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1 Introduction 

1.1 Overview 

Since the first clinical description of acute respiratory distress in adults was published in 

1967 (Ashbaugh et al., 1967), the development of new lung imaging techniques and the 

rapidly increasing availability of imaging technology have greatly contributed to the current 

understanding of the pathophysiology of the acute respiratory distress syndrome (ARDS). 

The latest definition of ARDS, the Berlin definition, emphasized the crucial role of imaging 

for the detection of the syndrome (Ferguson et al., 2012). Accordingly, besides 

hypoxemia, an important hallmark of the clinical syndrome of ARDS is the occurrence of 

reduced lung aeration, manifested by bilateral opacities on chest x-rays or computed 

tomography (CT) scans.  

In recent years, technical innovations have allowed the development and 

application of several new imaging techniques. The gamut has evolved from simple chest 

x-ray as the technological precursor of CT, to several additional structural and functional 

pulmonary imaging techniques, such as positron emission tomography (PET). Only four 

years after the first PET scanner was developed, Wagner and Welch reported about a 

new procedure developed for the labeling of albumin microparticles (microspheres) with 

the positron-emitter gallium-68 (68Ga). This compound allows PET-derived in vivo 

measurements of lung perfusion (Wagner & Welch, 1979a). Thus, the radiological 

assessment of lung aeration can be supplemented with PET-derived measurements of 

lung perfusion. The simultaneous acquisition of both structural and functional information 

is of especial interest in ARDS, where alterations in both aeration and perfusion impair 

gas exchange.  

Because of a mismatch of aeration and perfusion in most patients suffering from 

ARDS, mechanical ventilation is usually required in order to maintain oxygenation and 

carbon dioxide (CO2) removal and relieve the increased work of breathing. However, 

mechanical ventilation also has the potential to exacerbate existing lung injury and 

pulmonary neutrophilic inflammation. This phenomenon is termed ventilator induced 

lung injury (VILI). CT studies have revealed two primary potential mechanisms of VILI, 

which are tidal overdistension (i.e., volutrauma) and cyclic closing and reopening of small 

airways and alveoli (i.e., atelectrauma), (Muscedere et al., 1994). A recent study 

demonstrated that both volutrauma and atelectrauma can occur at the same time in 

different regions of the lung, despite the use of protective mechanical ventilation (Borges 
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et al., 2015), triggering an inflammatory response of the lung. However, to the knowledge 

of the author, a comparative analyzis of the individual impact of volutrauma and 

atelectrauma on the development and the persistence of induced lung injury has yet to be 

performed. 

Before the in vivo assessment of both structural and functional abnormalities in 

ARDS by PET/CT became widely available in hospitals, alternative techniques were used 

in experimental studies to assess pulmonary aeration, perfusion, and neutrophilic 

inflammation. For instance, microspheres labeled with non-radioactive tracers, such as 

fluorescent particles, allowed the analyzis of the distribution of pulmonary blood flow 

(Glenny et al., 1993). The assessment of the distribution of such microspheres can be 

performed without the use of PET/CT scanners. However, the analyzis of perfusion 

measurements with fluorescence-labeled microspheres must be performed ex vivo, which 

can cause deformation of the lung and thereby affect perfusion distribution. The 

fluorescence-labeled microspheres derived assessment of pulmonary perfusion 

distribution had originally been designed to study perfusion distribution in healthy lungs 

(Glenny et al., 1993). So far, there is no study validating whether fluorescence-labeled 

microspheres derived measurements of pulmonary perfusion distribution are valid in 

injured lungs.  

Imaging with PET/CT allows for in vivo and non-invasive quantification of the 

distribution of aeration, perfusion, and neutrophilic inflammation of almost the entire lung 

(Pesenti et al., 2016; Bellani et al., 2017). It is therefore an appropriate method to study 

the synergistic effects of both volutrauma and atelectrauma on the inflammatory response 

of the lung in ARDS and to validate the use of fluorescence-labeled microspheres in 

acutely injured lungs. 
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1.2 Background 

1.2.1 Pulmonary Pathophysiology Of Acute Respiratory Distress 
Syndrome (ARDS) 

ARDS is a life-threatening pulmonary condition, which is associated with relatively high 

morbidity and mortality in intensive care unit (ICU) patients. An international, multicenter 

study reported that, during an examination period of 4 weeks, 10.4 % of all patients 

admitted to the ICU in 50 countries of all five continents fulfilled ARDS criteria. Depending 

on the level of ARDS severity the mortality ranged between 34.9 % for those with mild and 

46.1 % for those with severe ARDS (Bellani G et al., 2016). The mortality has not 

decreased significantly since 1994 despite ongoing research, which reflects the 

importance of further investigation on ARDS.  

 Ashbaugh and coworkers published for the first time a clinical description of acute 

respiratory distress in adults (Ashbaugh et al., 1967). They reported about 12 patients that 

suffered from an acute onset of tachypnea, hypoxemia, decreased lung compliance and 

diffuse ‘bilateral alveolar infiltrates’ seen in radiographs of the chest. Following this initial 

description of ARDS, multiple definitions have been proposed. However, a clear definition 

was missing. In 1994 the American-European Consensus Committee on ARDS published 

a new definition (Bernard et al., 1994a), which has been used for several years. According 

to that definition, ARDS is characterized by an acute onset of hypoxemia (arterial partial 

pressure of oxygen to fraction of inspired oxygen, PaO2/FiO2, i.e. Horovitz Index) ≤ 

200 mmHg), bilateral, pulmonary infiltrates on frontal chest radiograph, and by no 

evidence of left atrial hypertension. According to the Horovitz Index they also described a 

new entity for patients with less severe hypoxemia, so-called acute lung injury (PaO2/FiO2 

≤ 300 mmHg). Since issues regarding the reliability and validity of this definition emerged, 

a panel of experts developed the Berlin Definition of ARDS in 2011. As of that, ARDS is a 

diffuse and acute inflammatory disease of the lung that is characterized by loss of aeration 

of lung tissue, increased permeability of the pulmonary-capillary membrane causing 

edema, increased work of breathing and impaired gas exchange (Ferguson et al., 2012). 

Instead of differentiating between acute lung injury and ARDS, they proposed 3 degrees 

of severity of ARDS, based on the level of hypoxemia: mild ARDS (200 mmHg < 

PaO2/FiO2 ≤ 300 mmHg), moderate ARDS (100 mmHg < PaO2/FiO2 ≤ 200 mmHg), and 

severe ARDS (PaO2/FiO2 ≤ 100 mmHg). Of note, higher severity of ARDS had been 

associated with higher mortality and increased duration of mechanical ventilation in 

survivors (Bernard et al., 1994b).   
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Etiology 

ARDS may result from direct injury to the lungs (pulmonary causes), but also from indirect 

lung injury (extra-pulmonary causes). Common pulmonary causes leading to direct lung 

injury are pneumonia and aspiration of gastric contents. Sepsis is associated with the 

highest risk of indirect lung injury (Pepe et al., 1982), followed by severe trauma with 

shock and multiple transfusions (Ware and Matthay, 2000). The risk of developing ARDS 

increases with the number of primary direct and indirect lung injury factors (Pepe et al., 

1982). Secondary factors, such as chronic alcohol abuse or chronic lung disease, further 

increase the risk (Hudson et al., 1995).  

Pulmonary endothelial and epithelial injury and, as a consequence, an increased 

permeability of the alveolar-capillary barrier are key features of the pathophysiological 

mechanisms of ARDS. As a consequence of the increased permeability of the epithelial 

barrier, influx of protein-rich edema fluid into the air spaces causes alveolar flooding. 

Furthermore, the production and turnover of surfactant is reduced, leading to an 

impairment of the mechanical properties of the lung and the formation of large atelectatic 

regions (Ware and Matthay, 2000). Atelectasis together with leakage of edema fluid and 

inflammatory cellular infiltrates cause a mismatch of ventilation and perfusion (Wheeler 

and Bernard, 2007).  

Therapy 

In order to counteract gas exchange failure and to reduce the work of breathing, 

mechanical ventilation is usually required in patients with ARDS. The increasing 

understanding of the pathophysiology of ARDS has led to the development and 

optimization of several protective mechanical ventilation strategies, which all aim to 

reduce morbidity and mortality of patients with ARDS. Those concepts include reduced 

tidal volume (VT) to limit lung stress and strain, low airway pressures (Paw) to reduce 

overdistension and the application of adequate positive end-expiratory pressure (PEEP) to 

reduce alveolar collapse, preventing cyclic collapse and reopening.  

 Protective mechanical ventilation with low VT has been proven to decrease the 

mortality in patients with ARDS (Amato et al. 1998; Ware, 2006). Also, the use of prone 

position was shown to improve survival in these patients (Guérin et al., 2013). However, 

the therapy of ARDS remains merely supportive, and aims at gaining time until the 

primary disease is treated (Gattinoni and Quintel, 2016)   
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1.2.2 Ventilator Induced Lung Injury 

Concerns about the harmful impact of mechanical ventilation are at least as old as the 

description of ARDS itself. In 1967, Nash and coworkers already expressed concerns that, 

in patients requiring mechanical ventilation, the pulmonary function gradually worsened 

and that this worsening seemed to be unrelated to the diseases requiring pulmonary 

function assistance (Nash et al., 1967).  

While during spontaneous breathing inspiration is driven by negative inspiratory 

Paw, mechanical ventilation generates positive Paw in order to initiate inspiration. This 

positive pressure can lead to abnormal distribution and amplitude of mechanical forces 

across the lungs. Ideally, the positive pressure is equally distributed across all alveoli. 

However, Gattinoni and coworkers showed that patients with ARDS feature a markedly 

reduced extent of normally aerated lung, which has the approximate volume of the lung of 

a 5 to 6 year-old child (Gattinoni et al., 1986c). In addition, alveolar edema accumulates. 

The overall stiffness of the lung is reduced as only the residual normally aerated lung 

regions feature nearly normal elastic properties (Gattinoni and Pesenti, 2005). Therefore, 

ARDS lungs are inhomogeneous regarding both their structure and function. Inspiratory 

distending pressures and associated forces acting on the pulmonary micro-structures 

become heterogeneously distributed. The same transpulmonary pressure, which is acting 

as the distending force of the lung, is applied to a smaller part. Consequently, mechanical 

ventilation can result in an overdistension of the remaining, already well-aerated, non-

dependent lung regions (Gattinoni et al., 2003), even when VT is limited to 6 mL/kg of 

predicted body weight (PBW), and plateau pressure does not exceed 30 cmH2O (Terragni 

et al., 2007). The associated high static stress and strain can lead to disruption of airways 

and alveolar walls and breakage of cellular membranes (overstretching). Damage of the 

lung from tidal overdistension is called baro- or volutrauma.  

When mechanical ventilation is applied to an inhomogeneous lung or PEEP is 

insufficient to keep the lungs open at the end of expiration, parts of the collapsed or poorly 

aerated lung areas reopen and collapse at the end of inspiration and expiration, 

respectively (tidal recruitment). This can occur even at very low VT of 5 to 6 mL/kg PBW 

(Muscedere et al., 1994), and can generate excessive shear stress at the boundaries 

between open and collapsed alveoli (Mead et al., 1970). Non-physiological changes in 

airway diameter and cell morphology and associated non-physiological pressure gradients 

around the reopening alveoli and airways can also damage pulmonary epithelial cells 

(Bilek et al., 2003). Injury induced by cyclic recruitment and derecruitment is usually 

termed atelectrauma.  
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Ex vivo studies have revealed that both volutrauma and atelectrauma are potential 

mechanisms of VILI. In a VILI model of ARDS in rats, Webb and Tierney found that 1 h of 

mechanical ventilation with a peak inspiratory Paw of 45 cmH2O and zero PEEP caused 

development of hypoxemia, perivascular and alveolar edema, decreased dynamic 

compliance, and death within one hour (Webb and Tierney, 1974). In isolated, non-

perfused, lavaged rat lungs, Muscedere and coworkers found that ventilation with a VT of 

5 to 6 mL/kg PBW and PEEP adjusted to remain below the lower inflection point of the 

pressure-volume curve caused dramatic reduction of lung compliance and the 

development of substantial lung injury as assessed morphologically by airway injury 

scores and hyaline membrane formation (Muscedere et al., 1994). 

Abnormal cyclic stretching of lung tissue due to volutrauma or atelectrauma can 

lead to the activation of macrophages and trigger the production of cytokines, including 

interleukin-6 (IL-6), interleukin-8 (IL-8), and tumor necrosis factor-alpha (TNF-α), 

(Tremblay et al., 1997). Those cytokines attract and activate neutrophils with a 

consequent high and complex inflammatory response of the lung (Gattinoni et al., 2003). 

In vivo studies using lung imaging with PET and the glucose analog 2-deoxy-D-glucose 

labeled with fluorine-18 (18F), (18F-FDG) confirmed that mechanical ventilation can cause 

volutrauma and atelectrauma in specific, heterogeneously distributed lung regions, and 

that both mechanisms seem to worsen lung injury (Musch et al., 2007; de Prost et al., 

2011).  

However, ex vivo and in vivo studies have yielded disparate findings regarding the 

degree of injury induced by volutrauma and atelectrauma. In a saline lung lavage model of 

ARDS in rabbits, Otto and coworkers found that after ventilation with high VT of 

28 mL/kg PBW, low respiratory rate (RR) of 8 breaths per minute, and low PEEP of 

3 cmH2O for up to 6 h, edema formation, expression of IL-8, and alveolar neutrophil 

accumulation progressed more rapidly in dependent lung regions. This indicates that 

atelectrauma might have caused a higher inflammatory response as compared to 

volutrauma (Otto et al., 2008). In contrast, in a saline lung lavage model of acute lung 

injury in rabbits, Tsuchida and coworkers found that 90 min of injurious mechanical 

ventilation with VT of 25 mL/kg PBW and PEEP of 4 to 7 cmH2O was associated with 

higher alveolar injury (i.e., histology, myeloperoxidase protein expression, quantification, 

and localization of cytokine mRNA expression) in non-dependent, non-atelectatic regions 

associated with alveolar overdistension, as compared to dependent, atelectatic regions 

(Tsuchida et al., 2006).  
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Consistent with this, in a double hit model of ARDS in sheep, Borges and 

coworkers found that 27 h of protective mechanical ventilation with low VT of 

6 mL/kg PBW was associated with higher neutrophilic inflammation in non-dependent lung 

regions associated with volutrauma as compared to the second most ventral region, which 

was associated with typical features of atelectrauma (Borges et al., 2015). 

The differing findings about the degree of injury induced by volutrauma and 

atelectrauma were very likely determined by a different extent of volutrauma and 

atelectrauma in various ARDS models. Their relative contribution to VILI is not well 

established. This insight may be relevant not only to better understand the mechanisms of 

VILI, but also to improve protective mechanical ventilation strategies in patients with 

ARDS. 
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1.2.3 Animal Models of ARDS 

In vivo studies are necessary to gain insights into the pathophysiological mechanisms and 

to understand the impact of new treatment strategies in ARDS. Usually, such studies 

cannot be performed in patients, especially when radioactive material or ionizing radiation, 

or both, is used. Therefore, experiments in animals are necessary. In 2010, Matute-Bello 

and coworkers summarized that an animal model of ARDS should reproduce at least 

three of the following four main features of experimental acute lung injury: (1) histological 

evidence of tissue injury; (2) alteration of the alveolar capillary barrier; (3) a pulmonary 

inflammatory response; and (4) evidence of physiological dysfunction (Matute-Bello et al., 

2011). The most commonly used models of ARDS are: intravenous infusion of 

lipopolysaccharide, instillation of hydrochloric acid into the tracheobronchial tree, 

intravenous infusion of oleic acid, injurious mechanical ventilation, and repetitive 

bronchoalveolar lavage with saline (Rosenthal et al., 1998a). However, none of those 

animal models of ARDS is able to reproduce all features of human ARDS. Therefore, the 

model used in an experimental study of ARDS has to be chosen in respect to the 

particular question being studied. 

 The saline lavage model of ARDS developed by Lachmann and coworkers in 1980 

is based on the observation that ARDS in humans is associated with the depletion of 

surfactant (Lachmann et al., 1980). Lung injury induced by surfactant depletion is 

produced by two mechanisms. The washout of alveolar surfactant increases the surface 

tension of the alveoli, which, as a consequence, promotes collapse of the alveolar space 

and small airways and increases the risk of tissue damage due to cyclic recruitment and 

derecruitment. In addition, the depletion of surfactant is associated with an impairment of 

alveolar host defenses (Matute-Bello et al., 2008a). As a consequence, gas exchange is 

impaired and immediate hypoxemia results (Lachmann et al., 1980), while hemodynamics 

remain stable (Rosenthal et al., 1998b) and the inflammatory response remains relatively 

mild (Matute-Bello et al., 2008a).  

The double hit model of ARDS includes saline lavage as first hit, followed by 

injurious mechanical ventilation with high volume changes or high static volumes, or both, 

as second hit. Injurious mechanical ventilation can cause cyclic recruitment and 

derecruitment, which is associated with an injury of the alveolar wall and the accumulation 

of alveolar edema. A type of injury develops that is very similar to human ARDS, including 

the following key features: hypoxemia, presence of atelectatic regions, reduction of 

compliance, and increased shunt fraction associated with a mismatch of ventilation and 

perfusion.  



 1 Introduction 

17 

1.2.4 Assessment of Pulmonary Aeration by Computed 
Tomography (CT) 

In the original description of acute respiratory distress in adults in 1967, chest x-ray 

imaging was already used to describe typical features of the disease (Ashbaugh et al., 

1967). However, due to missing criteria for the interpretation of chest radiographs, they 

showed poor inter-observer reproducibility. In 1983, Rommelsheim and coworkers 

reported for the first time about the use of CT in ARDS. The authors described a “dorso-

central distribution of densities observed especially during the edematous phase of the 

syndrome” (Rommelsheim et al., 1983). In the two following papers published 

independently in April 1986, CT revealed that dense lung tissue areas are not 

homogeneously distributed in patients with ARDS, contrary to what chest x-rays had 

mostly suggested, and instead are mostly found in dependent lung regions (Gattinoni et 

al., 1986a; Maunder RJ et al., 1986). Maunder and coworkers also reported on the impact 

of PEEP on tissue density, showing responsiveness to PEEP in some patients but not in 

others (Maunder RJ et al., 1986). Since then, CT has had a substantial impact on the 

understanding of the pathophysiology of ARDS. In fact, in the Berlin definition of ARDS, 

CT is explicitly recommended as substitute for chest radiography for the diagnosis of 

bilateral opacities (Ferguson et al., 2012). In comparison to chest radiograph, CT has 

been proven to be more accurate for the diagnosis and the identification of the underlying 

causes of ARDS (Mazzei et al., 2012; Sheard et al., 2012). In addition, CT provides data 

with relatively high spatial resolution. Therefore, CT has become the gold standard for the 

diagnosis of bilateral opacities. However, the advantages of CT have to be weighed 

against its risks, including exposure to ionizing radiation as well as logistical aspects like 

the transport of critically ill patients to the imaging facility. 

CT was developed by the English physicist Hounsfield in 1967, and measures the 

attenuation of x-ray beams passing an imaged region. In the CT scanners of today’s state 

of technology, 700 to 1000 detectors are stationary and assembled in a fixed circle around 

the field of view. Only the x-ray tube rotates around the body and emits x-rays 

(Hounsfield, 1980). The detectors measure the percentage of x-rays absorbed by the 

tissue of given volume within the scanned region. Helical rotation of the x-ray tube around 

the field of view and repetitive measurements of the attenuation of the x-rays at different 

angles of the x-ray tube allow the acquisition of a three-dimensional dataset. Solving 

linear equations in the course of back projection methods allows the approximate 

determination of attenuation coefficients for all volume elements (voxel) within the three-

dimensional imaged field of view without an overlap. 
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Although the first CT scanners became available in the mid-1970s, the first reports 

about CT imaging of acute respiratory failure were reported in the mid-1980s 

(Rommelsheim et al., 1983; Gattinoni et al., 1986b; Maunder RJ et al., 1986). Since then, 

quantitative analyzes of CT data has more widely been used and has so far provided the 

most relevant information about ARDS (Gattinoni et al., 2001).  

The relationship between the CT number and the physical density of the material 

being studied (grams per milliliter) is complex and depends on the incident energy, atomic 

number of the tissue, mass electron density, and the physical density itself. However, it 

has been shown experimentally that the first three mentioned factors are approximately 

constant and that the CT number is mainly determined by the physical density (Gattinoni 

et al., 1986d). Therefore, a simplified linear correlation between the CT number and the 

density of an imaged region, as shown in Equation (1.1), is well accepted. 

 1000numberCT OH OHx 2 2 ×
µ

µ−µ
=  (1.1) 

The variable µx represents the attenuation coefficient of x-rays in a defined volume of the 

material being studied and µH2O is the attenuation coefficient of water. The CT number is 

expressed in Hounsfield units (HU). 

A higher CT number therefore suggests that the density of a lung element, which is 

determined by the content of alveolar gas, lung tissue, blood, and water within the voxel, 

is increased (Gattinoni et al., 2001). The linear relationship shown in Equation (1.1) can 

be used to calculate the average fractional gas content (FGas) within a region of interest, 

as shown in Equation (1.2). 

 1000numberCTFGas
−

=  (1.2) 

 The fractional gas content (degree of aeration) of lung tissue usually decreases 

when the degree of severity of ARDS increases.  
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1.2.5 Principles of Positron Emission Tomography (PET) 

PET is a functional imaging technique that allows quantification of physiological 

processes. A radiopharmaceutical, also called a tracer, is composed of a molecule that is 

labeled with an unstable radioisotope. This compound is usually injected intravenously 

and distributes throughout the body via the blood stream. The unstable radioisotope 

decays by the emission of positrons. Depending on the initial energy of the positron and 

on the tissue density, it travels a certain distance within the body until it interacts with an 

electron of the surrounding matter. This annihilation event leads to simultaneous emission 

of two photons of equal and high energy that travel in the exact opposite direction. The 

two photons reach the circularly arranged detectors of the PET scanner surrounding the 

field of view almost simultaneously, i.e. in coincidence. This allows the localization of the 

annihilation event along the line between these two registering detector elements (so-

called line of response). Figure 1.1 illustrates one such event and the travel of the emitted 

photons.  

 The placement of several detector pair combinations in rings around the studied 

object allows the simultaneous detection of several million coincidences (Phelps, 2000). 

Reconstruction of the detected coincidences provides tomographic images of the spatial 

distribution of the tracer within the scanned field of view. PET-derived measurements are 

expressed as activity concentration, which specifies the activity originating from the tracer 

(expressed in Becquerel, Bq) relative to the volume in which the tracer is spread 

(expressed in ml). One Becquerel is equal to one radioactive decay per second. The 

reconstruction of the derived data includes several corrections, mainly for photon 

attenuation and scatter, random coincidences, and radioactive decay. 
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Figure 1.1:  Schematic description of the principles of PET imaging. Reproduced and modified 
from (Bellani et al., 2011). 

 Some of the advantages of PET scanning are its in vivo and non-invasive 

measurements and the fact that measurements are derived as three-dimensional 

datasets. This allows the detection of regional abnormalities and the correlation of PET 

data with data derived from other imaging techniques, such as structural information 

derived from CT. Among the disadvantages are limited resolution and radiation exposure. 

