
Faculty of Computer Science Institute of Software- and Multimedia-Technology

Software Technology Group

A PURE EMBEDDING OF ROLES
EXPLORING 4-DIMENSIONAL DISPATCH FOR ROLES IN
STRUCTURED CONTEXTS

Max Leuthäuser
Born on: 20th April 1989 in Dresden

DISSERTATION
to achieve the academic degree

DOKTOR-INGENIEUR (DR.-ING.)

Referee
Prof. Anthony Sloane
Supervising professors
Prof. Uwe Aßmann
Prof. Christel Baier

Submitted on: 31st May 2017

Und es liegt darin der Wille, der nicht stirbt. Wer kennt die Geheimnisse des
Willens und seine Gewalt? Denn Gott ist nichts als ein großer Wille, der mit

der ihm eignen Kraft alle Dinge durchdringt. Der Mensch überliefert sich den
Engeln oder dem Nichts einzig durch die Schwäche seines schlaffen Willens.

Joseph Glanvill

STATEMENT OF AUTHORSHIP
I hereby certify that I have authored this Dissertation entitled A Pure Embedding of Roles
independently and without undue assistance from third parties. No other than the
resources and references indicated in this thesis have been used. I have marked both
literal and accordingly adopted quotations as such. There were no additional persons
involved in the intellectual preparation of the present thesis. I am aware that violations
of this declaration may lead to subsequent withdrawal of the degree.

Dresden, 31st May 2017

Max Leuthäuser

ABSTRACT
Present-day software systems have to fulfill an increasing number of requirements, which
makes them more and more complex. Many systems need to anticipate changing contexts
or need to adapt to changing business rules or requirements. The challenge of 21th-
century software development will be to cope with these aspects. We believe that the role
concept offers a simple way to adapt an object-oriented program to its changing context.
In a role-based application, an object plays multiple roles during its lifetime. If the
contexts are represented as first-class entities, they provide dynamic views to the object-
oriented program, and if a context changes, the dynamic views can be switched easily, and
the software system adapts automatically. However, the concepts of roles and dynamic
contexts have been discussed for a long time in many areas of computer science. So far,
their employment in an existing object-oriented language requires a specific runtime
environment. Also, classical object-oriented languages and their runtime systems are
not able to cope with essential role-specific features, such as true delegation or dynamic
binding of roles. In addition to that, contexts and views seem to be important in software
development. The traditional code-oriented approach to software engineering becomes
less and less satisfactory. The support for multiple views of a software system scales much
better to the needs of today’s systems. However, it relies on programming languages to
provide roles for the construction of views.

As a solution, this thesis presents an implementation pattern for role-playing objects
that does not require a specific runtime system, the SCala ROles Language (SCROLL).
Via this library approach, roles are embedded in a statically typed base language as
dynamically evolving objects. The approach is pure in the sense that there is no need for
an additional compiler or tooling. The implementation pattern is demonstrated on the
basis of the Scala language. As technical support from Scala, the pattern requires dynamic
mixins, compiler-translated function calls, and implicit conversions. The details how
roles are implemented are hidden in a Scala library and therefore transparent to SCROLL
programmers. The SCROLL library supports roles embedded in structured contexts.
Additionally, a four-dimensional, context-aware dispatch at runtime is presented. It
overcomes the subtle ambiguities introduced with the rich semantics of role-playing
objects. SCROLL is written in Scala, which blends a modern object-oriented with a
functional programming language. The size of the library is below 1400 lines of code so
that it can be considered to have minimalistic design and to be easy to maintain. Our
approach solves several practical problems arising in the area of dynamical extensibility
and adaptation.

ACKNOWLEDGMENTS
We have talked so much about the reader, but you can-
not forget that the opening line is important to the
writer, too. To the person who is actually boots-on-the-
ground. Because it is not just the readers way in, it
is the writers way in also, and you have got to find a
doorway that fits us both.

Stephen King

First, I would like to express my special thanks to my supervisor Uwe Aßmann. He
supported me and the whole research group with a very special research atmosphere
and gave me many useful and path-leading ideas, hints and comments. Additionally, I
am very thankful for providing me the opportunity for my stay abroad at the Macquarie
University in Sydney. Also, his support allowing me to attend various conferences and
workshops was very much appreciated.

Special thanks to Sebastian Richly and Sebastian Götz for initially introducing me to the
very specific topic of role-based programming. The same goes to Wolfgang Lehner, who
does a great job leading the RoSI research training group, and who provided me with
many fruitful discussions and comments on my work.

Moreover, I like to thank all the past and current colleagues for the relaxing and inter-
esting research atmosphere at our chair. Off-topic chats as well as in-depth discussions
about ongoing papers or my thesis were always a pleasure. As a member of the RoSI
research group special thanks to Thomas, Tobias, Johannes, Steffen, and Stephan for
their helpful comments and hints.

Furthermore, a special thanks to Anthony Sloane for hosting me at the Macquarie
University in Sydney, introducing the city to me, showing me the local highlights and
providing interesting discussions about reference attribute grammars and beyond.

I am also thankful to my family and friends. My parents always supported me with help,
where help was needed. Thank you, Fabian, Uwe, Ronny, Felix, and Martin for all the
off-topic chats and fun we had during our student times.

A very special thanks goes to my girlfriend Anne, who greatly supported me during my
entire PhD project. Even if she has no special interest in computer science, she always
encouraged me to keep going. So I did.

PUBLICATIONS
Sebastian Götz, Max Leuthäuser, Christian Piechnick, Jan Reimann, Sebastian Richly,

Julia Schroeter, Claas Wilke, and Uwe Aßmann. Entwicklung Cyber-Physikalischer
Systeme am Beispiel des NAO-Roboters. Chemnitzer Linux-Tage - Tagungsband,
2012

Sebastian Götz, Max Leuthäuser, Jan Reimann, Julia Schroeter, Christian Wende, Claas
Wilke, and Uwe Aßmann. A Role-Based Language for Collaborative Robot Applica-
tions. In Leveraging Applications of Formal Methods, Verification, and Validation,
ISoLA SARS, pages 1–15. Springer, 2011

Thomas Kühn, Max Leuthäuser, Sebastian Götz, Christoph Seidl, and Uwe Aßmann.
A Metamodel Family for Role-Based Modeling and Programming Languages. In
Benoît Combemale, DavidJ. Pearce, Olivier Barais, and JurgenJ. Vinju, editors, Soft-
ware Language Engineering, volume 8706 of Lecture Notes in Computer Science,
pages 141–160. Springer International Publishing, 2014. ISBN 978-3-319-11244-2.
doi: 10.1007/978-3-319-11245-9_8

Max Leuthäuser. SCROLL - A Scala-based library for Roles at Runtime. In van der
Storm, Tijs and Erdweg, Sebastian, editor, Proceedings of the 3rd Workshop on
Domain-Specific Language Design and Implementation (DSLDI 2015), volume
abs/1508.03536, pages 7–8. van der Storm, Tijs and Erdweg, Sebastian, 2015

Max Leuthäuser and Uwe Aßmann. Enabling View-based Programming with SCROLL:
Using Roles and Dynamic Dispatch for Establishing View-based Programming. In
Proceedings of the 2015 Joint MORSE/VAO Workshop on Model-Driven Robot Soft-
ware Engineering and View-based Software-Engineering, MORSE/VAO ’15, pages
25–33, New York, NY, USA, 2015. ACM. ISBN 978-1-4503-3614-7. doi: 10.1145/
2802059.2802062

Tobias Jäkel, Martin Weißbach, Kai Herrmann, Hannes Voigt, and Max Leuthäuser. Posi-
tion Paper: Runtime Model for Role-Based Software Systems. In 2016 IEEE Interna-
tional Conference on Autonomic Computing (ICAC), pages 380–387, July 2016. doi:
10.1109/ICAC.2016.17

Max Leuthäuser. Pure Embedding of Evolving Objects. In Proceedings of ADAPTIVE 2017,
The Ninth International Conference on Adaptive and Self-Adaptive Systems and
Applications, ADAPTIVE 2017. IARIA, 2017

CONTENTS

Statement of authorship 5

Abstract 7

Acknowledgments 9

Publications 11

Contents 13

I. Introduction 15

1. Thesis Topic 17

2. Contributions and Outline 19

II. Background and Problem Analysis 21

3. Foundations of Roles 23
3.1. The Historical Term Role . 23
3.2. Issues of Object-oriented Software Design . 24
3.3. The Introduction of Roles . 25
3.4. Towards a Common Understanding of Roles 27
3.5. The Compartment Role Object Model (CROM) 30
3.6. The Automaton-based Role-binding Process 33
3.7. Runtime-specific Role Features . 34

4. Foundations of Dispatch 39
4.1. Predicate Dispatch . 41
4.2. Multi-dimensional Dispatch . 41

5. Foundations of Graphs and Graph Filtering 43

6. A Motivating Example for Multi-dimensional Dispatch 47

7. Research Challenges 51

III. Roles in Structured Contexts at Runtime 53

8. The Embedded DSL SCROLL 55
8.1. The Basic Ingredients of the Embedded DSL SCROLL 56
8.2. Basic Implementation Concepts . 57
8.3. The Usage Layer . 61

9. The Metaobject Protocol of SCROLL 65
9.1. The Configuration Layer . 65
9.2. The Metaobject Protocol Layer . 67
9.3. The Specification Layer . 85
9.4. Programming the Robotic Co-Worker with SCROLL 90

13

CONTENTS

10. Technical Limitations 95
10.1. Limitations and Alternatives . 95
10.2. The SCROLL Compiler Plugin . 97

11. Evaluation 101
11.1. Qualitative Evaluation . 101
11.2. Quantitative Evaluation . 111
11.3. Discussion . 120

12. The Advantages of SCROLL 121

IV. Related Work, Conclusion, and Outlook 123

13. Roles with Patterns or other Programming Languages 125
13.1. Roles with Patterns . 125
13.2. Roles with other Programming Languages . 126

14. Dispatch Models 141
14.1. ALIA4j . 143
14.2. Multi-methods: Prototypes with Multiple Dispatch 145
14.3. Korz . 146

15. Conclusion 147

16. Future Work 151

V. Appendix 153

A. A Variability Analysis for Roles at Runtime 155

B. An Overview of Scala 173

C. Additional Information 181

D. Source Code 183

List of Figures 261

List of Tables 263

List of Listings 265

Index 267

Abbreviations 271

Bibliography 273

14

Faculty of Computer Science Institute of Software- and Multimedia-Technology

Software Technology Group

PART I.

INTRODUCTION

15

1

THESIS TOPIC
“Let me try to explain to you, what to my taste is characteristic for all
intelligent thinking. It is that one is willing to study in depth an aspect of
one’s subject matter in isolation for the sake of its own consistency, all the
time knowing that one is occupying oneself only with one of the aspects.
We know that a program must be correct and we can study it from that
viewpoint only; we also know that it should be efficient and we can study
its efficiency on another day, so to speak. In another mood we may ask
ourselves whether, and if so: why, the program is desirable. But nothing is
gained - on the contrary! - by tackling these various aspects simultaneously.
It is what I sometimes have called “the separation of concerns”, which, even
if not perfectly possible, is yet the only available technique for effective
ordering of one’s thoughts that I know of. This is what I mean by “focusing
one’s attention upon some aspect”: it does not mean ignoring the other
aspects, it is just doing justice to the fact that from this aspect’s point of
view, the other is irrelevant. It is being one- and multiple-track minded
simultaneously.”

Dijkstra [1974]

In the modern software world, software systems are required to adapt to a changing
environment. During the lifetime of a software system, new features are requested, ex-
isting requirements change, as well as the underlying hardware and operating systems
are regularly being renewed. Software and software libraries once written for a specific
purpose may become useful in situations, the developer did not anticipate at the time
of their creation. One programming paradigm, object-oriented programming, is widely
being used to build extensible and flexible software systems. It was and still is successful,
because it supports programming with data structures that closely resemble the problem
domain. However, future software systems require a higher level of dynamism, which
is not offered by classic object-oriented concepts. Dynamically typed, object-oriented
scripting languages (for short, dynamic languages), such as Ruby and Python, have gained
popularity not only because of their ease of use, and have created vibrant communities.
They enable the extension of modules, classes, and object through concepts such as
duck-typing [Python Software Foundation, 2016b]. But programming in a dynamically
typed language comes at a cost: without static type information, it is not possible to
analyze programs statically and catch many classes of programming errors (e.g., type
errors) early on. The burden is solely left to the programmer. For this very reason, Python
3.5 introduced optional support for type annotations via PEP-484 [Python Software Foun-
dation, 2016a] that can be used by tools such as static type checkers and documentation
generators.

The influence of roles on language design is in the focus of this work, especially the
accompanying problems and ambiguities when dealing with dynamically evolving ob-
jects. Role-based programming has been proposed as an extension to object-oriented
programming, introducing extensionality in a controlled and well-defined manner. It has
been motivated by an easy-to-understand analogy. Also in the real world, objects play
different roles in different contexts. In essence, it enables objects to modify and extend
their behaviors dynamically at runtime, without the limits imposed by the class hierarchy.
The initial idea for role-based programming dates back to 1977 [Bachman and Daya,
1977] and has been discussed in many publications. Many fundamental research topics,
such as the definition of requirements for a role-based language [Steimann, 2000a], the

17

Chapter 1. Thesis Topic

L
a
d
d
e
r
o
f
T
e
c
h
n
o
lo
g
ie
s

1
9

6
7

-1
9

9
5

Object-oriented development

(OOA, OOD, OOP)

s
in

c
e

1
9

9
5

Role-oriented development

(ROD, Objects with roles)

to
d

a
y

Objects with Subobjects,

Classes from Metapredicates

Role

Aspect Facet

Phase Part

Object

Figure 1.1.: The ladder of technologies from classical object-oriented development up to
the current satellite-oriented approach.

definition of a metamodel, and a common terminology [Kühn et al., 2014] have been
published. How to simply represent roles in existing language runtime environments re-
mains as an open question. Current implementations rely on proxies, reflection, runtime
weaving and runtime code generation to support mechanisms, such as true delegation
and dynamic role dispatch [Arnaudo et al., 2007; Herrmann, 2007]. This requires addi-
tional management code and leads to more problems, such as incomprehensible error
messages with polluted stack traces. Furthermore, existing role-based programming
languages only support a small subset of the desired role features. Especially, they lack a
well-defined concept for context- and role-aware method dispatch to overcome ambigui-
ties, which are introduced with roles. These points are the major roadblock for the wider
adoption of role-based programming. The goal of this thesis is to research how roles can
be represented at runtime and supported by a rich dispatching concept. A prototypical
implementation, called SCROLL, was developed and is introduced by various examples
and an in-depth evaluation.

18

2

CONTRIBUTIONS AND OUTLINE
Scripting languages like Python, JavaScript or Ruby offer flexible object semantics to the
developer. On the one hand, programmers can rely on classic object-oriented features,
such as inheritance, encapsulation and polymorphism, and on the other hand, they are
able to add and remove members from existing objects, as well as merge them at any given
point in their life-cycle [Menon et al., 2013]. This functionality is not available in statically
typed object-oriented languages. With roles as first-class citizens in programming, one is
able to capture the context-dependent and dynamic parts of objects with their specific
behavior and structure in separate role types. At runtime, role objects can be added to
their player objects. On the downside, implementing such dynamic objects introduces
subtle ambiguities, which need to be handled by a context-aware dispatch at runtime. To
overcome these problems, this thesis provides the following main contributions:

(1) SCROLL and the SCROLL MOP First, the embedded method-call interception
Domain-Specific Language (DSL) SCROLL and its underlying Metaobject-Protocol
(MOP) [Lämmel, 2002; Mernik et al., 2005; Kiczales et al., 1991] are presented. They
are implemented in a lightweight library that allows for pure embedding [Hudak,
1998] of roles in a modern, statically typed, object-oriented language (Scala). Only
features that are available through Scala’s standard compiler are utilized. SCROLL
allows for easy integration of legacy code and provides a high degree of separation
of concerns.

(2) A coupling of static and dynamic role typing With the specification of context-
dependent behavior and structure in separate role types, static type checking and
program analysis is limited. Static typing leads to early detection of programming
mistakes through code analysis, better documentation in form of type-signatures,
more opportunities for compiler-optimization, higher runtime-efficiency and an
improved design-time development experience. Dynamic typing supports easy
prototyping, change to unknown requirements or unpredictable data and appli-
cation integration. Therefore, coupled static and dynamic role typing supports
the developer with the best of both worlds. He benefits from the aforementioned
advantages of a statically-typed host language, while at the same time, he profits
from the flexibility of dynamic objects.

(3) A simple implementation pattern for roles in structured contexts The im-
plementation pattern behind SCROLL, to implement context-dependent objects
with roles of them specified in separate role types, is presented. This pattern
requires only three fairly basic components, namely, compiler rewrites, implicit
conversions, and a definition table.

(4) A role-based dispatch at runtime A declarative and parameterizable approach
for four-dimensional dispatch for roles in structured contexts is described. This ap-
proach relies on the representation of dispatch rules as function objects [Stroustrup,
1995].

(5) Strong type-safety for role-based dispatch The role-based dispatch in SCROLL
benefits from being embedded in a statically-typed host language. Nevertheless,
type checking suffers from restricted type-safety when handling the dynamic parts
of role-playing objects. As a solution to this problem, the dynamic type checking
during the role-based dispatch is enriched by additional typing information con-
structed via introspection [Bobrow et al., 1993] while the static type checking is
improved by an optional compiler plugin using static program analysis.

19

Chapter 2. Contributions and Outline

The SCROLL Approach

B
a

s
ic

s

Implicit Conversions Compiler Rewrites Definition Table

Foundations of Roles

Foundations of Dispatch

A Motivating Example for Multi-dimensional Dispatch

R
o
le

-r
e

la
te

d
fe

a
tu

re
s Role-Relationships Role-Restrictions

Role-Groups Role-Constraints

Role-Binding-Process

Dynamic Dispatch

Foundations of Graphs and Graph Filtering

Research Challenges

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Part 3

Chapter 11

Contribution 1
SCROLL and the SCROLL MOP

Contribution 2
A Coupling of Static and

Dynamic Role Typing

Contribution 3
A simple Implementation Pattern

for Roles in Structured Contexts

Contribution 4
A Role-based Dispatch at Runtime

Contribution 5
Strong Type-safety for Role-based Dispatch

Contribution 6
The Practical Applicability

Evaluation

Figure 2.1.: Thesis contributions and outline.

(6) The practical applicability Finally, we show the practical applicability of the pro-
posed approach for the pure embedding of roles by implementing a robotic co-
working scenario. It explores the role-based adaptation for the collaboration of
humans and robots in a partially unknown environment.

The remainder of this thesis is structured as shown in Fig. 2.1. With the Background and
Problem Analysis part, the foundations of roles (Chapter 3) and dispatch (Chapter 4) are
introduced. These chapters provide an overview of their respective modeling primitives
and various notions. A classification of different role notions is presented on the basis of
two surveys (Kühn et al. [2014]; Steimann [2000b]). An example implementation with the
pure embedding of roles for a robotic co-working scenario is shown in Chapter 6. In this
example, role-based adaptation for the collaboration of humans and robots in a partially
unknown environment is demonstrated. With that, issues of the classic object-oriented
design are discussed (Sect. 6) and requirements for this work are derived (Chapter 7).
Based on these foundations and requirements, in the part Roles in Structured Contexts
at Runtime, an introduction and overview of SCROLL is presented (Chapter 8). Its basic
ingredients are explained in more depth (Sect. 8.2). The approach for four-dimensional,
context-aware dispatch at runtime in the context of roles is described in Sect. 9.3. Fur-
thermore, limitations and technical alternatives are discussed (Chapter 10.1). Afterwards,
SCROLL is evaluated qualitatively (Sect. 11.1), as well as quantitatively using performance
benchmarking (Sect. 11.2). At the end, the SCROLL approach is put into the context of
available Related Work from the contemporary literature (Part IV). The last two chapters
give final remarks (Conclusion, Chapter 15) and a perspective on future works (Chap-
ter 16).

20

Faculty of Computer Science Institute of Software- and Multimedia-Technology

Software Technology Group

PART II.

BACKGROUND AND PROBLEM
ANALYSIS

21

3

FOUNDATIONS OF ROLES
Dynamic and adaptive infrastructures are the cornerstone of today’s software develop-
ment, e.g., in the Web 3.0 - the internet of things. In most classic class-based object-
oriented systems, the association between instances of a class and the class itself is
permanent [Gottlob et al., 1996]. Such systems hardly cope with new requirements dur-
ing runtime. Class hierarchies need to be carefully planned and laid-out for dynamic
extensions. Indeed, they grow exponentially in case the objects they describe are chang-
ing [Fowler, 1997].

Two main principles of abstraction are known to structure object-oriented programs:
classification and generalization. The first describes the principle to group objects to classification

generalizationclasses sharing behavior and attributes. The second principle means the organization of
those classes into class hierarchies with grouping the common behavior and attributes
into a new superclass, which is then shared among all subclasses. However, when describ-
ing real-world objects embedded in a fast and frequently changing environment as well as
their classification in a class hierarchy, the permanent association between instances and
their classes appears to be too inflexible, because it cannot cope with the requirements
of those fast growing or changing systems. When extending an object, the object must
be replaced. Then, the internal state of objects needs to be copied, which renders their
management cumbersome and error-prone. It becomes even more difficult if there are
several of those changes at the same time for the same object. Introducing separate
classes for each combination of new behavior for adaptation leads to fast growing class
hierarchies, which is undesired.

The concept of roles was introduced by Bachman and Daya [1977] as an extension to
the network data model. It enables the addition and removal of behavior and attributes
at runtime to objects providing a substantial advantage over traditional programming
languages, such as Java. Over the recent decades, a lot of role-based approaches have
been proposed in the literature, all providing a different notion of roles. This section
starts with a brief historical introduction and focuses on the features and basic notions of
roles, later on. As a sophisticated role notion as base for this thesis, the Compartment
Role Object Model (CROM) [Kühn et al., 2014] is discussed.

3.1. THE HISTORICAL TERM ROLE

Different definitions can be found in the contemporary literature with regard to the term
roles. Being the first one introducing this concept, Bachman and Daya [1977] provides a
vivid description with an example explaining the differences between the role concept
and the classic theory of entities in databases:

“The use of the word role is taken from the theatrical context where a role is
defined to be a part played by an actor on a stage. It is a defined behavior
pattern which may be assumed by entities of different kinds. Furthermore, a
particular entity may concurrently play one or more roles. Hence, the existence
of all the roles of interest for a given entity characterize that entity. It is the
author’s contention that most conventional file records and relational file
n-tupel are role oriented. These files typically deal with employees, customers,
patients, or students, all of which are role types. This role orientation is in
contrast with integrated database theory which has taught that each record
should represent all aspects of some one entity in the real-world. This difference

23

Chapter 3. Foundations of Roles

in viewpoint has caused a great deal of confusion. The reason for the confusion
is understood when it is realized that neither the roles of the real-world nor
the entities of the real-world are subset of the other.”
[Bachman and Daya, 1977, p. 465]

This passage summarizes the basics of the role concept. It offers an intuitive way to model
real-world objects. Today, many systems incorporate the concept of roles. Database
systems, implementations for security and access control, artificial intelligence, or agent-
based systems may be referenced here. Nevertheless, first-class support in widely used
general purpose languages, e.g., Java or C++, is still missing. There are many definitions
of the role metaphor floating around in the research landscape, focusing on different
aspects tailored to various use-cases. As an example, Graversen [2006] defines roles as
follows:

“A role is a specification of properties (methods and states). The methods are
composed with the intention of making an object function in a specific context,
thus all the properties of the object are also available to the role. For example,
when a person plays the role of a professor, the professor still has a name (the
name of the person). A key feature for roles is their ability to be attached at
runtime and on object basis. This stands in contrast to normal inheritance
that operates on types and is applied at compile-time. Conceptually, roles are
multiple disjoint classifications of an object. Another key feature of roles is the
property of multiple views: A role attached to an object does not invalidate the
properties of the object.”
[Graversen, 2006, p. 28]

On the other hand, with respect to role-based modeling in agent-based systems, Kendall
[1999] describes roles as:

“A role model identifies and describes an archetypal or recurring structure
of interacting entities in terms of roles. A role defines a position and a set of
responsibilities within a role model. A role has collaborators; these are other
roles that it interacts with. A role’s services and activities are accessible through
an external interface; usually there is a distinct interface for each collaboration
path between two interacting roles.”
[Kendall, 1999, p. 1]

What are the required definitions and descriptions for the concept of roles to incorporate
the static and dynamic aspects of problems in their respective domains? This will be
investigated in the following sections.

3.2. ISSUES OF OBJECT-ORIENTED SOFTWARE DESIGN

Each object-oriented software design has to solve the static and dynamic aspects of the
following problems [Riehle, 2000]. The interactions of a class or its instances with the
client are non-trivial (class complexity /P.1/). Each of those clients handle the instancesclass

complexity differently and with different use-cases in mind. This interaction needs to be described
and constrained from the viewpoint of all relevant contexts. Furthermore, a sound
understanding of object collaborations and relations at runtime is crucial (/P.2/). Adaptiveobject

collaborations software systems need to be able to define and check those collaborations. Once they are
understood, it is important to group and separate them for the sake of comprehensibility

24

3.3. The Introduction of Roles

(separation of concerns /P.3/). Relations need to be assigned to relevant contexts. Derived separation of

concernsfrom the two aforementioned tasks, reuse is one of the most important attributes, on
reusewhich adaptivity of the resulting system benefits from (/P.4/). With the invariants and

constraints, behavior of collaborating objects can be constrained and checked during invariants and

constraintsruntime (/P.5/). Finally, in adaptive software systems, it is impossible to foresee each
and every possible future use-case and context. Hence, all problems, listed so far, define
basic requirements that allow for adapting to new and unforeseen contexts (/P.6/). Role
modeling delivers solutions for these problems:

Class complexity (/P.1/) Adding a set of role types to a class, thus, splitting context-
sensitive and context-free behavior, reduces the class complexity. A role type
exactly specifies how the instance of a class interacts in a certain context.

Object collaborations (/P.2/) and separation of concerns (/P.3/) The major
part of the complexity of adaptive software infrastructures stems from complex
object collaborations. They become manageable with the specification of smaller,
hierarchically decomposable role models. Each role model describes an individual
aspect of the object collaboration.

Reuse (/P.4/) With the clear separation of object collaborations into smaller pieces
(i.e., role models) with regard to the concerns of the problem space and their
composability, a high amount of reuse is enabled.

Invariants and constraints (/P.5/) A role type is a good target for invariants and con-
straints.

Adaptivity (/P.6/) Adding role types dynamically allows for adapting unforeseen con-
texts.

The following section describes the motivation for roles in general and introduces their
major ingredients in more detail.

3.3. THE INTRODUCTION OF ROLES

Abstracting and simplifying the representation of the real-world for some given use-case
is, in general, called modeling. A model omits irrelevant parts of the captured world. An modeling

object-oriented model abstracts objects to classes and types. Hence, the complex relation- object-

oriented

model

ships of real-world objects are simplified to the pertinent needs for the desired purpose.
The result of the modeling process is then used during the analysis or design phase in
software development. Here, two major goals can be targeted. First, capturing real situa-
tions of a domain for communication during the analysis and, secondly, representing the
design of the software system itself, describing its elements and interactions [Steimann,
2000b]. Traditional modeling languages, such as the Unified Modeling Language (UML)
or Entity-Relationship Model (ER), only consider entities of fixed types (static typing),
pre-defined structure (attributes), and behavior (methods) without being able to change
them dynamically. Every aspect of an entity needs to be integrated at design time, even
though some attributes or functions are not needed in certain contexts. Often, the adap-
tion is handled by static inheritance. This is problematic since, e.g., subtyping leads to an
enormous amount of subtypes for each and every new context the entity is intended to
interact in (combinatorial explosion of subtypes). Extensibility becomes, consequently, combinatorial

explosion of

subtypes

impracticable. Finally, one might not be able to decide whether a specialization or gener-
alization is applicable. Using design patterns can solve certain problems, but introduces

25

Chapter 3. Foundations of Roles

additional overhead with regard to maintenance and readability. This underlines the
need for more flexibility and dynamics to improve modeling.

In classic programming languages, the situation is quite similar. During its lifetime,
an object might need to change its behavior and attributes for a certain period. In
addition, entities of the same type may have different attributes and behavior at the
same time. Those aspects are usually not directly supported within classical object-
oriented programming languages with static typing. An entity is part of a certain type
throughout its lifetime. When recreating it with a different type at runtime, it loses its
identity, state needs to be copied, and clients have to handle the newly created identity
causing the need for additional management code. An additional problem occurs when
an object is conceptually separated into multiple individual sub-objects (split-object
problem [Dony et al., 1992]). This requires even more additional management codesplit-object

problem complicating code maintenance. The split-object problem is very much similar to the
issue of object schizophrenia: “Object schizophrenia results when the state and/or behaviorobject

schizophrenia of what is intended to appear as a single object are actually broken into several objects
(each of which has its own object identity).” [Harrison, 2016].

In the end, with modern software systems becoming more and more complex and
having to adapt to continuously changing environments, the resulting problems during
design- and runtime cannot be managed easily anymore. Approaches, such as dynamic
aspect-orientation [Popovici et al., 2002] and context-oriented programming [Hirschfeld
et al., 2008] have been introduced by researchers in the past to handle the aforemen-
tioned problems of too static software systems. As an alternative, role-oriented program-
ming [Steimann, 2000a,b; Boella et al., 2007; Graversen, 2006; Gottlob et al., 1996; Pernici,
1990] can be employed, which is in the focus of this thesis. With the idea of separation
of concerns in mind, dynamic and flexible parts of an object are modeled separately
from the entity’s core. Several parts of an entity have different lifetimes and may only
exist during a certain period of the entity’s lifetime. These entities are split into natural
types (entity’s core type) and role types. This enables context-dependent structural and
behavioral adaptation. Thus, the dynamic evolution of entities over time becomes an in-
tegral part of modeling and programming. Those evolving objects are explicitly modeled
and represented at runtime accordingly. The role as a concept, modeling primitive, and
first-class citizen in programming captures the context-dependence and dynamic parts
of objects with their specific behavior and structure in separate types. Hence, role-based
type systems explicitly model behavioral adaptation, in contrast to traditional static
type-systems. Entities can evolve during runtime without changing their natural type at
all. Instead, they start and stop playing roles. This enables modeling and implementing
complex, context-dependent behavior of objects in frequently changing environments.
We conclude this introduction to the role concept with a list of arguments in favor of the
role concept, which also acts as a motivation for this research effort:

• Roles are an easy-to-understand concept already known from the real-world.

• Since roles capture context-dependent behavior, they introduce a controlled form
of dynamic adaptation which is easy to reason about, since this adaptation is
always scoped to certain contexts.

• Many problem domains can take advantage of a design and implementation based
on roles. In many cases, this leads to a software design that is easier to understand
for humans [Steimann, 2000a].

• An embedding of roles in object-oriented programming is missing. The Role
Object Pattern [Bäumer et al., 1997] has been developed to emulate role features in

26

3.4. Towards a Common Understanding of Roles

classic object-oriented languages. This indicates the need for native role support
in programming languages.

• Finally, roles allow for easier reuse, since the usual restrictions of strict object-
oriented class hierarchies do not apply. Roles permit arbitrary, fine-grained exten-
sions to an object’s behavior. If the role concept is applied consistently, the natural
types contain only a minimal set of necessary fields and methods reducing the risk
of conflicts during reuse. Cross-cutting features can be extracted into reusable role
types.

In summary, the role concept is essentially an extension to object orientation enabling
objects to adapt their behaviors dynamically. At runtime, roles are bound to objects
which then become role-players.

With the extension of object orientation, this thesis assumes a basic knowledge of the
terminology used in research on object orientation. Nevertheless, delegation, forwarding,
and consultation are shortly explained in the following. For that, we define two terms
beforehand. A sender is the object that sends a message to another object (the receiver). sender

Thus, the receiver is the object that receives a message from the sender. The term dele- receiver

gation denotes that when a message cannot be understood by a receiver, the message delegation

is passed on to another object. Here, no assumption is made whether the sender and
the receiver are completely separated or the sender object aggregates the receiver object.
The difference between forwarding and delegation is that in forwarding the receiver is forwarding

definitely a separate object. Finally, consultation denotes that when a message cannot be consultation

understood by a receiver, the message is passed on to an object aggregated in the sender
object. Furthermore, a compound object type is a subclass of a conglomerate of the player compound

object typetype and its role types. An instance of such a compound object type is called compound
object. The type of the compound object built from a player of type A and roles R1 and R2 compound

objectis the tupled type {A, R1, R2}. Consultation is used for the communication between
the aggregated parts of compound objects.

3.4. TOWARDS A COMMON UNDERSTANDING OF ROLES

In our life, communications, speech, and in the way we think, the term role and its
concepts are well-known. In various research areas (e.g., linguistics and sociology) this
term is widely used and accepted. Going back to the origins of the concept, in a theater, a
role refers to a figure an actor plays. It is something abstract to describe how someone can
act. A role is defined completely independent of its player and gets filled with life by the
actor (player) adopting its behavior and structure. Similar ideas hold in software modeling
and programming as well. We use roles to dynamically add and remove behavior and
structure during the runtime and lifetime of an object.

Each approach on role-oriented programming that appeared in the literature during
the last decades utilizes its own interpretation of roles leading to an inhomogeneous
research landscape. Hence, there is no common notion of what a role is. For instance,
ER or UML only consider roles as named places in associations without taking attributes
or behavior into account. On the other hand, programming languages such as Object-
Teams/Java (OT/J) [Herrmann, 2002] allow for dynamically adapting the behavior of
objects at runtime. To provide a universal formal role modeling language, Steimann
surveyed approaches until the year 2000 [Steimann, 2000a,b]. Based on this, 15 different
questions on the term role were identified. Some questions are conflicting; it seems that
no role-based programming language will ever be able to realize all of those features.
Another survey analyzed role-based modeling and programming approaches between

27

Chapter 3. Foundations of Roles

1. Roles have properties and behaviors.
2. Roles depend on relationships.
3. Objects may play different roles simultaneously.
4. Objects may play the same role (type) several times.
5. Objects may acquire and abandon roles dynamically.
6. The sequence of role acquisition/removal may be restricted.
7. Unrelated objects can play the same role.
8. Roles can play roles.
9. Roles can be transferred between objects.

10. The state of an object can be role-specific.
11. Features of an object can be role-specific.
12. Roles restrict access.
13. Different roles may share structure and behavior.
14. An object and its roles share identity.
15. An object and its roles have different identities.
16. Relationships between roles can be constrained.
17. There may be constraints between relationships.
18. Roles can be grouped and constrained together.
19. Roles depend on compartments.
20. Compartments have properties and behaviors.
21. A role can be part of several compartments.
22. Compartments may play roles like objects.
23. Compartments may play roles which are part of themselves.
24. Compartments can contain other compartments.
25. Different compartments may share structure and behavior.
26. Compartments have their own identity.

Figure 3.1.: Steimann’s 15 classifying features (1-15), extracted from [Steimann, 2000b]
and the additional ones (16-26) with regard to the context-dependent nature
of roles [Kühn et al., 2014].

the years 2000 and 2014 [Kühn et al., 2014]. An overview of the identified questions of
Steimann and Kühn et al. is given in Table 3.1. The authors in Kühn et al. [2014] focus
more on the three different aspects roles try to serve, namely their relational, contextual,
and behavioral nature. The relational aspect denotes that different entities interact with
each other, or are connected by using roles. With the contextual aspect, roles may be
utilized to describe context-dependent features of entities. Finally, roles address behav-
ioral aspects of entities, which refer to the dynamic set of attributes as well as to methods.
Based on these three perspectives, one can derive the following classes of approaches of
role-based languages:

Relational nature Languages such as UML or Rumer [Balzer et al., 2007] only focus on
the relational aspects of roles. They are used to connect objects by roles as named
places in relations (UML within associations, Rumer with relationships).

Behavioral nature Chameleon [Østerbye, 2003] and Rava [He et al., 2006] focus on
adaptation of behavior and structure only. Adapting behavior and structure with
regard to certain situations is in the focus of contextual role languages such as,
OT/J [Herrmann, 2005] or NextEJ [Kamina and Tamai, 2009].

Contextual nature There are currently no known languages solely focusing on the
context-dependent nature of roles.

28

3.4. Towards a Common Understanding of Roles

Combining relational and contextual nature However, the HELENA approach [Hen-
nicker and Klarl, 2014] combines the relational and context-dependent interpreta-
tion. Roles are used to declare an objects’ interaction with other objects embedded
in a context. Sadly, behavioral and structural adaptation are not considered in this
class of approaches.

Combining relational and behavioral nature Here, relational as well as behavioral
features are brought together (e.g., in ORM [Halpin, 2006], Lodwick [Steimann,
2000a] or the INM [Liu and Hu, 2009]).

Combining all three natures Finally, the last category combines all three aspects of
roles. CROM is the only proposed metamodel known so far falling into this cate-
gory [Kühn et al., 2014]. Hence, it is chosen to form the conceptual basis of the
implementation of SCROLL.

Following that classification, it is necessary to further investigate the heavily overloaded
term context. Context can be understood as environmental information and as objectified context

collaboration containing other entities. The first interpretation can be described as
follows:

“Context is any information that can be used to characterize the situation of
an entity. An entity is a person, place, or object that is considered relevant to
the interaction between a user and an application, including the user and
applications themselves.”
[Abowd et al., 1999, pp. 306–307]

A context surrounds an entity and provides additional information. Information may
be time, place, temperature, or the state of the application running. Paradoxically, even
the lack of information about an entity can be regarded as an information. Furthermore,
entities are always attached to a specific context. For instance, sensor data (like GPS)
is only valid for a certain device and its user. For other users not currently present, this
information may not be relevant. In sum, this general context definition describes an
entity’s environmental information that has no specific identity, no intrinsic behavior
and is omnipresent. In contrast, a compartment as introduced by Kühn et al. [2014] is compartment

defined as:

“[W]ithin modeling languages, context represents a collaboration or container
of a fixed, limited scope. To overcome this dichotomy, researchers avoided
the term context by using other terms, i.e., environments, institutions, teams,
and ensembles. In turn, we use the term compartment as a generalization of
these terms to denote an objectified collaboration with a limited number of
participating roles and a fixed scope.”
[Kühn et al., 2014, p. 146]

While a context (e.g., a cold and rainy day in London) is intentional (described by rules
or attributes), without its own identity, intrinsic behavior or existential parts and with
an indefinite lifetime - a compartment (e.g., a first-class train car) is extensional, i.e., is
explicitly specified. Its instances carry identity, have behavior, state, a defined lifetime
and contain roles as its parts. Hence, a compartment can be seen as an objectified collab-
oration for the contained roles. This thesis is based on this definition of compartments,
as introduced by CROM, which is discussed in the following.

29

Chapter 3. Foundations of Roles

Concept Rigidity Foundedness Identity Example

Natural Types rigid non-founded unique Person
Compartment Types rigid founded unique University
Role Types anti-rigid founded derived Student
Relationship Types rigid founded composed takes class

Table 3.1.: Ontological foundation of meta types within the Compartment Role Object
Model [Kühn et al., 2015].

3.5. THE COMPARTMENT ROLE OBJECT MODEL (CROM)

CROM is a metamodel for constructing role-based models with an additional Com-
partment Role Object Instance (CROI) for the representation at instance level, and a
Constraint Model for specifying various constraints for additional validation.

In essence, four different metatypes are defined in CROM: natural, compartment, role,natural

and relationship types. As a formal basis, the ontological properties rigidity, foundedness,relationship

types

rigidity

foundedness

and identity are applied [Albuquerque and Guizzardi, 2013]. The first concept denotes
that an instance has to be a member of this type for its whole lifetime. The opposite
is an anti-rigid type. Foundedness means that a type is existentially dependent on the
existence of other types. Instances cannot exist on their own, but only in collaboration
with partners. Finally, identity characterizes whether a type’s instance has a unique,identity

derived, or composed identity.
Based on that, distinguishing the aforementioned four metaclasses of CROM is now

possible (Table 3.1). Natural types (NT) are considered to be rigid, non-founded, and
have a unique identity. Compartment types (CT) are rigid, but founded and have a
unique identity. Role types (RT), as the opposite of natural types, are anti-rigid and
founded, while their identity is derived from their player types. Finally, relationship
types (RST) are rigid, founded and have a composed identity. The type of a relationship
cannot be changed and requires at least two role types to participate in. The identity of a
relationship is composed by the participating roles. All the four metatypes do not live
in isolation. They are connected by relations and functions with special semantics, as
shown in the following:

fills relation This relation binds player types with role types. Hence, it defines that
objects of a certain player type can only play roles of a certain role type. The player
can be a natural type or a compartment type. The fills relation is not limited to
only one player type per role type. Multiple player types for a single role type are
allowed.

parts function The parts function maps each role type to a specific compartment type.
Hence, each role type is contained in exactly one compartment type. To guarantee
the foundedness property of compartment types, each compartment must at least
contain one role type.

rel function This function maps relationship types to distinct role types in the same
compartment type. Relationships spanning multiple compartments are not al-
lowed within CROM. This is considered to be ill-modeled by the authors [Kühn
et al., 2014], as related roles in different collaborations or situations should obvi-
ously belong to the same compartment.

CROM is defined as a tuple over these concepts: M = (N T,RT,C T,RST,fills,parts,rel).
In addition, the instance representation CROI was proposed. On this level, natural,

30

3.5. The Compartment Role Object Model (CROM)

Notation Meaning

N1,N0 Natural numbers excluding 0; Natural numbers including 0
<, ≤, >, ≥ Lesser; Lesser than; Greater; Greater than

∧, ∨, ¬, ⇒ Predicate logical and, or, not, implication
∃, ∀ Predicate logical existential- and all-quantor
=, ⇔ Equality; Predicate logical biconditional
Crossed out Relation negation (e.g., a ̸= b means ¬(a = b), a ̸⊂ S means ¬(a ⊂

S), v ̸∼ p means ¬(v ∼ p), etc.)

(a,b, ...) Tuple with first element a, second b, etc.
proj :N1 ×⊤→⊤ Tuple element projection (e.g., proj(2, (a,b,c)) = b)
size : ⊤→N0 Tuple size (e.g., size((a,b,c)) = 3)
{a,b, ...} ,; Set containing elements a, b, etc.; Empty set
{e | c} Set comprehension (set containing all elements e for which c

holds)
∪, ∩, \, ∈, |S| Set union, intersection, difference, membership and cardinality
⊂, ⊆, ⊃, ⊇ Proper subset, subset, proper superset and superset relation
× Cartesian product
⊤ Any valid element (e.g., let A = {(2, a), (1,b), (1,c)} then (⊤,d) ̸∈ A

but (1,⊤) ∈ A whereas ⊤= b ∨⊤= c)

Table 3.2.: Notations overview.

compartment, and role types are instantiated to naturals (N), compartments (C), and
roles (R). Again, they are connected and related with the following relations and functions:

plays relation This relation connects player, role and compartment instances. Here,
only a single player per role is allowed. While fills represents a can-play semantic fills

on type level, on the instances, play denotes the actual playing of a certain role. play

type function Each instance has its type. Thus, this function returns the type for a given
instance.

links function This function keeps track of the information about roles participating in
relationships. It returns related roles for a given relationship type.

CROI is finally defined as the tuple: i = (N ,R,C , type,plays, links) [Kühn et al., 2014].
Additionally, a Constraint Model is presented. It constrains roles and relationships (e.g.,
to be irreflexive) and introduces role groups [Kühn et al., 2015]. Those groups feature
role group constraints, e.g., cardinality constraints. They are applied to the whole group
instead of each individual contained role. A constraint can be, for instance, one of the
following already known from pre-existing research [Riehle, 2000]. Let RT be the set of all
role types in a given role model. For each pair (A,B) from role types A and B out of RT
one of these constraints can be defined:

role-implied constraint An object playing a role of role type A is required to also play a
role of role type B (but not necessarily the other way round).

role-equivalent constraint An object playing a role of role type A is required to also
play a role of role type B , and vice-versa.

role-prohibited constraint An object playing a role of role type A is never allowed to
play a role of role type B , and vice-versa.

31

Chapter 3. Foundations of Roles

role-dontcare constraint No constraint is applied for an object playing a role defined
in the pair (A,B).

With a role group, those constraints can now be applied to a group of role types viarole group

cardinality constraints instead of denoting them explicitly to each and every type. For
instance, instead of applying a prohibition constraint on each role type, which can be
very cumbersome due to the quadratic growth, the grouping enables the developer to
apply a cardinality constraint (that at most n of the corresponding role types can be
played) on the whole group. The syntax of role groups is defined as [Kühn et al., 2015]:

Definition 1 (Syntax of Role Groups)
Let RT be the set of role types; then the set of role groups RG is defined inductively:

• If rt ∈ RT , then rt ∈ RG , and

• If B ⊆ RG and n,m ∈N∪ {∞} with n ≤ m, then (B ,n,m) ∈ RG .

Definition 2 (Atoms Function)
Let M = (N T,RT,C T,RST,fills,parts,rel) be a well-formed CROM; then atoms : RG →
2RT is a function, defined as:

atoms(a) :=
{

{a} if a ∈ RT⋃
b∈B atoms(b) if a ≡ (B ,n,m)

The atoms : RG → 2RT function recursively collects all role types within a given role
group and the plays ⊆ (N ∪C)×C ×R function identifies the objects (either natural
or compartment) playing a certain role in a specific compartment. This leads to the
following semantics for role groups [Kühn et al., 2015]:

Definition 3 (Semantics of Role Groups)
Let RT be the set of role types of a well-formed CROM M , i= (N ,R,C , type,plays, links)
a CROI compliant to M , c ∈C a compartment, and o ∈Oc an object playing a role in c.
Then, the semantics of role groups is defined by the evaluation function (·)I c

o : RG → {0,1}
as:

aI c
o :=

⎧⎪⎪⎨⎪⎪⎩
1 if a ∈ RT ∧∃r, (o,c,r) ∈ plays : type(r) = a

or a ≡ (B ,n,m)∧n ≤∑
b∈B bI c

o ≤ m

0 otherwise

Role groups constrain the set of roles an object o is allowed to play simultaneously in a
certain compartment c . In case a is a role type, rtI

c
o checks whether o plays a role of type

rt in c. If a is a role group (B ,n,m), it checks whether the sum of the evaluations for all
b ∈ B is between n and m. In general, all of the role constraints presented above (role-
dontcare, role-implied, role-equivalent, and role-prohibited) from Riehle [2000] and role
groups correspond to propositional formulas over role types. For instance, a role-implied
from consultant to customer would be modeled as: ({({Consultant},0,0),Customer},1,2).
This is equivalent to the formula ¬Consultant ∨Customer and fulfills the intended se-
mantics of the role-implied. In summary, CROM and CROI build a powerful and, most
importantly, formally defined base to build on. Thus, it is used as underlying conceptual
motivation for SCROLL.

32

3.6. The Automaton-based Role-binding Process

3.6. THE AUTOMATON-BASED ROLE-BINDING PROCESS

The process of binding roles to objects is called role-binding. It consists of the binding role-binding

technique and the binding operation. The binding technique specifies the implemen-
tation of the relationships. For that, different role-programming implementations use
different design patterns. These design patterns are themselves not based on roles, but
on classic object-oriented concepts, and have to solve the problem that references are
not bidirectional. Thus, the roles and objects do not just have to record their context, but
the context also has to record all collaborations taking place in it. The binding process
contains a set of binding operations that are executed in sequence. This process binds
the object with the role together in a specific context.

In order to play a role (role-playing), it first has to be bound (role-binding). Thus, role-playing

role-binding is the requirement for role-playing. For the implementation of binding roles,
an automaton-based approach is used, as discussed in Schütze [2016]. With that, the
role-binding is externalized for better separation of concerns. The automaton models
the reasons which lead to the binding of a specific role. A role-playing automaton is role-playing

automatonan event-triggered Finite State Machine (FSM) that models the circumstances leading
to adding, removing, or transferring specific roles. A FSM can be described as a set of
relations of the form [Ericsson Utvecklings AB, 1999]:

State(S)×Event(E) → Actions(A), State(S′)

These relations are interpreted as follows: if the system is in state S and the event E
occurs, the actions A should be performed and a transition to the state S′ should be
made. Edges in the automaton define reasons and requirements to further adapt the
role-playing objects, while the nodes define which roles are bound and which ones are
unbound. In sum, a role-playing automaton specifies the role life-cycle with the binding,
unbinding or transfer of role instances between objects and is defined as follows:

Definition 4 (Role-playing Automaton)
A role-playing automaton RPA is an event-triggered FSM and is defined as a tuple
(S ,E ,A ,m,P ,R) with:

• S is the set of states in the system,

• E is the set of events the system reacts on,

• A is the set of actions the system should perform with A :=
{bind r to p, remove r from p, transfer r from p1 to p2}, where r ∈ R, and
p, p1, p2 ∈P ,

• m : (Sa ,Sb) → (Ei ,A j) is a function, mapping the transitions between two states
Sa ,Sb ∈ S to their respective sets of events (with Ei ⊂ E) and actions (with
A j ⊂A),

• P is the set of affected players, and

• R is the set of relevant roles, i.e., roles that should be added, removed, or trans-
ferred.

With this definition, we construct the example shown in Fig. 3.2. The initial system state
should be modified according to the provided role-playing automaton RPAExample, i.e.,
the role instances a and b should be bound to the player instance o once the events
EVENT_A and EVENT_B happen. Hence, the role-playing automaton RPAExample can be
defined as:

33

Chapter 3. Foundations of Roles

EVENT_A /

bind a to ostateA

State
State transition

TRIGGER / list of actions

Legend

stateB stateC

Initial transition

EVENT_B /

bind b to o

o : Player

plays

plays

a : Role

b : Role

Natural Role

o : Player

a : Role

b : Role

RPAExample

Initial system state System after applying RPAExample

Figure 3.2.: An example for an event-triggered role-playing automaton.

Definition 5 (The Example Role-playing Automaton RPAExample)
The example role-playing automaton RPAExample is an event-triggered FSM and is defined
as a tuple (S ,E ,A ,m,P ,R) with:

• S := {stateA, stateB, stateC},

• E := {EVENT_A, EVENT_B},

• A := {bind a to o, bind b to o},

• m(stateA, stateB) = ({EVENT_A}, {bind a to o}),

• m(stateB, stateC) = ({EVENT_B}, {bind b to o}),

• P := {o}, and

• R := {a, b}.

3.7. RUNTIME-SPECIFIC ROLE FEATURES

Contemporary literature has not been able to provide a unique definition of what a role
is, especially with regard to runtime. These aspects of the semantics of the role concept
have been described in a variability analysis [Graversen, 2006]. This analysis relies on the
encountered semantics of roles which goes far beyond the analysis presented in Kühn
et al. [2014], because many runtime features are investigated. Appendix A presents this
with the help of feature diagrams. This list of features for roles at runtime later in this
section permits us to reflect over the set of features SCROLL covers, which is also used
during the evaluation (Sect. 11.1.3).

In the literature, most papers focus on presenting a specific role model. Only very
few authors have attempted to compare different role semantics (Kappel et al. [1998];
Kniesel [1996]; Kristensen [1996]; Steimann [2000b]; Kühn et al. [2014]). The papers
represent different strategies of role surveys. Steimann’s enumerated list (Fig. 3.1) of role
features [Steimann, 2000b] is a good initial approach to the understanding of role models.
However, the list seems like a long stream of questions, lacking structure. Little evidence

34

3.7. Runtime-specific Role Features

is provided whether a topic has been fully covered. Furthermore, the list approach lacks
the ability to show legal and illegal combinations of the details of role semantics and
mixes runtime and conceptual level.

Several authors have attempted to introduce more structure into the analysis of fea-
tures of roles. The two-dimensional schema presented in Kappel et al. [1998] remedies
some problems associated with Steimann’s list approach. In effect, the first column of the
schema is a list of criteria. Each requirement is evaluated by answering supported, not
supported and unknown, respectively. This makes it much clearer which languages sup-
port which feature of roles. Although the domain of Kniesel’s analysis [Kniesel, 1996] is
very limited, his strategy enables him to fully explore each dimension. More importantly,
using symmetry considerations, the comparison enables the synthesis of unexplored
role semantics. The drawbacks are that the comparison is difficult to read and compre-
hend upon first contact. Additionally, it is problematic for the reader to simultaneously
focus on many dimensions of semantics, which is required by the structure of the model.
Finally, the survey presented in Kühn et al. [2014] (that is also discussed during the evalu-
ation of SCROLL in Sect. 11.1.2) builds on top of Steimann’s role features and presents 11
more features tailored to the relational and contextual nature of roles (Fig. 3.1). Neverthe-
less, it suffers from the same problems as Steimann’s survey and does not make a clear
distinction between the instance (runtime) and conceptual level.

Another, well-structured approach to describe the semantic variability for roles at
runtime has been presented in Graversen [2006] with the help of feature diagrams as
discussed in Appendix A. To be able to compare this set of features with the question lists
of Steimann [2000b] and Kühn et al. [2014] for the evaluation of SCROLL (Sect. 11.1.3), we
derived a list of features for roles at runtime (see Table 3.3), extending the list presented
in Fig. 3.1. Some overlapping features were omitted (e.g., identity-related features). Gra-
versen [2006] introduces some terminology, which clashes with the one used throughout
this thesis. Hence, some basic definitions are presented and explained in the following to
understand the questions presented in Table 3.3.

To create role-playing objects, first, a role must be instantiated from its role type.
This process is called role creation. Secondly, with role playing, the establishing of the role creation

play relationship between a role and a certain player, i.e., an instance of a player type,
is denoted. Finally, roles may be targeted for role movement. This term denotes the role movement

movement of roles within the collection of all roles that are currently played by one object.
In contrast to this, a role transfer moves roles between different objects. role transfer

Following the life cycle of roles, we analyze the notion of self . Typically, self is the initial self

receiver object of a compound object. Alternatively, with the strategy of conjunctive
attachment, this compound object is constructed by wrapping roles on their player like conjunctive

attachmentlayers on an onion [Graversen, 2006]. Here, it does not matter whether the new role is
attached directly to the innermost player, or to any of the previously added roles. With
this strategy, one of those roles is the initial receiver. In contrast, during role-playing, self
may refer to two different objects which is called dual self : the initial receiver (the whole dual self

compound object) and the currently executing part object (a role instance). Furthermore,
the non-virtual self addresses the player and their roles as tuples and does not employ non-virtual self

compound-object semantics.
The notion of an around-method, being a well-known concept [Moon, 1986], was one around-

methodout of a large framework of method combinators from Common Lisp Object System
(CLOS) [Kleene, 1989]. In the context of aspect-oriented programming, around-methods
are used to separate and modularize code crossing inheritance hierarchies. Often cross-
cutting concerns (e.g., logging, caching, etc.) are implemented with around-methods.
They can easily be enabled and disabled during compile- and runtime. This flexibility

35

Chapter 3. Foundations of Roles

Feature Description

27. The amount of roles an instance of a class and a role can play
may be constrained.

A.1.1 (p. 155)

28. Each role type played must be unique. A.1.1 (p. 155)
29. Possible supertypes for classes can be class types, role types, or

compound object types.
A.1.2 (p. 156)

30. The amount of simultaneously existing instances of a role type
may be constrained.

A.2.2 (p. 157)

31. The amount of players, a role is played by, may be constrained. A.2.3 (p. 158)
32. The visibility of roles during dispatching may be constrained. A.2.4 (p. 159)
33. Role types are supertypes, subtypes, or unrelated types of their

player.
A.3.1 (p. 160)

34. Role types may extend role types, class types, or compound ob-
jects.

A.3.2 (p. 161)

35. The player type for a role type may be a role type, a class type, an
interface type, a metaclass, a compound object type, a property,
or undefined.

A.3.3 (p. 161)

36. Properties of roles can be fields, methods, class methods, and
static methods.

A.4 (p. 162)

37. Roles can have nested methods, roles and classes. A.4.4 (p. 162)
38. Role instances can be referenced directly, or indirectly. A.5.1 (p. 163)
39. A reference to a role always points to the compound object. A.5.1 (p. 165)
40. Method dispatch on roles happens on the sender or its player,

the receiver or its player, the context, or the compound object.
A.5.1 (p. 163)

41. Self may refer to dual self, or non-virtual self. A.5.2 (p. 165)
42. Super refers both to the static inheritance chain, and to the at-

tached roles.
A.5.3 (p. 166)

43. The player may be referenced directly, or indirectly. A.5.4 (p. 166)
44. A role may be called from its player. A.5.5 (p. 166)
45. Roles may call among each other. A.5.5 (p. 166)
46. Roles may incorporate around-methods. A.5.6 (p. 166)
47. Role creation, attachment, and movement may be restricted. A.7 (p. 168)
48. Roles may be terminated explicitly, or implicitly. A.7.3 (p. 170)
49. Role methods may have various access modifiers. A.8 (p. 171)
50. Roles may provide meta-functionality. A.8 (p. 171)
51. Roles allow for typed references. A.8 (p. 171)
52. Roles may be used as filters. A.8 (p. 172)
53. Roles may be used for renaming. A.8 (p. 172)
54. Roles may be parameterized. A.8 (p. 172)

Table 3.3.: Role features solely focusing on runtime aspects.

promotes them for a solution to the composition of roles. Roles may also support instance
level composition with around-methods.

A role as filter is a role providing a unique view on the player [Graversen and Beyer,role as filter

2002; Richardson and Schwarz, 1991; Pernici, 1990; Steimann, 2000a; Harrison and Os-
sher, 1993; Büchi and Weck, 2000; Chernuchin and Dittrich, 2005]. Especially within
composition filters [Bergmans and Aksit, 2001], this concept is used. Filters are enabled
on incoming, as well as on outgoing messages. Hence, they can be applied on the sender
and receiver side. Furthermore, Eiffel contains strong renaming capabilities [Meyer,

36

3.7. Runtime-specific Role Features

1988] to avoid signature clashing. Within role literature [Richardson and Schwarz, 1991;
Herrmann, 2005], using a role for renaming is mainly motivated to preserve access to role for

renaminginformation of the player which otherwise would be overridden by the role. Finally, role
parameterization in terms of Java’s generic types [Oracle, 2015] is a fairly new topic in the role parameter-

izationrole literature. It makes roles more type-safe and more reusable.

37

4

FOUNDATIONS OF DISPATCH
Many developed programming languages offer support for advanced modularization
mechanisms, like in the context of this thesis with roles, but are implemented as transfor-
mations to the imperative intermediate representation of an already established language
(see Sect. 13.2.2). Their core constructs largely overlap in semantics [Kühn and Cazzola,
2016]. Hence, reusing the corresponding transformations requires reusing their syntax as
well, which is too limiting.

With SCROLL, we identified dispatching as fundamental to role-based programming
and propose a declarative and parameterizable approach for four-dimensional, context-
aware dispatch at runtime. To increase the modularity of programs, research has in-
troduced different abstraction mechanisms, where one concrete program module does
not refer to another concrete module, but only abstractly specifies the functionality
or data to be used (polymorphism). With roles, this principle is pushed even further. polymorphism

The mechanisms for polymorphism are manifold; they include traditional receiver-type
polymorphism and reach out to multiple and predicate dispatching [Ernst et al., 1998],
pointcut-advice in aspect-oriented programming [Masuhara and Kiczales, 2003], or lay-
ered methods in context-oriented programming [Hirschfeld et al., 2008]. Those languages
typically overlap in their semantics but differ syntactically. Compiler frameworks [Ekman
and Hedin, 2007; Avgustinov et al., 2006] only support reusing the implementation of a
language’s execution semantics if that language is extended syntactically.

The process of dispatching resolves abstractions and binds concrete functionality to dispatching

their usage [Bockisch et al., 2012]. This declarative mechanism determines the code to
be executed upon a method invocation. It takes place whenever a specific code location
is referenced during the program execution. A well-known example of dispatching is
receiver-type polymorphism. Here, dispatch is choosing the method implementation receiver-type

polymorphismbased on the dynamic type of the receiver object. Languages that go beyond such classic
receiver-type polymorphism are called advanced-dispatching languages, as they compose advanced-

dispatching

languages

functionality in different, more flexible ways and incorporate additional runtime state.
Hence, role-based dispatch can be seen as an advanced dispatch suitable to overcome
the subtle ambiguities introduced with the concept of role-playing objects. However, role
dispatching is a dynamic process. Thus, techniques solely extending the static program
structure cannot satisfactorily realize this dynamic process. For example, AspectJ’s inter-
type declarations can influence the type hierarchy, e.g., by adding interfaces, methods,
and fields to a class. While the dynamic semantics of these constructs, namely executing
the added methods or accessing the added fields, can be made available for dispatch,
their static types inferred by the compiler cannot. Adding an interface changes the type
hierarchy. The woven type and its original type differ. The language’s type system and the
compiler’s type checker are not adequately prepared for this weaving process. Whether
this impact may be mitigated by making type checkers aware of advanced dispatching
with regard to roles, is beyond the scope of this thesis.

As mentioned above, implementations of role-based languages often build on the
back-ends of an already established language, thereby reusing the implementation of the
constructs in its intermediate language. But not all constructs of role-based languages
have a trivial mapping to the established intermediate language (e.g., Java bytecode). The
resulting semantic gap between source and intermediate language, i.e., the inability of
the intermediate language to directly express the new language’s mechanisms, requires
compiling the language’s high-level concepts down to low-level imperative code. This
was considered as inappropriate during the development of SCROLL, since building and

39

Chapter 4. Foundations of Dispatch

maintaining a whole new compiler tool chain is too time-consuming and out of the scope
of this thesis.

Advanced compiler frameworks could have been assisting in this task, and even enable
to reuse the non-trivial code generation for role-specific language constructs that have
no direct counterpart in the target intermediate language. But this reuse requires the
new language to be a syntactic extension of an existing one. While code transformations
defined on the common intermediate language are shared among all language extensions,
they cannot exploit knowledge about new source language constructs. This knowledge
is lost during the transformation to the intermediate language. With that, existing tools’
usefulness is greatly reduced. The developer has to observe the program execution in
terms of the generated, imperative code in the intermediate language rather than in
terms of the new language’s source-level abstractions. This is considered as a major
drawback for existing role-based programming languages. Experimenting with their
specific dispatch implementations (e.g., changing and adapting its semantics at runtime)
is not possible at all. Thus, we decided to use a library approach with SCROLL for role-
based, dynamic dispatch, making custom compiler and code generation unnecessary.

Nevertheless, many other programming languages offer such a form of dynamic dis-
patch. A function consists of a set of implementations, each with a guard specifying
the conditions under which that implementation should be executed. When a function
is invoked, all the implementations that are applicable, meaning that their guards are
satisfied, are considered. For role-based programming, those guards can be derived from
the role model itself.

We now focus on dispatch concepts in other mainstream languages. In classical object-
oriented languages, such as, Java, a method m has an implicit guard specifying that the
runtime class of the receiver argument must be a subclass of m’s enclosing class. A method
m1 overrides another method m2 if the enclosing class of m1 is a subclass of the enclosing
class of m2. Multimethod dispatch, on the other hand, e.g., found in languages like
Cecil [Chambers, 1992] and MultiJava [Clifton et al., 2000] abstracts from those implicit
guards to support runtime class tests on basically any subset of the method’s arguments.
The overriding relation is generalized to all of its arguments as well. Pattern matching in
functional programming languages (e.g., in ML [Milner, 1997]) falls into that category of
dispatch as well, allowing guards to test the datatype constructor of arguments and to
recursively test the substructure of arguments. In this approach, the textual ordering of
function implementations determines the overriding relation. Overall, dynamic dispatch
offers many advantages over manual dispatch using if statements:

Declarative specification The guards on each method implementation can be speci-
fied declaratively. Then, the “best” implementation is selected for a given invoca-
tion.

Inheritance support Dynamic dispatch makes functions extendable via inheritance.
Functions may be extended by writing additional implementations handling new
scenarios. No existing code has to be modified.

Type checking Static type checking is enhanced in comparison of using if statements
and doing runtime type-casting manually. With that improvement, method lookup
cannot fail as there are no dynamic message not understood or message ambiguous
errors anymore.

40

4.1. Predicate Dispatch

C C

O
A

O
B

m
1
: * : C

m
1
:

S

B
: C

m
1
:

* : *m

1

S
B

S
A

R
2

R
1

A B

B

A

Figure 4.1.: The concept of four-dimensional dispatch (with methods mn , sender Sn ,
contexts Cn , and objects On with roles Rn) [Hirschfeld et al., 2008].

4.1. PREDICATE DISPATCH

As an advanced form of dynamic dispatch, the concept of predicate dispatch was intro-
duced [Chambers, 1992; Ernst et al., 1998]. With this, a method implementation may
specify an arbitrary predicate as a guard. Consequently, a method m1 overrides another
method m2 if m1’s predicate logically implies m2’s predicate. This concept unifies and gen-
eralizes several existing language concepts, including object-oriented dynamic dispatch,
multimethod dispatch, and functional-style pattern matching. Nevertheless, predicate
dispatch (and its ongoing work on top, e.g., with Chambers and Chen [1999]; Ucko [2001];
Orleans [2002]) has several issues with regard to its utility in practice:

Actual implementations Implementations of predicate dispatch are only surveyed
in the context of non-mainstream programming languages or toy examples, not
including static type checking.

Type checking The static type checking for predicate dispatch as presented in Ernst
et al. [1998] requires a type system with access to the whole program. This clashes
with the modular type checking style of mainstream object-oriented and thus
with role-based programming languages. Hence, specifying basic well-formedness
properties for individual classes or roles, remains difficult.

Conservativeness Other more static approaches are overly conservative, ruling out
many desirable uses of predicate dispatch. For instance, the resulting type system
cannot infer that the predicates x > 0 and x ≤ 0, where x is an integer argument
to a function, are exhaustive and mutually exclusive. Functions consisting of two
implementations with these guards will be rejected throwing both exhaustiveness
and ambiguity errors.

Pratical use Finally, little to no evidence has been presented to show the utility of
predicate dispatch in real-world applications.

With those limitations for predicate dispatch in mind, we decided to use a basic, more
grounded approach to tackle the ambiguities introduced with roles. With function
composition and pattern matching style dispatch guards, we end up with a declarative
and parameterizable approach for four-dimensional, context-aware dispatch at runtime
in SCROLL. This is presented in more detail in Sect. 9.3.

4.2. MULTI-DIMENSIONAL DISPATCH

In the following, the concept of multi-dimensional message dispatch [Hirschfeld et al.,
2008] in the context of role-playing objects is presented. It is intended to help the reader
to understand its basics for the remainder of this thesis. This can be derived from:

41

Chapter 4. Foundations of Dispatch

ObjectTeams/Java SCROLL

SA

SB

OA

OB

R1

R2

R3

TA

TB

m1

m1: * : * : *

m1: * : R2 : TB

m1: SB : R3 : TB

SA

SB

OA

OB

R1

R2

R3

CompA

CompB

m1

m1: * : * : *

m1: * : R2 : CompB

m1: SB : filter (R*) : CompBR4

Figure 4.2.: Multi-dimensional Dispatch with OT/J and SCROLL in comparison (with
methods mn , sender Sn , teams Tn , compartments Compn , and objects On

with roles Rn).

