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One does not come by studying living things for a lifetime to suppose that
physics and chemistry cannot account for them all.1

1D. W. Thompson (1992). On Growth and Form. Ed. by J. T. Bonner. Canto ed. Cambridge: Cambridge
University Press. 376 pp., p. 9
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ABSTRACT

The cell is the central functional unit of life. Cell behaviors, such as cell division, move-
ments, differentiation, cell death as well as cell shape and size changes, determine
how tissues change shape and grow during regeneration and development. However, a
generally applicable framework to measure and describe the behavior of the multitude
of cells in a developing tissue is still lacking. Furthermore, the specific contribution
of individual cell behaviors, and how exactly these cell behaviors collectively lead to
the morphogenesis and growth of tissues are not clear for many developmental and
regenerative processes.

A promising strategy to fill these gaps is the continuing effort of making developmental
biology a quantitative science. Recent advances in methods, especially in imaging,
enable measurements of cell behaviors and tissue shapes in unprecedented detail and
accuracy. Consequently, formalizing hypotheses in terms of mathematical models to
obtain testable quantitative predictions is emerging as a powerful tool. Tests of the
hypotheses involve the comparison of model predictions to experimentally observed
data. The available data is often noisy and based on only few samples. Hence, this
comparison of data and model predictions often requires very careful use of statistical
inference methods. If one chooses this quantitative approach, the challenges are the
choice of observables, i.e. what to measure, and the design of appropriate data-driven
models to answer relevant questions.

In this thesis, I applied this data-driven modeling approach to vertebrate morphogenesis,
growth and regeneration. In particular, I study spinal cord and muscle regeneration in
axolotl, muscle development in zebrafish, and neuron development and maintenance
in the adult human brain. To do so, I analyzed images to quantify cell behaviors and
tissue shapes. Especially for cell behaviors in post-embryonic tissues, measurements of
some cell behavior parameters, such as the proliferation rate, could not be made directly.
Hence, I developed mathematical models that are specifically designed to infer these
parameters from indirect experimental data. To understand how cell behaviors shape
tissues, I developed mechanistic models that causally connect the cell and tissue scales.

Specifically, I first investigated the behaviors of neural stem cells that underlie the



regenerative outgrowth of the spinal cord after tail amputation in the axolotl. To do so,
I quantified all relevant cell behaviors. A detailed analysis of the proliferation pattern
in space and time revealed that the cell cycle is accelerated between 3-4 days after
amputation in a high-proliferation zone, initially spanning from 800 µm anterior to the
amputation plane. The activation of quiescent stem cells and cell movements into the
high-proliferation zone also contribute to spinal cord growth but I did not find contributions
by cellular rearrangements or cell shape changes. I developed a mathematical model of
spinal cord outgrowth involving all contributing cell behaviors which revealed that the
acceleration of the cell cycle is the major driver of spinal cord outgrowth. To compare
the behavior of neural stem cells with cell behaviors in the regenerating muscle tissue
that surrounds the spinal cord, I also quantified proliferation of mesenchymal progenitor
cells and found similar proliferation parameters. I showed that the zone of mesenchymal
progenitors that gives rise to the regenerating muscle segments is at least 350 µm long,
which is consistent with the length of the high-proliferation zone in the spinal cord.

Second, I investigated shape changes in developing zebrafish muscle segments by
quantifying time-lapse movies of developing zebrafish embryos. These data challenged or
ruled out a number of previously proposed mechanisms. Motivated by reported cellular
behaviors happening simultaneously in the anterior segments, I had previously proposed
the existence of a simple tension-and-resistance mechanism that shapes the muscle
segments. Here, I could verify the predictions of this mechanism for the final segment
shape pattern. My results support the notion that a simple physical mechanism suffices
to self-organize the observed spatiotemporal pattern in the muscle segments.

Third, I corroborated and refined previous estimates of neuronal cell turnover rates in
the adult human hippocampus. Previous work approached this question by combining
quantitative data and mathematical modeling of the incorporation of the carbon isotope
14C. I reanalyzed published data using the published deterministic neuron turnover
model but I extended the model by a better justified measurement error model. Most
importantly, I found that human adult neurogenesis might occur at an even higher rate
than currently believed.

