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Abstract

Mutations in the leucine-rich repeat kinase 2 (LRRK2 ) gene are a major genetic
cause of Parkinson’s disease (PD), which is why modelling PD by replicating their
effects in animal models attracts great interest. However, the exact mechanisms
of pathogenesis are still unclear. While a gain-of-function hypothesis generally
receives consensus, there is evidence supporting an alternative loss-of-function ex-
planation. Yet, neither overexpression of the human wild-type LRRK2 protein or
its pathogenic variants, nor Lrrk2 knockout recapitulates key aspects of human
PD in rodent models. Furthermore, there is conflicting evidence from morpholino
knockdown studies in zebrafish regarding the extent of zygotic developmental ab-
normalities.

Because reliable null mutants may be useful to infer gene function, and be-
cause the zebrafish is a more tractable laboratory vertebrate system than rodents
to study disease mechanisms in vivo, clustered regularly interspaced short palin-
dromic repeats (CRISPR)/CRISPR-associated protein-9 nuclease (Cas9) genomic
editing was used to delete the∼60-kbp-long zebrafish lrrk2 locus containing the en-
tire open reading frame. Constitutive removal of both the maternal and the zygotic
lrrk2 function (mzLrrk2 individuals) causes a pleomorphic phenotype in the larval
brain at 5 days post-fertilisation (dpf), including increased cell death, delayed my-
elination, and reduced and morphologically abnormal microglia/leukocytes. How-
ever, the phenotype is transient, spontaneously attenuating or resolving by 10 dpf,
and the mutants are viable and fertile as adults. These observations are mirrored
by whole-larva transcriptome data, revealing a more than eighteen-fold drop in
the number of differentially expressed genes in mzLrrk2 larvae from 5 to 10 dpf.
Additionally, analysis of spontaneous swimming activity shows hypokinesia as a
predictor of Lrrk2 protein deficiency in larvae, but not in adult fish.

Because the catecholaminergic (CA) neurons are the main clinically relevant
target of PD in humans, the CA system of larvae and adult fish was analysed
on both cellular and metabolic level. Despite an initial developmental delay at
5 dpf, the CA system is structurally intact at 10 dpf and later on in adult fish aged
6 and 11 months. However, monoamine oxidase (Mao)-dependent degradation of
biogenic amines, including dopamine, is increased in older fish, possibly suggesting
impaired synaptic transmission or a leading cause of cell damage in the long term.

Furthermore, decreased mitosis rate in the larval brain was found, in the an-
terior portion only at 5 dpf, strongly and throughout the whole organ at 10 dpf.
Conceivably, lrrk2 may have a more general role in the control of cell proliferation
during early development and a more specialised one in the adult stage, possibly
conditional, for example upon brain damage. Because the zebrafish can regener-
ate lost neurons, it represents a unique opportunity to elucidate the endogenous
processes that may counteract neurodegeneration in a predisposing genetic back-
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ground. To this aim, the regenerative potential of the adult telencephalon upon
stab injury was tested in mzLrrk2 fish. Indeed, neuronal proliferation was re-
duced, suggesting that a complete understanding of Lrrk2 biology may not be
fully appreciated without recreating challenging scenarios.

To summarise, the present results demonstrate that loss of lrrk2 has an early
effect on zebrafish brain development that is later often compensated. Nonethe-
less, perturbed aminergic catabolism, and specifically increased Mao-dependent
aminergic degradation, is reported for the first time in a LRRK2 knockout model.
Furthermore, a link between Lrrk2 and the control of basal cell proliferation in the
brain, which may become critical under challenging circumstances such as brain
injury, is proposed. Future directions should aim at exploring which brain cell
types are specifically affected by the mzLrrk2 hypoproliferative phenotype and
the resulting consequences on a circuitry level, particularly in very old fish (i.e.,
over 2 years of age).
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Figure 1: Overview of the main findings. Removal of both maternal and zygotic lrrk2
(mz) determines reduced mitosis rate in the larval brain and defective neuronal regener-
ation upon stab in the adult telencephalon. Older fish also display perturbed aminergic

catabolism, most prominently increased dopamine degradation.
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Introduction

Clinical signs of limb tremor and postural instability have been known since an-
cient times, but it is only at the onset of the 19th century that a "shaking palsy"
was first recognised by James Parkinson and later more thoroughly characterised
by Jean-Martin Charcot1. Today, Parkinson’s disease (PD, OMIM entry 168600)
is one of the most common movement disorders, affecting approximately seven mil-
lion people globally, with incidence between 8 and 18 per 100,000 persons-years2.
Typically associated with ageing, the onset usually occurs after the age of 60, but
it may be earlier in individuals with family history3; women may experience a two-
year later onset and a milder phenotype than men4. PD patients are characterised
by a motor syndrome comprising resting tremor, rigidity, postural instability, and
bradykinesia, or slowness of movement. However, pathology is highly variable and
not even only motoric: sensory, sleep, neuropsychiatric, and cognitive problems
may also occur, alone or in combination, at different stages of disease5. On a
neuropathological level, PD is characterised by one invariant feature that is the
loss of dopaminergic (DA) neurons in the substantia nigra pars compacta. It is
estimated that DA neuronal loss amounts to 30% by the time motor symptoms
appears, though higher percentages are also proposed6. A common feature is
the presence of Lewy bodies, abnormal protein aggregates associated with several
neurodegenerative disorders, mainly composed of α-synuclein and ubiquitin7. In
particular, Lewy body pathology is better correlated with non-motor symptoms8.
It shall also be noted that PD is a multisystem disorder and, although relatively
less understood, non-DA dysfunction seems to play an important pathophysiolo-
gical role as well, particularly in the prodromic stages of disease9.

Lengthening of the average human life and demographic ageing make the pre-
valence of PD worldwide destined to increase and this renders PD one of the
most serious health urgencies of modern societies. Current treatments are only
symptomatic as incapable of stopping neurons to die10. Although several genetic
conditions and risk factors have been widely investigated and the molecular mech-
anisms of neuropathology are being day-by-day elucidated, in most cases PD is
idiopathic, as no specific cause can be attributed11. Moreover, a reliable in vivo
model displaying comprehensive PD pathology is lacking. This does not mean
that present models are limited beyond translational research. On the contrary,
much of what is currently known about disease mechanisms and progression would
have hardly been established otherwise. Animal models are indispensable when
it comes to dissect out what mechanisms are impacted in the early stages of the
disease and how the diseased brain responds to therapeutics. Rather, their limited
translational amenability is chiefly due to an unfocused definition of their range
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Introduction

of validity combined with the paucity of preclinical studies in humans12.

In the following section, the general criticalities of modelling PD in animals will
be illustrated, with particular emphasis on genetic models. For reasons of consist-
ency with the scopes of the present work, and not to lessen their importance13,14,
in vitro models will not be considered.

1.1 Modelling PD: the Sisyphean task
Current PD animal models span from invertebrates to mammals. Although the
DA system, the most clinically relevant target of PD, is fundamentally conserved
in all chordates15, humans are the only species where PD naturally occurs. The
reason may lie in the functional flexibility of the DA system, resulting in a re-
markable degree of diversification even within mammals15. Because there is no
natural animal counterpart of human PD, the only way to study PD-like features
in animals is to generate induced models. This can be achieved either chemically
or genetically.

Historically, chemical models were the first to be introduced and are still
widely used nowadays16. Commonly, but not exclusively, used DA neurotoxins
are 6-hydroxydopamine (6-OHDA), 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
(MPTP), rotenone, and paraquat. However useful to investigate the consequences
of DA neuronal loss and test (mainly symptomatic) treatments, chemical models
present several limitations, the most important of which are (i) the acuteness and
transiency of key features, compared to the slow and chronic progression of hu-
man PD, and (ii) the comparability and reproducibility of reported phenotypes,
as different drugs have different mechanisms of actions, elicit different effects, and
different species or even strains of the same species have different susceptibility17.

Genetic models take advantage of mutations in a number of genes being re-
sponsible for monogenic forms of hereditary and sporadic PD18. One of these is
LRRK2, the leading theme of the present work, reviewed in detail further below
(see 1.2). Here it will suffice to highlight that PD has an impressive genetic het-
erogeneity, emerged mainly via linkage analysis19, with up to twenty loci (termed
"PARK") so far identified, distributed over nine autosomal and one sex (X) chro-
mosomes; there is also evidence for contributing mitochondrial mutations (OMIM
entry 556500). PD-associated autosomal mutations are the majority, with some
being recessive, others (like the ones in LRRK2 ) dominant. To complicate the
picture further, several genetic or environmental modifiers can influence the phen-
otypic onset and strength20–22. Mechanistically, these mutations cause either a
gain of toxic function (GOF) or loss of a protective function (LOF). These effects
can be mimicked in animal models in several ways; the most popular include:
to achieve GOF, the generation of knockin models overexpressing the (typically
human) wild-type or mutant gene product of interest; to achieve LOF, the gener-
ation of knockout models or the induction of transient knockdown. Hypomorphic
rather than amorphic phenotypes may sometimes be useful as more closely mim-
icking the effects of inhibitor drugs. Recently, viral vectors have been used to drive
the expression/induce conditional knockout of PD-associated genes in a regionally-

2
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controlled manner23. Despite the tantamount advances in the genome editing field
and the generation of a wealth of models, so far no one develops a degenerative
phenotype sufficiently comparable to human PD.

1.1.1 GOF and LOF models: general caveats

Promises and drawbacks of established genetic models for PD have been reviewed
in detail elsewhere24,25. Here their limitations from a more general point of view
will be discussed. A critical issue concerns the choice of the animal model. No
matter the degree of homology with humans, even slight dissimilarities between
orthologous genes of interest, network of interactions, cellular and extracellular
milieux can make disease-causing mutations work simply differently in the model.
Furthermore, because almost all of the genetic approaches used are effective since
early development, compensatory mechanisms in embryos/juveniles may attenuate
vulnerability in adults. Inducible models could overcome this inconvenience, but
they may display discrepancies depending on age at/duration of induction.

Methodological considerations are not secondary; for more details on the ad-
vantages and drawbacks of different techniques to interfere with/modify gene func-
tion, dedicated reviews are referred to26–28. For GOF models, a major problem
is the very construction of the transgene. Depending on the strategy used, the
animal may either express the transgene in all of its cells, or be chimeric. While
in the latter case the model might better reflect sporadic pathology29, it would be
more difficult to analyse due to phenotypic variability. In order to more closely
model disease, transgene knockin should be performed in a null background. On
the contrary, in all models the transgene is merely added while leaving the en-
dogenous, wild-type counterpart intact, and without controlling the integration
site. Another problem is the choice of the promoter. Very strong and ubiquitous
promoters artificially enhance the expression of the mutant product everywhere in
the organism, whereas the slowness of PD onset and progression in humans would
rather suggest gradually mounting and anatomically confined effects. On the other
hand, cell-specific promoters make it hard to dissect out non cell-autonomous
mechanisms.

For LOF models, the major concern is the genomic context of the disrupting
mutation. Large deletions and subsequent chromosomal rearrangements may in-
troduce dramatic changes in the topology of cis-regulatory elements, for example
via enhancer adoption30. Small insertions/deletions can disrupt inter- or intra-
genic non-coding RNA genes or be bypassed via alternative splicing. Stability of
prematurely-stopped RNAs or presence of downstream alternative in-frame trans-
lation initiation sites may give rise to truncated protein products with residual or
even new functions. More frequently, mutant RNAs undergo nonsense-mediated
decay31. However, constitutive production of mutant RNAs highjacks RNA qual-
ity control systems, normally preventing the accumulation of randomly occurring
nonfunctional RNAs, but also deputed to a gamut of other cell homeostatic func-
tions32. As a result, artificially occurring nonfunctional RNAs might cause toxicity
via cellular stress, rather than pure LOF. Knockdown strategies are even more
ambiguous, as their efficacy depends on gene dosage. Transient knockdown on a
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post-transcriptional level have the additional problem of the route of administra-
tion to cells, which limits its application on complex animals like mammals. A
last but not least memento is maternal effects. Very well known in invertebrates,
particularly drosophila, but relatively little investigated in vertebrates, despite
the spur from recent maternal-effect screens in zebrafish33, this aspect is typically
overlooked in mammalian (and not only) models.

Whatever strategy is chosen, it is imperative to verify the specificity of putative
phenotypes to exclude potential off-target effects. For GOF models, this would
entail inhibitive manipulations like knockdown or pharmacologic treatment, which
also posit concerns about specificity; for LOF models, reestablishment of the lost
function should be attained via either RNA/plasmid injection, preferable with
tractable models but prone to mosaicism, or generation of genetically reconstituted
lines, cleaner but more time-consuming. Finally, once a model is generated, its
usefulness has to be addressed. This apparently trivial consideration is actually
of pivotal importance, as phenotypes may not be macroscopic or immediate, but
observable only under suitable paradigms, whose adoption or de novo design is
particularly problematic when "chasing in the dark", i.e. when too little (and
sometimes even, on the opposite, too much) corollary information on the gene of
interest is available.

In the next sections, the role of LRRK2 in both physiology and PD-related
pathology will be introduced and the difficulties with current LRRK2 models
discussed.

1.2 The enigma of LRRK2
In 2002, the discovery of the eighth PARK locus (PARK8, 12p11.2–q13.1 ) provided
the first genetic link for late-onset PD in families characterised by autosomal dom-
inant inheritance pattern34. Two years later, two independent studies34,35 identi-
fied mutations segregating with PARK8 -linked PD and located in a single large
gene (51 exons spanning 144 kbp) putatively coding for a cytoplasmic kinase,
termed "dardarin" (from the Basque word dardara, ’tremor’) or, as today more
commonly known, "leucine-rich repeat kinase 2" (LRRK2, because of the simil-
arity with a predicted LRRK1 kinase previously reported36). Since then, several
LRRK2 gene polymorphisms have been identified, but only five segregate with dis-
ease in large families: c.5096A>G (p.Tyr1699Cys), c.4321C>T (p.Arg1441Cys),
c.4321C>G (p.Arg1441Gly), c.6059T>C (p.Ile2020Thr), and c.6055G>A
(p.Gly2019Ser)37. Altogether, they represent the most recurrent genetic cause
of familial and sporadic late-onset PD, accounting for 5–13% of familial and 1–5%
of sporadic PD cases38. For this reason, LRRK2 and its PD-associated variants
have been receiving growing attention (Figure 1.1).

In particular, the last pathogenic amino acid substitution to be identified,
Gly2019Ser40, is also the most common (4% of familial and 1% of sporadic PD
cases41) and thereby the privileged subject of investigation. Studies on Gly2019Ser
epidemiology have revealed the complexity of the genotype-phenotype relation-
ship. Symptomatic Gly2019Ser carriers are variably frequent in different ethnic
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Figure 1.1: Yearly publication trend for lrrk2 query. Statistics retrieved fromMedline39.

groups (2% of general North American and English population, up to 40% of North
African Arabs and Ashkenazi Jews, very rare in Asia37,42), more likely to be wo-
men43 and over 60 years of age (PD risk 28% at age 59, 51% at 69, and 74% at
79 years41). However, although the penetrance may be higher in homozygotes44,
the phenotype is not worse than in heterozygotes45,46. Interestingly, clinically un-
affected homozygous individuals have been reported, one of them aged 70 years46.
It shall also be noted that, despite a consistent overlap with levodopa-sensitive
idiopathic PD8, different mutations may yield different phenotypes. In Gly2019Ser
carriers tremor typically appears first; Lewy body pathology is a common finding,
but not in non-Gly2019Ser carriers, where a more pleomorphic neuropathology
is present, including neurofibrillary tangles, atypical cytosolic fibrils, and motor
neuron degeneration37. These findings suggest that LRRK2 mutations may con-
verge on PD via distinct routes. Genetic47,48 and/or environmental factors may
influence phenotypic penetrance, and LRRK2 itself may be a disease modifier
gene49.

Drawing up the identikit of LRRK2 is further complicated by the elusiveness
of its biological role. LRRK2 is a large (2,527 aa) multidomain protein and a bi-
functional enzyme, displaying both mitogen-activated protein kinase kinase kinase
(MAPKKK), and Ras of complex proteins (ROC) GTPase activities50. Several
lines of evidence suggest the functional interaction between the two enzymatic
domains51. In particular, the GTP-bound state is considered the "on" state, as it
increases kinase activity52. Therefore, the GTPase activity may serve as a molecu-
lar switch for the kinase activity. However, the reverse scenario is also plausible53,
as LRRK2 can phosphorylate itself in vitro, and most of the autophosphoryla-
tion sites lie within the ROC domain54. Self-dimerisation of LRRK2 is required
for normal functioning55. LRRK2 dimers are enriched in membrane fractions
and display higher kinase activity than the cytosolic monomeric counterparts56.
Moreover, the presence of both an ankyrin-like domain (ANK) and a leucine-rich
repeat domain (LRR) in the first half of the protein and a tryptophan-aspartic
acid repeat (WD40) at the C-terminus suggest that LRRK2 acts as a scaffold
for protein-protein interactions57,58. Indeed, several interactors have been iden-
tified via immunoprecipitation studies59,60. These include proteins involved in
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cytoskeleton dynamics, like actin isoforms and actin-associated proteins. Notable
proposed interactors include PD-associated proteins α-synuclein61 and parkin62.
A commendable effort has been the deep-curation of published data to generate
an updated visual review of LRRK2 interactome63. Despite its relevance for PD,
LRRK2 protein is surprisingly scant in the brain, where its expression is scored
as "low" according to the Human Protein Atlas64, compared to other peripheral
organs, and prominently lung ("high" score) and kidney ("medium" score). Al-
though only one protein product has been currently characterised, alternative
splice forms are possible65. In this regard, an interesting study has identified two
Lrrk2 splice forms in mice, one resulting from exon 5 skipping, primarily expressed
in astrocytes, the other truncated, terminating with an alternative exon 42a, also
expressed in neurons66.

Given the above complexity, it would be easier to mine what biological pro-
cess LRRK2 has not been implicated, than otherwise. It would be beyond the
scopes of the present work to review them all; on the other hand, information on
LRRK2 functions is still too vague to discern representative ones. Major areas
of investigation concern the involvement of LRRK2 in synaptic vesicle functions,
cytoskeleton dynamics, mitochondrial biology, and autophagy. For an overview,
excellent reviews are referred to67–69. It is easy to see that such cellular processes
are so general, that dysfunctional LRRK2 may very well partake in a wide gamut
of disease states, even unrelated to the brain. Indeed, LRRK2 polymorphisms
have been linked to Crohn’s disease (a type of inflammatory bowel disease), can-
cer, and leprosy70. Conceivably, the clarification of non-brain-related signalling
pathways is instrumental to predicting the outcome of brain-targeted therapeutic
strategies.

In order to characterise and study LRRK2 biology in vivo, a flurry of animal
models have been developed. These include C. elegans and D. melanogaster 71;
however, because worm lrk-1 and fly lrrk genes are not true orthologues of the
mammalian LRRK2 gene72, these models will not be considered. Clearly, the gen-
eration of animal models has taken advantage of the discovery of LRRK2 muta-
tions and will assist the elucidation of their modes of action. Among these, the
billion dollar question: what makes LRRK2 toxic?