One-dimensional dispatch Classical C-style procedural programming only offers the
static binding of a function with a name. Calls are directly mapped to the corre-
sponding implementations. Calling a method m leaves no choice but the invocation
of its only implementation of method m.

Two-dimensional dispatch With object-oriented programming, the second dimension
was added. In addition to resolving the method name, the receiver of the call is
taken into consideration when looking up that method.

Three-dimensional dispatch For instance, subjective programming [Smith and Ungar,
1996] extends the object-oriented method dispatch by yet another dimension.
With that, the targeted method is not only selected in dependence of its name and
receiver, but also in dependence of the sender.

Four-dimensional dispatch As part of this thesis, the fourth layer is put on top of
the dispatching concepts, inspired by subjective and context-oriented program-
ming [Hirschfeld et al., 2008]. Now also the context of the actual message send,
hence the overall system’s context, is taken into account (see Fig. 4.1). Based on
that information, methods or their partial definitions are selected or excluded
from the message dispatch. This finally enables the context-dependent behavioral
adaptation and variation needed for role-based programming.

To provide a more fine-grained dispatch, role-oriented programming languages, such
as, OT/J, encapsulate the fourth dimension within contexts implemented as first-class
citizens (e.g., in OT/J these contexts are called Teams). With that, the actual method
dispatch is configurable at compile-time for a predefined set of role types (see Fig. 4.2
left side). SCROLL builds conceptually on-top of that. It allows for the dynamic attach-
ment of arbitrary many roles at runtime, still encapsulated in first-class contexts, called
compartments, as already introduced (see Sect. 3). Now, the method dispatch can be
re-configured at runtime via filtering the set of all attached roles steered by user-defined
functions (see Fig. 4.1 right side). This is explained in more detail in Sect. 9.3.

In sum, the dispatch mechanism provided by SCROLL is declarative (and structurally
attached to context specifications incorporated as first-class citizens), and can be param-
eterized via user-defined filter and sorting functions. This allows for four-dimensional
dispatch within structured contexts. Instead of only associating the behavior called with
a name (first dimension), the receiver context (second dimension), the sender context
(third dimension), and the overall system context (fourth dimension, but now structured)
are taken into account, while being re-configurable at runtime.

42

5

FOUNDATIONS OF GRAPHS AND
GRAPH FILTERING
Graphs are one of the most important data structures in programming and computer
science in general. They appear in almost all applications. Structures linked with software
models, pointers, object nets, databases, and with various schemes, are in essence graphs.
A labeled graph is a collection of objects (nodes or vertices) which are connected via
linking objects (edges). Nodes and edges may be associated with names, additionally
(called labels). Graphs are applied as background data structure in SCROLL. The real
power of graphs makes itself apparent when traversing multiple steps in order to unite
disparate not directly connected vertices by a path. The type of path taken, defines the
higher order, inferred relationship that exists between two vertices. Paths form the core
of the presented graph traversals. A traversal refers to visiting elements (i.e., vertices and
edges) in a graph in some algorithmic fashion. A graph is defined as: graph

Definition 6 ((Labeled) Graph)
In general, a (labeled) graph H is a 4-tuple (V ,E ,Lab,LΣ) with:

• V is a finite set of vertices (nodes) with |V | ≥ 0,

• E is the set of edges, where E is a relation E ⊆V ×V ,

• LΣ is the set of labels and

• Lab : V ∪E → LΣ is the labeling function, which assigns a label to each node in V
and edge in E .

Such definitions are usually sufficient for deriving theorems. However, in the scope of
this thesis, where the graph is required to be embedded handling the associations of
role-playing objects, this definition says nothing about a graph’s realization. Nevertheless,
graphs for storing data and their relationships offer a significant advantage. There is a
constant time cost for retrieving an adjacent vertex or edge. Regardless of the size of the
graph, the cost of a local read operation at a vertex or edge remains constant [Rodriguez
and Neubauer, 2010]. This benefit is so important that it creates the primary means by
which users interact with graph traversals. Graphs offer a unique vantage point on data,
where the solution to a problem is seen as abstractly defined traversals through its vertices
and edges. The implementation of a graph determines the efficiency of the operations
that are applied to it. Exactly those efficient graph operations yield an unconventional
problem-solving style. This style of interaction is dubbed the graph traversals in the
following and forms the primary point of discussion for this section.

The functional, flow-based approach to traversing graphs and different types of traver-
sals over different types of graph data sets, supports different types of problem solving
processes [Rodriguez and Neubauer, 2010]. The most primitive, read-based operation
on a graph is a single step traversal from element i to element j , where i , j ∈ (V ∪E).
For example, a single step operation can answer questions such as “which edges are
outgoing from this vertex?” or “which vertex is at the source of this edge?”. Single step
operations expose explicit adjacencies in the graph. Various types of those single step
traversals can be found in Table 5.1. These operations are defined over power multiset
domains and ranges. This naturally allows for function composition. When edges are
labeled and elements have properties, it is desirable to constrain the traversal to edges of
a particular label or elements with particular properties. These operations are known as

43

Chapter 5. Foundations of Graphs and Graph Filtering

Notation Meaning

Basics

f : D → R Function signature for function f with domain
D and range R

f (a1, a2, ...) Function application with arguments a1, a2 etc.
◦ Path composition
P (A) Power set of set A, set of all subsets of A (i.e., 2A)
P̂ (A) Power multiset of A, infinite set of all subsets of

multisets of A

Traversals

Eout : P̂ (V) → P̂ (E) Yield all outgoing edges of a multiset of vertices
Ei n : P̂ (V) → P̂ (E) Yield all incoming edges of a multiset of vertices
Vout : P̂ (E) → P̂ (V) Traverse the outgoing (i.e., sink) vertices of the

edges
Vi n : P̂ (E) → P̂ (V) Traverse the incoming (i.e., source) vertices of

the edges
ϵ : P̂ (V ∪E)×R → P̂ (S) Get the element property values for key r ∈ R

Filters

E σ
l ab± : P̂ (E)×Σ→ P̂ (E) Allow (+) or filter (-) all edges with the labelσ ∈Σ
ϵp± : P̂ (V ∪E)×R ×S → P̂ (V ∪E) Allow (+) or filter (-) all elements with the prop-

erty s ∈ S for key r ∈ R
ϵϵ± : P̂ (V ∪E)× (V ×E) → P̂ (V ∪E) Allow (or filter) all elements that are provided

elements

Table 5.1.: Notation overview for graph traversals and filters.

filters and are abstractly defined in Table 5.1 as well. Through function composition offilters

single step traversals, we can define graph traversals parameterized by filter functions
which is suitable to answer questions, such as, “which roles is the current object playing?”.
This is demonstrated with the following example traversal and filtering. If i is the vertex
representing the role-playing object and

f : P̂ (V) → P̂ (S),

where
f (i , name) = ϵ(Vi n(El ab+(Eout (i), plays)), name),

then f (i , name) will return the property name of the roles that the object in question is
playing. Through function composition, the previous definition can be represented more
clearly with the following function rule:

f (i , name) = (ϵname ◦Vi n ◦E
plays

l ab+ ◦Eout)(i , name).

This function f says, traverse to the outgoing edges of vertex i representing the role-
playing object, then only allow those edges with the label plays, then traverse to the
incoming (i.e., source) vertices on those plays-labeled edges. Finally, return the prop-
erty name of those vertices. The function f is a higher-order adjacency defined as thehigher-order

adjacency composition of explicit adjacencies and serves as a join of the role-playing object and its
roles name properties. Those traversals, parameterized by filter functions, allow for the

44

filtering of a single graph data structure. The parameterization alters the semantics of
the final query. In consequence, this enables the altering of the dispatching semantics in
role-based applications.

Graphs are a flexible modeling construct that can be used to model a domain and
partition that domain into an efficient, searchable space. When the relations between
the objects of the domain are seen as vertices, then a graph is simply an index that
relates vertices to vertices by edges. The way in which these vertices relate to each other
determines which graph traversals are most efficient to execute and which problems
can be solved by the graph data structure. For many problems, only local subsets of the
graph need to be traversed to yield a solution which is handy in the context of roles. By
structuring the graph in such a way as to minimize traversal steps, limit the use of external
indices, and reduce the number of set-based operations, graphs provide a flexibility that
is difficult to accomplish with other data structures.

45

6

A MOTIVATING EXAMPLE FOR
MULTI-DIMENSIONAL DISPATCH
Haddadin et al. [2011] focus on the idea of a human and a robot working together in
an intimate collaboration. They propose an approach to combine human and robot
capabilities for executing certain tasks in a partially unknown environment. Using sensor
networks a safe integration of humans and robots for a specific task execution can be
achieved. This integration of humans and robots can be described by the states of a
hybrid automaton. Transitions are based on sensor inputs enabling the robot to react
to unexpected asynchronous events. Additionally, safety is of fundamental concern if
human-robot cooperation shall ever be realized in industrial practice. This section is
not concerned with the mechanical design of robots or to make them sufficiently safe
at all. Instead, this example is selected to demonstrate the use of role-based design and
implementation because it inherently exposes role orientation.

State Transition

Legend

Autonomous ModeCollaborative Mode Human-friendly Mode

Fault-reaction Collaborative Mode Fault-reaction Autonomous Mode Fault-reaction Human Mode

in perception

out of perception

out of perception

fault confirm fault confirmfault confirm

out of perception

in perception

Figure 6.1.: The Haddadin automaton adapted from Haddadin et al. [2011].

In current state of the art for industrial workflows in manufacturing execution systems,
simple sequences of tasks with static execution orders and binary branching are used.
Fault tolerance is not a problem due to specially crafted working environments. Especially
human-robot interaction is not yet safe and legal foundations are missing [Haddadin
et al., 2011]. With the aforementioned automaton, an integrative and flexible approach
to carry out the desired task in a very robust yet efficient way was presented. It enables to
distinguish between different collaboration and fault stages, which slow down or stop
the entire process. Interruptions within execution steps are part of the concept and do
not require some special treatment. In order to optimally combine human and robot
capabilities, the robot must be able to adapt to the human intention during task execution
to achieving safe interaction. Thus, the measurement of human state is the dominant
factor influencing the transition between the proposed functional modes. As modeled in
Fig. 6.1, the human state is primarily used to switch between different functional modes
of the robot. We distinguish between four major functional modes of the robot in a
co-worker scenario [Haddadin et al., 2011]:

Autonomous task execution The autonomous mode in human absence.

Human-friendly behavior The autonomous mode in human presence.

47

Chapter 6. A Motivating Example for Multi-dimensional Dispatch

Collaborative Mode Human-friendly Mode

Fault Mode

Autonomous Mode

Working Mode

Human-aware Mode

confirm

fault

collabStop

collabStart

outOfContext

inContextinCollaboration

World Space System Space

Fast

Very Slow

Slow

Stop

Activation

Mapping

Figure 6.2.: The mapping from the Haddadin world space to the system space.

Co-Worker behavior The cooperation with human in the loop.

Fault reaction behavior The safe fault behavior with and without human in the loop.

The conditions for transitions between these states provide high flexibility in the applica-
tion design. In the first functional mode, the robot is autonomously fulfilling its given
task without considering the human presence. In the second and third modes, we need
a meaningful partition of the task space which subdivides the given workspace of the
robot into regions of interaction. For the sake of simplicity, we decided to solely depend
the robots speed, i.e., a single variable, for the different functional modes. Thus, the
activation mapping from states to roles as shown in Fig. 6.2 are used (indicated by colors).

In the third mode, interaction tasks are carried out for fulfilling a common desired goal,
involving a collaboration of human and a robot. These two modes allow for the seamless
switching between each other. A fault reaction behavior is represented with the fourth
mode, addressing the reaction to stop it self if a fault occurs.

We implement a simple robotic co-working system as proof of concept in which role-
based programming is applied to dynamically adapt the system behavior at runtime. How
could a practical role-based implementation of the aforementioned functional modes for
a maximum of flexibility and adaptivity look like? We derive important requirements for
the design of SCROLL from the identified problems. For the implementation of the robotic
co-working example, the software design needs to contain definitions and descriptions to
handle the static and dynamic aspects of problems in this domain, namely, for business
logic as well as adaptation logic. The interactions of the participating objects with the
client are non-trivial. Each of those clients will handle the instances differently and with
different use-cases in mind, e.g., handling different kinds of robots and their individual
work plans. This interaction needs to be described and constrained from the viewpoint
of all relevant contexts. Furthermore, a sound understanding of object collaborations
and relationships at runtime is crucial.

When developing an adaptive software system, the programmer must be able to define
those collaborations. Once they are understood, it is important to group and separate
them for the sake of comprehensibility and reuse. Relationships need to be assigned
to relevant contexts. Derived from the two aforementioned tasks, this reuse is one of
the most important attributes adaptivity on the resulting system benefits from. With
invariants and constraints, the behavior of the objects working together in that systems
can be restricted and checked during runtime.

Finally, it is impossible to foresee each and every possible future use-case and context.
Listing 6.1 provides an excerpt for a plain, simple object-oriented implementation of
robotic co-working example in Scala. Handling the adaptation based on various events

48

with regard to the current system context and state leads to if-bloating with nesting and if-bloating

inter-tangling of business and adaptation logic. The problems mentioned above and
introduced in Chapter 3 manifest themselves as:

Increased class complexity (/P.1/) Using a class with inter-tangled implementations
of business and adaptation logic depending on various use cases and contexts will
require a lot of additional management code and the application of glue patterns.
With that, maintainability, extendability, and testability will suffer.

No first-class object collaborations (/P.2/), low separation of concerns (/P.3/)
The collaborations between participating objects is not described as first-class
citizens, but interleaved and tangled across the resulting, overall implementation.

Lack of reuse (/P.4/) Thus, reuse, maintainability, and extendability is greatly re-
duced.

No explicit invariants and constraints (/P.5/) Additionally, context checks be-
tween different parts of the adaptation logic cannot be specified explicitly but
will be spread over the implementation as hard-coded, additional and potentially
deeply nested if-blocks.

Lack of adaptivity (/P.6/) In consequence, adaptivity of the resulting software sys-
tem suffers and is harder to maintain and extend for future unforeseen use-cases
and application contexts.

1 def handleCoWorking(): Unit = {
2 while(true) {
3 if(currentState == AUTONOMOUS) {
4 if(event.isInstanceOf[InPerception]) {
5 speed = 30; currentState = HUMANFRIENDLY
6 }
7 if(event.isInstanceOf[Fault]) {
8 speed = 0; currentState = FAULTREACTIONAUTONOMOUS
9 }

10 }
11 if(currentState == HUMANFRIENDLY) {
12 if(event.isInstanceOf[InPerception]) {
13 speed = 20; currentState = COLLABORATIVE
14 }
15 if(event.isInstanceOf[OutOfPerception]) {
16 speed = 50; currentState = AUTONOMOUS
17 }
18 if(event.isInstanceOf[Fault]) {
19 speed = 0; currentState = FAULTREACTIONHUMAN
20 }
21 }
22 /* ... */
23 }
24 }

Listing 6.1.: Excerpt for a plain, simple implementation of robotic co-working example.
Handling the adaptation based on various events with regard to the current
system context and state leads to if-bloating with nesting and inter-tangling
of business and adaptation logic.

Applying the concept of roles now enables explicit separation of concerns of the rela-
tionships at instance level. This cannot be achieved with normal class interfaces. A role

49

Chapter 6. A Motivating Example for Multi-dimensional Dispatch

type exactly specifies how the instance of a class interacts in a certain context. The major
part of the complexity of those adaptive software infrastructures stems from complex
object collaborations. These collaborations become manageable with the break-down
into individual, smaller role models. Each role model describes an individual aspect of
the object collaboration and adaptation. With the resulting clear separation of object
collaboration into smaller pieces with regard to the concerns of the problem space and
their composibility, a high amount of reuse is enabled. Furthermore, a role type is a good
target for invariants and constraints. And finally, adding role types dynamically allows
for the adaptation of unforeseen contexts. The expressiveness of the concept of roles
require a whole new level of dispatching semantics, i.e., a dispatch that needs to support
context-awareness and dynamically evolving objects on the instance level.

50

7

RESEARCH CHALLENGES

Problem Requirement Description

Functional

/P.4/ /F.1/ No additional tooling
/P.6/ /F.2/ Dispatch configurable at runtime
/P.2/, /P.3/, /P.5/, and /P.6/ /F.3/ Handle multi-dimensional dispatch

/F.3.1/ Associate the computational unit with a
name

/F.3.2/ Take the receiver context into account
/F.3.3/ Take the sender context into account
/F.3.4/ Take the system context into account

/P.1/, /P.2/, and /P.3/ /F.4/ Increase modularity through role-based
programming

(Semi-) functional or non-functional

/P.2/, /P.3/, /P.4/ /S.1/ Declarative and parameterizable dis-
patch description

/P.4/ /S.2/ Easy to use programming model and
API

/S.3/ Reasonable performance / scalability
/P.4/ /S.4/ Integration in existing tool-chains
/P.4/ /S.5/ Integration / compatibility with existing

legacy code
/S.6/ High maintainability
/S.7/ High extensibility

Table 7.1.: Functional and non-functional requirements for SCROLL.

The following research challenges and requirements can be derived from the aforemen-
tioned problems (Sect. 6). We aim for a solution that requires no additional tooling (/F.1/).
As almost all the contemporary approaches for role-based programming use custom
compilers or code generators, they break with existing tool-chains (e.g., debuggers) and
cannot be used with ease in widely established integrated development environments
(e.g., Eclipse or IntelliJ). This hinders maintainability and extendability and often results
in abandoned projects. With the notion of roles, their expressiveness and their subtle am-
biguities, the resulting dispatch semantics needs to be handled explicitly and at runtime
(/F.2/). Hence, the solution developed during this thesis should support this new kind
of context-aware dispatch on the instance level for dynamically evolving role-playing
objects. As this context-aware dispatch introduces additional dimensions, those must be
addressed as well (/F.3/). Thus, on-top of associating the method with a name and tailor-
ing the dispatch to the receiver or sender context, the overall system context needs to be
addressed additionally. And finally as a fourth requirement, a maximum of the features of
roles in role-based programming has to be supported by the developed implementation
to increase modularity (/F.4/).

Furthermore, some (semi-) functional or non-functional requirements are important
as well. To make the aforementioned dispatch implementation as usable and attractive
to the developer it should be declarative and parameterizable at runtime (/S.1/). This

51

Chapter 7. Research Challenges

offers high flexibility for context-aware adaptation and additional separation of con-
cerns. To support the application programmer even better, the programming model
and API should be easy to use and readable even for inexperienced developers (/S.2/). A
reasonable performance and scalability of the implementation is important as well for
real-world scenarios and show its practical applicability (/S.3/). As a follow-up to /F.1/,
code should be easily manageable by existing tool-chains so that future role researchers,
i.e., researchers interested in role-based programming, and application developers can
continue the development and provide extensions and adaptation for future use-cases
and scenarios (/S.4/). For easier integration of existing software systems, we do not want
to impose additional burden to the developer writing adapters, proxies, or management
code to integrate existing legacy code (/S.5/). Finally, and as a result of /F.1/, /S.2/, /S.4/,
and /S.5/, the reference implementation developed during this thesis for role-based
programming and dispatch should be highly maintainable and extendable so that future
researchers have an easy time providing modifications for new use-cases and scenarios
(/S.6/, and /S.7/). A summary can be found in Table 7.1 and will be used as success
criteria throughout this thesis (see Sect. 11.1.1).

52

Faculty of Computer Science Institute of Software- and Multimedia-Technology

Software Technology Group

PART III.

ROLES IN STRUCTURED
CONTEXTS AT RUNTIME

53

8

THE EMBEDDED DSL SCROLL
“Static typing where possible, dynamic typing when needed!”

Meijer and Drayton [2004]

Scripting languages like Python, JavaScript, Ruby, Perl or Lua offer a flexible object
semantic to the developer. On the one hand, programmers can rely on classical object-
oriented features, such as inheritance, encapsulation and polymorphism, and on the
other, they are able to add and remove members from existing objects or merge them at
any given point in their life-cycle [Menon et al., 2013] which is usually not available in
statically typed object-oriented languages. Imagine you have a client object that wants to
execute some behavior at an object of interest but that desired behavior is not available
(Fig. 8.1). Unfortunately, using inheritance, mixins and traits or adapting design-patterns
has many disadvantages. The first three techniques will result in a very static system
design and exponentially many classes, while the use of patterns often leads to split-
objects and the need of additional management code. Adding and removing members
from existing objects at runtime are indeed very useful operations for modern software-
systems that have a very high demand for adaptivity and need to cope with complexity
and change [Furrer, 2015]. Is bridging the gap between statically-typed, object-oriented
languages and roles as evolving objects at runtime possible without too much effort? The
main contributions of this chapter permit us to answer this questions positively:

SCROLL and the SCROLL MOP An overview on SCROLL, an embedded DSL and
its underlying MOP [Kiczales et al., 1991; Mernik et al., 2005] that allows for the
pure embedding [Hudak, 1998] of roles in the modern, statically typed object-
oriented language Scala. It solely utilizes features that are available through the
standard compiler. The library allows for easy integration of legacy code and a
high separation of concerns. It is limited with regard to type-safety as one might
expect. Nevertheless, having a statically-typed host language for roles supports the
developer with the best of both worlds: static typing leads to an earlier detection of
programming mistakes through static code analysis, better documentation in form
of type-signatures, compiler-optimization, runtime-efficiency and an improved
design-time development experience, while the latter supports easy prototyping,
change to unknown requirements or unpredictable data and application integra-
tion. Essentially, two user groups for SCROLL can be identified: the end-user (the end-user

programmer writing domain-specific, role-based applications), and the library
developer (adapting or transferring the SCROLL MOP and its semantics to his re- library

developersearch area). For those library developers, the SCROLL MOP is discussed in more
depth in Chapter 9.

Simplicity Based on three concepts (compiler rewrites, implicit conversions, and a
definition table), an implementation pattern is presented.

Examples Finally, example applications show how roles are realized with SCROLL.

Scala was chosen as host language for SCROLL, not only because of its combination of
object-oriented and functional programming features, but as well due to its scalability
and interoperability with the Java virtual machine providing easy integration of legacy
code and availability of already established tools. SCROLL, in particular, takes advantage
of Scala’s features such as higher order-functions, general operator notations, flexible
syntax, implicits, compiler rewrites and implicit definitions of parameters.

55

Chapter 8. The Embedded DSL SCROLL

CoreClient
uses

Problem

Call to behavior() will fail.
Not avaliable!

Apply the library
ExtensionB

behavior()

ExtensionA

ExtensionC

CoreClient
uses

Solution

Call dynamic extension
on the compound object

Figure 8.1.: A client wants to execute behavior at a (core-) object but the requested behav-
ior is not available (left box). Applying SCROLL allows for dynamically adding
new behavior at runtime while wrapping all the extension parts (ExtensionA,
ExtensionB and ExtensionC) of the augmented object (Core) into one com-
pound object (right box).

8.1. THE BASIC INGREDIENTS OF THE EMBEDDED DSL
SCROLL

SCROLL is an embedded method-call interception DSL [Lämmel, 2002; Mernik et al.,
2005] tailored to the features needed to implement roles and resolve the ambiguities
arising with regard to dynamic dispatch. The library approach together with an imple-
mentation with Scala was chosen for mainly the following reasons: it allows focusing
on role semantics, supports a customizable, dynamic dispatch at runtime, and allows
for a terse, flexible representation. No additional tooling (like a custom lexer, parser
or compiler) is needed to execute the SCROLL MOP. It is purely embedded in the host
language, thus uses the standard Scala compiler to generate Java Virtual Machine (JVM)
bytecode. With that, the implementation is reasonable small (∼1400 lines of code) and
maintainable. The programming interface with Scala’s flexible syntax holds the property
of being easily readable, even to inexperienced users. We have taken a layered approach
(see Fig. 8.2) for designing and implementing SCROLL:

Usage Layer This is the end-user layer, tailored for the instantiation and use of objects
with their roles as dynamic extensions forming evolving objects. Role objects, as
well as their enclosing compartments, may be instantiated from standard Scala
classes, case classes, or traits.

Configuration Layer All role-specific features are aggregated into the Compartment
trait and its utility traits (e.g., DispatchQuery, RoleConstraints, or RoleGroups).
They implement the full interface of SCROLL and are configurable at runtime
through concrete instances. Altering their default behavior is viable via subclassing.
This layer is targeted to both end-users and library developers.

MOP Layer This layer contains the implementation of the metaclasses Compartment
and its helper traits (i.e., the MOP). Especially the dynamic dispatch semantics
within the DispatchQuery trait are targeted to be investigated and adapted by
library developers.

Specification Layer To handle the actual dispatching on the compound object, this
layer contains specifications for the dispatch (SCROLLDispatch, SCROLLDynamic).
This unifies their complex semantics into only two interfaces rather than scattering
them across many interfaces. This layer should be changed if a library developer
wants to change the semantics of the dynamic dispatch within SCROLL.

56

8.2. Basic Implementation Concepts

MOP Layer

Configuration Layer

Usage Layer

Specification Layer

Robot

Autonomous

Role

<<implicit>>

Player

Scala Class

Scala Trait

SCROLLDispatch SCROLLDynamic

Compartment

Collaborative

DispatchQuery

RoleGraph

Relationships

RoleGroups

RoleRestrictions

RoleConstraints

Utils

QueryStrategies

wrapped into

RolePlayingAutomaton

Instances of

configured via concrete instances

is a

is a

is a

Figure 8.2.: An overview of the SCROLL metamodel and MOP layers.

B
a
s
ic

s

Implicit Conversions Compiler Rewrites Definition Table

Figure 8.3.: Required basics for the implementation of a DSL for roles in structured con-
texts at runtime.

We start with describing the three basic implementation concepts required from the
host language to provide a pure embedding of roles in structured contexts (Sect. 8.2).
Afterwards, the four layers themselves are explained in more detail. First, by presenting
the usage layer (Sect. 8.3), followed by the remaining ones (configuration in Sect. 9.1,
MOP in Sect. 9.2, and specification in Sect. 9.3).

8.2. BASIC IMPLEMENTATION CONCEPTS

To provide a DSL for the pure embedding of roles in structured contexts, SCROLL requires
the following basic implementation concepts from the host language (see Fig. 8.2):

Compiler rewrites A concept for compiler rewrites for method calls, functions calls, and
attribute access is required. It hands over calls to the library for finding behavior
and structure that is not natively available at the player. This can be seen as a
compiler-supported variant of method-call interception [Lämmel, 2002].

Implicit conversions For aggregating the compound object from the core and its roles,

57

Chapter 8. The Embedded DSL SCROLL

and for exposing the SCROLL MOP API, implicit conversions are needed. An
implicit conversion from type S to type T is defined by an implicit value which hasimplicit

conversion the function type S => T, or by an implicit method convertible to a value of that
type (see Appendix B). Implicit conversions are applied in two situations: i) If an
expression e is of type S, and S does not conform to the expression’s expected type
T, and ii) in a selection e.m with e of type S, if the selector m does not denote a
member of S. In the first case, a conversion c is searched for which is applicable
to e and whose result type conforms to T. In the second case, a conversion c is
searched for which is applicable to e and whose result contains a member named
m.

Definition table for the plays relationship The relationships between each individ-
ual player and its roles need to be stored. A definition table holds all kinds ofdefinition table

program components, whose attributes are created by declaration: types, variables,
methods, functions, and parameters [Waite and Goos, 2012]. In SCROLL, a defini-
tion table for roles is implemented with a graph-based data structure, but it may
be implemented with tables, maps, or lists as well.

If one is able to find or emulate these three techniques in the desired host language, it is
easy to provide an alternative implementation of SCROLL. In the following, these basic
concepts are explained in more detail.

8.2.1. THE DYNAMIC TRAIT WITH COMPILER REWRITE RULES

Behavior and state of roles that is not natively available at the player needs to be addressed
somehow. Scala’s Dynamic trait can be used to implement that behavior [EPFL, 2016b].
To get invoked, the proper role has to be identified and selected. To do so, calls to role-
specific functionality that would normally fail during type checking phase, are rewritten
by the compiler according to the rules shown in Listing 8.1. This transformation is type-
unsafe, because the actual set of roles as dynamic extensions that are bound to the player,
is not statically known. Hence, static type-safety is not available. As an example, the
method call to the robots name attribute from Listing 8.7 (Line 7) is translated as presented
in Listing 8.2.

foo.method("param") ⇝ foo.applyDynamic("method")("param")
foo.method(x = "param") ⇝ foo.applyDynamicNamed("method")(("x", "param"))
foo.method(x = 1, 2) ⇝ foo.applyDynamicNamed("method")(("x", 1), ("", 2))
foo.field ⇝ foo.selectDynamic("field")
foo.varia = 10 ⇝ foo.updateDynamic("varia")(10)
foo.arr(10) = 13 ⇝ foo.selectDynamic("arr").update(10, 13)
foo.arr(10) ⇝ foo.applyDynamic("arr")(10)

Listing 8.1.: Compiler rewrite rules from the Dynamic trait [EPFL, 2016a].

+this.name ⇝ this.unary_+().name
⇝ new Player[Robot](this).name
⇝ new Player[Robot](this).selectDynamic("name")

Listing 8.2.: Rewriting for dynamically rewritten access to the Robot attribute name.

SCROLL hooks into those rewritten calls and triggers the actual invocation of the appro-
priate roles, as well as the error handling. It refrains from using runtime exceptions or
similar exception-based error handling in case of not being able to find the functionality
the developer is querying for. Instead, Scala’s Either container type is applied. It has
two sub-types, Left and Right. If an Either[A,B] object contains an instance of A,

58

8.2. Basic Implementation Concepts

then the Either is a Left. Otherwise, it contains an instance of B and it is a Right. By
convention, it is used to carry the error case as Left (e.g., DynamicBehaviorNotFound),
whereas the Right contains the success value (e.g., the result of executing the dynamic
behavior). Together with a sealed type hierarchy with data types using case classes that
represent errors, very readable messages compared to actual stack-traces from standard
Java exceptions are generated.

8.2.2. BOXING WITH IMPLICITS

We want to be able to add roles to any given object of any type in Scala. Implicit conver-
sions [Odersky et al., 2008] provide a lightweight way to expose SCROLL ’s API for adding,
removing and transferring behavior or state to any object and is implemented via the
class Player from the SCROLL MOP layer. The following code listing gives an excerpt:

1 implicit class Player[T](val wrapped: T) {
2 /* Applies lifting to Player */
3 def unary_+ : Player [T] = this
4
5 def play(role: Any): Player [T] = /* ... */
6
7 def drop(role: Any): Player [T] = /* ... */
8
9 def transfer(role: Any) = new {

10 def to(player: Any) { /* ... */ }
11 }
12
13 /* ... */
14
15 override def equals(o: Any) = /* ... */
16 }

Listing 8.3.: The generic implicit class Player from SCROLL ’s MOP layer.

Scala’s implicit conversion is used to wrap the player into an equivalent compound
object exposing the required API in a type-safe manner. Furthermore, the issue of object
schizophrenia needs to be addressed with a clear notion of object identity. The identity
of an object should be the same independent of which role is attached. In summary, four
kinds of equality tests between pairs of objects (i.e., the player C and its roles Rn) are
possible:

1. C +R1 ==C

2. C +R1 ==C +R1

3. C +R1 ==C +R2

4. C ==C +R1

To overcome object schizophrenia for equality tests in SCROLL, the library modifies the
identity-related method of the compound object represented by Player as shown in the
above code-listing (Listing 8.3). In fact, == and the equals-method are equivalent in
Scala that is, the expressions x == y and x.equals(y) give the same result. We define
the equals-method in the following ways:

1. C +R1 == C : When the equality for a player playing a role compared to itself is
requested, then the compound object (a Player instance) maps equals to the
implementation of the player.

2. C +R1 == C +R1: Same as case one, but the right-hand operator of == is a role.
Here, the comparison will be done with this role’s player.

59

Chapter 8. The Embedded DSL SCROLL

3. C +R1 ==C +R2: Same as case three.

4. C == C +R1: We cannot modify the equals-method of arbitrary objects using a
library approach. If the comparison of a plain player is required, the +-Operator
needs to be applied. This will trigger the dynamic conversion using the implicit
class Player and applies the desired comparison, as in cases one to three.

8.2.3. THE DEFINITION TABLE FOR THE PLAYS RELATIONSHIP

o : Player

name = obj1

a : Role

name = roleA

b : Role

name = roleB

c : Role

name = roleC

plays

plays

plays

Figure 8.4.: Example of a simple role-play graph.

In SCROLL, a graph-based data structure is used for implementing the definition table
storing the relationships between players and their roles. The role-play graph allows for
easy querying of role-specific behavior that was attached to the player at some point in
time. SCROLL ’s role-play graph is defined as:

Definition 7 (SCROLL Role-play Graph)
A role-play graph RPG is a 4-tuple (V ,E ,Lab,LΣ) with:

• V is the set of objects (player and all its attached roles),

• E is the set of edges representing the plays relationships between players and their
roles,

• LΣ is the set of type names for all objects in V , and

• Lab : V → LΣ assigns each object in V its type.

As an implementation, any appropriate graph library can be used. For SCROLL, Guava’s
graph data structure [Google, 2016] was chosen as underlying graph library already
providing the necessary graph-theoretic objects like edge- and node-types as well as
simple algorithms for traversing the graph. SCROLL makes it easy to plug-in any other
convenient library, e.g., for easy scaling or distribution. Additionally, access to roles is
cached speeding up the querying for the appropriate structure and behavior hidden in a
role. The graph traversals introduced in Sect. 5 are used and mapped directly to Scala
functions as described already in Sect. 9.3.3 and with Table 9.13.

Consider the example provided in Fig. 8.4. A player type is instantiated (o) and plays
the role type instances with the property name roleA, roleB (as deep role), and roleC.
Hence, the SCROLL role-play graph is defined as:

60

8.3. The Usage Layer

Extensions

Core

CoreBehavior

Service

move()

ExtensionA

Navigation

getTarget()

ExtensionB

Observer

readSensor()

ExtensionC

Vehicle

getActor()

Robot
name

Merge

Figure 8.5.: Class Robot is constructed (dotted arrows) from different roles and acquires
the contained behavior.

Definition 8 (Example SCROLL Role-play Graph)
The example role-play graph RPGexample is a 4-tuple (V ,E ,Lab,LΣ) with:

• V := {o, a, b, c},

• E := {(o, a), (a,b), (o,c)},

• LΣ := {Player, Role}, and

• Lab : V → LΣ := {o → Player, a → Role, b → Role, c → Role}.

If i is the vertex representing the object and

f : P̂ (V) → P̂ (S),

where

f (i , name) = ϵ(Vi n(El ab+(Eout (i), plays)), name),or more clearly as

f (i , name) = (ϵname ◦Vi n ◦E
plays

l ab+ ◦Eout)(i , name),

then f (i , name) will return the property name of the roles that the object is playing.
This function f traverses to the outgoing edges of vertex i representing the role-playing
object, then filters those edges with the label plays, then traverses to the incoming
(i.e., source) vertices on those plays-labeled edges. Finally, of those vertices, it returns
their name property. Applying f with the player o and name now delivers f (o, name) =
{roleA, roleB, roleC} for the example role-play graph RPGexample, as expected.

8.3. THE USAGE LAYER

This section explains the basic usage of SCROLL for the pure embedding of roles. We
start with a brief introduction how one can use roles by example (see Fig. 8.5). A standard
Scala case class (Robot) should be augmented with new behavior encapsulated in three
different classes as extensions (ExtensionA, ExtensionB and ExtensionC). Each of
them provides a new aspect of the robot via functions, such as, finding a target to move
to, or observing sensor values, attached to case classes. This allows for a high degree
of separation of concerns with multiple hierarchically structured compartments. The

61

Chapter 8. The Embedded DSL SCROLL

core behavior (with case class Service) aggregates all the provided functionality without
having to worry about which role delivers which service.
We now step-wise construct the example. First, only the name attribute of the robot
should be printed. This naive solution, non-surprisingly, fails during compilation because
name() (Line 5 in Listing 8.4) is not available at instances of Service.

1 case class Robot(name: String)
2
3 case class Service() {
4 def move() {
5 val name: String = this name()
6 info("My name is: " + name)
7 }
8 }

Listing 8.4.: A naive solution for the robot example. It fails during compilation because
name() (Line 5) is not available at instances of Service.

To solve this problem of adding behavior dynamically, we now apply the most basic con-
cepts of the SCROLL DSL, namely a Compartment (Line 3 in Listing 8.5), the +-operator
(Line 7 in Listing 8.5), and the play API call (Line 12 in Listing 8.5). The Compartment
trait (further explained in Sect. 9.2.1) exposes SCROLL ’s basic API to the current class,
allowing the programmer to use the +-operator, and the play method. Because any
given object should be allowed to play roles, we cannot assume that this object actually
provides the +-operator. Thus, Scala’s implicit conversion [Odersky et al., 2008] is used
to wrap the player into an equivalent compound object exposing the required API as
mentioned above. By calling the +-operator, applying implicit lifting, the user is able to
forward arbitrary calls to some roles he assumes should be available on the player without
worrying about their actual location. Calling play adds a play relationship between a
player (instances of Robot) and a role instance (instances of Service), finally enabling
the call to name() (Line 7 in Listing 8.5).

1 case class Robot(name: String)
2
3 object CoreBehavior extends Compartment {
4
5 case class Service() {
6 def move() {
7 val name: String = +this name()
8 info("My name is: " + name)
9 }

10 }
11
12 Robot("Pete") play Service()
13 }

Listing 8.5.: A new solution for the robot example using the basic SCROLL API.

As a final step, for better separation of concerns, new functionality from roles is now
grouped into extensions represented by individual compartments, e.g., with the compart-
ment ExtensionA (Line 15 in Listing 8.6).

62

8.3. The Usage Layer

1 case class Robot(name: String)
2
3 object CoreBehavior extends Compartment {
4
5 case class Service() {
6 def move() {
7 val name: String = +this name()
8 val target: String = +this getTarget()
9 info(s"$name moves to $target.")

10 }
11 }
12
13 }
14
15 object ExtensionA extends Compartment {
16
17 case class Navigation() {
18 def getTarget = "kitchen"
19 }
20
21 }
22
23 new Compartment {
24 val robot = Robot("Pete") play Service() play Navigation()
25 ExtensionA partOf CoreBehavior partOf this
26 robot move()
27 }

Listing 8.6.: The third solution for the robot example using the more advanced SCROLL
API.

The role-playing graph, holding the relationships between role-playing objects (e.g.,
instances of Robot) and their roles (e.g., instances of Service, and Navigation), is
defined compartment-wise. Hence, in the anonymously instantiated compartment at
Line 23 in Listing 8.6, making the robot actually move, those individual role-playing
graphs are merged into a new one, spanning now multiple compartment instances (the
operator partOf is explained in Sect. 9.2.1). With that, the role-playing relationships
defined in the anonymously instantiated compartment are now a part of those within
CoreBehavior, and ExtensionA, respectively. Hence, all the requested behavior (i.e.,
name(), getTarget(), and move()) is available. The full example can be found in List-
ing 8.7.

In sum, with targeting the end-user of SCROLL directly, the usage layer is tailored for
the actual instantiating and use of role-playing objects. Players and roles are instantiated
from standard Scala classes or case classes, compartments from traits. In-depth explana-
tions for the individual usage via instantiating from components out of the metaobject
protocol layer, is presented in Sect. 9.2.

63

Chapter 8. The Embedded DSL SCROLL

1 case class Robot(name: String)
2
3 object CoreBehavior extends Compartment {
4
5 case class Service() {
6 def move() {
7 val name: String = +this name()
8 val target: String = +this getTarget()
9 val sensorValue: Int = +this readSensor()

10 val actor: String = +this getActor()
11 info(s"$name moves to $target with $actor and sensor value of $sensorValue.")
12 }
13 }
14
15 }
16
17 object ExtensionA extends Compartment {
18
19 case class Navigation() {
20 def getTarget = "kitchen"
21 }
22
23 }
24
25 object ExtensionB extends Compartment {
26
27 case class Observer() {
28 def readSensor = 100
29 }
30
31 }
32
33 object ExtensionC extends Compartment {
34
35 case class Vehicle() {
36 def getActor = "wheels"
37 }
38
39 }

Listing 8.7.: The RobotExample model source code.

1 new Compartment {
2 val myRobot = Robot("Pete") play Service() play Navigation() play Observer()

play Vehicle()
C

C

3
4 ExtensionC partOf ExtensionB partOf ExtensionA partOf CoreBehavior partOf this
5
6 myRobot move()
7 }

Listing 8.8.: The RobotExample instance source code.

1 Pete moves to kitchen with wheels and sensor value of 100.

Listing 8.9.: The RobotExample console output.

Figure 8.6.: The robot is constructed from multiple roles dynamically at runtime.

64

9

THE METAOBJECT PROTOCOL OF
SCROLL
A metaclass is a class containing a structural or behavioral description of its instances, metaclass

classes. A metaobject protocol (MOP) is the protocol followed by the set of metaclasses metaobject

protocolof a language. The protocol followed by the SCROLL metaclasses provides the behavior
of the reference implementation SCROLL and is called the SCROLL MOP [Kiczales et al.,
1991; Foreman and Danforth, 1998]. This metaobject protocol is mapped directly to a set
of interfaces of a library (an API), the SCROLL library.

The SCROLL library is split into an implementation of the main metaclass Compartment
and some utility metaclasses as Scala traits. The first concept encapsulates the semantics
of role evolution, while the latter ones handle related role-specific features. With the
SCROLL MOP, the behavior of the metaclasses (like, method dispatch and instantiation)
is defined. Within the open implementation principle, slices of the library can be varied
at runtime. Dispatch is implemented by filtering and then calling the individual role.
Communication between the player and its roles is accomplished via consultation spe-
cific to the enclosing compartment instance. In the following, we provide an in-depth
description of the SCROLL MOP metaclasses for those library developers who want to
adapt or transfer the SCROLL MOP to their specific research area.

9.1. THE CONFIGURATION LAYER

This layer is targeted to both end-users and library developers. All role-specific fea-
tures of a compound object are mixed into a Scala object by inheriting from the trait
Compartment, and, in turn, from its supporting traits (as listed below). Two additional
traits implement the semantics for the binding of roles (RolePlayingAutomaton) and
their definition table (RoleGraph). Those traits implement the full interface (API) of
the SCROLL MOP and are configurable at runtime through polymorphic variation of
their concrete instances. Altering their default behavior is viable via subclassing and
polymorphism. The API available for configuring this layer can be found in Sect. 9.2 as
follows:

Trait Compartment This trait represents a reified collaboration with a limited number
of participating roles and a fixed scope. Mixing in the Compartment trait exposes
SCROLL ’s basic API to the current class. Contained classes or case classes (roles
and other compartments) can be seen as containers for new behavior and state
that should be attached later on (Sect. 9.2.1).

Implicit class Player This class wraps the player and its roles with a compound object.
Additionally, the role-playing object semantics is exposed (Sect. 9.2.2).

Class DispatchQuery The selection of the correct context-dependent behavior from all
available roles is supported by SCROLL with function composition and Scala’s pat-
tern matching making use of an explicit dispatch description. The DispatchQuery
command object is passed to the actual method invocation as implicit argument.
The given selection functions are applied while traversing the role-play graph
holding the relationships between players and their role instances. For that,
DispatchQuery provides some static dispatch functions and a dispatch query
creation API (Sect. 9.2.3).

65

Chapter 9. The Metaobject Protocol of SCROLL

*

scala::Dynamic

SCROLLDynamic

+ applyDynamic[E,A](name:String)(args:A*)(implicit dispatchQuery:DispatchQuery):Either[Error,E]
+ applyDynamicNamed[E](name:String)(args:(String,Any)*)(implicit dispatchQuery:DispatchQuery):Either[Error,E]
+ selectDynamic[E](name:String)(implicit dispatchQuery:DispatchQuery):Either[Error,E]
+ updateDynamic(name:String)(value:Any)(implicit dispatchQuery:DispatchQuery)

Dispatchable

+ dispatch[E](on:Any,m:Method):Either[Error,E]
+ dispatch[E,A](on:Any,m:Method,args:Seq[A]):Either[Error,E]

SCROLLDispatch

Compartment

- plays:ScalaRoleGraph

+ partOf(other:Compartment)
+ notPartOf(other:Compartment)
+ union(other:Compartment)
+ all[T:ClassTag](matcher:RoleQueryStrategy):Seq[T]
+ all[T:ClassTag](matcher:T=>Boolean):Seq[T]
+ one[T:ClassTag](matcher:RoleQueryStrategy):Either[Error,T]
+ one[T:ClassTag](matcher:T=>Boolean):Either[Error,T]
+ addPlaysRelation(core:Any,role:Any)
+ removePlaysRelation(core:Any,role:Any)
+ transferRole(coreFrom:Any,coreTo:Any,role:Any)

Player

- wrapped:T

+ unary_+:Player[T]
+ player:Either[Error,Any]
+ play(role:Any):Player[T]
+ playing(role:Any):T
+ drop(role:Any):Player[T]
+ transfer(role:Any)
+ isPlaying[E:ClassTag]:Boolean
+ equals(o:Any):Boolean
+ hashCode():Int

T

Figure 9.1.: The general API design of the SCROLL library.

Trait RoleGraph This trait implements the definition table for storing the relationships
between players and their roles. It allows for querying role-specific behavior that
was attached to the player (Sect. 9.2.4).

Trait QueryStrategies This API allows for writing queries looking up the content of an
attribute of the certain compound object or the return value of one of its functions
(Sect. 9.2.5).

Trait RoleConstraints This API allows for adding and checking role constraints as
in Riehle [2000] within a specific compartment instance (Sect. 9.2.6).

Trait RoleRestrictions This API allows for adding and checking role restrictions (in
the sense of structural typing) within a specific compartment instance (Sect. 9.2.7).

Trait Relationships This trait allows for adding role relationships with multiplicities
to a compartment instance. Additionally, these relationship multiplicity constraints
can be checked. Furthermore, querying for concrete instances of the association
ends for each defined relationship is possible (Sect. 9.2.8).

Trait RoleGroups This API allows for the creation and the runtime check of role groups
(see Sect. 3.5) in specific compartment instances (Sect. 9.2.9).

Trait RolePlayingAutomaton Using this trait allows for implementing compartment-
specific role-playing automatons to specify the role life-cycle with e.g., the binding,
unbinding or transfer of role instances between objects as introduced in Sect. 3.6.
Predefined event types for this automaton are available in its companion object
(see Appendix B). It is based on the implementation of finite state machines from
the Akka framework [Lightbend Inc., 2016a] (Sect. 9.2.10).

66

9.2. The Metaobject Protocol Layer

9.2. THE METAOBJECT PROTOCOL LAYER

The section reveals one of the major contributions of the thesis, because it demonstrates
that the semantics of role-based programming can be hidden by the interception of
method calls, i.e., that SCROLL is a method-call interception based DSL. The MOP layer
contains the actual implementation of the metaclass Compartment, its helper traits,
and helper classes. Especially the dynamic dispatch semantics within the metaclass
DispatchQuery can be investigated and adapted by library developers. An overview
of the general API design can be found in Fig. 9.1. Additionally, the following sections
provide a more detailed description of the components found in this layer together with
examples. All methods not explicitly defined with the return type of Either[Error, _]
will fail (e.g., if the desired role-playing relationship cannot be found) with an appropriate
runtime exception.

9.2.1. THE METACLASS COMPARTMENT

Fully qualified class name
scroll.internal.Compartment

Full source code
See Listing D.6 on page 189

API
protected val plays: ScalaRoleGraph
def partOf(other: Compartment)
def union(other: Compartment)
def all[T : ClassTag](matcher: RoleQueryStrategy): Seq [T]
def all[T : ClassTag](matcher: T => Boolean): Seq [T]
def one[T : ClassTag](matcher: RoleQueryStrategy): Either [Error , T]
def one[T : ClassTag](matcher: T => Boolean): Either [Error , T]
def addPlaysRelation(core: Any , role: Any)
def removePlaysRelation(core: Any , role: Any)
def transferRole(coreFrom: Any , coreTo: Any , role: Any)

Table 9.1.: Overview for Compartment.

This section explains why SCROLL supports context-oriented programming, in the style
of CROM [Kühn et al., 2014]. Compartments provide structured contexts with a fixed
set of relationships between their included roles in the SCROLL MOP. Mixing in the
Compartment trait exposes SCROLL ’s basic API to the current class. Contained classes or
case classes can be seen as containers for new behavior and state that should be attached
later on. An example usage and configuration of the Compartment trait looks like this
(Listing 9.1):

1 // create a player instance
2 val player = new Player()
3 new Compartment { // create an anonymous Compartment instance
4 // define two roles
5 class RoleA; class RoleB
6 // create the play-relationships
7 player play new RoleA(); player play new RoleB()
8 // call some behavior ...
9 }

Listing 9.1.: Compartment usage example.

67

Chapter 9. The Metaobject Protocol of SCROLL

An overview of the API can be found in Table 9.1. The following provides a more detailed
description together with examples:

protected val plays: ScalaRoleGraph
This attribute holds the role-play graph. A more in-depth explanation can be found
in Sect. 8.2.3 and Sect. 9.2.4. This field may be overridden by custom subclasses of
the Compartment to define new behavior, e.g., like this:

1 new Compartment {
2 // use a cached variant of the role-play graph from now on,

additionally disable all checks for cyclic role-playing
relationships

C
C C
C

3 override val plays = new CachedScalaRoleGraph(checkCycles = false)
4 /* ... */
5 }

def partOf(other: Compartment)
This function allows for the definition of an is-part-of relation between compart-
ments. For instance, in the case of nested compartments, one is able to merge their
individual role graphs.

def union(other: Compartment)
This function declares a bidirectional is-part-of relation between compartments,
i.e., it is semantically identical to:

1 this.partOf(other)
2 other.partOf(this)

def all[T : ClassTag](matcher: RoleQueryStrategy): Seq [T]
This function queries the role-play graph for all player instances that conform to
the given matcher. T is the type of the player instance to query for. It returns all
player instances that conform to the given matcher as sequence. Example usages
might be:

1 // query for all players with type Robot in the surrounding compartment
instance

C
C

2 val allRobots = all[Robot]()
3 // same query, but restrict the search to robots with the given name
4 val someRobots = all[Robot]("name" == # "Kuka")

def all[T : ClassTag](matcher: T => Boolean): Seq [T]
This queries the role-play graph for all player instances that do conform to the
given function. T is the type of the player instance to query for. It returns all player
instances as a sequence that conform to the given function. Example usages might
be:

1 // query for all players with type Robot in the surrounding compartment
instance

C
C

2 val allRobots = all[Robot]()
3 // same query, but restrict the search to robots with the given name
4 val someRobots = all[Robot](_ match {
5 case r: Robot if r . name == "Kuka" => true
6 case _ => false
7 })

def one[T : ClassTag](matcher: RoleQueryStrategy): Either [Error , T]
This function queries the role-play graph for all player instances that do conform
to the given matcher and return the first found. T is the type of the player instance
to query for. It returns the first player instance that does conform to the given
matcher or an appropriate error. Usage is the same as shown above for all.

68

9.2. The Metaobject Protocol Layer

def one[T : ClassTag](matcher: T => Boolean): Either [Error , T]
This function queries the role-play graph for all player instances that conform to
the given function and returns the first found. T is the type of the player instance to
query for. Its usage is the same as shown above for all.

def addPlaysRelation(core: Any , role: Any)
This function adds a play relationship between the given player and a role. It is
intended to be used from the outside of a concrete compartment instance, e.g., like
in the following:

1 // create a player instance
2 val player = new KukaRobot()
3 // define a new compartment type
4 class RobotCompartment extends Compartment {
5 // define two roles
6 class Autonomous { /* ... */ }
7 class HumanFriendly { /* ... */ }
8 }
9

10 // create a new instance of that compartment
11 val robotCompartment = new RobotCompartment()
12
13 // create the play-relationship
14 robotCompartment.addPlaysRelation(player, new robotCompartment.Autonomous())
15
16 // call some behavior
17 /* ... */
18 }

def removePlaysRelation(core: Any , role: Any)
This function removes a play relationship between the given player and a role
and is intended to be used from the outside of a concrete compartment instance,
analogous to the example for addPlaysRelation above.

def transferRole(coreFrom: Any , coreTo: Any , role: Any)
This function transfers a role instance from one player to another and is semanti-
cally identical to:

1 removePlaysRelation(coreFrom, role)
2 addPlaysRelation(coreTo, role)

69

Chapter 9. The Metaobject Protocol of SCROLL

9.2.2. THE METACLASS PLAYER

Fully qualified class name
scroll.internal.Compartment#Player (as inner class)

Full source code
See Listing D.6 on page 189

API
val wrapped: T
def unary_+: Player[T]
def player(implicit dispatchQuery: DispatchQuery): Either [TypeError , Any]
def play(role: Any): Player [T]
def playing(role: Any): T
def drop(role: Any): Player [T]
def transfer(role: Any)
def isPlaying[E : ClassTag]: Boolean

Table 9.2.: Overview for Player.

This section presents how SCROLL supports role-based programming with contexts. The
class Player encapsulates the player and its currently played roles. Hence, a Player
instance represents a compound object. Additionally, the role API is exposed. An overview
of the API can be found in Table 9.2. The following provides a more detailed description
together with examples:

val wrapped: T
This attribute stores the player or role encapsulated in the compound object that is
represented with an instance of Player.

def unary_+: Player[T]
In Scala, method calls can be written as prefix operators. +this is equivalent
to this.+(). Because any given object should be able to play roles, we cannot
assume that this object actually provides the +-operator. Thus, Scala’s implicit
conversion [Odersky et al., 2008] is used to wrap the player with a compound object
that exposes the required API. In summary, by calling the +-operator, and applying
implicit lifting, the developer is able to forward arbitrary calls using consultation to
some roles that he assumes should be available on the player. An example might
be:

1 // create a player instance
2 val player = new Player()
3
4 // create an anonymous Compartment instance
5 new Compartment {
6
7 // define a role
8 class RoleA {
9 def behavior(): Unit = { /* ... */ }

10 }
11
12 // create the play-relationship
13 player play new RoleA()
14
15 // call the behavior using the +-operator
16 +player behavior()
17 }

70

9.2. The Metaobject Protocol Layer

def player(implicit dispatchQuery: DispatchQuery): Either [TypeError ,
Any]
This function returns the player instance (the role-playing object). The parameter
dispatchQuery provides means for filtering and sorting the result if multiple
role-playing objects exist like explained in Sect. 9.3.3.

def play(role: Any): Player [T]
This function adds a play relationship between a player and a role instance. Ex-
amples can be found in the listings above. This function returns the resulting
compound object that is represented as new Player instance.

def playing(role: Any): T
This function is the same as play, but returns the innermost player instance.

def drop(role: Any): Player [T]
This function removes the play relationship between a player and a role instance.
It returns the compound object represented as Player instance.

def transfer(role: Any)
This function transfers a role from one player to another. An example might be:

1 val playerA = new Player()
2 val playerB = new Player()
3
4 new Compartment {
5 class RoleA
6 val roleA = new RoleA()
7 playerA play roleA
8 // transfer the role
9 playerA transfer roleA to playerB

10 }

def isPlaying[E : ClassTag]: Boolean
This function checks if a player is playing a role of the given type or has the given
role attached to itself. An example might be:

1 val playerA = new Player()
2 val playerB = new Player()
3
4 new Compartment {
5 class RoleA
6 val roleA = new RoleA()
7 playerA play roleA
8 playerA transfer roleA to playerB
9 // after the transfer, playerA should not be playing an instance of

RoleA anymore, but instead playerB should be now
C

C

10 assertFalse(+playerA isPlaying[RoleA])
11 assertTrue(+playerB isPlaying[RoleA])
12 }

71

Chapter 9. The Metaobject Protocol of SCROLL

9.2.3. THE METACLASS DISPATCHQUERY

Fully qualified class name
scroll.internal.support.DispatchQuery

Full source code
See Listing D.7 on page 198

API
val identity: Boolean = false
val swap: Boolean = true
val reverse: PartialFunction [(Any , Any), Boolean]
val anything: Any => Boolean
val nothing: Any => Boolean
def From(f: Any => Boolean) To(t: Any => Boolean) Through(th: Any =>

Boolean) Bypassing(b: Any => Boolean): DispatchQuery
C

C

def Bypassing(b: Any => Boolean): DispatchQuery
def empty: DispatchQuery
def sortedWith(f: PartialFunction [(Any , Any), Boolean]): DispatchQuery

Table 9.3.: Overview for DispatchQuery.

Sometimes it is ambiguous or context-dependent which role should be selected for
answering a call. The developer should be able to specify the desired selection. SCROLL
supports this with function composition and Scala’s pattern matching making use of an
explicit dispatch description which is passed to the actual method invocation as implicit
argument. The given selection functions are applied while traversing the role-play graph
holding the relationships between all players and their currently played roles. For this,
the DispatchQuery provides dispatch functions and a dispatch query creation API. This
results in a dispatch query (i.e., a higher-order adjacency) that is a composition of all
dispatch functions over the given set of nodes (roles in the role-play graph) utilizing the
functions filter and sortedWith. All provided filters must be side-effect free. A more
in-depth explanation can be found in Sect. 9.3.3. An overview of the API can be found in
Table 9.3. The following provides a more detailed description together with examples:

val identity: Boolean = false
This constant is meant to be used in sortedWith to state that no sorting between
the objects in comparison should happen.

val swap: Boolean = true
This constant is meant to be used in sortedWith to state that always swapping
between the objects in comparison should happen.

val reverse: PartialFunction [(Any , Any), Boolean]
This partial function is meant to be used in sortedWith to state that a reversing of
the collection of resulting nodes (i.e., role instances) should happen.

val anything: Any => Boolean
This function will always return true. The resulting dispatch query will select all
roles encapsulated in the compound object.

val nothing: Any => Boolean
This function will always return false. The resulting dispatch query will select no
role encapsulated in the compound object.

72

9.2. The Metaobject Protocol Layer

def From(f: Any => Boolean) To(t: Any => Boolean) Through(th: Any ⌋
=> Boolean) Bypassing(b: Any => Boolean): DispatchQuery
This function realizes the path filter from Chapter 5. It constructs a new dispatch
query from the given selection functions f (selecting the set of nodes qualifying
for f), t (compute all reachable roles from the set of nodes qualifying for the From
clause), th (specifying the roles to keep), and b (specifying the roles to skip). An
example is:

1 // create a player instance
2 val player = new Player()
3
4 // create an anonymous Compartment instance
5 new Compartment {
6 // define two roles with the same behavior but different implementations
7 class RoleA {
8 def behavior(): Unit = {
9 doA()

10 }
11 }
12 class RoleB {
13 def behavior(): Unit = {
14 doB()
15 }
16 }
17
18 // create the play-relationships
19 player play new RoleA()
20 player play new RoleB()
21
22 // we want to select the implementation of RoleB
23 implicit val dd =
24 From(_.isInstanceOf[Player]).
25 To(anything).
26 Through(anything).
27 Bypassing(_.isInstanceOf[RoleA])
28
29 // call the actual behavior
30 +player behavior()
31 }

def Bypassing(b: Any => Boolean): DispatchQuery
Short-hand factory function for constructing a new, empty DispatchQuery select-
ing all role instances encapsulated in the compound object, but skipping those
matching the given function b.

def empty: DispatchQuery
Short-hand factory function for constructing a new, empty DispatchQuery select-
ing all role instances encapsulated in the compound object and skipping nothing.

73

Chapter 9. The Metaobject Protocol of SCROLL

def sortedWith(f: PartialFunction [(Any , Any), Boolean]): DispatchQ ⌋
uery
This factory function constructs a new DispatchQuery and sorts the resulting
collection of role instances based on a configurable sorting function. This can be
mixed with the factory methods described above. An example is:

1 // This will always reverse the collection of role instances gathered in
the compound object:

C
C

2 implicit var dd .sortedWith(reverse)
3
4 // Type-based comparison: reverse the order of the role instances

encapsulated in the compound object if they are of type SomeRoleB
and SomeRoleC:

C
C C
C

5 dd .sortedWith {
6 case (_: SomeRoleB , _: SomeRoleC) => swap
7 }
8
9 // Filtering and type-based comparison: reverse the order of the role

instances encapsulated in the compound object if they are of type
SomeRoleB and SomeRoleC, but filter out all instances of SomeRoleA
first:

C
C C
C C
C

10 dd = Bypassing(_.isInstanceOf[SomeRoleA]).sortedWith {
11 case (_: SomeRoleB , _: SomeRoleC) => swap
12 }

74

9.2. The Metaobject Protocol Layer

9.2.4. THE METACLASS ROLEGRAPH

Fully qualified class name
scroll.internal.graph.RoleGraph

Full source code
See Listing D.14 on page 217

API
def merge(other: RoleGraph): Unit
def detach(other: RoleGraph): Unit
def addBinding[P <: AnyRef : ClassTag , R <: AnyRef : ClassTag](player: P ,

role: R): Unit
C

C

def removeBinding[P <: AnyRef : ClassTag , R <: AnyRef : ClassTag](player:
P , role: R): Unit

C
C

def removePlayer[P <: AnyRef : ClassTag](player: P): Unit
def allPlayers: Seq [Any]
def getRoles(player: Any)(implicit dispatchQuery: DispatchQuery): Set [Any]
def containsPlayer(player: Any): Boolean
def getPredecessors(player: Any)(implicit dispatchQuery: DispatchQuery):

Seq [Any]
C

C

Table 9.4.: Overview for RoleGraph.

This section explains the role-play graph, the basis for the 4-dimensional dispatch in
SCROLL. In SCROLL, the role-play graph allows for easy querying of role-specific behav-
ior that was attached to the player at some point in time earlier on. A more in-depth
explanation can be found in Sect. 8.2.3. An overview of the API can be found in Table 9.4.
The following provides a more detailed description:

def merge(other: RoleGraph): Unit
This function adds all plays relationships from other to this role-play graph in-
stance. This allows for creating hierarchically nested compartments and plays
relationships spanning over multiple compartment instances.

def detach(other: RoleGraph): Unit
This function removes all plays relationships from other in this role-play graph
instance.

def addBinding[P <: AnyRef : ClassTag , R <: AnyRef : ClassTag](pl ⌋
ayer: P , role: R): Unit
This function adds a plays relationship between the given player and a role
instance.

def removeBinding[P <: AnyRef : ClassTag , R <: AnyRef : ClassTag] ⌋
(player: P , role: R): Unit
This function removes a plays relationship between the given player and a role
instance.

def removePlayer[P <: AnyRef : ClassTag](player: P): Unit
This function removes a player from the role-play graph completely. Plays relation-
ships between the given player and its role instances are removed as well.

def allPlayers: Seq [Any]
This function returns a sequence of all players (all players, and all role instances)
stored in this graph instance.

75

Chapter 9. The Metaobject Protocol of SCROLL

def getRoles(player: Any)(implicit dispatchQuery: DispatchQuery): ⌋
Set [Any]
This function returns a set of all roles attached to the given player. The given
dispatchQuery is applied while traversing the role-play graph.

def containsPlayer(player: Any): Boolean
This function checks if the role-play graph contains the given player and returns
true if it does, false otherwise.

def getPredecessors(player: Any)(implicit dispatchQuery: DispatchQu ⌋
ery): Seq [Any]
This function returns a sequence of all players the given compound object has. The
given dispatchQuery is applied while traversing the role-play graph.

76

9.2. The Metaobject Protocol Layer

9.2.5. THE METACLASS QUERYSTRATEGIES

Fully qualified class name
scroll.internal.support.QueryStrategies

Full source code
See Listing D.8 on page 201

API
def == #[T](value: T): WithProperty [T]
def ==>[T](value: T): WithResult [T]

Table 9.5.: Overview for QueryStrategies.

Using this API allows for writing queries looking for the content of an attribute of a
compound object or the return value of one of its functions. An overview of the API can
be found in Table 9.5. The following provides a more detailed description together with
examples:

def == #[T](value: T): WithProperty [T]
This function returns the value of the queried attribute (invoking this attribute
reflectively). An example usage might be:

1 // query for all players with type Robot, but restrict the search to
robots with the given name

C
C

2 val someRobots = all[Robot]("name" == # "Kuka")

def ==>[T](value: T): WithResult [T]
This function returns the result of the queried function (invoking this function
reflectively). An example usage might be:

1 // query for all players with type Robot, but restrict the search to
robots that can drive

C
C

2 val someRobots = all[Robot]("canDrive" ==> true)

77

Chapter 9. The Metaobject Protocol of SCROLL

9.2.6. THE METACLASS ROLECONSTRAINTS

Fully qualified class name
scroll.internal.support.RoleConstraints

Full source code
See Listing D.10 on page 204

API
def RoleImplication[A : ClassTag , B : ClassTag](): Unit
def RoleEquivalence[A : ClassTag , B : ClassTag](): Unit
def RoleProhibition[A : ClassTag , B : ClassTag](): Unit
def RoleConstraintsChecked(func: => Unit): Unit

Table 9.6.: Overview for RoleConstraints.

This section shows how SCROLL supports constraint models for 4-dimensional dispatch.
Using this API allows for adding and checking the role constraints specified in Riehle
[2000] within a specific compartment instance. Those constraints are explained in more
detail in Sect. 3.5. An overview of the API can be found in Table 9.6. The following provides
a more detailed description together with examples:

def RoleImplication[A : ClassTag , B : ClassTag](): Unit
This function adds a role implication constraint between the given role types. If a
player plays an instance of role type A, it also has to play an instance of role type B.

def RoleEquivalence[A : ClassTag , B : ClassTag](): Unit
This function adds a role equivalent constraint between the given role types. If a
player plays an instance of role type A, it also has to play an instance of role type A
and visa versa.

def RoleProhibition[A : ClassTag , B : ClassTag](): Unit
This function adds a role prohibition constraint between the given role types. If a
player plays an instance of role type A, it is not allowed to play any instance of B as
well.

def RoleConstraintsChecked(func: => Unit): Unit
This function allows for checking all available role constraints for all compound
objects after the given function was executed in the currently active compartment.
A RuntimeException will be thrown if a role constraint is violated. An example is:

1 val player = new Player()
2 new Compartment {
3 class RoleA; class RoleB; class RoleC
4 // add a role implication constraint
5 RoleImplication[RoleA , RoleB]()
6 // and check them
7 RoleConstraintsChecked { player play roleA play roleB }
8 // this will throw a RuntimeException because it violates the given

role implication constraint from above
C

C

9 RoleConstraintsChecked { player drop roleB }
10 }

78

9.2. The Metaobject Protocol Layer

9.2.7. THE METACLASS ROLERESTRICTIONS

Fully qualified class name
scroll.internal.support.RoleRestrictions

Full source code
See Listing D.12 on page 212

API
def RoleRestriction[A : ClassTag , B : ClassTag](): Unit
def ReplaceRoleRestriction[A : ClassTag , B : ClassTag](): Unit
def validate[R : ClassTag](player: Any , role: R): Unit

Table 9.7.: Overview for RoleRestrictions.