Since imaging takes several minutes for static PET scanning of the whole lung, and 60 to 

75 min for dynamic PET imaging, artifacts due to cardiac and respiratory motion cannot 

be completely avoided. Whereas static PET scanning allows for determination of the 

spatial distribution of a tracer within a big field of view, dynamic PET scanning allows for 

tracking tracer's kinetics over time.   
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1.2.6 Assessment of Regional Pulmonary Perfusion 

1.2.6.1 Measurement of Regional Pulmonary Perfusion with 68Ga-labeled 
Microspheres and PET 

In 1979, and therefore only 4 years after the first PET scanner was developed, Wagner 

and Welch had begun to study the labeling of human serum albumin microspheres with 

the tracer 68Ga (Wagner and Welch, 1979), which can be used for static PET-derived in 

vivo measurements of the vascular permeability. The department of nuclear medicine of 

the University Hospital Carl Gustav Carus has the expertise and required facilities to label 

human albumin microspheres (HSA Mikrosphären B20, ROTOP Pharmaka GmbH, 

Dresden, Germany) with 68Ga (Kotzerke et al., 2010; Oehme et al., 2014). Briefly, 68Ga is 

produced using a germanium-68/gallium-68 generator (ITG Isotope Technologies 

Garching GmbH, Germany) and taking advantage of the decay of germanium-68 to 

gallium-68. Thereafter, microspheres B20 get labeled with 68Ga using a microsphere B20 

kit (Rotop Pharmaka GmbH, Dresden, Germany). The human serum B20 albumin 

microspheres have an outer diameter of 10 to 30 µm, which is not altered upon binding of 
68Ga to the microspheres. The 68Ga-labeled albumin microspheres feature a high stability, 

an excellent in vivo stability, biocompatibility, and a uniform size (Wunderlich et al., 2010; 

Wagner and Welch, 1979). They have also been shown to be an accurate tool to study 

pulmonary perfusion in vivo (Richter et al., 2015; Beck, 1987b; Richard et al., 2002). In 

view of these facts, several experimental studies used 68Ga-labeled microspheres and 

PET scanning for the assessment of pulmonary perfusion in ARDS animals (Richter et al., 

2005; Güldner et al., 2014; Richter et al., 2015). It has been shown that following 

intravenous injection into the pulmonary artery, almost all 68Ga-labeled microspheres are 

trapped in the pulmonary capillaries and arterioles during the first pass, while other organs 

are practically not reached (Willmott et al., 1989). The magnitude of the regional trapping, 

or micro-embolism formation, is directly proportional to regional perfusion. It is estimated 

that 100.000 microspheres temporarily occlude approximately every millionth capillary and 

every thousandth arteriole, which represents about 0.5 % of all pulmonary blood vessels 

(ROTOP Pharmaka GmbH, 2016). It can therefore be assumed that the injection of an 

appropriate number of microspheres does not importantly alter the pulmonary perfusion 

(Glenny et al., 2000a).  
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Static PET scanning of the coincidences originating from the decay of 68Ga allows 

the detection of the trapped 68Ga-labeled microspheres right after their injection. However, 

especially in ARDS lungs, tissue density and thereby the extent of lung tissue per voxel is 

mostly heterogeneous throughout the lung. Therefore, the number of trapped 68Ga-labeled 

microspheres in the pulmonary capillary bed has to be corrected for the number of blood 

vessels the microspheres are trapped in. Assuming a linear correlation between tissue 

density and the number of blood vessels supplying the tissue, regional pulmonary 

perfusion can be determined as the ratio of the PET-derived number of trapped 68Ga-

labeled microspheres relative to the CT-derived tissue density. Thus, ideally, the PET 

estimations of lung perfusion are independent of regional difference in lung inflation and 

allow quantitative analyzis of pulmonary perfusion of ARDS lungs (Richter et al., 2010).  

Since one PET scan only captures a 15 cm cranio-caudal field of view, three static 

PET scans at different overlapping bed positions are usually required to image the whole 

lung of large animals or adult human beings.  

1.2.6.2 Measurement of Regional Pulmonary Perfusion with Fluorescence-labeled 
Microspheres 

Compared to radioactive microspheres, the use of fluorescence-labeled albumin 

microspheres is a non-radioactive and cheaper alternative for measurements of regional 

pulmonary blood flow (Glenny et al., 1993). Fluorescence-labeled microspheres show a 

relatively long shelf life and do not require an expensive, radioactivity facility, which 

simplifies their use.  

The microspheres are injected intravenously at the time point the perfusion is of 

interest. The use of different fluorescence colors allows perfusion measurements at 

different time points. Also here, and as explained in chapter 1.2.6.1, the number of 

trapped fluorescence-labeled microspheres is proportional to regional pulmonary 

perfusion (Beck, 1987b). In contrast to the 68Ga-labeled microspheres technique, the 

analyzis of the extent of trapped fluorescence-labeled microspheres is done ex vivo. 

Retrieving fluorescence-labeled microspheres out of solid organs requires many 

laboratory intensive steps. The lungs have to get extracted at the end of the experiments 

and get cut into pieces. By soaking the lung tissue pieces in 2-ethoxyethyl acetate, the 

fluorescence-labeled microspheres get dissolved out of each piece, releasing the 

fluorescent dye. The emitted fluorescence intensity is read using a luminescence 

spectrophotometer. In the course of a following analyzis of the measurements, lower 

fluorescence signals obtained from outermost lung pieces containing less lung tissue have 

to be adjusted. In studies done in healthy animals this correction is done by normalizing 
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the measured fluorescence intensity to the mass of the lung piece. This correction is 

based on the assumption that the drying of healthy lungs at high pressures fully opens all 

alveoli to equal volume resulting in homogeneous lung tissue density. It is further 

assumed that only the extent of lung tissue alters the mass of lung pieces. Consequently, 

the mass of a tissue sample is expected to correlate with its volume and can be used as 

surrogate for tissue content (Glenny et al., 1993).  

So far, only a few studies with fluorescence-labeled microspheres have been 

performed in injured lungs (Hübler et al., 1999; Hübler et al., 2001; Carvalho et al., 2011). 

In contrast to healthy lungs, injured lungs behave as solid organs (Hübler et al., 1999), 

and typically feature a large proportion of collapsed alveoli. It is therefore questionable 

whether drying severely injured lungs at high pressure during the process of the analyzis 

of the excised lungs would be sufficient to fully open consolidated regions. In addition, 

inflammatory deposition, cellular infiltration due to inflammation, and hemorrhages can 

alter the mass of pieces of injured lungs (Robertson and Hlastala, 2007). This could 

explain why Hübler and coworkers noted in their study in ARDS sheep lungs that tissue 

pieces of severely injured lungs featured a higher mass range as compared to those of 

healthy lungs (Hübler et al., 1999). Whether the mass of a sample of an injured lung 

correlates with its volume and whether it is an appropriate surrogate for tissue content has 

yet to be determined. 

Comparisons of pulmonary perfusion measurements performed ex vivo using 

fluorescence-labeled with those performed in vivo using radiolabeled microspheres have 

been conducted almost exclusively in healthy animals (Glenny et al., 1993; Van 

Oosterhout et al., 1998). To the knowledge of the author, the comparison of fluorescence-

labeled and radiolabeled microspheres measurements in injured lungs was addressed in 

one single study (Hübler et al., 1999). However, in this study both the radio- and 

fluorescence-labeled microspheres measurements were conducted ex vivo, and did not 

address the effects of possible inhomogeneous lung tissue density on measurements of 

lung perfusion. 
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1.2.7 Assessment of Pulmonary Inflammation 

1.2.7.1 Cellular, Molecular and Histological Methods 

Different methods are available for direct or indirect quantification of different aspects of 

pulmonary inflammation, including: 

• Inflammatory cell count, especially neutrophils; 

• Quantification of the protein concentrations of the IL-6, IL-8, and TNF-α using 

enzyme linked immuno-sorbent assay development systems; 

• Analysis of wet- to- dry ratios; 

• Histologic analyzis of lung tissue samples using light microscopy for quantification 

of the diffuse alveolar damage; 

• Immune-biochemical analyzis of bronchoalveolar lavage fluid. 

 However, the results are limited to certain regions of the lungs, and may not be 

representative for the inflammation of the whole lung. This is a crucial limitation since non-

homogenous distribution of inflammation is common in ARDS (Bellani et al., 2009; 

Rodrigues et al., 2008; Jones et al., 2002).  

1.2.7.2 18F-FDG for Quantification of Pulmonary Neutrophilic Inflammation 

In vivo imaging of pulmonary neutrophilic inflammation using 18F-FDG and dynamic PET 

scanning is a more recently described approach, which allows the in vivo assessment of a 

15 cm cranio-caudal section of the lung. Its first use in patients with ARDS was reported 

by Jacene and coworkers (Jacene et al., 2004), who described a markedly increased and 

diffuse uptake of 18F-FDG in a patient with ARDS.  

 
Figure 1.2:  Pathway of 

18
F-FDG out of the blood into the cells and following phosphorylation. 

Arrows illustrate forward and reverse transport between blood plasma and tissue, phosphorylation 
and de-phosphorylation. Reproduced and modified from (Bellani et al., 2011). 
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 Due to the long half-life of the 18F isotope of 109 min, the 18F-labeled glucose 

analog 18F-FDG is currently the most widely used PET tracer (Rudroff et al., 2015). After 

intravenous injection of 18F-FDG, it is transported out of the blood into the cells by the 

same transporters and at the same rate as glucose (Bellani et al., 2011). After the 

transport across the cell’s membrane, 18F-FDG undergoes the first step of the glucose 

metabolism, which is the phosphorylation to 18F-FDG-6-phosphate by the enzyme 

hexokinase (Figure 1.2). The chemical structure of the phosphorylated 18F-FDG differs 

from that of glucose-6-phosphate (glucose-6-phosphate features one more oxygen atom 

as compared to 18F-FDG-6-phosphate), which precludes the further metabolization of 

phosphorylated 18F-FDG within the glycolytic pathway. Once phosphorylated, 18F-FDG is 

therefore irreversible trapped within the cells (Bellani et al., 2011). In the lung, de-

phosphorylation of 18F-FDG is negligible within the imaging time of up to 75 min after 

injection (Gallagher et al., 1978). Therefore, dynamic PET measurements of the 

coincidences originating from the decay of 18F provide information about the amount of 
18F-FDG accumulated within the cells. Inflammatory cells and especially neutrophils 

feature a much higher glucose metabolism as compared to other pulmonary cells such 

that 18F-FDG accumulation is higher (Chen et al., 2004a; Musch et al., 2007). Therefore, 

the measured radioactivity originating from a local region of interest is believed to reflect 

the number and the metabolic activity of inflammatory cells (Musch, 2011). PET scanning 

after the intravenous injection of 18F-FDG is routinely used in oncology to diagnose and 

monitor the treatment of tumors, since tumors show increased uptake of glucose for 

production of energy within the containing cells. Since the uptake of 18F-FDG by tissue is 

mainly determined by its metabolic activity, 18F-FDG-PET has also been used to study 

inflammatory conditions that are not related to a tumor (Jones, 2005). However, the 

radiation exposure limits the use of 18F-FDG and PET in ARDS studies to research.  

Cell Types Contributing to Pulmonary 18F-FDG Uptake 

In heathy lungs, the uptake of 18F-FDG is low (Chen and Schuster, 2004), and 

macrophages are the main modulator of the 18F-FDG, with some contribution from type II 

epithelial cells (Saha et al., 2013). In VILI, among the involved inflammatory cells, 

neutrophils seem to be the key modulators of the increased uptake rate of 18F-FDG 

(Jones et al., 2002; Saha et al., 2013).  

 Neutrophils are the most abundant type of white blood cells. They are responsible 

for the non-specific immune response of the body. Upon an inflammatory insult, these 

cells leave the blood vessels and accumulate in the microvasculature of the lung, 

especially during the acute phase of ARDS (the first 1 to 6 d), (Matthay and Zemans, 

2011).  
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 The neutrophils take up foreign matter and microorganisms, and decompose and 

defang them. This process dramatically increases the consumption of glucose per 

neutrophil, and, thus, increases their 18F-FDG uptake (Hogg, 1987). As a result, the higher 
18F-FDG imaging signal in VILI can be attributed to the accumulation of neutrophils 

(Imanaka et al., 2001; Musch et al., 2007) and their higher state of activation in response 

to an inflammatory stimulus (Musch et al., 2007). However, Musch and coworkers showed 

that an increased 18F-FDG uptake during VILI cannot be exclusively ascribed to 

neutrophils (Musch et al., 2007). Saha and coworkers found in a murine mouse model of 

VILI induced acute lung injury that 18F-FDG is majorly taken up by neutrophils, while 

macrophages and type 2 epithelial cells contributed less to the 18F-FDG uptake by lung 

tissue (Saha et al., 2013).  

Methods for Quantification of Regional Pulmonary 18F-FDG Uptake 

Different methods have been established to quantify the regional, pulmonary uptake of 
18F-FDG. The simplest approach involves static PET scans of the lung acquired between 

45 min and 70 min after the intravenous injection of 18F-FDG and the calculation of the 

standard uptake value (SUV). The SUV is defined as the average accumulation of a tracer 

within a region (in Bq per gram of tissue), normalized to the applied tracer dose (in Bq) per 

unit of body weight (in g). In case of equal distribution of the tracer within the body the 

SUV values are 1 for the whole body. This parameter is frequently used in the clinical 

routine to characterize tumors. However, SUV is affected by many technical and 

physiological factors. SUV calculations do, for instance, not consider the level of 18F-FDG 

in the blood although it can affect the 18F-FDG uptake (Hoekstra et al., 2000; Hoekstra et 

al., 2002).  

Another simple measure of the 18F-FDG uptake is the standard uptake ratio, which 

is defined as the SUV of the scanned region normalized to the SUV of the arterial blood at 

the time of the static PET scan (van den Hoff et al., 2013). It has been shown that the 

tissue-to-plasma activity ratio correlates with graphically determined 18F-FDG net uptake 

rates in animal models of acute lung injury (Chen et al., 2004b). However, both the SUV 

and the standard uptake ratio measurements do not distinguish whether the measured 

activity originates from 18F-FDG located in the blood or from 18F-FDG that has been taken 

up by lung tissue. As a result, inter- and intra- subject variability of the ratio of tissue to 

blood volume affect these measurements. This is of special relevance in the lung, were 

the ratio of blood to tissue is relatively high and the activity in the blood can therefore 

significantly contribute to the measured 18F-FDG activity. Furthermore, especially in 

injured lungs, regional gas and blood volume can differ significantly, affecting regional 

tissue density and therefore measurements of the standard uptake ratio (Musch et al., 
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2007). The interest in more accurate methods has therefore led to the development of 

more precise models for the quantification of the uptake of 18F-FDG by lung tissue. Three 

tracer kinetic models are currently used for the analyzis of the dynamic 18F-FDG-PET 

scans and to calculate the 18F-FDG net uptake rate (Ki) by lung tissue. The models differ 

by the number of compartments, where each compartment describes a different state of 

the phosphorylation of 18F-FDG (Figure 1.3).  

 

Figure 1.3:  Tracer kinetic models of 
18

F-FDG: two-compartment (Patlak) model, three-
compartment (Sokoloff) model, and lung-specific four-compartment model. Arrows indicate 
directions of mass transport. CPlasma(t) represents the activity concentration of 

18
F-FDG in plasma; 

CPET(t) represents the activity of 
18

F-FDG accessed by PET scanning; Cm(t) represents the 
concentration of phosphorylated 

18
F-FDG; Ce(t) and Cei(t) represent the 

18
F-FDG concentrations in 

extravascular compartment serving as substrate pool for hexokinase in Sokoloff (Ce) and in four-
compartment (Cei) models, Cee(t) represents the 

18
F-FDG concentration in extravascular or non-

cellular compartment. Rate constants k1 and k2 account for forward and backward transport of 
18

F-
FDG between blood and tissue and are expressed as [blood volume / (time * tissue volume)]; k3 is 
the rate of the phosphorylation of 

18
F-FDG to 

18
F-FDG-6-phosphate irreversibly trapped in lung 

tissue, expressed as [1/time]; k5 and k6 account for forward and backward transport of 
18

F-FDG 
between substrate (intracellular) and non-substrate (extracellular) compartments. Reproduced and 
modified from (de Prost et al., 2010). 

  



 1 Introduction 

28 

Patlak model of the 18F-FDG kinetics 

Patlak and coworkers developed a graphical model of the 18F-FDG uptake, which was 

originally used to study brain tissue (Patlak et al., 1983). For the evaluation of the 18F-FDG 

uptake, this model considers a central blood compartment and a peripheral compartment. 

The central compartment is in rapid equilibrium with blood plasma and describes the 

activity of 18F-FDG in blood plasma over time. The peripheral compartment describes the 

PET-derived concentration of irreversibly trapped 18F-FDG-6-phosphate in tissue over 

time. The activity of 18F-FDG in blood plasma over time can be measured either by 

continuous blood sampling coinciding with the PET frames, or by analyzing the imaging 

data of a blood pool such as the heart or the aorta (Schroeder et al., 2007). Solving the 

transfer function of 18F-FDG between both compartments yields the Patlak plot (Figure 

1.4), on which the graphical analyzis is based. In this graph the activity of 18F-FDG in a 

region of interest (CPET) normalized to the plasma activity (CPlasma) is plotted against the 

cumulative plasma activity normalized to the plasma activity at the time point of the 

measurement ( ττ∫
=

d*)(C
t

0t

Plasma / )t(CPlasma ), (Patlak et al., 1983).  

 

Figure 1.4:  Example of the Patlak plot calculated for dynamic 
18

F-FDG-PET scans of a lung 
suffering from VILI (atelectrauma, solid circles) and of a lung protected from VILI (open circles). 
The plots represent the 

18
F-FDG activity in a region of interest (CPET) normalized to the 

18
F-FDG 

activity in blood plasma (CPlasma) versus the integral of plasma activity normalized to the plasma 
activity. Linear regression was performed for data assessed 15 min to 75 min after 

18
F-FDG 

injection. The slope of the linear regression line, a measure of Ki, is higher in the lung suffering 
from VILI compared to the lung protected from VILI. Reproduced and modified from (Musch et al., 
2007).  
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 One assumption of the Patlak analyzis is that after an initial period of 10 to 15 min 

an equilibration between tracer concentration in plasma and extravascular compartment 

has been established. Therefore, after that initial period, the Patlak graph becomes linear 

and can be fitted by a linear equation depicted in Equation (1.3). 

 
dist

Plasma

t

0t

Plasma

i
Plasma

PET V
)t(C

d*)(C

*K
)t(C

)t(C
+

ττ

=

∫
=  

(1.3) 

In this equation, CPET(t) and CPlasma(t) represent the 18F-FDG activity in lung tissue and 

blood plasma at each sample time point t, respectively, τ  is the integration variable, Ki 

represents the 18F-FDG net uptake rate calculated using the Patlak model and Vdist 

represents the volume of distribution of 18F-FDG in both the extravascular compartment 

and in blood plasma. The volume of distribution is also called the initial distribution volume 

and is expressed in [ml blood / ml lung]. Consequently, in the Patlak model, the ordinate 

intercept at time t = 0 determines Vdist and the slope of the linear regression line 

represents Ki (de Prost et al., 2010). Ki is a measure for the rate of 18F-FDG trapped per 

ml lung volume, including tissue and air filled alveolar space. Therefore, Ki is not only 

affected by the regional metabolic activity, but also by differences in tissue contents, for 

instance due to differences in lung inflation.  

 The major advantages of the Patlak model are the relatively easy computational 

implementation and the robust estimation of the pulmonary uptake of 18F-FDG, even when 

edema accumulates in the lung (Dittrich et al., 2012).  
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Sokoloff Three-Compartment Model 

The three compartment model analyzis developed by Sokoloff and coworkers was 

originally developed for the quantification of cerebral uptake of the tracer carbon-14-

deoxyglucose in rats (Sokoloff et al., 1977). Later on Reivich and coworkers adapted the 

model for evaluation of 18F-FDG uptake in humans (Reivich et al., 1979). As compared to 

the Patlak analyzis, it provides more detailed information about individual steps of the 18F-

FDG phosphorylation process. It includes the blood compartment, which serves as input 

function, and two tissue compartments. The extra-vascular substrate compartment is also 

called the precursor compartment and corresponds to the extra-vascular 18F-FDG 

available for phosphorylation. The metabolic compartment represents the amount of 18F-

FDG-6-phosphate assumed to be irreversibly trapped in lung tissue. Therefore, the 

Sokoloff model describes the exchange of 18F-FDG between blood and tissue, as well as 

its phosphorylation in the tissues (Sokoloff et al., 1977).  

It is assumed that the tracer rapidly equilibrates between the capillaries and the 

lung tissue such that the total measured tracer activity equals the total activity 

concentration in the tissue. Activity originating from the capillaries is negligible. Therefore, 

the total measured tracer activity concentration in a region of interest at time t (CPET(t)) 

corresponds to the sum of the concentrations in the extravascular compartment (Ce(t)) 

and in the metabolic compartment (Cm(t)), (Equation (1.4)). 

 ))))(((())))(((())))(((( tCtCtC mePET +=  (1.4) 

Rate constants k1, k2, and k3 characterize the dynamics of the movement of 18F-FDG 

between the compartments (Figure 1.3) and are modeled using the linear differential 

equations (1.5) and (1.6). 

 )t(C*)kk()t(C*kdt )t(dC e32Plasma1e +−=  (1.5) 

 ))))((((****))))(((( tCkdt tdC e3m =  (1.6) 

 The net uptake rate of 18F-FDG from blood plasma to lung tissue can be computed 

according to Equation (1.7), using the individual transport parameters. 

 32 31 kk kkiK
+

=
****

 (1.7) 
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 Ki is a measure of the amount of 18F-FDG that is phosphorylated per assessed 

lung volume. However, the measured lung volume does not only consist of lung tissue 

(fractional tissue content, FTissue), but a certain fraction is occupied by blood vessels and 

air-filled alveolar space (Equation (1.8)).  

 FTissue = 1 – FGas - FBlood (1.8) 

FBlood represents the fractional volume of pulmonary blood and can be obtained from the 

Sokoloff model. 

 Therefore, differences in lung inflation affect the measured tracer concentrations, 

in addition to the regional metabolic activity (Schroeder et al., 2011). The calculated net 

uptake rate of 18F-FDG has to be corrected for FTissue, computing the specific Ki (KiS) 

according to Equation (1.9). 

 
Tissue

i

F

K
iSK =  (1.9) 

The Sokoloff model is based on the assumption that all 18F-FDG molecules are 

present in the extra-vascular substrate compartment and available for metabolization. This 

assumptions, however, may not be valid in acutely injurious lungs featuring larger pools of 

edematous tissue that might allow 18F-FDG to leak nonspecifically into spaces functionally 

separate from cells trapping 18F-FDG (Schroeder et al., 2011). 

Four-Compartment Model 

Schroeder and coworkers developed a lung-specific four-compartment model that aims to 

describe the 18F-FDG kinetics in ARDS lungs by adding an extra-vascular, extra-cellular 

distribution volume exchanging 18F-FDG with the extra-vascular intra-cellular precursor 

compartment (Schroeder et al., 2008). This compartment accounts for the 18F-FDG-PET 

signal originating from extra-vascular volume that is not available for phosphorylation, like 

in edema fluid or alveolar flooding (Dittrich et al., 2012). Thus, at any given time, the total, 

regional activity of 18F-FDG assessed by dynamic PET imaging is assumed to be the sum 

of tracer activity in four functional compartments, illustrated in Figure 1.3.  
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1.3 Specific Aims and Hypotheses 

The objective of this thesis was to use and advance PET/CT imaging techniques to study 

alterations in lung aeration, neutrophilic inflammation and perfusion in ARDS. Two 

interrelated studies were conducted, both of which used PET/CT.  

The first study aimed to compare the relative contributions of volutrauma and 

atelectrauma to the pro-inflammatory response of the lung in a saline lung lavage model 

of ARDS in pigs. Recently, PET/CT has been used to assess the synergistic effects of 

volutrauma and atelectrauma on the inflammatory response of the lung (Musch et al. 

2007; Borges et al., 2015). However, in those studies the extent of volutrauma and 

atelectrauma was potentially not the same. We therefore aimed to obtain information 

about the impact of volutrauma and atelectrauma at comparable low VT and low driving 

pressure (∆P, defined as difference between peak airway pressure and PEEP) on the 

neutrophilic, pro-inflammatory response of the lung using 18F-FDG and PET/CT. In 

addition, we obtained information on lung aeration by performing CT and on lung 

perfusion by static PET of the distribution of 68Ga-labeled microspheres.  

The main hypotheses of the study were:  

1.1) Both volutrauma and atelectrauma increase lung mechanical stress and associated 

neutrophilic inflammation. 

1.2) Atelectrauma damages especially the gravitational regions, whereas volutrauma 

injures particularly the gravitational non-dependent lung regions. 

1.3) Volutrauma leads to higher pulmonary neutrophilic inflammation as compared to 

atelectrauma, at comparable low VT and ∆P, since static stress and strain are higher 

in the inflated than in the collapsed lungs. 
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The aim of the study on fluorescence-labeled microspheres derived perfusion 

measurements in ARDS was to validate the use of fluorescence-labeled microspheres for 

measurements of pulmonary perfusion distribution in acutely injured lungs. It has been 

shown previously that the use of fluorescence-labeled microspheres is an appropriate 

method to assess the distribution of pulmonary perfusion in healthy lungs (Glenny et al., 

1993). However, whether the assumptions used for the analyzis of the distribution of 

fluorescence-labeled microspheres in healthy lungs are transferable to injured lungs has 

yet to be determined. We compared ex vivo measurements of the distribution of lung 

perfusion using fluorescence-labeled microspheres with in vivo measurements using 
68Ga-labeled microspheres and PET/CT in ARDS lungs. We analyzed the extent to which 

excised lungs deformed during their extraction and subsequent processing. In addition, 

different algorithms for the analyzis of the distribution of the fluorescence-labeled 

microspheres were compared. 