1.2.1 LRRK2 gene mutations and PD: GOF or LOF?
The exact involvement of LRRK2 in pathology is incompletely understood. Es-
tablished or putatively pathogenic variants all fall within or nearby the catalytic
core73. The ones in the MAPKKK domain (Gly2019Ser, Ile2020Thr) increase
kinase activity74,75 (but for Ile2020Thr the opposite is also claimed76), whereas
the ones in the ROC domain (Arg1441Cys/Gly, Ile1371Val) increase GTP binding
and at least two (Arg1441Cys/Gly) decrease GTPase activity77 in vitro. Patho-
genic effects may be also mediated by altered molecular interactions, both within
and between LRRK2 monomers. In support of this, the Tyr1699Cys substitution
in the COR domain strengthens the ROC:COR intramolecular interaction and
weakens LRRK2 dimerisation locally at the ROC-COR tandem domain, akin to
Arg1441Cys/Gly/His substitutions, thus leading to decreased GTPase actvity78.
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If the GTPase activity is upstream to the kinase activity, pathogenic variants in
the ROC-COR tandem domain might promote the GTP-bound "on" state and
hence be analogous to the pathogenic variants in the MAPKKK domain. This
reasoning has led to the unifying hypothesis that LRRK2 mutations confer tox-
icity via a GOF of the kinase domain. This interpretation receives support from
knockin mice carrying human pathogenic LRRK2 variants and displaying PD-
relevant phenotypes, albeit alternately, such as DA neuronal defects79–82, impaired
DA transmission79,82,83, reduced dopamine levels80, and behavioural abnormalit-
ies79,81,84.

However, the "GOF hypothesis" is not completely airtight. First of all, differ-
ent mutations may or may not converge on the same pathways, with some pos-
sibly being unrelated to PD85. Secondly, the current lack of reliable endogenous
substrates or interaction partners makes it impossible to validate in vitro find-
ings in vivo. More critically, mice overexpressing human wild-type86 or mutant
LRRK279–84 do not generally recapitulate DA cell loss, unless transgene levels
are artificially enhanced using strong promoters80,87–90; Lewy body pathology has
never been reported. Paradoxically, enhanced LRRK2 activity in Gly2019Ser
knockin mice confers a hyperkinetic phenotype and protects from age-related mo-
tor impairment91. A further challenge comes from evidence that the Gly2385Arg
variant in the WD40 domain, a risk factor for PD in the Chinese ethnicity92,93,
reduces kinase activity94,95 and enhances LRRK2 degradation96. A similar dom-
inant negative effect has been described also for the Ile2020Thr variant97, usually
considered a GOF. This commonality may be the result of both Gly2385Arg and
Ile2020Thr increasing GTPase activity95, possibly favouring the GDP-bound "off"
state. Finally, pathogenic variants may disrupt protein-protein interactions that
may be essential in cell signalling pathways. Along this line, it has been shown
that the substitutions Arg1441Cys/Gly/His, Tyr1699Cys, and Ile2020Thr, but not
Gly2019Ser, reduce phosphorylation of LRRK2 residues Ser910/Ser935 in Swiss
3T3 cells, thus disrupting the interaction with 14-3-3 protein and causing non-14-
3-3 bound LRRK2 to accumulate in inclusion body-like cytosolic pools98. These
observations back up an alternative "LOF hypothesis", bolstered by Lrrk2 knock-
out in rodents being pathogenic in peripheral organs99–101. Remarkably, Lrrk2
knockout mice develop PD-like pathology in the kidney, most prominently accu-
mulation and aggregation of α-synuclein, but not in the brain101. Yet, LRRK2
deficiency in mice induces behavioural alterations similar to BAC human LRRK2
G2019S transgenic mice102,103. Conceivably, brain functions other than the DA
ones may be implicated.

In a nutshell, both the GOF and the LOF hypotheses present supporting evid-
ence as well as shortcomings. This raises the need of a "look-elsewhere" approach.
A possibility to reconcile them would be to consider both mechanisms as two sides
of the same coin in the context of PD aetiopathology. If LRRK2 partakes in a
tightly regulated system where its activity is optimal within, detrimental outside
a certain range, then both hyperactive and hypofunctional LRRK2 could push
towards disease. This concept has been suggested since the discovery that Lrrk-
mediated phosphorylation of EndophilinA at Ser75 is required for synaptic vesicle
endocytosis in drosophila104. Dephosphorylated EndophilinA interacts with the
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synaptic membrane, induces its deformation, and drives vesicle formation, whereas
phosphorylated EndophilinaA has lower membrane affinity. Vesicle endocytosis is
impaired in both human Gly2019Ser LRRK2 knockin third-instar larvae, where
hyperactive LRRK2 prevents membrane association of EndophilinA, and Lrrk
LOF mutants, where hypofunctional Lrrk thwarts vesicle recycling because of En-
dophilinA not efficiently leaving the membrane104. Although these results must
be taken with caution, as fly Lrrk is no orthologue of mammalian LRRK272, the
proposed mechanism has the merit to indicate an alternative approach to an over
a decade-long conundrum. According to this "homeostasic hypothesis", it is not
whether LRRK2 is hyperactive or hypofunctional, but rather whether LRRK2
is "enough" to be patho- and biologically relevant. Pathogenic mutations could
render LRRK2 "more than enough" or "not enough", depending on their nature
(Figure 1.2).

Gly2385Arg 
(Ile2020Thr) 

Gly2019Ser 
Ile2020Thr 

Arg1441Cys/Gly/His 
Tyr1699Cys 

Gly2385Arg 
Ile2020Thr 
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Figure 1.2: Possible aetiopathological mechanisms of LRRK2 variants. Based on in
vitro evidence, LRRK2 mutations alter LRRK2 function. This can happen by either
promoting (arrow) kinase activity, directly or via reduced GTPase activity/promoted
GTP-bound state, or viceversa, by influencing (diamond-headed line) the GTPase
activity/GTP-bound state, directly or via kinase activity, depending on weather the
output is kinase activity or GTPase activity/GTP-bound state. The former scenario
is more widely accepted, with disease being the direct effect of kinase GOF (green ar-
row). Alternatively (dashed lines), the substitutions Gly2385Arg (risk factor, grey) and
Ile2020Thr (within brackets, as more commonly considered to cause GOF) would de-
crease kinase activity (circle-headed line) and hence cause disease via LOF (magenta).
Altered LRRK2 function might also lead to disease via several indirect mechanisms, in-
cluding impaired local dimerisation of LRRK2 domains (italicized substitutions) or full-
length LRRK2 molecules, and disrupted interactions with molecular partners, causing
cellular mislocalisation. Dysfunctional LRRK2 would then undergo degradation, caus-
ing disease via LOF, or impair LRRK2 activation/deactivation dynamics. The latter
mechanism may elicit variable effects in different tissues/cell types and individuals.
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Such "quantitative" interpretation could however not explain the discrepancy
between existing GOF and LOF models, as a certain degree of equivalence would
be expected, instead. Therefore, a more sophisticated "qualitative" interpretation
could be envisaged, where LRRK2 toxicity depends not merely on LRRK2 levels,
but rather on the balance between LRRK2 activation/deactivation. In turn, this
balance may vary depending on tissue or cell type, presence of disease modifier
genes, and general health state of the organism. For example, low levels of LRRK2
may be required for normal neuronal function, as suggested by the putative toxicity
of GOF mutations, but high levels are found in macrophage and monocytic cells105
and activated microglia106. Conceivably, LRRK2 LOF may have little consequence
on neurons directly, yet be detrimental indirectly under immune challenge by
impairing the innate inflammatory response. Consequently, the analysis of GOF
and LOF models separately would be too reductionist a strategy, as LRRK2 would
be either "on" or "off" in all cells, in all tissues, under any circumstance, invariably.
Re-thinking LRRK2 in terms of how much is active, rather than present, might
be instrumental to elucidating critical aspects of its pathobiology in humans, such
as variable penetrance and late clinical onset (see 1.2).

1.3 Is a new LRRK2 model necessary?

As outlined above, present LRRK2 models are not robust PD models. This raises
the question of how imperfect models can be useful. The emerging complexity of
LRRK2 interactions and functions is definitely part of the reason of their short-
comings: the lack of sufficient knowledge of LRRK2 biological context simply
makes them compassless. On the other hand, there is also a persistent hermen-
eutical bias towards, if not yet a dogma of, LRRK2 GOF being the leading cause
of pathology. This bias has profoundly influenced the field, not only leading to the
sprouting of GOF models and LRRK2 inhibitors, but also limiting the analysis of
LOF models to the identification of safety liability in view of LRRK2 inhibition
for therapeutics. Hence, double standards are operated when explaining the lack
of PD-like features in GOF or LOF models: for the former, the much shorter
lifespan of animal models compared to humans would not allow enough time for
LRRK2-driven toxic effects to reach threshold; for the latter, observations would
simply match expectations. To salvage the "GOF-centric" view, GOF models are
generally exalted as the ones capturing the prodromic stages of PD70. However,
as stressed in the previous section (1.2.1), the GOF hypothesis is based almost
exclusively on in vitro work, whereas mounting evidence shows that alternative ex-
planations are also plausible. Also, the idea that aspects of LRRK2 biology other
than kinase function may lead to disease is gaining ground in the development of
alternative, non-kinase-based therapeutic strategies107.

Arguably, what is truly lacking in the multitude of LRRK2 models is a real
amorphic standard, meaning a purely and unambiguously null model where to
study what goes awry when LRRK2 is absent. Such a standard, alone or in
combination with a second, hypomorphic model, would help rethinking existing
models by fulfilling three objectives:
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(i) in case LRRK2 GOF is pathogenic, to foresee the side effects of LRRK2
inhibition;

(ii) in case LRRK2 LOF is pathogenic, to mimick the human phenotype;

(iii) to infer LRRK2 biological role(s) from emerging phenotype(s) and disrupted
omic interactions.

Until now, eight mouse and one rat Lrrk2 knockout models have been generated
and variably characterised. The mouse models have all been obtained via homo-
logous recombination targeting different Lrrk2 gene portions: exon 1101,108, exon
286,109,110, exons 29-30101, part of exon 39-exon 40111,112, exons 39-40113, exon
4199,102. The rat model has been generated by the SAGE Laboratories and made
commercially available. Zinc-finger nucleases were used to generate an in-del in
exon 30 resulting in a premature stop codon. Despite several studies on peri-
pheral organs100,114–116, no brain characterisation has yet been provided. There-
fore, what is known about the effects of LRRK2 LOF on the brain (see 1.2.1)
comes exclusively from the mouse models. However, for none of these models
has the validation of Lrrk2 knockout been thoroughly unequivocal. Firstly, all
of the strategies adopted cannot rule out the persistence of truncated protein
products in knockout animals, though at lower levels than in wild-type controls
due to nonsense-mediated RNA decay, but still potentially effective (see 1.1.1).
Secondly, absence of LRRK2 in knockout animals has been shown either directly,
via western blot99,101,108–111 and/or immunohistochemistry102, and/or indirectly,
via northern blot101,111 or in situ hybridisation110. Each of the above methods
have problems, though. LRRK2 is a large protein (>280 kDa), which makes gel
transfer difficult. Moreover, expression of Lrrk2 in the brain is low compared to
other peripheral organs (lung, lymphnode, kidney)117. Consequently, even rarer,
truncated but still large products may go unnoticed simply because below de-
tection threshold. Similar considerations hold true also for the detection of the
large (>8 kbp) and rare Lrrk2 transcripts via northern blot or in situ hybridisa-
tion. Another aspect is the specificity of anti-LRRK2 antibodies. There have been
tremendous efforts to identify suitable antibodies for different applications, and
results have been at times contradicting117–119. This has been particularly true for
immunohistochemistry, for which the problem of antibody specificity adds up to
protocol optimisation issues, such as fixation, antigen retrieval, signal-to-noise ra-
tio. Different antibodies give different staining patterns118 and signal interpreted
as "aspecific" in presumably Lrrk2 knockout tissue102,119. Anyway, the smoking
gun proving the specificity of any of the above models is missing, as physiological
substrates of LRRK2 are yet to be validated and no rescue attempt has been
carried out.

Given the above difficulties, a more solid approach would be required to gen-
erate a valid LRRK2 amorphic standard. In addition to that, a "suspension of
disbelief" towards LRRK2 LOF models might be of value to understand aspects of
PD so far ignored or even alternative routes to pathology. Finally, a more tract-
able animal model than rodents might be more indicated for omic studies and
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high-throughput screening aiming at identifying "druggable" targets in a transla-
tional perspective. To fulfil these scopes, the present thesis proposes the zebrafish
as a vertebrate system wherein to model LRRK2 deficiency. In the next chapter,
the advantages and limitations of the zebrafish as a model organism for PD will
be summarised and previous attempts to study zebrafish Lrrk2 LOF examined.
Finally, the aim of the thesis will be defined.
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Reliable LRRK2 knockout models may help clarifying the molecular interactions
that are disrupted by dysfunctional LRRK263 as well as the potential side effects
of LRRK2 pharmacological inhibition for therapeutics120. Incomplete success in
reproducing PD-like pathology in LRRK2 rodent models raises the need for al-
ternative approaches, including the exploration of different model systems.

2.1 The zebrafish as a model for PD
The zebrafish has long been acknowledged as a powerful model to study basic de-
velopmental dynamics. Over the past decades, a wide range of tools and techniques
have been assembled. Cheap costs of maintenance, rapid and transparent develop-
ment, large breeding capacity, and high quality sequenced genome make zebrafish
suitable for applications in many disciplines. Being a vertebrate, with stereotypic-
ally conserved fundamental brain architecture and neurotransmitter systems, the
zebrafish has recently started to be exploited for the study of central nervous sys-
tem diseases. In particular, emerging data show the value of zebrafish as a new
model for movement disorders121 and neuropsychiatric diseases122. Targeting the
expression of zebrafish orthologues or driving the expression of human disease-
associated genes in zebrafish demonstrated phylogenetically conserved molecular
pathways, which lead to comparable defects at the level of specific neuronal pop-
ulations123. These findings, combined with the ease of genetic manipulation and
the large offspring numbers, have rendered the zebrafish ideal for functional assess-
ment of putative modifier genes, screening for therapeutics, and direct observation
of disease mechanisms in vivo. Moreover, the zebrafish displays a complex etho-
logy, whose translational relevance and measurability is granted by the progressive
elucidation of underlying neural pathways and refinement of old/establishment of
new behavioural paradigms124. Another interesting characteristic is the prodi-
gious reparative capacity of damaged tissues, including the brain125,126. Restorat-
ive neurogenesis decreases along evolution and is almost absent in humans, which
may facilitate progression of neurodegeneration. For this reason, the zebrafish
ultimately represents a unique possibility to determine which genetic programs
might hinder neurodegeneration with a view towards applying these insights in
humans.

In the context of PD modelling, the zebrafish proves a feasible model. First of
all, the main aminergic systems are conserved, most relevantly the DA system127.
Secondly, the zebrafish is sensitive to DA neurotoxins 6-OHDA and MPTP128,129.
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Finally, several PD-associated genes in humans have corresponding orthologues in
zebrafish, as shown in knockdown or reverse genetics studies: dj1 130, parkin 131,132,
pink1 133–135, lrrk2 136–138, atp13a2 139,140, and gba 141,142. A zebrafish orthologue for
SNCA (α-synuclein) is not present, but three orthologues for SNCB and SNCG (β-
and γ-synuclein, respectively) exist: sncb, sncg1, and sncg2. Of note, knockdown
of either sncb or sncg1 has been reported to cause hypokinesia in zebrafish larvae,
whereas knockdown of both would result in a more severe phenotype and reduced
dopamine levels143.

Despite the above similarities, there are important differences between the
mammalian and zebrafish DA systems that must be considered in order to define
the range of applications, and validity, of the zebrafish as a model for PD. One
is the absence of a mesencephalic DA neuronal cluster, meaning the anatomical
correlate of mammalian substantia nigra 15. However, the sensitivity to 1-methyl-
4-phenylpyridinium (MPP+), the toxic form of MPTP, of the ventral diencephalic
DA neuronal cluster suggests this to be the functional homologue144.

Another peculiarity is the presence of two isoforms of tyrosine hydroxylase
(TH), the rate limiting enzyme of dopamine biosynthesis: TH1 and TH2. TH1
is more closely related to mammalian TH; despite one study suggesting TH2 to
have tryptophan hydroxylase activity, and therefore be involved in serotonin syn-
thesis145, there is substantial proof that TH2+ cells are indeed DA neurons146,147.
TH1+ cells are distributed in clusters throughout the entire brain along the rostro-
caudal axis, whereas TH2+ cells are found only in the diencephalon, most numer-
ous in the caudal hypothalamus148–151. The respective roles of TH1+ and TH2+
cells are not clear. While th1 is strongly expressed since early embryonic stages, th2
expression becomes more prominent at post-embryonic stages150. In particular,
the high expression of dat, coding for the dopamine transporter, in caudal hypo-
thalamic TH2+ cells suggests a significant role in synaptic transmission150. Of
interest, caudal hypothalamic TH2+ cells are continuously generated throughout
life and are required for proper initiation of swimming146. Therefore, a thorough
examination of the DA system, and related (dys)functions, in a putative zebrafish
PD model must include the analysis of both TH1+ and TH2+ cell compartments.

The last comparative aspect worth to highlight is DA catabolism. In mammals,
biogenic amines, including dopamine, are degraded by two enzymes: monoamine
oxidase (MAO), working in tandem with aldehyde dehydrogenase; and catechol-
O-methyl transferase (COMT). Both MAO and COMT are important pharma-
cological targets in the treatment of PD patients152,153, and both functions are
conserved in zebrafish154,155. While mammals have two genes for two different
MAO enzymes, MAO-A and MAO-B, and only one gene for two COMT forms,
one soluble (S-COMT) and the other membrane-bound (MB-COMT)156, zebrafish
have the opposite, i.e. a single mao gene157,158 and two distinct comt genes, comta
and comtb 155,159. Zebrafish Mao has peculiar but also hybrid features compared to
mammalian MAO-A and MAO-B: histochemical and biochemical charaterisation
suggests it is primarily involved in serotonin degradation154,160, in this resembling
MAO-A, but it can be inhibited by both clorgyline and deprenyl154, MAO-A and
MAO-B inhibitors, respectively. Characterisation of the role of zebrafish Comt is
still lacking, but it is thought it may be the main responsible for DA degrada-
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tion160. MAO levels change with age and are of special relevance for PD161,162. In
particular, MAO-B converts MPTP to 1-methyl-4-phenyl-2,3-dihydropyridinium
(MPDP+) in nigrostriatal astrocytes, from where it flows to the extracellular space
and is converted to MPP+, which is then taken up by neighbouring DA neurons
via the dopamine transporter158. However, in contrast with mammalian MAO-B,
zebrafish Mao has modest affinity for MPTP154. Although MPTP does have an
effect on zebrafish DA function, direct usage of MPP+ would be preferred to elicit
more specific, PD-mimetic effects144.

2.1.1 Previous studies on zebrafish lrrk2

Attempts to study human PD-associated gene orthologues in zebrafish largely re-
lied on morpholino oligonucleotides (MO)-mediated knockdown102,130–133,136–138,141.
Only three studies made use of stable lines: two used chemically-induced mutant
alles135,141 and only one the cleaner transcription activator-like effector nuclease
(TALEN)-mediated mutagenesis142. A major limitation of MO-based studies is
the high variability and transiency of induced changes, leaving only a narrow time
window for observations, thus making the evaluation of adult or ageing pheno-
types difficult. Also, MOs can exhibit off-target effects and have been increasingly
questioned about their specificity27,163–166. Although the analysis of MO-induced
phenotypes may still provide useful information, their validation would inevitably
entail the generation of reliable null alleles167.