This section explains how SCROLL supports restrictions on role groups, as challenged
from CROM [Kühn et al., 2014]. Using this API allows for adding and checking role
restrictions (in the sense of structural typing) within a specific compartment instance.
An overview of the API can be found in Table 9.7. The following provides a more detailed
description together with examples:

def RoleRestriction[A : ClassTag , B : ClassTag](): Unit
This function adds a role restriction between the given player type A and role type
B. Instances of A are only allowed to play roles of instance of B. See validate for
an example usage.

def ReplaceRoleRestriction[A : ClassTag , B : ClassTag](): Unit
This function replaces a role restriction for the given player type A with a restriction
to role type B. See validate for an example.

def validate[R : ClassTag](player: Any , role: R): Unit
Every operation manipulating the role-play graph in a concrete compartment
instance (e.g., play, drop, or transfer) will call this validation method implicitly.
If any of the added restrictions is violated, a RuntimeException will be thrown.
See the following example for the general usage:

1 // create a player instance
2 val player = new Player()
3 // create an anonymous Compartment instance
4 new Compartment {
5 // define some roles
6 class RoleA
7 class RoleB
8 class RoleC
9 // add role restrictions. Here, instances of Player should only be

allowed to play instances of RoleA and RoleB
C

C

10 RoleRestriction[Player , RoleA]
11 RoleRestriction[Player , RoleB]
12 // then, no restriction is violated
13 player play new RoleA()
14 player play new RoleB()
15 // but this will throw a RuntimeException because it violates the

given role restrictions
C

C

16 player play new RoleC()
17 }

79

Chapter 9. The Metaobject Protocol of SCROLL

9.2.8. THE METACLASS RELATIONSHIPS

Fully qualified class name
scroll.internal.support.Relationships

Full source code
See Listing D.9 on page 202

API
def left(matcher: L => Boolean = _ => true): Seq [L]
def right(matcher: R => Boolean = _ => true): Seq [R]
def apply(name: String) from[L : ClassTag](leftMul: Multiplicity) to[R :

ClassTag](rightMul: Multiplicity): Relationship [L , R]
C

C

Table 9.8.: Overview for Relationships.

SCROLL supports binary relationships with sides A and B . With the addition of relation-
ships, it becomes clear, why SCROLL supports all aspects of role-based languages, i.e.,
their structural, behavioral, relational, and contextual nature (see Sect. 3.4). This trait
allows for adding and checking role relationships with arbitrary, predefined multiplicities
to a compartment instance. Additionally, querying for concrete instances of the associa-
tion ends for each defined relationship is possible. An overview of this API can be found
in Table 9.8. The following provides a more detailed description together with examples:

def left(matcher: L => Boolean = _ => true): Seq [L]
This function returns all instances of side A of the relationship with regard to the
provided matching function. The multiplicity is checked additionally, throwing a
RuntimeException if more objects than specified are available within the role-play
graph.

def right(matcher: R => Boolean = _ => true): Seq [R]
This function returns all instances of side B of the relationship with regard to the
provided matching function. The multiplicity is checked additionally, throwing a
RuntimeException if more objects than specified are available within the role-play
graph.

def apply(name: String) from[L : ClassTag](leftMul: Multiplicity)
to[R : ClassTag](rightMul: Multiplicity): Relationship [L , R]
This factory method creates a new relationship object with the given multiplicities
for side A and B and their types. An example is:

1 val player = new Player()
2 new Compartment {
3 class RoleA; class RoleB
4 val roleA = new RoleA(); val roleB1 = new RoleB()
5 player play roleA play roleB1
6 // create a new 1-to-1 relationship instance
7 val rel1 = Relationship("rel1").from[RoleA](1).to[RoleB](1)
8 assert(rel1.left() == Seq(roleA))
9 assert(rel1.right() == Seq(roleB1))

10 // and one additional binding
11 val roleB2 = new RoleB()
12 player play roleB2
13 // together with a new 1-to-many relationship
14 val rel2 = Relationship("rel2").from[RoleA](1).to[RoleB](*)
15 assert(rel2.right() == Seq(roleB1, roleB2))
16 }

80

9.2. The Metaobject Protocol Layer

9.2.9. THE METACLASS ROLEGROUPS

Fully qualified class name
scroll.internal.support.RoleGroups

Full source code
See Listing D.11 on page 207

API
def RoleGroupsChecked(func: => Unit): Unit
def apply(name: String) containing(rg: RoleGroup *)(limit_l: Int , limit_u:

CInt)(occ_l: Int , occ_u: CInt): RoleGroup
C

C

def apply(name: String) containing[T1 : ClassTag](limit_l: Int , limit_u:
CInt)(occ_l: Int , occ_u: CInt): RoleGroup

C
C

def apply(name: String) containing[T1 : ClassTag , T2 : ClassTag](limit_l:
Int , limit_u: CInt)(occ_l: Int , occ_u: CInt): RoleGroup

C
C

def apply(name: String) containing[T1 : ClassTag , T2 : ClassTag , T3 :
ClassTag](limit_l: Int , limit_u: CInt)(occ_l: Int , occ_u: CInt):
RoleGroup

C
C C
C

Table 9.9.: Overview for RoleGroups.

This section explains how SCROLL supports role groups, as introduced by Kühn et al.
[2014]. This API allows for the creation and the runtime check of role groups in specific
compartment instances. An overview of this API can be found in Table 9.9. The following
provides a more detailed description together with examples:

def RoleGroupsChecked(func: => Unit): Unit
This function checks all available role group constraints for all player and their
roles, after the given function was executed in the currently active compartment
instance. This will throw a RuntimeException if a role group constraint is violated.
See the following example for its usage:

1 val playerA = new Player()
2 val playerB = new Player()
3
4 new Compartment {
5 class RoleA
6 class RoleB
7 val roleA = new RoleA()
8 val roleB = new RoleB()
9

10 // create a new RoleGroup instance
11 val roleGroup = RoleGroup("roleGroup").containing[RoleA , RoleB](1,

1)(2, 2)
C

C

12
13 // No exception, since this is compliant to the role group constraints:
14 RoleGroupsChecked { playerA play roleA; playerB play roleB }
15
16 // This will throw a RuntimeException, since an instance of RoleB is

only allowed to be played exactly once:
C

C

17 RoleGroupsChecked { playerB drop roleB }
18
19 // This will throw a RuntimeException as well, since an instance of

role type RoleA is only allowed to be played exactly once:
C

C

20 RoleGroupsChecked { playerA play roleA }
21 }

81

Chapter 9. The Metaobject Protocol of SCROLL

def apply(name: String) containing(rg: RoleGroup *)(limit_l: Int , l ⌋
imit_u: CInt)(occ_l: Int , occ_u: CInt): RoleGroup
This function creates a new RoleGroup instance with the given name, inner, and
occurrence constraints, and hierarchical nesting into other role groups.

def apply(name: String) containing[T1 : ClassTag](limit_l: Int , lim ⌋
it_u: CInt)(occ_l: Int , occ_u: CInt): RoleGroup
This function creates a new RoleGroup instance with the given name, inner-, and
occurrence constraints for type T1.

def apply(name: String) containing[T1 : ClassTag , T2 : ClassTag](li ⌋
mit_l: Int , limit_u: CInt)(occ_l: Int , occ_u: CInt): RoleGroup
This function creates a new RoleGroup instance with the given name, inner-, and
occurrence constraints for type T1 and T2.

def apply(name: String) containing[T1 : ClassTag , T2 : ClassTag , T3 ⌋
: ClassTag](limit_l: Int , limit_u: CInt)(occ_l: Int , occ_u: CI ⌋
nt): RoleGroup
This function creates a new RoleGroup instance with the given name, inner-,
and occurrence constraints for type T1, T2, and T3. For more type parameters,
additional factory methods up to five types are available, as well.

82

9.2. The Metaobject Protocol Layer

9.2.10. THE METACLASS ROLEPLAYINGAUTOMATON

Fully qualified class name
scroll.internal.rpa.RolePlayingAutomaton

Full source code
See Listing D.13 on page 214

API
trait RPAState
trait RPAData
def run(): Unit
def halt(): State
def Use[T](implicit ct: ClassTag [T]) For(comp: Compartment): ActorRef
def stay(): State
def goto(nextStateName: S): State
def onTransition(transitionHandler: TransitionHandler): Unit
def when(state: S)(stateFunction: StateFunction): Unit
def whenUnhandled(stateFunction: StateFunction): Unit

Table 9.10.: Overview for RolePlayingAutomaton.

This section shows how SCROLL realizes the role-playing automaton for player objects.
Using this trait allows for implementing compartment specific role-playing automatons
to specify the role life-cycle with the binding, unbinding or transfer of role instances
between objects as introduced in Sect. 3.6. Predefined event types for messaging are
available in the companion object (see Appendix B). In SCROLL, it is based on the imple-
mentation of finite state machines from the Akka framework [Lightbend Inc., 2016a]. An
overview of the API can be found in Table 9.10. The following provides a more detailed
description:

trait RPAState
This trait should be extended for defining states.

trait RPAData
This trait should be extended for defining messages the automaton should react on
during its life-cycle.

def run(): Unit
This function starts the automaton, i.e., starts the background actor system from
Akka [Lightbend Inc., 2016a] associated with it.

def halt(): State
This function stops the automaton, i.e., terminates the background actor system
associated with it.

def Use[T](implicit ct: ClassTag [T]) For(comp: Compartment): Actor ⌋
Ref
This function associates the automaton with the background actor system.

def stay(): State
This function produces an empty transition descriptor. This state function should
be returned when no state change is desired.

83

Chapter 9. The Metaobject Protocol of SCROLL

def goto(nextStateName: S): State
This function triggers a transition to another state.

def onTransition(transitionHandler: TransitionHandler): Unit
This function sets the handler, which is called upon each state transition. Multiple
handlers may be installed.

def when(state: S)(stateFunction: StateFunction): Unit
This function inserts a new function at the end of the processing chain for the given
state.

def whenUnhandled(stateFunction: StateFunction): Unit
This function sets a handler, which is called upon reception of otherwise unhandled
messages.

See the following example (Listing 9.2) for its usage:

1 val player = new Player()
2 class ACompartment extends Compartment {
3 val roleA = new RoleA(); val roleB = new RoleB(); val roleC = new RoleC()
4 // define a role-playing automaton for this compartment
5 class MyRPA extends RolePlayingAutomaton {
6 // with some states
7 private case object StateA extends RPAState
8 private case object StateB extends RPAState
9 private case object StateC extends RPAState

10 // implement the actual transition logic
11 when(Start) {
12 case Event(BindRole, _) => goto(StateA)
13 }
14 when(StateA) {
15 case Event(BindRole, _) => goto(StateB)
16 }
17 when(StateB) {
18 case Event(BindRole, _) => goto(StateC)
19 }
20 when(StateC) {
21 case Event(Terminate, _) => goto(Stop)
22 }
23 onTransition {
24 case Start -> StateA => player play roleA; self ! BindRole
25 case StateA -> StateB => player play roleB; self ! BindRole
26 case StateB -> StateC => player play roleC; self ! Terminate
27 }
28 run()
29 }
30 // bind the automaton to the currently active compartment instance and run it
31 (Use[MyRPA] For this) ! BindRole
32 }
33 new ACompartment() {
34 // after running the automaton the following bindings should be applied
35 (+player).isPlaying[RoleA] shouldBe true
36 (+player).isPlaying[RoleB] shouldBe true
37 (+player).isPlaying[RoleC] shouldBe true
38 }

Listing 9.2.: Example for using the RolePlayingAutomaton.

It is particularly interesting that SCROLL, for the use of the role-play automaton, does not
require to extend the syntax of Scala. Everything stays in the framework of a method-call
interception DSL.

84

9.3. The Specification Layer

9.3. THE SPECIFICATION LAYER

To handle the actual dispatching on the compound object, this layer contains spec-
ifications for dispatch and dynamic semantics (SCROLLDispatch in Sect. 9.3.1 and
SCROLLDynamic in Sect. 9.3.2). This approach hides the complex semantics of role dis-
patch under only two interfaces rather than scattering them across many interfaces. This
layer is static and should only be changed in case one wants to change the semantics
of the dynamic dispatch used within the SCROLL MOP. The actual configuration of the
dispatch is possible, also at runtime as explained in Sect. 9.2.3.

9.3.1. SCROLLDISPATCH

Fully qualified class name
scroll.internal.Compartment#SCROLLDispatch (as inner class)

Full source code
See Listing D.6 on page 189

API

def dispatch[E](on: Any , m: Method): Either [InvocationError , E]
def dispatch[E , A](on: Any , m: Method , args: Seq [A]):

Either [InvocationError , E]
C

C

Table 9.11.: Overview for SCROLLDispatch.

This trait implements the actual dispatching for roles as evolving objects, i.e., its methods
and functions. The implicit class Player (Sect. D.6) uses this implementation directly
by extending the trait. An overview of its API can be found in Table 9.11. The following
provides a more detailed description:

def dispatch[E](on: Any , m: Method): Either [InvocationError , E]:
This function implements dispatch on an empty argument list for the provided
instance on (e.g., the player or one of its role instances) and the given method m, pre-
viously selected by the actual dispatch description DispatchQuery (see Sect. 9.2.3)
that was specified by the developer. It returns the result of the reflective invocation
of the method m or an appropriate error (e.g., if m was not invokable through the
reflection API).

def dispatch[E , A](on: Any , m: Method , args: Seq [A]): Either [Invo ⌋
cationError , E]:
This function implements dispatch on a multi-argument list for the provided
instance on (e.g., the player or one of its role instances), the given method m, previ-
ously selected by the actual dispatch description DispatchQuery (see Sect. 9.2.3)
that was specified by the developer, and its arguments args. It returns the result of
the reflective invocation of the method m or an appropriate error (e.g., if m was not
invokable through the reflection API).

85

Chapter 9. The Metaobject Protocol of SCROLL

9.3.2. SCROLLDYNAMIC

Fully qualified class name
scroll.internal.Compartment#SCROLLDynamic (as inner class)

Full source code
See Listing D.6 on page 189

API

def applyDynamic[E , A](name: String)(args: A *)(implicit dispatchQuery:
DispatchQuery): Either [SCROLLError , E]

C
C

def applyDynamicNamed[E](name: String)(args: (String , Any)*)(implicit
dispatchQuery: DispatchQuery): Either [SCROLLError , E]

C
C

def selectDynamic[E](name: String)(implicit dispatchQuery: DispatchQuery):
Either [SCROLLError , E]

C
C

def updateDynamic(name: String)(value: Any)(implicit dispatchQuery:
DispatchQuery): Unit

C
C

Table 9.12.: Overview for SCROLLDynamic.

This section presents the main entry point into SCROLL, the Dynamic trait that is started
by a compiler rewrite of a call to SCROLL. This trait enables the dynamic invocation of
methods that are not natively available on the player object, but should be found at its
roles (see Sect. 8.2.1). An overview of its API can be found in Table 9.12. The following
provides a more detailed description:

def applyDynamic[E , A](name: String)(args: A *)(implicit dispatchQu ⌋
ery: DispatchQuery): Either [SCROLLError , E]:
This function is called through the compiler rewrite and allows to invoke a function
with the given name and arguments args. By providing an implicit DispatchQuery
(see Sect. 9.2.3), the user can steer the search for the appropriate receiver of the call
(as explained in Sect. 9.3.3). The result of the reflective invocation of the function
with the given name or an appropriate error (e.g., the function with the given name
was not invokable through the reflection API) is returned.

def applyDynamicNamed[E](name: String)(args: (String , Any)*)
(implicit dispatchQuery: DispatchQuery): Either [SCROLLError , E]:
This function is called through the compiler rewrite and allows to invoke a func-
tion with the given name and named arguments args. By providing an implicit
DispatchQuery (see Sect. 9.2.3), the user can steer the search for the appropriate
receiver of the call (as explained in Sect. 9.3.3). The result of the reflective invoca-
tion of the function with the given name or an appropriate error (e.g., the function
with the given name was not invokable through the reflection API) is returned.

def selectDynamic[E](name: String)
(implicit dispatchQuery: DispatchQuery): Either [SCROLLError , E]:
This function is called through the compiler rewrite and allows to get the runtime
value of an attribute with the given name. By providing an implicit DispatchQuery
(see Sect. 9.2.3), the user can steer the search for the appropriate receiver of the call
(as explained in Sect. 9.3.3). The result of the reflective invocation of the attribute
with the given name or an appropriate error (e.g., the attribute with the given name
was not invokable through the reflection API) is returned.

86

9.3. The Specification Layer

CompartmentA (with flat roles)

RoleA

function()

RoleB

function()

RoleC

function()

PlayerA

function()

CompartmentB (with deep roles)

RoleA

function()

RoleB

function()

RoleC

function()

PlayerB

function()

Figure 9.2.: An example for the need of customizable role dispatch. It is ambiguous which
role is responsible for answering a call to function(). Both flat roles (roles
cannot play roles themselves, left side) as well as deep roles (right side) reveal
the same ambiguity here.

def updateDynamic(name: String)(value: Any)
(implicit dispatchQuery: DispatchQuery): Unit :
This function is called through the compiler rewrite and allows to set the runtime
value of an attribute with the given name. By providing an implicit DispatchQuery
(see Sect. 9.2.3), the user can steer the search for the appropriate receiver of the call
(as explained in Sect. 9.3.3).

9.3.3. DISPATCH NOTATIONS

Sometimes it is ambiguous or context-dependent which role should be selected for
answering a call to the required behavior (see Fig. 9.2). The developer should be able
to control the desired selection. SCROLL supports this with function composition and
Scala’s pattern matching making use of an explicit dispatch description which is passed to
the actual method invocation as implicit argument. The given filter functions are applied
while traversing the role-play graph.

Fig. 9.3 provides an additional example. A new dispatch description is constructed
and the appropriate selection functions are passed to the factory methods of the dis-
patch description. The search starts from the player. Hence, the type of the player
(_.isInstanceOf[Core]) is used to parameterize the From-selector. Other types of roles
that are in the role-play graph are of no particular interest. For this, anything is passed
to the To-selector, which will always evaluate to true. Then, every role instance will be
considered, while traversing the role-play graph. The same parameterization is applied
to the Through-selector on intermediate nodes. Finally, for the Bypassing-selector, only
instances of RoleB with the state x = 3 should be selected, so that these should never
be bypassed. In summary, with an explicit dispatch description the developer defines a
sub-role-graph of the role-graph.

9.3.4. DISPATCH MAPPING TO SCALA

The dispatch mechanism provided by the SCROLL MOP is declarative and parameteri-
zable. It allows for four-dimensional, context-aware dispatch as originally introduced
for context-oriented programming by Hirschfeld et al. [2008] (see Sect. 4). Instead of
only associating the behavior called with a name (first dimension), the receiver context
(second dimension), the sender context (third dimension), and the overall system con-
text (fourth dimension) are taken into account. The filter expressions are inspired from
adaptive programming, where programs can be understood as normal object-oriented
programs, but the class graph is a parameter. Hence, the class graph can be changed
during runtime, without changing the actual program [Lämmel et al., 2003]. Adaptive

87

Chapter 9. The Metaobject Protocol of SCROLL

Core

RoleA
behavior()

RoleB
x = 3

behavior()

1 implicit val dispatchDescription =
2 // Filter selecting the source node:
3 From(_.isInstanceOf[Core]).
4 // Filter selecting the sink nodes:
5 To(anything).
6 // Filter to specify which nodes to keep:
7 Through(anything).
8 // Filter to specify which nodes to skip:
9 Bypassing(_ match {

10 // So we are always skipping instances of RoleA
11 case RoleA() => true
12 // but keeping instances of RoleB if the condition holds
13 case RoleB(x) if x == 3 => false
14 })

Listing 9.3.: Example code for an explicit dispatch description.

Figure 9.3.: Another example for the need of customizable role dispatch.

Notation Meaning

Dispatch Queries

Θ Set of selection functions
α : N → {⊤,⊥} Selection function with α ∈ Θ assigning boolean values to a

given node N according to its evaluation during runtime
▷: P̂ (N)×Θ→ P̂ (N) Dispatch filter selecting the source node of the dispatch prob-

lem from set P̂(N), with regard to the evaluation of the selec-
tion function α ∈Θ

◁: P̂ (N)×Θ→ P̂ (N) Dispatch filter selecting sink nodes (given from set P̂(N)) of
the dispatch problem, i.e., the potential receivers of messages,
with regard to the evaluation of the selection function α ∈Θ

⊵: P̂ (N)×Θ→ P̂ (N) Dispatch filter to specify which nodes to keep in the given set
P̂(N), with regard to the evaluation of the selection function
α ∈Θ

̸⊵: P̂ (N)×Θ→ P̂ (N) Dispatch filter to specify which nodes to remove from the given
set P̂(N), with regard to the evaluation of the selection func-
tion α ∈Θ

Ω : P̂ (N) → P̂ (N) Composed dispatch query Ω(P̂(N)) = (̸⊵ ◦⊵ ◦◁ ◦▷) (P̂(N)),
i.e., applying the composition of all dispatch filters above to
the set of nodes P̂ (N)

Table 9.13.: Notation overview for dispatch queries.

programming utilizes parameterizable traversal specifications. This is directly transferred
to the dispatch concept of SCROLL: from (to identify source nodes), to (identifies target
nodes), through (identifies required intermediate nodes), and bypassing (identifies
intermediates to be skipped). A detailed overview is given in Table 9.13. The end-user
can now freely plug in its specific selection functions with the provided DispatchQuery
API (see Sect. 9.2.3).

The implementation in Scala is now simple (see Table 9.14). Classes for the afore-
mentioned selector functions (▷ as from,◁ as to,⊵ as through, and ̸⊵ as bypassing)
are directly mapped to classes inheriting the generic Function interface from Scala,
incorporating the functional mapping:

88

9.4. Programming the Robotic Co-Worker with SCROLL

α : N → {⊤,⊥}:
1 f: Any => Boolean

▷: P̂ (N)×Θ→ P̂ (N):
1 class From(val sel: Any => Boolean) extends (Seq[Any] => Seq[Any]) {
2 override def apply(edges: Seq [Any]): Seq [Any] =
3 edges.slice(edges.indexWhere(sel), edges.size)
4 }

◁: P̂ (N)×Θ→ P̂ (N):
1 class To(val sel: Any => Boolean) extends (Seq[Any] => Seq[Any]) {
2 override def apply(edges: Seq [Any]): Seq [Any] =

edges.lastIndexWhere(sel) match {
C

C

3 case -1 => edges
4 case _ => edges.slice(0, edges.lastIndexWhere(sel) + 1)
5 }
6 }

⊵: P̂ (N)×Θ→ P̂ (N):
1 class Through(sel: Any => Boolean) extends (Seq[Any] => Seq[Any]) {
2 override def apply(edges: Seq [Any]): Seq [Any] = edges.filter(sel)
3 }

̸⊵: P̂ (N)×Θ→ P̂ (N):
1 class Bypassing(sel: Any => Boolean) extends (Seq[Any] => Seq[Any]) {
2 override def apply(edges: Seq [Any]): Seq [Any] = edges.filterNot(sel)
3 }

Ω : P̂ (N) → P̂ (N):
1 class DispatchQuery(from: From , to: To , through: Through , bypassing:

Bypassing) {
C

C

2 def filter(anys: Seq [Any]): Seq [Any] =
from.andThen(to).andThen(through).andThen(bypassing)(anys.distinct)

C
C

3 }

Table 9.14.: Mapping from dispatch functions to the Scala implementation.

P̂ (N) → P̂ (N) ⇝ Seq[Any] => Seq[Any]

The user-defined selection function α ∈Θ is applied as:

α ⇝ Any => Boolean

At the end, the final query Ω is composed with:

Ω(P̂ (N)) = (̸⊵ ◦⊵ ◦◁ ◦▷) (P̂ (N))

Here, Scala’s function composition with andThen is used:

Ω(P̂ (N)) ⇝ from.andThen(to).andThen(through).andThen(bypassing)(E)

89

Chapter 9. The Metaobject Protocol of SCROLL

Machine

+ doWork(speed:Int):Unit
+ isAllowedToWork:Boolean
+ stop():Unit
+ allowToWork():Unit
+ disallowToWork():Unit

RolePlayingAutomaton

HaddadinAutomaton

Compartment

HaddadinCompartment

+ main():Unit

Autonomous

- ROTATION_PER_TICK=40

+ doWork(speed:Int):Unit

Collaborative

- ROTATION_PER_TICK=5

+ doWork(speed:Int):Unit

HumanFriendly

- ROTATION_PER_TICK=20

+ doWork(speed:Int):Unit

FaultReaction

- ROTATION_PER_TICK=0

+ doWork(speed:Int):Unit
+ isAllowedToWork:Boolean

SmartSensors

+ inCollaboration:Boolean
+ outOfContext:Boolean
+ inContext:Boolean
+ collabStart:Boolean
+ collabStop:Boolean
+ fault:Boolean
+ confirm:Boolean

Figure 9.4.: Class diagram for the robotic co-worker example.

9.4. PROGRAMMING THE ROBOTIC CO-WORKER WITH
SCROLL

This section shows how the robotic co-worker example introduced in Sect. 6 may be
implemented within SCROLL. As a reference, inspect the class diagram presented in
Fig. 9.4. Additionally, the full code can be found as follows:

Machine Listing D.1 on page 183

HaddadinAutomaton Listing D.2 on page 184

HaddadinCompartment Listing D.3 on page 186

SmartSensors Listing D.4 on page 187

9.4.1. THE CLASS MACHINE

The class Machine is implementing the core behavior with a simple workflow chaining
together picking up (pickBox), handling (handleBox), and placing a box (placeBox)
with a predefined speed (Listing 9.4). This speed value will be the target for adaptation
when switching between different modes of autonomy with regard to the human presence
(Fig. 6.2).

90

9.4. Programming the Robotic Co-Worker with SCROLL

Collaborative Mode Human-friendly Mode

Fault Mode

Autonomous Mode

Working Mode

Human-aware Mode

confirm

fault

collabStop

collabStart

outOfContext

inContextinCollaboration

World Space System Space

Fast

Very Slow

Slow

Stop

Activation

Mapping

Figure 6.2.: The mapping from the Haddadin world space to the system space (from page
48).

1 case class Machine() {
2 private var allowedToWork = true
3
4 private def pickBox(speed: Int): Unit = { /* ... */ }
5
6 private def handleBox(speed: Int): Unit = { /* ... */ }
7
8 private def placeBox(speed: Int): Unit = { /* ... */ }
9

10 // simple, simulated workflow
11 def doWork(speed: Int): Unit = {
12 // picking up a box with a certain speed
13 pickBox(speed)
14 // handling or inspecting this box with a certain speed
15 handleBox(speed)
16 // and placing it somewhere with a certain speed
17 placeBox(speed)
18 }
19
20 def isAllowedToWork: Boolean =
21 allowedToWork
22
23 def stop(): Unit =
24 disallowToWork()
25
26 def allowToWork(): Unit = {
27 this.allowedToWork = true
28 }
29
30 def disallowToWork(): Unit = {
31 this.allowedToWork = false
32 }
33 }

Listing 9.4.: Source code excerpt for Machine.

9.4.2. THE CLASS HADDADINAUTOMATON

The HaddadinAutomaton (Listing 9.5) realizes the automaton in Fig. 6.2. It handles the
actual adaptation by adding and removing the appropriate roles to the Machine. All
required events and states are predefined in its companion object (see Appendix B). The
reaction to certain incoming events (e.g., fault, or in_perception) is caught by the
when clauses (Line 23). With the definition of the onTransition clause (Line 36), the
actual role binding and unbinding takes place with regard to the specific state transitions.

91

Chapter 9. The Metaobject Protocol of SCROLL

1 object HaddadinAutomaton {
2 // Events:
3 case object E_collaborate extends RPAData
4 case object E_confirm extends RPAData
5 /* ... */
6
7 // States:
8 case object Autonomous_Mode extends RPAState
9 case object Collaborative_mode extends RPAState

10 /* ... */
11 }
12
13 class HaddadinAutomaton(val comp: HaddadinCompartment) extends

RolePlayingAutomaton {
C

C

14 // Core:
15 val machine = comp.machine
16
17 // Roles:
18 val machine_autonomous = comp.machine_autonomous
19 val machine_collaborative = comp.machine_collaborative
20 val machine_faultreaction = comp.machine_faultreaction
21 val machine_humanfriendly = comp.machine_humanfriendly
22
23 when(Autonomous_Mode) {
24 case Event(E_fault, _) => goto(Fault_reaction_autonomous)
25 case Event(E_in_perception, _) => goto(Human_friendly_mode)
26 }
27
28 when(Collaborative_mode) {
29 case Event(E_fault, _) => goto(Fault_reaction_collaborative)
30 case Event(E_out_perception, _) => goto(Autonomous_Mode)
31 case Event(E_stop_collaborate, _) => goto(Human_friendly_mode)
32 }
33
34 /* ... */
35
36 onTransition {
37 case Start -> Autonomous_Mode =>
38 comp.addPlaysRelation(machine, machine_autonomous)
39 case Autonomous_Mode -> Fault_reaction_autonomous =>
40 comp.removePlaysRelation(machine, machine_autonomous)
41 machine.stop()
42 comp.addPlaysRelation(machine, machine_faultreaction)
43 case Autonomous_Mode -> Human_friendly_mode =>
44 comp.removePlaysRelation(machine, machine_autonomous)
45 comp.addPlaysRelation(machine, machine_humanfriendly)
46 /* ... */
47 }
48 }

Listing 9.5.: Source code excerpt for HaddadinAutomaton.

92

9.4. Programming the Robotic Co-Worker with SCROLL

9.4.3. THE CLASS HADDADINCOMPARTMENT

The class HaddadinCompartment (Listing 9.6) contains the implementation of the roles
for adapting the overall robot behavior represented by the player class Machine. The
roles Autonomous (Line 12), HumanFriendly (Line 23), Collaborative (Line 33), and
FaultReaction (Line 43) are simply passing the call for invoking the workflow to its core
(i.e., a Machine instance) while adapting the systems speed (ROTATION_PER_TICK).

1 class HaddadinCompartment extends Compartment {
2 // Player:
3 val machine = Machine()
4
5 // Roles:
6 val machine_autonomous = Autonomous()
7 val machine_collaborative = Collaborative()
8 val machine_faultreaction = FaultReaction()
9 val machine_humanfriendly = HumanFriendly()

10 /* ... */
11
12 case class Autonomous() {
13
14 private val ROTATION_PER_TICK = 40
15
16 def doWork(speed: Int): Unit = {
17 // bypassing the role itself so doWork is not called recursively
18 implicit val dd = Bypassing(_.isInstanceOf[Autonomous])
19 (+this).doWork(ROTATION_PER_TICK)
20 }
21 }
22
23 case class HumanFriendly() {
24
25 private val ROTATION_PER_TICK = 20
26
27 def doWork(speed: Int): Unit = {
28 implicit val dd = Bypassing(_.isInstanceOf[HumanFriendly])
29 (+this).doWork(ROTATION_PER_TICK)
30 }
31 }
32
33 case class Collaborative() {
34
35 private val ROTATION_PER_TICK = 5
36
37 def doWork(speed: Int): Unit = {
38 implicit val dd = Bypassing(_.isInstanceOf[Collaborative])
39 (+this).doWork(ROTATION_PER_TICK)
40 }
41 }
42
43 case class FaultReaction() {
44
45 private val ROTATION_PER_TICK = 0
46
47 def doWork(speed: Int): Unit = { // we do nothing }
48 def isAllowedToWork: Boolean = false
49 }
50 }

Listing 9.6.: Source code excerpt for HaddadinCompartment.

93

Chapter 9. The Metaobject Protocol of SCROLL

9.4.4. THE CLASS SMARTSENSORS

The class SmartSensors (Listing 9.7) pushes events to the HaddadinAutomaton gener-
ated every 100 millisecond with regard to the human presence. Finally, this leads to the
role-based adaptation of the overall system. The functional modes are represented and
implemented as roles overriding their players behavior.

1 class SmartSensors(comp: HaddadinCompartment) {
2 val automaton = new HaddadinAutomaton(comp)
3
4 def workerIsIn(room: Room): Boolean = worker.isIn(room)
5 def inCollaboration: Boolean = workerIsIn(machineArea)
6 def outOfContext: Boolean = workerIsIn(roomA) workerIsIn(exit)
7 def inContext: Boolean = !outOfContext
8 def collabStart: Boolean = inCollaboration
9 def collabStop: Boolean = !inCollaboration

10 def fault: Boolean = workerIsIn(machine)
11 def confirm: Boolean = !fault
12
13 val constraintsActor = new Actor {
14 def receive = {
15 case Check =>
16 if (fault) {
17 // the method ! is used to send events to the object representing

the role-playing automaton
C

C

18 automaton ! E_fault
19 }
20 if (confirm) {
21 comp.machine.allowToWork()
22 automaton ! E_confirm
23 }
24 if (outOfContext) {
25 automaton ! E_out_perception
26 }
27 if (inContext) {
28 automaton ! E_in_perception
29 }
30 if (collabStart) {
31 automaton ! E_collaborate
32 }
33 if (collabStop) {
34 automaton ! E_stop_collaborate
35 }
36 }
37 }
38
39 def start(): Unit = {
40 schedule(0 seconds, 100 milliseconds, constraintsActor, Check)
41 automaton ! Uninitialized
42 }
43 }

Listing 9.7.: Source code excerpt for SmartSensors.

The actual adaptation logic (when to bind and unbind those roles) and the adaptation
itself (what and how to adapt) are clearly separated, leading to an increased separa-
tion of concerns, and, ultimately, better maintainability and extensibility in the case of
unforeseen future needs for adaptation. These advantages are enabled by specifying
context-dependent behavior and structure in separate role types. Structured contexts
group those role types to specific adaptations. Furthermore, the syntax of Scala is un-
touched.

94

10

TECHNICAL LIMITATIONS
10.1. LIMITATIONS AND ALTERNATIVES

SCROLL allows for role-based programming with the concept of dynamically evolving
objects and purely embeds roles in a statically typed, object-oriented host language. This
supports the developer with the best of both worlds: static typing leads to an earlier
detection of programming mistakes through static code analysis, better documentation
in form of type-signatures, compiler-optimization, runtime-efficiency and an improved
design-time development experience, while dynamic objects support easy prototyping,
change to unknown requirements or unpredictable data and application integration.
Nevertheless, implemented as an library approach on-top of the Scala programming
language, there exists no built-in abstraction of those dynamically evolving objects on
type level yet. Hence, the following major limitations apply.

10.1.1. LIMITED TYPE-SAFETY

SCROLL uses Scala’s Dynamic trait [EPFL, 2016b] to address all dynamic behavior from
roles that is not available at the player. This is comparable to the usual implementations of
dispatch tables (e.g., with C++ vtable, or Java call-sites). Calls to role-specific functionality
that would normally fail during type checking phase of Scala are rewritten after the typing
phase of the Scala compiler (see Table 10.1). At this point, type-safety is lost. The actual
set of roles as dynamic extensions that are bound to the player is not statically known,
hence static type-safety is not available. At runtime, compound objects representing
role-playing, dynamic objects are always represented as Player[T] (as explained in
Sect. 9.2.2), where T refers to the type of the player. No special typing construct is available
to mirror role-playing objects in first place, hence calls via the Dynamic trait cannot be
statically typed. To remedy this shortcoming, and to help the developer, providing
additional warnings and error messages whenever the requested dynamic behavior is
unlikely to exist at all, the SCROLLCompilerPlugin was developed (see Sect. 10.2). The
following approaches for generating actual role-specific types in the context of role-
playing objects may be considered for future work:

InvokeDynamic Invokedynamic is a bytecode instruction for the JVM that facilitates
the implementation of dynamic languages through dynamic method invocation.
In a dynamic language, type checking typically occurs at runtime. Developers
must pass appropriate types or risk runtime failures. Bytecode can be generated at
runtime to weave-in the invokedynamic bytecode instruction replacing any of the
four method-invocation instructions: invokestatic is used to invoke static methods,
invokevirtual to invoke public and protected non-static methods, invokeinterface
with method dispatch being based on a interface type, and finally, invokespecial to
invoke instance initialization methods as well as private and superclass methods.
To address poor performance, the invokedynamic instruction eliminates the need
for ad-hoc runtime support. Instead, the call bootstraps by invoking runtime logic
that efficiently selects a target method, and subsequent calls typically invoke the
cached target methods without having to re-bootstrap. Dynamic languages profit
from invokedynamic because it supports dynamically changing call site targets.

A call site, more specifically, a dynamic call site is an invokedynamic instruction.
Furthermore, because the JVM internally supports invokedynamic, this instruc-
tion can be better optimized by the Just-In-Time (JIT) compiler. A method handle method handle

95

Chapter 10. Technical Limitations

ID Phase name Description

1 parser parse source into ASTs, perform simple desugaring
2 namer resolve names, attach symbols to named trees
3 packageobjects load package objects
4 typer the meat and potatoes: type the trees
5 patmat translate match expressions
6 superaccessors add super accessors in traits and nested classes
7 extmethods add extension methods for inline classes
8 pickler serialize symbol tables
9 refchecks reference/override checking, translate nested objects
10 uncurry uncurry, translate function values to anonymous classes
11 fields synthesize accessors and fields, add bitmaps for lazy vals
12 tailcalls replace tail calls by jumps
13 specialize @specialized-driven class and method specialization
14 explicitouter this refs to outer pointers
15 erasure erase types, add interfaces for traits
16 posterasure clean up erased inline classes
17 lambdalift move nested functions to top level
18 constructors move field definitions into constructors
19 flatten eliminate inner classes
20 mixin mixin composition
21 cleanup platform-specific cleanups, generate reflective calls
22 delambdafy remove lambdas
23 jvm generate JVM bytecode
24 terminal the last phase during a compilation run

Table 10.1.: The Scala compiler phases (available with scalac -Xshow-phases).

is a typed, directly executable reference to an underlying method, constructor, field,
or similar low-level operation, with optional transformations of arguments or re-
turn values. It is similar to a C-style function pointer that points to executable code
and which can be dereferenced to invoke this code. At runtime, an invokedynamic
call site is bound to a method handle by a bootstrap method. This method is
executed the first time the JVM encounters this call site during execution. The
invokedynamic instruction is followed by an operand that serves as an index into
the constant pool of a classfile. The call site instance is said to contain the method
handle and becomes permanently linked to the call site (the invokedynamic in-
struction). Although the call site instance refers to the same program location
throughout its lifetime, it may allow its target method handle to be redefined dur-
ing code execution. Is sum, that concept provides a solid base for implementing the
role-specific adding, removal or transfer of context-specific behavior and structure
and fits perfectly to the SCROLL approach.

Scala Macros At first glance, macro definitions in Scala are equivalent to normal func-
tion definitions, except for their body, which starts with the conditional keyword
macro and is followed by a possibly qualified identifier that refers to a static macro
implementation method. If, during type checking, the compiler encounters an
application of the macro, it will expand that application by invoking the corre-
sponding macro implementation method, with the abstract-syntax trees of the
argument expressions as arguments. The result of the macro implementation is

96

10.2. The SCROLL Compiler Plugin

another abstract syntax tree, which will be inlined at the call site and will be type-
checked in turn. With that, all API calls within SCROLL could be replaced by macro
definitions rewriting the current tree to a role-aware typing construct. This goes
beyond the error message reporting from the ScalaCompilerPlugin presented in
Sect. 10.2.

Scala Compiler Plugin A compiler plugin allows to modify the behavior of the compiler
itself without needing to change the main Scala distribution. Usually, this does not
happen very frequently, because Scala’s light, flexible syntax will allow for a better
solution using, e.g, a library. Nevertheless, there are use-cases where a compiler
modification is the best choice even for Scala: adding additional compile-time
checks, adding compile-time optimizations for a heavily used library, or rewriting
the Scala syntax into an entirely different, custom meaning. Adding a phase for
extra checks and extra tree rewrites that apply after type checking, would allow
to generate a role-aware typing construct and would fit perfectly to the SCROLL
approach.

Custom Type System Finally, one could implement a completely new type system
with one of the meta-programming systems, e.g., with Intellij MPS [JetBrains, 2017],
Xsemantics for Xtext [Efftinge and Völter, 2006], or TS for Spoofax [Kalleberg et al.,
2007]. With that, further research on such a type system needs to happen, e.g., with
regard to type inferencing rules, reduction rules, and its soundness.

10.1.2. PERFORMANCE ISSUES

As the quantitative evaluation (see Sect. 11.2) shows, SCROLL performs quite slowly due to
the heavy use of the Java Reflection API. Because reflection involves types that are dynam-
ically resolved, most of the Java virtual machine optimizations cannot be applied. Many
additional tasks need to be performed from the JVM while using reflection: checking that
there is a parameterless constructor, checking the accessibility of that parameterless con-
structor, checking that the caller has access to use reflection at all, calculate how much
space needs to be allocated during runtime, and make calls into the constructor code
because it is unknown beforehand if the constructor is empty. Consequently, reflective
operations are slower than their non-reflective counterparts, and should be avoided in
sections of code which are called frequently in performance-sensitive applications. In
the scope of this thesis that is not to be considered critical, as it serves as a testbed for
dynamic dispatch. Nevertheless, with the approaches mentioned in the section above
(Sec 10.1.1) for implementing suitable, role-aware types (invokedynamic on the JVM,
Scala macros, or with a Scala compiler plugin) the overall performance could be improved
tremendously. This is considered to be out of the scope for this thesis, but targeted as
future work (see Sect. 16).

10.2. THE SCROLL COMPILER PLUGIN

As soon as the compiler triggers its rewrite rules (Scala’s Dynamic as explained in
Sect. 8.2.1) certain type-safety is lost (see Listing 10.1 Line 17 and 18) because it cannot
be statically determined if a role is actually bound during runtime. FRaMED [Kühn
et al., 2016] is able to export instances of CROM [Kühn et al., 2014] as Ecore files
serialized as XMI. With the help of such an optionally imported file the SCROLLCom-
pilerPlugin [Leuthäuser, 2016] will check all of the statements invoking role calls (e.g.,
applyDynamic or selectDynamic) against the available player and role classes from

97

Chapter 10. Technical Limitations

CROM

FRaMED

Specification

SCROLL

Code

Compiler
Plugin

Compilation

JRE

Runtime

validate against

Scala Compiler

Figure 10.1.: The CompilerPlugin toolchain.

the model instance and the class definitions in the current scope. In the example, the
behavior of the compound robot is aggregated at runtime (Listing 10.1, Line 15) from
multiple roles (Navigation for finding a target, Observer for reading sensor values
and Vehicle for the actual movement). Because it cannot be statically determined if
the corresponding role is actually bound, type-safety is lost when the Scala compiler
applies its rewrite rules. The SCROLLCompilerPlugin generates meaningful messages
and reports them as warnings or compile time errors (which is configurable) to the
developer (see Listing 10.2).

1 case class Robot(name: String)
2 case class Service() {
3 def move() {
4 val name: String = +this name()
5 val target: String = +this getTarget()
6 val sensorValue: Int = +this readSensor()
7 val actor: String = +this getActor()
8 /* do something with that values */
9 }

10 }
11 case class Navigation() { def getTarget = "kitchen" }
12 case class Observer() { def readSensor = 100 }
13 case class Vehicle() { def getActor = "wheels" }
14
15 val kuka = Robot("Kuka") play Service() play Navigation() play Observer() play

Vehicle()
C

C

16
17 kuka move()
18 kuka swim()

Listing 10.1.: Example for the application of the SCROLLCompilerPlugin.

1 [error] Example.scala:29: applyDynamic as 'swim' detected on: 'Robot'.
2 [error] For 'Robot' the following dynamic extensions are specified:
3 [error] - 'Robot' -> 'Service', 'Navigation', 'Observer', 'Vehicle'
4 [error] kuka swim()
5 [error] ^
6 [error] Example.scala:29: Neither 'Robot', nor its dynamic extensions offer

the called behavior! This may indicate a programming error!
C

C

7 [error] kuka swim()
8 [error] ^

Listing 10.2.: Console output of the SCROLLCompilerPlugin for the robot example.

To gather the behavior offered in all possibly attached roles as dynamic extensions, all
relevant binding- and unbinding statements, player classes and their behavior, and all
calls to the Dynamic trait, the Scala Abstract Syntax Tree (AST) is traversed at compile-
time right after the typer phase of the standard Scala compiler [Lightbend Inc., 2016b].

98

10.2. The SCROLL Compiler Plugin

Algorithm 1 Collection of all relevant binding- and unbinding statements, player classes
and their behavior, and all calls to the Dynamic trait in SCROLL programs within the
SCROLLCompilerPlugin.

1: DS ← {ApplyDynamic, ApplyDynamicNamed, SelectDynamic, UpdateDynamic}
2: BSPl ay , BSTr ans f er , BSRemove , P , P M , B , B M , D ←; ▷ Initialization
3: procedure COLLECT(tree: ScalaAST)
4: if tree = ps and ps is a play statement then
5: BSPlay ← BSPlay ∪ {ps}
6: end if
7: if tree = t s and t s is a transfer statement then
8: BSTransfer ← BSTransfer ∪ {t s}
9: end if

10: if tree = d s and d s is remove statement then
11: BSRemove ← BSRemove ∪ {d s}
12: end if
13: if tree = pc and pc is a player class then
14: P ← P ∪ {pc} and P M ← P M ∪ {pc.name → pc}
15: end if
16: if tree = b and b is some behavior then
17: B ← B ∪ {b} and B M ← B M ∪ {b.signature → b}
18: end if
19: if tree = d and d ∈ DS then
20: D ← D ∪ {d}
21: end if
22: if tree was not covered by previous cases then
23: COLLECT(tree.subtree) ▷ call COLLECT recursively on the subtree
24: end if
25: end procedure

This algorithm is shown in more detail in Algorithm 1. COLLECT is a program analysis
which runs on the AST until all AST subtrees are covered. It uses the following sets:

• BSPlay: Binding statements for play relationship.

• BSTransfer: Binding statements for the transfer of a dynamic extension between
objects.

• BSRemove: Binding statements for the removal of a dynamic extension from an
object.

• P : All available player classes.

• P M : Name → P : Mapping from the name of a player to its class.

• B : Available behavior for a player (i.e., its methods / functions, and attributes).

• B M : Signature → B : Mapping from the signature of a behavior to the behavior
itself.

• D : Calls to the Dynamic trait.

After evaluating COLLECT at compile-time, the aforementioned sets of statements and col-
lected behavior are compared against each other and warnings or errors will be reported
to the user. An overview of the resulting tool chain is visualized in Fig. 10.1.

99

11

EVALUATION

11.1. QUALITATIVE EVALUATION

The qualitative evaluation is split into three parts. First, we analyze the fulfillment of the
requirements stated in Sect. 7 (Sect. 11.1.1). Secondly, an analysis of SCROLL based on a
previously defined classification scheme [Kühn et al., 2014] is given where we check the
fulfillment of each feature (Sect. 11.1.2). Finally, the variability analysis from Graversen
[2006] is adapted and applied to SCROLL as a third evaluation (Sect. 11.1.3).

11.1.1. A REQUIREMENT-BASED ANALYSIS FOR ROLES WITH SCROLL

This section summarizes how the requirements derived in Sect. 7 are implemented
with the SCROLL approach. The comparison with contemporary approaches from the
literature can be found in Table 11.1.

/F.1/ No additional tooling
SCROLL implemented as library in Scala does not require any additional tooling
(i.e., a custom compiler or development environment), the standard Scala compiler
is sufficient without any modifications. No code is generated, hence all debuggers
delivered e.g., with the ScalaIDE (based on Eclipse) or IntelliJ remain useful. All
the other surveyed role-based programming languages are either extensions to
the Java language, requiring an adapted compiler, or use a generative approach.
ScalaRoles is the only remarkable exception here as it is implemented as a library
as well. Thus, it can be seen as the predecessor in spirit of SCROLL. The concept of
the compound object stems from ScalaRoles, although it is technically different
(dynamic proxies versus Dynamic trait with compiler rewrites and implicits).

/F.2/ Dispatch configurable at runtime
With dispatch descriptions as first-class entities configurable by the user itself
(defining a DispatchQuery, see Sect. 9.2.3), SCROLL is the only available imple-
mentation allowing for fully customizable dispatch at runtime. In OT/J, one could
exploit its explicit team activation and deactivation concept guarded by writing
constraints, although this requires additional management code and leads to a
lower maintainability. The same holds for re-configuring dynamic proxy creation
in ScalaRoles.

/F.3.1/ Multi-dimensional dispatch: Associate the computational unit with a name
As all implementations investigated here are either extensions to the Java language,
or generate Java code directly, a computational unit (i.e., Java method and attribute)
is associated with a name.

/F.3.2/ Multi-dimensional dispatch: Take the receiver context into account
Furthermore, the receiver, i.e., its type is taken into account during the dispatch.

/F.3.3/ Multi-dimensional dispatch: Take the sender context into account
With a DispatchQuery, SCROLL takes the sender context into account as well.
With the lifting mechanism provided by OT/J, this is also possible as lifting requires
three pieces of information: a base instance, a team instance and a required role
type.

101

Chapter 11. Evaluation

/F.3.4/ Multi-dimensional dispatch: Take the system context into account
Finally, the same holds for handling the system context during dispatching.

/F.4/ Increase modularity through role-based programming
All investigated competing approaches provide means to handle role-based pro-
gramming. Nevertheless, non of them incorporates all role-related features as
surveyed in Sect. 13.2.2.

/S.1/ Declarative and parameterizable dispatch description
Since none of the contemporary approaches offers a configurable dispatch at
runtime, no other language besides from SCROLL implements a declarative and
parameterizable dispatch description.

/S.2/ Easy to use programming model and API
Scala, with its highly flexible and adaptable syntax, can be considered as natural
testbed for developing domain specific languages, hence the role-related API within
SCROLL or ScalaRoles are usable fairly straight forward even for inexperienced
developers.

/S.3/ Reasonable performance / scalability
As argued in Sect. 11.2, with the heavy use of the Java reflection API, SCROLL does
not provide the scalability needed for performance-sensitive applications. Even
the OT/J approach with dynamic bytecode weaving or ScalaRoles dynamic proxy
generation can be considered as being too slow.

/S.4/ Integration in existing tool-chains
As most of the surveyed role-based programming languages are extensions to
the Java language, require an adapted compiler, or use a generative approach,
the integration in existing tool-chains is difficult. ScalaRoles, as being a library
approach like SCROLL, is the only notable exception here. Furthermore, the Eclipse
plugin available for OT/J offers a step towards a clean integration into development
environment Eclipse.

/S.5/ Integration / compatibility with existing legacy code
As most of the surveyed role-based programming languages use a generative ap-
proach, the integration of legacy code requires writing adapters or proxies and
management code. This is technically no problem at all, but implies some addi-
tional burden to the developer. OT/J allows for the adaptation of an already existing
code base with byte code weaving in the style of aspect-oriented programming.
SCROLL and ScalaRoles allow for a seamless integration as being standard Scala
code running on the JVM.

/S.6/, /S.7/ High maintainability and extensibility
SCROLL and ScalaRoles are the only implementations small enough to be consid-
ered as being easily maintainable and extensible. For instance, the mature OT/J
tool requires to maintain several thousands lines of code for byte code weaving and
the integration of various frameworks, such as the Eclipse environment, with the
implementation of its role semantics well hidden into this boilerplate code. Hence,
modifications are hard to achieve.

The evaluation with regard to the derived requirements clearly shows the various advan-
tages of SCROLL, as it is able to implement all of them, only failing at one (the required
performance as explained in Sect. 11.2).

102

11.1. Qualitative Evaluation

R
eq

u
ir

em
en

t

C
h

am
el

eo
n

[Ø
st

er
b

ye
,2

00
3]

O
T

/J
[H

er
rm

an
n

,2
00

5]

R
av

a
[H

e
et

al
.,

20
06

]

p
ow

er
Ja

va
[v

an
d

er
To

rr
e,

20
06

]

R
u

m
er

[B
al

ze
r

et
al

.,
20

07
]

Sc
al

aR
o

le
s

[P
ra

d
el

an
d

O
d

er
sk

y,
20

08
]

N
ex

tE
J

[K
am

in
a

an
d

Ta
m

ai
,2

00
9]

Ja
va

St
ag

e
[B

ar
b

o
sa

an
d

A
gu

ia
r,

20
12

]

SC
R

O
L

L

/F.1/ □ □ □ □ □ ■ □ □ ■
/F.2/ □ ⊞ □ □ □ ⊞ □ □ ■
/F.3.1/ ■ ■ ■ ■ ■ ■ ■ ■ ■
/F.3.2/ ■ ■ ■ ■ ■ ■ ■ ■ ■
/F.3.3/ □ ■ □ □ □ □ □ □ ■
/F.3.4/ □ ■ □ □ □ □ □ □ ■
/F.4/ ■ ■ ■ ■ ■ ■ ■ ■ ■

/S.1/ □ □ □ □ □ □ □ □ ■
/S.2/ ■ ■ ■ ■ ⊞ ■ ■ ■ ■
/S.3/ ? ⊞ ? ? ? ⊞ ? ? □
/S.4/ □ ⊞ □ □ □ ■ □ □ ■
/S.5/ ⊞ ■ ⊞ ⊞ □ ■ ⊞ ⊞ ■
/S.6/ □ □ □ □ □ ■ □ □ ■
/S.7/ □ □ □ □ □ ■ □ □ ■

Table 11.1.: Comparison with contemporary approaches with regard to the requirements
from Sect. 7. It differentiates between fully (■), partly (⊞), and not imple-
mented (□) requirements. A question mark (?) denotes that this requirement
could not be evaluated, e.g., because no running compiler was available.

11.1.2. A FEATURE-BASED ANALYSIS FOR ROLES WITH SCROLL

It is necessary to investigate how SCROLL compares to contemporary approaches. Thus,
we use the previously defined classification scheme for checking the fulfillment of each
of the 26 classifying features of roles from Kühn et al. [2014] (see Table 3.1 on page 28).

1. Roles have properties and behaviors.
Any class can be used as a role in SCROLL. It is sufficient to attach variables and
methods or functions to a role class.

2. Roles depend on relationships.
There is no mandatory restriction to use relationships between roles or role-playing
objects in SCROLL. But they can be created at any time within a compartment.

3. Objects may play different roles simultaneously.
By calling the play-method multiple times, one can attach as many roles as needed.

4. Objects may play the same role (type) several times.
One may simply instantiate a role multiple times and attach it calling the play-
method.

103

Chapter 11. Evaluation

5. Objects may acquire and abandon roles dynamically.
One may use the play- and drop-method to acquire and abandon roles.

6. The sequence of role acquisition/removal may be restricted.
Although, there is no direct support in SCROLL for this, one can implement such
constraints as plain Scala code between role acquisition and removal. Additionally,
SCROLL supports defining custom sequences of role acquisition and removal using
the RolePlayingAutomaton (see Sect. 9.2.10).

7. Unrelated objects can play the same role.
This is possible by using the play-method for the same instance of a role class.

8. Roles can play roles.
This is possible by using the play-method. It leads to deep roles.

9. Roles can be transferred between objects.
This is possible by using the transfer-method.

10. The state of an object can be role-specific.
Role types are implemented with classes or case classes and their state is instance
specific. By merging the roles instances with a player object with the play-method,
they become a compound object. This compound object contains the merged state
of the player and its roles.

11. Features of an object can be role-specific.
Different roles (may) have (different) properties and behavior (see role feature 1)
and attaching them to players will create a (compound-) object aggregating all
those role-specific features.

12. Roles restrict access.
When referencing roles via variables, one only has access to their specific properties
and behavior, regardless of any active role-playing relation. On the other hand,
using the compound object, one has access to all the features of all roles, regardless
if they are reachable from the player or an attached role.

13. Different roles may share structure and behavior.
Role types in SCROLL are standard Scala classes or case classes, which can inherit
from each other.

14. An object and its roles share identity.
The compound object will always have the same identity as its contained player
object and every role object attached.

15. An object and its roles have different identities.
The standard case is the semantics of role feature 14. Nevertheless, one can always
override the equals- and hashCode-functions of the role classes to provide custom
identity management.

16. Relationships between roles can be constrained.
Since there are no first-class relationships, no constraints can be applied.

17. There may be constraints between relationships.
Since there are no first-class relationships, no constraints can be applied.

18. Roles can be grouped and constrained together.
They can be grouped into compartments and role groups.

104

11.1. Qualitative Evaluation

19. Roles depend on compartments.
Technically, one can import roles from anywhere using Scala’s import keyword.
Implementing them directly in compartments might be beneficial for name space
management.

20. Compartments have properties and behaviors.
Since compartments can be implemented as traits, classes, or case classes, they
can have properties (as class attributes) and behavior (as arbitrary functions or
methods).

21. A role can be part of several compartments.
Because one can import roles from anywhere using Scala’s import keyword, inte-
grating them in multiple, nested compartments is no problem.

22. Compartments may play roles like objects.
Objects of any type are allowed to play roles.

23. Compartments may play roles which are part of themselves.
There are no restrictions concerning the type of the role a compartment might play.

24. Compartments can contain other Compartments.
Hierarchically nested compartments are supported.

25. Different compartments may share structure and behavior.
Since compartments are standard Scala traits, classes or case classes, they support
inheritance.

26. Compartments have their own identity.
Since compartments are standard Scala traits, classes or case classes, they carry
their own identity.

To investigate how well the implementation with SCROLL blends into contemporary
approaches, the previously defined scheme from Kühn et al. [2014] with 26 classifying
features of roles was investigated. SCROLL fully implements 22 of them.

11.1.3. A VARIABILITY ANALYSIS FOR ROLES WITH SCROLL

While being fully aware that the role requirements covered by the variability analysis
presented in Graversen [2006], as introduced in Appendix A, are both insufficient and
imprecise, as stated in by the authors themselves, up to our knowledge, it is the only
survey available solely focusing on the features of roles at runtime. In Sect. 3.7, we
derived a list of features for roles at runtime (see Table 3.3), extending the lists presented
in Steimann [2000b]; Kühn et al. [2014] (see Fig. 3.1). The following shows how SCROLL
supports the features presented there.

27. The amount of roles an instance of a class and a role can play may be constrained.
Both is supported by SCROLL. The first runtime feature requires runtime checking
by using RoleGroups and their constraints on the contained roles (see Sect. 9.2.9).
As a standard within SCROLL, instances of a class are not subject to any restrictions
on the amount of roles they are allowed to play. The latter runtime feature is
supported as well. Both flat roles and deep roles can be implemented. By default,
there exists no constraint on the number of roles a player may acquire.

105

Chapter 11. Evaluation

Feature Example

27. The amount of roles an instance of a class and a role can play
may be constrained.

■ Sect. 9.2.9

28. Each role type played must be unique. ■ Sect. 9.2.9
29. Possible supertypes for classes can be class types, role types,

or compound object types.
□ -

30. The amount of simultaneously existing instances of a role type
may be constrained.

⊞ -

31. The amount of players, a role is played by, may be constrained. ⊞ -
32. The visibility of roles during dispatching may be constrained. □ -
33. Role types are supertypes, subtypes, or unrelated types of their

player.
■ Listing 8.6

34. Role types may extend role types, class types, or compound
objects.

■ Listing B

35. The player type for a role type may be a role type, a class type,
an interface type, a metaclass, a compound object type, a prop-
erty, or undefined.

■ Listing 8.6

36. Properties of roles can be fields, methods, class methods, and
static methods.

■ Listing 9.3

37. Roles can have nested methods, roles and classes. ■ Listing 9.6
38. Role instances can be referenced directly, or indirectly. ⊞ Listing 9.5
39. A reference to a role always points to the compound object. ■ Listing 8.8
40. Method dispatch on roles happens on the sender or its player,

the receiver or its player, the context, or the compound object.
■ Listing 9.3

41. Self may refer to dual self, or non-virtual self. ■ Listing 8.6
42. Super refers both to the static inheritance chain, and to the

attached roles.
□ -

43. The player may be referenced directly, or indirectly. ■ Listing 8.6
44. A role may be called from its player. ■ Listing 8.6
45. Roles may call among each other. ■ Listing 8.6
46. Roles may incorporate around-methods. □ -
47. Role creation, attachment, and movement may be restricted. ⊞ Listing 9.5
48. Roles may be terminated explicitly, or implicitly. ⊞ -
49. Role methods may have various access modifiers. □ -
50. Roles may provide meta-functionality. □ -
51. Roles allow for typed references. ⊞ Sect. 9.2.2
52. Roles may be used as filters. ■ Listing 9.6
53. Roles may be used for renaming. □ -
54. Roles may be parameterized. ■ -

Table 11.2.: Summary for the qualitative evaluation of runtime role features supported
by SCROLL, derived from Graversen [2006]. This summary differentiates
between fully (■), partly (⊞), and unsupported (□) features.

28. Each role type played must be unique.
SCROLL has an explicit notion for defining how many roles can be played and
which role types should be allowed using RoleGroups (see Sect. 9.2.9).

29. Possible supertypes for classes can be class types, role types, or compound object types.
Since SCROLL uses plain Scala classes and case classes as players and roles, this

106

11.1. Qualitative Evaluation

feature cannot be addressed. One is able to freely mix those supertypes, both
within the inheritance and the role-playing relationship, very similar to Gottlob
et al. [1996]. Thanks to SCROLL ’s underlying host language (Scala), support for
non-cyclic inheritance hierarchies comes for free.

30. The amount of simultaneously existing instances of a role type may be constrained.
This feature is not supported directly. With SCROLL, one may want to use abstract
roles instead. Nevertheless, for enforcing singleton roles, Scala’s object keyword is
available. Role binding, removal and transfer has to be stated explicitly.

31. The amount of players, a role is played by, may be constrained.
The amount of players is not constrained in SCROLL, which is motivated by prac-
tical issues concerning testing and development of roles and players. However
the default case is to have one and only one player. Having multiple players for
one role instance can be emulated within SCROLL easily. The play-operator is
extensible, allowing for attaching several players to a single role instance. The
configurable dispatch (DispatchDescription, Sect. 9.3.3) allows for querying the
correct, context-dependent behavior if needed, solving signature clashing issues
behind the scenes.

32. The visibility of roles during dispatching may be constrained.
Roles in SCROLL are public to other entities. Private roles not supported, but may
be a target for future development. Currently, protected roles are also not available
in SCROLL, but may be easily implemented using guarding checks around the calls
to methods of protected roles.

33. Role types are supertypes, subtypes, or unrelated types of their player.
Since SCROLL has the design goal to bridge the worlds of statically typed host
languages and the dynamics of role-playing objects, it is desirable to view roles as
unrelated types. Here, dynamic dispatch has to be addressed explicitly, which is
done with SCROLL ’s DispatchDescription.

34. Role types may extend role types, class types, or compound objects.
That feature is fully supported in SCROLL. It allows for better code reuse. Although
a compound object exists at runtime, it can be extended like a class. This requires
a special runtime binding, which SCROLL offers with its play-function. In addition,
in SCROLL one role type can extend another role type.

35. The player type for a role type may be a role type, a class type, an interface type, a
metaclass, a compound object type, a property, or undefined.
The standard case in SCROLL is the specification of a class type as player type.
Although, there are no interfaces in Scala, roles can be attached to subtypes of Java
interfaces (as interfaces cannot be instantiated), or to any subtype of Scala traits.
Deep roles are fully supported with SCROLL. Furthermore, a compound object,
created from the players with all of its roles, can be viewed as one object and thus
is allowed to play roles within SCROLL. A role can be a role for a property (either a
field or a method). Since one is able to objectify functions to function objects in
Scala, roles can be attached to them. Sadly, having metaclasses as players is not
applicable for SCROLL, since one does not have direct access to Scala’s metaclasses
(except using reflection or macros).

36. Properties of roles can be fields, methods, class methods, and static methods.
SCROLL allows for selecting the correct field depending on its context to solve

107

Chapter 11. Evaluation

signature clashing problems (DispatchDescription, Sect. 9.3.3). The same holds
for methods with identical signatures. Hence, methods of roles can override the
methods of their player, and vice versa. The developer is free to declare the desired
behavior using function composition while traversing the role-play graph as de-
scribed in Sect. 8.2.3. SCROLL, allowing role types to be implemented using classes
and case classes, handles static methods as well via companion objects. The role
binding of SCROLL is not affected by the usage of static methods. Nevertheless,
static methods are typically non-virtual (e.g., in Java, C#, Python, and C++) and
hence cannot be overridden. The same holds for Scala. Hence, within SCROLL a
role cannot override methods defined as static methods in a companion object.
Since static methods are addressed by names rather than by references, multiple
views can only be provided by creating new names and classes containing simple
forwarding methods. This, however, requires the change of names for each use
expression and is objectionably verbose [Graversen, 2006].

37. Roles can have nested methods, roles and classes.
This feature is supported by SCROLL but virtual inner classes are not available in
Scala. Implicit role binding via nested roles is not supported. Compartments
into which roles are nested, offer the collaboration scope, while the roles are
placeholders for the actual participants of the collaboration. As a side-note, one
can implement and use nested methods in SCROLL, as they are supported by the
host language Scala.

38. Role instances can be referenced directly, or indirectly.
With SCROLL implementing roles as standard classes or case classes, the desired
role instance may be saved and referenced directly at any point during the execu-
tion of the program. Hence, indirect references are not supported.

39. A reference to a role always points to the compound object.
This is supported. In SCROLL, calling a method on a compound object needs to be
resolved using four-dimensional dispatch, as explained in Sect. 9.3.3, since finding
the correct behavior may be ambiguous and / or context-dependent.

40. Method dispatch on roles happens on the sender or its player, the receiver or its player,
the context, or the compound object.
This is supported by SCROLL using its DispatchDescription concept as ex-
plained in Sect. 9.3.3. The method lookup on the compound object is performed by
investigating all roles, descendant roles (deep roles), and the player itself. Problems
like self-recursion and ambiguities when a message could be answered by different
roles, are resolved at runtime. This leads to a very flexible understanding of role
dispatch within SCROLL.

41. Self may refer to dual self, or non-virtual self.
Dual self refers to the initial receiver (the compound object) and the currently
executing part object (a role instance). In SCROLL, one may access the first one with
the +-operator (lifting, see Sect. 8.2.2), and the latter through a normal reference
to the desired object (e.g., using this or super, accessing the static inheritance
hierarchy). Because SCROLL implements roles and players as unrelated entities,
the concept of non-virtual self fits very naturally as it resembles the definition
of components, but also enables roles to be applied to several unrelated players.
Hence, non-virtual self is supported, as well.

108

11.1. Qualitative Evaluation

42. Super refers both to the static inheritance chain, and to the attached roles.
SCROLL does not implement a role-playing-specific super call, only Scala’s standard
super can be used for traversing the static inheritance hierarchy. But with the +-
operator and its implicitly created compound object (see Sect. 8.2.2), one has
access to the aggregated behavior of all roles when relying on the standard super
call is not sufficient.

43. The player may be referenced directly, or indirectly.
With the reference to a SCROLL compound object, generated with the +-operator,
i.e., an indirect player reference, roles can be aggregated, although they are physi-
cally not attached to each other. The mapping is maintained behind the scenes,
as explained in Sect. 8.2.3. Hence, the player can be referenced indirectly. Direct
references are supported as well, since players are instances of standard Scala
classes or case classes.

44. A role may be called from its player.
This feature is supported via the +-operator and its implicitly created compound
object (see Sect. 8.2.2).

45. Roles may call among each other.
SCROLL implements full reification of roles, referencing and invoking methods
on them with its concept of implicit conversions (see Sect. 8.2.2) and compiler
rewrites (see Sect. 8.2.1).

46. Roles may incorporate around-methods.
SCROLL does not incorporate the feature of around-methods as first-class citizen.

