)), respectively). Hence, at least two different rows from the same input
data store are required for Path Coverage of Path_1.

Example. For illustrating the functionality of our algorithm, we will use the running ex-
ample introduced in Section 4.1 (see Figure 4.1). For the sake of simplicity, we will not use
the complete schemata of the input data stores as specified in the TPC-DI benchmark, but in-
stead we assume simplified versions, where the only fields present are the ones that are used
in the ETL flow, i.e., taking part in predicates or functions. In this manner, input data stores
of the example ETL flow are: I = {O1, O4, O9}, with schemata SO1 = {PTS, RecType, Status,
CoNameOrCIK}, SO4 = {CompanyID, Name, EffectiveDate, EndDate} and SO9 = {ST_ID,
ST_NAME}; whilst a topological order of its nodes is: {O1, O2, O3, O4, O5, O6, O7, O8, O9,
O10, O11, O12}. Besides this running example, we will also use the auxiliary example graph
from Figure 4.4a to support the description of the complete functionality of Bijoux ⇤

4.2 Bijoux data generation framework 65

4.2.2 Data structures

Before going into the details of Algorithms 1 and 2 in Section 4.2.4, we present the main struc-
tures maintained by these algorithms.

While analyzing a given ETL graph, in Algorithm 1, Bijoux builds the following structures
that partially or completely record the path structures of the input ETL graph (i.e., path traces):

• Path Traces (PT) collection keeps traces of operations and edges that have been visited,
when following a specific path up to a specific node in the ETL graph. Traces of individual
paths PT (PT 2 PT) are built incrementally and thus, following a specific path on the
graph, if a Path Trace PT1 is generated at an earlier point than the generation of a Path
Trace PT2, then PT1 will include a subset of the trace of PT2 (i.e., PT1 ✓ PT2). From
an implementation point of view, each PT holds a Signature as a property, which can be
a string concatenation of graph elements that shows which route has been followed in
the case of alternative paths. This enables very efficient PT analysis and comparisons by
simply applying string operations.
Example. Referring to our running example in Section 4.1, we can have the following
signature of a Path Trace PT1:
Sig(PT1) = “I[O1].S[O2, true].S[O3, true].J [O6, e1]”
From this signature we can conclude that PT1 starts from I (i.e., Input Source): O1;
passes through S (i.e., Splitting Operation): O2 coming from its outgoing edge that cor-
responds to the evaluation: true of its condition; passes through S (i.e., Splitting Opera-
tion): O3 coming from its outgoing edge that corresponds to the evaluation: true; passes
through J (i.e., Joining Operation): O6 coming from its incoming edge: e1; and so on. For
some operations (e.g., Joins) it makes sense to keep track of the incoming edge through
which they have been reached in the specific path and for some others (e.g., Routers), it
makes sense to keep track of the outgoing edge that was followed for the path.
Looking at the following signature of Path Trace PT2:
Sig(PT2) = “I[O1].S[O2, true].S[O3, true]” , we can infer that PT1 and PT2 are
on the same path of the ETL graph, PT2 being generated at an “earlier” point, since the
signature of PT2 is a substring of the signature of PT1. ⇤

• Tagged Nodes (TN) structure records, for each node, the set of paths (i.e., operations and
edges) reaching that node from the input data store nodes (i.e., source nodes). Thus,
each node is “tagged” with a set of Path Traces (PT) which are being built incrementally,
as explained above.
Example. Referring to our running example, within TN the O7 operation node will be
“tagged” with four different path traces, PT1, PT2, PT3 and PT4 with the following
signatures:
- Sig(PT1) = “I[O1].S[O2, true].S[O3, true].J [O6, e1].J [O7, e1]”
- Sig(PT2) = “I[O1].S[O2, true].S[O3, false].J [O5, e1].J [O7, e2]”
- Sig(PT3) = “I[O4].J [O6, e2].J [O7, e1]”
- Sig(PT4) = “I[O4].J [O5, e2].J [O7, e2]” ⇤

• Final path traces (FP) structure records all the complete (i.e., source-to-sink) paths from

66 Chapter 4 Data Generator for Evaluating ETL Process Quality

the input ETL graph, by maintaining all source-to-sink Path Traces (i.e., the union of all
Path Traces that tag sink nodes).

When it comes to formalizing the main structure that is being built by Algorithm 2 (i.e.,
data generation pattern), we define its structure as follows:

• A data generation pattern (Pattern) consists of a set of path constraints (i.e., pathCon-
str), where each path constraint is a set of constraints over the input fields introduced by
the operations of an individual path. Formally:
Pattern = {pathConstr

i

|i = 1, · · · , pathNum}

Example. In our running example (Figure 4.1), so as to cover the path Path1=(O1!O2!
O3!O6!O7!O8!O10!O11!O12), additionally, the path Path2=(O4!O6!O7!
O8!O10!O11!O12) and the path Path3=(O9!O10!O11!O12) need to be cov-
ered as well, because of the equi-join operators O6 and O10. The Pattern would then
consist of three constraints sets (pathConstr1, pathConstr2 and pathConstr3), one
for each (source-to-sink) path of the flow that has to be covered. ⇤

• A path constraint (i.e., pathConstr
i

) consists of a set of constraints over individual fields
of the given path (i.e., fieldConstr). Formally:
pathConstr

i

= {fieldConstr
j

|j = 1, · · · , pathF ieldNum}
Example. Each constraints set in our example will contain a set of constraints for any of
the fields that are involved in imposed predicates of operations on the related path. For
example, pathConstr1will contain constraints over the fields: Path1.PTS, Path1.RecType,
Path1.Status, Path1.CoNameOrCIK, Path1.CompanyID, Path1.Name, Path1.EffectiveDate,
Path1.EndDate, Path1.ST_ID, Path1.ST_name. Notice that each field is also defined by
the related path. Respectively, pathConstr2 and pathConstr3will contain constraints
over the same fields as pathConstr1, but with the corresponding path as identifier (e.g.,
Path2.PTS, Path2.RecType and so on for pathConstr2 and Path3.PTS, Path3.RecType
and so on for pathConstr3). In our example, it does not make any difference maintain-
ing constraints coming from fields of O4 for Path1 (for e.g., CompanyId for Path1), since
the flow is not split after it merges, but in the general case they are necessary for cases of
indirect implications over fields from one path and for determining the number of rows
that need to be generated. ⇤

• A field constraint (i.e., fieldConstr
j

) is defined as a pair of an input field and an or-
dered list of constraint predicates over this field. Formally:
fieldConstr

j

= [field
j

, S
j

]
Example. An example field constraint that can be found in our running scenario within
pathConstr1, is:
fieldConstr1 = [Path1.RecType, {(RecType == ‘SEC 0)}] ⇤

• Finally, a constraint predicates list defines the logical predicates over the given field in
the topological order they are applied over the field in the given path. Formally:

4.2 Bijoux data generation framework 67

S
j

=< P1(fieldj), · · · , PconstrNum

(field
j

) >
The list needs to be ordered to respect the order of operations, since in the general case:
f1(f2(fieldx)) 6= f2(f1(fieldx))

After processing the input ETL graph in Algorithm 1, Algorithm 2 uses the previously gen-
erated collection of final path traces (i.e., FP) for traversing a selected complete path (i.e.,
PT 2 FP) and constructing a data generation pattern used finally for generating data that
will guarantee its coverage. Thus, Algorithm 2 implements the construction of a data genera-
tion pattern for path coverage of one specific path. For flow coverage we can repeat Algorithm
2, starting every time with a different PT from the set of final path traces FP, until each node
of the ETL graph has been visited at least once. We should notice here that an alternative to
presenting two algorithms — one for path enumeration and one for pattern construction —
would be to present a merged algorithm, which traverses the ETL graph and at the same time
extracts constraints and constructs the data generation pattern. However, we decided to keep
Algorithm 1 seperate for two reasons: i) this way the space complexity is reduced while compu-
tational complexity remains the same and ii) we believe that the path enumeration algorithm
extends beyond the scope of ETL flows and can be reused in a general case for implementing a
directed path enumeration in polynomial time, while constructing efficient structures for com-
parison and analysis (i.e., Path Traces). A similar approach of using a compact and efficient way
to represent ETL workflows using string signatures has been previously introduced in (Tziovara
et al., 2007).

4.2.3 Path Enumeration Stage

In what follows, we present the path enumeration stage, carried out by Algorithm 1.
In the initial stage of our data generation process, Bijoux processes the input ETL process

graph in a topological order (Step 2) and for each source node starts a new path trace (Step 5),
initialized with the operation represented by a given source node. At the same time, the source
node is tagged by the created path trace (Step 6). For other (non-source) nodes, Bijoux gathers
the path traces from all the previously tagged predecessor nodes (Step 8), extends these path
traces with the current operation o

i

(Step 9), while o
i

is tagged with these updated path traces
(PT). Finally, if the visited operation is a sink node, the traces of the paths that reach this node
are added to the list of final path traces (i.e., FP). Processing the input ETL process graph in
this manner, Algorithm 1 gathers the complete set of final path traces, that potentially can be
covered by the generated input data. An example of the execution of Algorithm 1 applied on
our running example and the 5 resulting final path traces are shown in Figure 4.

68 Chapter 4 Data Generator for Evaluating ETL Process Quality

Algorithm 1 Enumerate Paths and Generate Path Traces
Input: ETL
Output: FP
1: TN new Tagged Nodes; FP ;;
2: for each operation o

i

2 TopOrder(ETL) do
3: if (o

i

is source) then
4: PT ;;
5: PT.addElement(new Path Trace(o

i

));
6: TN.addTag(PT, o

i

);
7: else
8: PT TN.UnionOfAll_PTs_forAllPredecessorNodesOf (o

i

);
9: PT.updateBasedOnOperation(o

i

);
10: if (o

i

is sink) then
11: FP.addAllElementsFrom(PT);
12: else
13: TN.addTag(PT, o

i

);

14: return FP;

O7O3e2
e3

e4

{T}

{F}

O1 e1

O6

O5

O8 O12O4

O9

O10O2 O11

e5

e6

e7

e8

e9 e10

e11

e12 e13

(a) DAG representation of our running example

O3

{O1} {O1.O2}

e1 e2

e3

e4

e7
e9 e11O1

{O1.O2.O3} {O4}

e12 e13

{O1.O2.O3.O5.07.08.O10.O11.O12},
{O4.O5.07.08.O10.O11.O12},

{O1.O2.O3.O6.07.08.O10.O11.O12},
{O4.O6.07.08.O10.O11.O12},

{O9.O10.O11.O12}

O12

Path Traces (PT)

Final Path Traces (FP)

O2 O4 O5 O6

e5

e8

O7e6
O8 O9 O10

e10

O11

{O1.O2.O3.O5},
{O4.O5}

{O1.O2.O3.O6},
{O4.O6}

{O1.O2.O3.O5.07},
{O4.O5.07},

{O1.O2.O3.O6.07},
{O4.O6.07}

{O1.O2.O3.O5.07.08},
{O4.O5.07.08},

{O1.O2.O3.O6.07.08},
{O4.O6.07.08}

{O9}

{O1.O2.O3.O5.07.08.O10},
{O4.O5.07.08.O10},

{O1.O2.O3.O6.07.08.O10},
{O4.O6.07.08.O10},

{O9.O10}

{O1.O2.O3.O5.07.08.O10.O11},
{O4.O5.07.08.O10.O11},

{O1.O2.O3.O6.07.08.O10.O11},
{O4.O6.07.08.O10.O11},

{O9.O10.O11}

(b) Execution of Algorithm 1 for the topological order of the DAG representation of our running example

Figure 4.4: Example of execution of Algorithm 1

4.2.4 Constraints Extraction and Analysis Stage

In what follows, we discuss in detail the constraints extraction and analysis stages of our data
generation process, carried out by Algorithm 2.

After all possible final paths of input ETL graph are processed and their traces recorded
in FP, an end-user may select an individual path she wants to cover. To this end, Bijoux runs

4.2 Bijoux data generation framework 69

Algorithm 2 Construct Data Generation Pattern for one Path

Input: ETL, PT, FP
Output: Pattern
1: AP ;;
2: for each operation o

i

crossedBy PT do
3: if (o

i

is of type joining_node) then
4: AP

i

 ;
5: for each Path Trace PT

j

2 TN.getAllPathTracesFor(o
i

) do
6: if (PT

j

.PredecessorOf(o
i

) 6= PT.PredecessorOf(o
i

)) then
7: AP

i

.add(PT
j

);

8: AP.add(AP
i

);
9: C allCombinations(PT, AP);
10: for each Combination C 2 C do
11: Pattern ;;
12: for each Path Trace PT

i

2 C do
13: for each operation o

j

crossedBy PT
i

do
14: Pattern.addConstraints(o

j

);
15: if (¬Pattern.isFeasible) then
16: abortPatternSearchForC();
17: return Pattern;
18: return ;;

70 Chapter 4 Data Generator for Evaluating ETL Process Quality

Algorithm 2, with a selected path PT 2 FP, and builds a data generation Pattern to cover
(at least) the given path. Algorithm 2 iterates over all the operation nodes of the selected path
(Step 2), and for each joining node (i.e., node with multiple incoming edges), it searches in
FP for all paths that reach the same joining node, from now on, incident paths (Steps 5 - 11).
As discussed in Section 4.2.2, routing operations (e.g., Router) introduce such paths, and they
need to be considered separately when generating data for their coverage (see Figure 4.3). In
general, there may be several joining nodes on the selected path, hence Algorithm 2 must take
into account all possible combinations of the alternative incident paths that reach these nodes
(Step 9).

Example. Referring to the DAG of Figure 4.4a, if the path to be covered is (O9!O10!O11
!O12), it would require the coverage of additional path(s) because of the equi-join operator
O10. In other words, data would also need to be coming from edge e10 in order to be matched
with data from edge e11. However, because of the existence of a Union operator (O7), there
are different alternative combinations of paths that can meet this requirement. The reason is
that data coming from either of the incoming edges of a Union operator reach its outgoing edge.
Hence, data reachingO10 from edge e10 could pass through path (O1!O2!O3!O6!O7!O8...)
combinedwith path (O4!O6!O7!O8...) or through path (O1!O2!O3!O5!O7!O8...)
combined with (O4!O6!O7!O8...). Thus, we see how two alternative combinations of
paths, each containing three different paths, can be used for the coverage of one single path. ⇤

For each combination, Algorithm 2 attempts to build a data generation pattern, as ex-
plained above. However, some combination of paths may raise a contradiction between the
constraints over an input field, which in fact results in disjoint value ranges for this field and
thus makes it unfeasible to cover the combination of these paths using a single instance of the
input field (Step 16). In such cases, Algorithm 2 aborts pattern creation for a given combination
and tries with the next one.

Example. Referring to the DAG of Figure 4.4a, we can imagine field f1, being present in the
schema of operation O6 and field f2 being present in the schema of operation O9. We can also
imagine that the datatype of f1 is integer and the datatype of f2 is positive integer. Then, if the
joining condition of operationO10 is (f1 = f2) and at the same time, there is a constraint (e.g.,
in operation O6) that (f1 < 0), the algorithm will fail to create a feasible data generation pat-
tern for the combination of paths (O1!O2!O3!O5...!O12) and (O9!O10!O11!O12).
⇤

Otherwise, the algorithm updates currently built Pattern with the constraints of the next
operation (o

j

) found on the path trace.
As soon as it finds a combination that does not raise any contradiction and builds a com-

plete feasible Pattern, Algorithm 2 finishes and returns the created data generation pattern
(Step 17). Notice that by covering at least one combination (i.e., for each joining node, each and
every incoming edge is crossed by one selected path), Algorithm 2 can guarantee the coverage
of the selected input path PT .

Importantly, if Algorithm 2 does not find a feasible data generation pattern for any of the
alternative combinations, it returns an empty pattern (Step 18). This further indicates that the
input ETL process model is not correct, i.e., that some of the path branches are not reachable
for any combination of input data.

The above description has covered the general case of data generation without considering

4.2 Bijoux data generation framework 71

-

-

setToMaxInt 1%
addNullValues 1%

deform 2%

Modification

Long
String

Uniform Discrete

Uniform
Complex

String

Uniform

Triangular

Integer

Integer
Datatype Distribution Type

PTS
RecType

CoNameOrCIK
CompanyID

EffectiveDate

Field Parameters (FP)

1
0.95
0.6

0.7
0.3

Selectivity
O2 (Filter_RecType)
O3 (Router_1)
O6 (Join_1)
O5 (Join_2)
O8 (Filter_Date)

Operation Parameters (OP)

Figure 4.5: Data generation parameters (FP and OP)

other generation parameters. However, given that our data generator aims at generating data to
satisfy other configurable parameters, we illustrate here as an example the adaptability of our
algorithm to the problem of generating data to additionally satisfy operation selectivity. To this
end, the algorithm now also analyzes the parameters at the operation level (OP) (see Figure
4.5:right). Notice that such parameters can be either obtained by analyzing the input ETL
process for a set of previous real executions, or simply provided by the user, for example, for
analyzing the flow for a specific set of operation selectivities.

Selectivity of an operation o expresses the ratio of the size of the dataset at the output
(i.e., card(o)), to the size at the input of an operation (i.e., input(o)). Intuitively, for filtering
operations, we express selectivity as the percentage of data satisfying the filtering predicate
(i.e., sel(o) = card(o)

input(o)), while for n-ary (join) operations, for each input e
i

, we express it
as the percentage of the data coming from this input that will match with other inputs of an
operation (i.e., sel(o, e

i

) = card(o)
input(o,ei)

).
From the OP (see Figure 4.5:right), Bijoux finds that operation O2 (Filter_RecType) has a

selectivity of 0.3. While processing a selected path starting from the operation O1, Bijoux ex-
tracts operation semantics for O2 and finds that it uses the field RecType (RecType==‘SEC’).
With the selectivity factor of 0.3 from OP , Bijoux infers that out of all incoming rows for the
Filter, 30% should satisfy the constraint that RecType should be equal to SEC, while 70% should
not. We analyze the selectivity as follows:

• To determine the total number of incoming rows for operation O8 (Filter_Date), we con-
sider predecessor operations, which in our case come from multiple paths.

• As mentioned above, operation O2 will allow only 30% of incoming rows to pass. Assum-
ing that the input load size from FINWIRE is 1000, this means that in total 0.3 ⇤ 1000 =
300 rows pass the filter condition.

• From these 300 rows only 70%, based on the O3 (Router_1) selectivity, (i.e., 210 rows)
will successfully pass both the filtering (RecType==‘SEC’) and the router condition (is-
Number(CoNameOrCIK)) and hence will be routed to the route that evaluates to true.
The rest ((i.e., 300 � 210 = 90 rows)) will be routed to the route that evaluates to
false.

• The 210 rows that pass both previous conditions, will be matched with rows coming from
operation O4 through the join operation O6 (Join_1). Since the selectivity of operation
O6 is 1, all 210 tuples will be matched with tuples coming from O4 and meeting the con-
dition CoNameOrCIK==CompanyID and hence will pass the join condition. On the other

72 Chapter 4 Data Generator for Evaluating ETL Process Quality

hand, the selectivity of operation O5 (Join_2), for the input coming from O3(Router_1),
is 0.95, which means that from the 90 rows that evaluated to false for the routing con-
dition, only 85 will be matched with tuples coming from O4 and meeting the condition
CoNameOrCIK==Name. Thus, 210+85 = 295 tuples will reach the union operation O6
and pass it.

• Finally, from the 295 rows that will reach operation O8 (Filter_Date) coming from the
preceding union operation, only 0.6 ⇤ 295 = 177 will successfully pass the condition
(PTS>=EffectiveDate) AND (PTS<= EndDate), as the selectivity of OP8 is 0.6.

In order to generate the data that do not pass a specific operation of the flow, a data
generate pattern inverse to the initially generated Pattern in Algorithm 2 needs to be
created to guarantee the percentage of data that will fail the given predicate.

Similarly, other parameters can be set for the generated input data to evaluate different
quality characteristics of the flow, (see Figure 4.5:left). As an example, the percentage of null
values or incorrect values (e.g., wrong size of telephone numbers or negative age) can be set
for the input data, to evaluate the measured data quality of the flow output, regarding data
completeness and data accuracy, respectively. Other quality characteristics like reliability and
recoverability can be examined as well, by adjusting the distribution of input data that result to
exceptions and the selectivity of exception handling operations. Examples of the above will be
presented in Section 4.3.

