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Spreading Failures - Case of the European National Research and

Education Networks

by Goran Murić

A backbone network is the central part of the communication network, which

provides connectivity within the various systems across large distances. Dis-

ruptions in a backbone network would cause severe consequences which could

manifest in the service outage on a large scale. Depending on the size and

the importance of the network, its failure could leave a substantial impact on

the area it is associated with. The failures of the network services could lead

to a significant disturbance of human activities. Therefore, making backbone

communication networks more resilient directly affects the resilience of the

area. Contemporary urban and regional development overwhelmingly con-

verges with the communication infrastructure expansion and their obvious

mutual interconnections become more reciprocal.

Spreading failures are of particular interest. They usually originate in a single

network segment and then spread to the rest of network often causing a global

collapse. Two types of spreading failures are given focus, namely: epidemics

and cascading failures. How to make backbone networks more resilient against

spreading failures? How to tune the topology or additionally protect nodes
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or links in order to mitigate an effect of the potential failure? Those are the

main questions addressed in this thesis.

First, the epidemic phenomena are discussed. The subjects of epidemic mod-

eling and identification of the most influential spreaders are addressed using

a proposed Linear Time-Invariant (LTI) system approach. Throughout the

years, LTI system theory has been used mostly to describe electrical circuits

and networks. LTI is suitable to characterize the behavior of the system

consisting of numerous interconnected components. The results presented in

this thesis show that the same mathematical toolbox could be used for the

complex network analysis.

Then, cascading failures are discussed. Like any system which can be modeled

using an interdependence graph with limited capacity of either nodes or edges,

backbone networks are prone to cascades. Numerical simulations are used

to model such failures. The resilience of European National Research and

Education Networks (NREN) is assessed, weak points and critical areas of the

network are identified and the suggestions for its modification are proposed.
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Chapter 1

Introduction

1.1 Introduction to Networks

The Networks play a significant role in our everyday lives. We are surrounded

by various types of networks, and we are the part of many of them as well.

Omnipresent communication networks such as World Wide Web or cellular

phone networks define the way we live and interact with other people. Fur-

thermore, various real-world entities and processes demonstrate the networked

structure, starting from the systems already designed as a network such as

electric power grids, highway systems, road networks to the less obvious net-

works defined in more abstract space such as social networks or collaboration

patterns between individuals. Other examples of structures which could be

described as networks include organizational networks, business relations be-

tween companies, neural networks, protein interaction networks and others.

Infrastructures consist of various networks such as highways, ports, electrical

and information and communication networks. Urban, regional and national

infrastructures contribute to the improvement in quality of life, supporting the

economic and social growth. Furthermore, all those networks are connected

between each other, making it an infrastructural network of networks. An

example of a critical part of one region’s infrastructure is the communication

network. It is not an exaggeration to say that ICT has become vital to the

functioning of modern-day society. Therefore, the underlying communication

1
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system has the vital role in supporting the variety of improvements which

enhance quality of life, including the increasing the efficiency of economic and

social systems, raising productivity, and conserving energy. The result of the

urbanization, modernization, industrialization, and other forms of progress is

an evergrowing demand for more integrated infrastructures. It subsequently

requires even better understanding of complex dependencies between all in-

frastructural elements.

The first systematic analysis of networks in the form of the mathematical

graph theory originated in year 1735, when Euler solved famous problem of

Seven Bridges of Königsberg1. The solution is considered to be a first valid

proof in the graph theory and therefore in the network theory as its sub-

group. The mathematical foundation of the graph theory paved the way for

its application in some more specialized context, as for instance in medicine

or social science. One of the early usages of the graph theory in medicine is

related to the epidemic spreading problem. In 1927, W. O. Kermack and A.

G. McKendrick [2] created a Susceptible Infected Removed (SIR) model for

epidemic spreading, which became a base for further research in that area.

Social network analysis is one of the areas where network theory is extensively

used. Mathematically based quantitative analysis of social interactions dates

back to the early 1920s. There has been an intensive cross-interaction between

research across various scientific disciplines as sociology, anthropology, psy-

chology and statistics with its own specialized journals as Social Networks [3].

Following the rapid evolution of online based social network platforms, the

research on the topic gained a new momentum. For many companies, de-

velopment of new efficient marketing solutions through influential figures in

social networks became an important aspect of their business. Therefore, the

need for an identification of central individuals within the network revived the

research on centrality measures introduced by Freeman in 1979 [4]. The net-

work communication follows a certain process of mass communication. Thus,

1The Königsberg bridge problem asks if the seven bridges of the city of Königsberg,
over the river Preger can all be traversed in a single trip without doubling back, with the
additional requirement that the trip ends in the same place it began. This problem was
answered in the negative by Euler [1].
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finding the ”influential” or ”central” person in the network in order to feed

them with the information for further transfer to ”followers” is of a great

practical value [5].

1.1.1 Terms and notations

In order to deal with the topic of network resilience, some of the most com-

monly used terms and notations from the network science are listed. The

following terms are mentioned multiple times throughout the thesis, hence

the proper definition for each of them is necessary. Some of the definitions

are a part of a general knowledge from graph theory and some of them adapted

from the well known works of Newman [6] and Diestel [7]:

Vertex/Node: The fundamental unit of a network which represents a single

non-dividable entity.

Edge/Link : The connection of two vertices. It is referred to as a link in

computer science. The edge is usually depicted as a line in graphical repre-

sentation of the network.

Directed/Undirected : An edge is directed if the goods or information runs

in only one direction (such as a one-way road), and undirected if it runs in

both directions. Directed edges are often represented as a sporting arrows

indicating their orientation. An undirected edge might be represented as a

directed edge with two directions. A graph is directed if all of its edges are

directed.

Component : The component to which a vertex belongs is a set of vertices that

can be reached from it by paths running along edges. In a directed graph a

vertex has both an in-component and an out-component, which are the sets

of vertices from which the vertex can be reached and vertices which can be

reached from it.
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Degree: The number of edges connected to a vertex. Note that the degree

is not necessarily equal to the number of vertices adjacent to a vertex, since

there may be more than one edge between any two vertices. Let G = (V,E)

be a non-empty graph. The set of neighbors of a vertex v in G is denoted by

NG(v), or briefly by N(v). The degree of a vertex v is the number d = |E(v)|
of edges at v. This is equal to the number of neighbors of v. In directed

networks there is a difference between indegree din(i), showing the number of

immediate links directed towards the node i and outdegree dout(i) counting the

number of links directing away from the node i. For the undirected networks

there is one degree measure d(i) = dout(i) = din(i).

Paths : A path can be considered as any possible way from one vertex to

another which might include other edges and vertices but without cycles. A

path is a non-empty graph P = (V,E) of the form

V = {x0, x1, . . . , xk} E = {x0x1, x1x2 . . . , xk−1, xk},

where the xi are all distinct. The number of edges in a path is its length.

Geodesic path: A geodesic path is the shortest path through the network from

one vertex to another. Sometimes referred to as the geodesic distance it is the

number of edges in a shortest path. Note that there may be and often there

are more than one geodesic path between two vertices.

Cycles: If there is a path which starts and ends with the same vertex, that

path is considered to be a cycle. Cycles are sometimes called circuits when

closed path is specified in cyclic order but no first vertex is explicitly identified.

Diameter : The diameter of a network is the length, measured in number of

edges, of the longest geodesic path between all pairs of vertices.

Centrality : Centrality measures in general try to identify the most important

(central) vertices in the graph. Centrality concepts were initially developed

in social network analysis. There are many centrality measures in use, and

each of those measures has its value in certain applications. It is common
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thing that centrality which is optimal for one application is often sub-optimal

for another. That is the main reason for an existence of numerous different

centralities: Degree centrality, Closeness centrality, Betweenness centrality,

Eigenvector centrality, Katz centrality, Alpha centrality and others. For more

details about the centrality measures, see Section 2.2.

Connected graph: If there is a path between every pair of vertices the graph

is connected. In a connected graph, there are no unreachable vertices.

Edge weight : Each edge of a graph can have an associated numerical value

called weight. In practice, the weight or cost of an edge is a measure of the

length of a route, the capacity of a line or the cost required for data transport,

etc. Usually, the edge weights are non-negative values from the set of integers

or real numbers between 0 and 1.

Node weight : Similarly to the edge weight, an assorted numerical value to the

node (vertex) is called node weight. The weight of the node could represent

the capacity of the node, routing priority, etc.

Clustering coefficient : A clustering coefficient is a measure of the degree to

which nodes in a graph tend to cluster together. In directed networks the

clustering coefficient Cn of a node n is calculated as Cn = ln/(kn(kn − 1)),

where kn is the number of neighbors of n and ln is the number of connected

pairs between all neighbors. The clustering coefficient represents the ratio

between the number of edges between the neighbors of n and the maximum

number of edges between the neighbors of n.

Component : The component or connected component is a subgraph of a

greater graph in which all vertices are connected and none of them is con-

nected to any of the remaining vertices from the greater graph.

Giant component : A giant component is a connected component of a graph

which size is relative and constant compared to the greater graph.
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1.1.2 Communication networks

At the beginning of the 20th century, the network theory has been primarily

in use in social sciences and medicine. Technological progress introduced the

development of interconnected communication devices such as large telephone

networks and the computer networks. The expansion of large-scale computer

networks and finally the Internet has put a great challenge to the scientific

community dealing with the network theory. The requirements for more so-

phisticated and advanced tools emerged. The research and development in

the field of network theory, together with the advancement in electronics have

simultaneously led to the highly interconnected world as we know it today.

The pace of the urban and regional development is highly dependent on the

telecommunication infrastructure. Setting up a reliable telecommunication

networks goes hand in hand with all other infrastructural projects. Nowadays,

in the high-tech society, people’s lives have become more and more dependent

on communication networks, either for business or leisure purposes: all finan-

cial transactions are conducted using telecommunication networks, industrial

processes are dependent on information exchange, science is unimaginable

without the cluster computing over the network. The society and communi-

cations technology are tied up like never before. The affiliation is so ingrained

that society’s daily procedures depend on the reliable communications such

as railway signaling systems, traffic control and many other vital services.

Moreover, this dependency is expected to grow considering the new emerg-

ing technologies and services such as smart-cities, cloud computing, e-health,

the internet of things, and MANETs [8]. The region development is highly

associated with its communication infrastructure. For this reason, commu-

nication networks are considered one of the critical national infrastructures

upon which society depends on [9]. Hence, it is imperative that communica-

tion networks should be robust enough to withstand failures and designed to

respond adequately to damages and attacks [10].
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1.1.3 Backbone networks

One of the most important components of all telecommunication networks

is its backbone. A backbone network, or network core, is the central part

of a telecommunication network which provides various services to customers

who are connected by the access network. Backbone networks are designed to

provide reliability and performance of large-scale communications across large

distances. There is a huge amount of digital information created each second,

and thus the demand for high-capacity data storage and processing locations

constantly rises. These networks usually exploit optical technology to carry

huge aggregated data as optical networks have demonstrated a capability to

satisfy the demands. All higher layer services are highly dependent on the

backbone network, as they are unable to operate without the physical links

which backbone networks provide.

The backbone network corresponds to the lowest level physical topology which

consists mostly of fiber cables2 and all devices necessary for routing the high

loads of traffic such as ADMs3, layer-2 switches4 and core routers5. The

primary focus of previous studies has been on the logical aspects of the inter-

net [11]. Since the backbone networks operate mostly on the lower OSI layers,

the topic of the network resilience was often neglected. However, considering

the fact that all higher level network services depend on backbone network,

thus the study of physical connectivity is an important area of the research,

especially modeling challenges dependent on the topology and geographical

distribution of the network, such as power failures and severe weather condi-

tions [12].

2Copper cables are still in use in certain networks, but mostly due to the traditional
legacy. The backbone cabling is mostly fiber already.

3An add-drop multiplexer (ADM) is an element of an optical fiber network which com-
bines, or multiplexes, several lower-bandwidth streams of data into a single beam of light.

4Layer 2 switches work on the data link layer of the OSI model.
5A core router is designed to support multiple telecommunications interfaces of the

highest speed and must be able to forward IP packets, which means it can operate on the
network layer of the OSI model.
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Regarding the amount of complexity and scale of optical backbone networks

and the mentioned dependency, in the event of a disaster, communication net-

works might suffer huge data loss and interruption of high-bandwidth chan-

nels, causing disruptions of essential services for weeks and severely complicate

recovery operations. These outages may affect many applications/services, ir-

respective of the importance of the service or sensitivity of the carried data.

Therefore, it is crucial to understand the vulnerability of backbone networks to

disasters and design appropriate countermeasures and risk mitigation strate-

gies [13].

1.1.4 Complex and complicated systems

In the literature which deals with networks theory, the term complex networks

often appears. Naturally, the questions emerges: ”What is complex network

exactly?”, ”Why the networks are referred to as complex?”.

In order to answer those questions, it is necessary to clarify the main dis-

tinction between the complex and complicated systems. Let us consider a

simple system, for example a spring. The behavior of the spring is described

by well-known laws (equations) and therefore it is fully predictable. We can

easily predict the position or a shape of the spring in any given moment. To

spice up things a little bit, we can add one more spring on top of the first

one. The task of describing the behavior of such system is not that simple any

more. However, it is still possible just with more effort. Adding more springs

makes the analysis of such a system increasingly harder up to the point when

finding analytical exact solution becomes impractical. Then we can consider

the resulting system to be complex.

Another example is a system with more elements working together, for exam-

ple a modern car, with all of its subsystems. It is very hard to assemble all

parts and form a controllable system with such a specific function as driving.

Modern car could be considered as a complicated system. But it is still not a

complex one. It is not a complex system, because the behavior of car is still
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highly predictable. If certain part of the engine is broken or the wheels are

missing we know it will not be able to move any more.

The system becomes complex when we are not able to predict its behavior

with given certainty anymore. The complex systems usually emerge as the

spontaneous outcome of the interactions among many constituent units [14].

This implies that by observing a single constituent element one would not

be able to describe the system as a whole, since its self-organizing principles

are formed according to the collective and unsupervised dynamics of many

elements. It is not easy to come up with a single definition of complex systems.

Amaral and Ottino suggested a following definition: A complex system is a

system with a large number of elements, building blocks or agents, capable

of interacting with each other and with their environment [15]. The main

difference between complicated and complex system is that former are planned

following certain blueprint where each element has its own purpose and latter

is made by evolving without the centralized plan.

The majority of real-world networks fall within the scope of the definition

of complex systems, as they usually grow in time following complicated, not

structured, decentralized rules. Measuring even the simple properties of com-

plex systems could be challenging. Therefore, predicting more complicated

behavior or measuring the resilience of such systems could be extremely de-

manding. Systems with a huge number of components interacting trivially

are explained by statistical mechanics, and systems with precisely defined

and constrained interactions are the concern of fields like chemistry and engi-

neering. In so far as the domain of Complex Systems Science overlaps these

fields, it contributes insights when the classical assumptions are violated [16].

1.2 Resilience from Engineering Perspective

The resilience is a term usually used to describe an ability of a certain entity

to bounce back or recover from a shock. Therefore, it is used throughout time
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across many scientific disciplines to explain the particular process within the

area of its expertise. It is often used in psychology to describe the complex

processes within the human mind when the individual or a group of people

recover from a trauma. It is used in economy as well, as markets which recover

fast from a crisis are referred to as a resilient.

According to the [17], the introduction of the resilience to the scientific world

came through the seminal work of Holling named ”Resilience and Stability of

Ecological Systems” in 1973. However, the quick search could show us even

older papers dealing with this term. For example, the work of Zakharov6

published in the U.S.S.R. in 1965 deals with the resilience in polymers. In

recently published work, D.E. Alexander [18] was dealing with an etymology

of the word resilience through the scientific history. Although the term has

been existing for many centuries and was used in various but similar contexts

in art, literature, law, science and engineering, the work of Holling brought

it to prominence in the modern scientific community, especially within the

ecological sciences.

Even if the meaning of the term itself is clear for the most of the people, there

are various interpretations of the resilience regarding the scientific area. Nat-

urally, the psychologist would have a different approach from the economist,

as the people behave in different way from the markets. Anyway, there are

some underlying principles behind this concept that should be accepted uni-

versally regardless of the specific scientific area. The engineering perspective

to the system resilience in its essence is trying to establish this ubiquitous

principles, which could be adapted and expanded regarding the needs.

The most general engineering view of the resilience could be regarded as a

resilience of a system. By observing a hypothetical system with measurable

inputs and outputs throughout the time, we should be able to measure its re-

silience. Measuring the resilience could be performed by studying the system’s

6S.K. Zakharov, L.I. Medvedeva, I.A. Arbuzova, Ye.V. Kuvshinskii, The softening,
high-elastic resilience and structure of crosslinked copolymers of methyl methacrylate and
styrene with diolefinic monomers, Polymer Science U.S.S.R., 1965
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delivery function over time. But, in order to measure it, we have to define it

first. A time dependent quantifable metric for a general system resilience is

introduced relatively recently in the work of Henry and Ramirez-Markez in

2012 [17]. Their initial formulation of resilience comply with the basic concept

of the word ”resilience”, which describe the ability of a system to ”bounce

back”, and it is interpreted as a ratio of recovery over loss at time. The basic

formula is as following:

<(t) = Recovery(t)/Loss(t) (1.1)

Where <(t) is a resilience of a system at time t.

From the resilience perspective the system S has three main states in which

it can operate:

• S0 - Original state (undisrupted)

• Sd - Disrupted state

• Sf - Stable recovered state

Furthermore, there are two main events responsible for triggering the mid-

processes that will lead the system from one state to another, and those are:

a disruptive event and resilience action.

Measuring the system as a whole actually has no practical meaning. Hence

the specific function of a system should be measured, and the resilience of

system should be evaluated based on the specific values of a system function

over time. The quantifiable ”figure of merit” should be selected, so it could

represent the main operational level of a system. The system service function

or system delivery function ϕ(t) describes the behavior of the system over

time as any state of S should be represented by the value of ϕ(t) at time t.

For example, ϕ(t) could describe traffic flow, the number of active nodes or a

delay.
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t0 te td ts tf
time

ϕ(t)

ϕ(t0)

ϕ(td)

ϕ(tf )

Disruptive
event ej

Resilience
action

Reliability Survivability Recoverability

Figure 1.1: System’s disruption and bounce-back. A change of
the system’s state transition over time in the case of a disruption. The
value of a system’s service function ϕ(t) varies over time. It deteriorates
after a disruptive event ej and bounce-back after the resilience action.
Three main dimensions of the resilience which affect different phases of the
process are identified: reliability, survivability and recoverability (adapted

from [17] and [19]).

In order to quantify the resilience of a system, the system service function

ϕ(t) of a hypothetical system changing over time is depicted in Figure 1.1.

It is shown how the original system state is getting disrupted by a certain

disruptive event ej in time te causing the system function ϕ(t) to degrade

during the period of length td − te. The system enters the disrupted system

state, where the system service function value remains on the level ϕ(td).

The systems stays in this degraded state until the moment ts, when resilience

action is carried out. The resilience action restores the system to the new

equilibrium level of ϕ(tf ). The final value of observed system service function

is not necessarily the same as the value on the beginning (before the disruptive

event). The value of ϕ(tf ) could be lower or even higher, because the resilience

action could bring the system to another stable operational level. According to

this description, the basic general formula for a system resilience is derived [17,

19]:
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<F (tr|ej) =
ϕ(tr|ej)− ϕ(td|ej)
ϕ(t0)− ϕ(td|ej)

, tr ∈ (ts, tf ) (1.2)

This approach could be considered as a simple one, as we observe how a single

service function of a system changes over time. Ideally, we would like to have

one simple measure < preferably bounded in the range 0 ≤ < ≤ 1 which

could be able to fully describe the resilience of a system. Unfortunately, the

systems are not always simple, and most of the real world systems have two

or more service functions. Those functions could be highly dependable, and

measuring the single one would not provide an objective assessment. Thus

the multicriteria analysis have to be used to estimate the real resilience level

of a system with more than one dependable service functions.

Furthermore, the resilience could be modeled as a two-dimensional state space

where the vertical axes represent the measure of a system function when the

operational state is challenged. In Figure 1.2 it is shown how the system

goes from the acceptable function level S0 to the degraded level Sc. Through

the process of remediation, service function is improved to the level Sr, and

finally recovered back to S0. A remediation is triggered by an alarm which

turns on when the value of the service function becomes too low. For example

a remediation action could be a change in the routing policy in the case of

the communication network congestion, or modification of the firewall con-

figuration in the cases of DDoS attack. In the case of the latter, the newly

configured firewall blocks the traffic considered to cause the denial of service.

In this approach, the resilience of a particular system is measured as an area

under this trajectory [20].
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Figure 1.2: Resilience state space. The resilience is modeled as a
two-dimensional state space. The system moves from the initial function
level S0 to the degraded level Sc. Through the process of remediation,
service function is improved to the level Sr, and finally recovered back to

S0 [20].

1.2.1 Four Dimensions of Resilience: Reliability,

Vulnerability, Survivability, and Recoverability

Besides the three dimensions of the resilience depicted in the Figure 1.1: re-

liability, survivability, and recoverability, a vulnerability is additionally rec-

ognized. Reliability is defined as ”the ability of a system or component to

perform its required functions under stated conditions for a specified period

of time” [21]. In the absence of the significant external or internal disruptive

event, the system in the period of te − t0 is characterized by its reliability.
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Reliability is highly coupled with the availability of a system - as reliability

increases, so does availability. Most generally, the availability is described as

a ratio of uptime of a system to the sum of the uptime and downtime.

In fact, the reliability (and so the availability) describes the system while it

is in a stable (undisrupted) state. Although the system behavior after the

disruption highly depends on its previous state, the measure of the reliability

has no significant influence in the assessment of its resilience. The main reason

is that reliability is actually the measure used for regular or expected behavior,

and the resilience comes after the irregular, unexpected event.

Vulnerability shows in which extent the system is unable to withstand the

negative effects of the hostile environment. On the other hand, survivability

quantifies the ability of a system to ”survive”, that is to maintain operational

level of system function when the system could be recognized as still func-

tional. The survivability is very similar to the notion of robustness, which is

often used in the literature as a synonym. Although the vulnerability and the

survivability are two distinctive concepts, they are highly related. In general,

one can say that vulnerable system has lower chance of survival. In terms of

previously described concept of resilience and referring to the Figure 1.1, the

vulnerability and survivability levels are relevant for the time period td − te.

Finally, the recoverability of a system quantifies the ability of the system to

get back to the state prior to disruption or to the next equilibrium level. In

the Figure 1.1 the time span tf − td is relevant for the recoverability. In (1.2)

the value tr belongs to the set (ts, tf ). In the case when ϕ(tr|ej) = ϕ(td|ej),
the minimum value of <F (tr|ej) is reached, and it equals 0. In this case, the

system has not recovered and there is no ”bounce back” effect. On the other

hand, if the ϕ(tr|ej) = ϕ(t0), the resilience value <F (tr|ej) equals 1, which

means that system has fully recovered.
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1.2.2 The resilience as a function of time

In previous chapter, to quantify the ability of the system to get back to the

previous state, the single measure < is proposed. The < actually compares

the values of system service function in regards to the initial value: prior the

resilience action and at the certain point of time. One could intuitively argue

if this fairly simple measure could describe the broad concept of resilience

over the time. In (1.2) the time dimension is not considered, although the

time in which system reaches the desired level is of a certain importance.

More precisely recoverability does not quantifies just an ability but the speed

in which the system will get back to the desired state. The recoverability

is directly connected to the measure of the resilience as quickly recoverable

systems could be considered as more resilient. Since the recoverability is

regarded as a speed of returning system back to the previous state, the time

span tf − td is important for the assessment of the recoverability. As the

difference between tf and td becomes smaller, the time needed for a system

to fully recover is shorter.

Furthermore, the( 1.2) does not include other time-related aspects of the re-

silience as it considers the resilience exclusively as a measure of recoverability.

The important point it misses to describe is a temporal process succeeding

the disruptive event. Right after the disruptive event at the moment te, the

system function starts deteriorating until it reaches the lowest value ϕ(td|ej)
at the time td.

Let us consider two systems F1 and F2 with observable system functions ϕ1

and ϕ2. The system functions values of both systems at the time te are equal.

A disruptive event ej occurs at the same time, affecting both system equally

at the initial moment. Both system functions start to decline until they reach

the minimum value of ϕ(td1) and ϕ(td2) at the time td1 and td2 respectively.

In the first hypothetical situation ϕ(td1) > ϕ(td2) and td1 = td2, that is the

system F1 resists the full deterioration of a system function. Therefore it

positions itself in a state where further restoration actions are able to restore
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the system function value faster. Second situation is when ϕ(td1) = ϕ(td2)

but td1 > td2, that is the system function of F1 deteriorates slower and gives

more time to the possible countermeasures which will stop degradation. In

both hypothetical circumstances, we can say that system F1 is more resilient

from a system F2. Although this cases are not in the scope of (1.2), this

basic equation gives us a solid mathematical basis for quantification of certain

aspects of resilience.

1.3 Network Resilience

Communication networks have become essential part of the people’s daily

routines and therefore modern society largely relies on its proper functioning.

From the geographical point of view, the communication networks could be

designed to provide services on a local as well on the global level. Generally,

the larger networks (networks which cover wider geographical area and there-

fore connecting more users) are considered more important (critical) than

smaller ones. The most prominent example of most widely used communi-

cation network is the global Internet. The more detailed justification of its

importance nowadays become superfluous. It is worth mentioning that Inter-

net is considered as a part of national critical infrastructure and today, when

the probability and severity of natural disasters and other threatening events

have increased, the protection of communication networks is on the national

agenda in many countries [22]. On the other hand, an importance of numerous

smaller networks on national or regional level shouldn’t be underestimated.

There are many private or public owned networks independent from global

Internet which provide various services like national telephone networks, mili-

tary networks or communication networks connecting universities or scientific

institutions.

The network could be generally considered as a system with its measurable

system functions. The function of a communication network is transfer of
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data, hence the most common measures of a system function of a communica-

tion network are related to the data quantity transferred through the network.

However, the network resilience in general is usually not assessed by a single

variable. Multiple control and state parameters of a multi-dimensional com-

plex system make the prediction of the system’s resilience difficult. However,

there is an analytical framework which allows us to collapse the behaviour of

different networks onto a single universal resilience function by systematically

separating the roles of the system’s dynamics and topology. The formalism

proposed in [23] reduces Aij into an 1D system. It is shown that the patterns

of the resilience depend only in system’s intrinsic dynamic, regardless of the

specific topology or weights. All the parameters are condensed in a single

βeff and indicate that density, heterogeneity and symmetry are the three key

factors to define the system’s resilience. This approach provides a tool for an

accurate prediction for the system’s response to various perturbations. Here,

some of the most important measures which could serve as a system functions

of a communications networks are discussed.

Throughput. The amount of data which could be successfully delivered

over the communication network per certain time slot is called throughput.

Throughput is commonly measured in amount of data (bits) per second, or

in data packets per time slot. The data may be delivered over the physical

or logical link and it has to pass through certain number of links and nodes.

Therefore, the throughput can be measured in the node or on the link. Ad-

ditionally, one can measure the throughput of the full path from node n to

node m or an average throughput of the whole network, etc.

Connectivity. A graph (network) is connected if there exists at least one

possible path between any pair of nodes, which means that each node can

communicate with any other node in the network. In disconnected graphs,

this condition is not met. Disconnected graph is consisted of two or more

independent connected graphs. The measure called connectivity is defined as

a minimum number of elements (nodes or edges) which can be removed to

make connected graph disconnected. This measure does not say much about
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the throughput or possible congestions in the network. The measure which

largely coincides with connectivity was a subject of one of the earliest math-

ematical proofs in the network theory. In year 1927 Karl Menger showed

that the number of node-independent paths between two vertices is always

exactly equal to the minimum number of other vertices in the network that

must fail in order for those two vertices to become disconnected from each

other [24, p. 424]. Let us consider a path P1(V1, E1) from node i to node j in

certain network. The path consists of sets of nodes V1 and links E1. If there

is another path P2(V2, E2) which does not share any common element with

path P1(V1, E1), except the first and last node, those paths are described as

node-independent. The number of node-independent paths in certain network

could be used as a indicator of its robustness. This is almost exactly the same

as a minimum number of vertices which has to fail in order to make a net-

work disconnected, just applied to the particular pair of nodes. Sometimes,

the simple connectivity is not enough to explain robustness or survivability

of the real world networks. Therefore, some other measures are introduced

which focus particularly on spatially correlated or region based failures within

the network. The region based connectivity is introduced as a measure which

shows the minimum number of nodes (links) that have to fail within any

region of the network before it is disconnected. This measure takes into ac-

count not only the topology, but the network’s geometry. As an extension of

the region based connectivity, there is region-based component decomposition

number (RBCDN) which measures the number of connected components in

which the network decomposes once all the nodes of a region fail [25].

Network diameter. Another quantitative measure of topological robustness

of the network is network diameter. Diameter of a network is defined as a

length d = maxu,vd(u, v) of a longest shortest path between any two vertices

in the network. The average diameter is sometimes referred to as a diameter.

Average diameter is described as an average length of the shortest paths

between any two nodes in a network. If the diameter d is smaller, the nodes

are able to communicate between each other more easily. Larger number of

nodes does not necessarily mean the network has a large diameter.
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Additional measures. Even the throughput and connectivity could be con-

sidered as the most important measures of network’s operational function,

there are other measures which could provide additional information about

the network itself. These measures could be particularly important in the

times of the disruption and undesired events. For example, the number of ac-

tive nodes after the disruption, the average congestion in the network or the

number of infected nodes in the case of malicious virus attack. Particularly

important measure is a size of the largest connected component or the largest

connected subgraph. If the node in the network is damaged (removed), it is

usually considered that all associated links are broken. Sufficient number of

such damages could make one initially connected graph disconnected, which

means that the graph is split into two or more smaller pieces (subgraphs).

The simplest measure of such an impact of the network is the relative size of

the largest connected component remained from the network Sf/S0 where S0

is the original size of the network before the disruption. When Sf � S0 the

network has been broken into many small parts and therefore is not functional

any more [14, p. 118].