47. Role creation, attachment, and movement may be restricted.
SCROLL utilizes a fairly simple role creation technique. In the first place, there are
no role creation constraints, no object pooling for role caching, and roles cannot
be bound implicitly. Nevertheless, for a fine-grained role binding semantics, the
RolePlayingAutomaton (see Sect. 9.2.10) may be used. As roles are implemented
with standard classes or case classes in SCROLL, they may float around without
a player. The conjunctive attachment strategy to build the compound object is
used in SCROLL. The disjunctive attachment of roles is supported by SCROLL with
a combination of: i) its specific notion of identity (see Sect. 8.2.2), and ii) when
asking the compound object or a part object to return a role of a specific type,
the request is sent to the compound object, utilizing a full transitive traversal of
all roles using the role-play graph (see Sect. 8.2.3). SCROLL does not restrict the
player’s type for roles, hence a role can be freely moved around on instances. On the
downside, there are no mechanics implemented in SCROLL (like blocking mutexes
or semaphores) to prevent executing role-specific behavior in the wrong context.
Furthermore, contracts can only be checked in between individual role movements.
Automatic checking is not supported. The role constraints presented in Riehle
[2000] are fully incorporated within SCROLL, in addition to its RoleGroups (see.
Sect. 9.2.9). Those allow for constraining the relationships between roles and role
movement.

48. Roles may be terminated explicitly, or implicitly.
Explicit role termination is not supported in SCROLL. As the DSL is implemented
upon the JVM, it solely relies on the garbage collector. Since the access to the call
stack is impossible within Scala and explicit memory management is not applicable
to the JVM in general, SCROLL does not support the feature of explicit role removal.

109

Chapter 11. Evaluation

49. Role methods may have various access modifiers.
In SCROLL, roles are represented as unrelated types to their player for a maximum
of flexibility during development and testing. The dispatch target is accessed via
reflection (as explained in Sect. 8.2.1). All access modifiers are ignored. Hence, the
role can access and override properties and behavior of their players by default.
Roles in SCROLL can re-define an otherwise final method of its player. Since all
kinds of exceptions are collected and wrapped like explained in Sect. 8.2.1, roles in
SCROLL cannot introduce new exceptions.

50. Roles may provide meta-functionality.
SCROLL does not support this feature.

51. Roles allow for typed references.
While roles are implemented as separate types within SCROLL, the player type is
assigned to the least specific type in the type system of Scala, which is Any. The
disadvantage is that the role cannot rely on any other properties of its player than
those defined in that type. Type casts are unsafe at that point. However, run-
time checks are provided, when roles are attached to their players to ensure that
signatures of role- and player-specific attributes and behavior have the correct
types. Dispatch in SCROLL is based upon the dynamic type of the compound
object. This makes the dispatch for compound objects highly flexible. The set of
roles aggregated is checked for all messages arriving during dispatching.

52. Roles may be used as filters.
This feature is supported, as it maps very naturally to SCROLL ’s point of view. Roles
in SCROLL do not rely on any property of their player, because they have no direct
relationship to them, as they are modeled as unrelated types. Filtering messages is
type-safe and happens when using consultation during the process of dispatching.

53. Roles may be used for renaming.
SCROLL does not require this feature, since ambiguities due to signature clashing
are resolved using the concept of a DispatchDescription (see Sect. 9.3.3).

54. Roles may be parameterized.
SCROLL uses standard classes and case classes for the specification of roles and
players. With Java’s and Scala’s generic types, the feature of parameterized roles is
fully incorporated.

This section investigated the semantics of roles by investigating the runtime features
presented in Sect. 3.7. It was shown how SCROLL supports those features. Class instances
as the fundamental basis of the objects semantics of SCROLL with their corresponding
role-playing constraints and supertype restrictions are fully incorporated. Furthermore,
many constraints with regard to the cardinalities imposed on the player as well as the role
side are supported. Relationships, e.g., with the concept of inheritance, can be handled
and most of the well-known properties (e.g., static methods, class methods and fields)
are available within SCROLL. In addition, the analysis for role-specific behavior reveals
SCROLL ’s ability to dispatch calls on various entities. For the life cycle of roles, SCROLL
offers support for a fairly simple implementation of role creation, attachment, movement,
and removal. A compact summary can be found in Table 11.2. Additionally, references to
code examples throughout the thesis are given.

110

11.2. Quantitative Evaluation

11.2. QUANTITATIVE EVALUATION

In this section, the SCROLL library is quantitatively evaluated by employing the real-
world scenario of a small banking application, extracted from Reenskaug and Coplien
[2009]. A bank is a financial institution providing banking services to their customers,
who are persons. Customers may be advised by consultants. They own savings and
checking accounts, and perform transactions. Transactions encapsulate the process of
transferring money from exactly one source account to one target account. The customer
may initiate them, however, each transaction is managed and executed by the bank.
Additionally, financial regulations require that no account can be both a checking and a
savings account, as well as both the source and target of the same transaction.

11.2.1. THE MODEL

With the graphical model presented in Fig. 11.1, the following CROM can be derived:

Definition 9 (Compartment Role Object Model for the Bank Example)
Let B = (N T,RT,C T,RST,fills,parts,rel) be the model of the bank, where the individual
components are defined as follows:

N T := {Person, Account}

RT := {Customer, CA, SA,

Source, Target, MoneyTransfer}

C T := {Bank, Transaction}

RST := {own_ca, own_sa, trans}

fills := {(Person, Customer),

(Account, Source),

(Account, Target), (Account, CA),

(Account, SA),

(Transaction, MoneyTransfer)}

parts := {Bank → {Customer,

CA, SA, MoneyTransfer},

Transaction → {Source, Target}}

rel := {own_ca → (Customer, CA),

own_sa → (Customer, SA),

trans → (Source, Target)}

The bank model B is created in four steps. First, all the natural types, compartment
types, role types, and relationship types are specified. Secondly, the set of role types is
assigned to a compartment type with the parts-function. Thirdly, it is specified which
natural type can fill which role type, and finally the rel-function is defined for the role
types at the ends of a relationship type. On instance level, we distinguish naturals, roles,
compartments and links as instances of their respective types. The following CROI is a
valid instance of the CROM B:

Definition 10 (Compartment Role Object Instance for the Bank Example)
Let B = (N T,RT,C T,RST,fills,parts,rel) be the well-formed CROM for the bank example
as defined above; then b= (N ,R,C , type,plays, links) is an instance of that model, where
the components are defined as follows:

111

Chapter 11. Evaluation

Bank

- name : String

- executeTransactions()

- set of attributes

- set of behavoirs

Natural Type

- set of attributes

- set of behavoirs

Role Type Compartment Type
Fills relation

Legend

- set of attributes

- set of behavoirs

- id : Int

- name : String

- addSavingsAccount() : Boolean

- addCheckingsAccount() : Boolean

Customer

- limit : Money

- decrease(amount : Money)

CheckingsAccount

- transactionFee : Double

- decrease(amount : Money)

SavingsAccount

RoleGroup

- title : String

- firstName : String

- lastName : String

- address : String

Person

- id : Int

- balance : Money

Account

Transaction

- amount : Money

- from : Source

- to : Target

- execute() : Boolean

- withdraw(amount : Money)

Source

- deposite(amount : Money)

Target

- execute() : Boolean

MoneyTransfer

1

*

1

*

(1..1)

(0..*)

(0..*)(0..*)

(1..1)

(2..2)

Figure 11.1.: The bank example model in CROM notation.

N := {Peter, Klaus,

Account1, Account2}

R := {Cu1, Cu2, Ca, Sa, S, T, M}

C := {bank, t}

type := {(Cu1 → Customer),

(Cu2 → Customer),

(Ca → CA),(Sa → SA),

(S → Source), (T → Target),

(M → MoneyTransfer),

(bank → Bank),

(t → Transaction), . . . }

plays := {(Klaus, bank, Cu1), (Peter, bank, Cu2),

(Account1, bank, Sa),

(Account2, bank, Ca), (t, bank, M),

(Account1, t, S), (Account2, t, T)}

links := {(own_ca, bank) → {(Cu1, Ca), (Cu2, ε)},

(own_sa, bank) → {(Cu1, ε), (Cu2, Sa)},

(trans, t) → {(S, T)}}

The CROI b is created by collecting all the naturals, compartments, and roles accordingly;
mapping their respective types; linking the roles to their players; and assigning a tuple
for each depicted relationship. b must contain a tuple for the roles Cu1 and Cu2 in the
own_ca, own_sa, and advises relationships regardless of their actual relation to a counter
role. These tuples link those roles to the empty counter role ε instead.

Finally, the constraining role groups and the constraint model itself can be defined
on top of the previous definitions. Role groups constrain the set of roles an object o is
allowed to play simultaneously in a certain compartment c. In case a is a role type, r tI c

o

checks whether o plays a role of type r t in c. If a is a role group (B ,n,m), it should check

112

11.2. Quantitative Evaluation

Implementation Listing Implementation Listing

SCROLL D.25 (page 238) SingleType D.27 (page 244)
ScalaRoles D.24(page 235) SubtypeHiddenDel. D.28 (page 246)
OT/J D.32 (page 257) SubtypeInternalFlag D.29 (page 249)
Role Object Pattern D.20 (page 231) SubtypeStateObject D.30 (page 252)
SeparateType D.26 (page 241)

Table 11.3.: Evaluation implementations and references to their full code listings.

whether the sum of the evaluations for all b ∈ B is between n and m. In general, both the
role constraints from Riehle [2000] and any propositional formula can be represented
with role groups. For instance, a role-implied constraint from consultant to customer
would be modeled as: ({({Consultant},0,0),Customer},1,2). This is equivalent to the
formula ¬Consultant ∨Customer and fulfills the intended semantics of the role-implied
constraint.

Definition 11 (Role Groups and Constraint Model for the Bank Example)
Let B be the bank model from Fig. 11.1. Then CB = (rolec,card, intra) is the constraint
model where the components are defined as:

rolec := {(0..∞, bankaccounts),

Transaction → {(2..2, participants)}}

card := {own_ca → (1..∞, 0..∞),

own_sa → (1..∞, 0..∞),

trans → (1..1, 1..1)}

intra := {(advises, irreflexive)}

bankaccounts :=({CA, SA},1,1)

participants :=({Source, Target},1,1)

The constraint model can be obtained by mapping the graphical constraints to their
formal counterparts: role groups with cardinalities to the rolec-mapping, relationship
cardinality to the card-function, and intra-relationship constraints to the intra-relation.

Exactly two distinct accounts must fulfill the participants role group in the transaction
compartment. Because Peter is a customer in the bank, Account1 and Account2 are
the respective source and target in the transaction t , this is fulfilled. Additionally, each
object playing a role in a compartment must fulfill those role groups containing the
corresponding role type. In b, all accounts individually satisfy the participants and
bankaccounts role group. Furthermore, the number of successors for the first place and
predecessors for the second place for each link (relationship instance) is computed and
checked against the limits imposed by the cardinality constraints. In case of b, the number
of successors and predecessors ranges from zero (for Cu1 in the own_sa relationship and
Cu2 in the own_ca relationship) to one (for all other roles and relationships).

11.2.2. THE IMPLEMENTATION

The bank example introduced in the previous section has been implemented with various
role-base languages and implementation patterns for roles. Multiple dimensions of
scaling are explored for gaining insight into the performance and scaling characteristics
of those approaches. We varied the number of players, roles, and transactions in the
system as shown in Table 11.4. In the largest benchmark, 1000 transaction compartments
(each with 1000 persons playing the customer role 1000 times, and each having a savings
account attached) are active. Attributes as well as the selection of source and target

113

Chapter 11. Evaluation

Parameter Variations Meaning

Player 10, 100, 1000 Number of persons having accounts in the bank.
Role 10, 100, 1000 Number of customers in the bank. Each player plays

the role of a customer multiple times, each time having
exactly one savings account attached to it.

Transaction 10, 100, 1000 Number of transactions in the bank. In each transac-
tion, two randomly selected accounts play the role of
the source and target account, respectively. Addition-
ally, that transaction plays the role MoneyTransfer do-
ing the actual transfer of money between those two ac-
counts.

Table 11.4.: Variation of parameters for the bank example benchmark.

accounts for the actual transactions were generated and selected randomly. The full
implementations are available as shown in Table 11.3. As an example, we explain the
code for the implementation of the bank model with SCROLL and OT/J, respectively.

SCROLL The natural types of the example are implemented as standard Scala case
classes as follows:

1 case class Person(title: String , firstName: String , lastName: String ,
address: String)

C
C

2 case class Account(var balance: Money , id: Integer) {
3 def increase(amount: Money): Unit = {
4 balance = balance + amount
5 }
6 def decrease(amount: Money): Unit = {
7 balance = balance - amount
8 }
9 }

The separately defined Transaction compartment handling the actual money
transfer is specified as Scala trait containing the roles Source and Target decreas-
ing (Line 12) and increasing (Line 16) the respective balance of their underlying
players (Account) by accessing that behavior via the +-operator (as explained in
Sect. 9.2.2):

1 trait Transaction extends Compartment {
2 var amount: Money = _
3 var from: Source = _
4 var to: Target = _
5 def execute(): Boolean = {
6 from.withdraw(amount)
7 to.deposite(amount)
8 true
9 }

10
11 case class Source() {
12 def withdraw(amount: Money): Unit = { +this decrease amount }
13 }
14
15 case class Target() {
16 def deposite(amount: Money): Unit = { +this increase amount }
17 }
18 }

Based on this, the Bank compartment (defined as Scala trait as well) executes all

114

11.2. Quantitative Evaluation

attached transactions by simply delegating them all to the MoneyTransfer role
(see Line 3):

1 trait Bank extends Compartment {
2 val moneyTransfers = mutable.ListBuffer.empty[MoneyTransfer]
3 def executeTransactions(): Unit = { moneyTransfers.foreach(_.execute()) }
4 /* ... */
5 }

The Customer role is specified inside the Bank compartment. Accounts can be
added and the respective play-relation is defined for specific types of accounts as
roles (SavingsAccount in Line 5, CheckingsAccount in Line 9):

1 case class Customer(name: String , id: Integer) {
2 val accounts = mutable.ArrayBuffer.empty[Account]
3 def addSavingsAccount(a: Account): Boolean = {
4 accounts.append(a)
5 a play SavingsAccount(0.1); true
6 }
7 def addCheckingsAccount(a: Account): Boolean = {
8 accounts.append(a)
9 a play CheckingsAccount(Money(100, "USD")); true

10 }
11 }

The role MoneyTransfer is also defined inside the Bank compartment and del-
egates its work (execute) to its underlying player, a Transaction instance (see
Line 4). As both implement the same behavior, a signature clash appears (execute
in MoneyTransfer and execute in Transaction). This is resolved by providing
an explicit dispatch description simply bypassing instances of MoneyTransfer.
Hence, it is ensured that only the player instance itself will receive the call to the
desired behavior (see Line 3) as this call is delegated backward to the core.

1 case class MoneyTransfer() {
2 def execute(): Boolean = {
3 implicit val dd = Bypassing(_.isInstanceOf[MoneyTransfer])
4 +this execute()
5 }
6 }

The same holds for the implementation of the roles SavingsAccount and
CheckingsAccount. Additionally, those roles alter the core behavior by applying
the respective business rules on-top:

1 case class CheckingsAccount(var limit: Money) {
2 def decrease(amount: Money): Unit = amount match {
3 case a if a <= limit =>
4 implicit val dd = Bypassing(_.isInstanceOf[CheckingsAccount])
5 +this decrease amount
6 case _ => throw new IllegalArgumentException("Amount > limit!")
7 }
8 }
9 case class SavingsAccount(var transactionFee: Double) {

10 def decrease(amount: Money): Unit = {
11 implicit val dd = Bypassing(_.isInstanceOf[SavingsAccount])
12 +this decrease (amount + amount * transactionFee)
13 }
14 }

Finally, the definitions for the role groups can be added:

1 RoleGroup("transaction").containing[Source , Target](1, 1)(2, 2)
2 RoleGroup("accounts").containing[CheckingsAccount , SavingsAccount](1,

1)(0, *)
C

C

115

Chapter 11. Evaluation

Hardware Platform
macOS Sierra 10.12.1
1,7 GHz Intel Core i7
8GB 1600 MHz DDR3

Java Platform
Java Version 1.8.0_112
Java™ SE Runtime Environment (build 1.8.0_112-b16)
Java HotSpot™ 64-Bit Server VM (build 25.112-b16, mixed mode)

Scala Platform
Scala Code Runner Version 2.12.0
Scala Compiler Version 2.12.0

OT/J and Eclipse Platform
org.eclipse.objectteams.runtime_2.5.0.201606070956.jar
org.objectweb.asm_5.0.1.v201404251740.jar
org.objectweb.asm.commons_5.0.1.v201404251740.jar
org.objectweb.asm.tree_5.0.1.v201404251740.jar
org.objectweb.asm.commons_5.0.1.v201404251740.jar
ecotj-R-2.5.0-201606070953.jar

Procedure
10 global JVM warmup runs
10 JVM warmup runs before each individual benchmark run
10 repetitions for each individual benchmark run
Median calculation over benchmark runs

Table 11.5.: The benchmark environment.

ObjectTeams/Java The implementation in OT/J is very similar (see Listing D.32). Nat-
urals are defined via standard Java static classes. All role types are defined inside
team classes as normal classes. In contrast to SCROLL ’s +-operator, accessing the
core player behavior is done via callin bindings and base as follows, e.g., for the
Source role:

1 public class Source playedBy Account {
2 callin void withdraw(double amount) { base.withdraw(amount); }
3 withdraw <- replace decrease;
4 }

11.2.3. THE EVALUATION METHOD

The quantitative evaluation benchmarks the individual implementations of the bank
example to gain insight into the respective performance characteristics. A JVM-based
benchmark platform was implemented (see Table 11.5).

Two aspects were measured. First, the bank example is instantiated for each individual
implementation, instantiating all player, role and compartment types. Additionally,
required associations and play-relations are built. These activities are measured as build
times. Secondly, the actual money transactions are performed resulting in the overall
execution times.

On the technical side, all benchmarks were performed with JVM pre-warming and
multiple runs to automatically eliminate noise due to JIT compilation, garbage collection
or undesired heap allocation patterns. There are many mechanisms in the JVM which are

116

11.2. Quantitative Evaluation

transparent to the programmer, for instance, automatic memory management, dynamic
compilation and adaptive optimization. Importantly, these mechanisms are triggered
implicitly by the code being executed, and the programmer has little or no control over
them.

JIT compilation The HotSpot compiler continually analyzes the program performance
for parts of the program executed frequently and compiles those parts down to
machine code. Any part of the code can potentially be chosen for compilation
at any point during the runtime, and this decision may be taken in the midst of
running a benchmark, yielding an inaccurate measurement. Also, portions of the
program are periodically recompiled but can also be de-optimized based on the
JVM runtime information. Hence, during the runtime of the program, the same
code might exhibit very different performance characteristics.

Classloading Since the JVM, unlike a typical compiler, has global program information
available, it can apply non-local optimizations. This means that a method may be
optimized based on the information in some seemingly unrelated method. One
such example is inline caching, where the JVM can inline polymorphic method
calls. Since not all the classes loaded in the complete application are loaded in a
benchmark, many of the callsites in a benchmark can and will be optimized, thus
yielding an inaccurate running time measurement. As a result, seemingly unrelated
code can have a big impact on performance of the code being benchmarked.

Automatic memory management The benchmark is simply a piece of code running
and measuring the running time of some other piece of code. As such, it may
inadvertently leave the memory heap in a state which affects subsequent alloca-
tions or trigger a garbage collection cycle, each of which changes the observed
performance of the code being tested. In a real-world application, the state of the
heap is unpredictable, and in general different heap states and allocation patterns
tend to give very different performance results.

There are other non-JVM considerations to take into account as well. Specific processors,
cache and memory sizes may show a very different performance for the same benchmark.
On a single processor system, concurrently running applications or operating system
events can cause a degradation in performance. Different Java Runtime Environment
(JRE) versions may yield entirely different results. These effects do not cause a linear
degradation in performance. However, decreasing the memory size twice may cause the
benchmark to run a hundred times slower. Additionally, performance of some code is
not some absolute scalar value denoting how fast the code is. Rather, it is some function
which maps the inputs and the runtime conditions to a running time. This function is
impossible to reproduce analytically.

In conclusion, benchmark conditions and inputs are hard to reproduce. Performance
measurement in general introduces observer bias and runtime behavior is in general
non-deterministic. With that, performance metrics inherently give an incomplete picture
about the performance characteristics. With that being said, this benchmark portrays
neither the real-world behavior of role-based applications, nor does it result in a precise,
reproducible performance measurement. Still, the benchmarking of the individual role
implementations is important because it gives insights about the performance charac-
teristics in some particular conditions. This information might not be complete, but it
captures some characteristics that future role researchers might be interested in.

117

Chapter 11. Evaluation

10
28

,1
0

20
9,

12

20
0,

34

30
8,

46

13
,0

1

19
,2

8

19
,6

1

20
,7

4

20
,6

0

24
2,

93

56
,2

6

0,
29

1,
90

0,
45

0,
34

0,
38

0,
35

0,
38

0,1

1

10

100

1000

10000

S
C

R
O

LL

O
TJ

S
ca

la
R

ol
es

R
O

P

S
in

gl
et

yp
e

S
ep

ar
at

et
yp

e

S
ub

ty
pe

hi
dd

en
de

le
ga

tio
n

S
ub

ty
pe

in
te

rn
al

fla
g

S
ub

ty
pe

st
at

eo
bj

ec
t

tim
es

 in
 m

s

build avg. time (in ms) execution avg. time (in ms)

Managed Role Runtimes Unmanaged Role Runtimes (Pattern)

Figure 11.2.: Overall execution and build times of the bank example.

11.2.4. RESULTS AND SUMMARY

Even if the implemented benchmark based on the bank example does not reflect the real-
world behavior of role-based applications, it gives basic insights about the performance
characteristics of SCROLL when scaling the number of player, role and compartment
instances and the respective number of associations between them. In the largest bench-
marking case (with 1000 transaction compartments, each with 1000 persons playing the
customer role 1000 times, and each having a savings account attached), SCROLL performs
roughly twenty times slower than OT/J, and about four times slower than ScalaRoles or
the hand-crafted implementation when considering the build times (see Fig. 11.3). The
overall performance disadvantage is at around the factor of ten (see Fig. 11.4). Statically
modeled and compiled version of the bank example (e.g., with separate types or hidden
delegation) are faster, but lack almost all of the features of role-based programming.
For these implementation patterns, the whole adaptation logic, true delegation and the
semantics of roles need to be manually implemented and managed.

Overall, calculating the average values over build and execution times respectively,
SCROLL performs roughly five times slower than OT/J and ScalaRoles (see Fig. 11.2).
Again, the manually managed implementations with patterns are faster. The reason be-
hind this is SCROLL ’s use of the Java Reflection API to gather and manipulate the behavior
and structure at runtime. Via reflection, performing such tasks is, by magnitudes, more
expensive. Because reflection involves types that must be dynamically resolved, most of
the JVM optimizations cannot be applied. Consequently, reflective operations should be
avoided in sections of code which are called frequently in performance-sensitive applica-
tions. The focus of the thesis is on developing new methods for 4-dimensional dispatch
for role-based programming, but not on optimization as such, which is considered to be
the second step.

118

11.2. Quantitative Evaluation

Implementation

roles / players 10 100 1000 10 100 1000 10 100 1000
10 76,59 66,88 54,89 14,23 12,22 50,25 85,36 89,71 243,26

100 94,18 93,43 535,33 15,76 54,90 2237,80 88,39 1829,41 700,85
1000 224,25 513,96 6090,02 45,61 496,43 5288,26 123,29 716,99 7916,31

10 1,48 5,78 19,90 1,15 2,42 25,88 4,63 5,50 21,99
100 10,46 32,22 162,36 2,40 14,57 191,47 5,89 17,33 184,07

1000 61,85 163,96 1391,93 16,74 135,37 1360,65 20,85 157,68 1390,74
10 0,68 2,72 25,50 0,48 2,61 22,80 1,50 3,12 21,53

100 3,60 20,49 199,43 2,24 20,27 204,39 3,44 20,73 211,60
1000 25,38 213,34 2305,54 23,04 209,84 2283,61 24,54 229,06 2246,82

10 0,56 1,57 5,56 0,63 0,64 2,74 1,50 1,31 5,37
100 3,87 2,57 7,71 0,57 1,76 12,33 1,18 1,96 15,22

1000 2,91 8,74 72,15 1,43 8,18 106,16 2,21 9,56 72,89
10 0,67 1,46 3,32 0,43 0,63 3,94 1,07 1,34 4,99

100 1,52 5,00 16,97 0,49 1,98 19,25 1,38 2,64 22,31
1000 5,86 18,52 129,54 1,91 15,31 149,51 3,07 17,44 89,97

10 0,68 1,30 4,63 0,46 0,55 4,69 1,24 1,58 4,94
100 1,07 3,83 11,67 0,58 2,09 18,20 1,38 2,60 24,03

1000 3,51 8,21 126,09 1,90 16,90 164,40 2,90 18,56 101,54
10 0,62 1,39 5,52 0,37 0,53 3,55 1,07 1,60 5,71

100 1,03 4,24 12,63 0,50 2,01 17,72 1,33 4,13 18,34
1000 3,55 10,69 127,63 2,00 14,80 194,23 2,98 19,88 101,87

10 0,66 1,66 4,53 0,45 0,82 4,22 1,10 1,28 5,55
100 1,28 5,52 24,51 0,73 2,94 18,96 1,23 2,70 17,94

1000 5,18 16,40 156,21 2,78 19,66 141,23 2,84 19,81 95,98
10 161,64 183,15 190,73 162,28 167,19 190,44 167,89 174,13 197,86

100 173,18 187,87 207,79 173,94 174,30 220,57 172,87 185,74 241,12
1000 187,59 236,52 349,50 171,92 212,75 360,62 191,75 243,41 359,39

Subtypestateobject

OTJ

Transactions
10 100 1000

SCROLL

ScalaRoles

ROP

Singletype

Separatetype

Subtypehiddendelegation

Subtypeinternalflag

Figure 11.3.: Heatmap for build times of the bank example.

Implementation

roles / players 10 100 1000 10 100 1000 10 100 1000
10 1,80 9,33 62,88 79,03 36,54 215,07 387,11 593,56 1063,67

100 12,02 14,08 62,35 67,39 26,40 67,23 511,96 519,13 1065,49
1000 16,22 12,26 34,91 18,74 19,19 66,32 362,63 349,55 884,37

10 0,01 0,07 0,56 0,01 0,06 0,64 0,01 0,08 0,69
100 0,01 0,07 0,78 0,01 0,05 0,79 0,01 0,08 0,67

1000 0,01 0,10 0,88 0,01 0,08 0,86 0,01 0,08 1,13
10 0,03 0,25 1,45 0,04 0,34 3,00 0,07 5,83 6,44

100 0,03 0,16 3,04 0,03 0,28 4,18 0,16 0,65 8,54
1000 0,03 0,18 1,19 0,05 0,32 1,77 0,16 1,39 11,81

10 0,02 0,16 0,84 0,02 0,16 0,75 0,02 0,21 0,78
100 0,02 0,11 1,59 0,02 0,12 1,50 0,02 0,14 1,23

1000 0,02 0,15 1,44 0,04 0,15 1,30 0,02 0,16 1,20
10 0,01 0,12 0,74 0,02 0,13 0,55 0,03 0,18 0,80

100 0,02 0,09 1,30 0,01 0,08 1,10 0,02 0,09 0,80
1000 0,02 0,09 0,77 0,02 0,10 0,94 0,01 0,10 1,18

10 0,01 0,13 0,84 0,02 0,11 1,23 0,02 0,13 0,80
100 0,01 0,09 1,42 0,03 0,06 1,17 0,01 0,05 0,76

1000 0,02 0,11 0,80 0,02 0,08 0,91 0,01 0,10 1,24
10 0,02 0,15 0,73 0,01 0,17 0,93 0,01 0,13 0,46

100 0,02 0,08 1,21 0,01 0,08 1,12 0,02 0,10 0,75
1000 0,02 0,14 1,04 0,03 0,09 1,14 0,01 0,10 1,00

10 0,02 0,11 0,80 0,02 0,09 1,16 0,01 0,12 0,70
100 0,02 0,09 1,51 0,02 0,09 1,41 0,03 0,07 0,81

1000 0,02 0,16 0,88 0,02 0,13 0,75 0,03 0,17 1,14
10 17,63 19,38 18,87 37,13 36,61 41,30 100,78 105,94 108,99

100 15,52 20,99 18,48 36,01 45,28 37,72 94,63 103,77 116,62
1000 18,54 13,76 17,17 43,22 39,06 34,87 100,34 120,21 156,14

OTJ

ROP

Singletype

Separatetype

Subtypehiddendelegation

Subtypeinternalflag

Subtypestateobject

ScalaRoles

Transactions
10 100 1000

SCROLL

Figure 11.4.: Heatmap for execution times of the bank example.

119

Chapter 11. Evaluation

11.3. DISCUSSION

The evaluation for SCROLL in the scope of this thesis was split into four parts. First,
we analyzed the fulfillment of the requirements stated in Sect. 7. Secondly, SCROLL
was analyzed based on a previously defined classification scheme [Kühn et al., 2014].
Then, the variability analysis from Graversen [2006] was applied to SCROLL. Finally, we
benchmarked various implementations for roles at runtime and identified performance
bottlenecks of SCROLL. In sum, these are the results:

SCROLL is a very general approach The evaluation with regard to the derived re-
quirements clearly shows the various advantages of SCROLL, as it is able to im-
plement all of them, only failing at one (the required performance as explained in
Sect. 11.2).

Feature-based analysis of SCROLL To investigate how well the implementation
with SCROLL blends into contemporary approaches, the previously defined
scheme from Kühn et al. [2014] with 26 classifying features of roles was applied.
SCROLL fully implements 22 of them.

Summary for runtime feature analysis This section investigated the role semantics
by a feature analysis loosely based on Graversen [2006]. It was shown how SCROLL
supports those features. Instances of classes as the fundamental basis of roles in
SCROLL with their corresponding role-playing constraints and supertype restric-
tions are fully incorporated. Furthermore, many constraints with regard to the
cardinalities imposed on the player as well as the role side are supported. Rela-
tionships, e.g., with the concept of inheritance, can be handled and most of the
well-known properties (e.g., static methods, class methods and fields) are avail-
able within SCROLL. In addition, the analysis for role-specific behavior reveals
SCROLL ’s ability to dispatch calls on various entities (e.g., roles and its players, the
notion of self, and super). The notion of identity is discussed with the question in
mind if roles have an unique identity or it is rather shared between a role and its
player. When it comes to handling the life cycle of roles, SCROLL offers support
for a fairly simple implementation of role creation, attachment, movement and
removal. Finally, type related issues are discussed. As a result, it was shown that
SCROLL realizes a good balance for the role and compartment concepts with regard
to statically and dynamically languages.

Summary for quantitative evaluation For our benchmark suite, SCROLL performs
roughly five times slower than OT/J and ScalaRoles. Manually managed implemen-
tations with patterns are way faster. This slowdown stems from the heavy use of the
Java Reflection API to gather and manipulate the behavior and structure at runtime.
Via reflection, performing such tasks is expensive. Consequently, with reflective
operations being much slower than their non-reflective counterparts, they should
be avoided in sections of code which are called frequently in performance-sensitive
applications. In the scope of this thesis that is not to be considered critical, as it
focuses more on the conceptual features of dynamic dispatch.

120

12

THE ADVANTAGES OF SCROLL
In the modern software world, software systems are expected to adapt to a changing
environment. During their lifetime, new features are requested and existing requirements
change. Software written for a specific purpose may become useful in situations and
environments, which the developer did not anticipate. Object-oriented programming is
widely used to build extensible and flexible software systems. It is successful because it
supports programming with data structures that closely resemble the problem domain.
However, future software systems expect a higher level of dynamism, which is not offered
by classic object-oriented concepts. With dynamically typed, object-oriented scripting
languages, a flexible programming style is available. Modules, classes and objects can be
extended at runtime. But programming in a dynamically typed language comes at a cost:
without static type information, it is not possible to analyze programs statically and catch
entire classes of programming errors before actually running the program. The burden is
carried solely by the programmer. To cope with challenges posed from ubiquitous and
adaptive software systems, research proposed several approaches, including the concept
of roles. They allow to extract the context-dependent behavior from the objects itself
and model it in separate role types. Together with role-based dispatch, a new level of
separation of concerns within those objects is reached. The core behavior and structure
of an object is defined in its natural type. Context-dependent and evolving parts are
specified in role types. Moreover, role-playing objects are able to start and stop playing
roles to adapt their behavior and structure dynamically during runtime, without the need
for re-instantiation.

Because a declarative and parameterizable approach for four-dimensional, context-
aware dispatch at runtime is not yet available, the method-call interception DSL SCROLL
and its MOP were presented. The DSL SCROLL embeds the dynamic semantics of roles
and their dispatch in a statically typed, object-oriented language (Scala), utilizing only
those features that are available through its standard compiler. The SCROLL library
allows for easy integration of legacy code and a high separation of concerns. Having
a statically-typed host language for roles supports the developer with the advantages
of static typing and dynamic objects at the same time. With SCROLL, arbitrary objects
can be augmented dynamically with new functionality or state. Moreover, obstacles
arising from split-objects can be solved with a compound object, enabled by dynamic
conversions and an adapted notion of object identity. Using Scala’s Dynamic trait together
with a definition table allows for easy querying for behavior that is not natively available at
the player. For that, SCROLL requires a concept for explicitly triggering compiler rewrites
handing over calls to the library for finding behavior that is not natively available at the
player but at its roles (role dispatch). For aggregating a compound object from the player
and its roles, implicit conversions are needed. The relationships between each player
and its roles are stored within the definition table, the role-play graph. Additionally, a
declarative and parameterizable approach for four-dimensional, context-aware dispatch
was presented in SCROLL ’s MOP that enables the developer of adaptive systems to
overcome the ambiguities introduced with role-playing objects. We have demonstrated
how objects can be augmented dynamically with new functionality or state grouped
together in roles and structured contexts.

If one is able to find or emulate these three concepts in a statically-typed, object-
oriented language, it is easy to provide an alternative implementation of SCROLL. Hence,
the approach is generally applicable.

121

Faculty of Computer Science Institute of Software- and Multimedia-Technology

Software Technology Group

PART IV.

RELATED WORK, CONCLUSION,
AND OUTLOOK

123

13

ROLES WITH PATTERNS OR OTHER
PROGRAMMING LANGUAGES

13.1. ROLES WITH PATTERNS

The following section demonstrates the advantages of the proposed library approach
for pure embedding of roles by comparing it to simple, manually instantiated imple-
mentations and design patterns widely used when people try to cope with the required
dynamics [Fowler, 1997]. Those pattern-based solutions suffer under various problems,
such as single, too complex types, restricted scalability, or the need for hand-written
management code, as listed in Table 13.1.

The most basic solution would be to use one single type for the player and its roles. If
they do not differentiate in behavior too much and are not target for future changes, this
would be a valid solution without any over-engineering. On the downside, this single
type can be complex and, consequently, is hard to maintain. If roles introduce different
features, they might be implemented as separate types. This in turn, removes coupling
and unnecessary tangling of relationships between the types. On the downside, having
roles as completely separate types introduces the duplication of features and a loss of
integrity with shared state and behavior. Using subtypes and putting the common things
into the supertype for each role overcomes the issues of the duplication of features and of
the loss of integrity with shared state and behavior while still being conceptually simple.
On the downside, the resulting inheritance hierarchy is hard to evolve with multiple or
changing roles as each of them requires the interface of the supertype to be changed,
as well. In general, the classification of domain objects introduced by inheritance is too
static.

Alternatively, the Role-Object-Pattern [Bäumer et al., 1997] can be used. In this pattern,
the player has a multi-valued association to its roles as separate subtypes of a common
supertype. This is a straightforward implementation technique that avoids changing the
interface when introducing new extensions. It becomes complicated when dealing with
constraints between roles or with shared state. Additionally, the split-object problem
needs to be targeted explicitly. Also, clients of the compound object have to deal with
role-based dispatch, encapsulation, and object comparison manually [Herrmann, 2010].
Although the concepts of multiple inheritance and traits can be used to implement
roles, they will lead to static systems with an exponential blowup in the number of
required contexts [Kühn et al., 2014]. Additionally, parallel object hierarchies occur,
where cross-tree constraints are hard to maintain [Fowler, 1997]. Delegation, on the other
hand, mimics the inheritance mechanism on object level. This requires the generation
of management code and can lead to object schizophrenia, too. Finally, delegation-
layers [Ostermann, 2002] define layers that group behavior for sets of objects and for sets
of classes. These layers imply fixed hierarchies and thus, a system design that is too static.

Using pattern-based solutions for implementing roles is subject to a number of trade-
offs. Nevertheless, any of the patterns can be the appropriate pattern for a specific
problem and with this, a dogmatic adherence to one specific pattern is not the answer.
The trade-offs have to be understood and evaluated. The SCROLL DSL provides a clean
solution for roles at runtime in structured contexts. It does not suffer from the aforemen-
tioned problems, such as single, too complex types, object schizophrenia, or the need for
hand-written management code.

125

Chapter 13. Roles with Patterns or other Programming Languages

Si
n

gl
e

co
m

p
le

x
ty

p
e

Sh
ar

ed
st

at
e

/
b

eh
av

io
r

Sc
al

ab
il

it
y

In
te

rf
ac

e

C
h

an
ge

C
o

n
st

ra
in

ts

O
b

je
ct

sc
h

iz
o

p
h

re
n

ia

E
xp

o
n

en
ti

al
b

lo
w

u
p

St
at

ic
d

es
ig

n

P
ar

al
le

lh
ie

ra
rc

h
ie

s

M
an

ag
em

en
tc

o
d

e

Single Type ■ ■ ■ ■ ■
Separate Type ■ ■ ■ ■
Subtype With Internal Flag ■ ■ ■ ■ ■ ■ ■ ■
Subtype With Hidden Delega-
tion

■ ■ ■ ■ ■ ■ ■ ■

Subtype With State Object ■ ■ ■ ■ ■ ■ ■
Role Object Pattern ■ ■ ■ ■
Multiple Inheritance / Traits ■ ■ ■ ■ ■
Delegation / Delegation Layers ■ ■ ■ ■

Table 13.1.: Comparison of approaches for establishing dynamic objects at runtime
(solely based on [Fowler, 1997]). ■ indicates that there is a problem in the
given category. This comparison considers only approaches that do not rely
on custom compilers, generators, or other tooling.

13.2. ROLES WITH OTHER PROGRAMMING LANGUAGES

This section discusses how different programming techniques can be used to realize roles.
Furthermore, we analyze different role-based languages already in existence and evaluate
them with regard to their support for the role features already presented (Table 3.1).

13.2.1. GENERAL PURPOSE- , ASPECT-ORIENTED-, AND
SUBJECT-ORIENTED LANGUAGES

Roles may be implemented with statically-typed, object-oriented languages. With the
ExpandoObject [Microsoft, 2016], C# can be considered as the most promising language
to provide an alternative implementation of SCROLL. The ExpandoObject represents an
object that allows for dynamically adding and removing its members at runtime. However,
compared to SCROLL, this works at another level of granularity. Only single members, like
a function or an attribute, can be attached or removed at a single point in time. SCROLL
allows for grouping those members together (e.g., into classes or case classes) and adding
or removing all contained members at once. A better separation of concerns is achieved
this way. Manipulating C++’s vtable could be an additional alternative to handle the
dynamic addition and removal of behavior and structure of objects at runtime. Sadly,
vtable mappings from function or structure definitions to implementation locations are
always applied to the type of an object, i.e., are valid for all instances of this type. Thus,
role-playing could only be achieved on the type level limiting the flexibility of roles.

Aspect-oriented programming allows for implementing cross-cutting concerns via
join-points and pointcuts. Often, the composition is done statically although there exist
a few dynamic approaches. For instance, OT/J [Herrmann, 2005] uses dynamic aspect
weaving at bytecode-level for adding behavior. On the other hand, subject-oriented
programming can define views on different class hierarchies from different perspectives.

126

13.2. Roles with other Programming Languages

On the downside, it does not support dynamic composition and the set of composi-
tion operators is fixed. Furthermore, control flow on the composition itself cannot be
specified.

13.2.2. OTHER ROLE-BASED LANGUAGES

Interestingly, most of the existing role-based programming languages are extensions to
Java. They are either compiled to Java source code [Østerbye, 2003; He et al., 2006; van der
Torre, 2006; Barbosa and Aguiar, 2012] or to bytecode [Herrmann, 2005] directly.

13.2.2.1. CHAMELEON

1 class Person {
2 int height;
3 String name;
4
5 void say(String s){
6 System.out.print(name+s);
7 }
8 }
9

10 role Teacher roleifies Person {
11 String getname() { return "Teacher " + name; }
12
13 void teach() { /* ... */ }
14 }
15
16 role Supervisor roleifies Teacher { /* ... */ }
17
18 Person p1 = new Person("Windy");
19 Person p2 = new Person("Bert");
20 Teacher t = new Teacher(p1);
21
22 void accounting(Teacher t) {
23 Supervisor s = t as Supervisor;
24 /* ... */
25 }

Listing 13.1.: Code example of Chameleon.

Chameleon [Østerbye, 2003] provides roles through constituent methods overwriting constituent

methodsmethods of their players, which work like advices in aspect-oriented programming. Those
are different from normal methods, as they cannot be invoked explicitly. Constituent
methods hook on to methods in its player and are executed before, after, or instead of
the original methods. They have the possibility to change input arguments and return
value. Constituent methods are comparable to advices in AspectJ, whereas pointcuts
in Chameleon are defined as hooks for constituent methods. With this technique, an
object can be extended without references to roles. When more than one constituent
method hooks onto a method, priorities accompanying the constituent methods avoids
undeterministic behavior. However, unlike static aspect languages, the priorities are
modifiable per object at runtime enabling the order of execution to conform to the
objects context. Chameleon has chosen to extend Java due to its wide use. It uses a
generative approach. Thus, to transform players and roles, all classes are extended with
a role manager field and its instantiation. Then, any direct field access is only viable
via accessor calls and accessor methods. Additionally, all method definitions use and
remember an explicit self reference. With that, all implicit method calls are changed to
call the explicit self reference directly. A role extend its player directly because forwarder

127

Chapter 13. Roles with Patterns or other Programming Languages

Role R2Role R1

Role Manager

Intrinsic

Entity

Figure 13.1.: Chameleon handles access to the player by a role manager. This manager in-
tercepts every access. Accessing properties of roles is not intercepted [Øster-
bye, 2003].

accessor methods are created for all fields which are shared with the player. Finally,
forwarder methods for all methods in the player, not redefined in the role, are added.

Listing 13.1 shows an example. There are no changes in the syntax in comparison
to Java. The class Person is not prepared for roles. The role Teacher defines the new
property teach, and changes how the name field is accessed to include the job title. Field
access is converted to method calls as explained above and redefines the method for
accessing the name field. With that, when invoking say on a teacher role, the output will
be prefixed. Using the teacher reference t, Windy may now teach. An as operator can
be used to see a person through a certain role. As a major drawback of Chameleon, its
roles extend the player to gain access to it, which limits the flexibility of roles [Kühn et al.,
2014].

13.2.2.2. RAVA

Rava [He et al., 2006] overcomes the inflexibility of roles extending their players to gain
access to it by employing the Role-Object-Pattern [Bäumer et al., 1997] extended with the
Mediator-Pattern [Gamma et al., 1994].

Rava uses four special keywords to steer the generation of management code to plain
Java. ROLE followed by a name, defines a new role type. With roleOf, the set of classes is
configured that roles can be bound to. The keyword @core can be used in role methods
to access the players methods and attributes. Finally, with the annotation @INVOKEROLE
parameterized with a role name, or the name of a role method with its arguments, a role
method is called. For the translation of roles, the Rava compiler analyzes the tokens by the
keywords ROLE, extends, implements, and roleof. ROLE gets converted into a standard
Java class. The roleof section is removed but every mentioned class is modified to
implement RoleInterface. In an additional private attribute of a role type, the link to
the player is available. A constructor is added to save the role binding rules during the
instantiation of role types. Furthermore, a simple access function (getBindingClasses)
allows for querying binding rules from role definitions. Finally, if a role definition contains
the @core keyword, it gets converted to the player name bound with the role object.

128

13.2. Roles with other Programming Languages

1 class Person {
2
3 String name;
4
5 int deposite;
6
7 public String getName(){
8 return name;
9 }

10 }
11
12 ROLE Employee roleof Person {
13 public int getPaid(int salary) {
14 @core Person().deposit += salary;
15 return deposit;
16 }
17 }
18
19 class Foo {
20 public static void main(String args[]) {
21 Person aPerson = new Person();
22 Integer salary = new Integer(2000);
23 @INVOKEROLE(aPerson, "Person", "Employee", "getPaid", salary);
24 }
25 }

Listing 13.2.: Code example of Rava.

Listing 13.2 shows an example [He et al., 2006]. Due to the use of the Role-Object Pattern
and generation to plain Java, this solution suffers from object schizophrenia [Herrmann,
2010]. A running compiler was not available online during the development of this thesis.

13.2.2.3. JAVASTAGE

JavaStage [Barbosa and Aguiar, 2012] solves the problem of object schizophrenia by only
supporting static roles and is implemented as extension to Java, generating pure Java
code by a custom compiler. Roles are directly compiled into the players as inner classes.
To avoid name clashes, a customizable method renaming strategy is applied. Its main
advantage is the capability to specify a list of required methods instead of a specific player
class. This approach limits itself to static roles, unable to represent their relational and
context-dependent nature.

Listing 13.3 shows an example written in JavaStage, demonstrating the management
of observers in container classes. The subject role of the observer pattern is a con-
tainer. A generic role is defined for this container and the subject inherits from it. The
FocusSubject plays the GenericSubject role. Methods defined in natural types, i.e.,
classes, always take precedence over role methods. Conflicts may arise when a class
plays roles that have methods with the same signature or when an inherited method
has the same signature of a role method. The compiler will issue a warning. Developers
can handle these conflicts by renaming the method and calling the intended one. This
renaming not mandatory because the compiler uses, by default, the method of the first
role in the plays clause order. With this rather static approach, JavaStage does not provide
a configurable dispatch at runtime like SCROLL does.

129

Chapter 13. Roles with Patterns or other Programming Languages

1 public role GenericContainer<ThingType> {
2 private Vector<ThingType> ins = new Vector<ThingType>();
3
4 public void add#Thing#(ThingType t) { ins.add(t); }
5
6 public void remove#Thing#(ThingType t) { ins.remove(t); }
7
8 protected Vector<ThingType> get#Thing#s() { return ins; }
9 }

10
11 role GenericSubject<ObserverType,EventType> extends

GenericContainer<ObserverType> {
C

C

12
13 requires ObserverType implements void #Fire.update#(EventType e);
14
15 protected void fire#Fire#(EventType e) {
16 for(ObserverType o : get#Thing#s())
17 o.#Fire.update#(e);
18 }
19 }
20
21 public role FocusSubject {
22
23 plays GenericSubject<FocusObserver,FocusEvent>(
24 Fire = FigureChanged,
25 Fire.update = figureChanged,
26 Fire = FigureMoved,
27 Fire.update = figureMoved,
28 Fire = FigureRemoved,
29 Fire.update = figureRemoved,
30 Thing = FigureObserver) figureSbj;
31 }

Listing 13.3.: Code example of JavaStage.

13.2.2.4. RUMER

Rumer [Balzer et al., 2007] offers first-class relationships and modular verification over
distributed state. Furthermore, it provides several intra-relationship constraints to restrict
these relationships. Roles are the named places of a relationship with attributes and
methods, but without inheritance. Roles are only accessible within a relationship and
not from their player. The existence of an appropriate abstraction to reason about
systems composed of classes and relationships is a prerequisite to their specification. As
relationships describe the common properties of a collection of groups of collaborating
objects, in Rumer they are abstracted as sets of object tuples. Member interposition allows
for adding properties to roles (e.g, in Listing 13.4 Line 9). Additionally, Rumer allows
defining several inter-, intra and value-based relationship invariants (e.g., surjective,
asymmetric or irreflexiv, forAll, isDefined, or numberOf). A running compiler has
not been available online during the development of this thesis.

130

13.2. Roles with other Programming Languages

1 relationship Attends
2 participants (Student learner, Course lecture) {
3 int mark;
4 }
5
6 relationship Assists
7 participants (Student ta, Course course) {
8 // attribute interposed into role ta
9 String >ta instructionLanguage;

10 }
11
12 relationship WorksFor
13 participants (Student ra, Faculty supervisor) {
14 int >ra grantAmount
15 }
16
17 relationship Substitutes
18 participants (Faculty substitute, Faculty substituted) {
19 invariant surjectiveRelation(Substitutes)
20 && asymmetric(Substitutes)
21 && irreflexive(Substitutes);
22 }
23
24 relationship WorksFor
25 participants (Student ra, Faculty supervisor) {
26 int >ra grantAmount;
27
28 invariant relation(WorksFor)
29 && ra.year > 2
30 && partialFunction(grantAmount) in N;
31 }
32
33 invariant (Attends, Assists) enoughAssistants:
34 forAll c (isDefined(Assists.select(course == c).maxGroupSize)
35 =⇒
36 numberOf(Attends.lecture.select(c)) <=
37 numberOf(Assists.course.select(c)) * Assists.select(course ==

c).maxGroupSize);
C

C

Listing 13.4.: Code example of Rumer.

13.2.2.5. SCALAROLES

ScalaRoles [Pradel and Odersky, 2009] is probably the closest relative to SCROLL. It is
implemented as Scala library as well. With ScalaRoles, a player with temporarily attached
role objects is created as a compound object, as shown in Fig. 13.2. The compound object
is represented to the outside by a dynamic proxy that delegates calls to the appropriate
inner object. Such a dynamic proxy is a particular object provided by the Java API. Its
type can be set when creating it through a list of Java interfaces. Internally, dynamic
proxies are realized by building and loading an appropriate class file at runtime. The
behavior of the proxy is specified reflectively by an invocation handler, that is, an object
providing an invoke method that may delegate method calls to other objects. Thus, its
type is made up of the core object’s type and the types of the role objects that are currently
bound to it. The invocation handler of the proxy has a list of inner objects, one player
and arbitrary many role objects, and delegates calls to the responsible objects. This
is very close to the SCROLL approach, but additionally, compiler rewrites are used for
calls to role objects. Policies mapping method calls to inner objects may be specified.

131

Chapter 13. Roles with Patterns or other Programming Languages

Role 1
Role 2

Core

ProxyClient

Figure 13.2.: For building compound objects, the dynamic proxy generated will intercept
calls and delegates them via an invocation handler [Pradel and Odersky,
2009].

The default is to reflectively delegate to role objects whenever they provide the required
method and, otherwise, to the player, such that roles override the behavior of their player.
Managing the compound object, creating a dynamic proxy with the appropriate type,
and configuring the invocation handler is hidden from the user through a single operator
called as. The expression object as role allows to access an object playing a certain
role by temporarily binding role to object which is semantically close to SCROLL ’s +-
operator. Nevertheless, ScalaRoles lacks an explicit dispatch description mechanism to
alter the aforementioned mapping policies for method class. Hence, the developer has to
manually write the required management code here.

1 trait ThesisSupervision extends Collaboration {
2
3 val student = new Student{}
4
5 val professor = new Professor{}
6
7 trait Student extends Role[Person] {
8 var motivation = 50
9 var wisdom = 0

10 def work = wisdom += motivation/10
11 }
12 trait Supervisor extends Role[Person] {
13 def advise = student.motivation += 5
14 def grade = if (student.wisdom > 80) "good" else "bad"
15 }
16 }
17 // a master student
18 val jim = new Person("Jim")
19 // a PhD student
20 val paul = new Person("Paul")
21 // a professor
22 val peter = new Person("Peter")
23 val master = new ThesisSupervision {}
24 val phd = new ThesisSupervision {}
25 (jim as master.student).work
26 (paul as master.supervisor).advise
27 (paul as phd.student).work
28 (peter as phd.supervisor).grade
29 (peter as phd.supervisor).name

Listing 13.5.: Code example of ScalaRoles.

For a role-based application with ScalaRoles, the relation between a student at a uni-
versity and his supervisor is chosen as example. The student gains motivation when
being advised by the supervisor and wisdom when working, and the amount of gained
wisdom depends on the student’s current motivation. With the class Person, supervisor
and student can be modeled as roles of it. Listing 13.5 shows a collaboration with two

132

13.2. Roles with other Programming Languages

roles (Supervisor and Student). A concrete collaboration must extend the abstract
trait Collaboration. Doing so, it inherits the inner trait Role that can be extended by
concrete roles.
Role takes a type parameter that specifies the type of possible players playing the role.

This enables the binding of roles to arbitrary objects, like with SCROLL. To use a collabora-
tion, its corresponding trait must be instantiated. Persons are accessed playing a certain
role with the aforementioned as operator. A role must be qualified with a collaboration
instance. The main benefit of instantiating collaborations is that roles may be used multi-
ple times in different contexts. It is also noteworthy that role-playing objects still have the
type of their player. Furthermore, a role itself can always access its current player using
a method core. The state of the roles in a concrete collaboration instance is preserved
between different uses of the as operator. The practical implementation using Scala’s
traits as roles reveals the problem that the order of role binding influences the resulting
type, e.g., a person playing the father role first and then the student role is another type
than the same person playing those roles the other way around. Nevertheless, ScalaRoles
can be seen as the predecessor in the spirit of SCROLL. The concept of the compound
object stems from it, although it is technically implemented differently (dynamic proxies
versus Dynamic trait with compiler rewrites and implicits).

13.2.2.6. OBJECTTEAMS/JAVA

The most sophisticated and mature approach to roles-based programming so far is
OT/J [Herrmann, 2005]. Like Chameleon, OT/J allows overriding methods of a player
by aspect weaving on bytecode (both statically and dynamically) and thus, without
any source code transformation. It introduces the concept of a team representing a team

compartment whose inner classes automatically become roles (there is no additional
keyword for roles). Role definitions can be attached via the playedBy-declaration to playedBy

its players. Notably, OT/J supports both the inheritance of roles and teams whereas
the latter leads to family polymorphism [Herrmann et al., 2004]. Every team instance
manages its pool of role instance at runtime via caching, role binding is done implicitly
once an object enters the corresponding team scope for the first time (implicit lifting).
OT/J extends the classical role features (e.g., roles, players, plays-relation) by callin and callin

callout. The first denotes a method call that is intercepted by the player and forwarded callout

to its roles. The latter describes a method call that is intercepted by a role currently
played. This role method then calls the corresponding implementation of its player.
OT/J is fully integrated into Eclipse. On the downside, it does neither support multiple
unrelated player types for a role type, nor first class relationships, and only a restricted
form of constraints. Table 13.2 lists the mapping from the classical role concepts to the
implementation approaches used by OT/J.

In the following, the process of method dispatching within OT/J is discussed. Lifting
is a translation that considers the dynamic type of a base instance in order to return a
role instance of the most suitable role type [Herrmann et al., 2004]. This handles the
details of the polymorphic access of role classes. The selection of an appropriate role
type commonly precedes the sending of a method to the role. With this technique, roles
fit into the general setting of object-oriented methods.

Additionally, some concepts of OT/J are capable for serving for aspect-oriented pro-
gramming. With regard to the aspect-oriented facilities of OT/J, roles are comparable to
aspects. From this point of view, role methods are designated to function like advices.
Callin method bindings realize aspect weaving. For higher flexibility and re-usability,
it is desirable for role methods to behave like normal methods in object-oriented lan-
guages. For an example, consider Listing 13.6 of a tracking aspect for a method incrXY for

133

Chapter 13. Roles with Patterns or other Programming Languages

Reference role concept Role concept of OT/J

Context definition Class with team prefix
Context Instance of a team class
Role definition Inner class of a team class
Role Instance of an inner class of a team class
fills-relation Role definitions bound with the played-by declaration
plays-relation link between roles and its player
use-relation Inner class being contained in its outer class
part-of-relation Mapping from a player to its roles in the cache of a team

class instance

Table 13.2.: Reference role concepts and their OT/J counterparts.

FigureElement. The aspect also applies to the subclass Point, where it should behave
in a slightly different way as for class FigureElement. For this purpose, the appropriated
advice is redefined. OT/J has the ability to face the problem of overriding an advice:
callin bound role methods can be overridden in role subclasses which are bound to more
special base classes. The role PointTracker inherits from FigureTracker and is bound
to the more special base class Point. In the role subclass the method trackIncr is re-
defined as needed. Calling incrXY() on a FigureElement will now cause an invocation
of FigureTracker.trackIncr, while calling the same method on a Point object (or
any subclass), will lead to an execution of the overridden trackIncr in PointTracker,
because the lifting mechanism lifts each Point to a PointTracker role.

1 class FigureElement {
2 public void trackIncr () { /* ... /* }
3 /* ... /*
4 }
5
6 public team class TrackerTeam {
7 class FigureTracker playedBy FigureElement {
8 public void trackIncr () {
9 System.out.println("TrackerTeam : Moving a figure element");

10 }
11
12 abstract int getX();
13 abstract int getY();
14
15 getX → getX;
16 getY → getY;
17
18 trackIncr ← after incrXY;
19 }
20
21 class PointTracker extends FigureTracker playedBy Point {
22 public void trackIncr () {
23 System.out.println("TrackerTeam : Moving the point at (" + getX() + ",

" + getY() + ")");
C

C

24 }
25 }
26 }

Listing 13.6.: Code example of ObjectTeams/Java.

Dynamic dispatch can be seen as a mechanism for combining shared and un-shared parts
of an implementation. With OT/J, lifting can be seen as an analogy to method dispatch.
In the following, a method call on a base instance is considered which is potentially

134

13.2. Roles with other Programming Languages

affected by a callin binding in the system. Before any method is actually invoked, lifting
may perform dynamic instance dispatch. This means the stack of active teams that are
representing the current context is investigated in order to find the most suitable call
target. Method dispatch only needs one type for lookup: the dynamic type of the call
target. Lifting, however, requires three pieces of information: a base instance (given at
the call site), a team instance (retrieved from the global state of the program as the set
of all currently active teams) and a required role type (all role classes that have a callin
binding for the particular base method being called). Given that more than one team may
be active affecting the same base method by callin, teams are internally kept in a stack,
where the most recently activated team has the highest priority for method interception.
This priority cannot be configured. Hence, OT/J does not allow for same configurable,
dynamic dispatch as SCROLL does.

13.2.2.7. POWERJAVA

PowerJava [Arnaudo et al., 2007] is similar to the OT/J approach. It also introduces
compartments, denoted institutions, whose inner classes represent roles. However, institutions

powerJava features the distinction between role interface and role implementation where
the former is callable from outside a specific institution and the latter is the institution-
specific implementation of the same interface.

1 interface StudentReq {
2 String getName();
3 int getSocialSecNumber();
4 }
5 role Student playedby StudentReq {
6 String getName();
7 void takeExam(int examCode, HomeWork hwk);
8 int getMark(int examCode);
9 }

10
11 interface TeacherReq {
12 String getName();
13 int getSocialSecNumber();
14 int getQualificationNumber();
15 int read(HomeWork hwk);
16 }
17 role Teacher playedby TeacherReq {
18 String getName();
19 int evalHomeWork(HomeWork hwk);
20 }

Listing 13.7.: Code example of powerJava (role definitions).

For example (see Listing 13.7), the role Student has a Person as its player and it is always
a student of a School. The specification of the capabilities and the requirements of the
roles Student and Teacher are introduced. The roles specify, similar to an interface, the
signatures of the methods that correspond to the capabilities that are assigned to the
objects playing the role. For example, they return the name of the Student (getName), or
submit a homework as an examination (takeExam). Moreover, a role definition is coupled
with the specification of its requirements by the keyword playedby. This specification is
given by means of the name of a Java interface, e.g., StudentReq, imposing the presence
of methods getName and getSocialSecNum (his social security number). Roles add
behavior called powers in powerJava to objects playing the roles. Power means the powers

capability to modify the state of the institution which defines the role and the state of
the other roles defined in the same institution. In the example, the method for taking an

135

Chapter 13. Roles with Patterns or other Programming Languages

exam in the school must be able to modify the private state of the school. If that exam
is successful, the grade should be added to the registry of exams in the school by the
teacher. Analogously, the student’s method for taking an exam can invoke the teacher’s
method of evaluating an examination.

Powers seem to violate the standard encapsulation principle, where the private vari-
ables are only visible to the class they belong to. However, here, the encapsulation
principle is preserved: all roles of an institution depend on the definition of the institu-
tion. Therefore, it is the institution itself which gives access to private fields and methods
of roles. The role class as inner class is extended with the keyword realizes which
specifies the name of the role specification, the inner class is implementing.

1 class School {
2 private int [][] marks;
3 private Teacher[] teachers;
4 private String schoolName;
5
6 School (String schoolName) { this.schoolName = schoolName; }
7
8 class StudentImpl realizes Student {
9 private int studentID;

10 public int getStudentID() { return studentID; }
11 public void takeExam(int examCode; HomeWork hwk) {
12 marks[studentID][examCode] = teachers[examCode].evalHomeWork(hwk);
13 }
14 public String getName() {
15 return that.getName() + ", student at " + schoolName;
16 }
17 }
18
19 class TeacherImpl realizes Teacher {
20 private int teacherID;
21 public int getTeacherID() { return teacherID; }
22 public int evalHomeWork(HomeWork hwk) {
23 mark = that.read(hwk);
24 return mark;
25 }
26 public String getName() {
27 return that.getName() + ", teacher at " + schoolName;
28 }
29 }
30 }
31
32 class Person implements StudentReq {
33 private String name;
34 private int socialSecNumber;
35 Person(String name, int socialSecNumber) {
36 this.name = name;
37 this.socialSecNumber = socialSecNumber;
38 }
39 String getName() { return name; }
40 int getSocialSecNumber() { return socialSecNumber; }
41 }

Listing 13.8.: Code example of powerJava (institution definition).

An institution is a class with inner classes realizing roles in the same way as a class
implements an interface. StudentImpl realizes the role Student, inside the institution
School (see Listing 13.8). Since the behavior of a role instance depends on its player, in
the method implementation, the player instance can be retrieved via the new keyword
that (e.g., in Listing 13.8 at Line 15). This keyword refers to the object which is playing the

136

13.2. Roles with other Programming Languages

role, and it is used only in the role implementation. To play a role, it is sufficient that the
object conforms to the role requirements. Since the role requirements are a Java interface,
it is sufficient that the class implements the methods of such an interface. The class
Person can play the role Student, because it implements the interface StudentReq.

PowerJava is one of the few research prototypes providing a working compiler. It trans-
lates powerJava code to pure Java by means of a pre-compilation phase. Nevertheless,
the project has been abandoned [Wielenga, 2013].

13.2.2.8. NEXTEJ

A more recent approach towards context-oriented programming is NextEJ [Kamina and
Tamai, 2009] as the successor of EpsilonJ [S. Monpratarnchai, 2008]. It provides contexts
as first-class citizens which do not only group roles but also represent an activation scope
at runtime. These context activation scopes can be nested and act as a barrier where all context

activation

scopes

roles are instantiated and bound automatically.

1 context Building {
2 role Guest {
3 void escape() { /* ... */ }
4 }
5 role Security {
6 void notify() { Guest.escape(); }
7 }
8 }
9 context Shop {

10 role Customer {
11 void buy(Item i) {
12 int p = i.getPrice();
13 Seller.getPaid(p);
14 }
15 }
16 static role Seller {
17 void getPaid(int price) { /* ...*/ }
18 }
19 }
20
21 Building midtown = new Building();
22 Person tanaka = new Person();
23 Person suzuki = new Person();
24 Person sato = new Person();
25
26 bind
27 tanaka with midtown.Guest(),
28 suzuki with midtown.Guest(),
29 sato with midtown.Security() {
30 /* ... */
31 sato.notify();
32 }

Listing 13.9.: Code example of NextEJ.

Listing 13.9 presents an example. It features two contexts, Building and Shop. Inside
a building, there are several roles such as Guest, Administrator, Security agent, and
Owner. Similarly, there are some roles inside a shop, e.g., Customer and Seller. When a
person enters a building, this person assumes the role of a guest. Similarly, the person
plays the role of a customer when entering a shop. There are many interactions among
roles, e.g., a security agent notifies all guests in the case of emergency, or a seller sells an
item to the customer. When leaving a context, the person quits the role played previously.

137

Chapter 13. Roles with Patterns or other Programming Languages

Furthermore, shops may be inside a building, thus a person may enter multiple contexts
at the same time. Inside contexts and roles, methods and fields can be declared, just as
with classes. A context can be instantiated with the new expression. On the other hand,
an instance of role cannot be created explicitly. A role instance is always associated with
an instance of its enclosing context. The method call Guest.escape() is interpreted as
calling the methods escape() of all the Guest instances. An object entering contexts
is created as a class instance. An object enters a context by playing one of its roles.
Furthermore, an object can be bound with multiple role instances and can activate or
deactivate some of them.

The code beginning from the keyword bind (Listing 13.9 at Line 26) is called a context
activation scope. Before entering the execution scope, it creates role instances and
binds them with the corresponding objects, if these objects are not bound with the
corresponding roles. If an object is already bound with the corresponding role, this
role instance is activated. After entering the execution scope, it is assumed that each
object declared in the bind clause is bound with the corresponding role instance. For
example, sato is bound with a role midtown.Security(). Inside the following block,
sato acquires the behavior (and states) declared in Building.Guest, thus the method
notify() declared in Building.Guest can be called safely on sato. Inside the context
activation scope, it is considered that sato is a subtype of Person and midtown.Guest.
Outside the context activation scope, it is impossible to access methods declared in roles.
This does not mean that the acquired role is discarded outside the scope. Instead, the role
instance and its states are retained but deactivated, recovering the original behavior of
the object. The retained role instance will be activated again if the object enters the same
context again. Additionally, contexts on NextEJ can be nested hierarchically and multiple
contexts can be activated at a time. The behavior of a composite context is determined
by the order of activation of the constituents. So far, the authors of NextEJ only published
their type-system of the core calculus but did not supply a compiler.

13.2.2.9. SUMMARY

In conclusion, it is necessary to investigate how well the implementation of roles at run-
time with SCROLL blends into contemporary approaches. We use an already published
classification scheme from the literature with 26 classifying features of roles [Kühn et al.,
2014]. SCROLL fully implements 22 of them. A compact overview is given in Table 13.3.