4.2.5 Data Generation Stage

Lastly, after the previous stage builds data generation patterns for covering either a single path,
combination of paths, or a complete flow, the last (data generation) stage proceeds with gener-
ating data for each input field f . Data are generated within the ranges (i.e., R) defined by the
constraints of the provided pattern, using either random numerical values within the interval
or dictionaries for selecting correct values for other (textual) fields.

For each field f , data generation starts from the complete domain of the field’s datatype
dt(f).

Each constraintP , when applied over the an input field f , generates a set of disjoint ranges
of values Rf,init

i

in which the data should be generated, and each range being inside the do-
main of the field’s datatype dt(f). Formally:

P (f) = Rf,init =

⇢
rf,init|rf,init ✓ dt(f)

�
(4.1)

For example, depending on the field’s datatype, a value range for numeric datatypes is an
interval of values (i.e., [x, y]), while for other (textual) fields it is a set of possible values a field
can take (e.g., personal names, geographical names).

After applying the first constraint P1, Bijoux generates a set of disjoint, non-empty value
rangesRf

1 , each range being an intersection with the domain of the field’s datatype.

4.2 Bijoux data generation framework 73

Rf

1 =

⇢
rf1 |8rf,init1 2 Rf,init

1 , 9rf1 ,s.t. : (4.2)

(rf1 = rf,init1 \ dt(f) ^ rf1 6= ;)
�

Iteratively, the data generation stage proceeds through all the constraints of the generation
pattern. For each constraint P

i

it updates the resulting value ranges as an intersection with the
ranges produced in the previous step, and produces a new set of rangesRf

i

.

Rf

i

=

⇢
rf
i

|8rf,init
i

2 Rf,init

i

, 8rf
i�1 2 Rf

i�1,9rfi , s.t. : (4.3)

(rf
i

= rf,init
i

\ rf
i�1 ^ rf

i

6= ;)
�

Finally, following the above formalization, for each input field f Bijoux produces a final set
of disjoint, non-empty value ranges (Rf,final) and for each range it generates an instance of f
inside that interval.

See for example, in Figure 4.6 and Figure 4.7, the generated data sets for covering the ETL
process flow of our running example. We should mention at this point, that non conflicting
constraints for the same field that is present in different paths and/or path combinations, can
be merged and determine a single range (i.e., the intersection of all the ranges resulting from
the different paths). This way, under some conditions, the same value within that interval can
be used for the coverage of different paths. As an example, in Figure 4.6, the fields Status and
ST_ID that exist in both path combinations, all hold a constraint (ST_ID==Status). These can
be merged into one single constraint, allowing for the generation of only one row for the table
StatusType that can be used for the coverage of both path combinations, as long as both gener-
ated values for the field Status equal the generated value for the field ST_ID (e.g., “ACTV”).

Following this idea, it can easily be shown that under specific conditions, the resulting
constraints for the different path combinations from the application of our algorithm, can be
further reduced, until they can produce a minimal set of datasets for the coverage of the ETL
flow.

Data generation patterns must be further combined with other user-defined data genera-
tion parameters (e.g., selectivities, value distribution, etc.). We provide more details regarding
this within our test case in Section 4.3.

4.2.6 Theoretical validation

We further provide a theoretical validation of our data generation process in terms of: the
correctness of generated data sets (i.e., path and flow coverage).

A theoretical proof of the correctness of the Bijoux data generation process is divided into
the three following components.

1. Completeness of path traces. Following from Algorithm 1, for each ETL graph node (i.e.,
datastores and operations, see Section 4.1.2) Bijoux builds path traces of all the paths

74 Chapter 4 Data Generator for Evaluating ETL Process Quality

ST_NAME "Active"
ST_ID "ACTV"

99991231000000EndDate
EffectiveDate 19681102185012

Name "TUD INC"

"SEC"

"5609324496"
"ACTV"

Paths Combination 1

CoNameOrCIK

19880121171542

"5609324496"

Status

PTS
RecType

CompanyID

ST_NAME "Complete"
ST_ID "CMPT"

99991231000000EndDate
EffectiveDate 20011025102033

Name "UPC CORP"

"SEC"

"UPC CORP"
"CMPT"

Paths Combination 2

CoNameOrCIK

20160215210536

"1392258420"

Status

PTS
RecType

CompanyID

{RecType=='SEC'}

{isNumber(CoNameOrCIK)}

{CoNameOrCIK==CompanyID}

{(PTS>=EffectiveDate)
AND (PTS<=EndDate)}

{ST_ID==Status}

Constraints for data generation
pattern for Paths Combination 1

{RecType=='SEC'}

{NOT(isNumber(CoNameOrCIK))}

{CoNameOrCIK==Name}

{(PTS>=EffectiveDate)
AND (PTS<=EndDate)}

{ST_ID==Status}

Constraints for data generation
pattern for Paths Combination 2

Figure 4.6: Data generated after analyzing all ETL operations

reaching that node (e.g., see Figure 4.4b). Formally, given that an ETL graph node can
represent either an operation (O), a source (DS

S

), or a target data store (DS
T

), we re-
cursively formalize the existence of path traces as follows:

8v
i

2 O [DS
T

,PT
vi =

|{vj |vj�vi}|[

j=1

⇢
PT 1

vj
· v

i

, .., PT
|PTj |
vj · v

i

�
. (4.4)

8v
i

2 DS
S

,PT
vi = {PT

vi}, PT
vi = v

i

. (4.5)

Considering that ETL graph nodes are visited in a topological order (see Step 2 in Algo-
rithm 1), the path traces of each ETL graph node are built after visiting all its predeceasing
sub-paths. This guarantees that path traces of each node v

i

are complete with regard to
all its predecessors (i.e., {v

j

|v
j

� v
i

}), hence the final path traces FP (i.e., path traces
of target data store nodes) are also complete.

4.2 Bijoux data generation framework 75

20160215210536 "CMPT" "UPC CORP""SEC"
19880121171542 "SEC" "ACTV" "5609324496"

CoNameOrCIKStatusRecTypePTS

"1392258420" 20011025102033 99991231000000"UPC CORP"
"5609324496" "TUD INC" 19681102185012 99991231000000

EndDateEffectiveDateNameCompanyID

"Active"
"Complete"

ST_ID ST_NAME

"CMPT"
"ACTV"

FINWIRE

DimCompany

StatusType

Figure 4.7: Generated datasets corresponding to the generated data

2. Path coverage. Having the complete path traces recorded in Algorithm 1, Algorithm 2 tra-
verses a selected path (i.e., PT), with all its alternative incidence paths, and builds a data
generation Patern including a list of constraints over the input fields. Following from
1, this list of constraints is complete. Moreover, as explained in Section 4.2.5, Bijoux iter-
atively applies given constraints, and for each input field f produces a set of value ranges
(Rf,final), within which the field values should be generated.

Given the statements 4.1 - 4.3 in Section 4.2.5, Bijoux guarantees that the data genera-
tion stage applies all the constraints over the input fields when generatingRf,final, thus
guaranteeing that the complete selected path will be covered.

On the other side, if at any step of the data generation stage a result of applying a new
constraint P

i

leads to an empty set of value ranges, the collected list of constraints must
be contradictory. Formally (following from statement 4.3 in Section 4.2.5):
(9Rf,init

i

, Rf

i�1|Rf

i

= ;)! ?.
This further implies that the input ETL graph has contradictory path constraints that
would lead to an unreachable sub-path, which could never be executed. As an additional
functionality, Bijoux detects such behavior and accordingly warns the user that the input
ETL flow is not correct.

3. Flow coverage. Following from 2, Algorithm 2 generates data that guarantee the coverage
of a single path from FP. In addition, if Algorithm 2 is executed for each final path
PT

i

2 FP, it is straightforward that Bijoux will produce data that guarantee the coverage
of the complete ETL flow (i.e., ETL graph), unless a constraints contradiction for an
individual path has been detected.

4.3 TEST CASE

The running example of the ETL flow that we have used so far is expressive enough to illustrate
the functionality of our framework, but it appears too simple to showcase the benefits of our

76 Chapter 4 Data Generator for Evaluating ETL Process Quality

{isNumber
(CoNameOrCIK)?}

{RecType=='SEC'}
FINWIRE

Extract_1
<<Input File>>

Filter_RecType
<<Filter>>

Router_1
<<Router>>

Join_1
<<Join>>

Extract_2
<<Input
DataStore>> Union_1

<<Union>>
Filter_Date
<<Filter>>

DW.Dim
Company

Join_3
<<Join>>

Extract_3
<<Input
DataStore>>

DW.Status
Type

Project_1
<<Project>>

Load
<<Output
DataStore>>

DW.Dim
Security

TRUE

FALSE

{CoNameOrCIK==CompanyID}

{CoNameOrCIK==Name}

{(PTS>=EffectiveDate)
AND

(PTS<=EndDate)}

{ST_ID==Status}

O2 O3 O4

Join_2
<<Join>>

O5

O6

O7
O1

O8

O9

O10 O11 O12

Alt_DS

Extract_ALT_DS
<<Input
DataStore>>

Join_4
<<Join>>

Join_5
<<Join>>

Replace_1
<<Field

Alteration>>
Project_2

<<Project>>

Replace_2
<<Field

Alteration>>
Project_3

<<Project>>

{CoNameOrCIK==NameDirty}
{CoNameOrCIK NameStandard}

{Name==NameDirty}

{Name NameStandard}

O13

O14 O15
O16

O19

O17

O18

SAlt_DS=
{NameDirty,NameStandard}

Data Cleaning Option 1

Figure 4.8: ETL flow for data cleaning, using a dictionary

{isNumber
(CoNameOrCIK)?}

{RecType=='SEC'}
FINWIRE

Extract_1
<<Input File>>

Filter_RecType
<<Filter>>

Router_1
<<Router>>

Join_1
<<Join>>

Extract_2
<<Input
DataStore>> Union_1

<<Union>>
Filter_Date
<<Filter>>

DW.Dim
Company

Join_3
<<Join>>

Extract_3
<<Input
DataStore>>

DW.Status
Type

Project_1
<<Project>>

Load
<<Output
DataStore>>

DW.Dim
Security

TRUE

FALSE

{CoNameOrCIK==CompanyID}

{CoNameOrCIK==Name}

{(PTS>=EffectiveDate)
AND

(PTS<=EndDate)}

{ST_ID==Status}

O2 O3 O4

Join_2
<<Join>>

O5

O6

O7
O1

O8

O9

O10 O11 O12

Alter_String_1
<<Value
Alteration>>

O14

Alter_String_2
<<Value
Alteration>>

O15

Copy_Split
<<Dataset
Copy>>

O13

Union_1
<<Union>>

O16

{CoNameOrCIK removeLastToken(CoNameOrCIK)}

{CoNameOrCIK addEnding(CoNameOrCIK, ".inc")}

Data Cleaning Option 2

Figure 4.9: ETL flow for data cleaning, trying different string variations for the join key

4.3 Test case 77

approach regarding the evaluation of the quality of the flow. In this respect, we present in this
section representative examples of how our framework can generate data, not only to enact
specific parts of the ETL flow, but also to evaluate the performance and the data quality of
these flow parts.

Going back to our running example (Figure 4.1), from now on referred to as Flow_A, we can
identify a part of the flow that can be the source of data quality issues. That is, rows whose val-
ues for the field CoNameOrCIK are not numbers are matched with data about companies from
the DimCompany table, through an equi-join on the company name (CoNameOrCIK==Name).
However, company names are typical cases of attributes that can take multiple values in differ-
ent systems or even within the same system. For example, for a company Abcd Efgh, its name
might be stored as “Abcd Efgh”, or followed by a word indicating its type of business entity
(e.g., “Abcd Efgh Incorporated”) or its abbreviation with or without a comma (e.g., “Abcd Efgh
Inc.” or “Abcd Efgh, Inc.”). It is also possible that it might be stored using its acronym (e.g.,
“ABEF”) or with a different reordering of the words in its name, especially when the two first
words are name and surname of a person (e.g., “Efgh Abcd”). Moreover, there can be different
uppercase and lowercase variations of the same string, combinations of the above-mentioned
variations or even misspelled values.

Hence, there are many cases that the equi-join (CoNameOrCIK==Name) will fail to match
the incoming data from the FINWIRE source with the rows from the DimCompany table, be-
cause they might simply be using a different variation of the company name value. This will
have an impact on data completeness, since it will result in fewer rows being output to the Dim-
Security than there should be.

To this end, we introduce here two more complex ETL flows (Figure 4.8 and Figure 4.9),
which perform the same task as the running example, but include additional operations in or-
der to improve the data quality of the output data. The ETL flow in Figure 4.8, from now on
referred to as Flow_B, uses a dictionary (Alt_DS) as an alternative data source. This dictionary is
assumed to have a very simple schema of two fields — NameDirty and NameStandard, to main-
tain a correspondence between different dirty variations of a company name and its standard
name. For simplicity, we assume that for each company name, there is also one row in the dic-
tionary containing the standard name, both as value for the NameDirty and the NameStandard
fields. Operations O14 and O17 are used to match both the company names from the FINWIRE
and the table, to the corresponding dictionary entries and subsequently, rows are matched with
the standard name value being the join key, since the values for the join keys are replaced by
the standard name values ((Name NameStandard) and (CoNameOrCIK NameStandard)).

Another alternative option for data cleaning is to try different variations of the company
name value, by adding to the flow various string operations that alter the value of CoName-
OrCIK. The ETL flow in Figure 4.9, from now on referred to as Flow_C, generates different
variations of the value for CoNameOrCIK with operations O14 and O15, who concatenate the
abbreviation “inc.” at the end of the word and remove the last token of the string, respectively.
After the rows from these operations are merged through a Union operation (O16), together
with the original CoNameOrCIK value, all these different variations are tried out to match with
rows coming from DimCompany.

78 Chapter 4 Data Generator for Evaluating ETL Process Quality

4.3.1 Evaluating the performance overhead of alternative ETL flows

In the first set of experiments, we implemented the three different ETL flows (Flow_A, Flow_B
and Flow_C) using Pentaho Data Integration4 and we measured their time performance by
executing them on Kettle Engine, running onMac OS X, 1.7 GHz Intel Core i5, 4GB DDR3 and
keeping average values from 10 executions.

For each flow, we used Bijoux to generate data to cover only the part of the flow that was
of interest, i.e., to cover the paths from Operations O1 to O12 who are covered by the rows that
are evaluated as False by operation O3. Hence, one important advantage of our tool is that it
can generate data to evaluate specific part of the flow, as opposed to random data generators
(e.g., the TPC-DI data generator provided on the official website) who can only generate data
agnostically of which part of the flow is being covered. This gives Bijoux not only a quality
advantage, being able to evaluate the flow in greater granularity, but also a practical advantage,
since the size of data that need to be generated can be significantly smaller. For instance,
the TPC-DI data generator generates data for the FINWIRE file, only around 1/3 of which
are evaluated as true by the filter RecType==’SEC’ and from them only around 1/3 contains a
company name instead of a number.

In order to generate realistic values for the company name fields, we used a catalog of
company names that we found online 5 and we used Bijoux to generate data not only for the
attributes that have been mentioned above, but for all of the attributes of the schemata of the
involved data sources as defined in the TPC-DI documentation, so as to measure more accurate
time results.

For each flow, we generated data of different size in order to evaluate how their perfor-
mance can scale with respect to input data size, as shown in the below table, where we can see
the number of rows for each data source for the three different scale factors (SF).

Data source! FINWIRE DimCompany Alt_DS (for Flow_B)
SF_A 4000 4000 60000
SF_B 8000 8000 60000
SF_C 16000 16000 60000

For these experiments, for each flow we assumed selectivities that would guarantee the
matching of all the rows in FINWIRE with rows in DimCompany and the results can be seen in
Figure 4.10 For Flow_C.

As we expected, the results show an overhead in performance imposed by the data cleaning
operations. It was also intuitive to expect that the lookup in the dictionary (Flow_B) would
impose greater overhead than the string alterations (Flow_C). Nevertheless, some interesting
finding that was not obvious is that as input data scale in size, the overhed of Flow_B appears to
come closer and closer to the overhed of (Flow_C), which appears to become greater as input
data size grows. We should notice at this point that our results regard the performance and

4
http://www.pentaho.com/product/data-integration

5
https://www.sec.gov/rules/other/4-460list.htm

4.3 Test case 79

http://www.pentaho.com/product/data-integration
https://www.sec.gov/rules/other/4-460list.htm

Figure 4.10: Performance evaluation of the flows using different scale factors

80 Chapter 4 Data Generator for Evaluating ETL Process Quality

scalability of a specific part of the flow – not the complete flow in general – which is a unique
advantage of our approach, especially in cases of dealing with bottlenecks.

Consequently, we conducted experiments assuming different levels of input data dirtiness,
by setting the selectivity of the different join operations for the different flows. The scenario
we intended to simulate was a predefined percentage of different types of data dirtiness. In this
respect, we considered four different types of dirtiness:

1. Missing the abbreviation “inc.” at the end of the company name (Type_I)

2. A word (e.g., company type abbreviation) exists at the end of the name when it should
not (Type_II)

3. The ending of the company name is mistakenly in an extended format (e.g., “incorpo-
rated’ ’ instead of “inc.”) (Type_III)

4. Miscellaneous that cannot be predicted (e.g., “corp.” instead of “inc.” or misspelled
names) (Type_IV)

We assumed that Flow_A cannot handle any of these cases (i.e., dirty names as an input for
the FINWIRE source will fail to bematched to data coming fromDimCompany); that Flow_B can
solve all the cases for Type_I and Type_III (i.e., there will be entries in the dictionary covering
both of these types of dirtiness); and Flow_C can cover all the cases for Type_I and Type_II,
because of the operation that it performs.

Thus, we generated data that were using real company names from the online catalog;
we considered those names as the standard company names versions to generate data for the
DimCompany source; and we indirectly introduced specified percentages of the different types
of dirtiness, by setting a) the selectivities of the join operators and b) by manually generating
entries in our dictionary (Alt_DS) that included all the names from the catalog together with
their corresponding names manually transformed to Type_I and Type_II. The percentages of
input data quality (IDQ) that were used for our experiments can be seen in the following table.

Dirtiness Type! Type_I Type_II Type_III Type_IV
IDQ1 0% 0% 0% 0%
IDQ2 1% 1% 3% 1%
IDQ3 2% 2% 6% 2%

In Figure 4.11, we show how the performance of Flow_B scales with respect to different
scale factors and data quality of input data. What is interesting about those results, is that the
flow appears to be performing better when the levels of dirtiness of the input data are higher.
This might appear counter-intuitive, but a possible explanation could be that less data (i.e.,
fewer rows) actually reach the extraction operation, keeping inmind that read/write operations
are very costly for ETL flows.

4.3 Test case 81

Figure 4.11: Performance evaluation of Flow_B using different levels of input data quality

82 Chapter 4 Data Generator for Evaluating ETL Process Quality

4.3.2 Evaluating the data quality of alternative ETL flows

In the above-mentioned experiments, we evaluated the time performance of different flows,
assuming that both data quality levels and data dirtiness characterization were a given. How-
ever, in order to evaluate an ETL flow with respect to the quality of the data cleaning that it
can provide, it is not sufficient to only evaluate the time performance of different data cleaning
options. To this end, in the second set of experiments, our goal was to evaluate which data
cleaning option would produce the lowest levels of data incompleteness in the output data of
the flow (DimSecurity table), using realistic datasets. In this respect, we used the company
names from our catalog and for each of them we prepared a query to scrap the Freebase online
database6 and retrieve data about the company name and the known aliases of those names.
Consequently, starting from 940 unique company names of our catalog, we were able to con-
struct a dictionary that contained 2520 entries, each containing an alias of a company name
and its corresponding standard name. We then used this dictionary as our Alt_DS dictionary;
the standard names to populate the DimCompany table; and the names as they were on the
catalog to populate the FINWIRE file.