1.4 Introduction to Network Failures

In the applied network setups typical failure events include cable cuts, hard-

ware malfunctions, software errors, power outages, natural disasters (e.g.,

flood, fire, and earthquake), accidents, human errors (e.g., incorrect mainte-

nance) and malicious physical/electronic attacks [10]. Since the networks are

mathematically modeled as a graphs G(V,E) with V vertices and E edges,

all ”real world” threats should be modeled in the way that the corresponding

graph is damaged appropriately. For example, the single software error would

be mapped to the model as a removed node or as a node with changed param-

eters. Natural disasters affect relatively large areas, and therefore disruptions

like that are modeled as a geographically correlated failures. Usually, for such

type of failures, a group of geographically close nodes are removed from the
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graph. On the other hand, the malicious software attack on a network does

not imply the removal of nodes in the mathematical model, but rather chang-

ing the states of a node in accordance to the specific spreading rule. The real

impact of a certain damage on the network could be assessed by periodical

evaluation of network function. There are various types of possible strategies

for network damaging7. Regarding the type of the failure and the nature of

the network it has to be decided which system function from the Section 1.3

should be used.

Single failure event means that only one element (link or node together with its

associated links) is removed. Then, the certain network function is measured

and the impact of node or link removal is assessed by the ratio of measured

function before and after the disruption. Single failure could occur randomly,

or could be a result of a targeted attack. The impacts of a random and

targeted failure are usually very different. Albert et al. [26] were considering

the damage to the network made by removing certain nodes, randomly at first.

Then, they started removing nodes in a targeted manner in order to simulate

the intentional malicious attack. For the latter, they chose the nodes according

to their centrality. As a measure of network function they use the average

diameter and size of the largest component of the network. Two types of the

networks were separately assessed: Erdős-Rényi random graph and scale-free

networks. The results of the experiment show that scale-free networks are

more vulnerable to the deletion of high-degree vertices in comparison to the

random graph whose vulnerability to vertices removal is almost independent

on the type of nodes chosen to be removed. Therefore, the targeted attacks

could lead to a rapid collapse of many ”real world” networks which usually

do not follow the random topology. The reason for that is network design

which usually follows the principle of building the hubs, very central nodes

with high degrees.

7Note that ”damaging” network does not necessary mean a harmful activity. If we
want to protect the network from possible malicious software attack and we are able to
immunize certain nodes, the immunization would be considered as a removal of nodes from
the network. In this case, the intention is to slow down the unwanted information spreading.
On the other hand, the legitimate data should be transferred as quickly as possible.
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Usually, single failures occur regularly following certain statistical distribu-

tion. The majority of networks are designed in a way that they are resilient

to a certain frequency of failures. Despite the random expected failures, the

network should remain functional. For example, a network could be designed

to withstand just a single failure at the time. If the frequency of failures is

f = 1/t, the nodes should be designed in a way that each failed node has to re-

cover its functionality in less than t seconds. Otherwise, a second node might

fail, which could lead to the unexpected cascading phenomena as covered in

Chapter 5. This type of failures falls within the group of multiple uncorre-

lated failures. Those failures are named uncorrelated if any node might be

affected following the common distribution and if the failure of one node does

not affect the failure of another. Therefore, it is obvious that designing the

networks which is resistant to the multiple uncorrelated failures requires more

resources as there is a demand for more redundant links or additional nodes.

Another type of failures are multiple correlated failures. In the case of the

uncorrelated failures, the failure of one network element has no impact on

failure of another and all failures are not a result of a common event. On the

other hand, when multiple network elements go down simultaneously and it

is caused by a single common undesired event, those failures are considered

to be correlated. The main causes of correlated failures are natural disasters,

such as floods, earthquakes or storms. Natural disasters tend to be focused

on a certain geographical area and therefore the failures they cause are geo-

graphically or spatially correlated.

1.5 Spreading Failures

Single failures within the communication networks are common, and most

of those networks are designed to sustain such type of failures. Even the

multiple random failures do not make significant damage on modern real world

networks. One example is the Internet. A small fraction of network elements

within the Internet are always non-functional. Still, it keeps on functioning
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Figure 1.3: The level of damage in the network caused by the
various attack strategies. The majority of man made networks show
high level of robustness against the random failures, but high vulnerability

to targeted attacks.

despite this level of failure [24]. Targeted attacks, however are the bigger

issue, and could cause some significant outages. Beside these types of failures

which are caused mostly by some external factor (e.g. undesired event causes

one or more nodes to stop working), the failures could be a result of another

failure within the network. Only small initial shock, like the breakdown of

a single network element could lead to the effect of avalanche and cause the

whole communication system to collapse [27]. Those failures which have a

tendency to spread through the network are spreading failures and they could

be both cascading failures or epidemics. In the Figure 1.3 the comparison

of the potential damage to the network made by certain type of failures is

depicted.
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1.5.1 Cascading failures

The initial failure caused by a single undesirable event or by multiple corre-

lated or uncorrelated events usually causes the chain of failures within the

network, which is defined in the literature as a cascading failure. The cas-

cading failures could be caused either by the malfunction of node(s) (caused

by unintentional human error, random failure, natural disaster. . . ) or inten-

tional malicious electronic attack on network components which would lead

to the erroneous element behavior. In communication networks as well in

other networks (electrical grids or transport networks) the goods or data is

transported through links and nodes which are limited by their own capacity.

When failure occurs, the traffic is usually routed through secondary paths.

The rerouting subsequently increases the load of associated elements in the

network. For too large failure, alternative routes are not able to sustain an

additional load, and associated elements become unresponsive. In this case,

the failure would spread through the network causing large number of nodes

to operate improperly. Furthermore it would consequently lead to the further

congestion of the network and finally be manifested in a way that make the

network not meeting its service specification or it might result in a complete

network outage. More on modelling of cascading failures could be seen in

Chapter 5.

1.5.2 Epidemics in networks

An object, commodity, substance or an idea could spread across the network

in many ways. For example, the gas is transported through the pipes. In

that case, the good (gas) is shipped from one point to another and the same

good does not exists any more at its place of origin. For modeling this type of

propagation, sometimes referred to as conservative flow, we can use diffusion

equation or some other equation which describes the similar phenomena. On

the other hand, in the case of the communication networks, the ”good” which

is transported is data. However, digital information is rather copied than
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moved. Therefore, the conservative flow models are not suitable for this kind

of propagation. Beside the simplest model known as breadth-first search,

there are several well known models for representing the epidemics and those

are described more thoroughly in Chapter 2.4.1. The data which spread across

the network uncontrollably might be unwanted, and that is particularly the

case with the malicious software inserted in the network or the virus within

the population. In that case, researchers and practitioners are interested in

designing the networks in such a way that epidemics do not escalate quickly.

Nevertheless, some epidemics are desired, for example a quick spread of news

through the large social networks. No matter which model is used, a failure

is modeled as a ”contagion” spreading over the links of a complex network,

altering the ”states” of the nodes as it spreads, either recoverable or otherwise.

1.6 Scientific Contribution of the Thesis

The Thesis deals with a phenomena of spreading failures. The main scien-

tific contribution is twofold. First, the spreading failures are discussed from

the system theoretic point of view. A Linear Time-Invariant (LTI) system

approach is used for modelling epidemics and identification of the influen-

tial spreaders. The topic of LTI system theory and spreading phenomena in

complex networks is analyzed in Chapter 4.

Epidemics. The term epidemic is often used to describe the spread of a

virus within the human population. However, various processes in complex

networks show a similar dynamic behavior. Usually the epidemics are an-

alyzed in order to control or limit the infection. Sometimes, however, the

goal is just the opposite, e.g. to boost the spread of an information through

the communication network. There is a number of models which consider

the population to be homogeneous [2, 28], where the connectivity (degree)

of all nodes is considered to be equal. However, real networks such as social

networks or autonomous system (AS) networks deviate from such homogene-

ity [29]. The dynamic of the epidemic is defined mostly by the connectivity
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pattern, especially in networks with a power law degree distribution [30]. For

some networks where the topology is fully disclosed, epidemics can be mod-

eled without assumptions on the connectivity pattern and infections can be

simulated on the actual topology. Usually, an agent-based method is used for

the simulation of an infection. Here, the alternative approach, which utilizes

the LTI systems toolbox is presented. Based on the paper ”On modeling epi-

demics in networks using linear time-invariant dynamics” [31] it is shown as

effective method for evaluating epidemic dynamics analytically in every time

step, omitting agent-based simulation.

Influential spreaders. In order to control or prevent some of the spreading

processes, it becomes an imperative to understand the role of certain network

elements. Therefore, identifying the most important nodes in regard to the

spreading phenomena emerged as an important area of research [32–34]. The

solution presented in this Chapter applies the tools from the systems theory

to identify the most influential potential spreader in the network. Based on

the paper ”Using LTI Dynamics to Identify the Influential Nodes in a Net-

work” [35] the proposed Node Imposed Response (NiR) accurately evaluates

node spreading power.

Secondly, the resilience of the European National Research and Education

Network (NREN) backbone is assessed against the cascading failures. The

NREN has a limited capacity of network elements such as nodes and links.

Therefore, it is susceptible to cascading failures, which can originate in one

point and spread through the network causing numerous breakdowns. In

Chapter 5, the behavior of the NREN is examined under various attack strate-

gies: individual failure, multiple simultaneous failures and geographically cor-

related failures. The external risks to the network are also assessed with the

emphasis to the seismic risk. Furthermore, the protection strategies including

active and passive ones which mitigate the cascade are proposed.



Chapter 2

Theoretical Background

The topic of network resilience is broad, interdisciplinary and it combines

several approaches. The literature deals with assessment of the resilience1 of

the whole network, assessment of the importance of certain network elements

such as nodes or links in terms of network resilience, evaluation of the metrics

used in network characterization and finally the methods for addressing the

issues detected by the assessments. The network resilience is strongly related

to the epidemic spreading modeling and cascading failures.

The literature review presented here represents the most relevant findings re-

garding the network resilience with emphasis on those dealing with epidemics

modeling and cascades. All of these methods were built on the top of the

graph theory, so the most notable literature on that topic is listed here as

well. Also, the papers that deal with the topic of percolation theory and

centrality measures in general are listed and reviewed.

2.1 Modeling Networks

In order to appropriately examine the network behavior both analytically

and numerically, the proper mathematical model should be used for network

1The resilience is often presented as a measure of vulnerability, reliability, survivability
or the robustness. Although all of these terms are not the synonyms for the resilience, they
present the subset of broader resilience concept.

27
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formation. Since the real-world networks (communication networks, social

networks, transportation networks, neural networks. . . ) are quite diverse by

its nature and function, and all of them are designed in a different way follow-

ing various patterns and needs, the unique mathematical explanation of such

complex forms is hardly achievable. Nevertheless, researchers were able to de-

velop a set of models which are successfully used to represent most common

real-world networks in the way that they show the similar properties. There

are three main families of network models [24] which emphasize various net-

work properties. There are random graph models which do not consider the

rules of the real network genesis. On the other hand we have models which

focus on generating the networks by mimicking small-world property or scale-

free property of the real-world networks.

2.1.1 Random Graph Models

The random graphs models are one of the oldest and best studied models in

graph theory. The family of those models originated from a series of papers

published by Erdős and Rényi from 1959 onward [36]. There are several

versions of the original Erdős-Rényi’s (ER) model, although all of them are

based on a rather simple principle of generating the edges between vertices

in a random manner. The most popular model is one denoted as Gn,p where

the probability of edge existence between two vertices is p and the probability

that there is no edge is 1− p. All probabilities are independent, and pairs of

vertices are chosen uniformly at random.

The main characteristics of random graphs models is an absolute lack of

knowledge regarding the rules of the network genesis. The random graph

models are based on a simplest premise that connections between vertices

are generated randomly. The main reasons why random graph models are

used extensively are their simplicity and the fact that the properties of the

ER networks are simple to solve analytically. Since certain networks are of-

ten described by its general properties, this characteristic is convenient. For
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example, the average degree 〈k〉 is calculated from the number of edges 〈E〉
generated in a graph 〈E〉 = 1

2N(N−1)p. Since each edge connects two vertices

it is a part of a degree calculation for both of them. Therefore, we have

〈k〉 =
2〈E〉
N

= (N − 1)p ' Np. (2.1)

In ER model, it possible to derive other network properties such as clustering

coeficient or average shortest path length very easily. By using the Gn,p model

to generate graph, the resulting graph will have a binomial degree distribution

and in the case when n is large it becomes the Poisson distribution. That

is the main disadvantage of this model as in many real-world networks those

distributions could not be easily detected. The degree distribution is very

important property of a network which affects its behavior in many ways [24].

In order to overcome this weakness of ER model, various authors started

to generate graphs with different degree distributions. Molloy and Reed [37]

proposed an algorithm for generating random graph following preferred degree

distribution. They assign the already fixed degree sequence to the graph and

generate it in the way such that each vertex has a degree ki from the set

of already formed sequence K and i = 1, ..., N . They also showed that it is

possible to define the random graph with any degree distribution.

The networks are usually not homogeneous, which means that they consist

of various types of nodes. Each node could have its own characteristic, and

regarding each node’s property, it could be assigned to a different ”type”.

In many networks the nodes of a same type are more likely to form links

between each other. For example, the social links between people are usually

established based on people’s preferences, occupation or social status. The

work of Söderberg [38] is based on the idea of a ”fitness” value distributed to

each node in the network. Based on the assigned ”fitness”, the edge is formed

between each two nodes (i, j) following the certain probability pi,j = f(xi, xj)

where f is a given function describing the ”attraction” between the nodes of
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various types. In the case where there is only one type or f is constant, this

model produces the ER graph.

Another group of graph models which fit in a random graph family are called

Exponential random graphs. Holland and Leinhardt [39] introduced an ap-

proach at first aimed at the studies of social networks, which was extended

by a numerous authors later on, applying the similar solution to other areas.

The main idea behind the exponential random graphs model is defining the

distribution of probabilities that one graph could be formed in many possible

ways. The network of N nodes could be realized in
(
N(N−1)/2

E

)
possible ways.

There is a certain distribution of probabilities of these realizations which is

developed from the comparison to the real data. The model represented here

is de facto random, but with the high probability that any random generated

topology resembles the real data.

2.1.2 Small-World Property

In order to avoid the main drawbacks of the random network models, Watts

and Strogatz [40] came up with a proposal of the model which will generate

the networks which are more similar to the real ones. There are two measures

in which real-world and randomly generated networks differ and the Watts-

Strogatz (WS) model could be used to solve that. First, it is a clustering

coefficient (page 5). The values of the clustering coefficients of the real-

world networks are generally higher than the randomly generated networks.

And secondly, the average shortest path (page 4) length of a real network is

shorter. That means the small-world networks are highly clustered and have

a short path lengths at the same time. The original WS model starts with a

ring of N vertices (i1, i2, ..., ik, ..., iN ). Each vertex gets connected with 2m

nearest neighbors. For example, the vertice ik will have the links to the 4

vertices: ik−1, ik−2, ik+1 and ik+2 as shown in Figure 2.1. In the next step,

the probability p is introduced. The edge connected to a clockwise vertex

of each node is reconnected with the probability p to a random node in the
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network, excluding the starting node. This process ensures the probabilistic

nature of a resulting network while the number of edges stays constant.

Shortly after the Watts and Strogatz published their model, Barthélemy and

Amaral [41] studied the same model more in details. They have focused on a

probability value p and finding the critical value of p at which the small-world

behavior might be observed. Furthermore they have showed that the actual-

ization of the small-world behavior is not a phase transition but a crossover

phenomena. They found out that the smallest value of p needed to transform

initial network to the small-world network is related to the size of the network.

The relation is presented in a form of a scaling function

l(n, p) ∼ n∗F
(
n
n∗

)

where F (u� 1) ≈ u, F (u� 1) ≈ ln(u) is a scaling ansatz2 and the l(n, p) is

the average distance between two vertices in a network with n nodes connected

with a probability p. The value n∗ is a function of p and it represents the

crossover size above which the network behaves as a small world.

The Barrat and Weigt [42] showed the analytical approach for calculating the

degree distribution of such networks. Even if a degree distribution remains

almost the same as in the random graphs, the clustering coefficient and short-

est path lengths have been dramatically changed even for the small values of

p.

2.1.3 Scale-Free Property

The degree distribution (page: 4) of nodes in networks generated by previ-

ously described models sometimes differ from the reality. It is shown that

for a number of systems, including the World Wide Web, citation networks

and social networks, the degree distribution follows the power law. That is,

2Ansatz is an assumed form for a mathematical statement that is not based on any
underlying theory or principle.
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Regular Small world Random

Increasing Randomness
p=1p=0

Figure 2.1: Random rewiring procedure in Watts-Strogatz
model. Random rewiring procedure for interpolating between a regu-
lar ring lattice and a random network, without altering the number of

vertices or edges in the graph. Inspired by [40] and adapted.

the distribution of degrees P (k) of nodes in the network with k connections

to other nodes follows the power law function, as defined in (2.2) where γ

represents a parameter with a value usually in a range 2 < γ < 3.

P (k) ∼ kγ (2.2)

The model and algorithm for generating such type of networks called scale-free

networks is introduced by Barabási and Albert [43]. In order to recognize the

causes for such degree distribution in many real networks, the paper questions

the very nature of network genesis. Networks do not emerge instantly, but

come out as a result of growth throughout time following certain criteria. How

do the majority of networks form? Which criteria people follow individually in

their social interactions, which results the social network at the end? Which

unwritten rules internet service providers adopt while connecting with others

or designing their own network?

The answer on those questions lies in a process known as a preferential at-

tachment. The networks are not static, but form dynamically. New vertices
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have been attached to the existing ones but with the different probabilities.

The insight behind this approach is the fact that newly arrived vertices tend

to attach to those vertices in the network which are already highly connected

(the nodes with a large degree). This mechanism is rather known as a rich-get-

richer phenomenon, the Gibrat principle or cumulative advantage [14]. For

example, the person with many social connections is more likely to acquire

new friends than a person with a narrow social circle. The same principle

apply for other networks as well. Barabási and Albert [43] propose a model

which will generate the network with a degree distribution which follows the

power law. In the proposed solution, the network starts with a small core of

m0 vertices. The network grows with every time-step by adding one vertex

with m edges (m < m0) connecting it to the existing network. The other

end of each edge is connected to a node in network chosen randomly with a

probability which is proportional to its degree. The probability Π that a new

vertex will be connected to already existing vertex i depends on a degree ki

of the vertex i in a way that

Π(ki) =
ki∑
j kj

(2.3)

The authors in [43] have simulated the network formation with and with-

out the preferential attachment and showed that the absence of preferential

attachment eliminates the scale-free feature of the network. Therefore, the

model they proposed indeed generates the network with scale-free character-

istics. At the beginning, the difference in degrees between vertices is small.

As the time elapses, the difference becomes larger since the vertices with a

higher degree attract more edges from newly arrived nodes, leading eventually

to a formation of vertices which are highly connected at the expense of the

others. The rate at which each vertex acquires edges is:

δki
δt

=
ki
2t

(2.4)
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so we can calculate the number of edges k added to one vertex i at any point

of time ti

ki = m

√( t
ti

)
(2.5)

The probability density P (k) obtained for a long time period leads to the

stationary solution

P (k) =
2m2

k3
(2.6)

This means that the value of an exponent γ equals 3, which is one of the flaws

of this particular model, since in the real networks the parameter γ can vary.

Barabási and Albert were using just one parameter to define preferences for

edge attachment which is node degree. One can assume that there are other

measures which have an influence on edge creation or process of rewiring. A

degree is considered as one of many centrality measures which indicate the

importance of the nodes. This led to a number of papers dealing with the

preferential attachment and the nature of node’s ”attractiveness” for a con-

nection. Bianconi and Barabási [44] proposed a fitness measurement µ chosen

randomly according to some distribution ρ(µ). The fitness might depend on

many factors and it represents the more general approach to the previously

described model. The probability that newly formed edge will be connected

to the node s is

Πs =
µsks∑
j µjkj

(2.7)

By adjusting the fitness value for the node, one can achieve desired exponent

γ, as not all systems follow the ”rich-get-richer” principle, but in this case

”fittest-get-richer”. Therefore, the fitness might be a combination of many

properties of a node summed up in a single value.

Klemm and Egúıluz [45] have proposed a model which combines the properties

of small world and scale-free networks. They define and analyze a model

for network self-formation which creates the network with high clustering
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coefficient, small path lengths and scale-free distribution of degrees at the

same time.

In order to develop more advanced tools for network optimization and pro-

tection, the fundamental step is to understand the underlying principles of

their formation. This section presented a small set of solutions. Those are

focused on creating the model which generates the networks which accurately

represent the networks evolved more-less naturally in the real world. None of

these models could generate the real-world networks exactly, but they are able

to create graphs with similar properties. Therefore they are able to provide

the mathematical basics for analyzing such networks on more applicable level.

By properly generating networks we get a pool of experimental ”playgrounds”

which could help us to understand more complex network properties such as

network resilience.

2.2 Centrality Measures

The various measures are introduced in early 70’s in sociology mostly de-

scribing the relations between people. Later, similar measures are used to

describe other networks, especially after the development of computer net-

works. The crucial thing was to identify the most important nodes within

the network. The family of those measures are called centrality measures and

they were developed to determine in which extent a certain node is centrally

positioned regarding the topology. Centrality measures are the fundamental

tool in assessing all the networked structures.

Degree of a node is the number of edges (links) incident to the node [7].

In directed networks there is a difference between indegree din(i), showing

the number of immediate links directed towards the node i and outdegree

dout(i) counting the number of links directing away from the node i. For

the undirected networks there is one degree measure d(i) = dout(i) = din(i).

Degree is the simplest yet most robust measure of the node importance. The
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degree can not accurately capture the node influence in networks consisting of

large clusters divided by the nodes with low degree, but in most cases degree

accurately identifies the most important hubs.

Betweenness represents the number of shortest paths from all nodes to all

others that pass through a particular node. The value is usually normalized

in the range [0, 1]. The betweenness centrality bk of the node k is defined as

follows [46]:

bk =
∑

i

∑

j

gikj
gij

(2.8)

where gij is the number of geodesic paths from node i to node j, and gikj is

the number of geodesic paths from i to j that pass through k. There are some

variations in the betweenness centrality based on the various approaches of

defining the most desirable path. In some cases the constraints in the network

make geodesic path not desirable, since it could be too costly (e.g. congested,

expensive etc.). The actual betweenness centrality of the node is then modified

taking in account also the weights of the links.

Coreness is the centrality measure derived from the k-core (also called k-

shell) decomposition process of the network. The k-core is the largest sub-

graph comprising nodes of degree at least k [47]. A k-core of the graph can be

obtained by recursively removing all the nodes of degree less than k, until all

nodes in the remaining graph have at least degree k. The coreness ci of a node

i is k if the node belongs to the k-core but not to the (k+1)-core [48]. By

observing the coreness measure, we can identify the best individual spreaders

in the network if the spreading process originates in a single node [49].

H-index, or Hirsch index, was originally used to measure the citation impact

of the author. The H-index concept was later extended to quantify the impor-

tance of the node in the network. The H-index of a node is defined to be the

maximum value h such that there exists at least h neighbors of degree no less

than h [50]. It is interrelated to coreness and the degree, and it outperforms

both measures in several cases.
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Dynamics sensitive centrality integrates the topological features and the

dynamical properties at the same time [51]. While the all other centrality

measures used for comparison rely solely on the topological features, DS intro-

duces two parameters, β and µ, representing the rate of the infection and the

rate of the recovery respectively. The DS centrality is therefore particularly

suitable for identifying the most influential spreaders when the SIR epidemic

model is concerned. However, to properly assess the node’s importance one

has to know the spreading dynamics parameters in advance.

Besides the most important centrality measures which are used throughout

the thesis for node assessment and comparison, there are others, tailored for

various dynamics. For example, Opsahl, Agneessens et al. [52] described the

most important centrality measures and proposed a generalized centrality

measure which combines the aspects of weights and number of ties. New-

man [53] has proposed a new betweenness measure that counts essentially all

paths between vertices. The measure is particularly useful for finding vertices

of high centrality that do not happen to lie on geodesic paths or on the paths

formed by maximum-flow cut-sets. Dolev, Elovici and Puzis [54] defined the

Routing Betweenness Centrality (RBC) measure which generalizes previously

well known Betweenness measures such as the Shortest Path Betweenness,

Flow Betweenness, and Traffic Load Centrality. Other important papers re-

garding the centrality measures relevant to my research area could be found

within the references [46, 55–59].

2.3 Network Resilience

The concept of a network resilience is not clearly defined. The terms and

definitions are overlapping and while some authors use different terms to ex-

plain the same phenomenon others use the same terms to describe different

events. This fuzziness makes categorizing and analyzing of the resilience liter-

ature from this scientific area demanding. The majority of authors deals with

one particular phase in a whole process which characterizes the resilience,
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which usually corresponds to the four dimensions of the resilience described

in Section 1.2.1. Therefore, there are many research projects not dealing with

the resilience per se, but with the phenomena such as vulnerability, reliabil-

ity, survivability and error tolerance or attack tolerance. Furthermore, the

authors have different opinions when it comes to the measure of network’s

function, so the system service function ϕ(t) vary from paper to paper. Some

authors observe the network’s efficiency [60], some network’s connectivity [26]

and some use the number of centrality measures or the largest connected

components [61, 62].

Crucitti, Latora et al. [60] research an impact of errors and attacks on certain

networks regarding the network’s efficiency. The concept of network efficiency

was introduced earlier by the same authors [63]. Instead of the characteristic

path length L and the clustering coefficient C the authors proposed a measure

called efficiency of a network E which indicate how efficiently the information

propagate through the network G. The efficiency is measured both on the

local Eloc(G) and global Eglob(G) level. The measure of global and local

efficiency is based on efficient communication between two nodes, which is

inversely proportional to the shortest distance. They have shown that both

local and global efficiency of scale-free networks drop rapidly if the nodes

with high connectivity are removed, which means that those networks are

more sensitive to intentional attack.

In one of the fundamental works in this area, Albert, Jeong and Barabási [26]

discussed the network tolerance to the removal of nodes that play a vital role

in maintaining network’s connectivity. More specifically, they were measuring

the diameter of various networks and observing the change in the measured

function during the simulated attack. The main conclusion is that delib-

erately conducted attack on a network which damages the most connected

nodes in the scale-free networks causes a big increase in diameter. If the top

5% of nodes with highest connectivity are removed, the diameter of a typical

scale-free network is doubled. The removal of most connected nodes drasti-

cally alters the network’s original topology and therefore prevents the efficient
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information exchange.

Latora and Marchiori [64] developed a method to find the critical components

of an infrastructure network. They proposed a method to evaluate the impor-

tance of an element of the network by considering the drop in the network’s

performance caused by its deactivation. They were using the network effi-

ciency proposed earlier by Crucitti, Latora et al. [60] to evaluate the network

performance to evaluate three real networks (two internet backbone networks

and one transport network) and show that the damage of the most connected

nodes, the hubs, is not always the worst possible scenario, as some other nodes

could be more important in terms of the network survivability.

Holme et al. [61] have studied a behavior of a network under the various types

of attacks. They examine the real-world3 and artificially generated4 networks.

In their simulation, the networks had been attacked by different attack strate-

gies, each of which based on the initial degrees (ID), the initial betweenness

(IB), the recalculated degree (RD), and the recalculated betweenness (RB).

The same procedure was repeated for the edges. The authors made a compar-

ison of the effects of certain attacks on the networks calculating the change

of the normalized average geodesic path l̃−1 and the normalized size of the

largest connected component S̃.

Mishkovski, Biey and Kocarev [62] used the normalized average edge be-

tweenness to measure network vulnerability. They study networks generated

artificially by most common models5 and referring to them as a synthetic

networks. They have managed to calculate the general vulnerability index

for certain types of synthetic networks. Furthermore, the authors studied

the several real-world networks6 as well and compared them in terms of vul-

nerability. Among the synthetic networks, the most robust one (the least

3Scientific collaboration network and Computer network from Internet traffic
4Erdös-Rényi model of random networks, Watts-Strogatz model of small-world networks,

Barabási-Albert model of scale-free networks and Clustered scale-free network model
5Erdös-Rényi model for random networks, Geometric random networks, Watts-Strogatz

model for small-world networks and Scale free networks
6Human brain network, US power grid network, Collaboration network, Urban transport

networks and EU power grid network
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vulnerable) is the network generated by Watts-Strogatz model. Among the

real-world networks, the least vulnerable one is the network of neurons which

form the human brain.

Crucitti et al. [65] were dealing with an error and attack tolerance of the

complex networks. They study two types of networks (Erdős-Rényi random

graphs and Barabási-Albert scale-free network) and measure the effect in the

case of removal of randomly selected nodes. More precisely, the targeted

removal is considered as an attack and random removal is considered as an

error. The targeted attacks were focused on nodes with high centrality, and

the centrality measures used to identify most important nodes were degree,

betweeness and the recalculated betweeness. In order to measure the network

behavior during the disruption, they use the global efficiency measurement,

which represents the average of the efficiency εij = 1/tij over all couples of

nodes:

E(G) =

∑
i6=j∈G εij

N(N − 1)
=

1

N(N − 1)

∑

i6=j∈G

1

tij
(2.9)

The authors came up with more-less expected conclusion. The BA networks

are very vulnerable to targeted attack, due to the power-law degree distri-

bution, so the removal of very important nodes will cause the collapse of the

network in early stage of an attack. On the other hand, the same networks are

very resistant when it comes to random errors. In the case of ER networks the

differences in network behavior during random or targeted attacks are almost

non existing.

Cohen et al. [66] introduced a criterion for the collapse of certain networks

under the random attacks. They observe Internet and the conclusion is that

Internet topology is highly resilient to the breakdown of nodes. The same

conclusion is valid for other networks which demonstrate the similar proper-

ties, particularly those networks which connectivity distribution is described

by a power-law.

Doyle et al. [67] proposed an optimization-based approach for Internet mod-

eling. They discuss ”robust yet fragile” nature of the Internet, which is highly
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robust to the perturbations for which it was designed but quite vulnerable to

other perturbations. The Internet is generally prone to components failures or

removals from the network. However, the protocols and feedback regulations

enable some extraordinary robustness, scalability and adaptability even to a

drastic network changes. On the other hand, the robustness comes together

with the high level of vulnerability to failures caused by malicious actions or

hijacking. They also question the scale-free model for Internet analysis and

its applicability to highly evolved systems of unstructured, ensemble-based

approaches.

Chen et al. [68] proposed a measure of network fragmentation. Authors define

the fragmentation F as a relation between the actual number of links in the

network compared to a number of all possible links. For systems close to

or below criticality, F gives better precision for fragmentation of the whole

system compared to P∞, which is the connectivity of a fragmented network.