138

13.2. Roles with other Programming Languages

Fe
at

u
re

C
h

am
el

eo
n

[Ø
st

er
b

ye
,2

00
3]

O
T

/J
[H

er
rm

an
n

,2
00

5]

R
av

a
[H

e
et

al
.,

20
06

]

p
ow

er
Ja

va
[v

an
d

er
To

rr
e,

20
06

]

R
u

m
er

[B
al

ze
r

et
al

.,
20

07
]

Sc
al

aR
o

le
s

[P
ra

d
el

an
d

O
d

er
sk

y,
20

08
]

N
ex

tE
J

[K
am

in
a

an
d

Ta
m

ai
,2

00
9]

Ja
va

St
ag

e
[B

ar
b

o
sa

an
d

A
gu

ia
r,

20
12

]

SC
R

O
L

L

1. ■ ■ ■ ■ ■ ■ ■ ■ ■
2. □ ⊞ □ ⊞ ■ □ ⊞ □ □
3. ■ ■ ■ ■ ■ ■ ■ ■ ■
4. ■ ■ □ ■ ■ ■ ■ □ ■
5. ■ ■ ■ ⊞ ■ ■ ■ ■ ■
6. □ ■ □ ■ ■ □ □ ■ ■
7. ■ □ ■ ■ ⊞ ■ ■ ■ ■
8. □ ■ □ ■ □ ■ ■ ■ ■
9. ■ □ □ ■ □ ■ ■ □ ■
10. ■ ■ ■ ■ ■ ■ ■ ■ ■
11. ■ ■ ■ ■ ■ ■ ■ ■ ■
12. ■ ■ ■ ■ ■ ■ ■ ■ ■
13. □ ■ ■ ■ □ ■ □ ■ ■
14. ⊞ ⊞ □ □ ■ ■ ⊞ □ ■
15. ■ ■ ■ ■ □ ■ ■ ■ ■
16. □ □ □ □ ■ □ □ □ □
17. □ □ □ □ □ □ □ □ □
18. □ ■ □ □ ⊞ ⊞ ⊞ □ ■
19. □ ■ □ ⊞ ⊞ □ ■ □ □
20. □ ■ □ ■ ■ ■ ■ □ ■
21. □ □ □ ■ □ ⊞ ■ □ ■
22. □ ■ □ □ ■ □ □ □ ■
23. □ ■ □ □ □ □ □ □ ■
24. □ ■ □ ⊞ ■ ■ ■ □ ■
25. □ ■ □ □ □ ■ □ □ ■
26. □ ■ □ ⊞ ■ ■ ■ □ ■

Table 13.3.: Comparison of coeval approaches for etablishing roles at runtime based on
26 classifying features extracted from Kühn et al. [2014] presented in Table 3.1.
It differentiates between fully (■), partly (⊞), and unsupported (□) features.

139

14

DISPATCH MODELS
Multiple dynamic dispatch offers several advantages over the classical single dispatch.
This dynamic dispatch is not present in current mainstream object-oriented program-
ming languages, such as Smalltalk, C++, C#, and Java. The object model offered by these
languages considers methods as operations of a particular class of objects. Thus, an
operation always depends on the type of one single object, it is a property of that type
and can be encapsulated inside the object. The single dispatch idiom, where functions
dispatch on a distinct receiver, consequently models this approach of object-orientation.
In contrast, multiple dispatch makes operations depend on multiple different types of
objects. This makes it suitable for the use in role-based programming. Other reasons,
why multiple dispatch has not been so popular, might be related to the early state of
multiple dispatch research at the time, when the above languages were designed. For
example, the issue of independent static type checking of separate code modules has
been tackled only during the late 1990s. Multiple dispatch is less efficient than single
dispatch, due to the complex lookup mechanism, which involves evaluating the types of
several arguments, instead of just a single one. Therefore, the additional runtime cost
of multiple dispatch is only acceptable, if multi-methods are actually invoked. Its cost
should not exceed the cost of hand-coded double dispatch. Finally, the space efficiency
of virtual dispatch tables has only been the subject of more recent research, as shown
later.

Multiple dispatch was first introduced by CommonLoops [Bobrow et al., 1986] and the
CLOS [Bobrow et al., 1988]. They aimed at extending Lisp with an object-oriented pro-
gramming interface. The extensions were meant to integrate with the procedure-oriented
design of Lisp and facilitate the incremental transition of code from the procedural to
the object-oriented programming style. The basic idea is that a CLOS generic function is
made up of one or more methods. A CLOS method can have specializers on its formal
parameters, describing types (or individual objects) it can accept. At runtime, CLOS will
dispatch a generic function call on any or all of its arguments to choose the methods
to invoke. The chosen methods generally depend on a complex resolution algorithm to
handle any ambiguities, just as in SCROLL.

Several more recent programming languages aim at providing multi-methods in more
object-oriented settings. Dylan [Feinberg et al., 1997], for instance, is based on CLOS.
Dylan’s dispatch design differs from CLOS in that it features optional static type dec-
larations, which can be used to type generic functions, to constrain their parameters
to something more specific than Object, the root of all classes in Dylan. Dylan omits
much of the CLOS’s configurability. Cecil [Chambers, 1992] is a prototype-based pro-
gramming language that was the first to implement a modular checked static type system
for multi-methods. Cecil treats each method as encapsulated within every class upon
which it dispatches. In this way, a method is given privileged access to all objects of
which it is a part. This is different from CLOS and Dylan where methods are not part
of any class. Diesel [Chambers, 2006] is a descendant of Cecil and shares many of its
multiple dispatch concepts. The main differences to Cecil are Diesel’s module system
and explicit generic function definitions. As in Dylan and Cecil, message passing is the
only way to access an object’s state. Diesel uses a modular type system initially designed
by Millstein and Chambers [1999] for the Dubious language. The Nice programming
language [Bonniot et al., 2008] strives to offer an alternative to Java, enhancing it with
multi-methods and open classes. In Nice, operations and state can be encapsulated in-
side modules, as opposed to classes. Message dispatching is based on the first argument

141

Chapter 14. Dispatch Models

and optionally on any other arguments. MultiJava [Clifton et al., 2000] extends Java with
multi-methods and open classes. MultiJava retains the concept of a privileged receiver
object to associate methods with a single class for encapsulation purposes. However,
the runtime selection of a method body is no longer based on the receiver’s type alone.
Rather, any parameter in addition to the receiver can be specialized by specifying a true
subtype of the corresponding static type or a constant value. The MultiJava compiler,
translates MultiJava source code into standard Java bytecode. For methods that specialize
additional parameters, it introduces cascaded sequences of instanceof tests, e.g., for
equality comparisons, or value dispatch.

There are many other multiple dispatch languages. Kea [Mugridge et al., 1991] was the
first statically typed language with multiple dispatch. Slate [Salzman and Aldrich, 2005]
integrates Self-like prototype-based programming with multiple dispatch to propose a
new object model. Some more recent programming languages are designed with multiple
dispatch already on-board, among them Perl 6, Clojure, and Groovy. Scala supports a
form of pattern matching that can be used to dispatch on arbitrary predicates similar to
SCROLL ’s DispatchDescription.

Several popular single dispatch languages (e.g., Perl, Python, Ruby, or C++) have
been extended to support multiple dispatch, often by means of libraries. Smalltalk
has been extended with multiple dispatch using its reflective facility [Foote et al., 2005].
Fickle [Drossopoulou et al., 2001], a statically typed, class-based object-oriented lan-
guage with support for object reclassification has been extended with multiple dispatch
and first-class relationships [Sinha, 2005]. It augments Java with multiple-dispatch
and similar facilities using several approaches. Parasitic Multi-Methods [Boyland and
Castagna, 1997] is an earlier extension to Java that provides multiple dispatch. Methods
defined using the parasitic keyword override less specific methods. A modified compiler
translates code that uses the extended semantics into standard bytecode by introducing
type testing statements (instanceof) to determine the runtime types of all arguments in
a method call, thereby dispatching to the most specific parasite.

The Walkabout [Palsberg and Jay, 1998] uses the reflection interface of Java (version
1.1 and later) to simplify the implementation of the Visitor pattern. Walkabouts greatly
improve extensibility by eliminating the need for visitable classes to implement a visit()
method and allowing the addition of visitable classes without modification of existing
visitors. As the authors note, however, the use of reflection to invoke the appropriate
visit method makes this approach impractically slow. The Runabout [Grothoff, 2003]
improves upon the Walkabout approach in terms of performance. Where the Walkabout
uses reflection to invoke visit methods, the Runabout dynamically generates (and caches)
bytecode that will invoke the appropriate visitor. This makes the dispatch performance
of the Runabout comparable to that of the classic visitor pattern and typically exceeds
that of instanceof tests.

Dutchyn et al. [2001] modified the Java virtual machine to treat static overloading as
dynamic dispatch in classes that implement the provided MultiDispatchable marker
interface. Millstein et al. [2003] have evolved MultiJava into Relaxed Multijava, which
essentially allows the programmer to write code in a more flexible style without sacri-
ficing static type checking. While predicate dispatching generalizes multiple dispatch
to include field values and pattern matching, aspect-oriented programming [Masuhara
and Kiczales, 2003] is based around pointcuts that can dispatch on almost any combina-
tion of events and properties in a program’s execution. Most language implementations
summarized here include efficiency evaluations of the respective implementation. Ad-
ditionally, space and time efficiency of method dispatch has been the subject of a large
body of research [Chambers and Chen, 1999; Driesen et al., 1995; Naik and Kumar, 2000;

142

14.1. ALIA4j

Publisher Number of papers

Raw numbers
ACM 412
IEEE 318
ScienceDirect 156
Springer 518
Others 2698

After relevance filtering (≥12 citations, only major publishers)
ACM 296
IEEE 149
ScienceDirect 129
Springer 294

Table 14.1.: Overview of the number of papers surveyed with regard to dynamic dispatch
published between the years 2000 and 2014.

Kidd, 2001; Zibin and Gil, 2002]. Cunei and Vitek [2005] include a recent comparison
of the efficiency of a range of multiple dispatch implementations such as the Visitor
pattern, the Runabout, and MultiJava. Studies investigating the practical use of multiple
dispatch are less widespread than multiple dispatch implementations. The study pre-
sented in Kempf et al. [1987] of the CommonLoops language (a CLOS predecessor) is one
notable exception. One of that study’s goals was to assess how useful generic functions
and multi-methods are for developers. They measured how often these constructs are
used in the implementations of CommonLoops itself and a window library called BeatriX.

In the scope of this thesis, we additionally surveyed the research landscape from 2000 to
2014 and took a detailed look at the approaches presented there with regard to dynamic
dispatch. An overview of the survey can be found in Table 14.1. Surprisingly, none
of the found papers provides dispatch configurable at runtime. Nevertheless, in the
following sections three selected particular dispatch concepts and modeling approaches
are presented in more depth.

14.1. ALIA4J

ALIA4J [Bockisch et al., 2012] offers an approach for implementing advanced-dispatch
languages. The goal of ALIA4J is to ease the burden of programming-language imple-
mentation resting upon researchers of new abstraction mechanisms. The metamodel
of ALIA4J consists of a few well-defined, language-independent abstractions commonly
found in advanced dispatching languages (see Fig. 14.1). This acts as a declarative in-
termediate language for dispatch-related constructs and removes the existing semantic
gap between source languages and the intermediate language. During language design
and implementation, the metamodel has to be extended with the concrete constructs or
sub-constructs used in a language. This allows for reusing the resulting implementation
of a construct’s execution semantics without constraining the syntax. Thus, the execution
environment of the intermediate language can be reused without any constraints on the
syntax of the source language.

The novelty of the ALIA4J approach is the declarativeness of the intermediate lan-
guage, its dedication to advanced dispatching, and its extensibility. To execute code
defined in the intermediate language, several back-ends are provided, including platform-
independent ones. These instantiate a framework that automatically derives an execu-

143

Chapter 14. Dispatch Models

AttachmentPrecedenceRule CompositionRule

Action Specialization ScheduleInfo

Context Predicate Pattern

AtomicPredicate

2..*

2..*

1..*

* 0..1

*
* 0..1

0..2

Figure 14.1.: The LIAM metamodel of advanced dispatching from ALIA4J [Bockisch et al.,
2012].

Language-independent meta-model

Language-specific, refined meta-model

Program-specific dispatching IR

Java bytecode

Framework for exe-
cution environments

JVM extension

Java Virtual Machine

communicates

Figure 14.2.: Components and artifacts in an ALIA4J-based language implementa-
tion [Bockisch et al., 2012].

tion model from the advanced dispatch’s intermediate representation. This, acting as
meta-object protocol of advanced dispatching. Several domain-specific programming
languages can be mapped to an extension of ALIA4J.

The ALIA4J architecture simplifies the actual implementation of programming lan-
guages with advanced dispatching. At its core, it contains a metamodel of advanced
dispatching declarations (LIAM) and a framework for execution environments that handle
these declarations (FIAL). LIAM defines a language-independent metamodel of concepts
relevant for dispatching. Dispatch may depend on predicates based on values in the
dynamic context of the dispatch. When mapping the concrete advanced dispatching
concepts of an actual programming languages to it, LIAM either has to be refined with
the language-specific semantics or existing suitable refinements have to be reused. FIAL
defines workflows common to all execution environments able to execute a LIAM-based
intermediate representation.

ALIA4J’s overall architecture is shown in Fig. 14.2. First, the compiler processes the
application’s source code and produces an Intermediate Representation (IR) (1) for the
advanced dispatching declarations in the program based on the refined subclasses (2)
of the LIAM meta-entities (3). Moreover, it also produces Java bytecode (4) for the
program parts not using advanced dispatching. Then, at runtime, both LIAM-based IR
and bytecode are passed to a concrete JVM extension (5) and are handled by the FIAL
framework itself (6).

It should be noted, however, that this approach is purely generative; no configuration
or adaptation semantic is available during runtime. Hence, ALIA4J was rejected as
underlying base for the implementation of SCROLL in the context of this thesis.

144

14.2. Multi-methods: Prototypes with Multiple Dispatch

14.2. MULTI-METHODS: PROTOTYPES WITH MULTIPLE
DISPATCH

In Salzman and Aldrich [2005], the authors describe how a dynamic, prototype-based
object model in the style of Self can be reconciled with multiple dispatch. The presented
object model, Prototypes with Multiple Dispatch (PMD), combines the benefits of multi-
ple dispatch with a dynamic, prototype-based object model. This leads to a declarative
treatment dispatch.

1 object Animal;
2 object Fish;
3 object Shark;
4 object HealthyShark;
5 object DyingShark;
6
7 addDelegation (Fish, Animal);
8
9 addDelegation (Shark, Animal);

10
11 addDelegation (Shark, HealthyShark);
12
13 method swimAway(animal: Animal) { /* ... */ }
14
15 method encounter(animal: Fish , other: Animal) { }
16
17 method encounter(animal: Fish , other: HealthyShark) { swimAway(); }
18
19 method swallow(animal: Shark , other: Fish) { /* ... */ }
20
21 method fight(animal: HealthyShark , other: Shark) {
22 removeDelegation (animal, HealthyShark);
23 addDelegation (animal, DyingShark);
24 }
25
26 method encounter(animal: HealthyShark , other: Fish) { swallow(other); }
27
28 method encounter(animal: HealthyShark , other: Shark) { fight(other); }
29
30 method encounter(animal: DyingShark , other: Animal) { swimAway(); }

Listing 14.1.: The ocean ecosystem example in Prototypes with Multiple Dispatch.

Listing 14.1 illustrates this by example. The behavior of a shark depends on its health.
This is modeled as delegation to a HealthyShark or a DyingShark object. This delega-
tion can be changed, for example, if the shark is injured in a fight. At the same time,
behavioral dependence on multiple interacting objects is expressed through multiple
method declarations, one for each relevant case. The example does not need additional
variables or control-flow branches.

Prototypes with Multiple Dispatch has been implemented in Slate [Salzman and
Aldrich, 2005], a dynamically typed programming language. Self [Ungar and Smith,
1987], Cecil [Chambers, 1992], and CLOS [Bobrow et al., 1988] directly inspired the design
of Slate and its underlying PMD model.

Two factors were decisive for the rejection of this approach as underlying base for
implementing SCROLL. First, Slate is not suitable as a host language, as we aimed for
a statically typed programming language. Secondly, the internal rank function used in
PMD’s dispatching algorithm is static and cannot be changed or adapted during runtime.

145

Chapter 14. Dispatch Models

14.3. KORZ

The Korz computational model [Ungar et al., 2014] provides context-oriented program-
ming by combining implicit arguments and multiple dispatch in a slot-based model.
This combination enables writing software that supports both contextual variation with
multiple dimensions and evolution to adapt to unexpected dimensions of variability. No
additional layers or aspects are needed. Hence, a system programmed with Korz contains
methods (“a sea of methods”) and data slots. No fixed organization of slots into objects
is assumed. Hence, a slot belongs to a number of objects instead of being contained by
a single object. Finally, context-dependent objects are formed when multiple slots are
joined with regard to their implicit context. At each computation step, a slot is selected
from the space using multiple dispatch that is based on the context, a selector, and
explicit arguments. At the end that slot is invoked. The context is implicitly passed along
during the selection, and hence serves as a set of implicit arguments.

1 def {} pointParent = newCoord;
2 def {} point = newCoord extending pointParent;
3
4 var {rcvr ≤ point} x; var {rcvr ≤ point} y; var {rcvr ≤ point} color;
5
6 // defining slot 1:
7 method { rcvr ≤ pointParent, device } display { device.drawPixel(x, y, color) };
8
9 // defining slot 2 for adding a dimension

10 method { rcvr ≤ screenParent, isColorblind ≤ true } drawPixel(x, y, c) {
{isColorblind: false }.drawPixel(x, y, c.mapToGrayScale) }

C
C

Listing 14.2.: Example for handling cartesian points with Korz.

Listing 14.2 gives an example inspired by the colored-point example that was quite
popular for discussing evolution of object-oriented programs [Ungar et al., 2014]. We
start with a cartesian, colored point. First, the program defines coordinates for the
prototypical point at Line 1 (from which new points will be cloned) and its parent at
Line 2 (methods applicable to all points will be associated). To make the coordinates
accessible, the program defines them as the contents of slots. Therefore, two slots are
created, each containing a new coordinate. The point coordinate is declared to have the
pointParent coordinate as its parent. The empty slot guard “{}” for a point means that,
in any context, an invocation of this slot returns the point’s coordinate. With that, the
declaration of display, consisting of slot guard and method body, defines a method that
displays a point (Line 7). The slot guard, {rcvr ≤ pointParent} (Line 7), specifies that the
slots are accessible only in contexts in which the rcvr dimension is bound to a point, i.e.,
to a coordinate that is at least as specific as the point coordinate.

Support for colorblind users can be realized as a separate dimension of figures or
devices. The programmer only needs to define a more specialized drawPixel slot to
be used when a new isColorblind dimension is present and bound to true (Line 10).
Whenever drawPixel is sent to a context with a screen for the receiver and isColorblind
bound to true, the added slot will be invoked instead of the slot for the drawPixel
method. This call will map the color to grayscale, and then calls the drawPixel method.

Although the dispatching mechanism if Korz is fairly advanced, the slot lookup itself
involves attempting to find a single, most specific slot whose guard matches the message.
In case multiple targets were found, an error is thrown statically by the system. The
developer, by no means, is able to configure that lookup at runtime.

146

15

CONCLUSION

C-style Imperative Programming

Business logic

Adaptation

Adaptation

Object-oriented Programming

Business logic

Business logic

Adaptation

Adaptation

Role-based Programming + Dynamic Dispatch

Business logic

Business logic

Adaptation

Adaptation

Increasing Degree of Separation of Concerns

Figure 15.1.: Separation of concerns increases with the introduction of roles and dynamic,
role-based dispatch.

In the modern world, software systems are expected to adapt to a changing environ-
ment as they become more and more ubiquitous. During their lifetime, new features
are requested, existing requirements change, and the hardware and operating systems
are regularly being renewed. Software written for a specific purpose may become useful
in situations and environments, which the developer did not dare to anticipate. Those
situations are ubiquitous in the physical world (e.g., on wearables and smartphones)
and ubiquitous in the software world of Internet-based applications. Object-oriented
programming, as being widely used to build extensible and flexible software systems, is
successful, because it supports programming with data structures that closely resem-
ble the problem domain. However, future software systems expect a higher level of
dynamism, not offered by pure object-oriented concepts. With dynamically typed, object-
oriented scripting languages, a very flexible programming style is available. Modules,
classes and objects can be extended arbitrarily at runtime. But programming in a dynam-
ically typed language comes at a cost. Without static type information, it is impossible
to analyze programs statically and catch whole classes of programming errors before
actually running the program. The burden is solely carried by the programmer. To cope
with challenges imposed by ubiquitous, highly adaptive software systems, researchers
proposed several approaches, including the language concept of roles. This concept
allows for extracting the context-dependent behavior from the classes and model it in
separate role types. Together with role-based, dynamic dispatch, a new level of separation
of concerns is revealed (see Fig. 15.1). The core behavior and structure is defined in the
object’s type. Context-dependent and evolving parts are then specified in role types.
Role-playing objects are able to start and stop playing roles to adapt their behavior and
structure dynamically during runtime, without the need for reinstantiation. However,
role-playing objects need specific forms of multi-dispatch.

Because a declarative and parameterizable approach for four-dimensional, context-
aware dispatch at runtime is not yet available, the method-call interception DSL SCROLL
and its reference implementation SCROLL MOP were presented. Firstly, we explain their
basic concepts, and in particular introduced the Compartment Role Object Model, as
underlying base, in Chapter 3. The foundations for the aforementioned dispatch are
discussed in Chapter 4. From a fairly simple example of robotic co-working, we derived
several requirements for roles and their proper dispatch at runtime. As it turns out, this
dispatch semantics helps to overcome the subtle ambiguities introduced with the rich

147

Chapter 15. Conclusion

semantics of role-playing objects. To introduce all these concepts at runtime, they were
implemented with the SCROLL MOP, a library for the pure embedding of roles. A pure
embedding dos not require additional tooling (e.g., a new or modified compiler, or code
generator) as it does not modify or extend the host language syntactically. The size of
the library is below 1400 lines of code so that it can be considered to have minimalistic
design and to be easy to maintain. Finally, this approach is evaluated, both qualitatively
and quantitatively. While fulfilling most of the features offered by the rich semantics of
the role concept, the implementation is still too slow, because it heavily uses reflection.
To optimize this use of reflection is future work.

The SCROLL approach for the pure embedding of roles in a method-call interception
DSL, and its dynamic, role-based dispatch is presented in this thesis and consists of the
following key contributions:

(1) SCROLL and the SCROLL MOP This thesis presents SCROLL, an embedded
method-call interception DSL as library with its underlying MOP [Lämmel, 2002;
Mernik et al., 2005; Kiczales et al., 1991] that allows for pure embedding [Hudak,
1998] of roles in a modern, statically typed object-oriented language (Scala) with-
out changing its syntax. It solely utilizes features that are available through the
standard compiler. This library allows for easy integration of legacy code and a
high separation of concerns. It has a minimalistic design and stays below 1400 lines
of code.

(2) A coupling of static and dynamic role typing By relying on a statically-typed
host language for roles, SCROLL supports the developer with the advantages of
static typing and dynamic objects with roles, simultaneously.

(3) A simple implementation pattern for roles in structured contexts The im-
plementation pattern behind SCROLL requires three basic components, namely,
compiler rewrites, i.e., a compiler-supported variant of method-call intercep-
tion [Lämmel, 2002], implicit conversions for assembling a compound object from
the player plus all of its roles, and a definition table of the relationships between
each player and its roles, the role-play graph.

(4) A role-based dispatch configurable at runtime A declarative and parameteriz-
able approach for four-dimensional, role-based dispatch at runtime is presented.
This enables the developer to overcome the subtle ambiguities with roles in struc-
tured contexts by utilizing an explicit representation of dispatch rules as function
objects [Stroustrup, 1995]. The dispatch is based on four dimensions: the name
of the computational unit, the context of the receiver, the context of the sender,
and, for the first time, on structured contexts. The dispatch can be configured
dynamically by node filter functions.

(5) Strong type-safety for role-based dispatch The type checking during role-
based dispatch is supported by additional typing information constructed via
introspection [Bobrow et al., 1993] and an optional compiler plugin using static
program analysis.

(6) The practical applicability Finally, with the application of role-based adaptation
for robotic co-working, it is shown how roles as dynamically evolving objects can
help to implement highly adaptive systems. With a hybrid automaton, specifying
the contexts of the robot, and the four-dimensional dispatch on these contexts, the
robot is able to react to unexpected, asynchronous events. The implementation
presented with SCROLL is simple and demonstrates its basic features and usage.

148

In conclusion, we have shown how arbitrary objects can be augmented dynamically with
new functionality and state grouped together in roles. Moreover, obstacles arising from
object schizophrenia can be solved with the concept of a compound object (enabled by
dynamic conversions) and an adapted notion of object identity, such that the identity of
an object is the same independently of which role is attached. Using Scala’s Dynamic trait
together with a role-play graph allows for easy querying for behavior that is not natively
available to the player. If one is able to find or emulate these three techniques (compiler
rewrites, implicit conversions, and a role-play graph) in the desired host language, it is
possible to provide an alternative implementation of SCROLL in another host language.

149

16

FUTURE WORK
As every novel approach in the field of programming language design and implementa-
tion, SCROLL opens a wide space for future work. Several developments are currently
work in progress or targeted for investigation in the near future.

Interdisciplinary collaborations In interdisciplinary collaborations, we aim for other
use-cases for the concept of dynamically evolving objects. They should help the
domain expert to cope with domain-specific implementation concerns. Specifically
in systems biology and, more generally, in scientific computing (e.g., with a Next-
Generation Parallel Particle-Mesh Language [Karol et al., 2015]), using SCROLL
looks promising.

Optimizations With respect to the required performance, optimizations for translating
the specific binding and behavior-lookup for dynamic objects need to be developed.
A promising direction is the investigation of the invokedynamic bytecode keyword
introduced with Java 7 to provide an alternative implementation of SCROLL.

Other meta-predicates Other dynamic objects, like facets, parts, phases, and aspects
could be investigated whether they can be integrated into SCROLL.

Dispatching expressiveness With more case studies, it needs to be investigated if the
proposed dynamic, role-based dispatch is expressive enough to cope with the
requirements of context adaptation. Is a mapping to, e.g., predicate dispatch
feasible? What are the benefits, when translating this dispatch semantics into a new
role- and context-aware type system? Are existing type systems (e.g., dependent
type systems) sufficient?

Dispatch metrics In Muschevici et al. [2008], the authors provide metrics for dispatch
(e.g., dispatch ratio, choice ratio, or degree of dispatch). These metrics focus on
method definitions and can be measured statically. Tailored to the notion of roles,
one could investigate the degree of adaptability provided by the SCROLL dispatch
concept in comparison to existing approaches.

151

Faculty of Computer Science Institute of Software- and Multimedia-Technology

Software Technology Group

PART V.

APPENDIX

153

A

A VARIABILITY ANALYSIS FOR
ROLES AT RUNTIME
Contemporary literature has not been able to provide a unique definition of what a
role is. The various semantics of the role concept have been described in a variability
analysis [Graversen, 2006]. This analysis relies on the encountered semantics of roles
which goes far beyond the analysis presented in Kühn et al. [2014], because many runtime
features are investigated. The following sections analyze role variability with the help of
feature diagrams. This approach permits us to reflect over the set of features SCROLL
covers. The remainder of this section is structured as follows: the first subsection focuses
on class instances as role-playing objects because these instances are the fundamental
basis of the role semantics of SCROLL, while the remaining subsections deeply cover a
complete analysis of roles at runtime.

A.1. CLASS INSTANCES AS ROLE-PLAYING OBJECTS

Class / Class instance

Role Playing Constraint

Definite Number

0 definite class

minimum 1

fixed
No two roles can be the same

type

Super Type

Class Type

Role Type

Compound Object Type

Mandatory Optional OrAbstractConcrete

Figure A.1.: Feature model for roles (Class), adapted from Graversen [2006].

Graversen [2006] discusses different entities that can fill (class types, role types, and
context types) and play (class instances, role instances, and context instances) roles.
The authors refer to programming languages using prototypes, where classes are objects. prototypes

Class instances are able to play roles (Fig. A.1). A class instance playing a role differs a lot
from a role instance playing roles. This touches two topics: role-playing constraints and
supertypes of those entities, which will be discussed in the following sections.

A.1.1. ROLE-PLAYING CONSTRAINTS

Two role-playing capabilities of class instances may be constrained: i) the amount of
roles an instance of a class can play may be constrained, and ii) the uniqueness of each
role type played may be constrained. With 0 roles, instances of a class are not allowed to
play any roles. Most of the statically typed languages allow classes to be defined as final,
making them non-subclassable. This offers several interpretations when assuming role
types are subtypes of their player:

• Instances of final classes are not allowed to play roles because role-playing is some
kind of extension. However, with polymorphic references it is most of the time not
possible to statically enforce this constraint. For instance, a reference to a non-final
superclass could be used to bind a role.

155

Appendix A. A Variability Analysis for Roles at Runtime

• A role is not allowed to have an instance of a final class as its player. This can
statically be determined, but it is still impossible to detect the situation that an
instance of a final subclass of a player is playing the role.

• The concepts of final classes (subclassing is not allowed) and definitive classes (role-
playing is not allowed) are orthogonal concepts. Final constraints static inheritance
and definitive constraints dynamic inheritance. Thus, an instance of a final class
may play roles.

In most of the role languages (e.g., in [Pernici, 1990; Albano et al., 1993; Li and Wong,
1999; Markovic and Sochor, 2001]) the player cannot exist without at least one role being
attached to it. In those languages the player only carries an identity. This technique is
used to enforce re-usability. With fixed classes, the instance of a class is only allowed to
play a fixed number of roles. Various languages (e.g., [Smaragdakis, 1999; VanHilst, 1997])
incorporate this feature. Since roles apply to many domains, the only technical reason for
this constraint may the potentially more efficient representation of the underlying model.
With the last alternative, N roles, instances of a class are not subject to any restrictions on
the amount of roles they are allowed to play.

Finally, ii) is discussed in the following. This feature is optional and independent of the
restrictions under i). The constraint (all roles must be of different types) restricts that a
player may only play one role instance of each type of role. Some languages support this
feature [Albano et al., 1993; Kniesel, 2000; Truyen et al., 2001].

A.1.2. POSSIBLE SUPERTYPES FOR ROLE-PLAYING

In a role-based programming language, possible supertypes for classes can be class types,
role types, or compound object types. That a class is a supertype of a class is common in
most role languages. A class is not allowed to extend a role class since a role describes an
object in a certain context, while a class only describes objects. Those two concepts are
not interchangeable [Osterbye, 1996; Papazoglou and Kraemer, 1997; Steimann, 2000b].
Conceptually, a role cannot be instantiated without a player. So, making a role class
a superclass to a class requires the class to provide a player for its super. Clearly, this
is a misuse of the specialization concept. On the other hand, abstract roles are roles
without a player specification. Technically, this brings back inheritance but conceptually,
the argument that roles and classes model different things, still applies. In Osterbye
[1996], a compound-object type is a subclass of a conglomerate of roles and player. In
this purely static concept, the specification of a compound object type must include
the roles that comprise the compound object type. BETA’s notion of singular static/part
object [Madsen et al., 1993] may have been a source of inspiration for compound object
types. Additionally, the inheritance chain must be non-cyclic [Kniesel, 2000]. This avoids
problematic constructs such as a superclass S for class C is defined as a direct or indirect
subclass of C.

A.2. CONSTRAINTS BETWEEN THE PLAYER AND ITS ROLES

This section focuses on the possible constraints between a role and a player, namely,
role-playing constraints, player cardinality constraints, role instance cardinality con-
straints, and dispatch constraints (Fig. A.2). Those restrictions take outset in the “0, 1, ∞”
principle [MacLennan, 1983], which argues that a language feature typically is applicable
zero, one or infinitely many times. They are orthogonal to each other, and hence can be
composed.

156

A.2. Constraints between the Player and its Roles

Constraints

Role-playing constraint

Definite Number
0 definite role

fixed

No two roles can be the same
type

Role instance cardinality
constraint

0

1 singleton role

1 mono role

fixed

Player cardinality for roles

0 (abstract roles)

1 (normal role)

N (multi role)

Dispatch constraints
Private role

Protected role

Mandatory Optional OrAbstractConcrete

Figure A.2.: Feature model for roles (Constraints), adapted from Graversen [2006].

A.2.1. ROLE-PLAYING CONSTRAINTS FOR ROLES

The following covers the topmost branch of the feature analysis with focus on constraining
the cardinality of roles that may be played by a role. With 0 roles, a role is not allowed to
play roles. Those roles are called flat roles. Alternatively, one could restrict a role to only flat roles

be allowed to play a fixed maximum number of roles. Various languages [Smaragdakis,
1999; VanHilst, 1997] incorporate this feature. The same argumentation as for fixed
classes holds: since roles apply to many domains, the only reason for this constraint
may the more efficient implementation. In contrast, with N roles, role instances are not
subject to any restrictions on the amount of roles they are allowed to play. Furthermore,
it can be prescribed that all roles must be of different types. Some languages support this
requirement [Albano et al., 1993; Kniesel, 2000; Truyen et al., 2001]. They rely on role’s
types for e.g., the method dispatch, acquisition semantics and role creation. Hence, they
cannot distinguish between several role instances of the same type. While this restriction
is technically possible, it is conceptually not required and various author claims that
roles should not be restricted by such a constraints [Gottlob et al., 1996; Østerbye, 2003;
Osterbye, 1996; Lee and Bae, 2002; Markovic and Sochor, 2001; Steimann, 2000a; Stein
and Zdonik, 1989].

A.2.2. INSTANCE CARDINALITY CONSTRAINTS FOR ROLES

The number of simultaneously existing role instances of a given role type may be con-
strained. This feature is closely linked to the underlying model of the host languages for
object creation and destruction. Without garbage collection, e.g., in C++, an often-used
idiom is to hand out a copy of the object rather than the object itself. It is questionable
if such an instance copy counts for the number of instances set up by the constraint.
However, in garbage collecting languages, such as Java or Scala, garbage collection is
implementation- and platform-specific. There is an unspecified delay between the mo-
ment an object is marked for destruction and its actual removal. Should such an object
still be included in the counting? Due to this vague semantics, programmers might want
direct support for destroying or moving roles. This results in the following semantic
variations. With 0 instances, a role cannot be instantiated. A singleton role is a role that singleton role

can only have one instance at runtime. This may be useful when the Singleton design

157

Appendix A. A Variability Analysis for Roles at Runtime

pattern would be applied anyway [Gamma et al., 1994]. A mono role is a role that only onemono role

instance can be played per player or compound object. This may be easily realized by
inserting an existence check into the role’s constructor, looking for other role instances on
the player or the compound object. Another interesting strategy discussed in the litera-
ture (e.g., in [Jørgensen and Truyen, 2003; Herrmann, 2005; Harrison and Ossher, 1993]) is
to restrict role creation to only occur as a side effect of either casting the player to the role
type or using a role cast in conjunction with a player reference. If the player already plays
the requested role that role is returned rather than creating a new role. As outlined above,
restrictions using fixed numbers represent a technical constraint that is conceptually
unmotivated. Contrary to the 0-instances restriction, roles can be instantiated.

A.2.3. PLAYER CARDINALITY CONSTRAINTS

In most of the literature, only the importance of objects playing many roles is discussed.
For the sake of symmetry, the analysis of a role having several players is addressed in the
following. If a role cannot be played by anyone, it is called an abstract role (0 players).
This boils down to the concept of classical abstract classes. They are in essence a store
for state and code and thus target to be used by inheritance. However, an abstract class
is an abstract supertype, but an abstract role is an abstract subtype. In the first possible
interpretation, abstract roles do not have a player specification. Technically, this is close
to the mixin inheritance paradigm [Bracha and Cook, 1990; Hendler, 1986] and used in
some role languages [Smaragdakis and Batory, 2002; VanHilst, 1997]. Steimann’s role
concept, equating interfaces and roles [Steimann, 2000a,b], is very similar. In the second
interpretation, an abstract role is defined as a fully functional role including a player
specification, but is marked as abstract and thus, cannot be instantiated. The third
interpretation utilizes instantiable roles without players [Lee and Bae, 2002] for the use
during testing and independent development. In later stages of the development, an
explicit binding is needed to glue them to players. Additionally, methods inside roles
may be marked as abstract, requiring an concrete implementation in subroles. The first
interpretation is indeed a technical description (i.e., a set of properties and behavior
wrapped in a type) intended for reuse. It allows roles to be more generic. The second
interpretation allows for a player, hence is written for that specific one. Finally, the third
interpretation is motivated by the practical issues during testing and development of
roles and players.

A role that is allowed to have multiple players is called a multi-role. Having severalmulti-role

players raises questions. What is a multi-role when very different players are involved?
What is the commonality between such entities, and how are they found? What is the
practical usage? One motivation for the multi-role is the synergetic effects that may arise
when assembling parts. A person and a car can turn into a transport vehicle, a number of
cards can turn into a deck of cards usable for games. Such vague descriptions leave room
for a variety of interpretations. When using the N player approach as aggregation, it is
important to discuss if contemporary aggregation can be represented, like the facade or
the mediator design pattern [Gamma et al., 1994]. When a concept from the real-world
aggregates several other concepts, it is typically implemented in object-oriented pro-
gramming languages using delegation rather than aggregation, because the aggregation
mechanisms are too simplistic. However, in some collaboration-based languages this
approach is used [Aracic et al., 2006; Ovlinger, 2004; Veit and Herrmann, 2003].

An interpretation from the viewpoint of inheritance sees the multi-role as some kind of
multiple inheritance. Name collision problems must be handled. Basically, this semantics
is closely related to the hubs-Operator in gBeta that assembles several objects connected
using delegation [Ernst, 2004]. A multi-role can be seen as some kind of wrapper for

158

A.3. Relationships between the Player and its Roles

multiple objects, thus it is a kind of facade [Gamma et al., 1994]. The authors in Ernst
[2004] define a higher-level interface that makes the subsystem easier to use by providing
a unified interface to the interfaces of the subsystem. This may also be implemented
using e.g., aggregation or private inheritance. Part hierarchies [Blake and Cook, 1987]
extend the interface of the whole by being named entities as facades.

A multiplicity-based interpretation sees a multi-role as a role for a set of objects. Calling
a method on such a role leads to an invocation of a set of objects, i.e., its players, like
calling an iterator. Ordering (automatic or no ordering) and execution (sequential, quasi-
sequential or parallel) can be varied. This semantic is a restricted version of the map
function from functional programming.

A collaboration-based interpretation is that a multi-role collaborates with all its players
and their roles. This is related to subjects in subject-oriented programming [Harrison
and Ossher, 1993]. Previous work [Graversen, 2006] has stumbled upon the legality of
going from 0 or 1 to N players for one single role instance, due to the fact that it is hard to
define what a multi-role exactly is, as these multiple interpretations shown above reveals.

A.2.4. DISPATCHING CONSTRAINTS

The object may present its roles to the outside itself, or other entities may choose to make
the player play a certain role. Hence, it is conceivable to restrict method dispatching in
roles. A role may only be viable as target to the base object playing the role, or to the
compound object. As a hidden role as base, the following two kinds of role constraints
are applicable. In general, roles are public to other entities.

A private role on the other hand, is private to its player, enabling it to serve a different private role

purpose. Higher coupling or modeling of internal specialization, such as internal state,
may be desired. It separates concerns of the code into smaller units. With the notion of
private roles [Graversen and Beyer, 2002] one could temporarily hand out the appropriate
role to close friends, a run-time version of the friends mechanism in C++. This would
require some kind of security manager. In object-oriented languages, different interpre-
tations of the concept of private exist (e.g., Simula: private per object, Java: private per
type), hence the definition of private roles may vary. It may be private to the player it is
attached to, or private to all instances of the player specification type. In consequence,
by using delegation semantics, self is always bound to the player. Hence, a role can never
override methods. This leads to the paradox that consultation should be preferred over
delegation to allow a role to dispatch on itself. This explicit call from the player to a role
is called role call. Finally, privacy has another consequence: the player specification for role call

private roles is never polymorphic. The role is not applicable to subtypes of its player
because it is only known to the player specification itself.

A protected role is public but may not receive any message or state queries from the protected role

outside of the compound object it is attached to. It serves as a repository for properties
for other roles, very much like an abstract role, but it is not required to inherit from them.

A.3. RELATIONSHIPS BETWEEN THE PLAYER AND ITS
ROLES

The relationships between the player type and the role types it fills are discussed with
regard to the inheritance subordination of the role type and the inheritance relationship
itself for possible supertypes and subtypes for role types (Fig. A.3).

159

Appendix A. A Variability Analysis for Roles at Runtime

Relationships

Inheritance subordination of
the role

Supertype

Subtype

No Relationship

Player kind

Property

Compound object

Undefined

Class type

Interface type

Role type

Metaclass

Supertype

Compound object

Class type

Role type

Mandatory Optional OrAbstractConcrete

Figure A.3.: Feature model for roles (Relationships), adapted from [Graversen, 2006].

A.3.1. INHERITANCE SUBORDINATION

Often role types are viewed as subtypes of their player types. They may also be discussed
as being supertypes or unrelated types to their player types. With roles as supertypes,
the statement that a role is more specific than its player is false. For instance, a person
can carry many properties that are not required by a customer. “In fact, it appears that
viewing roles as subtypes is a consequence of an inadmissible intermingling of the dynamic
nature of the role concept with the static properties of type hierarchies.” [Steimann, 2000a].
Hence, roles are supertypes of their player and more abstract. This may lead to problems
with duplicated state since information of the player cannot be utilized by the attached
role, as a superclass cannot inspect the state of a subclass. The compiler may collapse
those fields by representing them as one. Some C++ implementations [Smaragdakis
and Batory, 1998; VanHilst, 1997] utilize mixins. C++’s template mechanism allows the
role to access properties only accessible in the player. This results in a lack of separate
compilation and thus, a very static role model.

In sum, the following most significant objections to role types as supertypes are as
follows. When viewing role types as supertypes, no restriction on the type of its player
are made. Thus, it is hard to design a role type for a specific player type. How to express
deep roles, i.e., roles for roles? Roles describe an object in a certain context. Hence, a role
for a role even further specialized that context. On the other hand, a supertype is more
abstract that its player type, and a supertype of a supertype is even more abstract. Those
two notions are opposite to each other. If a role type is seen as more abstract, it cannot
override its player types methods. And finally, e.g., in C++, virtual methods with the same
signature from different role types cannot be resolved by the compiler using typecasting,
since only non-virtual methods are accessible this way.

Role types as subtypes is the most common interpretation of the role concept found
in the literature. “The role describes its player in a more specific context than the context

160

A.4. Properties of Classes as Roles

Properties

Static method

Class method

Nesting Properties

Class

Role

MethodMethod

Field

Field access

Mandatory Optional OrAbstractConcrete

Figure A.4.: Feature model for roles (Properties), adapted from Graversen [2006].

the player is situated in. Thus, the extension is reduced and the intension expanded.” [Gra-
versen, 2006]. In dynamically typed languages, roles do not have a player specifica-
tion [Osterbye, 1996] because these languages rely on the structural layout of objects
rather than their type.

Role types as unrelated types to their player types are easier to implement and apply to
many unrelated players. This allows for the filtering of the players methods but dynamic
dispatch has to be addressed explicitly as, e.g., done with OT/J’s callouts [Herrmann,
2002]. This enables the role to invoke methods on its player making it versatile and
applicable to any object. Another solution is to use method references or delegates. The
role constructor takes in addition to the player reference, a set of methods references.
Hence, invoking methods on the player without knowing names of those methods is
enabled. Using aspects would be a third alternative and is discussed in Sect. 13.2.1.

A.3.2. POSSIBLE SUPERCLASSES FOR ROLE TYPES

We focus now on the investigation of the superclasses of role types. Because classes
are units without external bindings (e.g., without a player specification), role types may
extend them. This allows for code reuse, although classes and role types are conceptually
different kinds of entities. This concept is found in the literature [Osterbye, 1996; Gottlob
et al., 1996]. Although a compound object exists at runtime, it can be extended like a class
in the sense that it does not have any external bindings. This requires a special runtime
binding.

A.3.3. POSSIBLE PLAYER TYPES FOR ROLE TYPES

A role type is normally written for a specific player type, but the following alternatives
exist. The standard case is indeed the specification of a class type as player. Roles can
be attached to subtypes of Java interfaces (as interfaces are uninstantiatable). Roles may
be roles for roles, which is called deep roles. Furthermore, a compound object, created
from the players with all of its roles, can be viewed as one object and thus is allowed to
play roles. A role can be a role for a property (either a field or a method). Additionally,
metaclasses may play roles as well. Finally, a role can be a role for some undefined set of
player types.

161

Appendix A. A Variability Analysis for Roles at Runtime

A.4. PROPERTIES OF CLASSES AS ROLES

State encapsulated in roles involves resource allocation and thus, questions whether roles
have an identity. Do they share an identity with their players? What are the boundaries for
the notion of roles when allowing inner classes, inner roles, static methods, relationships
between roles, and final classes (Fig. A.4)?

A.4.1. FIELDS AND METHODS OF ROLES

When introducing fields and methods to roles, what are their effects and how can those
fields and methods be targeted by roles? As soon as we allow for fields in roles, we en-
counter the problem of name collision like discussed in the literature on inheritance. This
problem occurs when an object plays multiple roles containing a field with an identical
name. The underlying problem is very similar to diamond inheritance [Taivalsaari, 1996]
and can be solved via sharing fields or a complete prevention in the first place.

A.4.2. FIELD ACCESS IN ROLES

With field access, the field access reification problem with a wrong reification strategy
for field access in connection with the ability of shadowing fields, and the common
ancestor problem arise [Graversen, 2006]. With reification (i.e., the objectification) of
field access it is easy for a role to react to changes of its player. This concept is also a
part of the aspect-oriented paradigm of programming. The common ancestor problem
arises with a form of inheritance, where the same ancestor is inherited multiple times
via different inheritance paths. This is also known as fork-join inheritance [Sakkinen,
1989] or diamond inheritance [Taivalsaari, 1996]. The fundamental cause of the common
ancestor problem is that inheritance and visibility control are not orthogonal defined
in programming languages [Graversen, 2006]. This problem continues in role-based
programming. When composing a single type out of a player type and its role types, for
each duplicate field and method it must be determined if it is to be shared, repeated,
or overridden [VanHilst, 1997]. Also, it may be useful to disallow multiple inheritance
completely if fields or methods have not been defined in a common ancestor (to avoid
the same name having different meanings) [Albano et al., 1993]. Finally, the general
technique of renaming as in Eiffel [Meyer, 1988] can be used to bypass the problem.

A.4.3. STATIC AND CLASS METHODS IN ROLES

A static method has no object bound as calling context and hence, no self exists duringstatic method

its execution. Those methods can be called without any instances. Can roles contain
such methods and can a role be a role for a player that contains them? All advantages for
having static methods, e.g., for sharing values across various instances or having some
kind of initialization method, apply for roles modeled as classes as well.

A.4.4. NESTING IN ROLES

Nesting of classes (nested class) and methods (nested method) is supported by manynested class

nested method languages, hence it is natural to incorporate this feature into roles as well. It is beneficial
over the traditional flat class layout, as it provides another abstraction mechanism. For
instance, inner classes implicitly gain an association to their outer instances. Further-
more, exceptions may be encapsulated or helper classes are better hide-able. With roles,
it allows for grouping them together into one scope: a collaboration or a compartment.

162

A.5. Behavior of Role-playing Objects

In languages, like OT/J [Herrmann, 2002] with its teams as first-class collaborations, roles
are maintained, allocated and cached within that scope.

Basically, the following three different concepts for classes inside classes are available:
nesting, inner, and virtual inner classes. A nested class is a class lexical enclosed by an
outer class, while not related to it by any means. Hence, it can be instantiated indepen-
dently. This semantics can be found in e.g., Python, C++ and C#. An inner class, on the
other hand, is a class nested using block structure. They have their enclosing instance
available at all times, and thus, cannot be instantiated alone. This is found e.g., in Java
and Scala. Finally, a virtual inner class is an inner class but with the addition that an inner
class in a subclass may override an inner class of the superclass.

Nested methods (like nested classes) have its outer methods available. The outer
method needs to be called first. Within languages with closures (e.g., Python or Scheme)
can return a closure from inside a method to hand out an invokable inner method. If
methods are implemented as first-class citizens, e.g., in Beta, nested methods can be
referenced and passed around. The same holds for Scala, where every method can be
interpreted as function object. Most of the time, the nesting of methods is used for source
code organization rather that it is founded in the design or conceptual understanding
of the problem domain. Hence, roles are not applicable for this concept in the first
place [Graversen, 2006].

With inner role, i.e., the nesting of roles inside roles or other classes, the role is hid-
den or internal to the enclosing context. We differentiate the following interpretations,
depending on the kind of entity a role class is nested in:

Role inside roles A nested role is a role for its enclosing roles’ player and intended
to support the concept of nested classes in the object-oriented part of role lan-
guages [Graversen, 2006]. Technical solutions for that (e.g., the implicit attachment
of roles by matching the name of inner class, creating instances of inner roles
yielding an automatic creation of the inner class, or the creation of an inner role
instance during entering the context of the outer role) are in many ways against the
principle of the independence of role and player and multiple views of the player.

Roles inside classes In many collaboration-based languages, the class into which roles
are nested, offers the collaboration scope, while the roles are placeholders for the
actual participants of the collaboration.

A.5. BEHAVIOR OF ROLE-PLAYING OBJECTS

The behavior emerging from the communication between objects in role-based program-
ming is possibly the most challenging part of this thesis. It offers a wide area of semantic
variation and needs to be addressed carefully due to its various ambiguities with regard
to dispatching method calls from and to roles, calls on self, and calls on other entities
(Fig. A.5).

A.5.1. METHOD CALLS FROM AND TO ROLES

A method call essentially is an object sending a message to another object. What those
objects are referring to differ a lot in role models in comparison to classic standard
object-oriented models. The targets rendered for dispatch perform a lookup of the
desired behavior context-dependently. At the end, the gathered methods are executed.
Before actually executing a method, we first have to distinguish various semantics of
the referencing itself. A direct references in terms of role-playing objects is handled the direct

references

163

Appendix A. A Variability Analysis for Roles at Runtime

Behavior

Calls on other entities

What is referenced

Direct

Indirect

Compound object

Method dispatch

On Sender or its player

On Receiver or its player

Search (Context)

All possible matches

Compound object semantics

Calls on self

Self call
Dual self

Non-virtual self
Super call

Player call
Direct

Indirect

Role call
Player to role

Role to role

Receiver initiated dispatch

To self
Simple self

Latest possible binding to self

Interception
Simple

Advanced
Around methods

Mandatory Optional OrAbstractConcrete

Figure A.5.: Feature model for roles (Behavior), adapted from Graversen [2006].

same way as in traditional object-oriented programming. It is a reference to the object
to invoke a method on. In case of role-based programming, it is simply the question
of referencing a particular role. An indirect reference is usually referring to a facade,indirect

reference i.e., the compound object. The targeted role, or the target method may be hidden in
that object. In role-based programming, e.g., when trying to invoke a method on an
attached role the reference may instead always point to the player. A compound object is
a player with a set of role instances attached. Hence, a reference to that always references
multiple objects at once. This is called compound object reference. This reference is static,compound

object

reference

but the referred compound object may not. For instance, Osterbye [1996] with their
Smalltalk implementation allow for adding instances to this compound object, but not
for removing them. This enables viewing the same object from different perspectives at
the same time. Internally, compound objects contain many objects and delegation is
used for dispatch. To our knowledge, Bardou and Dony [1996] were the first thinking over
a sophisticated method lookup mechanisms for those split-objects yielding the correct
reference when trying to find the desired behavior. In role-based programming we are
facing the same problem. When building the compound object out of the player and
all of its roles, references may not point to the innermost player or some particular role
directly.

What happens when a method is called on a reference, i.e., a message is sent to some
receiver? Referring to an object and dispatching a message according to the underlying
implementation lookup table, is the traditional way in object-oriented languages (e.g., via
a v-table, like in C++) and is called sender-side specific dispatch. In role-based program-sender-side

specific

dispatch

ming, in addition to the super hierarchy, the set of bound roles is considered. This can
happen at compile- (e.g., [He et al., 2006; van der Torre, 2006; Kamina and Tamai, 2009;

164

A.5. Behavior of Role-playing Objects

Barbosa and Aguiar, 2012; Li and Wong, 1999; Albano et al., 1993; Herrmann, 2002]) or at
runtime (e.g., [Pradel and Odersky, 2009]). Dispatching depends on either the static or
the dynamic type of the reference [Büchi and Weck, 2000]. When using the class type for
a reference, code from that class should be executed. For role types, the same applies for
executing code from that role implementation [Jørgensen and Truyen, 2003]. The major
problem with that static approach is that this qualification relies on the type information,
rather than the instance information based on the player with all of its roles attached.

Different lookup strategies do exist in the literature. With predicate dispatch [Chambers, lookup

strategies1993; Ernst et al., 1998], methods can be overloaded by guard predicates that are checked
at runtime and determine if the method is allowed to be executed. Ideas for combining
roles with predicate dispatch can be found in Odberg [1994]; Papazoglou and Kraemer
[1997]. The concept of predicate dispatch requires static completeness checks, a mech-
anism to avoid side-effects during evaluation, and the reduction of the combinational
complexity. As an alternative, double lookup [Albano et al., 1993] can be applied. In that
concept, a method lookup on the compound object is performed, investigating all roles,
descendant roles (deep roles), and the player itself. Problems like self-recursion and
ambiguities are resolved at runtime. This leads to a very flexible understanding of role
dispatch.

Sending a message to the latest attached role is called acquisition dispatching [Gra- acquisition

dispatchingversen, 2006]. This approach supports state-dependent behavior. Instead of using branch-
ing (e.g., with if-constructs, which is too monolithic, static, and makes code difficult
to modify and extend [Gamma et al., 1994]), the corresponding code is separated into
roles. After that, state change is modeled using role-playing. As an important downside
to that approach, objects cannot play multiple roles from different contexts and in case of
signature or naming clashes always the last attached role will be invoked. This massively
limits the expressiveness of roles.

Another approach is the sequential re-sending of the message to all roles an object
plays [Van Paesschen et al., 2004]. This broadcasting reaches all of the players role
behavior, which matches the required signature. This approach simply ignores naming
and signature clashing, hence, leads to their automatic resolution. However, it is difficult
trying to implement an object in various contexts since one as to manually at runtime
activate and deactivate the visibility of roles and store that knowledge (e.g., in dynamically
growing and shrinking lists). This additional overhead may not be desirable.

When referring to a compound object (implying compound object semantics), one
potentially refers to many role instances on the same player. Calling a method on that
compound object may yield different results depending on the selection. In sum, sending
a method to a compound object will result in a dispatch to all roles attached in addition
to the innermost player specification. To prevent ambiguities due to name and signature
clashes, attaching roles with the same methods or attributes is disallowed in all role
language implementations up to our knowledge. For instance, the language definition for
OT/J states: “A role class may not have the same name as a method or field of its enclosing
team. A role class may not shadow another class that is visible in the scope of the enclosing
team. [...] Along implicit inheritance, the names of methods or fields may not hide, shadow
or obscure any previously visible name.” [Herrmann, 2016]. As another solution, renaming
strategies can be applied. As a consequence, reasoning about the program becomes a lot
harder and entails subtle problems with regard to typing and type inference.

A.5.2. SELF CALLS IN ROLE-PLAYING OBJECTS

Typically, self is the initial receiver object of a compound object. Using roles as conjunc-
tive attachments, one of those roles is the initial receiver. This enables changing state

165

Appendix A. A Variability Analysis for Roles at Runtime

whilst executing one of the objects’ methods [Graversen and Beyer, 2002; Kniesel, 2000].
During role-playing, dual self may refer to two different objects: the initial receiver (the
whole compound object) and the currently executing part object (a role instance). On
the other hand, the non-virtual self strategy interprets player and their roles as tuples
and uses no compound object semantics. This concept is used in various role languages
(e.g., [Herrmann, 2002; Aracic et al., 2006]) and yields a very flexible understanding of
roles.

A.5.3. SUPER CALLS IN ROLE-PLAYING OBJECTS

As reuse concept, in statically typed programming languages, the super call is not late
bound. Mostly, it is implemented by replacing it with a non-virtual call at compile-time.
While in static inheritance, a subclass instance is represented by one object, in role-
based programming languages there are at least two (the role instance and its player
instance). This makes implementing a role-aware super call impossible, since it requires
to perform a static method lookup which is not context-aware at all. Additionally, the
class’s immediate super does not necessarily hold the method called and it must be
ensured that subsequent super calls start are searching for the target method in the right
context.

A.5.4. PLAYER CALLS IN ROLE-PLAYING OBJECTS

Calls to the player are made on its references, either directly, or as an indirect refer-
ence [Graversen, 2006]. With the non-virtual self strategy, the player reference is similar
to a reverse aggregation. With a direct player reference one always directly refers to thedirect player

reference player instance. This is used on almost all role-based programming languages (e.g.,
in Fowler [1997]; Gottlob et al. [1996]; Østerbye [2003]; Hirschfeld [2002]; Osterbye [1996];
Lee and Bae [2002]; Markovic and Sochor [2001]; Richardson and Schwarz [1991]; Schrefl
and Thalhammer [2004]; Herrmann [2002]; Kamina and Tamai [2010]).

A.5.5. ROLE CALLS IN ROLE-PLAYING OBJECTS

Role calls allow for the invocation from the player to one of its roles, or roles among
each other within the compound object. Usually, in the first alternative, the player is not
allowed to do so because it does not, and should not, know about its roles. Otherwise,
it would depend on its roles which violate the whole abstraction concept of role-based
programming. Nevertheless, gaining knowledge about the set of roles currently bound
to a specific player is unavoidable in certain situations (e.g., interacting or cooperating
roles) and beneficial for testing dependencies between roles, or setting up restrictions.

A.5.6. AROUND-METHODS IN ROLE-PLAYING OBJECTS

The notion of an around-method is a well-known concept [Moon, 1986; Kleene, 1989].
In the context of aspect-oriented programming, around-methods are used to separate
and modularize code crossing inheritance hierarchies. Around-methods can easily be
enabled and disabled during compile- and runtime. Roles achieve the same kind of
separation and support instance level composition of aspects [Graversen, 2006].

166

A.6. Identity of Role-playing Objects

Identity
Players’

Unique and player
Typed

Variable

Mandatory Optional OrAbstractConcrete

Figure A.6.: Feature model for roles (Identity), adapted from Graversen [2006].

A.6. IDENTITY OF ROLE-PLAYING OBJECTS

The importance and meaning of object identity has been discussed for a long time, in
particular in the 1980s and 1990s. The purpose of identity is to offer a representation
of the individuality of an object independently of how it is accessed [Khoshafian and
Copeland, 1986]. Objects localize state and behavior, and the identity is the single key
to access them [Booch, 1991]. Hence, the identity is the most important property of an
object [Sakkinen, 1989]. This identity must be unique and permanent within the given
universe of objects. It is differently supported in the language constructs inheritance and
aggregation. For static inheritance, the class and its superclass share one identity per
instance. On the other hand, aggregation builds a whole from a certain number of parts.
They maintain their individual identities. This difference is important when defining
identity for roles (Fig. A.6).

A.6.1. ROLES WITHOUT UNIQUE IDENTITIES

Older role papers and languages view roles as supertypes of their players, hence they
share one identity (e.g., in [Osterbye, 1996; Stein and Zdonik, 1989; Albano et al., 1993;
Richardson and Schwarz, 1991; Lee and Bae, 2002; Gottlob et al., 1996; Bardou and Dony,
1996; Papazoglou and Kraemer, 1997]). But also newer models use this strategy (e.g.,
in [Steimann, 2000a; Chernuchin and Dittrich, 2005]). This approach has strong relations
with static inheritance as described above. In these works, the consensus is that roles
do not to have a unique identity, because they are not considered to be an independent
entity. The player and its roles share one identity and are seen and manipulated as a
whole. Some authors argue [Papazoglou and Kraemer, 1997; Dahchour et al., 2002] that
a role-playing object should retain its identity, otherwise serious problems arise when
other objects in the system try to contain references to the role-playing object. In [Bardou
and Dony, 1996] roles are never directly accessible. They cannot be passed along in
a method call and dispatching to roles occurs through the innermost player. Those
approaches make sure that when a role passes itself along in a method call, that reference
will always point to the innermost player. This cannot be done simply be redefining the
meaning of that self reference when role methods are executed since this will break self
calls within the role. Alternatively, a special reflective method to perform self calls can be
provided. Many tasks become counter-intuitive with the lack of a unique identity such as
comparison, caching, logging, distribution or other low-level operations.

A.6.2. PROBLEMS MOTIVATING A SHARED IDENTITY

The most stated problems with roles having a unique identity are the part/whole problem,
object schizophrenia and that comparison of identity breaks encapsulation. Object
schizophrenia [Harrison, 2016] with compound objects arise when state and behavior of
what is intended to appear as a single object are broken into several entities and where

167

Appendix A. A Variability Analysis for Roles at Runtime

Life cycle

Creation and attachment

Cached

Conjugativ

Disjunctive

Restrictions

Movement
Free between players

Immobility

Termination

Implicit removal

Explicit removal

Deactivation

Life role

Mandatory Optional OrAbstractConcrete

Figure A.7.: Feature model for roles (Lifecycle), adapted from Graversen [2006].

each of these has its own identity. It can be seen as another instance of the split-object
problem. Causes of object schizophrenia are broken delegation (when consultation is
used but delegation was needed), the player has another identity than its roles, the player
may have its methods called and state changed without the knowledge of the roles, and
when a doppelgänger (several part objects of a compound object subscribe to the samedoppelgänger

service as different objects) appears.

A.6.3. ROLES HAVE IDENTITIES

When roles have an identity of their own, the problems mentioned above may arise. With
the notion of identity separated from the notion of references, i.e., an identity check is no
longer a reference comparison, the problems no longer arises. Identity lookup realized
as identity comparison uses a method call to an identity method. Furthermore, object
identities may be context-dependent [Sousa et al., 1995]. Two object may have the same
identity for clients while for the system (e.g., the one performing distribution, caching,
etc.) they have different and unique identities.

A.7. LIFE CYCLE OF ROLE-PLAYING OBJECTS

The life cycle of roles is discussed in the following with regard to role creation and
attachment, role movement, and role termination (Fig. A.7).

A.7.1. ROLE CREATION STRATEGY

Roles can be taken on by the player or be attached from the outside [Graversen, 2006].
The implications are influenced by the following two questions: how is the role attached
(conjunctive or disjunctive) and what kind of role is used? In addition to that, the creation
of a role might not allocate new memory. With cached role creation or moving an
old role onto the player, semantics of object pooling are achieved. In some role-basedobject pooling

programming languages [Odberg, 1994; Kniesel, 2000; Jørgensen and Truyen, 2003; Aracic
et al., 2006; Herrmann, 2002], the creation of roles is achieved implicitly (e.g., using a
cast). Thus, a concrete role instance is returned rather than being newly created if the

168

A.7. Life cycle of Role-playing Objects

player plays it already. Roles that are no longer referenced, may be cached rather than
being garbage collected. For the subsequent role creations and attachments, the role
cache will be inspected first for reusing existing role instances. Furthermore, the creation
of roles may be superimposed (i.e., automated). This is available under the term lifting, lifting

e.g., in Herrmann [2002]; Aracic et al. [2006]. To only allow for role creation under certain
conditions, it may be restricted by additional predicates [Herrmann, 2005].

A.7.2. ATTACHMENT STRATEGIES FOR ROLES

Together with creating a role it has to be played by some player. As an exception, some
role languages (e.g., Lee and Bae [2002]) allow to have role in existence without a player.
With conjunctive attachment, it does not matter if the new role is attached directly to
the innermost player, or to any of the previously added ones. This offers the following
advantages. It solves the spaghetti reference problem [Jørgensen and Truyen, 2003], where spaghetti

reference

problem

additional roles to already used players are added by other clients. These players and
roles need to be updated and book-kept very carefully to ensure consistency. And finally,
it solves the compound object interception problem, because it is ensured that at least the
methods in the latest bound role will intercept the arriving messages. On the downside,
the following problems arise with this strategy. It lacks multiple, separated views, and the
diamond inheritance problem shows up. One cannot implement a player playing two
roles of the same type. Finally, roles cannot play roles because they are attached to the
compound object and not to specific roles. This implies that all methods in roles must
invoke their player, since some other role that was attached earlier may rely on being
called.

The disjunctive attachment of roles is the opposite strategy making the role destination disjunctive

attachmentexplicit and enabling multiple views on the subjects. Roles can be attached to the inner-
most player or to any of its roles allowing it to play several roles of the same type. This
attachment to different parts of the compound object leads to some problem with regard
to identity: “this approach is completely not feasible in object-oriented programming.
This is because one cannot rely on the identity of the wrapped objects [the compound
object] anymore. [...] When an already operational object needs to be wrapped with a new
combination of wrappers; here it is not known in the general case which other client objects
have references to this object and which of these objects need to have access to the newly
created wrapper chain” [Jørgensen and Truyen, 2003]. This problem might be solved
with a combination of: i) a notion of identity, and ii) when asking the compound object
or a part object to return a role of a specific type, the request is sent to the compound
object, utilizing a full transitive traversal of all roles. This solution is suggested by various
authors [Gottlob et al., 1996; Schrefl and Thalhammer, 2004]. In case of the ambiguity
having several roles of the same type attached, simply a list is returned.

A.7.3. ROLE MOVEMENT

The following section describes the ability of roles to move between different players and
contains technical details in various situations. Moving roles enables adaptation and re-
flects the dynamics of real-world applications. It is seen as dynamic re-classification [Gra-
versen, 2006]. For clients of players that have their roles moved, subtle problems with
regard to the history arise, as role movement should run in a transaction, i.e., is a history-
free operation. Hence, references to roles may become invalid. In most situations where
the client only cares about the behavior a role offers, rather than the specific player,
moving a role is not problematic. In the following, some problematic, dynamic situations
for role movement are discussed. When moving roles that do not play roles, one has to

169

Appendix A. A Variability Analysis for Roles at Runtime

think about two situations. First, moving a role not executing any method, and secondly,
moving a role currently executing one of its methods (i.e., still has one of its methods
on the call stack). In the latter, ensuring error free execution is not possible. It might be
executing its behavior in the wrong context. To avoid inconsistencies or partly frozen
object state [Kniesel, 2000] the developer has to ensure the termination of a role’s methodpartly frozen

object state manually. Moving a role that plays roles along all other roles played by the player (i.e.,
deep roles) is a matter of consistency and compliance to constraints. While obtaining
consistency is usually no problem (the number of roles played in sum is the same before
and after the change), staying compliant to constraints remains difficult. To solve the
updating problem and avoid inconsistencies, the set of players, a role targeted for move-
ment has, should be notified via a subscriptable event. The role-based programming
language should provide appropriate hooks for that purpose. To our knowledge, none of
the contemporary literature on roles addresses this.

Obviously, some combinations of role movement are not allowed from a conceptual
point of view and are target for transition constraints. For example, it should be impossi-
ble to move the PhD role to a person that is no student. Several constraints mentioned
in the literature are noteworthy. One could specify a history of adding and removing
roles [Su, 1991], use pre- end post-conditions [Li and Wong, 1999], use transitions as
first-class constructs [Pernici, 1990], or use categories and predicates [Odberg, 1994;
Chambers, 1993]. Finally, in Riehle [2000], four role constraint are presented: role-
imply, role-equivalent, role-prohibited, and role-dontcare. This constraints allow for
constraining the relationships between roles and are beneficial in the context of role
movement. Not allowing moving roles at all would increase predictability of the im-
plementation [Büchi and Weck, 2000]. Static role models implementing roles as C++
templates and compiling them into the player are examples of such an approach (e.g.,
in Smaragdakis and Batory [2002]; VanHilst [1997]). This leads to rather static role models.