Using Bijoux , we generated data that used Flow_A semantics in order to pass through the
part of the flow that was of our interest and the dictionaries as mentioned above to generate
realistic data. Despite the fact that it might appear as if the use of dictionaries devalues the
use of our algorithm, in fact this is one strength of our approach — that it can be configured to
generate data with different degrees of freedom, based on the constraints defined both by the
flow semantics and the user. Therefore, it is possible to conduct such analysis, using a hybrid
approach and evaluating the flows based on realistic data. The contribution of our algorithm in
this case is to generate, on one hand all the data for the different fields of the schemata that are
required for the flow execution and to make sure, on the other hand that the generated rows
will cover specific parts of the flow.

After executing Flow_B and Flow_C with these input data, we used the following measure
for data completeness:
DI = %_of_missing_entities_from_their_appropriate_storage (Simitsis et al., 2009a)

The results for the two flows were the following:
DI

F low_B = 56
940 ⇤ 100 ⇡ 6%

DI
F low_B = 726

940 ⇤ 100 ⇡ 77%

According to these results, we can see a clear advantage of Flow_B regarding the data qual-
ity that it provides, suggesting that the performance overhead that it introduces, combined
with potential cost of obtaining and maintaining a dictionary, might be worth undertaking, if
data completeness is a goal of high priority.

We have explained above how the parametrization of our input data generation enables
the evaluation of an ETL process and various design alterations over it, with respect to data
quality and performance. Essentially, alternative implementations for the same ETL can be
simulated using different variations of the data generation properties and the measured quality
characteristics will indicate the best models, as well as how they can scale with respect not only

6
https://www.freebase.com/

4.3 Test case 83

https://www.freebase.com/

to data size but also to data quality of the input data. Similarly, other quality characteristics can
be considered, like reliability and recoverability, by adjusting the percentage of input data that
result to exceptions and the selectivity of exception handling operations. In addition, we have
shown through our examples how data properties in the input sources can guide the selection
between alternative ETL flows during design time.

4.4 BIJOUX PERFORMANCE EVALUATION

In this section, we report the experimental findings, after scrutinizing different performance
parameters of Bijoux, by using the prototype that implements its functionalities.

We first introduce the architecture of a prototype system that implements the functionality
of the Bijoux algorithm.

Input. The main input of the Bijoux framework is an ETL process. As we previously dis-
cussed, we consider that ETL processes are provided in the logical (platform-independent)
form, following previously defined formalization (see Section 4.1.2). Users can also provide
various parameters (see Figure 4.5) that can lead the process of data generation, which can
refer to specific fields (e.g., field distribution), operations (e.g., operation selectivity) or general
data generation parameters (e.g., scale factors).

Output. The output of our framework is the collection of datasets generated for each input
data store of the ETL process. These datasets are generated to satisfy the constraints extracted
from the flow, as well as the parameters provided by the users for the process description (i.e.,
distribution, operation selectivity, load size).

Bijoux architecture. The Bijoux’s prototype is modular and based on a layered architec-
ture, as shown in Figure 4.12. The four main layers implement the core functionality of the
Bijoux algorithm (i.e., graph analysis, semantics extraction, model analysis, and data generation),
while the additional bottom layer is responsible for importing ETL flows from corresponding
files and can be externally provided and plugged to our framework (e.g., flow import plugin
(Jovanovic et al., 2014)). We further discuss all the layers in more detail.

• The bottom layer (Model Parsing) of the framework is responsible for parsing the model
of the ETL process (Parser component) from the given logical representation of the flow
(e.g., XML), and importing a DAG representation for the process inside the framework.
In general, theModel Parsing layer can be extended with external parser plugins for han-
dling different logical representations of an ETL process (e.g., (Wilkinson et al., 2010;
Jovanovic et al., 2014)). This layer also includes a Validator component to ensure syntac-
tic, schematic and logical (e.g., cycle detection) correctness of the imported models.

• The Graph Analysis layer analyzes the DAG representation of the ETL flow model. Thus,
it is responsible for identifying and modeling all the ETL flow paths (Path Enumerator
component; see Algorithm 1), as well as constructing all their possible combinations
(Path Combinator component).

• The Semantics Extraction layer extracts relevant information needed to process the ETL
flow. The information extracted in this layer (from the Constraints Semantics Extractor

84 Chapter 4 Data Generator for Evaluating ETL Process Quality

Model
Parsing

Validator Parser

Graph
Analysis Path

Enumerator
Path

Combinator

Semantics
Extraction Constraints

Semantics
Extractor

Path
Constraints

Analyser

Model
Analysis Data Gen.

Pattern
Constructor Constraints

System
Solver

Coverage
Controller

Data
Ganeration

Data Gen.
Tasks

Distributor
Data

Supplier

Data Gen.
Utilities

< >

Data Gen
Parameters

Parameters
Validator &

Binder

ETL logical
model

Component

intra-layer communication

inter-layer communication

I/O

Artifact

Figure 4.12: Bijoux prototype architecture

component) includes information about input datasets, operation semantics, order of
operations, schema changes, and other parameters for data generation. This layer is also
responsible for modeling constraints grouped by path (Path Constraints Analyzer; see Al-
gorithm 2) to provide the required constructs for feasibility analysis and the construction
of a data generation pattern to the layer above (Model Analysis).

• Model Analysis layer realizes the construction of a data generation pattern (Data Gen. Pat-
tern Constructor component) that computes for each field (i.e., attribute), in each table,
the ranges of values according to the extracted semantics of operations and their posi-
tioning within paths and path combinations. To this end, this layer includes the Coverage
Controller component for implementing such analysis according to the set coverage goal
(i.e., path coverage, flow coverage). In addition, it includes the Constraints System Solver
component, which solves the systems of gathered constraints (e.g., system of logical pred-
icates and equations over specified attributes) and returns the computed restrictions over
the ranges.

• Data Generation layer controls the data generation stage according to the constraints (i.e.,
data generation patterns) extracted and analyzed in the previous layer, as well as the
Data Gen. Parameters provided externally (e.g., distribution, selectivity). The Parameters
Validator & Binder component binds the externally provided parameters to the ETLmodel

4.4 Bijoux Performance evaluation 85

and ensures their compliance with the data generation patterns, if it is possible. The
Data Gen. Tasks Distributor component is responsible for managing the generation of
data in a distributed fashion, where different threads can handle the data generation for
different (pairs of) attributes, taking as input the computed ranges and properties (e.g.,
generate 1000 values of normally distributed integers where 80% of them are lower than “10”).
For that purpose, it utilizes the Data Gen. Utilities component, that exploits dictionaries
and random number generation methods. Finally, the Data Supplier component outputs
generated data in the form of files (e.g., CSV files).

4.4.1 Experimental setup

Here, we focused on testing both the functionality and correctness of the Bijoux algorithm
discussed in Section 4.2, and different quality aspects, i.e., data generation overhead (perfor-
mance) wrt. the growing complexity of the ETL model. The reason that we do not additionally
test those quality aspects wrt. input load sizes is that such analysis is irrelevant according to
the Bijoux algorithm. The output of the analysis phase is a set of ranges and data generation
parameters for each attribute. Hence, the actual data generation phase does not depend on the
efficiency of the proposed algorithm, but instead can be realized in an obvious and distributed
fashion. Thus, we present our results from experiments that span across the phases of the al-
gorithm up until the generation of ranges for each attribute. We performed the performance
testing considering several ETL test cases, which we describe in what follows.

Our experiments were carried under an OS X 64-bit machine, Processor Intel Core i5,
1.7 GHz and 4GB of DDR3 RAM. The test cases consider a subset of ETL operations, i.e., In-
put DataStore, Join, Filter, Router, UDF, Aggregation and Output DataStore. Based on the TPC-H
benchmark7, our basic scenario is an ETL process, which extracts data from a source relational
database (TPC-H DB) and after processing, loads data to a data warehouse (DW) and can be
described by the following query: Load in the DW all the suppliers in Europe together with their
information (phones, addresses etc.), sorted on their revenue and separated by their account balance
(either low or high), as can be seen in Fig. 4.13.

TPC_H
DB

Supplier
<<Input
DataStore>>

NATION
<<Input
DataStore>>

DW

Join_n_s
<<Join>>

Filter_region_Europe
<<Filter>>

load_high_sup
<<Output

DataStore>>

{r_name=EUROPE}

n_nationkey}
{s_nationkey

=

REGION
<<Input
DataStore>>

Join_r_n
<<Join>>

r_regionkey}
{n_regionkey

=

LINEITEM
<<Input
DataStore>>

Join_s_l
<<Join>>

l_suppkey}
{s_suppkey

=

UDF_revenue
<<UDF>>

l_extendedprice
{item_revenue

=

(1-l_discount)}*

Router_s_acctbal_5000
<<Router>>

SUM_revenue_high
<<Aggregation>>

{s_acctbal>5000}

SUM_revenue_low
<<Aggregation>>{s_acctbal<=5000}

load_low_sup
<<Output

DataStore>>

Figure 4.13: Basic scenario ETL process for experiments

The tables that are used from the source database are Supplier, Nation, Region and Lineitem.
After Supplier entries have been filtered to keep only suppliers in Europe, the revenue for each
supplier is calculated based on the supplied lineitems and subsequently, they are sorted on

7http://www.tpc.org/tpch/

86 Chapter 4 Data Generator for Evaluating ETL Process Quality

revenue, separated by their account balance and loaded to different tables in the DW. Start-
ing from the basic scenario, we use POIESIS (Theodorou et al., 2015), a tool for ETL Process
redesign that allows for the automatic addition of flow patterns on an ETL model. Thus, we
create other, more complex, synthetic ETL flows. The motivation for using tools for automatic
ETL flow generation stems from the fact that obtaining real world ETL flows covering different
scenarios with different complexity and load sizes is hard and often impossible.

Scenarios creation. Starting from this basic scenario, we create more complex ETL flows
by adding additional operations, i.e., Join, Filter, Input DataStore, Project in various (random) po-
sitions on the original flow. We add two different Flow Component Patterns (FCP) (Theodorou
et al., 2015) on the initial ETL flow in different cardinalities and combinations. The first pat-
tern — Join — adds 3 operations every time it is applied on a flow: one Input DataStore, one
Join and one Project operation in order to guarantee matching schemata; the second pattern—
Filter—adds one Filter operation with a random (inequality) condition on a random numerical
field (i.e., attribute).

We iteratively create 5 cases of different ETL flow complexities and observe the Bijoux’s
execution time for these cases, starting from the basic ETL flow:

• Case 1. Basic ETL scenario, consisting of twenty-two (22) operations, as described above
(before each join operation there exists also one joining key sorting operation which is
not shown in Fig. 4.13, so that the flow is executable by most popular ETL engines).

• Case 2. ETL scenario consisting of 27 operations, starting from the basic one and adding
an additional Join FCP and 2 Filter FCP to the flow.

• Case 3. ETL scenario consisting of 32 operations, starting from the basic one and adding
2 additional Join FCP and 4 Filter FCP to the flow.

• Case 4. ETL scenario consisting of 37 operations, starting from the basic one and adding
3 additional Join FCP and 6 Filter FCP to the flow.

• Case 5. ETL scenario consisting of 42 operations, starting from the basic one and adding
4 additional Join FCP and 8 Filter FCP to the flow.

4.4.2 Experimental results

Wemeasure the average execution time of the path enumeration, extraction and analysis phase
for the above 5 scenarios covering different ETL flow complexities.

Figure 4.14 illustrates the increase of execution time when moving from the simplest ETL
scenario to a more complex one. As can be observed, execution time appears to follow a lin-
ear trend wrt. the number of operations of the ETL flow (i.e., flow complexity). This can be
justified by the efficiency of our graph analysis algorithms and by the extensive use of index-
ing techniques (e.g., hash tables) to store computed properties for each operation and field,
perhaps with a small overhead on memory usage. This result might appear contradictory, re-
garding the combinatorial part of our algorithm, computing and dealing with all possible path
combinations. Despite the fact that it imposes factorial complexity, it is apparent that it does
not constitute a performance issue for ETL flows of such complexity. To this end, the solution

4.4 Bijoux Performance evaluation 87

Case	1	

Case	2	

Case	3	
Case	4	

Case	5	

0	

5	

10	

15	

20	

25	

30	

35	

40	

45	

50	 70	 90	 110	 130	 150	

N
um

be
r	o

f	F
lo
w
	O
pe

ra
0o

ns
	

Execu0on	Time	(ms)	

Figure 4.14: Linear trend of constraints extraction time wrt. the increasing number of opera-
tions (ETL flow complexity)

space is significantly reduced by i) our proposed greedy evaluation of the feasibility of a pattern
every time it is updated and ii) by disregarding path combinations that do not comply to spe-
cific rules, e.g., when considering path coverage, every input of a joining operation involved in any
path of a path combination must be flowed (crossed by) at least one other path of that combination.

4.5 CONCLUSIONS AND FUTURE WORK

In this chapter, we have studied the problem of synthetic data generation in the context of
multi-objective evaluation of ETL processes. We proposed an ETL data generation framework
(Bijoux), which aims at automating the parametrized data generation for evaluating different
quality factors of ETL process models (e.g., data completeness, reliability, freshness, etc.), en-
suring both accurate and efficient data delivery. In particular, Bijoux extracts and analyzes the
semantics of data transformations and the constraints they imply over input data, to automat-
ically generate testing datasets that cover the execution of the entire ETL flow. Thus, beside
the semantics of ETL operations and the constraints they imply over input data, Bijoux takes
into account different quality-related parameters, extracted or configured by an end-user, and
guarantees that generated datasets fulfill the restrictions implied by these parameters (e.g., op-
eration selectivity).

We have evaluated the feasibility and scalability of our approach by prototyping our data
generation framework. The experimental results have shown a linear (but increasing) behavior
of Bijoux’s overhead, which suggests that the algorithm is potentially scalable to accommodate
more intensive tasks. At the same time, we have observed different optimization opportunities

88 Chapter 4 Data Generator for Evaluating ETL Process Quality

to scale up the performance of Bijoux, especially considering larger volumes of generated data.
As an immediate future step, we plan on additionally validating and exploiting the func-

tionality of this approach in the context of quality-driven ETL process design and tuning, as
explained in our test case scenario.

4.5 Conclusions and Future Work 89

90 Chapter 4 Data Generator for Evaluating ETL Process Quality

5
FREQUENT PATTERNS IN ETL

WORKFLOWS

5.1 ETL Patterns

5.2 ETL Patterns Use Cases

5.3 Architecture

5.4 Experimental Results

5.5 Summary and Outlook

The increasing dynamicity of Business Intelligence environments has driven the proposal of
several approaches for the effective modeling of ETL processes, based on the conceptual ab-
straction of their operations. Apart from fostering automation and maintainability, such mod-
eling also provides the building blocks to identify and represent frequently recurring patterns.
Despite some existing work on classifying ETL components and functionality archetypes, the
issue of systematically mining such patterns and their connection to quality attributes such as
performance has not yet been addressed.

In this chapter, we address challenges in ETL automation, as described in Section 1.3. We
illustrate how our pattern-based approach can address ETL complexity aspects and produce
models that enable more granular ETL analysis and the means for automated quality enhance-
ment. In this respect, we introduce our empirical approach for the identification of ETL struc-
tural patterns that are significant for different types of analysis. Based on the different types of
ETL operations, we logically model the ETL workflows using labeled graphs and employ graph
algorithms to identify candidate patterns and to recognize them on different workflows. For
the identification phase, we use frequent subgraph discovery techniques and for the recogni-
tion phase, we introduce an algorithm that can perform very well for ETL flows and can scale
for the cases of multiple and large flows

Our approach can be used for the (pre-)evaluation of alternative ETL workflows at design
time, without the need for their execution or simulation, but solely by decomposing them to
recognized patterns for which quality characteristics are measured during a learning phase. In
addition, it can generate fine-grained cost models at the granularity level of patterns. It can
also be used to classify reusable and well-defined ETL steps regardless of the implementation
technology in order to i) automatically derive more understandable conceptual modeling and
visualization of ETLs and ii) improve the reusability and reliability of ETL components in cases
of alternative pattern implementations by exposing their characteristics. To showcase our ap-
proach, we implement a set of realistic ETL processes defined in the TPC-DI benchmark1 and
we show experimental results from applying our methodology on them.

1
http://www.tpc.org/tpcdi/

92 Chapter 5 Frequent Patterns in ETL Workflows

http://www.tpc.org/tpcdi/

Figure 5.1: ETL flow example: TPC-DI FactCashBalances population

Running Example. From the TPC-DI domain, we adopt as our running toy example an
ETL process (see Figure 5.1) that populates the FactCashBalances table during the Historical
Load phase. In Figure 5.1, we show the logical view of the ETL process, as it is viewed from
the implementation that we developed using the Pentaho Data Integration (PDI) open source
tool2. The ETL process extracts data from a plain-text file in the Staging Area (CashTransac-
tion.txt) and processes one of its fields to remove time and keep only date information. Conse-
quently, data are joined with DimAccount table to obtain the corresponding keys for customers
and accounts, after irrelevant fields from both sources have been projected out and data have
been sorted. Similarly, data are joined with the DimDate dimension table to obtain correspond-
ing date information and then they are aggregated on a daily basis. After null values have been
replaced by zeros —only for the rows that contain null values— distinct rows are kept and con-
stants (e.g., effectiveDate) are added to each row. Finally, data are aggregated per account and
after keeping only relevant fields, they are loaded to the FactCashBalances table of the DW.

The main contributions of this chapter are as follows. We conduct a pattern-based analysis
of ETL workflows, using the main control flow patterns from the Workflow Patterns Initiative3

as a guide. Subsequently, we introduce a novel empirical approach for mining ETL structural
patterns, using frequent subgraph discovery algorithms. Furthermore, we present an adapta-
tion of the VF2 graph matching algorithm with optimizations to perform very well on ETL
workflows. Finally, we present the most frequent ETL patterns, identified in 25 implemented
ETL processes from the TPC-DI framework.

The rest of the chapter is structured as follows. Section 5.1 formalizes the models of ETL
frequent patterns and sets the theoretical background for our approach. Section 5.2 presents
two interesting use cases of our methodology and Section 5.3 illustrates our architecture and
the algorithms that we employ for pattern mining and pattern recognition. Section 5.4 shows

2Full implementation available at: https://github.com/AKartashoff/TPCDI-PDI/
3
http://www.workflowpatterns.com/

93

https://github.com/AKartashoff/TPCDI-PDI/
http://www.workflowpatterns.com/

results from applying our methodology on implemented ETLs. Finally, Section 5.5 concludes
the chapter.

5.1 ETL PATTERNS

Abstracting ETL processes on a logical level allows for the identification of recurring structures
among the produced workflow models, that can indicate patterns. In this respect, we delve
into the well-studied area of workflow patterns (WP) (Van Der Aalst et al., 2003) and examine
their application on ETL workflows, in order to drive insights for the definition of our pattern
model, which we subsequently present.

5.1.1 Workflow Patterns for ETL Flows

In this subsection, we present the basic workflow control-flow patterns (Van Der Aalst et al.,
2003) that describe control-flow semantics commonly offered by various workflow manage-
ment systems and we position them in the context of ETL flows.

ETL workflows are data-intensive flows where atomic tasks correspond to ETL operations,
for which pipelining plays a crucial role and the smallest unit of data that can flow between
them is a tuple. In this regard, we conceptually relate data-flow to control-flow by assuming
that the control-flow dependencies refer to processing of data (i.e., tuples) by ETL operations.
Of course, we should not exclude the case of blocking operations, where the unit of data that
is expected by one operation in order to complete its execution, is a dataset, i.e., a set of tu-
ples that all need to pass from one operation to the other. However, this simply implies some
restrictions on the task completion which again produces some tuple(s) as an output to the suc-
ceeding operation(s), and thus does not change the generality of our approach. Hence, for one
specific tuple, the task (i.e., ETL operation) activation is when this tuple enters this specific
task for processing and the task completion is when this task has completed processing this
specific tuple or the set of tuples in which it participates, if it is the case of a blocking opera-
tion. Following this concept, we perform the analysis below that defines the different workflow
patterns in the context of ETL processes:

• Sequence
Description: A task in a process is enabled after the completion of a preceding task in the
same process.
In ETL context: An ETL operation in a flow begins its execution right after the completion
of the execution of a preceding operation in the same flow. The inputs of ETL operations
are datasets and thus the smallest token that flows through the ETL is a tuple. In this
regard, the Sequence pattern can be regarded in a tuple-by-tuple fashion, translating to:
one tuple will be processed by one ETL operation after its processing by a preceding operator
has completed. This definition of sequence is broad enough to cover both the cases i) when
one operation does not have to process all tuples of a dataset before their processing by
succeeding operations, allowing for pipelining and ii) when the processing semantics of
the operation denote a blocking operator (e.g., sorter or aggregator).