The main hypotheses of the study on fluorescence-labeled microspheres derived 

perfusion measurements in ARDS were:  

2.1) Extraction of lungs and the associated changes of pressures as well as the 

subsequent drying at high pressure cause substantial lung deformation relative to 

the in vivo state. 

2.2) The mass of lung tissue pieces featuring differing tissue volume is not an adequate 

surrogate for the extent of lung tissue in a sample. Consequently, as compared to 

the analyzis of non-injured lungs, differing algorithms have to be used for the 

analyzis of trapped fluorescent microspheres in ARDS lungs in order to adequately 

correct fluorescence measurements for lung tissue content. 

2.3) The use of a modified algorithm for the analyzis of trapped fluorescence-labeled 

microspheres in ARDS lungs increases the agreement with in vivo PET/CT 

measurements of the distribution of lung perfusion using 68Ga-labeled microspheres. 

2.4) The use of modified algorithms for the analyzis of fluorescence-labeled 

microspheres reduces the heterogeneity of pulmonary perfusion measurements. 
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2 Materials and Methods 

This section is comprised of two sub-sections. In the first sub-section, which has been 

published as original article (Güldner et al., 2016), the materials and methods used to 

study the inflammatory impact of volutrauma and atelectrauma are presented. The 

Institutional Animal Care and Welfare Committee and the Government of the State of 

Saxony, Germany, approved all animal procedures of this study (protocol number 24-

9168.11-1/2012-42). The study was supported by a grant of the MeDDrive Program, 

Medical Faculty Carl Gustav Carus, Dresden, Germany and by a grant from the German 

Research Council (Deutsche Forschungsgemeinschaft, DFG), Bonn, Germany (grant 

number GA 1256/7-1). 

 In the second sub-section, the materials and methods of the study on 

fluorescence-labeled microspheres derived perfusion measurements in ARDS are 

presented. Parts of this study have been published as original article (Güldner et al., 

2014). All animal procedures of this study were approved by the Institutional Animal Care 

and Welfare Committee and the Government of the State of Saxony, Germany (protocol 

number 24-9168.11-1/2009-36). This study was supported by a grant from the German 

Research Council (Deutsche Forschungsgemeinschaft, DFG), Bonn, Germany (grant 

number GA 1256/6-1). 

 The PET/CT device used in both studies was a gift from the German Federal 

Ministry of Education and Research (BMBF contract 03ZIK42/ OncoRay), Bonn, 

Germany.  
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2.1 Volutrauma and Atelectrauma in ARDS 

2.1.1 Experimental Protocol 

The experimental protocol of this study was approved by the local animal care committee 

(Landesdirektion Dresden, Dresden, Germany). Ten juvenile pigs weighting 34.7 kg to 

49.9 kg were studied. A randomized, parallel group design was used, where each group 

served as its own control. Figure 2.1 illustrates the time course of the experimental 

procedures.  

 
Figure 2.1: Time course of interventions during the study on volutrauma and atelectrauma in 
ARDS. 

 After premedication, pigs were anesthetized, paralyzed, intubated and 

mechanically ventilated in supine position. After surgical preparation, the lungs were 

recruited with continuous positive airway pressure (CPAP) of 30 cmH2O for 30 sec, 

followed by 15 min of stabilization. Baseline measurements of hemodynamics, lung 

mechanics and gas exchange were collected (Baseline 1). Experimental ARDS was 

induced in both lungs by saline lavage (first hit of the double hit model) and 

measurements at the injury time point were performed (Injury). A pump-less interventional 

lung assist (Novalung GmbH, Heilbronn, Germany) was connected to the catheters in the 

femoral artery and vein, in order to support gas exchange and CO2 removal extra 

corporeally. A modified right-sided double lumen tube was placed with the bronchial tip in 

the left main bronchus in order to separate the lungs. Two separate ventilators were 

connected in order to only ventilate the left lungs and to apply CPAP in the right lungs. 

After placement of the double lumen tube and following recruitment of both lungs for 

30 sec at 30 cmH2O, a PEEP titration was done in the left lungs in order to find the 

ventilator setting of the volutrauma and atelectrauma ventilator modes. After a further 

recruitment of the left lungs, the animals were randomly assigned to either the volutrauma 

or atelectrauma group, and injurious ventilation of the left lungs (second hit of the double 
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hit model) was started. The right lungs were not ventilated and served as within-animal 

control. During the following 4 h of mechanical ventilation of the left lungs in volutrauma or 

atelectrauma mode, parameters regarding lung mechanics, gas exchange and 

hemodynamics were recorded (time point T 1: 60 min after randomization until time point 

T 4: 4 h after randomization). During the last 2 h of injurious ventilation, lung imaging data 

were acquired using PET and 18F-FDG and 68Ga-labeled microspheres, respectively, as 

well as CT. At the end of the experiment, the anesthetic depth was increased with 

intravenous injection of thiopental (2 g) and animals were sacrificed by an intravenous 

injection of potassium chloride (1 mol, 50 ml). Lungs were excised and further processed 

for the following analyzis of molecular biology as well as for the determination of wet- to-

 dry ratios.  

2.1.1.1 Premedication, Anesthesia and Initial Ventilator Settings 

Experimental subjects were premedicated with an intramuscular injection of 1 mg/kg 

midazolam und 10 mg/kg ketamine. An ear vein was punctured and intravenous 

anesthesia was induced with a bolus of 0.5 to 1 mg/kg Midazolam and 3 to 4 mg/kg 

ketamine. Anesthesia was maintained with continuous, intravenous injection of 1 to 

2 mg/kg/h midazolam and 10 to 18 mg/kg/h ketamine. Muscle paralysis was induced with 

an intravenous bolus of 3 to 4 mg/kg atracurium, and maintained by continuous injection of 

1 to 2 mg/kg/h atracurium. After premedication, experimental animals were intubated 

orally and mechanical ventilation of both lungs was started in volume controlled mode 

using a EVITA XL (Dräger Medical AG, Lübeck, Germany) and the following settings: VT 

of 8 mL/kg PBW, fraction of inspired oxygen (FiO2) of 100 %, PEEP of 8 cmH2O, time ratio 

of inspiration to exspiration (I:E) of 1:1, RR adjusted to achieve an arterial partial pressure 

of carbon dioxide (PaCO2) between 35 and 45 mmHg, airway flow of 35 L/min. An 

intravenous infusion of a crystalloid solution (E153, Serumwerk Bernburg AG, Bernburg, 

Germany) at a rate of 10 to 20 mg/kg/h was used to maintain intravascular volume. 

Colloid solution (6 % hydroxyenthyl starch; Fresenius Kabi Deutschland GmbH, Bad 

Homburg, Germany) was administered as necessary to keep the hemoglobin 

concentration in the blood approximately constant. Animals were positioned supine during 

the entire experiment. 
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2.1.1.2 Preparation 

After premedication, experimental animals were intubated through tracheotomy using a 

cuffed, modified, right-sided double lumen tube (8.0 mm internal diameter, Mallinckrodt, 

Athlone, Ireland) with the bronchial tip placed in the left main bronchus. After surgical 

preparation of the right common carotid artery, an indwelling catheter was inserted and 

the mean pulmonary artery pressure was continuously monitored. The catheter in the 

arteria carotid was also used to take arterial blood samples and to measure the cardiac 

output (CO). The right external jugular vein was punctured and the Swan-Ganz pulmonary 

artery catheter (7.5 Fr., Opticath, Abbott, Abbott Park, USA) was inserted. Mean arterial 

pressure and pulmonary artery pressure were continuously monitored with a CMS Monitor 

(IntelliVue Patient Monitor MP 50, Philips AG, Böblingen, Germany). The pulmonary artery 

catheter was also used to take mixed-venous blood samples and to administer the  
18F-FDG and the 68Ga-labeled microspheres during the imaging period. Two catheters 

(NovaPort one, Novalung GmbH, Heilbronn, Germany) were placed in the left femoral 

artery and right femoral vein. Each catheter was filled with 20 ml of normal saline solution 

containing 1000 IU Heparin and clamped until extra-corporeal gas exchange unit was 

connected. A catheter was inserted in the bladder to collect urine and to measure the 

intra-abdominal pressure.  

2.1.1.3 Induction of ARDS 

Experimental ARDS was induced in both lungs according to the double hit model. The 

primary hit of both lungs was achieved by repetitive saline lung lavage using isotonic, 

body heated saline solution (6-12 lavages), as described by Lachmann and coworkers 

(Lachmann et al., 1980). To achieve a homogeneous distribution of the lavage fluid, the 

position of the animals was alternated between prone and supine every 2 lavages. This 

procedure was repeated until the criterion of the moderate ARDS (PaO2/FiO2 less than 

200 mmHg) was reached after 30 min of stabilization (Ferguson et al., 2012). A second hit 

was induced in the left lungs by ventilating with injurious settings according to the study 

group for 4 h. The double-lumen tube allowed for isolated, injurious ventilation of the left 

lungs, while protecting the non-ventilated, control lungs from VILI. 
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2.1.1.4 Ventilation Modes, Randomization and Start of the Selective Ventilation in 
Volutrauma or Atelectrauma 

 
Figure 2.2:  Recorded pressure-volume curve of the respiratory system during decremental 
PEEP trial averaged for each group (atelectrauma: dashed; volutrauma: dotted) and averaged over 
all experiments (black solid). Averaged selected PEEP values for each group (filled circles) and 
calculated points of maximal absolute curvature, i.e. upper and lower inflection point (open circles), 
are shown. Normalized volume (Vn) corresponds to Vn = (LV – FRC)/IC with lung volume (LV), 
functional residual capacity (FRC) and inspiratory capacity (IC), ∆P and VT are presented as 
mean ± standard deviation. 

A decremental PEEP trial was performed in the ventilated, VILI lungs during pressure 

controlled ventilation, keeping the following settings constant: VT of 3 mL/kg PBW, FiO2 of 

100 %, I:E of 1:1, and RR of 30 breaths per minute. The PEEP trial was started at 

36 cmH2O to assure that the region of the pressure-volume curve of the respiratory 

system describing overdistension would be achieved. PEEP was reduced by steps of 

2 cmH2O until zero, while every step was maintained for 2 min. Before every PEEP 

change, the dynamic compliance of the respiratory system, as measured by the ventilator, 

as well as the peak airway pressure (Paw,peak) and ∆P were recorded. During the PEEP 

titration in the left lungs and until the end of the experiment, the right lungs were kept on a 

CPAP of 20 cmH2O.  
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The PEEP settings during injurious ventilation of the left lungs of the volutrauma 

and atelectrauma groups, respectively, were defined according to measurements acquired 

during the PEEP trial. In volutrauma, the PEEP was set one step above the level where 

dynamic compliance had increased by more than 5 % compared to the previous value 

during the PEEP trial (Figure 2.2), in order to ensure complete lung recruitment and 

overdistension. In order to achieve comparable VT and ∆P in both groups, in 

atelectrauma, PEEP was adjusted at the opposite end of the pressure-volume curve of the 

respiratory system to achieve a dynamic compliance comparable to the one measured at 

volutrauma PEEP. From that compliance value, the ∆P was calculated for animals of the 

atelectrauma group. 

After random assignment of the animals to either volutrauma or atelectrauma 

(n = 5 / group), the respective injurious ventilator settings were applied on the ventilated, 

VILI lungs for 4 h. In order to reset the lung history, the left lungs of animals assigned to 

volutrauma were initially recruited (CPAP of 40 cmH2O for 30 sec). The selective 

ventilation of the left lungs was performed using a SERVOi ventilator (Maquet, Rastatt, 

Germany), which was connected to the bronchial lumen of the double lumen tube. A 

second ventilator (EVITA XL Dräger Medical AG, Lübeck, Germany) was connected to the 

tracheal lumen of the double lumen tube in order to apply a CPAP of 20 cmH2O in the 

right lungs until the end of the experiment. Every 30 min a recruitment maneuver was 

performed to minimize right lung atelectasis. A pressure limit of 60 cmH2O was used to 

prevent barotrauma. 

Simultaneously with the start of the injurious ventilation, the sweep gas flow 

through the extra-corporeal gas exchange unit was started. The flow was adjusted in 

order to keep PaCO2 between 50 and 80 mmHg and arterial pH above 7.15. Maximal flow 

was limited to 15 L/min since gas exchange improves only marginally at higher values 

(Zhou et al., 2005). Breathing frequency was adjusted if PaCO2 rose above 80 mmHg 

despite maximal sweep gas flow or if PaCO2 fell below 50 mmHg in case sweep gas flow 

needed to be maintained due to severe hypoxemia. All other ventilator settings were kept 

constant in both groups until the end of the experiment.  
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2.1.1.5 Assessment of Lung Mechanics, Gas Exchange and Hemodynamics 

At time points shown in Figure 2.1, the parameters regarding respiratory mechanics, gas 

exchange and hemodynamic were acquired. 

Respiratory mechanics 

Airflow and RR were obtained from an internal sensor of the mechanical ventilator. Paw 

was assessed for each lung separately using pressure transducers (163PC01D48-PCB, 

Sensortechnics GmbH, Germany), having the tip placed next to the tracheal tube. Signals 

were digitized at 180 to 200 Hz using an analog-digital board (DAQ-Pad 1200; National 

Instruments, Austin, TX) and acquired by a laptop using a data acquisition system written 

for LabVIEW™ environment (National Instruments, Austin, TX). The dynamic compliance 

of the respiratory system was obtained by the mechanical ventilator. 

Gas exchange 

Arterial and mixed venous blood samples were analyzed for arterial pH, arterial partial 

pressure of oxygen (PaO2), and PaCO2 using a blood gas analyzer (ABL 505, 

Radiometer, Copenhagen, Denmark). 

Hemodynamics 

Mean arterial pressure and mean pulmonary artery pressures were measured 

continuously using a CMS Monitor (Compound Monitor System CMS, IntelliVue Patient 

Monitor MP 50, Philips AG, Böblingen, Germany). CO was assessed using the 

thermodilution method, averaging three measurements equally spread over the 

respiratory cycle and using 10 ml 0.9 % saline solution at room temperature. 
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2.1.1.6 Lung Imaging Protocol 

Imaging data of lung aeration, perfusion, and neutrophilic inflammation were acquired 

during the last 2 h of the injurious ventilation of the left lungs. The time course of the 

acquisition of the imaging data is shown in Figure 2.3. For all scans, animals were 

positioned supine in the PET/CT camera (Biograph16 Hirez PET/CT, Siemens, Knoxville, 

TN, USA).  

 

Figure 2.3:  Lung imaging protocol. 

 Following low dose helical CT scans used for attenuation correction of the 

following dynamic PET scans (attenuation correction CT, ACCT), 18F-FDG (179 MBq –

 216 MBq) was injected intravenously at a constant rate over 60 s via the pulmonary 

artery catheter, as depicted in Figure 2.4. Simultaneous with the beginning of the infusion, 

the acquisition of a 75 min image sequence consisting of 32 sequential PET frames 

(6x30”, 7x60”, 15x120”, 1x300”, 3x600”) was started. Pulmonary arterial blood was 

sampled at each mean frame time point (12x15”, 4x30”, 5x60”, 11x300”, 75’) in the 

pulmonary artery (Figure 2.4). The blood samples were centrifuged (5000 rpm, 5 min) and 

1.0 ml blood plasma was pipetted. The concentration of 18F-FDG in each blood plasma 

sample was measured in a gamma counter cross-calibrated with the PET scanner (Musch 

et al., 2007). To reduce artifacts due to motion of the diaphragm, the field of view was 

positioned such that the most caudal slice was adjacent to the diaphragm dome. The 

camera collected transverse slices of 2 mm thickness over a 15 cm cranio-caudal field. 

PET images were reconstructed iteratively (ordered subset expectation maximization,  

6 iterations, 4 subsets, post-filtering Gauss 5 mm) with correction for scatter and 

attenuation effects. Images were decay corrected to the beginning of tracer injection. 

Each frame yielded a 168 x 168 x 82 matrix with a voxel size of 2.03 x 2.03 x 2 mm3. 
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Figure 2.4:  Position of the pulmonary artery catheter, via which 

18
F-FDG was injected at the 

proximal end and via which the arterial blood samples were collected at the distance end. 

Before perfusion scans were acquired, the remaining level of 18F-FDG activity 

within the lungs was measured by static PET scanning. For preparation of 68Ga-labeled 

microspheres, 68Ga was produced using a germanium-68/gallium-68 generator (ITG 

Isotope Technologies Garching GmbH, Germany), eluted in 7 ml 0.05 M HCl, purified, and 

concentrated using a cation-exchanger (STRATA-XC, Phenomenex, Aschaffenburg, 

Germany). For labeling, approximately 450 MBq of the 68Ga elute was transferred into a 

microsphere B20 kit (Rotop Pharmaka GmbH, Dresden, Germany). 68Ga-labeled 

microspheres (86 MBq - 130 MBq) were injected intravenously and manually as a slow 

bolus over approximately 1 min followed by a flush with saline solution. The distribution of 

the 68Ga-labeled microspheres in the pulmonary capillary bed was assessed by static PET 

scanning of the whole lungs. Image reconstruction was carried out iteratively (ordered 

subset expectation maximization, 6 iterations, 4 subsets, post-filtering Gauss 5 mm) with 

attenuation correction using the CT scans at mean lung volume. The voxel size of the 

perfusion scans was 2.03 x 2.03 x 2 mm³ yielding a 168 x 168 x 198 matrix. Helical CT 

scans of the chest were acquired during muscle paralysis and CPAP in the ventilated, VILI 

lungs at end-inspiratory and end-expiratory pressure levels as well as on a pressure level 

corresponding to mean lung volume. The CT scanner was set as follows: collimation of  

16 × 0.75 mm, pitch of 1.35, bed speed of 38.6 mm/s, voltage of 120 kV and tube current-

time product of 120 mAs. CT images were reconstructed using a B70f convolution kernel 

and 1.0 mm slice thickness, yielding matrices with 512 x 512 pixel with a size of  

0.426 × 0.426 mm2.  



 2 Materials and Methods 

43 

2.1.1.7 Ex vivo Analysis: Molecular Biology and Wet- To- Dry Ratio 

After organ extraction, lung tissue samples of ventral, central, and dorsal parts of the left 

and right upper lobes were further processed for the analyzis of molecular biology and the 

estimation of wet- to- dry weight ratios. 

Molecular Biology 

The samples were snap frozen in liquid nitrogen and storage at -80 °C. Tissue probes 

were grounded to powder using liquid nitrogen. Conventionally available enzyme linked 

immuno-sorbent assay kits (R&D Systems) were used for protein analyzis. The protein 

concentrations of IL-6, IL-8 und TNF-α were determined. 

Wet- To- Dry Ratio 

Tissue blocks of approximately 1 x 1 x 1 cm3 were sampled. The tissue blocks were 

weighted in wet state. Thereafter, they were dried using a microwave (30 min at 120 W) 

and weighted in dry state. After drying the samples for a second time (microwave: 5 min at 

120 W) they were weighted again. If the weight before and after the second drying 

process differed by more than 5 %, the drying of the samples was repeated (microwave: 

5 min at 120 W) until the deviation compared to the previous measurement was less than 

5 %. The weight-ratio was calculated as the weight of the wet tissue blocks measured 

shortly after lung extraction relative to the weight of the lung blocks after their drying.  
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2.1.2 Data Processing and Analysis 

2.1.2.1 Analysis of Respiratory Mechanics Variables 

The respiratory volume signal was estimated from the 5 min recordings of the airflow 

signal by numerical integration for each measurement time point. The time point of the 

beginning of inspiration and expiration, respectively, were detected from the airflow signal 

using a zero crossing algorithm. For each respiratory cycle, VT was computed as the 

difference between the minimum and maximum value of the respiratory volume signal. 

Minute ventilation (MV) was computed as RR multiplied by VT. For each measurement 

time point, mean airway pressure (Paw,mean), PEEP, and Paw,peak were calculated for each 

respiratory cycle as average, minimum, and maximum value of the Paw signal, 

respectively, and averaged over all respiratory cycles of the 5 min recordings. Resistance 

and elastance of the respiratory system (Rrs and Ers, respectively) were calculated from 

5 min acquisitions of airflow and Paw signals using a volume-dependent, first-order model 

of respiratory mechanics shown in Equation (2.1), (Avanzolini et al., 1997). 
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In this equation, V represents volume, V& is airflow, t is time, P0 represents residual airway 

pressure at the end-expiratory lung volume (≈ PEEP), and E1 and E2 are the volume-

independent and volume-dependent components of Ers, respectively. 

 The distension index percentage E2 (%E2) was computed according to Equation 

(2.2). 
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 Mechanical power at measurement time point T 4 expressed in Joule per minute 

was calculated for each animal according Equation (2.3), (Gattinoni et al., 2016). 
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 For each animal, regional “intensity” was calculated as mechanical power 

normalized to the mean mass of the open, ventilated, VILI lung (see chapter 2.1.2.3 for 

explanation of the calculation of mass) according to (Samary et al., 2016).  
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2.1.2.2 Definition of Lung Fields for Analysis of Imaging Data 

 For the analyzis of lung perfusion, CT scans at mean lung volume were coregistrated to 

the static 68Ga-PET scans using the software Rover (ABX advanced & biochemical 

compounds GmbH, 2015), (Hofheinz et al., 2012). Coregistrated CT scans were used for 

manual segmentation of volumetric masks of the ventilated, VILI lungs and of the non-

ventilated, control lungs, respectively. Segmentation was done using the software ITK-

Snap (Yushkevich et al., 2006). The trachea, main bronchi, and associated blood vessels 

were excluded from lung masks. Regions outside the lung masks were excluded from 

further analyzis. The ventilated, VILI lungs and the non-ventilated, control lungs were 

divided in 5 isogravimetric subregions reaching from ventral to dorsal. The subdivision 

was done using the coregistrated CT scans at mean lung volume and by analyzing the 

mass of all voxel within the lung masks (see chapter 2.1.2.3 for explanation of the 

calculation of mass). For the analyzis of the dynamic PET scans, ACCT scans were 

coregistrated to the dynamic PET scans. Coregistrated ACCT scans were used for 

manual segmentation of volumetric masks of the assessed 15 cm cranio-caudal part of 

the ventilated, VILI lungs and of the non-ventilated, control lungs, respectively. Lung 

masks were refined manually in order to exclude partial volume effects near lung edges 

and the heart. For the analyzis of the dynamic PET scans, the assessed part of the 

ventilated, VILI and the non-ventilated, control lungs, respectively, were divided in  

5 isogravimetric regions of interest (ROIs) along the ventro-dorsal axis using the 

coregistrated ACCT scans (Figure 2.5). After coregistration of the end-inspiratory and 

end-expiratory CT scans to the dynamic PET scans, the same ROIs of the 15 cm cranio-

caudal field of view were used to determine tidal changes of lung aeration. 

 

Figure 2.5:  ROIs defined for the analyzis of the regional distribution of lung perfusion. After 
manual segmentation of the ventilated, VILI lungs and non-ventilated, control lungs, respectively, 
lungs were divided in 5 isogravimetric subregions along the ventro-dorsal axis. 
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2.1.2.3  Analysis of CT scans for quantification of lung aeration 

The CT scans at mean lung volume were used for the determination of the total volume of 

the ventilated, VILI and non-ventilated, control lungs, respectively. Total volume was 

calculated by multiplying of the number of pixel determining the lungs by the square pixel 

size and the slice thickness. 

 The CT scans at mean lung volume were used for the determination of the total 

weight of the ventilated, VILI and non-ventilated, control lungs, respectively. The CT scans 

at end-expiration coregistrated to 18F-FDG-PET scans were analyzed for the mass of the 

captured lung parts as well as for lung mass per ROI. For the calculation of lung mass, 

the mean CT number of each lung region was used as surrogate for its density and 

multiplied by the volume of the region (Gattinoni, Pesenti, Avalli, et al., 1987). 

 The CT scans at mean lung volume were used to assess the average degree of 

aeration during a breathing cycle. For the ventilated, VILI and non-ventilated, control 

lungs, respectively, 4 degrees of lung aeration were distinguished based on previously 

described thresholds (Puybasset et al., 2000): ranges of -1000 HU to -900 HU, -900 HU to 

-500 HU, -500 HU to -100 HU, and -100 HU to +100 HU were used to define the hyper-

aerated, normally aerated, poorly aerated, and non-aerated compartments, respectively. 