Roles may be terminated implicitly by a garbage collector, or explicitly by the program.
With roles being attached and removed from its player both solutions have a conceptual
and technical problem with the absence of history with regard to role transfer and removal.
For instance, some clients may have problems if the temporary extension of a person
as a student disappears suddenly. Those transient information will be lost. Hence, role
replacement could be an option [Gottlob et al., 1996; Albano et al., 1993]. An explicit
removal of roles leads to their termination which is only possible if that role has none ofexplicit

removal its methods on the call stack. With deep roles, this might be difficult to determine. A less
restricting solution is to activate and deactivate roles rather than deleting them [Graversen
and Beyer, 2002; Papazoglou and Kraemer, 1997; Herrmann et al., 2004; Richardson and
Schwarz, 1991; Jørgensen and Truyen, 2003]. An implicit removal, when no one refersimplicit

removal to a role instance anymore, is done by automatic garbage collection through the JVM.
Hence, memory is freed and dangling pointers, memory leaks or call stack issues with
currently executed methods are no problem at all. The semantics with regard to a role
object is the same as with any other object within the rest of the host language. On the
other hand that might be conceptually (e.g., is a person really a student if no institution
has the person enrolled?) and technically (there is no guaranteed garbage collection time
and explicitly steering it is extremely costly and no static assumption can be made on
the JVM) problematic and is open for further research. In a unified approach, in which
the implicit and explicit solution for role removal is both incorporated and can be used
by the developer simultaneously, the code might be difficult to read and understand. In
some situations explicit role removal needs to be applied, whilst in other situations the
removal is handled automatically.

170

A.8. The Type of a Role

Type

Signature

Access modifiers

Final

Exception modifiers

Meta-functionality
Attributes

Marker interfaces

Typed reference
Static type evaluation

Dynamic type evaluation

Visibility
Filtering

Renaming

Generics
Generic role

Role for a generic player

Mandatory Optional OrAbstractConcrete

Figure A.8.: Feature model for roles (Type), adapted from Graversen [2006].

A.8. THE TYPE OF A ROLE

Roles in dynamically and statically typed languages differ [Graversen, 2006] (Fig. A.8).
Both types of host languages provide basic concepts like the notions of signatures, ex-
ceptions, access modifiers and attributes. In statically typed languages, a re-definition of
the existing type system is needed to ensure type-safety when constructing role-playing
objects, e.g., to disambiguate method dispatch and ensuring proper attachment of roles.
In the following, the aforementioned concepts are explored and discussed in more detail.
Furthermore, to tackle practical problems when actually programming with roles, we
discuss the parts of the signature of a method. Although, statically typed languages typi-
cally define a large set of access modifiers, we restrict this part of the analysis to public,
protected and private as they are most commonly used. Which properties in the player
are actually visible to the role and can those properties be overridden?

A final class states that it cannot be subclassed but this may not affect dynamic subclass- final class

ing with roles. With delegation, a role can re-define an otherwise final method of its player.
While this is conceptually irrational due to consistency or security concerns, it favors
pragmatic issues over type-safety. In Lasange/J [Jørgensen and Truyen, 2003], instances
of classes containing final methods can play roles overriding them. OT/J [Herrmann,
2005] ignores the final annotation on classes and methods by default. In some languages,
checked exceptions are implemented. They are part of the method signature. This list of
exceptions is covariant with regard to inheritance. Thus, methods overridden by a role
should only be allowed to define more specific exceptions but not introduce new ones.
Some role languages support exceptions, e.g., Büchi and Weck [2000]; Kniesel [2000];
Truyen [2004], but all of them disallow roles to throw exceptions. With meta-functionality, meta-

functionalitye.g., Java’s Runnable, Clonable or Serializable marker interfaces, the functionality of
the class these interfaces are attached to, is altered. This leads to object schizophrenia
in composition with roles because these marker interfaces may affect the player, the
compound object, or other currently bound roles. Roles are used to represent a part of
the player, but when applying such a marker interface, they may need to represent the
whole. The same holds for marked attributes, but on a more fine-grained level. Using

171

Appendix A. A Variability Analysis for Roles at Runtime

roles as filters allows for filtering incoming, as well as on outgoing messages during the
communication with and within role-playing objects. Hence, these filters can be applied
on the sender and receiver side. Eiffel contains strong renaming capabilities [Meyer,
1988] to avoid signature clashing. Within role literature [Richardson and Schwarz, 1991;
Herrmann, 2005], renaming is mainly used to preserve access to information of the player
which otherwise would be overridden by the role. Finally, parameterization makes roles
more type-safe and more reusable.

172

B

AN OVERVIEW OF SCALA
This chapter contains a short introduction to Scala [EPFL, 2016c], both a pure-bred object-
oriented and fully-blown functional language build on-top of the JVM. It is statically typed
like Java, but allows for automatic type-inference in most cases. It smoothly integrates
with existing JVM-based code and tooling. The following gives an overview:

Object-oriented Scala is a pure object-oriented language in the sense that every value is
an object. Types and behavior of objects are described by classes and traits. Classes
are extended by subclassing and mixin-based composition.

Functional It is also a functional language in the sense that every function is a value. Pro-
viding a lightweight syntax for defining anonymous functions, it supports higher-
order functions, nested functions, and currying. With case classes and its built-in
pattern matching, algebraic types used in many functional programming languages
are supported.

Static type system The expressive type system enforces statically that abstractions are
used in a safe and coherent manner. In particular, the type system supports: generic
classes, variance annotations, upper and lower type bounds, inner classes and
abstract types as object members, compound types, explicitly typed self references,
implicit parameters and conversions, and polymorphic methods. The local type
inference mechanism takes care that the user is not required to annotate the
program with redundant type information.

Extensibility The development of domain-specific applications often requires domain-
specific language extensions. Scala provides a unique combination of language
mechanisms that make it easy to add new language constructs in the form of
libraries: Any method may be used as an infix or postfix operator. Closures are
constructed automatically depending on the expected type. A joint use of both
features facilitates the definition of new statements without extending the syntax
and without using macro-like meta-programming facilities.

Interoperability Scala is designed to inter-operate well with the JRE. Java features like
annotations and Java generics have direct analogues in Scala. Those Scala features
without Java analogues, such as default and named parameters, compile as close to
Java as they can reasonably come. Scala has the same compilation model (separate
compilation, dynamic class loading) like Java and allows access to existing libraries.

In the following, we give an overview of the most important Scala components, enabling
the reader to understand the features of Scala used for the remaining parts of this thesis.

Scala has four types of identifiers. Alphanumeric Identifiers are composed of letters,
underscores, and digits, beginning with a letter or underscore. The $ counts as a letter,
but is reserved for the use by Scala. It follows the camel case conventions of Java. The
Operator Identifiers are composed of operator characters (most punctuation marks). This
may not include: letters or digits, or ()[]{}’"_.,;,‘. Operators that end in a colon (:)
are right-associative, all others are left-associative. Mixed Identifiers are composed of
an alphanumeric identifier, an underscore, and an operator identifier. Finally, Literal
Identifiers are composed of any arbitrary string enclosed in backticks (the ‘ character).

All variables must be declared, with either var (if the value may change) or val (for
constants). In Scala, val is preferred, unless there is a good reason to use var. If given an

173

Appendix B. An Overview of Scala

initial value in the declaration, the variable’s type is inferred and need not be explicitly
stated. If explicitly stated, the type follows the variable and a colon, e.g., var q: ⌋
Boolean = true . The types of variables must be declared when the variable is the
formal parameter of a method, when the variable is declared but not initialized (this can
only occur within a class), and when type parameters (generics) are enclosed in square
brackets, e.g., Array[Int]. Within a method, variables must be given an initial value.
Variables within a class (and not within a method) may optionally be given an initial
value. When initial values are not given, new is required (e.g., val ary = new Arra ⌋
y[Int](5)) and default values of 0, false, or null are used. When initial values are
given, new is not allowed (e.g., val ary2 = Array(1, 2, 3)). The type of a function
is written with the double-headed arrow, =>. Except in the case of a single argument,
parentheses are required when a function has no arguments (() => return_type),
exactly one argument (arg_type => return_type or (arg_type) => return_type),
and two or more arguments ((arg_type_1, ..., arg_type_N) => return_type).

Scala has no primitives for data types, only objects. Thus, the ladder of types looks like
this:

• Any

– AnyVal

* Boolean, Char, Byte, Short, Int, Long, Float, Double (these are as in
Java)

* Unit (has only a single value, (); returned by functions that “do not
return anything”).

– AnyRef (corresponds to Object in Java)

* All java.* reference types

* ScalaObject: Everything in scala.* references types, including arrays
and lists.

– Null (bottom of all AnyRef objects)

• Nothing (bottom of Any)

Char, Byte, Short, Int, Long, Float, and Double are considered to be numeric types.
The default type for integers is Int, and the default type for numbers is Double. The less
accurate forms are converted to Int or Double when arithmetic is performed using them.
All numbers are stored internally in a binary representation, but they may be written in
various ways:

• Decimal integers use the digits 0 to 9, with an optional + or - prefix.

• Decimal long integers are written as integers with an l or L suffix. Due to its
resemblance to the digit 1, use of the letter l is strongly discouraged.

• Octal integers use the digits 0 to 7, beginning with a 0, and an optional + or - prefix.

• Hexadecimal integers use the digits 0 to 9 and the letters A to F (may be lowercase),
and an optional + or - prefix.

• Decimal double-precision numbers use the digits 0 to 9, with an optional + or -
prefix and an optional exponent. The exponent consists of an e or E, an optional
sign, and one to three decimal digits.

• Decimal single-precision numbers are written as an integer or double-precision
number with an f or F suffix.

174

Operations on numbers include + (addition), - (subtraction or negation), * (multiplica-
tion), / (division), and % (modulus). Operations on integers also include << (left shift),
>> (right shift with sign extension), >>> (right shift with zero fill), & (bitwise and), |
(bitwise or), and ˆ (bitwise exclusive or).

A String may be enclosed in double quotes, or in triple double quotes. The latter is a
raw string and may contain newlines. A Symbol is an interned string. A symbol literal
starts with a single quote, ’, followed by a letter, then zero or more letters and digits.

Lists are the most valuable data type in any functional language, including Scala. Lists
are immutable and persistent. Operations that return lists do not modify the original
list, but generally share structure with it. Additionally, they are homogeneous. All the
elements of a list are the same type. The type of the empty list is List[Nothing]. When
it is necessary to specify the type of a list, it is written as List[Type]. A literal list is
written as List(value, ..., value). Fundamental list methods are:

• list.head returns the first element in the list.

• list.tail returns the rest of the list, minus the head.

• value::list puts the value as the new head of the list (right-associative). The
empty list is written as List() or as Nil. List(1, 2, 3) is equivalent to 1::2: ⌋
:3::Nil.

• list.isEmpty checks if the list is empty.

Functions defined in terms of the above include:

• list.length returns the number of elements in the list.

• list.last returns the last element of the list.

• list.init returns a list with the last element removed.

• list.take(n) returns a list of the first n elements.

• list.drop(n) returns a list with the first n elements removed.

• list1:::list2 appends the two lists.

• list.reverse returns a list in the reverse order.

• list.splitAt(n) returns the tuple (list take n, list drop n).

• list1.zip(list2) returns a list of tuples, where the first element of the tuple is
taken from list1 and the second from list2. The length of the result is the length
of the shorter list.

• list.mkString(string) converts each element of the list into a string, and con-
catenates them with the string in between elements.

• list.distinct returns a list with duplicated elements removed.

• listOfLists.flatten takes a list of lists of elements and returns a list of elements.

The following higher-order functions are described as operations on lists, but most of
them will operate on many types of sequences:

• list.map(function) returns a list in which the function of one argument has
been applied to each element.

• listOfLists.flatMap(function) returns a list in which the function of one
argument has been applied to each element of each sublist. Removes one level of
nesting.

175

Appendix B. An Overview of Scala

• list.filter(predicate) returns a list of the elements of the given list for which
the predicate is true.

• list.filterNot(predicate) returns a list of the elements of the given list for
which the predicate is false.

• list.partition(predicate) returns a tuple of two lists: a list of values that
satisfy the predicate, and a list of those that do not.

• list.foldLeft(value)(_ function _) applies the function to each pair of ele-
ments of value::list, using each function result as the new first argument to the
function, and returns the final value.

• (value /: list)(_ function _) is an alternate way of writing foldLeft.

• list.foldRight(value)(_ function _) applies the function to each pair of
elements of the list with the value appended, starting from the right end of the list,
using each function result as the new second argument to the function, and returns
the final value.

• (list : value)(_ function _) is an alternate way of writing foldRight.

• list.find(predicate) returns the first value in the list that satisfies the predicate
(as Some(value)), or None if no such value is found.

• list.takeWhile(predicate) returns a list of the values at the front of the given
list that satisfy the predicate, stopping at the first value that does not.

• list.dropWhile(predicate) returns a list omitting those values at the front of
the given list that satisfy the predicate.

• list.span(predicate) returns the tuple (list takeWhile predicate, list
dropWhile predicate).

• list.forall(predicate) checks if every element of the list satisfies the predi-
cate.

• list.exists(predicate) checks if any element of the list satisfies the predicate.

• list.sortWith(comparisonFunction) sorts a list using the two-parameter com-
parison function. list.sortWith(_ < _) sorts the list in ascending order.

• list.groupBy(function) returns a Map of keys to values, where the keys are the
results of applying the function to each list element, and the values are a List of
values in list such that applying the function to that value yields that key.

A tuple consists of from 2 to 22 comma-separated values enclosed in parentheses. Tuples
are immutable. To access the n-th value in a tuple t, the notation t._n is used, where
n is a literal integer in the range 1 to 22. There may be spaces around the dot, but not
between _ and n.

Sets are immutable by default. Many additional operations are defined for sets, e.g.,
contains, isEmpty, intersect, union, and diff. Mutable sets may be imported from
scala.collection.mutable.

Maps are immutable by default. A map is represented as a list of pairs that is, Map(⌋
(key, value), ..., (key, value)). A more expressive syntax for writing the same
thing is Map(key -> value, ..., key -> value). The basic operations on maps are:
i) Getting the value associated with a key. And ii), for mutable maps, associating a value
with a key (mutable maps may be imported from scala.collection.mutable). Most
list operations can also be used on maps. map.get(key) returns (as an Option) the value
associated with the key. map.getOrElse(key, default) returns the value associated

176

with the key, or if the key is not in the map, the default value. map.put(key, value) for
mutable maps only, associates the value with the key, and returns (as an Option) the old
value.

Options are used when an operation may or may not succeed in returning a value.
They are parameterized types, so one may have, e.g., an Option[String] type. The
possible values are Some(value), where the value is of the correct type, or None, for the
case where no value has been found. Although a few operations are defined for Option
types, it is far more common to use a match expression to extract the value, if one exists.

The value of the if expression is the value of the expression that is chosen; or, if no
condition is satisfied and there is no else clause, the value is the Unit value, ().

1 if (condition) expression
2 if (condition) expression else expression
3 if (condition) expression else if (condition) expression ...
4 if (condition) expression else if (condition) expression ... else expression

The for expression is used to create and return a sequence of results. The syntax is for
(seq) yield expression, where:

• seq is a semicolon-separated sequence of generators, definitions, and
filters, beginning with a generator.

– A generator has the form variable <- list, where the list may be any
expression resulting in a list.

– A definition has the form variable = expression.

– A filter has the form if condition.

• Where possible, the type of the result will be the same type as the seq.

The match expression uses pattern matching to select a case, then the value of the match
expression is the value of the corresponding expression. The syntax is:

1 expression match {
2 case pattern1 => expression1
3 case pattern2 => expression2
4 ...
5 case patternN => expressionN
6 }

Patterns may be:

• A literal value of the same type as the expression, or a subtype of it.

• A variable, which will match any value (and may be used in the corresponding
expressioni).

• An underscore, which will match anything. This is commonly used as the last
catch-all pattern.

• A sequence, such as List(a, _, c), where the components are patterns.

• A tuple, where the components are patterns.

• An option type, Some(x) or None.

• A typed pattern, such as s:String or m:Map [_, _]. For parameterized types
such as List and Map, specifying the types of their elements is not possible.

• The name of a case class, where patterns are used in place of the constructor
parameters.

177

Appendix B. An Overview of Scala

• A regular expression.

• Any of the above followed by a pattern guard (the word if followed by a Boolean
expression).

Cases are tried in the order in which they occur. When a case is selected, the code for that
case, and only for that one case, is executed.

Scala does not have statements, it has expressions, and every expression has a value.
However, some expressions are executed purely for their side effects, and return the Unit
value, (), which is essentially meaningless. Such expressions are basically the same as
statements in other languages.

The syntax for methods is:

1 [override] [access] def methodName(arg: type, ..., arg: type) { body }
2 [override] [access] def methodName(arg: type, ..., arg: type): returnType = {

body }
C

C

If overriding an inherited method, the keyword override is required. Access may be
private, protected, or public by default. The type of each argument must be specified
explicitly. The return type of a method can usually be omitted; but it must be declared
when there is an explicit return statement, when the method is recursive, when the
method calls another method with the same name, and when the inferred return type is
more general than desired. For reasons of clarity, it is usually best to declare the return
type. Braces around the body may be omitted if the body consists of a single expression,
whose value is to be returned. Methods may be overloaded, as in Java. The parameters of
a method or function are treated as if they were defined by val; they cannot be reassigned
a new value.

The syntax for function literals is (arg1: Type1 , ..., argN: TypeN) => expr ⌋
ession. Within an enclosing argument list, the parentheses around the parameter list
can usually be omitted. If each parameter is used only once, and the parameters appear
in the expression in the same order as in the parameter list, the parameter list may be
omitted, and underscores may be used in the expression, e.g., "aBcDeF".map(_ toLo ⌋
wer). Methods can often be passed as if they were functions, e.g, "abc" map println
works. In other cases, the method name must be followed by an underscore to convert it
to a partial function, e.g., "abc" map (println _).

A class describes objects, as in Java. It may extend one other class, and it may in-
clude any number of traits. A class has a primary constructor, which is part of the class
declaration itself.

class Foo { ... }
By default, a class extends AnyRef.

class Foo(name: String) { constructor_body }
The primary constructor is part of the class header. Parameters are put after the
class name, and the constructor body is the entire class body.

class Foo(a: Int , var b: Int , val c: Int) { ... }
Constructor parameters are handled as follows. Automatically, all parameters are
automatically declared as private fields; a has private getters and setters; var b
has public getters and setters; and val c has a public getter. A setter method for a
parameter v has the name v_=.

def this(parameters1) { this(parameters2); ... }
Auxiliary constructors are defined with this; the first statement in the auxiliary
constructor must be a call to some other constructor.

178

class Foo(a: Int , b: Int) extends Bar(a + b) { ... }
When extending a class, any base class parameters are provided immediately.

class Dog(name: String) extends Animal with Friend { ... }
A comma-separated list of traits can follow the keyword with. Any uninitialized
var and val defined by the trait must be initialized by the class.

A case class is defined by adding the keyword case before the word class. This results
in additional methods being added to the class automatically by the compiler. It provides
an apply method (allowing to omit the word new when constructing a new object of
the class), as well as an unapply method (usage of case classes in pattern matching).
Additionally, getters and setters for the constructor parameters are provided. Finally, it
provides a nicer toString, == and hashCode methods, based on the constructor argu-
ments.

In addition to creating objects from classes, you can declare objects. An object is
declared like a class, but with the keyword object instead of class; also, an object
cannot take parameters. Whereas a class declaration describes a blueprint for objects, an
object declaration declares a single object (i.e., a singleton).

Finally, traits are declared like classes, used like Java interfaces, and may contain
fully-defined methods. In the declaration of a class (or object), the syntax is:

1 // if the superclass is mentioned:
2 class ClassName extends SuperClass with Trait1, ..., TraitN
3 // otherwise:
4 class ClassName extends Trait1 with Trait2, ..., TraitN

179

C

ADDITIONAL INFORMATION
SCROLL can be found at:
https://github.com/max-leuthaeuser/SCROLL
(Accessed: 8th May 2017, 10.00)

The SCROLLCompilerPlugin can be found at:
https://github.com/max-leuthaeuser/SCROLLCompilerPlugin
(Accessed: 8th May 2017, 10.00)

181

https://github.com/max-leuthaeuser/SCROLL
https://github.com/max-leuthaeuser/SCROLLCompilerPlugin

D

SOURCE CODE

D.1. SOURCE CODE FOR THE ROBOTIC CO-WORKER

D.1.1. MACHINE.SCALA

Listing D.1.: Source code for the Machine.
1 // The player Machine, implementing the core behavior
2 case class Machine() {
3 val ROTATION_PER_TICK = 40
4 private var currentBox = Box()
5 private var allowedToWork = true
6
7 private def pickBox(speed: Int): Unit = {
8 println(s"Picking($speed) Box(${currentBox.id})")
9 Thread.sleep(1000)

10 }
11
12 private def handleBox(speed: Int): Unit = {
13 println(s"Handling($speed) Box(${currentBox.id})")
14 Thread.sleep(1000)
15 }
16
17 private def placeBox(speed: Int): Unit = {
18 println(s"Placing($speed) Box(${currentBox.id})")
19 currentBox = Box()
20 Thread.sleep(1000)
21 }
22
23 def doWork(speed: Int): Unit = {
24 pickBox(speed)
25 handleBox(speed)
26 placeBox(speed)
27 }
28
29 def isAllowedToWork: Boolean = allowedToWork
30
31 def stop(): Unit = disallowToWork()
32
33 def allowToWork(): Unit = { this.allowedToWork = true }
34
35 def disallowToWork(): Unit = { this.allowedToWork = false }
36 }

183

Appendix D. Source Code

D.1.2. HADDADINAUTOMATON.SCALA

Listing D.2.: Source code for HaddadinAutomaton.
1 object HaddadinAutomaton {
2 // Events:
3 case object E_collaborate extends RPAData
4 case object E_confirm extends RPAData
5 case object E_fault extends RPAData
6 case object E_in_perception extends RPAData
7 case object E_lost_perception extends RPAData
8 case object E_out_perception extends RPAData
9 case object E_stop_collaborate extends RPAData

10 // States:
11 case object Autonomous_Mode extends RPAState
12 case object Collaborative_mode extends RPAState
13 case object Fault_reaction_autonomous extends RPAState
14 case object Fault_reaction_collaborative extends RPAState
15 case object Fault_reaction_human extends RPAState
16 case object Human_friendly_mode extends RPAState
17 }
18
19 class HaddadinAutomaton(val comp: HaddadinCompartment) extends

RolePlayingAutomaton {
C

C

20 import HaddadinAutomaton._
21 // Player:
22 val machine = comp.machine
23 // Roles:
24 val machine_autonomous = comp.machine_autonomous
25 val machine_collaborative = comp.machine_collaborative
26 val machine_faultreaction = comp.machine_faultreaction
27 val machine_humanfriendly = comp.machine_humanfriendly
28
29 when(Autonomous_Mode) {
30 case Event(E_fault, _) => goto(Fault_reaction_autonomous)
31 case Event(E_in_perception, _) => goto(Human_friendly_mode)
32 }
33 when(Collaborative_mode) {
34 case Event(E_fault, _) => goto(Fault_reaction_collaborative)
35 case Event(E_out_perception, _) => goto(Autonomous_Mode)
36 case Event(E_stop_collaborate, _) => goto(Human_friendly_mode)
37 }
38 when(Fault_reaction_autonomous) {
39 case Event(E_confirm, _) => goto(Autonomous_Mode)
40 }
41 when(Fault_reaction_collaborative) {
42 case Event(E_confirm, _) => goto(Collaborative_mode)
43 }
44 when(Fault_reaction_human) {
45 case Event(E_confirm, _) => goto(Human_friendly_mode)
46 }
47 when(Human_friendly_mode) {
48 case Event(E_collaborate, _) => goto(Collaborative_mode)
49 case Event(E_fault, _) => goto(Fault_reaction_human)
50 case Event(E_out_perception, _) => goto(Autonomous_Mode)
51 }
52 when(Start) {
53 case Event(Uninitialized, _) => goto(Autonomous_Mode)
54 }
55 whenUnhandled {
56 case _ => stay()
57 }

184

D.1. Source code for the Robotic Co-Worker

58
59 onTransition {
60 case Start -> Autonomous_Mode =>
61 comp.addPlaysRelation(machine, machine_autonomous)
62 case Autonomous_Mode -> Fault_reaction_autonomous =>
63 comp.removePlaysRelation(machine, machine_autonomous)
64 machine.stop()
65 comp.addPlaysRelation(machine, machine_faultreaction)
66 case Autonomous_Mode -> Human_friendly_mode =>
67 comp.removePlaysRelation(machine, machine_autonomous)
68 comp.addPlaysRelation(machine, machine_humanfriendly)
69 case Collaborative_mode -> Autonomous_Mode =>
70 comp.removePlaysRelation(machine, machine_collaborative)
71 comp.addPlaysRelation(machine, machine_autonomous)
72 case Collaborative_mode -> Fault_reaction_collaborative =>
73 comp.removePlaysRelation(machine, machine_collaborative)
74 machine.stop()
75 comp.addPlaysRelation(machine, machine_faultreaction)
76 case Collaborative_mode -> Human_friendly_mode =>
77 comp.removePlaysRelation(machine, machine_collaborative)
78 comp.addPlaysRelation(machine, machine_humanfriendly)
79 case Fault_reaction_autonomous -> Autonomous_Mode =>
80 comp.removePlaysRelation(machine, machine_faultreaction)
81 comp.addPlaysRelation(machine, machine_autonomous)
82 case Fault_reaction_collaborative -> Collaborative_mode =>
83 comp.removePlaysRelation(machine, machine_faultreaction)
84 comp.addPlaysRelation(machine, machine_collaborative)
85 case Fault_reaction_human -> Human_friendly_mode =>
86 comp.removePlaysRelation(machine, machine_faultreaction)
87 comp.addPlaysRelation(machine, machine_humanfriendly)
88 case Human_friendly_mode -> Autonomous_Mode =>
89 comp.removePlaysRelation(machine, machine_humanfriendly)
90 comp.addPlaysRelation(machine, machine_autonomous)
91 case Human_friendly_mode -> Collaborative_mode =>
92 comp.removePlaysRelation(machine, machine_humanfriendly)
93 comp.addPlaysRelation(machine, machine_collaborative)
94 case Human_friendly_mode -> Fault_reaction_human =>
95 comp.removePlaysRelation(machine, machine_humanfriendly)
96 machine.stop()
97 comp.addPlaysRelation(machine, machine_faultreaction)
98 }
99 }

185

Appendix D. Source Code

D.1.3. HADDADINCOMPARTMENT.SCALA

Listing D.3.: Source code for HaddadinCompartment.
1 class HaddadinCompartment extends Compartment {
2 // Player:
3 val machine = Machine()
4 // Roles:
5 val machine_autonomous = Autonomous()
6 val machine_collaborative = Collaborative()
7 val machine_faultreaction = FaultReaction()
8 val machine_humanfriendly = HumanFriendly()
9

10 def getRotationPerTick: Int = (+machine).ROTATION_PER_TICK
11 def isAllowedToWork: Boolean = (+machine).isAllowedToWork()
12 def doWork(): Unit = (+machine).doWork(getRotationPerTick)
13 def main(): Unit = { Entry().main(machine) }
14
15 case class Entry() {
16 def main(machine: Machine): Unit = {
17 while (true) { (+machine).doWork((+machine).ROTATION_PER_TICK) }
18 }
19 }
20 case class Autonomous() {
21 private val ROTATION_PER_TICK = 40
22 def doWork(speed: Int): Unit = {
23 implicit val dd = Bypassing(_.isInstanceOf[Autonomous])
24 (+this).doWork(ROTATION_PER_TICK)
25 }
26 }
27 case class Collaborative() {
28 private val ROTATION_PER_TICK = 5
29 def doWork(speed: Int): Unit = {
30 implicit val dd = Bypassing(_.isInstanceOf[Collaborative])
31 (+this).doWork(ROTATION_PER_TICK)
32 }
33 }
34 case class HumanFriendly() {
35 private val ROTATION_PER_TICK = 20
36 def doWork(speed: Int): Unit = {
37 implicit val dd = Bypassing(_.isInstanceOf[HumanFriendly])
38 (+this).doWork(ROTATION_PER_TICK)
39 }
40 }
41 case class FaultReaction() {
42 private val ROTATION_PER_TICK = 0
43 def doWork(speed: Int): Unit = { // we do nothing }
44 def isAllowedToWork: Boolean = false
45 }
46 }

186

D.1. Source code for the Robotic Co-Worker

D.1.4. SMARTSENSORS.SCALA

Listing D.4.: Source code for SmartSensors.
1 // Steering the sensor based adaptation
2 class SmartSensors(comp: HaddadinCompartment) {
3 val automaton = new HaddadinAutomaton(comp)
4
5 def workerIsIn(room: Room): Boolean = worker.isIn(room)
6 def inCollaboration: Boolean = workerIsIn(machineArea)
7 def outOfContext: Boolean = workerIsIn(roomA) workerIsIn(exit)
8 def inContext: Boolean = !outOfContext
9 def collabStart: Boolean = inCollaboration

10 def collabStop: Boolean = !inCollaboration
11 def fault: Boolean = workerIsIn(machine)
12 def confirm: Boolean = !fault
13
14 val constraintsActor = new Actor {
15 def receive = {
16 case Check =>
17 if (fault) {
18 automaton ! E_fault
19 }
20 if (confirm) {
21 comp.machine.allowToWork()
22 automaton ! E_confirm
23 }
24 if (outOfContext) {
25 automaton ! E_out_perception
26 }
27 if (inContext) {
28 automaton ! E_in_perception
29 }
30 if (collabStart) {
31 automaton ! E_collaborate
32 }
33 if (collabStop) {
34 automaton ! E_stop_collaborate
35 }
36 }
37 }
38
39 def start(): Unit = {
40 schedule(0 seconds, 100 milliseconds, constraintsActor, Check)
41 automaton ! Uninitialized
42 }
43 }

187

Appendix D. Source Code

D.1.5. HADDADINDEMO.SCALA

Listing D.5.: Source code for HaddadinDemo.
1 // The main application entry point starting the actual simulation
2 object HaddadinDemo {
3 def main(args: Array [String]): Unit = {
4 val comp = new HaddadinCompartment()
5 new SmartSensors(comp).start()
6 comp.main()
7 }
8 }

188

D.2. Source code for SCROLL

D.2. SOURCE CODE FOR SCROLL

D.2.1. COMPARTMENT.SCALA

Listing D.6.: Source code for Compartment.scala.
1 package scroll.internal
2
3 import java.lang.reflect.Method
4
5 import scroll.internal.errors.SCROLLErrors._
6 import scroll.internal.support._
7 import UnionTypes.RoleUnionTypes
8 import scroll.internal.graph.CachedScalaRoleGraph
9 import scroll.internal.util.ReflectiveHelper

10
11 import scala.util.{Failure, Success, Try}
12 import scala.annotation.tailrec
13 import scala.reflect.{ClassTag, classTag}
14
15 /* *
16 * This Trait allows for implementing an objectified collaboration with a

limited number of participating roles and a fixed scope.
C

C

17 *
18 * ==Overview==
19 * Roles are dependent on some sort of context. We call them compartments. A

typical example of a compartment is a university,
C

C

20 * which contains the roles Student and Teacher collaborating in Courses.
Everything in SCROLL happens inside of Compartments

C
C

21 * but roles (implemented as standard Scala classes) can be defined or
imported from everywhere. Just mix in this Trait

C
C

22 * into your own specific compartment class or create an anonymous instance.
23 *
24 * ==Example==
25 * {{{
26 * val player = new Player()
27 * new Compartment {
28 * class RoleA
29 * class RoleB
30 *
31 * player play new RoleA()
32 * player play new RoleB()
33 *
34 * / / call some behaviour
35 * }
36 * }}}
37 */
38 trait Compartment
39 extends RoleConstraints
40 with RoleRestrictions
41 with RoleGroups
42 with Relationships
43 with QueryStrategies
44 with RoleUnionTypes {
45
46 protected val plays = new CachedScalaRoleGraph()
47
48 implicit def either2TorException[T](either: Either [_, T]): T = either.fold(
49 l => {
50 throw new RuntimeException(l.toString)
51 }, r => {
52 r

189

Appendix D. Source Code

53 })
54
55 /* *
56 * Declaring a is-part-of relation between compartments.
57 */
58 def partOf(other: Compartment): Unit = {
59 require(null != other)
60 plays.merge(other.plays)
61 }
62
63 /* *
64 * Declaring a bidirectional is-part-of relation between compartment.
65 */
66 def union(other: Compartment): Compartment = {
67 require(null != other)
68 other.partOf(this)
69 this.partOf(other)
70 this
71 }
72
73 /* *
74 * Removing is-part-of relation between compartments.
75 */
76 def notPartOf(other: Compartment): Unit = {
77 require(null != other)
78 plays.detach(other.plays)
79 }
80
81 /* *
82 * Query the role playing graph for all player instances that do conform

to the given matcher.
C

C

83 *
84 * @param matcher the matcher that should match the queried player

instance in the role playing graph
C

C

85 * @tparam T the type of the player instance to query for
86 * @return all player instances as Seq, that do conform to the given matcher
87 */
88 def all[T : ClassTag](matcher: RoleQueryStrategy = MatchAny()): Seq [T] = {
89

plays.allPlayers.filter(ReflectiveHelper.is[T]).map(_.asInstanceOf[T]).filter(a
=> {

C
C C
C

90 getCoreFor(a) match {
91 case p :: Nil => matcher.matches(p)
92 case Nil => false
93 case l => l.forall(matcher.matches)
94 }
95 })
96 }
97
98 /* *
99 * Query the role playing graph for all player instances that do conform

to the given function.
C

C

100 *
101 * @param matcher the matching function that should match the queried

player instance in the role playing graph
C

C

102 * @tparam T the type of the player instance to query for
103 * @return all player instances as Seq, that do conform to the given matcher
104 */
105 def all[T : ClassTag](matcher: T => Boolean): Seq [T] =
106

plays.allPlayers.filter(ReflectiveHelper.is[T]).map(_.asInstanceOf[T]).filter(a
=> {

C
C C
C

190

D.2. Source code for SCROLL

107 getCoreFor(a) match {
108 case p :: Nil => matcher(p.asInstanceOf[T])
109 case Nil => false
110 case l: Seq [Any] => l.forall(i => matcher(i.asInstanceOf[T]))
111 }
112 })
113
114 private def safeReturn[T](seq: Seq [T], typeName: String):

Either [TypeError , Seq [T]] = seq match {
C

C

115 case Nil => Left(TypeNotFound(typeName))
116 case s => Right(s)
117 }
118
119 /* *
120 * Query the role playing graph for all player instances that do conform

to the given matcher and return the first found.
C

C

121 *
122 * @param matcher the matcher that should match the queried player

instance in the role playing graph
C

C

123 * @tparam T the type of the player instance to query for
124 * @return the first player instance, that does conform to the given

matcher or an appropriate error
C

C

125 */
126 def one[T : ClassTag](matcher: RoleQueryStrategy = MatchAny()):

Either [TypeError , T] = safeReturn(all[T](matcher),
classTag[T].toString).fold(

C
C C
C

127 l => {
128 Left(l)
129 }, r => {
130 Right(r.head)
131 })
132
133
134 /* *
135 * Query the role playing graph for all player instances that do conform

to the given function and return the first found.
C

C

136 *
137 * @param matcher the matching function that should match the queried

player instance in the role playing graph
C

C

138 * @tparam T the type of the player instance to query for
139 * @return the first player instances, that do conform to the given

matcher or an appropriate error
C

C

140 */
141 def one[T : ClassTag](matcher: T => Boolean): Either [TypeError , T] =

safeReturn(all[T](matcher), classTag[T].toString).fold(
C

C

142 l => {
143 Left(l)
144 }, r => {
145 Right(r.head)
146 })
147
148 /* *
149 * Adds a play relation between core and role.
150 *
151 * @tparam C type of core
152 * @tparam R type of role
153 * @param core the core to add the given role at
154 * @param role the role that should added to the given core
155 */
156 def addPlaysRelation[C <: AnyRef : ClassTag , R <: AnyRef :

ClassTag](core: C , role: R): Unit = {
C

C

157 require(null != core)

191

Appendix D. Source Code

158 require(null != role)
159 validate(core, role)
160 plays.addBinding(core, role)
161 }
162
163 /* *
164 * Removes the play relation between core and role.
165 *
166 * @tparam C type of core
167 * @tparam R type of role
168 * @param core the core the given role should removed from
169 * @param role the role that should removed from the given core
170 */
171 def removePlaysRelation[C <: AnyRef : ClassTag , R <: AnyRef :

ClassTag](core: C , role: R): Unit = {
C

C

172 require(null != core)
173 require(null != role)
174 plays.removeBinding(core, role)
175 }
176
177 /* *
178 * Transfers a role from one core to another.
179 *
180 * @tparam F type of core the given role should be removed from
181 * @tparam T type of core the given role should be attached to
182 * @tparam R type of role
183 * @param coreFrom the core the given role should be removed from
184 * @param coreTo the core the given role should be attached to
185 * @param role the role that should be transferred
186 */
187 def transferRole[F <: AnyRef : ClassTag , T <: AnyRef : ClassTag , R <:

AnyRef : ClassTag](coreFrom: F , coreTo: T , role: R): Unit = {
C

C

188 require(null != coreFrom)
189 require(null != coreTo)
190 require(coreFrom != coreTo, "You can not transfer a role from itself.")
191 removePlaysRelation(coreFrom, role)
192 addPlaysRelation(coreTo, role)
193 }
194
195 @tailrec
196 private def getCoreFor(role: Any): Seq [Any] = {
197 require(null != role)
198 role match {
199 case cur: Player [_] => getCoreFor(cur.wrapped)
200 case cur: Any if plays . containsPlayer (cur) =>
201 val r = plays.getPredecessors(cur)
202 if (r.isEmpty) {
203 Seq(cur)
204 } else {
205 if (r.size == 1) {
206 getCoreFor(r.head)
207 } else {
208 r
209 }
210 }
211 case _ => Seq(role)
212 }
213 }
214
215 /* *
216 * Generic Trait that enables dynamic invocation of role methods that are

not natively available on the player object.
C

C

192

D.2. Source code for SCROLL

217 */
218 trait SCROLLDynamic extends Dynamic {
219 /* *
220 * Allows to call a function with arguments.
221 *
222 * @param name the function name
223 * @param args the arguments handed over to the given function
224 * @param dispatchQuery the dispatch rules that should be applied
225 * @tparam E return type
226 * @tparam A argument type
227 * @return the result of the function call or an appropriate error
228 */
229 def applyDynamic[E , A](name: String)(args: A *)(implicit dispatchQuery:

DispatchQuery = DispatchQuery.empty): Either [SCROLLError , E]
C

C

230
231 /* *
232 * Allows to call a function with named arguments.
233 *
234 * @param name the function name
235 * @param args tuple with the the name and argument handed over

to the given function
C

C

236 * @param dispatchQuery the dispatch rules that should be applied
237 * @tparam E return type
238 * @return the result of the function call or an appropriate error
239 */
240 def applyDynamicNamed[E](name: String)(args: (String , Any)*)(implicit

dispatchQuery: DispatchQuery = DispatchQuery.empty):
Either [SCROLLError , E]

C
C C
C

241
242 /* *
243 * Allows to read a field.
244 *
245 * @param name of the field
246 * @param dispatchQuery the dispatch rules that should be applied
247 * @tparam E return type
248 * @return the result of the field access or an appropriate error
249 */
250 def selectDynamic[E](name: String)(implicit dispatchQuery: DispatchQuery

= DispatchQuery.empty): Either [SCROLLError , E]
C

C

251
252 /* *
253 * Allows to write field updates.
254 *
255 * @param name of the field
256 * @param value the new value to write
257 * @param dispatchQuery the dispatch rules that should be applied
258 */
259 def updateDynamic(name: String)(value: Any)(implicit dispatchQuery:

DispatchQuery = DispatchQuery.empty): Unit
C

C

260 }
261
262 trait Dispatchable {
263 /* *
264 * For empty argument list dispatch.
265 *
266 * @param on the instance to dispatch the given method m on
267 * @param m the method to dispatch
268 * @tparam E the return type of method m
269 * @return the resulting return value of the method invocation or an

appropriate error
C

C

270 */
271 def dispatch[E](on: Any , m: Method): Either [InvocationError , E]

193

Appendix D. Source Code

272
273 /* *
274 * For multi-argument dispatch.
275 *
276 * @param on the instance to dispatch the given method m on
277 * @param m the method to dispatch
278 * @param args the arguments to pass to method m
279 * @tparam E the return type of method m
280 * @tparam A the type of the argument values
281 * @return the resulting return value of the method invocation or an

appropriate error
C

C

282 */
283 def dispatch[E , A](on: Any , m: Method , args: Seq [A]):

Either [InvocationError , E]
C

C

284 }
285
286 /* *
287 * Trait handling the actual dispatching of role methods.
288 */
289 trait SCROLLDispatch extends Dispatchable {
290 override def dispatch[E](on: Any , m: Method): Either [InvocationError , E] = {
291 require(null != on)
292 require(null != m)
293 Try(ReflectiveHelper.resultOf[E](on, m)) match {
294 case Success(s) => Right(s)
295 case Failure(_) =>

Left(IllegalRoleInvocationSingleDispatch(on.toString, m.getName))
C

C

296 }
297 }
298
299 override def dispatch[E , A](on: Any , m: Method , args: Seq [A]):

Either [InvocationError , E] = {
C

C

300 require(null != on)
301 require(null != m)
302 require(null != args)
303 Try(ReflectiveHelper.resultOf[E](on, m,

args.map(_.asInstanceOf[Object]))) match {
C

C

304 case Success(s) => Right(s)
305 case Failure(_) =>

Left(IllegalRoleInvocationMultipleDispatch(on.toString, m.getName,
args.toString()))

C
C C
C

306 }
307 }
308
309 }
310
311 /* *
312 * Explicit helper factory method for creating a new Player instance
313 * without the need to relying on the implicit mechanics of Scala.
314 *
315 * @param obj the player or role that is wrapped into this dynamic player type
316 * @return a new Player instance wrapping the given object
317 */
318 def newPlayer(obj: Object): Player [Object] = new Player(obj)
319
320 /* *
321 * Implicit wrapper class to add basic functionality to roles and its

players as unified types.
C

C

322 *
323 * @param wrapped the player or role that is wrapped into this dynamic type
324 * @tparam T type of wrapped object
325 */

194

D.2. Source code for SCROLL

326 implicit class Player[T <: AnyRef : ClassTag](val wrapped: T) extends
SCROLLDynamic with SCROLLDispatch {

C
C

327 /* *
328 * Applies lifting to Player
329 *
330 * @return an lifted Player instance with the calling object as wrapped.
331 */
332 def unary_+ : Player [T] = this
333
334 /* *
335 * Returns the player of this player instance if this is a role, or this

itself.
C

C

336 *
337 * @param dispatchQuery provide this to sort the resulting instances if

a role instance is played by multiple core objects
C

C

338 * @return the player of this player instance if this is a role, or this
itself or an appropriate error

C
C

339 */
340 def player(implicit dispatchQuery: DispatchQuery = DispatchQuery.empty):

Either [TypeError , Any] = dispatchQuery.filter(getCoreFor(this))
match {

C
C C
C

341 case elem :: Nil => Right(elem)
342 case l: Seq [T] => Right(l.head)
343 case _ => Left(TypeNotFound(this.getClass.toString))
344 }
345
346 /* *
347 * Adds a play relation between core and role.
348 *
349 * @tparam R type of role
350 * @param role the role that should be played
351 * @return this
352 */
353 def play[R <: AnyRef : ClassTag](role: R): Player [T] = {
354 wrapped match {
355 case p: Player [_] => addPlaysRelation[T ,

R](p.wrapped.asInstanceOf[T], role)
C

C

356 case p: Any => addPlaysRelation[T , R](p.asInstanceOf[T], role)
357 case _ => // do nothing
358 }
359 this
360 }
361
362 /* *
363 * Alias for [[Player.play]].
364 *
365 * @tparam R type of role
366 * @param role the role that should be played
367 * @return this
368 */
369 def <+>[R <: AnyRef : ClassTag](role: R): Player [T] = play(role)
370
371 /* *
372 * Adds a play relation between core and role but always returns the

player instance.
C

C

373 *
374 * @tparam R type of role
375 * @param role the role that should played
376 * @return the player instance
377 */
378 def playing[R <: AnyRef : ClassTag](role: R): T = play(role).wrapped
379

195

Appendix D. Source Code

380 /* *
381 * Alias for [[Player.playing]].
382 *
383 * @tparam R type of role
384 * @param role the role that should played
385 * @return the player instance
386 */
387 def <=>[R <: AnyRef : ClassTag](role: R): T = playing(role)
388
389 /* *
390 * Removes the play relation between core and role.
391 *
392 * @param role the role that should be removed
393 * @return this
394 */
395 def drop[R <: AnyRef : ClassTag](role: R): Player [T] = {
396 removePlaysRelation[T , R](wrapped, role)
397 this
398 }
399
400 /* *
401 * Alias for [[Player.drop]].
402 *
403 * @param role the role that should be removed
404 * @return this
405 */
406 def <->[R <: AnyRef : ClassTag](role: R): Player [T] = drop(role)
407
408 /* *
409 * Transfers a role to another player.
410 *
411 * @tparam R type of role
412 * @param role the role to transfer
413 */
414 def transfer[R <: AnyRef : ClassTag](role: R) = new {
415 def to[P <: AnyRef : ClassTag](player: P): Unit = {
416 transferRole[T , P , R](wrapped, player, role)
417 }
418 }
419
420 /* *
421 * Checks of this Player is playing a role of the given type.
422 */
423 def isPlaying[E : ClassTag]: Boolean =

plays.getRoles(wrapped).exists(ReflectiveHelper.is[E])
C

C

424
425 /* *
426 * Checks of this Player has an extension of the given type.
427 * Alias for [[Player.isPlaying]].
428 */
429 def hasExtension[E : ClassTag]: Boolean = isPlaying[E]
430
431 override def applyDynamic[E , A](name: String)(args: A *)(implicit

dispatchQuery: DispatchQuery = DispatchQuery.empty):
Either [SCROLLError , E] = {

C
C C
C

432 val core = dispatchQuery.filter(getCoreFor(wrapped)).head
433 val anys = dispatchQuery.filter(Seq(core, wrapped) ++ plays.getRoles(core))
434 anys.foreach(r => {
435 ReflectiveHelper.findMethod(r, name, args.toSeq).foreach(fm => {
436 args match {
437 case Nil => return dispatch(r, fm)
438 case _ => return dispatch(r, fm, args.toSeq)

196

D.2. Source code for SCROLL

439 }
440 })
441 })
442 // otherwise give up
443 Left(RoleNotFound(core.toString, name, args.toString()))
444 }
445
446 override def applyDynamicNamed[E](name: String)(args: (String ,

Any)*)(implicit dispatchQuery: DispatchQuery = DispatchQuery.empty):
Either [SCROLLError , E] =

C
C C
C

447 applyDynamic(name)(args.map(_._2): _*)(dispatchQuery)
448
449 override def selectDynamic[E](name: String)(implicit dispatchQuery:

DispatchQuery = DispatchQuery.empty): Either [SCROLLError , E] = {
C

C

450 val core = dispatchQuery.filter(getCoreFor(wrapped)).head
451 val anys = dispatchQuery.filter(Seq(core, wrapped) ++ plays.getRoles(core))
452 anys.find(ReflectiveHelper.hasMember(_, name)) match {
453 case Some(r) => Right(ReflectiveHelper.propertyOf(r, name))
454 case None => Left(RoleNotFound(core.toString, name, ""))
455 }
456 }
457
458 override def updateDynamic(name: String)(value: Any)(implicit

dispatchQuery: DispatchQuery = DispatchQuery.empty): Unit = {
C

C

459 val core = dispatchQuery.filter(getCoreFor(wrapped)).head
460 val anys = dispatchQuery.filter(Seq(core, wrapped) ++ plays.getRoles(core))
461 anys.find(ReflectiveHelper.hasMember(_, name)) match {
462 case Some(r) => ReflectiveHelper.setPropertyOf(r, name, value)
463 case None => // do nothing
464 }
465 }
466
467 override def equals(o: Any): Boolean = o match {
468 case other: Player [_] => getCoreFor(wrapped) == getCoreFor(other.wrapped)
469 case other: Any => getCoreFor(wrapped) match {
470 case Nil => false
471 case p :: Nil => p == other
472 case _ => false
473 }
474 case _ => false // default case
475 }
476
477 override def hashCode(): Int = wrapped.hashCode()
478 }
479
480 }

197

Appendix D. Source Code

D.2.2. DISPATCHQUERY.SCALA

Listing D.7.: Source code for DispatchQuery.scala.
1 package scroll.internal.support
2
3 import scroll.internal.support.DispatchQuery._
4
5 /* *
6 * Companion object for [[scroll.internal.support.DispatchQuery]] providing
7 * some static dispatch functions and a fluent dispatch query creation API.
8 */
9 object DispatchQuery {

10
11 /* *
12 * Use this in [[DispatchQuery.sortedWith]] to state that no sorting

between the objects in comparison should happen.
C

C

13 */
14 val identity: Boolean = false
15
16 /* *
17 * Use this in [[DispatchQuery.sortedWith]] to state that always swapping

between the objects in comparison should happen.
C

C

18 */
19 val swap: Boolean = true
20
21 /* *
22 * Function to use in [[DispatchQuery.sortedWith]] to simply reverse the

set of resulting edges.
C

C

23 */
24 val reverse: PartialFunction [(Any , Any), Boolean] = {
25 case (_, _) => swap
26 }
27
28 /* *
29 * Function always returning true
30 */
31 val anything: Any => Boolean = _ => true
32 /* *
33 * Function always returning false
34 */
35 val nothing: Any => Boolean = _ => false
36
37 def From(f: Any => Boolean) = new {
38 def To(t: Any => Boolean) = new {
39 def Through(th: Any => Boolean) = new {
40 def Bypassing(b: Any => Boolean): DispatchQuery =
41 new DispatchQuery(new From(f), new To(t), new Through(th), new

Bypassing(b))
C

C

42 }
43 }
44 }
45
46 def Bypassing(b: Any => Boolean): DispatchQuery =
47 new DispatchQuery(new From(anything, empty = true), new To(anything,

empty = true), new Through(anything, empty = true), new
Bypassing(b))

C
C C
C

48
49 def empty: DispatchQuery = new DispatchQuery(new From(anything), new

To(anything), new Through(anything), new Bypassing(nothing), empty =
true)

C
C C
C

50

198

D.2. Source code for SCROLL

51 /* *
52 * Dispatch filter selecting the sub-path from the starting edge until the end
53 * of the path given as Seq, w.r.t. the evaluation of the selection function.
54 *
55 * @param sel the selection function to evaluate on each element of the path
56 * @param empty if set to true, the path will be returned unmodified
57 */
58 private class From(val sel: Any => Boolean, empty: Boolean = false)

extends (Seq[Any] => Seq[Any]) {
C

C

59 override def apply(edges: Seq [Any]): Seq [Any] = if (empty) {
60 edges
61 } else {
62 edges.slice(edges.indexWhere(sel), edges.size)
63 }
64 }
65
66 /* *
67 * Dispatch filter selecting the sub-path from the last edge until the end
68 * of the path given as Seq, w.r.t. the evaluation of the selection function.
69 *
70 * @param sel the selection function to evaluate on each element of the path
71 * @param empty if set to true, the path will be returned unmodified
72 */
73 private class To(val sel: Any => Boolean, empty: Boolean = false) extends

(Seq[Any] => Seq[Any]) {
C

C

74 override def apply(edges: Seq [Any]): Seq [Any] = if (empty) {
75 edges
76 } else {
77 edges.lastIndexWhere(sel) match {
78 case -1 => edges
79 case _ => edges.slice(0, edges.lastIndexWhere(sel) + 1)
80 }
81 }
82 }
83
84 /* *
85 * Dispatch filter to specify which edges to keep on the path given as Seq,
86 * w.r.t. the evaluation of the selection function.
87 *
88 * @param sel the selection function to evaluate on each element of the path
89 * @param empty if set to true, the path will be returned unmodified
90 */
91 private class Through(sel: Any => Boolean, empty: Boolean = false) extends

(Seq[Any] => Seq[Any]) {
C

C

92 override def apply(edges: Seq [Any]): Seq [Any] = if (empty) {
93 edges
94 } else {
95 edges.filter(sel)
96 }
97 }
98
99 /* *

100 * Dispatch filter to specify which edges to skip on the path given as Seq,
101 * w.r.t. the evaluation of the selection function.
102 *
103 * @param sel the selection function to evaluate on each element of the path
104 * @param empty if set to true, the path will be returned unmodified
105 */
106 private class Bypassing(sel: Any => Boolean, empty: Boolean = false)

extends (Seq[Any] => Seq[Any]) {
C

C

107 override def apply(edges: Seq [Any]): Seq [Any] = if (empty) {
108 edges

199

Appendix D. Source Code

109 } else {
110 edges.filterNot(sel)
111 }
112 }
113
114 }
115
116 /* *
117 * Composed dispatch query, i.e. applying the composition of all dispatch

queries the given set of edges
C

C

118 * through the function [[DispatchQuery.filter]].
119 * All provided queries must be side-effect free!
120 *
121 * @param from query selecting the starting element for the role

dispatch query
C

C

122 * @param to query selecting the end element for the role dispatch query
123 * @param through query specifying intermediate elements for the role

dispatch query
C

C

124 * @param bypassing query specifying all elements to be left out for the
role dispatch query

C
C

125 */
126 class DispatchQuery(
127 from: From ,
128 to: To ,
129 through: Through ,
130 bypassing: Bypassing ,
131 private val empty: Boolean = false ,
132 private var _sortedWith: Option [(Any , Any) => Boolean]

= Option.empty
C

C

133) {
134 def isEmpty: Boolean = empty
135
136 /* *
137 * Set the function to later sort all dynamic extensions during

[[DispatchQuery.filter]].
C

C

138 *
139 * @param f the sorting function
140 * @return this
141 */
142 def sortedWith(f: PartialFunction [(Any , Any), Boolean]): DispatchQuery = {
143 _sortedWith = Some({ case (a, b) => f.applyOrElse((a, b), (_: (Any , Any))

=> identity) })
C

C

144 this
145 }
146
147 def filter(anys: Seq [Any]): Seq [Any] = {
148 val r = if (isEmpty) {
149 anys.distinct.reverse
150 } else {
151 from.andThen(to).andThen(through).andThen(bypassing)(anys.distinct).reverse
152 }
153 _sortedWith match {
154 case Some(f) => r.sortWith(f)
155 case None => r
156 }
157 }
158 }

200

D.2. Source code for SCROLL

D.2.3. QUERYSTRATEGIES.SCALA

Listing D.8.: Source code for QueryStrategies.scala.
1 package scroll.internal.support
2
3 import scroll.internal.util.ReflectiveHelper
4
5 /* *
6 * Allows to write queries looking for the content of an attribute of the

certain role playing
C

C

7 * object or the return value of one of its functions.
8 */
9 trait QueryStrategies {

10
11 implicit class RoleQueryStrategy(name: String) {
12 def matches(on: Any): Boolean = true
13
14 /* *
15 * Returns the value the queried attribute.
16 *
17 * @param value the name of the attribute that is queried
18 * @tparam T its type
19 * @return the value of the queried attribute
20 */
21 def ==#[T](value: T): WithProperty [T] = WithProperty(name, value)
22
23 /* *
24 * Returns the return value the queried function.
25 *
26 * @param value the name of the function that is queried
27 * @tparam T its return type
28 * @return the return value of the queried function
29 */
30 def ==>[T](value: T): WithResult [T] = WithResult(name, value)
31 }
32
33 case class MatchAny() extends RoleQueryStrategy("")
34
35 case class WithProperty[T](name: String , value: T) extends

RoleQueryStrategy(name) {
C

C

36 override def matches(on: Any): Boolean =
ReflectiveHelper.propertyOf[T](on, name) == value

C
C

37 }
38
39 case class WithResult[T](name: String , result: T) extends

RoleQueryStrategy(name) {
C

C

40 override def matches(on: Any): Boolean = ReflectiveHelper.resultOf[T](on,
name) == result

C
C

41 }
42
43 }

201

Appendix D. Source Code

D.2.4. RELATIONSHIPS.SCALA

Listing D.9.: Source code for Relationships.scala.
1 package scroll.internal.support
2
3 import scroll.internal.Compartment
4 import scroll.internal.util.Many
5 import scala.reflect.ClassTag
6
7 /* *
8 * Allows to add and check role relationships to a compartment instance.
9 */

10 trait Relationships {
11 self: Compartment =>
12
13 import Relationship._
14
15 /* *
16 * Companion object for

[[scroll.internal.support.Relationships.Relationship]] providing
C

C

17 * some predefined multiplicities and a fluent relationship creation API.
18 */
19 object Relationship {
20
21 sealed trait Multiplicity
22
23 trait ExpMultiplicity extends Multiplicity
24
25 case class MMany() extends ExpMultiplicity
26
27 case class ConcreteValue(v: Ordered [Int]) extends ExpMultiplicity {
28 require(v >= 0)
29
30 def To(t: ExpMultiplicity): Multiplicity = RangeMultiplicity(v, t)
31 }
32
33 implicit def orderedToConcreteValue(v: Ordered [Int]): ExpMultiplicity = v

match {
C

C

34 case Many() => MMany()
35 case _ => ConcreteValue(v)
36 }
37
38 implicit def intToConcreteValue(v: Int): ConcreteValue = ConcreteValue(v)
39
40 case class RangeMultiplicity(from: ExpMultiplicity , to: ExpMultiplicity)

extends Multiplicity
C

C

41
42 def apply(name: String) = new {
43 def from[L : ClassTag](leftMul: Multiplicity) = new {
44 def to[R : ClassTag](rightMul: Multiplicity): Relationship [L , R] =

new Relationship(name, leftMul, rightMul)
C

C

45 }
46 }
47
48 }
49
50 /* *
51 * Class representation of a relationship between two (role) types.
52 *
53 * @param name name of the relationship
54 * @param leftMul multiplicity of the left side of the relationship

202

D.2. Source code for SCROLL

55 * @param rightMul multiplicity of the right side of the relationship
56 * @tparam L type of the role of the left side of the relationship
57 * @tparam R type of the role of the right side of the relationship
58 */
59 class Relationship[L : ClassTag , R : ClassTag](name: String ,
60 var leftMul: Multiplicity ,
61 var rightMul: Multiplicity) {
62
63 private def checkMul[T](m: Multiplicity , on: Seq [T]): Seq [T] = {
64 m match {
65 case MMany() => assert(on.nonEmpty, s"With left multiplicity for

'$name' of '*', the resulting role set should not be empty!")
C

C

66 case ConcreteValue(v) => assert(v.compare(on.size) == 0, s"With a
concrete multiplicity for '$name' of '$v' the resulting role set
should have the same size!")

C
C C
C

67 case RangeMultiplicity(f, t) => (f, t) match {
68 case (ConcreteValue(v1), ConcreteValue(v2)) => assert(v1 <= on.size

&& v2 >= on.size, s"With a multiplicity for '$name' from '$v1'
to '$v2', the resulting role set size should be in between!")

C
C C
C

69 case (ConcreteValue(v), MMany()) => assert(v <= on.size, s"With a
multiplicity for '$name' from '$v' to '*', the resulting role
set size should be in between!")

C
C C
C

70 case _ => throw new RuntimeException("This multiplicity is not
allowed!") // default case

C
C

71 }
72 case _ => throw new RuntimeException("This multiplicity is not

allowed!") // default case
C

C

73 }
74 on
75 }
76
77 /* *
78 * Get all instances of the left side of the relationship w.r.t. the

provided matching function and checking the multiplicity.
C

C

79 *
80 * @param matcher a matching function to select the appropriate instances
81 * @return all instances of the left side of the relationship w.r.t. the

provided matching function.
C

C

82 */
83 def left(matcher: L => Boolean = _ => true): Seq [L] = checkMul(leftMul,

all[L](matcher))
C

C

84
85 /* *
86 * Get all instances of the right side of the relationship w.r.t. the

provided matching function and checking the multiplicity.
C

C

87 *
88 * @param matcher a matching function to select the appropriate instances
89 * @return all instances of the right side of the relationship w.r.t.

the provided matching function.
C

C

90 */
91 def right(matcher: R => Boolean = _ => true): Seq [R] = checkMul(rightMul,

all[R](matcher))
C

C

92
93 }
94
95 }

203

Appendix D. Source Code

D.2.5. ROLECONSTRAINTS.SCALA

Listing D.10.: Source code for RoleConstraints.scala.
1 package scroll.internal.support
2
3 import scroll.internal.Compartment
4 import scroll.internal.util.ReflectiveHelper
5
6 import scala.reflect.{ClassTag, classTag}
7 import com.google.common.graph.{GraphBuilder, Graphs, MutableGraph}
8
9 import scala.collection.JavaConverters._

10
11 /* *
12 * Allows to add and check role constraints (Riehle constraints) to a

compartment instance.
C

C

13 */
14 trait RoleConstraints {
15 self: Compartment =>
16
17 protected val roleImplications: MutableGraph [String] =

GraphBuilder.directed().build[String]()
C

C

18 protected val roleEquivalents: MutableGraph [String] =
GraphBuilder.directed().build[String]()

C
C

19 protected val roleProhibitions: MutableGraph [String] =
GraphBuilder.directed().build[String]()

C
C

20
21 private def isInstanceOf(mani: String , that: Any) =
22 ReflectiveHelper.simpleName(that.getClass.toString) ==

ReflectiveHelper.simpleName(mani)
C

C

23
24 private def checkImplications(player: Any , role: Any): Unit = {
25 roleImplications.nodes().asScala.filter(isInstanceOf(_, role)).toList match {
26 case Nil => //done, thanks
27 case list =>
28 val allImplicitRoles =

list.flatMap(Graphs.reachableNodes(roleImplications, _).asScala)
C

C

29 val allRoles = plays.getRoles(player).diff(Seq(player))
30 allImplicitRoles.foreach(r => if (!allRoles.exists(isInstanceOf(r, _))) {
31 throw new RuntimeException(s"Role implication constraint violation:

'$player' should play role '$r', but it does not!")
C

C

32 })
33 }
34 }
35
36 private def checkEquivalence(player: Any , role: Any): Unit = {
37 roleEquivalents.nodes().asScala.filter(isInstanceOf(_, role)).toList match {
38 case Nil => //done, thanks
39 case list =>
40 val allEquivalentRoles =

list.flatMap(Graphs.reachableNodes(roleEquivalents, _).asScala)
C

C

41 val allRoles = plays.getRoles(player).diff(Seq(player))
42 allEquivalentRoles.foreach(r => if (!allRoles.exists(isInstanceOf(r,

_))) {
C

C

43 throw new RuntimeException(s"Role equivalence constraint violation:
'$player' should play role '$r', but it does not!")

C
C

44 })
45 }
46 }
47
48 private def checkProhibitions(player: Any , role: Any): Unit = {

204

D.2. Source code for SCROLL

49 roleProhibitions.nodes().asScala.filter(isInstanceOf(_, role)).toList match {
50 case Nil => //done, thanks
51 case list =>
52 val allProhibitedRoles =

list.flatMap(Graphs.reachableNodes(roleProhibitions,
_).asScala).toSet

C
C C
C

53 val allRoles = plays.getRoles(player).diff(Seq(player))
54 val rs = if (allProhibitedRoles.size == allRoles.size) {
55 Set.empty[String]
56 } else {
57 allProhibitedRoles.filter(r => allRoles.exists(isInstanceOf(r, _)))
58 }
59 allProhibitedRoles.diff(rs).diff(list.toSet).foreach(r => if

(allRoles.exists(isInstanceOf(r, _))) {
C

C

60 throw new RuntimeException(s"Role prohibition constraint violation:
'$player' plays role '$r', but it is not allowed to do so!")

