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Abstract
Towards Collaborative Session-based Semantic Search

by Sebastian Straub

In recent years, the most popular web search engines have excelled in their ability
to answer short queries that require clear, localized and personalized answers. When
it comes to complex exploratory search tasks however, the main challenge for the
searcher remains the same as back in the 1990s: Trying to formulate a single query
that contains all the right keywords to produce at least some relevant results.

In this work we want to investigate new ways to facilitate exploratory search by
making use of context information from the user’s entire search process. Therefore
we present the concept of session-based semantic search, with an optional extension to
collaborative search scenarios. To improve the relevance of search results we expand
queries with terms from the user’s recent query history in the same search context
(session-based search). We introduce a novel method for query classification based
on statistical topic models which allows us to track the most important topics in a
search session so that we can suggest relevant documents that could not be found
through keyword matching.

To demonstrate the potential of these concepts, we have built the prototype of a
session-based semantic search engine which we release as free and open source soft-
ware. In a qualitative user study that we have conducted, this prototype has shown
promising results and was well-received by the participants.
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Zusammenfassung
Towards Collaborative Session-based Semantic Search

von Sebastian Straub

Die führenden Web-Suchmaschinen haben sich in den letzten Jahren gegenseitig darin
übertroffen, möglichst leicht verständliche, lokalisierte und personalisierte Antworten
auf kurze Suchanfragen anzubieten. Bei komplexen explorativen Rechercheaufgaben
hingegen ist die größte Herausforderung für den Nutzer immer noch die gleiche wie
in den 1990er Jahren: Eine einzige Suchanfrage so zu formulieren, dass alle notwen-
digen Schlüsselwörter enthalten sind, um zumindest ein paar relevante Ergebnisse zu
erhalten.

In der vorliegenden Arbeit sollen neue Methoden entwickelt werden, um die explorati-
ve Suche zu erleichtern, indem Kontextinformationen aus dem gesamten Suchprozess
des Nutzers einbezogen werden. Daher stellen wir das Konzept der sitzungsbasierten
semantischen Suche vor, mit einer optionalen Erweiterung auf kollaborative Suchsze-
narien. Um die Relevanz von Suchergebnissen zu steigern, werden Suchanfragen mit
Begriffen aus den letzten Anfragen des Nutzers angereichert, die im selben Suchkon-
text gestellt wurden (sitzungsbasierte Suche). Außerdem wird ein neuartiger Ansatz
zur Klassifizierung von Suchanfragen eingeführt, der auf statistischen Themenmo-
dellen basiert und es uns ermöglicht, die wichtigsten Themen in einer Suchsitzung
zu erkennen, um damit weitere relevante Dokumente vorzuschlagen, die nicht durch
Keyword-Matching gefunden werden konnten.

Um das Potential dieser Konzepte zu demonstrieren, wurde im Rahmen dieser Arbeit
der Prototyp einer sitzungsbasierten semantischen Suchmaschine entwickelt, den wir
als freie Software veröffentlichen. In einer qualitativen Nutzerstudie hat dieser Pro-
totyp vielversprechende Ergebnisse hervorgebracht und wurde von den Teilnehmern
positiv aufgenommen.
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Chapter 1

Introduction

“And how will you inquire into a thing when you are wholly ignorant of
what it is? Even if you happen to bump right into it, how will you know
it is the thing you didn’t know?”

— Plátōn, Ménōn

This quote from a fictional dialogue between ancient Greek philosopher Socrates and
the politician Meno which was written by Plato has become known as Meno’s Paradox
or The Paradox of Inquiry: At its core, it states that there is no need to search for
something we already know and there is no way to recognize anything that we don’t
know, therefore acquiring knowledge should be impossible. For a theist this problem
is solved by referring to a higher power which has knowledge of the absolute truth
and by following the rules of the higher power, even mere mortals can recognize this
truth and therefore gain knowledge. Atheists however can only deduce knowledge
from what they themselves define as axioms, the suitability of which they can assess
by observation of the universe, but in the end there is no way to prove even the most
basic axioms due to the lack of an absolute reference frame.

From a practical perspective, the implications of Meno’s paradox are of little relevance
to us: Humans have very different and often contradictory assumptions about the
world, but in most cases these assumptions still allow them to get through their daily
lives without getting into too much trouble with their environment. However, the
issue of acquiring knowledge about things we don’t know anything about is a very
practical one which we constantly encounter.

Searching for information has become much more efficient and convenient with the
rise of web search engines that allow access to knowledge sources that go far beyond
what libraries traditionally used to offer. The popular search engines go through great
lengths to offer search results that are localized and even personalized, like a search
for “movies” might return a list of movies which are currently running in nearby
theaters and which fit your cinematic profile. Yet while these retrieval methods do
a great job when we have a clear goal, looking for information about topics we are
already well aware of, most search engines fail to support the users in acquiring new
knowledge in fields that they are unfamiliar with. This leads to the question how we
can support people in exploratory search tasks when the goal is blurry at best and it
is unclear how relevant sources that contain the desired knowledge can be discovered.

To address this issue, we present the concept of a session-based semantic search engine.
Session-based search implies that we interpret each user’s queries in the context of
their previous queries from the same search session, which includes all requests that
are submitted in order to fulfill a single information need. The designation semantic
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refers to the capability of the system to find relevant search results not just based
on the keywords that are part of any query in a session but on other contextual
information that has been explicitly or implicitly provided by the user.

So instead of compelling the user to refine a query until the search engine gets all
the data it needs in a single request, we save all relevant context information in a
temporary search session and interpret subsequent queries under that prior, without
the need to build up a user profile first. This way, we can immediately improve the
ranking of search results and let the search engine guide the user by suggesting topics
that are relevant in the current context.

We are going to use probabilistic topic models to uncover the hidden thematic struc-
ture in arbitrary document collections. A topic model allows us to discover the
dominant topics of documents that are reviewed by the user in the course of a search
session, which we will harness to improve the ranking of search results in subsequent
queries and to suggest documents that were previously not considered based on the
query terms that the user has submitted. This is an important step to support the
user in acquiring knowledge while not being fully aware of the relevant terminology in
a field. Through probabilistic inference we can model the most important topics in a
search session and recommend documents about topics that are likely to be relevant
in the current search context but which the user possibly has not considered before.

In order to enable groups of people to efficiently work on the same research task, we
extend this concept to the collaborative setting. Our goal is to create a system that
encourages collaborative work by improving the ranking and presentation of search
results based on shared context information that has been provided by all group
members. While we are going to offer additional functionality that can make use of
the shared search context, we will not define a comprehensive alternative to existing
collaborative search systems. Instead, the methods we propose are intended as an
extension to improve the efficiency of collaborative search in various situations.

To put these concepts to the test, we present the prototype of a session-based semantic
search engine which we publish together with this work as free software. This is,
to the best of our knowledge, the first open source release of a search engine of
this kind. It implements search sessions which serve as a wrapper for all context
information provided by the user and allows to retrieve documents using a combined
search algorithm based on the user’s previous queries in the session as well as a
model of the most relevant topics in the current search context. While the prototype
is limited to the single-user setting, it has been designed with a possible extension to
collaborative search in mind.

In a small-scale, qualitative user study we investigate whether the semantic capabil-
ities of the prototype are beneficial when compared to conventional academic search
engines. To this end we let participants perform several literature research tasks us-
ing either the prototype or a popular commercial academic search engine. We will
compare the search results of the participants as well as their assessment of the us-
ability of both systems to get an impression of the prototype’s fitness for exploratory
search. To ensure that the search results are comparable, we rely on a full-text in-
dex of 1.2 million scientific papers from the arXiv, a publicly accessible repository of
scientific papers in various disciplines.

The rest of this thesis is organized as follows: We give an overview of related re-
search concerning statistical topic models, session-based search, query classification
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and collaborative search. In Chapter 3 we present the core concepts that define
a session-based semantic search engine in the single-user and the collaborative set-
ting. These include the foundations of session-based search, the topic centroid as a
data structure that tracks the most relevant topics in a search session, a comprehen-
sive search strategy that harnesses the context information in a search session and
an extension of these concepts to the collaborative setting. Next we introduce the
prototype that was built as part of this work: We describe the process that led to
the construction of the search index, give an overview of the implementation of the
search engine’s core functions, provide insights into some of the unique UI features
and show the practicality of the prototype in a technical performance review. Fi-
nally, we present the results of the qualitative user study we conducted, in which we
compare the prototype with a conventional literature search engine.
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Chapter 2

Related Work

In this chapter we will give an overview of the related work concerning the main topics
we are going to discuss in this work: First, we review statistical topic models, which
enable us to uncover the hidden thematic structure in arbitrary document collections
and consequently to recommend documents based on these topics instead of just the
user’s query terms. Next, we discuss session-based search, an information retrieval
method that interprets user queries in the context of a search session. This inclusion
of the search context relieves the user from the requirement to formulate a single query
that addresses all aspects of a complex research task. With query classification, which
is the issue of the following section, we can combine the context information from a
search session with the knowledge about the topics in the document collection to
reason about the searcher’s actual intentions, which can help to further improve the
ranking of search results. Finally, we review the literature on collaborative search,
which will serve as a foundation for our concepts to influence search results based on
contextual information that is implicitly shared between all members of a group.

2.1. Topic Models

An important prerequisite for efficient exploratory search is to have knowledge about
the latent topics in the document collection which are not inherently visible through
keyword matching. The goal is to not only serve documents whose content matches
a query string, but to better understand the search interest of the user and to find
documents that are most relevant to that search interest. This however requires a
consistent annotation of documents based on their contents, which is a huge effort
when done manually by humans. However, with statistical topic models it is possible
to discover the abstract topics that occur in each document of a collection in an
unsupervised learning process.

2.1.1. Common Traits

Topic modeling is the process of uncovering the thematic structure hidden inside
a collection of unclassified documents. The methods for topic modeling that we are
going to present share a number of assumptions about the data model and how topical
information is extracted from that data. The data model consists of a collection of
documents d1, . . . , dm, where each document can be represented as a list of tokens
or words w1, . . . , wn. The unique tokens of all documents form the vocabulary V .
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A topic is defined as a multinomial distribution over a fixed vocabulary. This implies
that a topic can be represented as a vector whose length is equal to the size of the
vocabulary, where each index position represents the weight of the word for this topic
at the same position in the vocabulary. Intuitively, this means that a topic is identified
by terms that co-occur more frequently in the documents of this topic than in others.
This assumption has its root in the distributional hypothesis [Har54] which states
that words that occur in the same context usually carry similar meanings.

Because word order is not relevant for the definition of a topic, each document can be
represented using the more memory-efficient bag-of-words model, preserving only the
term frequency, but not the order of occurrence. We can further reduce the size of
the dictionary without sacrificing precision by removing certain terms. These include
stop words and very frequent terms, which will likely occur in most new documents,
as well as rare words that probably won’t occur in new documents. Stemming or
lemmatization can further reduce the vocabulary size by joining different grammatical
inflections of the same words. This kind of dimensionality reduction not only enables
us to calculate topic models for larger document collections in-memory, it also helps
with generalization and reduces the probability of overfitting.

2.1.2. Topic Modeling Techniques

We will now show a selection of techniques for generating statistical topic models.

Latent Semantic Analysis (LSA)

One of the earliest techniques that aim to automatically identify topics in unstruc-
tured text is Latent Semantic Analysis (LSA), which was introduced by Deerwester et al.
in 1990 [DDF+90]. At its core, LSA is quite similar to contemporary topic models:
it relies on the bag-of-words model and defines a topic as a distribution over a fixed
vocabulary. The central data structure is the term-document matrix, where rows
contain the terms of the vocabulary and columns correspond to documents. Each cell
contains the frequency of a term in the corresponding document, or more typically
the specific term weight, using tf-idf as weighting function.

Topics are discovered by reducing this matrix to a vector space of lower dimension-
ality, which the authors call the latent semantic space. This mapping is created
by applying a Singlular Value Decomposition (SVD). A reasonable approximation
is usually feasible, because the matrix tends to be sparsely populated, and it helps
eliminating noisy data, therefore increasing the significance of individual entries. The
rows of the decomposed matrix should now represent a set of linearly independent
vectors that can be interpreted as concepts or topics, because terms that carry similar
meaning should be mapped to the same direction in the latent semantic space. As
a result of the SVD, we can record the weight of the influence of each term on each
decomposed topic vector, which gives us insights into the meaning of each topic and
allows us to classify new documents using these frequency distributions.

An issue of LSA used to be the high computational cost and the requirement to
have the full term-document matrix in memory to efficiently perform the SVD. These
limitations however have been overcome in recent years, when an online training
algorithm for LSA that is capable of processing an unlimited number of documents
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with constant memory requirements was introduced by Řehůřek [Řeh11] in 2011 and
subsequently implemented in the gensim library [@Řeh]. An intrinsic problem with
LSA’s approach of dimensionality reduction is the inability to handle polysemy (i.e.
disambiguating words that have multiple meanings), due to the fact that topics are
directly derived from combined term vectors and each word therefore must always
be part of exactly one topic, which does not properly resemble the characteristics of
natural language.

Probabilistic Latent Semantic Analysis (pLSA)

While in LSA, topics are directly derived from training data through dimensionality
reduction, Probabilistic Latent Semantic Analysis (pLSA) [Hof99] relies on a proba-
bilistic generative model which defines the process by which documents are generated.
In this model, the goal is to discover the hidden variables that best explain the ob-
served data, or those which minimize the gap between data generated by the model
and the actual observations. The hidden variables can be interpreted as topics, which
once again are distributions over words and once uncovered we can use these distri-
butions to assign topics to previously unobserved documents.

In pLSA, the probability of observing a word w in a document d is defined as

P (d,w) =
∑
z∈Z

P (z) P (d|z) P (w|z) = P (d)
∑
z∈Z

P (z|d) P (w|z)

with Z being the set of possible unobserved topics, whose size must be defined in
advance as a hyperparameter. This definition allows a document to be generated
from several topics, which implies that a single document can be about multiple top-
ics, and because a topic is defined as a distribution over words, pLSA can handle
polysemy, unlike standard LSA. The model parameters are trained using an expec-
tation–maximization algorithm which uses variant of simulated annealing in order
to escape local maxima. In his work, Hofmann has empirically shown that pLSA is
superior to standard LSA, both in terms of precision of the uncovered topics as well
as computational performance of the algorithm.

Latent Dirichlet Allocation (LDA)

Blei et al. [BNJ03] criticized that pLSA is not a well-defined generative model, because
it learns P (z|d) only for the documents that were observed in the training set and
there is no clear way to assign topics and their probabilities to unseen documents. To
mitigate these issues, they propose Latent Dirichlet Allocation (LDA), a model which
is a generalization of pLSA [GK03]. In the LDA model, each document is generated
from a mixture of topics which has a sparse Dirichlet prior. If a uniform Dirichlet prior
distribution is used, the LDA model is equivalent to pLSA. In order to estimate the
model parameters, Gibbs sampling is commonly applied [Ble12]. While the originally
proposed inference algorithm required the entire training set to be available ahead of
time, Hoffman et al. [HBB10] developed an online algorithm that can be applied to
document collections of arbitrary size.
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Hierarchical Topic Models

All topic models we have reviewed so far share the property that they generate a
fixed number of topics that have no specific relation to each other. It is not trivial to
estimate how many topics are required to generate a reasonable topic model for an
arbitrary document collection, which usually involves a costly process of trial-and-
error. Furthermore, having a topic model with hierarchical relations between topics
and sub-topics could help to organize a document collection on different levels of
granularity.

The issue of finding the optimal number of topics is addressed by Teh et al. [TJB+05]
with the Hierarchical Dirichlet Process (HDP), a generalization of the LDA model.
Like with LDA, topics are represented as mixtures over a fixed vocabulary, but while
in LDA documents are mixtures of a predefined number of topics, in HDP this number
is generated in a Dirichlet process. The denomination “hierarchical” however refers
to the additional layer that is added to the random processes and does not indicate,
that the topics themselves have a hierarchical structure. A model that can generate
topic models with a hierarchical structure is the nested Hierarchical Dirichlet Pro-
cess (nHDP) [PWB+12], which is an extension of HDP that relies on techniques for
building topic hierarchies based on the nested Chinese Restaurant Process (nCPR)
[BGJ10].

2.1.3. Topic Labeling

While topic models can be very useful in identifying relations between documents
based on the similarity of an underlying topic, they do not provide us with any
means to actually define or name individual topics. Having a name for a topic can
help in acquiring additional knowledge about that topic from other sources, which
in turn can be used to improve search results. Furthermore it enables us to make
judgments about the accuracy and quality of the topic model and it helps humans to
understand the relationships between the entities of a domain. A search engine can
additionally benefit from such a domain model by adequately visualizing important
topics to the user, who can use this aid to navigate through topics and filter results.

Each topic in an generative model like LDA or HDP is represented by a vector that
assigns a probability to each term that defines the topic. These marginal probabilities
[BNJ03] can be used to find the most significant terms that identify a topic. With
some background knowledge, it is often possible to derive a name for the underlying
concept from these terms. This however requires manual review by humans with
knowledge about the domain of interest, which can be an expensive task.

To mitigate this issue, research has been done in recent years on the issue of automatic
topic labeling. The general approaches are to use the terms with the highest marginal
probabilities for each topic to either derive labels from relevant terms and documents
of that topic [MSZ07; BHX14] or to use external knowledge sources to map the
discovered topic to a known concept [LNK+10; LGN+11; HHK+13]. The knowledge-
free approach is very flexible and able to derive labels even for new topics that just
came up in news articles or social media. The knowledge-backed approach on the
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other hand allows us to link topics with other knowledge sources, which helps us to
map a topic model to existing ontologies and to gain further knowledge of that topic.

Still, the research so far has shown that fully automated topic labeling is not yet
feasible, due to high error rates and low-quality labels. If meaningful topic labels
are a requirement, the generated labels must be screened by human reviewers with
sufficient domain knowledge.

2.1.4. Topic Graph Visualization

For the users of a search engine that ranks documents based on a selection of topics
from a hierarchical topic model, it can be helpful to have some kind of visualization
of the most relevant topics. It may also be interesting to investigate ways to interact
with the topics, in order to adjust the selection of relevant topics and to explore
new topics in the taxonomy. A particular challenge is the integration of a suitable
visualization tool into a search result page.

Early work in the field of topic visualization has been done by Niwa et al. [NNI+97]
in 1997, before the first statistical topic models have been described. Their goal was
to build an “interactive guidance mechanism for document retrieval systems” which
displays a “visualized map of topics at each stage of [the] retrieval process”. Significant
terminology was extracted through term frequency analysis from a list of search results
and relations between terms are determined through co-occurrence analysis in the
document collection. A similar approach was investigated by Joho et al. [JSB04],
who built a user interface for interactive query expansion in an information retrieval
scenario. While these works give an interesting insight into visualization techniques
that do not rely on topic models, they are not directly applicable to our visualization
problem.

TopicNets is a “system for interactive visual analysis of large document corpora”
[GOB+12]. It relies on LDA topic models with topic labels assigned by human editors
and provides tools for graph-based visualization and interaction. The main purpose
of the system is visual exploration of documents and the analysis of thematically
related document collections. Even though some of the visualization methods can
be helpful for topic graph visualization, the scope of TopicNets is the exploration of
entire document collections, rather than the visualization of topics in a small subset
of the documents.

The issue of subgraph extraction is discussed by Dupont et al. [DCD+06]. They
developed a novel method to extract nodes from a connected graph while keeping the
relations between these nodes by adding more nodes and edges from the original graph
that re-connect the nodes of the subgraph. While this algorithm works efficiently even
for large graphs, the tree-like topology of a hierarchical topic model allows us to deploy
much simpler algorithms, but it may come in handy when topic models with different
topologies are used.

The research on the visualization of relevant topics in information retrieval has so far,
to the best of our knowledge, not come up with a practicable solution to the issue,
especially not when screen space is scarce.
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2.2. Session-based Search

In this work we define session-based search as an information retrieval method that
interprets user queries in the context of a search session, which consists of previously
submitted queries, search results and user interactions with the search engine. A
search session is limited to the queries that have been submitted in order to fulfill a
specific information need; other than that, no long-term user profile information is
gathered. This distinguishes session-based search from personalized search [PSC+02;
GCP03; TDH05], where user profiles are built from long-term search and browsing
behavior in order to provide search results that more closely resemble the interests of
the user. While this kind of search result personalization has been widely adopted by
commercial search engines, it comes with notable privacy implications [STZ07] and
fails to support the user in complex exploratory search scenarios [WR09], especially
when they are not in line with previous browsing behavior.

Early work that considered the query history in a search session to improve retrieval
performance was done by Shen and Zhai in 2003 [SZ03]. They have conducted an
experiment using an annotated document collection [VH00] where search queries are
expanded to include terms from previous queries in a search session. The result of
this simple approach was that retrieval performance consistently increased in their
setup. In a follow-up paper [SSZ04], the algorithm was extended to detect session
boundaries in the query history and to include metadata from documents that have
been reviewed by the user. The designation session-based search has been mentioned
for the first time in this work, although different nomenclature for the concept has
since been in use, like session search [LZD+15] or dynamic search [ZLY15].

In the following years, researchers attempted to discover more relevant features that
can be extracted from search sessions which can in turn be used to improve document
retrieval. Shen, Tan and Zhai [STZ05; TSZ06] mainly considered the query history
and clickthrough data (i.e. information about which documents on a result page
have been reviewed by the user) in their work. They showed that clickthrough data
of previous queries was especially useful when it comes to predicting the topic of a
query.

A large-scale evaluation of the benefits of search session context information was
conducted by White et al. [WBD10], who had access to search logs of Microsoft’s
web search engine Bing [@Mic], as well as browsing data collected through a browser
plugin for more than 100,000 users. Their goal was to predict search interests of users
based on their previous interactions with the search engine and pages they have visited
in between. Visited web pages were classified in about 200 categories in a two-layer
hierarchical model. The model they used was able to predict the searcher’s intent
(i.e. the categories of documents that the user was looking for) far more reliably when
context information like the results of previous queries and the browsing behavior on
result pages was included.

In the work of Daoud et al. [DTB+09] the relevant topics of a search session were
stored in a graph that resembles both the hierarchical structure of an underlying topic
model, as well as relations between topics that cannot be expressed in a strict tree
structure. Relevant topics are detected by analyzing the topics of search results that
have been reviewed by the user. These topics are then used to influence the ranking
of subsequent queries, whose results in turn influence the state of the graph.
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While publications before 2010 were rather infrequent, the interest in session-based
search gained traction when the first Session Track [KCC+10] was held at the Text
REtrieval Conference (TREC). Notable work has been done by Yang et al. [LZY14;
LDY14; LZD+15; GZY13] who model the search session as a Markov Decision Process
with states, actions and rewards. The system is seen as a “dual-agent stochastic
game to model the interactions between user and search engine” [LZY14] who have
to cooperate in order to fulfill the user’s information need. Another contribution is
the classification of existing design choices for session-based search into 12 categories
based on the combination of several mutually exclusive approaches to model state,
actions and rewards, as well as an experimental comparison of the different methods
[LZD+15].