The CT scans at mean lung volume were used to calculate the mass of the open, 

ventilated, VILI lungs, estimated as sum of the mass of hyper, normally, and poorly 

aerated compartments. 

 The CT scans at end-expiration and end-inspiration were used to determine tidal 

changes of lung, aeration. For all 5 isogravimetric subregions of the 15 cm cranio-

caudal section of the ventilated, VILI and non-ventilated, control lungs, respectively, 

aeration compartments were computed. Tidal recruitment was calculated as difference in 

the size of the non-aerated compartment between end-expiration and end-inspiration. 

Tidal hyper-aeration was calculated as difference in the size of the hyper-aerated 

compartment between end-inspiration and end-expiration (Malbouisson et al., 2001). 

.
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2.1.2.4 Analysis of 68Ga-PET Scans for Quantification of Lung Perfusion 

The 68Ga net activity (68Ga-PETnet) of the images was calculated by subtraction of the 

residual background radioactivity of 18F-FDG, taking the decay half-lives of 18F and 68Ga 

into account. Absolute lung perfusion ( absQ ) was calculated for the ventilated, VILI and 

non-ventilated, control lungs, respectively, as well as for 5 isogravimetric sub-regions 

along the ventro-dorsal axis according to Equation (2.4). 

 CO
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In this equation, 68Ga-PETnet,ROI represents the 68Ga-PETnet inside the ROI, 68Ga-

PETnet,TOTAL represents the total 68Ga-PETnet activity within the whole lung.  

2.1.2.5 Analysis of 18F-FDG-PET Scans for Quantification of Pulmonary 
Neutrophilic Inflammation 

The ACCT images coregistrated to the dynamic PET scans were used to calculate FGas of 

each voxel. For each voxel as well as for all ROIs, FGas was calculated as average CT 

number divided by -1000. For each ROI, as well as for the ventilated, VILI and non-

ventilated, control lungs, the 18F-FDG kinetics were analyzed using the Sokoloff three-

compartment model, yielding Ki and FBlood. KiS was calculated as explained in chapter 

1.2.7.2. in order to account for differences in lung inflation and blood volume between 

ROIs, lungs, and animals. For graphical illustration, Ki was also calculated for each voxel 

according to the Patlak model and normalized to FTissue. 
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2.1.3 Statistics 

The calculation of the sample size (number of animal experiments) was needed to test the 

hypothesis that ‘volutrauma causes a comparable inflammatory response of the lung’.  

It was done based on results of pilot experiments and on results of another research 

group (Hotchkiss et al., 2000). Correspondingly we assumed that a sample size of  

5 animals per group would provide the appropriate power (inferential statistical parameter: 

significance values α = 0.05, power 1 – β = 0.80) to achieve significant difference of KiS 

between volutrauma and atelectrauma within a two-armed, randomized trial. The sample 

size calculation was based on an effect size of d = 2.25. It was done using the software  

G-Power (Version 3.1.2, University of Düsseldorf, Germany, Institut für Experimentelle 

Psychologie). Data are presented as median and [25 % and 75 % quantile] if not stated 

otherwise.  

Due to the small sample size, statistical analyzes were done using non-parametric 

statistical tests. Differences between the ventilated, VILI and the non-ventilated, control 

lungs within the same animal were tested using Wilcoxon signed rank tests for matched 

pairs. Adjustments for repeated measurements were done according to the Sidak 

procedure. Differences between the groups were tested using Mann-Whitney U tests. 

Parameters regarding lung mechanics, hemodynamics, and gas exchange were analyzed 

as following: comparability of groups at Baseline 1 and Injury time point as well as VT and 

∆P after the PEEP trial were tested using an unpaired t-test, while differences among 

groups after randomization were tested using general linear model statistics and using 

Injury as covariate. 

Statistical analyzes were done using the software SPSS (Version 23.0, SPSS Inc., 

Chicago, USA). Statistical significance was set at a p-value ≤ 0.05. 
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2.2 Fluorescence-Labeled Microspheres Derived 
Perfusion Measurements in ARDS 

2.2.1 Experimental Protocol  

The experimental protocol of this study was approved by the local animal care committee 

(Landesdirektion Dresden, Dresden, Germany). The data of this study were obtained from 

an already published experiment (Güldner et al., 2014). Briefly, twelve juvenile pigs 

weighting 26 to 40 kg were studied, but only the data of seven pigs were used in this 

substudy. A randomized, 4 × 4 (therapies × animals) Latin square group design was used. 

Figure 2.6 illustrates the time course of the experimental procedures. 

 
Figure 2.6:  Time course of interventions of the study on fluorescence-labeled microspheres 
derived perfusion measurements in ARDS. 

 After premedication, pigs were anesthetized, intubated, and mechanically 

ventilated in supine position. After the start of ventilation in volume controlled mode and 

surgical preparation, the lungs were recruited with an inspiratory pressure of 30 cmH2O for 

30 s in CPAP mode to reset the lung history. Animals were allowed to stabilize for 15 min 

and baseline measurements of hemodynamics, lung mechanics and gas exchange were 

collected (Baseline 1). Experimental ARDS was induced by repetitive saline lung lavage 

and measurements were repeated (Injury). Mechanical ventilation mode was switched to 

biphasic positive airway pressure/ airway pressure release ventilation (BIPAP/APRV). 

After 30 min of stabilization measurements were recorded and lung aeration was 

quantified by CT scanning (Baseline 2). Thereafter, muscle paralysis was ended to 

resume spontaneous breathing. Animals were randomly assigned to one of four 

experimental groups, which differed in the order of four different levels of contribution of 

spontaneous breathing (SB) to the total MV during ventilation in BIPAP/APRV mode.  

To minimize carryover effects, a derecruitment maneuver was performed before each 

sequence. Animals were ventilated at each level of SB for 1 h. At the end of each 
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sequence (time point T 1 at the end of sequence 1, until time point T 4 at the end of 

sequence 4), parameters regarding lung mechanics, gas exchange, and hemodynamics 

were recorded. At the end of each sequence, fluorescence-labeled microspheres 

(FluoSpheres, LifeTechnology) were injected intravenously over 60 s for ex vivo 

measurements of lung perfusion. At the same time, 68Ga-labeled microspheres were 

injected intravenously over 60 s and immediately thereafter lung imaging data were 

acquired.  

 At the end of the experiment, the anesthetic depth was increased with intravenous 

injection of thiopental (2 g) and animals were sacrificed by an intravenous injection of 

potassium chloride (1 mole, 50 ml). The left and right lungs were excised and further 

processed for the analyzis of the fluorescence-labeled microspheres. 

2.2.1.1 Premedication, Anesthesia and Initial Ventilator Settings  

Pigs were premedicated with an intramuscular injection of 1 mg/kg midazolam and 

10 mg/kg ketamine. An ear vein was punctured and intravenous anesthesia was induced 

with a bolus of 0.5 to 1 mg/kg Midazolam and 3 to 4 mg/kg ketamine. Anesthesia was 

maintained with continuous, intravenous injection of 1 to 2 mg/kg/h midazolam and  

10 to 18 mg/kg/h ketamine. Muscle paralysis was induced with an intravenous bolus of  

3 to 4 mg/kg atracurium, and maintained by continuous injection of 1 to 2 mg/kg/h 

atracurium. After premedication, animals were intubated orally with a cuffed endotracheal 

tube and ventilated with a mechanical ventilator EVITA XL (Dräger Medical AG, Lübeck, 

Germany) in volume controlled mode with the following settings: FiO2 of 100 %, VT of 

10 mL/kg PBW, PEEP of 5 cmH2O, I:E of 1:1, and inspiratory airway flow of 35 L/min.  

RR was titrated to achieve a PaCO2 of 35 to 45 mmHg. An intravenous infusion of a 

crystalloid solution (E153, Serumwerk Bernburg AG, Bernburg, Germany) at a rate of 

10 to 15 mg/kg/h was used to maintain intravascular volume. Animals were positioned 

supine during the entire experiment. 
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2.2.1.2 Preparation 

After premedication, experimental animals were intubated orotracheally using a cuffed, 

endotracheal tube (8.0 mm internal diameter, Mallinckrodt, Athlone, Ireland). After surgical 

preparation of the right common carotid artery, an indwelling catheter was inserted and 

the mean arterial pressure, blood pressure, temperature und heart rate were continuously 

monitored using a CMS monitor (IntelliVue Patient Monitor MP 50 Philips, Böblingen, 

Germany). The right external jugular vein was punctured and the Swan-Ganz pulmonary 

artery catheter (7.5 Fr., Opticath, Abbott, Abbott Park, USA) was inserted via the vena 

cava superior into the arteria pulmonary artery. Mean pulmonary artery pressure and CO 

were continuously monitored using a pressure transducer (PMSET 1DT-XX) connected a 

CMS Monitor (IntelliVue Patient Monitor MP 50, Philips AG, Böblingen, Germany). The 

pulmonary artery catheter was also used to administer the 68Ga-labeled microspheres and 

the fluorescence-labeled microspheres during the imaging period. Urine was collected 

with a catheter inserted into the bladder. An balloon catheter (Erich Jaeger, Höchberg, 

Germany) was placed in the esophagus for measurements of the intrathoracic pressure 

and the position was verified according to the method of Lanteri and coworkers (Lanteri et 

al., 1994).  

2.2.1.3 Induction of ARDS 

Experimental ARDS was induced by repetitive lung lavage with warm (38 °C) 0.9 % saline 

solution as described by Lachmann and coworkers (Lachmann et al., 1980). To achieve a 

homogeneous distribution of the lavage fluid, the position of the animals was alternated 

between prone and supine every 2 lavages. Saline lung lavage was repeated until the 

criterion of the moderate ARDS (PaO2/FiO2 < 200 mmHg) was reached after 30 min of 

stabilization (Ferguson et al., 2012). 

2.2.1.4 Randomization and Start of the Selective Ventilation with Different 
Spontaneous Breathing Contributions 

After induction of ARDS and before measurements at time point Baseline 2, mechanical 

ventilation mode was switched to BIPAP/APRV and using the following settings: fraction 

of inspired oxygen of 0.5, ∆P gradient amounting to a VT of 6 mL/kg PBW, PEEP of 

10 cmH2O, I:E of 1:1, and RR adjusted to achieve an arterial pH between 7.30 and 7.45. 
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Thereafter, muscle paralysis was ended to resume spontaneous breathing. 

Animals were randomly assigned to one of the four experimental groups, which differed 

according to the level of contribution of SB to the total MV during BIPAP/APRV (60 min 

each, crossover design): 

(A) 0 % SB (BIPAP/APRV 0%);  

(B) Greater than 0 % to 30 % SB (BIPAP/APRV > 0 – 30%);  

(C) Greater than 30 % to 60 % SB (BIPAP/APRV > 30 – 60%);  

(D) Greater than 60 % SB (BIPAP/APRV >60%). 

In each phase, the mandatory rate of BIPAP/APRV was adjusted by changing the 

inspiratory and the expiratory times in the same proportion, while keeping the other 

mechanical ventilator settings constant. To avoid predominance of any particular level of 

contribution of SB to the total MV, the sequences of SB levels were defined according to a 

specific 4 × 4 (therapies × animals) Latin square. The following sequences were used: 

1. Sequence:  A B C D    > 0 % – 30 % / > 30 % – 60 % / > 60 % / 0 % level of SB 

2. Sequence:  B A D C    > 30 % – 60 % / > 0 % – 30 % / 0 % / > 60 % level of SB 

3. Sequence: C D B A    > 60 % / 0 % / > 30 % – 60 % / > 0 % – 30 % level of SB 

4. Sequence: D C A B    0 % / > 60 % / > 0 % – 30 % / > 30 % – 60 % level of SB 

Every sequence was applied in 3 animals. To minimize carryover effects, the order 

of the sequences varied and a derecruitment maneuver consisting of 15 s of 

disconnection from the ventilator was performed before each level of SB. Before the 

disconnection, an intravenous bolus of 0.3 mg/kg of atracurium was given to suppress SB. 

The derecruitment maneuver was considered stable if the global impedance measured by 

electrical impedance tomography varied less than 5 % during the last 5 s. After that, the 

electrical impedance tomography belt was removed to avoid interference with CT 

measurements. If level B, C, or D followed in the randomized sequence, SB was resumed 

within 15 min after reconnection to the ventilator. During BIPAP/APRV 0% (level A), 

atracurium was infused at 1 to 2 mg/kg/h to suppress SB. Infusion rates of midazolam and 

ketamine remained unchanged. 

In this substudy, only perfusion measurements at the end of the BIPAP/APRV 0% 

and BIPAP/APRV >60% period were analyzed, since perfusion distribution along the 

cranio-caudal and ventro-dorsal axes as well as total gas volume of the whole lung and 

lung aeration differed most between those two levels of SB (Güldner et al., 2014). 
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2.2.1.5 Assessment of Lung Mechanics, Gas Exchange and Hemodynamics 

At every time point shown in Figure 2.6, parameters regarding respiratory mechanics, gas 

exchange and hemodynamics were acquired: 

Respiratory mechanics 

Airflow and RR were obtained from an internal sensor of the mechanical ventilator.  

Paw was assessed using pressure transducers (163PC01D48-PCB, Sensortechnics 

GmbH, Germany), having the tip placed next to the tracheal tube. Respiratory signals 

were digitized at 200 Hz using an analog-digital board (NI USB-6210; National 

Instruments, Austin, TX) and acquired by a laptop using a data acquisition system.  

An esophageal balloon catheter was connected to a pressure transducer (163PC01D48-

PCB; Sensortechnics GmbH) to measure the esophageal pressure. 

Gas exchange 

Arterial and mixed venous blood samples were analyzed for arterial pH, PaO2, and PaCO2 

using a blood gas analyzer (ABL 505, Radiometer, Copenhagen, Denmark). Oxygen 

saturation and hemoglobin concentration were assessed using an OSM 3 Hemoximeter 

(Radiometer), which was calibrated for porcine blood.  

Hemodynamics 

Mean arterial pressure and mean pulmonary artery pressure was measured continuously 

using a CMS Monitor (Compound Monitor System CMS, IntelliVue Patient Monitor MP 50, 

Philips AG, Böblingen, Germany). CO was assessed using the thermodilution method, 

averaging three measurements equally spread over the respiratory cycle and using 10 ml 

0.9 % saline solution at room temperature.  
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2.2.1.6 Lung Imaging Protocol 

For all scans, animals were positioned supine in the PET/CT camera (Biograph16 Hirez 

PET/CT, Siemens, Knoxville, TN, USA). ACCT scans (120 kVp, CareDose) were acquired 

for attenuation correction of the following static PET scans. Thereafter, preliminary PET 

scans of the whole lung were acquired at the end of each sequence to detect residual 

radioactivity of previous 68Ga-PET scans (68Ga-PETbefore). For preparation of 68Ga-labeled 

microspheres, 68Ga was produced using a germanium-68/gallium-68 generator (ITG 

Isotope Technologies Garching GmbH, Germany), eluted in 7 ml 0.05 M HCl, purified, and 

concentrated using a cation-exchanger (STRATA-XC, Phenomenex, Aschaffenburg, 

Germany). For labeling, approximately 450 MBq of the 68Ga elute was transferred into a 

microsphere B20 kit (Rotop Pharmaka GmbH, Dresden, Germany). 68Ga-labeled 

microspheres were injected intravenously and manually as a slow bolus over 

approximately 1 min followed by a flush with saline solution. The injected 68Ga activities 

were increased prior to each scan (mean values: Baseline 2: 6 MBq; time point T 1: 9 Bq; 

T 2: 17 MBq; T 3: 37 MBq; T 4: 65 MBq). Static PET scans were obtained (68Ga-PETafter). 

The imaging protocol was repeated for data aquisition at every time point. Static PET 

scans were reconstructed iteratively (ordered subset expectation maximization,  

6 iterations, 4 subsets, post-filtering Gauss 5 mm) with attenuation correction using the 

ACCT scans. The resulting voxel size of the static PET scans was 4.06 x 4.06 x 5 mm³ 

yielding matrices with 168 x 168 x 79 voxel. 

At time point Baseline 2 as well as after each static PET scan at the end of each 

ventilation sequence, helical CT scans of the chest were acquired during muscle paralysis 

and CPAP at end-expiratory pressure levels. The CT scanner was set as follows: 

collimation of 16 × 0.75 mm, pitch of 1.35, bed speed of 38.6 mm/s, voltage of 120 kV and 

tube current-time product of 120 mAs. CT images were reconstructed using a B70f 

convolution kernel and 1.0 mm slice thickness, yielding matrices with 512 x 512 pixel with 

a size of 0.426 x 0.426 mm2. 
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2.2.1.7 Preparation and Administration of Fluorescence-Labeled Microspheres 

Fluorescence-labeled microspheres were prepared and administered as described in 

detail in (Glenny et al., 1991). Briefly, fluorescent albumin microspheres of 6 different 

colors (red, yellow-green, crimson, blue-green, orange, and scarlet) and 15 µm diameter 

(Molecular Probes, Eugene, Oregon, USA) were dissolved in sodium chloride (Vortex, IKA 

Works Inc., Wilmington NC, USA). At time point Baseline 2 and at the end of each 

sequence of SB, approximately 1.5 * 106 microspheres of one color were injected 

intravenously via the pulmonary artery catheter over a period of 1 min followed by a flush 

with saline solution. In each experiment, the order of the fluorescence color was randomly 

varied across animals in order to negate an effect of order. 

2.2.1.8 Ex vivo Processing of the Lung for Analysis of Fluorescence-Labeled 
Microspheres 

After animals were sacrificed, the thorax was opened, lungs were removed from the chest 

and flushed with 50 mL/kg PBW 6 % hydroxyethyl starch (Fresenius Kabi, Bad Homburg) 

until they were clear of blood. Lungs were air dried for 7 d with continuous positive 

pressure of 25 cmH2O. When dry, all of the 12 analyzed whole lungs were first coated with 

one-component polyurethane foam (BTI Befestigungstechnik, Ingelfingen, Germany), then 

suspended vertically in a square box and embedding in two-component polyurethane 

foam (HR-AT, Vosschemie GmbH, Uetersen, Germany). The created lung-foam-blocks 

were cut into slices of approximately 1.2 cm thickness. The slices were then cut into 

pieces of 12 x 12 x 12 mm3 size using a rigid grid system. Each of the resulting lung tissue 

piece was weighed, giving the mass (m), and was assigned a three-dimensional 

coordinate. Lung pieces were graded in respect to their airway and vessel contents. The 

higher the proportion of airways and vessels, the higher the score was ranked (score 

range: 0 - 3). Lung pieces were soaked in 2 ml of 2-ethoxyethyl acetate (Aldrich Chemical, 

Milwaukee, WI) for 7 d to extract the fluorescence dye out of the lung tissue. Considering 

the specific excitation and emission wavelength of the fluorescence colors (Table 2.1), the 

dissolved microspheres were excised and the emitting fluorescence was read using a 

luminescence spectrophotometer (LS-50B, Perkin-Elmer, Beaconsfield, Buckinghamshire, 

UK). Blank measurements were performed to determine background fluorescence. 
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Table 2.1:  Excitation and emission wavelength used for fluorescence measurements.  

Color Excitation Wavelength [nm] Emission Wavelength [nm] 

Blue 365 415 

Blue-green 430 450 

Yellow-green 480 495 

Orange 530 545 

Red 580 592 

Crimson 610 620 

Scarlet 645 660 

 In this substudy, only fluorescence-labeled microspheres derived perfusion 

measurements at the end of the BIPAP/APRV 0% and BIPAP/APRV >60% sequences 

were analyzed.  

2.2.2 Data Processing and Analysis 

2.2.2.1 Analysis of Respiratory Mechanics Variables 

The respiratory volume signal was calculated from the 5 min recordings of the airflow by 

numerical integration for each measurement time point. The time points of the beginning 

of inspiration and expiration were detected from the airflow signal using a zero crossing 

algorithm. For each respiratory cycle, VT was computed as difference between the 

minimum and maximum value of the respiratory volume signal. MV was computed as RR 

multiplied by VT.  

For each measurement time point, Paw,mean, PEEP, and Paw,peak were calculated 

from the 5 min recordings of the Paw-signal as average, minimum, and maximum value of 

the Paw signal of each respiratory cycle, respectively, and averaged over all respiratory 

cycles during the 5 min recordings. The transpulmonary pressure (PL) was calculated as 

difference in Paw and esophageal pressure. Mean transpulmonary pressures (PL,mean) and 

peak transpulmonary pressures (PL,peak) were calculated from the 5 min recordings of the 

PL-signal as average and maximum values of each respiratory cycle, respectively, and 

averaged over all respiratory cycles during the 5 min recordings.  

The product of esophageal pressure and time (pressure time product: PTP) was 

calculated during inspiration, using the first value at the beginning of the respiratory cycle 

as offset. For each measurement time point, PTP was averaged over all respiratory cycles 

during the 5 min recordings.   



 2 Materials and Methods 

57 

2.2.2.2 Definition of Lung Fields for Analysis of Imaging Data 

The CT scans at end-expiratory lung volume were coregistrated to the corresponding 

static PET scans using the software Rover (ABX advanced and biochemical compounds 

GmbH, 2015), (Hofheinz et al., 2012). The downscaled CT scans were used for manual 

segmentation of volumetric masks of the left and right lungs, respectively, using the 

software ITK-Snap, Version 2.4.0. 2012 (Yushkevich et al., 2006). The trachea, main 

bronchi, and associated blood vessels were excluded from the lung masks. Regions 

outside the lung masks were excluded from further analyzis. 

2.2.2.3 Analysis of CT Scans for Quantification of Lung Aeration 

Using the downscaled CT scans, lung tissue mass was calculated for each voxel within 

the lung masks using the software Matlab (MathWorks, Natick, MA, Version R2012b) and 

taking advantage of the linear correlation of the CT number and the density of the voxel 

(g/cm3), (Richter et al., 2015). Voxel with mass < 5 % of the maximal mass of the dataset 

were excluded. Values were defined as outliers using the definition of (Leys et al., 2013). 

Outliers were excluded from further analyzis. 

2.2.2.4 Analysis of 68Ga-Labeled Microspheres Derived Perfusion Measurements 

For each of the 7 selected animals and for the left and right lungs separately 

(n = 14 lungs), the activity emitted by 68Ga-labeled microspheres injected for 68Ga-PET 

scans at previous time points (68Ga-PETbefore) was subtracted from the measured 

radioactivity emitted by 68Ga-labeled microspheres injected at the actual time point (68Ga-

PETafter), taking into account the decay half-lives of 68Ga. For each voxel, relative lung 

perfusion was calculated as mass-normalized, relative radioactive intensity (QRM) 

according to Equation (2.5).  

 nm    V*  ) PETGa- PETGa( m    V*) PETGa- PETGa(Q n1i i Voxeli,before68i,after68 i Voxeli,before68i,after68i,RM
∑
=

−−

−−

=   
(2.5) 

In this equation, i represents the voxel number, n is the total number of voxel within the 

lung mask, m is the lung tissue mass of the voxel, and VVoxel represents the volume of a 

voxel. Values were defined as outliers, if flow was outside the range of median ± 3 * 

median absolute deviation within the transversal, coronal, and sagittal planes (Leys et al., 

2013). Outliers were excluded from further analyzis. 
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For the left and right lung of each animal, global heterogeneity of QRM-

measurements was estimated as variance of perfusion values of all voxel within the lung 

normalized by the square of the mean, also defined as coefficient of variation squared 

(CV2) and in the following referred to as heterogeneity on a whole lung level (Venegas and 

Galletti, 2000; Winkler et al., 2015). 

Also for each lung separately, regional heterogeneity of QRM-measurements was 

quantified as CV2 of voxel within 24.36 x 24.36 x 25 mm3 elements (which corresponds to 

6 x 6 x 5 voxel). For comparison among all animals and lungs, mean micro level CV2-

values were calculated for each lung. 

For each voxel, QRM was characterized as function of location along the ventro-

dorsal and cranio-caudal axes by means of linear least-squares regression analyzis. 

Vertical perfusion gradients were characterized by the slope of the regression lines. The 

dimension of the vertical perfusion gradients were relative flow units per cm. Positive 

slopes indicate an increase in perfusion from the ventral or cranial to the dorsal or caudal 

region, respectively.  

The outer dimensions of the 7 left and right lungs were assessed. For one 

representative animal, a three-dimensional visualization of the outer contours of the left 

and right lungs were obtained from QRM-measurements using the software Matlab 

(MathWorks, Natick, Massachusetts). 