The P∞ is a ratio between the largest cluster size N∞ (called the incipient

order parameter) and N (called the infinite cluster), so the P∞ ≡ N∞/N .

2.4 Spreading Failures

Various dynamical processes in networks tend to advance from a single ori-

gin to the rest of the network. For example, data in communication net-

works which is intended for broadcast originates from a single transmitter

and reaches all other nodes. Often unwanted processes such as the failures

are those which also spread. Here, we identify two main types of the spreading

failures: epidemics and cascades. They both exhibit the same basic dynam-

ical property of spreading. However, the causes and the mechanism of the

spreading are different.
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2.4.1 Epidemics in Networks

Epidemic spreading models originate from the biology, thus many of those

models had been described much before the man made communication net-

works were invented. However, the models could be used to define the behav-

ior of the computer virus in a similar way they define the spreading behavior

of virus among humans. The pioneers in mathematical modeling of epidemics

are Kermack and KcKendrick, with their work from the year 1927 where

they introduced the Susceptible-Infected-Recovered (SIR) model [2]. Later

on, many authors from the various scientific disciplines dealt with this issue,

combining approaches from various fields such as biology, telecommunications

or physics. There are numerous examples of applications where epidemic mod-

els may apply. Among others they include computer networks, social networks

and power supply networks.

The simplest epidemiological model widely used Susceptible-Infected (SI)

model. Each individual in the population can be in one of two possible states:

infected or susceptible to infection. The probability that a susceptible node

receives an infection from any neighboring infected node in very small time

interval dt is βdt where β defines the spreading rate. What makes this model

simple is that infected individuals remain infected permanently. Therefore,

the evolution of epidemic in SI model is fully defined by the number of infected

individuals in a point of time i(t). In SI model, all nodes will be infected at

the end of the process, but it is interesting to observe the rate in which the

epidemics spreads regarding the topology of the network. The growth rate

of number of infected individuals is presented in (2.10). It is proportional

to the spreading rate λ, the density of susceptible vertices that may become

infected, s(t) = 1 − i(t) and the number of infected individuals. The evolu-

tion of epidemic following SI model in homogeneous network is presented as

follows [69]:

di(t)

dt
= λ〈k〉i(t)[1− i(t)] (2.10)
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The simplest situation presented here corresponds to a complete lack of degree

information, which means that this equation counts only for the homogeneous

networks where all vertices have almost the same number of neighbors, mean-

ing the degrees of all vertices are similar. The solution for (2.10) is:

i(t) =
i0e

(t/τH)

1 + i0[e(t/τH) − 1]
(2.11)

where the i0 is the initial density of infected individuals and τH = (λ〈k〉)−1
is the time-scale of infection growth. However, this calculation is only valid if

the degree fluctuations are very small, k ≈ 〈k〉. Many networks encountered in

the real-world are far from homogeneous, therefore we face the networks with

a heterogeneous connectivity pattern. That means that degree of vertices k is

highly fluctuating and difference between degrees in the same network might

be substantial. In this case, the SI model could be rewritten as:

dik(t)

dt
= α[1− ik(t)]kθk(t) (2.12)

where the creation term is proportional to the spreading rate α, the degree k,

the probability 1 − ik that a vertex with a degree k is not infected, and the

density θk of infected neighbors of vertices of degree k.

The models analytically describing the epidemic spread through the network

could be validated by numerical simulations. Since there is a randomness

taking part in the simulation process, the sufficient number of simulation

experiments had to be carried out and the results have to be averaged. The

(2.11) is checked for validity in [69]. The authors use a network of a size

N = 104 and k ranging from 4 to 20. As an example of homogeneous complex

network, the authors choose the ER network constructed from a set of N

different vertices with N(N − 1)/2 possible edges created with a probability

p. This results in a random network with average degree 〈k〉 = pN and a

Poisson degree distribution:

P (k) = e−k
〈k〉k
k!

(2.13)
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The results of a simulation of SI model (Figure 2.2) show that (2.11) ade-

quately approximates the results acquired during the simulation.

Figure 2.2: Simulation of epidemics following SI model. Main
frame: the symbols correspond to simulations of the SI model with λ =
10−4 on ER networks with N = 104, 〈k〉 = 20, 40; the lines are fits of
the form of (2.11). Inset: measured time-scale τ ; as obtained from fitting,

versus the theoretical prediction for different values of 〈k〉 and λ [69].

In reality, SI model might be used only in some specific cases. A Suspectible-

Infected-Recovered (SIR) model, although fairy simple as well, could approx-

imate the real epidemics more accurately. In the SIR model, each individual

can be in one of three possible states: susceptible, infected or recovered. For

a case of fixed population where N = S(t) + I(t) + R(t) the main equations

describing this model are:

dS

dt
= −β S

N
I (2.14)

dI

dt
= β

S

N
I − gI (2.15)

dR

dt
= gI (2.16)



Epidemics in Networks 45

where S, I and R are number of susceptible, infected and recovered individuals

respectively. The parameter β is a contract parameter and the 1/g is the

mean infectious period. The rate at which the fraction S of individuals in the

population which are in the susceptible state decreases is proportional to the

number I of infected individuals who are able to transmit the disease dS/dt =

−βSI [24]. The results of model analysis are presented by Keeling [70] as

follows:

1. An epidemic can only occur if R0 = β/g > 1;

2. S is monotonically decreasing, R is monotonically increasing and I is

unimodal;

3. The epidemic eventually dies out with some proportion of susceptibles,

S∞ remaining: S∞ = exp((S∞ − 1)−R0).

In the case of a malicious virus infection, the telecommunication networks act

in the way where the state of one node is directly dependent on the state of

its neighbor. Hence, the failure of a single node can cause a failure to spread

across the network.

The neighboring node will fail when its load reaches a threshold which is

chosen independently using some probability distribution. Since an attack on

a small fraction of nodes has the potential to trigger a global failure [71], the

fundamental issue is to develop the strategies of defense in order to prevent

the failures from propagating through the entire network. Percolation theory

is useful in modeling such phenomena.

Piraveenan, Prokopenko et al. [72] give a review of the most important cen-

trality measures and discuss their relevance and importance. Some of the

models for cascading failures and spreading of epidemics are shown in their

work as well. The new centrality measure called percolation centrality was

introduced. The other measures quantify the importance of a node in purely

topological terms, and the value of the node does not depend on the state of
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the node in any way. The percolation centrality on the other hand, measures

the importance of nodes in terms of aiding the percolation through the net-

work. A percolation state xti of a node i can take any value 0 ≤ xti ≤ 1 in

time t, where xti = 0 indicates a non-percolated state at time t and xti = 1

indicates a fully percolated state at time t. The authors show that percola-

tion centrality measure becomes particularly useful in these scenarios when

an early intervention is warranted.

By expanding our understanding of epidemics in the networks, we become

closer to the solutions for the network protection. Holme [73] studied the

dynamics of the epidemics under the various vaccination strategies. In many

models, usually the vaccinated node is considered immune to the infection. In

certain cases, the immunized node is considered to be immune to infection but

able to transfer virus to other nodes. In this paper author study how a fraction

of the population should be vaccinated in the most efficient way in order to

stop the epidemic. He focused only on local vaccination strategies considering

the argument that the global network information is rarely available.

Bauer and Lizier [34] introduced a new method for an approximation of the

number of infections in the network of susceptible individuals if an initial

infected node is given. They make use of the counting potential infectious

walks, the paths the infection is probably going to take starting from the in-

fected node. The method proposed in the paper can give the better estimation

accuracy for the same computational cost compared to other methods.

2.4.2 Cascading Failures

Any system that can be modeled using an interdependence graph with limited

capacity of either nodes or edges to carry flow will be prone to cascading

failure phenomena [74]. There are number of models for the cascading failures

described in the literature and few of them are mentioned here. The first

one is the Motter-Lai (ML) model [75] which uses a simple traffic pattern

between the nodes and includes the capacity of nodes. In ML model, each
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pair of nodes in the network is considered to exchange one unit of the relevant

quantity (information, energy . . . ) per time step. The quantity is transmitted

through the shortest path connecting them. Each node is loaded by a number

of shortest paths traversing it. Furthermore, each node has its limitations

regarding the maximum load it can sustain, and it is called the capacity. It is

assumed that the capacity Cj of node j is proportional to its initial load Lj ,

Cj = (1 + α)Lj , j = 1, 2, . . . N

where the α is tolerance parameter, and the N is the initial number of active

nodes. The removal of nodes alters the topology of the network, and therefore

the distribution of shortest paths. In such case some nodes might reach its

capacity limits, and fail. After the initial breakdown, the rewiring occurs,

which leads to the congestion of other nodes and results in further failures.

This process is an example of cascading failure. It can stop after few time

steps, but it can also propagate and compromise the whole network. The

authors show that the heterogeneous networks7 are resistant to the random

failures. But, on the other hand, the cascade failure might easily occur in the

event of a targeted attack. The attack on a single important node (the one

with high load) may trigger a cascade of overload failures capable of disabling

the network almost entirely.

Later on Crucitti, Latora and Marchiori [27] proposed a different model for

cascading failures in complex networks. The model is based on a dynamical

redistribution of loads. Initially, the network is in the free flow state where

no nodes are overloaded. After the initial failure, the distribution of load

changes and some of the nodes become loaded above the capacity. It causes

further change of information routing, causing further congestion. Finally, the

network reaches the new stable state. In contrast to the previously proposed

ML model, in the case of congestion the nodes are not removed from the

network, but their efficiency is deteriorated. As a system measure they use

7Most of the man-made networks and networks which evolve through time are considered
to be heterogeneous, as the degree distribution is not random
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the overall network efficiency and they prove that the efficiency of a network

decay with the removal of nodes, particularly those with high initial load.

Both of the above-mentioned models are more thoroughly explained and sim-

ulated in the Chapter 5. However, there are some other models worth men-

tioning.

The Watts model [76] considers the nodes within the network to maintain the

binary state either 0 or 1. The state of node is directly dependable on the

state of its neighbors according to simple threshold rule. An individual node

observes the current states (either 0 or 1) of k other nodes, called neighbors,

and adopts state 1 if at least a threshold fraction φ of its k neighbors are

in state 1, else it adopts state 0. The model is particularly interested in

social networks where the interpersonal influence is important to observe. In

that case, if the network is sufficiently sparse, the propagation of cascades is

limited by the global connectivity and when it is sufficiently dense, cascade

propagation is limited by the stability of the individual nodes.

Tran and Namatame [77] research a cascading failure phenomena on certain

networks. This is a particularly interesting paper in terms of the resilience

of the network to cascading failures. They were investigating the topological

robustness of networks. In the topological approach the network is able to

rewire itself to be an adaptive topology against cascade failure. They proposed

two rewiring protocols, and applied them to capacity cascade model. The

first one is Preserving Rewiring, in which a network is able to rewire itself

but not affect its property and the second is Random Rewiring in which

network change its topology toward random networks. The results indicate

that proposed rewiring protocols can dramatically reduce the average size of

large cascading failures.

Another two important diffusion models in computer science are the indepen-

dent cascade and linear threshold models [78]. They are convenient to describe

the spread of rumors or ideas within the social networks. Independent Cas-

cade (IC) model generalizes the SIR model. Instead of a single probability
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infection, each edge could have a different transmission probability. The prob-

ability Pu,v is the probability of u infecting v. This probability can be assigned

based on frequency of interactions, geographic proximity, or historical infec-

tion traces. In the Linear Threshold (LT) model, each node has its threshold

θv in the interval [0, 1]. Additionally, each directed edge (u, v) ∈ E has a non-

negative weight b(u, v). In each time step, the inactive node becomes active if

the sum of all the incoming weights from the neighboring active nodes reach

the threshold.

All the cascade models mentioned here have their applications in various net-

works. The particular model to be used to describe a diffusion process depends

on the type of network and the specific dynamic. Although, all of the models

could be used for modeling a process which spreads through the network, some

of them are more suitable for a particular type of network. For example LT

or IC models are mostly used for the social networks, while ML and CLM are

common for modeling failures in technological networks characterized with

loads, such as power grids.





Chapter 3

Problem Statement and

Methods

3.1 Problem Statement

As the main topic of the research is oriented toward the protection of the crit-

ical communication networks, the central focus is on the resilience of the core

part of all the communication networks, the backbone. Therefore, the main

research question is: How to make backbone networks more resilient

against spreading failures?

The primary goal of the research is the development of models and tools for

making the backbone networks more resilient against spreading failures. Two

main dynamics of spreading failures are addressed: cascades and epidemics.

Both of them share two characteristics: they usually originate in a small

fraction of nodes; they spread through the network and could cause global

outage. However, the mechanism and the consequences of failures differ. The

reason for cascade is capacity deficiency and the epidemics are driven by the

spreading property of a virus. Furthermore, each of the failures are caused by

a different trigger:

Cascade is triggered by the failure of the nodes or links which are

caused either by the random failure, geographically correlated failures or an

intentional attack. Although this type of failure is related to a part or section

51
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of a graph, it could easily spread across the whole network. The reason for

spreading has been known as a cascade effect. Cascading failures are a result

of the increased traffic load in links and nodes after an initial failure. The

nodes or links could not support the excess of load, and therefore, they deny

traffic or even collapse. After an initial failure within the communication

networks, the average traffic load increases. The increase of information flow

leads to the effect known as buffer overflow which causes delays and service

denial.

Epidemic is triggered by the malicious virus infection which is caused

by the intentional, deterministic attack on well chosen network nodes with

malware that spread to physically and logically connected neighbors. This

also leads to cascading failures on a much faster time scale then cascades by

node or link failures and buffer overflows. Simple failures are not the only

hazardous effect in the case of malicious virus attack. The function of a

malware can be of another harmful nature such as to compromise the data

or to eavesdrop the confidential communication. Therefore, the adequate

measures should be conducted to slow down the contagion process and evade

the potential adverse effects on the network and the services provided by it.

In addition to Barker’s model (Section 1.2), and in accordance with the work

of Johansson and later Ouyang [79, 80], certain phases could be perceived

in regard to the disruption of the system. In the Fig. 1.1 one can observe

three main phases when it comes to the undesired event, and those are: pre-

paredness, response and recovery phase. The choice of a strategy to make

the network more resilient depends on the phase when the given strategy will

be used. Based on this, some research sub-questions are formulated. The

Table 3.1. represents the set of possible research questions and tasks relevant

to each phase and the type of the failure.

In this thesis, the focus is on the following research questions from the Ta-

ble 3.1:
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Phase Cascades Epidemics

Preparedness Which are the nodes or links that
should be additionally protected
to keep the network more re-
silient to cascades?

Which are the nodes that should
be additionally protected to keep
the network more resilient to
epidemics?

How to tune topology and im-
prove the node properties in or-
der to mitigate the effect of a po-
tential failure?

How to tune topology and im-
prove the node properties in or-
der to slow down the spread of a
potential virus infection?

Response Develop strategies for active
topology control in order to pre-
vent further buffer overflows and
local congestion.

How the topology of the network
might be modified after the infec-
tion to slow down the contagion
spreading?

Recovery Prioritize nodes or links repara-
tion in order to regain the func-
tionality of the network.

Prioritize nodes or links repara-
tion in order to regain the func-
tionality of the network.

Table 3.1: Relevant research questions for the spreading failures
protection. The small set of possible research questions relevant to each

phase and the type of the failure.

1. Which are the nodes or links that should be additionally protected to

keep the network more resilient to cascades?

2. How to tune topology and improve the node properties in order to mit-

igate the effect of a potential failure?

3. Develop strategies for active topology control in order to prevent further

buffer overflows and local congestion.

4. Which are the nodes that should be additionally protected to keep the

network more resilient to epidemics?

5. How to tune topology and improve the node properties in order to slow

down the spread of a potential virus infection?
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The focus is mostly to preparedness and response phase. Tackling wide range

of all the problems throughout all the phases would be out of the scope of a

single PhD thesis.

Addressing the Research Questions

More detailed information on methods that are used to address each of the

research questions are listed below:

1. Which are the nodes or links that should be additionally protected to keep

the network more resilient to cascades?

A failure of one set of nodes could have a bigger impact on the net-

work than the failure of some other set. Usually, the removal or failure

of nodes or edges, either by random breakdown or intentional attack,

within a stressed distributed system, will trigger a subsequent redistri-

bution of stress within the system [75]. The goal is to identify the most

important nodes regarding the impact of such failures on the network.

The measures which are used to assess the network function are the

relative size of the largest connected component in case of the Motter-

Lai (ML) model (Section 5.1) and the network efficiency in case of the

Crucitti-Latora-Marchiori (CLM) model (Section 5.3). Beside others,

the main centrality measure exploited in both of the models is between-

ness centrality (Section 2.2). The failures on the network are simulated

and the impact on the network is measured after and before the failures.

The disruption modeling is also modified depending on the cause of the

failure, weather it is random failure, geographically correlated failure or

intentional attack. In order to validate some of the results for the case

of very large solution space, an appropriate genetic algorithm is used

(Section 3.2.3). This way, the survivability of the network is assessed,

and the most important nodes or group of nodes are identified.



55

2. How to tune topology and improve the node properties in order to miti-

gate the effect of a potential failure?

The assessment of the network survivability gives us an insight in the

distribution of important network elements. Some alteration in the net-

work topology could be made to reduce the criticality of certain nodes

and increase the overall survivability of the network. The link reloca-

tion or addition is not considered as a feasible strategy in infrastructural

network such as communication backbone. Therefore, the focus is on

the improvement of node properties, particularly the capacity of node.

Numerical simulations are used to evaluate the strategies for optimal

capacity increase.

3. Develop strategies for active topology control in order to prevent further

buffer overflows and local congestion.

The strategies for active topology control involve the real time modifica-

tions in links and nodes arrangement, which are triggered by the initial

event. The objective of the alteration process is to mitigate the effect

of the failure which already happened. It should be done quickly and

efficiently. Creating new links and nodes in an already established in-

frastructural network is not feasible strategy due to the relatively short

time the cascading failure needs to propagate. However, intentional

node and link removal is a reasonable strategy to minimize the cas-

cade. Numerical simulations are used to identify the nodes candidates

for removal in case of the critical failure.

4. Which are the nodes that should be additionally protected to keep the

network more resilient to epidemics?

The nodes which should be additionally protected are the most criti-

cal nodes or links in the network responsible for the contagion spread.

Most of the approaches used in the literature are based on various cen-

trality measures and their variations. Here, an alternative method for

evaluation of the node spreading power is proposed. The Node Imposed

Response (NiR) measure utilizes concepts from the LTI systems theory.
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More specifically, the NiR measure is based on the value of the system

response to the input step function. Extensive numerical simulations

are performed in order to validate the accuracy of the NiR.

5. How to tune topology and improve the node properties in order to slow

down the spread of a potential virus infection?

The main characteristic of the spreading process which defines the rate

of an infection is the transmission probability. It is the probability a

susceptible node will be infected by a single infected neighbor in one

time step. Modifying the transmission probability for the specific pairs

of nodes alters the epidemic dynamic. However, the constraints in the

form of costs are usually present, and the best solution implies optimal

resource allocation, so the epidemic behaves as expected. Here, the LTI

system approach is used to identify the critical links. The results are

validated by numerical simulations.

3.2 Methods

The research results which correspond to the sub-questions are compiled in a

group of findings which fit the main research question. All the sub-questions

regarding the cascade failures are answered through the assessment of the

European National Research and Educational Network (NREN) in Chapter 5.

The NREN topology is used as a test bed for various protection strategies

against the cascades. All the network data are publicly available. Hence the

results of the research would be easily reproducible and cross-checked by other

authors. These data are used in other publications for numerical assessment

and it is possible to perform a calibration and comparison of the results. The

sub-questions related to the epidemics are addressed in Chapter 4. The focus

is on epidemic modeling and node assessment using tools from the LTI systems

theory.

Some of the methods used in the research are roughly grouped as follows:
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3.2.1 The methods for modeling

Two supplementary methods used simultaneously are the numerical and an-

alytical methods. They are applied to cross-check and compare the results

acquired by either of them and to refine the models according to observations

and derivations.

Analytical methods. The analytical approach helps to get a solution to a

system state avoiding simulations and without applying a lot of computing

power. The methods from the system theory will be used to analyze the

networks. The networks are considered as LTI systems and the responses of

a corresponding system for certain inputs are evaluated. The acquired results

are used to assess the node spreading power and therefore to identify the most

critical elements.

Numerical methods. The simulations are extensively used to observe the dy-

namics within the networks. The network simulation is widely spread method

for networks research. Simulations can give an insight into the dynamics of

a processes and provide plenty of information that could not be easily an-

ticipated beforehand. All the simulation code was written in MATLAB, a

mathematical software with features which cover many aspects of mathemat-

ics and could be used for network simulations and computations.

3.2.2 The methods for analysis

The main method used for the analysis is a correlation measure. The measure

of correlation is used to validate the assumptions in the case of node assess-

ment. For all the analyses we use Kendall’s Tau rank correlation coefficient.

It is a non-parametric measure of relationship between ranked data and a

powerful tool to compare the results obtained by various modeling methods.

The correlation coefficient τ takes a maximum value of 1 if the observations

have identical rankings and a minimum value of -1 if observations have dis-

similar rank. The first observation is ranked by the values of the vector x
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and the second observation is ranked by the values of the vector y. Then the

rankings are compared using Kendall’s Tau [81] as:

τ =
2

n(n− 1)

∑

i<j

sgn[(xi − xj)(yi − yj)], sqn(y) =





1, y > 0

−1, y < 0

0, y = 0

In case of the spreading influences explained more in details in Chapter 4, a

value xi is calculated for each node i. In the case of SI model, xi is time needed

to infect the 50% of the network. For SIR model, xi is the outbreak size. The

value yi is calculated independently for each of the centrality measures. As

a result we have a single (primary) vector x and six vectors for comparisons

ynir, ybet, ycor, ydeg, yh, yds for six centrality measures: NiR, betweenness,

coreness, degree, H-index and DS, respectfully. Then, τ is calculated for each

of the centrality measures to estimate its accuracy in assessment of the node

spreading power.

Another method for analysis uses numerous centrality measures (Section 2.2)

to identify the most important nodes. Additionally the comparisons are used

for a large scale numerical analysis of the impact of node removal. The impacts

of various attack strategies are compared to one another.

3.2.3 Metaheuristics

Metaheuristics are general algorithmic frameworks which are usually inspired

by the processes in nature. They are used to solve complex optimization

problems [82]. Many problems in the area of complex networks are becoming

increasingly complex and dynamic and therefore often addressed by some

heuristic. Besides the heuristic approach implemented in some algorithms

for centrality measures, such as betweenness centrality, a genetic algorithm is

intensively exploited in the research presented here.
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A genetic algorithm (GA) is a metaheuristic inspired by the process of natural

selection. Genetic algorithms are usually used to solve optimization and search

problems by relying on operations inspired by evolution mechanisms such as

mutation, crossover and selection. GA is a method for moving from one pop-

ulation of ”chromosomes”1 to a new population by using some principles of

”natural selection” together with the genetics-inspired operators. The selec-

tion operator chooses the chromosomes in the population that will be allowed

to reproduce, and on average the fitter chromosomes produce more offspring

than the less fit ones. Crossover exchanges subparts of two chromosomes,

roughly mimicking biological recombination between two single-chromosome

organisms and mutation randomly changes the gene of some locations in the

chromosome [83]. The genetic algorithm can be applied to solve a variety of

optimization problems, including problems in which the objective function is

discontinuous, nondifferentiable, stochastic, or highly nonlinear. The genetic

algorithm is suitable to quickly identify a relatively good solution from a very

big solution space. It can also address problems of mixed integer program-

ming, where some components are restricted to be integer-valued. While the

classical algorithms usually generate solution as a single point at each itera-

tion, GA generates a population of points at each iteration. The best point

in the population approaches an optimal solution.

Some solutions presented in this thesis are verified by the genetic algorithm

which is implemented through the Global Optimization Toolbox in MAT-

LAB [84].

3.2.4 Obtaining acyclic graphs

All undirected networks consist of bidirectional links, which produce cycles

between every pair of nodes. To obtain an acyclic graph, a topology has

to be modified such that all cycles are removed and number of nodes stays

1Chromosome in GA is an array which defines a single solution. Each chromosome
consists of ”genes” (e.g., bits), each gene being an instance of a particular ”allele” (e.g., 0
or 1).
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unchanged. In the process of topology modification, the number of removed

edges should be minimized in order to maintain the topology as similar as pos-

sible to the original. There are two principles used in the proposed algorithm:

1) the most probable path of the infection spreading, such as shortest-path

tree with the source node as a parent should be preserved; 2) the edges closer

to the source node should be given the priority since the importance of the

topology decreases quickly with the distance from the source [85–87]. The

algorithm for obtaining acyclic graph considering the importance of the node

immediate neighborhood is shown in Algorithm 1.

Algorithm 1 Obtaining acyclic graph

1: Input: G(V,E), p, i . i - source of infection
2: extract the shortest path tree (SPT) G(V,ESPT )
3: extract the set of remaining edges . Erem = E − ESPT
4: create a hierarchical topology of a SPT
5: direct all the edges away from the source node
6: sort remaining edges by the distance from the source node . E′rem
7: while no remaining edges do
8: return excluded edge E′rem(i)
9: check for cycles

10: if number of cycles ≥ 1 then
11: remove returned edge

12: end
13: return the acyclic graph G(V,Eacyc)

The algorithm for generating acyclic graphs presented here does not guarantee

the minimal number of removed links. Still, it optimizes a characteristic

relevant to the spreading phenomena, which is a local topology around the

source node. It attempts to preserve as many links as possible in the source’s

immediate neighborhood. The further away from the source node we go, the

higher the chance that a link will be removed. However, the removal of distant

edges has a very limited impact to spreading dynamics.
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3.2.5 The methods for design

After modeling and analysis, the improvements to network design are pro-

posed. In order to introduce the design solution which has to fulfill several

criteria, the multi-criteria analysis is used. The multi-criteria analysis2 is

applied to achieve the optimal solution in the circumstances where many ob-

jectives have to be considered (multi-dimensional design space). Those objec-

tives are usually conflicted (service level, resiliency against failures, cost. . . )

and the multi-objective programming is used to achieve the Pareto boundary

of the system.

3.2.6 Analytical Approach in Complex Networks

Modeling

One of the focuses of this thesis is the development of an appropriate ana-

lytical approach for complex networks modeling. Generally, developing the

exact analytical solution to a system with a complex dynamics is a difficult

task as it is based on solving the resulting system of differential equations

which is usually prohibitively large. The ultimate goal for many scientists is

to develop the master equation for a system. Master Equation (ME) describes

the time-evolution of a system that can be modeled as being in exactly one

of the states at any given time, and where switching between states is treated

probabilistically. The system equations are usually a set of differential equa-

tions describing the system variation over time. For some systems, the ME

exists and is simple, while for other systems, the ME could be derived, but is

excessively difficult. Generally, the MEs of a complex networks are derived in

the following way [14]: if we denote the state variable as σi where all possible

states are σi = 1, 2, . . . , k for each node, we can denote the particular configu-

ration of the network at time t as the set σt = (σ1(t), σ2(t), . . . , σN (t)), where

i = 1, 2, . . . , N , and N is the number of nodes in the network. The dynamical

2Multi-criteria analysis is sometimes referred to as multi-objective programming.
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evolution of a system is given by the dynamics of the configuration σ(t) defined

by the all possible configurations σ. The ME approach studies the probability

P (σ, t) that a system is in the particular state at the time t. Therefore, the

evolution equation for P (σ, t) in continuous time approximation is:

δtP (σ, t) =
∑

σ′

[P (σ′, t)W (σ′ → σ)− P (σ, t)W (σ → σ′)], (3.1)

where the sum runs over all possible configurations σ′ and W (σ′ → σ) repre-

sent the transition rates from one configuration to another.

Except for the very small systems, solving the ME could be very difficult task.

For the large systems, fully analytical solution becomes almost impossible.

Therefore, other approaches have been used to tackle this issue, like different

variations of numerical ME solutions [88].

Two different analytical approaches for analysis of spreading phenomena within

complex networks are briefly presented here. The first one uses Markov chain,

already known method for processes in discrete set of times, successfully tack-

ling the random processes that undergo transitions from one state to another

on a state space. We can show that the Markov chain approach quickly be-

comes impractical with network size. Another solution is based on systems

theory, using the set of tools from the theory of LTI systems to tackle the

spreading phenomena in complex networks. The brief introduction to LTI

approach is presented here, and more detailed explanation is given in the

Chapter 4.

Modeling Epidemics in an Undirected Network Using Markov

Chain

As an example of a complexity of the analytic solutions, the most common

approach to probabilistic problems is presented. Here, we show a possible

solution for modeling epidemics in an undirected network using Markov chain.
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Although, this model is relatively simple and straightforward, the complexity

of a system makes the solution computationally demanding and for a large

systems practically impossible.

The nature of all the virus-like dynamics is that they are usually transmitted

in one direction. If there is one node initially infected, the infection will spread

from that node to its neighbors but not vice-versa. The backward transmission

of the malicious data from one infected node to another previously infected

could be neglected in the modeling as it does not make any change is the

network behavior. Furthermore, the repeated infection of already infected

node anywhere between last infected and a source could be neglected. It

implies that all cyclic paths could be consequently removed. Therefore, for

the purpose of modeling virus infection, the network should be considered as

directed and acyclic.

The directions of edges in the network depend solely on the source of the

infection. All directions on the network are formed depending on the node

which is considered to be a source. Thus, there is no single solution for

altering the network topology as different set of directions on the edges will

be applied for each node chosen to be a source and finally there will be as

many topologies as there are possible source nodes.

Four types of links are recognized in the graph: Tree edges, Back edges, For-

ward edges and Cross edges as shown in Figure 3.1.

In order to make graph acyclic and directed, we remove all back edges and

keep the others. Since the graph is originally undirected, the same could be

done by choosing the right direction of edges in the way that back edges are

omitted.

Here, two possible solutions for making graph directed and acyclic are pro-

posed:

1. The first solution is based on a Depth-First Search Algorithm explained

in details in the book Algorithms in a Nutshell [90] which investigates
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Figure 3.1: Types of edges in a graph. Here we recognize four types
of edges relevant for spreading modeling: Tree edges, Back edges, Forward

edges and Cross edges [89].

the graph and marks nodes and links. It can be used to identify MST

of the graph as well as back links which could cause the loops. Except

the back links, all other links are allowed, so the direction of all links

which are not a part of a tree should be chosen as follows:

• The tree edges - after the minimum spanning tree is identified,

the edges should be directed in the way that the chosen source

node becomes the root.