Guan and Yang [GY14a; GY14b] have investigated different techniques to expand
queries with terms from the query history, which they called query aggregation. The
core contribution of this work is an experimental analysis of the optimal weights for
queries in a search session based on their position in the query history. Their findings
show (to little surprise) that the last query is the most important one, but also that
relevance does not strictly decrease for older queries. Instead, the relevance of the
first query seems to remain rather constant on a level that is comparable to the
second-to-last query, which should be considered when terms from the query history
are added to an expanded search query.

The works of Jiang et al. [JHA14; JHS+15] provide insights into user interaction with
the search engine and overall satisfaction in the course of a search session. They have
identified four kinds of search tasks which resulted in different behavior when it comes
to the number of search results that are reviewed, the length of the search session
and the time that users take to review documents. Being aware of these differences
can help to design search algorithms and user interfaces that work best in each of the
specified search scenarios.

After the last Session Track in 2014 [CKH+14], the focus of some of the previous
organizers at the Text REtrieval Conference has shifted towards dynamic search,
which is the topic of the Dynamic Domain Track [YS16] that is held at TREC since
2015. Dynamic search, as discussed in this conference, is much more restrictively
defined than session-based search: The target document collection comes from a
specific domain of interest for which some kind of topic model is already available.
Users only submit a single query and then give feedback to the search engine by
selecting portions of relevant documents, whereupon the search engine adjusts the
results that are displayed based on this feedback. The proceedings of this conference
are not as relevant to this work as the now discontinued Session Tracks, but they
might still provide some valuable insights.

The research on session-based search so far has shown that there is a large variety
of methods available to model search sessions and to improve search result ranking
using contextual information. Several methods have been implemented and when
applied to query logs of reference data sets like those of the TREC session tracks, it
was consistently shown that the precision of search results increased. However, all of
these evaluations were based on query logs that were generated from interactions with
a regular search engine that does not consider any context information and hardly
any of the specified algorithms were incorporated into a working session-based search
engine.
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To the best of our knowledge, only two session-based search engines which actually
rank documents in an interactive session based on previous user input have been
built by now: Querium [GD11] and Dumpling [ZLY15]. The authors of Querium did
not provide much detail about the search algorithms they have used, the service was
never published, no source code has been released to date and no evaluation of the
search performance was conducted, which makes it impossible to make assumptions
about the performance of the system. Dumpling was developed as a research tool
for government agencies to help finding information in the so called “dark web”. It
implements the Query Change Retrieval Model [GZY13] and the Win-win search
algorithm [LZY14]. The search engine features a side-by-side view of search results
that were retrieved using just the latest query (left) and the session-based search
algorithms (right). The service was online for some time between 2015 and 2016
[@ZLY], but not usable by the public “due to the sensitivity of the data” [ZLY15]. As
no source code has been published, this implementation also appears to be unavailable
for review.

Our investigation indicates that while there is a variety of algorithms available for
session-based search, no implementation of a session-based search engine has been
published to date and no user studies have been conducted with data that was gath-
ered from real users of a session-based search engine. The research so far has shown
that methods which include the session context are superior to traditional retrieval
methods, but due to the lack of an implementation there is no data available that
could suggest whether session-based search can actually help users to find more rele-
vant documents with fewer query reformulations.

2.3. Query Classification

A search engine that aims to support its users in exploratory search tasks should be
able to find relevant documents for a search query, even if some of these documents do
not contain the keywords of that query, as long as they are semantically related. Var-
ious approaches have been published under names like query classification [SSY+06]
or classification-enhanced ranking [BSD10] that aim to derive the searcher’s intent
based on the provided query terms, which in turn can be used to improve the ranking
of documents or to discover new documents that previously haven’t been selected.

Dumais et al. [DCC01] were among the first to classify documents in order to improve
the ranking of results in a web search engine. They used a combination of tags
assigned by human editors and automatic text classification to assign class labels to
websites ahead of time. These labels were used to generate different visualizations of
the search result page. In a user study, they showed that the average time for the
completion of a search task was minimal, when the search results were grouped by
the category they belonged to, compared to other visualizations where labels were
displayed next to each document or where no labels where displayed at all.

A different approach was taken by Shen et al. [SSY+06] who did not classify all doc-
uments in advance, which can be very expensive for web-scale indices. Instead, they
defined a taxonomy and collected several sample documents for each class in the tax-
onomy. Then a text classifier was trained on these samples, so it could assign arbitrary
text snippets to one or more of the categories in the taxonomy. When a user submits
a query, a list of search results is generated using conventional information retrieval
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methods. The text contents of each search result are fed into the text classifier and
the majority of the thereby discovered class labels is defined as the class of the query.
This approach of using a predefined taxonomy and a text classifier to determine the
query class based on regular full-text search results for the query was shown to work
reliably at scale even for large taxonomies with about 6000 classes [BFG+07].

Query classification alone can be helpful to provide additional services like ads or
context information, but the relevance of search results can hardly be improved with-
out being able to search for semantically tagged documents in the index. Still, due
to the high cost of classifying huge quantities of documents, some improvement can
already be achieved through ad-hoc classification of search results which in turn can
be used to re-rank the result list after query classification has been applied, as Ben-
nett et al. [BSD10] have shown.

All classification techniques described so far were designed to find the best possible
result for a single search query. However, in session-based search more context infor-
mation is available to classify queries and the query classification results of previous
queries can also help to understand the searcher’s intent. We had already mentioned
the work of of Daoud et al. [DTB+09] in the previous section, who tracked the relevant
topics of a search session in a graph that was adjusted with each submitted search
query. They avoided the issue of classifying search results by relying on human-labeled
data provided by TREC for their experiments, but the ranking algorithm based on
the graph of relevant topics was shown to improve the precision of their selection
of search results compared to a baseline search algorithm that did not use the topic
graph. A similar approach to context-aware query classification has been suggested
by Cao et al. [CHS+09].

Research so far has shown that query classification is possible and relatively reliable,
even for short queries with little context information and for large taxonomies with
thousands of classes. The common approach is to use the topics of a query’s search
results to classify the query itself, although there are different techniques to achieve
this classification. Not much research has been done so far when it comes to query
classification in the context of a search session. Furthermore, the classification results
in the mentioned works have been used to improve the ranking of search results that
were retrieved with traditional information retrieval methods, but not to find new
documents that could be matched based on their semantic features.

2.4. Collaborative Search

Collaborative information seeking and retrieval is a research field that concerns the
study of “systems and practices that enable individuals to collaborate during the
seeking, searching, and retrieval of information” [Fos06]. There is no consensus about
the terminology that is commonly used in the field, as well as the exact definitions
that distinguish them. Common names include collaborative information retrieval
(CIR) [HJ05; Fos06], collaborative information seeking (CIS) [Sha10a] and collabora-
tive exploratory search [PGS+08]. In this work, we use the phrase collaborative search
to describe the participation of multiple users at the same time in a search session
with shared context information.

Morris [Mor08; Mor13] suggests that despite the fact that collaborative search tools
do not have any notable market share, people are already searching collaboratively on
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a regular basis with the help of communication tools like chat applications or social
media. In this section we give an overview of common properties of systems that
encourage collaboration and we will review several tools and different approaches to
facilitate collaborative search.

2.4.1. Aspects of Collaborative Search Systems

According to Rodden [Rod91], collaboration systems can be classified by location
and time: The members of a collaborating group can either be co-located or use some
application to work remotely on the same task. The interaction between participants
can be synchronous (i.e. in real-time) or asynchronous. Each of these properties
has a major influence on the design of the tools that aim to support collaboration.
Furthermore, we can classify collaborative search systems according to group size.
For large groups of users, collaborative web search systems that benefit from the
choices of the masses are conceivable [SBB+03], while in small groups the goal is to
facilitate collaboration and sharing of information between all group members.

According to Shah [Sha10b], a recurring topic in research on collaboration that is
also relevant for CIR systems is the triple of control, communication and awareness.
Control concerns the ability to manage and execute tasks in a way that participants
do not block each other but instead are supported by the system. This includes
the capability for structured message passing between group members and controlled
access to shared resources. Communication is key to successful collaborative work;
while in a co-located work scenario, it is sufficient to design the system in a way that
it does not prevent frequent communication between participants, the main challenge
in a remote collaboration task is to enable the participants to reach a sufficient level
of communication in order to to efficiently solve the task. This can be achieved by
integrating instant messaging or audio chat services into the application. The third
aspect, awareness, concerns the activity of all participants of the collaborative task:
being aware of what others in the group are currently working on, which topics they
research and what they have discovered about certain aspects of the task can have
a positive impact on the work of other group members. A system that facilitates
sharing of this kind of information without additional effort for the users encourages
collaboration during the entire research process instead of just division of labor.

2.4.2. Collaborative Information Retrieval Systems

One of the first tools to enable asynchronous collaboration in a search scenario is the
Ariadne system [TN96] from 1996. It visualizes the search process of a single user
on a timeline which contains the user’s queries as well as the documents that have
been reviewed for each query. Comments can be added to documents and the entire
search log can be shared with other users. The system does not allow for real-time
collaboration and the search context has no influence on search results, but the ability
to share search logs and search results with other users of the software was a first
step towards collaborative search.
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Community-based Web Search

In the early 2000s the concept of a search engine was introduced that relies on asyn-
chronous collaboration of a larger community to improve the ranking of search results
or to otherwise improve the search experience. An example of this is the Community
Search Assistant [Gla01], a meta search engine which recommends queries that are
related to what the user is currently looking for based on the submitted queries of
other search engine users. The relatedness of two queries is defined by a metric which
depends on the number of matching documents among the top n search results for
both queries. By keeping an index of past queries and URLs of the top n documents
for each query, related queries can be efficiently retrieved.

Another community-based search engine is I-SPY [SFC+04]. Like the Community
Search Assistant, it is a meta search engine that analyzes the search behavior of
its community of users, but the goal of I-SPY is to directly recommend more rele-
vant search results based on the search results selected by the community for similar
queries. The search engine evaluates the session logs of its users to identify the search
results which were most relevant to the user for a given query. When applied to all
users of the search engine, popular results can be identified for frequent queries and
I-SPY can in turn promote these results when the same query is submitted in the
future. In a study, Smyth et al. [SBB+05] showed that the average relevance of search
results with community-based promotions was higher than the unchanged results of
the underlying search engine.

However, the community-based search approach comes with a number of drawbacks:
The system only works with a sufficiently large user base whose session logs can be
analyzed by the search engine. Even when a large community is available, recommen-
dations will only work for frequent queries which were already submitted by several
other users, which implies that the system won’t work for rare queries, which are
usually the hardest to answer. Furthermore, the recommendations are worthless, if
the user’s intent is not in line with the majority of the search community. While the
specific meta search engines we mentioned here have not prevailed, the idea to use
large query logs and click-through analysis [Joa02] to improve search result ranking
has caught on and is in use at every major web search engine today. So it appears
that implicit collaborative search on a world-wide scale is the norm today, but there
seems to be no benefit in explicitly showing how this kind of feedback contributed to
the ranking of search results.

Co-located Collaboration

The requirements to make collaborative search work for small groups in real-time
are very different to those of an asynchronous community-based search engine. The
authors of Web Glance [PAB+04] tried to improve collaboration in a small group of
co-located participants. In contrast to the remote scenario, where communication and
sharing of contents is the main concern, this is hardly an issue for participants that
can talk to each other and present ideas to the group. The idea behind Web Glance
is that multiple users should have access to a shared display using their own private
devices. Participants can use their own device whenever they want, but access to the
shared display is managed by Web Glance so that each user can share information
with the group without the need to take exclusive control of the display.
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CoSearch [AM08] can be seen as the spiritual successor of Web Glance with a stronger
focus on search scenarios. The setup is similar to the one used by Web Glance: A
big shared display that is visible to all participants and personal mobile devices. In
addition, multiple input devices have been added to give more than one user the
ability to directly control the contents of the shared screen. CoSearch brings direct
integration of a search engine, to which queries can be submitted through the mobile
devices of each participant. With the connected input devices, several users can
review results and take notes. In a user study, Amershi and Morris show that this
setup eases the division of labor in the group while still preserving the high level of
communication and direct collaboration between co-located participants.

Synchronous Remote Collaboration

When it comes to real-time collaboration of remotely connected participants, different
challenges must be considered. An early concept in this field is CoVitesse [LN02],
a groupware application that facilitates collaborative web navigation for users that
work from different locations on the same task. It enables small groups to share
web contents and to send text messages to the other participants. While CoVitesse
does not have a particular focus on search, its core functions make it suitable for
collaborative research tasks.

SearchTogether [MH07] is a system that facilitates synchronous collaborative search
for groups of remotely operating users by making the search engine the core compo-
nent of the application. Whenever a user submits a query, it is added to a query log
that is visible to all other users, from which they can review the results of that query
with a single click. Search results can be shared and users can add rate and anno-
tate these documents. The research process can be coordinated over an integrated
messaging client.

This concept has been refined by the authors of Coagmento [Sha10a], which has seen
continuous development since 2010, with the last major update in 2016 [MS16]. As
opposed to the other groupware solutions we have reviewed so far, Coagmento is
not designed as a standalone desktop application, but as a combination of browser
extension and collaborative web platform. The browser extension comes with all the
features of SearchTogether, like the ability to bookmark and annotate pages, to replay
queries of other users and to send text messages to collaborators. The web platform
CSpace allows users to manage their projects and to work collaboratively on the data
they have collected with the help of the browser extension. This setup allows the
group members to do collaborative work without leaving their web browser, which
probably makes it the solution with the best integrated workflow for real-time remote
collaboration so far.

Review

We discussed a variety of systems that aim to facilitate collaboration in different
scenarios. In community-based web search engines, users collaborate asynchronously
to improve the search experience for other users with similar queries. The real-time
collaboration systems we have reviewed focus on small groups and aim to support the
participants in their research tasks by providing the necessary tools to effectively work
either remotely or in the same location. What we have not seen so far is a system
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that improves the ranking of search results based on context information of users
collaborating in real-time. Systems like SearchTogether and CoSearch provide the
necessary tools to efficiently manage search tasks in groups, but the ranking of search
results is in no way influenced by the behavior of group members. Community-based
web search engines like I-SPY do adjust the ranking of results, but only based on
large-scale query analysis, which is not suitable to generate more relevant results for
project-oriented collaboration scenarios in relatively small groups. In Section 3.4 we
will discuss ways to improve the ranking of search results based on implicit context
information by a group of collaborators.
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Chapter 3

Core Concepts

In this chapter we will lay the foundations for a session-based semantic search engine
which is able to support a single user or a group of users working collaboratively on
complex exploratory search tasks that cannot be answered with a single query. The
concepts we are going to present will not require access to large query logs or extensive
user profiles, which are often not available for academic search engines and other IR
systems with a relatively small or only sporadically recurring user base like that of
many libraries. Instead, the user’s queries are interpreted in the context of a search
session and the ranking of search results is improved based on previous queries as well
as an abstract concept of the session’s core topics which we call the topic centroid.
This approach also helps to avoid the serious privacy implications that come with the
collecting of long-term user profiles in contemporary web search engines for the sake
of search result personalization and increased revenue from personalized advertising.

The first section is dedicated to the concept of session-based search, which aims to
improve the relevance of search results by expanding the user’s search query with
context information that was collected in the course of a search session.

Next we will introduce the afore-mentioned topic centroid, a data structure that holds
the most relevant topics in a search session and which is implicitly built from data
that is collected in the course of a search session. The topics are derived from a
probabilistic topic model that is generated from the entire document collection.

With these concepts in mind we describe the relevant search strategies for a session-
based semantic search engine: A full-text search algorithm that includes terms from
the query history with varying weights in combination with a topic search algorithm
that relies on the topic centroid to retrieve relevant documents. We embed these
algorithms in a query pipeline that defines the information retrieval process from
query submission to the generated search result page.

Finally, we extend these concepts to the collaborative setting, with the main goal of
improving the relevance of search results based on context information that can be
derived from the actions of a group with a common search interest.

3.1. Session-based Search

In this work, a search session describes all interactions of a user with a search engine
that are required to fulfill a single information need. This may be a simple question
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that can be answered with a single query (e.g. getting a weather forecast), or a com-
plex task that requires careful review of the search results and a constant refinement
of the search query (like planning a holiday).

Contemporary web search engines improve their search results quite successfully by
analyzing large query logs and identifying past search sessions with the goal to predict
the most likely information need from an otherwise vague or ambiguous query [Joa02].
The result of this analysis can be used to suggest terms while users are typing in their
query or to expand the submitted user query to include more terms that the user likely
would have chosen in the next query anyway. A dependable approach to identify and
harness search sessions identified in query logs is the query-flow graph [BBC+08].
While large query logs can be a valuable resource for a search engine, there are
often no query logs of sufficient size available for many search applications, usually
due to a relatively small number of users or the high complexity and/or diversity of
topics. Therefore we avoid any dependence on query logs in this work; nevertheless
we encourage the use of query logs to improve ranking, should they be available.

Session-based search aims to support the user in her search task by interpreting
queries in the context of previous queries and user actions in the same session, without
the need to have any knowledge about the user or access to query logs of other users.
We can support the user in exploratory search scenarios [WR09] by disambiguating
terms based on context information and by providing more relevant search results.

3.1.1. Session Data

A search session S consists of one or more steps. Each step begins after the submission
of a new query q by the user and ends when the next query is submitted. A step in
a session S is identified by its index position in the list of steps s1, . . . , sn. A single
step is defined as

si = (qi, ui, di, si−1)

where q is the query submitted by the user, u defines the user’s interaction with
the search result page during that step, d is the derived data that was generated by
the search engine for that step and si−1 is a reference to the step before the current
step (except for the first step s1 in a session). Similar definitions have already been
suggested in previous work [LZD+15; GZY13] with varying levels of detail. The
definition used in this work was intentionally held abstract to give implementations
of this concept the necessary freedom to choose which data of a session they want to
harness. We will use the following definitions of q, u and d in this work:

• Query q = [(q1, f1) , . . . , (qn, fn)] is a list of tuples that consist of a query string
qi and an associated search function fi. This function defaults to the regular
full-text search, but it allows the user to define more specific filters like the date
of publication (before or after) or the name of the author of a publication. The
selection of filters depends on the type of data that should be supported.

• User Actions u = [(ri, dti) , . . . ], where ri is the document with index i in the
current search result list and dti is the dwell time the user took to review this
search result. It was shown in previous work [ABD06; FKM+05] that dwell
time is a valid measure for implicit relevance feedback. It confirms the intuition
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that search results are clicked by users if the preview on the result page seems
promising, but the document is only seen as relevant, if the user spends a certain
amount of time to read the document instead of immediately returning to the
result page to review another item.

• Derived Data d = (e, r, m), where e is the expanded search query, r is the list
of search results and m is the list of the currently best matching elements in
the topic model along with their scores (see 3.2 Topic Centroid).

While q and u consist of user input that cannot be reconstructed from other data
sources, d can be derived at any later point in time, given a session S where at each
step di has not been saved. Still, it can be useful to store d for various reasons:
In session-based search, the state of a session is highly dependent on the state of
all previous steps. Recalculating the entire query history during each step would
slow down the search engine, while storing the state would cost a certain amount of
memory which can be justified by the expected savings in processing time.

A useful side-effect of saving this additional data is the possibility of efficient naviga-
tion in the query history: the user can return to a previous step of the search session,
review more results and move from there in a different direction. This is also the rea-
son, why each step has an explicit reference to its predecessor, even though all steps
are stored as ordered list in the search session S: When the user is free to navigate
in the query history, the order of the steps in the session does not necessarily match
the query history at step si. By storing the derived data d in each step, the state of
the session at that step can be restored at little computational cost and the query
history for this step can be reconstructed by recursively following the references up
to the first step s1 in the session.

3.1.2. Query Aggregation

An important feature of session-based search is the inclusion of terms from past
queries into the calculation of the search result for the current query. A simple
approach to achieve this is to join all past queries and the current one using the OR
operator, which was actually done in first attempts at session-based search [SZ03].
This however will likely reduce the correlation of the search results with the most
recent search query, which may be unexpected and even frustrating for the user.
Therefore, it is advisable to give more weight to the most recent query compared to
the previous ones.

This can be achieved by calculating the search results r for each query q in a session
individually. To form a unified list of search results r′, the results of each search query
are joined into a single list by summing up the scores of matching documents. Before
the results are joined, the scores of the documents in each result list are multiplied by
a weighting factor wi ∈ [0..1], whose value depends on the position of the query in the
query history. By selecting a larger w for more recent queries, the results matching
these queries are preferred over the results of previous queries.

Guan and Yang [GY14a; GY14b] have investigated the optimal weighting factor
for a query depending on its position in the query history. They define a function
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(a) Optimal query weights as found by
[GY14b]
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(b) Weights as defined by function
W eight (qi)

Figure 3.1.: Query weights depending on the index position of the query and the length
of the session

score (q, d) which calculates the match score of a document d for a query q, which is
the result of a regular information retrieval method. The score function of a search
session S is therefore defined as:

scoreS (d) =
n∑

i=1
wi · score (qi, d)

They call this method query aggregation, independent of the actual weight factor and
score function that is used. Based on data from TREC 2010-2012, Guan and Yang
trained a support vector machine to learn the optimal weight factors for different
session lengths. The weights they discovered for search sessions that consist of up to
5 queries are displayed in Figure 3.1a. Their findings show that relevance generally
decreases with increasing distance to the latest query, with the exception of the very
first query, which always remains about as relevant as the second to last query.

These experimental findings can be roughly approximated by an exponential function
with a base λ = 0.8, with an exception for the first query in a session:

weight (qi) =
{
λn−i for i > 1
λ for i = 1

A plot of this function can be seen in Figure 3.1b for comparison. It shall be noted
that the experimental results of Guan and Yang are based on query logs that have
been obtained from a static search engine and were never tested with a session-based
search engine, therefore the suggested value for λ is more of a starting point for further
optimization.

3.2. Topic Centroid

In exploratory search scenarios it is to be expected that the user is not fully aware
of the specific terminology that is required to find the most relevant documents.
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We discussed in the last section, how the ranking of search results can be improved
through query aggregation, but this technique still relies on conventional text retrieval
methods which will not be sufficient to find relevant documents that do not necessarily
contain the keywords the user has entered. In order to find semantically related
documents, we are going to use a search index where topic labels have been assigned
to all documents. If we find a way to infer the most relevant topics in a search session,
we can efficiently search for other documents in the index that are about these topics.

In Section 2.3 we have reviewed a variety of query classification techniques that can
help to discover the main topics of a search query by analyzing the text retrieval results
of that query. In this section we will introduce topic identification, a novel query
classification technique that discovers the most relevant topics in a list of documents
that have been tagged with topic labels.