94 Chapter 5 Frequent Patterns in ETL Workflows

• Parallel Split
Description: The divergence of a branch into two or more parallel branches each of which
execute concurrently.
In ETL context: Two or more succeeding ETL operations begin their execution right after
the completion of the execution of a preceding operation. The inputs of all these suc-
ceeding operations are identical datasets, coming as copies of the output of the preceding
operation. For example, multiple ETL operations might perform the same processing of
the same datasets at the same time implementing redundant execution. This case is use-
ful i) for improving the reliability of the ETL process, so that even if some component
fails, there are others executing identical tasks and the process does not need to termi-
nate with errors and ii) for improving the correctness of the process by crosschecking the
output results from identical tasks. Another example of parallel split in ETL processes is
when (parts of) the same datasets need to be loaded to different output data sources (e.g.,
for loading surrogate keys correspondence).

• Synchronization
Description: The convergence of two or more branches into a single subsequent branch
such that the thread of control is passed to the subsequent branchwhen all input branches
have completed execution.
In ETL context: Two or more ETL operators are succeeded by the same ETL operator,
which requires input from all of them in order to begin its execution. Datasets coming
from the preceding operators are thus combined in some way by the succeeding operator.
Examples of Synchronization within an ETL flow include different types of Joins where
the left and right parts of the join operation come from different incoming flows.

• Exclusive Choice
Description: The divergence of a branch into two or more branches such that when the
incoming branch is enabled, the thread of control is immediately passed to precisely
one of the outgoing branches based on a mechanism that can select one of the outgo-
ing branches.
In ETL context: Only one of two or more ETL operations that succeed an ETL operation
begins its execution right after the completion of the execution of the preceding oper-
ation. The output of the preceding operation is directed (routed) to precisely one of
the candidate succeeding operations, based on defined conditions and/or policies. As an
example, different tuples can be routed to different operations based on condition evalu-
ations or simply in a round robin fashion.

• Simple Merge
Description: The convergence of two or more branches into a single subsequent branch
such that each execution completion of an incoming branch results in the thread of con-
trol being passed to the subsequent branch.
In ETL context: Two or more ETL operators are succeeded by the same ETL operator,
which begins its execution every time it receives input from any of the preceding oper-
ators. Datasets coming from different operators do not need to be combined with each
other, but have to conform to specific constraints for their unified processing by the same

5.1 ETL Patterns 95

ETL Operator Related WP
Filter, Single Value Alteration, Project, Sequence
Field Addition, Aggregation, Sort
Router Exclusive Choice
Splitter Parallel Split
Join Synchronization
Union Simple Merge

Table 5.1: ETL operators

succeeding operation, e.g., common schema. An example of Simple Merge in ETL flows
is the union of datasets coming from multiple different operations.

5.1.2 ETL Patterns model

Based on the basicWP for ETL, as they were defined above, we can derive a classification of ETL
operators that depends on their control-flow semantics. If we further enrich this classification
with the processing semantics of each operator, we obtain the classification of Table 5.1.

This basic set of operators constitutes the building blocks of a vast number of ETL processes
logical models, making this number even greater if we consider that operators such as Single
Value Alteration and Field Addition can be based on User Defined Functions (UDF) written in
different programming languages. Taking under consideration the topologies that are formed
by the way that different operators are connected inside an ETL flow, combined with the type
of each operator, we derive structures that are candidate ETL patterns. In order for a candidate
pattern to be considered an ETL pattern, it needs to satisfy the following two conditions:

1. It has to occur frequently, i.e., its support with respect to all the (examined) ETL flows
has to exceed a threshold value s .

2. It has to be significant for the conducted analysis, i.e., it has to exhibit some important
or differentiating behavior that can lead to its characterization, e.g., concerning its func-
tional contribution to the complete workflow or its performance deviation from other
parts of the workflow.

An ETL operation o is an atomic processing unit responsible for a single transformation
over the input data, having specific processing semantics ps over the input data and a specific
branch structure defined as the way it connects with neighboring nodes (i.e., operations). We
logically model an ETL flow as a directed acyclic graph (DAG) consisting of a set of nodes,
which are ETL operations (O), while the graph edges (E) represent the directed control flow
among the nodes of the graph (o1 � o2). Formally:
o = ps
ETL = (O,E), such that:
8e 2 E : 9(o1, o2), o1 2 O ^ o2 2 O ^ o1 � o2

This abstract definition of the ETL flow and its operations allows for the analysis of ETLs
independent of the technologies that are used for their implementation and thus enables the

96 Chapter 5 Frequent Patterns in ETL Workflows

ETLPatternsCombination

Precedence

EventualPrecedenceImmediatePrecedence

Cooccurrence Overlap Exclusivity

PatternsRepository

0..*

AtomicETLPattern

ETLPattern

ETLFlowGraph

EFGElement
0..*

EFGDirectedEdge

EFGOperationNode

SemanticAnnotation

Label
2..*

AnnotatedEFGElement

1

1

AnnotatedEFGElementsSubgraph

1..*

BasedOnOperationTypeAnnotation ...

sourceNode
1

targetNode
1

hasPatternVariation
1..* combines

{ordered}

2..*
PatternModelPatternElement

0..*

PatternEdgePatternNode
sourceNode
1

targetNode
1

1

occurrenceOf

correspondsTo

correspondsTo

connection

1

Figure 5.2: ETL Pattern Conceptual Model

mining of ETL patterns from a large number of ETL flows that can easily map to our model.
Based on the characteristics of each operator o, it can be mapped to one label l from a prede-
fined set L through the surjective function label.

A Pattern Model PM would then be a DAG where its nodes PN have a specific label l and a
specific branch structure. Formally:
pn = l
PM = (PN,E), such that:
8e 2 E : 9(pn1, pn2), pn1 2 PN ^ pn2 2 PN ^ pn1 � pn2

We assume that only coherent structures make sense for our analysis and thus patternmod-
els are connected graphs, i.e., graphs for which, if we ignore directionality there is a path from
any of their nodes to any other node in the graph. We should note here that based on different
analysis requirements there can be different definitions of mappings (i.e, mapping functions
and sets of symbols), mapping one operator to one label. For instance, an operator can be
mapped to a label, based solely on its input and output cardinality or based on its operation
type. We have found that the latter case can produce useful results and hence that is the anal-
ysis that we use in our work. Thus, the labels that we use for our analysis are within a setOT,
where OT ✓ L and each element ot 2 OT refers to the operation type of the operation and
hence can take values from the classification of ETL operators in Table 5.1.

In Figure 5.2, we present the conceptual model of the pattern model and how it relates to
the ETL flow. Amore detailed description of Figure 5.2 is as follows: Using a mapping function,
we can semantically annotate the elements (EFGElements) of an ETL Flow Graph, i.e., the edges

5.1 ETL Patterns 97

Sort

Sort
Join Project

Sort

Sort
Join

ETL Pattern: Join
Pattern Model A

Pattern Model B

Recognition of Pattern Join
Occurrence of Pattern Model A

Excerpt from ETL workflow

Project fields 2
<<Project>>

Sort date 2
<<Sort>>

Accumulate per day
<<Aggregation>>

Sort date 3
<<Sort>>

Join date
<<Join>>

Sort date
<<Sort>>

......

...

Figure 5.3: Pattern Model and Pattern Occurrence on an ETL workflow

(EFGDirectedEdges) and the nodes (EFGOperationNodes) by assigning them with corresponding
labels and thus producing Annotated EFG Elements. A collection of such elements (i.e., a graph
containing annotated edges and annotated nodes) can then form an Annotated EFG Elements
Subgraph aees 2 AEES, which is an occurrence of a pattern model pm 2 PM iff each and
every element e from the subgraph corresponds to an element pe from the pattern model,
through a bijective function occurrenceOf.

Notice that according to this model, edges between ETL operators can also be mapped
to labels. This assumption has been made for completeness and because there can be some
practical cases of ETL models where edges can be differentiated according to the manner that
datasets flow from the source node to the target node (e.g., copy-edges can refer to the case when
all outgoing edges from one source node copy the same datasets to all target nodes and distr-
edges to the case when datasets are distributed among target nodes). However, for our analysis
we consider all edges to be of the same type, i.e., that there is only one label to characterize all
edges.

As mentioned above, for our analysis we use the semantic annotation (i.e., labeling) based
on operation type (BasedOnOperationTypeAnnotation), but there can be different kinds of se-
mantic annotation (i.e., subclasses of the class SemanticAnnotation), based on the conducted
analysis. As is illustrated in Figure 5.2, the same pattern (AtomicETLPattern) can have varia-
tions, resulting to different corresponding pattern models in Figure 5.3). For instance, two dif-
ferent pattern models can correspond to the same ETL functionality, so if the analysis purpose
is the clustering of operations based on their functionality, these two models will constitute
variations of the same pattern. An example is illustrated in Figure 5.3), where we show how
the ETL pattern Join can have two different pattern models (i.e., Pattern Model A and Pattern
Model B) and how by finding the occurrence of one of these models (Pattern Model A) on the
excerpt from our example ETL process from Figure 5.1, we can recognize it as an instance of the
ETL pattern. Furthermore, a combination of two or more patterns (ETLPatternsCombination)
can itself be a pattern. In this respect, two (or more) patterns can be combined in the following
ways, forming a new pattern:

98 Chapter 5 Frequent Patterns in ETL Workflows

• Overlap: Patterns can overlap, with their pattern models sharing elements or with el-
ements of one pattern model located inside the other. This case also includes pattern
nesting, where one pattern is located inside the other.

• Precedence: One pattern is located (right) after the other.

• Cooccurrence: Both patterns occur in the same ETL flow.

• Exclusivity: Only one of the patterns can occur in the ETL flow and not the other(s).

It should be noticed that the participation of ETL patterns in ETL Pattern Combinations
entails a concrete role for each pattern in the combination and this is denoted by the character-
ization of the combines association as ordered. Despite our approach allowing for the occurrence
of overlapping patterns and patterns one after the other (i.e., precedence), we do not consider
the case of the combinations themselves being patterns (i.e., we only consider Atomic ETL Pat-
terns).

5.1.3 Frequent ETL Patterns

As mentioned above, one of the conditions for a candidate pattern to be considered a pattern
is that its support has to exceed some predefined value. In other words, its corresponding pat-
tern model(s) have to occur frequently over the entire set of examined ETL workflows. Since
both the ETL workflows and the pattern models are represented using graphs, the problem of
mining such patterns can be examined under the prism of frequent subgraph mining, which is
a subclass of frequent itemset discovery (Salmenkivi, 2008), where the goal is to discover fre-
quently occuring subgraphs within a set of graphs or a single large graph, with frequency of
occurrence above a specified threshold value.

For the purpose of our analysis, we are not interested in frequent subgraphs that always
appear inside other, bigger frequent subgraphs (i.e., pattern nesting). In this respect, we define
a maximality condition: A frequent subgraph (SG1) is maximal when there exists no frequent
subgraph (SG2) of bigger size, where (SG1) is a proper subgraph of (SG2). Formally:
isMaximal(SG1) () isFrequent(SG1) ^ @SG2 such that isFrequent(SG2) ^
SG1 ⇢ SG2

On the contrary, we define independent frequent subgraphs as frequent subgraphs that occur
at least once not nested inside the occurrence of another frequent subgraph. Formally:
isIndependent(SG1) () isFrequent(SG1) ^ 9occurrence(SG1) such that (@SG2
such that isFrequent(SG2) ^ occurrence(SG1) ⇢ occurrence(SG2))

Figure 5.4 shows the distinction of these two concepts through an example. The two num-
bers on each frequent subgraph respectively denote the total number of occurrences and the
number of independent occurrences (i.e., not inside the occurrence of another frequent sub-
graph).

5.1 ETL Patterns 99

a b
a

c
b

a

c
b dsubgraphOfsubgraphOf

a

d
b

subgraphOf

Frequent Subgraphs

Total: 15
Independent: 0

Total: 7
Independent: 1

Total: 6
Independent: 6

Total: 8
Independent: 8

Maximal

Independent

Frequent

{a,b,c,d} Labels

Figure 5.4: Maximal and Independent Frequent Subgraphs

5.2 ETL PATTERNS USE CASES

The identification of patterns within ETL processes and their definition and classification can
be used in various ETL projects with contributions spanning from more efficient ETL quality
analysis to more usable and reusable ETL models. In this section, we present two use cases that
expose the value of using ETL flows patterns that are derived from our empirical approach.

5.2.1 Conceptual Representation of ETL Flows

The value of using conceptual representations of ETL processes has been recognized in sev-
eral works (Wilkinson et al., 2010; Akkaoui et al., 2013; Oliveira and Belo, 2012), where the
proposed modeling notation is BPMN, mainly because of its expressiveness and the support of
modeling data artifacts and the data flow of the ETL process. These works have mostly focused
on the advantages of a conceptual model during the design phase, for modeling abstractions
of process functionalities and automating their translation to concrete implementations. Using
our bottom-up approach, it is possible to work the other way round, identifying ad-hoc patterns
on arbitrary ETL processes and thus populating libraries of such abstractions in the context of
any specific business environment and used ETL technologies. It is then straightforward to
conceptually model any ETL process in the same context, by decomposing its different parts to
the identified patterns.

In Figure 5.5 we show an example of such a decomposition, translating the logical model of
our running example (see Figure 5.1) from its logical model to a conceptual representation in
BPMN. The patterns used are mined from ETL processes within the same domain and context,
i.e., TPC-DI ETLs implemented using the Pentaho Data Integration tool. The conceptual rep-
resentation is much more concise and understandable than the logical view and the translation
is completely automated.

100 Chapter 5 Frequent Patterns in ETL Workflows

{CT_CA_ID
=

accountid}

{datevalue=date}

{group by: date}

{if: CT_AMT_sum is NULL}

{group by: sk_account_id}

TPC-DI use case

Extract
from File

CashTransactions.txt

Lookup
Operation

DimAccount

Lookup
Operation

DimDate

Accumulate Selective
Processing

Process
Chain Accumulate Load To

Table

FactCashBalances

Logical Model

Conceptual Model

Figure 5.5: Example of translating logical representation of an ETL process to BPMN

5.2.2 Quality-based Analysis of ETL flows

One other interesting application of our bottom-up approach is the more granular evaluation of
quality characteristics of ETL processes. In (Theodorou et al., 2016), we have gathered quality
measures and metrics from literature and we have illustrated how they can be used to evaluate
ETL processes with respect to different quality dimensions. Using our approach, such evalua-
tion can take place in a more granular level than the complete ETL workflow —at the level of
patterns. What is more, such evaluation can take place without the need for execution of the
ETL workflow under test, but simply by statically examining its logical model and by recogniz-
ing pattern occurrences, similarly to Figure 5.5. During a learning phase, the average quality
performance of different pattern models can be obtained from the isolated evaluation of their
occurrences on a training set of ETLs. Subsequently, after pattern models have been character-
ized based on their performance, their occurrence on ETL models can signify the existence of
parts of the ETL with corresponding performance implications. For instance, different parts of
the ETL can be predicted as more, or less costly in terms of consumption of resources, creat-
ing a heatmap of the different parts of the ETL. This kind of analysis can also be used for the
identification and avoidance of antipatterns (Smith andWilliams, 2000) during the ETL design
phase.

5.3 ARCHITECTURE

Our general approach architecture is depicted in Figure 5.6 and consists of two phases —the
learning phase and the recognition phase. During the learning phase, a training set of ETL work-

5.3 Architecture 101

Prepare ETL
training flows

Apply Techniques to
mine potential

patterns
Define and Classify

Patterns

Learning Phase
Translate to data

model and store in
patterns repository

Prepare ETL
flow

Run recognition
algorithm using

Models from
Repository

Select pattern
matching strategy

Recognition Phase

Translate to pattern-
based model

Patterns
Repository

Figure 5.6: Process Architecture of ETL Workflow Patterns Analysis

flows is used to mine ETL patterns and store them in a patterns repository. The first step is the
modeling of the ETL workflows as the ETL structures defined in Section 5.1. Subsequently,
graph algorithms can be applied on the ETL structures to identify reoccurring structures with
frequency above a specified support threshold. After the identification of the frequent struc-
tures, analysis takes place to define relevant structures as patterns and to classify them ac-
cording to their functionality. It is during this step that some frequent structures might be
dismissed after being considered irrelevant for the conducted analysis (e.g., non-independent
patterns). Finally, ETL patterns are stored in a repository, after being translated to an appropri-
ate data model. During the recognition phase, one ETL flow is modeled as an ETL structure and
graph matching algorithms are executed to find occurrences of patterns, from the repository
to the ETL structure. A pattern matching strategy is selected to disambiguate the cases where
different patterns can be recognized on the same part of the ETL and subsequently, the ETL
operations are mapped to corresponding pattern occurrences.

5.3.1 Pattern mining

The first step for mining patterns of interest is the identification of reoccurring structures over
a set of ETL workflows. As mentioned above, we can view our problem as an application of
frequent itemset discovery, where the goal is to discover frequently occuring “items” within a set
of “baskets”. Since we logically model ETL workflows as graphs, it is natural for this stage to
use graph mining techniques, i.e., techniques for extracting statistically significant and useful
knowledge from graph structures. Given a set of graph representations of ETL workflows, the
reoccurring structures of interest are graphs, that occur as subgraphs of the initial graphs more
frequently than a specified threshold percentage. Thus, we can employ the use of algorithms
from the well studied area of Frequent Subgraph Mining (FSM). In (Jiang et al., 2013), there is
a detailed review of this mature research area, including the main research challenges and the
most interesting proposed solutions.

For our experiments, we decided to use the FSG algorithm (Kuramochi and Karypis, 2001),
because of 1) its computational efficiency and 2) fast and reliable results from testing that we
conducted using its available implementation4. This algorithm generates candidate frequent

4
http://glaros.dtc.umn.edu/gkhome/pafi/overview

102 Chapter 5 Frequent Patterns in ETL Workflows

http://glaros.dtc.umn.edu/gkhome/pafi/overview

subgraphs in a bottom-up approach, starting with initial subgraphs of one edge and adding one
edge at each step while checking for the frequency criterion. It performs significant pruning
to the problem space while searching for patterns, taking advantage of the fact that if a graph is
frequent, then all of its subgraphs are also frequent.

Two parameters can change the output of the algorithm. Firstly, the support threshold,
i.e., the minimum number of ETL flows that need to contain a subgraph for it to be accounted
as frequent, can vary. In addition, we can select whether we are interested only in maximal
subgraphs (see Subsection 5.1.3).

After the identification of frequent patterns, the next step is their filtering in order to
maintain only the patterns of some value. In this respect, a first filtering is performed by
keeping only independent subgraphs (see Subsection 5.1.3). To this end, all the instances of
all the frequent subgraphs are recognized within the initial set of ETL workflows, using the
pattern recognition algorithm defined below (Subsection 5.3.2) and graph-subgraph relation-
ships among these instances are analyzed. Subsequently, frequent subgraphs are classified as
variations of ETL patterns, based on the conducted analysis. For instance, experts can classify
these subgraphs according to their conceptual functionality, or performance evaluation can be
conducted to classify subgraphs based on their isolated performance as compared to the per-
formance of the complete ETL. The results of such analyses are then stored in a repository of
ETL patterns.