So far, three studies investigating zebrafish lrrk2 gene function have been pub-
lished, all based on MO-mediated knockdown (MOs), and yielded contradicting
results. In one, loss of diencephalic catecholaminergic (CA) neurons and locomotor
defects in the larvae were described136. However, subsequent work failed to repro-
duce the reported phenotype, even by using same reagents and MOs137. Recently,
a third paper rekindled the initial claims, describing a lrrk2 MO-induced pheno-
type with macroscopic developmental abnormalities138. To solve the quandary, a
qualitatively superior approach is therefore warranted.

Previous work in the Brand laboratory conducted by R. Ahrendt (Doctoral
Thesis168), with the assistance of J. Kaslin, has independently identified and cloned
the zebrafish lrrk2 orthologue and subsequently analysed a mutant zebrafish line,
generated by S. Winkler, via N -ethyl-N -nitrosourea (ENU)-mediated mutagen-
esis169 followed by targeting induced local lesions in genomes (TILLING) screen-
ing169, where a point mutation introduces an early stop codon within the lrrk2
open reading frame (ORF ; c.3972+2T>C, p.(Ile1252AlafsTer9) according to the
Human Genome Variation Society guidelines170, henceforth referred to as "tud112";
Figure 2.1). The mutation results in a truncated protein product lacking the
catalytic core. Characterisation of maternal-zygotic tud112 mutants (henceforth
referred to as "mzLrrk2tud112") revealed a phenotype with features reminiscent of
human PD, including persistent loss of CA neurons, perturbed CA metabolism
and locomotor deficits168. Of note, mzLrrk2tud112 brains also displayed signific-
antly reduced cell proliferation throughout development (Figure 2.1d).
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Figure 2.1: Generation and characterisation of the lrrk2tud112 allele. The lrrk2tud112 allele
was generated by S. Winkler; the mzLrrk2tud112 line was characterised by R. Ahrendt, J.
Kaslin, and S. Suzzi. N -ethyl-N -nitrosourea-mediated mutagenesis was used to generate
a lrrk2 zebrafish line. The identified allele (lrrk2tud112; a) consists in a T>C substitution
(c.3972+2T>C) disrupting the splice donor site of lrrk2 exon 27, causing the retention of
the ensuing intron and a premature stop codon (p.(Ile1252AlafsTer9)). (b) The tud112
mutation also disrupts the RsaI restriction site, allowing identification of mutation

continued on next page
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concluded from previous page
carriers via RFLP-PCR. To this aim, PCR primers (F, R in a) were designed to amplify
a 253-bp-long product comprising the RsaI site: upon RsaI-mediated digestion, only
the wild-type product can be cleaved into two fragments (198 and 55 bp; the shorter
is lost during the gel run), allowing identification of wild-type (lrrk2+), heterozygous
(lrrk2+/tud112), and homozygous mutant (lrrk2tud112) individuals compared to undiges-
ted product (nd). (c, c’) Nonsense-mediated lrrk2 RNA decay in maternal zygotic tud112
mutants (mzLrrk2tud112) demonstrated via in situ hybridisation on 24-dpf (c) and RT-
qPCR (c’) on 48-hpf embryos. Plot represents means ± s.d. (d) pH3 immunohistochem-
istry reveals decreased mitosis in 8-dpf mzLrrk2tud112 brains (data from R. Ahrendt168).
(c’) Bar plot represents means ± standard error of the mean. Statistical analyses: (c’,
d) two-tailed Student’s t test.

Given its characteristics, the zebrafish mzLrrk2tud112 phenotype appeared as a
promising model to study mutant LRRK2 -mediated pathology in a vertebrate in
vivo. However, because ENU-mediated mutagenesis is prone to off-target effects,
the generation of a second allele using more advanced genomic editing, more pro-
tective towards the genetic background, was required to assess the specificity of
the mzLrrk2tud112 phenotype. The ultimate scope is to achieve an unambiguous
characterisation of the brain phenotype upon constitutive Lrrk2 LOF.

With this purpose, the thesis herein presented pursues the following main aims:

(i) generation of an alternative lrrk2 knockout line and validation of the main
phenotypic findings in the tud112 line;

(ii) more comprehensive characterisation of the brain phenotype and adult be-
haviour;

(iii) evaluation of the impact of Lrrk2 LOF on the brain regenerative potential.
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3.1 Technical equipment

Table 3.1: Technical equipment

equipment manufacturer

Behavioural setup ZebraBox, ViewPoint
Confocal microscope ZEISS LSM 780, upright
Cryostat Microm HM 560
Digital cameras Olympus DP71

Olympus DP80
Excitation light source X-cite 120Q
Fibre optic light source Leica KL 1500 LCD
LightCycler 480 System Roche
PCR machine Eppendorf Mastercycler epGradientS
Stereo microscopes Olympus SZX10

Olympus SZX16
Olympus MVX10

Syringe Pump AL1000-220 World Precision Instruments
Thermal Cycler Eppendorf Mastercycler pro PCR Thermal

Cycler System
Transilluminator QUANTUM Modell 1100, Peqlab

3.2 Fish lines

Table 3.2: Fish lines

zebrafish line reference

lrrk2 del11bp described here
lrrk2 tud112 168

lrrk2 tud113 described here
Tg(hsp70l:mCherry-T2A-lrrk2(c.3009_7130)-Myc)tud114 168
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3.3 Reagents and kits

Table 3.3: Reagents and kits

name manufacturer

10X DreamTaq Green Buffer Thermo Scientific
ApopTag Red/Fluorescein In Situ Apoptosis Detection Kit Chemicon
BM Purple Roche
DAPI Invitrogen
dNTP Mix (10 mM) Thermo Scientific
DreamTaq DNA Polymerase Thermo Scientific
LightCycler 480 SYBR Green I Master Roche
mMessage mMachine Kit Ambion
NBT/BCIP Stock Solution Roche
Proteinase K, recombinant, PCR grade Roche
SIGMAFAST 3,3’-diaminobenzidine tablets Sigma-Aldrich
Transcriptor First Strand cDNA Synthesis Kit Roche
TRIzol Ambion
Zymoclean Gel DNA Recovery Kit Zymo Research

3.4 Buffers and solutions
All chemicals were purchased from Applichem, Merck, Roth, and Sigma-Aldrich.
All restriction enzymes were purchased from Fermentas.

Table 3.4: Buffers and solutions

reagent or buffer composition and preparation

AcOH Acetic acid 100%
AcOH/EtOH 1 : 2 One part of acetic acid, two parts of ethanol
Agarose 2% Gel Solution For 200ml: add 4 g of agarose to 180ml TAE 1×;

microwave at full power until dissolved, add 8 µl of
ethidium bromide 200mg/ml solution and bring the
volume to 200ml with TAE 1x

Bleaching Solution Immediately before use, add hydrogen peroxide to 3%
in potassium hydroxide 1%, Tween 20 0.1%

BrdU/E3 5-bromo-2’-deoxyuridine 10mm in E3 medium
BrdU/FFW 5-bromo-2’-deoxyuridine 5mm in FFW
CUBIC-1 Urea 25%, quadrol 25%, Triton X-100 15% in distilled

water
CUBIC-2 Sucrose 50%, urea 25%, triethanolamine 10%, Triton

X-100 0.1%
CUBIC-2 50% Dilution of CUBIC-2 with PBS

continued on next page
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continued from previous page

reagent or buffer composition and preparation

Deionised formamide For 1 l: add 10 g of amberlite IRN-150 ion exchange
resin to 1 l of formamide 100%, mix for 1 h on a mag-
netic stirrer, then sterile filter

DEPC-water For 1 l: add diethylpyrocarbonate to 0.1%, then auto-
clave

DIG Blocking Solution Digoxigenin Blocking Reagent 2% in MAB
DMK dimethyl ketone, or acetone, 100%
DMSO Dimethyl sulphoxide 100%
E3 medium Sodium chloride 5mm, potassium chloride 0.17mm,

calcium chloride dihydrate 0.33mm, magnesium
sulphate heptahydrate 0.33m, methylene blue
0.0002% in deionised water, pH = 6.5

EDAC/NHS N-Ethyl-N’-(3-dimethylaminopropyl)carbodiimide
hydrochloride 4%, N-hydroxysuccinimide 0.4% in PB

EDTA For 1 l, 0.5m: add 186.1 g of ethylenedinitrilotet-
raacetic acid disodium salt dehydrate to 800ml of
distilled water; use sodium hydroxide pellets to clear
the solution and adjust the pH to 8.0, then bring the
volume to 1 l with distilled water

EtOH 70, 95% Dilution from ethanol 100%
FFW Fish Facility Water
Gelatine/Sucrose Buffer For 100ml: add 7.5 g of gelatine and 20 g of sucrose to

80ml of PB; microwave at full power until dissolved,
then bring the volume to 100ml; equilibrate at 37 ◦C
in water bath for at least 1 h before use

Glycerol 50, 80% Dilution of glycerol 100% with PBS
Hybridisation− (Hyb−)
Buffer

For 50ml: add 25ml formamide, 12.5ml SSC 20×,
Tween 20 to 0.1%, then bring the volume to 50ml
with DEPC-water

Hybridisation+ (Hyb+)
Buffer

For 50ml: dissolve 25mg torula yeast RNA, 50mg of
heparin in 25ml of deionised formamide, 12.5ml of
SSC 20×, Tween 20 to 0.1%, then bring the volume
to 50ml with DEPC-water

i -PrOH Isopropanol 100%
MAB 100mm maleic acid, sodium chloride 150mm in dis-

tilled water, pH = 7.5
MABT MAB, 0.1% Tween 20
Mao Staining Solution To prepare fresh before use: dissolve one 0.7 g tab-

let of 3,3’-diaminobenzidine in 0.875ml of a solu-
tion containing nickel sulphate 6mg/ml, tyramine
1mg/ml, horseradish peroxidase 1mg/ml, Tris-HCl
50mm, pH = 7.5

continued on next page
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continued from previous page

reagent or buffer composition and preparation

MESAB For 100-ml stock: 0.4 g of ethyl 3-aminobenzoate
methanesulfonate, 1 g of disodium phosphate dehyd-
rate in 100ml of distilled water

MetOH Methanol
NBT/BCIP Staining
Solution

To prepare fresh before use: 20 µl of NBT/BCIP
Stock Solution in NTMT Buffer

NGS 2, 4% Blocking
Solution

Dilution from normal goat serum in PBSTx

NTMT Buffer Sodium chloride 100mm, magnesium chloride 50mm
M, 0.1% Tween 20 in Tris 100mm M, pH = 9.5

PB For 5 l, 0.1m: mix 100ml of disodium phosphate 1m
and 400ml of monosodium phosphate 1m, then bring
the volume to 5 l with DEPC-water; adjust the pH to
7.4 with either disodium phosphate (basic) or mono-
sodium phosphate (acid) 0.1m

PBS Monopotassium phosphate 1.7mm, disodium phos-
phate 5.2mm, sodium chloride 150mm mM in dis-
tilled water

PBST PBS, 0.1% Tween 20
PBSTx PBS, 0.3% Triton X-100
PCR Mix For 20 µl: 2.5µl of 10X DreamTaq Green Buffer, 0.5µl

of dNTP Mix, 0.5µl of for primer 10 µm, 0.5µl of rev
primer 10 µm, 0.2µl of DreamTaq DNA Polymerase,
5.8µl of distilled water

PFA 2% Dilution from PFA 4% with PB
PFA 4% For 2 l: make 1 l of PB 0.2m, pH = 7.4 (solution A);

add 80 g of paraformaldehyde to 800ml of distilled
water on a hot plate at 65 ◦C, clear with sodium hy-
droxide 5m, cool down, adjust the pH to 7.4 with
sodium hydroxide 5m, then bring the volume to 1 l
(solution B); finally, mix solutions A and B

RT-qPCR Mix For 9 µl: 5µl of LightCycler 480 SYBR Green I Mas-
ter, 0.5µl of for primer 2.5µm, 0.5µl of rev primer
2.5µm, 3µl of DEPC-water

Sodium Citrate Buffer For 1 l, 10mm: dissolve 2.94 g of sodium citrate de-
hydrate in 950ml of distilled water; adjust the pH to
6.0 with acetic acid, then bring the volume to 1 l

Sodium Cit-
rate/PBSTx0.1

To prepare fresh before use: sodium citrate 0.1%, Tri-
ton X-100 0.1% in PBS

Sodium Tetraborate
Buffer

Sodium tetraborate decahydrate 0.1m in distilled wa-
ter, pH = 8.5

continued on next page
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continued from previous page

reagent or buffer composition and preparation

SSC 20× Sodium chloride 3m, trisodium citrate dehydrate
0.3m in DEPC-water; use citric acid 1m to adjust
the pH to 6.0

SSCT 0.2, 2× Dilution from SSC 20× with the addition of Tween
20 to 0.1%

Sucrose/EDTA Buffer For 2 l: add 400 g of ethylenedinitrilotetraacetic acid
disodium salt dehydrate in 1.5 l of PB; adjust the pH
to 7.4 with sodium hydroxide pellets; dissolve 400 g
of sucrose, then bring the volume to 2 l with PB

TAE 1× Dilution from TAE 50× with deionised water
TAE 50× For 1 l: add 242 g of Tris base, 57.1ml of acetic acid,

100ml of EDTA 0.5m, pH = 8.0 to 700ml of dis-
tilled water; adjust the pH to 8.5 with acetic acid if
necessary and bring the volume to 1 l with distilled
water

TCM Trichloromethane, or chloroform, 100%
Tissue Lysis Buffer To prepare fresh before use: sodium chloride 0.2m,

sodium dodecyl sulphate 0.2%, EDTA 5mm, pro-
teinase K 10mg/ml in Tris-HCl 100mm, pH = 8

TPA Stock Solution 0.05mg of 12-O-tetradecanoylphorbol 13-acetate in
1ml of DMSO

TPA Working Solution 1:5,000 dilution from TPA Stock Solution with E3
medium

TPA Control Solution 1:5,000 DMSO
Tris-HCl 7.5, 8.0 Buffer For 2 l, 50mm: add 12.1 g of Tris base to 1.9 l of dis-

tilled water; adjust the pH to 7.5 or 8.0 with concen-
trated hydrochloric acid

concluded from previous page
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3.5 Antibodies

Table 3.5: Primary antibodies

name manufacturer dilution host reference

Anti-acetylated
Tubulin

Sigma 1:1,000 in NGS 2%
Blocking Solution

mouse
(IgG2b)

171

Anti-BrdU Serotec 1:500 in NGS 2%
Blocking Solution

rat 172

Anti-Claudin k provided by the
Reimer lab

1:1,000 in NGS 2%
Blocking Solution

rat 173

Anti-DIG-AP
Fab fragments

Roche 1:4,000 in DIG Block-
ing Solution

sheep

Anti-HuC/D Molecular Probes 1:200 in NGS 2%
Blocking Solution

mouse
(IgG2b)

172

Anti-L-Plastin expression plas-
mid provided by
MIchael J. Redd

1:5000 in NGS 2%
Blocking Solution

rabbit 174

Anti-PCNA Dako 1:500 in NGS 2%
Blocking Solution

mouse
(IgG2a)

172

Anti-pH3 Millipore 1:200 in NGS 2%
Blocking Solution

rabbit 172

Anti-TH(1) Immunostar 1:1,000 in NGS 2%
Blocking Solution

mouse
(IgG1)

127

Anti-TH(1/2) provided by the
Panula lab

1:1,000 in NGS 2%
Blocking Solution

rabbit 147

Table 3.6: Secondary antibodies

name fluorophore company dilution host

Anti-mouse IgG Alexa 488, 555

Molecular
Probes

1:500 in NGS 2%
Blocking Solution

goat
Anti-mouse IgG1 Alexa 488, 555
Anti-mouse IgG2a Alexa 555, 633
Anti-mouse IgG2b Alexa 488
Anti-rabbit Alexa 488, 700
Anti-rat Alexa 488, 633

3.6 Antisense DIG-labelled riboprobes

Table 3.7: Antisense DIG-labelled riboprobes

target gene reference

lrrk2 "Lrrk2-6", "L2m2" in168
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3.7 PCR primers

All primers were designed using the Primer3 software175,176. Primers for RT-qPCR
were tested for displaying amplification efficiency between 1.9–2.1.

Table 3.8: PCR primers

sequence (5’>3’) Ta (◦C) amplified region

for : ATGAAATACTGTTCCCCTGTTCGC 60 422 bp flanking the lrrk2 ORFrev : TGTAGTAATGCCAGTGCTCAACAC

for : TACACAGGCGCCAACATGACCG

64

204 bp flanking the ORFdel
lrrk2 variantrev : AGCTACACGCTGGACTTGGGGT

for : TGCGAGCGCTGTCTGCTGTTAC 289 bp within the lrrk2 ORFrev : TGTCTTTGCTCCTGACGGGCCA

for : TACAAGTGGGCCCGACTGGAGAAAC 66 253 bp flanking the tud112
lrrk2 mutationrev : ATCCAGAGGCAGATCCCACAGATGC

for : CCTTCCTGGGTATGGAATCT 60 106 bp within the actb1 -001
transcriptrev : GACAGCACTGTGTTGGCATA

for : GTGCCCATCTACGAGGGTTA 62 130 bp within the actb2 -001
transcript177rev : TCTCAGCTGTGGTGGTGAAG

for : CTTCAACATGGAGGACTGCG 62 129 bp within the lrrk2 -001
transcriptrev : CGTGAGGGGAAGTCTGTCAT

for : GGACCAGTCTAGACCGATGG 62 100 bp within the lrrk2 -001
transcriptrev : CAAAATGTGTCCCGCTCTCG

for : CTTCAACATGGAGGACTGCG 62 129 bp within the lrrk1 -001
transcriptrev : CGTGAGGGGAAGTCTGTCAT

for : TATGCTCGTGTCCTGGGATC 60 141 bp within the mao-001
transcriptrev : CAAGACCCTGCCAAACTGTG
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Unless otherwise stated, methods were performed according to standard proced-
ures178, or according to the manufacturer’s instructions of the employed kits.

4.1 Fish maintenance and handling

Zebrafish (Danio rerio) were raised and maintained as described previously179.
Embryos were obtained by natural spawning of adult fish, raised in E3 medium
and staged according to hours or days post-fertilisation (hpf or dpf) or standard
criteria180. All efforts were made to minimise animal suffering and the number of
animals used.

4.2 In vivo treatments

4.2.1 Behavioural analysis
The ZebraBox and ZebraCube apparatus were used in combination with the View-
point Application Manager software. All recordings were performed on individu-
ally isolated animals between 2–6 pm. Larvae at 4 dpf were transferred into 24-well
plates and therein grown until 10 dpf. Each well was internally lined with Parafilm
to minimize reflection and filled with 750 µL E3 medium, changed daily. Because
larvae are less motile, tracking could be lost for some time: animals lost for over
20% of the total recording time were excluded from the analyses. To quantify spon-
taneous swimming and thigmotaxis, adult fish were lodged in opaque cylindrical
boxes (� = 80mm) filled with SI100 FFW, else in opaque parallelepipedal boxes
(l × w = 190× 80mm) filled with 500mL FFW. Each recording was preceded by
10min acclimatization inside the apparatus. Spontaneous swimming was assessed
for 10min (integration period: 600 s) in the dark under infrared light. Appropri-
ate speed thresholds were chosen based on developmental stage: 2–10mm/s for
larvae; 2–40mm/s for adults. Based on the speed thresholds, three swimming
phases were defined: inactive phase, below the lower threshold; normal swim-
ming phase, between the lower and upper threshold; bursting phase, above the
upper threshold. For each swimming phase, three parameters were considered:
entry count, duration (s), and distance swum (mm). Thigmotaxis was assessed
using the same recordings of spontaneous swimming activity. To this aim, the
recording arena was digitally subdivided into an outer and inner area (for larvae
� = 15.6/10.6mm; for adults � = 80/55mm). Scototaxis was assessed for 10min
in half-black, half-white parallelepipedal boxes. Olfactory function was assessed

27



Methods

by delivering a stimulus in either of the shorter sides of parallelepipedal boxes.
The stimulus consisted in 0.6mL of an amino acid mix (Ala, Cys, His, Lys, Met,
Val, 0.1m each) delivered through a syringe pump (1.5). Fish were starved for
24 h before the experiments. Fish behaviour was recorded 5min before and 5min
after stimulus delivery. For every 1 of recording, a preference index was defined
as181 ts−tc

ts+tc
, where ts is the time spent in the stimulus side, tc the time spent in

the control side.