A major benefit of session-based search is that we can learn to understand the user’s
intent in multiple iterations. For each query that the user submits, we can analyze
the query and the the search result list to enhance the response to the next search
query. The same data can be used to improve the search engine’s model of what the
user is currently looking for. Therefore we define the topic centroid, a data structure
that holds the most relevant topics in a search session. It can be stored as a list of
tuples, each consisting of a topic t and a score s. Later in this section we present a
method to update the topic centroid of a search session with the identified topics of
a new search query, which we call topic shift.

With this approach we can suggest more documents that are semantically related to
the most recent search results, even if they don’t match the keywords of the user’s
query, and we can adjust the scores of matching documents based on the topics they
are about.

3.2.1. Topic Identification

We introduce topic identification, a novel method to decide, based on a list of search
results, which topics are most relevant to the user’s current search interest. More
generally speaking, we will decide which topics are most relevant in a ranked selection
of documents from a document collection, where each document has been assigned
at least one topic label.

This task is not related to topic detection [All02], which is mainly concerned with
text segmentation by recognizing known topics and identifying previously unknown
topics, e.g. for news aggregation. Topic identification is related to query classifica-
tion [SSY+06; BFG+07; BSD10], although the technique we describe in this section
is based on pre-calculated topic models instead of ad-hoc text classification and the
topic aggregation methods we use are far more fine-grained than those that are used
in related work.

Definition

Given a document collection D that consists of documents d1, . . . , dn and a topic
model T that consists of topics t1, . . . , tm, we assume that each document d has
been assigned zero or more topics t (see left panel in Figure 3.2). Furthermore we
assume that each topic t that has been assigned to a document d has a certainty
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Figure 3.2.: Topic identification

score c that is specific to this combination of document and topic. c is an estimation
of the probability that document d is actually about topic t. This however does not
imply that the sum of all scores c of a document must be 1, because a document can
naturally discuss more than one topic. When a topic modeling algorithm has been
used to assign topics to documents, the probabilities (and therefore the scores) are
usually provided by that algorithm. If however scores are not available (e.g. when
topics have been manually assigned by humans), c can be set to 1 for all documents
and topics, which just implies that we put the same amount of trust in the validity
of all topic assignments.

Our goal is to identify the most important topics based on the search results to a
query. A search result is a selection R of documents from the document collection D,
where each document has been assigned a match score m ∈ R>0. The match score is
determined by the search algorithm of the search engine and defines the order of the
search results. We will identify the most relevant topics among the n highest scoring
documents from the search result list. The union of all topics t in the documents d
that are among the top n search results defines the candidates for the most relevant
topics of this result set:

Tn =
⋃

d∈Rn

T [d]

where Rn is the set of the n highest scoring documents from the search result list R,
T [d] is the set of topics that has been assigned to document d and Tn is the union of
all topics in these documents. The relevance rating of a topic will be based on three
major traits:

1. the prominence of the topic in the search result list

2. the frequency of the topic in the document collection

3. the similarity to other topics, especially in hierarchical topic models

These traits were chosen because each of them solves a different aspect of the relevance
problem based on a different data source. The prominence is the most obvious trait,
because it derives relevance directly from the occurrence of a topic in the search
result list. Still, rating a topic just based on a tiny slice of a document collection
will usually lead to skewed results, because topics are in all likelihood not evenly
distributed among documents and therefore very frequent topics may dominate the
result list while very rare topics will be underrepresented. This is why we look at
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the frequency of topics in the entire document collection to balance these biases.
The third trait that should be taken into account is the semantic reach of a topic:
Every domain model that covers a wide variety of topics will have overlaps between
different topics. This could result in a situation where several documents that cover
the same general topic have different topic labels that are semantically related, which
would distort the prominence-based ranking, because the relations between topics are
unknown to the ranking algorithm. By analyzing the topic model and joining related
topics into virtual super-topics, this issue can be circumvented.

We will examine each of these aspects in detail now.

Prominence in the Result List

The prominence of a topic in the search result list can be defined using several metrics:
A topic that frequently occurs in the search result list is probably more relevant
than a topic that occurs less frequently. Then again, if a topic occurs in a few high-
scoring documents, it is surely more relevant than a topic that occurs more frequently
but within documents that have lower match scores. We will try to balance these
extremes between high-scoring and frequently occurring topics by defining a metric
that considers both properties.

To determine the relevance of each topic t ∈ Tn, the document-score-tuples (d, m) of
the search result list R are grouped by the topics of each document (see right panel in
Figure 3.2). We now want to reduce each tuple (d, m) to a single value that we can
derive the desired metrics from. For this purpose, there are two relevant variables
stored in each tuple:

• The match score m of the document, which represents the importance of this
document in the context of the current search query

• The certainty score ct (d) of the topic t under which the document d is grouped,
which describes the likelihood that this document is actually about topic t.

Being uncertain about the question whether a document d is actually about a topic
t should definitely reduce the rating of topic t, therefore we define the topic match
score as the product of m and ct (d). Now we can define a set of topic match scores
for each topic t as

Mt = { ct (d) ·m | (d,m) ∈ R, t ∈ T [d] }

which contains the match score m of each document d with topic t, multiplied by the
certainty score ct.

Then we calculate three metrics for each topic t ∈ T :

mcount (t) = |Mt|
mmax (t) = max (Mt)
msum (t) =

∑
m∈Mt

m

mcount simply counts the number of occurrences of topic t in the result list, which
will promote topics solely based on frequency, no matter what score they have. mmax
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on the other hand relies on the highest match score of all documents that topic t
appears in, which completely ignores frequency and only relies the score of the most
relevant document with that topic. msum is defined by the sum of all match scores
m of the documents that topic t occurs in, which rewards frequency, but only if the
match scores are not negligible. A weighted average of these variables should result
in a decent prominence rating.

Before we can reasonably combine these scores, it is necessary to scale them to the
same value range. This is due to the fact that the possible values of m may not be
under our control and take arbitrary (positive) values, which can result in values for
mcount, mmax and msum that can vary by several orders of magnitude. To mitigate
this issue, we calculate the maximum of each of the metrics and scale the value for
each topic relative to the global maximum.

p (t) = wcount ·
mcount (t)

max
t∈R

mcount (t) + wmax ·
mmax (t)

max
t∈R

mmax (t) + wsum ·
msum (t)

max
t∈R

msum (t)

This results in the prominence score p, which is a weighted average of the three
metrics mcount, mmax and msum, each of which has been scaled to the range [0..1]
before the average has been calculated. The sum of the weights wcount, wmax and
wsum must be equal to 1 to get a score that lies within the same range.

Relative Topic Frequency

To avoid the dominance of frequent topics over less frequent ones in a scenario where
two topics should be equally important, we add a factor to each topic based on the
proportion of the topic’s frequency in the result list compared to its frequency in
the entire document collection. The calculation of that factor is analogous to tf-idf
[Spa72], but instead of the term frequency we count the occurrence of each topic in
the result list R and compare it to the frequency of the same topic in the document
collection D.

The inverse document frequency is defined as the logarithmically scaled inverse frac-
tion of the documents in the document collection D that are linked to a topic t. The
resulting score is calculated as

tf (t, R) = |{d ∈ R : t ∈ d}|
idf (t,D) = log |D|

|{d∈D: t∈d}|
tfidf (t, R,D) = tf (t, R) · idf (t,D)

tf (t, R) defines the number of occurrences of t in a document d from the result list
R, idf (t,D) is calculated from the size of the document collection |D| divided by
the number of occurrences of the topic t in these documents and tfidf (t, R,D) is the
product of the latter two.

Because tf-idf does not have a fixed value range, we take the maximum of all cal-
culated tf-idf values of the result list and divide all scores by the maximum, which
normalizes the results to the [0..1] range and makes them compatible with the promi-
nence score p we discussed in the previous section.
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Overlap between Topics

So far we have assumed that each topic is a distinct entity that does not overlap with
any other topics. This assumption however is unlikely to hold in reality, especially
when hierarchical topic models are involved. This could result in situations where
many sub-topics in a very narrow field are counted as distinct and therefore get a lower
rating than a less relevant topic that has no sub-topics and was therefore encountered
more frequently.

The proposed solution to this issue is to discover a common broader topic for related
topics which is then temporarily added to all documents in the result list that contain
one or more of the related topics. The discovery process works for (poly-)hierarchical
topic models by finding matching ancestors between different topics. Because in a
hierarchical model, all topics are related through the root node, there have to be
strict limits for the range of discovery. Two important limits should be considered:
No common ancestor must be selected from topics that are too close to the root node
(the definition of “too close” depends on the size and structure of the topic model)
and no common ancestor must be selected through too many recursive visits to a
topic’s parent (this limit defines which topics are considered to be “related”). The
discovery of related topics should be applied recursively, until no more new topics are
found or a recursion limit has been reached. If we apply this method to our previous
problem, we will see that the more relevant related topics still score lower than the
less relevant single topic, but the highest scoring topic will be the common ancestor
of the related topics.

Final Score

To bring it all together, the three proposed methods must be combined in order to
calculate the final score s which will determine the relevance ranking of the topics.
In a first step, we try to discover common ancestors for related topics and add them
to the documents in the result list. Then, tf-idf and the prominence score p are
calculated for each topic t. Finally, tf-idf and p are combined. This can be done by
either multiplying the scores, which would incur a larger penalty for low tf-idf values,
or by calculating a weighted average of the two, which gives more control over the
influence of each factor on the final score s.

st = wtfidf · tfidft + wp · p (t)

Applied to all topics t ∈ T , this gives us the most relevant topics as a set of topic-
score-tuples (t, s).

3.2.2. Topic Shift

The purpose of the topic centroid is to track the most relevant topics in the course of
a search session. Now that we have presented a method to identify the most relevant
topics in a list of search results, we need a way to update the topic centroid of a
session with the identified topics. We define topic shift as a method to track changes
in the topic centroid in the course of a search session, with the goal to find a decent
balance between topicality and stability of the model.
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Actions that promote topicality include:

• Adding new topics with high weighting compared to existing topics

• Attenuating topics that are not relevant in the context of the most recent query

On the other hand, actions that facilitate stability of the topic model include:

• Further increasing the weight of frequently appearing topics

• Preserving previously relevant topics if they don’t show up in the latest result
list anymore

Having a too strong focus on topicality would render the topic centroid redundant,
because we would simply replace its state in each iteration with the newly identified
topics, while over-emphasizing stability would lead to a topic model that becomes
completely static after a few iterations, due to self-reinforcing effects that cause ex-
isting topics to dominate the model with no chance for new topics to reach the top.

A First Approach

If there is no topic centroid yet, we can simply initialize it from the topics identified
in the first search result list. Otherwise, we join the topic centroid with the identified
topics by adding the topics to the centroid and summing up the scores of all matching
topics. This would preserve all topics in a session and rank the most frequent and
highly scored topics as most important, while new topics could still get ahead of
existing ones, if they get higher scores than existing topics over a few iterations.

A similar approach has already been proposed by Daoud et al. [DTB+09], which
showed promising results in an experimental evaluation. Experience gained in the
course of this work however has shown that in a longer session, many high-scoring
topics may accumulate, which will make it harder for new topics to replace existing
ones, thereby locking the search results in on the dominant topics of the first few
search queries. To achieve a decent balance between stability and topicality, it is a
desirable property that new topics can supersede the existing ones not just shortly
after the start of a search session.

We can prevent old topics that do not necessarily show up in the search results
anymore from further dominating the topic centroid by implementing a measure that
decreases the relevance of all topics over time. Topics that have accumulated high
scores can therefore remain in the topic centroid for a while, but they can only retain
their dominant position, if they frequently appear in subsequent search results.

Another issue is the rating of frequently appearing topics: Topics can accumulate
very high scores when the score of an identified topic is simply added to the score of
the same topic in the topic centroid. Reducing the rate at which the scores of already
existing topics increase will make it easier for new topics to get a hold in the topic
centroid.

The Suggested Solution

In a search session, the topic centroid gets updated after the results to the submitted
query are available and the most relevant topics for those search results have been
computed. If the topic centroid is empty, the topics and scores which are the result
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of the topic identification are taken as new topic centroid. Otherwise, the topic
shift algorithm is executed on the existing topic centroid and the results of topic
identification on the last search results. To merge topics into the existing topic
centroid, we add new topics, increase the scores of reoccurring topics and decrease
the score of topics that did not reappear.

Before the topics are merged, we multiply the score of each topic in the topic centroid
by a fixed fraction fcooldown. This measure helps to prevent existing topics from
dominating the topic centroid, even if they are not relevant for the latest search
results anymore. Then we add all topics that are not yet part of the topic centroid
with their scores unchanged. The scores of topics that are already part of the topic
centroid are updated according to this formula

s = max (sold, snew) + wshift ·min (sold, snew)

where sold is the existing score in the topic centroid, snew is the new score in the topic
aggregation and wshift is a value between 0 and 1 that determines the rate at which
scores will accumulate over time. The result of the max-function ensures, that the
new score will not be lower than the existing score (after being reduced by fcooldown),
while wshift helps to prevent the accumulation of very high scores, if a value lower
than 1.0 is used.

Example

The table below shows an example of the development of a topic centroid (TC) over
multiple steps with new topics provided by topic identification (TI). Topic shift is
applied with fcooldown = 0.8 and wshift = 0.5:

step 1 step 2 step 3
TI TC TI TC TI TC

(t1, 1.0) (t1, 1.0) (t1, 0.7) (t1, 1.15) (t1, 0.92)
(t2, 0.9) (t2, 0.9) (t2, 0.9) (t2, 1.26)

(t3, 0.6) (t3, 0.6)

In the first step, we see that only topic t1 is identified with score 1.0, which is copied
to the topic centroid. From the results of the second query, topics t1 and t2 are
identified. As t2 was not part of the centroid before, its value can be copied as well.
The current value of t1 in the topic centroid is multiplied with fcooldown, which results
in 0.8 and the new score is calculated as s = max (0.8, 0.7)+0.5·min (0.8, 0.7) = 1.15.
Even though the score of t1 was lower in the new aggregation, its score in the topic
centroid remains higher due to its history, but not out of reach for the new topic
t2. After the third request, t1 does not appear anymore in the result list, therefore
its score is just reduced by fcooldown, but t2 shows up again and can take over the
position of t1 after the topic shift algorithm has been applied.

3.2.3. Relevance Feedback

Topic identification, as defined in this section, is based on the assumption that the
score of a document in the search result list correctly resembles its relevance for the
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user’s search interest. It is obvious that this assumption will not always hold in prac-
tice, because the search engine may fail to rank the most relevant documents first,
especially in complex research tasks where the user might not have sufficient back-
ground knowledge to properly express her search interest. Previous work has shown
that the user’s click behavior on the search result page can give valuable implicit
feedback from which the relevance of reviewed documents can be derived [ABD06;
FKM+05].

We could use this user feedback to adjust the scores of the documents in the result
list before topic identification is applied, so the topic centroid more closely resembles
the user’s perception of relevance rather than the search engine’s suggestions. This
however comes at a cost: In our current model, topic identification can be executed
immediately after the search results are available, so the topic centroid can be updated
before the search result page is presented to the user. If we were to include the
relevance feedback, we could only update the topic model after the next query has
been submitted. An immediate update has the advantage that the topic centroid
is already adjusted to the current search results, from which other functions of the
search engine can benefit, like topic graph visualization or topic-based search results
which will be discussed later in this work.

In this work, we decided that the drawbacks of including relevance feedback are too
high compared to the possible gains, therefore we continue to use the document scores
as returned by the search engine. Finding a way to include relevance feedback into
the topic centroid without sacrificing topicality is an interesting problem for future
work.

3.2.4. Topic Graph Visualization

For the user of a search engine that relies on the topic centroid for ranking, there
is no direct feedback channel to see which topics are currently most relevant. This
is usually not an issue, as topic-based ranking does not require explicit feedback or
even awareness of the user, but there is a variety of reasons to still provide some
kind of visualization of the topic centroid: It can help the user to check whether the
topic centroid actually resembles her search interests and to move the search into a
different direction, if the topics don’t appear to be relevant. This can be achieved
either by submitting new queries or directly through interaction with the topic graph.
The visualization can also help to explore new topics and to find query terms that
could be relevant for the user’s search interest. In a multi-user environment (e.g.
collaborative search), the visualization can help to get an impression of what other
participants are searching for.

Objective

The topic centroid is a selection of topics from a topic model, which can be represented
as a directed graph with nodes representing topics and edges indicating relations
between topics. These relations can be hierarchical (from topic to sub-topic) or based
on semantic similarity between arbitrary topics.

Our goal is to visualize the most important topics of the topic centroid as well as
the relations between these topics. We make use of the hierarchical structure of the
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Figure 3.3.: Visualization of the topic centroid. Each node represents a topic, sur-
rounded by the distinctive terminology for that topic. Directed edges

indicate hierarchical relations between topics.

topic model to visualize the topic centroid as a subgraph of the topic model in a
tree-like structure. The number of displayed topics depends on the space that has
been reserved for the topic graph on the search result page. Through interaction with
the topic graph, the user should be able to remove topics that are not relevant for
the search and to explore new sub-topics of a topic node.

Concept

In order to visualize the topic centroid, a human-readable representation of topics as
nodes of a graph is required. Ideally, a descriptive label would be displayed for each
topic, but when statistical topic models are used, such labels are not available and the
difficulties of automatic topic labeling (see Section 2.1.3) further impede this solution
for large topic models. As an alternative, we can display the distinctive terminology
that identifies each topic in a statistical topic model, similar to the visualizations
of topic models by Paisley et al. [PWB+12]. A node is displayed as circle, around
which the six most distinctive terms are arranged, as shown in Figure 3.3. Given a
high-quality topic model, the user should be able to identify the topic based on these
terms with a short glance.

To build the initial tree structure of the topic graph, the n highest scoring topics
from the topic centroid are selected, where n depends on the available screen space
to render the graph. We try to find common ancestors for each combination of topics
in the topic centroid by recursively visiting each topic’s direct ancestor. Whenever a
common ancestor for two or more topics is discovered, it is added to the graph and
an edge from the ancestor to all of its descendants is drawn. This process is repeated
until a single common ancestor is found or the root node is reached. In the worst case,
all n topics are only connected through the root node, but in a sound hierarchical
topic model, usually a tree with several branches will evolve.

To indicate relations between topics in different positions of the topic hierarchy, we
add undirected edges between semantically related topic nodes. Those edges can
connect arbitrary nodes, i.e. they do not have to comply with the tree structure
that was built so far. We define the relatedness of two topics by a combination
of two measures: the co-occurrence of significant terminology and the overlap of
documents. The co-occurrence is defined as the number matching terms in the lists
of significant terminology of two topics, divided by the length of the shorter list of
terms. Analogously, the overlap of documents is defined as the number of documents
that are associated with both topics, divided by the number of documents that have
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at least one of the two topics. The average of both measures is the relatedness score
of two topics; if this score reaches a certain threshold, a connection between these
topic nodes is drawn in the graph.

Through interaction with the topic graph, the user can directly manipulate the con-
tents of the topic centroid. Each topic node has three control elements that will
appear on touch or by hovering with the cursor over the node. These elements are
buttons in form of small circles: a button with a yellow star icon that appears in the
top left corner, a button with red cross icon that appears in the top right corner and
another button with a blue plus icon at the bottom of the topic node. A topic can be
promoted by clicking the button with the star icon, which will increase the score of
that topic and prevent it from being removed from the topic centroid. By clicking the
button with the red cross, a topic is removed from the graph and the topic centroid.
When a topic is removed, all of its sub-topics are removed as well, both from the
graph and from the topic centroid (therefore the root node cannot be deleted). After
one or more topics were removed and less than n topics are currently displayed, new
topics from the topic centroid that were previously hidden are added to the graph,
for which common ancestors are discovered as described before.

Starting from a topic node, the user can explore new sub-topics of the topic by
clicking the plus-icon, if the topic has at least one sub-topic. This will add up to
three sub-topics to the graph and connect them to the selected node. The sub-topics
are selected by the highest score in the topic centroid, with a fallback to random
selection, if not enough topics are not part of the topic centroid. Because adding
more topics might make the graph too crammed for the limited screen space, low-
scoring topics are automatically removed from the graph, when a certain threshold is
reached. These topics will not be removed from the topic centroid however, this will
only happen if the user explicitly deletes a topic node. The next topic that will be
hidden from view is determined by these conditions: It must be a leaf node, it is not a
child node of the topic that is currently being explored and when multiple candidates
are available, the topic with the lowest score in the topic centroid is chosen (the score
of a topic that is not part of the topic centroid defaults to zero). These rules ensure
that the least relevant topic nodes are hidden first and that topics that have many
possibly relevant child nodes are not removed, even if they themselves are of little
importance.

This concept allows us to visualize the most important topics of the topic centroid and
gives the user the ability to selectively remove irrelevant topics as well as to explore
new topics and relevant terminology to be used in subsequent queries. A weakness
of the method is the lack of proper topic labels and therefore the dependence on the
significant terminology that defines a topic, which in some cases can be difficult to
understand. The upside is that this solution is applicable to any statistical topic
model and it achieves the goal to provide not only a visualization, but also a feedback
channel for the otherwise hidden structure of the topic centroid.

3.3. Search Strategy

In this section we describe a search strategy which forms the foundation of a session-
based semantic search engine. We will give insights into the search algorithms that
incorporate the concept of session-based search and harness the semantic information
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that is gathered in the topic centroid. Then we give an overview of the process from
the point where the user submits a search query until the finished search result page
is returned to the user. The strategy described in this section was intentionally held
abstract; in Chapter 4 we discuss the details of a prototypical implementation of this
concept.

3.3.1. Prerequisites

This search strategy is aimed at text documents from which a reasonable plain text
representation can be extracted, like it is the case for PDFs, e-books or HTML docu-
ments. The full plaintext representation of the documents as well as relevant metadata
like title, authors, date of publication, etc. are stored in an inverted index for efficient
document retrieval.

A hierarchical topic model is built from the indexed documents, using one of the
algorithms discussed in Section 2.1.2. With this topic model the most likely topics are
computed for each document, which are stored in the search index in the respective
document’s metadata. Each topic t of a document has a certainty score c, which
describes the probability that the document is actually about topic t. This is owed
to the fact that topic modeling algorithms cannot predict perfect labels for each
document, but some of them have a good notion of how likely it is that their estimate
is true. Therefore each document in the search index has a list of topic-score-tuples
(t, c), which can be harnessed by search algorithms that are not entirely keyword-
based.

3.3.2. Search Algorithms

We define a search algorithm for session-based semantic search, which incorporates
both full-text search enhanced with session data and topic search, which finds docu-
ments that are semantically related to the state of the topic centroid. The combination
of these two approaches is controlled by a weighing parameter which allows the search
engine to focus on one of the two aspects or to find a decent balance between both
approaches.

Full-Text Search

The full-text search algorithm follows the well-proven vector space model [SWY75],
which represents documents as real-valued vectors of tf-idf weights. Matching and
ranking of documents is done by expressing the terms of a query as a vector in the
same vector space and then comparing the cosine similarity of the query vector with
the documents vectors in the search index.