• The back edges should be removed, so the forward direction stays

active.

• Forward edges are allowed, but since the minimum spanning tree

is formed, all forward edges are going to become a part of the tree.

2. The second solution is based on some of the algorithms for finding min-

imum spanning tree. For example Kruskal’s algorithm is among the

most popular ones [91]. After the minimum spanning tree is formed

and directions of the links in the tree chosen, comparing original graph

with the minimum spanning tree we can identify other links which are

allowed to be restored following the Algorithm 1.
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I

II

III

IV

Figure 3.2: System states of a line graph after a virus infection.
The infection originates in the node on the left and it spreads following the
SI model. The infected node is marked in gray. All the possible system

states are listed from I to III. Note that the state IV is not possible.

After the link removal procedure, we identify all possible system states. In

the case of the virus infection, each node in the network could be in one of two

possible states: infected or healthy. In order to implement an analysis using

Markov chain, all possible system states are identified and all probabilities of

transitions from one state to another are calculated. In case of the SI epidemic

model, there are some constraints involved regarding the number of possible

system states, which highly reduce the number of states and therefore simplify

the analysis process. These constraints are related to the direction of possible

infection as depicted in Figure 3.2.

Let us consider a simple network consisting of three nodes in a line topology

with directed links as shown in the Figure 3.2. If we assume the infection

originates in the node 1, there are three possible system states (state I, II and

III). The state IV is not possible as the recovery of nodes is not considered

and the infection could not bypass the node in one path. Therefore, we can

exploit this property in order to reduce the number of states in the analysis.

The examples of three simple networks with associated system states are

presented in Figure 3.3. The probabilities of virus transmission from one to

another neighbor node are independent and all equal to is p. The matrix Px

is a transition matrix of system states for each network.
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Figure 3.3: Three simple networks with associated system states
and transition matrices. For a given network topology (on the left)
and infection origin in node 1, all possible system states are presented
(middle). The associated transition matrices for all of the system states
are on the right. As the network size increases, the analysis of a stochastic

process grows in its complexity.

Solving a problem with small number of nodes is relatively easy, but as the

number of nodes in the network becomes larger, the number of possible system

states increases. In case of the relatively large networks, identification of all

system states becomes difficult. Therefore, we can undertake certain steps to

simplify the identification process as much as possible. One possible solution

is to split a network into a series of consecutive sections and analyze all system

states for each segment independently. Then, all states from each segment can

be merged into a single transition matrix. In the model we are considering,

the node cannot recover from the infection, and the infection will spread

following a certain direction. This property of an epidemic allows splitting

network for the analysis. In the case of tree network structure without forward

and cross edges, the splitting of a network could be done in many possible
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ways. Since the transition matrix of the whole network as well as the parts

of a network is upper triangular, a single global transition matrix could be

formed by expanding the initial one.

In Figure 3.3 a solution complexity for a very small system is presented. It

can serve as an illustration of a complexity of some larger networks. Even

with methods for reduction of states, such a solution for the large systems

remains practically unattainable.

Modelling Epidemics in Networks Using LTI System Approach

A brief introduction of the system theory based approach for modeling the

epidemic in the network is presented here.

The network is decoded in the form of an LTI system. We show that observing

the particular system response, we could formulate some conclusions about

the potential behavior of the network in the case of virus infection.

As the nodes interact with each other, a network could be regarded as a sys-

tem composed of connected interdependent elements where the output of one

element is at the same time the input of another. Therefore, system theory

can be used to describe the behavior of such system. The network struc-

ture characterizes internal connection pattern. More precisely, it describes in

which way the states of nodes affect each other and at the same time affect

the outputs, when excited by the inputs. In the case of the infection, the

infected node has an altered state and could influence the states of neighbor-

ing nodes. Since the epidemic is based on propagation through the network,

the transmission of the node’s state to its neighbor is a fundamental building

block for the epidemic modeling.

The network is usually represented as a graph G(V,E), with N = |V | vertices

or nodes and M = |E| edges or links. Furthermore, the network’s topology

is usually characterized by the adjacency matrix Aadj . For a graph with N

nodes, the Aadj is the N × N matrix where ai,j = 1 if there is a directed



68 Chapter 3. Problem Statement and Methods

edge between ith and jth node, and ai,j = 0 otherwise. The adapted form of

adjacency matrix is used as a system state matrix in further analysis.

In order to obtain simplicity and computability of the analysis, the network

is regarded as a discrete LTI MIMO (Linear Time-Invariant, Multiple Input-

Multiple Output) system. The state-space formulation used to describe the

system is:

x(n+ 1) = Ax(n) +Bu(n) (3.2)

y(n) = Cx(n) +Du(n), (3.3)

where x(n) ∈ RN is the state vector at discrete time n, u(n) ∈ RM is input

or control vector, and y(n) ∈ RM is the output.

The matrix A := (aij)N×N ∈ RN×N is the state transition matrix and the

matrix B ∈ RN×M is input matrix. The matrix C ∈ RM×N is the output

matrix and D ∈ RM×M is the feedforward matrix. The elements of matrix A

are denoted as aij . The graph is considered to be undirected.

The adjacency matrix Aadj represents the topology of bidirectional graph, so

the feedback loops are possible, and the stability of the system would be hard

to achieve. The purpose of designing a state space model of a network is

modeling of epidemic and therefore we should take into count the observed

dynamics of epidemic phenomena in real networks. In order to solve the State-

Space Network Realization Problem it is necessary to identify the internal

network structure of the system and encode it in a set of state-space matrices,

(A, B, C, D) which produce the input-output behavior.

Detailed explanation of state-space system modeling of the network dynamics

is out of the scope of this short introduction. A thorough description with

examples and simulation results is presented in the Chapter 4.
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3.2.7 Numerical Approach

The complex behavior observed in the number of physical systems makes it

very hard to be described analytically. A complicated mutual dynamics of

agents can produce practically unsolvable equations. In this case, the agent-

based models (ABM) sometimes referred to as microscopic computer models

are used.

This approach is used when the behavior of the single agent is known, but the

outcome of interaction of many agents is unknown. It is one of the ways to

emerge from the lower (micro) to a higher (macro) level of systems. Usually,

there is a limited number of states for each agent. Each agent is given a set

of instructions which determine its behavior in regards to various variables,

such as time, interaction rules with other agents, external factors, etc. At

each time step, the model-specific update procedure is applied to every agent.

Then the state of each agent and the system as a whole is evaluated by the

computer. The principle where the simple behavioral rules generate complex

behavior is known as K.I.S.S. (”Keep it simple, stupid”)3 [92].

One of the basic examples is the agent-based simulation of the epidemic in

the network. Let us consider the network where each node can be in one of

two states A (healthy) and B (infected). The reaction process is denoted as

A + B → 2B, which means that in each time step the node in the state A

will switch to state B in contact with the neighboring node already in state

B. Let us consider that at the beginning all nodes except one are in the state

A. The simulation procedure is the same for the each time step and runs as

follows: each node in state A checks its neighbors; if any of them is in the

state B, it updates its state to B.

This way the complex system behavior is recreated inside the computer, pro-

viding solutions for certain problems which could be solved only experimen-

tally. Even though this approach is very powerful for forecasting the complex

3K.I.S.S. is not meant to imply stupidity. On the contrary, it is usually associated with
intelligent systems that may be misconstructed as stupid because of their simplistic design.
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systems dynamics, ABMs are often not transparent enough. They give a very

detailed cross section of a system in every point in time, but lack the abil-

ity to explain certain behaviors. For a deeper understanding of some basic

system properties one usually has to analytically describe the system even in

the lower scale, and then to use the ABM to confirm the analytical solution.

Numerical simulations are extensively used throughout the thesis to recreate

various dynamical processes from epidemic spreading in Section 4 to cascade

failures in Section 5.

3.3 European NRENs

The abbreviation NREN stands for the National Research and Education Net-

works. The purpose of the Research and Education networking is to estab-

lish high-performance network infrastructure that connects universities and

research institutes independently from the other public or private networks

which are used for other purposes.

The National Research and Education Networks (NRENs) are dedicated high

speed networks that act at the national level to provide connectivity between

universities, research institutes, educational hospitals, schools, further educa-

tion colleges, libraries and other public institutes. These networks are built

separately using dedicated fibre optic connections or using already existing

high capacity leased connections provided by telecommunication providers.

The NRENs allow researchers, faculty, staff, and students to access a broad

range of research tools and information resources. NRENs often establish and

coordinate distributed computing resources (grids) and operating experimen-

tal test-beds for data-intensive applications. Some NRENs have even broader

significance as they act as a service providers for the third parties, and even

as a service providers for the general population.
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Figure 3.4: NREN topology in Germany. The illustration of the
NREN topology in Germany consists of 51 nodes and 80 links.

Together, these networks connect over 50 million users at 10000 institu-

tions across Europe, delivering a range of networking services for institutions,

projects and researchers [93].

The history of the research and education networking starts with the devel-

opment of the first successful network, known as ARPANET which connected

government-sponsored research organization in 1969. In 1984, NSFNET was

developed as a general purpose research network which served as the backbone

of the Internet. Nowadays, the high speed dedicated research and education

networks integrate networking interfaces, switches, and routers and facilitate

running computationally intensive R&E applications and services that are

often not found on the Internet.

The main drivers for creating NRENs are based on technological, social, and

economic factors [94]. The technological factors are there to satisfy high de-

mand of eScience initiatives from multimedia collaboration, distributed high

performance computing and requirements of high bandwidth necessary for
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the large scientific and experimental facilities like CERN’s Large Hadron Col-

lider (LHC). Another motive for the NREN’s existence has a social aspect,

including virtual organizations, collaborative research or tele-education and

facilitating the common culture of R&E community. Finally, NREN helps to

develop the capacity for economic prosperity serving as the demand aggrega-

tor and consolidating and controling the diverse public expenditures. It serves

for the promotion of information society (e-Government, e-Business, e-Health

. . . ) and finally as a stimulation of technological developments and telecom

markets.

At the national level it is the network which interconnects the local networks

of the research institutes and universities in each country. The National Re-

search and Education Networking organization (the NREN) of the country

is responsible of the national network. However, at the international level,

connectivity between the European NRENs is provided by the GÉANT net-

work. Some NRENs additionally have their own links to key destinations.

Connectivity to the commercial Internet takes place both at the NREN level

and, to a limited extent, at the GÉANT level. [95]

The GÉANT network is the pan-European research and education network

that interconnects Europe’s NRENs. It is co-funded by the European Com-

mission and national bodies responsible for Europe’s NRENs. The GÉANT

project is a collaboration between 39 partners: 37 European NRENs, the

GÉANT Association’s Cambridge office (formerly DANTE) and Amsterdam

office (formerly TERENA) as well as NORDUnet (representing 5 Nordic coun-

tries) [93].

In the analysis of cascading failures later in Chapters 5 and 4, only the back-

bone of the European NRENs is discussed. The lower level networks con-

nected to the NREN’s backbone within the country are therefore excluded4.

4Lower level networks are all MANs and LANs supported by the higher level NREN
backbone. NREN backbone usually connects main data centers in the cities, while the
MAN and LAN networks are build upon it and cover various research and educational
buildings within the city.
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Figure 3.5: NREN topology in Germany and Poland. The illus-
tration of two connected NRENs in Germany and Poland consists of 82

nodes and 116 links in total.

The network of NRENs in Europe consists of 37 national NRENs, with var-

ious topologies. They are connected through the GÉANT backbone, making

it a single pan-European network. The observed network consists in total

of 1157 nodes and 1465 bidirectional links. The topology data is obtained

from the network data provided by ”The Internet Topology Zoo”, an ongoing

project to collect data network topologies from around the world supported

by the Australian Government through an Australian Postgraduate Award

and Australian Research Council Discovery Grants [96].

An example of a single NREN is shown in the Figure 3.4, where the topology

of the National Research and Education Network in Germany is depicted.

The German NREN backbone consists of 51 nodes and 80 links. The links

are presented simply as a straight lines, thus ignoring the actual geometry of

the routes, which is in this case not relevant and not a subject of the analysis.

The national RENs are connected between each other. In the Figure 3.5

NRENs from Germany and Poland are shown together with interconnecting
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Figure 3.6: Complete European NREN topology. The overview
of the full network of European NRENs with 1157 nodes connected with

1465 links

links. Finally, the complete network overview of European NRENs with 1157

nodes and 1465 links is presented in Figure 3.6.



Chapter 4

LTI System Theory and

Spreading Phenomena in

Networks

Various natural and artificial systems are characterized by the complex in-

terdependencies of their elements. Those relations are usually modeled as

networks. For this reason network analysis became an important tool for

studying some of the typical system dynamics such as spreading of infor-

mation or diseases. Spreading characterizes numerous processes observed in

social and communication networks [14], such as the spread of rumors, news

and ideas among humans, or data broadcast and cyber attacks on communica-

tion networks. Two topics regarding the spreading phenomena are discussed:

epidemic modeling and identification of the most influential spreaders. Both

problems are addressed using a proposed Linear Time-Invariant (LTI) system

approach.

Throughout the years, LTI system theory has been used mostly to describe the

electrical circuits and networks. LTI is suitable to characterize the behavior

of the system consisting of numerous interconnected components. In this

Chapter we show that the same mathematical toolbox can be used for the

complex network analysis.

75
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4.1 Linear Time-Invariant Representation of

Networks

The Linear Time-Invariant systems theory is used to describe a system con-

sisted of many interconnected components which influence each other. One

of the most well-known attempts to use LTI to characterize the dynamic in

a complex network deals with the specific problem of controllability in dy-

namic systems [97]. System theory is used to identify the driver nodes which

will be able to mainly influence the system dynamic. The approach from [97]

addresses the problem of controllability for arbitrary network topologies and

sizes also for weighted and directed networks.

The complex networks consist of multiple interconnected components which

communicate with each other or influence each other by changing the state of

the influenced nodes. Such property has inspired the idea of network conver-

sion to the Multiple-Input and Multiple-Output (MIMO) system. We show

that the LTI theoretical approach can be used to capture the most common

epidemic dynamics described by Susceptible-Infected (SI) and Susceptible-

Infected-Recovered (SIR) models, more formally explained in Section 2.4.1

and Section 4.3.5.

A network is usually represented as a graph G(V,E), with N = |V | vertices

or nodes and M = |E| edges or links. The network topology is usually char-

acterized by the adjacency matrix Aadj . For a network with n nodes, Aadj

is the n × n matrix where aij = 1 if the ith and jth nodes are connected,

and aij = 0 otherwise. This particular graph representation is convenient for

a system theoretic approach as it resembles the state matrix A used in the

state space representation of a physical system. Alternatively, the topology

of the network could be defined by the list of edges, usually represented as

the M × Z matrix where M is the number of edges and Z is the information

about the edge. The number of columns is usually Z = 3 where the first,
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second, and third column are consisted of source node, sink node, and the

edge weight respectively.

The state transmission is the main characteristic of epidemic modeling. A

certain unwanted information (i.e. virus) enters the network at one or more

points and starts spreading. It is subsequently replicated and conveyed from

one node to another. The location of the virus, and therefore the state of

the network, changes with every transmission in multiple time steps. The

topology of the network is considered to be static. These properties allow us

to observe the network as a discrete LTI MIMO (Linear Time-Invariant, Mul-

tiple Input – Multiple Output) system [31]. The state-space representation

describes the system as:

x(n+ 1) = Ax(n) +Bu(n) (4.1)

y(n) = Cx(n) +Du(n), (4.2)

where x(n) ∈ RN is the state vector at discrete time n, u(n) ∈ RM is input or

control vector, and y(n) ∈ RM is the output. The matrixA := (aij)N×N ∈ RN×N

is the state transition matrix and the matrix B ∈ RN×M is input matrix. The

matrix C ∈ RM×N is the output matrix and D ∈ RM×M is the feedforward

matrix.

To represent the dynamics of the system, we use the system matrix A, which

can be constructed as a transpose of the adjacency matrix which describes

the network topology A = ATadj [31, 97]. Such a representation implies that a

certain signal excites the system by entering one or more input points (nodes).

Then, the signal gets conveyed from one node to another. To identify the input

nodes, we use the system matrix B. It is the input matrix and it is determined

by the system structure. Matrix B is used to identify the input points of the

system. There could be one or multiple inputs. Matrix B has dimensions

1 × N , thus it is a column vector of N elements. Let us assume the input

node is i, then bi = 1, within the matrix B = (bi)1×N .
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During this process, each node i modulates the signal by amplifying it by a

certain parameter aij ≤ 1 before transferring it to the adjacent node j. We

can choose which nodes to observe, either all or just a fraction of nodes and

measure the signal in each of them over time. To identify the observable set

of nodes, we use the matrix C. The matrix C is an M ×N matrix of constant

coefficients cij that weight the state variables. Usually C has a size of M × 1.

As nodes cannot be partially infected, the state of each node in the network

is binary (infected or not infected). Therefore, there is no need for weighting

the states variables, i.e. the weights for all variables are the same. Since all

weights are the same, in the output matrix C := (ci)M all of the elements

ci are equal. We can understand the measurement points as a set of sensors

collecting data in every time step. By analyzing the gathered data, we can

examine the dynamics in the network and estimate the possible impact of

infecting a certain number of nodes. The system matrices are generated the

same way, regardless of the network dynamics we want to study. At the end,

only the system response to the input signal is used for analysis.

The matrix D, known as a feedthrough (or feedforward) matrix, is an M ×M
matrix of constant coefficients dij that weight the system inputs. In case D

is the null matrix, the output equation reduces to a weighted combination of

the state variables, i.e. y(n) = Cx(n).

The input vector u(n) is an input signal. In case of a discrete system it is

referred to as the input sequence, as it is a vector of values which are taken

consecutively as an input in each time step. Systems are usually excited by

impulse or step function, causing the impuls and step response respectively.

The impulse signal, also known as Dirac delta function is denoted by δ and

defined by

δ(n) =





1, n = 0

0, n 6= 0
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Figure 4.1: An example of a small directed network and its corre-
sponding adjacency matrix. The zig-zag line shows the signal entering
the network. In LTI representation, the node 1© is an input point for the

signal exciting the system.

Another signal used for analysis is the unit step function, known as the Heav-

iside step function. An alternative form of the unit step is used as a function

of a discrete variable n:

1(n) =





0, n < 0

1, n ≥ 0

After representing a network as a LTI system, we can use various tools devel-

oped for a system analysis to gather and analyze the signal response acquired

from the network. We can choose to excite the system in one or more points,

hence mimic one or multiple initially infected nodes. Also, we can choose to

focus the analysis to a designated set of nodes and observe the response only

for them.

For example, a small directed network with the corresponding adjacency ma-

trix Aadj is shown in Figure 4.1. The state-space representation of the corre-

sponding system with matrices A, B and C is shown in (4.3) and (4.4). In

this example the input vector u(n) is in the form of the Heaviside (unit) step

function. Here we chose to observe the sum of the states of all nodes, and

therefore the matrix C ∈ RM×N consists of all ones.
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x(n+ 1) =




0 0 0 0
1 0 0 0
0 1 0 0
0 1 0 0


x(n) +




1
0
0
0


× 1(n) (4.3)

y(n) =




1
1
1
1


× x(n) +




0
0
0
0


× 1(n) (4.4)

One can choose any preferred way for solving the system equations [98]. The

system could be presented in the form of the transfer function H(s) where

H(z) =
Y (z)

X(z)
= C(zI −A)−1B +D. (4.5)

Furthermore, the step response of the system is obtained by

y(t) = Z−1
(

1

z
H(z)

)
, (4.6)

where the Z−1 (F (z)) is the inverse Z-transform of a function F (z).

However, this method could be challenging for large graphs as finding the

inverse of large matrices is computationally expensive. An alternative and

more programming-friendly approach would be a recursive solution [31] which

avoids the matrix inversion:

State-space equations are a set of linear first order difference equations. This

solution is convenient as it could be easily implemented using any mathemat-

ical software available. We start from the basic equations (4.1) and (4.2). For

an initial point in time n0 and for every n > n0 we have

x(n0 + 1) = Ax(n0) +Bu(n0)

x(n0 + 2) = Ax(n0 + 1) +Bu(n0 + 1)

= A2x(n0) +ABu(n0) +Bu(n0 + 1)
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and therefore

x(n) = An−n0x(n0) +
n−1∑

k=n0

An−1−kBu(k). (4.7)

The system output is obtained by substituting (4.7) in (4.2):

y(n) = CAn−n0x(n0) +
n−1∑

k=n0

CAn−1−kBu(k) +Du(n), (4.8)

where y(n) is a system response for the input signal in time domain. The

response here is denoted as y(n) rather than y(t), as the systems we are

observing are discrete, and the response is captured in a set of time intervals,

so the n ∈ N. If y(n) is an impulse response, it is defined as the output signal

that results when an impulse δ(n) is applied to the system input. The same

applies for the step response. In that case, the input signal is in form of a

step function 1(n). This allows us to predict what the system’s output will

look like in the time domain. Practically, in the interconnected systems we

are dealing with, an input signal enters the network in one or more nodes.

The signal then gets conveyed from one node to another. It can be altered by

the node it passes through or it can remain unchanged. The output is then

red as the sum of the signals in chosen nodes over time. The right-hand side

of the (4.8) has three components. The first one identifies the value of the

output for the initial system state, n = 0. Second part sums the signal in

all observable outputs for desired time span n. The third part evaluates the

influence of the feedforward matrix D which allows for the system input to

affect the system output directly. Systems considered in the analyses in this

thesis do not have a feedforward element, and therefore the D matrix is the

zero matrix.
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4.2 Modeling Epidemics by Virtual Network

Expansion

The epidemic process is always characterized by a parameter p which is the

probability of transmission. The p represents the probability a virus will be

transmitted from a single infected to a single neighboring susceptible node

in one time step. Linear Time-Invariant system dynamic describes only de-

terministic behavior. Therefore, it is necessary to make certain modifications

to the network in order to use the LTI approach. One example is to apply

virtual network expansion, explained here.

A dynamic of the system is determined by the matrix A, constructed in such a

way that aij = 1 if there is a link between nodes i and j such that node j affects

the node i. The link (j → i) could be either excitatory or inhibitory [97], i.e.

sgn(aij) = −1 or sgn(aij) = 1 respectively. In case of a virus infection in

undirected networks, there would be two links between every two connected

vertices. The weights of edges in such networks are considered to be equal with

unit strength. The links are directed and excitatory, so the matrix A could be

obtained as a transpose matrix of the adjacency matrix of the network Aadj .

However, If the state transition matrix A would be constructed simply by

making the transposed Aadj matrix A = ATadj as stated before, the feedback

loops would be imminent, so the BIBO1 stability of the system would become

a severe issue. The idea is to modify the matrix A so the BIBO stability

criteria are fulfilled and the dynamic in a system characterize the epidemic

phenomenon at the same time.

1A system is bounded-input bounded-output (BIBO) stable if its output will stay
bounded for any bounded input. In the undirected networks feedbacks surely occur and
the outputs of a system are routed back as inputs and form a circuit or loop.
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4.2.1 Almost Certain Transmission, p=1

To make a resulting system BIBO stable in the case of the uniform values

aij = 1,∀aij 6= 0, one approach is to eliminate all possible feedback loops. To

keep the epidemic dynamics intact, some assumptions have to be made:

1. One node will affect another almost surely - the signal within the LTI

system gets transferred from a node to its neighbor without deterioration

and with unit strength in each time step. It means the transmission from

one node to another would occur almost surely, i.e. probability p = 1

2. The information transmission is not recursive - a single node can not

be infected more than once

Considering the abovementioned assumptions, it is possible to modify the

topology in the way that loops get avoided and the epidemic pattern stays

unchanged. In the case of the inevitable infection from an infected to neigh-

boring node, meaning the transmission rate is p = 1, the infection will spread

deterministically. It will follow the shortest path from the source node to

all other reachable nodes in the network and the time of the full infection

will be minimal, equaling the minimal number of hops from the source to the

furthest node. The infection will spread following the shortest-path spanning

tree rooted in the initially infected node. Therefore, we construct the mini-

mum spanning tree (MST) [90] subgraph Atree of the undirected graph Aadj

with E(Atree) ⊆ E(Aadj) and V (Atree) = V (Aadj).

Let us take for example a small undirected graph G(V,E) with M = 4 nodes

and N = 4 edges, shown in the Figure 4.2a. The adjacency matrix for that

network would be the matrix Aadj and one possible MST of Aadj for the root

node 2 is A
(2)
tree (Figure 4.2b):

Aadj =




0 1 1 0
1 0 1 0
1 1 0 1
0 0 1 0


 , A

(2)
tree =




0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0



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Figure 4.2: Minimum Spanning Tree in a small network. [31] The
example of a network with M = 4 and N = 4. (a) The original undirected
network; (b) Minimum spanning tree with the root at node 2; (c) Directed

minimum spanning tree with root at node 2

In this rather trivial example we can easily identify the only MST rooted in

node 2©. In larger graphs there are usually multiple minimum spanning trees

originating from a single node. The same applies also for the weighted graphs

as the sum of all weights of tree edges could be the same for multiple trees [99].

However, there is no significance of which MST will be used in the case of

almost sure transmission. The path length from the root to all other nodes

remains the same, hence the epidemic will spread with the same rate.

The MST of an undirected graph is also undirected. In order to prevent

feedback loops in the resulting tree, it has to be transformed to a directed

one. In the case of the epidemic modelling, the directions assigned to each

edge should reflect the most probable direction of the epidemic spreading. The

subgraph GT (V,ET ) of the graph G(V,E) represents the direction of infection

flow through the network. The MST can be aligned in a hierarchical order in

the way that the root node is positioned at the top, the first neighbours at

the first level, the neighbours of the neighbours at the level below, and so on.

Following this convention we can assign the direction to each node so it leads

always from higher to lower level. In the working example, the MST A
(2)
tree
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with root node 2, becomes ~A
(2)
tree, as shown in Figure 4.2c.

~A
(2)
tree =




0 0 0 0
1 0 1 0
0 0 0 1
0 0 0 0


 , A =




0 1 0 0
0 0 0 0
0 1 0 0
0 0 1 0




Since the matrix A is a transpose of an adjacency matrix, we have A =

( ~A
(2)
tree)

T . Also, for the example in Figure 4.2, with input node 2© the matrix

B =
[
0 1 0 0

]′
.

The values of ci could be determined without any restriction from the set of

real numbers, but for the sake of simplicity, here we chose the unit value. If

we choose to observe all nodes in the network then ci = 1 for i = 1, 2, 3 . . .M .

In the example in Figure 4.2, C =
[
1 1 1 1

]
.

Finally the LTI system constructed out of the network from a Figure 4.2 is

composed using state-space matrices A, B and C. After the initial system

excitement by Dirac-delta δ(n) or Heavisade-step 1(n) function, the set of

values has been assigned to the output vector y(n). After applying the recur-

sive solution from (4.8), we get the system output in the form of an impulse

and step response for δ(n) or 1(n) inputs respectively.

• the impulse response of a system is yδ(n) =
[
1 2 1 0

]

• the step response of a system is y1(n) =
[
1 3 4 4

]

How those responses correspond with the results of an epidemic simulation?

Let us simulate the epidemic spreading in the same network with the same

initial node(s) and with the transmission probability p = 1. The epidemic

model simulated here is a simple SI model. As the output of the simulation

we get two vectors: v(n) where each value represents the number of infected

nodes in the particular time step, and vu(n) where each value represents the

total number of infected nodes from the beginning of infection up until the

certain time step.
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Figure 4.3: Simple graph and corresponding system re-
sponse. [35] (a) An example of a small tree graph where the node i is a
source of the infection. The signal in the form of the unit step or impulse
function enters the network at node i. Here we observe the state of the
system in each time step by measuring the signal strength in all nodes and
adding them together. The resulting measurements are step and impulse
response respectively. (b) Step and impulse response of a corresponding
LTI system with the single input in the position of node i. The response
corresponds to the spreading dynamics over time which originates in the
source node i. This is the simple case of almost certain infection of the
neighboring nodes in each time step over the tree graph. The step re-
sponse reveals the number of infected nodes over time. Impulse response

shows the number of infected nodes in each time step.

• the number of infected nodes at every point in time v(n) =
[
1 2 1 0

]

• the sum of infected nodes at every point in time vu(n) =
[
1 3 4 4

]

We can see that for this borderline example (p = 1), the step response cor-

responds with the total number of infected nodes so that y1(n) = vu(n) and

the impulse response corresponds with the number of infected nodes in each

time step so that yδ(n) = v(n).

Another more illustrative example of a small tree graph is presented in the

Figure 4.3. To depict the hierarchical structure of a tree, the nodes are po-

sitioned on the dotted concentric circles, where the larger circle represents a
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single hop distance from the smaller one. For the network from the picture,

the corresponding LTI system is created and the step and impulse response

are calculated. The A matrix is binary. The output is measured in all nodes

simultaneously, which means that we observe all nodes as outputs and calcu-

late the final output as the sum of signal strengths in all nodes over several

time steps. The input is a single node i located in the centre, which is a parent

node of a tree. The sum output is plotted in Figure 4.3b. Notice the impulse

response for the unit input. The value of the response over time equals the

number of nodes on corresponding circles. For the case of a virus transmission

in the example network with the source in the node i, and the almost certain

virus transmission from infected to susceptible, the impulse response shows

exactly the number of infected nodes over time. Likewise, the step response

displays the total number of infected nodes.

The example above shows that the approach of using linear-time invariant

system analysis can be used to study the epidemics in networks to a certain

degree. However, this method of analysis is limited only to tree graph with

almost certain transmission from infected to susceptible node. In reality, the

contagion spread is characterized with a transmission rate below 100%, and

usually p � 1. For the unlikely case of p = 1, the network could be trans-

formed to a shortest path tree with the seed node since the parent as the

infection route is known and unnecessary edges could be removed without af-

fecting the infection dynamic. On the other hand, for any p < 1, the number

of multiple incoming edges and multiple possible paths must not be neglected.

Time-invariant system analysis do not consider stochastic dynamics of mutual

interaction between elements. Furthermore, the introduction of the probabil-

ities in each iteration of equation 4.7 would produce the time-variant system.