4.2.2 BrdU labelling
To label cells in the S-phase of the cell cycle, zebrafish larvae were immersed in
BrdU/E3 for 4 h prior to killing. For assaying reparative neurogenesis in adult
fish, stabbed fish at 2 dpl were immersed in BrdU/FFW for 24 h, then killed at
21 dpl.

4.2.3 Fin clipping
Adult fish were anaesthetised by immersion in a solution of 5ml of MESAB/100ml
of fish water. A small portion of the tail fin was cut and collected in a tube.

4.2.4 Heat shock treatment
Embryos/larvae were heat shocked every day from 1 dpf until 10 dpf. Heat shocks
were administered as follows: E3 medium was replaced with 42 ◦C-warm E3 me-
dium and incubated for 4 h at 37 ◦C. On the day of sacrifice, larvae were euthanised
4 h after the heat shock.

4.2.5 Stab lesion
Adult fish were anaesthetised by immersion in a solution of 5ml of MESAB/100ml
of fish water. A cannula (30 gauge, outer � 300µm was inserted through the right
nostril and pushed deep along the body axis through the olfactory bulb till the
caudal telencephalon. All fish survived the procedure.

4.2.6 TPA treatment
To induce acute inflammation systemically, zebrafish larvae were immersed in TPA
Working Solution for 2 h prior to killing. Control larvae were incubated in TPA
Control Solution.

4.3 Histology and histochemistry

4.3.1 Sample preparation
Twenty-four-hpf embryos were manually dechorionated, terminally anaesthetised
with MESAB, fixed with PFA 4% 1 × o/n at 4 ◦C, then repeatedly washed with
PBS and transferred to pre-cooled MetOH 100% at −20 ◦C for at least 30min,
otherwise stored until use.
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Five- or 10-dpf larvae were terminally anaesthetised with MESAB, fixed with
PFA 2%/DMSO 1% for at least 1×o/n at 4 ◦C, otherwise stored until use. Larvae
to be used for Mao histochemistry were fixed with EDAC/NHS/DMSO 1% for
1 × o/n at 4 ◦C, instead. To harvest the brains or tails, larvae were washed with
PBS and dissected underneath a stereo microscope. The collected organs were
depigmented with Bleaching Solution.

Adult fish were terminally anaesthetised on ice, the skulls opened and the right
opercula removed to expose the brain and the heads excised and transferred to
PFA 2% 1 × o/n at 4 ◦C. After fixation, the heads were washed twice with PB
and decalcified in Sucrose/EDTA Buffer 2× o/n at 4 ◦C. Finally, the heads were
washed twice with PB, placed in 37 ◦C-warm Gelatine/Sucrose Buffer for 30min,
then frozen in fresh Gelatin/Sucrose Buffer in plastic moulds on dry ice and stored
at −20 ◦C. Twelve µm-thick coronal sections were cut, allowed to dry for at least
30min at RT , and then stored at −20 ◦C until use.

4.3.2 Antibody staining
Depigmented larval brains were washed with PBSTx 3 × 5min and cleared with
CUBIC-1 for 1 × o/n at RT 182. The cleared brains were washed with PBSTx
1 × 10min, 3 × 30min, subjected to antigen retrieval if required (see 4.3.2.1),
otherwise directly blocked in NGS 4% Blocking Solution/DMSO 1% for at least
2 h at RT , and then incubated with the primary antibodies at the appropriate
dilutions (see Table 3.5) 1 × o/n. On the second day, the brains were washed
with PBSTx 1 × 10min, 3 × 30min, then incubated with the required secondary
antibodies (see Table 3.6) for 2 h at RT or 1×o/n. Finally, the brains were washed
with PBSTx 1× 10min, 3× 30min, impregnated first with CUBIC-2 50% 2× 1 h,
then CUBIC-2 for 1× o/n at RT . The stained brains were mounted in CUBIC-2,
sandwiched between two silicon grease-sealed coverslips, and stored at 4 ◦C until
imaged. As a remark, 5-dpf brains were more prone to swelling upon clearing than
the 10-dpf specimina, resulting in the former appearing larger in size as artefact.

Depigmented larval tails were washed with PBSTx 3 × 5min, permeabilised
with −20 ◦C-cold DMK for 8min at −20 ◦C, then washed with PBSTx 3 × 5min
at RT . Clearing, blocking, incubation with primary and secondary antibodies,
and mounting were performed as for the larval brains.

Adult brain sections were transferred to a humid chamber, allowed to air-dry
for 10min, post-fixed with −20 ◦C-cold MetOH for 10min at RT , and washed
with PBSTx 3× 5min at RT . Incubation with primary and secondary antibodies
were performed as for the larval brains, except that the washes in between the
steps were done 6× 5min at RT . The stained sections were counterstained with
DAPI 1µg/ml for 15min, then washed with PBSTx 3 × 5min at RT , mounted
with glycerol 80%, and stored at 4 ◦C until imaged.

4.3.2.1 Antigen retrieval

Antigen retrieval protocols for the following stainings were applied:

• BrdU staining: to be performed after staining for other markers: incubate
samples with 37 ◦C-warm hydrochloric acid 2m for 20min at 37 ◦C, wash with
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Sodium Tetraborate Buffer 1× 5min at RT , then with PBSTx 3× 5min at
RT .

• HuC/D staining: incubate samples with 98 ◦C-warm Tris-HCl 8.0 Buffer for
5min at 98 ◦C, then wash with PBSTx 3× 5min at RT .

• PCNA staining: incubate samples with 85 ◦C-warm Sodium Citrate Buffer
for 15min at 85 ◦C, then wash with PBSTx 3× 5min at RT .

• TH(1) staining: for adult sections only, same as for PCNA staining.

4.3.3 TUNEL assay for cell death detection
TUNEL assays were performed using the ApopTag Red/Fluorescein In Situ Ap-
optosis Detection Kit (see Table 3.3). For larval brains only, the manufacturer’s
instructions were adjusted as follows. Cleared larval brains were washed with So-
dium Citrate/PBSTx0.1 3×10min at RT , post-fixed with −20-cold AcOH/EtOH
2:1 for 15min at −20 ◦C, then washed with PBSTx 3 × 5min and incubated in
Equilibration Buffer for 1 h at RT . Working Strength TdT Enzyme, Stop/Wash
solutions and the anti-DIG antibody were applied as recommended.

4.3.4 Mao histochemistry

Staining was performed as previously described154, with minor modifications.
Briefly, EDAC/NHS/DMSO-fixed brains were washed with PBSTx 3× 5min, in-
cubated with Mao Staining Solution for 90min in the dark, then washed with
Tris-HCl 7.5 Buffer 2 × 10min at RT and post-fixed with PFA 4% for 20min at
RT or 1 × o/n at 4 ◦C. Finally, the stained brains were repeatedly washed with
PBS and stored in glycerol 80% until imaged.

4.3.5 In situ hybridisation
MetOH-stored embryos were rehydrated with MetOH 50%/PBST 2 × 5min fol-
lowed by PBST 2× 5min, digested with proteinase K 2µg/ml in PBST for 5min,
and finally post-fixed with PFA 4% for 20min at RT . The post-fixed embryoswere
washed with PBST 2 × 5min at RT , blocked in 68 ◦C-warm Hyb+ Buffer for at
least 2 h at 68 ◦C, and then incubated with the appropriate antisense DIG-labelled
riboprobe (see Table 3.7) in Hyb+ buffer for 1 × o/n at 68 degreeCelsius. Strin-
gent washes were performed at 68 ◦C as follows: with Hyb− Buffer, 1×5min; with
Hyb− Buffer 25%/SSCT 2×, 3× 10min; with SSCT 2×, 1× 10min; with SSCT
0.2×, 3 × 20min. After the stringent washes, the embryos were brought at RT
and washed with SSCT 0.2×/MABT 50% and MABT only for 10min each, then
incubated with DIG Blocking Solution for at least 1 h at RT , and finally with the
anti-DIG-AP antibody for at least 2 h at RT or 1× o/n at 4 ◦C. To visualise the
alkaline phosphatase activity, the embryos were washed with MABT 4 × 20min,
incubated with BM Purple in the dark at RT and monitored until the desired sig-
nal was obtained. The chromogenic reaction was stopped by rinsing with PBST,
the background removed with EtOH 95% for up to 5min, after which the stained
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embryos were washed with PBST 2 × 5min, post-fixed with PFA 4% for 20min
at RT , repeatedly washed with PBS and stored in glycerol 80% until imaged.

4.4 Sample preparation for high performance li-
quid chromatography measurements

Tissue samples consisted each of 10 pooled whole larvae or single adult brain. Lar-
vae were starved 24 h before tissue collection to minimise possible contamination
from amines in the gastrointestinal tract. An equal number of male and female
adult fish were sacrificed.

4.5 Molecular biology

4.5.1 gDNA extraction and genotyping

Genomic DNA of individual or pooled embryos/larvae was obtained via tissue di-
gestion with Tissue Lysis Buffer for at 55 ◦C on a shaker, followed by precipitation
with i -PrOH for 15min, 1× wash with EtOH 70% for 5min at full speed at RT ,
and resuspension in distilled water.

Genomic DNA of adult fish was extracted from fin clips (see 4.2.3) via tissue
lysis with 100–300µl of sodium hydroxide 50mm for 20min at 95 ◦C, followed by
neutralisation with Tris-HCl 8.0 Buffer 0.1× initial sodium hydroxide volume, and
centrifugation for 10min at full speed at RT to pellet debris. A volume of 3µl
of gDNA solution was added to 10µl of PCR Mix. PCRs were run using the
following thermal profile: 3min of polymerase activation at 94 ◦C, followed by 30
cycles of 30 s of denaturation at 94 ◦C/60 s of annealing at variable temperature
(see Table 3.8)/20 s of extension at 72 ◦C, and cooling at 4 ◦C. For genotyping
of the lrrk2 del11bp and the lrrk2 tud112 lines, the PCR products were digested with
XhoI or RsaI restriction enzymes, respectively. The PCR products were run on
agarose gel for 30min at 120V.

4.5.2 RNA extraction and purification

Total RNA was obtained from pools of n = 20 larvae/sample; each sample was
representative of a unique parental pair. Tissue samples were homogenised in
1ml TRIzol and RNA extracted upon addition of 200µl of TCM and centrifuga-
tion for 15min at full speed at 4 ◦C to allow the separation of the RNA-enriched
aqueous phase. Collected RNA was added to 500 µl of i -PrOH and precipitated
for 30min, washed with EtOH 70% at 4 ◦C, and resuspended in 20 µl of distilled
water. Residual gDNA was removed via digestion with TURBO DNase and the
RNA precipitated with Lithium Chloride Precipitation Solution from the mMes-
sage mMachine Kit (see Table 3.3), according to the manufacturer’s instructions.
Precipitated RNA was washed with EtOH 70% for 5min at full speed at 4 ◦C,
resuspended in 20 µl of distilled water and checked for integrity.
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4.5.3 Reverse transcriptase-quantitative PCR
Reverse transcription of total RNA to cDNA was obtained using the Transcriptor
First Strand cDNA Synthesis Kit (see Table 3.3), according to the manufacturer’s
instructions. A 1 : 25–1 : 15 working dilution from the stock was prepared and
a volume of 1 µl added to 9µl of RT-qPCR Mix. Reverse transcriptase-qPCR
experiments were carried out in the LightCycler 480 System (see Table 3.1) with
the following temperature protocol: 10min of polymerase activation at 95 ◦C, fol-
lowed by 45 cycles of 15 s seconds of denaturation at 95 ◦C/30 s of annealing at
60–62 ◦C/15 s of extension and data collection at 72 ◦C, and finally a 60–95 ◦C
gradient to allow melting curve analysis. To extract expression data, the second
derivative maximum method was applied as provided by the LightCycler 480 quan-
tification software. Data were exported to Microsoft Excel and analysed according
to the 2−∆∆Ct method183. Target gene expression was calculated relative to actb1
or actb2 reference genes.

4.6 RNA-sequencing and transcriptome analysis
RNA samples were prepared as described in 4.5.2. Per each sample, 1µg of total
RNA with integrity number> 7.0 was used as input for mRNA library preparation.
The sequencing depth was 25 million fragments.

Sequencing data were analysed using QIAGEN’s Ingenuity Pathway Analysis
(IPA) software (www.qiagen.com/ingenuity).

4.7 Sequence alignment analyses
Sequences were retrieved from the latest assemblies of the human and zebrafish
genomes (GRCh38p.7 and GRCz10, respectively). Alignment analyses were per-
formed using Clustal Omega184 and BLAST185.

4.8 Image acquisition and processing
Confocal images were acquired with a Zeiss LSM 780 upright confocal microscope
using C-Apochromat 10×/0.45 W and LD LCI Plan-Apochromat 25×/0.8 Imm
Corr DIC M27 objectives for water immersion. Bright-field images were acquired
with an Olympus DP71 or DP80 colour cameras connected to an MVX10 mi-
croscope. Images were processed using Fiji186. Processing was applied equally
across entire images and to controls. Cell quantification was carried out manually
through whole stacks. To analyse microglia/leukocyte morphology and complexity,
confocal stacks were background-subtracted using the sliding paraboloid method,
despeckled, and thresholded using Li’s method. Obvious artefacts were manually
removed from subsequent processing and analyses. The 3D ImageJ Suite plugin187

was used to segment objects (minimum size threshold: 1,000; objects on borders
excluded) and extract morphological data from 3D masks. The same 3D masks
were subsequently skeletonised and subjected to 3D skeleton analysis using the
AnalyzeSkeleton plugin on Fiji188. Loops were pruned using the shortest branch

32

www.qiagen.com/ingenuity


Methods

method. For each skeleton, the longest shortest path was also calculated. A rami-
fication index was defined as 2b

j+e
, where b is the number of branches, j the number

of junctions, e the number of end-points, as previously defined188.

4.9 Statistical analysis
The data analysis for this thesis was generated using: the Real Statistics Re-
source Pack software (Release for Mac 3.1.2, copyright 2013–2016) developed by
C. Zaiontz (www.real-statistics.com); R189; and GraphPad Prism version 7.0b
for Mac OS X. To compare means, requirements of normal distribution and homo-
scedasticity were checked using Shapiro-Wilk’s test and the F -test, for two groups,
or Levene’s test, for more than two groups, respectively. To determine the stat-
istical significance of group differences, P values were calculated using: Student’s
t-test or ANOVA, for normally distributed and homoscedastic data; Student’s t-
test with Welch’s correction, for normally distributed and heteroscedastic data;
Mann-Whitney’s U -test for non-normally distributed data. Multiple comparisons
following ANOVA were performed using Dunnett’s or Dunn-Šidák’s methods. For
multivariate logistic regression analyses, the best fitting models were automat-
ically selected via backward stepwise elimination. The model performance was
visualised and assessed using the methods previously described190. For each ex-
periment, sample sizes are reported in the Figures. Plot features are described
in the Figure legends. Within the Figures, significant comparisons are marked
by asterisks: *, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001. P
values rounded to three decimal places are reported in the Figure graphs for values
comprised between 0.050 and 0.059; P values rounded to four decimal places are
reported in the main text.
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5.1 Homology between the human LRRK2 and
zebrafish lrrk2 genes

Confirming previous findings from R. Ahrendt168, syntenic analysis using the latest
assemblies of the human and zebrafish genomes (GRCh38p.7 and GRCz10, re-
spectively) revealed the conservation of the SLC2A13 locus as the downstream
neighbour of LRRK2 in both species. Moreover, duplication of the zebrafish lrrk2
locus is not reported. The human LRRK2 and zebrafish Lrrk2 proteins share the
same domains, with the kinase domain displaying the highest degree of conser-
vation (Figure 5.1); three of the four LRRK2 amino acid residues implicated in
pathogenic substitutions in human PD patients are fully conserved (Supplement-
ary Table 1). Altogether, these data point out that human LRRK2 and zebrafish
lrrk2 are true orthologues, and not divergent genes.
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Figure 5.1: Homology between the human LRRK2 and the zebrafish Lrrk2 proteins.
Updated data from R. Ahrendt168 using the latest assemblies of the human and
zebrafish genomes (GRCh38p.7 and GRCz10, respectively). Alignment of the whole se-
quence and the individual domains of human LRRK2 (NP_940980) and zebrafish Lrrk2
(NP_001188385) proteins reveals a high degree of conservation of the catalytic core. The
percentages of identity (same residues at the same positions in the alignment) and sim-
ilarity (identical residues plus conservative substitutions) are indicated. Abbreviations:
ANK, ankyrin domain; COR, C-terminal of Ras of complex proteins; LRR, leucine-rich

repeat domain.
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5.2 Disruption of lrrk2 via TALEN-mediated
mutagenesis

To validate the phenotype previously described in the Lrrk2-deficient tud112
zebrafish line168, and to potentially solve the controversy arising from previous MO
studies136–138, Transcription activator-like effector nuclease (TALEN)-mediated
mutagenesis was used to generate an additional lrrk2 null allele. S. Hans planned
the mutagenesis strategy; C. Spiegel generated the lrrk2 allele. Although the
tud112 mutation results in a truncated Lrrk2 protein, the ANK domain and part
of the LRR domain are left, thereby making residual biological function possible.
Therefore, for the generation of the new allele the lrrk2 exon 17, corresponding
to the beginning of the ankyrin repeat, was targeted. To this aim, two different
TALEN constructs were engineered to bind DNA with sufficient reciprocal proxim-
ity (Figure 5.2a). TALEN capped RNAs were synthesised and injected in one-cell
stage embryos. Surviving embryos were raised and sexually mature fish screened
for mutations in the F1 generation. The selected founder bore an 11-bp-long
deletion (c.1980_1990del according to the Human Genome Variation Society170;
henceforth referred to as "tud115") within lrrk2 exon 17, causing a frameshift and
a premature termination codon (PTC) in exon 18 (p.(Asp660GlufsTer41)). Since
the deleted region contained an XhoI restriction site, an RFLP-based genotyping
strategy could be devised (Figure 5.2b). F1 heterozygous fish were incrossed to
obtain F2 tud115 homozygous mutants and wild-types (wt). Because lrrk2 is ma-
ternally provided136,168, to exclude potential confounding maternal effects early in
development, the F2 fish were further incrossed to establish the maternal-zygotic
tud115 mutant and wt control lines.