5.3.2 Pattern recognition

Once a knowledge base of ETL patterns has been built, occurrences of those patterns can be
recognized in any arbitrary ETL workflow. The workflow first needs to be transformed to its
graph representation and then the task is reduced to finding a correspondence between the
model (i.e., the ETL pattern model) and part(s) of the ETL workflow graph representation.
Since both the model and the examined ETL are modeled as graphs, this is a typical use case for
a graph matching algorithm. In (Lee et al., 2012), there is an interesting comparison between
the implementation in a common codebase of five state-of-the-art subgraph isomorphism al-
gorithms and in (Conte et al., 2004), there is a comprehensive review of different techniques
that have been proposed for this NP-complete problem, the most popular being the Ullmann’s
algorithm (Ullmann, 1976) and the VF2 algorithm (Cordella et al., 2001). After studying these
algorithms, we decided to adapt the VF2 algorithm with some optimizations (Algorithm 3),
maintaining different data structures while searching for pattern model occurrences. Our al-
gorithm can perform very well for graphs with the cheracteristics of ETL workflows — i) very
small branching factors, ii) number of different labels comparable to the average graph size.

Taking under consideration the VF2 heuristic of adding to the search space only adjacent
nodes while generating candidate matches, our algorithm iterates over the nodes of the pattern
model in a breadth-first search (BFS)manner while at the same timematching themwith nodes
from the annotated EFG, that satisfy certain conditions (see Figure 5.7). The candidate node
matches are searched only within adjacent (i.e., neighboring) nodes from the already matched
nodes, which we call frontier nodes and for a specific candidate pattern match, if there is no
adjacent node that satisfies the conditions, it is dismissed. New candidate pattern matches
commence after every iteration, until the pattern model has been fully traversed or the set of

5.3 Architecture 103

a

c
b

Pattern Model

root
matched node

{a,b,c,d} Labels

a

c

b a

d b
b

c
c

c

c
d d

frontier node

Pattern Model
Occurrences

c

dc

c

BFS

Annotated EFG

Figure 5.7: Execution of Find Pattern Model Occurrences Algorithm

candidate pattern matches is empty.
One practical heuristic that we use to speed up the execution of the algorithm by keeping

the number of initial candidate node matches on the annotated EFG as small as possible, is the
execution of preparation steps, through which the root of the BFS, (i.e., the node of the pattern
model from which the iteration will start) is selected to be annotated with the label from the
pattern model that is least frequently found on the annotated EFG. The EFG is traversed once
and the number of occurrences of each label is stored in count—a HashMap object that maps
labels to integers (i.e., labels’ frequencies). One of the nodes of the pattern model that have the
label with the minimum frequency in count, is selected as the subsequent BFS starting point
(i.e., the root).

Given an ETL, a pattern model PM and its root (see for example the node with label a
from the pattern model in Figure 5.7), Algorithm 3 returns a set PO of pattern occurrences,
that contains all the occurrences of PM in ETL. Each element of this set consists of two parts: i)
m, which is a set of matches, matching one node from ETL to one node from PM and ii) f, which
is a set of nodes from the ETL, tomaintain all the frontier nodes for one pattern occurrence, i.e.,
the search space for the subsequent iterations. First, the algorithm iterates over all the nodes
of the ETL (Step 2) and finds all the nodes that have same properties as root (Step 3). All these
nodes then act as the initial node matches around which pattern occurrences are searched (see
for example the search space of the annotated EFG in Figure 5.7, where pattern occurrences
are searched only around the two nodes with label a). The matches are added to the setm (Step
4) and the neighbors of these nodes (i.e., their adjacent nodes in the ETL) are added to the set f
that maintains the frontier for the search around each candidate occurrence (Step 5). Candidate
pattern occurrences with these characteristics are added to the set PO. Subsequently, the
pattern model is traversed in a BFS order (Step 7), ignoring the directionality of the graph and

104 Chapter 5 Frequent Patterns in ETL Workflows

Algorithm 3 Find All Pattern Model Occurrences

Input: ETL, PM, root . root is a node from the PM
Output: PO
1: PO,PO2,m,f ;; candOc []; . initializations
2: for each o

i

2 ETL do . iterate nodes of ETL
3: if (sameProperties(o

i

,root)) then . check for match
4: m {[o

i

,root]}; . add to set of matches for specific occurrence
5: f neighbors(o

i

); . add adjacent nodes to the frontier
6: PO.add([m,f]); . add candidate occurrence to PO
7: for each pn

n

2 BFS_order(PM,root) do . iterate nodes of PM
8: for each co

l

2 PO do . iterate candidate occurrences in PO
9: for each o

m

2 co
l

.f do . iterate nodes from frontier
10: if (sameProperties(o

m

,pn
n

)) then . check for match
11: m co

l

.m [{[o
m

,pn
n

]} . add to matches
12: f (co

l

.f \ {o
m

}) [um-neighbors(o
m

); . update frontier
13: PO2.add([m,f]); . add updated occurrence to PO2

14: PO PO2; PO2 ;; . copy and initialize for next iteration

15: return PO;

excluding the root since it has already been matched. At this point, we use a second heuristic
to speed up the execution of the algorithm: The order by which the pattern model is traversed
depends on the frequency of its labels on the ETL, which we have already collected in the count
object. Thus, when a pattern node has multiple unvisited neighbors (i.e., adjacent nodes that
have not yet been visited by the BFS), the order by which they are visited depends on their
label —from least to most frequent label in the ETL. For each candidate occurrence, each node
from its frontier is checked for having the same properties with the current node from the
pattern model (Step 10). If it does, then the matches and the frontier of the current candidate
occurrence are updated (Steps 11 and 12). Regarding the frontier update, the um-neighbors, i.e.,
the adjacent nodes to the matched node from the ETL that have not already been matched to a
pattern node, are added to the existing nodes in the frontier and the matched node is removed
from the frontier (Step 12). Subsequently, a new candidate occurrence with these updated parts
is added to a set PO2. In every iteration this set replaces the old set PO that gets initialized to
the empty set (Step 14). We should note that despite the pattern model graph being traversed
ignoring its directionality, when the check for same properties between a pattern model node
and an ETL node takes place, the directionality is taken under consideration.

Algorithm complexity

Although subgraph isomorphism is well-known NP-hard problem (Shamir and Tsur, 1997),
our algorithm can practically execute very fast because of the particularities of ETLs and the
heuristics that we use. The adjacent nodes for each node are maintained inside two hashmap
objects that map labels to nodes —one hashmap for the incoming adjacent nodes and one for
the outgoing adjacent nodes (Sakr and Pardede, 2011). If n is the size of the ETL graph, then

5.3 Architecture 105

each of these two objects is of maximum size (n � 1) for each ETL node (a node cannot be
adjacent to itself and a node cannot be found in two different buckets of the hashmap because
it only has one label), thus the space complexity of the algorithm is: 2 ⇤ (n� 1) ⇤ n = O(n2).

When it comes to the time complexity, due to the use of the hashmap objects, the check
for same properties between the nodes of the pattern model and the ETL can take place in con-
stant time t. Thus, if m is the size of the PM, the time complexity is: t ⇤Pm

i=1Ni

, whereN
i

is
the running number of candidate occurrences (i.e., the size of PO, see Step 8 of Algorithm 3)
during each iteration of the BFS. We should note thatN1 is the number of initial candidate oc-
currences which is determined by the selection of the pattern model root element. The growth
rate Nk+1

Nk
of the solution space depends on the fanout of the nodes of the ETL graph on one

hand; and on the distribution of the different labels on the ETL nodes, on the other. In other
words, the search space grows by being multiplied by the number of neighbors of each node in
the candidate occurrence frontier, which is being matched (see Step 12 of Algorithm 3), but it
also shrinks at the same time by pruning nodes that do not match the corresponding node from
the PM. In the worst case of the ETL being a clique where all the labels of the pattern model
and all the labels of the ETL graph are the same one label, there will be no pruning and thus,
every time a new node from the pattern model is visited, the number of candidate occurrences
will multiply by (n � p) where p is the number of already matched nodes, until all m nodes
are visited. Thus, in the worst case the total number of candidate occurrences during the last
iteration will be: N

m

=
Q

m

i=1(n� i) = O((n�1)!
(n�1�m)!). However, according to our experience

with implementing ETL workflows from the TPC-DI benchmark, this is hardly a realistic case
for ETL graphs, where the branching factor is close to 1. In addition, the existence of a number
of different labels in real ETL graphs, guarantees that a lot of pruning takes place, especially in
the common case where no (unmatched) node of specific label is adjacent to a candidate oc-
currence, which can very easily be checked, with the bucket corresponding to this label being
empty. Furthermore, the sizem of the meaningful pattern models is usually very small (< 10).

5.4 EXPERIMENTAL RESULTS

In this section, we show results obtained from the application of the algorithms to 25 ETL
processes from the TPC-DI benchmark that that we implemented using the Pentaho Data Inte-
gration open source tool.

5.4.1 Mined ETL Patterns

In this subsection, we present our results from mining frequent patterns during the Learning
Phase of our approach. To this end, we used the FSG algorithm (Kuramochi and Karypis, 2001)
on the graph representation of the 25 TPC-DI ETLs. In Figure 5.8, we show the number of
frequent patterns of different size (i.e., number of edges) that we obtain, using different values
for support. It should be noticed that the FSG algorithm executed in less than 2 msec for all
these cases. As expected, since we are not imposing the maximality constraint, as the support
increases, the number of identified patterns decreases. In other words, all the patterns that are
identified with some support s will also be identified with any other smaller support, plus ad-

106 Chapter 5 Frequent Patterns in ETL Workflows

30	

25	

19	 18	

14	 13	
11	

7	
5	

3	 2	 1	

36	

29	

18	

12	
9	 8	 7	

3	
1	 0	 0	 0	

37	

26	

15	

8	
5	 4	

2	
0	 0	 0	 0	 0	

27	

20	

11	

2	 1	 1	 0	 0	 0	 0	 0	 0	

17	

13	

5	

0	 0	 0	 0	 0	 0	 0	 0	 0	

8	
5	

1	 0	 0	 0	 0	 0	 0	 0	 0	 0	1	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	0	

5	

10	

15	

20	

25	

30	

35	

40	

20	 24	 28	 32	 36	 40	 44	 48	 52	 56	 60	 64	

N
um

be
r	
of
	p
a,

er
ns
	

support	(%)	

Series1	

Series2	

Series3	

Series4	

Series5	

Series6	

Series7	

1
2
3
4

5
6
7

pattern size

Figure 5.8: Number of (non-maximal) frequent patterns identified for different support values
and for different pattern sizes

ditional patterns that do not satisfy the frequency criterion for s. We can also infer from Figure
5.8 that in general, as the size of the patterns decreases, the number of identified patterns in-
creases. However, as can be seen, there are some noticeable exceptions to this rule. The curve
for pattern size 1 crosses both with the curve for pattern size 2 and with the curve for pattern
size 3. The reason is that the same pattern of size 1 can be a subgraph of two or more patterns
of size 2. As an example, let us consider a set of three labels {a, b, c} and the identification of
the following frequent patterns of size 2: i) [a � a � b], ii) [a � b � a], iii) [a � a � c] and
iv) [a � c � a]. Each subgraph of these four frequent patterns will also be a frequent pattern
for the same support s. However, there are only three distinct subgraphs of size 1 among these
patterns —i) [a� a], ii) [a� b] and iii) [a� c]— and it is not necessary that there exist more
frequent patterns of size 1 with these labels. The same explanation can be given for the case
of the curve for pattern size 2 crossing with the curve for pattern size 3. The reason that the
rule holds for greater s values, is that this explained behavior is outgrown by the tendency of
larger patterns to be more difficult to find frequently. Finally, we can observe that beyond some
support value, there is no frequent pattern identified.

In Figure 5.9, we show for different support values, the coverage of all the ETL workflows
from the patterns identified, i.e., the percentage of ETL operations that take part in pattern
model occurrences. As we can observe, the coverage decreases as the support value increases,
which is an expected behavior since the overall number of identified patterns decreases as well
(see Figure 5.8). This decrease appears to be non-linear and especially beyond some value
s (⇡ 45%) for which coverage is ⇡ 80%, it appears to decrease faster and faster as support
increases. Another interesting observation is that for a small value of s, coverage reaches a very
high value, above 93%. This validates our claim that it is possible to automatically translate, if
not the complete, at least a very large part of an ETL workflow to its conceptual representation,
as we have explained in Subsection 5.2.1.

5.4 Experimental Results 107

0	
10	
20	
30	
40	
50	
60	
70	
80	
90	

100	

20	 24	 28	 32	 36	 40	 44	 48	 52	 56	 60	 64	

co
ve
ra
ge
	(%

)	

support	(%)	

Figure 5.9: Coverage of ETL workflows for different support values

0	
10	
20	
30	
40	
50	
60	
70	
80	
90	
100	

0-25	 25-50	 50-75	 75-100	 100-125	 125-150	 150-175	 175-200	 200-300	 >300	

No
	of

	pa
'e

rn
s	

No	of	occurrences	

Figure 5.10: Number of patterns w.r.t. their number of occurrences

87	

13	
8	 7	 5	 3	 0	 3	 0	 1	

29	

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

100	

0%	 0-10%	 10-20%	 20-30%	 30-40%	 40-50%	 50-60%	 60-70%	 70-80%	 80-90%	 90-100%	

N
o	
of
	p
a'

er
ns
	

%	independent	occurrences	

Figure 5.11: Number of patterns w.r.t. their frequency of independent occurrences

108 Chapter 5 Frequent Patterns in ETL Workflows

Project Sort
Join

Sort

Sort

Join Sort

Double Join

Project

Filter

Router Union

Selective Processing

Project Project

Process Chain

Project
...

Sort
Join

TableInput

Project Sort

Lookup Operation

FileInput TableOutput

Dimension Loading

Project TableOutput
Splitter

TableOutput
Surrogate Key Pipeline

Sort
Join Project

Sort
Join

Project
Union Dummy

Project
Union

Splitter
Project

Copy Dataset
Project

TableInput Project

Extract from Table

Project

Load To Table

TableOutput Filter

Exclusive Choice

Router

Sequence

Figure 5.12: Frequent ETL pattern models

Using the support value 20% (i.e., pattern model occurs at least in 5 of the 25 ETLs), we
obtained 156 pattern models of different sizes, from 1 to 7 edges. Subsequently, we employed
our pattern recognition algorithm to find all the occurrences of each of these pattern models
on the 25 ETLs and the results about the number of occurrences for all the pattern models are
shown in Figure 5.10. It is clear that some patternmodels occur muchmore frequently than the
others, but there is also a big difference between all occurrences and only independent occur-
rences for each pattern model. This is illustrated in Figure 5.11, where we show the number of
pattern models for different ranges of % of independent occurrences. We can see that there are
87 patternmodels with 0% independent occurrence i.e., out of all their occurrences, they never
occur independently, not nested inside the occurrence of another pattern model. These pat-
tern models are irrelevant for our analysis and thus we only keep the remaining 156�87 = 69
pattern models.

After examining these 69 pattern models playing the role of the ETL expert, we concluded
with a set of ETL patterns that we characterized based on their functionality, the most interest-
ing of which are illustrated in Figure 5.12. For each pattern, we show only one pattern model
—the one occurring most frequently— but as explained above, each pattern can have two or
more variations, as was the case with the patterns that we identified. The variations that we
identified for each pattern, only differ in a very small number of model nodes (usually only
one node is different) and thus it is possible to implement clustering algorithms based on dis-
tance criteria and automatically cluster the different pattern models as pattern variations. We
also observed that there are frequent pattern models of small size, which can be combined to
synthesize bigger frequent pattern models. As we look from frequent pattern models of smaller
size to frequent pattern models of bigger size, the conceptual functionality of the pattern model
and its contribution to the ETL process becomes more obvious and concrete.

5.4 Experimental Results 109

0	

0.5	

1	

1.5	

2	

2.5	

3	

3.5	

4	

4.5	

5	

10	 100	 1000	 10000	 100000	

pr
oc
es
si
ng
	+
m
e	

(m
se
c)
		

graph	size	

Figure 5.13: Performance of the graph matching algorithm for ETLs of different sizes (Y-axis in
log scale)

5.4.2 Performance Evaluation of Graph Matching Algorithm

In this subsection, we present the performance results from running the implementation of
our graph matching algorithm (Algorithm 3). To this end, we implemented a synthetic ETL
generator that generates ETLs of preferred size and uses statistical characteristics of the 25
TPC-DI ETLs as follows: We parsed the TPC-DI ETLs and stored, for each operation type, i)
the average number of succeeding operations and ii) the percentage of succeeding occurrences
for each operation type. For example, we found that out of all the 293 succeeding operations of
all the operations of operation type Project, only 12 operations are of type TableOutput and thus
the probability of our generator generating an operation of type TableOutput after an operation
of operation type Project is set to: 12/239 = 5%. In order to be able to adjust the size of the
produced ETL, our generator can modify the percentage of new operations that are of joining
type being generated, as opposed tomerging parts of the flowwith existing operations of joining
type. In the same respect, the probability of output operations (i.e., operations that have zero
fanout) can be modified dynamically. We generated ETLs of different sizes and for each ETL,
we executed our graph matching algorithm for all of the 156 frequent pattern models on a
row. The performance results from these experiments, carried under an OS X 64-bit machine,
Processor 965 Intel Core i5, 1.7 GHz and 4GB of DDR3 RAM, are shown in Figure 5.13. As can
be seen, our algorithm performs very well (almost linearly) for ETLs sharing characteristics
with the TPC-DI ETLs, even for graphs of size 105.

5.4.3 Granular ETL Performance Evaluation

In subsection 5.2.2, we claimed that with the use of our approach, ETL workflows can be eval-
uated with regards to their quality characteristics at the granular level of patterns. In this
subsection, we show how such an evaluation can take place for the ETL performance. Thus,

110 Chapter 5 Frequent Patterns in ETL Workflows

Isolated Pattern Model Occurrence ETL

data from
incoming
operator

Figure 5.14: Creating an ETL by isolating a pattern model occurrence

we implemented a process that isolates pattern model occurrences (pmo) and executes them
multiple times to obtain their average execution time, using as input data that are generated
from the provided TPC-DI data generator5 with scale factor 1. This process corresponds to the
learning phase that we mentioned in subsection 5.2.2. To this end, the output of each incoming
operator to the pmo (i.e., all the operators that are not part of the pmo but are adjacent to at
least one node from the pmo with direction towards that node) is stored into a text file and
an file input operator is added to the pmo, that reads this text file and passes on its data to the
pattern nodes. In addition, we added file output operators for each edge for which the source is
a node from the pmo but the target is a node that is not in the pmo, as can be seen in Figure
5.14.

0	

5	

10	

15	

20	

25	

0-0.02	 0.02-0.04	 0.04-0.06	 0.06-0.08	 0.08-0.1	 >0.1	

N
o	
of
	p
a'

er
ns
	

run-me/tuples	

Figure 5.15: Histogram of number of patterns w.r.t. average values of runtime divided by input
size

Executing pattern model occurrences from 6 TPC-DI ETLs, we found that the results were
adequate to expose the fluctuation in the performance of different pattern models. Results are
shown in Figure 5.15, where we show a histogram, the y-axis being the number of patterns
and the x-axis being the average value for runtime (in msec) divided by input size (i.e., the

5
http://www.tpc.org/tpc_documents_current_versions/current_specifications.asp

5.4 Experimental Results 111

http://www.tpc.org/tpc_documents_current_versions/current_specifications.asp

sum of all the tuples coming from the generated file input files). As we can observe, five pattern
models have outstanding values for this measure compared to the others. Three of these pattern
models are variations of the Surrogate Key Pipeline pattern and the other two are variations of
the Union pattern. Examining the first three, we observed that they all included a sequence
generation operator (i.e., for adding to each tuple an integer to act as a surrogate key), right
before an output operator for loading data to a database. These results are a clear indication of
an anti-pattern, since with this design data cannot be processed in a parallel fashion and can
possibly be resolved by pushing back the sequence generation operator earlier in the flow.

5.5 SUMMARY AND OUTLOOK

In this chapter, we introduced a novel empirical approach for pattern-based analysis of ETL
workflows in a bottom-up manner. We formally defined an ETL pattern model and we illus-
trated how it can be instantiated using a training set of ETL workflows to extract frequently
reoccurring structural motifs. The graph representation that we adopt enables the use of graph
algorithms, such as frequent subgraph discovery algorithms for the mining phase and graph
matching algorithms for the recognition phase. For the latter, we adapted the VF2 algorithm
with some optimizations and we showed through experiments how it performs very well for
ETL workflows. In addition, we presented the most frequent ETL patterns that we identified in
implemented processes from the TPC-DI framework, as well as the results from different con-
figurations of the used algorithms. Furthermore, we illustrated the functionality of a tool that
we prototyped, for the semi-automatic use of defined patterns for the quality-aware improve-
ment of ETL processes. Results show high efficiency and effectiveness of our approach and
future work can delve deeper into the evaluation and pattern-based benchmarking of a larger
number of realistic ETL workflows to build a solid Knowledge Base of ETL patterns and their
characteristics.