A solution proposed next uses a process of Virtual Network Expansion, which

can transform the original network in the way it can be conveyed into the

proper LTI system with respect to the transmission probabilities. It could

be used to predict the infection dynamics on an arbitrary topology for any

0 ≤ p ≤ 1.
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i j
P = p

i n1 n2 j
P = 1 P = 1 P = 1

Figure 4.4: Virtual network expansion. [31] Insertion of additional
nodes between a pair of existing ones: an initial edge between nodes i and
j has been replaced by a set of consecutive nodes with the transmission
probability P = 1. The number of additional nodes n1, n2... has been
derived from the probability density function of geometric distribution

using (4.10)

4.2.2 Uncertain Transmission and Virtual Network

Expansion

Network epidemics dynamic is almost always characterized by the probability

of transmission p. It is a probability of virus transmission from infected to

susceptible individual independently in a single time step. However, for the

uninfected node i with ki infected neighbors, the probability of transmission

becomes pi = 1−(1−p)ki . Usually, the p is considered to be uniform regardless

of the node, although it is possible to use different p for each pair of nodes,

therefore p is a value rather assigned to the edge, as it quantifies the relation

between two adjacent nodes. It could be alternatively considered as a weight

of a particular edge.

The LTI approach alone does not give a possibility to introduce probabilities.

Therefore, an alternative concept called Virtual Network Expansion is intro-

duced to modify the original network before the conversion to LTI suitable

form.

Let us consider an undirected network G(V,E) with a probability of virus

transmission of 0 < p < 1. Let us further assume that there is a secondary

network GE(VE , EE) with the p = 1 which will demonstrate the same prop-

erties as the original network G(V,E) in the case of virus infection. In the
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proposed solution, a neighboring pair of nodes i→ j with a probability of

virus transmission 0 < p < 1 could be replaced by an appropriate number of

nodes i→ n1 → n2 → . . .→ j with a probability of virus transmission p = 1

between each of them. The process of inserting intermediate nodes is displayed

in the Figure 4.4.

Now, let us consider a case where the node i is infected and its neighbor

j is susceptible to an infection. In a single time step, the node j will get

infected with a probability p. Eventually, the node j will get infected after

a certain number of trials. All the trials individually could be represented

as an additional intermediate nodes with a transmission probability p = 1

between each of them. Therefore it is relevant to find out the number of

intermediate nodes k̄. The number k̄ could be obtained from the discrete

geometric probability distribution, as the number of trials before the success.

The geometric distribution, as a special case of the negative binomial distri-

bution is a discrete distribution for k = 0, 1, 2, . . . with a probability density

function

P (k) = p(1− p)k, (4.9)

where success probability is denoted by p where 0 ≤ p ≤ 1 and the number of

trials needed for a single success is denoted by k.

The (4.9), plotted in Figure 4.5 shows the distribution of number of interme-

diate nodes. For the network expansion procedure, for each edge, the value

of P (k) is randomly selected following the uniform distribution from the set

of real numbers such that 0 ≤ P (k) ≤ p. Then the appropriate number of

additional nodes k̄ is calculated from

k =

log

(
P (k)

p

)

log(1− p) (4.10)
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Figure 4.5: Probability mass function of the geometric distribu-
tion. Plot of the probability mass function of the geometric distribution
for the probability of success p = 0.2. For the network expansion proce-
dure for each edge, the value P (k) is chosen randomly following uniform
distribution where P (k) ∈ [0, p]. Then, discrete value of k̄ is chosen ac-

cordingly.

The value k obtained from (4.10) is a real number k ∈ R, and the number of

trials before success, i.e. number of additional nodes k̄ is integer k̄ ∈ N and

obtained as a floor function of k as k̄ = bkc.

By adding an appropriate number of nodes between each pair of nodes in

the original network, we can create the extended network GE(VE , EE) . The

extended network will consist of original and additional nodes V ∈ VE . The

probability of virus transmission in GE is p = 1. We show that the infection

dynamic in the original network G corresponds to the step response of the LTI

system constructed from the extended network GE . Note that for the LTI

system analysis of the extended network GE(VE , EE) we only observe output

at the subset of nodes V from the original network G(V,E), so the system

matrix C of the extended network is CE = CE(V ). The additional nodes are

ignored as outputs, and this is the main reason the process is called virtual

network expansion.
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4.2.3 Numerical Simulations

In order to compare the proposed LTI approach against the conventional

agent-based dynamics of infection, numerical simulations were performed. As

the testbed we use randomly generated networks G(V,E) with |V | = 100

nodes and |E| ≈ 200 edges generated using three different network models.

The results of the simulations are averaged over 100 individual runs. Two

hypotheses have been tested:

1. Can we transform the original network with P = p to a new network

with P = 1, which could exhibit the same spreading properties as the

original one? A transformation is done by virtual network expansion.

2. Can we model the infection on the original network using LTI dynamics

on extended network?

First, we test if the virtual network expansion could produce the secondary

network with all probabilities of transmission p = 1 which performs simi-

larly to the original network in the case of virus infection. For simulating

the spreading dynamics in this case we use susceptible-infected (SI) epidemic

model2.

We conduct spreading simulations on three random networks generated by the

following methods: Erdős-Rényi, Watts-Strogaz and Barabási-Albert graph3.

The probability of transmission for the original graphs is chosen to be p = 0.4.

Then, we extend the original networks G(V,E) and conduct the simulations

again with probability of infection p = 1 on extended networks GE(VE , EE).

The virus infection is simulated starting at the same initial node for original

and extended networks. We observe the cumulative number of infected nodes

over time. In Figure 4.6 we can see almost perfect match of simulation results

2For more detailed explanation of all epidemic models used in simulations, see Sec-
tion 2.4.1 and Section 4.3.5

3More information on networks used for the simulation are available in Section 4.2.4
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Figure 4.6: Spreading dynamics in the original vs. extended
network. [31] The simulation of virus spreading on the original G(V,E)
and extended network GE(VE , EE). The simulation is conducted on three
randomly generated networks (a) Erdős-Rényi network, (b) Watts-Strogaz
network and (c) Barabási-Albert network with N = |V | = 100 nodes and
M = |E| ≈ 200 edges and probability of infection p = 0.4. The plots
show the number of infected nodes over time. The extended networks

demonstrate very similar properties as the original one.

for the original and extended networks. We show that the method for network

extension can be used for epidemic modeling4.

Secondly, we compare the infection dynamics of the original network G(V,E)

and the response of LTI system obtained from the extended networkGE(VE , EE).

This way we show that it is possible to study spreading processes observing

a response of a LTI system. The simulation process in form of a pseudo-code

is presented in Algorithm 2.

Similarly to the example shown in the Figure 4.6, first the spreading dynamic

is simulated using the SI model. In each time step t, the infected node at-

tempts to infect the susceptible neighbor. The infection gets transmitted with

probability p = 0.4. Therefore, the susceptible node gets infected with the

probability P = 1 − (1 − p)k, where k is the number of infected neighbors.

4Notice that the total number of simulated infected nodes in the ER graph is lower than
100. The reason is the method used for generating the network. In the given set of n
vertices, each pair is connected with the probability p independently. Therefore, the model
allows the creation of multiple connected components. The simulation is conducted on the
largest connected component with a size n ≈ 80
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Algorithm 2 Comparison of SIR epidemic and LTI dynamics

1: procedure SIR simulation
2: Input: G(V,E), p, i . i - source of infection
3: initialize the infection
4: while all nodes are infected do
5: identify all susceptible nodes
6: calculate the probability for each susceptible node to get infected
7: infect susceptible nodes
8: calculate the number of infected nodes vu(n) and v(n)

9: end
10: return the number of infected nodes

11: procedure LTI dynamics
12: Input: G(V,E), p, i
13: for every edge do
14: extend the edge according to the p

15: end
16: return extended network GE(VE , EE)
17: create an MST with the root in i
18: identify the direction of the edges
19: construct an LTI system
20: calculate response yH(n) and yδ(n)
21: return step and impulse response

22: compare the outputs

Data collected by simulation includes the cumulative number of infected nodes

vu(n) and the number of infected nodes in each time step vu(n) which is the

derivative of vu(n).

Then, the LTI system is created from the extended network GE(VE , EE) with

the probability of infection p = 0.4, following the procedure described in Sec-

tion 4.2.2. In the Figure 4.7 (first row) the plots show the epidemic dynamic as

vu(n) simulated on the original network with the infection probability p = 0.4.

The values of the vu(n) are compared to the step response yH(n) of the LTI

system created from the extended original network. The results obtained from
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Figure 4.7: Spreading simulation vs. system response. [31] The
simulation of the epidemic on the network G(V,E) with N = |V | = 100
nodes and M = |E| ≈ 200 edges and probability of infection p = 0.4. In
the first row, the cumulative number of infected nodes is shown against
the step response of the LTI system created from the extended network
GE(VE , EE). In the second row, the number of infected nodes at each time
step is compared against the impulse response of the LTI system created
from the extended network GE(VE , EE). The simulation was conducted
on three networks (a)(d) Erdős-Rényi random graph, (b)(e) Watts-Strogaz
network and (c)(f) Barabási-Albert network. The results of the simula-
tions are averaged over 100 individual runs. The plots show that proposed

LTI model can predict the behavior of the epidemics in the network.
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the SI simulation and the system response strongly correlate. The time evolu-

tion of epidemic behaves as predicted by proposed LTI model. Similar results

are shown in the Figure 4.7 (second row). The results of the SI simulation

v(n) are now compared against the impulse response yδ(n) of corresponding

LTI system. This time, the number of infected nodes at each time step is

compared to an output of a system excited by an impulse function. The

correlations between the results are significant.

4.2.4 Network Data

Three types of networks used in the simulations are generated randomly fol-

lowing three different network models.

As an example of a simple random graph, we choose the model proposed by

Erdős and Rényi [36]. The network is constructed from a set of N nodes

and the edges are then generated5. The probability of an edge between two

nodes is p and the probability that there is no edge is 1 − p. The average

degree 〈k〉 is calculated from the number of edges 〈E〉 generated in a graph

〈E〉 = 1
2N(N − 1)p. Since each edge connects two vertices it is a part of a

degree calculation for both of them. Therefore, we have 〈k〉 ' Np.

The second group of networks is generated using the Watts-Strogaz model [40]

which produces the networks which exhibit the Small-World6 properties. The

obtained networks show some properties, namely clustering coefficient and

average shortest path, which are more similar to those manifested by the real-

world networks. The small-world networks are highly clustered and have a

short path lengths at the same time. The network is generated using ran-

dom rewiring procedure for interpolating between a regular ring lattice and

a random network, without altering the number of vertices or edges in the

graph.

5For more detailed explanation of Erdős and Rényi model for random graph generation,
see Section 2.1.1

6For more detailed explanation of small-world networks and Watts-Strogaz model, see
Section 2.1.2
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The third model we use, generates the network with Scale-Free7 properties.

We use the algorithm introduced by Barabási and Albert [43]. It is shown that

for a number of systems, including the World Wide Web, citation networks

and social networks, the degree distribution follows the power law. That is,

the distribution of degrees P (k) of nodes in the network with k connections

to other nodes follows the power law function P (k) ∼ kγ where γ represents a

parameter with a value usually in a range 2 < γ < 3. The network is generated

following the principle known as preferential attachment, known also as a rich-

get-richer phenomenon, the Gibrat principle or cumulative advantage [14].

4.2.5 An Example of Network Analysis

To demonstrate the possible application of the LTI approach in spreading

dynamics analysis, here we provide a simple example. We take a small undi-

rected network G(V,E) with |V | = 6 nodes and |E| = 5 edges (Figure 4.8a)

and we use LTI approach in two scenarios.

First, we show how the change of the transmission probability p affects the

response of the corresponding LTI system. In the example network from the

Figure 4.8a the topology remains unchanged, but the transmission probabil-

ity changes from p1 = 0.6 to p2 = 0.2. The transmission probability is the

same for all pairs of adjacent nodes and the infection is considered to originate

from node (1). Based on the topology information G(V,E), we build two LTI

systems: the first one with p1 = 0.6 and the second one with p2 = 0.2. Then

we calculate the step responses for the acquired systems and plot it in the

Figure 4.8b. We observe the difference between the slopes of two obtained

curves. The curve with the higher slope represents the step response of a

system derived from the network with the higher transmission rate. There-

fore, analyzing the response of a given system we can estimate the epidemic

dynamics in the corresponding network. An inclination of a slope corresponds

7For more detailed explanation of Barabási and Albert model and Scale-Free properties,
see Section 2.1.3
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Figure 4.8: Simple network and corresponding LTI step re-
sponses. [31] (a) An example of undirected network with M = 6 nodes
andN = 5 links and probability of a transmission p; (b) The step responses
of the LTI systems derived from the network using two probabilities of in-

fection p = 0.6 and p = 0.2

to the rate of epidemic at each point in time. The same value corresponds

also to the impulse response.

The response of a corresponding system can be also used for the network

optimization in case of the variable transmission rate p. Let us consider

the following scenario illustrated in Figure 4.9: a small undirected network

G(V,E) with |V | = 6 and |E| = 5, has an uniform transmission rate p = 0.6

between all pairs of nodes. However, we have a possibility to protect the

network by changing the transmission rate of only one edge to p′ = 0.1.

Additionally, we are allowed to choose between two edges: 3↔ 4 and 4↔ 6.

The goal is to optimize the network so the virus percolates slowly, meaning

that it needs more time to infect all nodes.

In order to assess the optimal protection strategy, we make three correspond-

ing LTI systems for each of the possibilities: without modification (all trans-

mission probabilities remain unchanged, p = 0.6), edge 3 ↔ 4 modified and

edge 4 ↔ 6 modified. Then we calculate the step response of all systems

and observe the plots in the Figure 4.9b. The slope of a step response curve
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Figure 4.9: Network protection example. [31] (a) An example of an
undirected network with M = 6 nodes, N = 5 links and two different
probabilities of infection p = 0.6 and p1 = 0.1. (b) The step response of
the LTI systems obtained from a network according to the link chosen to

be protected.

suggests the epidemic rate and the moment the curve reaches maximum value

suggests the time needed for the full infection. By observing the curves in Fig-

ure 4.9b, we can conclude that the best solution is to lower the transmission

rate of the edge 3↔ 4.

The network presented here is rather simple and the optimization decision

trivial. Still, this example illustrates how an LTI approach can be used to

analyze and optimize the networks against epidemics. This approach has

some weaknesses which should be addressed. The main problem is the network

modification which has to be performed in order to make this model work.

It requires additional topology modification by virtual network extension.

However, the results suggest that the state of a network during the epidemic

could be calculated for any given time, even without using the agent-based

simulation process. Additionally, this approach opens the opportunity to

introduce a set of tools from the system theory in epidemic modeling.
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4.3 Identifying the Influential Spreaders

There are numerous attempts to precisely evaluate the node importance in the

network. Most of the approaches used in the literature are based on various

centrality measures and their variations. Centrality measures such as degree,

betweenness, closeness, local rank, h-index, Katz centrality and eigenvector

centrality, try to quantify how much the node is centrally positioned within the

network regarding the topology [4, 46, 100, 101]. Various centrality measures

are designed to quantify the node importance for different spreading processes

and not all of them are useful in all types of networks. For example, to

identify most influential spreaders in social networks, k-shell is more reliable

then degree [102]. Centrality measures easily identify the hubs, but usually

fail to capture the spreading potential of the numerous peripheral nodes [103].

Those nodes are in majority and they are most likely to become the source of

the infection. To capture the potential influence of non-hubs, other metrics

should be used such as expected force [85]. There is a growing specific group of

measures which all try to explain more specifically the spreading power or the

potential influence of all the nodes in the network. They do not always rely on

the path lengths and distances as most of the conventional centralities do. The

paramount objective is to determine the important spreaders [34, 49], nodes

able to spread the infection quickly through the network. Besides the expected

force, for that purpose we can use: k-shell [104], k-truss [32], percolation [72],

accessibility [105] or dynamic influence [33].

Another measure named Node Imposed Response (NiR) proposed first in [35],

which captures the node’s spreading potential is explained here. It can ac-

curately classify the most important nodes based on their possible spread-

ing influence. A theoretical background used as an initial rationale behind

the proposed approach supports the later acquired simulation results. The

measure outperforms betweenness, degree, coreness and h-index centrality in

identifying the most influential spreaders in case of the SI and SIR spreading

processes. Even the NiR does not depend on any parameters, its performance
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is comparable to the centrality measures such as dynamic sensitive centrality

(DS) [51] which use parameters for better fitting to the spreading dynamics.

The proposed NiR measure utilizes concepts from LTI systems theory. More

specifically, the NiR measure is based on the value of the system response

to the input step function. Here, we show that LTI approach could be used

for assessing the node spreading power. Furthermore, it could be fitted to

identify various possible influences from a single or multiple sources to a single

or multiple end nodes. The modifications to the original measure could be

done simply by manipulating the corresponding system matrices.

4.3.1 Calculating the NiR

NiR is the normalized maximum value of the step response Si for the corre-

sponding LTI system with the node i as the input. Let us define the maximum

value of step response for the node i as Si, then

Si = max
1<t<k

yi(t) (4.11)

The function yi(t), derived from (4.6) is concave and eventually reaches its

maximum value for t large enough. Therefore Si will always exist. Then

NiR(i) =
Si − Smin

Smax − Smin
, (4.12)

where Smax = maxj∈{1,...,n} Sj , Smin = minj∈{1,...,n} Sj , and n is the number

of nodes in the network.

In order to calculate Si we have to construct the corresponding LTI sys-

tem which is defined by system matrices A, B, C and D. All the matrices

are created following the procedure explained in the Section 4.1 using the

(4.3) and (4.4). Before creating the matrix A, some modifications have to be

performed on the original graph. In order to maintain the system’s bounded-

input, bounded-output (BIBO) stability, the topology should be modified so
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the cycles are removed (see Section 3.2 for details). The NiR could be calcu-

lated only for the acyclic directed graphs. An alternative modification of NiR

called reduced NiR, could be calculated for any graph and it is discussed in

Section 4.3.6. For the spreading processes, such as SI and SIR, cycles could

be considered as irrelevant as the nodes cannot be infected twice. Also, re-

moving the edges which form the cycles should not significantly influence the

spreading dynamic. However, the algorithms for cycle removal do change the

topology in the way some paths become excluded, especially for the undirected

networks where one has to choose between the edge directions. Therefore, the

proper way of removing cycles has to be chosen in order to maintain the most

important paths from the source node and to introduce the minimal number

of removed edges. An algorithm for making an acyclic graph is described in

Section 3.2.

After the manipulation of the original graph we create a system matrix A

such that A = ATadj . All non-zero entries are substituted with the value d

so ∀aij 6= 0 : aij = d, and 0 < d < 1. We can choose any d between 0 and

1. However, choosing d� 1 is preferred. Supplementary investigation shows

the variance between NiR values for all the nodes becomes higher for smaller

d. In the case of any relatively large network, the variance between node

measures become more important for proper node classification, as there is

a large fraction of non-hubs, nodes with very similar and small spreading

power. In this case, the low variance could lead to false estimation, especially

considering the removal of cycles and some of the topology information which

gets lost during the process. Therefore, choosing the smaller d is important

for proper node differentiation. In our simulations we use d = 0.1.

The matrix B[1×n] is consisted of all zeros except for the input node i which

is evaluated, in which case b1,i = 1. The matrix C[1×n] is a vector of all ones,

as the output is observed in all nodes and it is not weighted.

The step response of the obtained system will eventually reach the maximum

value Smax. That particular value calculated for the input node and normal-

ized over all nodes within the range [0, 1] is the NiR.
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4.3.2 Small Network Example

In Figure 4.10 an example of a small network with n = 10 nodes is shown.

Each of the nodes have its NiR value written above. In order to calculate the

NiR, the topology has to be modified to make a network acyclic. This pro-

cedure depends on the chosen source node (Section 3.2). The modification is

performed for every node independently. In this example, we see two versions

of the topology with two nodes as the sources: node with ID1 on the left and

node with ID10 on the right. The NiR value indicates the node’s spreading

power, which means the node with higher NiR will infect the entire or the

large fraction of the network faster.
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Figure 4.10: The NiR of all nodes in the network. For each node,
we can calculate the NiR. Initially, the undirected network is made di-
rected and acyclic with the respect to the source node. This is a necessary
step in order to maintain the system’s stability. The LTI system is then
formulated having in mind the new topology and the source. The value
of the maximum step response of the corresponding system is the NiR.
There are two topologies depicted for two observed nodes: node 1 (left)
and node 10 (right). The normalized NiR values are shown above each
node. The radius of the node represents the NiR value (the larger the
radius, the larger the NiR). Here we can identify the node 5 as the one

with highest NiR.
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The claim is supported by simulating the SI spreading dynamics and compar-

ing the results with the obtained NiR values. The simulation was performed

as following: the infection originates in a single node; the infection spreads

following the transmission rate p, and eventually covers the whole network;

the time needed for a full infection is then calculated. If the time of full infec-

tion is shorter, the node has a potential to spread the infection faster and is

considered more important (i.e. more influential). In order to compare NiR

value and simulated spreading potential, we sort nodes both by their NiR and

by spreading power obtained by the simulation. This way we identify several

distinct groups of nodes with different spreading potentials (Figure 4.11). In

case of the small network example, the NiR value accurately captures the

spreading potential, as the node grouping is the same as obtained by numer-

ical simulation. It is likely that for large networks where n � 10, there will

be many nodes with very similar NiR values which is in accordance with the

innate scale-free principle of many networks, with a large fraction of non-hubs.

4.3.3 Simulation Results

In order to validate the assumptions from the previous section, first we sim-

ulate the SI and SIR spreading processes on the set of networks and then

compare it to the NiR measure. The results show a significant correlation be-

tween the NiR and the simulation results for all the families of networks used

for the analysis. The networks used for the simulation are listed in Table 4.1

and more precisely described in Section 4.3.7. The correlation diagrams are

shown in Figures 4.12 and 4.13.

The simulations were performed on several networks using SI and SIR models.

The benchmark value for the SI model is the time t needed for partial (50%

or 70% nodes) infection in the case of a single source node i. For SIR model,

the value used for the comparison is an outbreak size (the total number of

nodes which got infected) after t time steps. More on spreading models and

relevant measures in Section 4.3.5. The results collected by simulations for
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Figure 4.11: Nodes in the small network classified by the impor-
tance. On the left side, the nodes are ranked by their NiR value. Then,
the SI infection is simulated for each source node and the time measured
until the infection reaches all nodes. The right-hand picture shows the
node ranking by the time infection needs to spread if the infection starts
from that particular node. If the time for full infection is shorter, the
node is ranked higher. The NiR measure could capture the node’s spread-
ing power and put it in the right category. The distinct separation in
groups by the spreading potential is made for the sake of the better visual

presentation.

each of the nodes are then compared against the NiR and five other centrality

measures (betweenness, coreness, degree, DS and H-index centrality). The

NiR measure demonstrates high correlation to simulation results together

with the low variance, often outperforming all five measures both in SI and

SIR model. The only measure which performs equally is a DS centrality whose

parameters depend on the dynamics.

In Figure 4.12 and 4.13 the violin plots represent the correlation distributions.

The figures are divided in eight sections for each of the networks used in the

analysis. For each centrality measure the violin plot displays the distribution

of the correlations acquired during the spreading simulation. The vertical



Simulation Results 105

position of a single violin represents the correlation value, which means the

higher the position the stronger the correlation between the particular cen-

trality measure and the simulation results. Likewise, if the plot is positioned

low, the correlation is weaker. The width of the violin represents normalized

correlation frequency obtained from multiple experiments for the stochastic

simulation process. The vertical length of the violin represents the variance

which implies the robustness of the measure. If the violin is short, the mea-

sure correlates with the spreading dynamics most of the time. Likewise, if

the violin is stretched, the variance is high and measure is not always reliable.

All the correlations are quantified by Kendall’s τ rank correlation coefficient,

explained more in details in Section 3.2.

Note that all violin plots are smoothed for the sake of the better presentation.

For smoothing, we estimate the probability density function of the observed

correlation distribution using normal kernel density with kernel density esti-

mate as KDE = 0.15 [106].

Not all the nodes are used for the correlation measurement. In case of large

networks, there will be a large fraction of nodes with very similar spreading

potential, so the incremental difference in centralities is negligible. Therefore

it is justified to take a representative sample of nodes and use them for anal-

ysis. Here, we sort nodes based on their NiR value8. Then we divide the

sorted set into 10 equal pools. From each pool we pick 8 nodes uniformly at

random. In total we use 80 nodes for the comparison. This way we choose a

representative set of nodes randomly but still avoiding the random generator

to choose many similar nodes. We assume that a higher resolution would

not add up to the precision while significantly increasing the need for more

computing power.

8Additional examination shows that choosing another measure for sorting does not make
significant difference
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Figure 4.12: Correlation of NiR and centrality measures to the spreading
outcome on simulated networks - the case of the SI model. Violin plots show
the distribution of correlations between observed spreading dynamic and various
centrality measures on 100 generated networks from each network family. Graphs
are generated from the sample degree sequence of the real graphs. The correlation
with NiR is relatively strong and outperforms betweenness, coreness, degree and
H-index centrality with higher mean values and low variance. The vertical position
of the violin plot demonstrates the correlation coefficient over all observed samples:
the higher the position, the stronger the correlation. Additionally, the length of
the plot indicates the variance: the more stretched plot, the bigger the variance.
Therefore, the preferred plot is narrow and positioned high on the grid. The SI
spreading process is used as a reference and it is computed as the time the infection
reaches at least 50% of all nodes starting from the source node for the spreading
rate of p = 0.05. The infection time is calculated as a mean time for 300 simulated
processes for each observed node. The horizontal line within the plots shows the

arithmetic mean of the correlation coefficients.
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Figure 4.13: Correlation of NiR and centrality measures to the spread-
ing outcome on simulated networks - the case of the SIR model. Violin
plots show the distribution of correlations between observed spreading dynamic and
various centrality measures on 100 generated networks from each network family.
Graphs are generated from the sample degree sequence of the real graphs. The cor-
relation with NiR is relatively strong and outperforms betweenness, coreness, degree
and H-index centrality with higher mean values and low variance. The vertical po-
sition of the violin plot demonstrates the correlation coefficient over all observed
samples: the higher the position, the stronger the correlation. Additionally, the
length of the plot indicates the variance: the more stretched plot, the bigger the
variance. Therefore, the preferred plot is narrow and positioned high on the grid.
The SIR spreading process is used as a reference and the benchmark measure is the
outbreak size of the infection when the spreading rate is p = 0.05 and recovery rate
is µ = 1. The outbreak size is calculated as a mean outbreak size for 300 simulated
processes for each observed node. The horizontal line within the plots shows the

arithmetic mean of the correlation coefficients.



108 Chapter 4. LTI system theory and spreading phenomena in networks

Violin plots represent the correlations for simulation of the epidemic with

already fixed parameters. Additionally, we simulate SI and SIR spreading

process on two real world networks (NREN and CA-GrQc) for various values

of transmission probability where we choose several incremental values of p

ranging between 0.01 and 0.1. As shown in Figure 4.14, NiR performs well

in both networks for both spreading models, clearly outperforming degree, H-

index, coreness, and betweenness centrality. For the SI model, NiR performs

equally as well as DS centrality, even though it does not use any additional pa-

rameters from the spreading model. It is evident that the correlation between

the simulated dynamics and centrality measures drops when p increases. This

suggests that evaluating the node’s spreading potential for large transmission

probability becomes more difficult.

4.3.4 Reasoning Behind

The main hypothesis leading to the NiR proposal is that the time needed

to infect the fraction of the network correlates with the step response of a

corresponding LTI system. Here we show the example of three simple graphs

given in Figure 4.15 which demonstrate that the value of the step response

could be used to predict the simple spreading dynamic. We further argue that

the same principle could be used for a directed acyclic graph of an arbitrary

size. This is supported by the results of the numerical simulations illustrated

in Figure 4.16.

The time delay between the initial infection and the full infection of a network

is a function of the probability of virus transmission p between the infected

and susceptible node. This relation is reciprocal: the smaller the p, the longer

it will take for a full infection. By observing the probabilities of transmis-

sion within the graph, we can derive the expected time of all nodes to be

infected, E[X(p)]. The E[X(p)] is the expected value (mean) of X, where

X is a discrete random variable. Expected value is calculated as a weighted

average of the possible values that X can take, each value being weighted
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Figure 4.14: Correlation between centrality measures and
spreading potential evaluation for various p. The probability of
infection p takes a value from 0.01 to 0.1. Each data point is obtained by
averaging over 104 individual runs. Plots are generated according to the
SIR model (upper half) and SI model (lower half). All correlations are

quantified by the Kendall’s Tau coefficient τ .

according to the probability of that event occurring. It is a monotonic func-

tion for all nodes and therefore it could be used for the node’s ordering. On

the other hand, the maximum value of the step response of the correspond-

ing LTI system Smax(p), presented as a function of p is monotonic as well,

although increasing. The corresponding system is derived from the acyclic di-

rected graph with non-negative values of the A matrix elements in the range

0 < aij < 1. The example of three small networks in Figure 4.15 and their
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Figure 4.15: Expected time of infection and step response: small
networks example. For three small networks the expected time of full
infection, E[X(p)], is calculated. For all networks the source of the infec-
tion is the parent node (top). At each time step the parent node tries to
infect neighboring susceptible nodes with the probability p. All nodes will
be eventually infected and the time of full infection is presented with a
certain distribution (i.e. the distribution of the expected number of trials
in discrete time for the infection to reach all nodes). The E[X(p)] is the
mean of the distribution for each network (the expected number of trials
before the success). The Smax(p) is the maximum step response value of

the corresponding LTI system.

corresponding E[X(p)] and Smax(p) demonstrate the monotonic nature of

observed functions.

The illustration of the phenomenon becomes clear in this small example. Cal-

culating the E[X(p)] for slightly larger graphs already becomes very complex.
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Figure 4.16: The comparison of the step response and the infec-
tion time. Here we compare the time the infection reaches all nodes and
the maximum value of step response of the corresponding LTI system for
the various probabilities of infection. For the sample random acyclic graph
with 100 nodes, the corresponding single input LTI system is constructed.
The non-zero values in A matrix range from 0.01 to 0.4, to capture the sys-
tem behavior with various infection probabilities. The system is excited
by step function and the maximum value of the step response is presented
with data points as squares. The results indicate the exponential trend.
On the other hand, we simulate the SI infection dynamic starting from the
same node. The simulation is conducted for 40 different probabilities of
infection (0.01-0.4). The time for the infection to reach all nodes is then
measured (i.e. the time when the network becomes fully infected). For
comparison, the inverse value is plotted with data points as circles and
the black line exhibits the linear trend. Both curves are monotonically

increasing.