The tools I used throughout were (1) the careful quantification of the involved pro-
cesses, mainly by image analysis, and (2) the derivation and application of mathematical
models designed to integrate the data through (3) statistical inference. Mathematical
models were used for different purposes such as estimating unknown parameters from
indirect experiments, summarizing datasets with a few meaningful parameters, formaliz-
ing mechanistic hypotheses, as well as for model-guided experimental planning. I venture
an outlook on how additional open questions regarding cell turnover measurements could
be answered using my approach. Finally, I conclude that the mechanistic understanding
of development and regeneration can be advanced by comparing quantitative data to
the predictions of specifically designed mathematical models by means of statistical
inference methods.
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1. INTRODUCTION

1.1. CELL BEHAVIOR, MORPHOGENESIS AND GROWTH IN
DEVELOPMENT AND REGENERATION

This year, the 100th anniversary of D’Arcy W. Thompson’s On Growth and Form highlights
the long-standing search for the principles that underlie the shaping of organisms. This
question is tackled by the field of developmental biology, the science of understanding
how the fertilized egg gives rise to an orderly body (Gilbert 2010). One of the ultimate
goals is to understand human development, which includes to understand developmental
failures. In turn, this understanding shall lead to progress in medical treatments. For
example, the study of neurogenesis during development and homeostasis can lead to
new treatments for neurodegenerative diseases. Another medically relevant subject is
the study of regeneration, the reconstitution of lost body parts (Tanaka 2003). Recent
advances in molecular biology and imaging allow the study of development in unprece-
dented detail. However, we still lack a full, quantitative, mechanistic understanding of
how cells behave to shape tissues and let them grow.

Development was studied even long before D’Arcy W. Thompson. Hippocrates started
to study development in the 15th century BC and Aristotle continued about 100 years
later. Aristotle formulated the important concept of epigenesis according to which
the structures of an embryo are created de novo during development (Wolpert et al.
2015). This concept was proven to be correct: After the discovery of the cell in the 17th
century (Hooke 1665), Matthias Jakob Schleiden, Theodor Schwann and Rudolf Virchow,
among others, formulated the cell theory which identified the cell as the basic unit of life
(Schleiden 1838; Schwann 1839; Virchow 1858; Wolpert et al. 2015). They found that all
living organisms consist of cells and that all these cells arise from previous cells. This
turned the question of understanding development into questions of understanding cell
behavior.

The same is true for regeneration. It is fascinating to observe that some animals can
reconstitute lost body parts. For example, the fresh-water polyp hydra and the planarian
flatworm regenerate into two individuals when cut into two pieces. Salamanders are
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able to completely regenerate lost limbs or the tail (Murawala et al. 2012; Nacu and
Tanaka 2011). Obviously, these processes involve tissue size and shape changes driven
by the underlying cell behaviors. Again, to understand regeneration, an understanding of
the underlying cell behaviors is needed.

Cell behaviors determining tissue shape and size are cell division, movements, dif-
ferentiation, cell death as well as cell shape and size changes. But how does each cell
know what to do? Individual cells become increasingly different from each other during
development and the collective behavior of all the different cells forms the organism.
In the late 19th century, research focused on the question how cells become different
from each other. Starting with the works of August Weismann, Hans Driesch and many
others, more than a century of following research now provides the basic principles to
answer this question: Genes control the expression of proteins which in turn regulate cell
behavior; gene expression is controlled by feedback loops involving intercellular signaling
(Alberts 2015; Wolpert et al. 2015).

In turn, these cell behaviors lead to changes in tissue size and form. The detailed
study of gastrulation, neural tube formation in vertebrates and wing disc development in
Drosophila showed that all types of cell behavior are involved in tissue shape changes.
(Etournay et al. 2015; Heisenberg and Bellaïche 2013; Oates et al. 2009; Wolpert et al.
2015). Now, how do those many, different cells behave exactly when they form and
shape an organism? I aim to study this question in quantitative terms. The question can
be broken down to three sub-questions: First, how does one measure and describe how
the many cells in the developing embryo actually behave? Second, how can one measure
and describe the complex shape and size of tissues and organisms as a whole, also
taking into account the time course of shape and size? Third, what are the mechanisms
that connect the observed cell behaviors to the observed growth and shaping of tissues
and organisms?