Unexpectedly, aberrant lrrk2 transcripts in 11del mutants did not undergo
nonsense-mediated decay (NMD)31, as revealed via in situ hybridisation (ISH;
Figure 5.3a) and quantified via reverse transcriptase-quantitative PCR (RT-qPCR;
Figure 5.3b); in fact, the lrrk2tud115 allele attenuated NMD driven by the lrrk2tud112

allele in transheterozygous tud115/tud112 larvae (Figure 5.3b).
One mechanism to regulate transcript abundance in eukaryotes is alternative

splicing191. Alternative PTC-free transcripts may still lead to functional products,
thereby attenuating or even circumventing the desired knockout192,193. Indeed, re-
gion or cell-specific LRRK2 splicing variants have been observed in both healthy
humans194 and mice66. Although the splicing profile of zebrafish lrrk2 has never
been studied, three transcripts are deposited in the Ensembl library according
to the latest genome release (Figure A.2): all share the TALEN-targeted region,
thus making the existence of functional tud115 mutation-free transcripts unlikely.
Another way to escape NMD is the re-initiation of protein translation at a down-
stream, alternative in-frame translation initiation site (aTIS), thus yielding an
N-terminally truncated product195. The phenomenon may typically occur when
an aTIS is in proximity of the canonical TIS (cTIS)196–198, but occurrences at
further downstream sites have also been reported199,200. Using the ATGpr_sim
program (http://www.hri.co.jp/atgpr/ATGpr_sim.html)201, it was estimated
that the first in-frame aTIS downstream to the tud115 mutation (position c.2089)
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Figure 5.2: Generation of the lrrk2tud115 allele. The mutagenesis strategy was designed
by S. Hans; the lrrk2tud115 allele was generated by C. Spiegel; characterisation was carried
out by S. Suzzi. (a) TALEN-mediated mutagenesis was used to generate a lrrk2 null
allele. The identified allele (tud115 ) consists in an 11-bp-long deletion (c. 1980_1990del)
within lrrk2 exon 17, causing a frameshift and a premature termination codon in exon
18 (turquoise; p.(Asp660GlufsTer41)). (b) The tud115 mutation also disrupts a XhoI
restriction site, allowing identification via RFLP-PCR. To this aim, PCR primers (F, R
in a) were designed to amplify a 422-bp-long product comprising the XhoI site: upon
XhoI-mediated digestion, only the wild-type amplicon is cleaved into two fragments (271
and 151 bp), allowing identification of wild-type lrrk2+), heterozygous (lrrk2+/tud115),
and homozygous mutant (lrrk2tud115) individuals compared to undigested product (nd).
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Figure 5.3: The tud115 allele does not cause NMD of lrrk2 RNA. (a) lrrk2 ISH on
22-hpf embryos showing unaltered levels of lrrk2 expression. (b) RT-qPCR analysis of
lrrk2 expression on wt, homozygous tud115, transheterozygous tud115/tud112, ad ho-
mozygous tud112 mutants at 8 dpf confirms the absence of lrrk2 NMD in homozygous
del11bp mutants. Note the intermediate level of lrrk2 expression in transheterozyg-
ous tud115/tud112 mutants.(b) Plots represents means ± standard error of the mean.

Statistical analyses: one-way ANOVA followed by Dunnett’s post hoc test.

has a reliability score of 0.15 in the wt transcript, but 0.36 in the tud115 tran-
script, the highest after the cTIS (0.59). The resulting product would consist in
a C-terminal Lrrk2 moiety comprising portion of the ankyrin repeat and all the
functionally relevant domains, including the catalytic core. Intriguingly, LRRK2
constructs lacking the N-terminus until the LRR domain (1328–2527 aa) result
in an approximately threefold increase of autophosphorylation when expressed in
human embryonic kidney 293FT cells55. Conceivably, the tud115 mutation, ori-
ginally selected to study lrrk2 LOF, might in fact determine a GOF of the Lrrk2
kinase domain via loss of the N-termius. Finally, the presence of functional N-
terminal fragments cannot be excluded. It has been shown that the N-terminal
portion of LRRK2 is aggregation-prone and that aggregates of N-terminal LRRK2
constructs (1–938 aa) are able to protect transfected human neuroblastoma SH-
SY5Y cells from 6-OHDA-induced cell death202. In a similar scenario, the tud115
allele might even act as a neomorph.

Because of the numerous sources of potential setbacks as outlined above, it was
crucial to gain proof of the gene knockout on a protein level. To this aim, commer-
cially available rabbit monoclonal anti-LRRK2 antibodies (ab133474, ab133475)
were tested on zebrafish embryo lysates via western blot, but unsuccessfully. In
particular, ab133475 was recently reported to detect the zebrafish Lrrk2 protein in
whole-mount embryos138. Therefore, the same antibody was also tested on fixed
tissue of different origin (whole-mount larvae, adult brain sections), but no specific
staining could be recognised. Attempts to produce proprietary antibodies failed.
For want of alternative assays to validate lrrk2 knockout, the tud115 line was not
considered further.
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5.3 Deletion of the entire lrrk2 locus using the
CRISPR/Cas9 system

To overcome the undesired side effects of frameshift mutations, including cellular
stress due to aberrant transcripts and truncated protein products with residual
or new function, the clustered regularly interspaced short palindromic repeats
(CRISPR)/CRISPR-associated protein-9 nuclease (Cas9) system was used to de-
lete the ∼60-kb-long lrrk2 locus containing the entire ORF. One caveat is that,
along with the lrrk2 ORF, as yet unidentified non-coding RNA genes might be dis-
rupted. However, their existence is not supported by the latest genome assembly.
S. Hans designed the mutagenesis strategy; S. Spieß generated the lrrk2 allele.

To achieve full deletion of the lrrk2 locus, two CRISPR/Cas9 target sites
flanking one 75 bp upstream, the other 33 bp downstream the 60,140-bp-long
ORF were selected (Figure 5.4a). To identify deletion alleles, a gap-PCR strategy
was devised, with primers amplifying a 289-bp-long amplicon inside the target
region were duplexed with flanking primers, unable to direct amplification unless
a deletion brings them in sufficient reciprocal proximity (Figure 5.4a, b). The
selected founder produced offspring where the flanking primers amplified a 204-
bp-long product; targeted deletion (c.−61_*42del; henceforth simply referred as
tud113) was confirmed by sequencing. The complete absence of lrrk2 expression in
tud113 homozygous mutants was verified via ISH (Figure 5.4c). F1 heterozygous
fish were incrossed to obtain F2 homozygous tud113 mutants and wild types.
F2 homozygotes were further incrossed to establish the maternal-zygotic mutant
(mzLrrk2) and wild-type control wt lines. In striking contrast with published
MO-induced phenotypes136,138, mzLrrk2 individuals develop normally, are viable,
and reach sexual maturity at the same age as the wt controls, with both females
and males being fertile.

It has been proposed that the paralogue LRRK1 may offset the loss of LRRK2
in mice101. To exclude possible compensation from the paralogous lrrk1 gene,
lrrk1 expression was analysed via RT-qPCR in mzLrrk2 larvae at both 5 and
10 dpf, but no difference was observed compared to wt controls (Figure 5.5).

5.4 Pleomorphic but transient neurodevelopmental
phenotype in mzLrrk2 zebrafish

Because the link between LRRK2 and PD implies a critical role in brain func-
tion203, mzLrrk2 zebrafish were characterised with regard to the brain phenotype
at both larval (5 and 10 dpf) and adult (6 and 11mo) stages. For cell quantific-
ation in the larval brain, the brain was subdivided into anterior (telencephalon),
middle (diencephalon, mesencephalon), and posterior (rhombencephalon) portions
(Figure 5.6a’).
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Figure 5.4: Generation of the zebrafish lrrk2 tud113 allele. The mutagenesis strategy was
designed by S. Hans; the lrrk2tud113 was generated by Sandra Spieß; characterisation was
carried out by S. Suzzi. (a) Scheme reproducing the targeting and screening strategy.
The lrrk2 ORF is highlighted in black; F1, R1: lrrk2 ORF -specific primers; F2, R2:
lrrk2 ORF -flanking primers; ts1 (magenta), ts2 (green): gRNA target sites (ts). (b) gap-
PCR analysis of genomic DNA from wild-type (lrrk2+), heterozygous (lrrk2+/tud113), and
homozygous mutant (lrrk2tud113) individuals. F1 and R1 amplify a 289-bp-long product,
F2 and R2 a 204-bp-long product. (c) lrrk2 ISH confirming the complete absence of

lrrk2 expression in 22-hpf lrrk2tud113 embryos.
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Figure 5.5: Expression of lrrk1 in mzLrrk2 larvae. Reverse Transcriptase-quantitative
PCR was used to measure lrrk1 expression at both 5 and 10 dpf. no difference was

observed between mzLrrk2 and wt controls.

40



Results

5.4.1 No overt signs of neurodegeneration

Enhanced apoptosis in the brain was found both in MO-injected larvae at 6 dpf 136
and in mzLrrk2tud112 larvae at 8 dpf 168, but not in mzLrrk2tud112 juveniles at
1.5mo, were cell death matched control levels. Consistently with the findings in
mzLrrk2tud112 fish, the apoptosis rate in mzLrrk2 larvae was transient, being in-
creased threefold at 5 dpf (anterior: P = 0.0061; middle: P < 0.0001; Figure 5.6a,
a’), but comparable to controls at 10 dpf (Figure 5.6b, b’).
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Figure 5.6: Quantification of cell death rate in the brain. TUNEL assay was used to
visualise cell death in the brain. Quantification was carried out over the whole brain,
subdivided into anterior (telencephalon), middle (diencephalon, mesencephalon), and
posterior (rhombencephalon) portions. The number of apoptotic cells in mzLrrk2 brains
is increased at 5 dpf (a, a’), but matched wt levels at 10 dpf (b, b’). (a’, b’) Plots
represent means ± s.d. Statistical analyses: (a’, b’) two-tailed Student’s t-test. Scale

bars: (a, b) 100µm.

In addition, in contrast with MO-injected larvae136,138, no overt sign of neur-
onal loss was evident after HuC/D staining at both 5 and 10 dpf (Figure 5.7).
Moreover, differently from MO-injected136 but similarly to mzLrrk2tud112 larvae,
the axonal network was preserved in mzLrrk2 brains as revealed by acetylated
Tubulin staining (Figure 5.8).
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Figure 5.7: Visualisation of mature neurons in the dorsal tectum neuropil. HuC/D IHC
was carried out to label mature neurons in the whole brain at 5 dpf (a) and 10 dpf (b).

No difference emerges between mzLrrk2 and controls. Scale bars: (a, b) 50 µm.
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Figure 5.8: Visualisation of the axonal network in the tectal commissure. Acetylated
Tubulin IHC was carried out to label axons in the whole brain at 5 dpf (a) and 10 dpf (b).
No difference emerges between mzLrrk2 larvae and controls. Scale bars: (a, b) 20 µm.

To further investigate the consequences of Lrrk2 deficiency on neural devel-
opment, Claudin k staining was performed to visualise myelination173. Claudin k
expression was delayed in the ventromedial hindbrain of mzLrrk2 at 5 dpf, but nor-
mal at 10 dpf (Figure 5.9). In summary, these data show that loss of lrrk2 causes
early but transient defects, including increased apoptosis and delayed myelination,
albeit no obvious signs of neurodegeneration.
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Figure 5.9: Visualisation of myelinated fibres in the ventral hindbrain. Claudin k IHC
was carried out to label myelinated fibres in the whole brain. Although mzLrrk2 larvae
show delayed expression at 5 dpf (a), they match control levels at 10 dpf (b). Scale bars:

(a, b) 100µm.

5.4.2 Abnormal leukocyte morphology and response to in-
flammatory stimulus

Neuroinflammation is an important contributor and a concurring factor in many
neurodegenerative conditions, including PD204,205. In particular, burgeoning evid-
ence demonstrates a link between LRRK2 and microglia function206,207. Be-
cause the shape of microglia may be indicative of their activation state208, mi-
croglia/leukocyte were visualised using L-Plastin as pan-leukocyte marker and
processed via a semi-automated procedure to extract relevant morphological fea-
tures in 3D stacks (see 4.8; Figure A.3a–a” ’).

The overall number of segmented L-Plastin+ microglia/leukocyte was reduced
by about one third in 5-dpf mzLrrk2 brains (Figure 5.10a); the trend was main-
tained at 10 dpf, although statistical significance was not reached (Figure 5.10b).
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Figure 5.10: Quantification of microglia/leukocyte cell number. L-Plastin IHC was car-
ried out to label microglia/leukocytes in the whole brain. Quantification of segmen-
ted L-Plastin+ cells revealed that the number of microglia/leukocytes was reduced in
mzLrrk2 brains at 5 dpf (a, a’), but comparable to controls at 10 dpf (b, b’). (a’, b’)
Plots represent means ± s.d. Statistical analyses: (a’, b’) two-tailed Student’s t-test. (a,

b) Scale bars: 100 µm.
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(dots) and the original variables (arrows) are projected on the 2D plane defined by PC1
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(V4, V5, and V6). Within brackets, the percentage of total variance explained. Note

the poor separation between mzLrrk2 and wt samples at 10 dpf.
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For each brain, average microglia/leukocyte volume, surface, ramification, av-
erage branch length, maximum branch length, and longest shortest path were used
to study the variance across samples via principal component analysis (PCA; Fig-
ure 5.11). As a result, the first two principal components represented alone over
90% of the total variance: PC1, which is the most relevant (58.4% of the total
variance), discriminated between small cells with long processes and large cells
with short processes; PC2 (33.4% of the total variance) opposed ramification to
cell size and extension (Table 5.1). Of note, while little separation existed between
the wt samples at the two time points, the mut samples were neatly segregated
along the PC1 axis, although the 10-dpf mzLrrk2 samples clustered with the wt
samples (Figure 5.11). In conclusion, 5-dpf mut brains had on average larger and
more ramified cells at 5 dpf, smaller and less complex, similar to the wt, at 10 dpf.
This interpretation is mirrored by the analysis of each morphological parameter
separately (Figure A.3b–o).

Table 5.1: PCA loadings of microglia/leukocyte morphology. V1: volume; V2: surface;
V3: ramification; V4: average branch length;V5: maximum branch length; longest
shortest path. For each principal component (PC), the relative percent of total variance

is reported within brackets.

variable PC1 PC2 PC3 PC4 PC5 PC6
58.5 33.4 6.7 0.9 0.4 0.2

V1 −0.483 0.123 −0.609 0.071 0.062 −0.610
V2 −0.504 0.177 −0.315 0.058 0.142 0.769
V3 −0.472 0.147 0.629 0.571 0.110 −0.148
V4 0.432 0.376 −0.304 0.680 −0.333 0.083
V5 0.276 0.598 0.033 −0.121 0.738 −0.070
V6 −0.167 0.658 0.202 −0.434 −0.555 −0.043

To verify whether even mild morphological alterations correlate with impaired
leukocyte function, 10-dpf larvae were treated with 12-O-tetradecanoylphorbol 13-
acetate (TPA) to induce systemic acute inflammation209 for 2 h prior to killing.
Although treatment was not sufficient to elicit a substantial effect on the brain
(not shown), significantly quenched leukocytosis was found in the tail (P = 0.0368;
Figure 5.12). In conclusion, these data suggest that zebrafish Lrrk2 plays a transi-
ent role in leukocyte biology, including a response to proinflammatory stimuli, and
additionally hint that the recreation of pathological conditions in animal models,
such as inflammation, may be an essential expedient for a thorough understanding
of LRRK2 function.
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Figure 5.12: Evaluation of the leukocyte response to systemic acute inflammation. Re-
duced leukocytosis in the tail of 10-dpf mzLrrk2 larvae after 2 h exposure to TPA to
induce systemic acute inflammation. Segmented objects were quantified within a con-
stant 566.79 × 124.54 µm area caudal to the anus and comprised between the dorsal
longitudinal anastomotic vessel and the caudal artery. Sample n are indicated in the
graph. Plot represents means ± s.d. Statistical analyses: one-tailed Student’s t-test.

Scale bar: 100µm.

5.5 Intact CA system but perturbed aminergic cata-
bolism in older fish

DA neurons are invariably affected by PD in humans. Reduced catecholaminergic
(CA) neurons were found in mzLrrk2tud112 throughout development168. There-
fore, the CA system was thoroughly examined in mzLrrk2 fish. CA cell popula-
tions along the rostro-caudal axis from the olfactory bulb to the locus cœruleus
were visualised via tyrosine hydroxylase (TH) IHC and denominated after the
nomenclature introduced previously127,144 (Figure 5.13a). Zebrafish possess two
paralogous th genes: th1 and th2 148–151. Because commercially available anti-TH
antibodies only recognise TH1, but not TH2 protein (Figure 5.13a’), for an ex-
haustive scrutiny of the zebrafish CA system, double staining with an anti-TH1
antibody and a recently characterised pan-TH antibody was performed to un-
equivocally identify TH2+ cells by exclusion147. TH2+ cells in larval brains were
quantified by S. Bilican. Additionally, the levels of biogenic amines and their
catabolites (Figure 5.13b) were measured via electrochemical detection coupled
with high performance liquid chromatography. Chromatographic analyses were
performed as previously described144 by S. A. Semenova in the laboratory of P.
Panula (Helsinki, Finland).
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Figure 5.13: Analysis of the CA system and catabolism. (a) The zebrafish catecholamin-
ergic (CA) cell populations in the rostro-caudal axis from the olfactory bulb to the locus
cœruleus as revealed by tyrosine hydroxylase 1 (TH1) IHC at 5 dpf. Pop. 1: olfactory
bulb; pop. 2: telencephalic complex; pop. 3: preoptic area, pars anterior ; pop. 4:
preoptic area, pars posterior ; pop. 5, 6, 11: diencephalic complex; pop. 7: pretectal
area; pop. 8: paraventricular organ, pars anterior ; pop. 9: paraventricular organ, pars
intermedia; pop. 10: paraventricular organ, pars posterior ; pop. 12: posterior tuberal
nucleus/posterior tuberculum; pop. 13: hypothalamic complex; pop. 14: locus cœruleus.
(a’) Combination of the anti-TH1 antibody with the pan-TH antibody allows the iden-
tification of TH2+ cells (white arrowheads) by exclusion. TH2+ cells are found within
the TH1 pop. 8, 9, and 10 in the paraventricular organ, thereby constituting the TH2
pop. 8b, 9b, 10b. (b) Simplified scheme of the catabolism of dopamine and serotonin.
Each arrow represents a distinct enzymatically-catalysed step. Grey arrows indicate
reactions catalysed by the combined action of monoamine oxidase/aldehyde dehydro-
genase. Abbreviations: 3-MT, 3-methoxytyramine; 5-HIAA, 5-hydroxyindoleacetic acid;
5-HT, serotonin; AD, adrenalin; DA, dopamine; DOPA, 3,4-dihydroxyphenylacetic acid;

HVA, homovanillic acid; NA, noradrenalin. (a) Scale bar: 100µm.

No TH+ cell population was missing or overtly altered in mzLrrk2 fish. Non-
etheless, at 5 dpf, mzLrrk2 brains displayed a lower numbers of TH+ cells in
discrete populations: olfactory bulb (pop. 1, P = 0.0313); telencephalic complex
(pop. 2, P = 0.0322); diencephalic complex (pop. 5, 6, 11, P = 0.0042); and
paraventricular organ, partes intermedia and posterior (pop. 9, 10 P = 0.0042;
Figure 5.14a, a’). The net effect was a 20% reduction of the overall number of
TH+ cells (not shown). Because mzLrrk2 brains showed a higher cell death rate
at 5 dpf (Figure 5.6), TUNEL assay was combined with TH IHC to investigate
whether CA neurons were particularly affected. However, virtually no colocal-
isation was found (not shown). Consistently, the aminergic catabolism appeared
normal (Figure 5.14b). This result is however in contrast with the increased levels
of homovanillic acid found in 5-dpf mzLrrk2tud112 larvae168; nonetheless, those
data are difficult to interpret, as dopamine levels were normal168.