C
C

61 })
62 }
63 }
64
65 /* *
66 * Adds an role implication constraint between the given role types.
67 * Interpretation: if a core object plays an instance of role type A
68 * it also has to play an instance of role type B.
69 *
70 * @tparam A type of role A
71 * @tparam B type of role B that should be played implicitly if A is played
72 */
73 def RoleImplication[A : ClassTag , B : ClassTag](): Unit = {
74 val rA = classTag[A].toString
75 val rB = classTag[B].toString
76 val _ = roleImplications.putEdge(rA, rB)
77 }
78
79 /* *
80 * Adds an role equivalent constraint between the given role types.
81 * Interpretation: if a core object plays an instance of role type A
82 * it also has to play an instance of role type B and visa versa.
83 *
84 * @tparam A type of role A that should be played implicitly if B is played
85 * @tparam B type of role B that should be played implicitly if A is played
86 */
87 def RoleEquivalence[A : ClassTag , B : ClassTag](): Unit = {
88 val rA = classTag[A].toString
89 val rB = classTag[B].toString
90 val _ = (roleEquivalents.putEdge(rA, rB), roleEquivalents.putEdge(rB, rA))
91 }
92
93 /* *
94 * Adds an role prohibition constraint between the given role types.
95 * Interpretation: if a core object plays an instance of role type A
96 * it is not allowed to play B as well.
97 *
98 * @tparam A type of role A
99 * @tparam B type of role B that is not allowed to be played if A is

played already
C

C

100 */
101 def RoleProhibition[A : ClassTag , B : ClassTag](): Unit = {
102 val rA = classTag[A].toString
103 val rB = classTag[B].toString
104 val _ = roleProhibitions.putEdge(rA, rB)
105 }

205

Appendix D. Source Code

106
107 /* *
108 * Wrapping function that checks all available role constraints for
109 * all core objects and its roles after the given function was executed.
110 * Throws a RuntimeException if a role constraint is violated!
111 *
112 * @param func the function to execute and check role constraints afterwards
113 */
114 def RoleConstraintsChecked(func: => Unit): Unit = {
115 func
116 plays.allPlayers.foreach(p => plays.getRoles(p).diff(Seq(p)).foreach(r =>

validateConstraints(p, r)))
C

C

117 }
118
119 /* *
120 * Checks all role constraints between the given player and role instance.
121 * Will throw a RuntimeException if a constraint is violated!
122 *
123 * @param player the player instance to check
124 * @param role the role instance to check
125 */
126 private def validateConstraints(player: Any , role: Any): Unit = {
127 checkImplications(player, role)
128 checkEquivalence(player, role)
129 checkProhibitions(player, role)
130 }
131 }

206

D.2. Source code for SCROLL

D.2.6. ROLEGROUPS.SCALA

Listing D.11.: Source code for RoleGroups.scala.
1 package scroll.internal.support
2
3 import org.chocosolver.solver.{Model, Solution}
4 import org.chocosolver.solver.variables.IntVar
5 import scroll.internal.Compartment
6 import scroll.internal.util.ReflectiveHelper
7
8 import scala.reflect.{ClassTag, classTag}
9 import scala.collection.mutable

10
11 trait RoleGroups {
12 self: Compartment =>
13
14 private lazy val roleGroups = mutable.HashMap.empty[String , RoleGroup]
15
16 private sealed trait Constraint
17
18 private object AND extends Constraint
19
20 private object OR extends Constraint
21
22 private object XOR extends Constraint
23
24 private object NOT extends Constraint
25
26 /* *
27 * Wrapping function that checks all available role group constraints for
28 * all core objects and its roles after the given function was executed.
29 * Throws a RuntimeException if a role group constraint is violated!
30 *
31 * @param func the function to execute and check role group constraints

afterwards
C

C

32 */
33 def RoleGroupsChecked(func: => Unit): Unit = {
34 func
35 validate()
36 }
37
38 private def validateOccurrenceCardinality(): Unit = {
39 roleGroups.foreach { case (name, rg) =>
40 val min = rg.occ._1
41 val max = rg.occ._2
42 val types = rg.getTypes
43 val actual = types.map(ts => plays.allPlayers.count(r => ts ==

ReflectiveHelper.classSimpleClassName(r.getClass.toString))).sum
C

C

44 if (actual < min max < actual) {
45 throw new RuntimeException(s"Occurrence cardinality in role group

'$name' violated! " +
C

C

46 s"Roles '$types' are played $actual times but should be between $min

and $max.")
C

C

47 }
48 }
49 }
50
51 private def eval(rg: RoleGroup): Seq [String] = {
52 val model = new Model("MODEL$" + rg.hashCode())
53 val types = rg.getTypes
54 val numOfTypes = types.size

207

Appendix D. Source Code

55 val min = rg.limit._1
56 val max = rg.limit._2
57
58 val sumName = "SUM$" + rg.name
59 var sum = Option.empty[IntVar]
60 var op = Option.empty[Constraint]
61
62 // AND
63 if (max.compare(min) == 0 && min == numOfTypes) {
64 sum = Some(model.intVar(sumName, numOfTypes))
65 op = Some(AND)
66 }
67
68 // OR
69 if (min == 1 && max.compare(numOfTypes) == 0) {
70 sum = Some(model.intVar(sumName, 1, numOfTypes))
71 op = Some(OR)
72 }
73
74 // XOR
75 if (min == 1 && max.compare(1) == 0) {
76 sum = Some(model.intVar(sumName, 1))
77 op = Some(XOR)
78 }
79
80 // NOT
81 if (min == 0 && max.compare(0) == 0) {
82 sum = Some(model.intVar(sumName, 0))
83 op = Some(NOT)
84 }
85
86 val constrMap = types.map(ts => op match {
87 case Some(AND) => ts -> model.intVar("NUM$" + ts, 1)
88 case Some(OR) => ts -> model.intVar("NUM$" + ts, 0, numOfTypes)
89 case Some(XOR) => ts -> model.intVar("NUM$" + ts, 0, 1)
90 case Some(NOT) => ts -> model.intVar("NUM$" + ts, 0)
91 case None => throw new RuntimeException(s"Role group constraint of

($min, $max) for role group '${rg.name}' not possible!")
C

C

92 }).toMap
93
94 sum match {
95 case Some(s) =>
96 model.post(model.sum(constrMap.values.toArray, "=", s))
97 case None => throw new RuntimeException(s"Role group constraint of

($min, $max) for role group '${rg.name}' not possible!")
C

C

98 }
99

100 val solver = model.getSolver
101 if (solver.solve()) {
102 val resultRoleTypeSet = mutable.Set.empty[String]
103
104 val solutions = mutable.ListBuffer.empty[Solution]
105 do {
106 val sol = new Solution(model)
107 sol.record()
108 solutions += sol
109 } while (solver.solve())
110
111 val allPlayers = plays.allPlayers.filter(p =>

!types.contains(ReflectiveHelper.classSimpleClassName(p.getClass.toString)))
C

C

112 if (allPlayers.forall(p => {
113 solutions.exists(s => {

208

D.2. Source code for SCROLL

114 types.forall(t => {
115 val numRole = plays.getRoles(p).count(r => t ==

ReflectiveHelper.classSimpleClassName(r.getClass.toString))
C

C

116 if (numRole == s.getIntVal(constrMap(t))) {
117 resultRoleTypeSet.add(t)
118 true
119 } else false
120 })
121 })
122 })) {
123 rg.evaluated = true
124 return resultRoleTypeSet.toSeq
125 }
126
127 } else {
128 throw new RuntimeException(s"Constraint set of role group '${rg.name}'

unsolvable!")
C

C

129 }
130 // give up
131 throw new RuntimeException(s"Constraint set for inner cardinality of role

group '${rg.name}' violated!")
C

C

132 }
133
134 private def validateInnerCardinality(): Unit = {
135 try {
136 roleGroups.values.filter(!_.evaluated).foreach(eval)
137 } finally {
138 roleGroups.values.foreach(_.evaluated = false)
139 }
140 }
141
142 /* *
143 * Checks all role groups.
144 * Will throw a RuntimeException if a role group constraint is violated!
145 */
146 private def validate(): Unit = {
147 validateOccurrenceCardinality()
148 validateInnerCardinality()
149 }
150
151 private def addRoleGroup(rg: RoleGroup): RoleGroup = {
152 if (roleGroups.exists { case (n, _) => n == rg.name }) {
153 throw new RuntimeException(s"The RoleGroup ${rg.name} was already added!")
154 } else {
155 roleGroups(rg.name) = rg
156 rg
157 }
158 }
159
160 private type CInt = Ordered[Int]
161
162 trait Entry {
163 def getTypes: Seq [String]
164 }
165
166 object Types {
167 def apply(ts: String *): Types = new

Types(ts.map(ReflectiveHelper.typeSimpleClassName))
C

C

168 }
169
170 class Types(ts: Seq [String]) extends Entry {
171 def getTypes: Seq [String] = ts

209

Appendix D. Source Code

172 }
173
174 case class RoleGroup(name: String , entries: Seq [Entry], limit: (Int ,

CInt), occ: (Int , CInt), var evaluated: Boolean = false) extends
Entry {

C
C C
C

175 assert(0 <= occ._1 && occ._2 >= occ._1)
176 assert(0 <= limit._1 && limit._2 >= limit._1)
177
178 def getTypes: Seq [String] = entries.flatMap {
179 case ts: Types => ts.getTypes
180 case rg: RoleGroup => eval(rg)
181 case _ => throw new RuntimeException("Role groups can only contain a

list of types or role groups itself!")
C

C

182 }
183 }
184
185 object RoleGroup {
186 private implicit def classTagToString(m: ClassTag [_]): String =

ReflectiveHelper.simpleName(m.toString)
C

C

187
188 def apply(name: String) = new {
189
190 def containing(rg: RoleGroup *)(limit_l: Int , limit_u: CInt)(occ_l:

Int , occ_u: CInt): RoleGroup =
C

C

191 addRoleGroup(new RoleGroup(name, rg, (limit_l, limit_u), (occ_l, occ_u)))
192
193 def containing[T1 : ClassTag](limit_l: Int , limit_u: CInt)(occ_l: Int ,

occ_u: CInt): RoleGroup = {
C

C

194 val entry = Types(classTag[T1])
195 addRoleGroup(new RoleGroup(name, Seq(entry), (limit_l, limit_u),

(occ_l, occ_u)))
C

C

196 }
197
198
199 def containing[T1 : ClassTag , T2 : ClassTag](limit_l: Int , limit_u:

CInt)(occ_l: Int , occ_u: CInt): RoleGroup = {
C

C

200 val entry = Types(classTag[T1], classTag[T2])
201 addRoleGroup(new RoleGroup(name, Seq(entry), (limit_l, limit_u),

(occ_l, occ_u)))
C

C

202 }
203
204 def containing[T1 : ClassTag , T2 : ClassTag , T3 : ClassTag](limit_l:

Int , limit_u: CInt)(occ_l: Int , occ_u: CInt): RoleGroup = {
C

C

205 val entry = Types(classTag[T1], classTag[T2], classTag[T3])
206 addRoleGroup(new RoleGroup(name, Seq(entry), (limit_l, limit_u),

(occ_l, occ_u)))
C

C

207 }
208
209 def containing[T1 : ClassTag , T2 : ClassTag , T3 : ClassTag , T4 :

ClassTag](limit_l: Int , limit_u: CInt)(occ_l: Int , occ_u: CInt):
RoleGroup = {

C
C C
C

210 val entry = Types(classTag[T1], classTag[T2], classTag[T3], classTag[T4])
211 addRoleGroup(new RoleGroup(name, Seq(entry), (limit_l, limit_u),

(occ_l, occ_u)))
C

C

212 }
213
214
215 def containing[T1 : ClassTag , T2 : ClassTag , T3 : ClassTag , T4 :

ClassTag , T5 : ClassTag](limit_l: Int , limit_u: CInt)(occ_l: Int ,
occ_u: CInt): RoleGroup = {

C
C C
C

216 val entry = Types(classTag[T1], classTag[T2], classTag[T3],
classTag[T4], classTag[T5])

C
C

210

D.2. Source code for SCROLL

217 addRoleGroup(new RoleGroup(name, Seq(entry), (limit_l, limit_u),
(occ_l, occ_u)))

C
C

218 }
219
220 }
221 }
222
223 }

211

Appendix D. Source Code

D.2.7. ROLERESTRICTIONS.SCALA

Listing D.12.: Source code for RoleRestrictions.scala.
1 package scroll.internal.support
2
3 import java.lang.reflect.Method
4
5 import scroll.internal.util.ReflectiveHelper
6
7 import scala.collection.mutable
8 import scala.reflect.{ClassTag, classTag}
9

10 /* *
11 * Allows to add and check role restrictions (in the sense of structural

typing) to a compartment instance.
C

C

12 */
13 trait RoleRestrictions {
14 private lazy val restrictions = mutable.HashMap.empty[String , List [Class [_]]]
15
16 private def addToMap(m: mutable.Map [String , List [Class [_]]], elem:

(String , List [Class [_]])): Unit = {
C

C

17 val key = elem._1
18 val value = elem._2
19 if (m.contains(key)) {
20 m(key) = m(key) ++ value
21 } else {
22 val _ = m += elem
23 }
24 }
25
26 private def isInstanceOf(mani: String , that: String): Boolean =
27 ReflectiveHelper.simpleName(that) == ReflectiveHelper.simpleName(mani)
28
29 private def isSameInterface(roleInterface: Array [Method], restrInterface:

Array [Method]): Boolean =
C

C

30 restrInterface.forall(method => roleInterface.exists(method.equals))
31
32 /* *
33 * Add a role restriction between the given player type A and role type B.
34 *
35 * @tparam A the player type
36 * @tparam B the role type
37 */
38 def RoleRestriction[A : ClassTag , B : ClassTag](): Unit = {
39 addToMap(restrictions, (classTag[A].toString,

List(classTag[B].runtimeClass)))
C

C

40 }
41
42 /* *
43 * Replaces a role restriction for a player of type A with a
44 * new role restriction between the given player type A and role type B.
45 *
46 * @tparam A the player type
47 * @tparam B the role type
48 */
49 def ReplaceRoleRestriction[A : ClassTag , B : ClassTag](): Unit = {
50 restrictions(classTag[A].toString) = List(classTag[B].runtimeClass)
51 }
52
53 /* *
54 * Checks all role restriction between the given player and a role type.

212

D.2. Source code for SCROLL

55 * Will throw a RuntimeException if a restriction is violated!
56 *
57 * @param player the player instance to check
58 * @param role the role type to check
59 */
60 protected def validate[R : ClassTag](player: Any , role: R): Unit = {
61 val roleInterface = classTag[R].runtimeClass.getDeclaredMethods
62 restrictions.find { case (pt, rts) =>
63 isInstanceOf(pt, player.getClass.toString) && !rts.exists(r =>

isSameInterface(roleInterface, r.getDeclaredMethods))
C

C

64 } match {
65 case Some((pt, rt)) => throw new RuntimeException(s"Role '$role' can not

be played by '$player' due to the active role restrictions '$pt ->
$rt'!")

C
C C
C

66 case None => // fine, thanks
67 }
68 }
69 }

213

Appendix D. Source Code

D.2.8. ROLEPLAYINGAUTOMATON.SCALA

Listing D.13.: Source code for RolePlayingAutomaton.scala.
1 package scroll.internal.rpa
2
3 import akka.actor._
4 import scroll.internal.Compartment
5 import scroll.internal.rpa.RolePlayingAutomaton.{RPAData, RPAState, Start,

Stop, Uninitialized}
C

C

6
7 import scala.reflect.ClassTag
8
9 /* *

10 * Companion object for the [[scroll.internal.rpa.RolePlayingAutomaton]]
containing

C
C

11 * predefined states and data objects for messaging.
12 */
13 object RolePlayingAutomaton {
14
15 // some predefined states
16 trait RPAState
17
18 case object Start extends RPAState
19
20 case object Stop extends RPAState
21
22 // some predefined data objects for messaging
23 trait RPAData
24
25 case object Uninitialized extends RPAData
26
27 case object BindRole extends RPAData
28
29 case object RemoveRole extends RPAData
30
31 case object TransferRole extends RPAData
32
33 case object CheckConstraints extends RPAData
34
35 case object Terminate extends RPAData
36
37 def Use[T](implicit ct: ClassTag [T]) = new {
38 def For(comp: Compartment): ActorRef =

ActorSystem().actorOf(Props(ct.runtimeClass, comp), "rpa_" +
comp.hashCode())

C
C C
C

39 }
40 }
41
42 /* *
43 * Use this trait to implement your own [[scroll.internal.Compartment]] specific
44 * role playing automaton. Please read the documentation for [[akka.actor.FSM]]
45 * carefully, since the features from that are applicable for role playing

automatons.
C

C

46 *
47 * Remember to call <code>run()< / code> when you want to start this

automaton in your
C

C

48 * [[scroll.internal.Compartment]] instance.
49 *
50 * This automaton will always start in state

[[scroll.internal.rpa.RolePlayingAutomaton.Start]], so hook in there.
C

C

51 *

214

D.2. Source code for SCROLL

52 * Final state is always [[scroll.internal.rpa.RolePlayingAutomaton.Stop]],
53 * that will terminate the actor system for this [[akka.actor.FSM]].
54 *
55 * Use the factory method <code>RolePlayingAutomaton.Use< / code> to gain an

instance of your specific FSM, e.g.:
C

C

56 *
57 * {{{
58 * trait MyCompartment extends Compartment {
59 * / / ... some roles and interaction
60 *
61 * / / your specific RPA here
62 * class MyRolePlayingAutomaton extends RolePlayingAutomaton {
63 * / / specific behavior here
64 * when(Start) {
65 * / / ...
66 * }
67 *
68 * onTransition {
69 * / / ...
70 * }
71 *
72 * run()
73 * }
74 *
75 * Use[MyRolePlayingAutomaton] For this
76 * }
77 *
78 * / / start everything
79 * new MyCompartment {}
80 * }}}
81 *
82 * Some predefined event types for messaging are available in the companion

object.
C

C

83 * You may want to define your own states and event types.
84 * Simply use a companion object for this as well.
85 */
86 trait RolePlayingAutomaton extends Actor with LoggingFSM[RPAState , RPAData] {
87 /* *
88 * Starts this automaton. Needs to be called first!
89 * Will set the initial state to

[[scroll.internal.rpa.RolePlayingAutomaton.Start]].
C

C

90 */
91 def run(): Unit = {
92 log.debug(s"Starting RPA '${self.path}'")
93 startWith(Start, Uninitialized)
94 initialize()
95 }
96
97 /* *
98 * Stops this automaton.
99 * Will set state to [[scroll.internal.rpa.RolePlayingAutomaton.Stop]] and

terminates the
C

C

100 * actor system for this [[akka.actor.FSM]].
101 */
102 def halt(): State = {
103 context.system.terminate()
104 stop()
105 }
106
107 when(Stop) {
108 FSM.NullFunction
109 }

215

Appendix D. Source Code

110
111 onTransition {
112 case _ -> Stop =>
113 log.debug(s"Stopping RPA '${self.path}'")
114 val _ = halt()
115 }
116 }

216

D.2. Source code for SCROLL

D.2.9. ROLEGRAPH.SCALA

Listing D.14.: Source code for RoleGraph.scala.
1 package scroll.internal.graph
2
3 import scroll.internal.support.DispatchQuery
4
5 import scala.reflect.ClassTag
6
7 /* *
8 * Trait defining an generic interface for all kind of role graphs.
9 */

10 trait RoleGraph {
11 /* *
12 * Merges this with another RoleGraph given as other.
13 *
14 * @param other the RoleGraph to merge with.
15 */
16 def merge(other: RoleGraph): Unit
17
18 /* *
19 * Removes all players and plays-relationships specified in other from

this RoleGraph.
C

C

20 *
21 * @param other the RoleGraph all players and plays-relationships

specified in should removed from this
C

C

22 */
23 def detach(other: RoleGraph): Unit
24
25 /* *
26 * Adds a plays relationship between core and role.
27 *
28 * @tparam P type of the player
29 * @tparam R type of the role
30 * @param player the player instance to add the given role
31 * @param role the role instance to add
32 */
33 def addBinding[P <: AnyRef : ClassTag , R <: AnyRef : ClassTag](player: P ,

role: R): Unit
C

C

34
35 /* *
36 * Removes a plays relationship between core and role.
37 *
38 * @param player the player instance to remove the given role from
39 * @param role the role instance to remove
40 */
41 def removeBinding[P <: AnyRef : ClassTag , R <: AnyRef : ClassTag](player:

P , role: R): Unit
C

C

42
43 /* *
44 * Removes the given player from the graph.
45 * This should remove its binding too!
46 *
47 * @param player the player to remove
48 */
49 def removePlayer[P <: AnyRef : ClassTag](player: P): Unit
50
51 /* *
52 * Returns a Seq of all players
53 *
54 * @return a Seq of all players

217

Appendix D. Source Code

55 */
56 def allPlayers: Seq [Any]
57
58 /* *
59 * Returns a Seq of all roles attached to the given player (core object).
60 *
61 * @param player the player instance to get the roles for
62 * @param dispatchQuery the strategy used to get all roles while

traversing the role-playing graph, standard is DFS
C

C

63 * @return a Seq of all roles of core
64 */
65 def getRoles(player: Any)(implicit dispatchQuery: DispatchQuery =

DispatchQuery.empty): Seq [Any]
C

C

66
67 /* *
68 * Checks if the role graph contains the given player.
69 *
70 * @param player the player instance to check
71 * @return true if the role graph contains the given player, false otherwise
72 */
73 def containsPlayer(player: Any): Boolean
74
75 /* *
76 * Returns a list of all predecessors of the given player, i.e. a

transitive closure
C

C

77 * of its cores (deep roles).
78 *
79 * @param player the player instance to calculate the cores of
80 * @param dispatchQuery the strategy used to get all predecessors while

traversing the role-playing graph, standard is DFS
C

C

81 * @return a list of all predecessors of the given player
82 */
83 def getPredecessors(player: Any)(implicit dispatchQuery: DispatchQuery =

DispatchQuery.empty): Seq [Any]
C

C

84 }

218

D.2. Source code for SCROLL

D.2.10. SCALAROLEGRAPH.SCALA

Listing D.15.: Source code for ScalaRoleGraph.scala.
1 package scroll.internal.graph
2
3 import com.google.common.graph.{GraphBuilder, Graphs}
4 import scroll.internal.support.DispatchQuery
5
6 import scala.reflect.ClassTag
7 import collection.JavaConverters._
8 import scala.collection.mutable
9

10 /* *
11 * Scala specific implementation of a [[scroll.internal.graph.RoleGraph]] using
12 * a graph as underlying data model.
13 *
14 * @param checkForCycles set to true to forbid cyclic role playing relationships
15 */
16 class ScalaRoleGraph(checkForCycles: Boolean = true) extends RoleGraph {
17
18 private var root = GraphBuilder.directed().build[Object]()
19
20 override def merge(other: RoleGraph): Unit = {
21 require(null != other)
22 require(other.isInstanceOf[ScalaRoleGraph], "You can only merge

RoleGraphs of the same type!")
C

C

23
24 val source = root
25 val target = other.asInstanceOf[ScalaRoleGraph].root
26
27 if (source.nodes().isEmpty && target.nodes().isEmpty) return
28
29 if (source.nodes().isEmpty && !target.nodes().isEmpty) {
30 root = target
31 checkCycles()
32 return
33 }
34
35 if (!source.nodes().isEmpty && target.nodes().isEmpty) return
36
37 if (source.nodes().size < target.nodes().size) {
38 source.edges().asScala.foreach(p => target.putEdge(p.source(), p.target()))
39 root = target
40 } else {
41 target.edges().asScala.foreach(p => root.putEdge(p.source(), p.target()))
42 }
43 checkCycles()
44 }
45
46 override def detach(other: RoleGraph): Unit = {
47 require(null != other)
48 other.allPlayers.foreach(pl =>
49 other.getRoles(pl).foreach(rl =>
50 removeBinding(pl.asInstanceOf[AnyRef], rl.asInstanceOf[AnyRef])))
51 }
52
53 private def checkCycles(): Unit = {
54 if (checkForCycles) {
55 if (Graphs.hasCycle(root)) {
56 throw new RuntimeException(s"Cyclic role-playing relationship found!")
57 }

219

Appendix D. Source Code

58 }
59 }
60
61 override def addBinding[P <: AnyRef : ClassTag , R <: AnyRef :

ClassTag](player: P , role: R): Unit = {
C

C

62 require(null != player)
63 require(null != role)
64 root.putEdge(player, role)
65 if (checkForCycles && Graphs.hasCycle(root)) {
66 throw new RuntimeException(s"Cyclic role-playing relationship for player

'$player' found!")
C

C

67 }
68 }
69
70 override def removeBinding[P <: AnyRef : ClassTag , R <: AnyRef :

ClassTag](player: P , role: R): Unit = {
C

C

71 require(null != player)
72 require(null != role)
73 val _ = root.removeEdge(player, role)
74 }
75
76 override def removePlayer[P <: AnyRef : ClassTag](player: P): Unit = {
77 require(null != player)
78 val _ = root.removeNode(player)
79 }
80
81 override def getRoles(player: Any)(implicit dispatchQuery: DispatchQuery =

DispatchQuery.empty): Seq [Any] = {
C

C

82 require(null != player)
83 Graphs.reachableNodes(root, player).asScala.toSeq
84 }
85
86 override def containsPlayer(player: Any): Boolean =

root.nodes().contains(player)
C

C

87
88 override def allPlayers: Seq [Any] = root.nodes().asScala.toSeq
89
90 override def getPredecessors(player: Any)(implicit dispatchQuery:

DispatchQuery = DispatchQuery.empty): Seq [Any] = {
C

C

91 val returnSeq = new mutable.ListBuffer[Any]
92 val processing = new mutable.Queue[Any]
93 root.predecessors(player).forEach(n => processing.enqueue(n))
94 while (processing.nonEmpty) {
95 val next = processing.dequeue()
96 if (!returnSeq.contains(next))
97 returnSeq += next
98 root.predecessors(next).forEach(n => processing.enqueue(n))
99 }

100 returnSeq
101 }
102 }

220

D.2. Source code for SCROLL

D.2.11. CACHEDSCALAROLEGRAPH.SCALA

Listing D.16.: Source code for CachedScalaRoleGraph.scala.
1 package scroll.internal.graph
2
3 import scroll.internal.support.DispatchQuery
4 import scroll.internal.util.Memoiser
5
6 import scala.reflect.ClassTag
7
8 class CachedScalaRoleGraph(checkForCycles: Boolean = true) extends

ScalaRoleGraph(checkForCycles) with Memoiser {
C

C

9
10 private class BooleanCache extends Memoised[Any , Boolean]
11
12 private class SeqCache extends Memoised[Any , Seq [Any]]
13
14 private val containsCache = new BooleanCache()
15 private val predCache = new SeqCache()
16 private val rolesCache = new SeqCache()
17
18 override def addBinding[P <: AnyRef : ClassTag , R <: AnyRef :

ClassTag](player: P , role: R): Unit = {
C

C

19 super.addBinding(player, role)
20 reset(player)
21 reset(role)
22 }
23
24 private def resetAll(): Unit = {
25 containsCache.reset()
26 predCache.reset()
27 rolesCache.reset()
28 }
29
30 private def reset(o: Any): Unit = {
31 containsCache.resetAt(o)
32 predCache.resetAt(o)
33 rolesCache.resetAt(o)
34 }
35
36 override def containsPlayer(player: Any): Boolean =
37 containsCache.getAndPutWithDefault(player, super.containsPlayer(player))
38
39 override def detach(other: RoleGraph): Unit = {
40 require(other.isInstanceOf[CachedScalaRoleGraph], "You can only detach

RoleGraphs of the same type!")
C

C

41 super.detach(other)
42 resetAll()
43 }
44
45 override def getPredecessors(player: Any)(implicit dispatchQuery:

DispatchQuery): Seq [Any] =
C

C

46 predCache.getAndPutWithDefault(player, super.getPredecessors(player))
47
48 override def getRoles(player: Any)(implicit dispatchQuery: DispatchQuery):

Seq [Any] =
C

C

49 rolesCache.getAndPutWithDefault(player, super.getRoles(player))
50
51 override def merge(other: RoleGraph): Unit = {
52 require(other.isInstanceOf[CachedScalaRoleGraph], "You can only merge

RoleGraphs of the same type!")
C

C

221

Appendix D. Source Code

53 super.merge(other)
54 resetAll()
55 }
56
57 override def removeBinding[P <: AnyRef : ClassTag , R <: AnyRef :

ClassTag](player: P , role: R): Unit = {
C

C

58 super.removeBinding(player, role)
59 reset(player)
60 reset(role)
61 }
62
63 override def removePlayer[P <: AnyRef : ClassTag](player: P): Unit = {
64 super.removePlayer(player)
65 reset(player)
66 }
67 }

222

D.2. Source code for SCROLL

D.2.12. SCROLLERRORS.SCALA

Listing D.17.: Source code for SCROLLErrors.scala.
1 package scroll.internal.errors
2
3 /* *
4 * Object containing all SCROLL related error.
5 */
6 object SCROLLErrors {
7
8 sealed trait SCROLLError
9

10 sealed trait TypeError
11
12 sealed trait RolePlaying
13
14 case class RolePlayingImpossible(core: String , role: String) extends

RolePlaying
C

C

15
16 case class TypeNotFound(name: String) extends TypeError
17
18 case class RoleNotFound(forCore: String , target: String , args: String)

extends SCROLLError
C

C

19
20 sealed trait InvocationError extends SCROLLError
21
22 case class IllegalRoleInvocationSingleDispatch(roleType: String , target:

String) extends InvocationError
C

C

23
24 case class IllegalRoleInvocationMultipleDispatch(roleType: String , target:

String , args: String) extends InvocationError
C

C

25
26 }

223

Appendix D. Source Code

D.2.13. MEMOISER.SCALA

Listing D.18.: Source code for Memoiser.scala.
1 package scroll.internal.util
2
3 import com.google.common.cache.{Cache, CacheBuilder}
4
5 /* *
6 * Support for memoization, encapsulating common behaviour of memoised
7 * entities and a general reset mechanism for all such entities.
8 */
9 trait Memoiser {

10
11 /* *
12 * Common interface for encapsulation of memoization for a single memoised
13 * entity backed by a configurable cache.
14 */
15 trait MemoisedBase[T , U] {
16
17 /* *
18 * The memo table.
19 */
20 def memo: Cache [AnyRef , AnyRef]
21
22 /* *
23 * Return the value stored at key `t` as an option.
24 */
25 def get(t: T): Option [U] = Option(memo.getIfPresent(t).asInstanceOf[U])
26
27 /* *
28 * Return the value stored at key `t` if there is one, otherwise
29 * return `u`. `u` is only evaluated if necessary and put into the cache.
30 */
31 def getAndPutWithDefault(t: T , u: => U): U = get(t) match {
32 case Some(v) => v
33 case None =>
34 val newU = u
35 put(t, newU)
36 newU
37 }
38
39 /* *
40 * Has the value at `t` already been computed or not? By default, does
41 * the memo table contain a value for `t`?
42 */
43 def hasBeenComputedAt(t: T): Boolean = get(t).isDefined
44
45 /* *
46 * Store the value `u` under the key `t`.
47 */
48 def put(t: T , u: U): Unit = {
49 memo.put(t.asInstanceOf[AnyRef], u.asInstanceOf[AnyRef])
50 }
51
52 /* *
53 * Immediately reset the memo table.
54 */
55 def reset(): Unit = {
56 memo.invalidateAll()
57 }
58

224

D.2. Source code for SCROLL

59 /* *
60 * Immediately reset the memo table at `t`.
61 */
62 def resetAt(t: T): Unit = {
63 memo.invalidate(t)
64 }
65
66 /* *
67 * The number of entries in the memo table.
68 */
69 def size(): Long = memo.size
70 }
71
72 /* *
73 * A memoised entity that uses equality to compare keys.
74 */
75 trait Memoised[T , U] extends MemoisedBase[T , U] {
76 val memo: Cache [AnyRef , AnyRef] = CacheBuilder.newBuilder.build()
77 }
78
79 /* *
80 * A memoised entity that weakly holds onto its keys and uses identity
81 * to compare them.
82 */
83 trait IdMemoised[T , U] extends MemoisedBase[T , U] {
84 val memo: Cache [AnyRef , AnyRef] = CacheBuilder.newBuilder.weakKeys.build()
85 }
86
87 }

225

Appendix D. Source Code

D.2.14. REFLECTIVEHELPER.SCALA

Listing D.19.: Source code for ReflectiveHelper.scala.
1 package scroll.internal.util
2
3 import scala.annotation.tailrec
4 import scala.reflect.{ClassTag, classTag}
5
6 /* *
7 * Contains useful functions for translating class and type names to Strings
8 * and provides helper functions to access common tasks for working with

reflections.
C

C

9 *
10 * Querying methods and fields is cached using

[[scroll.internal.util.Memoiser]].
C

C

11 */
12 object ReflectiveHelper extends Memoiser {
13
14 import java.lang
15 import java.lang.reflect.{Field, Method}
16
17 private class MethodCache extends Memoised[Any , Set [Method]]
18
19 private class FieldCache extends Memoised[Any , Set [Field]]
20
21 private class SimpleTagNameCache extends Memoised[ClassTag [_], String]
22
23 private class SimpleClassNameCache extends Memoised[Class [_], String]
24
25 private lazy val methodCache = new MethodCache()
26 private lazy val fieldCache = new FieldCache()
27 private lazy val simpleClassNameCache = new SimpleClassNameCache()
28 private lazy val simpleTagNameCache = new SimpleTagNameCache()
29
30 private def simpleClassName(s: String , on: String) = if (s.contains(on)) {
31 s.substring(s.lastIndexOf(on) + 1)
32 } else {
33 s
34 }
35
36 /* *
37 * Translates a Type name to a String, i.e. removing anything before the last
38 * occurrence of "<code>.< / code>".
39 *
40 * @param t the Type name as String
41 * @return anything after the last occurrence of "<code>.< / code>"
42 */
43 def typeSimpleClassName(t: String): String = simpleClassName(t, ".")
44
45 /* *
46 * Translates a Class name to a String, i.e. removing anything before the last
47 * occurrence of "<code>$< / code>".
48 *
49 * @param t the Class name as String
50 * @return anything after the last occurrence of "<code>$< / code>"
51 */
52 def classSimpleClassName(t: String): String = simpleClassName(t, "$")
53
54 /* *
55 * Translates a Class or Type name to a String, i.e. removing anything

before the last
C

C

226

D.2. Source code for SCROLL

56 * occurrence of "<code>$< / code>" or "<code>.< / code>".
57 *
58 * @param t the Class or Type name as String
59 * @return anything after the last occurrence of "<code>$< / code>" or

"<code>.< / code>"
C

C

60 */
61 def simpleName(t: String): String =

typeSimpleClassName(classSimpleClassName(t))
C

C

62
63 /* *
64 * Returns the hash code of any object as String.
65 *
66 * @param of the object to get the hash code as String
67 * @return the hash code of 'of' as String.
68 */
69 def hash(of: Any): String = of.hashCode().toString
70
71
72 private def safeString(s: String): Unit = {
73 require(null != s)
74 require(!s.isEmpty)
75 }
76
77 @tailrec
78 private def safeFindField(of: Any , name: String): Field =

fieldCache.get(of) match {
C

C

79 case Some(fields) => fields.find(_.getName == name) match {
80 case Some(f) => f
81 case None => throw new RuntimeException(s"Field '$name' not found on

'$of'!")
C

C

82 }
83 case None =>
84 val fields = getAllFields(of)
85 fieldCache.put(of, fields)
86 safeFindField(of, name)
87 }
88
89 @tailrec
90 private def findMethods(of: Any , name: String): Set [Method] =

methodCache.get(of) match {
C

C

91 case Some(l) =>
92 l.filter(_.getName == name)
93 case None =>
94 val methods = getAllMethods(of)
95 methodCache.put(of, methods)
96 findMethods(of, name)
97 }
98
99 private def getAllMethods(of: Any): Set [Method] = {

100 def getAccessibleMethods(c: Class [_]): Set [Method] = c match {
101 case null => Set.empty
102 case _ => c.getDeclaredMethods.toSet ++

getAccessibleMethods(c.getSuperclass)
C

C

103 }
104
105 getAccessibleMethods(of.getClass)
106 }
107
108 private def getAllFields(of: Any): Set [Field] = {
109 def getAccessibleFields(c: Class [_]): Set [Field] = c match {
110 case null => Set.empty
111 case _ => c.getDeclaredFields.toSet ++ getAccessibleFields(c.getSuperclass)

227

Appendix D. Source Code

112 }
113
114 getAccessibleFields(of.getClass)
115 }
116
117 private def matchMethod[A](m: Method , name: String , args: Seq [A]): Boolean = {
118 lazy val matchName = m.getName == name
119 lazy val matchParamCount = m.getParameterTypes.length == args.size
120 lazy val matchArgTypes = args.zip(m.getParameterTypes).forall {
121 case (arg, paramType: Class [_]) => paramType match {
122 case lang.Boolean.TYPE => arg.isInstanceOf[Boolean]
123 case lang.Character.TYPE => arg.isInstanceOf[Char]
124 case lang.Short.TYPE => arg.isInstanceOf[Short]
125 case lang.Integer.TYPE => arg.isInstanceOf[Integer]
126 case lang.Long.TYPE => arg.isInstanceOf[Long]
127 case lang.Float.TYPE => arg.isInstanceOf[Float]
128 case lang.Double.TYPE => arg.isInstanceOf[Double]
129 case lang.Byte.TYPE => arg.isInstanceOf[Byte]
130 case _ => paramType.isAssignableFrom(arg.getClass)
131 }
132 case faultyArgs => throw new RuntimeException(s"Can not handle this

arguments: '$faultyArgs'")
C

C

133 }
134 matchName && matchParamCount && matchArgTypes
135 }
136
137 /* *
138 * @return all methods / functions of the wrapped object as Set
139 */
140 def allMethods(of: Any): Set [Method] = methodCache.get(of) match {
141 case Some(methods) => methods
142 case None =>
143 val methods = getAllMethods(of)
144 methodCache.put(of, methods)
145 methods
146 }
147
148 /* *
149 * Find a method of the wrapped object by its name and argument list given.
150 *
151 * @param on the instance to search on
152 * @param name the name of the function / method of interest
153 * @param args the args function / method of interest
154 * @return Some(Method) if the wrapped object provides the

function / method in question, None otherwise
C

C

155 */
156 def findMethod(on: Any , name: String , args: Seq [Any]): Option [Method] =

findMethods(on, name).find(matchMethod(_, name, args))
C

C

157
158 /* *
159 * Checks if the wrapped object provides a member (field or

function / method) with the given name.
C

C

160 *
161 * @param on the instance to search on
162 * @param name the name of the member (field or function / method) of interest
163 * @return true if the wrapped object provides the given member, false

otherwise
C

C

164 */
165 def hasMember(on: Any , name: String): Boolean = {
166 safeString(name)
167
168 val fields = fieldCache.get(on) match {

228

D.2. Source code for SCROLL

169 case Some(fs) => fs
170 case None =>
171 val fs = getAllFields(on)
172 fieldCache.put(on, fs)
173 fs
174 }
175
176 val methods = methodCache.get(on) match {
177 case Some(ms) => ms
178 case None =>
179 val ms = getAllMethods(on)
180 methodCache.put(on, ms)
181 ms
182 }
183
184 fields.exists(_.getName == name) methods.exists(_.getName == name)
185 }
186
187 /* *
188 * Returns the runtime content of type T of the field with the given name

of the wrapped object.
C

C

189 *
190 * @param on the instance to search on
191 * @param name the name of the field of interest
192 * @tparam T the type of the field
193 * @return the runtime content of type T of the field with the given name

of the wrapped object
C

C

194 */
195 def propertyOf[T](on: Any , name: String): T = {
196 safeString(name)
197 val field = safeFindField(on, name)
198 field.setAccessible(true)
199 field.get(on).asInstanceOf[T]
200 }
201
202 /* *
203 * Sets the field given as name to the provided value.
204 *
205 * @param on the instance to search on
206 * @param name the name of the field of interest
207 * @param value the value to set for this field
208 */
209 def setPropertyOf(on: Any , name: String , value: Any): Unit = {
210 safeString(name)
211 val field = safeFindField(on, name)
212 field.setAccessible(true)
213 field.set(on, value)
214 }
215
216 /* *
217 * Returns the runtime result of type T of the given function by executing

this function of the wrapped object.
C

C

218 *
219 * @param on the instance to search on
220 * @param m the function of interest
221 * @tparam T the return type of the function
222 * @return the runtime result of type T of the function with the given

name by executing this function of the wrapped object
C

C

223 */
224 def resultOf[T](on: Any , m: Method): T = {
225 m.setAccessible(true)
226 m.invoke(on).asInstanceOf[T]

229

Appendix D. Source Code

227 }
228
229 /* *
230 * Returns the runtime result of type T of the given function and

arguments by executing this function of the wrapped object.
C

C

231 *
232 * @param on the instance to search on
233 * @param m the function of interest
234 * @param args the arguments of the function of interest
235 * @tparam T the return type of the function
236 * @return the runtime result of type T of the function with the given

name by executing this function of the wrapped object
C

C

237 */
238 def resultOf[T](on: Any , m: Method , args: Seq [Object]): T = {
239 m.setAccessible(true)
240 m.invoke(on, args: _*).asInstanceOf[T]
241 }
242
243 /* *
244 * Returns the runtime result of type T of the function with the given

name by executing this function of the wrapped object.
C

C

245 *
246 * @param on the instance to search on
247 * @param name the name of the function of interest
248 * @tparam T the return type of the function
249 * @return the runtime result of type T of the function with the given

name by executing this function of the wrapped object
C

C

250 */
251 def resultOf[T](on: Any , name: String): T = {
252 safeString(name)
253 findMethods(on, name).toList match {
254 case elem :: Nil =>
255 elem.setAccessible(true)
256 elem.invoke(on).asInstanceOf[T]
257 case list if list.nonEmpty =>
258 val elem = list.head
259 elem.setAccessible(true)
260 elem.invoke(on).asInstanceOf[T]
261 case Nil =>
262 throw new RuntimeException(s"Function with name '$name' not found on

'$on'!")
C

C

263 }
264 }
265
266 /* *
267 * Checks if the wrapped object is of type T.
268 *
269 * @param on the instance to search on
270 * @tparam T the type to check
271 * @return true if the wrapped object is of type T, false otherwise
272 */
273 def is[T : ClassTag](on: Any): Boolean =
274 simpleClassNameCache.getAndPutWithDefault(on.getClass,

ReflectiveHelper.simpleName(on.getClass.toString)) ==
C

C

275 simpleTagNameCache.getAndPutWithDefault(classTag[T],
ReflectiveHelper.simpleName(classTag[T].toString))

C
C

276 }

230

D.3. Source code for Evaluation

D.3. SOURCE CODE FOR EVALUATION

D.3.1. ROP

D.3.1.1. ROP/BANKEXAMPLE.SCALA

Listing D.20.: Source code for rop/BankExample.scala.
1 package rop
2
3 import common.{Benchmarkable, Currency => Money}
4 import java.util.{Date => DateTime}
5
6 import scala.collection.mutable
7 import scala.util.Random
8
9 class BankExample extends Benchmarkable {

10
11 case class Person(title: String , firstName: String , lastName: String ,

address: String) extends ComponentCore
C

C

12
13 case class Account(var balance: Money , id: Integer) extends ComponentCore {
14 def increase(amount: Money): Unit = {
15 balance = balance + amount
16 }
17
18 def decrease(amount: Money): Unit = {
19 balance = balance - amount
20 }
21 }
22
23 class Transaction(amount: Money , creationTime: DateTime , from: Account , to:

Account) extends ComponentCore {
C

C

24 def execute(): Boolean = {
25 Source().withdraw(amount)
26 Target().deposite(amount)
27 true
28 }
29
30 case class Source() extends ComponentRole(from) {
31 def withdraw(amount: Money): Unit = {
32 val _ = core.asInstanceOf[ComponentCore].getRoles.collectFirst {
33 case ca: Bank #CheckingsAccount => ca.decrease(amount)
34 case sa: Bank #SavingsAccount => sa.decrease(amount)
35 }
36 }
37 }
38
39 case class Target() extends ComponentRole(to) {
40 def deposite(amount: Money): Unit = {
41 core.asInstanceOf[Account].increase(amount)
42 }
43 }
44
45 }
46
47 trait Bank {
48 var name: String = _
49
50 var moneyTransfers = mutable.ListBuffer.empty[MoneyTransfer]
51
52 def executeTransactions(): Unit = {

231

Appendix D. Source Code

53 moneyTransfers.foreach(_.execute())
54 }
55
56 case class Customer(name: String , id: Integer , p: Person) extends

ComponentRole(p) {
C

C

57 var accounts = mutable.ArrayBuffer.empty[Account]
58
59 def addSavingsAccount(a: Account): Boolean = {
60 val sa = SavingsAccount(0.1, a)
61 a.addRole(sa)
62 accounts.append(a)
63 true
64 }
65
66 def addCheckingsAccount(a: Account): Boolean = {
67 val ca = CheckingsAccount(Money(100, "USD"), a)
68 a.addRole(ca)
69 accounts.append(a)
70 true
71 }
72 }
73
74 case class MoneyTransfer(execution: DateTime , t: Transaction) extends

ComponentRole(t) {
C

C

75 var executed: Boolean = false
76
77 def execute(): Boolean = {
78 core.asInstanceOf[Transaction].execute()
79 executed = true
80 isExecuted
81 }
82
83 def isExecuted: Boolean = executed
84 }
85
86 case class CheckingsAccount(limit: Money , a: Account) extends

ComponentRole(a) {
C

C

87 def decrease(amount: Money): Unit = amount match {
88 case am if am <= limit =>
89 val _ = core.asInstanceOf[Account].decrease(amount)
90 case _ => throw new IllegalArgumentException("Amount > limit!")
91 }
92 }
93
94 case class SavingsAccount(var transactionFee: Double , a: Account) extends

ComponentRole(a) {
C

C

95 def decrease(amount: Money): Unit = {
96 val _ = core.asInstanceOf[Account].decrease(amount + amount *

transactionFee)
C

C

97 }
98 }
99

100 }
101
102 var bank: Bank = _
103
104 override def build(numPlayer: Int , numRoles: Int , numTransactions: Int ,

checkCycles: Boolean = false): BankExample = {
C

C

105 val players = (0 until numPlayer).map(i => Person("Mr.", "Stan", "Mejer" +
i, "Fake Street 1A"))

C
C

106
107 bank = new Bank {

232

D.3. Source code for Evaluation

108 name = "Deutsche Bank"
109
110 val accounts = players.zipWithIndex.map { case (p, i) =>
111 val a = Account(Money(100.0, "USD"), i)
112 (0 until numRoles).map(ii => {
113 Customer("Customer", ii, p).addSavingsAccount(a)
114 })
115 a
116 }
117
118 (0 until numTransactions).foreach { _ =>
119 val s = accounts(Random.nextInt(accounts.size))
120 val t = accounts(Random.nextInt(accounts.size))
121 val transaction = new Transaction(Money(10.0, "USD"), new DateTime, s, t)
122 val mt = MoneyTransfer(new DateTime, transaction)
123 moneyTransfers.append(mt)
124 }
125 }
126 this
127 }
128
129 override def benchmark(): Unit = {
130 bank.executeTransactions()
131 }
132 }

D.3.1.2. ROP/COMPONENT.SCALA

Listing D.21.: Source code for rop/Component.scala.
1 package rop
2
3 abstract class Component {
4
5 def addRole(spec: ComponentRole): Unit
6
7 def getRole(spec: String): Iterable [ComponentRole]
8
9 def hasRole(spec: String): Boolean

10
11 def as(role: ComponentRole): ComponentRole = {
12 role.setCore(this)
13 role
14 }
15 }

D.3.1.3. ROP/COMPONENTCORE.SCALA

Listing D.22.: Source code for rop/ComponentCore.scala.
1 package rop
2
3 import collection.mutable.ArrayBuffer
4 import scala.collection.mutable
5
6 class ComponentCore extends Component {
7 private val roles = mutable.Map[String , ArrayBuffer [ComponentRole]]()
8
9 override def addRole(spec: ComponentRole): Unit = {

10 if (roles.contains(spec.getName)) {
11 roles(spec.getName) = roles(spec.getName) :+ spec
12 } else {

233

Appendix D. Source Code

13 roles(spec.getName) = ArrayBuffer(spec)
14 }
15 }
16
17 override def getRole(spec: String): Iterable [ComponentRole] = roles(spec)
18
19 override def hasRole(spec: String): Boolean = roles.contains(spec)
20
21 def getRoles: Iterable [ComponentRole] = roles.values.flatten
22 }

D.3.1.4. ROP/COMPONENTROLE.SCALA

Listing D.23.: Source code for rop/ComponentRole.scala.
1 package rop
2
3 class ComponentRole(var core: Component) extends Component {
4 def getName = this.getClass.getSimpleName
5
6 def setCore(core: Component): Unit = {
7 this.core = core
8 }
9

10 override def addRole(spec: ComponentRole): Unit = {
11 core.addRole(spec)
12 }
13
14 override def getRole(spec: String): Iterable [ComponentRole] = {
15 core.getRole(spec)
16 }
17
18 override def hasRole(spec: String): Boolean = {
19 core.hasRole(spec)
20 }
21 }

234

D.3. Source code for Evaluation

D.3.2. SCALAROLES

D.3.2.1. SCALAROLES/BANKEXAMPLE.SCALA

Listing D.24.: Source code for rop/scalaroles/BankExample.scala.
1 package scalaroles
2
3 import java.util.{Date => DateTime}
4
5 import common.{Benchmarkable, Currency => Money}
6
7 import scala.collection.mutable
8 import scala.util.Random
9

10 class BankExample extends Benchmarkable {
11
12 case class Person(title: String , firstName: String , lastName: String ,

address: String)
C

C

13
14 case class Account(var balance: Money , id: Integer) {
15 def increase(amount: Money): Unit = {
16 balance = balance + amount
17 }
18
19 def decrease(amount: Money): Unit = {
20 balance = balance - amount
21 }
22 }
23
24 trait Transaction extends StickyCollaboration {
25 var amount: Money = _
26 var creationTime: DateTime = _
27
28 val source = new Source {}
29 val target = new Target {}
30
31 // TODO: deep roles are a big problem here. How to delegate to Savings-

or CheckingsAccount?
C

C

32
33 trait Source extends Role[Account] {
34 def withdraw(): Unit = {
35 core.decrease(amount)
36 }
37 }
38
39 trait Target extends Role[Account] {
40 def deposite(): Unit = {
41 core.increase(amount)
42 }
43 }
44
45 def execute(): Boolean = {
46 source.withdraw()
47 target.deposite()
48 true
49 }
50 }
51
52 trait Bank extends StickyCollaboration {
53
54 var name: String = _
55

235

Appendix D. Source Code

56 var moneyTransfers = mutable.ListBuffer.empty[MoneyTransfer]
57
58 def executeTransactions(): Unit = {
59 moneyTransfers.foreach(_.execute())
60 }
61
62 trait Customer extends Role[Person] {
63 var name: String = _
64 var id: Integer = _
65
66 var accounts = mutable.ArrayBuffer.empty[Account]
67
68 def addSavingsAccount(a: Account): Boolean = {
69 val sa = new SavingsAccount {
70 transactionFee = 0.1
71 }
72 accounts.append(a)
73 sa.playedBy(a)
74 true
75 }
76
77 def addCheckingsAccount(a: Account): Boolean = {
78 val ca = new CheckingsAccount {
79 limit = Money(100, "USD")
80 }
81 accounts.append(a)
82 ca.playedBy(a)
83 true
84 }
85
86 }
87
88 trait MoneyTransfer extends Role[Transaction] {
89 var execution: DateTime = _
90 var executed: Boolean = false
91
92 def execute(): Boolean = {
93 core.execute()
94 executed = true
95 isExecuted
96 }
97
98 def isExecuted: Boolean = executed
99 }

100
101 trait CheckingsAccount extends Role[Account] {
102 var limit: Money = _
103
104 def decrease(amount: Money): Unit = amount match {
105 case a if a <= limit => core.decrease(amount)
106 case _ => throw new IllegalArgumentException("Amount > limit!")
107 }
108 }
109
110 trait SavingsAccount extends Role[Account] {
111 var transactionFee: Double = _
112
113 def decrease(amount: Money): Unit = {
114 core.decrease(amount + amount * transactionFee)
115 }
116 }
117

236

D.3. Source code for Evaluation

118 }
119
120 var bank: Bank = _
121
122 override def build(numPlayer: Int , numRoles: Int , numTransactions: Int ,

checkCycles: Boolean = false): BankExample = {
C

C

123 val players = (0 until numPlayer).map(i => Person("Mr.", "Stan", "Mejer" +
i, "Fake Street 1A"))

C
C

124
125 bank = new Bank {
126 name = "Deutsche Bank"
127
128 val accounts = players.zipWithIndex.map { case (p, i) =>
129 val a = Account(Money(100.0, "USD"), i)
130 (0 until numRoles).map(ii => {
131 val c = new Customer {
132 name = "Customer"
133 id = ii
134 }
135 c.playedBy(p)
136 c.addSavingsAccount(a)
137 })
138 a
139 }
140
141 (0 until numTransactions).foreach { _ =>
142 val transaction = new Transaction {
143 amount = Money(10.0, "USD")
144 creationTime = new DateTime
145 source.playedBy(accounts(Random.nextInt(accounts.size)))
146 target.playedBy(accounts(Random.nextInt(accounts.size)))
147 }
148
149 val transfer = new MoneyTransfer {
150 execution = new DateTime()
151 }
152 transfer.playedBy(transaction)
153 moneyTransfers.append(transfer)
154 }
155 }
156 this
157 }
158
159 override def benchmark(): Unit = {
160 bank.executeTransactions()
161 }
162 }

237

Appendix D. Source Code

D.3.3. SCROLL

D.3.3.1. SCROLL/BANKEXAMPLE.SCALA

Listing D.25.: Source code for SCROLL/BankExample.scala.
1 package scroll
2
3 import scroll.internal.support.DispatchQuery
4 import DispatchQuery._
5 import scroll.internal.Compartment
6 import common.{Benchmarkable, Currency => Money}
7
8 import scroll.internal.graph.CachedScalaRoleGraph
9

10 import scala.collection.mutable
11 import scala.util.Random
12
13 class BankExample extends Benchmarkable {
14
15 case class Person(title: String , firstName: String , lastName: String ,

address: String)
C

C

16
17 case class Account(var balance: Money , id: Integer) {
18
19 def increase(amount: Money): Unit = {
20 balance = balance + amount
21 }
22
23 def decrease(amount: Money): Unit = {
24 balance = balance - amount
25 }
26 }
27
28 trait Transaction extends Compartment {
29 var amount: Money = _
30
31 var from: Source = _
32 var to: Target = _
33
34 def execute(): Boolean = {
35 from.withdraw(amount)
36 to.deposite(amount)
37 true
38 }
39
40 case class Source() {
41 def withdraw(amount: Money): Unit = {
42 val _ = +this decrease amount
43 }
44 }
45
46 case class Target() {
47 def deposite(amount: Money): Unit = {
48 val _ = +this increase amount
49 }
50 }
51
52 }
53
54 trait Bank extends Compartment {
55 var moneyTransfers = mutable.ListBuffer.empty[MoneyTransfer]
56

238

D.3. Source code for Evaluation

57 def executeTransactions(): Unit = {
58 moneyTransfers.foreach(_.execute())
59 }
60
61 case class Customer(name: String , id: Integer) {
62 var accounts = mutable.ArrayBuffer.empty[Account]
63
64 def addSavingsAccount(a: Account): Boolean = {
65 val sa = SavingsAccount(0.1)
66 accounts.append(a)
67 a play sa
68 true
69 }
70
71 def addCheckingsAccount(a: Account): Boolean = {
72 val ca = CheckingsAccount(Money(100, "USD"))
73 accounts.append(a)
74 a play ca
75 true
76 }
77 }
78
79 case class MoneyTransfer() {
80 def execute(): Boolean = {
81 implicit val dd = Bypassing(_.isInstanceOf[MoneyTransfer])
82 +this execute()
83 true
84 }
85 }
86
87 case class CheckingsAccount(var limit: Money) {
88 def decrease(amount: Money): Unit = amount match {
89 case a if a <= limit =>
90 implicit val dd = Bypassing(_.isInstanceOf[CheckingsAccount])
91 val _ = +this decrease amount
92 case _ => throw new IllegalArgumentException("Amount > limit!")
93 }
94 }
95
96 case class SavingsAccount(var transactionFee: Double) {
97 def decrease(amount: Money): Unit = {
98 implicit val dd = Bypassing(_.isInstanceOf[SavingsAccount])
99 //println("dec from SA")

100 val _ = +this decrease (amount + amount * transactionFee)
101 }
102 }
103
104 }
105
106 var bank: Bank = _
107
108 override def build(numPlayer: Int , numRoles: Int , numTransactions: Int ,

checkCycles: Boolean = false): BankExample = {
C

C

109 val players = (0 until numPlayer).map(i => Person("Mr.", "Stan", "Mejer" +
i, "Fake Street 1A"))

C
C

110
111 bank = new Bank {
112 override val plays = new CachedScalaRoleGraph(checkCycles)
113
114 val accounts = players.zipWithIndex.map { case (p, i) =>
115 val a = Account(Money(100.0, "USD"), i)
116 (0 until numRoles).map(ii => {

239

Appendix D. Source Code

117 val c = Customer("Customer", ii)
118 p play c
119 c addSavingsAccount a
120 })
121 a
122 }
123
124 (0 until numTransactions).foreach { _ =>
125 val transaction = new Transaction {
126 override val plays = new CachedScalaRoleGraph(checkCycles)
127 amount = Money(10.0, "USD")
128 from = Source()
129 to = Target()
130 accounts(Random.nextInt(accounts.size)) play from
131 accounts(Random.nextInt(accounts.size)) play to
132 }
133 val mt = MoneyTransfer()
134 transaction play mt
135 moneyTransfers.append(mt)
136 transaction partOf this
137 }
138 }
139 this
140 }
141
142 override def benchmark(): Unit = {
143 bank.executeTransactions()
144 }
145
146 }

240

D.3. Source code for Evaluation

D.3.4. SEPARATETYPE

D.3.4.1. SEPARATETYPE/BANKEXAMPLE.SCALA

Listing D.26.: Source code for SeparateType/BankExample.scala.
1 package separatetype
2
3 import common.{Benchmarkable, Currency => Money}
4 import java.util.{Date => DateTime}
5
6 import scala.collection.mutable
7 import scala.util.Random
8
9 class BankExample extends Benchmarkable {

10
11 case class Person(title: String , firstName: String , lastName: String ,

address: String)
C

C

12
13 case class Account(var balance: Money , id: Integer , accountType: String) {
14 def increase(amount: Money): Unit = {
15 balance = balance + amount
16 }
17
18 def decrease(amount: Money): Unit = {
19 balance = balance - amount
20 }
21 }
22
23 case class Source(a: Account) {
24 def withdraw(amount: Money): Unit = a.accountType match {
25 case "Savings" => SavingsAccount(0.1, a).decrease(amount)
26 case "Checkings" => CheckingsAccount(Money(100.0, "USD"),

a).decrease(amount)
C

C

27 }
28 }
29
30 case class Target(a: Account) {
31 def deposite(amount: Money): Unit = {
32 val _ = a increase amount
33 }
34 }
35
36 case class Customer(name: String , id: Integer , p: Person) {
37 var accounts = mutable.ArrayBuffer.empty[Account]
38
39 def addSavingsAccount(a: Account): Boolean = {
40 accounts.append(a)
41 true
42 }
43
44 def addCheckingsAccount(a: Account): Boolean = {
45 accounts.append(a)
46 true
47 }
48 }
49
50 case class Transaction(amount: Money , creationTime: DateTime , from: Source ,

to: Target) {
C

C

51 def execute(): Boolean = {
52 from.withdraw(amount)
53 to.deposite(amount)
54 true

241

Appendix D. Source Code

55 }
56 }
57
58 case class MoneyTransfer(execution: DateTime , t: Transaction) {
59 var executed: Boolean = false
60
61 def execute(): Boolean = {
62 t.execute()
63 executed = true
64 isExecuted
65 }
66
67 def isExecuted: Boolean = executed
68 }
69
70 case class CheckingsAccount(var limit: Money , acc: Account) {
71 def decrease(amount: Money): Unit = amount match {
72 case a if a <= limit =>
73 val _ = acc decrease amount
74 case _ => throw new IllegalArgumentException("Amount > limit!")
75 }
76 }
77
78 case class SavingsAccount(var transactionFee: Double , acc: Account) {
79 def decrease(amount: Money): Unit = {
80 val _ = acc decrease (amount + amount * transactionFee)
81 }
82 }
83
84 trait Bank {
85 var name: String = _
86
87 var moneyTransfers = mutable.ListBuffer.empty[MoneyTransfer]
88
89 def executeTransactions(): Unit = {
90 moneyTransfers.foreach(_.execute())
91 }
92 }
93
94 var bank: Bank = _
95
96 override def build(numPlayer: Int , numRoles: Int , numTransactions: Int ,

checkCycles: Boolean = false): BankExample = {
C

C

97 val players = (0 until numPlayer).map(i => Person("Mr.", "Stan", "Mejer" +
i, "Fake Street 1A"))

C
C

98
99 bank = new Bank {

100 name = "Deutsche Bank"
101
102 val accounts = players.zipWithIndex.map { case (p, i) =>
103 val a = Account(Money(100.0, "USD"), i, "Savings")
104 (0 until numRoles).map(ii => {
105 val c = Customer(p.lastName, i, p)
106 c.addSavingsAccount(a)
107 })
108 a
109 }
110
111 (0 until numTransactions).foreach { _ =>
112 val source = Source(accounts(Random.nextInt(accounts.size)))
113 val target = Target(accounts(Random.nextInt(accounts.size)))

242

D.3. Source code for Evaluation

114 val transaction = Transaction(Money(10.0, "USD"), new DateTime,
source, target)

C
C

115 val mt = MoneyTransfer(new DateTime, transaction)
116 moneyTransfers.append(mt)
117 }
118 }
119 this
120 }
121
122 override def benchmark(): Unit = {
123 bank.executeTransactions()
124 }
125
126 }

243

Appendix D. Source Code

D.3.5. SINGLETYPE

D.3.5.1. SINGLETYPE/BANKEXAMPLE.SCALA

Listing D.27.: Source code for SingleType/BankExample.scala.
1 package singletype
2
3 import common.{Benchmarkable, Currency => Money}
4 import java.util.{Date => DateTime}
5
6 import scala.collection.mutable
7 import scala.util.Random
8
9 class BankExample extends Benchmarkable {

10
11 case class Person(title: String , firstName: String , lastName: String ,

address: String) {
C

C

12 var accounts = mutable.ArrayBuffer.empty[Account]
13
14 def addSavingsAccount(a: Account): Boolean = {
15 accounts.append(a)
16 true
17 }
18
19 def addCheckingsAccount(a: Account): Boolean = {
20 accounts.append(a)
21 true
22 }
23 }
24
25 case class Account(var balance: Money , id: Integer , fee: Double , limit:

Money , accountType: String) {
C

C

26 def increase(amount: Money): Unit = {
27 balance = balance + amount
28 }
29
30 def decrease(amount: Money): Unit = {
31 balance = balance - amount
32 }
33
34 def withdraw(amount: Money): Unit = accountType match {
35 case "Savings" => decreaseWithFee(amount)
36 case "Checkings" => decreaseWithLimit(amount)
37 }
38
39 def deposite(amount: Money): Unit = {
40 val _ = this increase amount
41 }
42
43 def decreaseWithLimit(amount: Money): Unit = amount match {
44 case a if a <= limit =>
45 val _ = this decrease amount
46 case _ => throw new IllegalArgumentException("Amount > limit!")
47 }
48
49 def decreaseWithFee(amount: Money): Unit = {
50 val _ = this decrease (amount + amount * fee)
51 }
52 }
53
54 case class Transaction(amount: Money , source: Account , target: Account ,

creationTime: DateTime) {
C

C

244

D.3. Source code for Evaluation

55 def execute(): Boolean = {
56 source.withdraw(amount)
57 target.deposite(amount)
58 executed = true
59 isExecuted
60 }
61
62 var executed: Boolean = false
63
64 def isExecuted: Boolean = executed
65
66 }
67
68 trait Bank {
69 var name: String = _
70
71 var moneyTransfers = mutable.ListBuffer.empty[Transaction]
72
73 def executeTransactions(): Unit = {
74 moneyTransfers.foreach(_.execute())
75 }
76 }
77
78 var bank: Bank = _
79
80 override def build(numPlayer: Int , numRoles: Int , numTransactions: Int ,

checkCycles: Boolean = false): BankExample = {
C

C

81 val players = (0 until numPlayer).map(i => Person("Mr.", "Stan", "Mejer" +
i, "Fake Street 1A"))

C
C

82
83 bank = new Bank {
84 name = "Deutsche Bank"
85
86 val accounts = players.zipWithIndex.map { case (p, i) =>
87 val a = Account(Money(100.0, "USD"), i, 0.1, Money(100.0, "USD"),

"Savings")
C

C

88 (0 until numRoles).map(ii => {
89 p addSavingsAccount a
90 })
91 a
92 }
93
94 (0 until numTransactions).foreach { _ =>
95 val source = accounts(Random.nextInt(accounts.size))
96 val target = accounts(Random.nextInt(accounts.size))
97 val transaction = Transaction(Money(10.0, "USD"), source, target, new

DateTime)
C

C

98 moneyTransfers.append(transaction)
99 }

100 }
101 this
102 }
103
104 override def benchmark(): Unit = {
105 bank.executeTransactions()
106 }
107
108 }

245

Appendix D. Source Code

D.3.6. SUBTYPEHIDDENDELEGATION

D.3.6.1. SUBTYPEHIDDENDELEGATION/BANKEXAMPLE.SCALA

Listing D.28.: Source code for SubtypeHiddenDelegation/BankExample.scala.
1 package subtypehiddendelegation
2
3 import common.{Benchmarkable, Currency => Money}
4 import java.util.{Date => DateTime}
5
6 import scala.collection.mutable
7 import scala.util.Random
8
9 class BankExample extends Benchmarkable {

10
11 class Person(val title: String , val firstName: String , val lastName:

String , val address: String)
C

C

12
13 class Account(var balance: Money , val id: Integer) {
14 def increase(amount: Money): Unit = {
15 balance = balance + amount
16 }
17
18 def decrease(amount: Money): Unit = {
19 balance = balance - amount
20 }
21 }
22
23 class Source(id: Integer , at: Account) {
24 def withdraw(amount: Money): Unit = at match {
25 case sa: SavingsAccount => sa.decrease(amount)
26 case ca: CheckingsAccount => ca.decrease(amount)
27 }
28 }
29
30 class Target(id: Integer , at: Account) {
31 def deposite(amount: Money): Unit = {
32 val _ = at.increase(amount)
33 }
34 }
35
36 class Customer(id: Integer , title: String , firstName: String , lastName:

String , address: String) extends Person(title, firstName, lastName,
address) {

C
C C
C

37 var accounts = mutable.ArrayBuffer.empty[Account]
38
39 def addSavingsAccount(a: Account): Boolean = {
40 accounts.append(a)
41 true
42 }
43
44 def addCheckingsAccount(a: Account): Boolean = {
45 accounts.append(a)
46 true
47 }
48 }
49
50 class Transaction(amount: Money , creationTime: DateTime , from: Source , to:

Target) {
C

C

51 def execute(): Boolean = {
52 from.withdraw(amount)
53 to.deposite(amount)

246

D.3. Source code for Evaluation

54 true
55 }
56 }
57
58 class MoneyTransfer(amount: Money , creationTime: DateTime , from: Source ,

to: Target) extends Transaction(amount, creationTime, from, to) {
C

C

59 var executed: Boolean = false
60
61 override def execute(): Boolean = {
62 super.execute()
63 executed = true
64 isExecuted
65 }
66
67 def isExecuted: Boolean = executed
68 }
69
70 class CheckingsAccount(balance: Money , id: Integer) extends

Account(balance, id) {
C

C

71 var limit: Money = Money(10.0, "USD")
72
73 override def decrease(amount: Money): Unit = amount match {
74 case a if a <= limit =>
75 val _ = super.decrease(amount)
76 case _ => throw new IllegalArgumentException("Amount > limit!")
77 }
78 }
79
80 class SavingsAccount(balance: Money , id: Integer) extends Account(balance,

id) {
C

C

81 var transactionFee: Double = 0.1
82
83 override def decrease(amount: Money): Unit = {
84 val _ = super.decrease(amount + amount * transactionFee)
85 }
86 }
87
88 trait Bank {
89 var name: String = _
90
91 var moneyTransfers = mutable.ListBuffer.empty[MoneyTransfer]
92
93 def executeTransactions(): Unit = {
94 moneyTransfers.foreach(_.execute())
95 }
96 }
97
98 var bank: Bank = _
99

100 override def build(numPlayer: Int , numRoles: Int , numTransactions: Int ,
checkCycles: Boolean = false): BankExample = {

C
C

101 val players = (0 until numPlayer).map(i => new Person("Mr.", "Stan",
"Mejer" + i, "Fake Street 1A"))

C
C

102
103 bank = new Bank {
104 name = "Deutsche Bank"
105
106 val accounts = players.zipWithIndex.map { case (p, i) =>
107 val a = new SavingsAccount(Money(100.0, "USD"), i)
108 (0 until numRoles).map(ii => {
109 val c = new Customer(ii, p.title, p.firstName, p.lastName, p.address)
110 c.addSavingsAccount(a)

247

Appendix D. Source Code

111 })
112 a
113 }
114
115 (0 until numTransactions).foreach { _ =>
116 val sA = accounts(Random.nextInt(accounts.size))
117 val tA = accounts(Random.nextInt(accounts.size))
118 val source = new Source(sA.id, sA)
119 val target = new Target(tA.id, tA)
120 val mt = new MoneyTransfer(Money(10.0, "USD"), new DateTime, source,

target)
C

C

121 moneyTransfers.append(mt)
122 }
123 }
124 this
125 }
126
127 override def benchmark(): Unit = {
128 bank.executeTransactions()
129 }
130
131 }

248

D.3. Source code for Evaluation

D.3.7. SUBTYPEINTERNALFLAG

D.3.7.1. SUBTYPEINTERNALFLAG/BANKEXAMPLE.SCALA

Listing D.29.: Source code for SubtypeInternalFlag/BankExample.scala.
1 package subtypeinternalflag
2
3 import common.{Benchmarkable, Currency => Money}
4 import java.util.{Date => DateTime}
5
6 import scala.collection.mutable
7 import scala.util.Random
8
9 class BankExample extends Benchmarkable {