112 Chapter 5 Frequent Patterns in ETL Workflows

6
A TOOL FOR QUALITY-AWARE ETL

PROCESS REDESIGN

6.1 Addition of Flow Compo-
nent Patterns

6.2 Tool Design

6.3 POIESIS System Overview

6.4 POIESIS Features

In this chapter, we present our tool POIESIS, which stands for Process Optimization and
Improvement for ETL Systems and Integration Services. This tool is the implementation of
the Planner component from the architecture in Figure 1.3. Using a process perspective of an
ETL activity, our tool can improve the quality of an ETL Process by automatically generating op-
timization patterns integrated in the ETL flow, resulting to thousands of alternative ETL flows.
We apply an iterative model where users are the key participants through well-defined collabo-
rative interfaces and based on estimatedmeasures for different quality characteristics. POIESIS
implements a modular architecture that employs reuse of components and patterns to stream-
line the design. Our tool can be used for incremental, quantitative improvement of ETL process
models, promoting automation and reducing complexity. Through the automatic generation of
alternative ETL flows, it simplifies the exploration of the problem space and it enables further
analysis and identification of correlations among design choices and quality characteristics of
the ETL models. A demo of POIESIS has been presented in (Theodorou et al., 2015).

The remainder of this chapter is organized as follows: In Section 6.1, we provide some
background for ETL quality analysis and redesign; subsequently, in Section 6.2, we present
some information about the design of our tool and in Section 6.3, we provide an overview of
the system; finally, in Section 6.4, we showcase an outline of the tool’s features.

6.1 ADDITION OF FLOW COMPONENT PATTERNS

As has been mentioned above, ETL processes need to be evaluated in a scope that brings them
closer to fitness to use for data scientists. Therefore, apart from performance and cost, other
quality characteristics, as well as the tradeoffs among them should be taken under considera-
tion during ETL analysis. In Fig. 6.1 we show a subset of ETL process quality characteristics
and measures that we have presented in Chapter 3.

Characteristic Measure
performance • Process cycle time

• Average latency per tuple
data quality • Request time - Time of last update

• 1 / (1 - age * Frequency of updates)
manageability • Length of process workflow’s longest path

• Coupling of process workflow
• # of merge elements in the process model

Figure 6.1: Example quality measures for ETL processes

Based on such measures, it is possible to conduct a multi-objective analysis and make de-
sign decisions according to user preferences on different quality characteristics, which can
often be conflicting.

114 Chapter 6 A Tool for Quality-aware ETL Process Redesign

��������	
������������

FILTER SPLIT

S_Purchases_3 S_Purchases_4

DERIVE
VALUES

DERIVE
VALUES for

Group_B

DERIVE
VALUES for

Group_A
HORIZONTAL

PARTITION
MERGE

S_Purchases_4S_Purchases_3

��������	
������������

FILTER SPLIT

S_Purchases_3 S_Purchases_4

DERIVE
VALUES

DERIVE
VALUES for

Group_B

DERIVE
VALUES for

Group_A
HORIZONTAL

PARTITION
MERGE

S_Purchases_4S_Purchases_3

��������	
������������

FILTER SPLIT

S_Purchases_3 S_Purchases_4

DERIVE
VALUES

DERIVE
VALUES for

Group_B

DERIVE
VALUES for

Group_A
HORIZONTAL

PARTITION
MERGE

S_Purchases_4S_Purchases_3

��������	
������
���
��
���
��

FILTER
"purchase_line

_item_id= item_i
d" AND

"item_record_e
nd_date= null"

AND
"store_record_
end_date= null"

SPLIT
required

attributes

S_Purchases_3 S_Purchases_4

DERIVE
VALUES with
PARALLELISM

PERSIST
intermediary

data

Savepoint

EXTRACT from
Savepoint

S_Purchases_3

PERSIST
intermediary

data DERIVE
VALUES for

Group_B

DERIVE
VALUES for

Group_A
HORIZONTAL

PARTITION
MERGE

error?

Savepoint

S_Purchases_4

noye
s

a) improved performance

b) improved reliability

(a) Improved performance

��������	
������������

FILTER SPLIT

S_Purchases_3 S_Purchases_4

DERIVE
VALUES

DERIVE
VALUES for

Group_B

DERIVE
VALUES for

Group_A
HORIZONTAL

PARTITION
MERGE

S_Purchases_4S_Purchases_3

��������	
������������

FILTER SPLIT

S_Purchases_3 S_Purchases_4

DERIVE
VALUES

DERIVE
VALUES for

Group_B

DERIVE
VALUES for

Group_A
HORIZONTAL

PARTITION
MERGE

S_Purchases_4S_Purchases_3

��������	
������������

FILTER SPLIT

S_Purchases_3 S_Purchases_4

DERIVE
VALUES

DERIVE
VALUES for

Group_B

DERIVE
VALUES for

Group_A
HORIZONTAL

PARTITION
MERGE

S_Purchases_4S_Purchases_3

��������	
������
���
��
���
��

FILTER
"purchase_line

_item_id= item_i
d" AND

"item_record_e
nd_date= null"

AND
"store_record_
end_date= null"

SPLIT
required

attributes

S_Purchases_3 S_Purchases_4

DERIVE
VALUES with
PARALLELISM

PERSIST
intermediary

data

Savepoint

EXTRACT from
Savepoint

S_Purchases_3

PERSIST
intermediary

data DERIVE
VALUES for

Group_B

DERIVE
VALUES for

Group_A
HORIZONTAL

PARTITION
MERGE

error?

Savepoint

S_Purchases_4

noye
s

a) improved performance

b) improved reliability(b) Improved reliability

Figure 6.2: Generation of FCP on the ETL flow

An initial ETL flow can be modified with the addition of predefined constructs that im-
prove certain quality characteristics, but do not alter its main functionality. We refer to these
constructs as Flow Component Patterns (FCP) and their integration can take place on different
parts of the initial flow, depending on the flow topology. For example, in Fig. 6.2, we illus-

6.1 Addition of Flow Component Patterns 115

trate how different quality goals can cause the generation of different FCP on the ETL flow.
In the first case, the goal of improving time performance of the process, results in the gener-
ation of horizontal partitioning and parallelism within a computational-intensive task and in
the second, the goal of improving reliability brings about the addition of a recovery point to the
sub-process. Another example would be the goal of improved data quality that would result in
crosschecking with alternative data sources.

Central to our implementation is the notion of application point of a FCP, which can be ei-
ther a node (i.e., an ETL flow operation), or an edge or the entire ETL flow graph. As examples,
a valid application point for the ParallelizeTask pattern is a node that can be replaced by mul-
tiple copies of itself and a valid application point for the FilterNullValues pattern is an edge on
which a filter operation can be added. The entire ETL flow graph as application point serves for
the case of process-wide configuration andmanagement operations that are not directly related
to the functionality of specific flow components. Examples of the latter include the application
of security configurations (encryption, role-based access etc.), management of the quality of
Hw/Sw resources, adjusting the frequency of process recurrence etc.

We model the ETL process as one graph G with graph components (V,E), where each
node (V) represents an ETL flow operation, and each edge (E) represents a transition from
one operation to a successor one. We also assume that there is a set P of available FCP, P =
P
E

[P
V

[P
G

, each of which can either be applied on a node, an edge of G, or the entire
graph, in order to improve one or more quality characteristics of the ETL flow.

The number ⌥ of different possible graphs (i.e., ETL processes) that can occur after the
application of FCP — assuming that an arbitrary number of available FCP can be applied on
each graph component, but each element at most k number of times for every graph component
— is the following:

⌥ = |P
G

| ⇤ [
k|PE |X

i=0

✓
k|P

E

|
i

◆
](|E|) ⇤ [

k|PV |X

i=0

✓
k|P

V

|
i

◆
](|V |)

In the general case, the number of alternative resulting graphs when the complete number
of potential FCP applications on edge and node application points isX , is the following:

⌥ = |P
G

| ⇤ [
XX

i=0

✓
X

i

◆
](|E|+|V |) = |P

G

| ⇤ 2X(|E|+|V |)

After the application of all the FCP, a number of nodes and edges is added to the initial
graph and a new Graph is created. This process can be repeated and the question then arises:
What is the number of different possible graphs (i.e., ETL processes) that can occur after a
number of repetitions of the process? In order to put an upper bound to this question, we
assume that after the application of each FCP, ⇠ new nodes and new edges are added to the
initial graph. Then, the number a of graph elements for the resulting graph, after � repetitions
of the process is:

a(�) =

8
<

:

|V |+ |E| , � = 0

a(�� 1) ⇤ (⇠ +) ⇤X , � > 0

116 Chapter 6 A Tool for Quality-aware ETL Process Redesign

Consequently, the number ⌥ of different possible graphs (i.e., ETL processes) that can
occur after � repetitions can be recursively calculated as follows:

⌥(�) =

8
<

:

|P
G

| ⇤ [PX

i=0

�
X

i

�
](a(0)) , � = 0

⌥(�� 1) ⇤ |P
G

| ⇤ [PX

i=0

�
X

i

�
](a(��1)) , � > 0

It is apparent that the complexity of this analysis is factorial to the size of the graph. Thus,
manual configuration of the ETL flow appears inefficient and error-prone, being dependent
not only on the users’ cognitive abilities but also on characteristics and dynamics of the flow
that are hard to predict. Therefore, the need for defining adequate automated mechanisms and
heuristics to produce and explore alternative designs and to optimize the ETL flow is evident.

6.2 TOOL DESIGN

Our main drivers throughout the development of this tool have been the objectives of extensi-
bility and efficiency. In this direction, we followed a modular design with clear-cut interfaces
and we employed well-known object-oriented design patterns.

The model that was used internally to represent the ETL process flow and allow for its
modifications was the ETL flow graph — an extension of the DirectedAcyclicGraph class from
the JGraphT free java graph library1, specific to the ETL flow. Each node of this graph represents
an ETL flow operation and each directed edge represents a transition from one operation to a
successor one.

Central to our implementation is the notion of application point of a quality pattern, which
can be either a node (i.e., an ETL flow operation), or an edge or the entire ETL flow graph. As
examples, a valid application point for the ParallelizeTask pattern is a node that can be replaced
by multiple copies of itself using the Prototype design pattern and a valid application point for
the FilterNullValues pattern is an edge on which a filter operation can be added. The entire ETL
flow graph as application point serves for the case of process-wide configuration and manage-
ment operations that are not directly related to the functionality of specific flow components.

Fig. 6.3 depicts the class diagram of the ETL quality patterns. One strong point of our
implementation is that it allows for the definition of custom, additional quality patterns during
runtime, according to the needs of each specific use case. This is possible, since the QPattern
abstract class can be sub-classed by any custom class, as long as it implements its abstract
methods, i.e., isApplicable and getFitness, as well as the deploy method from the implemented
PatternDeployment interface. The former abstract method returns a boolean value, based on
the applicability of the pattern on a specific application point on the ETL flow graph and the
latter returns a metric to indicate the fitness of the pattern to that specific application point if
applicable. The applicability of a pattern is decided based upon specific conditions— instances
of the TopologyCondition class — that form the applicability prerequisites such as the presence
or not of specific data types in the operation schemata (e.g., numeric fields in the output schema
of preceding operator). The fitness on the other hand is estimated using heuristics such as the
distance of a node from specific type of operations (e.g., distance from input data sources).

1
http://jgrapht.org/

6.2 Tool Design 117

http://jgrapht.org/

��������

���������	�
�������������
�����������������	��������

�	
����������
��������		��

�����������������

�������������

��������

��������

�������� ��
�����!
�"��#$����

�������%���

"�����&���'�����

��	�����	����(���

	��)���*�����

�����������������

���������%�
��*

��+)���������� ��

,���-����������!������

��	�����	����(���

)��������*�������

������������.(/�������

&���	��������

����������!
�"��#.��������

!� �	��������

��������&���	��������
��� ����&���	��������

$����	��������

������������!"$����������

����� �)��������

�+����
����� �!+��������

����*��

0112

���,�3�

����������4����

�������������

 �����������
 ��.��������
������
 �����������������
 ��.���������������
 ��������������
 ����������������
 ����������"�����

�������%���

Figure 6.3: ETL Quality Patterns Class Diagram

���������	����

�	�
�������������������
�
������������������

��	���������
��������
����

���������������

������ !"�����
�����"���#�� �����������
	�

$$
����!�	�%%

&�������
#������������'��(�����#���

)��&������������ *���
�����������

$$����
+�%% $$����
+�%%

Figure 6.4: ETL Quality Pattern Deployment Class Diagram

118 Chapter 6 A Tool for Quality-aware ETL Process Redesign

���������	����

�	�
�������������������
�
������������������

��	���������
��������
����

���������������

������ !"�����
�����"���#�� �����������
	�

$$
����!�	�%%

&�������
#������������'��(�����#���

)��&������������ *���
�����������

$$����
+�%% $$����
+�%%

Figure 6.5: ETL Quality Pattern Deployment Class Diagram

The deploymethod allows for the deployment of any quality pattern on an application point,
according to the behavioral design pattern Strategy. In essence, the implementation of a quality
pattern can be either a setting of configuration parameters or the addition of an ETL flow graph
to the existing flow. For the second case, the implementation uses the structural design pattern
Composite so that it can consist of multiple ETL components but still be manipulated as one
object. The Prototype design pattern plays an important role at this point, ensuring that the
properties of the quality pattern implementation are compatible with the ones of the existing
flow.

Regarding the process of pattern deployment, an instance of the PatternLocator class tra-
verses the ETL flow graph and identifies the potential application points of the quality patterns
that are of interest for each case (i.e., activeQPatterns) and their fitness for use for each valid
application point. Subsequently, an instance of the PatternDeployer class generates quality pat-
terns using the Factoy method design pattern, after deciding which combination of patterns
should be implemented at that specific step. This decision is implicitly made by the use of a
specific realization of the PatternDPolicy interface, implementing the Strategy design pattern.
Thus, the output of this process is a new ETL flowmodel with the addition of quality pattern(s)
and this process can be repeated, while keeping the data sources schemata constant. The class
diagram of the above-mentioned classes can be seen in Fig. 6.5.

Our initial testing has shown that our implementation can correctly generate quality pat-
terns on an ETL process flow in just a few milliseconds and it can be used iteratively to in-
crementally modify an ETL process model. Moreover, as opposed to manual deployment, it
guarantees that all of the potential application points on the ETL flow are checked for each
quality pattern and it can be customised to select the deployment of patterns based on specific
policies that can be harmonized with business requirements.

6.3 POIESIS SYSTEM OVERVIEW

The architecture of our approach can be seen in Fig. 6.6. POIESIS takes as input an initial
ETL flow and user-defined configurations. Utilizing an existing repository of FCP models, it
generates patterns that are specific to the ETL flow on which they are applied. Thus, it pro-

6.3 POIESIS System Overview 119

�������	
��
ETL Flow 1

Flow
Measures

�������	
��
ETL Flow 2

Flow
Measures

Flow
Measures

FCPs

POIESIS

Pattern
 Generation

Pattern
 Application

Measures
 Estimation

�������	
��
Initial ETL Flow

configurations

�������	
��
ETL Flow n

vis
ua

liz
at

io
n

Flow
Measures

Figure 6.6: POIESIS architecture

duces alternative ETL designs with different FCPs and varying distribution of them on the ETL
flow, while keeping the data sources schemata constant. It also estimates defined measures
for various quality attributes and illustrates the alternative flows, as well as the corresponding
measures to the user through an intuitive visualization.

The internal representation of the FCPs is in the same format as the process flow on which
they are deployed. Thus, they can be considered as additional flow components which are posi-
tioned at valid application points of the process flow. For example, the FilterNullValues pattern
is itself an ETL flow consisting of only one operation — a filter that deletes entries with null
values from its input. When the FilterNullValues pattern is deployed on the initial ETL flow, it
is interposed between two consecutive operations. The FilterNullValues ETL flow is then con-
figured according to the properties and characteristics of the initial ETL flow as well as the
exact application point, ensuring the consistency between data schemata, run-time parameters
etc. The same idea is generalized for more complex FCPs or for their more elaborate imple-
mentations (e.g., data enrichment additionally to data removal in the described example). In
those cases, more detailed configurationsmight be required to be predefined, such as the access
points and data models of additional data sources and processing algorithms of operations.

Our main drivers throughout the development of this component have been the objectives
of extensibility and efficiency. In this direction, we followed a modular design with clear-cut
interfaces and we employed well-known object-oriented design patterns. The model that was
used internally to represent the ETL process flow and allow for its modifications was the ETL
flow graph. Each node of this graph represents an ETL flow operation and each directed edge
represents a transition from one operation to a successor one.

As a consequence, one strong point of our implementation is that it allows for the definition
of custom, additional FCPs, tailored to specific use cases. The applicability of a FCP on the
complete ETL flow or some part of it, is decided based upon specific conditions that form the
applicability prerequisites, such as the presence or not of specific data types in the operation
schemata (e.g., numeric fields in the output schema of preceding operator). Each FCP is related

120 Chapter 6 A Tool for Quality-aware ETL Process Redesign

Reliability
 (%)

Figure 6.7: Multidimensional scatter-plot of alternative ETL flows

to a particular set of prerequisites that have to be satisfied conjunctively to determine a valid
application point. Apart from these strict conditions, there are also heuristics to determine the
fitness of FCPs for different parts of the ETL flow. For example, according to such heuristics,
the addition of a checkpoint is encouraged after the execution of the most complex operations
of the ETL fow, in order to avoid the repetition of process-intensive tasks in case of a recovery.
Similarly, the application of FCPs related to data cleaning is encouraged as close as possible
to the operations for inputing data sources, to prevent cumulative side-effects of reduced data
quality. Thus, as opposed to manual deployment, our tool guarantees that all of the potential
application points on the ETL flow are checked for each FCP and it can be customized to select
the deployment of patterns based on custom policies based on different heuristics.

What is unique about POIESIS is that the redesign process takes place in an iterative, in-
cremental and intuitive fashion. A large number of alternative process designs is automatically
generated and these can be instantly evaluated based on quality criteria. Moreover, through a
highly interactive UI, the user at any point can interact with a visualization of the ETL process
and the estimated measures for each of the alternative designs.

6.3 POIESIS System Overview 121

Performance

Data Quality

MaintainabilityReliability

Usability

Base Flow
Selected ETL Flow

0
+20

+40

-20

% Relative change

Figure 6.8: Radar chart of relative change in measures for an ETL flow, compared with the
initial flow as a baseline

The first step is to import an initial ETL model to the system. This model can be a logical
representation of the ETL process and we currently support the loading of xLM (Wilkinson
et al., 2010) and PDI2, but more options will be available in a future version. Subsequently, the
user can select the preferred processing parameters, i.e., choose which FCP can be considered
in the palette of patterns to be added to the flow, and select the deployment policy for the
patterns. It is important to notice at this point that the user can configure the various patterns
and even extend them to create custom patterns for future use. The same also stands for the
deployment policies, which can be configured according to the user-defined prioritization of
goals, as well as the set of constraints based on estimated measures.

Next, after generating and applying relevant FCPs on the ETL flow, the Planner presents to
the user a set of potential designs in a multidimensional scatter-plot visualization (see Fig. 6.7),
together with quality measures (by clicking on any point on the scatter-plot). The scatter-plot
points presented to the user are only the Pareto frontier (skyline) of the complete set of alter-
native designs, based on their evaluation according to the examined quality dimensions, where
larger values are preferred to smaller ones. For example, considering the quality dimensions
shown in Fig. 6.7, for one design ETL1, if there exists at least one alternative design ETL2 offer-
ing the same or better performance and data quality, and at the same time better reliability, then
ETL1 will not be presented to the user.