To derive the expected time E[X(p)] of infection for larger non-regular net-

works rapidly becomes too difficult as the number of nodes increases. How-

ever, the simulation results on those networks suggest the same monotonically

increasing trend (Figure 4.16). The time the infection will spread rises mono-

tonically with the increased probability of infection p, which is expected. At

the same time, the maximum value of the step response follows the similar

trend. This leads to the conclusion that those two measures (expected time
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of the infection and maximum step response) could be used interchangeably,

except that Smax is considerably easier and faster to compute.

4.3.5 Spreading Models

SI (Susceptible-Infected) epidemic model. The SI model differentiate

between two possible states of the nodes: a) susceptible to infection and b)

already infected and able to spread the infection. In SI model, the transition

from a) to b) is possible, but not vice-versa. The epidemic process starts

with a fraction of initially infected nodes. All the neighboring nodes are

considered susceptible. In each time step, the infected node attempts to

transmit the infection to all of its susceptible neighbors independently with

a transmission rate p. For the healthy (uninfected) node i with k infected

neighbors, the probability of infection in each time step is pi = 1− (1− p)k.

When the susceptible node gets infected, it remains in that state indefinitely

and it is able to spread the infection further. The infection process in the

connected graph will eventually affect the whole network until all the nodes

switch state from susceptible to infected. We simulate the SI infection which

originates from a single node belonging to a set of chosen nodes. Then we

measure the time t in a form of a number of time steps needed for infecting

the 50% of all the nodes. The spreading process is repeated over 300 times

for each of the chosen nodes as source. The average time t is used as a

basic benchmark. The NiR values for the same set of chosen nodes is then

compared and the correlation is measured. The same process is repeated for

100 different networks derived from the each network family.

SIR (Susceptible-Infected-Recovered) epidemic model. In the SIR

model, each node could take one of three states: a) susceptible to infection, b)

already infected and able to spread the infection and c) recovered (removed)

and not able to infect other nodes. The state transition is unidirectional

from a) to b) to c) and not vice-versa. The epidemic process starts with a

fraction of initially infected nodes. All the neighboring nodes are considered
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susceptible. In each time step, the infected node attempts to transmit the

infection to all of its susceptible neighbors independently with a transmission

rate p. Simultaneously, all already infected nodes get recovered from infection

with the recovery rate µ. For the healthy (uninfected) node i with k infected

neighbors, the probability of infection in the next time step is pi = 1−(1−p)k.

At the same time the probability of recovery remains the same regardless of

the node’s surroundings. We simulate the SIR infection which originates in a

single node belonging to a set of chosen nodes. The recovery rate is considered

to be µ = 1, which assumes that all of the nodes infected in time step t′ will

get recovered in t′ + 1. The results should be very similar for other values of

µ [51]. The benchmark value is an outbreak size ninf (the number of infected

nodes) after t time steps.

4.3.6 Limits of the NiR

The main drawback of the NiR measure is the need to additionally modify

the topology in order to obtain the directed acyclic graph. The motive for

making the graph acyclic is the BIBO system stability. A system is BIBO

stable if there is a bounded output for every bounded input over the time

interval t ∈ [t0,∞). Since the NiR is defined as a normalized maximum

value Smax of the step response, the system has to have bounded output.

The response of the unstable system quickly reaches extremely high absolute

value while for the stable system, the response remains within the bounds.

However, the systems observed here are not real physical systems, but rather

their mathematical model, hence there is no actual danger of producing the

unstable electrical circuit. For the sake of the measurement we can allow the

system to be unstable and let cycles exist. In that case, we have to read the

response quickly after the initial excitement, just after few time steps. That

is why this proposed approach is called reduced NiR. Reducing the number

of steps before measuring the output is justified, and the following analysis

supports it.
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In order to evaluate the spreading power of the node, the most important

area of interest is its surrounding. The importance of topological informa-

tion decays quickly with the distance from the observed node. Therefore,

almost all centrality measures could rely with high confidence on local neigh-

borhood information [85, 107]. The NiR shows a similar property. The signal

strength decreases with each time step as it is being amplified with the factor

of aij � 1. Even though multiple incoming edges boost the signal strength

by summation, each node decreases the resulting signal with the parameter

aij at the same time. Let us consider the line graph consisting of n nodes

connected consecutively with n − 1 edges. If the corresponding LTI system

derived from the network gets excited by an impulse at the first node, and we

consider the aij = 0.1,∀aij 6= 0, the signal strength after t time steps would be

amplified by the order of 0.1t. The observations made on any nodes positioned

even further from the source could be irrelevant for the NiR assessment. This

property makes it possible to evaluate the node importance with NiR using

just the knowledge of the local topology.

4.3.7 Network Data

There are two types of networks used in the simulations. The first type are

the scale-free and small world networks constructed randomly using various

parameters (Table 4.1). Scale-free networks are constructed based on the

Albert-Barabasi model of preferential attachment [43] using the algorithm

described by Batagelj [108] and implemented in ”A Controllable Test Matrix

Toolbox for MATLAB” [109]. The first group of scale-free networks has a

minimum node degree of 1, while the second group has a minimum node

degree of 2. Those parameters affect the diameter and the density of networks,

and therefore the expected dynamic of spreading processes. Similarly, the

small-world networks are constructed with the same MATLAB tool using

the Watts-Strogatz model [40]. The Watts-Strogatz model is based on two

parameters which define the number of nearest neighbors to connect (k) and

the probability of adding the shortcut in the given row (ps). The first group



Network Data 115

of generated small world networks has k = 1 and ps = 0.5, while the second

group has k = 2 and ps = 0.5. The variety of initial parameters ensures the

generation of networks with different properties such as diameter, density or

the average degree. Randomly generated networks are connected, undirected

and consisted of 6000 nodes each.

network nodes diameter density avg. degree clust. coeff. source

scale-free 1 6000 14.69± 4.68 7.09e−06 3.40 0.0944 Generated
scale-free 2 6000 17.78± 10.22 8.75e−07 4.25 0.1148 Generated
small-world 1 6000 41.46± 31.54 3.95e−06 3.08 0.1602 Generated
small-world 2 6000 26.77± 16.23 4.99e−07 5.00 0.2070 Generated

CA-AstroPh 18772 9.54± 3.45 1.10e−07 21.25 0.2143 SNAP
ca-GrQc 5242 7.93± 4.50 4.17e−07 6.13 0.5296 SNAP
IPv6-2015 34761 5.19± 9.81 2.37e−07 10.54 0.0853 UCLA
NREN 1157 20.69± 7.31 2.97e−06 3.21 0.0994 Topology Zoo

Table 4.1: Generated and extracted networks. Four networks are
generated using Barabási-Albert and Watts-Strogatz models for scale-free
and small-world networks respectively. The rest are the real world net-
works of various sizes and characteristics taken from: SNAP - Stanford
Large Network Dataset Collection, UCLA’s Beyond BGP:Internet Topol-
ogy Project and The Internet Topology Zoo. All data sets are available
online. Column nodes represents the number of nodes in the original net-
work. Columns diameter, density and clust. coeff. represent the mean
values calculated from the set of sampled networks. The avg. degree is

the same for both the original and sampled networks.

The networks in the second group are derived from the large real-world

networks data. These real world networks are taken from various network

dataset repositories: SNAP Datasets: Stanford Large Network Dataset Col-

lection [110], UCLA’s Beyond BGP:Internet Topology Project [111], and The

Internet Topology Zoo [96]. Two networks represent the collaboration pat-

tern between authors of the papers submitted to arXiv; the ca-GrQc for the

General Relativity and Quantum Cosmology category, and the ca-AstroPh for

the Astro Physics category. The other two are technological networks which

illustrate the topology of networked systems. The Internet AS-level topology

network (IPv6-2015 ) is the monthly snapshot of AS-to-AS links as they ap-

peared in the January 2015. The European network of National Research and
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Education Networks (NREN ) is the backbone network managed by GÉANT

which connects all European scientific and research institutions.

For all the real world networks except the NREN, the simulations are per-

formed on the network samples obtained from the original network data. The

sampled networks are characterized by the degree distribution. For each of

the real world networks we generate 100 sampled networks with 1000 nodes

each. For each of the random realizations of the topology, we measure the

correlation of SI and SIR spreading dynamic and observed measures. Simu-

lated networks are generated by taking 1000 nodes samples from the original

network uniformly at random without repetition. The degree sequence is

then extracted from the sample. Networks are then constructed from the

obtained degree sequence using the Havel-Hakimi algorithm [112]. This algo-

rithm does not guarantee the construction of a connected graph. Therefore,

the simulation is performed on the largest connected component on each of

the generated networks. Constructing graph from a degree sequence preserves

the degree distribution of the original network. Some network characteristics

such as communities, get lost during the process. However, the relative size

of the generated graphs prevent the replication of community structures any-

ways [85]. For the type of dynamics simulated here on unweighted undirected

networks, some other characteristics such as costs, constraints and direction

on edges are irrelevant [113] and therefore ignored.

The node importance is usually characterized by some of the numerous cen-

trality measures. Here we compare our proposed NiR measure against the

most commonly used centralities such as degree, betweenness, coreness, h-

index and one parametrized centrality called dynamic sensitive centrality. For

a detailed explanation on each of the centralities used for the assessment, see

Section 2.2. Furthermore, all networks used in simulations are characterized

by various global properties. Network attributes such as diameter, density,

average degree and clustering coefficient are used to recognize the network

model and to identify in which extend network topologies contrast to each

other.
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4.3.8 Conclusion

The proposed NiR metric can successfully capture the possible node impor-

tance when it comes to epidemic dynamics for various network models. The

results of the numerical simulation show the high correlation with the actual

spreading dynamics modelled by SI and SIR processes. The NiR also shows

a small variance, which means it is reliable for different topologies. The un-

derlying paradigm of the LTI approach allows the numerous variations of the

original metric. For example, the number of input and output points in the

system could vary. By choosing the multiple input points, it is possible to es-

timate the influence of many nodes if they would be excited at the same time.

Furthermore, the choice of multiple output points would give an estimate of

an exposure of those nodes in case of the spreading process. More exposed

nodes are more likely to be reached from the set of chosen input nodes. The

analysis is not limited to the unweighted networks. The same approach could

be used even for the weighted networks just by including the weights in the

system matrix A.





Chapter 5

Cascading Failures Analysis

Within the European NREN

The main role of the networks regardless of its nature is to provide a suitable

medium to transport a certain type of goods. Whether the goods are vehicles

in the case of the transportation networks, data in the case of the communi-

cation networks, or even the rumors in the social networks, same fundamental

phenomena could be observed. In this context, congestion and breakdowns

are in the focus. The analysis shows they can have a major effect to network’s

efficiency and connectivity.

Designers create the networks having in mind certain requirements, but at the

same time they are bounded by various limitations. Capacity requirements

for the links in the communication networks have to be met in order for a

network to work properly. If the links are designed with insufficient capacity,

the network’s traffic demands would not be fulfilled. However, the capacity of

a link is limited by the cost. Finding the optimal and sustainable solution for

a traffic capacity in the communication network is a sophisticated problem.

The commonsencial approach would be to tune the links in such a way so that

their capacity slightly exceeds the initial traffic load. Although this simple

approach would result in the functional network, there are two main reasons

why such concept fails in reality. Those are, namely network growth and node

failures. The hypothetical unlimited capacity would solve both problems, but

achieving higher capacity comes with a cost and can easily become irrationally

119
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expensive if not planned properly. Furthermore, dense networks are more

likely to be robust to cascading failures, but more edges always mean more

resources and a higher cost [114].

The natural tendency of all technological networks is to grow or evolve. The

most common growth model based on a preferential attachment phenomena

is explained by the work of Albert and Barabási [43]. Some details on other

growth models could be found in the work of Newman [6]. As the growth

occurs, with each new node, the traffic demand on already existing nodes

increases. Furthermore, the communication networks have to be designed in

the way which supports ever rising trends in the service demands even in the

cases with constant number of nodes.

Failures are generally inevitable in technological networks. The reasons for

failures are various and include random technical failure, geographically cor-

related failures due to naturally caused disasters or even due to intentionally

caused failures as a result of terrorism or diversion. Those failures occur with

different frequency and cause various problems. In the functional network, the

traffic is distributed following certain routing strategies. Therefore, the loads

of the links and nodes are considered balanced and within their limits. In this

case, a network is in a stable state. When the breakdown occurs, the topology

of a network suddenly changes. The optimal traffic paths through the network

subsequently get adjusted. Some nodes possibly get overloaded, which causes

congestion at the certain segments of the network. It demands further traffic

allocation which could generate additional congestion as a result.

Communication networks are modeled as networks in which the nodes are

assumed to be generators, hosts and routers for the information packets. In

the majority of the models every node could have any of those three roles,

although some models differentiate the nodes by role [115]. The topology

could vary, from randomly generated networks to regular lattice topology. If

the packets are generated in the network with the rate R, it implies that on

average N × R packets are generated in each time step, where N represents

the number of nodes in the network available to generate the packets. Beside
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its origin, each packet has its destination node, which also could be decided

randomly. After the packets are formed, the routing procedure is initiated

and the packets get transported to their destinations following certain routing

protocol. For the sake of the modeling simplicity, the most commonly used

protocol relies on the shortest path between origin and destination node. The

moment the packet reaches its destination it gets removed. Routing nodes

could also have a buffer, which allows the node to store incoming packets and

redistribute them later. Using this relatively simple model, the congestion

properties of the network could be derived. Many authors discovered the

distinctive phase transition where the network shifts from the free flow to

the congested state. It is shown that the phase transition parameter strongly

depends on the rate R of generated nodes [116]. Arenas et al. define the

global order parameter η:

η = lim
t→∞

n(t+ ∆t)− n(t)

NR∆t
(5.1)

If the η ≤ 0, the system is in the free flow phase and is able to route all packets

to its destination. Otherwise, if the η > 0 the system eventually enters the

congested phase. The quantity NR∆t is the number of packets generated in

time ∆t and n(t) is the number of packets in the network at time t.

With the increasing value of R, the system has more chance to become con-

gested. Having in mind the typical phase transition behavior from the free

flow to congested state, there is a critical value Rc which describes this phase

transition. Generally, for all R < Rc, η = 0 the system is in the free flow

phase. However, if R > Rc, η increases rapidly and the system becomes con-

gested. Therefore, the critical value of R is Rc and it is considered to be an

overall capacity of a system [117]. The value Rc could be obtained numerically

for any network, but in some special cases it is possible to calculate it.

The congestion phenomena relates to the traffic in the network, and traffic

patterns are imposed by routing strategies. For the majority of calculations,

the routing policy can be approximated by the shortest path between source
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and the destination node1. In order to analyze the load in the case of the

shortest paths strategy, we can make use of the betweenness centrality which

shows the number of shortest paths through a particular node. The between-

ness of the node i is

bi =
∑

h6=j 6=i

σhj(i)

σhj
, (5.2)

where σhj is the total number of the shortest paths from source h to destina-

tion j and σhj(i) is the number of these shortest paths passing through the

node i. For the network traffic model presented above with the R generated

packets at random, the average number of packets passing through a single

node i at each time step is Rbi/(N − 1). If the capacity of the node i is

denoted as a ci, then the condition for not congested system becomes

R
bi

N − 1
≤ ci ∀i (5.3)

In the case of the uniform capacity ci = 1, the congestion threshold be-

comes [116]

Rc =
N − 1

maxibi
=
N − 1

b∗
, (5.4)

where b∗ is the largest value of the betweenness centrality in the network,

which represent the node with the largest load. The betweenness centrality is

1Such simplified approximation is used mostly for the network analysis. Since the con-
gestion of the nodes depends on topology, in the case of very heterogeneous networks, the
load on nodes could diverge with the network size as Nγ with γ > 1 [118]. There is a vari-
ety of different routing strategies which utilize the adaptive (traffic-aware) routing polices,
which can increase the overall network capacity. Pure shortest path routing leads to rapid
network congestion, while the pure random walk strategies are inefficient. Therefore, the
optimal routing strategy is one which follows the shortest path, but at the same time avoids
the hubs. In [14, p. 251] some hub avoidance strategies are explained.
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also used in the following cascading models and numerical simulation on the

example of the European NREN network.

In order to understand the cascading robustness of the network, two models

are used. The first one is the Motter-Lai model [75] of cascading failures which

models the overloaded nodes as non-functional. Motter and Lai in their paper

show that the attack on a single important node (one with the high initial

load) may trigger a cascading effect which could lead to a collapse of an entire

network and subsequently, a severe service outage. The second one is the

Crucitti-Latora-Marchiori model [27] based on the dynamical redistribution

of the loads of the network. Using this model, the authors were able to show

that a breakdown of a single node can cause the collapse of the whole network

as a result of the flow redistribution.

5.1 Motter-Lai Model

The Motter-Lai model [75] presumes that for a given network at each time

step one unit of the relevant quantity (e.g. packet) is exchanged between every

pair of nodes. The routes of the packets are chosen following the shortest path

principle. The initial load of a single node in a network is therefore calculated

as the number of shortest paths passing through it, that is the betweenness

centrality of the node (5.2). The capacity of the node is assumed to be limited

and proportional to the initial load Li ≥ 0, thus the capacity Ci of the node

i is: Ci = αLi, i = 1, 2, . . . , N . The parameter α ≥ 1 is again the tolerance

parameter and the N is the initial number of nodes.

At the time t = 0 all nodes are functional and are within the load limit. The

removal of a node causes a change in the topology and the distribution of

the shortest paths. It eventually causes the load in certain nodes to become

higher. The moment the load of a node exceeds its capacity, it is considered

as non-functional. Consequently, the loads get distributed again and other

nodes get overloaded and therefore removed from the network.
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The damage caused by the cascade is measured in terms of the relative size

G of the largest connected component of the network, sometimes referred to

as a giant component :

G = N ′/N, (5.5)

where N ′ and N are the number of the nodes in the giant component after

and before the breakdown respectively.

As expected, the strongest impact on the network is caused with the removal

of the node with the highest betweenness centrality. Here, we compare the rel-

ative size of the giant component in the network after the breakdown of three

nodes with different betweenness centralities (Figure 5.1). After the removal

of the most central node, the size of the remaining connected component is

only around 50% the size of the original network. We can also see that the

removal of the node from the edge of the network doesn’t cause significant

breakdown.

In light of such general results, one should not jump to conclusion that the

most important node in the network is inevitably the one with the largest

centrality value. The unpredictable complex dynamics in the networks pre-

vents us to make general assumptions for every network. Although there is a

strong correlation between node’s centrality and the effect of its failure, it is

not necessary that the critical node is one with the largest initial load. The

very example of this anomaly is the European NRENs network, illustrated in

the Figure 5.2.

5.2 The Most Critical Nodes

Here, the most critical node is the one whose removal would cause the biggest

damage to the network, according to the Motter-Lai model of cascading fail-

ures. The damage is quantified as the reciprocal value of the largest connected
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Figure 5.1: Removing nodes with various betweenness central-
ities. The removal of nodes with various betweenness centrality causes
a different effect on the network. The considerable cascade breakdown is
caused by the removal of the node with the highest betweenness (highest

initial load). The tolerance parameter α is set to 1.5

component remaining after the simulation of the cascade. After the removal

of the node i, the relative size of the remaining largest connected component

is Gi and likewise after the removal of j, the relative size of the largest con-

nected component is Gj . If Gi < Gj we conclude that node i is more critical.

In the case of the European NREN, the assessment is made based on the nu-

merical simulation of individual and multiple failures. The simulation process

is presented in the form of the pseudo code in Algorithm 3.

The Q(V,E) is a graph consisting of set of vertices V and set of edges E.

The load and capacity of a node are denoted as Li and Ci respectively. The

remaining size of the giant component after the cascade for the set of removed

nodes I is denoted as GI . The tolerance parameter is α.
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Algorithm 3 The Motter-Lai model simulation

1: Input: Q(V,E), α, I . I - the list of removed nodes
2: calculate the size of the largest connected component N
3: calculate the load of each node Li
4: calculate the capacity of each node Ci
5: remove the node(s) . initialize the cascade
6: while GI(t+ 1) = GI(t) do . the new stable efficiency reached
7: calculate loads Li
8: if Li > Ci then . the load exceeds the capacity
9: ai,[1...N ] = 0 and a[1...N ],i = 0 . the node fails, breaking all

associated edges

10: calculate the size of the giant connected component GI
11: return the relative size of the giant connected component

5.2.1 Individual Failure

The results of the node failure simulation on European NRENs using the

Motter-Lai model show the most critical node is one with the second largest

initial load followed by the one with the seventh largest initial load. Suppos-

edly the most critical node (based on its centrality measure) is on the third

place of the most important nodes. This ”anomaly” is shown in the Figure 5.2,

where the node with the smaller initial load causes the heavier fragmentation

when removed.

One of the reasons for such an unexpected result is, as mentioned before, the

very nature of complex systems where the initial perturbation could cause

non-obvious consequences. Another reason is the actual measure used to

assess the impact of the node removal. The measure used is the relative size

of the giant connected component G = N ′/N . Although the relative size of

the giant component portrays the overall condition of the network, it can be

sometimes misleading as it focuses solely on the biggest component, ignoring

the rest of the network. It could happen that a network gets fragmented into

one big component surrounded by many small chunks. On the other hand,

the network could be fragmented in the way such that all small chunks are
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Figure 5.2: Cascade anomaly in the European NRENs case. The
failure of a node with smaller initial load (smaller betweenness centrality)
can cause a bigger damage (heavier fragmentation) of the network. The

simulation is conducted for α = 1.01

connected between each other. The properties of those two resulting networks

could be different even if the sizes of the largest components would remain

the same.
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node ID Gα=1.01 Gα=1.10 Gα=1.30 Gα=1.50 lat. lon. location

409 0.307 0.242 0.300 0.431 50.08 14.42 Prague, CZ
408 0.296 0.351 0.511 0.534 50.11 8.68 Frankfurt, DE
414 0.396 0.440 0.410 0.398 48.20 16.37 Vienna, AT
181 0.471 0.482 0.903 0.912 50.08 14.42 Prague, CZ

413 0.522 0.490 0.697 0.697 47.49 19.03 Budapest, HU
15 0.592 0.602 0.909 0.980 48.20 16.37 Vienna, AU
16 0.592 0.602 0.909 0.980 48.20 16.37 Vienna, AU
404 0.519 0.641 0.676 0.695 55.67 12.56 Copenhagen, DK

415 0.848 0.848 0.848 0.848 42.69 23.32 Sofia, BG
405 0.267 0.652 0.696 0.700 52.41 16.96 Poznan, PL

Table 5.1: Impact of individual nodes removal. The impact of the
removal of individual nodes quantified by size of the largest connected
component G after the simulation of the cascade failure using the Motter-
Lai model. The simulation is conducted for various values of α. The
underlined value is the lowest value of G in the column indicates the

biggest damage to the network.

Furthermore, the measure of the largest connected component does not nec-

essarily corresponds to the number of the overloaded (disabled) nodes during

the cascade. Sometimes, the small number of failed nodes can cause the dras-

tic fragmentation of the network. That is the case with the European NRENs

model. The nodes with higher betweenness centrality cause the failure of

other nodes which severely fragment the network.

The Motter-Lai model of cascading failures uses the tolerance parameter α ≥
1, which quantifies the extra capacity of the nodes relative to the initial load.

The cascading dynamics depends largely on the chosen α value. Theoretical

assumption is that the node’s capacity is relative to its initial load, although

in the case of the real world networks those values could vary significantly.

In the case of the European NRENs, the results of the cascade simulation

using the Motter-Lai model show that the most critical node depends on the

chosen α. For different α, different nodes emerge as the most critical. The

Table 5.1 shows the selected nodes and the respective impact on the network

after the node removal. The measure of the damage is the relative size of the
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Figure 5.3: The most critical nodes for various α. The location of
the most critical nodes whose individual removal would cause the biggest
damage, based on the cascading simulation using the Motter-Lai model
for various values of tolerance parameter α. The sets of critical nodes are

different for various α.

largest connected component G. The smaller the G the bigger the damage

caused by the node removal.

The analysis is not straightforward as the importance of the nodes varies with

the change of α. The explanation for such a phenomenon lies in the distri-

bution of excess load, which is discrete. In the case of a failure of node i, a

node j is endangered as the load could become higher than its capacity. Let

us define an excess load on node j as L′j and the capacity as Cj . The node

j remains functional until L′j > Cj . All the values of L′j which are lower or

equal to the capacity are irrelevant, as the node can sustain it. For differ-

ent tolerance parameter α the capacities of all the nodes are changed. The
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excess load, however, remains the same. The change in tolerance parameter

affects the capacity distribution. Then, an excess load has to reach a different

threshold, so the node fails. This leads to sometimes unexpected dynamics

for a slight change in tolerance parameter α. However, we can identify some

of the most important nodes which might cause the biggest impact, like the

node 408 in Frankfurt (Germany), followed by the node 409 in Prague (Czech

Republic) and 414 in Vienna (Austria).

In the case of the European NRENs, the results of the cascade simulation

using the Motter-Lai model show that the most critical node varies based on

the tolerance parameter. The geographical location of the most critical nodes

is shown in Figure 5.3.

In previous example, the α is uniformly distributed. Additional capacity de-

pends on α and the initial load, thus, more central nodes will be allocated

more excess capacity. However, such a way of capacity distribution may not

be optimal. Wang at al. propose a solution to efficiently distribute the excess

capacity among the nodes in a way that the network damage is minimized

against any attack strategy. They show that there is an optimal distribution

of the defense resource so the network is best protected from cost-based at-

tacks. Cost-based attack assumes that the attacker also has cost, by which

he optimizes his attack. If the defense resources of a network are not prop-

erly distributed, the attacker could benefit from choosing between the attack

strategies [119]. For a particular network, the distribution of the excess load

could differ, and the calculation should be performed for each network sepa-

rately. Implementing the additional protection is usually a cost-benefit mul-

tivariate problem. A possible protective strategy for the Europen NREN is

discussed in Section 5.5.

5.2.2 Multiple Simultaneous Failures

Random multiple failures are less common than a single failure. However,

the multiple simultaneous failures could be also caused by a malicious attack.
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The potential damage generated by the removal of two or more nodes could

be devastating. The attacker could have a sufficient knowledge on network

topology and then perform an optimal attack. If the attacker can chose n

nodes to remove, the optimal attack is the one which would cause the biggest

damage.
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Figure 5.4: Multiple failures - two nodes removed. (a) Two dif-
ferent pairs of nodes were removed from the network and cascade is simu-
lated. The plot shows the size of the giant component over time. Removing
two nodes with the biggest centrality does not affect the network’s effi-
ciency as much as the removal of another two critical nodes. If two nodes
whose independent removal cause biggest impact (the most central couple)
are removed simultaneously, such action still does not break the network
as a removal of two other nodes (critical couple). (b) Geographical loca-
tion of two critical nodes whose simultaneous removal would significantly

damage the network

In addition to single failure analysis, multiple failures are simulated. The sum

of damages caused by the removal of two individual nodes at a time is not the

same as the damage caused by the simultaneous nodes removal. Therefore,

the conclusions on the most critical n nodes can not be drawn solely on the

analysis of the n individual nodes failures. First, the simulation of a double

node failure is conducted. The results show that the biggest damage is caused

by the removal of the node with highest betweenness centrality together with

the node with the third largest betweenness. The nodes are located in Frank-

furt (Germany) and Budapest (Hungary)(Figure 5.4b). Simultaneous removal

of those nodes cause significant fragmentation of the network (Figure 5.4a).
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5.2.2.1 Computational Complexity and Solution Space

The Motter-Lai model simulation is computationally inexpensive. The most

computationally demanding step within the ML algorithm (Algorithm 3) is

to determine the load L of the node in each time step. It relies on the

computation of the betweenness centrality, whose runtime is O(V E) and

O(V E + V (V +E) log (V )) for unweighted and weighted graphs respectively,

where V is the number of vertices and E is the number of edges [120].

However, in order to evaluate the impact of the removal of n nodes, the

solution space becomes extremely large even for the small values of n. Even

though cascading simulation would take a relatively short time, multiplying

it with a number of elements in the feasible set would produce a practically

unsolvable problem. The size of the feasible set could be calculated as a

combination with n distinct elements in the set of size N :

F =
N !

n!(N − n)!
, n ≤ N (5.6)

where F is a size of the feasible set, n is the number of nodes to chose from

the larger set N = 1157. For example, solving the problem of finding the most

critical couple of nodes, n = 2, means examining the set of F = 668746 possi-

ble solutions. It requires repeating the independent cascading simulations for

exactly F times, and then comparing the results.

n 2 3 4 5 6 7 8 9 10
F 668746 2.57× 108 7.42× 1010 1.71× 1013 3.28× 1015 5.4× 1017 7.77× 1019 9.92× 1021 1.13× 1024

Table 5.2: The solution space for examining n simultaneous node failures
in a network consisting of N = 1157 nodes

To estimate the most critical set of 10 nodes whose failure would cause the

biggest damage, one has to search through the solution space as large as
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F = 1.13× 1024, which is an incredibly large number2. The sizes of the fea-

sible sets for various n are shown in Table 5.2.

5.2.2.2 Finding the Set of n Most Critical Nodes

Tackling the computational problems of this size requires another approach

besides the brute force check. First, we should try to reduce the solution space.

In the case of fixed n and fixed constraints, it could be done by decreasing

N . By measuring the impact of individual node removal, we can intuitively

exclude a certain subset of nodes whose impact is negligible. The values

distribution of nodes importance is long tailed and follows the power law

phenomena observed in many networks [44]. Based on the power law principle,

we can exclude a large portion of observed nodes, because their individual

removal has almost no impact. However, there is a set of nodes whose removal

has big or moderate impact, and all of them should be included in the analysis.

Thus, for the initial brute force search we chose only 25 most important nodes.

In this case, for n < 10, it is feasible to check all possible solutions. For n ≥ 10

and accordingly large N , brute force approach becomes again computationally

expensive.