2.2.2.5 Downscaling of 68Ga-Labeled Microspheres Derived Perfusion 
Measurements 

For each of the 7 selected animals and for each lung separately, both the 68Ga-PET 

datasets and the CT datasets were downscaled to the resolution of the fluorescence-

labeled microspheres derived perfusion measurements using the function imresize 

implemented in the software Matlab (MathWorks, Natick, MA, Version R2012b). 

Downscaled datasets featured 33 x 57 x 57 voxel with a voxel size of 12 x 12 x 12 mm3. 

Using the downscaled CT and PET datasets, downscaled mass-normalized, relative 

radioactive intensity (QRM,downscale) was calculated for each voxel within the lung 

according to Equation (2.5). Values were defined as outliers, if flow was outside the range 

of median ± 3 * median absolute deviation within the transversal, coronal, and sagittal 

planes (Leys et al., 2013). Outliers were excluded from further analyzis.  
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The distribution of QRM,downscale-measurements was characterized as function of 

location along the ventro-dorsal and cranio-caudal axes by means of linear least-squares 

regression analyzis. Vertical perfusion gradients were characterized by the slope of the 

linear regression lines.  

 For each lung, heterogeneity on a whole lung level of QRM,downscale-measurements 

was estimated as CV2. Regional heterogeneity was quantified as CV2 of voxel within 

24.0 x 24.0 x 24.0 mm3 elements (corresponding to 2 x 2 x 2 voxel). For comparison 

among all animals and lungs, mean micro level CV2-values were calculated for each lung. 

2.2.2.6 Analysis of Fluorescence-Labeled Microspheres Derived Perfusion 
Measurements 

2.2.2.6.1 Definition of Lung Fields for Analysis of Fluorescence Data 

For the analyzis of the mass of lung pieces and the fluorescence-labeled microspheres 

derived perfusion measurements, the left and right lungs of the 7 selected animals were 

analyzed separately (n = 14 lungs). Lung pieces featuring larger airways or vessels 

(airway score > 1) were excluded from further analyzis. Only a subset of lung pieces was 

analyzed for its mass and for mass- as well as mass- and volume-normalized, relative 

fluorescence intensities (see chapter 2.2.2.6.3). Only pieces that fully consisted of lung 

tissue but no lung-embedding foam were analyzed. It was therefore assumed that this 

subset of pieces featured comparable lung tissue volume. 

 
Figure 2.7:  Rigid grid system used for post mortem processing of air dried lung slices 
embedded in foam. In parts of the analyzis, all pieces containing lung tissue were selected (left 
picture A: all pieces containing lung tissue are highlighted by green boarder line), whereas in other 
parts of the analyzis only pieces fully containing of lung tissue and no lung-embedding foam were 
analyzed (right picture B: subset of analyzed lung pieces is highlighted by blue boarder line). 
Pieces featuring larger airways or vessels were excluded from the analyzis (as highlighted by red 
cross in both pictures). 
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2.2.2.6.2 Analysis of Mass of Lung pieces 

For each of the 14 analyzed lungs separately, lung pieces fully containing of lung tissue 

were defined as outliers, if its mass was outside the range of median ± 3 * median 

absolute deviation within the transversal, coronal, and sagittal planes (Leys et al., 2013). 

Outliers were excluded from further analyzis. The distribution of mass was characterized 

as function of location along the ventro-dorsal and cranio-caudal axes by means of linear 

least-squares regression analyzis. Vertical mass gradients were characterized by the 

slopes of the linear regression lines.  

2.2.2.6.3 Analysis of Fluorescence Measurements 

For every piece of each of the 14 analyzed lungs, the net fluorescence intensity (IFM,net) 

was calculated by subtraction of the average color-specific background fluorescence 

intensity from the measured color-specific fluorescence intensity.  

 Considering the mass (m) of each lung piece, lung perfusion was calculated for 

every lung piece including boundary pieces consisting of lung tissue and lung-embedding 

foam as mass-normalized, relative fluorescence intensity (QFM,Mass) as shown in 

Equation (2.6). 

 

∑
=

= n1i i i,net,FMi i,net,FMi,Mass,FM m   I*n1 m   IQ   (2.6) 

In this equation, i represents the voxel number, n is the total number of pieces the lungs 

were cut into. Mean mass-normalized, relative fluorescence intensity of each lung was 

therefore 1 and accounted for differing total number of injected fluorescent microspheres. 

For all pieces featuring comparable lung tissue volume, lung perfusion was 

calculated as volume-normalized, relative fluorescence intensity (QFM,Volume) according 

to Equation (2.7). 

 

∑
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In this equation, i represents the voxel number and z is the total number of pieces fully 

consisting of lung tissue and no lung-embedding foam. 

  



 2 Materials and Methods 

61 

 Since the volume of the subset of analyzed lung pieces is approximately 

comparable, Equation (2.7) can be simplified to Equation (2.8). 

 
∑
=

= z1i i,net,FMi,net,FMi,Volume,FM *z1  IQ   
(2.8) 

Similarly, mass- and volume-normalized, relative fluorescence intensity 

(QFM,Mass,Volume) was calculated for all pieces featuring comparable lung tissue volume 

according to Equation (2.9). 

 
∑
=

= z1i i i,net,FMi i,net,FMi,Volume,Mass,FM m  I*z1  m  IQ   (2.9) 

 For QFM,Mass, QFM,Volume, and QFM,Mass,Volume, respectively, values were defined as 

outliers, if perfusion was outside the range of median ± 3 * median absolute deviation 

within the transversal, coronal, and sagittal planes (Leys et al., 2013). Outliers were 

excluded from further analyzis. 

Assuming linear correlation, the distributions of QFM,Mass, QFM,Volume, and 

QFM,Mass,Volume-measurements were characterized as function of location along the ventro-

dorsal and cranio-caudal axes by means of linear least-squares regression analyzis. 

Vertical perfusion gradients were characterized by the slope of the linear regression lines. 

The dimension of the vertical perfusion gradients were relative flow units per cm. A slope 

of + 0.04 / cm, for example, describes an increase in flow by 0.04 of mean normalized flow 

per unit cm along the axis.  

For QFM,Mass-, QFM,Volume-, and QFM,Mass,Volume-measurements, respectively, 

heterogeneity on a whole lung level was estimated as CV2. Regional heterogeneity was 

quantified as CV2 of voxel within 24.0 x 24.0 x 24.0 mm3 elements (corresponding to 

2 x 2 x 2 voxel). For comparison among all animals and lungs, mean micro level CV2-

values were calculated for each lung. 

The outer dimensions of the 7 left and right lungs were assessed. For one 

representative animal, a three-dimensional visualization of the outer contours of the left 

and right lungs were obtained from QFM,Mass-measurements using the software Matlab 

(MathWorks, Natick, Massachusetts).   
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2.2.3 Statistics 

Data are presented as median and [25 % and 75 % quantile] if not stated otherwise. Due 

to the small sample size, statistical analyzes were done using non-parametric tests. 

Global statistical significance levels were defined as p-values ≤ 0.05. Tests were 

performed using the software SPSS (Version 23, IBM SPSS statistics, Armonk, USA). 

The slopes of the linear regressions of perfusion and spatial location were 

compared with zero using a one-sample two-tailed t-test. The detected slopes of the linear 

regression of perfusion and spatial location along both axes were compared between 
68Ga-labeled and fluorescence-labeled microspheres derived measurements using 

Wilcoxon signed rank tests for matched pairs. Adjustments for repeated measurements 

were done according to the Bonferroni-Holm procedure. 

 Measurements of the distribution of pulmonary blood flow were compared between 

in vivo QRM- and QRM,downscale-measurements and ex vivo QFM,Volume-, QFM,Mass-, and 

QFM,Volume,Mass-measurements using Bland-Altman diagrams.  
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3 Results 

This section is comprised of two sub-sections. The results of the study on the 

inflammatory impact of volutrauma and atelectrauma are presented in the first sub-

section, whereas the results of the study on fluorescence-labeled microspheres derived 

perfusion measurements in ARDS are depicted in the second sub-section.  

3.1 Volutrauma and Atelectrauma in ARDS 

3.1.1 General Aspects 

Body weight, number of saline lung lavages and cumulative doses of crystalloids and 

colloids did not differ between volutrauma and atelectrauma (Appendix: Table A.5.1). 

3.1.2 Respiratory Mechanics, Pulmonary Gas Exchange and 
Hemodynamics 

Respiratory mechanics 

VT and RR were comparable between volutrauma and atelectrauma and constant over 

time in both groups (Appendix: Table A.5.2). Paw,mean, Paw,peak, and the percentage of 

volume-dependent components of Ers were higher in volutrauma, whereas Rrs, Ers, and ∆P 

were increased in atelectrauma, as indicated by a significant difference of the respective 

group effect (Appendix: Table A.5.2). ∆P was initially (Baseline, Injury) comparable 

between groups, but increased in atelectrauma, but not in volutrauma, over time and was 

significantly different at time point T 4 (Appendix: Table A.5.2). At time point T 4, 

mechanical power was higher in volutrauma as compared to atelectrauma (volutrauma: 

16.44 [13.07 - 16.93] J/min; atelectrauma: 5.64 [5.62 - 6.52] J/min; p = 0.016), while 

regional “intensity” was comparable between groups (volutrauma: 0.071 [0.043 -

 0.076] J/min/g; atelectrauma: 0.062 [0.049 - 0.081] J/min/g; p = 0.917). 

Gas exchange and Hemodynamics  

Lung lavage induced a decrease in PaO2 and an increase in PaCO2, respectively, but 

both parameters did not differ between groups at Baseline or Injury time point (Appendix: 

Table A.5.3). Parameters regarding hemodynamics and gas exchange were comparable 

between groups. There was a no significant trend towards a higher PaCO2 in volutrauma 

as compared to atelectrauma (Appendix: Table A.5.3).  
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3.1.3 Imaging Results: Overview 

Figure 3.1 illustrates the distribution of aeration, FGas, perfusion, and KiS in one 

representative animal of each group. 

 
Figure 3.1:  Three-dimensional illustration of the distribution of aeration (1. column), as well as 
transversal slices of the distribution of FGas (2. column), perfusion (3. column), and KiS (4. column) 
in one representative animal of the volutrauma (upper panel) and atelectrauma group (lower 
panel), respectively. Positions of the transversal slices are illustrated in the 3D image and were 
chosen as the slices featuring maximal cross-sectional areas. Color bars denote the respective 
scales. Hyper corresponds to hyper-aerated compartment; normal to normally aerated 
compartment; poor to poorly aerated compartment, and non to non-aerated compartment. L 
corresponds to the ventilated, VILI lung and R to the non-ventilated, control lung. 

3.1.4 Analysis of CT Data 

Lung Volume 

The volumes of the ventilated, VILI and non-ventilated, control lungs were 1406.0 [1283.9 

– 1824.3] L and 1172.8 [855.4 – 1418.9] L in volutrauma, and 415.7 [362.1 – 566.5] L and 

1176.8 [937.1 – 1270.4] L in atelectrauma, respectively. The volumes of the ventilated, 

VILI lungs were significantly higher than that of the non-ventilated, control lungs in the 

atelectrauma (p = 0.043), but not in the volutrauma group (p = 0.080). The volumes of the 

ventilated, VILI lungs of the volutrauma group were highly significantly higher than that of 

the atelectrauma group (p ≤ 0.01), whereas the sizes of the non-ventilated, control lungs 

were comparable between groups (p = 0.917). 
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Lung Weight 

The weights of the ventilated, VILI and non-ventilated, control lungs were 293.9 [208.2 – 

313.1] g and 410.1 [350.6 – 487.6] g in volutrauma, and 326.2 [268.6 – 521.2] g and 423.3 

[343.6 – 586.3] g in atelectrauma, respectively. Weights of the ventilated, VILI lungs as 

well as weights of the non-ventilated, control lungs did not differ between groups (VILI 

lungs: p = 0.251; control lungs: p = 0.754). In volutrauma, the weights of the ventilated, 

VILI lungs were higher than that of the corresponding non-ventilated, control lungs  

(p = 0.043), whereas in atelectrauma weights were comparable between corresponding 

lungs (p = 0.080). Tissue masses of the isogravimetric subregions of the 15 cm cranio-

caudal lung field assessed by dynamic PET scanning were only comparable between 

ROIs of the same ventilated, VILI lung, but not between animals or groups (Table 3.1). 

Mass of the total 15 cm cranio-caudal field of the ventilated, VILI lungs were lower in 

volutrauma as compared to atelectrauma, both absolutely and relatively to the mass of the 

whole ventilated, VILI lungs (Table 3.1). Analyzing the whole cranio-caudal lung 

expansion, tissue mass of the ventilated, VILI lungs were higher in volutrauma 

(268.2 [216.5 – 281.4] g) as compared to atelectrauma (107.2 [90.6 - 134.4] g; p = 0.009). 

Table 3.1:  Tissue mass per isogravimetric subregion of the 15 cm cranio-caudal field of the 
ventilated, VILI lungs and non-ventilated, control lungs at end of expiration of all animals of the 
volutrauma and atelectrauma group, respectively.  

 Volutrauma: 

Ventilated, VILI Lung 

Atelectrauma: 

Ventilated, VILI Lung 

Mass of ROI1 [g] 30.85 # 

[29.47 – 35.04] 

52.67 

[37.67 – 55.05] 

Mass of ROI2 [g] 31.15 # 

[29.45 – 35.08] 

50.01 

[35.68 – 53.88] 

Mass of ROI3 [g] 31.53 # 

[30.02 – 35.57] 

49.57 

[35.88 – 54.56] 

Mass of ROI4 [g] 31.50 # 

[29.53 – 35.16] 

50.78 

[36.99 – 54.70] 

Mass of ROI5 [g] 30.57 # 

[29.76 – 35.27] 

50.29 

[36.78 – 54.71] 

Mass of all ROIs [g] 155.60 # 

[148.23 – 176.13] 

253.32 

[182.46 – 272.89] 

Mass of all ROIs 

[% of whole lung mass]  

56.63 ## 

[50.05 – 59.93] 

71.90 

[63.22 – 72.90] 

# p ≤ 0.05 (vs. same ROI of the ventilated, VILI lungs of the atelectrauma group). ## p ≤ 0.01 (vs. 
same ROI of the ventilated, VILI lungs of the atelectrauma group). No significant differences 
between ROIs of the same lung in both groups.   
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Average Lung Aeration 

The normally and hyper-aerated compartments were much bigger while the non-aerated 

compartment was much smaller in the ventilated, VILI lungs of the volutrauma compared 

to the atelectrauma group (Figure 3.2). Sizes of the aeration compartments of the non-

ventilated, control lungs were comparable between groups (Figure 3.2). In volutrauma, 

normally and hyper-aerated compartments were smaller, while poorly and non-aerated 

compartments were bigger in the non-ventilated, control lungs as compared to the 

ventilated, VILI lungs (Figure 3.2). In comparison, in atelectrauma, normally and hyper-

aerated compartments were bigger, while non-aerated compartment was smaller in the 

non-ventilated, control lungs as compared to the ventilated, VILI lungs (Figure 3.2). 

 

Figure 3.2:  Mean and standard deviation (error bar) of the percentage of hyper-aerated (white), 
normally aerated (light gray), poorly aerated (dark gray), and non-aerated compartments (black) 
relative to the total mass [% mass] of the ventilated, VILI lungs and non-ventilated, control lungs of 
the volutrauma (left panel) and atelectrauma group (right panel), respectively. Note different axes 
scales between panels. * p ≤ 0.05 (ventilated, VILI lungs vs. non-ventilated, control lungs for same 
aeration compartment and group). # p ≤ 0.05 (volutrauma vs. atelectrauma for same aeration 
compartment of the ventilated, VILI lungs). ## p ≤ 0.01 (volutrauma vs. atelectrauma for same 
aeration compartment of the ventilated, VILI lungs).  
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Regional Lung Aeration 

Within all subregions and at end-expiration and end-inspiration, respectively, the normally 

and hyper-aerated compartments were significantly bigger, while the non-aerated 

compartments were significantly smaller in the ventilated, VILI lungs of the volutrauma 

compared to the atelectrauma group (Figure 3.3). At end-inspiration, the poorly aerated 

compartment was smaller in ventral and second most ventral lung regions in the 

ventilated, VILI lungs of the volutrauma compared to the atelectrauma group, while only 

ventral regions featured smaller poorly aerated compartments at end-expiration (Figure 

3.3). 

 

Figure 3.3:  Mean and standard deviation of the percentage of hyper-aerated (white), normally 
aerated (light gray), poorly aerated (dark gray) and non-aerated compartments (black) relative to 
the total mass [% mass] of ventilated, VILI lungs in volutrauma (left panel) and atelectrauma (right 
panel), respectively, for 5 adjacent regions of the same lung mass reaching from ventral (ROI 1) to 
dorsal (ROI 5) at end-expiration (Exp) and end-inspiration (Insp), respectively. # p ≤ 0.05 
(atelectrauma vs. volutrauma for same aeration compartment in same ROI at the same lung 
volume). No significant difference of size of aeration compartments between ROIs of the same lung 
and group. 
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Tidal Changes of Lung Aeration 

The extent of tidal hyper-aeration was higher in volutrauma as compared to atelectrauma 

in all, except to ventral, ROIs (Figure 3.4). In contrast, tidal recruitment was significantly 

higher in the atelectrauma compared to the volutrauma group in all lung regions. In 

volutrauma, tidal hyper-aeration was increased compared to tidal recruitment in all, except 

the dorsal, lung regions. In ventral, mid-ventral and middle lung regions of the 

atelectrauma group, tidal recruitment was significantly higher than tidal hyper-aeration 

(Figure 3.4). 

 

Figure 3.4:  Extent of tidal recruitment (left panel) and tidal hyper-aeration (right panel) of 
ventilated, VILI lungs in volutrauma (gray) and atelectrauma (black), respectively, in 5 adjacent 
regions of the same lung mass reaching from ventral (ROI 1) to dorsal (ROI 5). Note different axes 
scales in left and right panel. * p ≤ 0.05 (tidal recruitment vs. tidal hyper-aeration in same ROI and 
group). # p ≤ 0.05 (atelectrauma vs. volutrauma for tidal recruitment or tidal hyper-aeration, 
respectively, in same ROI). 
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3.1.5 Lung Perfusion 

Absolute perfusion of the ventilated, VILI lungs did not differ between volutrauma and 

atelectrauma, both on a whole lung level (volutrauma: 1.510 [1.098 – 2.202] L/min; 

atelectrauma: 1.410 [1.298 – 2.192] L/min; p = 0.917) as well as on a regional level 

(Figure 3.5). Absolute perfusion of the non-ventilated, control lungs did also not differ 

between groups (volutrauma: 3.629 [2.797 – 4.454] L/min; atelectrauma: 3.969 [3.364 – 

6.436] L/min; p = 0.347). Absolute perfusion of the ventilated, VILI lungs compared to the 

non-ventilated, control lungs was lower in atelectrauma (p ≤ 0.05), but not in volutrauma 

(p = 0.080). However, on a regional level, absolute perfusion of the ventilated, VILI 

compared to the non-ventilated, control lungs of the volutrauma group was lower in all, 

except the dorsal, ROIs. In atelectrauma, all ROIs showed lower absolute perfusion of the 

ventilated, VILI compared to the non-ventilated, control lungs (Figure 3.5). Both in 

volutrauma and atelectrauma, absolute perfusion was comparable between subregions of 

the ventilated, VILI lungs and the non-ventilated, control lungs, respectively (Figure 3.5). 

 

Figure 3.5:  Absolute regional lung perfusion in 5 adjacent regions of the same lung mass 
reaching from ventral (ROI 1) to dorsal (ROI 5) for the ventilated, VILI (black triangles) and non-
ventilated, control lungs (gray squares) of all animals of the volutrauma (left panel) and 
atelectrauma group (right panel), respectively. * p ≤ 0.05 (ventilated, VILI lungs vs. non-ventilated, 
control lungs in same ROI and group). No significant difference between ventilated, VILI lungs of 
the volutrauma and atelectrauma group in same ROI. No significant difference between ROIs of the 
same lung and group.  
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3.1.6 Pulmonary Neutrophilic Inflammation 

Whole Lung Level 

Ki and FBlood were lower, while FGas and KiS were higher in the ventilated, VILI lungs of the 

volutrauma compared to the atelectrauma group, respectively (Table 3.2). In contrast, Ki, 

FBlood, FGas, and KiS of the non-ventilated, control lungs did not differ between groups.  

In volutrauma, FBlood was lower while FGas was higher in the ventilated, VILI compared to 

the non-ventilated, control lungs. The opposite distribution occurred in atelectrauma.  

In atelectrauma, Ki of the ventilated, VILI lungs was higher compared to the non-

ventilated, control lungs. In volutrauma but not in atelectrauma, KiS of the ventilated, VILI 

lungs was higher compared to the respective non-ventilated, control lungs (Table 3.2). 

Table 3.2:  Ki, FGas, FBlood, and KiS of the ventilated, VILI lungs and non-ventilated, control lungs of 
all animals of the volutrauma and atelectrauma group, respectively.  

 Volutrauma Atelectrauma 

 Ventilated,  

VILI Lung 

Non-ventilated, 

Control Lung 

Ventilated,  

VILI Lung 

Non-ventilated, 

Control Lung 

Ki [10-3/min] 3.05 ## 

[2.61 – 3.95] 

3.85 

[2.54 – 4.68] 

7.77 * 

[6.64 – 8.33] 

2.78 

[2.53 – 3.11] 

FGas 0.78 * ## 

[0.77 – 0.79] 

0.68 

[0.63 – 0.69] 

0.22 * 

[0.18 – 0.24] 

0.65 

[0.60 – 0.65] 

FBlood 0.04 * ## 

[0.03 – 0.04] 

0.08 

[0.08 – 0.09] 

0.17 * 

[0.17 – 0.19] 

0.09 

[0.07 – 0.10] 

KiS [10-3/min] 16.89 * ## 

[14.58 – 22.66] 

10.58 

[9.72 – 16.11] 

13.49 

[9.85 – 13.71] 

11.51 

[9.44 – 13.30] 

* p ≤ 0.05 (vs. non-ventilated, control lung of the same group). ## p ≤ 0.01 (vs. ventilated, VILI lung 
of atelectrauma group). 
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Regional Inflammation 

Ki and FBlood were lower while FGas was higher in all regions of the ventilated, VILI lungs of 

the volutrauma compared to the atelectrauma group (Figure 3.6). In volutrauma, FGas of 

ventilated, VILI lungs was higher compared to the respective non-ventilated, control lungs 

in all ROIs. The opposite distribution occurred in all ROIs of the atelectrauma group. In 

volutrauma, FBlood of the ventilated, VILI lungs was lower compared to the respective non-

ventilated, control lungs in all ROIs. The opposite distribution occurred in mid-ventral, 

central and mid-dorsal ROIs of the atelectrauma group. While in atelectrauma Ki was 

higher in all regions of the ventilated, VILI lungs compared to the corresponding non-

ventilated, control lungs, there was no difference in any ROI of the volutrauma group. In 

mid-ventral, central, and mid-dorsal lung regions, KiS of the ventilated, VILI lungs of the 

volutrauma group were higher compared to the corresponding non-ventilated, control 

lungs and to ventilated, VILI lungs of the atelectrauma group, respectively (Figure 3.6).  

 
Figure 3.6:  Ki, FGas, FBlood, and KiS (line 1 to line 4) in 5 adjacent regions of the same lung mass 
reaching from ventral (ROI 1) to dorsal (ROI 5) for the ventilated, VILI lungs (black triangles) and 
non-ventilated, control lungs (gray squares) of all animals of the volutrauma (left panel) and 
atelectrauma group (right panel), respectively. * p ≤ 0.05 (vs. same ROI of non-ventilated, control 
lungs, same group). # p ≤ 0.05 (vs. same ROI of the ventilated, VILI lungs of atelectrauma group). 
## p ≤ 0.01 (vs. same ROI of the ventilated, VILI lungs of atelectrauma group).   
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3.1.7 Results of ex vivo Analyses 

Wet- To- Dry Ratio 

The wet- to- dry ratios of samples of the upper lobe of the ventilated, VILI and non-

ventilated, control lungs were 5.9 [5.4 – 7.4] g and 6.1 [6.0 – 8.3] g in volutrauma, and 8.4 

[8.2 – 10.1] g and 7.6 [7.4 – 8.3] g in atelectrauma, respectively. Wet- to- dry ratios did not 

differ between volutrauma and atelectrauma both for the ventilated, VILI lungs (p = 0.142) 

and the non-ventilated, control lungs (p = 0.293). In both groups, wet- to- dry ratios did not 

differ between ventilated, VILI and non-ventilated, control lungs (volutrauma: p = 0.176; 

atelectrauma: p = 0.225). 