10
11 class Person(val title: String , val firstName: String , val lastName:

String , val address: String)
C

C

12
13 trait Account {
14 def increase(amount: Money): Unit
15
16 def decrease(amount: Money): Unit
17 }
18
19 class AccountImpl(var balance: Money , val id: Integer) extends

SavingsAccount with CheckingsAccount {
C

C

20 var isCheckingsAccount = false
21 var isSavingsAccount = false
22
23 override def increase(amount: Money): Unit = {
24 balance = balance + amount
25 }
26
27 override def decrease(amount: Money): Unit = {
28 balance = balance - amount
29 }
30
31 override def decreaseWithFee(amount: Money): Unit = {
32 val _ = decrease(amount + amount * transactionFee)
33 }
34
35 override def decreaseWithLimit(amount: Money): Unit = amount match {
36 case a if a <= limit =>
37 val _ = decrease(amount)
38 case _ => throw new IllegalArgumentException("Amount > limit!")
39 }
40 }
41
42 class Source(id: Integer , at: AccountImpl) {
43 def withdraw(amount: Money): Unit = {
44 if (at.isCheckingsAccount) {
45 at.decreaseWithLimit(amount)
46 return
47 }
48 if (at.isSavingsAccount) {
49 at.decreaseWithFee(amount)
50 return
51 }
52 }
53 }
54
55 class Target(id: Integer , at: AccountImpl) {

249

Appendix D. Source Code

56 def deposite(amount: Money): Unit = {
57 val _ = at.increase(amount)
58 }
59 }
60
61 class Customer(id: Integer , title: String , firstName: String , lastName:

String , address: String) extends Person(title, firstName, lastName,
address) {

C
C C
C

62 var accounts = mutable.ArrayBuffer.empty[Account]
63
64 def addSavingsAccount(a: SavingsAccount): Boolean = {
65 accounts.append(a)
66 true
67 }
68
69 def addCheckingsAccount(a: CheckingsAccount): Boolean = {
70 accounts.append(a)
71 true
72 }
73 }
74
75 class Transaction(amount: Money , creationTime: DateTime , from: Source , to:

Target) {
C

C

76 def execute(): Boolean = {
77 from.withdraw(amount)
78 to.deposite(amount)
79 true
80 }
81 }
82
83 class MoneyTransfer(amount: Money , creationTime: DateTime , from: Source ,

to: Target) extends Transaction(amount, creationTime, from, to) {
C

C

84 var executed: Boolean = false
85
86 override def execute(): Boolean = {
87 super.execute()
88 executed = true
89 isExecuted
90 }
91
92 def isExecuted: Boolean = executed
93 }
94
95 trait CheckingsAccount extends Account {
96 val limit: Money = Money(100.0, "USD")
97
98 def decreaseWithLimit(amount: Money): Unit
99 }

100
101 trait SavingsAccount extends Account {
102 val transactionFee: Double = 0.1
103
104 def decreaseWithFee(amount: Money): Unit
105 }
106
107 trait Bank {
108 var name: String = _
109
110 var moneyTransfers = mutable.ListBuffer.empty[MoneyTransfer]
111
112 def executeTransactions(): Unit = {
113 moneyTransfers.foreach(_.execute())

250

D.3. Source code for Evaluation

114 }
115 }
116
117 var bank: Bank = _
118
119 override def build(numPlayer: Int , numRoles: Int , numTransactions: Int ,

checkCycles: Boolean = false): BankExample = {
C

C

120 val players = (0 until numPlayer).map(i => new Person("Mr.", "Stan",
"Mejer" + i, "Fake Street 1A"))

C
C

121
122 bank = new Bank {
123 name = "Deutsche Bank"
124
125 val accounts = players.zipWithIndex.map { case (p, i) =>
126 val a = new AccountImpl(Money(100.0, "USD"), i)
127 a.isSavingsAccount = true
128 (0 until numRoles).map(ii => {
129 val c = new Customer(ii, p.title, p.firstName, p.lastName, p.address)
130 c.addSavingsAccount(a)
131 })
132 a
133 }
134
135 (0 until numTransactions).foreach { _ =>
136 val sA = accounts(Random.nextInt(accounts.size))
137 val tA = accounts(Random.nextInt(accounts.size))
138 val source = new Source(sA.id, sA)
139 val target = new Target(tA.id, tA)
140 val mt = new MoneyTransfer(Money(10.0, "USD"), new DateTime, source,

target)
C

C

141 moneyTransfers.append(mt)
142 }
143 }
144 this
145 }
146
147 override def benchmark(): Unit = {
148 bank.executeTransactions()
149 }
150
151 }

251

Appendix D. Source Code

D.3.8. SUBTYPESTATEOBJECT

D.3.8.1. SUBTYPESTATEOBJECT/BANKEXAMPLE.SCALA

Listing D.30.: Source code for SubtypeStateObject/BankExample.scala.
1 package subtypestateobject
2
3 import common.{Benchmarkable, Currency => Money}
4 import java.util.{Date => DateTime}
5
6 import scala.collection.mutable
7 import scala.util.Random
8
9 class BankExample extends Benchmarkable {

10
11 class Person(val title: String , val firstName: String , val lastName:

String , val address: String)
C

C

12
13 trait Account {
14 def increase(amount: Money): Unit
15
16 def decrease(amount: Money): Unit
17 }
18
19 sealed trait AccountType extends SavingsAccount with CheckingsAccount {
20 def isSavingsAccount: Boolean = false
21
22 def isCheckingsAccount: Boolean = false
23 }
24
25 class SavingsAccountState extends AccountType {
26 override def isSavingsAccount: Boolean = true
27
28 override def decreaseWithLimit(amount: Money , account: Account): Unit = ???
29
30 override def decreaseWithFee(amount: Money , account: Account): Unit = {
31 val _ = account.decrease(amount + amount * transactionFee)
32 }
33 }
34
35 class CheckingsAccountState extends AccountType {
36 override def isCheckingsAccount: Boolean = true
37
38 override def decreaseWithFee(amount: Money , account: Account): Unit = ???
39
40 override def decreaseWithLimit(amount: Money , account: Account): Unit =

amount match {
C

C

41 case a if a <= limit =>
42 val _ = account.decrease(amount)
43 case _ => throw new IllegalArgumentException("Amount > limit!")
44 }
45 }
46
47 class AccountImpl(var balance: Money , val id: Integer) extends Account {
48 var state: AccountType = _
49
50 override def increase(amount: Money): Unit = {
51 balance = balance + amount
52 }
53
54 override def decrease(amount: Money): Unit = {
55 balance = balance - amount

252

D.3. Source code for Evaluation

56 }
57 }
58
59 class Source(id: Integer , at: AccountImpl) {
60 def withdraw(amount: Money): Unit = {
61 if (at.state.isCheckingsAccount) {
62 at.state.decreaseWithLimit(amount, at)
63 return
64 }
65 if (at.state.isSavingsAccount) {
66 at.state.decreaseWithFee(amount, at)
67 return
68 }
69 }
70 }
71
72 class Target(id: Integer , at: AccountImpl) {
73 def deposite(amount: Money): Unit = {
74 val _ = at.increase(amount)
75 }
76 }
77
78 class Customer(id: Integer , title: String , firstName: String , lastName:

String , address: String) extends Person(title, firstName, lastName,
address) {

C
C C
C

79 var accounts = mutable.ArrayBuffer.empty[Account]
80
81 def addSavingsAccount(a: Account): Boolean = {
82 accounts.append(a)
83 true
84 }
85
86 def addCheckingsAccount(a: Account): Boolean = {
87 accounts.append(a)
88 true
89 }
90 }
91
92 class Transaction(amount: Money , creationTime: DateTime , from: Source , to:

Target) {
C

C

93 def execute(): Boolean = {
94 from.withdraw(amount)
95 to.deposite(amount)
96 true
97 }
98 }
99

100 class MoneyTransfer(amount: Money , creationTime: DateTime , from: Source ,
to: Target) extends Transaction(amount, creationTime, from, to) {

C
C

101 var executed: Boolean = false
102
103 override def execute(): Boolean = {
104 super.execute()
105 executed = true
106 isExecuted
107 }
108
109 def isExecuted: Boolean = executed
110 }
111
112 trait CheckingsAccount {
113 val limit: Money = Money(100.0, "USD")

253

Appendix D. Source Code

114
115 def decreaseWithLimit(amount: Money , account: Account): Unit
116 }
117
118 trait SavingsAccount {
119 val transactionFee: Double = 0.1
120
121 def decreaseWithFee(amount: Money , account: Account): Unit
122 }
123
124 trait Bank {
125 var name: String = _
126
127 var moneyTransfers = mutable.ListBuffer.empty[MoneyTransfer]
128
129 def executeTransactions(): Unit = {
130 moneyTransfers.foreach(_.execute())
131 }
132 }
133
134 var bank: Bank = _
135
136 override def build(numPlayer: Int , numRoles: Int , numTransactions: Int ,

checkCycles: Boolean = false): BankExample = {
C

C

137 val players = (0 until numPlayer).map(i => new Person("Mr.", "Stan",
"Mejer" + i, "Fake Street 1A"))

C
C

138
139 bank = new Bank {
140 name = "Deutsche Bank"
141
142 val accounts = players.zipWithIndex.map { case (p, i) =>
143 val a = new AccountImpl(Money(100.0, "USD"), i)
144 a.state = new SavingsAccountState()
145 (0 until numRoles).map(ii => {
146 val c = new Customer(ii, p.title, p.firstName, p.lastName, p.address)
147 c.addSavingsAccount(a)
148 })
149 a
150 }
151
152 (0 until numTransactions).foreach { _ =>
153 val sA = accounts(Random.nextInt(accounts.size))
154 val tA = accounts(Random.nextInt(accounts.size))
155 val source = new Source(sA.id, sA)
156 val target = new Target(tA.id, tA)
157 val mt = new MoneyTransfer(Money(10.0, "USD"), new DateTime, source,

target)
C

C

158 moneyTransfers.append(mt)
159 }
160 }
161 this
162 }
163
164 override def benchmark(): Unit = {
165 bank.executeTransactions()
166 }
167
168 }

254

D.3. Source code for Evaluation

D.3.9. SCALADCI

D.3.9.1. SCALADCI/BANKEXAMPLE.SCALA

Listing D.31.: Source code for ScalaDCI/BankExample.scala.
1 package scaladci
2
3 import common.Benchmarkable.Backend
4 import common.{Benchmarkable, Currency => Money}
5 import java.util.{Date => DateTime}
6
7 import scala.collection.mutable
8
9 class BankExample extends Benchmarkable {

10
11 case class Person(title: String , firstName: String , lastName: String ,

address: String)
C

C

12
13 case class Company(POBox: String , addresses: String , legalForm: String ,

name: String)
C

C

14
15 case class Account(var balance: Money , id: Integer) {
16
17 def increase(amount: Money): Unit = {
18 balance = balance + amount
19 }
20
21 def decrease(amount: Money): Unit = {
22 balance = balance - amount
23 }
24 }
25
26 @context
27 case class Transaction(source: Account , target: Account , amount: Money ,

creationTime: DateTime) {
C

C

28
29 def execute(): Boolean = {
30 source.withdraw(amount)
31 target.deposite(amount)
32 true
33 }
34
35 role source {
36
37 def withdraw(amount: Money): Unit = {
38 source decrease amount
39 }
40 }
41
42 role target {
43
44 def deposite(amount: Money): Unit = {
45 target increase amount
46 }
47 }
48
49 }
50
51 @context
52 case class Bank(name: String) {
53 var moneyTransfers = mutable.ListBuffer.empty[moneyTransfer]
54

255

Appendix D. Source Code

55 def executeTransactions(): Unit = {
56 moneyTransfers.foreach(_.execute())
57 }
58
59 role customer {
60 var name: String = _
61 var id: Integer = _
62
63 var accounts = List.empty[Account]
64
65 def addSavingsAccount(a: Account): Boolean = {
66 val sa = savingsAccount
67 accounts = accounts :+ a
68 //a play sa
69 true
70 }
71
72 def addCheckingsAccount(a: Account): Boolean = {
73 val ca = checkingsAccount
74 accounts = accounts :+ a
75 //a play ca
76 true
77 }
78 }
79
80 role moneyTransfer {
81 def execute(): Boolean = {
82 moneyTransfer execute()
83 true
84 }
85 }
86
87 role checkingsAccount {
88 val limit: Money = Money(100, "USD")
89
90 def decrease(amount: Money): Unit = amount match {
91 case a if a <= limit =>
92 checkingsAccount decrease amount
93 case _ => throw new IllegalArgumentException("Amount > limit!")
94 }
95 }
96
97 role savingsAccount {
98 val transactionFee: Double = 0.1
99

100 def decrease(amount: Money): Unit = {
101 savingsAccount decrease (amount + amount * transactionFee)
102 }
103 }
104
105 }
106
107 var bank: Bank = _
108
109 override def build(numPlayer: Int , numRoles: Int , numTransactions: Int ,

backend: Backend , checkCycles: Boolean): Benchmarkable = ???
C

C

110
111 override def benchmark(): Unit = ???
112 }

256

D.3. Source code for Evaluation

D.3.10. OBJECTTEAMS/JAVA

D.3.10.1. OTJ/BANKEXAMPLE.SCALA

Listing D.32.: Source code for OTJ/BankExample.java.
1 import java.util.LinkedList;
2 import java.util.List;
3
4 public class BankExample {
5
6 static class Person {
7 private String title;
8 private String firstName;
9 private String lastName;

10 private String address;
11
12 public Person(String title, String firstName, String lastName, String

address) {
C

C

13 this.title = title;
14 this.firstName = firstName;
15 this.lastName = lastName;
16 this.address = address;
17 }
18 }
19
20 static class Company {
21 private String POBox;
22 private String addresses;
23 private String legalForm;
24 private String name;
25
26 public Company(String POBox, String addresses, String legalForm, String

name) {
C

C

27 this.name = name;
28 this.legalForm = legalForm;
29 this.addresses = addresses;
30 this.POBox = POBox;
31 }
32 }
33
34 static class Account {
35 private double balance;
36 private int id;
37
38 public Account(double balance, int id) {
39 this.id = id;
40 this.balance = balance;
41 }
42
43 public void increase(double amount) {
44 this.balance += amount;
45 }
46
47 public void decrease(double amount) {
48 this.balance -= amount;
49 }
50 }
51
52 static team class Transaction {
53
54 public class Source playedBy Account {
55 callin void withdraw(double amount) {

257

Appendix D. Source Code

56 System.out.println("Withdraw from Source");
57 base.withdraw(amount);
58 }
59
60 withdraw <- replace decrease;
61 }
62
63 public class Target playedBy Account {
64 callin void deposit(double amount) {
65 System.out.println("Deposit from Target");
66 base.deposit(amount);
67 }
68
69 deposit <- replace increase;
70 }
71
72 boolean execute(Account f, Account t, double a) {
73 f.decrease(a);
74 t.increase(a);
75 return true ;
76 }
77 }
78
79 static team class Bank {
80
81 private List<Customer> customer = new LinkedList<>();
82
83 public void addCustomer(Person as Customer c) {
84 customer.add(c);
85 }
86
87 precedence SavingsAccount,CheckingsAccount;
88
89 private double limit = 100;
90 private double fee = 0.1;
91
92 public void addCheckingsAccount(Person as Customer c, Account as

CheckingsAccount a) {
C

C

93 c.accounts.add(a);
94 }
95
96 public void addSavingsAccount(Person as Customer c, Account as

SavingsAccount a) {
C

C

97 c.accounts.add(a);
98 }
99

100 public class CheckingsAccount playedBy Account {
101 callin void limited(double a) {
102 System.out.println("checking limit ...");
103 if (a <= limit)
104 base.limited(a);
105 else
106 throw new RuntimeException("'" + a + "' is over the limit of '" +

limit + "'!");
C

C

107 }
108
109 void limited(double a) <- replace decrease(double a);
110 }
111
112 public class SavingsAccount playedBy Account {
113 callin void withfee(double a) {
114 System.out.println("calculating fee ...");

258

D.3. Source code for Evaluation

115 base.withfee(a + a * fee);
116 }
117
118 void withfee(double a) <- replace decrease(double a);
119 }
120
121 public class Customer playedBy Person {
122 public List<Account> accounts = new LinkedList<>();
123 private String name;
124 private int id;
125
126 public Customer(String name, int id) {
127 base("","",name,"");
128 this.name = name;
129 this.id = id;
130 }
131 }
132 }
133
134 public static void main(String[] args) {
135 // Instance level
136 Person stan = new Person("Mr.", "Stan", "Mejer", "Fake Street 1A");
137 Person brian = new Person("Mr.", "Brian", "Stephenson", "Bull Rd. 2");
138
139 Account accForStan = new Account(100.0, 1);
140 Account accForBrian = new Account(10.0, 2);
141
142 Bank bank = new Bank();
143 bank.activate();
144
145 bank.addCustomer(stan);
146 bank.addCustomer(brian);
147
148 bank.addSavingsAccount(stan, accForStan);
149 bank.addCheckingsAccount(brian, accForBrian);
150
151 System.out.println("### Before transaction ###");
152 System.out.println("Balance for Stan: " + accForStan.balance);
153 System.out.println("Balance for Brian: " + accForBrian.balance);
154
155 Transaction transaction = new Transaction();
156 transaction.activate();
157 transaction.execute(accForStan, accForBrian, 10);
158
159 System.out.println("### After transaction ###");
160 System.out.println("Balance for Stan: " + accForStan.balance);
161 System.out.println("Balance for Brian: " + accForBrian.balance);
162
163 }
164
165 }

259

LIST OF FIGURES

1.1. Ladder of technologies . 18

2.1. Thesis contributions and outline . 20

3.1. Classifying features for roles . 28
3.2. Role-playing automaton example . 34

4.1. Four-dimensional Dispatch . 41
4.2. Multi-dimensional Dispatch with OT/J and SCROLL 42

6.1. The adapted Haddadin automaton . 47
6.2. The mapping from the Haddadin world space to the system space 48

8.1. Evolving objects with roles; problem and solution 56
8.2. The SCROLL metamodel and MOP layers . 57
8.3. Required basics for the implementation of a DSL for roles in structured contexts

at runtime . 57
8.4. Example of a simple role-play graph . 60
8.5. Model of the robot construction as evolving object from roles 61
8.6. Code for the robot construction as evolving object from roles 64

9.1. The general API design of the SCROLL library . 66
9.2. Example 1 for the need of customizable role dispatch 87
9.3. Example 2 for the need of customizable role dispatch 88
9.4. Class diagram for the robotic co-worker example 90

10.1. CompilerPlugin toolchain . 98

11.1. Bank example (model) . 112
11.2. Overall execution and build times of the bank example 118
11.3. Heatmap for build times of the bank example . 119
11.4. Heatmap for execution times of the bank example 119

13.1. Chameleon role manager . 128
13.2. ScalaRoles compound object approach . 132

14.1. The LIAM metamodel from ALIA4J . 144
14.2. Components and artifacts in ALIA4J . 144

15.1. Advance map of this thesis . 147

A.1. Feature model for roles (Class) . 155
A.2. Feature model for roles (Constraints) . 157
A.3. Feature model for roles (Relationships) . 160
A.4. Feature model for roles (Properties) . 161
A.5. Feature model for roles (Behavior) . 164
A.6. Feature model for roles (Identity) . 167
A.7. Feature model for roles (Lifecycle) . 168
A.8. Feature model for roles (Type) . 171

261

LIST OF TABLES

3.1. Ontological foundation of meta types within CROM 30
3.2. Notations overview . 31
3.3. Role features solely focusing on runtime aspects 36

5.1. Notation overview for graph traversals and filters 44

7.1. Functional and non-functional requirements for SCROLL 51

9.1. Overview for Compartment . 67
9.2. Overview for Player . 70
9.3. Overview for DispatchQuery . 72
9.4. Overview for RoleGraph . 75
9.5. Overview for QueryStrategies . 77
9.6. Overview for RoleConstraints . 78
9.7. Overview for RoleRestrictions . 79
9.8. Overview for Relationships . 80
9.9. Overview for RoleGroups . 81
9.10. Overview for RolePlayingAutomaton . 83
9.11. Overview for SCROLLDispatch . 85
9.12. Overview for SCROLLDynamic . 86
9.13. Notation overview for dispatch queries . 88
9.14. Mapping from dispatch functions to the Scala implementation 89

10.1. The Scala compiler phases . 96

11.1. Comparison with contemporary approaches with regard to the requirements . 103
11.2. Qualitative evaluation of runtime role features supported by SCROLL 106
11.3. Evaluation implementations and their full code listings 113
11.4. Variation of parameters for the bank example benchmark 114
11.5. The benchmark environment . 116

13.1. Comparison of approaches for establishing dynamic objects at runtime 126
13.2. Reference role concepts and their OT/J counterparts 134
13.3. Comparison of coeval approaches for etablishing roles at runtime 139

14.1. Overview of the number of papers surveyed with regard to dynamic dispatch . 143

263

LIST OF LISTINGS

6.1 Excerpt for a plain implementation of robotic co-working example 49

8.1 Compiler rewrite rules from the Dynamic trait 58
8.2 Rewriting for dynamically rewritten access to the Robot attribute name 58
8.3 The generic implicit class Player . 59
8.4 A naive solution for the robot example . 62
8.5 A new solution for the robot example using the basic SCROLL API 62
8.6 Third solution for the robot example using the more advanced SCROLL API . 63
8.7 The RobotExample model source code . 64
8.8 The RobotExample instance source code . 64
8.9 The RobotExample console output . 64

9.1 Compartment usage example . 67
9.2 Example for using the RolePlayingAutomaton 84
9.3 Example code for an explicit dispatch description 88
9.4 Source code excerpt for Machine . 91
9.5 Source code excerpt for HaddadinAutomaton 92
9.6 Source code excerpt for HaddadinCompartment 93
9.7 Source code excerpt for SmartSensors . 94

10.1 Example for the application of the SCROLLCompilerPlugin 98
10.2 Console output of the SCROLLCompilerPlugin for the robot example 98

13.1 Code example of Chameleon . 127
13.2 Code example of Rava . 129
13.3 Code example of JavaStage . 130
13.4 Code example of Rumer . 131
13.5 Code example of ScalaRoles . 132
13.6 Code example of ObjectTeams/Java . 134
13.7 Code example of powerJava (role definitions) 135
13.8 Code example of powerJava (institution definition) 136
13.9 Code example of NextEJ . 137

14.1 The ocean ecosystem example in Prototypes with Multiple Dispatch 145
14.2 Example for handling cartesian points with Korz 146

D.1 Source code for the Machine . 183
D.2 Source code for HaddadinAutomaton . 184
D.3 Source code for HaddadinCompartment . 186
D.4 Source code for SmartSensors . 187
D.5 Source code for HaddadinDemo . 188
D.6 Source code for Compartment.scala . 189
D.7 Source code for DispatchQuery.scala . 198
D.8 Source code for QueryStrategies.scala . 201
D.9 Source code for Relationships.scala . 202
D.10 Source code for RoleConstraints.scala . 204
D.11 Source code for RoleGroups.scala . 207
D.12 Source code for RoleRestrictions.scala . 212

265

List of Listings

D.13 Source code for RolePlayingAutomaton.scala 214
D.14 Source code for RoleGraph.scala . 217
D.15 Source code for ScalaRoleGraph.scala . 219
D.16 Source code for CachedScalaRoleGraph.scala 221
D.17 Source code for SCROLLErrors.scala . 223
D.18 Source code for Memoiser.scala . 224
D.19 Source code for ReflectiveHelper.scala . 226
D.20 Source code for rop/BankExample.scala . 231
D.21 Source code for rop/Component.scala . 233
D.22 Source code for rop/ComponentCore.scala . 233
D.23 Source code for rop/ComponentRole.scala . 234
D.24 Source code for rop/scalaroles/BankExample.scala 235
D.25 Source code for SCROLL/BankExample.scala 238
D.26 Source code for SeparateType/BankExample.scala 241
D.27 Source code for SingleType/BankExample.scala 244
D.28 Source code for SubtypeHiddenDelegation/BankExample.scala 246
D.29 Source code for SubtypeInternalFlag/BankExample.scala 249
D.30 Source code for SubtypeStateObject/BankExample.scala 252
D.31 Source code for ScalaDCI/BankExample.scala 255
D.32 Source code for OTJ/BankExample.java . 257

266

INDEX
A
acquisition dispatching . 165
advanced-dispatching languages . 39
around-method . 35

C
callin .133
callout . 133
class complexity . 24
classification .23
combinatorial explosion of subtypes .25
compartment . 29
compound object . 27
compound object reference . 164
compound object type . 27
conjunctive attachment . 35
constituent methods . 127
consultation . 27
context . 29
context activation scopes . 137

D
definition table . 58
delegation . 27
direct player reference . 166
direct references .163
disjunctive attachment . 169
dispatch query . 88
dispatching . 39
doppelgänger .168
dual self . 35

E
end-user . 55
explicit removal . 170

F
fills . 31
filters . 44
final class . 171
flat roles . 157
forwarding . 27
foundedness . 30

G
generalization . 23
graph . 43

267

INDEX

H
higher-order adjacency . 44

I
identity . 30
if-bloating . 49
implicit conversion . 58
implicit removal . 170
indirect reference .164
institutions . 135
invariants and constraints . 25

L
library developer . 55
lifting . 169
lookup strategies . 165

M
meta-functionality . 171
metaclass . 65
metaobject protocol . 65
method handle . 95
modeling . 25
mono role . 158
multi-role .158

N
natural . 30
nested class .162
nested method . 162
non-virtual self . 35

O
object collaborations . 24
object pooling . 168
object schizophrenia . 26
object-oriented model .25

P
partly frozen object state . 170
play . 31
playedBy .133
polymorphism . 39
powers . 135
private role . 159
protected role . 159
prototypes . 155

R
receiver . 27
receiver-type polymorphism . 39
relationship types .30
reuse . 25

268

INDEX

rigidity . 30
role as filter . 36
role call . 159
role creation . 35
role for renaming . 37
role group .32
role movement . 35
role parameterization . 37
role transfer .35
role-binding . 33
role-playing . 33
role-playing automaton . 33

S
self . 35
sender . 27
sender-side specific dispatch . 164
separation of concerns . 25
singleton role . 157
spaghetti reference problem . 169
split-object problem . 26
static method . 162

T
team . 133

269

ABBREVIATIONS
API Application Programming Interface

AST Abstract Syntax Tree

CLOS Common Lisp Object System

CROI Compartment Role Object Instance

CROM Compartment Role Object Model

DSL Domain-Specific Language

ER Entity-Relationship Model

FSM Finite State Machine

IR Intermediate Representation

JIT Just-In-Time

JRE Java Runtime Environment

JVM Java Virtual Machine

MOP Metaobject-Protocol

OT/J ObjectTeams/Java

PMD Prototypes with Multiple Dispatch

UML Unified Modeling Language

271

BIBLIOGRAPHY
Gregory D Abowd, Anind K Dey, Peter J Brown, Nigel Davies, Mark Smith, and Pete

Steggles. Towards a better understanding of context and context-awareness. In Interna-
tional Symposium on Handheld and Ubiquitous Computing, pages 304–307. Springer,
1999.

Antonio Albano, Roberto Bergamini, Giorgio Ghelli, and Renzo Orsini. An object data
model with roles. In VLDB, volume 93, pages 39–51, 1993.

Antognoni Albuquerque and Giancarlo Guizzardi. An ontological foundation for concep-
tual modeling datatypes based on semantic reference spaces. In Research Challenges
in Information Science (RCIS), 2013 IEEE Seventh International Conference on, pages
1–12. IEEE, 2013.

Ivica Aracic, Vaidas Gasiunas, Mira Mezini, and Klaus Ostermann. An overview of CaesarJ.
In Transactions on Aspect-Oriented Software Development I, pages 135–173. Springer,
2006.

Erik Arnaudo, Matteo Baldoni, Guido Boella, Valerio Genovese, and Roberto Grenna. An
implementation of roles as affordances: powerJava. In WOA, pages 8–13. Citeseer, 2007.

Pavel Avgustinov, Aske Simon Christensen, Laurie Hendren, Sascha Kuzins, Jennifer
Lhoták, Ondřej Lhoták, Oege De Moor, Damien Sereni, Ganesh Sittampalam, and
Julian Tibble. abc: An extensible AspectJ compiler. In Transactions on Aspect-Oriented
Software Development I, pages 293–334. Springer, 2006.

Charles W. Bachman and Manilal Daya. The Role Concept in Data Models. In Proceedings
of the Third International Conference on Very Large Data Bases,, pages 464–476, Tokyo,
Japan, 1977.

Stephanie Balzer, Thomas Gross, and Patrick Eugster. A Relational Model of Object
Collaborations and Its Use in Reasoning About Relationships. In Erik Ernst, editor,
ECOOP, volume 4609 of Lecture Notes in Computer Science, pages 323–346. Springer,
2007. ISBN 978-3-540-73588-5.

FSRBM Barbosa and Ademar Aguiar. Modeling and programming with roles: introducing
JavaStage. Technical report, Instituto Politécnico de Castelo Branco, 2012.

Daniel Bardou and Christophe Dony. Split objects: a disciplined use of delegation within
objects. In ACM SIGPLAN Notices, volume 31, pages 122–137. ACM, 1996.

Lodewijk Bergmans and Mehmet Aksit. Composing crosscutting concerns using compo-
sition filters. Communications of the ACM, 44(10):51–57, 2001.

Edwin Blake and Steve Cook. On including part hierarchies in object-oriented languages,
with an implementation in Smalltalk. In European Conference on Object-Oriented
Programming, pages 41–50. Springer, 1987.

Daniel G Bobrow, Kenneth Kahn, Gregor Kiczales, Larry Masinter, Mark Stefik, and Frank
Zdybel. CommonLoops: Merging Lisp and object-oriented programming. In ACM
Sigplan Notices, volume 21, pages 17–29. ACM, 1986.

273

BIBLIOGRAPHY

Daniel G Bobrow, Linda G DeMichiel, Richard P Gabriel, Sonya E Keene, Gregor Kiczales,
and David A Moon. Common lisp object system specification. ACM Sigplan Notices, 23:
1–142, 1988.

Daniel G Bobrow, Richard P Gabriel, and Jon L White. Clos in Context - The Shape of the
Design Space. Object Oriented Programming: The CLOS Perspective, pages 29–61, 1993.

Christoph Bockisch, Andreas Sewe, Haihan Yin, Mira Mezini, and Mehmet Aksit. An
In-Depth Look at ALIA4J. Journal of Object Technology, pages 7:1–28, 2012. ISSN 1660-
1769. doi: {10.5381/jot.2012.11.1.a7}. URL http://www.jot.fm/contents/issue_
2012_04/article7.html.

Guido Boella, Steffen Goebel, Friedrich Steimann, Steffen Zschaler, and Michael Ce-
bulla. 2’nd Workshop on Roles and Relationships in Object Oriented Programming,
Multiagent Systems, and Ontologies, 2007.

Daniel Bonniot, Bryn Keller, and Francis Barber. The Nice user’s manual, 2008. URL http:
//nice.sourceforge.net/manual.html. Accessed: 15th February 2017, 09.00.

Grady Booch. Object-oriented design with applications Benjamin. Cummings, Redwood
City (CA), 1991.

John Boyland and Giuseppe Castagna. Parasitic methods: An implementation of multi-
methods for Java. ACM SIGPLAN Notices, 32:66–76, 1997.

Gilad Bracha and William Cook. Mixin-based inheritance. ACM Sigplan Notices, 25(10):
303–311, 1990.

Bäumer, Dirk Riehle, W. Siberski, and Martina Wulf. The Role Object Pattern. In Washing-
ton University Dept. of Computer Science, 1997.

Martin Büchi and Wolfgang Weck. Generic wrappers. In European Conference on Object-
Oriented Programming, pages 201–225. Springer, 2000.

Craig Chambers. Object-oriented multi-methods in Cecil. In European Conference on
Object-Oriented Programming, pages 33–56. Springer, 1992.

Craig Chambers. Predicate classes. In European Conference on Object-Oriented Program-
ming, pages 268–296. Springer, 1993.

Craig Chambers. The Diesel Language, Specification and Rationale, 2006. URL
http://www.cs.washington.edu/research/projects/cecil/www/Release/
doc-diesel-lang/diesel-spec.pdf. Accessed: 15th February 2017, 09.00.

Craig Chambers and Weimin Chen. Efficient multiple and predicated dispatching. In
ACM Sigplan Notices, volume 34, pages 238–255. ACM, 1999.

Daniel Chernuchin and Gisbert Dittrich. Role types and their dependencies as com-
ponents of natural types. In 2005 AAAI Fall Symposium: Roles, an interdisciplinary
perspective, 2005.

Curtis Clifton, Gary T Leavens, Craig Chambers, and Todd Millstein. MultiJava: Modu-
lar open classes and symmetric multiple dispatch for Java. In ACM Sigplan Notices,
volume 35, pages 130–145. ACM, 2000.

Antonio Cunei and Jan Vitek. PolyD: a flexible dispatching framework. ACM SIGPLAN
Notices, 40:487–503, 2005.

274

http://www.jot.fm/contents/issue_2012_04/article7.html
http://www.jot.fm/contents/issue_2012_04/article7.html
http://nice.sourceforge.net/manual.html
http://nice.sourceforge.net/manual.html
http://www.cs.washington.edu/research/projects/cecil/www/Release/doc-diesel-lang/diesel-spec.pdf
http://www.cs.washington.edu/research/projects/cecil/www/Release/doc-diesel-lang/diesel-spec.pdf

BIBLIOGRAPHY

Mohamed Dahchour, Alain Pirotte, and Esteban Zimányi. A generic role model for dy-
namic objects. In Advanced Information Systems Engineering, pages 643–658. Springer,
2002.

Edsgar W. Dijkstra. On the role of scientific thought, 1974. URL http://www.cs.utexas.
edu/users/EWD/ewd04xx/EWD447.PDF. Accessed: 1st December 2016, 09.00.

Christophe Dony, Jacques Malenfant, and Pierre Cointe. Prototype-based Languages:
From a New Taxonomy to Constructive Proposals and Their Validation. In Conference
Proceedings on Object-oriented Programming Systems, Languages, and Applications,
OOPSLA ’92, pages 201–217, New York, NY, USA, 1992. ACM. ISBN 0-201-53372-3. doi:
{10.1145/141936.141954}. URL http://doi.acm.org/10.1145/141936.141954.

Karel Driesen, Urs Hölzle, and Jan Vitek. Message dispatch on pipelined processors. In
European Conference on Object-Oriented Programming, pages 253–282. Springer, 1995.

Sophia Drossopoulou, Ferruccio Damiani, Mariangiola Dezani-Ciancaglini, and Paola
Giannini. Fickle: Dynamic object re-classification. In European Conference on Object-
Oriented Programming, pages 130–149. Springer, 2001.

Christopher Dutchyn, Paul Lu, Duane Szafron, Steven Bromling, and Wade Holst. Multi-
Dispatch in the Java Virtual Machine: Design and Implementation. In COOTS, volume 1,
pages 98–03, 2001.

Sven Efftinge and Markus Völter. oAW xText: A framework for textual DSLs. In Workshop
on Modeling Symposium at Eclipse Summit, volume 32, page 118, 2006.

Torbjörn Ekman and Görel Hedin. The jastAdd Extensible Java Compiler. ACM Sigplan
Notices, 42:1–18, 2007.

EPFL. Scala Dynamic Trait ScalaDoc, 2016a. URL https://github.com/scala/scala/
blob/2.12.x/src/library/scala/Dynamic.scala. Accessed: 1st December 2016,
09.00.

EPFL. Scala Dynamic Trait SIP, 2016b. URL http://docs.scala-lang.org/sips/
completed/type-dynamic.html. Accessed: 1st December 2016, 09.00.

EPFL. Scala Website, 2016c. URL http://www.scala-lang.org/. Accessed: 1st Decem-
ber 2016, 09.00.

Ericsson Utvecklings AB. Erlang Design Principles, 1999. URL http://www.erlang.
org/documentation/doc-4.8.2/doc/design_principles/fsm.html. Accessed:
1st December 2016, 09.00.

Erik Ernst. Delegation by first-class methods. In Welcome to the 11th Nordic Workshop
on Programming and Software Develop-ment Tools and Techniques NWPER’2004 held
in Turku, Finland, August 17-20, 2004. The objective of the NWPER workshops is to
bring together researchers and Ph. D. students in the fields of programming and software
development tools and, page 109. Citeseer, 2004.

Michael Ernst, Craig Kaplan, and Craig Chambers. Predicate dispatching: A unified
theory of dispatch. In European Conference on Object-Oriented Programming, pages
186–211. Springer, 1998.

Neal Feinberg, Sonya E Keene, Robert O Mathews, and P Tucker Withington. The Dylan
Programming Book, 1997.

275

http://www.cs.utexas.edu/users/EWD/ewd04xx/EWD447.PDF
http://www.cs.utexas.edu/users/EWD/ewd04xx/EWD447.PDF
http://doi.acm.org/10.1145/141936.141954
https://github.com/scala/scala/blob/2.12.x/src/library/scala/Dynamic.scala
https://github.com/scala/scala/blob/2.12.x/src/library/scala/Dynamic.scala
http://docs.scala-lang.org/sips/completed/type-dynamic.html
http://docs.scala-lang.org/sips/completed/type-dynamic.html
http://www.scala-lang.org/
http://www.erlang.org/documentation/doc-4.8.2/doc/design_principles/fsm.html
http://www.erlang.org/documentation/doc-4.8.2/doc/design_principles/fsm.html

BIBLIOGRAPHY

Brian Foote, Ralph E Johnson, and James Noble. Efficient multimethods in a single
dispatch language. In European Conference on Object-Oriented Programming, pages
337–361. Springer, 2005.

I Foreman and S Danforth. Putting Metaclasses to Work–A New Dimension in Object-
Oriented Programming. Addison Wesley, 1998.

Martin Fowler. Dealing with roles. In Proceedings of PLoP, volume 97, 1997.

J. Frank Furrer. Zukunftsfähige Softwaresysteme. Informatik-Spektrum, pages 1–9, 2015.
ISSN 1432-122X. doi: {10.1007/s00287-015-0909-6}. URL http://dx.doi.org/10.
1007/s00287-015-0909-6.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design patterns: ele-
ments of reusable object-oriented software. Pearson Education, 1994.

Google. Guava, 2016. URL https://github.com/google/guava. Accessed: 1st Decem-
ber 2016, 09.00.

Georg Gottlob, Michael Schrefl, and Brigitte Röck. Extending object-oriented systems
with roles. ACM Transactions on Information Systems (TOIS), 14:268–296, 1996.

Kasper B Graversen and Johannes Beyer. Chameleon. PhD thesis, Masters thesis. IT-
University of Copenhagen, 2002.

Kasper Bilsted Graversen. The nature of roles. PhD thesis, PhD thesis:/Kasper Bilsted
Graversen.–Copenhagen, IT University of Copenhagen Copenhagen, 2006.

Christian Grothoff. Walkabout revisited: The runabout. In European Conference on
Object-Oriented Programming, pages 103–125. Springer, 2003.

Sebastian Götz, Max Leuthäuser, Jan Reimann, Julia Schroeter, Christian Wende, Claas
Wilke, and Uwe Aßmann. A Role-Based Language for Collaborative Robot Applications.
In Leveraging Applications of Formal Methods, Verification, and Validation, ISoLA SARS,
pages 1–15. Springer, 2011.

Sebastian Götz, Max Leuthäuser, Christian Piechnick, Jan Reimann, Sebastian Richly,
Julia Schroeter, Claas Wilke, and Uwe Aßmann. Entwicklung Cyber-Physikalischer
Systeme am Beispiel des NAO-Roboters. Chemnitzer Linux-Tage - Tagungsband, 2012.

Sami Haddadin, Michael Suppa, Stefan Fuchs, Tim Bodenmüller, Alin Albu-Schäffer, and
Gerd Hirzinger. Towards the robotic co-worker. In Robotics Research, pages 261–282.
Springer, 2011.

Terry Halpin. Object-role modeling (ORM/NIAM). In Handbook on architectures of
information systems, pages 81–103. Springer, 2006.

Bill Harrison. Subject-oriented Programming vs. Design Patterns, 2016. URL http:
//www.research.ibm.com/sop. Accessed: 1st December 2016, 09.00.

William Harrison and Harold Ossher. Subject-oriented programming: a critique of pure
objects, volume 28. ACM, 1993.

Chengwan He, Zhijie Nie, Bifeng Li, Lianlian Cao, and Keqing He. Rava: Designing a Java
extension with dynamic object roles. In Engineering of Computer Based Systems, 2006.
ECBS 2006. 13th Annual IEEE International Symposium and Workshop on, pages 7–pp.
IEEE, 2006.

276

http://dx.doi.org/10.1007/s00287-015-0909-6
http://dx.doi.org/10.1007/s00287-015-0909-6
https://github.com/google/guava
http://www.research.ibm.com/sop
http://www.research.ibm.com/sop

BIBLIOGRAPHY

James Hendler. Enhancement for multiple-inheritance. In ACM SIGPLAN Notices, vol-
ume 21, pages 98–106. ACM, 1986.

Rolf Hennicker and Annabelle Klarl. Helena Approach. In Specification, Algebra, and
Software, pages 359–381. Springer, 2014.

Stephan Herrmann. Object Teams: Improving Modularity for Crosscutting Collaborations.
In Net.Object Days 2002, October 2002.

Stephan Herrmann. ObjectTeams/Java. Technical report, AAAI Fall Symposium, 2005.

Stephan Herrmann. A precise model for contextual roles: The programming language
ObjectTeams/Java. Applied Ontology, 2(2):181–207, 2007.

Stephan Herrmann. Demystifying object schizophrenia. In Proceedings of the 4th Work-
shop on MechAnisms for SPEcialization, Generalization and inHerItance, MASPEGHI
’10, pages 2:1–2:5, New York, NY, USA, 2010. ACM. ISBN 978-1-4503-0535-8. doi:
{http://doi.acm.org/10.1145/1929999.1930001}.

Stephan Herrmann. OTJLD version 1.3.1 Paragraph 4, 2016. URL http://www.
objectteams.org/def/1.3.1/s1.html#s1.4. Accessed: 1st December 2016, 09.00.

Stephan Herrmann, Christine Hundt, and Katharina Mehner. Translation polymorphism
in Object Teams. Technical report, TU Berlin, 2004.

Robert Hirschfeld. Aspects-aspect-oriented programming with squeak. In Net. Object-
Days: International Conference on Object-Oriented and Internet-Based Technologies,
Concepts, and Applications for a Networked World, pages 216–232. Springer, 2002.

Robert Hirschfeld, Pascal Costanza, and Oscar Nierstrasz. Context-oriented programming.
Journal of Object Technology, 7, 2008.

Paul Hudak. Modular Domain Specific Languages and Tools. In Software Reuse, 1998.
Proceedings. Fifth International Conference on, pages 134–142. IEEE, 1998.

JetBrains. Intellij MPS, 2017. URL https://www.jetbrains.com/mps/. Accessed: 15th
February 2017, 09.00.

Bo Nørregaard Jørgensen and Eddy Truyen. Evolution of collective object behavior in
presence of simultaneous client-specific views. In International Conference on Object-
Oriented Information Systems, pages 18–32. Springer, 2003.

Tobias Jäkel, Martin Weißbach, Kai Herrmann, Hannes Voigt, and Max Leuthäuser. Po-
sition Paper: Runtime Model for Role-Based Software Systems. In 2016 IEEE Inter-
national Conference on Autonomic Computing (ICAC), pages 380–387, July 2016. doi:
10.1109/ICAC.2016.17.

Karl Trygve Kalleberg, Eelco Visser, Adrian Johnstone, and Tony Sloane. Spoofax: An
interactive development environment for program transformation with Stratego/XT.
In Workshop on Language Descriptions, Tools, and Applications (LDTA 2007), pages
47–50, 2007.

Tetsuo Kamina and Tetsuo Tamai. Towards safe and flexible object adaptation. In
International Workshop on Context-Oriented Programming, page 4. ACM, 2009.

Tetsuo Kamina and Tetsuo Tamai. A Smooth Combination of Role-based Language and
Context Activation. FOAL 2010 Proceedings, page 15, 2010.

277

http://www.objectteams.org/def/1.3.1/s1.html#s1.4
http://www.objectteams.org/def/1.3.1/s1.html#s1.4
https://www.jetbrains.com/mps/

BIBLIOGRAPHY

Gerti Kappel, Werner Retschitzegger, and Wieland Schwinger. A Comparison of Role
Mechanisms in Object-Oriented Modeling. In Modellierung, volume 98, pages 105–109.
Citeseer, 1998.

Sven Karol, Pietro Incardona, Yaser Afshar, Ivo F Sbalzarini, and Jeronimo Castrillon.
Towards a Next-Generation Parallel Particle-Mesh. In van der Storm, Tijs and Erdweg,
Sebastian., editor, Proceedings of the 3rd Workshop on Domain-Specific Language
Design and Implementation (DSLDI 2015), volume abs/1508.03536, pages 7–8. van der
Storm, Tijs and Erdweg, Sebastian., 2015. URL http://arxiv.org/abs/1508.03536.

James Kempf, Warren Harris, Roy D’Souza, and Alan Snyder. Experience with Common-
Loops. In ACM SIGPLAN Notices, volume 22, pages 214–226. ACM, 1987.

Elizabeth A Kendall. Role modelling for agent system analysis, design, and implementa-
tion. In Agent Systems and Applications, 1999 and Third International Symposium on
Mobile Agents. Proceedings. First International Symposium on, pages 204–218. IEEE,
1999.

Setrag N Khoshafian and George P Copeland. Object identity, volume 21. ACM, 1986.

Gregor Kiczales, Jim des Rivières, and Daniel G. Bobrow. The Art of the Metaobject Protocol.
mitpress, 1991.

Eric Kidd. Efficient compression of generic function dispatch tables. Dartmouth College,
Hanover, NH, 2001.

SE Kleene. Object-Oriented Programming in Common Lisp, 1989.

Günter Kniesel. Objects don’t migrate! Perspectives on Objects with Roles. Technical
report, Universität Bonn, 1996.

Günter Kniesel. Dynamic object-based inheritance with subtyping. PhD the, 2000.

Bent Bruun Kristensen. Object-oriented modeling with roles. In OOIS’95, pages 57–71.
Springer, 1996.

Thomas Kühn and Walter Cazzola. Apples and oranges: Comparing top-down and
bottom-up language product lines. In Proceedings of the 20th International Systems
and Software Product Line Conference, pages 50–59. ACM, 2016.

Thomas Kühn, Kay Bierzynski, Sebastian Richly, and Uwe Aßmann. FRaMED: Full-
fledge Role Modeling Editor (Tool Demo). In Proceedings of the 2016 ACM SIGPLAN
International Conference on Software Language Engineering, SLE 2016, pages 132–
136, New York, NY, USA, 2016. ACM. ISBN 978-1-4503-4447-0. doi: 10.1145/2997364.
2997371. URL http://doi.acm.org/10.1145/2997364.2997371.

Thomas Kühn, Max Leuthäuser, Sebastian Götz, Christoph Seidl, and Uwe Aßmann.
A Metamodel Family for Role-Based Modeling and Programming Languages. In
Benoît Combemale, DavidJ. Pearce, Olivier Barais, and JurgenJ. Vinju, editors, Soft-
ware Language Engineering, volume 8706 of Lecture Notes in Computer Science, pages
141–160. Springer International Publishing, 2014. ISBN 978-3-319-11244-2. doi:
10.1007/978-3-319-11245-9_8.

Thomas Kühn, Stephan Böhme, Sebastian Götz, and Uwe Aßmann. A combined formal
model for relational context-dependent roles. In Proceedings of the 2015 ACM SIGPLAN
International Conference on Software Language Engineering, pages 113–124. ACM,
2015.

278

http://arxiv.org/abs/1508.03536
http://doi.acm.org/10.1145/2997364.2997371

BIBLIOGRAPHY

Joon-Sang Lee and Doo-Hwan Bae. An enhanced role model for alleviating the role-
binding anomaly. Software-Practice and Experience, 32(14):1317–1344, 2002.

Max Leuthäuser. SCROLL - A Scala-based library for Roles at Runtime. In van der Storm,
Tijs and Erdweg, Sebastian, editor, Proceedings of the 3rd Workshop on Domain-Specific
Language Design and Implementation (DSLDI 2015), volume abs/1508.03536, pages
7–8. van der Storm, Tijs and Erdweg, Sebastian, 2015.

Max Leuthäuser. SCROLLCompilerPlugin, 2016. URL https://github.com/
max-leuthaeuser/SCROLLCompilerPlugin. Accessed: 08th May 2017, 09.00.

Max Leuthäuser. Pure Embedding of Evolving Objects. In Proceedings of ADAPTIVE
2017, The Ninth International Conference on Adaptive and Self-Adaptive Systems and
Applications, ADAPTIVE 2017. IARIA, 2017.

Max Leuthäuser and Uwe Aßmann. Enabling View-based Programming with SCROLL:
Using Roles and Dynamic Dispatch for Establishing View-based Programming. In
Proceedings of the 2015 Joint MORSE/VAO Workshop on Model-Driven Robot Software
Engineering and View-based Software-Engineering, MORSE/VAO ’15, pages 25–33, New
York, NY, USA, 2015. ACM. ISBN 978-1-4503-3614-7. doi: 10.1145/2802059.2802062.

Qing Li and Raymond K Wong. Multifaceted object modeling with roles: A comprehensive
approach. Information Sciences, 117(3):243–266, 1999.

Lightbend Inc. Akka FSM, 2016a. URL http://doc.akka.io/docs/akka/snapshot/
scala/fsm.html. Accessed: 1st December 2016, 09.00.

Lightbend Inc. Akka FSM, 2016b. URL https://wiki.scala-lang.org/display/SIW/
Overview+of+Compiler+Phases. Accessed: 1st December 2016, 09.00.

Mengchi Liu and Jie Hu. Information networking model. In Conceptual Modeling-ER
2009, pages 131–144. Springer, 2009.

Ralf Lämmel. A semantical approach to method-call interception. In Proceedings of
the 1st international conference on Aspect-oriented software development, pages 41–55.
ACM, 2002.

Ralf Lämmel, Eelco Visser, and Joost Visser. Strategic programming meets adaptive
programming. In Proceedings of the 2nd international conference on Aspect-oriented
software development, pages 168–177. ACM, 2003.

Bruce J MacLennan. Principles of Programming Languages: Design. -, 1983.

Ole Lehrmann Madsen, Birger Møller-Pedersen, and Kristen Nygaard. OBJECT-
ORIENTED PROGRAMMING IN THE BETA PROGRAMMING. -, 1993.

L Markovic and J Sochor. Objects with Changeable Roles. -, 2001.

Hidehiko Masuhara and Gregor Kiczales. Modeling crosscutting in aspect-oriented
mechanisms. In European Conference on Object-Oriented Programming, pages 2–28.
Springer, 2003.

Erik Meijer and August Peter Drayton. Static Typing Where Possible. Dynamic Typing
When Needed: The End of the Cold War Between Programming Languages, 2004.

279

https://github.com/max-leuthaeuser/SCROLLCompilerPlugin
https://github.com/max-leuthaeuser/SCROLLCompilerPlugin
http://doc.akka.io/docs/akka/snapshot/scala/fsm.html
http://doc.akka.io/docs/akka/snapshot/scala/fsm.html
https://wiki.scala-lang.org/display/SIW/Overview+of+Compiler+Phases
https://wiki.scala-lang.org/display/SIW/Overview+of+Compiler+Phases

BIBLIOGRAPHY

Pottayil Harisanker Menon, Zachary Palmer, Alexander Rozenshteyn, and Scott Smith.
Types for flexible objects. Technical report, Technical report, The Johns Hopkins
University, 2013.

Marjan Mernik, Jan Heering, and Anthony M Sloane. When and how to develop domain-
specific languages. ACM computing surveys (CSUR), 37:316–344, 2005.

Bertrand Meyer. Object-oriented software construction, volume 2. Prentice hall New York,
1988.

Microsoft. Expando Object, 2016. URL https://msdn.microsoft.com/en-us/
magazine/ff796227.aspx. Accessed: 1st December 2016, 09.00.

Todd Millstein and Craig Chambers. Modular statically typed multimethods. In European
Conference on Object-Oriented Programming, pages 279–303. Springer, 1999.

Todd Millstein, Mark Reay, and Craig Chambers. Relaxed MultiJava: Balancing extensibil-
ity and modular typechecking. In ACM SIGPLAN Notices, volume 38, pages 224–240.
ACM, 2003.

Robin Milner. The definition of standard ML: revised. MIT press, 1997.

David A Moon. Object-oriented programming with flavors. In ACM SIGPLAN Notices,
volume 21, pages 1–8. ACM, 1986.

Warwick B Mugridge, John Hamer, and John G Hosking. Multi-methods in a statically-
typed programming language. In European Conference on Object-Oriented Program-
ming, pages 307–324. Springer, 1991.

Radu Muschevici, Alex Potanin, Ewan Tempero, and James Noble. Multiple dispatch in
practice. In ACM SIGPLAN Notices, volume 43, pages 563–582. ACM, 2008.

Mayur Naik and Rajeev Kumar. Efficient message dispatch in object-oriented systems.
ACM SIGPLAN Notices, 35:49–58, 2000.

Erik Odberg. Category classes: Flexible classification and evolution in object-oriented
databases. In International Conference on Advanced Information Systems Engineering,
pages 406–420. Springer, 1994.

Martin Odersky, Lex Spoon, and Bill Venners. Programming in Scala: a comprehensive
stepby-step guide. Artima Inc, August, 2008.

Oracle. Java Generic Types, 2015. URL https://docs.oracle.com/javase/tutorial/
java/generics/types.html. Accessed: 15th May 2017, 14.00.

Doug Orleans. Incremental programming with extensible decisions. In Proceedings of
the 1st international conference on Aspect-oriented software development, pages 56–64.
ACM, 2002.

Kasper Osterbye. Roles: conceptual abstraction theory and practical language issues.
Theory and Practice of Object Systems, 2(3):143–160, 1996.

Kasper Østerbye. Implementation of a role language for object-specific dynamic separa-
tion of concerns. In AOSD03 Workshop on Software-engineering Properties of Languages
for Aspect Technologies, 2003.

280

https://msdn.microsoft.com/en-us/magazine/ff796227.aspx
https://msdn.microsoft.com/en-us/magazine/ff796227.aspx
https://docs.oracle.com/javase/tutorial/java/generics/types.html
https://docs.oracle.com/javase/tutorial/java/generics/types.html

BIBLIOGRAPHY

Klaus Ostermann. Dynamically Composable Collaborations with Delegation Layers. In
European Conference on Object-Oriented Programming, pages 89–110. Springer, 2002.

Johan Ovlinger. Combining Aspects and Modules. PhD thesis, Northeastern University,
2004.

Jens Palsberg and C Barry Jay. The essence of the visitor pattern. In Computer Software
and Applications Conference, 1998. COMPSAC’98. Proceedings. The Twenty-Second
Annual International, pages 9–15. IEEE, 1998.

Mike P. Papazoglou and Bernd J. Kraemer. A database model for object dynamics. The
VLDB Journal—The International Journal on Very Large Data Bases, 6(2):073–096, 1997.

Barbara Pernici. Objects with roles. ACM SIGOIS Bulletin, 11(2-3):205–215, 1990.

Andrei Popovici, Thomas Gross, and Gustavo Alonso. Dynamic weaving for aspect-
oriented programming. In Proceedings of the 1st international conference on Aspect-
oriented software development, pages 141–147. ACM, 2002.

Michael Pradel and Martin Odersky. A Lightweight Approach towards Reusable Collabo-
rations. In International Conference on Software and Data Technologies (ICSOFT’08),
2008.

Michael Pradel and Martin Odersky. Scala Roles: Reusable Object Collaborations in a
Library. In Software and Data Technologies, pages 23–36. Springer Berlin Heidelberg,
2009.

Python Software Foundation. Python Enhancement Proposal 484: Type Hints, 2016a. URL
https://www.python.org/dev/peps/pep-0484/. Accessed: 1st December 2016,
09.00.

Python Software Foundation. Python 3 Glossary on Duck-Typing, 2016b. URL https://
docs.python.org/3/glossary.html#term-duck-typing. Accessed: 1st December
2016, 09.00.

Trygve Reenskaug and James O Coplien. The DCI architecture: A new vision of object-
oriented programming. An article starting a new blog:(14pp) http://www. artima.
com/articles/dci_vision. html, 2009.

Joel Richardson and Peter Schwarz. Aspects: Extending objects to support multiple,
independent roles, volume 20. ACM, 1991.

Dirk Riehle. Framework design. PhD thesis, Diss. Technische Wissenschaften ETH Zürich,
Nr. 13509, 2000, 2000.

Marko A Rodriguez and Peter Neubauer. The graph traversal pattern. arXiv preprint
arXiv:1004.1001, 2010.

T Tetsuo S. Monpratarnchai. The design and implementation of a role model based
language, EpsilonJ. In Proceedings of the 5th International Conference on Electrical
Engineering/Electronics, Computer, Telecommunications and Information Technology
(ECTI-CON 2008), 2008.

Markku Sakkinen. Disciplined Inheritance. In ECOOP, volume 89, pages 39–56, 1989.

281

https://www.python.org/dev/peps/pep-0484/
https://docs.python.org/3/glossary.html#term-duck-typing
https://docs.python.org/3/glossary.html#term-duck-typing

BIBLIOGRAPHY

Lee Salzman and Jonathan Aldrich. Prototypes with multiple dispatch: An expressive
and dynamic object model. In European Conference on Object-Oriented Programming,
pages 312–336. Springer, 2005.

Michael Schrefl and Thomas Thalhammer. Using roles in Java. Software: Practice and
Experience, 34(5):449–464, 2004.

Lars Schütze. A Context-Aware Role-Playing Automaton for Self-Adaptive Systems. PhD
thesis, Masters thesis. Technische Universität Dresden, 2016.

Asim Anand Sinha. Multiple Dispatch and Roles in OO Languages: Fickle. PhD thesis,
Masters thesis. Imperial College London, 2005.

Ioannis Smaragdakis. Implementing large-scale object-oriented components. -, 1999.

Yannis Smaragdakis and Don Batory. Mixin layers: an object-oriented implementation
technique for refinements and collaboration-based designs. ACM Transactions on
Software Engineering and Methodology (TOSEM), 11(2):215–255, 2002.

Yannis Smaragdakis and Don S. Batory. Implementing Layered Designs with Mixin Layers.
In Proceedings of the 12th European Conference on Object-Oriented Programming,
ECCOP ’98, pages 550–570, London, UK, UK, 1998. Springer-Verlag. ISBN 3-540-64737-
6. URL http://dl.acm.org/citation.cfm?id=646155.679703.

Randall B Smith and David Ungar. A simple and unifying approach to subjective objects.
TAPOS, 2:161–178, 1996.

Pedro Sousa, António Rito Silva, and José Alves Marques. Object identifiers and identity:
a naming issue. In Object-Orientation in Operating Systems, 1995., Fourth International
Workshop on, pages 127–129. IEEE, 1995.

Friedrich Steimann. Formale Modellierung mit Rollen. PhD thesis, TU Hannover, 2000a.
Habilitation thesis.

Friedrich Steimann. On the representation of roles in object-oriented and conceptual
modelling. Data & Knowledge Engineering, 35(1):83–106, 2000b.

Lynn Andrea Stein and Stanley B Zdonik. Clovers: The dynamic behavior of types and
instances. Brown University, Department of Computer Science, 1989.

Bjarne Stroustrup. The C++ Programming Language. Pearson Education India, 1995.

Jianwen Su. Dynamic constraints and object migration. In VLDB, volume 91, pages
233–242, 1991.

Antero Taivalsaari. On the notion of inheritance. ACM Computing Surveys (CSUR), 28:
438–479, 1996.

Eddy Truyen. Dynamic and context-sensitive composition in distributed systems. -, 2004.

Eddy Truyen, Bart Vanhaute, Wouter Joosen, Pierre Verbaeten, and Bo Nørregaard Jor-
gensen. A dynamic customization model for distributed component-based systems.
In Distributed Computing Systems Workshop, 2001 International Conference on, pages
147–152. IEEE, 2001.

Aaron Mark Ucko. Predicate dispatching in the common lisp object system. PhD thesis,
Massachusetts Institute of Technology, 2001.

282

http://dl.acm.org/citation.cfm?id=646155.679703

BIBLIOGRAPHY

David Ungar and Randall B Smith. Self: The power of simplicity, volume 22. ACM, 1987.

David Ungar, Harold Ossher, and Doug Kimelman. Korz: Simple, Symmetric, Subjective,
Context-Oriented Programming. In Proceedings of the 2014 ACM International Sym-
posium on New Ideas, New Paradigms, and Reflections on Programming & Software,
Onward! 2014, pages 113–131, New York, NY, USA, 2014. ACM. ISBN 978-1-4503-3210-
1. doi: 10.1145/2661136.2661147. URL http://doi.acm.org/10.1145/2661136.
2661147.

van der Torre. Roles as a Coordination Construct: Introducing powerJava. Electr. Notes
Theor. Comput. Sci, 150(1):9–29, 2006.

Ellen Van Paesschen, Wolfgang De Meuter, and Theo D’Hondt. Domain modeling in self
yields warped hierarchies. In Workshop Reader ECOOP 2004, Oslo, Norway, volume
3344, page 101, 2004.

Michael VanHilst. Role oriented programming for software evolution. PhD thesis, Univer-
sity of Washington, 1997.

Matthias Veit and Stephan Herrmann. Model-view-controller and object teams: A perfect
match of paradigms. In Proceedings of the 2nd international conference on Aspect-
oriented software development, pages 140–149. ACM, 2003.

William M Waite and Gerhard Goos. Compiler construction. Springer Science & Business
Media, 2012.

Geertjan Wielenga. On PowerJava: "Roles" Instead Of "Objects", 2013. URL https:
//blogs.oracle.com/geertjan/entry/on_powerjava_roles_instead_of. Ac-
cessed: 1st December 2016, 09.00.

Yoav Zibin and Joseph Yossi Gil. Fast algorithm for creating space efficient dispatching
tables with application to multi-dispatching. In ACM SIGPLAN Notices, volume 37,
pages 142–160. ACM, 2002.

283

http://doi.acm.org/10.1145/2661136.2661147
http://doi.acm.org/10.1145/2661136.2661147
https://blogs.oracle.com/geertjan/entry/on_powerjava_roles_instead_of
https://blogs.oracle.com/geertjan/entry/on_powerjava_roles_instead_of

	Title page
	Statement of authorship
	Abstract
	Acknowledgments
	Publications
	Contents
	Introduction
	Thesis Topic
	Contributions and Outline

	Background and Problem Analysis
	Foundations of Roles
	The Historical Term Role
	Issues of Object-oriented Software Design
	The Introduction of Roles
	Towards a Common Understanding of Roles
	The Compartment Role Object Model (CROM)
	The Automaton-based Role-binding Process
	Runtime-specific Role Features

	Foundations of Dispatch
	Predicate Dispatch
	Multi-dimensional Dispatch

	Foundations of Graphs and Graph Filtering
	A Motivating Example for Multi-dimensional Dispatch
	Research Challenges

	Roles in Structured Contexts at Runtime
	The Embedded DSL SCROLL
	The Basic Ingredients of the Embedded DSL SCROLL
	Basic Implementation Concepts
	The Dynamic Trait with Compiler Rewrite Rules
	Boxing with Implicits
	The Definition Table for the Plays Relationship

	The Usage Layer

	The Metaobject Protocol of SCROLL
	The Configuration Layer
	The Metaobject Protocol Layer
	The Metaclass Compartment
	The Metaclass Player
	The Metaclass DispatchQuery
	The Metaclass RoleGraph
	The Metaclass QueryStrategies
	The Metaclass RoleConstraints
	The Metaclass RoleRestrictions
	The Metaclass Relationships
	The Metaclass RoleGroups
	The Metaclass RolePlayingAutomaton

	The Specification Layer
	SCROLLDispatch
	SCROLLDynamic
	Dispatch Notations
	Dispatch Mapping to Scala

	Programming the Robotic Co-Worker with SCROLL
	The class Machine
	The class HaddadinAutomaton
	The class HaddadinCompartment
	The class SmartSensors

	Technical Limitations
	Limitations and Alternatives
	Limited Type-Safety
	Performance Issues

	The SCROLL Compiler Plugin

	Evaluation
	Qualitative Evaluation
	A Requirement-based Analysis for Roles with SCROLL
	A Feature-based Analysis for Roles with SCROLL
	A Variability Analysis for Roles with SCROLL

	Quantitative Evaluation
	The Model
	The Implementation
	The Evaluation Method
	Results and Summary

	Discussion

	The Advantages of SCROLL

	Related Work, Conclusion, and Outlook
	Roles with Patterns or other Programming Languages
	Roles with Patterns
	Roles with other Programming Languages
	General Purpose- , Aspect-oriented-, and Subject-oriented Languages
	Other Role-based Languages

	Dispatch Models
	ALIA4j
	Multi-methods: Prototypes with Multiple Dispatch
	Korz

	Conclusion
	Future Work

	Appendix
	A Variability Analysis for Roles at Runtime
	Class Instances as Role-playing Objects
	Role-playing constraints
	Possible Supertypes for Role-playing

	Constraints between the Player and its Roles
	Role-playing constraints for roles
	Instance cardinality constraints for roles
	Player cardinality constraints
	Dispatching constraints

	Relationships between the Player and its Roles
	Inheritance subordination
	Possible Superclasses for Role Types
	Possible Player Types for Role Types

	Properties of Classes as Roles
	Fields and Methods of Roles
	Field access in Roles
	Static and class methods in Roles
	Nesting in Roles

	Behavior of Role-playing Objects
	Method calls from and to Roles
	Self calls in Role-playing Objects
	Super calls in Role-playing Objects
	Player calls in Role-playing Objects
	Role calls in Role-playing Objects
	Around-methods in Role-playing Objects

	Identity of Role-playing Objects
	Roles without unique identities
	Problems motivating a shared identity
	Roles have identities

	Life cycle of Role-playing Objects
	Role creation strategy
	Attachment strategies for Roles
	Role movement

	The Type of a Role

	An Overview of Scala
	Additional Information
	Source Code
	Source code for the Robotic Co-Worker
	Machine.scala
	HaddadinAutomaton.scala
	HaddadinCompartment.scala
	SmartSensors.scala
	HaddadinDemo.scala

	Source code for SCROLL
	Compartment.scala
	DispatchQuery.scala
	QueryStrategies.scala
	Relationships.scala
	RoleConstraints.scala
	RoleGroups.scala
	RoleRestrictions.scala
	RolePlayingAutomaton.scala
	RoleGraph.scala
	ScalaRoleGraph.scala
	CachedScalaRoleGraph.scala
	SCROLLErrors.scala
	Memoiser.scala
	ReflectiveHelper.scala

	Source code for Evaluation
	ROP
	ScalaRoles
	SCROLL
	SeparateType
	SingleType
	SubtypeHiddenDelegation
	SubtypeInternalFlag
	SubtypeStateObject
	ScalaDCI
	ObjectTeams/Java

	List of Figures
	List of Tables
	List of Listings
	Index
	Abbreviations
	Bibliography