At 10 dpf, only the hypothalamic complex (pop. 13, P = 0.0403) and, mildly,
the paraventricular organ, pars posterior (pop. 10b, P = 0.0496) were significantly
affected; in contrast, an increase in the preoptic area, pars posterior (pop. 4, P =
0.0138) was measured (Figure 5.14c, c’). In general, the overall number of TH+
cells did not differ from the wt controls (not shown). Intriguingly, although the
DA metabolism was unaffected, a higher concentration of 5-hydroxyindoleacetic
acid, catabolite of serotonin, was measured (P = 0.0190; Figure 5.14d). Because
brain-specific effects could be masked in whole-larvae homogenates, the activity
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of monoamine oxidase (Mao), one of the two major catabolising enzymes, was
histochemically visualised in 5- and 10-dpf brains (Figure A.4). However, no
difference was observed between mzLrrk2 and controls.
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Figure 5.14: Intact CA system at the larval stage. (a–d) Quantification of TH1+ (a,
c) and TH2+ cells (a’, c’) in the brain, quantification of aminergic catabolites in whole
larvae (d, f) at 5 dpf (a–b) and 10 dpf (c–d). TH2+ cells were quantified by S. Bilican;
chromatographic analysis of amine catabolism was carried out by S. A. Semenova. Early
defects in discrete CA cell populations at 5 dpf are resolved by 10 dpf. The DA catabolism
is normal at both time points. (a–d) Plots represent means ± s.d. (j) Statistical analyses:
(a pop. 2–14, a’, d DA–HVA, b 5-HT, b 5-HIAA, c pop. 1, c 3–14, c’, d DA–HVA, d
5-HIAA) two-tailed Student’s t-test; (a pop. 1, b 3-MT, c pop. 2, d 5-HT) two-tailed

Mann-Whitney’s U -test.

In the adult brain, the CA system appeared structurally intact at 6mo, with
a modest increase in cell number in the telencephalic complex (pop. 2, P =
0.0472; Figure 5.15a). Furthermore, TH1 protein levels at 11 mo were normal
(Figure 5.15b). Altogether, these data indicate that in striking contrast with
mzLrrk2tud112 fish168, the CA phenotype in mzLrrk2 fish is not persistent, but re-
solves during early development. However, the aminergic catabolism in the brain
was perturbed in 11-mo mzLrrk2 fish (Figure 5.15c). Specifically, a significant de-
crease of both dopamine (P = 0.0216) and serotonin (P = 0.0013) was found and,
consistently, a significant increase in their catabolites 3,4-dihydroxyphenylacetic
acid (P = 0.0187), homovanillic acid (P = 0.0001), and 5-hydroxyindoleacetic
acid (P = 0.0004), all products of Mao activity, was detected. Although Mao
levels were unaltered, as determined on both gene expressional (Figure A.5a)
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and biochemical level (Figure A.5b), the levels of the dopamine catabolite 3-
methoxytyramine, product of catechol-O-methyltransferase activity, were not sig-
nificantly different (P = 0.1250; Figure 5.15c) between mzLrrk2 and control
brains. Because monoamine oxidase and catechol-O-methyltransferase are the
major enzymes responsible for catecholamine catabolism in the brain, the neuro-
chemical signatures observed can be ascribed to Mao activity. In conclusion,
although the cellular composition of the CA system stays stable, 11-mo mzLrrk2
fish show increased Mao-mediated aminergic degradation.
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Figure 5.15: Intact CA system but perturbed CA catabolism in 11-mo fish. (a) Quan-
tification of TH1/2+ cells in 6-mo brains and (b) quantification of TH1 protein levels
in 11-mo brains show intact CA system in adult fish. (b’) Total protein stain as load-
ing control for the immunoblot in (b). (c) Analysis of aminergic catabolism in 11-mo
brains reveals increased dopamine and serotonin degradation. Chromatographic analysis
of amine catabolism and immunoblotting were carried out by S. A. Semenova. (a, c)
Plots represent means ± s.d. (b) Protein levels are reported as means ± s.d. Statistical
analyses: (a pop.1, a pop. 3–11, a pop. 13, a pop. 14, b, c DA, c DOPAC–5-HIAA)
two-tailed Student’s t-test; (a pop. 2, a pop. 12) two-tailed Mann-Whitney’s U -test.

5.6 Decreased mitosis rate in the larval brain
Reduced levels of neurogenesis are found in postmortem specimens of PD pa-
tients210. Several lines of evidence implicate LRRK2 in cell proliferation and
differentiation211. However, LOF studies in vivo have led to conflicting findings:
in mice, the number of DCX+ neuroblasts in the dentate gyrus has been found
increased in one study,110, unaffected in another one102; in zebrafish, reduced cell
proliferation in the brain was characterised in mzLrrk2tud112 larvae (Figure 2.1d)
and throughout development168.

To assess cell proliferation in the mzLrrk2 brain, phospho-histone H3 (pH3)
was used as a marker for mitotic cells172,212. At 5 dpf, mzLrrk2 brains displayed
moderately, but significantly, less mitotic cells in the forebrain only (Figure 5.16a,
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a’), whereas the overall number in the entire organ was unchanged (not shown).
However, at 10 dpf the effect was much more pronounced, consisting in a ∼50%-
decrease in the anterior (P = 0.0025) and middle portions (P = 0.0062) (Fig-
ure 5.16b, b’). Of note, the phenotype is clearly apparent only in maternal-zygotic
individuals (Figure A.6). However, unlikemzLrrk2tud112 larvae, the number of cells
in the S phase of the cell cycle did not differ between mzLrrk2 and controls (an-
terior: P = 0.6453; middle: P = 0.1455; posterior: P = 0.3613; Figure A.7),
suggesting defects either in the progression or in the regulation of the cell cycle
length. This is in line with previous evidence showing impaired cell cycle progres-
sion, survival and differentiation of human mesencephalic neural progenitor cells
upon LRRK2 knockdown213. However, brain size or morphology were unaffected
(not shown). Remarkably, the phenotype is merely emerging at 5 dpf and exacer-
bates by 10 dpf, i.e. during a time window when neural development slows down
considerably, judging from the about nine-fold drop in the absolute number of
total pH3+ cells in wt brains (5 dpf: 281.3± 26.7; 10 dpf: 33.9± 8.7).
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Figure 5.16: Decreased mitosis rate in the larval brain. (a, b) Phospho-histone H3 (pH3)
IHC was carried out to label mitotic cells. The mitosis rate is slightly reduced in the
anterior portion only at 5 dpf (a, a’), halved over the whole organ at 10 dpf (b, b’). (a’,
b’) Plots represent means ± s.d. Statistical analyses: (a’, b’) two-tailed Student’s t-test.

Scale bars: (a, b) 100µm.

To further substantiate the dependence of the hypoproliferative phenotype
from Lrrk2 deficiency, the mitosis rate in the brain was evaluated upon combin-
ation of the lrrk2tud112 and lrrk2tud113 alleles. To this aim, mzLrrk2 females were
crossed with mzLrrk2tud113 males to obtain transheterozygous larvae, whose brains
were harvested at 10 dpf and immunostained for pH3. As a result, the hypopro-
liferative phenotype was confirmed also in transheterozygotes (compared to wt,
anterior: P = 0.0002; middle: P = 0.0007; Figure 5.17).
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Figure 5.17: Transheterozygous tud113/tud113 fish recapitulate the hypoproliferative
phenotype. Combination of the lrrk2tud113 and lrrk2tud112 alleles recapitulates the hypo-
proliferative phenotype in 10-dpf maternal-zygotic tud113 brains. Plot represents means
± s.d. Statistical analyses: one-way ANOVA followed by Tukey’s post hoc test.

Next, a Lrrk2 protein fragment containing the catalytic core was overexpressed
in the attempt to restore Lrrk2 function. To this aim, a Tol2 transgenic line was
generated, expressing the lrrk2 rescue construct (c.3009_7130) along with the
mCherry reporter under the heat-inducible hsp70l promoter (Tg(hsp70l:mCherry-
T2A-lrrk2(c.3009_7130)-Myc)tud114, henceforth referred to as "rescue"; Figure A.8).
The rescue line was combined with the tud113 line to obtain reconstitution of the
maternal-zygotic background. Reconstituted fish were heat-shocked daily for 4 h
from 1 to 10 dpf and analysed for mitosis in the brain. Compared to wt controls,
the overall number of pH3+ cells in the mzLrrk2+rescue recovered (P = 0.1051),
as opposed to 2 controls (P = 0.0034; Figure 5.18). This finding indicates that
overexpression of a functional Lrrk2 moiety could rescue the phenotype. Alto-
gether, these data reveal an implication of Lrrk2 in the control of cell proliferation
in the developing brain.
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Figure 5.18: Genetic reconstitution of Lrrk2 function rescues the hypoproliferative phen-
otype in mzLrrk2 brains. Conditional expression of a Lrrk2 fragment (wt+rescue,
mzLrrk2+rescue) containing the catalytic core rescues the hypoproliferative phenotype
in 10-dpf mzLrrk2 brains (mzLrrk2+rescue versus mzLrrk2 controls, ctrl). Plot repres-
ents means ± s.d. Statistical analyses: one-way ANOVA followed by Dunn-Dunn-Šidák’s
correction for multiple comparisons. Multiple comparisons: wt ctrl vs. wt+rescue; wt
ctrl vs. mzLrrk2 ctrl; wt ctrl vs. mzLrrk2+rescue; mzLrrk2 ctrl vs. mzLrrk2+rescue.

Scale bar: 100µm.
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5.7 Impaired neuronal regeneration in the adult
telencephalon

Zebrafish have a remarkable capacity to regenerate lost appendages and damaged
tissues, including the telencephalon126 and cerebellum214. Since regeneration re-
capitulates several aspects of embryonic development, it is possible that loss of
lrrk2, responsible for decreased cell proliferation in the larval brain, also affects
reactive neurogenesis and regeneration in the adult brain. In the intact 6-mo
brain, PCNA+ proliferating cells are mildly reduced in the dorsal telencephalic
niche, but significantly in the dorso-posterior (Dp) area (P = 0.0272; Figure A.9).
To address reactive proliferation and neurogenesis, 6-mo fish were injured using a
stab lesion paradigm as previously described126 (Figure 5.19a) and analysed using
a BrdU pulse-chase assay. Reactive proliferation at 3 days post-lesion (dpl) did
not differ between mzLrrk2 and controls (Figure 5.19b). However, mzLrrk2 brains
displayed on average 30% less HuC/D+/BrdU+ neurons at 21 dpl (P = 0.0262;
Figure 5.19c, c’). In contrast, neurogenesis in the unlesioned hemisphere was nor-
mal (P = 0.284). Taken together, these results demonstrate a role for Lrrk2 in
neuronal regeneration of the lesioned adult telencephalon.

5.8 Association between loss of lrrk2 and hypo-
kinesia in larvae

To investigate motor ability after loss of lrrk2, spontaneous swimming activity of
5- and 10-dpf larvae and 6-mo adult fish was automatically recorded and analysed.
Similar work on 8-dpf mzLrrk2tud112 larvae has pointed out a reduced tendency
to initiate swimming and an increased persistence in the inactive phase, implying a
motor phenotype reminiscent of bradykinesia in human PD patients168. However,
the differences observed were often very mild. Moreover, the analysis strategy
consisted in comparing the means between mzLrrk2tud112 and controls using Stu-
dent’s t-test for each behavioural parameter separately. A similar approach is
problematic for two reasons: first, the distribution of behavioural data is typic-
ally skewed, thus invalidating the use of Student’s t-test; secondly, the analysis of
isolated parameters may be little informative, as complex set of changes may go
unnoticed. To overcome such difficulties, multivariate logistic regression was per-
formed to evaluate the relationship between the genotype, a categorical variable
with only two possible outcomes ("mzLrrk2" or "wt"), from a combination of the
motor parameters. This is the same as using overall swimming performance as
indicator of loss of lrrk2. Behavioural data were generated by S. Bilican and S.
Sayed. The results are summarised in Table 5.2; the statistics for the individual
parameters are reported in Figure A.10; each model’s goodness of fit is provided
in Figure A.11.

At 5 dpf, the estimated odds ratios revealed that larvae were more likely to be
mzLrrk2 if swimming more frequently at the normal speed range (normal phase
entry count, OR = 1.242) while spending less time in bursting mode (bursting
phase duration, OR = 1.242). At 10 dpf, mzLrrk2 larvae tended to alternate

51



Results

0 1 2 3 21 dpl 

… 
 

lesion 

BrdU pulse 

chase 

ctrl 3 dpl
0

50

100

150

P
cn

a+
 c

el
ls

 
(n

/s
ec

tio
n)

wt, n=6

mut, n=5

dorsal VZ, single hemisphere 

b a 

wt mzLrrk2 c 

ctrl 21 dpl
0

50

100

150

H
uC

/D
+/

Br
dU

+ 
ce

lls
 

(n
/s

ec
tio

n)

wt, n=5

mut, n=5

whole hemisphere 

* 

c’ 

mzLrrk2, n=5 

mzLrrk2, n=5 

P
C

N
A

+ 
ce

lls
 

B
rd

U
 

H
uC

/D
 

6 
m

o,
 2

1 
dp

l 

m
er

ge
 

Figure 5.19: Loss of lrrk2 impairs neuronal regeneration upon stab injury of adult tel-
encephalon. (a) A unilateral stab injury was inflicted to the 6-mo adult telencephalon.
To identify newborn neurons, a BrdU pulse was delivered from 2 to 3 days post-lesion
(dpl) and incorporating cells analysed at 21 dpl. (b) PCNA IHC to examine reactive
proliferation in radial glia stem cells of the ventricular zone (VZ) at 3 dpl. The lesioned
hemisphere (3 dpl) was compared to the unlesioned hemisphere as control (ctrl) but no
difference was observed (c, c’). HuC/D/BrdU double labelling to assess neurogenesis at
21 dpl. Double-positive cells are indicated by white arrowheads in the insets. Quanti-
fication was carried out through the entire parenchyma of the lesioned (21 dpl) and ctrl
hemispheres. Neurogenesis is reduced in the mzLrrk2 brains. Orange-boxed insets are
rotated by 90◦. (b, c’) Plots represent means ± s.d. Statistical analyses: one-tailed

Student’s t-test. (c) Scale bar: 50 µm.
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inactive to bursting phases (inactive phase distance, OR = 1.684; bursting phase
distance, OR = 1.194), rather than swimming at the normal speed range (normal
phase distance, OR = 0.860), with lower bursting phase duration (P = 0.847).
This "stop-and-go" swimming pattern might reflect an impaired ability to initiate
or sustain movements, similar to bradykinesia in PD patients. However, at 6mo,
although the distance swum in either normal or bursting mode was a very strong
predictor (P < 0.0001 for both), the estimated odds ratios were very close to
1 (OR = 1.008 and OR = 1.003, respectively), indicating that the difference
between adult mzLrrk2 fish and controls was very subtle.

Several non-motor symptoms often precede motor disease and aggravate dis-
ability in later stages of PD pathology5. Anxiety and olfactory dysfunction are
amongst the most prevalent in PD patients both after and prior to diagnosis215.
Therefore, anxiety levels and response to olfactory stimuli were analysed in fish.
To test anxiety levels, two paradigms were used: (i) wall-hugging behaviour, or
thigmotaxis216, for both larvae and adults (Figure A.12a–d), and (ii) dark-to-
light preference, or scototaxis217, for adults only (Figure A.12e). To evaluate the
overall olfactory function in adult fish, the response to an amino acid mixture
odorant stimulus was measured181 (Figure A.12f). None of the assays revealed
any significant difference between mzLrrk2 fish and controls.

5.9 Transcriptome analysis of 5- and 10-dpf larvae

To gain an insight into the signalling and metabolic pathways affected by Lrrk2
deficiency during larval development, the transcriptome from mzLrrk2 and wt
whole larvae at 5 and 10 dpf was sequenced. The larvae were derived from two
independent parental pairs/genotype and collected at the two different time points.
Sequencing data were generated by the Deep Sequencing Group (CRTD); primary
processing of sequencing data was performed by M. Lesche.

The samples overall displayed a very high amount of uniquely-aligned frag-
ments and good complexity (not shown). The data set features and the biological
significance of resulting differentially expressed genes (DEGs) are discussed be-
low. As the validation of the most interesting data is still warranted, it must be
cautioned that the in silico data henceforth presented are only indicative.

5.9.1 Exploratory differential expression analysis

Spearman’s correlation analysis revealed a better separation between the mzLrrk2
and wt samples at 5 dpf than at 10 dpf (Figure A.13a). This was also confirmed
by the heatmap of the sample-to-sample Euclidean distance (Figure A.13b). Prin-
cipal component analysis showed no overlap between the sample groups and a
clear segregation between the 5-dpf and the 10-dpf groups along the PC1 axis
Figure 5.20). However, within the 10-dpf group the distance along the PC2 axis
between one wt sample and the mzLrrk2 group was much more reduced than
within the mzLrrk2 group.
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Table 5.2: Multiple logistic regression analysis of the association of the swim-
ming performance with the loss of lrrk2. Behavioural data were generated by S.
Bilican and S. Sayed. The original motor variables (inactive/normal/bursting phase
entry count/duration/distance for 5- and 10-dpf larvae; normal/bursting phase entry
count/duration/distance for 6-mo adults) were subjected to backward stepwise elimin-
ation to identify the best fitting model at each time point. The selected variables and
relative statistics are shown. For each variable, the odds ratio (OR) represents the change
in the relative probability (p) of a recorded animal to be mzLrrk2 (p = 1) over wt (p = 0)
for an x-unit change, the other variables held constant. Unit changes of x = 10 for phase
entry count and phase distance, x = 1 for all other variables were deemed opportune.
The estimated 95% confidence interval for each OR is reported. The intercept, i.e. the

estimated OR when all covariates equal 0, is omitted.

time point independent variable β OR (eβ) 95% CI P

5 dpf inactive phase distance −0.841 0.432 0.258 –0.721 0.0014
inactive phase entry count 0.216 1.242 1.071–1.439 0.0041
normal phase duration −0.050 0.951 0.916–0.988 0.0091
bursting phase duration −0.269 0.764 0.628–0.929 0.0071

10 dpf inactive phase entry count −0.071 0.932 0.873–0.994 0.0316
inactive phase duration −0.033 0.968 0.948–0.988 0.0018
inactive phase distance 0.521 1.684 1.149–2.468 0.0076
normal phase duration 0.064 1.066 1.014–1.121 0.0126
normal phase distance −0.151 0.860 0.792–0.933 0.0003
bursting phase duration −0.166 0.847 0.735–1.976 0.0219
bursting phase distance 0.177 1.194 1.079–1.321 0.0006

6mo normal phase distance 0.008 1.008 1.004–1.011 < 0.0001
bursting phase distance 0.003 1.003 1.002–1.004 < 0.0001
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Table 5.3: Overview of total DEGs at different FDR. The direction of change (up:
upregulation; down: downregulation) is indicated.

time point FDR (%) DEGs up down

5 dpf 10 4,782 2,966 1,816
5 3,783 2,380 1,403
1 2,390 1,498 892

10 dpf 10 252 37 215
5 185 27 158
1 131 21 110

●

●

●

●

wt1_5dpf

wt2_5dpf

mut1_5dpf

mut2_5dpf

wt1_10dpf

wt2_10dpf

mut1_10dpf

mut2_10dpf

−20

−10

0

10

−25 0 25
PC1: 89% variance

PC
2:

 5
%

 v
ar

ia
nc

e

genotype ● ●wt mut

timepoint ● 5 dpf 10 dpf

PCA of top 500 most variable genes

●

●

●

●

wt1_5dpf

wt2_5dpf

mut1_5dpf

mut2_5dpf

wt1_10dpf

wt2_10dpf

mut1_10dpf

mut2_10dpf

−20

−10

0

10

−25 0 25
PC1: 89% variance

PC
2:

 5
%

 v
ar

ia
nc

e

genotype ● ●wt mut

timepoint ● 5 dpf 10 dpf

PCA of top 500 most variable genes

PC1 (89%) 

P
C

2 
(5

%
) 

mzLrrk2 5 dpf 

mzLrrk2 10 dpf 

wt 5 dpf 

wt 10 dpf 

●

●

●

●

wt1_5dpf

wt2_5dpf

mut1_5dpf

mut2_5dpf

wt1_10dpf

wt2_10dpf

mut1_10dpf

mut2_10dpf

−20

−10

0

10

−25 0 25
PC1: 89% variance

PC
2:

 5
%

 v
ar

ia
nc

e

genotype ● ●wt mut

timepoint ● 5 dpf 10 dpf

PCA of top 500 most variable genes

●

●

●

●

wt1_5dpf

wt2_5dpf

mut1_5dpf

mut2_5dpf

wt1_10dpf

wt2_10dpf

mut1_10dpf

mut2_10dpf

−20

−10

0

10

−25 0 25
PC1: 89% variance

PC
2:

 5
%

 v
ar

ia
nc

e

genotype ● ●wt mut

timepoint ● 5 dpf 10 dpf

PCA of top 500 most variable genes

●

●

●

●

wt1_5dpf

wt2_5dpf

mut1_5dpf

mut2_5dpf

wt1_10dpf

wt2_10dpf

mut1_10dpf

mut2_10dpf

−20

−10

0

10

−25 0 25
PC1: 89% variance

PC
2:

 5
%

 v
ar

ia
nc

e

genotype ● ●wt mut

timepoint ● 5 dpf 10 dpf

PCA of top 500 most variable genes

Figure 5.20: PCA of top 500 most variable genes. Principal component analysis plot
showing the sample projections on the 2D plane defined by the two directions explain-
ing most of the variance. The percent of total variance associated with each principal

component is reported. Figure generated by M. Lesche.