A major trait of session-based search is the inclusion of terms from the query history
H with varying weights into the expanded query, as described in Section 3.1. This
can be achieved by retrieving the results for each query q ∈ H, multiplying the scores
of the resulting documents with the weight of the query depending on its position in
the query history and then combining the result lists by summing up the scores of
matching documents.
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This approach however would not scale very well for long search sessions, therefore
we propose a different solution where a single query is generated which considers the
weight of all terms in the query history. This is done by first creating a query vector
from the concatenation of all queries in the query history. To incorporate the weights
of different queries, the tf-idf score of each term in the vector is multiplied by the
weight of the most recent query that term occurred in.

Matching of query terms is executed on the full-text index by default, but search
results can be further enhanced by additionally matching on other metadata fields
like the document’s title, authors, abstract or others. For each of these fields, a new
inverted index is created and a separate list of search results is generated using the
same query vector as for the full-text search. The results are combined by joining
the result sets of the different search indices and summing up the scores of matching
documents. We can further improve the ranking by applying weights to different
fields, in order to capture the intuition that a match on the title field is more relevant
than a match on a single term somewhere in a document. To achieve this, the scores
of each result list are multiplied by a weight factor that we define for each indexed
field before the final rank scores are summed up.

To further improve search performance, a variety of techniques can be applied for
document pre-processing, language analysis, indexing, query expansion, paralleliza-
tion, etc. (see [BR99] for an overview). A description of these standard techniques
is beyond the scope of this work and a reasonable selection of these methods is left
open to the implementation of the search engine.

Topic Search

While full-text search allows us to reliably retrieve documents that match the terms
in the query history, we are going to harness the topic centroid and the topic labels
that have been assigned to the documents in the search index to improve the rank-
ing of documents that were matched through full-text search, as well as to discover
new documents that could not be matched with conventional information retrieval
methods.

Each document d in the search index is associated with a set of topic-score-tuples
(t, c), where the score c represents the likelihood that document d is about topic t.
The topic centroid follows the same pattern: a set of tuples (t, s), where s represents
the relevance of topic t in the context of the current search session, relative to the
other topics (meaning there is no upper bound for s).

In order to match the most relevant documents for a topic t, we select all documents
from the search index which contain a reference to the same topic. We can order the
selection of documents by the certainty c in descending order to get those documents
first, that are most likely about topic t.

The topic centroid usually consists of more than one topic, therefore we want to find
all documents that match at least one of the topics in the topic centroid, but we
would intuitively assume that a document is more relevant if:

• it matches several topics from the topic centroid

• the matched topics from the topic centroid have high relevance scores

• there is little uncertainty that the document is actually about the matched topic
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To capture this intuition, we define a custom topic rank function whose results can be
used to retrieve the most relevant documents for a specific topic centroid. For each
document d, we calculate the intersection I of the topics in the topic centroid and the
topics of the document. The rank score for a topic t ∈ I is given by multiplying the
certainty score c for this combination of topic and document with the topic’s score
s in the topic centroid. The rank score for the entire document d is the sum of the
rank scores for each topic t ∈ I:

rank (d, I) =
∑
t∈I

certainty (d, t) · centroid (t)

This rank function allows us to get an ordered list of documents that best resemble
the topics and their weights in the topic centroid.

Combination

In order to benefit from both the reliability of full-text search and the semantic
knowledge that is harnessed through topic search, we combine both approaches by
joining the result lists and calculating a weighted average score for all documents.
The weighted average is proposed in order to have some influence on the ranking that
is used by the search engine. Users tend to expect a strong correlation between the
keywords they enter and the search results they receive, therefore a stronger focus on
full-text search can be viable.

Because the match scores that are generated by the retrieval algorithms we use do not
necessarily map to the same value range, the results of both methods are normalized
to the [0..1] range to give equal influence to each score.

3.3.3. Query Pipeline

The query pipeline describes, which steps the search engine takes to calculate the
answers for a user’s search query in the context of a search session. Figure 3.4
visualizes the steps in the query pipeline and the data structures that are accessed or
modified during each step.

The query pipeline relies on two major data structures: the user-specific search session
and the search index which is used for document retrieval. As part of the pipeline, two
expanded queries are built using the method described in Section 3.3.2 with different
parameters: The main query, which provides the documents for the search result list,
and the suggestion query, which has a much stronger focus on topic search and whose
results can be suggested to the user outside of the main search result list.

When a query is submitted, the search engine loads the user’s session context or
creates a new search session, if this is the first query of the user or the creation of a
new session has been explicitly requested. Then the steps of the query pipeline are
executed in sequence, due to data dependencies between each action. We will now
take a more detailed look at each step in the query pipeline.
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Figure 3.4.: From request to response: steps in the query pipeline

Spell Checking

Correcting spelling errors is a standard procedure in modern web search engines, as
approximately 10-15% of queries contain spelling errors [CMS10]. The spell checker
is at the very top of the pipeline, because it allows us to search for what the user
meant, not what might have been typed accidentally, although the user should always
be made aware of automatic spelling correction and the search engine should provide
an option to search for the original terms in case the spell checker was mistaken.

Spelling errors are conventionally detected by comparing terms to a spelling dictio-
nary and possible corrections are generated by comparing the misspelled term to
the words in the dictionary using a similarity measure like the Damerau-Levenshtein
distance [Dam64], which counts the number of insertions, deletions, substitutions or
transpositions on the character level that are required to get a match. If a term
in the dictionary has a sufficiently small edit distance to the apparently misspelled
term, it is suggested as correction. With literature search engines however, this ap-
proach alone is usually not sufficient, because many queries will contain technical
terminology, names and other terms that are not part of any regular dictionary.

To mitigate this limitation, additional data sources like query logs and terminology
found in the search index can be used. For this purpose, a dictionary can be built
from the document-term-matrix in the search index, which contains all terms that
are found in any document. These terms can obviously also contain spelling errors
and there are going to be many unique tokens like names and email addresses that
are not relevant for spell checking, but decrease the performance of the system. Both
issues can be solved statistically by only including terms in the extended dictionary
which only appear in at least n ≥ 2 documents, which will increase the likelihood
that the spelling of the term is correct and vastly decrease the number of tokens that
will be stored in the dictionary.
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This approach allows us to fix common spelling mistakes (using the regular dictionary)
and errors that concern the terminology of the documents in the search index, which
won’t be enough to suggest corrections for arbitrary spelling errors, but it allows us
to suggest corrections for nearly all spelling issues that concern the actual contents
of the search engine.

Session Update: Request

Before the actual search is performed, the state of the search session (see 3.1.1 Session
Data) is updated. A new step is added to the search session which at this point only
contains the new query. If recorded user interactions with the previous search result
page are available, they are added to the state vector of the previous step.

Main Query: Expansion & Execution

In this step, the main query is generated and the documents for the search result list
are retrieved from the search index. We want these documents to strongly correlate
with the query terms, therefore we define a higher weight for the full-text search
results compared to those of the topic search algorithm. This way, the user still
benefits from the semantic capabilities of the search engine, but the ordering of search
results is closer to what the users expect from traditional search engines.

Session Update: Response

After the results of the main query are available, the next step is to update the topic
centroid based on the response to this query. The 10 highest scoring documents
are used to identify the most important topics (see 3.2.1 Topic Identification) and
consequently to update the topic centroid (see 3.2.2 Topic Shift).

Suggestion Query: Formulation & Execution

Just like the main query, the suggestion query is a combination of full-text search and
topic search (as defined in Section 3.3.2), but this time the parameters were chosen
so that topic search largely outweighs full-text search. This configuration will prefer
documents that share the highest-scoring topics of the topic centroid, independent
of the keywords that have been specified by the user; the results are predominantly
selected based on the semantic structure of the documents. Also, the results are
derived from the topic centroid after it has been updated by the results of the main
query, which makes them consider the latest topics and allows us to display topic-
based suggestions starting with the first query in a session. The suggested search
results are intended to be displayed outside of the main search result list, for example
in a sidebar, to give the user some additional hints about documents that might be
relevant, even if they do not necessarily match any of the query terms that were
submitted so far.
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Result Page Generation

Finally, the search result page is built and returned to the user. The specifics of
the user interface are not the main concern of this work and therefore left to the
implementation; in Chapter 4 we describe the implementation details of our own
prototype.

3.4. Collaborative Search

In the previous sections, we have laid the foundations for a session-based semantic
search engine, where queries are interpreted in the context of the user’s recent in-
teractions with the search engine and the ranking of search results is enhanced with
the help of the topic centroid, a data structure that keeps track of the most relevant
topics in a search session. Now we want to extend this concept to the collaborative
setting, where multiple users work on the same task at the same time. We want
to focus on the question, how we can further improve the ranking of search results
based on the additional context information that can be derived from the actions of
several users that form a group with a common search interest. For this purpose,
we introduce the shared topic centroid, an extension of the topic centroid that was
presented in Section 3.2. Around this new data structure, we build a variety of tools
that help to support the group members in their collaborative search effort.

3.4.1. Shared Topic Centroid

The shared topic centroid is the central data structure that allows the ranking of
search results for all users to be improved, based on context information that has been
gathered by all group members. This is an extension of the session-based scenario
where the user has a private topic centroid that gets updated with each submitted
query in the course of a search session. In the collaborative scenario, all members of
the group still have their private topic centroid that gets updated whenever a new
query is submitted, but the topic shift process has been expanded: Instead of shifting
based on just the topics that were identified in the list of search results, the user’s
local topic centroid is also influenced by the shared topic centroid and vice-versa.

Mutual influencing of the private and the shared topic centroid happens whenever a
group member submits a new query to the search engine, before the query pipeline
is executed. We can update the user’s private topic centroid TCu by simply applying
the topic shift algorithm (see Section 3.2.2) with the shared topic centroid TCs as a
source of new topics. However, updating the shared topic centroid using the same
method would cause several issues: If we assume that multiple users submit queries
with similar average frequency, updates to the shared topic centroid happen far more
frequently than updates to each user’s private topic centroid. To increase the stability
of TCs, the influence of the factor fcooldown must decrease when more users are active.
Adding a new high-scoring topic to a private topic centroid is not an issue, because
the topic clearly was prominent among the user’s last search results, but new topics
should never get a prominent position in the shared topic centroid without some level
of agreement between the majority of the collaborating users. To mitigate this issue,
we evenly divide the weight of all contributions to the shared topic centroid among
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the active users, so when multiple users agree that a topic is relevant, its score will
accumulate over time. Therefore, if only a single user adds a new topic with a high
score, it won’t reach the top of the topic centroid without some acceptance among the
other participants. We can apply the same principle to the weighting factor wshift

that determines how fast the score of a recurring topic accumulates.

In summary, these are the adjustments to the topic shift algorithm we propose in
order to have a well-balanced shared topic centroid:

snew′ = snew
|users|

wshift′ = wshift

|users|

fcooldown′ = fcooldown + (1− fcooldown) · |users|−1
|users|

where snew′ is the score of a new topic that is added to TCs, wshift′ is the adjusted
weight factor for the topic shift, fcooldown′ is the adjusted cooldown factor and |users|
is the number of active users in a session. Both snew and wshift can simply be divided
by the number of active users in order to evenly distribute the influence that each user
has on the topic centroid. The influence of fcooldown gets adjusted by the number of
users so that the reduction of topic scores remains stable between two average query
submissions of a user.

So whenever a user submits a new query, the shared topic centroid gets adjusted
with the topics from the user’s private topic centroid using the adjusted topic shift
algorithm we have just described. Then the user’s private topic centroid gets updated
with the topics from the shared topic centroid using the regular topic shift algorithm.
For the update of the private topic centroid, different values for wshift and fcooldown

can be used than in the regular query pipeline, which enables more fine-grained control
over the influence of the shared topic centroid. By adjusting these parameters, we
can create a configuration where the private topic centroid is always a copy of the
shared topic centroid (using fcooldown = 0) or where the shared topic centroid has
no influence on the private topic centroid at all (with fcooldown = 1 and wshift = 0).
However, to achieve a decent balance between personal and group influence on each
user’s search results, we recommend values for fcooldown between 0.5 and 0.9 and
wshift between 0.1 and 0.5, with the sum of both variables being around 1.0 to get
stable results.

3.4.2. Group Management

Before multiple users can search collaboratively, they must form a group. For this
purpose, each user creates an account with the web service that provides the collabo-
rative search engine (anonymous access would be conceivable, but rather inconvenient
for frequent usage). Users can then create groups and invite other users to join them.
Within a group, multiple projects can be created. A project serves as container for all
data structures that are used in a collaborative search session, including the shared
topic centroid and all other information that is shared among the project members.
Each user can be part of multiple groups and multiple projects per group, but in a
single client session, only one combination of group and project can be active at the
same time. This limitation can be circumvented by opening multiple client sessions
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(i.e. multiple tabs in a web browser) to simultaneously work on several projects, pos-
sibly in different groups. The shared topic centroid of a project is initially empty and
gets filled when the first project member submits a query. Users that join a project
start with a copy of the project’s shared topic centroid as their private topic centroid,
so that the results to their first query can already benefit from the group’s previous
work.

Group influence on each user’s search results only happens implicitly through topics
that are transferred over the shared topic centroid; the queries of individual users
are only expanded based on their own query history (as described in 3.1.2 Query
Aggregation) and not with query terms from other users. This choice was made for
several reasons: The core principles of a session-based search engine should not be
diluted in the collaborative scenario; the users should still have control of their own
query history, which should be the main influencing factor on their search results.
The topic centroid already promotes documents that are in line with topics that the
group is most interested in, so the benefit of adding more query terms is expected to
be rather low.

Privacy in collaborative search scenarios is another issue that has not gained much
attention in related work so far. Systems like SearchTogether [MH07] and CoSearch
[AM08] show all queries and the names of the persons that submitted them to the
entire group. The authors emphasize the benefits of sharing this information which
can have a positive influence on the research of other group members, but they largely
ignore the issues that arise from this kind of exposure: Individuals behave differently
when they know they are being watched in a group, which can entice some to work
harder, but it also may impede others to work freely to avoid negative feedback
from other group members. Seeing what other group members search for can be an
inspiration for the user’s own search, but it may also prematurely limit the direction
that the group is taking, making it less likely that new ideas are explored. By not
showing the queries of other users yet still enabling implicit feedback through the
shared topic centroid, we hope to achieve the best of both worlds: the freedom to
explore ideas without constant exposure to the group and improved ranking of search
results based on the dominant topics among all group members.

3.4.3. Collaboration

One of the greatest challenges when designing a collaborative information retrieval
system is to encourage collaboration between users. In the literature review in Section
2.4 we have seen a variety of methods to support collaboration in different scenarios.
In this section, we will not present a complete framework for collaborative work in a
specific context; instead, we provide the tools that are necessary to benefit most from
the concepts we have presented so far. Our contribution is to create a concept that
allows to improve the ranking of search results based on the search activity of a small
group of collaborators. This is not an alternative to existing systems, but rather
a method to enhance the search experience in different scenarios of synchronized
collaboration, be it co-located or remote.
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Sharing of Results

The ability to easily share search results is particularly important in a collaborative
search scenario where users otherwise do not see what the other group members are
working on. Each user can save a search result by clicking a star icon that appears in
the search result list next to each document. Each document that has been saved this
way appears in the user’s private list of bookmarks for the current project, as well as in
a shared list that is a combination of the bookmarks of all users. In this list, the origin
of a bookmark is not displayed, but next to each document is a number that indicates
how many users have bookmarked this document so far and another star icon which
shows whether the document from the shared list is also in the user’s private list. In
order to display the most relevant documents first, the shared list is sorted by the
number of users that have bookmarked a document. Users can “upvote” a document
by adding it to their private list of bookmarks, either by finding the document among
their search results or by clicking the star icon in the shared bookmarks list. The star
icon always has one of three states: empty (not bookmarked), light (bookmarked by
other group members) or dark (bookmarked by the user). Therefore, it is easy to see
among the search results to any query, which document has already been reviewed
by another user.

Documents that have been added to the shared bookmarks list are obviously relevant
for the current project and are therefore suitable as an additional source of influence
for the shared topic centroid. We can expand the topic shift algorithm for the shared
topic centroid to include the relevant topics of the shared bookmarks list. To find the
most relevant topics, the topic identification algorithm (see Section 3.2.1) is applied
to the list of saved documents. The score for each document is derived from the
number of users that bookmarked that document, so that more weight is given to
documents that have been bookmarked by more users. Whenever a new document is
added to the shared bookmarks list, the topic shift algorithm can be executed on the
shared topic centroid, using the topics of the bookmarked documents as source.

Topic Visualization

Both the private as well as the shared topic centroid can be visualized as described
in Section 3.2.4. However, for the shared topic centroid some restrictions apply:
Interactions that may alter the shared topic centroid are disabled by default, because
a single participant’s mistake can potentially harm the ranking of search results for
all other users. In order to still allow direct control over the shared topic centroid,
it may be reasonable to define privileged user roles which have permission to delete
nodes from the shared topic centroid or to boost the score of a topic. The creator
of a project would automatically be assigned that role and have the right to transfer
this role to other project members.

Topic-based Recommendations

We have introduced the suggestion query (see Section 3.3.3), which finds relevant
documents based on the topic centroid in the single user setting. In the collaborative
setting, we can still generate these results based on each user’s local topic centroid,
but the same query can be executed based on the shared topic centroid. Suggestions
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based on the shared topic centroid are directly derived from the common search
context of all group members and therefore likely to be relevant for the project, but
they also give some feedback about the accuracy of the topic model. Because the
shared topic centroid does not change as fast as the private topic centroids do, we
can cache the suggestions from the shared topic centroid for a few iterations and add
these documents to the response of each user query without additional computational
cost.

3.5. Discussion

We have presented the core concepts that are required to build a session-based seman-
tic search engine which harnesses contextual information that is implicitly generated
by the user in the course of a search session to improve the ranking of search results.
These concepts are both applicable in single-user environments as well as in a collab-
orative setting, where multiple participants work in real-time on the same research
task.

We defined the search session as the central data structure which serves as a container
for all context information of a single user that could be relevant for the ranking of
search results and which also contains other data structures like the topic centroid.
Furthermore we discussed query aggregation, a method to build an expanded search
query that includes terms from a session’s query history, yet still returns search results
that correlate well with the user’s latest query. While most of the ideas we discussed
concerning session-based search were already covered in related work (see Section
2.2), we decided to still present them in order to build a coherent foundation for the
following concepts.

To get an understanding of the latent topics that the user is looking for, we have
specified the topic centroid, a data structure that holds the most relevant topics that
were derived from the user’s interaction with the search engine in a search session. We
introduced topic identification, a novel query classification technique that discovers
the most relevant topics in a ranked list of search results. This method aggregates the
topics that are associated with each document in the search result list and assigns
scores to topics based on the ranking of documents in the result list, the relative
frequency of topics in the document collection and the semantic similarity of different
topics. Based on the topics that have been identified, the topic centroid is updated
using another method we call topic shift, which guarantees a decent balance between
topicality and stability of the topic centroid. Furthermore, we have defined a concept
to visualize the contents of the topic centroid, even if no human-readable topic labels
have been assigned to the topics, and provide ways to explore the topic model as well
as to manipulate the contents of the topic centroid.

Based on these concepts we specified the search strategy for the single user scenario.
As main search algorithm we have defined a combination of full-text search and topic
search: The full-text search algorithm relies on the vector space model and uses an
expanded search query to match documents based on weighted terms from the entire
query history of the search session. The topic search algorithm on the other hand
harnesses the state of the topic centroid to retrieve documents that are relevant in
the context of the search session, even if they do not match the user’s query terms.
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We presented a query pipeline that defines all steps from search request to response,
based on the data structures and search algorithms that were described so far.

As a last step, we extended the idea of a session-based semantic search engine to
the collaborative setting. Our core contribution is a concept that allows to improve
the ranking of search results based on the search activity of a small group of col-
laborators. For this purpose we introduced the model of a shared topic centroid, an
extension of the topic centroid which can gather context information from multiple
users. Furthermore, we presented intuitive ways to organize and share search results
and provided methods to harness the contents of the shared topic centroid through
topic-based recommendations and visualization techniques. This concept is not a
comprehensive alternative to existing collaborative systems, but rather an extension
that can improve the efficiency of collaborative search in various scenarios that have
been discussed in related work (see Section 2.4).

In the next chapter, we are going to show the prototypical implementation of a search
engine based on a selection of the concepts we have presented, with a focus on the
single-user scenario.
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Chapter 4

Prototype

We have built a prototype of a session-based semantic search engine which implements
most of the concepts described in Chapter 3, including search sessions and topic-based
search backed by a topic centroid. The goal of the prototype is to test whether the
new semantic features are beneficial when compared to conventional literature search
engines, which we further investigated in a user study (see Chapter 5). The concepts
described in 3.4 Collaborative Search are not in the scope of this work and were not
implemented so far.

The prototype consists of a web application which provides the search mask and
manages the entire query pipeline, while the heavy lifting of executing search requests
is done by Elasticsearch [@Ban], a distributed information retrieval system built on
top of Apache Lucene. Furthermore, we provide a set of tools to build the search
index, a hierarchical topic model and other relevant data structures. The search
index contains the full text of about 1.2 million scientific papers from the arXiv
repository [@Gin].

During the design and implementation of the prototype, we went to great lengths
to ensure that it becomes a practicable solution which aims to be usable outside of
the academic context. The use of Elasticsearch ensures scalability of the resource-
intensive parts of the prototype and low latency even for complex search requests
that incorporate session data like the user’s query history or relevant topics from the
topic centroid. The search engine is built as a lightweight web service which manages
user sessions, implements the topic centroid, generates the expanded queries for Elas-
ticsearch, interprets the search results and builds the search engine result pages. The
tools for building the search index are compatible with arbitrary document collec-
tions; the only function that was specifically implemented for the arXiv repository is
collecting document metadata, which is hard to generalize due to the lack of a widely
adopted standard. This setup should contribute to make this prototype a scalable
and generic solution that is applicable to document collections whose size exceed what
we will show in this work.

In this chapter we will explain the motivation for selecting the arXiv document col-
lection and illustrate how the data was prepared and the search index was built. We
will then give some insights about the core functions of the search engine and how
the concepts that were described in Chapter 3 have been implemented. Next we take
a closer look at the user interface of the web application and how the semantic fea-
tures of the search engine are presented to the user. We finish this chapter with a
performance review of the prototype and a general assessment of its utility.
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4.1. Document Collection

We have built a search index from documents in the arXiv [@Gin], an open repository
of e-prints in Physics, Mathematics, Computer Science and other fields. The search
index contains metadata and the full text of all 1.2 million documents that have been
submitted to arXiv until March 2017, as well as a topic model that was built from
these documents. In this section, we will explain why we chose arXiv as document
collection and how the topic model and the search index were built.