Measuring how a single cell behaves is comparably easy. We can use a microscope
to time-lapse image and measure where it is, how big it is, how it is shaped, when it
divides and when it dies. Measuring when and how a cell differentiates is already more
difficult as it involves measuring gene expression at single cell level as a function of
time. But measuring the behavior of thousands of cells in the complex environment of
the developing embryo is much harder. It is not generally possible to track each single
cell in an organism although there are initial successes in time-lapsing whole organs or
embryos at resolutions that do allow this (Currie et al. 2016; Etournay et al. 2015; Keller
et al. 2008; Pantazis and Supatto 2014). In cases for which this is not possible, it may
still be possible to infer cell behaviors by indirect experiments. But these experiments
have to be designed according to the special situation one is interested in. Even if single
cell tracks are available, the fact that there are thousands of cells makes it an intellectual
challenge to generate knowledge out of such datasets. Several suggestions for how to
describe cell behaviors in planar, epithelial tissues have been made (Blanchard et al. 2009;
Bosveld et al. 2012; Etournay et al. 2016; Guirao et al. 2015). But a universal framework
for measuring and describing the complex cell behavior in developing embryos is lacking
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and an applicable strategy must be developed for each considered process.
The quantification of the complex shape and size of the organism is termed morpho-

metrics (Prpic and Posnien 2016). It involves the rather easy measurement of the linear
size of an organism in a certain direction but extends to the quantification of complex
shapes with adequate mathematical formulations as proposed already by Thompson
(1915). The time course of shape and size is of particular importance in development
(Oates et al. 2009). Once again, a universal method for how to perform the quantification
of shape and size does not exist but must be appropriately selected for the studied
developmental process (Fruciano 2016; Prpic and Posnien 2016).

The question of how cell behavior leads to changes in form and growth ultimately
involves the study of the involved forces. To understand the effects of these forces, the
mechanism of morphogenesis is often studied with mathematical models (e.g. Bielmeier
et al. 2016; Graner and Glazier 1992; Köhn-Luque et al. 2011). In special cases, e.g. if
one can show that tissue size is proportional to cell number, it is possible to model the
effects of cell behavior on growth without explicitly taking into account forces. Without a
generally applicable theory that mechanistically couples cell behavior to morphogenesis
and growth, suitable models must be developed for each developmental process at hand
(Taber 2009).

Taken together, a generally applicable framework to measure and describe the behavior
of the multitude of cells in a developing tissue is still lacking. To quantify tissue shape
and size, appropriate observable must be selected for the studied developmental or
regenerative process. Furthermore, the specific contribution of individual cell behaviors,
and how exactly these cell behaviors collectively lead to the morphogenesis and growth
of tissues are not clear for many developmental and regenerative processes. I worked
on these problems for selected processes in development and regeneration (Figure 1.1).
In the next section, I will introduce my specific topics.

1.2. SPECIFIC TOPICS OF THE THESIS

Axolotl spinal cord and muscle regeneration: A particularly fascinating part of de-
velopmental biology is the study of regeneration, the ability of some species to rebuild
lost body parts. In this thesis, I first investigate the regeneration of the spinal cord and
muscle tissues after tail amputation in the Mexican salamander, axolotl (Ambystoma
mexicanum). Specifically, I seek to find out how, when and where neural stem cells
change their behavior in response to the injury. Furthermore, I want to identify the cell
behaviors that are responsible for the tissue scale growth of the spinal cord. I compare
this to the regeneration of the adjacent muscle segments. A better understanding of
which cellular behaviors act when and where during regeneration and how they function
to shape tissues will help to facilitate the search for the responsible molecular machinery.
In turn, this will finally lead to the understanding of the whole process across all spatial
scales.