The number of DEGs in mzLrrk2 versus wt at 5 dpf was more than eighteen
times higher than at 10 dpf, irrespective of which false discovery rate (FDR) was
applied (see Table 5.3 and Figure 5.21). Part of the reason may lie in the relatively
large inner variance of the 10-dpf wt group. Nonetheless, it shall be noted that
PC2 accounts for only 5% of the total variance (Figure 5.20).

To visualise persistent expressional changes from 5 to 10 dpf, the DEGs at
both time points were considered (see Table 5.4 and Figure 5.22). More than half
underwent a directional switch, but for only 1 of them the expression change was
relevant at both time points (|log2(fold change)| > 1, FDR 10%).
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Figure 5.21: MA plots. DEGs at (a, c) 5 dpf and (b, d) 10 dpf when a FDR of (a, b)
10% and (c, d) 1% was applied. Panels generated by M. Lesche.
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Figure 5.22: DEGs overlapping between 5 and 10 dpf. (a, b) Absolute number and
relative proportion of DEGs overlapping between 5 and 10 dpf at (a) FDR 10% and (b)

FDR 1%.

Table 5.4: Overview of DEGs overlapping between 5 and 10 dpf at different FDR. The
direction of change (up: upregulation; down: downregulation) at 5/10 dpf is indicated.

FDR (%) DEGs up/up up/down down/up down/down

10 126 24 79 1 22
1 65 16 37 0 12

The heatmap of the variance across samples highlighted the most variable
DEGs in the data set (Figure 5.23). The expression of lrrk2 was, of course, sup-
pressed in all mzLrrk2. In contrast, one gene was virtually not expressed in the
wt (average 0.11 versus 52.72 transcripts per kilobase million in the mzLrrk2):
si:ch211-121a2.2, orthologous to DUSP27 in humans, coding for a dual specific
phosphatase (UniProtKB accession numbers: A8E7M1 to Q68J44; 78% query
cover, 46% identity, 61% similarity). The HCX2GX2R consensus sequence, con-
taining the nucleophilic cysteine of the catalytic core, is conserved in both species.
In mice, the Dusp27 gene is expressed in tissues characterised by high energy
metabolism, prominently in the skeletal muscle, liver, and adipose tissue, and
to a lesser extent in other tissues, including the brain218. The DUSP27 phos-
phatase has been shown to mediate the effects of prolactin via the short isoform
of the prolactin receptor by deactivating the ERK1/2 and p38 MAP kinases in
the ovary and decidua219,220. Several studies support a role for LRRK2 to ac-
tivate the ERK1/2 pathway via phosphorylation68,221,222. This can be achieved
via LRRK2 MAPKKK activity223. Therefore, loss of Lrrk2 might work syner-
gistically with si:ch211-121a2.2 upregulation to inhibit the ERK1/2-dependent
cascade. Validation of si:ch211-121a2.2 upregulation and further studies on the
interplay between lrrk2 and si:ch211-121a2.2 to modulate the Erk1/2 signalling
pathways are definitely worth pursuing.
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Figure 5.23: Most variable overlapping DEGs. (a, b) Top twenty overlapping DEGs
showing the highest variance across samples at (a) FDR 10% and (b) FDR 1%. Note the
almost specular heat pattern of lrrk2 and si:ch211-121a2.2. Samples: wt1/2_5/10dpf,
wt replicates; mut1/2_5/10dpf, mzLrrk2 replicates. Panels generated by M. Lesche.
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5.9.2 Gene set enrichment analysis
To identify enriched canonical pathways and predicted upstream regulators, se-
quencing data were mined using the IPA software (see 4.6). Because the species
supported are human, mouse, and rat, different species are supported through
orthologue information. This means that one gene in the zebrafish data set could
map to multiple genes in the IPA data set, or vice versa, or none. In order to
extract the most out of the data set, DEGs with an FDR 10%-stringency level
were considered.

A summary of the most enriched canonical pathways is provided in Table 5.5.
At 5 dpf, the most enriched gene ontology (GO) terms included "mitochondrial
dysfunction" and "oxidative phosphorylation". These in silico data are consist-
ent with previous reports implicating LRRK2 in mitochondrial dynamics224. At
10 dpf, "calcium signalling" and "glycolysis I" were among the most significant.
"Calcium signalling" was highly enriched also when considering the DEGs at both
time points. The "calcium signalling" GO term includes several molecules that
play a role in muscle contraction. It is known that LRRK2 is expressed in the
muscular tissue in both mouse117 and zebrafish136. However, no direct involvement
of LRRK2 in muscle biology has yet been proposed. Intriguingly, the most signi-
ficant predicted upstream regulators of DEGs overlapping between 5 and 10 dpf
(see Table 5.6) included the protein SMTLN1, involved in muscle contraction225,
the transcription factors MYOD1 and MEF2C, and the transcription activator
SMARCA4, all implicated in myogenesis226–229. The IPA software predicted a
mechanistic network (Figure 5.24) wherein the upstream regulator MYOD1 dir-
ectly affects MEF2C activation, which in turn controls GATA4, a transcription
factor required for correct cardiogenesis230. The downstream effect would be a an
impact on body size. Strikingly, the directional effect at the two time points is the
opposite: "activating/increasing" at 5 dpf (Figure 5.24a), "inhibiting/decreasing"
at 10 dpf (Figure 5.24b). Notwithstanding, the algorithmically generated model
hints that some developmental programs may go awry in the absence of Lrrk2.
The muscular system stands out as a potential target, plausibly because muscle
genes were relatively abundant due to sample source. Nonetheless, the expres-
sional changes were modest (|log2(fold change)| < 1). This might explain the lack
of macroscopically appreciable growth retardation in the mut larvae and adults.
On the other hand, the cell proliferative defect described in the brain is itself evid-
ence of developmental impairment. In the light of the enrichment data hitherto
discussed, a thorough investigation of the muscular system might be revealing.
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Table5.5:Topcanonicalpathways(FDR10%-filteredDEGs)

timepoint canonicalpathways log10p overlap

5dpf EIF2signalling 37.83 103/194
mitochondrialdysfunction 34.46 92/171
oxidativephosphorylation 34.19 71/109
regulationofeIF4andp70S6Ksignalling 18.13 67/157
mTORsignalling 12.09 67/199

10dpf calciumsignalling 10.58 13/178
hepaticfibrosis/
hepaticstellatecellactivation

9.25 12/183

atherosclerosissignalling 5.10 7/127
cellulareffectsofSildenafil(Viagra) 5.03 7/130
glycolysisI 4.95 4/25

5and10dpf calciumsignalling 9.97 10/178
cellulareffectsofSildenafil(Viagra) 5.64 6/130
regulationofactin-basedmotilitybyRho 5.14 5/91
formaldehydeoxidationII
(glutatione-dependent)

5.07 2/2

tightjunctionsignalling 5.01 6/167

Table5.6:Topupstreamregulators(FDR10%-filteredDEGs).Apositivez-scorereflects
predictedactivation;negative,inhibition. Anabsolutez-scorevaluehigherthan2is
consideredsignificant. Notethedirectionalswitchfrom5to10dpfofthepredicted

regulatorsofoverlappingDEGs.

timepoint upstreamregulators log10p z-score

5dpf RICTOR 61.33 −11.08
HNF4A 44.36 2.89
MYCN 35.21 6.43
KDM5A 34.62 −6.57
MAPT 32.98 −2.00

10dpf SMTLN1 18.02 2.85
MEF2C 11.58 −1.92
KDM5A 11.40 2.89
MYC 10.84 −2.11
MYOD1 10.77 −3.41

5to10dpf SMTNL1 14.32 −2.83 2.83
MYOD1 11.64 3.11 −3.11
MEF2C 9.79 2.80 −2.80
SMARCA4 9.52 3.15 −3.15
3,5-diiodothyronine 7.82 2.00 −2.00
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a b 

Figure 5.24: Top predicted upstream regulators of overlapping DEGs and mechanistic
network at (a) 5 and (b) 10 dpf. The continuous lines represent direct relationships, the
dashed lines indirect relationships. Pointed arrowheads indicate activating effects, blunt
arrowheads inhibiting effects. Orange denotes activation, blue inhibition; grey means

that the findings underlying the path segment support no causal role.
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6.1 Strength of the mzLrrk2 zebrafish model

In the present work, the brain phenotype of the first zebrafish lrrk2 knockout
model is characterised. Compared to the published MO-induced phenotypes136–138
and the unpublished ENU-induced mzLrrk2tud112 phenotype168, the superior re-
liability of the mzLrrk2 model lies in the complete removal of the ∼60-kbp-long
lrrk2 locus. In contrast with previous studies136,138,168, the present results demon-
strate that zebrafish lrrk2 is a resilient locus (see 5.4 and below 6.1.1). In partic-
ular, mzLrrk2 larvae initially display reduced CA neurons and a combination of
distinct motor signatures interpretable as hypokinesia that resolve spontaneously
during development. Recent work has suggested that buffering mechanisms may
be triggered by deleterious mutations, but not knockdown167. Hence, MO-induced
phenotypes might indeed provide useful information, which could be masked in
constitutive mutants. However, the same study cautions that the MO dose should
be carefully titrated in a reliable null mutant background in order to exclude off-
target effects167. Moreover, the transiency of MO-induced effects is a limitation
for phenotypic analyses in the long term. Consequently, MOs should rather be
the exception, and not the rule, for the assessment of gene function163.

However, genome editing strategies are not exempt from setbacks, as exempli-
fied by the tud115 allele herein described (see 5.2). The most worrisome caveat
are off-target effects, a lurking risk even when appropriate precautions are taken.
The ideal solution would be cross-validation using different alleles for the same
gene. If the suspected phenotype is recessive, a more stringent assay would be
testing whether different mutant alleles can complement each other. Upon com-
paringmzLrrk2tud112 168 andmzLrrk2 phenotypes, it was verified that only reduced
mitosis in the larval brain is consistent (Figure 5.16, Figure 2.1d) and persistent
in transheterozygous tud113/tud112 fish (Figure 5.17). Furthermore, the hypo-
proliferative phenotype could be rescued by conditional overexpression of a Lrrk2
fragment in genetically reconstituted mzLrrk2 mutants (Figures 5.18 and A.8).

Altogether, these results suggest the mzLrrk2 hypoproliferative phenotype to
exclusively depend on Lrrk2 LOF. Moreover, the phenotype is manifest only when
both the maternal and zygotic Lrrk2 function is abolished (Figure A.6). There-
fore, the mzLrrk2 zebrafish represents the first complete LRRK2 knockout in a
vertebrate in vivo model.
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6.1.1 Robustness against lrrk2 locus deletion

One limitation of the mzLrrk2 model is the extent and duration of most phen-
otypic manifestations. This finding is particularly striking in the light of the
more stable mzLrrk2tud112 phenotype, including persistently reduced CA neurons.
Given the better specificity of CRISPR/Cas9-mediated genome editing over ENU-
mediated mutagenesis, one explanation could be confounding off-target effects in
the tud112 line. However, it cannot be excluded that aberrant lrrk2tud112 tran-
scripts determine cellular stress and this be directly responsible for the defects
observed in mzLrrk2tud112 fish. If so, mzLrrk2tud112 fish would more closely mimic
the situation in humans, where LRRK2 transcripts carrying deleterious mutations
are produced. This event appears little likely, though, as lrrk2tud112 transcripts un-
dergo NMD (Figure 2.1c, c’).

Analysis of transcriptome from wholemzLrrk2 larvae reveal a dramatic, eighteen-
fold drop in the number of DEGs, from several thousands at 5 dpf to few hundreds
at 10 dpf (Table 5.3).The progressive narrowing of the gap between mzLrrk2 and
control larvae may be an indication of functional compensation for Lrrk2 LOF. Two
possible mechanisms may come into play: (i) gene duplication, and (ii) functional
redundancy216. No evidence for lrrk2 duplication is found in the latest genome
assembly (see 5.1). A possible source of redundant zebrafish Lrrk2 function may
come from the paralogous lrrk1 gene, as proposed for mice101,117. However, the
zebrafish lrrk2 and lrrk1 genes have almost non-overlapping expression patterns
and domains in the developing embryos168, as do the respective orthologues in
the mouse brain66. Furthermore, it was verified that lrrk1 expression is unaltered
in mzLrrk2 larvae at both 5 and 10 dpf (Figure 5.5). Therefore, if a functional
analogue replaced Lrrk2, this would not be the most obvious candidate, i.e. the
paralogue Lrrk1. In fact, knockout studies in mice113 and interactome data from
SH-SY5Y neuroblastoma cell lines231 rather suggest that LRRK2 and LRRK1 are
divergent proteins with distinct functions.

Another possibility is that Lrrk2 deficiency can be functionally compensated
on a metabolic or network level. Transcriptome analysis might be revealing in
this sense. However, it shall be noted that the effects of Lrrk2 deficiency may be
regional and therefore masked in whole-body total-RNA samples. In fact, an aver-
age of as low as 0.57 and 0.47 lrrk2 transcripts per kilobase million was sequenced
in 5- and 10-dpf wt samples, respectively. Nonetheless, these transcriptome data
may still provide useful information, particularly if coupled with data from adult
brains at different stages of development. Upon validation, they would provide the
starting point for subsequent analyses aiming at elucidating what mechanisms are
disrupted/triggered by the lrrk2 locus deletion and possibly explain the observed,
or even new, mzLrrk2 phenotypes.

6.2 Model relevance in the context of PD research

A good model of PD should recapitulate at least two fundamental aspects: (i)
selective DA cell loss; (ii) levodopa-sensitive syndrome, including motor and non-
motor symptoms. In addition, an ideal model of PD should display a progressive
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and chronic phenotype. In the mzLrrk2 model, despite an early developmental
delay, the CA system appears intact until 11mo (see 5.5).

A possible reason for the lack of an overt PD-like phenotype may be the
lack of a zebrafish α-synuclein orthologue. Although α-synucleinopathy is not
pathognomonic of PD, not even in LRRK2 mutation carriers, progression of Lewy
body pathology correlates with non-motor symptoms8, including psychiatric dis-
turbances and olfactory dysfunctions232. On these grounds, the normal anxiety
levels and olfactory responsiveness in mzLrrk2 fish seem reasonable (Figure A.12).
Yet, no PD-like brain pathology manifests in either transgenic79–81,83,84,86 or knock-
out102 LRRK2 mouse models, where α-synuclein is present.

It cannot be excluded that the DA system is affected on a more subtle level,
for example connectivity or synaptic transmission. On the other hand, PD is a
multisystem disorder, and the CA system is not the exclusive target of patho-
logy9. In this regard, the hypokinetic phenotype observed in 10-dpf larvae (see
5.8), where no obvious CA defect was found, may indicate that Lrrk2 deficiency eli-
cits dopamine-independent behavioural abnormalities, as also reported in LRRK2
knockout mice102. Conceivably, neurotransmitter systems other than the CA sys-
tem may also be affected. An interesting candidate would be the serotonergic
system. Serotonergic dysfunction has been extensively studied in relation to non-
motor features and treatment-related complications in PD233,234, but the sero-
tonergic system has only recently started to be considered also in relation to
LRRK2 235. Intriguingly, increased 5-hydroxyindoleacetic acid, catabolite of sero-
tonin, was found in 10-dpf mzLrrk2 larve (Figure 5.14d) and increased serotonin
degradation in 11-mo fish (Figure 5.15c). Furthermore, the zebrafish Mao enzyme
has higher affinity for serotonin than dopamine and the highest levels of Mao
activity in the adult brain are found at the serotonergic cell clusters154. For these
reasons, the serotonergic system and function in mzLrrk2 fish is worth detailed
investigation via quantitative IHC and behavioural analyses, including approach-
avoidance and social paradigms236.

6.2.1 A role for MAO in LRRK2-driven pathology?

Strikingly, perturbed amine catabolism, most prominently increased dopamine
degradation, appears in 11-mo mzLrrk2 fish (Figure 5.15c). This result is par-
ticularly meaningful considering that brain dopamine and/or catabolite levels
are normal in mice lacking endogenous101,102 or overexpressing human wild-type
LRRK280, but reduced in mice expressing pathogenic LRRK2 variants, although
the effect may be only regional80,81 or transgene-dependent80. In any case, the
neurochemical signatures in those mouse models have been difficult to interpret,
because they are not clearly linked to problems in either dopamine synthesis81 or
turnover80,81. In contrast, mzLrrk2 fish specifically display enhanced monoamine
oxidase (Mao)-dependent amine degradation. Of note, increased expression ofmao
gene was found in the dorsal telencephalon and cerebellum or 10.5-mzLrrk2tud112

brains via ISH168; unfortunately, catabolism was not addressed in age-matched
individuals, thus making direct comparison with mzLrrk2 fish not possible. Al-
though Mao levels in mzLrrk2 brains appeared unaffected as measured via RT-
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qPCR and enzymatic assay (Figure A.5), local enrichment ofmao transcripts/Mao
protein in distinct brain regions cannot be excluded. For want of an anti-MAO
antibody working in zebrafish, ISH analysis of mao expression in 11-mo mzLrrk2
brains is warranted.