4.1.1. Selection Criteria

Finding a suitable document collection for the search engine was not an easy task
due to a number of restrictions we developed after reviewing existing research in the
field of session-based search, in order to pave the way for a successful study involving
the prototype of a session-based semantic search engine. The major restrictions are:

1. The data set should be reasonably large, so that it allows for realistic search
scenarios and to see whether the search engine works at a relevant scale

2. The document collection should be open and not subject to restrictive licensing,
so that everyone has the chance to re-build the index and put the results of this
work to the test

3. There should be no major access barriers to retrieve the full document collection
and the cost to do so should be reasonably low

Access restrictions are a common issue with contemporary research on session-based
search, which relies on data sets like those used in the TREC Session Track [CKH+14]
or the HCIR challenge [CGK+12]. Unfortunately, those are either cumbersome and
expensive to receive (e.g. by shipping of hard drives) or only available to selected
researchers under a non-disclosure agreement. The size of the document collection is
of concern because it should be suitable for exploratory search, which only works if
the available documents are diverse enough that the user has the chance to find more
relevant answers, even after several query iterations.
A source that fulfills these requirements is the arXiv repository. All papers submitted
to arXiv are freely available to the public and data dumps of the entire document
collection (about 1.2 million papers as of 2017) are available from Amazon S3 through
a payment model where the requester has to pay a certain fee per GB of bandwidth
(about US$ 0.09 as of 2017). While the document collection cannot be retrieved for
free, the total cost of less than US$ 100 should be affordable for inclined researchers
and the process to get the data is relatively simple. In the most prominent categories,
the number of submissions is probably large enough to give a representative sample
of the research done in this field, which makes it suitable for exploratory search.

4.1.2. Data Preparation

For the prototype of the search engine, we have built a full-text index of all papers
submitted to arXiv until March 2017. It consists of 1,256,873 documents, which
account for 737 GB of PDFs or about 38 GB of plain text in utf-8 encoding. To make
this raw data usable by the search engine, we have created the index-builder, a set of
tools written in Python that contains:
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• a PDF parser that extracts the content of all papers as plain text

• a crawler for arXiv’s metadata-API that allows us to retrieve information that
is not part of the PDFs

• a topic model generator that creates hierarchical topic models based on docu-
ment’s metadata and full-text

• a script that initializes and populates the actual search index

Source code and usage instructions for the index-builder can be found in Appendix A.1.

PDF Parser

The parser we used to extract plain text from PDF files is based on the pdfminer
library [@Shi] which allows to process about 25 documents per minute and physical
core on a contemporary desktop CPU, based on experience gained during our own
effort to build a search index of the arXiv repository. Because parsing all PDFs can
take a few days on a single CPU, the script provides a progress logging system that
allows to interrupt and resume the task at any time, and there are various built-in
options for graceful error-handling.

Extracting text from PDF files is rather slow and not very reliable, as our experience
with this task suggests. This is not just an issue of the parsing library that was
used in this work (we have tested several other PDF parsers before pdfminer was
chosen), but generally a result of the complexity of the Portable Document Format
and the diversity of tools that generate PDF documents. Consequently, about 1.5%
of documents could not be parsed at all and there are several documents whose plain
text representation is corrupt. Still, the parser was able to extract a decent plain
text representation for more than 95% of the documents, which is well enough for
the search engine, given that we have at least some metadata (including title and
abstract) as a fallback for the remaining documents.

Metadata Crawler

arXiv provides metadata for its records through a public API which conforms to
the Protocol for Metadata Harvesting of the Open Archives Initiative (OAI-PMH)
[@LVN+]. This allows us to reliably retrieve information like the title, abstract and
list of authors that would otherwise have to be extracted from the PDFs, as well as
some additional metadata like the date of submission or a DOI identifier. Because
it is not possible to just download a file that contains the records of all documents,
the metadata crawler was created, which requests the records chunk by chunk over
OAI-PMH, parses the responses and stores all relevant information in a JSON file.

Part of the metadata is also a reference to arXiv’s category system, which could be
used as an alternative to a topic model generated by an algorithm. We intentionally
avoided to use this system however, because the goal of this work is to build a search
engine that can work with any document collection and also with combinations of
different document collections. To rely on data that is only offered by a specific
provider would invalidate this goal. Apart from that, experience we have gained
during previous work with arXiv data indicates that this category system is probably
not suitable for topic-based document retrieval, as the classification of a paper (which
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is specified by the submitter) is often too unspecific and not consistent with the
classification of other documents.

Topic Modeling

The topic model for the arXiv document collection was built with the help of gensim
[@Řeh], a Python library that implements a variety of topic modeling algorithms.
Originally, we had intended to use the hierarchical topic model nHDP [PWB+12]
which was presented in Section 2.1.2, but we were unable to find a viable implemen-
tation of the algorithm. To the best of our knowledge, there is currently only one
implementation of nHDP available, which is the reference implementation by John
Paisley [@Pai], co-author of the nHDP paper. Unfortunately, this implementation is
written in Matlab, which makes it hard to integrate with the other components in
the tool chain, and it comes with no documentation or usage instructions whatsoever,
which is why all attempts to work with this implementation have failed.

Gensim offers a decent implementations of a variety of topic modeling algorithms like
LSA, LDA and HDP, but they all lack support for topic hierarchies. Therefore we
have implemented a meta modeling framework that allows the use of arbitrary topic
modeling algorithms to build a topic hierarchy. It works by first building a (flat)
topic model from a set of documents and then using that model to add topic labels
to each document. Next, we build a new topic model for each sub-topic with only
the documents that are part of that topic. This process is repeated recursively to get
topic models of arbitrary depth. If we arrange the computed topic models in a tree
structure, we can use it to classify previously unseen documents in one or more of
the existing classes, though we won’t be able to add new classes (this would require
a re-computation of all models).

We have tested the meta modeling framework with gensim’s implementations of LDA
and HDP on the arXiv document collection. The results using HDP were rather
disappointing, given that nHDP would have been the preferred algorithm. The main
issue with gensim’s implementation of HDP was a very uneven topic distribution. No
matter how many topics the algorithm was allowed to create, usually more than 90%
of the documents would be assigned to the first topic. Even in a nested topic model,
this meant that most of the documents were assigned to the same topic, which makes
the model rather meaningless.

The implementation of LDA did not suffer from this issue, which resulted in a much
more even distribution of topics and many relatively small groups of a few hundred
documents each at the lowest level of the topic hierarchy. We have built two LDA topic
models: one based on the parsed plain texts of the PDFs and one that is based on just
the title and abstract of each document. While reviewing random samples of topics
from each of the two models, it became apparent that the topic model generated from
just title and abstract created groups of documents that were more closely related and
contained fewer outliers from other fields. We assume that this difference is partly
caused by PDF parsing issues, but also influenced by the distribution of relevant
terminology in the abstract of a documents, which is usually less noisy than the rest
of the document when it comes to the use of distinctive terminology.

To increase the quality of the topic model, two additional measures have been imple-
mented: A language detector was added and lemmatization was applied to all text
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that is used for topic modeling. The language detector was used to filter out all non-
English documents before the model was built. Mixing several languages in a single
topic model only blows up the terminology it has to track and causes documents of
different languages to be put in different topics, which is a classification that can be
solved far more reliably by a language detection algorithm. Removing documents
in other languages from the topic model is therefore an important step to improve
the quality of the topic model and the negative impact due to missing class labels
for documents in other languages in negligible in the case of arXiv, because almost
all submissions are in English and multi language support is not in the scope of this
work.

Lemmatization was added to further reduce the dictionary size and to allow the topic
modeling algorithm to match terms that appear in different inflections. This is a
problem that is often solved with stemming, which is computationally much cheaper,
but in the case of topic modeling it comes with a disadvantage: each topic is identified
by a list of significant terms, which can help us to understand what the topic is about;
when stemming is applied, the resulting tokens may be incomprehensible, which is also
an issue for the prototype, because we display some of these terms to the users of the
search engine (e.g. in the topic centroid visualization; see Section 4.3). Lemmatizing
the contents of more than a million documents used to be a costly task, as it requires
part-of-speech tagging and in some cases syntactic parsing of sentences, but there
have been great advances in NLP software in recent years. For this purpose we use
spaCy [@Hon], a highly efficient NLP library which allowed us to calculate the lemmas
for the contents of all arXiv documents on consumer hardware in a matter of hours.

The topic model that was finally used in the search index consists of 8968 topics in
a four-layer topic hierarchy. The number of topics per layer was limited to 5 for the
first layer, 10 for the second and third layer and 30 for the fourth layer. Generating
sub-topics was interrupted if there were less than 400 documents left in a branch,
and the number of sub-topics to generate was additionally limited to the number
of documents in that branch divided by 200. With these settings, a well-balanced
hierarchical topic model could be built that would provide a suitable classification of
the arXiv document collection.

Index Builder

The last step in the pre-processing pipeline is to create and populate the search index
that will be used by the search engine. For this purpose we use Elasticsearch [@Ban],
a distributed information retrieval system based on Apache Lucene that solves most
of the standard IR tasks that lay the foundation for a session-based search engine.
The prototype is not strictly dependent on Elasticsearch as information retrieval
system; alternatives that would likely be suitable to achieve similar results include
Apache Solr [@Fou] or Sphinx [@Aks], but as these systems do not provide a common
interface, a change of the search backend would come at a cost.

The index builder creates a new Elasticsearch index with a custom mapping that
defines all fields we want to store, as well as their data types and additional indexing
instructions. Then the documents are streamed from the files that were created in
the previous steps (full-text, metadata, topic model) and added to the index. The
final search index with all 1.25 million documents has a size of about 32 GB.
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4.1.3. Search Index

Elasticsearch was selected as information retrieval system for a variety of reasons:
It is free software and completely self-contained, which makes it easy to set up and
configure. Its horizontal scalability allows us to handle way more data and requests
without the need to change algorithms or the data model. The search performance
of Elasticsearch is well enough that it can handle the arXiv index on a single node,
if it comes with a fast mass storage medium (e.g. a SSD) or enough RAM to store
the relevant parts of the index (for a detailed performance review, see Section 4.4).
The rich query syntax of Elasticsearch allowed us to implement the search algorithms
we described in Chapter 3 within the Elasticsearch ecosystem, which is an important
prerequisite if we want to achieve near linear scalability in a distributed setup.

Indexing

The search index consists of a set of documents whose structure is defined by the
mapping of the index. The mapping specifies which fields can be stored by each
document and how each field is indexed. Each field has exactly one data type, but its
contents can be indexed using several different methods. There are two basic options
for indexing: raw and analyzed. A raw field stores data in a set structure which only
allows for efficient lookup of exact key matches, while the analyzed form enables us to
efficiently filter or search the contents of the fields, depending on the data type and
analyzer that has been used. If a text field is indexed in analyzed form, Elasticsearch
creates a document-term-matrix of all documents that have stored some data in that
field. The matrix is actually stored in a more memory-efficient data structure in
an inverted index, which allows us to run full-text queries on the entire document
collection and retrieve a ranked list of search results. So while the logical view from
outside suggests that documents give access to their fields, the actual implementation
is reversed: each field is stored in its own index structure where each entry has a
reference to its source document, and by filtering and ranking the contents of one or
more fields, Elasticsearch gets a list of document identifiers which are then used to
access the raw document data.

Analyzers enable us to define what kind of pre-processing is applied to the contents
of a field before they are stored in the index. A text analyzer typically consists of to-
kenization (splitting a string of text into individual terms) and several normalization
steps that concern character encoding, letter case, punctuation and other properties
of the text. The standard text analyzer of Elasticsearch splits strings on word bound-
aries, removes most of the punctuation and converts all terms to lowercase, which is
a decent approach that works with documents in many languages. But Elasticsearch
also offers a specific analyzer for the English language, which additionally removes a
set of common stopwords and transforms words to their base form using the Porter
stemming algorithm [Por80]. These measures help to reduce the size of the search
index and increase the recall for text search while only slightly reducing precision (e.g.
in cases where stemming incorrectly maps two different words to the same reduced
form).

This was a short introduction to the core concepts of Elasticsearch that are needed
to understand how the search index and the prototype were designed; for more infor-
mation, please refer to Elasticsearch: The Definitive Guide [GT15].
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Field Type Analyzers
id keyword raw
url keyword raw
title text default, english, raw
authors text default, raw
release date date default
abstract text default, english
contents text english
topic nested
id keyword raw
score float default
layer integer default

Table 4.1.: Fields, types and analyzers in the search index for the arXiv document
collection. Some optional fields have been omitted for clarity.

Schema

For the search index we have built, the mapping consists of the fields that are shown
in Table 4.1. The title of each document is a text field that is stored using three
analyzers which match different kinds of documents in different search scenarios:
The default analyzer helps us to find document titles in any language, while the
English analyzer matches English document titles even when the inflection of the
search terms is different. The job of the raw analyzer is to boost the match score in
case the user enters the exact title of a document. The authors field follows the same
pattern, only that we decided to skip the English analyzer here, because language-
specific functions like stemming and stop word filters do more harm than good when
applied to names. The authors field actually consist of a list of strings, but due to
Elasticsearch’s strategy to store each field in a separate index structure, there is no
need to explicitly define a set data type; the authors of all documents are added to
the same index and each author entry simply maps to its source document.

For the document’s abstract, the raw form is not required, but it can be useful to
apply the default analyzer in addition to the English analyzer to increase the recall,
especially when the document was not written in English. For the content field, which
contains the complete text of the document, we decided to only use the English
analyzer, because additionally applying the standard analyzer would substantially
increase the size of the index – and therefore the hardware requirements – for little
to no gain.

Some additional metadata is stored for each document, like its ID or an URL where the
original document can be retrieved. Those are text fields that use the raw analyzer,
because being able to search these fields is not required (the keyword type is just a
shorthand for text with only the raw analyzer applied). The release date uses the
special date data type, whose default analyzer allows us to efficiently sort and filter
documents by this property. The last field contains the list of topics that have been
assigned to a document by the topic model. This field is of type nested, which in this
case consists of three other fields: topic id, score and the layer in the topic hierarchy.
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Figure 4.1.: Screenshot of the prototype’s search engine results page

The specified indexing options allow us to efficiently access all documents that are
about a specific topic and to filter the matched documents by their topic score, which
is crucial for efficient topic-based search.

4.2. Search Engine

In this chapter we describe the implementation of the search algorithms and the
remaining parts of the query processing pipeline that are necessary to answer a user’s
search request. This is a direct implementation of the concepts described in Section
3.3. The output of this process is a search result page similar to the one depicted
in Figure 4.1, which contains the list of search results for the query in the context
of a search session, as well as a visualization of the most important topics in the
session and additional search results that are primarily based on the state of the
topic centroid. A detailed review of the user interface will be given in Section 4.3; the
focus of this segment is to present the steps that are required to calculate the results
that will be displayed on the search result page.

The search engine is built as a lightweight web service written in Python [@Ros], which
provides a HTTP interface that can answer search requests with human-readable
HTML or machine-readable JSON documents. It handles search requests and man-
ages session state, but the actual search algorithms are implemented in Elasticsearch’s
Query DSL, a declarative language that allows us to search and filter documents on
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Clients

Internet

Search Index
(possibly distributed)

Figure 4.2.: Network architecture of the search engine

distributed search indices. A reference to the full source code of the search engine
can be found in Appendix A.1.

Figure 4.2 shows the network architecture of the system: A web server manages
all user sessions and generates the expanded search queries. The queries are then
processed by Elasticsearch, which can run on the same machine as the web server
or distributed on several other nodes. In both cases, the internal communication
between the web service and Elasticsearch is handled via HTTP. Clients never have
direct access to the search index; only the web service exposes a port to the public.

4.2.1. Search Algorithms

The search strategy that is deployed by the prototype has already been discussed in
Section 3.3.2; here we will provide some more details about the implementation of
the search algorithms, especially with respect to Elasticsearch’s Query DSL.

Full-text search

As explained in Section 4.1.3, the search index consists of several analyzed fields (title,
abstract, content, etc.), where each field contains a term-document matrix which will
help us to efficiently match the query terms against the indexed documents. For
full-text search, we use two query types: The simple match query will match all
documents that contain at least one of the query terms and return higher scores,
when multiple query terms are found in the same document. The phrase match
query on the other hand will only match documents that contain the entire search
phrase in that specific term order. This type of query cannot be easily answered
by a regular term-document-matrix, but Elasticsearch provides some additional data
structures that help to efficiently answer phrase queries (for details on this or other
topics related to Elasticsearch, please refer to [GT15]). With the phrase match query
it is not possible to discover more documents, because it clearly matches only a subset
of the documents that were already found by the match query, but we can use phrase
matching to boost the scores of documents that are more likely to resemble what the
user is looking for. Furthermore, different weights are applied to matches in different
fields: Phrase matches are generally more important than term matches and a match
on a document’s title is more relevant than a match in the abstract or some other
part of the document. Also, matches in multiple fields and multiple matches in the
same field result in higher scores.
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In the session-based scenario however it is not enough to answer a single query:
The entire query history of the user has to be considered as well. Therefore we
have implemented the query weight system that was discussed in Section 3.1.2, using
Elasticsearch’s boost function in combination with a bool query. This will ensure that
documents matched by more recent queries will receive higher scores. Furthermore,
a restriction was implemented so only documents that match at least one term of the
most recent query will be displayed in the result list. With this restriction imposed,
there is a stronger correlation between the search query and the documents that
are displayed, and the user gets instant feedback, if the query did not match any
documents, instead of being presented with an average of answers to all previous
queries.

The strategy to simply concatenate multiple full-text queries may seem rather expen-
sive at first glance, because the cost seems to increase linearly with the length of a
user session, but in practice this assumption does not hold: As multiple independent
queries are combined in a single request, they can be executed in parallel by the
search engine, and the load caused by other parts of Elasticsearch’s query processing
pipeline (which is far from negligible) remains constant. Also, the number of queries
that are actually included in the full-text search has been limited to a fixed amount,
so that unusually long sessions will not at some point cause extraordinary load.

Topic search

With topic search, we rely on the topic centroid rather than the query terms to
match and rank documents. The functioning of the topic centroid has been described
in detail in Section 3.2 and the algorithm for topic search was presented in Section
3.3.2; both were implemented according to these specifications.

To calculate the rank scores for topic search, we cannot rely on a built-in function of
Elasticsearch, because we want to derive the match score from the scores in the topic
centroid and the topic score of each document. We could retrieve the documents
from the full-text search and adjust their scores afterwards, but this would strictly
limit our selection to the first few results that have been returned by the full-text
search, making topic search a much weaker tool for document selection. Instead, we
want the ranking function to be applied to all matching documents before the final
document scores are calculated. This is where Elasticsearch’s function score query
comes into play, which allows us to implement the ranking function based on constant
values and variables retrieved from matching documents. The score for a document
that matches a certain topic is now calculated from the likelihood score of the topic
for this document, multiplied by the topic’s score in the topic centroid. To match
multiple topics from the topic centroid, we define multiple topic queries and sum up
the scores of matching documents, as we did with the full-text search.

Combination

To combine the scores of full-text and topic search, we merge those results again and
use another function score query to calculate the weighted average of the full-text and
topic scores. This however requires us to have a comparable value range, which is not
the case for full-text and topic score. Scaling the values by the highest score of each
query is also not an option due to the distributed architecture of Elasticsearch, which
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does not allow us to use the results of aggregation functions at query time. Therefore
the current implementation relies on a heuristic approach that uses logarithms with
different bases (which were discovered by trial and error) to map the scores to a
comparable value range. This solution is far from ideal, because its parameters must
be manually adjusted for each search index, but it works well when the parameters
are chosen with care.

Filters

To give the user more control about certain aspects of the search results, certain filter
functions are available in the prototype as well. These do not add any documents
and they do not require any scores to be calculated or merged. Instead, they simply
remove documents from the previous selection when they don’t match the desired
criteria, which in our case can be the date of publication or the name of an author.
Filters in Elasticsearch work analogous to regular databases on indexed tables and
therefore come at no major computational cost.

4.2.2. Query Pipeline

In this section we will review the concepts of the query pipeline that was already
discussed in Section 3.3.3 and adjust it where necessary to the reality of the prototype
that we have built. Figure 3.4 shows the query pipeline in its entirety.

Spell Checking

Spell checking relies on the combination of a conventional spelling dictionary as well
as terminology lookup in the search index. We use Hunspell [@Ném] as a traditional
spell checker, backed by an English dictionary. Only if Hunspell detects a word with
incorrect spelling, the search index is used as an additional source of terminology:
Elasticsearch’s suggest feature allows us to search for terms in the index that match
the misspelled word up to a certain Levenshtein distance. The search index may of
course contain spelling errors and other mistakes, therefore we do not accept very
infrequent terms as spelling corrections. So whenever a query term is not found in
the dictionary, suggestions from both Hunspell and the index are collected and the
correction with the lowest Levenshtein distance to the misspelled term is accepted.
This explicitly includes suggestions from the search index with a Levenshtein distance
of zero, which means the term was found in the search index with sufficient frequency,
although it was not part of the Hunspell dictionary, and is therefore considered to be
correct after all.

In the current implementation, corrections with a Levenshtein distance of two or less
are accepted, and suggestions from the search index have to occur in at least two
documents to be accepted, though all of these values are configurable. Furthermore,
when a possible spelling error is detected, the suggested correction is displayed on
the search result page, but it does not automatically replace the originally submitted
query. This measure was introduced because we were uncertain whether the spelling
suggestions would be correct in most cases, but as it turned out during testing, the
number of false corrections was almost negligible, so the automatic correction of
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spelling errors will probably be enabled by default in an upcoming version of the
search engine.

Session Update: Request

In the next step, the session of the user that submitted the query gets updated. In
the regular case, this just means that the current query is added to the query history.
There are however a few edge cases, that have to be considered:

1. Requesting additional search results: whenever the user requests more search
results for the same query, this query won’t be added to the query history to
avoid duplicates

2. Applying filters to the same query: when the results to the last query are filtered
by release date and the query remains otherwise unchanged, the updated query
will replace its predecessor instead of being appended to the query history

3. Accepting a spelling correction: when a suggested spelling correction is accepted
by the user, it replaces the last (incorrect) entry in the query history.

4. Navigation in the query history: when the user navigates to another point in
the query history, either by selecting an element in the breadcrumbs bar or
by using the browser’s navigation function, the query history at this step gets
restored before a new query is added (see Section 4.2.3 for details about session
persistence).

Main Query: Expansion & Execution

The main query determines the documents that are displayed in the search result
list. It is submitted to Elasticsearch which retrieves the ranked result list, possibly
by accessing multiple distributed nodes. The response contains the 10 highest scoring
documents (or as many as were requested). If however the user does not submit a
new query but merely wants to view more results for the same query, the entire query
building process can be skipped. Queries that are submitted to Elasticsearch are
cached for a while, and so are the results for that query, so when a user wants to
see more of them, we simply replay the last query and get the desired results almost
immediately.

For the main query, full-text search is preferred over topic search by a factor of two,
which results in a rather strong focus on text, but it allows the user to retrieve results
that correlate well with the search terms that have been entered. We have selected
this factor because it generated promising search results in the test phase of the
prototype, but it is freely configurable and an optimization of parameters like these
would be an interesting topic for future work.