The following analysis shows that there is usually not one but many sets of

n nodes whose simultaneous removal would cause the same or very similar

damage. It means there are multiple solutions for a single value of n. However,

the full insight of all possible solutions could be obtained only by using the

brute force approach. In Figure 5.5 we can see the sets of removed nodes

and the impact their removal makes. The damage is depicted in the form of

a bar which represents the largest remaining connected component after the

cascade. Notice that the removal of six and more nodes simultaneously does

not make a big difference. The critical group may optimally have six nodes.

The attacker could focus all of his resources to this very small set of nodes and

2It is a 113 followed by 22 zeros. The proper name for this number would be: one
septillion one hundred thirty sextillion. It is comparable to the mass of the planet Earth in
kilograms (5.98 × 1024).
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Figure 5.5: The sets of n critical nodes. Each bar represents the
largest remaining connected component after the cascade in the case of
group node removal. The higher the bar, the smaller the impact. Above
the bars, there are IDs of removed nodes. Notice that the removal of six
and more nodes makes no significant impact. However, removing some
more nodes could even reduce the cascade, and that phenomenon is ex-

plained in the Section 5.4.

still cause a substantial damage. Notice that for the removal of a certain set of

9 nodes the damage is lower than with 8 nodes. It shows that removing some

nodes could also decrease the damage. The reason is the actual decrease of

traffic coupled with the removal of highly congested edges. This phenomenon

when the cascade is reduced by the intentional node removal is explained more

in details in Section 5.4. The locations of various sets of n = 5 most critical

nodes are presented on the map in the Figure 5.6.

The brute force analysis is performed on a limited set of 25 most important

nodes. To support the results, we can extend the solution space and perform
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an additional analysis. However, with larger set of possible solutions, the

analysis quickly becomes too complex. Hence, some of the heuristic methods

has to be used. The method of choice is the Genetic Algorithm described

in 3.2.3. The set of 100 most critical nodes is included in the additional

evaluation. The original solution space is drastically reduced, but still of a

substantial size (Fn=10 = 1.73× 1013).

The genetic algorithm tends to find a relatively good single solution through

graduate improvement of fitness of the whole generation. Even it does not

always get stuck in the local minimum, it pursues the best solution, often

omitting other minima. The additional analysis with genetic algorithm is

therefore used to confirm only a single critical group. The optimization per-

formed was an integer problem, where a solution is an array of n integers

ranging from 1 to 100, and each value is mapped to the appropriate node ID.

The maximum of 100 nodes could be combined in groups consisting of n ele-

ments each. The set of 100 nodes has been identified by the previous analysis

of the individual node impact. The Genetic Algorithm approach for finding

the critical group is presented in form of a pseudo code in Algorithm 4.

Algorithm 4 Finding the most critical group using GA

1: Input: G(V,E), α
2: Initialize parameters: The population size is set to pop = 200 with a limit

of maximum Ngen = 1200 generations
3: Generate the initial population: The initial population is created randomly

with uniform distribution
4: while The number of generations reaches maximum do . Ngen
5: perform crossover
6: while for all solutions in population do
7: remove the nodes . initialize the cascade
8: perform evaluation . The evaluation is performed

by the value of fitness function which is the size of the remaining largest
connected component.

9: Sort the solutions from the final generation
10: return the critical group of nodes
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G = 79 G = 79

G = 96 G = 101

Figure 5.6: Various sets of five critical nodes. Various sets of five
critical nodes whose removal would cause the similar damage. Bellow
every picture is size of the largest remaining connected component G after
the cascade simulation. Smaller G implies bigger damage. The nodes
marked with the additional circle are the intersection of all the sets and

therefore are the most important nodes in the group of any five.

The GA approach produces the same or worse results for all the critical groups.

The additional check with Genetic Algorithm supports a decision to focus the

search on relatively small number of critical nodes. More detailed information

on critical groups could be seen in Table 5.3.
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n no. Node Location G

1 1 Prague 280
1 2 Frankfurt 407
1 3 Vienna 510
1 4 Budapest 568
1 5 Copenhagen 742

2 1 Vienna, Poznan 190
2 2 Frankfurt, Vienna 232
2 3 Frankfurt, Budapest 232
2 4 Frankfurt, Athens 232
2 5 Vienna, Athens 232

3 1 Frankfurt, Vienna, Milan 123
3 2 Frankfurt, Vienna, Oslo 123
3 3 Frankfurt, Budapest, Milan 123
3 4 Frankfurt, Vienna, Sofia 136
3 5 Frankfurt, Vienna, Budapest 138

4 1 Frankfurt, Vienna, Sofia, Milan 112
4 2 Frankfurt, Vienna, Sofia, Athens 112
4 3 Frankfurt, Vienna, Milan, Bucharest 112
4 4 Frankfurt, Budapest, Milan, Istanbul 112
4 5 Frankfurt, Budapest, Milan, Ankara 115

5 1 Frankfurt, Vienna, Sofia, Milan, Oslo 79
5 2 Frankfurt, Vienna, Milan, Bucharest, Oslo 79
5 3 Frankfurt, Budapest, Milan, Istanbul, Oslo 96
5 4 Frankfurt, Vienna, Sofia, Athens, Oslo 101
5 5 Frankfurt, Vienna, Sofia, Athens, Stockholm, 103

6 1 Frankfurt, Vienna, Copenhagen, Riga, Ankara, Oslo 73
6 2 Frankfurt, Vienna, Copenhagen, Prague, Bucharest, Stockholm 79
6 3 Frankfurt, Vienna, Copenhagen, Milan, Bucharest, Stockholm 79
6 4 Frankfurt, Vienna, Copenhagen, Riga, Bucharest, Oslo 79
6 5 Frankfurt, Vienna, Prague, Kaunas, Bucharest, Stockholm 79

7 1 Frankfurt, Vienna, Prague, Riga, Ankara, Budapest, Oslo 73
7 2 Frankfurt, Vienna, Prague, Riga, Bucharest, Ankara, Oslo 73
7 3 Frankfurt, Vienna, Prague, Istanbul, Riga, Budapest, Oslo 73
7 4 Frankfurt, Vienna, Prague, Istanbul, Riga, Bucharest, Oslo 73
7 5 Frankfurt, Vienna, Prague, Kaunas, Ankara, Budapest, Oslo 73

8 1 Frankfurt, Vienna, Prague, Riga, Bucharest, Ankara, Amsterdam, Oslo 69
8 2 Frankfurt, Vienna, Poznan, Prague, Riga, Ankara, Budapest, Oslo 73
8 3 Frankfurt, Vienna, Poznan, Prague, Riga, Bucharest, Ankara, Oslo 73
8 4 Frankfurt, Vienna, Poznan, Prague, Istanbul, Riga, Budapest, Oslo 73
8 5 Frankfurt, Vienna, Poznan, Prague, Istanbul, Riga, Bucharest, Oslo 73

9 1 Frankfurt, Vienna, Poznan, Prague, Istanbul, Riga, Ankara, Budapest, Oslo 73
9 2 Frankfurt, Vienna, Poznan, Prague, Istanbul, Riga, Bucharest, Ankara, Oslo 73
9 3 Frankfurt, Vienna, Poznan, Kaunas, Milan, Riga, Bucharest, Amsterdam, Oslo 79
9 4 Frankfurt, Vienna, Poznan, Milan, Riga, Bucharest, Amsterdam, Budapest, Oslo 83
9 5 Frankfurt, Vienna, Copenhagen, Prague, Bucharest, Stockholm, Amsterdam, Budapest, Oslo 85

10 1 Frankfurt, Vienna, Copenhagen, Poznan, Riga, Bucharest, Stockholm, Ankara, Budapest, Oslo 85
10 2 Frankfurt, Vienna, Poznan, Prague, Riga, Bucharest, Stockholm, Amsterdam, Budapest, Oslo 85
10 3 Frankfurt, Vienna, Poznan, Prague, Istanbul, Riga, Bucharest, Ankara, Budapest, Oslo 85
10 4 Frankfurt, Vienna, Poznan, Prague, Istanbul, Riga, Bucharest, Ankara, Amsterdam, Oslo 85
10 5 Frankfurt, Vienna, Poznan, Prague, Kaunas, Riga, Bucharest, Amsterdam, Budapest, Oslo 85

Table 5.3: Critical groups. A detailed information on critical groups
of various sizes (1 ≤ n ≤ 10). For each size, five critical groups are shown.
The rightmost column represents the impact of removal, measured in the
largest remaining connected component after the cascade. Notice that the
removal of 6 and more nodes does not cause significantly bigger damage.
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Figure 5.7: Circular cuts on the map. An example of circular areas
around three nodes in Germany displayed on the map. All nodes and
adjacent links which fall within the area are considered as failed. For the
analysis, the simulation of a cascading process is performed independently
for each cut. This example illustrates the circular cuts which cover: Berlin

area, Ruhr metropolitan area and Lower Saxony.

5.2.3 Geographically Correlated Failures

There are numerous reasons that network failures could occur. It is a conse-

quence of certain events such as cable cuts, hardware malfunctions, software

errors, power outages, natural disasters (e.g., flood, fire, and earthquake),

accidents, human errors (e.g., incorrect maintenance) and malicious physi-

cal/electronic attacks [10]. One approach for network survivability analysis is

to focus on isolated independent failures, which could be single or multiple,

but not correlated. Independent, uncorellated failures are modelled usually

by a random process. However, communication networks are generally very

robust against the single random failures, and multiple simultaneous failures

are less likely to happen. Another approach is to model a targeted attack,

which is directed towards single or multiple important nodes. As shown in

Figure 5.6, the critical group of nodes could consist of geographically dispersed

points, hence the physical reasons such as natural disaster, accident or power



Geographically Correlated Failures 139

outage could not cause their simultaneous failure. However, many physical

risks could affect relatively large areas and could interrupt the operation of

numerous nodes in the vicinity.

Geographically correlated failures analysis relies on the position of nodes and

links on a geographical plane. The geographical location of the network el-

ements is usually mapped to the cartesian coordinate system [10]. Then,

various strategies could be used to damage the network and the disturbance

could be assessed by many means. Most commonly researchers use cuts of

various sizes and shapes to remove the links [121], including circular and other

two-dimensional figures, such as ellipses and various polygons. Although cir-

cles could fairly approximate the affected geographical area, some failures

demand other shapes in order to identify a critical region [122]. The resulting

cut damages the network by altering its topology. The damage assessment

is usually performed using several measures including [10]: weighted spec-

tral distribution (WSD), algebraic connectivity (AC) and network criticality

(NC). Neumayer et al. use additional measures to study the impact of geo-

graphically correlated cuts such as: total expected capacity of the intersected

links (TEC), average two terminal reliability of the network (ATTR), maxi-

mum flow (MFST) and the average value of maximum flow between all pairs

of nodes (AMF) [121].

Here, the shape of a spatial disturbance is modeled as a circle. For a node i,

the circular area with radius r is marked. Then, all nodes within the radius

are considered as failed. The Figure 5.7 illustrates an example of chosen areas

around three nodes as centers The cascading failure is simulated for all nodes

and circular areas around them for various r, where r = [5, 10, 20 . . . 100]

measured in kilometers Note that links which seemingly fall within the radius

remain intact in this simulation and only nodes are considered as failed. The

reason for that is the unknown actual geographical path of links. In all figures,

links are represented as straight lines, but their real path could take any shape,

usually following major infrastructures such as roads or power lines. The data
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Figure 5.8: Critical areas on the map. The areas are defined as
circular cuts. The network damage is simulated in a way that all nodes
within the area are removed together with associated links. The criticality
of the area is then measured as the size of largest connected component
after the cascade. The most critical areas are around the most critical

nodes with some exceptions.

about the actual paths is unknown and for that reason, only nodes within the

radius and their adjacent links are removed.

This way we can identify the critical areas of various sizes. A measure of the

damage is the size G of the largest connected component remaining after the

cascade. This simulation is a variation of multiple simultaneous node failures,

where the nodes are chosen by its geographical location. In Figure 5.8 the

critical areas are plotted on the map. The most critical areas are concentrated

around critical nodes. That is aligned with the innate characteristic of the
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communication network as an example of a scale-free network. The power

law is everpresent in almost all analyses regarding the node importance. The

European NREN network is not an exception. There is a relatively small

number of very important nodes and many nodes whose removal would cause

negligible damage.

r = 50 r = 70

Figure 5.9: Location of the most critical areas. The most critical
areas are located around the most critical nodes. Depending on the r
of the circular cut, many areas could include the same important node,
which can cause the group of geographically close areas to be identified as
critical. The smaller the r the geographical distribution of critical areas

becomes more dispersed.

The damage distribution of critical areas and critical nodes are similar but

with slightly larger exponent value (Figure 5.10). It means that there are

more important areas than important nodes. However, the relative number

of important areas still remains small even for the large r. Depending on

the radius of the circular cut, many areas could include a very important

nodes, whose removal would cause a substantial damage. In Figure 5.9, the

concentration of critical areas around the most important nodes are evident.

With small r, critical areas tend to become more geographically dispersed and

with even smaller r, the geographical distribution of critical areas becomes

very similar to the distribution of individual nodes. The reason for such

geographical distribution is the fact that for relatively large r, the individual

critical nodes become covered with circular cuts which are centered in many
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Figure 5.10: Main frame: The distribution of the extent of damages
caused by the circular cuts of various radii. The damage is quantified
as the size of the largest remaining connected component G after the
cascade. The majority of cuts do not cause greater damage, but the
small number of critically positioned cuts could cause devastating impact.
Inset: An excerpt from the greater graph, showing the damage of the
most critical areas. Even the areas with small radius could potentially
cause big damage. Note that lower value of G represents bigger damage.

neighboring nodes. The node which is in the ”epicenter” of the cut, might not

be important but the cut affects a central node within the radius. The most

critical node in the area adds the most to network damage. Therefore, to

avoid a substantial damage in case of a geographically correlated failures, the

most important nodes should not be concentrated in the narrow geographical

area.

The damage caused by the circular cuts around nodes with various radii is

plotted in Figure 5.10. For each radius, the areas are sorted by the damage

the cut makes. The damage is quantified as the largest remaining connected

component G after the cascade. This figure illustrates that there is a relatively

small number of critical areas. The vast majority of areas do not cause the

extensive damage, even for the large r.
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An interesting phenomenon has been noticed. Sometimes, damaging the wider

area around a single node could cause the smaller cascading effect than dam-

aging narrower area. This phenomenon which appears to be some sort of

a paradox could be used as a mean for active network protection against

cascades. After the initial failure of the node or group of nodes within the

geographical area, deliberately shutting down the nodes in their vicinity can

stop the cascade or decrease the overall damage. More details about that and

other means of active protection is provided in Section 5.4.

5.2.4 External Risks to European NRENs

The communication networks, as a part of critical infrastructure are exposed

to numerous external physical factors that could interfere with their regular

operation. For example, a disturbance in power network could also cause the

failure in the interconnected communication network. However, the impact

of small scale power outages could be mitigated by uninterruptible power

supply (UPS) or small independent generators. Generally the frequency of

external impact occurrence in a certain area is unaffected by the network

design. After all, it is of a great importance to recognize and understand

the possible external risks and quantify them. The proper awareness of the

external factors and their impact could help network designers to reinforce the

topology or to implement measures to mitigate the possible negative impact.

One of the most devastating events which could cause the disruption of various

infrastructures and therefore in critical communication infrastructure are the

seismic hazards. All around the world many small earthquakes happen fre-

quently. Still the communication infrastructure usually remains functional

and without major failures. By observing the data from the past earth-

quakes, communication network components perform relatively well under

seismic conditions. Nonetheless, failures of some components are still found

following earthquake events. Common failures found in telecommunication

network components are failures of electronic equipment, such as computers,
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Figure 5.11: Map of highest maximum moment magnitude
(Mmax) used in the SHARE model. Here, 423 zones with estimated
yearly number of seismic events with magnitudes MW ≥ 4.5 are plotted.
Each area is a polygon with slightly different colour representing magni-
tudes in the range 6.0 ≥ Mmax ≤ 8.8. The value Mmax is chosen as the

maximum value of four maximum magnitude values estimated early.

server cabinets, switch boards, circuit boards, and battery racks [123]. Besides

the direct physical damage to network components, the network failure could

be caused by the lack of power supply, since the power lines could be cut.

On top of that, the congestion usually occurs as the communication demand

during the natural disasters reaches its peak. Congestion caused by the surge

in call attempts to verify people’s safety or to let people know of one’s own

safety, could result in usage restrictions being applied from 80% to 90% of

telephone calls. No communication system is designed to serve such a large

traffic demand.

Larger disasters do not occur very often, but the impact on the communication

infrastructure could be devastating. For example the earthquake in Japan in
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2011 severely impacted the communications infrastructure. The mobile and

landlines were almost completely out of order. Even submarine cable land-

ing stations were damaged and fibre optic cables were cut, severely affecting

international services [124].

The European continent is less prone to devastating power of earthquakes.

However, certain areas are of a high risk and some of the devastating seismic

hazards happen in the last two decades. The most prominent are the events in

Turkey3 in 1999 when two major earthquakes severely damaged the existing

communication network. Both fixed lines and GSM communications were not

operational. One of the major fibre-optic cables had multiple ruptures and

one of the major switches was destroyed completely [124].

Here, a possible approach for seismic risk analysis of the European NREN

is presented. First, the risk of each node is assessed based on its location

considering the seismic risk of a particular area. Then, the resulting measure

is compared to the possible damage caused by the node removal.

The measures of seismic risk are taken from the publicly available database

developed within the Seismic Hazard Harmonization in Europe (SHARE)

project [125]. For SHARE, an Area Source Model has been constructed,

stretching from the Mid-Atlantic Ridge and Iceland in the west, to Romania

and Turkey in the East, from Norway in the North to the southernmost Is-

lands of Italy and Greece. The whole SHARE area is covered with 423 zones.

The maximum moment magnitude value Mmax for MW ≥ 4.5, where the MW

is the measure of the earthquake intensity on the moment magnitude scale.4

All areal zones are displayed in the Figure 5.11. For each area, the various

parameters are calculated by processing the subset of events (from regional,

3The Kocaeli-Golcuk Earthquake of August 17, 1999 and The Duzce-Kaynasli Earth-
quake of November 12, 1999

4The moment magnitude (MW ) scale is based on the concept of seismic moment. It
is uniformly applicable to all sizes of earthquakes. Seismic moment is calculated from
the amplitude spectra of seismic waves which is a curve showing amplitude and phase as a
function of frequency [126]. It is a logarithmic scale and the increase of one step corresponds
to 101.5 (about 32) times increase in the amount of energy released. Thus, an earthquake
of MW of 7.0 releases about 32 times as much energy as one of 6.0.
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national or international catalogues) occurring within the polygon. Then,

the certain statistical analysis is used to guarantee homogeneity within the

areas and to increase the accuracy of the forecast. More details on datasets

and the methods for their acquiring can be found on the project’s website

(http://www.share-eu.org).

The multidimensional risk analysis is performed on the European NREN.

Multi dimensional analysis examines multiple properties of a system. The

properties are presented in a form of n variables of various nature and sizes.

They could be either weighted or non-weighted or normalized or non-normalized.

Usually, the cumulative assessment is calculated as an Euclidean distance from

the origin in n-dimensional space.

Here, only two dimensions are examined. The first variable is the node impor-

tance Di measured as the potential damage in the case of the node removal.

For each node, the cascading failure is simulated using the Motter-Lai model

(Section 5.1) with tolerance parameter α = 1.1. The resulting damage is quan-

tified as Di = 1
Gi

which is the inverse size of the largest connected component

remaining after the cascade. The variable Di is normalized and its value

ranges from 0 to 1, with the majority of nodes taking value between 0 and

0.2. This correlates with the results from the Section 5.2.1: only small number

of failed nodes could cause the substantial damage. The second variable MWi

is the earthquake risk quantified for each node i. There are 423 geographical

polygons in total with different observed maximum moment magnitude values

MWj
. The value MWj

is assigned to all the nodes falling within the geograph-

ical polygon j, such that if node i is within the boundaries of polygon j, then

MWi = MWj . Only the most devastating earthquakes with MW ≥ 4.5 are

observed. The majority of nodes fall within the areas with 7 ≤MW ≤ 8.

The resulting positions of all nodes in two observed dimensions are plotted

in Figure 5.12. The cumulative risk of a single node could be measured as

an Euclidean distance from the origin. However, some thresholds should be

introduced in order to filter out the nodes which are away from the origin but

at the same time have very low value of one of the variables. The most critical
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Figure 5.12: Combined risk. The nodes are plotted with respect to the
combined risk in two dimensions. The risk of the seismic activity around
the node’s location is on the y axis. The x axis represents the potential
damage to the network in the case of the node failure. The value on the x
axis is the inverse of the size of the largest remaining connected component
after the cascade caused by the node removal. The further the position of
a node from the origin, the more critical it is. The arbitrary thresholds
are marked as dotted lines. The area of high combined risk is in the upper

right region.

nodes based on two dimensional risk analysis are positioned in the upper right

region in the cartezian coordinate system.

Devastating natural disasters are usually not confined within the small limited

area but rather spread across the wide territories. Therefore, the impact

analysis should not be always restricted to a single point in space. In the case

of severe natural disaster, not all nodes are necessarily directly physically

affected. However, the supporting infrastructure such as power distribution
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Figure 5.13: Averaging the MW . The circular area often includes more
than one polygons with different seismic characteristics such as MW . The
resulting MWD of the area D (on the right) is obtained as the weighted
average of all the enclosed polygons MWA , MWB and MWC , considering
the areas pA, pB and pC respectfully. The weighted average is calculated

using (5.7).

system will most likely be severely damaged and the service degradation would

consequently cause the failure within the communication infrastructure. The

following analysis takes into account the wider geographical area which can

be affected by the earthquake. The area is again defined as a circular cut with

the center in a single point and radius r.

Regarding the observed seismic activity of the circular zones, an additional

adaptations are made. Depending on the size, each zone can cover multiple

seismic polygons defined in the SEIFA model. Analysis considers the fail-

ure within the zone and for each zone individually. Therefore, the following

averaging method was used to obtain the uniform MW value for each zone:

MWi =

∑
jMWj × pj∑

j pj
, (5.7)

where MWj
is the observed maximum moment magnitude for the polygon j,

which is partially or fully included in the circular zone j. The pj is the area of

the intersection between the polygon and the circular area. The sum of areas

of all intersections is equal to the area of the circular zone:
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∑

j

pj = r2π (5.8)

The process of averaging is displayed in the Figure 5.13. Left part of the figure

shows the circular zone partially covering polygons A, B and C claiming the

areas pA, pB and pC respectively. On the right side, the circular zone D has

an uniform averaged MW , calculated using (5.7). In fact, the resulting MW

is a weighted average of all the MWj
enclosed within the circular cut.

At the beginning of the simulation, all nodes within the circular zone are

considered inactive. Depending on the position and the radius of the zone,

cascades of various severity occur. The zone importance DZi is quantified as

the inverse of the size of the largest connected component remaining after the

cascade. The variable DZi
is normalized and could take any value from 0 to 1.

A multi dimensional analysis is performed, similarly to the previous one with

a single node failure. Here, the first variable is the damage of the possible

failure of all nodes within the circular cut, denoted as DZi
. Its value is plotted

on the x axis on the plots shown in the Figure 5.14. The analysis is performed

for various radii. The second variable is the maximum moment magnitude

for a circular zone i, denoted as MWi
and obtained from (5.7). Here, it is

called an earthquake risk and it is plotted on the y axis. Each point in the

graph represents a single circular area defined by the two above mentioned

variables.

The most critical areas are positioned in the seismically inactive regions of the

central Europe with small frequency of destructive earthquakes. The number

of circular zones are positioned high regarding the earthquake risk, but all

of them have no important place in the European NREN topology. Those

areas are mostly in Turkey, southern Italy and some Portuguese territories in

the Atlantic ocean. None of them have crucial role in overall functioning of

the European NREN. There is a lack of points in the graphs positioned in

the right corner. Therefore, we can conclude that in general the European
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Figure 5.14: Two-dimensional analysis of earthquake risk and
damage within the circular zones. The simulation of a cascade is
performed for a number of circular zones of radius r, and the damage DZ
is plotted on the x axes. The earthquake risk quantified as the maximum
moment magnitude and averaged for each zone MW is plotted on the y
axes. Each point represents a single circular area with radius r. The
areas closer to the upper right corner of the plot are considered to be
more critical. Those plots suggest that European NREN should not be

severely affected by the earthquakes even for the large observed areas.

NREN is not highly affected by the earthquakes. Some seismic activities could

separate large components, but that should not cause the network collapse.

A more detailed analysis of seismic hazard on interconnected critical infras-

tructures including power lines and communication network is out of the scope

of this chapter. I will also not go into details of seismic risk mitigation meth-

ods and the efficient recovery strategies as well as details on requirements for

public telecommunication networks in disaster relief.
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5.3 Crucitti-Latora-Marchiori Model and

Simulation Results

Crucitti, Latora and Marchiori proposed an alternative model for cascading

failures [27]. A short analysis of the possible Europen NREN cascade failures

is performed following the proposed model.

In the CLM model, each node is characterized by a given capacity for handling

the traffic. Initially, the network is in the stationary state and the initial node

capacity is larger than the traffic passing through it. After the node break-

down, the distribution of the loads commence and load gets distributed among

other nodes in the network. If the traffic at the node after the distribution

becomes higher than the capacity, the node is considered to be congested.

The efficiency of the node is changed and subsequently the new distribution

of loads in the network occurs. The main differences to Motter-Lai model are

as follows:

• The congested nodes are not removed from the network. The efficien-

cies eij of adjacent links are changed, instead. Congested nodes are

considered as less efficient in transferring data to other nodes.

• The damage in the network cause a change in the network’s average

efficiency. The average network efficiency E(G) is the system service

function, a measure used to evaluate the damage during the cascade.

The communication network is represented as a weighted undirected graph

G with N nodes and K arcs (links). G is described by N × N adjacency

matrix eij . The eij has the value in the range (0,1] if there is a link between

i and j. Otherwise, the eij = 0. The value of eij is the measure of link’s

efficiency. The smaller the link efficiency is, the longer it takes to exchange an

information unit between i and j. Initially, at the time t = 0, ei,j = 1, ∀i, j,
meaning all the links have the same efficiency 1. The load redistribution
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Algorithm 5 The Crucitti-Latora-Marchiori model simulation

1: Input: G(V,E), α, I . I - the list of removed nodes
2: calculate efficiency E(G)
3: calculate the capacity of nodes Ci
4: remove the node(s) . initialize the cascade
5: while E(G)(t+ 1) = E(G)(t) do . the new stable efficiency reached
6: calculate loads Li
7: if Li > Ci then . the load exceeds the capacity
8: eij(t+ 1) = eij(0)Ci/Li(t) . efficiency of the links changes
9: else

10: eij(t+ 1) = eij(0)

11: calculate the new efficiency of the network

12: calculate the ratio between new and original efficiency
13: return the ratio between new and original efficiency

will cause the efficiency of the links to change. Since it is assumed that the

communication between links takes the most efficient path, altering the links

efficiency will usually cause further change of the most efficient path as well.

The efficiency of the path is calculated as a harmonic mean of the efficiencies

of the component links5. The efficiency of the most efficient path between i

and j is denoted as εij . Then, the average efficiency of the network is

E(G) =
1

N(N − 1)

∑

i6=1∈G
εij . (5.9)

The average efficiency E(G) is used as a measure of the network performance

of a G.

The load Li(t) of the node i at the time t equals the total number of shortest

(most efficient) paths passing through i. Each node is characterized by the

capacity Ci which is proportional to the initial load of the node:

5The harmonic mean of N numbers x1, x2, . . . , xN is defined as H = n
(∑N

i=1(1/xi)
)−1
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Ci = αLi(0), i = 1, 2, . . . , N, (5.10)

where α ≥ 1 is the tolerance parameter. The initial network operates in the

stable stationary state with an efficiency E(0). After the breakdown of a

fraction of nodes, the traffic gets rerouted through the network, altering the

loads of the remaining nodes. After an initial rerouting, certain nodes get

congested and the links leading outwards of the congested nodes become less

efficient following the iterative rule:

eij(t+ 1) =




eij(0)

Ci
Li(t)

if Li(t) > Ci

eij(0) if Li(t) ≤ Ci,
(5.11)

where j extends to all first neighbors of i. This way, the nodes don’t have

to be removed from the network. The efficiency of the corresponding links

deteriorate, and the node becomes less preferable choice for the most efficient

route in the next iteration.

5.3.1 Single Node Failure

First, the simulation of the efficiency deterioration of the European NRENs

is conducted after a single node failure. The simulation setup follows the

Crucitti-Latora-Marchiori model. The pseudo code for the simulation process

is shown in the Algorithm 5. For a single node failure, two strategies are

chosen. The first one is random failure strategy, and the second one is the

strategy of a targeted attack.

For the random failure strategy, the probability of the failure of the each

node in the network is equal. Therefore, a single node is randomly chosen

and removed from the network and the behavior of the network is observed

over time. When the network reaches the next stable state (e.g. the efficiency



154 Chapter 5. Cascading failures within the NREN

0 2 4 6 8 10 12 14 16 18 20
0.9

0.92

0.94

0.96

0.98

1

Time step

N
et

w
or

k
effi

ci
en

cy
,
E

(G
)

Figure 5.15: Efficiency deterioration in the case of a single node
failure. The particular node located in London is removed. The tolerance
parameter is chosen as α = 1.02. This is a plot of the overall efficiency of
the network over time. It exhibits a substantial deterioration. The NREN

network is vulnerable to targeted attacks.

reaches the lowest stable value), the ratio of start and end efficiency is calcu-

lated. That ratio represents the impact of the removal of the certain node on

network efficiency. The tolerance parameter α ≥ 1 represents the redundant

capacity of all the nodes in the network. As described in (5.10), the addi-

tional capacity depends on the initial load Li(0) and tolerance parameter α.

Therefore, the more the node is initially loaded, the more additional capacity

it will get.

In Figure 5.15 the particular node located in London is removed. The toler-

ance parameter is set to α = 1.02. The initial load of the node (betweenness

centrality) was 86230 (0.129 normalized). After 20 time steps, the overall net-

work’s efficiency drops by 10%. Note that there could be more nodes within

the same city and also at the same location. In this example, only one partic-

ular node in London is removed while other nodes in the same geographical

area stay intact.
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Figure 5.16: Impact of the parameter α on network efficiency af-
ter a breakdown. After the node removal, the overall network efficiency
drops. Here, the impact of the parameter α on the network behavior
after the breakdown is shown. If α is bigger and the redundant capac-
ity of nodes higher, the impact of a single node failure is less significant.