Previous observations have shown that both expression of the pathogenic LRRK2
R1441C variant101 and LRRK2 knockdown237 impair synaptic transmission. If
this is the case also for mzLrrk2 fish, increased Mao activity may be a protect-
ive mechanism against dopamine accumulation either at the presynaptic terminal,
due to impaired neurotransmitter release, or at the synaptic cleft, due to impaired
reuptake, as excess dopamine represents an oxidative threat due to radical forma-
tion238. However, while removing excess dopamine, Mao would also generate toxic
hydrogen peroxide238, being potentially deleterious in the long term. Given the
clinical relevance of MAO inhibitors as a treatment for PD152, the present find-
ings highlight the importance of clarifying the role of MAO given a predisposing
genetic background.

Alternatively, increased Mao activity may be an age-related phenomenon in
zebrafish, as is in mammals161,162, but exaggerated in absence of Lrrk2. The
interplay between physiological modifications of MAO levels and sensitising genetic
factors in humans and animal models, including LRRK2 mutations, awaits further
investigation. To this aim, models tweaked to accelerate ageing or mimic age-
related features could offer valuable insights. Of interest, mice where the isoform
B of the human MAO orthologue can be conditionally overexpressed develop PD-
like features, including selective DA cell loss and decreased locomotor activity239.
A similar approach in the mzLrrk2 fish background might then be revealing.

6.3 Insights made possible by a zebrafish lrrk2
model

An interesting question is whether mzLrrk2 fish may be protected, to some ex-
tent, from neurodegeneration by their potential to regenerate the brain after le-
sion126,214. However, evidence that loss of lrrk2 reduces the mitosis rate in the
mzLrrk2 brain is compelling (see 5.6). Although the exact impact of the hy-
poproliferative phenotype is yet to be elucidated, ad hoc formation of cells to
replace hypothetically lost neurons is unlikely. However, this does not rule out
that pro-regenerative cues may be present. Conceivably, the suppression of pro-
regenerative mechanisms should aggravate the phenotype. One such mechanism
may be protective autoimmunity240. Treatment with dexamethasone, a steroid
anti-inflammatory drug, has been shown to dampen the regenerative ability of
the zebrafish central nervous system177,241. It was verified that chronic exposure
to dexamethasone has no influence on cell proliferation in 10-dpf mzLrrk2 brains
(Figure A.14). Therefore, if a regenerative response were underway, this would be
independent of neuroinflammation. Other forms of plasticity might as well come
into play, including transdifferentiation242. Consequently, longitudinal studies will
be needed to search for cell loss in aging fish.

Finally, perturbing assays may reveal aspects of Lrrk2 pathobiology otherwise
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unnoticeable in unchallenged mzLrrk2 fish. In particular, the zebrafish as a re-
generating organism was exploited and the brain reparative potential tested126.
As a result, neuronal regeneration is impaired upon stabbing the adult telenceph-
alon (Figure 5.19). It cannot be ruled out whether this conditional phenotype is
an indirect consequence of the hypoproliferative phenotype observed in the larval
brain. It is possible that the two are merely distinct. Alternatively, the role of
Lrrk2 in the control of cell proliferation may be more general during development
and more specialised later on in adult brains. Such changing role could be reflec-
ted by lrrk2 expression in the brain, which switches from being ubiquitous during
development, to being more confined to specific areas in the adult brain, notably
including the telencephalic neurogenic niche168. In either case, priming or support-
ing mechanisms might be required for Lrrk2 to partake in neuronal regeneration.
Neuroinflammation appears as a promising candidate207. Of note, cultured rat
microglia exhibit increased Lrrk2 expression upon acute inflammation and im-
paired inflammatory response upon Lrrk2 knockdown106. Furthermore, microglia
in BAC human LRRK2 G2019S transgenic mice subjected to stab-wound or laser-
injury display impaired ability to isolate the lesion site243. The zebrafish Lrrk2
may have a similar pro-inflammatory role, as suggested by reduced leukocytosis
in larvae after TPA-induced systemic acute inflammation (Figure 5.12). Because
acute inflammation is required for neuronal regeneration177, a plausible scenario
would then be that impaired production of neural precursor cells combined with
defective microglia in mzLrrk2 fish impede brain repair. Transferred to humans,
impaired LRRK2 function may lead to neurodegeneration through the accumula-
tion of unresolved damages such the ones following traumatic brain injury. Albeit
recognised alone as a risk factor for PD244, traumatic brain injuries are yet to be
examined in conjunction with known genetic factors, including LRRK2 mutations.
Targeted analyses on animal models and epidemiological studies are therefore war-
ranted.

6.4 Concluding remarks

As highlighted in the Introduction, modelling PD is likely a Sisyphean task (see
1.1): strictly speaking, no matter the strategies and efforts, no animal model,
be it mouse or fish or else, will likely ever contract PD. This of course does not
imply good models being impossible to obtain. Albeit necessarily approximate
and incomplete, a good model shall capture key aspects of the complex picture
and be informative enough to be worth exploiting. The kernel here is then how
to describe and interpret findings in the light of the bigger context, and therewith
pave the way for future work.

The results herein presented show that loss of lrrk2 can compromise specific
zebrafish brain functions, including Mao-dependent amine catabolism and regen-
erative capacity upon lesion. Conceivably, similar defects in humans may play a
contributing role in the prodromal stages of PD, thus supporting the pathogenicity
of LRRK2 LOF. At the moment, it is not known how loss of lrrk2 may cause the
above defects. In particular, it is unclear whether the defects in amine catabol-
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ism and mitosis are connected, and to what extent they impact on regeneration.
Future work shall specifically address these issues, with special attention on the
underlying molecular mechanisms.

Admittedly, having no Lrrk2 at all is not the same as having hypofunctional
Lrrk2, as it may (or may not) be in humans. This is not a limitation, though,
but rather an enriching contribution, as the availability of a completely amorphic
standard would serve as a tabula rasa for novel information to stem out of exist-
ing models. Further investigation in this direction is therefore necessary. Along
the same line, the comparison between the complete LOF mzLrrk2 model and
a GOF fish model, for example a Lrrk2 mutant or a humanised knockin, would
be valuable and is worth pursuing. Finally, a reliable LRRK2 knockout model
would provide a valuable tool to titrate LRRK2 inhibitors and test toxicity for
therapeutic application.

To conclude, the zebrafish mzLrrk2 model offers a unique possibility to study
in vivo the consequences of LRRK2 LOF in a regenerating vertebrate system
and, coupled with the well-established high-throughput screening amenability
of zebrafish, provides an outlook for identifying targets of interest in a fish-to-
mammal translational perspective.
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Table A.1: Sites of pathogenic aa substitutions in human LRRK2 and corresponding
residues in zebrafish Lrrk2. Data retrieved from the Parkinson Disease Mutation Data-

base (PDmutDB, http://www.molgen.vib-ua.be/PDmutDB)245,246

substitution corresponding site domainin humans in zebrafish

p.Arg1441Cys
p.Arg1441Gly
p.Arg1441His
p.Tyr1699Cys Tyr1685 COR
p.Gly2019Ser Gly2009 kinase
p.Ile2020Thr Ile2010 kinase

35.10Mb 35.12Mb 35.14Mb 35.16Mb

slc2a13b-001 >
protein coding

slc2a13b-202 >
protein coding

slc2a13b-201 >
protein coding

Genes (Merged 

Ensembl/Havana)

FP102071.7 > CU855815.10 >Contigs

< lrrk2-202
protein coding

< lrrk2-001
protein coding

< lrrk2-201
protein coding

< clpxb-001
protein coding

Genes (Merged 

Ensembl/Havana)

35.10Mb 35.12Mb 35.14Mb 35.16Mb

Protein Coding

 Ensembl protein coding

 merged Ensembl/Havana

Gene Legend

81.71 kb Forward strand

Reverse strand 81.71 kb

Figure A.2: Zebrafish lrrk2 transcripts deposited in Ensembl (GRCz10 genome assembly)
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Figure A.3: Analysis of microglia/leukocyte morphology. (a–a” ’) Maximum intensity
projection of: (a) the original, unprocessed stack of a whole 10-rain showing L-Plastin+
microglia/leukocytes; (a’) the background-subtracted, despeckled and thresholded stack;
(a”) the segmented objects, coloured with Glasbey’s lookup table to render them max-
imally distinguishable from one another; (a” ’) the skeletons of the segmented objects.
(b–o) Microglia/leukocytes are larger in size and more ramified at 5 dpf (b, d, e, h, i,
l, m) and display a similar trend, though less pronounced, at 10 dpf (c, f, g, j, k, n, o).
Considered morphological parameters are: (d, f) volume; (e, g) surface; (h, j) ramifica-
tion; (i, k) average branch length; (l, n) maximum branch length; (m, o) longest shortest
path. (d–o) Plots represent means ± s.d. Statistical analyses: (a–j, l, m) two-tailed
Student’s t-test; (k, n, o) two-tailed Mann-Whitney’s U test. (a–c) Scale bars: 100 µm.
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Figure A.4: Unaltered Mao enzymatic activity in the larval brain.
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Figure A.5: Mao expression is unaffected in 11-mo brains. Mao expression was evaluated
in 11-mo brains by quantifying mao transcripts via RT-qPCR (a) and Mao enzymatic
activity via peroxidase-linked colorimetric assay (b). No statistically significant differ-
ence between mzLrrk2 and controls was detected. Mao activity assay was performed
as previously described154 by S. A. Semenova in the laboratory of P. Panula (Helsinki,
Finland). Plots represent means ± s.d. Statistical analyses: two-tailed Student’s t-test.
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Figure A.6: The hypoproliferative phenotype is worse in maternal-zygotic individuals.
The mitosis rate was checked in the brains of 10-dpf zygotic Lrrk2 mutants (zLrrk2)
derived from heterozygote incross. Although they also display lower pH3+ cell number,
the tendency is milder than in mzLrrk2 individuals and is not statistically significant.
Plot represents means ± s.d. Statistical analyses: one-way ANOVA followed by Tukey’s

post hoc test.
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Figure A.7: Intact S phase of the cell cycle in mzLrrk2 brains. BrdU IHC was carried
out to label cells in the S phase of the cell cycle. To this aim, a 30 min BrdU pulse
was delivered prior to killing. No significant difference between mzLrrk2 and controls
was apparent. Plot represents means ± s.d. Statistical analyses: (anterior, middle)

two-tailed Student’s t-test; (posterior) two-tailed Mann-Whitney’s U -test.
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Figure A.8: Generation of the conditional lrrk2 rescue line. (a) A rescue construct encod-
ing a C-terminally MYC-tagged Lrrk2 fragment (lrrk2 c.3009_7130) containing the cata-
lytic core. (b) The rescue construct was fused via a T2A signal sequence with the mCh-
erry reporter and placed under the heat-inducible promoter hsp70l (Tg(hsp70l:mCherry-
T2A-lrrk2(c.3009_7130)-Myc)tud114) to enable conditional expression. (c) Correlation
between mCherry and MYC IHC demonstrates the ubiquitous expression of the rescue

construct in 24-hpf embryos after 4 heat shock.
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Figure A.9: Reduced proliferation in the adult dorsal telencephalic neurogenic niche. (a)
Sections of 6-mo adult telencephalon comprising the sulcus ypsiloniformis were stained
for PCNA to label proliferating cells in the ventricular zone (VZ) niche. (b, b’) Quan-
tification of PCNA+ cells in the individual subdomains of the VZ reveals a significant
reduction in the posterior part of the dorsal telencephalon (Dp) of mzLrrk2 brains. (b’)
Plot represents means ± s.d. (b’) Statistical analyses: two-tailed Student’s t-test. (b)

Scale bar: 50 µm.
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Figure A.10: Analysis of spontaneous motor activity. Swimming performance at 5 dpf
(a, a’, a”), 10 dpf (b, b’, b”), and 6mo (c, c’, c”). Considered motor parameters are:
phase entry count (a, b, c), duration of swimming (a’, b’, c’), and distance swum (a”, b”,
c”) in each swimming phase. Tukey’s box plots summarise data distributions. Statistical

analyses: two-tailed Mann-Whitney’s U test.
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Figure A.11: Performance of the logistic regression models for spontaneous motor activ-
ity. Diagnostic plots for the best-fitting logistic regression models for recorded animals
at 5 dpf (a, a’), 10 dpf (b, b’), and 6mo (c, c’). (a, b, c) For a probability threshold of 0.5
(horizontal dashed line), each model’s crossover (highest fitted sample below threshold,
vertical dashed line), fitted probability curve (continuous blue line), correct (green; tp,
true positives; tn, true negatives) and false predictions (magenta; fp, false positives;
textslfn, false negatives), sensitivity (tp rate), and specificity (tn rate) are reported. (a’,
b’, c’) Receiver operating characteristic (ROC) curves evaluating the model performance.
Each ROC curve plots each model’s sensitivity against the complement of its specificity
(i.e., the fp rate) at the probability threshold of 0.5. The diagonal represents the random
case: the closer the curve to the left-hand and top borders, the better the model. The

measure of model fit is given by the area under curve (AUC).
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Figure A.12: Analysis of anxiety levels and odour response. (a–d) Analysis of thigmo-
taxis at 5 dpf (b), 10 dpf (c), and 6mo (d). (a) Sample 1-min tracking showing normal
swimming (green) and bursting (red) activities. For analysis of thigmotaxis, the same
recordings for spontaneous swimming activity were used, with the tracking arena divided
into an inner and outer zone, and the time spent in the inner zone was quantified. (e)
Analysis of scototaxis at 6mo. (b–e) Tukey’s box plots summarise data distributions.
(f) Analysis of the response to an odourant stimulus (amino acid mixture) at 6mo. The
preference index was defined as ts−tc

ts+tc , where ts is the time spent in the stimulus side, tc
the time spent in the control side. The plot represents means ± s.d. Statistical analyses:

(b–f) two-tailed Mann-Whitney’s U test.
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Figure A.13: Assessment of overall similarity between samples. (a) Spearman correl-
ation plot based on normalised, ranked gene counts: the higher the correlation, the
darker the cell colour. (b) Heatmap of the sample-to-sample euclidean distance: the
closer the samples, the darker the cell colour. Samples: wt1/2_5/10dpf, wt replicates;

mut1/2_5/10dpf, mzLrrk2 replicates.
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Figure A.14: Chronic immunosuppression does not affect brain cell proliferation in 10-
dpf mzLrrk2. Dexamethasone (Dex) treatment from 1 to 10 dpf has no influence on
the mitosis rate in mzLrrk2 or wt brains compared to methanol (MetOH)-treated con-
trols. Note the persistent reduction of pH3+ cells in mzLrrk2 brains. Plot repres-
ents means ± s.d. Statistical analyses: one-way ANOVA followed by Dunn-Šidák’s
correction for multiple comparisons. Multiple comparisons: wt+MetOH vs. wt+Dex;
wt+MetOH vs. mzLrrk2+MetOH ; wt+MetOH vs. mzLrrk2+Dex; mzLrrk2+MetOH

vs. mzLrrk2+Dex.
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Glossary

6-OHDA 6-HydroxyDopAmine

AD Alzheimer’s Disease

aTIS alternative Translation Initiation Site

BrdU 5-bromo-2’-deoxyuridine

CA CatecholAmine/CatecholAminergic

cDNA complementary DNA

CI Confidence Interval

Comt Catechol-O-methyl transferase

CRISPR/Cas9 Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR
associated protein 9

cTIS canonical Translation Initiation Site

CUBIC Clear, Unobstructed Brain/Body Imaging Cocktails and Com-
putational analysis; see Table 3.4

DAPI 4’,6-diamidino-2-phenylindole, dihydrochloride

DEG Differentially-Expressed Gene

DEPC DiEthylPyroCarbonate; see Table 3.4

DIG DIGoxigenin

DIG-AP DIG-Alkaline Phosphatase conjugated

DMSO DiMethyl SulphOxide; see Table 3.4

DNA DeoxyriboNucleic acid

dpf days post-fertilisation

DUSP DUal Specific Phosphatase

EDAC N-Ethyl-N’-(3-DimethylAminopropyl)Carbodiimide hydrochlor-
ide; see Table 3.4

EDTA EthyleneDinitriloTetraAcetic acid; see Table 3.4

ENU N -Ethyl-N -NitrosoUrea

109



Glossary

ERK Extracellular signal-Regulated Kinase

EtOH Ethanol; see Table 3.4

FDR False Discovery Rate

FFW Fish Facility Water

for forward primer

gDNA genomic DNA

GOF gain of function

GO Gene Ontology

hpf hours post-fertilisation

Hyb+ Hybridisation+ Buffer; see Table 3.4

Hyb− Hybridisation− Buffer; see Table 3.4

i-PrOH Isopropanol; see Table 3.4

IHC ImmunoHistoChemistry

IPA Ingenuity Pathway Analysis

ISH in situ hybridisation

LOF loss of function

LRRK2 Leucine Rich Repeat Kinase 2

MAB Maleic Acid Buffer; see Table 3.4

MABT MAB-Tween 20; see Table 3.4

Mao Monoamine oxidase

MAP(K)n Mitogen Activated Protein (Kinase)n

MEF Myocyte-specific Enhancer Factor

MESAB ethyl 3-aminobenzoate methanesulfonate; see Table 3.4

MetOH Methanol; see Table 3.4

MO Morpholino

mo months old

MPDP+ 1-Methyl-4-Phenyl-2,3-DihydroPyridinium

MPP+ 1-Methyl-4-PhenylPyridinium

MPTP 1-Methyl-4-Phenyl-1,2,3,6-TetrahydroPyridine
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Glossary

MYOD MYOgenic Differentiation

mz maternal zygotic

NBT/BCIP Nitro Blue Tetrazolium chloride/5-Bromo-4-Chloro-3-Indolyl Phos-
phate, toluidine salt

NGS Normal Goat Serum; see Table 3.4

NHS N-HydroxySuccinimide; see Table 3.4

NMD Nonsense-Mediated Decay

o/n overnight

OR Odds Ratio

ORF Open Reading Frame

PB Phosphate Buffer; see Table 3.4

PBS Phosphate Buffer Saline; see Table 3.4

PBST PBS-Tween 20; see Table 3.4

PBSTx PBS-Triton X-100; see Table 3.4

PCNA Proliferating Cell Nuclear Antigen

PCR Polymerase Chain Reaction

PD Parkinson’s Disease

PFA Paraformaldehyde; see Table 3.4

pHH3 phosphoHistone H3

PTC Premature Termination Codon

rev reverse primer

RFLP Restriction Fragment Length Polymorphism

RNA RiboNucleic Acid

RT Room Temperature

RT-(q)PCR Reverse Transcriptase-(quantitative) PCR

s.d. standard deviation

sgRNA single guide RNA

SMARCA SWI/SNF-related, Matrix-associated, Actin-dependent Regu-
lator of Chromatin

SMTLN SMooTheLiN
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Glossary

SSC see Table 3.4

Ta annealing temperature

TAE Tris base, EDTA, Acetic acid; see Table 3.4

TALEN Transcription Activator-Like Effector Nucleases

TCM TriChloroMethane; see Table 3.4

TH Tyrosine hydroxylase

TILLING Targeting Induced Local Lesions in Genomes

TPA 12-O-TetradecanoylPhorbol 13-Acetate

TUNEL Terminal deoxynucleotidyl transferase dUTP Nick End Labeling

wt wild-type
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