Session Update: Response

After the results of the search query are available, the next step is to update the topic
centroid based on the response to the query. The 10 highest scoring documents are
used to identify the most important topics. The implementation of topic identification
is very close to the specification from Section 3.2.1, with one exception: Overlaps



4.2. Search Engine 57

between related topics have been ignored, therefore no virtual super-topics have been
generated for these topics. This decision was made because the topic model turned
out to have far fewer overlaps than expected and by only accepting topics in the
centroid that do not have any subtopics themselves (i.e. the most specific topics),
overlaps that would otherwise be caused by different positions in the topic hierarchy
can be avoided as well.

After the most important topics have been identified, the topic shift, as specified
in Section 3.2.2, is executed. First, the scores of the existing topics are multiplied
by fcooldown = 0.7, then new topics are added and the scores of existing topics are
combined with the new ones according to the scoring formula with wshift = 0.4.
Finally, topics with a score of less than 0.1 are removed from the topic centroid,
because they don’t contribute to the selection of new documents anymore. Again, all
of these parameters are configurable; they have been selected because they generated
search results that were in conformance with our expectations.

Suggestion Query: Formulation & Execution

The suggestion query defines the results that will show up in the sidebar of the search
result page under suggested search results. It uses the same query patterns that we
have seen in the search query, with a few notable exceptions:

• the topic query outweighs the full-text query by a factor of three

• all filters (time & author) are ignored

• all query terms are optional

The balance between text and topic search is the exact opposite of the previous
approach, where the full-text query had far more weight. However, full-text search
is still applied for two reasons: It gives a slight boost to documents that match both
the topics in the topic centroid as well as the query terms of the user, and it allows
us to use Elasticsearch’s highlight feature, which extracts text snippets from the
matched documents that contain the query terms. Displaying these snippets on the
search result page is important for the user experience, even if the document selection
scheme is predominantly based on topics and not on keywords.

The suggestion query is submitted to Elasticsearch as a separate query in a new
request after the main query was executed and the topic centroid was updated ac-
cordingly. This may seem to be a reason for concern, as two requests potentially
double the response time. This time, Elasticsearch’s caching system comes to the
rescue: As we have already submitted a very similar query before this one, large
parts of the query are still cached, which causes a considerable reduction in response
time of the suggestion query.

Result Page Generation

Finally, the necessary data structures for the search result page are built. The Elas-
ticsearch query was configured to return the relevant metadata with each search hit,
as well as a list of text snippets that contain some of the query terms. Based on these
snippets, the preview texts are generated that will be displayed on the search result
page. Furthermore the visualization of the current topic centroid is prepared, which
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we will discuss in Section 4.3. After the required data has been prepared, the HTML
template of the search result page is rendered and returned to the user.

4.2.3. Session Persistence

In this section we will describe the concept of session persistence, which is the foun-
dation for efficient query history navigation. The original motivation behind query
history navigation was to give the user the option to use the browser’s built-in nav-
igation function without breaking the work flow and causing unexpected results, if
the state of the session on the server side is out of sync with the current page on the
client side. This fix for a usability problem was turned into an additional feature that
allows the use of a breadcrumb trail for navigation, which gives the user some control
over the contents of the query history. We will discuss the usability implications of
this and other features in the next section.

Though the prototype has a HTTP interface, it is not an entirely RESTful [Fie00]
application, due to the fact that some session data is stored on the server side, ref-
erenced by a session ID, which makes it a stateful service. This was an intentional
design choice that was made for reasons of performance and especially security, be-
cause sensitive data like the last Elasticsearch query is cached in the session and
manipulation of this query by a malicious user could have harmful side effects. How-
ever, having a stateful web service creates issues like desynchronized state between
client and server, if navigation actions are not properly reflected on the server side.

It should be noted that it is possible to design a session-based search engine as a
stateless service, by having the user send only the absolutely required session data
with each request, like the query history and the topic centroid. This would result in
acceptable request sizes and manipulation of the request parameters would not impose
a security risk. However, with this approach server load would increase and query
response times would suffer considerably, because with each request the necessary data
structures would have to be rebuilt on the server side and a complete evaluation of
the query pipeline would be required. This negative impact would be most noticeable
with common actions like requesting more search results, which benefit most from
the server-side cache.

The alternative is to synchronize the state between client and server at each request,
which comes at the cost of additional complexity of the server code and requires
more memory for each user session, but brings the benefit of lower response times
and reduced processing load on the server due to effective use of caching. In the
prototype we implemented session persistence by introducing the step parameter,
which is a number which uniquely identifies each step in a search session. This step
parameter is transferred with every request of the user, and in case it is omitted
in a request, it defaults to the last step that was stored on the server side. When
the user navigates to an older page of a session, the step parameter from that page
is transferred with the next request and the state associated with this step can be
restored on the server side before the query is executed.

When a request comes in that would result in a new entry in the query history (i.e.
not a request to load more results or filter by date), the relevant content of the
current session context is persisted and stored under the current step number. The
stored data contains a copy of the query history, the terms and scores of the topic
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centroid and the last Elasticsearch query. Afterwards, a new step number is assigned
to the session and the query pipeline is executed as before. If a request with a step
number comes in that does not match the last step number of the current session, the
session context that was saved under that step number is restored and the request is
interpreted in the context of the restored session. The number of steps that can be
persisted this way is limited to 20 per session, so that each user can only reserve a
certain amount of memory on the server. This of course implies that query history
navigation is actually limited to the last 20 steps, but this should cover most, if not
all, use cases and make the service more resilient against potential denial of service
attacks.

4.3. User Interface

The user interface of the prototype comes in the form of a web application that was
built with the help of the web framework Flask [@Ron], which allows us to implement
all server-side functions in Python, while the contents of HTML pages are controlled
with the template engine Jinja. The layout of the search engine result page (SERP)
[HL09] is in line with contemporary web search engines to make it easily recognizable
even for first-time users of the application. It consists of three main elements: The
header section with the search box, the search result section on the left and the
sidebar with additional information and functions on the right. Figure 4.3 shows the
different elements of the search results page, which we will now review in detail.

a) Search Box

The search query input field (a.k.a. search box) allows the users to formulate their
search interests. While the search algorithms used by this search engine differ consid-
erably from other search engines, the search box works pretty much the same. The
only difference to conventional search engines is the reset button on the right, which
allows the user to forfeit the previous query history and to start a new session. Due to
the implementation of session persistence, as described in Section 4.2.3, this process
is reversible, so the contents of a previous session are not immediately lost if the user
wishes to return to the previous state, e.g. by using the browser’s navigation buttons.

b) Breadcrumbs

The breadcrumbs trail below the search box visualizes the query history of a search
session. Its purpose is to make the user aware, that previous queries are included in
the current search effort, and to allow free navigation in the query history. Navigation
in the query history is not a requirement to effectively use the search engine, but we
decided to still implement it for a variety of reasons: It can help the user to get
a feeling for the influence that different combinations of search terms in the query
history have on the search results. Also, the option to return to a previous “good”
state when the search results do not reflect the users interests anymore can be helpful
and may entice users to be more explorative. And some users could be annoyed by
the fact that they have no way to remove terms they entered by mistake from the
query history, even if they don’t impair the search results, which was actually pointed
out by participants of the user study.
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Figure 4.3.: Screenshot of the prototype’s search engine results page

The alternative would have been to not display the query history at all, which would
surely reduce some user’s urge to over-optimize their query history, but would also
make the system less transparent and leave the user with only one option to recover
if the search results are getting worse: starting a new session. This however would
eliminate the knowledge that the search engine has acquired so far about the user’s
search intent, which would make the session-based approach less effective and useful.
Therefore we decided to give the users the freedom to navigate in the query history,
even if this means that some may focus too much on this feature.

c) Search Results

The search result list contains the documents that the search engine deemed most
relevant for the user’s search query in the current session context. Figure 4.4 shows,
how a search hit is formatted on the search result page. The first line shows the title,
which links to the source of the document. Next to the title is a star icon which allows
the user to set a bookmark for this document in the sidebar when clicked. In the
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Figure 4.4.: A single document on the search result page, with a preview of its abstract

second line the authors of the document are listed, as well as the year of publication.
Each author name links to a new query that lists all papers by this author. The
following lines consists of a selection of text snippets from the document that match
the search terms, highlighted in yellow. In the last line there are five buttons:

• abstract: displays the abstract of the paper in a box below the button, with
highlighting of all query terms

• preview: opens another box that contains more snippets from the document,
also with highlighting

• topics: lists the topics that have been assigned to this paper, as well as the
most significant terms for each topic

• about: contains some additional metadata about the document as well as the
search result score.

• PDF : a direct link to the PDF version of the document, if available

By default, the 10 highest scoring documents are displayed in the result list and
more search results can be requested asynchronously by scrolling to the bottom of
the search result page.

Compared to other academic search engines, at least two widespread functions are
not available on the search result page: exporting citations and displaying other
documents that cited this paper. The lack of a citation export function has its root
in the nature of arXiv, which is a repository of preprints, i.e. papers that have not
yet officially been published in a scientific journal. A citation without a reference
to its original publication is usually considered incomplete, therefore we avoided to
give the impression that a proper citation is possible, given the information we have.
About the issue of determining, which paper has been cited by another: Achieving
this goal would only be possible if we had a substantial portion of the world’s scientific
publications in the index and had the capabilities to parse the publications in a way
that allows us to reliably retrieve the bibliography of each paper – none of which is
in the scope of this work.
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(a) The highest scoring topics of the topic
centroid, each with its most distinctive

terminology

(b) Visualization of the most relevant top-
ics and their defining terminology in a

tree structure

Figure 4.5.: Visualizations of the topic centroid

d) Filters

The first element in the sidebar is the filter box, which allows the user to restrict the
currently search results by release date or author. When a filter is applied, a new
Elasticsearch query gets executed, but as long as the query terms remain unchanged,
no new elements will be added to the query history in order to avoid duplicate entries.

e) Topic Centroid

In this sidebar element, the highest ranking topics of the topic centroid are visualized.
The purpose of this element is to make the user aware of the semantic capabilities
of the search engine and to give some insights into which topics were selected to be
most relevant in the context of the current search session.

There are two visualization options: list and graph (see Figure 4.5). In the list view,
the 10 highest scoring topics are displayed, along with the most significant terms for
each topic. In the graph view, the topics are arranged as nodes in a graph, where
each topic node is surrounded by its most distinctive terminology. The edges indicate
relationships between topics in the topic hierarchy, and the position of the node on
the vertical axis indicates its level in the topic hierarchy. So when viewed from top to
bottom, the graph actually resembles the tree structure of the underlying hierarchical
topic model.

The graph is an implementation of the concept described in Section 3.2.4 Topic Graph
Visualization, with the limitation that user interaction with the graph is not part of
this prototype. Other than that, the implementation is very close to the concept, e.g.
concerning the question how the nodes that are to be visualized are selected, which
parent nodes are chosen and on what basis the connections between the nodes are
drawn. In future work, the search results could be updated based on the changes to
the topic centroid that are caused by the user’s interaction with the graph. In the
context of collaborative search, a separate visualization of the shared topic model
could help the user to get an idea of what the group is currently searching for and
incorporate these topics in her own research.
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Our own assessment of the topic visualization is that it is not very useful to the end
user in its current form for two reasons: it is not easy to understand what a topic
is about based on the terms that are displayed and the visualization seems rather
complicated. Still, it is a practical tool to understand the influence of the topic
model which was especially helpful during the development of the prototype and the
suggestions for future work may yet turn this feature into a viable addition to the
search engine.

f) Bookmarks

The documents that the user has bookmarked by clicking the star button next to
the title will appear in this box. Each bookmark shows the paper’s first author, its
title, which links to the document’s source page, and the year of publication. The
documents in the bookmark list can be reordered by drag-and-drop, individual items
can be removed by clicking the cross icon on the right and all items can be removed
by clicking the clear all button. The copy button copies the current bookmark list
in the specified order into into the user’s clipboard, formatted as table, so it can be
easily inserted into a spreadsheet.

The saved documents are stored on the client side, in the browser’s IndexedDB, which
makes it independent of the current session and persistent even if cookies and cache
are cleared. This makes the bookmark storage as reliable as it can get without the
need to save them in a user profile on the server side. As already illustrated in
Section 3.1, the implementation of a user profile was intentionally avoided to show
that for the effective use of a session-based semantic search engine, no long-term
profile information about the user is required. Still, as soon as collaborative search is
involved, there will be a reason to have user profiles and then server-side storage of
bookmarked documents could also be added for convenience.

g) Topic-based Suggestions

This sidebar element contains a list of search results that are predominantly selected
by their similarity to the most relevant topics in the topic centroid of a search session.
The latest query terms and the other terms in the query history have only little
influence on these search results, but highlighting of text is still enabled to make
it easier to spot relevant documents. The purpose of this approach is to suggest
documents that are relevant for the user’s current research, but do not necessarily
match the keywords of the current or past queries, by harnessing the full potential of
the topic model.

The layout of the list of suggested search results is very similar to that of the regular
search results. The functions are all the same, but the allowed length of the text
snippets has been reduced to make them take no less than three rows, given the
lower width of the sidebar. Also, the margin between the buttons in the last row
has been reduced. The search engine does not allow any overlap between the main
search result list and the suggested search results; duplicates are removed from the
suggested search results.
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Figure 4.6.: Average response time relative to the load on the search engine (number
of requests per minute)

4.4. Performance Review

We have conducted a short performance review of the prototype in order to inves-
tigate, whether the query response times are within acceptable bounds and what
hardware is required in dependence on the number of concurrent users of the system.

The performance test has been performed on a single machine equipped with an Intel
Xeon E5-1650 v3 CPU (6 physical cores clocked at 3.50GHz), 64 GB DDR4 RAM
and a Samsung SSD PM863 with 480GB of storage space. Before each test, we restart
Elasticsearch and the web service and run a few queries to ensure that the relevant
index structures were transferred from disk to RAM. During each test, we generate
random search requests at a fixed frequency for a time span of 60 seconds. The queries
are generated by randomly selecting and combining terms from a pool of technical
terminology, which makes it highly unlikely that the same query is submitted twice
in a test scenario, therefore benefits from query caching are negligible. For each
submitted request, the search engine executes the query pipeline as usual and returns
the search result page. We measure the time that passed from the point where the
request was sent until the complete HTTP response has been received. The same test
is repeated under different server load scenarios.

Figure 4.6 shows the results of this test. In a low load scenario with just 60 requests
per minute, the average response time was at 0.86 seconds, with 1.7 seconds in the
worst case scenario. This performance remains relatively stable up to 600 requests
per minute, with an even lower average of 0.62 seconds. At 900 requests per second,
performance starts to degrade and the average response time increases to 2.03 sec-
onds, with sporadic requests taking up to 5 seconds. At 1200 requests per minute,
performance degrades fast and requests start to time out, because the search engine
cannot process enough requests to keep up with the demand.

The overall performance of the prototype is almost entirely dependent on the search
performance of Elasticsearch, which was confirmed by the distribution of CPU times
between the two processes that are involved. The Python application which manages



4.5. Discussion 65

the query pipeline and acts as a web server usually claims less than 3% of the total
processing time. This means that due to Elasticsearch’s horizontal scalability, suffi-
cient performance can be achieved even for large document collections and high load
scenarios if enough hardware is added.

We have found considerable differences in throughput and response time when a cus-
tomary hard disk drive is used instead of a solid state drive. The response times were
generally above 5 seconds and performance started to degrade at just 100 requests
per minute when the search index was stored on a magnetic disk. This issue could
be mitigated by loading the entire search index into memory, but even so the average
response times were comparable, but not better than in the scenario where the index
was stored on the SSD and only 4 GB of memory were assigned to Elasticsearch.
Apparently, adding more RAM to the system does not reduce query response times
or increase throughput, as long as the search index is stored on a sufficiently fast
SSD.

Besides random queries we have also tested the performance in the context of search
sessions. This measurement showed that there is no substantial difference between
the response time of the first query and any of the following queries in a search
session. This may seem surprising, because the more queries are submitted to the
same session, the more terms from the query history must be matched by the search
engine. But apparently the bottleneck for query response times is not the number of
terms in a search request.

The results of this performance review allow us to estimate the number of users our
test system could serve: If we assume that a typical user does not submit more
than one new query within a 10 second interval, the search engine can handle at
least 120 users working at the same time on this system. This number is probably
a conservative estimate, because in a realistic scenario, users often submit requests
that can greatly benefit from caching (like requesting more results for the same query
or changing the filter settings) and it can be assumed that the average user spends
more than 10 seconds to review the documents on the search result page and then
to formulate a new query. At the very least, this review has shown that the overall
performance of the prototype is more than sufficient to have a small group of people
working on the same system, which was an important prerequisite for the user study
we will present in the next chapter.

4.5. Discussion

We have built the prototype of a literature search engine which implements the con-
cepts of session-based search and topic search. The search engine is backed by the
information retrieval system Elasticsearch, which we used to index the full text and
metadata of 1.2 million documents from the arXiv repository. A web application
presents the search results as well as some more advanced features of the search
engine in a clear and concise fashion.

Search sessions have been successfully implemented, following the specification in
Chapter 3 in a way that a decent balance between the influence of the query history
and the latest query terms was achieved. The topic centroid was also implemented
as laid out in Chapter 3 and both the quality of topic-based search results as well as
the query performance were good enough that topic search was added as an influence
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factor to all regular search queries. Although collaborative search is not part of
the current implementation, the prototype was designed with this concept in mind:
Collaborative features can be added without major changes to the existing code base.

At first glance, the web interface provides the familiar experience of a literature search
engine with a few usability enhancements, but on closer examination it offers a variety
of features that are only realizable with a session-based semantic search engine. The
suggested search results in the sidebar are a direct result of the topic centroid that is
calculated for each search session, as is the visualization of the most relevant topics.
The impact of the search session on the search results is clearly visible after the second
query in a session, when not just the terms of the last query are highlighted on the
result page.

Our performance review has shown that the prototype has a sufficiently low query
response time of less than one second on a typical server system, provided that the
search index is stored on a solid state drive or in memory. The decent amount
of simultaneous requests our test system could handle, combined with the seamless
horizontal scalability of Elasticsearch, characterize this prototype as a practicable
search engine despite its early stage of development.

Nevertheless, a variety of well-intentioned features and low response times do not
necessarily make a great search engine. In the next chapter, we will try to investigate,
how the prototype is perceived by a real audience working on different literature
research scenarios.
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Chapter 5

User Study

We have conducted a small-scale, qualitative user study to investigate whether a
session-based semantic search engine is suitable for literature research and how well
the prototype that was created as part of this work can be used for this purpose.
To this end, we let the participants carry out several literature research tasks with
the prototype we described in the last chapter and a conventional academic search
engine, namely Google Scholar [@Goo]. The results from the comparison of the two
search engines should contribute to the answering of the following research questions:

• Are users able to find relevant search results using a session-based semantic
search engine?

• How is the quality of search results in terms of precision and recall, compared to
the conventional search? Are users satisfied with the results of their literature
research?

• How are the semantic capabilities of the search engine perceived? Does the
search engine suggest relevant documents that would otherwise not have been
found based on the user’s query terms?

• How is the session-based approach perceived? Does the inclusion of previous
search terms into the expanded query contribute to the quality of the search
results?

• What is the user’s perception of the usability of the prototype compared to the
competing product?

The participants fill in questionnaires which measure their satisfaction with the search
engines they have used. In addition, the results of each participant’s literature re-
search are saved. Based on these data sources, we intend to find answers for the
research questions.

5.1. Methods

During the study, each participant works on two different literature research tasks.
Both search engines rely on the arXiv document collection (the prototype by design,
Google Scholar will be restricted to the same data source), which offers access to
documents in a limited amount of disciplines. Therefore, research tasks have been
created for two of these disciplines: physics and computer science. The topics have
been compiled in a way that only basic knowledge of the field is required to solve
a task, so that differences in the participants background knowledge will not cause
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major differences in their performance. For each discipline, two different tasks have
been created. In Appendix A.2.1 a full transcript of each task can be found.

In a study session there are two passes under equal conditions: One with the prototype
and the other with Google Scholar. The order of the passes is randomized among all
participants, to mitigate the influence of learning effects in the course of the study.
Participants are subdivided in two groups: those working on computer science tasks
(CS) and those working on physics tasks (PH). Each member of a group participates
in one of four possible configurations: they either start with Google Scholar (G) or
the prototype (P ), and they either get task A or task B in their respective fields as
their first assignment. The configuration of each participant can be expressed as a
tuple defining the search engine and task the participant starts with. For example,
(G,A) would mean the participant starts with Google Scholar and task A, from which
we can infer that the second assignment of the participant would be (P,B), which
stands for the prototype and task B.

5.1.1. Procedure

At first the participants are asked to complete a demographic questionnaire, after
which they get some information about the purpose of the study. They are informed
that they will be solving two literature research tasks under equal conditions, each
one with a different search engine. The procedure for a single pass is as follows:

• Introduction: There is a brief introduction to the core functions of the search
engine by the supervisor of the study, so the participants can familiarize them-
selves with the search engine they are about to use.

• Reading phase (5 minutes): The task sheets are distributed and the participants
familiarize themselves with their literature research task.

• Research phase (12 minutes): The participants use the search engine that they
have been assigned to find relevant documents in order to solve their task.

• Rating phase (5 minutes): The participants review the search results they’ve
found and rate each result on a scale from 1 (not relevant) to 5 (highly relevant).

• Survey: The participants complete the task review questionnaire.

The total time for a session is expected to be about 60 minutes.

5.1.2. Implementation

Participants get to use a desktop computer or a comparable device with a keyboard
and mouse. All participants use the same web browser to access the search engines,
which in this case was version 60.0 of the Chromium browser. The workplaces of
the participants are arranged in a way that they are not encouraged to look into the
screens of other participants or to share information while they are working on the
task.

In order to make the results of both search engines comparable, the available docu-
ments must be restricted to the same source. The prototype has access to all doc-
uments in the arXiv database, which consists of about 1.2 million documents as of
2017. This however is only a tiny fraction of what Google Scholar has in its index.
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This disparity can be mitigated by restricting the search results of Google Scholar
to a specific domain, using the site filter. By appending site:arxiv.org to every
query, Google Scholar will only return documents found on the arxiv.org domain. We
have searched for a random selection of documents using this filter and based on our
observations we are fairly certain that Google Scholar has a complete and up-to-date
index of the documents hosted by arXiv. Still, having to enter the site filter after each
query would reduce the usability of Google Scholar and likely be a common source of
error among participants of the study. That’s why a browser script has been written
as part of this work (see A.2.2 for the source code), which will add the site filter to
each query that gets submitted by the user and removes the filter from the search box
again after the results have been loaded. With these measures in place, both search
engines can operate on the same document collection without imposing noticeable
usability restrictions.