1.2. Specific topics of the thesis 3
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Figure 1.1.: The aim of this thesis was to study how cell behaviors shape selected tissues
and let them grow during regeneration and development. This is exemplified
by my study of axolotl spinal cord outgrowth during regeneration in chapter 3.
A: Cell behaviors that could cause the outgrowth. My quantification of
these behaviors showed that only division, activation and influx contribute
to growth, as indicated by the check marks. B: The spinal cord grows after
amputation. I quantified the outgrowth length, L, for 8 days after amputation.
C: I developed a mathematical model of spinal cord outgrowth which uses
the quantified cell behaviors as an input. The model correctly predicts the
outgrowth and revealed cell cycle acceleration as the main driver of spinal
cord outgrowth.
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Development of muscle segments in zebrafish: Furthermore, it is an open question
to what extent regeneration reuses developmental programs (Tanaka 2003; Tanaka and
Ferretti 2009). Only a detailed characterization of both, development and regeneration,
will allow answering this question. Accordingly, I also study development. For that, I
keep investigating muscle tissue but I turn to the model organism zebrafish (Danio rerio).
Its embryo facilitates the study of morphological shape changes and has already been
used to extensively study muscle differentiation (Cortés et al. 2003; Currie and Ingham
1996; Daggett et al. 2007; Devoto et al. 1996; Henry and Amacher 2004; van Raamsdonk
et al. 1978; van Raamsdonk et al. 1974a; Yin and Solnica-Krezel 2007). Zebrafish muscle
segments take on a similar folded shape as the muscle segments in the regenerating
axolotl tail. Previously, I proposed a mechanism involving cells that exert mechanical
forces to organize the observed segment shapes (Rost 2010). Here, I quantify the
segment shapes to test whether the proposed cellular behavior could drive the shaping
of muscle tissue.

Neurogenesis in the adult human brain: Subsequently, I return to the study of the
behavior of neural stem cells but turn to the hippocampus of the adult human brain.
There, I refine the estimation of neuron turnover throughout life by contributing a better
justified measurement error model to already published data and models (Spalding et al.
2013).

The tools I use throughout are the careful quantification of the involved processes,
mainly by image analysis, and the derivation and application of mathematical models
designed to make sense out of the data with the help of statistical inference. Being a
physicist by training, I am inclined to the thesis, that the complex process of development
can only be fully understood in the context of a quantitative, mathematical modeling
framework (Oates et al. 2009). I view mathematical models as tools that can have very
different purposes. Therefore, the next section shall introduce the role of mathematical
modeling for investigating development and regeneration.

1.3. DATA-DRIVEN MATHEMATICAL MODELS IN DEVELOPMENT
AND REGENERATION

Mathematical modeling is used in many fields of biology (Chara et al. 2014; Edel-
stein-Keshet 2005; Getto and Marciniak-Czochra 2015; Murray 2002). The use of mathe-
matics has for instance been successful in physiology, ecology and systems biology and
evolution (Edelstein-Keshet 2005; Keener and Sneyd 1998; Murray 2002). After the early
efforts of D’Arcy W. Thompson using mathematics to describe development, the first
successful, mechanistic models in developmental biology were on pattern formation, i.e.
how do cells become different from each other in the developing embryo.

1.3. Data-driven mathematical models in development and regeneration 5



In his French flag model, Wolpert (1969) proposed a morphogenetic gradient encoding
positional information. This positional information can be read by cells and hence cells
can differentiate according to their position in the embryo. Crick (1970) proposed the
diffusion of a molecule, termed morphogen, through the embryo would be a likely
physical mechanism underlying the formation of the morphogenetic gradient. Although
this model could not be proven immediately as the molecular players were unknown, it
highlights an important use of mathematical models: They can be used to qualitatively
understand a mechanism. Later, the model was proven for Drosophila development by
identifying bicoid as an involved morphogen (Driever and Nüsslein-Volhard 1988).