Molecular Biology 

Both in volutrauma and atelectrauma, the protein concentrations of IL-6 and IL-8 did not 

differ between the ventilated, VILI and the non-ventilated, control lungs (Figure 3.7). Both 

in the ventilated, VILI and in the non-ventilated, control lungs, protein concentrations 

of  IL-6 and IL-8 did also not differ between volutrauma and atelectrauma. The protein 

concentration of TNF-α was not detectable in 24 of the 30 samples of the volutrauma 

group and in 18 of the 30 samples of the atelectrauma group. 

 

Figure 3.7:  Protein concentrations of IL-6 (upper line) and IL-8 (lower line), in the ventilated, 
VILI lungs (1. column) and in the non-ventilated, control lungs (2. column) as well as the ratio of the 
concentration in the ventilated, VILI to the non-ventilated, control lungs (3. column) of ventral, 
central and dorsal regions of the upper lobes of all animals of the volutrauma (left, black panel) and 
atelectrauma group (right, white panel). No significant difference of protein concentrations of IL-6 
and IL-8, respectively, between same ROI of corresponding lungs of the volutrauma and 
atelectrauma group, respectively. No significant difference of protein concentrations of IL-6 and IL-
8, respectively, between ventilated, VILI lungs and corresponding non-ventilated, control lungs in 
both groups and all ROIs.  
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3.2 Fluorescence-Labeled Microspheres Derived 
Perfusion Measurements in ARDS 

3.2.1 General Aspects 

Three to 13 lung lavages were necessary to induce moderate ARDS. At the end of the 

experiment, excised lungs of 5 of the 12 animals had to be excluded from the analyzis of 

fluorescence-labeled microspheres derived perfusion measurements due to rotation 

artifacts resulting from strong rotation of the lungs around their sagittal axis during fixation 

with the two-component foam (see Figure 3.8 for illustration). Therefore, only the left and 

right lungs of 7 animals were further analyzed. 

  
Figure 3.8:  The lungs of 2 different animals (inner, brown structure) embedded in one-
component polyurethane foam (orange structure) and two-component polyurethane foam 
(outermost, yellow structure). Lung-foam-blocks were cut into slices and placed in a rigid grid 
system for further processing. The lung shown in the left subplot (A) was selected for further 
analyzis, whereas the lung shown in the right subplot (B) was excluded from further analyzis since 
it was strongly rotated around its sagittal axis. 

 The right lung of one animal had to be excluded due to incomplete PET/CT data 

and missing caudal lung parts for measurements in BIPAP/APRV 0%. The remaining left 

and right lungs were analyzed separately, resulting in n = 13 lungs analyzed for the in vivo 

QRM-measurements and ex vivo QFM-measurements in BIPAP/APRV 0% and 

BIPAP/APRV >60%, respectively. 

  

B A 
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3.2.2 Resolution of ex vivo and in vivo Perfusion Measurements 

The resolution of the QRM-measurements (4.06 x 4.06 x 5 mm3) was about 21 times higher 

than that of the QFM-measurements (12 x 12 x 12 mm3). Consequently, lungs were 

represented by a correspondingly higher number of voxel or lung pieces in QRM-

measurements (Figure 3.9). After exclusion of tissue pieces containing lung-embedding 

foam, only 28 % of the total number of pieces remained for the analyzis of the mass of 

lung pieces as well as for QFM,Volume- and QFM,Mass,Volume-measurements. 

 
Figure 3.9:  Three-dimensional contour of the left and right lungs of one representative animal 
(upper line) illustrating the position of the transversal and sagittal planes (lower line) of the 
distribution of perfusion assessed using QRM-measurements (left column) and QFM,Mass-
measurements (right column) in BIPAP/APRV >60%, as well as number of voxel or lung pieces the 
left and right lungs were represented by.  
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3.2.3 Lung Dimensions ex vivo and in vivo 

Compared with lung dimensions assessed in vivo using QRM-measurements in 

BIPAP/APRV >60% and in BIPAP/APRV 0%, respectively, excitation and drying of the 

lungs caused an increase of the cranio-caudal distention, whereas the ventro-dorsal and 

left-right expansions decreased (Figure 3.10). Differences in lung distention between in 

vivo and ex vivo measurements were comparable between measurements in 

BIPAP/APRV 0% and BIPAP/APRV >60%, respectively (cranio-caudal distention: 

p = 0.293; ventro-dorsal distention: p = 0.293; left-right distention: p = 0.248). For 

QFM,Volume- and QFM,Mass,Volume-measurements, respectively, the exclusion of tissue pieces 

containing lung-embedding foam resulted in a reduction of the analyzed lung range to 

82.6 [78.3 – 88.5] % of the longitudinal, 80.0 [75.0 – 81.8] % of the sagittal and 

71.4 [66.7 – 80.0] % of the transversal lung expansions. 

 
Figure 3.10:  Three-dimensional illustration of the outer contours of the left and right lungs of one 
representative animal in lateral (upper line) and frontal projection (lower line) assessed in vivo 
using QRM-measurements in BIPAP/APRV >60% (illustrated in red, first column) and ex vivo using 
QFM,Mass-measurements (illustrated in blue, second column), respectively, as well as overlay of the 
2 outer contours (third column). Median of lung expansions of all analyzed lungs in 
BIPAP/APRV >60% (and in BIPAP/APRV 0% in parentheses) as well as differences in lung 
dimensions between in vivo and ex vivo measurements in BIPAP/APRV >60% (and in 
BIPAP/APRV 0% in parentheses) as well as associated p-values are specified in the respective 
subplot.  
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3.2.4 Ex vivo Measurements: Regional Differences in Lung Mass  

Figure 3.11 shows the slopes of the linear regression of the mass of lung pieces fully 

containing of lung tissue and their spatial location along the ventro-dorsal and cranio-

caudal gradient, respectively. Along the ventro-dorsal and cranio-caudal axes, 

respectively, the slopes of the linear regression lines were significantly different from zero 

(p = 0.033 and p = 0.000, respectively) and positive (0.0018 [0.0008 - 0.0033] g/cm and 

0.0012 [0.0008 - 0.0022] g/cm, respectively).  

 
Figure 3.11:  Box plot of the slope of the linear regression of the mass of lung pieces fully 
containing of lung tissue and their spatial location along the ventro-dorsal gradient (left) and cranio-
caudal gradient (right), respectively, of all 13 analyzed lungs.  
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3.2.5 Ex vivo versus in vivo Measurements of Pulmonary 
Perfusion 

Presence of Difference of Slopes form Zero 

Along the ventro-dorsal axis, all measurements revealed a significant difference of the 

slopes of linear regression of pulmonary blood flow and spatial location from zero (Figure 

3.12). In BIPAP/APRV 0%, the significance level was lower for QFM,Mass-measurements as 

compared to all other analyzed measurements (Figure 3.12). 

 Along the cranio-caudal axis, only QFM,Volume-measurements revealed consistently 

with QRM- and QRM,downscaled-measurements, respectively, a significant difference of the 

slopes of the linear regression lines from zero in both ventilation modes. QFM,Mass- and 

QFM,Mass,Volume-measurements did not reveal a slope difference from zero in 

BIPAP/APRV 0%. However, in BIPAP/APRV 0% the significance level of the slope 

difference from zero differed between QFM,Volume- and QRM-measurements and between 

QFM,Volume- and QRM,downscaled-measurements (Figure 3.12). 

Magnitude of Slopes 

Along the ventro-dorsal axis and in both ventilation modes, QRM- and QFM-measurements 

revealed comparable slopes of linear regression of perfusion and spatial location, 

independent of the normalization technique of the QFM-measurements. QRM,downscaled-

measurements revealed slightly lower slopes as compared to QRM-measurements in both 

ventilation modes. 

Along the cranio-caudal gradient, only QFM,Volume-measurements showed 

comparable slopes of linear regression of perfusion and spatial location with QRM-

measurements in both ventilation modes. In BIPAP/APRV >60%, QFM,Mass- and 

QFM,Mass,Volume-measurements revealed lower slopes as compared to QRM-measurements, 

whereas QRM,downscaled-measurements revealed slightly higher slopes. 

Slope variation after change of ventilation mode 

None of the measurement techniques revealed differences in the slopes of the linear 

regression of pulmonary blood flow and spatial location along the ventro-dorsal and 

cranio-caudal axes between ventilation in BIPAP/APRV 0% and BIPAP/APRV >60% 

(p > 0.05 for all 5 measurement techniques). 
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Figure 3.12:  Box plot of the slopes of linear regression of pulmonary blood flow and spatial 
location along the ventro-dorsal (upper line) and cranio-caudal gradient (lower line), respectively, 
assessed using QRM- and all 3 QFM-measurements. * (p < 0.05) and ** (p < 0.01) (vs. QRM-
measurement at the same ventilation mode and along the same axis. § (p < 0.05), §§ (p < 0.01), 
n.s. (no significant difference), (vs. zero). 

  



 3 Results 

79 

The Bland-Altman plots shown in Figure 3.13 illustrate the analyzis of the 

agreement of slopes of the linear regression of perfusion and spatial location along the 

ventro-dorsal and cranio-caudal gradients between QRM- and QFM,Mass-measurements, 

QRM- and QFM,Volume-measurements as well as between QRM- and QFM,Mass,Volume-

measurements, respectively. Slope differences were highest between QFM,Mass- and QRM-

measurements, as indicated by highest bias and largest limits of agreement. In 

comparison, the agreements of slopes between QRM- and QFM,Volume-measurements and 

between QRM- and QFM,Mass,Volume-measurements were better, as indicated by lower bias 

and lower limits of agreements (Figure 3.13).  

The were no differences in the bias of the slope differences between QRM- and 

QFM,Volume-measurements from zero at any ventilation mode or perfusion gradient. In 

comparison, the bias of the slope differences between QRM- and QFM,Mass,Volume-

measurements was unequal zero and positive for measurements along the cranio-caudal 

gradient in BIPAP/APRV >60%. The bias of the slope differences between QRM- and 

QFM,Mass-measurements was unequal zero and positive for all measurements except the 

measurements along the ventro-dorsal gradient in BIPAP/APRV >60% (Figure 3.13). 

Along the ventro-dorsal gradient, the slope differences between all analyzed 

measurements determined in both ventilation modes decreased with increasing average 

slope values, as indicated by negative slopes of the linear correlation of slope differences 

and slope averages (slope of linear correlation different from zero: p < 0.05 for all 6 

comparisons). No such trend was apparent for any of the 6 comparisons along the cranio-

caudal gradient (slope of linear correlation different from zero: p > 0.05 for all 6 

comparisons).  
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Figure 3.13:  Bland-Altman plots of differences versus averages of the slopes of linear 
regression of perfusion and spatial location determined using QRM- versus QFM,Mass-measurements 
(1. column), versus QFM,Volume-measurements (2. column), and versus QFM,Mass,Volume-measurements 
(3. column), for regression along the ventro-dorsal gradient (upper panels) and along the cranio-
caudal gradient (lower panels). Dashed lines represent bias as well as upper and lower limits of 
agreement. 
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3.2.6 Pulmonary Perfusion Heterogeneity 

Perfusion heterogeneity on a whole lung level was slightly but significantly lower in 

QRM,downscaled- as compared to QRM-measurements (Figure 3.14). In both ventilation modes, 

perfusion heterogeneity on a whole lung level was comparable between QRM,downscaled and 

QFM,Mass-measurements, while QFM,Mass,Volume-measurements revealed lower values as 

compared to QRM,downscaled-measurements (Figure 3.14). 

Regional perfusion heterogeneity was much lower in QRM,downscaled- as compared to 

QRM-measurements in both ventilation modes (Figure 3.14). Compared to QRM,downscaled-

measurements in both ventilation modes, QFM,Mass,Volume- and QFM,Volume-measurements 

revealed comparable regional perfusion heterogeneities, while QFM,Mass-measurements 

revealed higher regional heterogeneity. Also in both ventilation modes, regional 

heterogeneity was higher in QFM,Mass-measurements as compared to QFM,Mass,Volume- and 

QFM,Volume-measurements, respectively, whereas it was comparable between QFM,Mass,Volume- 

and QFM,Volume-measurements (Figure 3.14). 

 
Figure 3.14:  Box plots of perfusion heterogeneity on a whole lung level (upper line) and regional 
heterogeneity (lower line) of all analyzed lungs and animals. * (p < 0.05), ** (p < 0.01), n.s. (no 
significant difference), (vs. QRM,downscaled-measurement at the same ventilation mode and along the 
same gradient. 
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4 Discussion 

This section is divided in two sub-sections. The results of the study on the inflammatory 

impact of volutrauma and atelectrauma in ARDS will be discussed in the first part, while 

the results of the study on fluorescence-labeled microspheres derived perfusion 

measurements in ARDS will be discussed in the second sub-sections.  

4.1 Volutrauma and Atelectrauma in ARDS 

4.1.1 Major Findings 

To the knowledge of the author, this is the first study comparing the impact of a 

comparable contribution of volutrauma and atelectrauma on pulmonary neutrophilic 

inflammation, perfusion, and aeration in a pig model of ARDS. We found that, as 

compared to atelectrauma, volutrauma caused: 

1. Higher 18F-FDG uptake rates, mainly in mid-ventral, central, and mid-dorsal lung 

regions; 

2. More tidal hyper-aeration and less tidal recruitment; 

3. Decreased FBlood at comparable perfusion levels; 

4. Decreased extent of non-aerated, but increased extent of normally and hyper-

aerated lung regions. 

4.1.2 Study Design 

We used the double hit model for the induction of ARDS, since saline lung lavage used as 

first hit is associated with little tissue injury and a low inflammatory response of the lung 

(Rosenthal et al., 1998b). Thus, the impact of different injurious ventilation strategies 

(second hit) on the development of lung tissue injury and the associated inflammatory 

response can be ideally investigated (Matute-Bello et al., 2008b).  

The double hit model of ARDS does not reproduce the initial pathophysiological 

mechanisms leading to ARDS, but reproduces surfactant depletion as an important 

consequence of the disease (Castillo et al., 2015). Therefore, the extent of edema is 

reduced as compared to findings in patients with ARDS (Cochrane and Revak, 1999). 

However, this is of advantage in this study since CT imaging does not allow the 

differentiation between collapsed lung regions and edema.  
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We used a randomized, parallel group design where each animal was used as its 

own control. Thus, a low number of experiments was sufficient to achieve a sample size of 

5 lungs per group. Depleting surfactant in both lungs followed by mechanical ventilation of 

only one lung allowed the analyzis of the individual impact of only mechanical ventilation, 

especially when the same regions along the vertical gradient are compared. In addition, it 

prevents the impact of subject variability.  

4.1.3 Ventilator Settings 

The analyzis of the distribution of aeration compartments together with the analyzis of tidal 

changes of the pulmonary gas content confirmed that the applied ventilator settings were 

appropriate to reproduce volutrauma and atelectrauma. While the ventilated, VILI lungs of 

the volutrauma group were dominated by normally and hyper-aerated lung regions and 

more tidal hyper-aeration, the ventilated, VILI lungs of the atelectrauma group featured a 

large proportion of non-aerated lung tissue and a comparatively high extent of tidal 

recruitment. The appearance of non-aerated compartments and little tidal recruitment in 

some of the ventilated, VILI lungs of the volutrauma group were most likely a result of 

imprecise lung masks including small parts of blood vessels and small airways. Although 

tidal recruitment did not occur in volutrauma, we were not able to completely distinguish 

between the two mechanisms in the atelectrauma group. The ventilated, VILI lungs of the 

atelectrauma group featured little overdistension and tidal hyper-aeration. This was limited 

to the most non-dependent lung zones featuring the highest inflammatory response. 

Therefore, the small extent of volutrauma in the atelectrauma group may have caused an 

overestimation of the pulmonary 18F-FDG uptake in the atelectrauma group as compared 

to distinct investigations of the effects of opening and closing of alveoli.  

Comparable low VT and low ∆P between groups indicate that the impact of both 

mechanisms was comparable. Consistently, the intensity delivered to the ventilated lung 

surface, which is defined as the mechanical power applied by the mechanical ventilator to 

the lung per gram of open, ventilated lung, was comparable between groups at the time 

point of the imaging sequence. The concept, that mechanical power might be a good 

determinant to characterize the impact of volutrauma and atelectrauma, has not yet been 

well investigated. It would be interesting to gain further experimental and clinical 

information about the correlation between mechanical power or intensity and the 

associated lung injury.  
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4.1.4 Impact of Volutrauma and Atelectrauma on Neutrophilic 
Inflammation 

The higher inflammatory response of the ventilated, VILI lungs of the volutrauma as 

compared to the atelectrauma group, indicated by the higher 18F-FDG uptake rates, might 

be explained by different relative contributions of static and dynamic components of stress 

and strain. 

 In volutrauma, high static stress and strain likely determined the high uptake rates 

of 18F-FDG of the ventilated, VILI lungs. The very high proportion of normally and hyper-

aerated regions indicated that the ventilated, VILI lungs were suffering from very high 

static strain. The increased inspiratory Paw is also an evidence for the higher contribution 

of static stress in volutrauma as compared to atelectrauma. The contribution of dynamic 

strain was much lower in volutrauma as compared to atelectrauma, as indicated by a 

lower extent of tidal hyper-aeration at comparable VT between both groups. The 

ventilated, VILI lungs of the volutrauma group might have been at their limits in terms of 

static stress and strain. It is possible that only an additional small contribution of dynamic 

strain in the central regions of the ventilated, VILI lungs of the volutrauma group might 

have worsened lung injury, causing the higher inflammatory response in those regions. 

Our findings suggest that the high impact of static stress and strain cause a higher risk for 

VILI in volutrauma areas, despite lower dynamic components. This might explain why high 

frequency oscillation was not found to improve 30 d mortality in patients with ARDS 

undergoing mechanical ventilation (Young et al., 2013), but even increases mortality in 

adults with moderate to severe ARDS (Ferguson et al., 2013), as compared to 

conventional mechanical ventilation using low VT and high PEEP. 

In the atelectrauma group, static stress seemed to have only a minor impact on the 

inflammatory response of the ventilated, VILI lungs, as indicated by a very low extent of 

hyper-aerated regions. In fact, in ventilated, VILI lungs of the atelectrauma group, regional 

differences of the 18F-FDG uptake rates were very similar to regional extents of tidal 

recruitment. This suggests that tidal recruitment and therefore dynamic components of 

stress and strain likely determined pulmonary neutrophilic inflammation in atelectrauma. 

Alveolar instability induced by surfactant depletion and the associated collapse and 

reopening of alveoli during tidal breathing likely mainly determined the higher 18F-FDG 

uptake rates. Despite the use of low VT, shear stress due to the presence of collapsed 

areas neighboring expanded alveoli might have also determined, at least in part, 

neutrophilic inflammation in the atelectrauma group, but most likely did not occur in 

volutrauma due to the negligible proportion of non-aerated tissue and tidal recruitment.  
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Collapse and reopening of alveoli likely not occurred in dorsal parts of the ventilated, VILI 

lungs of the atelectrauma group, since they were dominated by non-aerated regions and a 

low extent of tidal recruitment. The predominant part of those regions might therefore 

have remained collapsed throughout breathing. Consequently, the impact of both static 

and dynamic strain on the dorsal parts of the ventilated, VILI lungs of the atelectrauma 

group were likely very low, causing lowest KiS values. Our finding, that dynamic 

components of stress and strain seem to be the major determinant for the pulmonary 

inflammatory response, is in line with recent in vivo imaging studies in sheep, showing 

that in atelectatic lungs the dynamic components of lung strain seem to be more critical 

than the static ones (Wellman et al., 2014). Similarly, de Prost and coworkers showed in 

unilateral surfactant-depleted sheep lungs that dynamic components of stress and strain 

associated with tidal recruitment increased the inflammatory response especially in 

dependent, low aerated lung regions (de Prost et al., 2011).  

Static components of stress and strain might have determined the tendency of 

slightly higher KiS values in ventral compared to dorsal regions of the non-ventilated, 

control lungs. Since the control lungs were not ventilated, the contribution of dynamic 

stress and strain is negligible. However, distending pressures have likely been higher in 

ventral regions of the control lungs due to gravitational dependence, leading to higher 

static strain and associated higher inflammatory responses of these lung parts. 
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4.1.5 Acquisition of the Distribution of 18F-FDG 

The total tissue content of the imaged lung parts strongly differed between groups since 

dynamic PET scans capture only a 15 cm cranio-caudal lung field and since lung sizes 

differed strongly between animals of the atelectrauma and volutrauma group. The high 

tissue fraction of the ventilated, VILI lungs of the atelectrauma group had an impact on the 

high Ki values of those lungs. We therefore calculated KiS values to allow inter-animal 

comparisons of KiS. However, this correction might have introduced some error in cases of 

the occurrence of lung edema featuring similar density to collapsed lung tissue. Regional 

tissue fraction may have been overestimated in edematous regions, causing a potential 

underestimation of KiS. Furthermore, the Sokoloff model applied in this study for the 

calculation of Ki does not account for an extra-vascular, extra-cellular compartment of 18F-

FDG distribution (edema). The model might therefore overestimate Ki and FBlood in regions 

with edema, as shown by Dittrich and coworkers in an lavage model of ARDS in sheep 

followed by endotoxin administration (Dittrich et al., 2012). However, ARDS induced by 

endotoxin administration causes more edema production as compared to the double hit 

model used in this study (Castillo et al., 2015). In addition, CT-derived mass of the whole 

ventilated, VILI lungs and of the non-ventilated, control lungs was comparable between 

groups. Therefore, the impact of edema on the calculation of FTissue and consequently on 

KiS was likely in the same magnitude in both groups.  

Local perfusion is an important determinant for the inflammatory response of the 

lung and the associated uptake rate of 18F-FDG. Perfusion significantly influences both the 

load of neutrophils and their supply with 18F-FDG (Costa et al., 2010). In this study, 

perfusion was comparable between the ventilated, VILI lungs of the volutrauma and 

atelectrauma group, both on a whole lung level and on a regional level, implying that 

regional differences in KiS were not a result of differences in regional perfusion. 
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4.1.6 Pulmonary Perfusion Distribution  

Perfusion of the ventilated, VILI lungs was lower as compared to the non-ventilated, 

control lungs in both groups. In volutrauma, this was most likely determined by higher Paw 

in the ventilated, VILI lungs as compared to the non-ventilated lungs, and associated 

higher transpulmonary pressures. In contrast to the well accepted concept of increasing 

perfusion with increasing gravitation dependence explained by West (West, 1978), we 

saw no gravitationally-dependent differences in lung perfusion neither in the non-

ventilated, control lungs of both groups nor in the ventilated, VILI lungs of the 

atelectrauma group. This might have been caused by regional interactions between 

hydrostatic and transpulmonary pressures. Regional differences in the transpulmonary 

pressure are not distinguishable due to missing techniques or regional measurements. In 

addition, hypoxic pulmonary vasoconstriction most likely contributed to lower perfusion of 

dorsal parts of the ventilated, VILI lungs of the atelectrauma group.  

4.1.7 Lung Mechanics and Gas Exchange  

We kept both VT and ∆P approximately constant during the intervention phase of the 

experiments. However, comparable VT was of higher relevance in order to keep lung 

strain similar between groups. Since ∆P is a surrogate of dynamic stress, the increase in 

∆P over time in the atelectrauma but not in the volutrauma group suggests that dynamic 

stress associated with tidal recruitment and tidal hyper-aeration increased over time in 

atelectrauma, but not in volutrauma, and resulted in higher dynamic stress at the end of 

the 4 h ventilation period in the atelectrauma group. Although a higher dynamic stress is 

associated with a higher inflammatory response, we found lower inflammatory values in 

the ventilated, VILI lungs of the atelectrauma as compared to the volutrauma group. This 

suggests that differences in the inflammatory response of the lung would have been even 

more pronounced between volutrauma and atelectrauma if ∆P would have been 

comparable between groups.  

The non-significant trend towards a higher PaCO2 in volutrauma as compared to 

atelectrauma was presumably a result of increased ventilation pressures and a resulting 

redistribution of perfusion towards the non-ventilated, control lungs, i.e. a deadspace 

effect. However, an increased PaCO2 has been shown to have protective effects (Curley 

et al., 2010), and is therefore associated with a lower inflammatory response of the lung. 