In addition to evaluating the answers from the questionnaires we intend to gain
insights into the search performance of the participants by reviewing the results of the
literature research tasks. In order to rate performance, we first have to define how we
are going to measure relevance. Discovering all relevant documents in advance and
rating them accordingly is not a feasible solution, because there are usually too many
sources that could be at least somewhat relevant for a non-trivial question than any
one person can review. Therefore we don’t rate any documents in advance and instead
let the majority of the participants decide, which documents are relevant. After their
research, participants rate all documents they have selected from 1 (not relevant) to
5 (highly relevant). By aggregating the results of several participants, we can compile
a list of all documents that got at least two ratings and define the average of these
scores as the relevance of that document. Then we can compare the results of each
user to this aggregated list and measure, how many of the relevant results were found
and how far the participant’s rating was off the average. Identifying patterns between
different groups of participants, especially if they depend on the search engine that
was used, can help us to answer some of the research questions.

In practice, the participants will have to save their results somehow and then decide,
which rating to give. This can be done by having the participants copy their search
results into a spreadsheet and then leave a rating in the cell next to each selected
document. With Google Scholar, this is done by clicking the “cite” link on a search
result and copying the citation in a spreadsheet. Users of the prototype can use the
built-in bookmarking function (see 4.3f) to save search results and then copy all results
into the spreadsheet. In both cases, the spreadsheets are already prepared on the
participant’s computers so they can easily switch between browser and spreadsheet.

The sessions of the study should be arranged in a way that all participants can get
the same introduction to each search engine. It is advisable to have all participants
in a session start with the same search engine and then have multiple sessions with
different participants to balance the configurations. Also, we recommend to have the
same instructor in each session to visually explain the search engine to all participants
(e.g. using a video projector), so that everyone gets the same chance to understand
the basic functioning of each search engine.
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5.1.3. Tasks

The research tasks were designed in a way that allows the participants to explore a
complex, versatile topic where they can select the most promising documents from a
large variety of titles. Working on tasks that cannot be answered with a single search
query is crucial if we intend to measure the impact of the session-based and semantic
features of a search engine.

While the topic of a task has to be from one of the research fields that is available in
the arXiv data set, it is not helpful to cover highly specialized topics that require lots
of background knowledge. Covering topics that can be understood with basic knowl-
edge in the field helps to eliminate differences in participant’s search performance
that are caused by their educational background and it expands the pool of possible
participants.

To increase the interest of the participants in their work, all tasks were designed as
simulated work task situations [BI97], which is a technique that puts the task into a
realistic setting that the participants can identify with. A transcript of all tasks that
were used during the study can be found in Appendix A.2.1.

5.1.4. Questionnaires

Two questionnaires have been designed for the study: the demographic question-
naire, which asks for some information about the participant’s background, and the
task review questionnaire, which is filled after each research task. A copy of both
questionnaires can be found in Appendix A.2.3.

The purpose of the demographic questionnaire is to discover variables in the par-
ticipant’s background that could influence performance during the study. Therefore
the form contains typical questions about age, gender, proficiency in the English lan-
guage, formal education and work experience in fields related to the research tasks.
Another important influencing factor is the participant’s experience with search en-
gines in general and academic search engines in particular. Because self-assessments
are often not comparable between different participants, we decided to derive ex-
perience from objectively measurable values like usage frequency of search engines,
usage of advanced functions that search engines typically provide and awareness of
common academic search engines. Furthermore, we asked about experience with sci-
entific work, as it is to assume that participants who are adept in writing scientific
documents are likely to have some experience in literature research.

The goal of the task review questionnaire is to gain insights into the participant’s
perception of the overall usability of each search engine as well as the assessment of
specific features. To evaluate the usability of the search engine, we use the system
usability scale (SUS) [Bro+96], which was shown to be a valid and reliable tool to
measure and compare usability between different systems [BKM10]. The SUS con-
sists of ten statements which the participant assess on a five-level Likert scale. The
following section of the questionnaire concerns the participant’s experience with the
task at hand. We ask whether the participants felt they had enough time to solve
the task and if their background knowledge was sufficient to efficiently work on the
topic. Those are important indicators that can help to explain differences in search
performance. In the next part, we ask about specific functions of the search engines
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Figure 5.1.: Experience of participants and task ratings

and the participant’s assessment of the search results. We use the same questionnaire
for both search engines, although there are a few additional questions about certain
features of the prototype which will not be displayed during the review of Google
Scholar. Questions that explicitly ask the participants to compare the search engines
have been deliberately avoided, to have the participants focus on the search engine
they are currently using instead of rating every aspect in comparison to what they
have seen before.

5.2. Results

The user study has been conducted with a small number of participants from a non-
representative selection of the public. The qualitative nature of the study allows us
to gain insights into the reasons for the choices and behaviors of the participants, and
while the results are not generalizable to the public, they may give a first hint about
the possible benefits of a session-based semantic search engine.

5.2.1. Participants

A total of 11 people participated in the study, in four one-hour sessions with two to
four participants each. One result had to be removed due to technical issues, which
brings the number of valid results to 10 (the following analysis will not include the
invalid result). The participants were between 18 and 34 years old (answers were
given in intervals, so the true minimum and maximum are not known), two were
female and eight male. All participants were either students or had already finished
their studies. Six participants had academic experience in computer science, three in
mechanical engineering and one in physics. Six participants already had professional
working experience in their field of study.

All participants were native German speakers with intermediate to excellent profi-
ciency in the English language, according to a self-assessment based on the Common
European Framework of Reference for Languages (CEFR) [VVT+09]. The average
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language skill was between B2 (upper intermediate) and C1 (effective operational
proficiency), which is considered to be sufficient for the understanding of scientific
publications written in English.

The answers to the demographic questionnaire indicate that 9 out of 10 participants
use search engines on a daily basis, but advanced search functions like the use of
Boolean expressions or filtering results by time, region and language are primarily
used by the computer scientists among the participants, with an average of three
functions ever used in practice, compared to other participants who have on average
used only one of these functions in the past. When it comes to the usage of academic
search engines, five participants answered that they never or very infrequently use
them, while only three participants said that they use them at least somewhat fre-
quently. Concerning the advanced functions (e.g. searching for papers that quote a
paper, or exporting Bibtex citations), the results are similar to regular search engines:
while the computer scientists were aware of two or more of the suggested advanced
functions, the other participants have used at most one of these functions so far. Par-
ticipant’s experience with academic search engines seems to correlate with experience
in scientific work, as Figure 5.1a suggests. Three participants said they have never
used Google Scholar before.

5.2.2. Task Review

The research tasks that the participants have been assigned were met with mixed
feelings. The tasks got an average rating of 4 out of 7, based on the four questions
related to the task setting in the questionnaire. Half of the participants said they
didn’t have enough time to solve the task (which some also moaned in the comments
at the end of the questionnaire), though only two participants indicated they felt
somewhat overstrained by one of the tasks. Time pressure during the research phase
was expected to be an issue, nevertheless it was an intentional decision for two reasons:
the participants should be inclined to work quickly, as to see which search engine
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could help produce better results in a short amount of time, and it should allow to
investigate both search engines before the participant’s attention span decreases too
much.

Figure 5.1b shows the rating of each participant for the tasks that they have been
assigned when using the prototype and Google Scholar. While there are substantial
differences in the task ratings between participants, the rating for the second task
using a different search engine is consistent with the rating of the first task. This
indicates that the tasks from the same field are similar in difficulty, that differences
in the task ratings are primarily caused by differences in the participant’s backgrounds
and that the perception of a tasks difficulty is not influenced by the search engine
that has been used, which is a decent indicator for the validity of the answers.

Bangor et al. [BKM09] have investigated the meaning of SUS scores by comparing
the results of about 1000 studies that measured SUS for different application user
interfaces, most of which were web pages and mobile applications. Their results show
that the mean score for the reviewed applications was about 70, scores below 62 were
in the first quartile and scores above 78 were in the forth quartile. In this study,
Google Scholar got an average of 66 points by the participants, which is lies within
the second quartile, while the prototype got an average rating of 78, which is at
the border between the third and fourth quartile. Participants from different fields
had notably different perceptions of usability, as Figure 5.2a visualizes: Users with
a background in computer science generally gave more favorable usability ratings to
both search engines and put the prototype just 5 points ahead of the alternative.
Participants with a background in physics or mechanical engineering on the other
hand had stronger opinions on the subject and put a gap of 20 points between Google
Scholar and the prototype, giving the Google product a rating of only 54.

A more detailed look at the ratings gives some insight into the strengths an weak-
nesses of both systems: Figure 5.2b shows the average score for each of the 10 SUS
statements. The raw scores have been transformed into a rating in the [0, 1] range,
because SUS consists of both positive and negative statements and if a system is to
get the best usability scores, the participants must disagree with negative statements.
The diagram shows that the scores for both the prototype and Google Scholar were
surprisingly close for 7 out of 10 questions. Major differences were only observed in
statements 1, 5 and 8. The first statement (“I think that I would like to use this sys-
tem frequently”) has the largest gap and indicates that the prototype was generally
better liked by the participants than Google Scholar. The other statements (5: “I
found the various functions in this system were well integrated” and 8: “I found the
system very cumbersome to use”) suggest that the participants preferred the layout
of the prototype’s UI and found it more intuitive to use. Both Google Scholar and
the prototype scored relatively low on question 9 (“I felt very confident using the
system”). The variance among the ratings for this statement was higher than usual
and low ratings correlated with low experience in scientific work, which indicates that
this assessment was probably not only a result of the system’s usability.

Figure 5.3a summarizes the participant’s perception of each search engine’s features
and their general satisfaction with the results of their research. The ratings suggest
that the participants were more satisfied with the features of the prototype than
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Figure 5.3.: Participant’s satisfaction with the search engines and their research

those of Google Scholar. The search engine rating is generated from several state-
ments about features and experiences that apply to both search engines. The largest
difference concerned the statement “the presentation of the search results was very
clear”: While users of Google Scholar were neutral about this statement, the proto-
type got strong agreement with 6 out of 7 points. When asked whether they could
assess the relevance of a document based on the preview on the search result page,
users of Google Scholar slightly disagreed with the statement, but agreed (with a 5
out of 7 rating) when the prototype was used. Reason for concern gave the statement
“among the search results were mostly unsuitable documents”, which was also met
with indifference among users of Google Scholar and only caused slight disagreement
among users of the prototype. The gist of this is probably that literature research is
still a non-trivial task that people struggle with, at least given the tools that we have
today.

The rating of the search engine is also reflected in the participant’s assessment of
their own research effort: all participants were generally more satisfied with their
result when they were using the prototype and said they got a better overview of the
relevant literature.

Several unique features of the prototype were also part of the questionnaire, which
are visualized in Figure 5.3b. The results show that the ability to navigate freely
in the query history was very well perceived, while the suggested search results and
generally the functions provided in the sidebar did not seem to be that important to
most participants. This was also reflected in some of the comments at the end of the
questionnaire, although the suggested search results and other features of the sidebar
did get a favorable rating by those who actually used them. A rather small function
that was not an integral part of the prototype achieved critical acclaim among the
participants: with an average rating of 6.9 out of 7, the ability to save a search result
by clicking the star-icon next to it appeared to be very useful to all participants of
the study.

The comments at the end of the questionnaire gave valuable feedback about several
functions: The half-baked spell checker has been vastly improved after complaints by
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participants with dyslexia. Font sizes and the arrangement of some elements have
been adjusted to make all text equally well readable, especially in the sidebar. Some
of the suggested features were not yet implemented, like the ability to remove specific
steps from the query history or a way to preview the abstract of a saved search result,
but those are open for discussion.

5.2.3. Literature Research Results

All participants saved the documents they deemed potentially useful and gave them
a rating from 1 (not relevant) to 5 (highly relevant). The search results and ratings
of each participant are listed in Appendix A.2.5.

It was originally intended to rate the performance of each participant based on the
average rating of each document that was selected as result for a task, but due to the
small number of participants per task, this approach failed. On average, there were
only 5 people working on the same task and the vast majority of documents has been
selected by not more than one participant. The proportion of documents that got at
least two ratings lies between 13% and 26% per task. This circumstance also prevents
us from judging the relevance of the suggested search results, which we intended to
compare to the list of relevant documents that have been selected by the participants
for each task.

While the planned methods were not applicable under the given circumstances, some
insights can still be gained from the data we have. The participants have selected
between 4 and 13 documents during the research phase of each task, and gave each
topic a rating from 1 to 5. If we assume that each document that got an average
rating of 3 or more is at least somewhat relevant, we can count how many relevant
documents the participants have found in the limited time they had. Unsurprisingly,
learning effects could be observed, as can be seen in Figure 5.4a: During the first pass,
an average of 5.1 documents was found by the participants. During the second (last)
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pass, a participant found on average 6.1 documents. It is notable though, that during
the first pass, there are several outliers that performed far better than during the
second pass (as indicated by the dots in the leftmost panel). These can be explained
if we take a look at the number of relevant search results grouped by the search
engine that has been used: When using Google Scholar, the participants found an
average of 4.7 documents; the same average is at 6.5, when the prototype was used,
and the variance is lower compared to the first/last ranking we reviewed before. The
detailed analysis in Figure 5.4b backs this observation: There is only a single case
where Google Scholar is ahead of the prototype, and that is in an instance where the
prototype was the first search engine that was used. The previously observed outliers
are from participants that used the prototype during their first pass and consequently
scored lower during the second pass when Google Scholar was used.

5.3. Discussion

The evaluation of the study results is rather intricate under the given conditions: On
the one hand, the prototype got a consistently positive rating by the participants of
the study and was ahead of the competing search engine under many aspects. On
the other hand, the study was too small to make reliable statements and there were
methodical issues caused by the low number of participants, which would – strictly
speaking – invalidate all conclusions that we might draw from the data. Still, we will
attempt to shed some light on some of the research questions that we were trying to
answer.

First of all, it was clearly shown that the participants were able to work with the
prototype and to use it to find relevant results for the tasks they’ve been assigned.
All participants were able to solve their task using the prototype and there were no
technical issues related to the prototype during the study. This might seem like an
obvious prerequisite for this research, but given that the prototype was developed in
parallel to the study and that there were no major pretests, it was not clear from the
beginning whether the software would actually work as intended.

At least for the non-representative group of participants, the usability of the proto-
type is superior to that of Google Scholar. This is indicated by the results of the
System Usability Scale (SUS) and the agreement of participants to statements about
properties of the search engine they have used, as well as their satisfaction with the
results of their research. Though most participants seemed to prefer the prototype,
there were major differences in the usability rating in this relatively small group. How
the two search engines would fare in a representative sample is open for discussion in
future work.

There are patterns in the data which suggest that users of the prototype work more
efficiently and are therefore able to find more relevant results than users of Google
Scholar. This is indicated by the average number of relevant results that the par-
ticipants of the study have found during the research. While there seems to be a
learning effect that causes the results of the second literature research generally to
be somewhat better than the result of the first pass, the data also shows that users
of the prototype usually find more relevant documents and that this effect outweighs
the learning effect by a factor of two. Given that the choice which search engine gets
used first is randomized, this is a strong indicator that at least the participants of
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the study were able to work more efficiently with the prototype than with Google
Scholar.

The analysis of the participant’s research results showed that the overlap between
what the participants considered relevant for each task was rather low: More than
80% of the submitted documents were selected by just a single user. While this
circumstance made it more difficult to assess the relevance of search results, it also
shows how diverse the search behavior of different persons can be. In a collaborative
search scenario, this kind of diversity could become a valuable asset, which would
allow small groups to efficiently research a topic in parallel. Under such circumstances,
the most important documents can be identified by majority vote, yet at the same
time a good coverage of all at least somewhat relevant documents can also be achieved.

Assessing which function or combination of functions is responsible for the proto-
type’s success among the participants of the study is an important research question,
which unfortunately cannot be answered based on the available data. It is possi-
ble that the increased search performance is entirely based on differences in the UI:
This hypothesis is supported by the high usability rating and the rating of unique
UI-related features of the prototype, like the bookmarking system or the document
preview on the search result page. On the other hand, there is overlap between the
search results of Google Scholar and the prototype, so both search engines seem to
share some ideas about the relevance of documents, although the approaches differ
considerably: While Google can rely on usage statistics, the popularity of authors
and the number of quotations a paper received, the prototype can only work with the
facts that are found in the data and must build all additional data structures (topic
model and search index) around these facts. Given the fundamental differences be-
tween the approaches of the search engines, a positive reception by the participants of
the study seems unlikely if the quality of the search results was much worse than that
of Google Scholar. Figuring out how much influence the session-based approach has
on search performance, how much the topic centroid contributes to the relevance of
search results and how useful the search suggestions are that are primarily generated
from the topic centroid must however be deferred to future work.
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Chapter 6

Conclusion

We have described session-based semantic search, a concept for information retrieval
that improves the selection and ranking of search results by interpreting queries in the
context of a user-specific search session. To put this concept to the test, we have built
a prototype of a session-based semantic search engine, which we published as free and
open source software together with this thesis. In a qualitative, non-representative
user study we have shown that the prototype is suitable for exploratory search tasks.

Review

We have defined an information retrieval process that is built around the concept of
a search session, which serves as a container for all context information of a single
user that could be relevant for the ranking of search results. We relied on previous
research in the field of session-based search to specify a full-text search algorithm that
incorporates terms from the user’s entire query history.
To get a better understanding of the user’s search intent we introduced a novel method
to track the most relevant themes in a search session: the topic centroid. With the
help of statistical topic models, we are able to identify the most important topics in
a ranked list of search results. Using a method we call topic shift, we can iteratively
adjust the topic centroid with each submitted query, which allows us to recommend
new topics while still interpreting queries in the context of the entire search session.
These capabilities are reflected in a search strategy that combines full-text search
in the context of the entire search session with a topic-based retrieval method that
depends on the state of the topic centroid.
Furthermore, we discussed a concept that extends the presented methods to the
collaborative setting. We introduced the model of a shared topic centroid which is
influenced by the search behavior of all members of a group and in turn affects the
ranking of each user’s search results.
For the prototypical implementation of the search concept, we have built a search
index that contains the full text of all 1.2 million documents from the arXiv repository
as of March 2017. This document collection provided a sufficient basis for exploratory
search scenarios and its origin from an open access repository should allow other
researchers to rebuild the index with relatively low effort. We published the necessary
tools to retrieve the data, prepare the documents, generate a hierarchical topic model
and to finally build the search index.
Our prototype implements the core concepts of a session-based semantic search en-
gine, including search sessions, the topic centroid and a combined full-text and topic
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search algorithm. The user interface of the search engine provides the familiar experi-
ence of a conventional literature search engine, but it also offers a variety of advanced
functions that make use of contextual information. These include the visualization of
important topics in the topic graph, the suggested search results that are generated
from the state of the topic centroid and the breadcrumb trail which can be used for
navigation in the query history. Building a practicable solution that can also prevail
outside of the academic context was a priority during development of the prototype,
which is reflected in the decent results of the performance review.

To investigate how well the prototype fares under realistic circumstances, we have
conducted a qualitative user study in which we compare the prototype with a con-
ventional academic search engine. Due to the non-representative selection of partici-
pants, the results of the study must be treated with caution. However, we were able
to make a number of promising observations: All participants were able to work with
the prototype and to solve their assigned search tasks after a very brief introduction.
Also, the participants gave higher usability ratings and were more satisfied with the
results of their assigned tasks when they were using the prototype.

Future Work

By publishing the full source code of the search engine as well as all records regarding
the user study (see Appendix) we hope to encourage other researchers to contribute
to this work and to the the field of research it comprises. Throughout this thesis we
have discussed several prospects for future work:

The effectiveness of the concept of session-based semantic search in general and the
prototype in particular could be substantiated in a representative user study that
evaluates the performance of participants working with different information retrieval
systems. Such an endeavor could greatly benefit from the groundwork that we have
laid: The search engine and all the necessary tools to build a suitable search index
have been published and we have recorded our experiences during a small-scale user
study that can serve as a starting point for a larger follow-up study.

We have proposed a concept for collaborative search that has not been investigated
so far. It would be an interesting challenge to create a comprehensive concept for a
collaborative search engine where group members share a common search context, to
extend the prototype with an implementation of this concept and finally to evaluate
the benefits of such an approach in a user study.

An extension of other aspects of the prototype could also be of interest: The accuracy
of identified topics and therefore the topic centroid could be improved by evaluating
the user’s interaction with the documents on the search result page, as was discussed
in Section 3.2.3. Furthermore, only part of the concept for topic graph visualization
has been implemented so far and the current visualization of topics is often hard to
understand; the users would surely benefit from a more intuitive presentation of the
core topics in a search session.
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Prospects

We have observed that contemporary web search engines have aggressively optimized
their information retrieval methods with notable success, but the retrieval model has
largely remained unchanged. With the concepts that were presented in this work
and the prototype that was built, we have shown that it is possible to support the
user in complex exploratory search tasks that require several query reformulations
to be solved. It is our hope that the institutions which promote the dissemination
of knowledge, like public libraries and open access journals, dare to rethink the way
we interact with search engines today and keep an open mind towards novel search
concepts that have the potential to make the process of discovering knowledge as
exciting as it deserves to be.
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A.1. Prototype: Source Code

We publish the prototype of the session-based semantic search engine that was devel-
oped as part of this work under a permissive free software license, in the hope that it
may be useful to other researchers and developers. Please fork the project if you’re
interested in designing your own search engine; contributions to the code base are
greatly appreciated.

The prototype of the search engine consists of a web application written in Python
that uses the micro web framework Flask to process queries and serve search results.
At the time of writing, epic search is the working title of the project, though this
may change in the future.

The source code and accompanying documentation is located at:

https://github.com/Klamann/epic-search

Furthermore, we provide some tools that should help you to get started with the search
index. The index builder contains a set of scripts to get metadata from arxiv.org,
parse PDFs, create a topic model and to build the Elasticsearch index that can be
used by the search engine.

The source code and accompanying documentation is located at:

https://github.com/Klamann/search-index-builder

If you are interested in reviewing the state of these projects at the time this thesis
was submitted, you may checkout the projects and refer to the revision that has been
tagged with thesis-submission, or just follow these links:

https://github.com/Klamann/epic-search/releases/tag/thesis-submission

https://github.com/Klamann/search-index-builder/releases/tag/thesis-submission

https://github.com/Klamann/epic-search
https://arxiv.org/
https://github.com/Klamann/search-index-builder
https://github.com/Klamann/epic-search/releases/tag/thesis-submission
https://github.com/Klamann/search-index-builder/releases/tag/thesis-submission
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A.2. Survey

This appendix contains all materials that were used to execute the survey, as well as
the raw results of the survey in anonymized form.

A.2.1. Tasks

During the study, there were two groups of participants: computer scientists and
physicists (including mechanical engineers). For each group, two tasks were available
(one for the prototype and one for the reference search engine), for a combined total
of four tasks.

Crowd Work (CS, A)

This is task A for participants with a background in computer science.

Michael is as researcher who is currently occupied with the analysis of documents
for large archives. Often, the documents he’s working with are not available in
machine-readable form, which is why he spends a large portion of his work-
ing hours with the automated processing of documents, followed by wearisome
manual corrections of processing errors.