However, increased α implies higher costs.

For smaller α the network’s efficiency gets even more affected. Let us consider

the case when the overall system operates at its limits where no extra capacity

is allowed (α = 1). For the same example and same circumstances, the

efficiency drops by almost 20%. The dependence of the network efficiency

after the node removal in regard to the value of the parameter α is shown in

Figure 5.16.

To measure the impact of the random node removal in this case we assess

the average impact of removing each node independently. For the each node

removal, the impact is measured as the efficiency deterioration over time.

Then, all measures in all time steps are averaged over the total number of

nodes. The resulting value is the network’s robustness to the random node

removal (Figure 5.17). The tolerance parameter α is set to 1.02. As expected,

the random node removal in case of the networks with scale-free properties
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Figure 5.17: Effect of the random failure on the network’s effi-
ciency. The resulting efficiency is an average efficiency of a network after
the simulation of failures of all nodes individually. This plot represents
the most likely outcome after a random breakdown. Notice that the av-
erage efficiency after ten time steps reaches its minimum, which does not
go below 0.99. The European NREN is highly resilient against random

failures.

such as European NRENs network, does not cause a significant damage. This

property is the main reason for the robustness of the Internet as well.

What is the significance of removing single random node out of the network?

It is already shown in [27] and confirmed here with simulation that for the

scale-free networks, random removal usually does not have a major impact.

A degree distribution in scale-free networks follows a power law form P (k) =

kγ , which means that in such networks there is a small number of nodes

with a very high degree and at the same time very large number of nodes

with relatively small degree. The same applies for the betweenness centrality

distribution. Only around 5% nodes have a normalized betweenness value

between 0.1 and 1. The rest 95% are in the range between 0 and 0.1.
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While homogeneous networks suffer approximately the same damage regard-

less of the attack strategy, heterogeneous networks appear resistant to random

failures, but in contrary show extremely low resistance to directed attack on

the highly connected nodes.

The network of European NRENs we observe has the most important prop-

erties of the scale-free network, and the most important is the degree distri-

bution which clearly follows the scale-free pattern. This is by all means an

expected property as the majority of computer networks follow the power law

degree distribution which is caused by the preferential attachment growing

principle [43]. The network of European NRENs is not an exception. It is

relatively immune to random failures, but prone to the significant service out-

ages in the case of the targeted attack. After the simulation of the targeted

attack on three nodes with large, medium and small betweenness centrality,

the undoubtedly highest impact has the removal of the most central node, as

shown in Figure 5.18. At the same time, that is the node with the highest

initial load.

The most intuitive topological measure for node importance is node degree,

but focusing solely on a degree, we overlook potentially very important nodes

who act as a links between large connected segments of a network. Those

nodes usually have small degree, but are still very important. A detailed

study on various attack strategies which deal with this problem is published

by Holme et al. [61]. In many network models, like in Barabási Albert model,

the betweenness centrality and degree are highly correlated. Although, in

many real networks the situation is more complex as large fluctuations are

observed and some nodes might have large betweenness centrality but small

degree. The betweenness centrality actually covers the importance of both

nodes with high degree and critical nodes with the small degree.

Hence, the most effective strategy for a single node attack would be targeting

the nodes with the highest initial load (betweenness centrality). In the case

of the network of the European NRENs, five most critical nodes are located

in Frankfurt (Germany), Vienna (Austria), Budapest (Hungary), Copenhagen
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Figure 5.18: The effect of the removal of three nodes with differ-
ent loads. The simulation results after removal of three nodes with high,
medium and low initial load respectively with α = 1.02. The impact on
the overall network efficiency is the strongest after removal of node with

the highest initial load.

(Denmark) and Poznan (Poland). Note that this analysis is conducted entirely

on the information on the network’s topology. Therefore, it neglects all details

related to the technical aspects of the system elements. Real loads could vary,

as they can be adjusted on different levels of network control. Furthermore,

the excess capacity is usually not simply governed by a single parameter,

but rather by the operational decisions of network designers. However, such

approach can give an overview of the potential damage caused by the sudden

change of topology.

5.3.2 Multiple Nodes Failure

The potential damage of a multiple failure within the complex networks is

not easy to estimate in advance. A damage caused by the failure of multiple

elements is not the same as the sum of damages caused by a single failure
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(a) (b)

Figure 5.19: The most critical nodes within the European
NRENs. (a) The individual failure of each of the five nodes on the map
would significantly affect the network’s efficiency. (b) Geographical loca-
tion of two critical nodes whose simultaneous removal would significantly

damage the network.

of each element. Another difficulty to predict a damage is the case of non-

simultaneous failures. After the failure of the first node, the topology of

the network changes and the failure of the following node could cause an

unforeseen outcome.

In the case of the European NRENs, the two-node failure is simulated. The

failures are considered to be simultaneous, and tolerance parameter is set to

α = 1.02. For the sake of the shortest computational time, only 30 nodes

with highest betweenness centrality are assessed. In the simulation, all nodes

are coupled with each other. The couples of nodes are removed from the

network and the drop of the efficiency is observed over time. An expected

result would be that the biggest damage is caused by removal of two nodes

with highest betweenness centrality. However, the unpredictable property

of the complex networks appears again. The nodes which would cause the

biggest deterioration of network’s efficiency when removed together are nodes

with fourth and eighth biggest betweenness centrality. They constitute a

critical pair. The removal of a critical pair cause the drop of the efficiency



160 Chapter 5. Cascading failures within the NREN

0 2 4 6 8 10 12 14 16
0.5

0.6

0.7

0.8

0.9

1

Time step

N
et

w
or

k
effi

ci
en

cy

Two nodes with largest centrality
The critical pair of nodes

Figure 5.20: Multiple failures - two nodes removed. The compar-
ison of the impact of removing of two pairs of nodes. The removal of two
nodes with the biggest centrality doesn’t affect the network’s efficiency as

the removal of another two critical nodes.

for 45%, while the removal of two nodes with highest betweenness makes the

network 20% less efficient (Figure 5.20). The reason for such an unexpected

result is the fraction of congested nodes after the failure. Following an initial

failure, some nodes get congested, the efficiency of the adjacent links get

worse and they stop being part of desired shortest paths. During the cascade,

certain paths get restored and belonging nodes recover. After some time, the

network enters again the stable state without further changes in efficiency.

The resulting efficiency is, however lower than the initial one. The failure of

a critical pair causes such an initial congestions which consequently affects

the desired shortest paths in a way that many of them do not recover. The

excess load gets distributed to many remaining nodes which get congested

simultaneously, not allowing the efficient distribution of loads to occur. The

geographical location of the critical couple of nodes is shown in Figure 5.19b.
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5.4 Active (Costless) Protection Strategies

A costless protection strategy involves a set of actions on a network topology

in order to mitigate the impact of a failure of the fraction of nodes. Those

strategies are costless because they do not require any substantial investment

in the network infrastructure such as additional links or increased capacity.

However, they require implementation of some measures which could enable

the network to protect itself using active means. An active change of topology

in this case considers a deliberate removal of certain nodes in order to stop

the cascade or to minimize the impact of the failure. Here, we investigate two

strategies. The first one is based on an intentional removal of a fraction of

nodes after the initial failure regardless of the actual position of the node. The

second one considers the geographical location of failed and removed nodes

and gives a possible solution for more localized active protection strategies.

5.4.1 Removing Nodes

The Europen NREN is a complex network with heterogeneous distribution

of loads and therefore it is susceptible to cascading failures. Motter [71]

proposed a defense strategy based on a selective further removal of nodes

and edges, right after the initial attack or failure. This strategy, with slight

modification, is shown to be effective for protection of the particular European

NREN network.

The cascade in the network is divided in two major stages: (1) the initial

attack, where the fraction of nodes fails, and (2) propagation phase, where

further failures happen due to the congestion. A propagation phase occurs in

numerous time steps until all the loads of the nodes in the remaining network

become smaller than their respective capacities. The size of the cascade is

measured as the ratio G = N ′/N , where N and N ′ are the sizes of the largest

connected component before and after the cascade respectively. The defense

mechanism takes place after the phase (1) but before the phase (2). It is
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assumed that the only operation allowed after the attack and before the larger

cascade is an intentional removal of nodes or edges. An intentional removal

(IR) of carefully chosen nodes could reduce the cascade. The nodes chosen

for the removal should have relatively small load. The rationale behind this

assumption is that the nodes in the network equally contribute to the traffic

load, but are not equally congested6. Therefore, a removal of the nodes with

small load would decrease the overall traffic without the need for further load

distribution.

Intentional removal of nodes with small load is not a straightforward process,

as the removal itself contributes negatively to the size of the giant component.

The IR should be carefully limited to the certain number of nodes so that

cascade is suppressed and the remaining giant component stays relatively

large. For the random scale-free network with a random attack on 0.1% of

nodes, the optimal fraction of IR nodes is f ≈ 0.4 [71]. However, for targeted

attack on European NREN, simulation shows that the fraction of the removed

nodes could be much smaller, 0.02 ≤ f ≤ 0.1. In a Figure 5.21a size of the

remaining giant component G is plotted as a function of the fraction f of

removed nodes with small load. The nodes have been removed after the

initial attack in the way that those with smaller load are removed first. The

simulation is conducted for the set of ten most critical nodes in the NREN

network, and the average G is plotted. The removal of only 2% of the least

loaded nodes, is able to reduce the cascade drastically. From 2% to 10% the

size of the giant component does not change considerably. However, after

the 10% threshold, G starts to drop linearly. It means that further node

removal does not add to the network protection but influences negatively to

the size of the giant component. The analysis is not performed for the random

failure nor averaged over all nodes in the network. The focus is on the set of

critical nodes, those whose removal would cause the biggest damage. For the

6In ML and CLM model a traffic in the network is modelled in a way that all nodes
communicate with every other node by exchanging a bit of information in a single time
step. All the nodes supply the network with the same amount of data. On the other hand,
a distribution of loads follows the long-tail distribution, where small fraction of nodes are
highly congested and the vast majority is not.
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Figure 5.21: Effect of the selective removal of the fraction of the
least loaded nodes. After the initial attack on a critical node, the pro-
tective measure is carried out. The fraction f of the least loaded nodes is
removed in order to mitigate the cascade failure. The Figure (a) illustrates
the change of the size of the largest remaining connected component G
after the cascade as a function of f . The maximum G is reached for the
0.02 ≤ f ≤ 0.1. For values of f greater of 0.1, the impact of the inten-
tional removal begins to affect negatively to the resulting G. The resulting
plot is averaged for ten most critical nodes within the European NREN.
The second picture (b) shows the effect of the protective measures for the
f = 0.04. For each removed critical node i, the protection mechanism
keeps the remaining G higher. A difference between two corresponding
points on two plots is a measure of the protection effectiveness. All the
expected values of G for 0 < f < 0.04 are the most likely to be found

within the shaded area.

European NREN, in the case of a critical node failure, any fraction between

0.02 and 0.1 of the least loaded nodes could be removed in order to prevent

further cascade.

The Figure 5.21b displays the comparison of the size of the giant component

after the cascade with and without the protection measures for ten most crit-

ical nodes. The fraction of removed nodes after the initial attack is chosen to

be f = 0.04. For each critical node i the cascade is mitigated so that resulting

G is always greater if the protective measure is properly implemented.



164 Chapter 5. Cascading failures within the NREN

Figure 5.22: Nodes candidates for intentional removal. Those are
the nodes which appear frequently in the lists of the least loaded nodes
in the network. To mitigate the cascade, the fraction of removed nodes
after the initial attack should be 0.02 ≤ f ≤ 0.1. In absolute numbers, the
number of intentionally removed nodes is 23 ≤ nir ≤ 115. Any chosen nir
from the set of candidate nodes displayed on the map, should be sufficient

to mitigate the cascade in the case of the critical node failure.

The idea is to identify the set of nodes which should be prepared to be removed

in the case of the most dangerous failures. The failure of one of the ten most

critical nodes from the Table 5.1 would cause the biggest damage. Therefore,

the following analysis is performed: For each of the most critical nodes, the

failure is simulated and the least loaded nodes are chosen. Those are the nodes

candidates for intentional removal after the initial attack. A certain number

of nodes appears often in the list of candidates for various failed i. Those are
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the nodes which are most likely going to have small load in the case of the

intentional attack. The most common candidate nodes are displayed on the

map in the Figure 5.22. The protective mechanism should remove a fraction f

of all the nodes but from the subset of candidate nodes. In absolute numbers,

the number of nodes chosen to be intentionally removed is 23 ≤ nir ≤ 115.

A decision maker is free to chose which nodes he will remove from the set of

candidate nodes. It does not matter which particular node is removed until

the number nir is within the limits.

5.4.2 Removing Nodes in the Vicinity of Failure:

Protective zone

Geographically correlated failures within the European NRENs are analyzed

in the Section 5.2.3. The analysis is performed by simulating the failures of the

nodes within the geographical area. The areas are chosen to be of a circular

shape with various radii r, measured in kilometers where r ∈ [5, 10, 20, . . . 100].

That way, the most critical areas around nodes have been identified. The

damage is quantified as the size of the largest connected component G after

the cascade simulation. It is preferable that G remains large, therefore we

also introduce the additional damage measure D = 1
G , thus the larger the D

the larger the damage.

Usually, the damage to the network correlates with the radius of the affected

area. The larger the area around a node, the bigger damage is caused by the

node removal. However, there are examples which do not follow this rule. For

a certain critical area of a radius r it is possible to identify the wider criti-

cal area with radius R > r whose failure would cause smaller damage. The

band between the areas of radii r and R we call a protective zone. Deliber-

ately disabling the nodes inside the protective zone could serve as a defensive

mechanism against the cascade failure. This should not be associated with

the immunization strategy where the nodes around the source of the infection

are protected.
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r

R-r

Figure 5.23: Protective zone. In the case of a node failure within the
area of radius r, there is an additional number of nodes in their vicinity,
whose simultaneous failure would reduce the overall damage to the net-
work. Those additional nodes fall within the protective zone of radius R
where r < R. Red nodes are initially failed and blue nodes fall in the pro-
tective zone. However, yellow nodes should stay intact, as disabling them
could cause larger damage. The protective zone is grey. The damage is
quantified by the size of the largest remaining connected component after

the cascade.

Let us identify the first circular area A1 with the radius r and center in

x, y and let us quantify the damage the removal of all nodes within the area

could cause as D1. Likewise, let’s identify the second area A2 around the

same centre with the radius R and the damage D2. We say that A1 and A2

form a protective zone Z if D2 < D1. Protective zone is fully defined with

center, smaller radius and larger radius as Z(x, y, r, R). In the Figure 5.23

the protective zone around the initial critical area is colored gray.

The protective zone Z depends on the geographical location of nodes and the

radius of the initial failure. Therefore, the existence and the size of Z have

to be measured using numerical simulations for various radii. The resolution

of the results depends on the discrete space between radii chosen for the

simulation.
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The simulation is performed as follows: for chosen r, the areas of radius

r around all nodes are identified. There are N circular areas for each r.

All the nodes which fall within the circular area Ai are removed from the

network. The cascade is then simulated for each area Ai, i ∈ [1, . . . , N ],

and the damage is calculated. Every cascade is simulated using the Motter-

Lai model of cascading failures explained in Algorithm 3. The simulation is

then repeated for all discrete values of rj , j ∈ [10, 20, . . . 100].

Protective zones around nodes are then identified by substituting the acquired

values of Gi,j for all consecutive rj . If Gi,j −Gi,j−1 > 0, there is a protective

zone around node i defined as Z(i, rj−1, rj). More informally, the damage

caused by removing the nodes from a certain area is larger than removing

nodes from the 10km wider area. The Figure 5.24 identifies some protective

zones around nodes in European NREN.

The explanation of such cascade dynamic could be related to the findings of

Motter in [71]. For a limited number of nodes the protective zone around

them could be identified. The cascade reduction will commence if the nodes

within the protective zone and adjacent edges meet conditions from [71]. The

removed nodes should have relatively small load, and the belonging edges

should have a large excess of load. If the nodes and edges within the protective

zone meet those conditions in some extent, there is a chance that their removal

would reduce the cascade.

In this case, the protection strategy is constrained by the geographical location

of nodes. However, using the method proposed here, we can develop the

localized protection strategy against cascading failure. The action protocol for

identified sub networks could be implemented. In the case of failure, certain

local sub networks should be disconnected from the rest of the network. Such

an action would damage the big network, but it would also save it from a

larger failure. Restoring the links should take place after the network reaches

new stable state.
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Figure 5.24: Protective zones identified. By simulating the cascade
failure for circular areas of various radii r around nodes, the damages
could be quantified as the size of the remaining largest component G. For
larger r, the G is smaller, meaning the bigger damage. However, for some
consecutive values of r, the damage becomes lower. Here, the values of two
consecutive Gs are substituted, and all positive values plotted. If Gj+1 −
Gj > 0 for node i, there is a protective zone around the node i identified
by the radii used to quantify G. The height of the bar represents the
difference in potential cascade failure if the protective zone is ”activated”.

Each point on the x axis represents a single area around the node i.
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5.5 Passive (Costly) Protection Strategy

Passive protection strategies refer to the set of preventive measures taken to

ensure higher robustness of a network against certain type of failures. In

case of cascading failures, the load distribution in the network plays the most

important role. Equally distributed load makes a network more robust against

cascades. For example, randomly generated ER network is equally robust

against random failures and targeted attacks. A uniform link distribution

does not produce hubs and every failure gets easily mitigated by other nodes.

However, European NREN is not random and similarly to other man made

technological networks, it has a long-tail degree distribution. Distributions of

other centrality measures such as closeness and betweenness follow the same

pattern. Following a theoretical assumption made by Motter and Lai [75]

that the load of each node is proportional to its betweenness score, we can

conclude that load distribution in European NREN also has a long-tail shape.

The same model presumes that each node has an excess capacity proportional

to its load.

Having this in mind, there are two possible approaches to make a network

more robust against cascades. The first one is to ”flatten” the load distri-

bution. If the routing strategy is considered unchanged, it could be done by

adding more links and therefore changing the topology of the network. That

way the loads would be more equally distributed and the number and impor-

tance of hubs would be decreased. The second strategy does not change the

topology but adjusts the excess capacity distribution. In the case of a critical

node failure, other nodes would be able to withstand the load increase and

prevent the congestion. Both solutions are costly and imply a multivariate

optimization approach. In this thesis, the focus is on capacity increase, as the

effective topology change is unrealistic for an infrastructural network of a size

of European NREN.

First, let us consider a case where the goal is to prevent the cascade to happen

at all. After the initial failure of a node i, the load Li carried by the node
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i is going to be distributed among other nodes in the network. A load will

most likely not be distributed equally. Since the topology suddenly changes,

different nodes take a role of a hub and become responsible for taking over

the majority of the load. Those secondary hubs are the most critical nodes in

this phase of a cascade. If their capacity is large enough, the cascade would

not occur. Therefore, we refer to them as a protective hubs, nodes able to

withstand an increased amount of traffic if the node i fails. Each node able

to cause a cascade has a set of protective hubs. A set of the protective hubs

Hi,α depends on the node i and tolerance parameter α. By simulating the

failures of a single node and identifying the protective sets for various α, we

find out that usually Hi,α1
⊆ Hi,α2

if α1 ≥ α2.

Based on the chosen tolerance parameter α, a decision maker can chose which

nodes to protect having in mind the available budget. In this case, a protection

refers to the increased capacity of a designated nodes. The set with the highest

priority should be the set Hi,α where the parameter α is large (≈ 1.5). Then,

a decision maker can chose to protect larger set of nodes which could be

identified by lowering the tolerance parameter. A various sets of protective

nodes for a single node failure are shown in Figure 5.25. For a relatively small

α (≈ 1.02) a large set of protective nodes is identified. If we consider larger

α, the set of protective nodes decreases in size.

How much the capacity of each protective hub should be increased to prevent

a cascade? After the initial failure, all protective hubs become overloaded.

In the Motter-Lai model of cascading failures used here for simulation, even

a smallest overload would cause a node to fail. Therefore, a capacity of each

protective hub should be increased for at least an amount of expected excess

of load:

Cprot = Cinit + Lexc

The equation is valid for each protective hub i. The value Cprot is a resulting

capacity of a protective hub able to withstand the increased load Lexc over

the capacity Cinit allocated initially for the node i.
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α = 1.02 α = 1.12 α = 1.50

α = 1.02 α = 1.12 α = 1.50

Figure 5.25: Initially congested nodes in the case of a single fail-
ure - protective hubs. After the initial failure of a single node, a traffic
load carried by the broken node gets allocated among the rest of the nodes
within the network. It often causes a congestion which could cause further
failures. The set of initially congested nodes is the most responsible for
mitigating the impact and sustain a proper network operation. Increasing
the capacity of those nodes could stop a cascading failure. The first row
shows congested nodes (red) after a failure of a single node in Frankfurt
(black). Three pictures show different sets of congested nodes depending
on a chosen tolerance parameter α. The larger the tolerance parameter,
the smaller number of congested nodes. The second row shows the same,

but for the case of a node failure in Copenhagen.
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α = 1.02 α = 1.06 α = 1.10

lat. lon. location budg freq. lat. lon. location budg freq. lat. lon. location budg freq.

50.8 20.6 Kiellze, PL 1.3 7 49.0 21.2 Prešov, SL 11.1 6 48.7 19.1 B. Bys., SL 1.2 5
49.0 21.2 Prešov, SL 11.5 6 48.7 19.1 B. Bys., SL 1.2 5 48.8 18.0 Trencin, SL 1.2 5
48.7 19.1 B. Bys., SL 1.3 5 48.8 18.0 Trencin, SL 1.2 5 50.2 18.6 Gliwice, PL 1.2 5
48.8 18.0 Trencin, SL 1.3 5 50.2 18.6 Gliwice, PL 1.2 5 50.8 19.1 Czecht., PL 1.3 4

49.8 19.0 B.Biala, PL 1.4 5 50.8 19.1 Czecht., PL 1.4 5 50.8 20.6 Kiellze, PL 1.2 4
50.2 18.6 Gliwice, PL 1.3 5 51.7 19.4 Lodz, PL 1.3 5 53.5 10.0 Hamburg, DE 10.3 4
50.8 19.1 Czecht. PL 1.5 5 49.6 17.2 Olomouc, CZ 35.9 5 49.2 16.6 Brno, CZ 2.2 4
50.0 19.9 Krakow, PL 1.9 5 49.1 18.3 Puchov, SL 7.3 4 49.6 17.2 Olomouc, CZ 34.6 4

51.7 19.4 Lodz, PL 1.4 5 50.8 20.6 Kiellze, PL 1.3 4 48.2 16.3 Vienna, AT 1.8 4
40.4 -3.7 Madrid, ES 3.2 5 53.7 20.4 Olsztyn, PL 1.4 4 48.2 16.3 Vienna, AT 1.8 4

α = 1.20 α = 1.30 α = 1.50

lat. lon. location budg freq. lat. lon. location budg freq. lat. lon. location budg freq.

49.6 17.2 Olomouc, CZ 31.7 4 49.6 17.2 Olomouc, CZ 29.3 4 49.6 17.2 Olomouc, CZ 25.4 4
48.9 20.5 S.N.Ves, SL 6.7 3 48.9 20.5 S.N.Ves, SL 6.2 3 48.9 20.5 S.N.Ves, SL 5.4 3
49.0 21.2 Prešov, SL 9.8 3 49.0 21.2 Prešov, SL 9.0 3 49.0 21.2 Prešov, SL 7.8 3
49.1 18.3 Puchov, SL 6.4 3 49.1 18.3 Puchov, SL 5.9 3 49.1 18.3 Puchov, SL 5.1 3

53.5 10.0 Hamburg, DE 9.4 3 53.5 10.0 Hamburg, DE 8.7 3 53.5 10.0 Hamburg, DE 7.5 3
37.9 23.7 Athens, GR 1.9 3 56.9 24.1 Riga, LV 11.5 3 56.9 24.1 Riga, LV 9.9 3
56.9 24.1 Riga, LV 12.4 3 49.2 16.6 Brno, CZ 1.9 3 49.2 16.6 Brno, CZ 1.6 3
49.2 16.6 Brno, CZ 2.0 3 48.2 16.3 Vienna, AT 1.5 3 48.2 16.3 Vienna, AT 1.3 3

48.2 16.3 Vienna, AT 1.7 3 48.2 16.3 Vienna, AT 1.5 3 48.2 16.3 Vienna, AT 1.3 3
48.2 16.3 Vienna, AT 1.7 3 48.7 19.1 B. Bys., SL 1.0 2 52.4 16.9 Poznan, PL 3.4 2

Table 5.4: The most important protective hubs. The list of ten
most important protective hubs is shown for various values of α. The
hubs are identified by simulating a failure of ten most critical nodes indi-
vidually. The nodes which appear in the set of protective hubs are then
chosen according to the frequency of their appearance. The column budg
represents the ratio between the original Cinit and required Cprot capacity
for avoiding the failure due to congestion. If a single node has a multiple

Cprot, the one with the maximal value is chosen.

To identify the most important protective hubs, the following numerical anal-

ysis is conducted for the European NREN case: Ten most critical nodes (from

Table 5.1) are analyzed For each node i, a set of protective hubs Hi,α is iden-

tified. Then the union of Hi,α for all i is produced taking in count also the

multiplicity of the elements. This way, we have an occurrence frequency of

all the nodes within the various protective sets. If a certain node appears to

be in many protective sets, such a node is a candidate for a protection. The

list of nodes who appear frequently in protective sets of top ten most critical

nodes are shown in Table 5.4. As well as the protective sets for each node

change with the tolerance parameter α, the nodes candidates for a protection

shown in the table are different for various α.
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As mentioned before, the protection of chosen nodes involves a certain ca-

pacity increase. In the Table 5.4, the column budget shows the ratio between

the capacity required for preventing the congestion Cprot and the original

capacity Cinit, so budg = Cprot/Cinit. For example, to protect a secondary

hub in Madrid for α = 1.02, the capacity of the node should be increased

3.2 times. A single protective hub has different values of Cprot depending on

the chosen failed node i. In order to maintain the highest level of connectiv-

ity and to avoid any failure due to congestion the budget is chosen so that

Cprot = max(Cprot(i)).

The additional analysis shows that any capacity increase smaller than Cprot

does not prevent the cascade. Furthermore, increasing the capacity above the

Cprot does not add to the protection. Decision maker is therefore not in a

position to choose how much he should increase the capacity of a certain node,

but only to choose which nodes to protect and to pay the appropriate price.

This leads to the multivariate cost benefit analysis, which is out of the scope

of this chapter. However, the additional analysis shows that protective hubs

with larger excess of load and higher frequency should be protected first. The

nodes with the high frequency of occurrence within the sets of protective hubs

Hi,α are more likely to be congested in the case of the important node failure.

Furthermore, in the case of congestion of hubs with relatively large Cprot,

a large amount of traffic needs to be allocated to other nodes. Therefore,

the nodes with high Cprot should be priority. It is important to consider

in the analysis that budget value in the Table 5.4 is a relative to the original

capacity of the node Cinit. However, the absolute values of excess of load Lexc

and required capacity Cprot should be considered when deciding on protection

strategy. The nodes with high initial capacity could have a small ratio between

the initial and required capacity, but the potential failure could produce a

considerable excess of load which can cause further congestions.
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5.6 Limitations of the Proposed Models

It is important to recognize certain limitation introduced by the models used

in this Chapter. The most prominent is the level of abstraction which

should be considered in assessing real world networks. In all of the used

models, the network is considered to consists of certain number of simple el-

ements such as nodes and edges which behave simply and expectedly. The

loads and capacities are assumed based on the network topology. In real-

ity those quantities could vary significantly. Furthermore, the mechanism of

node failure described in the Motter-Lai model does not correspond fully to

what happens when a congestion occurs in reality. Usually, the nodes do not

actually fail, but discard some information or keep it in the internal buffer.

However, the amount of information needed for fully realistic assessment is

very difficult to acquire, and theoretical assumptions should be sufficient for

overall network analysis and some of the general conclusions. Another limita-

tion worth addressing is the shortest path problem. In all of the models it

is assumed that information seeks the shortest route from origin to destina-

tion. This behavior quickly produces the highly loaded nodes which behave

like hubs. In reality, the routing policies could vary. The information packet

could be routed so it avoids congestion. Modern policies include multipath

routing where redundancy increases diversity and robustness of the data trans-

fer. Many providers use leased lines whose cost could influence the routing

policies, so the information often does not follow the optimal but the least

expensive path. On top of that, there is prioritized data which require special

treatment. All of this could be more complicated with the dynamical rout-

ing, where the policies change periodically or after an event. Still, for the

sake of simplicity, but not diverging much from the real network dynamics,

researchers legitimately assume the shortest path routes.
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5.7 Conclusion

In this Chapter, the particular European NREN network is assessed against

cascading failures. Two models for cascades are used, namely Mottel-Lai [75]

and Crucitti-Latora-Marchiori [27] model. The most critical nodes, those

whose failure would cause the largest cascade, are identified both for the indi-

vidual and multiple simultaneous failures. Geographically correlated failures

are also assessed, having in mind that external factors such as earthquakes,

floods or power outages usually affect a group of nodes within the area. Ad-

ditionally, an example of the external risk analysis is shown. The risk of

earthquakes is evaluated using two-dimensional analysis which includes both

the node importance and the potential damage caused by the earthquake.

Besides the node analysis, some protection strategies are proposed. Costless

strategies imply an active measures after the cascade and they are based on

the intentional node removal after the cascade. Additional nodes are removed

in order to reduce the overall traffic in the network and limit the cascade

which is caused by the excess of loads. Nodes could be removed locally in the

vicinity of failed node or globally, which requires full control over all the nodes

in network. In addition to costless, there are also costly protection strategies.

They imply some sort of investment in the increased capacity which take place

before the cascade. Therefore, they are also referred to as passive protection

strategies.

The analyses and proposed protection methods are useful to give an insight in

the complexity of cascading failures phenomena. There is rarely the universal

solution for protection against cascades and the methods usually vary from

network to network. Some instances from Section 5.2 could be used as a basis

for future research in identifying the most critical network elements. Addi-

tionally, the concept of costly protection strategies presented in Section 5.5

open the possibility for implementation of various multivariate optimization

methods. Problems discussed here might be considered as a mere scratching
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the surface of wide set of possible challenges. However, addressing all the

issues more broadly would be out of the scope of this Thesis.
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