This suggests that differences in the measured 18F-FDG uptake rates would likely have 

been even higher if PaCO2 would have been comparable between groups.  
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4.1.8 Ex vivo Analysis versus in vivo Analysis of Pulmonary 
Inflammation 

In contrast to the in vivo results on pulmonary inflammation, the ex vivo analyzis of the 

protein concentrations of IL-6 and IL-8 did neither reveal differences between the 

ventilated, VILI lungs and the non-ventilated, control lungs in volutrauma or atelectrauma, 

respectively, nor between the ventilated, VILI lungs of both groups. The different findings 

might be a result of different regions analyzed for ex vivo and in vivo acquisition. Lung 

tissue sampled of the upper lobes where analyzed for molecular biology. In comparison, 

only a 15 cm cranio-caudal field of view right above the diaphragms was assessed by 

PET/CT scanning, not covering the whole upper lobes. 

The expression of TNF-α was below the detection limits, presumably because of 

the very short time course of gene transcription and translation. The protein concentration 

of TNF-α might have been already down regulated at the time point of tissue sampling.  

4.1.9 Limitations 

This study has several limitations. 

 First, compared to the clinical scenario, a relatively short period of mechanical 

ventilation of 4 h was chosen. The peak of the inflammatory impact of atelectrauma might 

occur later than that of volutrauma and after more than 4 h of injurious ventilation. 

However, the increase in ∆P in the atelectrauma group after 1 h suggests that tidal 

recruitment and derecruitment already occurred during the time course of the experiment. 

This is in line with a study performed by Musch et al. (Musch et al., 2007), where dynamic 

recruitment and derecruitment already caused an increase in Ki after 120 min of injurious 

ventilation. Furthermore, study periods of 4 might not be long enough to investigate the 

development of the complex injury and all clinical syndromes associated with ARDS. It 

can take up to 7 days in patients with ARDS (Ware and Matthay, 2000). Animals would 

likely not have survived a longer study period due to the development of severe gas 

exchange failure. However, it cannot be completely ruled out that longer periods might 

have resulted in different findings. 

Second, although volutrauma and atelectrauma often occur at the same time in 

different regions of the lung, we tried to separate these two phenomena as far as possible 

in order to study the associated mechanisms as well as their individual impact on the 

inflammatory response of the lung. However, in the ventilated, VILI lungs of the 

atelectrauma group, hyper-aeration of the most non-dependent lung regions and 

associated overdistension could not have been completely avoided. This might have 
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triggered an additional inflammation not purely associated with atelectrauma. However, 

this may have led to an overestimation of the pulmonary 18F-FDG uptake in the 

atelectrauma group, and consequently an underestimation of the differences between 

volutrauma and atelectrauma. 

Third, we were not able to prevent a potential inflammatory cross talk between left 

and right lungs. Lung volumes and associated distending pressures of the ventilated, VILI 

lungs differed significantly between volutrauma and atelectrauma, affecting the non-

ventilated, control lungs to differing extent. Since the non-ventilated, control lungs were 

not ventilated but perfused, hypoxemia might have increased neutrophilic inflammation in 

those lungs. In addition, neutrophilic inflammation of the control lungs might also have 

been increased by recruitment maneuvers, which were performed every 30 min in order to 

minimize lung collapse. However, these maneuvers were performed in the same way in 

both groups. Therefore, those mechanisms should have affected both groups and the 

interpretation of the comparative contribution of volutrauma and atelectrauma to VILI was 

most likely not affected. 

Fourth, data were obtained under extreme conditions of overdistension and lung 

collapse, which were more extreme than common in the ICU. The used ventilator settings 

do not reproduce clinical practice but were used to better differentiate the mechanisms 

induces by volutrauma and atelectrauma, respectively.  

Fifth, pulmonary 18F-FDG uptake cannot be solely ascribed to neutrophils, but also 

other inflammatory cells and non-inflammatory cells, such as type 2 epithelial cells, take 

up 18F-FDG (Saha et al., 2013). However, neutrophils are an essential component of lung 

injury. It has been shown that in the lung 18F-FDG is mainly taken up by neutrophils 

(Musch et al., 2007; Saha et al., 2013). Furthermore, pulmonary 18F-FDG uptake has 

been shown to be a reliable marker for neutrophilic inflammation in injured lungs (Jones et 

al., 2002; Musch et al., 2007; Saha et al., 2013).  

Sixth, the dynamic PET scans acquired in this study captured only a 15 cm cranio-

caudal field of view. It was therefore not possible to study the neutrophilic inflammation of 

the whole lung. Cranial parts of the upper lobes and caudal parts of the lower lobes were 

not assessed. We assumed that the captured 15 cm cranio-caudal lung parts were 

representative for the neutrophilic inflammation of the whole lungs, which has not been 

studied yet. However, currently no method is available that captures the dynamics of the 

neutrophilic inflammation in the whole lung in vivo.  
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Seventh, Ki values were corrected for tissue fractions in order to account for the 

extreme differences in gas fraction between groups. The tissue fraction is majorly 

determined by the gas content of the scanned region, which is determined by CT. 

However, such density estimations by CT depend on different factors, including voxel 

size, characteristics of the CT scanner and parameters used for the reconstruction of the 

acquired CT data (Reske et al., 2008; Levi et al., 2012). We aimed to minimize those 

artifacts by using the same CT scanner for all animals, reconstructing the CT data with the 

same voxel size and using appropriate reconstruction parameters. We used smooth 

kernels that have been shown to be appropriate for the analyzis of CT scans and the 

assessment of hyper-aerated regions in injured lungs (Boedeker et al., 2004). 

Nevertheless, inaccuracies in the calculation of tissue density and of tissue fraction might 

have occurred. The normalization of the 18F-FDG uptake ratios to tissue fraction could 

therefore have introduced measurement artifacts.  

Eighth, tidal recruitment and hyper-aeration as dynamic VILI mechanisms were 

calculated based on static CT scans, which were obtained at end-expiratory and end-

inspiratory breath holding maneuvers. Static CT scanning does not represent strictly static 

conditions since lung aeration may have changed during the breath holding maneuver. 

Dynamic CT scans would have overcome such limitation. However, dynamic CT scans 

capture only a very limited cranio-caudal part of the lung of about 1 cm. Since dynamic 

changes of lung aeration occurred to different extents in the distinct regions of the lungs, 

dynamic CT scanning would have not been a valid alternative for the acquisition of tidal 

changes of lung aeration in this study. 

4.1.10 Conclusion 

The pulmonary neutrophilic inflammation associated with volutrauma and atelectrauma is 

caused by several factors, including static as well as dynamic stress and strain of lung 

units and ∆P. In this experimental model of ARDS, volutrauma caused a higher 

inflammatory response as compared to atelectrauma, despite comparable low VT, lower 

∆P, and comparable perfusion. In volutrauma, the inflammatory response was mainly 

determined by static stress and strain while the dynamic component was comparatively 

low. This evidences the important role of static components of stress and strain, which 

seem to be the more important mechanisms of VILI as compared to the dynamic 

components, in this model of ARDS. According to the findings of this study, lower PEEP 

values should be set in order to prevent volutrauma and its associated static stress and 

strain, even though this could cause a higher risk of atelectrauma.   
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4.2 Fluorescence-Labeled Microspheres Derived 
Perfusion Measurements in ARDS 

4.2.1 Major Findings 

To the knowledge of the author, this is the first study comparing in vivo perfusion 

measurements using 68Ga-labeled microspheres and PET/CT with ex vivo measurements 

using fluorescence-labeled microspheres in a pig model of ARDS. We found that in 

injured pig lungs: 

1. The resolution of ex vivo perfusion measurements using fluorescence-labeled 

microspheres was lower than that of in vivo measurements using 68Ga-labeled 

microspheres and PET/CT.  

2. Extraction of the lungs and further processing for ex vivo analyzis of the 

distribution of fluorescence-labeled microspheres causes lung deformation as 

compared to in vivo. 

3. Ex vivo measurements of the mass of lung pieces fully containing of lung tissue 

and therefore featuring approximately comparable tissue volume were not 

homogeneous but showed a gradient with higher mass in dorsal and caudal as 

compared to ventral and cranial regions, respectively. 

4. Normalization of fluorescence-labeled microspheres derived measurements using 

the volume of lung pieces resulted in better agreement of perfusion gradients with 

in vivo PET/CT measurements as compared to QFM,Mass- and QFM,Mass,Volume-

measurements. 

5. QRM-measurements showed higher heterogeneity on a whole lung level as 

compared to QRM,downscaled-measurements featuring a resolution comparable to that 

of fluorescence-labeled microspheres derived measurements. 

6. As compared to QRM,downscaled-measurements, QFM,Volume-, and QFM,Mass,Volume-

measurements featured comparable regional heterogeneity, respectively, whereas 

QFM,Mass-measurements featured higher regional heterogeneity. QFM,Mass-

measurements featured higher regional heterogeneity as compared to QFM,Volume- 

and QFM,Mass,Volume-measurements, respectively.  
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4.2.2 Study Design 

We used a saline lung lavage model of experimental ARDS in the perfusion 

measurements study since the associated little tissue injury and the low pulmonary 

inflammatory response causes little inflammatory deposition. Therefore, after extraction 

and drying of the lungs, the mass of lung pieces is potentially less affected by residues of 

inflammatory cells, mucus, and secretion and expression of edema. 

We used a crossover design in order to reduce the number of experiments and 

animals. This model was suitable for this study since hemodynamics remained fairly 

stable and since the impairment of lung function was maintained by periodic derecruitment 

maneuvers. Due to the long shelf life of fluorescent microspheres and due to their 

availability in different colors, several perfusion measurements are possible in the same 

animal. 

4.2.3 Methodical Aspects  

We used a simplification for the quantification of perfusion distribution and assumed a 

linear correlation of relative perfusion and spatial location. A vertical gradient of pulmonary 

perfusion with higher perfusion of gravitational dependent as compared to non-dependent 

lung regions is generally accepted in supine position (Musch et al., 2002). It can be 

explained by a considerable impact of gravity together with the impact of structural factors, 

such as the anatomy of the vascular tree, and active regulation (Glenny et al., 1997; 

Glenny et al., 2007). In transversal slices of healthy, isolated and blood-perfused dog 

lungs, a linear regression analyzis of flow and spatial location along ventro-dorsal axis 

provided a better fit as compared to a quadratic fit (Beck, 1990).  

 We compared different normalization techniques of ex vivo measurements using 

fluorescence-labeled microspheres with in vivo measurements of pulmonary perfusion 

distribution using 68Ga-labeled microspheres and PET/CT scanning in ARDS lungs. 

Despite the disadvantage that PET/CT measurements of lung perfusion might 

overestimate lung tissue density in edematous regions and therefore underestimate 

regional perfusion, it has been shown to be an adequate method to assess regional 

pulmonary perfusion in ARDS lungs (Richter et al., 2015; Beck, 1987b; Richard et al., 

2002). PET/CT scanning has the considerable advantage that it provides in vivo 

measurements at the time point at which perfusion is of interest. PET/CT measurements 

of the distribution of 68Ga-labeled microspheres were therefore used as reference for the 

detection of the distribution of pulmonary perfusion.  
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4.2.4 Magnitude of perfusion gradients 

All measurements revealed a perfusion gradient along the ventro-dorsal axis, as indicated 

by a significant difference of the slopes of linear regression of pulmonary perfusion and 

spatial location from zero, independent of the normalization technique of the fluorescence-

labeled microspheres measurements and of the resolution of the 68Ga-labeled 

microspheres measurements. In all measurements, the slopes of the linear regression 

lines along the ventro-dorsal axis were positive, indicating higher perfusion in dorsal 

compared to ventral regions. There were no differences in the magnitude of perfusion 

gradients along the ventro-dorsal axis between QRM-measurements and all fluorescence-

labeled microspheres measurements. However, as compared to QFM,Mass-measurements, 

the Bland-Altman analyzes revealed a better agreement between fluorescence-labeled 

and 68Ga-labeled microspheres measurements when the fluorescence signals were 

corrected for the respective volume of a lung piece or for its volume and mass, as 

indicated by no or less difference in the bias of the slopes from zero and lower limits of 

agreements. The high and positive bias of slope differences between QRM- and QFM,Mass-

measurements along both gradients and in both ventilation modes indicate that mass 

normalization of measurements of the distribution of fluorescence-labeled microspheres 

tends to reduce perfusion gradients as compared to QRM-measurements. 

 Along the cranio-caudal axis, only QRM-, QRM,downscaled-, and QFM,Volume-

measurements consistently revealed perfusion gradients in both ventilation modes, as 

indicated by significant differences of the slopes of linear regression of pulmonary 

perfusion and spatial location from zero. In contrast, QFM,Mass- and QFM,Mass,Volume-

measurements in BIPAP/APRV 0% did not indicate a perfusion gradient along the cranio-

caudal axis. QRM-, QRM,downscaled-, and QFM,Volume-measurements consistently showed higher 

perfusion in caudal as compared to cranial lung regions, as indicated by positive slopes 

along the cranio-caudal axis. While the magnitude of the perfusion gradients along the 

cranio-caudal axis were comparable between QRM- and QFM,Volume-measurements in both 

ventilation modes, QRM,downscaled-measurements showed slightly higher perfusion gradients 

compared to QRM-measurements in BIPAP/APRV >60%. Consistently, also the Bland-

Altman analyzis revealed good agreement between QRM- and QFM,Volume-measurements, as 

indicated by no difference in the bias of the slopes from zero and low limits of agreements. 
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4.2.5 Impact of Resolution on Differences in Perfusion Gradients 

The resolution of the QRM-measurements was higher compared to that of the 

fluorescence-labeled microspheres derived perfusion measurements. However, 

downscaling the QRM-measurements to the resolution of the QFM-measurements had no 

effect on the presence of perfusion gradients along the ventro-dorsal and cranio-caudal 

axes and only slightly changed its magnitude. Therefore, the much higher resolution of the 

QRM-measurements as compared to the QFM-measurements seems not to be the crucial 

factor for the detected differences in the presence and magnitude of perfusion gradients. 

However, if no linear perfusion gradient can be assumed, differences in resolution might 

have a much higher impact on the determination of the distribution of pulmonary blood 

flow. 

4.2.6 Impact of Lung Deformation on Perfusion Measurements 

The extraction of the lungs followed by drying at a pressure of 25 cmH2O in upright 

position, which entailed significantly different pressure conditions compared to in vivo 

conditions, caused deformation of the lungs. As compared to their in vivo dimensions, the 

longitudinal expansion increased while the sagittal and transversal expansions decreased. 

Assuming an unchanged perfusion distribution, an increase of the lung expansion is 

associated with a decrease of the perfusion gradient. Therefore, an increase in the cranio-

caudal distention in the course of the extraction and drying of the lungs may have 

contributed to the lower perfusion gradients assessed in QFM,Mass- as compared to QRM-

measurements in BIPAP/APRV >60%, respectively. However, as compared to 

measurements in BIPAP/APRV >60%, no differences in the perfusion gradients along the 

cranio-caudal axis were assessed between QFM,Mass- and QRM-measurements in 

BIPAP/APRV 0%, despite a comparable increase in the longitudinal lung distention. 

Furthermore, despite an increase of the sagittal lung distentions, there were no 

differences in the perfusion gradients along the ventro-dorsal axis between ex vivo und in 

vivo measurements. Therefore, deformation of the lungs in the course of their extraction 

and drying process seems not to be the major determinant for the assessed differences in 

perfusion gradients between fluorescence-labeled and 68Ga-labeled microspheres derived 

measurements. 
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4.2.7 Impact of Mass Distribution on Perfusion Measurements 

The ex vivo analyzis of mass of lung pieces fully containing of lung tissue and therefore 

featuring approximately comparable tissue volume revealed a mass gradient along the 

ventro-dorsal and cranio-caudal axes, as indicated by significant differences of the slopes 

of the linear regression of mass and spatial location of lung pieces along both gradients. 

Mass increased from gravitational non-dependent, ventral to gravitational dependent, 

dorsal regions, as well as from cranial to caudal regions, as indicated by the positive 

slopes of the linear regression lines. Therefore, in contrast to the assumption suggested 

for the analyzis of fluorescence measurements in healthy lungs, in injured lungs the mass 

of a lung piece seems not to be directly proportional to the containing tissue volume.  

 The mass gradients of pieces featuring comparable tissue volume have likely been 

caused by the combination of two aspects: first, drying acutely injured lungs at high 

pressure might not have been sufficient to fully reopen all alveoli. A potential higher extent 

of atelectasis in dorsal and caudal as compared to ventral and cranial regions, 

respectively, could explain the mass gradients along both gradients. Second, especially 

due to the induction of ARDS, lung pieces might not only be composed of lung tissue but 

also by accumulation of inflammatory deposition, altering the mass of lung pieces. 

 Heavy walls of small airways, capillaries, connective tissue or scar tissue likely 

altered the measured mass of lung pieces. However, the impact of those additive factors 

is presumably heterogeneous and might cause higher standard deviation of the mass of 

all lung pieces but might not have an impact on the observed mass gradients. The impact 

of heavy cartilage rings and smooth muscle surrounding large bronchi on the mass of lung 

pieces can be neglected since pieces featuring big airways were excluded from the 

analyzis. Also, the impact of heavy pleura wall can be ruled out since no edge pieces 

were analyzed for its mass. Since this study was done retrospectively, the individual 

impact of inhomogeneous lung tissue density and further factors contributing to the mass 

of lung pieces cannot be determined. 

Compared to QFM,Mass-measurements, QFM,Volume-measurements correlated better 

with QRM-measurements, as indicated by a better agreement of the presence and 

magnitude of the perfusion gradients along the ventro-dorsal and cranio-caudal axes. This 

indicates that the volume of a lung piece might be a better surrogate for containing tissue 

content as compared to the mass, although volume normalization of fluorescence 

measurements would not account for inhomogeneous tissue density. A better correlation 

of QFM,Volume- with QRM-measurements as compared to QFM,Mass,Volume-measurements 

indicates that normalization of fluorescence-labeled microspheres derived perfusion 
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measurements to the mass and volume of a lung piece is less appropriate as compared to 

only volume normalization. 

Only a smaller portion of the lung was analyzed in QFM,Volume- and QFM,Mass,Volume-

measurements as compared to QFM,Mass-measurements since all edge pieces were 

discarded and only pieces fully containing of lung tissue were analyzed. Especially bigger 

dorsal and caudal lung parts were not considered. However, the exclusion of outermost 

lung regions should not importantly affect perfusion gradients as long as the used 

assumption of linear correlation of perfusion and spatial location is adequate.  

Further studies would be necessary to provide further inside about which factors 

majorly determined the mass gradients and the associated greater weight range of tissue 

pieces featuring comparable volume in severely injured lungs as compared to pieces of 

healthy lung, as assessed by Hübler and coworkers in their ARDS sheep study (Hübler et 

al., 1999).  

4.2.8 Heterogeneity 

The findings, that heterogeneity of the whole lung and regional heterogeneity of 68Ga-

labeled microspheres derived perfusion measurements are dependent on resolution, are 

in line with the results of other studies showing that resolution is a major determinant of 

the detected perfusion heterogeneity and that a decrease in resolution strongly decreases 

the heterogeneity of pulmonary blood flow measurements (Melo et al., 2010; Venegas et 

al., 1994). PET/CT measurements of the emitted radioactivity, which were performed 

during mechanical ventilation, had to be corrected for tissue attenuation. This was done 

by normalization of the emitted radioactivity to lung tissue density, which was quantified by 

CT scanning with breath hold maneuvers at end-expiratory lung volume. The registration 

of the two datasets acquired at slightly different lung volumes and with differing impact of 

lung motion, together with the impact of lung segmentation inaccuracies, most likely 

caused registration artifacts. In addition, regional image noise might have arisen from non-

uniformity of the sensitivity of the PET camera and edge blurring effects created by the 

low spatial resolution of the camera (Venegas et al., 1994). We used a filtered back 

projection in the course of the reconstruction of the PET data, which was developed to 

reduce noise. However, such filter-based approaches are limited by the balance between 

reduction of noise, high resolution, and speed (Obi et al., 2000). For calculation of 

QRM,downscaled-data, QRM-measurements of several voxel were averaged. This has 

presumably reduced the impact of registration artifacts and regional image noise.  
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Despite comparable resolution of QRM,downscaled-measurements and fluorescence-

labeled microspheres measurements of pulmonary perfusion, heterogeneity on a whole 

lung level was lower in QFM,Volume- and QFM,Mass,Volume-measurements as compared to 

QRM,downscaled-measurements, respectively. Such differences seem to be an effect of the 

different perfusion gradients and the associated differences in the regional variance of the 

data. Venegas and Galletti proposed to remove the impact of the perfusion gradient along 

the ventro-dorsal axis on estimations of perfusion heterogeneity by subtracting the plane 

featuring the best-fit vertical gradient from the three-dimensional dataset before 

calculating the heterogeneity index (Venegas and Galletti, 2000). However, we did not 

only observe perfusion gradients along the gravitational dependent plane, but also along 

the cranio-caudal axis. We therefore determined regional heterogeneity by calculation of 

the mean heterogeneity within blocks of approximately the same size (24 x 24 x 24 mm3 in 

fluorescence derived and QRM,downscaled-measurements; 24.36 x 24.36 x 25 mm3 in QRM-

measurements) to consider mean regional perfusion within each block. Such block sizes 

were found to be an acceptable compromise between, on the one hand, the aim to 

quantify lung function in lung volumes as small as possible, and, on the other hand, lung 

volumes being big enough to reduce the impact of statistical noise and the limited spatial 

resolution of the measurement techniques (Xu et al., 2000). Under consideration of 

regional differences in lung perfusion, there were no differences in regional perfusion 

heterogeneity between QFM,Volume- and QRM,downscaled- as well as between QFM,Mass,Volume- and 

QRM,downscaled-measurements, respectively. This might have been caused by the balance 

between noise induced by PET/CT and fluorescence-labeled microspheres derived 

perfusion measurements, respectively, and by actual heterogeneity detected by 

measurements at different resolutions. Different structural factors and different active 

regulatory mechanisms of the pulmonary vasculature, such as hypoxic pulmonary 

vasoconstriction, act on different length scales and determine different heterogeneity 

levels at different spatial resolution (Glenny et al., 2000b). Future studies would be 

necessary to determine the contribution of artifacts induced by the measurement 

technique itself, which could then be used for the correction of the total measured 

heterogeneity.  

QFM,Mass-measurements revealed higher regional heterogeneity as compared to 

QFM,Volume- and QFM,Mass,Volume-measurements, respectively. This could have been caused 

by the inappropriate normalization of the fluorescence measurements for inhomogeneous 

tissue content or by the higher sample size due to inclusion of outermost lung pieces or 

both.   
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4.2.9 Limitations 

This study has two limitations. 

 First, we used a saline lung lavage model for the induction of ARDS, which is 

associated with a low pulmonary inflammatory response and only mild to moderate lung 

injury. When other injury models are applied, different effects on the variation of the lung 

tissue mass are possible and therefore differing normalization of the fluorescence 

measurements could correspond best with the in vivo measurements of the distribution of 

pulmonary blood flow.  

Second, we assumed a linear correlation of perfusion and spatial location and of 

mass and spatial location. If this assumption was not valid, the exclusion of outermost 

lung regions induced by the volume normalization may have introduced a systematic error 

in perfusion gradient measurements. In further studies the volume of outermost lung 

pieces should be measured such that no lung containing pieces have to be excluded from 

the analyzis. This would also allow a differentiation of the impact of inhomogeneous tissue 

density and of inflammatory deposition on the mass of pieces of injured lungs.  

4.2.10 Conclusion 

In pig lungs injured by saline lavage, the mass of dried lung tissue pieces featuring 

approximately comparable tissue volume was higher in dorsal and caudal as compared to 

ventral and cranial regions, respectively. Therefore, contradictory to assumptions used for 

the analyzis of fluorescence-labeled microspheres derived perfusion measurements in 

heathy lungs, in ARDS pig lungs, the mass of a lung piece seems not to be directly 

proportional to the containing tissue volume. When applying volume normalization, ex vivo 

measurements of the distribution of fluorescence-labeled microspheres revealed 

comparable results as in vivo measurements of the distribution of 68Ga-labeled 

microspheres in respect to the presence and magnitudes of ventro-dorsal and cranio-

caudal perfusion gradients. Consequently, QFM,Volume-measurements can be used 

interchangeably with QRM-measurements for the determination of perfusion gradients, 

despite a much lower resolution of the ex vivo measurement and the occurrence of lung 

deformation induced by lung extraction and drying. A reduction of the resolution of in vivo 

perfusion measurements and adjustment to that of the ex vivo measurements caused a 

reduction of both global and regional heterogeneity. Volume normalization of 

fluorescence-labeled microspheres derived perfusion measurements resulted in 

comparable global and regional perfusion heterogeneity of ex vivo and in vivo perfusion 

measurements at comparable resolution. 
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5 Summary 

Background: The recent development and advancement of new in vivo imaging 

techniques, such as computed tomography (CT) and positron emission tomography 

(PET), have allowed to gain a better understanding of the pathophysiology of the acute 

respiratory distress syndrome (ARDS). PET/CT measurements revealed that ARDS is 

determined by alterations in both aeration and perfusion, which impairs gas exchange. 