Pattern formation was also the topic that Alan M. Turing, Alfred Gierer and Hans
Meinhardt worked on, using reaction-diffusion systems (Gierer and Meinhardt 1972;
Turing 1952). Their works feature mathematical models that predict a non-intuitive
mechanism for the formation of spatial patterns that takes into account chemical reactions
and diffusion of the reactants. A main result of Gierer and Meinhardt (1972) and Turing
(1952) was qualitative one: Their models are able to self-organize patterns and this
works for a whole range of model parameters. Hence, it gave a possible solution for the
long-standing question how patterns can be generated out of uniform, unpatterned initial
conditions (Kondo and Miura 2010; Nicolis and Wit 2007).

Nonetheless, already Hans Meinhardt noted that proving the existence and relevance
of this pattern formation mechanisms would include identifying the involved molecules
and measuring their properties (Gierer and Meinhardt 1972; Maini et al. 2017). This
highlights another use for mathematical models: They can be used to formally formulate
a mechanism in quantitative terms; solving the model then leads to predictions that
can be tested against quantitative data. This approach is very successful nowadays
(Chickarmane et al. 2010; de Back 2015; Etournay et al. 2015; Oates et al. 2009; Roeder
et al. 2011; Sasai 2013). The common view is that quantitative data, which is generated
by imaging and subsequent image analysis, can be tested against model predictions. If
the data contradict the model predictions, the model needs to be refined until the model
predictions are validated (Bonner 1974; Chickarmane et al. 2010; de Back 2015; Roeder
et al. 2011; Sasai 2013). From the validated model, predictions for new experiments can
be made to further refine our understanding.

However, this comparison of model prediction and experimental data can be difficult
(Swigon 2012). Depending on the context, low amount of data and high levels of noise
in the data may lead to the need of carefully employing the correct statistical inference
methods to properly perform the test of model predictions against the data (Sasai 2013;
Swigon 2012). Luckily, there already exists a wealth of statistical methods to choose
from. Depending on the problem at hand, one may employ frequentist methods (namely
the methods of Maximum-likelihood (ML), Least squares (LS) and bootstrapping) and the
Bayesian method. Statistical inference methods allow estimating unknown parameters
by fitting a model to the data. Furthermore, fitting the model allows accessing how well
the model describes the data. One might reject a hypothesis if even the best fitting
model does not describe essential features of the data. Especially, if there are two
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competing hypotheses available, model selection criteria can be used to select the best
model and avoid overfitting. These model selection criteria, like the Akaike information
criterion (AIC) used in this thesis, give a quantitative score that rewards well fitting
models while penalizing overly complex models. This score can be used to rigorously
select the best model from a set of alternatives.

The application of statistical inference methods is not new to biology. For instance,
in the field of systems biology these methods are actively applied and developed to
understand gene regulation (Kreutz et al. 2007; Raue et al. 2013). The challenge in
applying these methods in developmental biology is to identify observables for which
data of sufficient quality are available to answer relevant questions.

Let me sketch this with an example: Imagine, you want to measure the cell cycle
length of cells in a developing tissue. Seemingly, the easiest way would be to keep
track of all cells and measure the time between consecutive cell divisions with a watch.
However, as stated above, this is generally not yet possible for all developing tissues
nowadays. Hence, one has to find other data to infer the rate indirectly. One possibility
are continuous label incorporation assays in which newly synthesized DNA is marked
with nucleotide analogues (Lefevre et al. 2013; Nowakowski et al. 1989; Spalding et al.
2005). Intuitively, the label will be incorporated into DNA faster if cells divide faster.
However, only with the help of a mathematical model that relates the label incorporation
speed at the population level with the cell cycle length, these data can be used to infer
the cell cycle length at the cellular level.

Hence, the availability of data dictates what kind of model is useful to answer the
question. I call these models which are designed to answer relevant questions given the
possibly available data ’data-driven’ models. Throughout this thesis, I will define several
such models to answer questions concerning cell behavior, tissue shaping and growth.