A while ago he heard about microwork or crowd work, a sub-area of crowdsourc-
ing, where people solve small tasks and get paid directly for each task they solve.
As a Wikipedia author, Michael has had good experiences with crowdsourcing
and could very well imagine to outsource the lengthy copying and correcting of
his documents to “the crowd”. He has already asked for a budget to implement
the concept, but the committee responsible is skeptical: it wants to see proof
that the idea can actually work.

Desperately, Michael turns to you: Because of an important project he is cur-
rently working on, he has no time to research the topic, but the budget for the
coming quarter will be determined in just a few days. Can you help him and
compile the necessary literature to convince the committee of his idea?

These topics are of special interest:

• For which types of work is crowd work suitable, for which ones is it not?

• How is the quality of the work of crowd workers to be assessed, especially
in tasks such as the digitization of documents?

• How is the handling of non-public or confidential data to be assessed?

• Are there any legal concerns? (e.g. compliance with minimum wages,
pause times and other regulations)

• Are there any ethical implications? (e.g. working conditions, social situa-
tion of workers)

Distributed Graph Processing (CS, B)

This is task B for participants with a background in computer science.
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Fabius is a software developer in a medium-sized enterprise, but recently he has
brought attention to himself with a project that he has pursued in his spare time:
a web search engine that differentiates itself from the competition. At a tech
conference, the prototype was so well received that an investor made Fabius an
offer: if the search engine works just as well with ten times the amount of data,
he will finance the project for a full year.

Fabius doesn’t want to miss this opportunity, but he quickly realizes that parts
of the search algorithm don’t scale with larger amounts of data. Especially the
link graph, which is the core of his search engine, is very slow since it doesn’t fit
into RAM anymore. He realizes that he has to distribute the graph on several
machines, even if this requires changes to the algorithms.

A couple of days later Fabius contacts you: He has come up with a concept
to efficiently calculate the necessary graph algorithms, especially PageRank, on
several machines. However, since he is not sure if he has missed an option, he
asks you to do some research for him. What are the currently best approaches
to calculate graph algorithms on distributed systems?

These topics are of special interest:

• Fabius only wants the best of the best: The system must be highly scalable,
therefore he is ready to test the latest methods and technologies.

• General information on distributed graphs is relevant, but the crucial factor
is the performance of the PageRank algorithm.

• Besides specific algorithms and frameworks, basic programming concepts
and best practices are also relevant.

Hubble Constant (PH, A)

This is task A for participants with a background in physics or mechanical engineering.

Marie is studying physics and has discovered her special interest in astrophysics
during her studies. Recently, she spoke at a conference with an ESA employee
who recommended that she should apply for an internship at the European
Space Operations Centre (ESOC) in Darmstadt. Upon request, she was offered
a position in a research group dealing with the measurement of the Hubble
constant.

The Hubble constant H0 describes the current rate of expansion of the universe
and is about 65 to 75 km

s·Mpc (Mpc = Megaparsec). The Hubble constant can be
inferred by measuring distances to other objects in the universe at different points
in time. Common methods include the measurement of the distance to standard
candles such as cepheids or supernovae of type Ia. A relatively new method uses
gravitational lenses to calculate the distance to objects behind them. For this
purpose, ESA has access to the Hubble Space Telescope.

Marie does not want to miss this opportunity and is therefore making extensive
preparations for the interview. To make sure she doesn’t miss any important
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information, she asks you in addition to her own research to look for recent papers
covering the current state of research on determining the Hubble constant.

These topics are of special interest:

• An overview of the current state of the research regarding the Hubble
constant

• Currently common measuring methods, as well as their advantages and
disadvantages

• Reasons for the differences between the measured values when using various
methods

• The latest measurements and the currently most promising methods

• Note: when it comes to concrete measurements, papers that are more than
10 years old are probably already obsolete from today’s point of view.

Graphene Supercapacitors (PH, B)

This is task B for participants with a background in physics or mechanical engineering.

Simon works as an engineer at a company that manufactures energy storage
systems for motor homes and energy-autonomous buildings. For this purpose,
photovoltaic systems and wind generators are primarily deployed in combination
with lithium-ion batteries. The use of rechargeable batteries is primarily due to
the high energy density and relatively low manufacturing costs, but also comes
with disadvantages: e. g. due to the low power density, devices with high peak
energy requirements cannot be operated directly.

The company is now considering to additionally deploy supercapacitors to com-
pensate for the disadvantages of the accumulators. Simon was entrusted with
the task of testing the use of different capacitor types and developing a combined
solution of battery and capacitor. Just before his first interim report, his man-
ager tells him that he recently read something about graphene based capacitors
that are far superior to the currently available components.

Graphene is the name for a modification of carbon with a two-dimensional struc-
ture, i.e. it consists of a single atomic layer of carbon. This provides it with some
special properties such as very good electrical conductivity and a high surface-
to-volume ratio, which makes it interesting for the use in capacitors. Simon is
now supposed to investigate the feasibility of graphene based supercapacitors on
the basis of latest research results, but so far he has not been very successful.
Can you help him find the literature he needs?

These topics are of special interest:

• An overview of the current state of the research regarding graphene super
capacitors

• Physical properties compared to conventional super capacitors
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• Production techniques and electrode materials that are used

• An assessment of the product maturity of graphene supercapacitors

Note

Every task had the following note at the end of the document:

A few general hints:

• It is important to get an overview of the literature on the topic - a glance
at the abstract is often sufficient for an initial assessment of a paper

• You do not need to answer the questions. It is all about finding the best
possible sources in which will likely contain the answers to the questions.

• Most papers will only answer one aspect of the question. Nevertheless,
all papers that can make a contribution to answering the questions are
relevant.

• In the research phase, about 5 to 20 documents should be selected; a
superficial check of relevance is sufficient. In the subsequent evaluation
phase, the papers can then be examined in more detail.

A.2.2. Document Filter for Google Scholar

This is a user script that works with browser extensions like Tampermonkey for
Chromium/Chrome and Greasemonkey for Firefox. It modifies all queries submit-
ted to Google Scholar to only display results from arxiv.org. This is an important
prerequisite to make the search results of Google Scholar comparable to the search
results of the prototype, because only then both search engines work with the same
document collection.
// == UserScript ==

// @name Google Scholar: arxiv.org filter

// @namespace google -scholar -arxiv -filter

// @author Sebastian Straub

// @description use "site:arxiv.org" for all google scholar queries

// @date 2017 -07 -08

// @version 0.0.1

// @include http :// scholar.google.de/*

// @include https :// scholar.google.de/*

// @include http :// scholar.google.com/*

// @include https :// scholar.google.com/*

// @grant none

// ==/ UserScript ==

(function () {

// find the relevant form fields

var searchForm = document.f;

var inputQuery = document.getElementById('gs_hdr_frm_in_txt ');

// add a note that the arxiv.org filter has been initialized

var note = document.createElement('span');

note.setAttribute('style', 'color: #d44;');

note.innerHTML = 'arxiv.org document filter enabled ';

searchForm.appendChild(note);

// add the event listener

searchForm.onsubmit = function () {

https://arxiv.org/
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var query = inputQuery.value;

if (query.indexOf('site:arxiv.org') < 0) {

query = query + ' site:arxiv.org';

}

inputQuery.value = query;

};

// check that "site:arxiv.org" was in the query

var filterIndex = inputQuery.value.indexOf('site:arxiv.org');

if (filterIndex >= 0) {

// great! remove the filter to make the displayed result more pretty

var q = inputQuery.value;

var userQuery = (q.slice(0, filterIndex) + q.slice(filterIndex + 14)).trim

();

setTimeout(function (){

inputQuery.value = userQuery;

}, 100);

} else {

// looks like someone is trying to trick us. Submit the query again

inputQuery.value = inputQuery.value + ' site:arxiv.org';

document.f.submit ();

}

})();

A.2.3. Questionnaires

Two questionnaires have been designed for the study: the demographic questionnaire,
which asks for some information about the participant’s background, and the task
review questionnaire, which is filled after each research task.

Demographic

This is a reproduction of the demographic questionnaire. The titles between the
questions have been inserted for convenience and were not part of the original form.
Processing instructions are placed within square brackets.

1. What is your gender?

a) female

b) male

c) other

d) I prefer not to answer

2. What is your age?

a) 17 or younger

b) 18 to 24

c) 25 to 34

d) 35 to 44

e) 45 to 54

f) 55 to 64

g) 65 or older

h) I prefer not to answer

3. How would you rate your English
skills? (according to the Common
European Framework of Reference for
Languages, CEFR)

a) A1: Beginner (Can understand
and use familiar everyday ex-
pressions)

b) A2: Elementary (Can under-
stand sentences and frequently
used expressions related to areas
of most immediate relevance)

c) B1: Intermediate (Can under-
stand the main points of clear
standard input on familiar mat-
ters)
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d) B2: Upper Intermediate (Can
understand the main ideas of
complex text on both concrete
and abstract topics)

e) C1: Advanced (Can understand
a wide range of demanding,
longer clauses)

f) C2: Mastery (Can understand
with ease virtually everything
heard or read.)

Education and field of study
4. What is the highest level of education

you have completed so far?
a) High school diploma
b) Bachelor’s degree
c) Master’s degree
d) Doctor
e) I prefer not to answer

5. Are you a student or did you study at
a university?
a) yes
b) no

6. Please specify your field of study
(multiple answers possible) [only if
5 a) selected, multiple choice]
a) Physics
b) Mathematics
c) Computer Science
d) Mechanical engineering
e) Electrical engineering
f) Other:

7. How many semesters did you study?
[only if 5 a) selected]
a) 1-2
b) 3-5
c) 6-8
d) 9-12
e) 13+
f) I prefer not to answer

Working experience

8. Please select all fields from the list,
in which you have working experience
[multiple choice]

a) Physics

b) Mathematics

c) Computer Science

d) Mechanical engineering

e) Electrical engineering

f) Other engineering

g) No working experience in one of
these fields

9. How many years of experience do you
have in the selected fields? (please use
combined experience in case of multi-
ple selection) [only if one or more of
8 a-f selected]

a) 0-1

b) 2-3

c) 4-5

d) 6-10

e) 11+

Usage of search engines

10. How often do you typically use search
engines?

a) several times a day

b) daily

c) several times a week

d) once a week

e) less frequently

11. Some search engines provide key-
words or filters to help you refine the
search results. Which of these fil-
ters have you used before? [multiple
choice]

a) by language or region

b) by file type

c) by release date
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d) by domain name
e) boolean expressions
f) none of the above

Experience with scientific work
12. How would you rate your experience

with scientific work? (e.g. research-
ing and writing papers)
a) 7 point Likert scale: Beginner ...

Expert
13. Which of these activities related to

scientific work have you already done?
[multiple choice]
a) wrote a term paper
b) wrote a thesis to gain a scientific

degree
c) published a scientific paper
d) held a talk on a conference or

workshop
e) published a doctoral thesis

Usage of academic search engines
14. How often do you use academic search

engines (such as ACM Digital Library
or Google Scholar) during your re-
search?

a) 7 point Likert scale: never ... ex-
clusively

15. Which of these academic search en-
gines are you using for literature re-
search? [multiple choice]

a) Google Scholar

b) Microsoft Academic

c) IEEE Xplore

d) ACM Digital Library

e) arXiv

f) CiteSeerX

g) Other:

16. Some academic search engines offer
advanced features that generic web
search engines typically do not offer.
Which of these features do you use?
[multiple choice]

a) find other papers of an author

b) filter by release date

c) find papers that quote a publi-
cation

d) find papers with similar content

e) export Bibtex quotation

f) others

Task Review

This is a reproduction of the task review questionnaire. The titles between the ques-
tions have been inserted for convenience and were not part of the original form.
Processing instructions are placed within square brackets.

System Usability Scale (SUS)

[All SUS statements use a 5 point Likert scale from strongly disagree to strongly
agree]

Please rate your experience with the search engine you’ve been using on a scale
from 1 (strongly disagree) to 5 (strongly agree)

1. I think that I would like to use this system frequently.

2. I found the system unnecessarily complex.
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3. I thought the system was easy to use.

4. I think that I would need the support of a technical person to be able to
use this system.

5. I found the various functions in this system were well integrated.

6. I thought there was too much inconsistency in this system.

7. I would imagine that most people would learn to use this system very
quickly.

8. I found the system very cumbersome to use.

9. I felt very confident using the system.

10. I needed to learn a lot of things before I could get going with this system.

Task Rating

[For the rest of the questionnaire, a 7 point Likert scale from strongly disagree
to strongly agree is used for all statements]

Please rate your experience with the task you’ve been assigned on a scale from
1 (strongly disagree) to 7 (strongly agree)

11. I had enough time to finish the task

12. I found the task was very simple

13. I was able to draw on a lot of previous knowledge, which helped me with
the task

14. I was overwhelmed with the task

15. I was able to gain a very good overview of the topic at hand

16. I am very pleased with the result of my research

Search Engine Features

Please rate your experience with the search engine you’ve been using on a scale
from 1 (strongly disagree) to 7 (strongly agree)

17. The search results fit very well with my search terms

18. The presentation of the search results was very clear

19. The filter functions (e.g. year, author) were very useful

20. I was able to judge the relevance of a search result just by looking at its
preview

21. Among the search results were mostly unfitting documents

22. Among the search results were often relevant documents which I would not
have expected based on my search terms
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Features of the Prototype

[only displayed, if the prototype was used. For questions 23-25, explanatory
screenshots were provided]

Please rate the features of the prototype on a scale from 1 (strongly disagree) to
7 (strongly agree)

23. The additional tools in the right column (sidebar) were very helpful to me

24. The terms in the "topic centroid" (sidebar) represented the topic of my
research very well

25. The suggested search results (sidebar) were relevant to my search

26. The possibility to save search results by clicking F was very useful to me

27. The possibility to navigate freely in the search history was very useful to
me

A.2.4. Participant’s Answers

Demographic Questionnaire

Participants (1/2)
P1 P2 P3 P4 P5

1. male male male female female
2. 18-24 25-34 18-24 18-24 18-24
3. C1 C2 B2 B2 B1
4. Bachelor Master High School High School High School
5. yes yes yes yes yes
6. Computer

Science
- Computer

Science
Mechanical
engineering

Mechanical
engineering

7. 9-12 13+ 6-8 6-8 3-5
8. Computer

science
Computer

science, Other
engineering

Computer
science

- Mechanical
engineering,

other
engineering

9. 0-1 4-5 0-1 2-3
10. a) a) a) c) a)
11. b), c), d) a), b), c), d),

e)
a), b) f) a)

12. 4 3 4 3 1
13. a), b), d) a), b) a) - a)
14. 3 1 5 5 1
15. a) - a) a) a)
16. a), d) - c), e) - b)

Participants (2/2)
P6 P7 P8 P9 P10

1. male male male male male
2. 25-34 18-24 18-24 25-34 18-24
3. C2 B2 C1 B2 C1
4. High School High School High School Bachelor High School
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Participants (2/2)
P6 P7 P8 P9 P10

5. yes yes yes yes yes
6. Computer

Science
Mechanical
engineering

Physics Computer
Science

Computer
Science

7. 6-8 6-8 6-8 9-12 6-8
8. Physics,

Computer
science

- - Computer
science

-

9. 2-3 0-1 0-1 0-1
10. a) a) a) a) a)
11. d), e) f) b) a), b) a), b), c), e)
12. 5 2 1 4 4
13. a), d) a) d) a), b) a), b)
14. 3 2 1 2 6
15. c), d) a) - a), c), d), f) a)
16. a), e) - - a), e) a), b), c), d),

e), f)

Task Review: Google Scholar

Participants
P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

SUS
1. 5 3 3 3 2 2 2 2 2 2
2. 1 2 2 2 3 1 2 3 2 3
3. 5 4 4 4 3 5 4 2 4 4
4. 1 2 2 2 4 1 1 2 2 1
5. 5 5 4 2 3 3 3 3 4 2
6. 1 1 2 2 4 1 1 4 2 3
7. 4 4 3 4 5 4 3 1 3 4
8. 1 2 2 2 2 3 3 4 1 5
9. 5 4 2 3 1 5 3 3 4 3
10. 2 1 2 2 3 1 2 2 2 2

Task Rating
11. 6 3 2 3 5 7 5 2 2 6
12. 5 2 2 4 3 2 3 5 4 4
13. 1 1 1 2 2 4 1 3 2 2
14. 1 2 5 4 3 1 1 2 4 2
15. 2 5 2 2 2 5 4 1 2 4
16. 5 3 4 3 1 4 3 2 1 3

Search Engine Features
17. 6 4 3 4 6 3 4 2 2 2
18. 7 5 2 4 4 2 4 2 4 2
19. 4 5 2 6 5 1 3 3 4 4
20. 3 4 2 4 2 1 2 1 5 3
21. 3 5 2 3 3 3 3 4 6 2
22. 2 2 5 2 4 7 2 3 3 1

Task Review: Prototype
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Participants
P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

SUS
1. 5 4 4 4 5 3 3 4 4 5
2. 1 4 2 2 1 2 2 1 2 2
3. 5 4 4 4 4 4 3 5 4 4
4. 1 3 2 2 1 1 1 2 1 1
5. 5 4 5 4 5 5 4 4 5 4
6. 1 3 2 2 3 1 2 2 2 2
7. 4 3 4 4 5 4 3 4 4 5
8. 1 2 2 1 1 1 3 2 1 1
9. 5 3 3 1 3 5 2 3 3 5

10. 2 2 2 2 2 2 2 2 3 1
Task Rating

11. 5 3 3 3 3 6 5 6 5 5
12. 5 2 1 4 3 6 4 5 3 5
13. 1 1 2 2 1 5 2 5 1 2
14. 1 4 5 3 2 1 1 2 2 1
15. 2 5 5 3 5 3 5 4 4 4
16. 6 3 5 3 6 5 6 6 4 4

Search Engine Features
17. 4 2 5 4 6 7 5 5 5 6
18. 7 5 7 6 7 7 3 6 6 6
19. 4 5 6 3 5 4 3 6 4 5
20. 3 2 7 4 6 5 6 3 6 6
21. 1 5 5 2 1 2 2 2 2 5
22. 3 3 2 3 5 5 4 3 6 4

Features of the Prototype
23. 4 6 6 - 6 4 4 6 5 4
24. 4 2 - - - 5 3 4 5 5
25. 4 6 6 - 4 5 2 3 6 -
26. 7 7 7 7 7 7 6 7 7 7
27. 5 3 5 6 7 6 3 6 6 7

A.2.5. Participant’s Search Results

The results of the participant’s literature research are listed in this chapter. The next
table specifies which tasks have been fulfilled by each participant.

Participant-Task-Mapping

Participant Type Task Engine Order
P1 CS Graph Google Scholar 2
P1 CS Crowd Prototype 1
P2 CS Graph Google Scholar 1
P2 CS Crowd Prototype 2
P3 CS Crowd Google Scholar 1
P3 CS Graph Prototype 2
P4 PH Hubble Google Scholar 2
P4 PH Graphene Prototype 1
P5 PH Graphene Google Scholar 1
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Participant-Task-Mapping

Participant Type Task Engine Order
P5 PH Hubble Prototype 2
P6 CS Crowd Google Scholar 2
P6 CS Graph Prototype 1
P7 PH Graphene Google Scholar 2
P7 PH Hubble Prototype 1
P8 PH Graphene Google Scholar 1
P8 PH Hubble Prototype 2
P9 CS Crowd Google Scholar 1
P9 CS Graph Prototype 2
P10 CS Crowd Google Scholar 2
P10 CS Graph Prototype 1

The next four tables specify the results that have been saved by the participants
for each task, as well as their ratings (ranged from 1 to 5). Documents are de-
fined by their arxiv ID, which can be easily requested by pointing a web browser to
http://arxiv.org/abs/<arXiv-ID>.

Crowd Work(CS,A)

arXiv ID Scholar Prototype
P3 P6 P9 P10 P1 P2

1108.1682 1
1204.3342 3 3 2
1205.3856 2
1301.2774 4
1304.3548 3 4 4
1309.3330 5
1310.1672 5 3 4 3 5
1310.5142 4
1310.5463 3
1311.2349 3
1403.0783 3
1406.7588 5
1501.06313 4
1502.07710 5
1503.05897 5
1511.06053 4
1609.01017

1609.04855 4
1609.04855

1610.06210 1
1611.01572 5 3 4
1611.02682 1
1702.01661 4
1702.04214 4
1702.08571 5
1706.10097 5 2
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Distributed Graph Processing(CS,B)

arXiv ID Scholar Prototype
P1 P2 P3 P6 P9 P10

0809.3232 4
0910.2004 4
0911.2280 4
1002.4482 5
1006.2880 4
1102.0694

1110.5844 2
1202.6158 4
1205.6343 2
1208.1926 4
1208.3071 5 5
1210.0530 3
1211.6159 4 3
1302.6636

1305.3178 2
1309.1049 4
1310.5603 5 5 3
1311.6209 5
1312.3018 3 4 4
1402.1472 2
1403.6270 5 4
1404.3861

1404.4887

1407.5107 3
1408.3030 3
1502.04281 5
1503.03155 5
1507.06702 3 5
1509.00016 3
1509.01476 3
1510.03145 4
1511.04925 4
1602.03718 4
1603.04467 2
1607.02646 5
1609.09068 3
1611.01907 3
1611.02663 3
1701.00503

1701.00546 4
1703.10628 4
1704.02003 3
cs/0310049 2
cs/0412002



A.2. Survey 105

Hubble Constant(PH,A)

arXiv ID Scholar Prototype
P4 P5 P7 P8

0709.3924 2 4 3
0902.4680 3
1003.2185 3
1004.1856 3 5 5
1005.0263 2
1006.5888 3
1010.2679 3
1202.4459 4
1303.2063 3
1309.4118 2
1406.1718 3 4 3
1606.07316 4
1607.03537 3
1607.06256 5 4 3
1704.04784 2
1706.09149 4
1707.00715 4

astro-ph/0305060 4
astro-ph/0309122 3 2
astro-ph/0407430 2
astro-ph/0603643 3
astro-ph/9602123 2
astro-ph/9604064 2
astro-ph/9707101 4
astro-ph/9801315 3
astro-ph/9805136 2
astro-ph/9810393 3
astro-ph/9909076 3

Graphene Supercapacitors (PH,B)

arXiv ID Google Scholar Prototype
P5 P7 P8 P4

1101.1064 3
1104.3379 2
1108.2331 3
1109.0978 3
1311.1413 3 4 5 3
1311.1548 4
1311.7529 2
1409.6396 2 3
1410.0767 5 4
1410.4223 3
1411.6278 3
1512.08000 3
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Graphene Supercapacitors (PH,B)

arXiv ID Google Scholar Prototype
P5 P7 P8 P4

1512.08288 3 4 4
1601.05173 4 3
1603.08320 2
1702.02031 4
1704.03227 2
1704.08405 2

cond-mat/0509355 1
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