2
http://community.pentaho.com/projects/data-integration/

122 Chapter 6 A Tool for Quality-aware ETL Process Redesign

http://community.pentaho.com/projects/data-integration/

The presented measures (see Fig. 6.8) show on a radar chart the relative change on the
metrics for each quality characteristic, denoting the estimated effect of selecting each of the
available flows, compared with the initial flow. Apparently, the processing and analysis of
the alternative process designs is a process intensive task, mainly due to the large number of
alternative flows that have to be concurrently evaluated. Therefore, we employ Amazon Cloud3

elastic infrastructures, by launching processing nodes that run in the background and enable
system responsiveness.

When the user selects (clicks on) any of the different quality dimensions on the measures
graph, the corresponding composite measure “expands” to more detailed measures, providing
the user with a more in-depth monitoring view. Based on measures and design, the user makes
a selection decision and the tool implements this decision by integrating the corresponding
patterns to the existing process flow. These patterns are in the form of process components
and the Planner carefully merges them to the existing process (Jovanovic et al., 2012). Sub-
sequently, new iteration cycles commence, until the user considers that the flow adequately
satisfies quality goals (Theodorou et al., 2014a).

6.4 POIESIS FEATURES

ETL processes can contain tens of operators, extracting data from multiple sources. Their log-
ical representation in xLM format can be loaded in the system and the automatic addition of
Flow Component Patterns in different positions and combinations on the initial flows, will
result in thousands of alternative ETL flows, with different quality characteristics.

Using these processes as input data to our system, we describe here the main capabilities
of our tool:

1. Users can interact with the visualizations of our tool’s GUI. In particular, they can scroll
over/click on any point on the scatterplot that depicts alternative ETL flows on a multi-
dimensional space of different quality characteristics. By selecting one point — corre-
sponding to one ETL flow — the process representation and the measures for this flow
appear on the screen. Users are then able to view details about the ETL flow, as well as
click on any measure so that it expands to more detailed composing metrics.

2. The processing parameters can be configured in order to produce different collections
of alternative flows. Thus, users can choose which of the available Flow Component
Patterns will be used and which policy will be followed for their deployment.

3. Finally, users can define their own Flow Component Patterns, quality metrics and de-
ployment policies, by extending and pre-configuring the existing ones. They can save
their custom processing preferences, adding them to the palette of available patterns for
future execution. Examples of the FCPs, which our palette includes, together with the
quality attribute that they are intended to improve, are shown in Figure 6.9.

3
http://aws.amazon.com/ec2/

6.4 POIESIS Features 123

http://aws.amazon.com/ec2/

FCP Related quality attribute
RemoveDuplicateEntries Data Quality
FilterNullValues Data Quality
CrosscheckSources Data Quality
ParallelizeTask Performance
AddCheckpoint Reliability

Figure 6.9: Available FCPs

124 Chapter 6 A Tool for Quality-aware ETL Process Redesign

7
CONCLUSION

7.1 Conclusion

7.2 Future Work

7.1 CONCLUSION

In the Big Data era, expectations from data-intensive processes are becoming more and more
demanding, pushing for solutions that foster agility. Although information systems are devel-
oped by professionals with technical expertise, it is important to align the design of underlying
processes with an end-user perspective that reflects business requirements. The automation
of ETL processes is a promising direction in order to effectively face emerging challenges in
Business Intelligence mainly caused by data volume, velocity and variety. In this direction,
several approaches have been proposed for the effective modeling of ETL processes, raising the
conceptual level of ETL activities and focusing on the reuse of commonly occurring compo-
nents during ETL design and their automatic translation to implementation steps. However,
the frameworks introduced so far heavily rely on expertise to define some universal abstrac-
tions that attempt to be applicable for the analysis of arbitrary ETL workflows. In addition,
the level of abstraction does not appear high enough to echo a wide range of quality concerns
stemming from the process perspective of ETL processes, other than the traditionally examined
dimensions of performance and cost.

In this thesis, we addressed the problem of quality-aware ETL design in multidisciplinary,
dynamic business environments. In order to reduce the complexity of deciding optimal process
configurations that are in line with business requirements, we raised the level of abstraction
of ETL operators and we considered the different roles that BU and IT can play based on their
background and goals. Thus, we developed a methodology where BU are assigned with the
task of deciding quality goals and evaluating available configurations based on high-level mea-
sures. On the other hand, besides development, monitoring and support, IT are responsible
for model representation decisions. Based on this concept, we introduced the architecture and
methodology of an incremental, iterative framework for end-to-end declarative ETL design and
implementation, using goal modeling techniques and keeping BU at the center of quality con-
trol.

We have shown how our defined models can be used to automate the task of selecting
among alternative designs and improving ETL processes according to defined user goals. To
achieve this, we proposed in Chapter 3 a sound model for ETL process quality characteris-
tics that constructively utilizes research work coming from the fields of Data Warehousing,
ETL, Data Integration, Software Engineering and Business Process Modeling. In order to adapt
models and techniques from all these areas, we based our analysis upon proposed models and
abstractions in literature that expose different angles of ETL processes. Instead of conducting
isolated analysis about each quality dimension, we adopted a unified view, that implies trade-
offs among the improvement of different characteristics and we have qualitatively defined such
relationships. One strong point of our model is that it includes measures and quality indica-
tors, which are all backed by existing literature. Thus, users are offered a rich tool-set that steps
on well-proven concepts and can aid in decision making during ETL design. In this direction,
we have showcased how Goal Modeling techniques can be employed to make informed deci-
sions by assessing the validity of alternative ETL implementations and configurations and by
providing the means for their quality-based comparison.

Furthermore, we have studied the problem of generating data for the evaluation of quality
characteristics of ETL processes. We identified the need for refined synthetic data generation

126 Chapter 7 conclusion

because on one hand, real input data for ETL processes are hard to obtain and manipulate and
on the other, the evolution of ETL processes is very fast because of continuously changing re-
quirements, making their evaluation with stiff datasets impossible. In this respect, in Chapter
4 we proposed an ETL data generation framework (Bijoux), which can generate targeted mini-
malistic datasets to evaluate specific quality dimensions of the ETL process. This tool is highly
parametrizable and can generate datasets to cover the entire ETL workflow, or only specific
parts of it, by taking under consideration the semantics of each ETL operation of the workflow.
To this end, we have defined novel algorithms, as well as a modular architecture that we also
implemented using a prototype. Our experimental results have shown a linear trend of Bijoux’s
overhead with regards to the complexity of the ETL workflow, which suggests efficiency and
scalability of the proposed algorithm.

Moreover, in Chapter 5 we addressed the problem of pattern-based analysis of ETL pro-
cesses by introducing a novel approach for pattern mining in ETL workflows. We adopted the
graph representation of ETL processes and we proposed the use of frequent subgraph discovery
algorithms for the identification of frequently recurring structural motifs in any arbitrary set
of ETL workflows. In addition, we studied existing graph matching algorithms and we adapted
one of them with optimization heuristics to perform very well for ETL workflows, as we vali-
dated experimentally. We conducted various experiments to showcase the effectiveness of our
approach on implemented ETL processes and we illustrated the most interesting findings, in-
cluding mined frequent ETL patterns from the TPC-DI benchmark. We also showed how our
bottom-up approach can be used both for the automatic translation of an ETL model to its cor-
responding conceptual representation, using a high-level notation such as BPMN and for the
exposure of quality characteristics of ETL processes at the granular level of patterns.

In Chapter 6, we have built a tool that manages a pallet of patterns, each of which is
known to have an effect on the improvement of some quality attribute. This tool can semi-
automatically integrate these patterns to given ETL workflows in a highly configurable fashion,
while at the same time providing intuitive visualizations to end-users about the ETL model and
its quality measures estimation.

In conclusion, we have introduced models and frameworks that have brought the costly,
time-consuming and error-prone tasks of ETL design and re-design closer to end-users, reduc-
ing the gap between IT and BU. We have exposed through our approach a comprehensive view
of the quality dimensions of ETL processes, as well as ways to evaluate and to improve them,
automating their analysis and making it easier and faster, but at the same time more granu-
lar, with the use of patterns. Modifiability has been a central concern during the development
of our frameworks —and the tools to validate them— and thus, our methodologies are highly
extensible and implementable on a variety of different ETL systems.

7.2 FUTURE WORK

In this thesis, we have introduced a novel approach for user-centered, declarative ETL, we have
defined the models that can support it and we have carefully delved into its different aspects.
Nonetheless, our work has paved the way for further research, concerning the extension of our
frameworks, as well as their adaptation for different areas.

7.2 Future Work 127

Regarding quality measures of ETL Processes, one interesting research direction can be the
quantification of our models, using statistical models. In this respect, various methodologies
can be tested, that can take as input a large number of ETL workflows and after estimating
for each of them our proposed measures, infer mathematical models about the relationships
between different quality attributes and their trade-offs. In this respect, empirical evaluation
of the models can take place with the use of extensive controlled experiments involving real
ETL users as subjects. The users can state their perceived utility of different ETL processes
and through careful evaluation of the results, utility functions of different quality measures
can be discovered. In the same direction, future work can define methodologies that use our
models as staring points to generate various goal models from different frameworks, for which
refinements, satisfiability propagation and elicitation of goals will be straightforward.

When it comes to data generation for ETL process evaluation, the set of ETL operations
supported by Bijouxcan be extended to include operations with semantics that aremore difficult
to analyze, e.g., groupers and user-defined functions. In addition, it can be modified to cover a
broader spectrum of configurable parameters, especially focusing on the ones that enable the
evaluation of different quality criteria of an ETL process.

Regarding the use of patterns for the translation of ETL logical models to corresponding
conceptual, apart from conducting tests on a larger set of realistic ETL workflows to improve
the completeness of identified patterns, it could also be examined how incomplete pattern
matching affects the conducted analysis. It is possible that patterns can show great variability
or overlap and thus it can be problematic to recognize them on different workflows, but even
more problematic to mine them as frequently reoccurring structures. One possible solution
that can be examined is the use of approximate matching algorithms or the reordering of ETL
operations in the workflow, whenever that is allowed.

Concernig ETL patterns for the generation of more fine-grained cost models, one issue
that would be interesting to examine is the relationship between the characteristics of incom-
ing datasets and the quality attributes of different pattern models. To this end, provided that
there is a large enough number of ETL workflows to act as the training set, machine learning
algorithms can be employed to extract relevant features, as well as regression models. If such
analysis can prove valid, then the evaluation of ETL workflows will be made possible without
the need of their execution or benchmarking, but simply by examining their static structure
and providing as input the right parameters.

However, our work can also be adapted to be applicable for domains other that data ware-
housing. Many of our proposed models can be adjusted to apply on data-intensive processes in
various different areas. As an example, if data processing for big data analysis can be modeled
in a process perspective then the main ideas from our approach can be reused. For instance,
the processing of operation semantics can suggest the variables for synthetic data generation
to evaluate different quality attributes —which of course might be significantly different from
the ones for ETL, but the main ideas about trade-offs and their quantification still apply.

128 Chapter 7 conclusion

BIBLIOGRAPHY

OWL 2 Web Ontology Language Manchester Syntax. http://www.w3.org/TR/
owl2-manchester-syntax/, cited August 2015.

The Subsystems of ETL Revisited. http://www.informationweek.com/software/
information-management/kimball-university-the-subsystems-of-etl-revisited/d/d-id/
1060550, cited January 2014.

KPI Library. http://kpilibrary.com, cited January 2014.

Alberto Abelló, Jérôme Darmont, Lorena Etcheverry, Matteo Golfarelli, Jose-Norberto Mazón,
Felix Naumann, Torben Bach Pedersen, Stefano Rizzi, Juan Trujillo, Panos Vassiliadis, and
Gottfried Vossen. Fusion Cubes: Towards Self-Service Business Intelligence. IJDWM, 9(2):
66–88, 2013.

Zineb Akkaoui, José-Norberto Mazón, Alejandro Vaisman, and Esteban Zimányi. BPMN-Based
Conceptual Modeling of ETL Processes. In DaWaK, pages 1–14. Springer, 2012.

Zineb Akkaoui, Esteban Zimányi, José-Norberto Mazón, and Juan Trujillo. A BPMN-Based
Design and Maintenance Framework for ETL Processes. IJDWM, 9(3):46–72, 2013.

R.E. Al-Qutaish. An Investigation of the Weaknesses of the ISO 9126 Intl. Standard. In ICCEE,
pages 275–279, 2009.

Arvind Arasu, Raghav Kaushik, and Jian Li. Data generation using declarative constraints. In
SIGMOD Conference, pages 685–696, 2011.

Babak Bagheri Hariri, Diego Calvanese, Giuseppe Giacomo, Riccardo Masellis, and Paolo Felli.
Foundations of Relational Artifacts Verification. In Stefanie Rinderle-Ma, Farouk Toumani,
and Karsten Wolf, editors, Business Process Management, volume 6896 of Lecture Notes in
Computer Science, pages 379–395. Springer Berlin Heidelberg, 2011.

Bibliography 129

http://www.w3.org/TR/owl2-manchester-syntax/
http://www.w3.org/TR/owl2-manchester-syntax/
http://www.informationweek.com/software/information-management/kimball-university-the-subsystems-of-etl-revisited/d/d-id/1060550
http://www.informationweek.com/software/information-management/kimball-university-the-subsystems-of-etl-revisited/d/d-id/1060550
http://www.informationweek.com/software/information-management/kimball-university-the-subsystems-of-etl-revisited/d/d-id/1060550
http://kpilibrary.com

Mario Barbacci, Mark Klein, Thomas Longstaff, and Charles Weinstock. Quality Attributes.
Technical report, Carnegie Mellon University, Pittsburgh, Pennsylvania, 1995.

Carlo Batini, Cinzia Cappiello, Chiara Francalanci, and Andrea Maurino. Methodologies for
data quality assessment and improvement. ACM Comput. Surv., 41(3):16:1–16:52, July 2009.

Kent Beck. Test-driven development: by example. Addison-Wesley Professional, 2003.

Jarg Becker, Martin Kugeler, andMichael Rosemann. Process Management: a guide for the design
of business processes: with 83 figures and 34 tables. Springer, 2003.

Ladjel Bellatreche, Selma Khouri, andNabila Berkani. Semantic DataWarehouse Design: From
ETL to Deployment á la Carte. In Database Systems for Advanced Applications, pages 64–83.
Springer, 2013.

Henrike Berthold, Philipp Rösch, Stefan Zöller, Felix Wortmann, Alessio Carenini, Stuart
Campbell, Pascal Bisson, and Frank Strohmaier. An Architecture for Ad-hoc and Collab-
orative Business Intelligence. In EDBT, pages 1–6, 2010.

Mark A. Beyer, Eric Thoo, Ehtisham Zaidi, and Rick Greenwald. Magic Quadrant for Data
Integration Tools. Technical report, Gartner, August 2016.

Kamal Bhattacharya, Cagdas Gerede, Richard Hull, Rong Liu, and Jianwen Su. Towards Formal
Analysis of Artifact-Centric Business Process Models. In Gustavo Alonso, Peter Dadam, and
Michael Rosemann, editors, Business Process Management, volume 4714 of Lecture Notes in
Computer Science, pages 288–304. Springer Berlin Heidelberg, 2007.

Carsten Binnig, Donald Kossmann, Eric Lo, and M. Tamer Özsu. QAGen: generating query-
aware test databases. In SIGMOD Conference, pages 341–352, 2007.

Matthias Böhm, Dirk Habich, Wolfgang Lehner, and Uwe Wloka. DIPBench Toolsuite: A
Framework for Benchmarking Integration Systems. In ICDE, pages 1596–1599, 2008.

Matthias Böhm, Dirk Habich, Wolfgang Lehner, and Uwe Wloka. Invisible Deployment of
Integration Processes. In Joaquim Filipe and José Cordeiro, editors, Enterprise Information
Systems, volume 24 of Lecture Notes in Business Information Processing, pages 53–65. Springer
Berlin Heidelberg, 2009.

Matthias Böhm, Uwe Wloka, Dirk Habich, and Wolfgang Lehner. GCIP: Exploiting the Gener-
ation and Optimization of Integration Processes. In EDBT, pages 1128–1131, 2009.

Pearl Brereton, Barbara A. Kitchenham, David Budgen, Mark Turner, and Mohamed Khalil.
Lessons from Applying the Systematic Literature Review Process Within the Software Engi-
neering Domain. J. Syst. Softw., 80(4):571–583, April 2007.

Paolo Bresciani, Anna Perini, Paolo Giorgini, Fausto Giunchiglia, and John Mylopoulos. Tro-
pos: An Agent-Oriented Software Development Methodology. Autonomous Agents and Multi-
Agent Systems, 8(3):203–236, 2004.

130 Bibliography

Malu Castellanos, Alkis Simitsis, Kevin Wilkinson, and Umeshwar Dayal. Automating the
loading of business process data warehouses. In EDBT, pages 612–623, 2009.

David Chays, Saikat Dan, Phyllis G. Frankl, Filippos I. Vokolos, and Elaine J. Weber. A frame-
work for testing database applications. In ISSTA, pages 147–157, 2000.

Elizabeth Chew, Marianne Swanson, Kevin M. Stine, Nadya Bartol, Anthony Brown, and Will
Robinson. Performance Measurement Guide for Information Security. Technical report,
2008.

Lawrence Chung, Brian Nixon, Eric Yu, and John Mylopoulos. Non-Functional Requirements
in Software Engineering. International Series in Software Engineering, 5, 2000.

D. Conte, P. Foggia, C. Sansone, and M. Vento. Thirty years of Graph Matching in Pattern
Recognition. International Journal of Pattern Recognition and Artificial Intelligence, 18(03):
265–298, 2004.

L. P. Cordella, P. Foggia, C. Sansone, and M. Vento. An improved algorithm for matching large
graphs. In In: 3rd IAPR-TC15 Workshop on Graph-based Representations in Pattern Recognition,
Cuen, pages 149–159, 2001.

Richard A. DeMillo and A. Jefferson Offutt. Constraint-Based Automatic Test Data Generation.
IEEE Trans. Software Eng., 17(9):900–910, 1991.

Marlon Dumas, Marcello La Rosa, Jan Mendling, and Hajo A. Reijers. Fundamentals of Business
Process Management. Springer, 2013.

Schahram Dustdar, Reinhard Pichler, Vadim Savenkov, and Hong-Linh Truong. Quality-aware
service-oriented data integration: requirements, state of the art and open challenges. SIG-
MOD Rec., 41(1):11–19, April 2012.

Martin J. Eppler and Markus Helfert. A Framework For The Classification Of Data Quality
Costs And An Analysis Of Their Progression. In InduShobha N. Chengalur-Smith, Louiqa
Raschid, Jennifer Long, and Craig Seko, editors, IQ, pages 311–325. MIT, 2004.

William Frakes and Carol Terry. Software Reuse: Metrics and Models. ACM Comput. Surv., 28
(2):415–435, 1996.

Félix García, Mario Piattini, Francisco Ruiz, Gerardo Canfora, and Corrado A. Visaggio.
FMESP: Framework for the Modeling and Evaluation of Software Processes. QUTE-SWAP,
pages 5–13. ACM, 2004.

G.K. Gill and C.F. Kemerer. Cyclomatic complexity density and software maintenance produc-
tivity. Soft. Eng., IEEE Trans. on, 17(12):1284–1288, 1991.

Paolo Giorgini, Stefano Rizzi, and Maddalena Garzetti. GRAnD: A goal-oriented approach to
requirement analysis in data warehouses. Decision Support Systems, 45(1):4 – 21, 2008.

Matteo Golfarelli, Stefano Rizzi, and Elisa Turricchia. Sprint Planning Optimization in Agile
Data Warehouse Design. In DaWaK, pages 30–41, 2012.

Bibliography 131

Jim Gray, Prakash Sundaresan, Susanne Englert, Kenneth Baclawski, and Peter J. Weinberger.
Quickly Generating Billion-Record Synthetic Databases. In SIGMOD Conference, pages 243–
252, 1994.

Thomas Gschwind, Jana Koehler, and Janette Wong. Applying Patterns during Business Process
Modeling, pages 4–19. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.

Joseph E. Hoag and Craig W. Thompson. A parallel general-purpose synthetic data generator.
SIGMOD Record, 36(1):19–24, 2007.

Jennifer Horkoff and Eric S. K. Yu. Comparison and evaluation of goal-oriented satisfaction
analysis techniques. Requir. Eng., 18(3):199–222, 2013.