Therefore, mechanical ventilation is frequently required in order to maintain gas 

exchange. However, the pathophysiology of ARDS and the potential injurious impact of 

mechanical ventilation in patients with ARDS are still not fully understood. 

Objective: PET/CT imaging techniques were used to quantify alterations in lung aeration, 

neutrophilic inflammation and pulmonary perfusion in experimental studies of ARDS. Two 

interrelated studies were conducted. 

 The aim of the first substudy was to determine the relative contribution of the two 

main mechanisms of ventilator induced lung injury (VILI), cyclic closing and opening of 

alveoli (atelectrauma) and alveolar overdistension (volutrauma), to the pro-inflammatory 

response of the lung in an experimental model of ARDS. 

 The aim of the second substudy was to validate the use of fluorescence-labeled 

microspheres for measurements of pulmonary perfusion distribution in acutely injured 

lungs. This substudy investigated whether such ex vivo measurements of the distribution 

of lung perfusion could be used as alternative to in vivo measurements using gallium-68 

(68Ga)-labeled microspheres and PET/CT in experimental ARDS.  

Methods: Two substudies were performed in anesthetized, intubated and mechanically 

ventilated pigs. ARDS was induced by repetitive, saline lung lavage.  

 In the first substudy, 10 animals were included. The lungs were recruited and a 

decremental positive end-expiratory pressure (PEEP) trial was performed. The pigs were 

randomly assigned to 4 hours of mechanical ventilation of the left, VILI lungs with either 

high PEEP set above the level where dynamic compliance increased more than 5 % 

during PEEP trial (volutrauma), or low PEEP (atelectrauma) to achieve comparable 

driving pressures (defined as difference between peak airway pressure and PEEP) and 

tidal volumes of 3 mL/kg predicted body weight between groups. The right lungs served as 

control and were kept under a continuous positive airway pressure of 20 cmH2O. An extra-

corporeal device was used to remove carbon dioxide. PET/CT scans were performed after 
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intravenous injection of 68Ga-labeled microspheres and 2-deoxy-2-[18F]fluoro-D-glucose 

(18F-FDG) to determine the magnitude and distribution of lung perfusion and inflammation, 

respectively. CT scans were acquired at end-inspiration, end-expiration and mean lung 

volume to assess aeration, tidal hyper-aeration, and tidal recruitment. 

 In the second substudy, the perfusion of the left and right lungs of 7 animals was 

assessed. The distribution of pulmonary blood flow was marked by intravenous injection 

of fluorescence-labeled microspheres and radioactive 68Ga-labeled microspheres after 1 h 

of mechanical ventilation superposed with > 60 % or 0 % contribution of spontaneous 

breathing to minute ventilation. The distribution of 68Ga-labeled microspheres was 

detected by PET/CT scanning immediately after injection. The distribution of fluorescence-

labeled microspheres was assessed ex vivo. The excised lungs were dried, cut in pieces, 

and the emitted fluorescence intensity and the tissue weight of each was measured.  

In vivo PET/CT measurements of the distribution of 68Ga-labeled microspheres were 

quantified as mass-normalized, relative radioactive intensities (QRM). The  

QRM-measurements were downscaled to the resolution of the fluorescence-labeled 

microspheres derived perfusion measurements (QRM,downscaled). Ex vivo measurements of 

the distribution of fluorescence-labeled microspheres were quantified as mass-normalized 

(QFM,Mass), volume-normalized (QFM,Volume), and mass- and volume-normalized, relative 

fluorescence intensities (QFM,Mass,Volume). The resolution and the outer dimensions of the 

lungs were compared between ex vivo and in vivo measurements. For each lung, the 

perfusion gradients along the ventro-dorsal and cranio-caudal axes were determined by 

linear least-squares regression of perfusion and spatial location. Slopes of regression 

lines were compared between measurements. For each lung, perfusion heterogeneity on 

a whole lung level and regional perfusion heterogeneity were compared between 

measurements. 

Results: In the first substudy, PET/CT data showed that, despite comparable perfusion, 

volutrauma led to higher specific uptake of 18F-FDG in the ventilated, VILI lungs as 

compared to atelectrauma, mainly in central lung regions. Volutrauma yielded higher 

specific uptake of 18F-FDG in ventilated, VILI lungs compared to non-ventilated, control 

lungs, whereas atelectrauma did not. CT data revealed that atelectrauma yielded bigger 

non-aerated compartments and higher extent of tidal recruitment, while volutrauma 

resulted in bigger normally and hyper-aerated compartments and higher extent of tidal 

hyper-aeration. Driving pressure increased in atelectrauma, but not in volutrauma. 
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 In the second substudy we found that ex vivo measurements of the distribution of 

fluorescence-labeled microspheres and in vivo measurements of the distribution of  
68Ga-labeled microspheres revealed comparable results in respect to the presence and 

magnitudes of perfusion gradients along the ventro-dorsal and cranio-caudal gradients, 

despite a much lower resolution of the ex vivo measurements and the occurrence of lung 

deformation induced by lung extraction and drying. Both measurements showed higher 

perfusion of dorsal and caudal as compared to ventral and cranial regions, respectively. 

QRM-measurements showed higher heterogeneity on a whole lung level as compared to 

QRM,downscaled-measurements. As compared to QRM,downscaled-measurements, QFM,Volume- and 

QFM,Mass,Volume-measurements featured comparable higher regional heterogeneity, whereas 

QFM,Mass-measurements featured higher regional heterogeneity. 

Conclusion: In the first substudy, PET/CT measurements showed that volutrauma 

promoted higher lung inflammation than atelectrauma, despite comparable tidal volume, 

driving pressure, and perfusion. This suggests that static stress and strain associated with 

volutrauma are the more important mechanisms of VILI as compared to the dynamic 

components. 

 The second substudy revealed that when applying volume normalization, ex vivo 

measurements of the distribution of fluorescence-labeled microspheres can be used 

interchangeably with in vivo measurements of the distribution of 68Ga-labeled 

microspheres for the determination of perfusion gradients, despite a much lower 

resolution of the ex vivo measurements and the occurrence of lung deformation induced 

by their extraction and drying. A reduction of the resolution of in vivo perfusion 

measurements and adjustment to that of the ex vivo measurements caused a reduction of 

the global and regional heterogeneity, respectively. Volume normalization of fluorescence-

labeled microspheres derived perfusion measurements resulted in comparable global and 

regional perfusion heterogeneity of ex vivo and in vivo perfusion measurements at 

comparable resolution. 
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Zusammenfassung 

Hintergrund: Durch die Entwicklung neuer in vivo Bildgebungsmethoden, z.B. der 

Computertomographie (CT) und der Positronen-Emissions-Tomographie (PET), konnte in 

den letzten Jahren das Verständnis über die Pathophysiologie des akuten 

Lungenversagens (acute respiratory distress syndrome, ARDS) maßgeblich verbessert 

werden. So zeigten PET/CT-Messungen, dass beim ARDS pathophysiologische 

Veränderungen von Lungenbelüftung und -durchblutung zu einer Störung des 

Gasaustausches beitragen. Die deshalb erforderliche mechanische Beatmung kann 

allerdings zu einer weiteren Schädigung der Lunge führen (ventilator induced lung injury, 

VILI). Bisher konnten weder die exakten pathophysiologischen Mechanismen des ARDS 

noch der potentiell schädigende Einfluss der mechanischen Beatmung vollständig geklärt 

werden.  

Fragestellung: In dieser Doktorarbeit wurden PET/CT-Bildgebungstechniken für die 

Quantifizierung der pulmonalen Belüftung, neutrophilischen Inflammation und Perfusion 

im experimentellen Modell des ARDS verwendet. Hierfür wurden zwei Substudien 

durchgeführt.  

 Ziel der ersten Substudie war es, in einem tierexperimentellen Modell des ARDS 

den relativen Einfluss der beiden wesentlichen Mechanismen von VILI, das zyklische 

Öffnen und Schließen von Alveolen (Atelektrauma) und die alveoläre Überdehnung 

(Volutrauma), auf die pro-inflammatorische Antwort der Lunge zu untersuchen. 

 Die zweite Substudie hatte das Ziel, die Anwendung von Fluoreszenz-markierten 

Mikrosphären für Messungen der pulmonalen Perfusionsverteilung in akut geschädigten 

Lungen zu validieren. Es sollte geprüft werden, ob ex vivo Messungen mittels 

Fluoreszenz-markierten Mikrosphären alternativ zu in vivo PET/CT-Messungen mittels 

Gallium-68 (68Ga)-markierten Mikrosphären im experimentellen Modell das ARDS 

herangezogen werden können.  
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Material und Methoden: Es wurden zwei Substudien in analgosedierten, intubierten und 

mechanisch beatmeten Schweinen durchgeführt. Die Induktion des ARDS erfolgte durch 

repetitives, bronchoalveoläres Lavagieren mit isotonischer Kochsalzlösung. 

 In der ersten Substudie erfolgten Untersuchungen an 10 Tieren. Nach 

Rekrutierung beider Lungen wurde eine absteigende Titration des positiven,  

end-exspiratorischen Drucks (positive end-expiratory pressure, PEEP) durchgeführt. Es 

folgte eine randomisierte Zuordnung der Versuchstiere zu einer vierstündigen 

Beatmungstherapie der linken, VILI Lunge zur Induktion eines Atelektraumas oder 

Volutraumas. In beiden Versuchsgruppen wurde ein vergleichbares Tidalvolumen von 

3 ml/kg Körpergewicht appliziert. Zur Induktion von Volutrauma wurde ein hoher PEEP 

gewählt (2 cmH2O oberhalb des Levels, an dem sich die dynamische Compliance 

während der PEEP-Titration um mehr als 5 % erhöht). Zur Induktion von Atelektrauma 

wurde ein niedriger PEEP appliziert (PEEP, bei dem eine mit Volutrauma vergleichbare 

Atemwegsdruckdifferenz (Differenz aus Spitzendruck und PEEP) auftritt). In der rechten 

Lunge, welche als Kontrolllunge diente, wurde ein kontinuierlicher, positiver 

Atemwegsdruck von 20 cmH2O aufrechterhalten. Der Gasaustausch, insbesondere die 

Eliminierung von Kohlenstoffdioxid, wurde extrakorporal unterstützt. Nach vierstündiger 

Beatmung der linken, VILI Lunge erfolgte die Bildgebung. Für die Quantifizierung von 

Ausmaß und regionaler Verteilung der pulmonalen Inflammation wurde 2-deoxy-2-

[18F]fluoro-D-glucose (18F-FDG) intravenös injiziert und die Aktivität mittels dynamischen 

PET/CT-Aufnahmen erfasst. Die Erfassung der Lungenperfusion erfolgte mittels 

intravenös injizierten, 68Ga-markierten Mikrosphären und statischen PET/CT-Aufnahmen. 

Anschließende CT-Aufnahmen während Atemmanövern am Ende der Inspiration, 

Exspiration und am mittleren Atemvolumen dienten der Bestimmung von 

Lungenbelüftung, zyklischer Überdehnung und Rekrutierung. 

 In der zweiten Substudie wurde in 7 Schweinen die Perfusion der linken und 

rechten Lunge untersucht (n = 14 Lungen). Nach jeweils einstündiger mechanischer 

Beatmung mittels zweiphasigem, positivem Beatmungsdruck überlagert mit einem Anteil 

an Spontanatmung am Minutenvolumen von 0 % oder > 60 % wurden Fluoreszenz-

markierte und 68Ga-markierte Mikrosphären intravenös injiziert. Unmittelbar im Anschluss 

erfolgten PET/CT-Messungen der Verteilung der 68Ga-markierten Mikrosphären. Für die 

Analyse der Verteilung der Fluoreszenz-markierten Mikrosphären wurden die Lungen am 

Versuchsende entnommen, getrocknet, in Würfel gesägt und die emittierende 

Fluoreszenz sowie das Gewicht jedes Würfels gemessen. Die in vivo PET-

Aktivitätsmessungen wurden auf die mittels CT bestimmte Lungenmasse normalisiert 

(QRM). Die QRM-Daten wurden auf die Auflösung der Fluoreszenzmessungen 
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herunterskaliert (QRM,downscaled). Die Analyse der ex vivo Fluoreszenzmessungen erfolgte 

durch Normalisierung auf die Masse der Lungenwürfel (QFM,Mass), auf deren Volumen 

(QFM,Volume) und auf Würfelmasse und -volumen (QFM,Mass,Volume). Die Auflösung und die 

äußeren Konturen der Lungen wurden zwischen ex vivo und in vivo Messungen 

verglichen. Lineare Regressionen von Perfusion und axialer Verteilung jedes 

Lungenvolumenelementes dienten der Bestimmung von Perfusionsgradienten entlang der 

ventro-dorsalen und kranio-kaudalen Achse. Die Anstiege der Regressionsgeraden 

wurden zwischen den Messmethoden verglichen. Für jede Lunge wurde die globale und 

regionale Perfusionsheterogenität bestimmt und zwischen den Messmethoden verglichen. 

Ergebnisse: In der ersten Substudie verdeutlichten PET/CT-Messungen, dass, trotz 

vergleichbarer Perfusion, Volutrauma im Vergleich zu Atelektrauma zu einer höheren 

spezifischen Aufnahme von 18F-FDG in den beatmeten, VILI Lungen führte. Dieser Effekt 

trat hauptsächlich in zentralen Lungenregionen auf. Weiterhin führte Volutrauma, aber 

nicht Atelektrauma, zu einer höheren spezifischen 18F-FDG-Aufnahme in den beatmeten, 

VILI Lungen im Vergleich zu den nicht-ventilierten Kontrolllungen. CT-Aufnahmen 

verdeutlichten, dass Atelektrauma einen höheren Anteil an nicht belüfteten 

Lungenkompartimenten und mehr zyklische Rekrutierung zur Folge hatte. Volutrauma 

bedingte hingegen höhere Anteile an überblähten und normal belüfteten Lungenarealen 

und mehr zyklische Überdehnung. Die Atemwegsdruckdifferenzen waren anfänglich 

zwischen den Gruppen vergleichbar, stiegen im Verlauf bei Atelektrauma, aber nicht bei 

Volutrauma, an.  

 In der zweiten Substudie verdeutlichten sowohl ex vivo QFM,Volume-Messungen, als 

auch in vivo QRM-Messungen die Existenz von Perfusionsgradienten entlang der ventro-

dorsalen und kranio-kaudalen Achsen, trotzdem QFM-Messungen eine 21-fach geringere 

Auflösung aufwiesen und die erforderliche Lungenentnahme und -trocknung eine 

Lungendeformation bedingte. Beide Messverfahren zeigten stärkere Perfusionen dorsaler 

und kaudaler im Vergleich zu ventraler und kranialer Lungenareale. Im Vergleich zu 

QRM,downscaled-Messungen wiesen QRM-Messungen höhere globale 

Perfusionsheterogenitäten auf. Verglichen mit QRM,downscaled-Messungen wiesen sowohl 

QFM,Volume-Messungen, als auch QFM,Mass,Volume-Messungen vergleichbare regionale 

Perfusionsheterogenitäten auf. 
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Schlussfolgerungen: In der ersten Substudie führte Volutrauma im Vergleich zu 

Atelektrauma, trotz vergleichbarem Tidalvolumen, geringerer Atemwegsdruckdifferenz 

und vergleichbarer Perfusion, zu einer höheren pulmonalen Inflammation. Dies deutet 

darauf hin, dass in diesem Modell des ARDS die mit Volutrauma assoziierten hohen 

statischen Drücke im Vergleich zu dynamischen Einflüssen die schädlicheren 

Mechanismen von VILI sind. 

 Die zweite Substudie verdeutlichte, dass ex vivo Messungen der Verteilung von 

Fluoreszenz-markierten Mikrosphären bei Volumennormalisierung, trotz geringerer 

Auflösung und auftretenden Lungendeformationen, vergleichbare Messergebnisse 

hinsichtlich der Existenz und des Ausmaßes von Lungengradienten mit in vivo PET/CT-

Messungen aufzeigen. Eine Anpassung der Auflösung der in vivo Perfusionsmessungen 

an die der ex vivo Messungen verringerte sowohl die globale, als auch die regionale 

Perfusionsheterogenität. Bei gleicher Auflösung zeigten ex vivo QFM,Volume-Messungen 

vergleichbare globale und regionale Perfusionsheterogenitäten wie in vivo Messungen. 

Die Studienergebnisse deuten darauf hin, dass für die Quantifizierung von pulmonalen 

Perfusionsgradienten ex vivo QFM,Volume-Messungen alternativ zu in vivo PET/CT-

Messungen durchgeführt werden können.  
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A Appendix 

A.1 Additional Results: Volutrauma and Atelectrauma in 
ARDS 

Appendix A.1.1: 

Table A.5.1:  Bodyweight, number of lavages and fluids. 

 Volutrauma Atelectrauma 

Body weight [kg] 41.2 [37.7 – 46.8] 38.2 [36.3 - 43.3] 

Number of lavages 10 [8 – 12] 11 [10 – 12] 

Cumulative Cristalloid 

[mL/kg PBW] 

137 [106 – 151] 131 [110 – 142] 

Cumulative Colloid  

[mL/kg PBW] 

25 [7 – 32] 14 [0 – 24] 
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Table A.5.2:  Mean and standard deviation of respiratory mechanics variables.  

Variable Group Baseline 1 Injury Time 1 Time 2 Time 3 Time 4 group 
effect 

time*group 
effects 

MV [L/min] Volutrauma 5.4±0.8 5.3±0.8 3.9±0.4 3.9±0.5 4.1±0.6 4.1±0.6 p = 0.203 p = 0.608 

Atelectrauma 4.7±0.4 4.7±0.4 3.3±0.8 3.2±0.8 3.2±0.7 3.1±0.8 
  

 p = 0.167 p = 0.177       

VT [mL/kg PBW] Volutrauma 8.1±0.3 8.0±0.2 3.2±0.4 3.2±0.4 3.2±0.3 3.2±0.3 p = 0.335 p = 0.770 

 Atelectrauma 8.3±0.2 8.2±0.1 3.2±0.1 3.3±0.1 3.2±0.1 3.3±0.1 
  

  p = 0.115 p = 0.138       

RR [breaths per 
minute] 

Volutrauma 16.2±1.6 16.2±1.6 28.6±2.2 29.0±2.6 30.0±1.4 30.0±1.4 p = 0.401 p = 0.156 

Atelectrauma 15.0±0.0 15.0±0.0 28.6±1.9 26.8±3.0 26.4±4.3 26.0±4.2 
  

 p = 0.141 p = 0.178       

Paw,peak [cmH2O] Volutrauma 20.5±1.3 27.1±2.9 54.6±4.1 54.0±4.0 52.9±3.5 52.2±3.5 p < 0.001 p = 0.001 

Atelectrauma 21.3±2.0 29.0±4.3 32.2±7.3 33.7±7.1 34.4±6.1 34.9±6.1 
  

 p = 0.445 p = 0.448       

Paw,mean [cmH2O] Volutrauma 12.3±0.5 15.0±1.0 42.9±2.5 42.6±2.6 41.9±2.1 41.5±2.1 p < 0.001 p = 0.004 

Atelectrauma 12.6±1.0 15.6±1.7 15.3±4.3 16.7±4.6 17.1±4.2 17.4±4.1 
  

 p = 0.478 p = 0.483       

PEEP [cmH2O] Volutrauma 8.0±0.0 8.0±0.0 32.4±2.2 32.4±2.2 32.0±2.0 32.0±2.0 p < 0.001 p = 0.219 

 Atelectrauma 8.0±0.0 8.0±0.0 0.8±1.1 1.8±2.0 1.8±1.8 1.8±1.8 
  

  p = 1.000 p = 1.000       

∆P [cmH2O] Volutrauma 8.6±2.3 17.2±3.4 19.0±4.5 18.6±4.3 18.4±4.0 17.6±3.8 p = 0.003 p = 0.003 

Atelectrauma 10.0±3.0 19.0±6.1 26.8±5.3 28.2±5.4 29.4±4.9 30.2±4.2   

 p = 0.433 p = 0.291    p = 0.001   

Rrs [cmH2O/L/s] Volutrauma 6.2±0.2 6.6±0.6 5.2±0.8 5.2±0.6 5.4±0.6 5.4±0.8 p = 0.003 p = 0.410 

Atelectrauma 7.0±0.4 7.1±1.1 10.4±4.2 10.3±5.5 11.7±5.5 12.6±3.5 
  

 p = 0.370 p = 0.378       
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Ers [cmH2O/L] Volutrauma 26.5±5.8 49.0±12.3 152.4±26.4 148.6±25.9 144.0±23.1 139.1±23.4 p < 0.001 p = 0.001 

Atelectrauma 29.4±2.8 55.1±8.4 237.8±49.7 242.8±51.1 255.9±40.3 261.7±36.3   

 p = 0.381 p = 0.385       

%E2 [%] Volutrauma 5.7±7.5 44.0±5.0 39.1±3.4 38.7±3.1 37.0±4.5 37.4±3.7 p = 0.003 p = 0.086 

Atelectrauma 7.9±8.2 38.6±10.1 21.2±15.9 18.5±16.6 13.5±8.1 2.3±8.7 
  

 p = 0.313 p = 0.324     
  

P-values indicate comparability of groups at specific time point. P-values are given below the respective columns. P-values of differences among groups after 
randomization are shown in column “group effect” and “time*group” effect. 
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Table A.5.3:  Mean and standard deviation of gas exchange and hemodynamics.  

Variable Group Baseline 1 Injury Time 1 Time 2 Time 3 Time 4 group 

effect 

time*group 

effects 

Gas exchange 

PaO2 [mmHg] Volutrauma 543.4±30.5 104.8±20.9 203.0±111.3 170.2±78.5 145.6±57.1 192.4±84.8 p = 0.360 p = 0.218 

Atelectrauma 556.8±52.7 107.8±33.1 106.0±100.1 130.0±113.8 132.8±99.1 124.4±73.6   

 p = 0.868 p = 0.869       

PaCO2 [mmHg] Volutrauma 45.2±3.7 62.6±3.0 70.0±10.4 78.2±14.2 89.2±25.1 79.8±14.3 p = 0.073 p = 0.504 

Atelectrauma 40.4±4.3 67.8±15.9 57.4±10.2 59.8±12.5 62.6±10.3 62.2±10.7 
  

 p = 0.493 p = 0.501       

pHa Volutrauma 7.42±0.03 7.28±0.04 7.26±0.02 7.22±0.08 7.17±0.10 7.20±0.10 p = 0.102 p = 0.580 

Atelectrauma 7.46±0.03 7.26±0.09 7.34±0.07 7.33±0.11 7.31±0.12 7.32±0.12 
  

 p = 0.603 p = 0.601       

Hemodynamics 

CO [L/min] Volutrauma 4.3±1.2 4.8±1.3 5.9±0.6 6.1±0.8 5.6±0.6 5.2±0.8 p = 0.080 p = 0.759 

Atelectrauma 3.3±1.0 4.6±1.2 7.4±0.8 7.1±1.2 6.7±1.4 6.4±2.1 
  

 p = 0.839 p = 0.839       

Mean arterial 

pressure [mmHg] 

Volutrauma 93±18 90±12 91±11 82±31 85±14 81±12 p = 0.731 p = 0.922 

Atelectrauma 92±17 82±9 88±9 88±8 86±8 82±12 
  

 p = 0.315 p = 0.317       

Mean pulmonary 

artery pressure 

[mmHg] 

Volutrauma 26±6 34±2 43±5 44±3 44±5 44±6 p = 0.778 p = 0.111 

Atelectrauma 26±5 35±6 39±8 41±7 47±5 44±5 
  

 p = 0.885 p = 0.888       

P-values indicate comparability of groups at specific time point. P-values are given below the respective columns. P-values of differences among groups after 
randomization are shown in column “group effect” and “time*group” effect.
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