Jennifer Horkoff, Alex Borgida, John Mylopoulos, Daniele Barone, Lei Jiang, Eric Yu, and
Daniel Amyot. Making Data Meaningful: The Business Intelligence Model and Its Formal
Semantics in Description Logics. In OTM, pages 700–717. Springer, 2012.

Jennifer Horkoff, Daniele Barone, Lei Jiang, Eric Yu, Daniel Amyot, Alex Borgida, and JohnMy-
lopoulos. Strategic Business Modeling: Representation and Reasoning. Softw. Syst. Model.,
13(3):1015–1041, July 2014.

Kenneth Houkjær, Kristian Torp, and Rico Wind. Simple and Realistic Data Generation. In
VLDB, pages 1243–1246, 2006.

Fabian Hueske, Mathias Peters, Matthias Sax, Astrid Rheinländer, Rico Bergmann, Aljoscha
Krettek, and Kostas Tzoumas. Opening the Black Boxes in Data Flow Optimization. PVLDB,
5(11):1256–1267, 2012.

Monique Jansen-Vullers and Mariska Netjes. Business process simulation–a tool survey. In
Workshop and Tutorial on Practical Use of Coloured Petri Nets and the CPN Tools, volume 38,
pages –, 2006.

Matthias Jarke, Manfred A. Jeusfeld, Christoph Quix, and Panos Vassiliadis. Architecture and
quality in data warehouses: An extended repository approach. Information Systems, 24(3):
229 – 253, 1999.

Matthias Jarke, Maurizio Lenzerini, Yannis Vassiliou, and Panos Vassiliadis. Fundamentals of
Data Warehouses. Springer, 2003.

Chuntao Jiang, Frans Coenen, and Michele Zito. A survey of frequent subgraph mining algo-
rithms. Knowledge Eng. Review, 28(1):75–105, 2013.

P. Jogalekar and M. Woodside. Evaluating the scalability of distributed systems. Parallel and
Distributed Systems, IEEE Trans. on, 11(6):589–603, 2000.

P. Jovanovic, A. Simitsis, and K. Wilkinson. Engine independence for logical analytic flows. In
2014 IEEE 30th International Conference on Data Engineering, pages 1060–1071, March 2014.

132 Bibliography

P. Jovanovic, O. Romero, A. Simitsis, and A. Abelló. Incremental Consolidation of Data-
Intensive Multi-Flows. IEEE Transactions on Knowledge and Data Engineering, 28(5):1203–
1216, May 2016.

Petar Jovanovic. Requirement-driven Design and Optimization of Data-Intensive Flows. Ph.D.
Dissertation, 2016.

Petar Jovanovic, Oscar Romero, Alkis Simitsis, and Alberto Abelló. Integrating ETL Processes
from Information Requirements. In DaWaK, pages 65–80, 2012.

Anton Kartashov. Adaptive workflow testing using elastic infrastructures. Master Thesis, 2016.

R. Kazman, J. Asundi, and M. Klein. Quantifying the costs and benefits of architectural deci-
sions. In ICSE, pages 297–306, 2001.

Barbara Kitchenham, O. Pearl Brereton, David Budgen, Mark Turner, John Bailey, and Stephen
Linkman. Systematic Literature Reviews in Software Engineering - A Systematic Literature
Review. Inf. Softw. Technol., 51(1):7–15, 2009.

Michihiro Kuramochi and George Karypis. Frequent Subgraph Discovery. In Proceedings of the
2001 IEEE International Conference on Data Mining, ICDM ’01, pages 313–320, Washington,
DC, USA, 2001.

Kiran Lakhotia, Mark Harman, and Phil McMinn. A multi-objective approach to search-based
test data generation. In GECCO, pages 1098–1105, 2007.

Averill M Law, W David Kelton, and W David Kelton. Simulation modeling and analysis, vol-
ume 2. McGraw-Hill, 1991.

Jinsoo Lee, Wook-Shin Han, Romans Kasperovics, and Jeong-Hoon Lee. An In-depth Compar-
ison of Subgraph Isomorphism Algorithms in Graph Databases. Proc. VLDB Endow., 6(2):
133–144, December 2012.

JulioCesarSampaiodoPrado Leite and Claudia Cappelli. Software Transparency. Business and
Information Systems Engineering, 2(3):127–139, 2010.

Chunjie Luo, Wanling Gao, Zhen Jia, Rui Han, Jingwei Li, Xinlong Lin, Lei Wang, Yuqing
Zhu, and Jianfeng Zhan. Handbook of BigDataBench (Version 3.1) - A Big Data
Benchmark Suite, 2014. http://prof.ict.ac.cn/BigDataBench/wp-content/uploads/2014/12/
BigDataBench-handbook-6-12-16.pdf. Last accessed: 13/05/2015.

Tim A. Majchrzak, Tobias Jansen, and Herbert Kuchen. Efficiency Evaluation of Open Source
ETL Tools. SAC, pages 287–294, New York, NY, USA, 2011. ACM.

Zijian Ming, Chunjie Luo, Wanling Gao, et al. BDGS: A Scalable Big Data Generator Suite in
Big Data Benchmarking. CoRR, abs/1401.5465, 2014.

Lilia Muñoz, Jose-Norberto Mazón, and Juan Trujillo. Automatic generation of ETL processes
from conceptual models. In DOLAP, pages 33–40, 2009.

Bibliography 133

http://prof.ict.ac.cn/BigDataBench/wp-content/uploads/2014/12/BigDataBench-handbook-6-12-16.pdf
http://prof.ict.ac.cn/BigDataBench/wp-content/uploads/2014/12/BigDataBench-handbook-6-12-16.pdf

Lilia Muñoz, Jose-Norberto Mazón, and Juan Trujillo. Measures for ETL Processes Models in
Data Warehouses. MoSE+DQS, pages 33–36. ACM, 2009.

Lilia Muñoz, Jose-Norberto Mazón, Jesús Pardillo, and Juan Trujillo. Modelling ETL Processes
of Data Warehouses with UML Activity Diagrams. In On the Move to Meaningful Internet
Systems: OTM 2008 Workshops, pages 44–53, Berlin, Heidelberg, 2008. Springer Berlin Hei-
delberg.

Gunter Mussbacher, Daniel Amyot, and Saeed Ahmadi Behnam. Towards a Pattern-Based
Framework for Goal-Driven Business Process Modeling. Software Engineering Research, Man-
agement and Applications, ACIS International Conference on, 00(undefined):137–145, 2010.

Emona Nakuçi, Vasileios Theodorou, Petar Jovanovic, and Alberto Abelló. Bijoux: Data Gener-
ator for Evaluating ETL Process Quality. In DOLAP, 2014.

Felix Naumann. Quality-driven Query Answering for Integrated Information Systems. Springer-
Verlag, 2002.

Bruno Oliveira and Orlando Belo. BPMN Patterns for ETL Conceptual Modelling and Valida-
tion. In ISMIS 2012, Macau, China, December 4-7, pages 445–454, Berlin, Heidelberg, 2012.
Springer Berlin Heidelberg.

Bruno Oliveira and Orlando Belo. Task Clustering on ETL Systems - A Pattern-Oriented Ap-
proach. In Proceedings of 4th International Conference on Data Management Technologies and
Applications, pages 207–214, 2015.

Bruno Oliveira, Vasco Santos, and Orlando Belo. Pattern-Based ETL Conceptual Modelling.
In Model and Data Engineering - Third International Conference, MEDI 2013, Amantea, Italy,
September 25-27, 2013. Proceedings, pages 237–248, 2013.

Bruno Oliveira, Orlando Belo, and Alfredo Cuzzocrea. A Pattern-Oriented Approach for Sup-
porting ETL Conceptual Modelling and its YAWL-based Implementation. In DATA 2014,
Vienna, Austria, 29-31 August, 2014, pages 408–415, 2014.

Amanpartap Singh Pall and Jaiteg Singh Khaira. A comparative Review of Extraction, Transfor-
mation and Loading Tools. Database Systems Journal, 4(2):42–51, 2013.

Ray J. Paul, Vlatka Hlupic, and GeorgeM. Giaglis. SimulationModelling Of Business Processes.
In Proceedings of the 3 rd U.K. Academy of Information Systems Conference, McGraw-Hill, pages
311–320. McGraw-Hill, 1998.

Ivan Pavlov. A QoXModel for ETL Subsystems: Theoretical and Industry Perspectives. Comp-
SysTech, pages 15–21. ACM, 2013.

Tilmann Rabl, Michael Frank, HatemMousselly Sergieh, and Harald Kosch. A Data Generator
for Cloud-Scale Benchmarking. In TPCTC, pages 41–56, 2010.

Oscar Romero, Alkis Simitsis, and Alberto Abelló. GEM: Requirement-Driven Generation of
ETL and Multidimensional Conceptual Designs. In Data Warehousing and Knowledge Discov-
ery, pages 80–95. Springer, 2011.

134 Bibliography

Nick Russell, Arthur H. M. ter Hofstede, David Edmond, andWil M. P. van der Aalst. Workflow
Data Patterns: Identification, Representation and Tool Support, pages 353–368. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2005.

Philip Russom. TDWI best practices report: Big data analytics. Technical report, The data
Warehousing Institute, 01 2011.

Shazia Sadiq, Naiem Khodabandehloo Yeganeh, and Marta Indulska. 20 Years of Data Quality
Research: Themes, Trends and Synergies. In Proceedings of the Twenty-Second Australasian
Database Conference - Volume 115, ADC ’11, pages 153–162, Darlinghurst, Australia, Australia,
2011. Australian Computer Society, Inc.

Sherif Sakr and Eric Pardede. Graph Data Management: Techniques and Applications. IGI Pub-
lishing, Hershey, PA, 1st edition, 2011.

Marko Salmenkivi. Frequent Itemset Discovery, pages 322–323. Springer US, Boston, MA, 2008.

Laura Sánchez-González, Félix García, Francisco Ruiz, and Jan Mendling. Quality Indicators
for Business Process Models from a Gateway Complexity Perspective. Inf. Softw. Technol., 54
(11):1159–1174, 2012.

R. Shamir and D. Tsur. Faster subtree isomorphism. In Theory of Computing and Systems, 1997.,
Proceedings of the Fifth Israeli Symposium on, pages 126–131, 1997.

A. Simitsis, P. Vassiliadis, and T. Sellis. Optimizing ETL processes in data warehouses. In ICDE,
pages 564–575, 2005.

Alkis Simitsis, Panos Vassiliadis, Umeshwar Dayal, Anastasios Karagiannis, and Vasiliki Tzio-
vara. Benchmarking ETLWorkflows. In Performance Evaluation and Benchmarking: First TPC
Technology Conference, TPCTC 2009, Lyon, France, August 24-28, 2009, Revised Selected Papers,
pages 199–220, 2009.

Alkis Simitsis, Kevin Wilkinson, Malú Castellanos, and Umeshwar Dayal. QoX-driven ETL
design: reducing the cost of ETL consulting engagements. In SIGMOD Conference, pages
953–960, 2009.

Connie U. Smith and Lloyd G. Williams. Software Performance Antipatterns. WOSP ’00, pages
127–136, New York, NY, USA, 2000. ACM.

Miguel A. Teruel, Roberto Tardío, Elena Navarro, Alejandro Maté, Pascual González, Juan Tru-
jillo, and Rafael Muñoz-Terol. CSRML4BI: A Goal-Oriented Requirements Approach for Collab-
orative Business Intelligence, pages 423–430. Springer International Publishing, Cham, 2014.

Vasileios Theodorou, Alberto Abelló, and Wolfgang Lehner. Quality Measures for ETL Pro-
cesses. DaWaK, 2014.

Vasileios Theodorou, Alberto Abelló, Maik Thiele, and Wolfgang Lehner. A Framework for
User-Centered Declarative ETL. In DOLAP, 2014.

Bibliography 135

Vasileios Theodorou, Alberto Abelló, Maik Thiele, and Wolfgang Lehner. POIESIS: a Tool for
Quality-aware ETL Process Redesign. In Proceedings of the 18th International Conference on
Extending Database Technology, EDBT 2015, Brussels, Belgium, March 23-27, 2015., pages 545–
548, 2015.

Vasileios Theodorou, Alberto Abelló, Wolfgang Lehner, and Maik Thiele. Quality measures for
ETL processes: from goals to implementation. Concurrency and Computation: Practice and
Experience, 28(15):3969–3993, 2016.

Vasileios Theodorou, Petar Jovanovic, Alberto Abellò, and Emona Nakuçi. Data generator for
evaluating {ETL} process quality. Information Systems, 63:80 – 100, 2017.

Maik Thiele, Andreas Bader, and Wolfgang Lehner. Multi-objective scheduling for real-time
data warehouses. Computer Science - Research and Development, 24(3):137–151, 2009.

Vasiliki Tziovara, Panos Vassiliadis, and Alkis Simitsis. Deciding the Physical Implementation
of ETLWorkflows. In Proceedings of the ACM Tenth International Workshop on Data Warehous-
ing and OLAP, DOLAP ’07, pages 49–56, 2007.

J. R. Ullmann. An Algorithm for Subgraph Isomorphism. J. ACM, 23(1):31–42, January 1976.

W. M. P. Van Der Aalst, A. H. M. Ter Hofstede, B. Kiepuszewski, and A. P. Barros. Workflow
Patterns. Distrib. Parallel Databases, 14(1):5–51, July 2003.

A. van Lamsweerde. Goal-oriented requirements engineering: a guided tour. In RE, pages
249–262, 2001.

A. van Lamsweerde. From System Goals to Software Architecture. In Formal Methods for Soft-
ware Architectures. Volume 2804 of Lecture Notes in Computer Science, pages 25–43. Springer-
Verlag, 2003.

Panos Vassiliadis, Alkis Simitsis, and Spiros Skiadopoulos. Conceptual Modeling for ETL Pro-
cesses. In Proceedings of the 5th ACM International Workshop on Data Warehousing and OLAP,
DOLAP ’02, pages 14–21, New York, NY, USA, 2002. ACM.

Panos Vassiliadis, Alkis Simitsis, and Eftychia Baikousi. A Taxonomy of ETL Activities. In
Proceedings of the ACMTwelfth InternationalWorkshop on DataWarehousing and OLAP, DOLAP
’09, pages 25–32, New York, NY, USA, 2009. ACM.

M. Weske. Business Process Management: Concepts, Languages, Architectures. Springer, 2012.

Kevin Wilkinson, Alkis Simitsis, Malu Castellanos, and Umeshwar Dayal. Leveraging Business
Process Models for ETL Design, pages 15–30. Springer Berlin Heidelberg, Berlin, Heidelberg,
2010.

Eric S. K. Yu. Modelling Strategic Relationships for Process Reengineering. Ph.D. Dissertation,
1996.

Jian Zhang, Chen Xu, and S. C. Cheung. Automatic Generation of Database Instances for
White-box Testing. In COMPSAC, pages 161–165, 2001.

136 Bibliography

List of Figures

1.1 Utility cone of ETL quality . 4
1.2 Experimental results . 7
1.3 Functional architecture . 9

2.1 Comparison of approaches on ETL quality 20
2.2 Comparison of pattern-based approaches . 24

3.1 CM_A: A simple conceptual model of the running example ETL 28
3.2 CM_B: Conceptual model of the running example ETL, including additional tasks 29
3.3 ETL Process Characteristics . 30
3.4 Dependencies among process characteristics with construct implications . . . 36
3.5 Logical models of alternative ETL processes 38
3.6 Dependencies among characteristics for design evaluation 43
3.7 Goal modeling for running example . 48
3.8 Functional architecture . 49

4.1 ETL flow example: TPC-DI DimSecurity population 56
4.2 Table-access based classification, UML notation 58
4.3 Notable cases of graph patterns . 65
4.4 Example of execution of Algorithm 1 . 69
4.5 Data generation parameters (FP and OP) . 72
4.6 Data generated after analyzing all ETL operations 75
4.7 Generated datasets corresponding to the generated data 76
4.8 ETL flow for data cleaning, using a dictionary 77
4.9 ETL flow for data cleaning, trying different string variations for the join key . . 77
4.10 Performance evaluation of the flows using different scale factors 80
4.11 Performance evaluation of Flow_B using different levels of input data quality . . 82
4.12 Bijoux prototype architecture . 85
4.13 Basic scenario ETL process for experiments 86
4.14 Linear trend of constraints extraction time wrt. the increasing number of oper-

ations (ETL flow complexity) . 88

5.1 ETL flow example: TPC-DI FactCashBalances population 93
5.2 ETL Pattern Conceptual Model . 97
5.3 Pattern Model and Pattern Occurrence on an ETL workflow 98
5.4 Maximal and Independent Frequent Subgraphs 100

137

5.5 Example of translating logical representation of an ETL process to BPMN . . . 101
5.6 Process Architecture of ETL Workflow Patterns Analysis 102
5.7 Execution of Find Pattern Model Occurrences Algorithm 104
5.8 Number of (non-maximal) frequent patterns identified for different support

values and for different pattern sizes . 107
5.9 Coverage of ETL workflows for different support values 108
5.10 Number of patterns w.r.t. their number of occurrences 108
5.11 Number of patterns w.r.t. their frequency of independent occurrences 108
5.12 Frequent ETL pattern models . 109
5.13 Performance of the graphmatching algorithm for ETLs of different sizes (Y-axis

in log scale) . 110
5.14 Creating an ETL by isolating a pattern model occurrence 111
5.15 Histogram of number of patterns w.r.t. average values of runtime divided by

input size . 111

6.1 Example quality measures for ETL processes 114
6.2 Generation of FCP on the ETL flow . 115
6.3 ETL Quality Patterns Class Diagram . 118
6.4 ETL Quality Pattern Deployment Class Diagram 118
6.5 ETL Quality Pattern Deployment Class Diagram 119
6.6 POIESIS architecture . 120
6.7 Multidimensional scatter-plot of alternative ETL flows 121
6.8 Radar chart of relative change in measures for an ETL flow, compared with the

initial flow as a baseline . 122
6.9 Available FCPs . 124

138

CONFIRMATION

I confirm that I independently prepared the thesis and that I used only the references and
auxiliary means indicated in the thesis.

November 21, 2016

139

140

141

	Introduction
	ETL Process Quality
	Data-intensive Process Evaluation
	Challenges in ETL Automation
	Motivating Experiment

	User-centered Declarative ETL
	Contributions
	Thesis Outline

	State of the Art
	ETL Modeling
	Quality of Data Intensive Processes
	Data Intensive Processes Testing and Evaluation
	ETL Patterns

	Quality Measures for ETL Processes
	Extracting Quality Characteristics
	Characteristics with Construct Implications
	Characteristics and Measures
	Characteristics Relationships
	Calculating the measures

	Characteristics for Design Evaluation
	Characteristics and Measures
	Characteristics Relationships
	Calculating the measures

	Goal Modeling for ETL design
	Applying BIM to ETL processes

	User-centered ETL Optimization
	Summary and Outlook

	Data Generator for Evaluating ETL Process Quality
	Overview of our approach
	ETL operation classification
	Formalizing ETL processes
	Bijoux overview

	Bijoux data generation framework
	Preliminaries and Challenges
	Data structures
	Path Enumeration Stage
	Constraints Extraction and Analysis Stage
	Data Generation Stage
	Theoretical validation

	Test case
	Evaluating the performance overhead of alternative ETL flows
	Evaluating the data quality of alternative ETL flows

	Bijoux Performance evaluation
	Experimental setup
	Experimental results

	Conclusions and Future Work

	Frequent Patterns in ETL Workflows
	ETL Patterns
	Workflow Patterns for ETL Flows
	ETL Patterns model
	Frequent ETL Patterns

	ETL Patterns Use Cases
	Conceptual Representation of ETL Flows
	Quality-based Analysis of ETL flows

	Architecture
	Pattern mining
	Pattern recognition

	Experimental Results
	Mined ETL Patterns
	Performance Evaluation of Graph Matching Algorithm
	Granular ETL Performance Evaluation

	Summary and Outlook

	A Tool for Quality-aware ETL Process Redesign
	Addition of Flow Component Patterns
	Tool Design
	POIESIS System Overview
	POIESIS Features

	conclusion
	Conclusion
	Future Work