1.4. STRUCTURE OF THE THESIS

I describe the methods I use in chapter 2. Starting with statistical inference methods,
I will first focus on how parameters can be estimated by model fitting. Then, I will
discuss model selection. There, the idea is: If there are two competing models to explain
the same experimental data, we want to find the model which explains the data best
while trying to avoid selecting an overly complicated model. Then, I go on to explain the
numerical tools I used to implement those methods and briefly explain how I performed
image analysis.

Chapter 3 on axolotl tail regeneration is the most extensive one of the thesis. It’s
based on my contributions to Rodrigo Albors et al. (2015), Rost et al. (2016a), and Vincent
et al. (2015). There, I ask what the underlying cellular behaviors are that drive the
regenerative spinal cord outgrowth after tail amputation. After quantifying the spinal
cord outgrowth, I present a first mathematical model that assumes proliferation as the
only driver of the outgrowth. Comparing different hypotheses for how the proliferation
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response is regulated in space and time, I will find that a model involving a biphasic
proliferation response, initially slow and accelerated from about 3 days after amputation
could explain the outgrowth well. To test this prediction, I will quantify the contributions
of all possibly involved cellular mechanisms. Particularly, I make use of neural stem
cell density measurements (Rodrigo Albors et al. 2015) to show that convergence and
extension is negligible. I make use of cell proliferation-related measurements along the
anteroposterior (AP) axis of the spinal cord (Rodrigo Albors and Tanaka 2015) to identify
a high-proliferation zone that extends 800 µm anterior to the amputation plane, and
calculate changes in cell cycle kinetics within this zone. By measuring the displacement
of sparsely-labeled cells, I also establish the cell influx into the regenerating spinal cord.
Subsequently, I set up a mathematical model of spinal cord outgrowth that incorporates
cell proliferation, stem cell activation and cell influx. Using this model, I show that cell
influx and quiescent stem cell activation are of minor importance, but that the acceleration
of the cell cycle in the high-proliferation zone is the major driver of the regenerative spinal
cord outgrowth, indeed. Finally, I demonstrate how the same model ideas can be applied
to understand the regulation of cellular mechanisms in perturbed regeneration conditions.
I compare the identified zone length and the growth mode to the regeneration of the
adjacent muscle tissue.

In chapter 4 which is based on my contributions to Rost et al. (2014), I examine the
shaping of muscle segments during development in zebrafish. Those segments take on
a similar folded shape as the muscle segments in the regenerating axolotl tail. I start
with a literature review revealing four hypotheses for the mechanism that shapes the
segments. However, for neither of the four hypotheses exists conclusive experimental
support. Therefore, I use time-lapse movies of developing zebrafish embryos to quantify
the dynamics of muscle segment shape. By comparing such time courses with the start
of movements in wildtype zebrafish and analyzing immobile mutants, I show that the
previously implicated body movements do not play a role in shape formation. Further, the
spatial pattern of final segment shape constrains or rules out possible contributions by
other previously proposed mechanisms. Contrary to previous suggestions, I show that a
particular cell type, the muscle pioneer, is not required for initial shape formation. Finally,
I test the tension-and-resistance mechanism that I proposed in my diploma thesis (Rost
2010). This mechanism involves interactions between intra-segmental tension, possibly
due to a particular cell differentiation pattern, and segment boundaries. To evaluate this
mechanism, I derive and analyze a mechanical model. The predictions of this model
are validated by comparison with experimental data. Altogether, my results support
the notion that a simple physical mechanism suffices to self-organize the observed
spatiotemporal pattern in muscle segment formation.

Chapter 5 is again concerned with the behavior of neural stem cells. There, I refine the
estimation of neuron turnover rates in a part of the adult human brain, the hippocampus.
It is based on the data and the mathematical model developed by Spalding et al. (2013).
I extend their statistical analysis. My results mainly corroborate previous results, but I
find that the rate of neuron turnover in the adult human brain might be even higher than
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currently thought.
Chapters 3 to 5 are written such that they can be read on their own. Each of these

chapters includes a dedicated introduction and discussion section for the specific topic.
In chapter 6, I briefly summarize the main results from chapters 3 to 5. Furthermore, I
comment on the different ways mathematical models are used in this thesis and propose
which models should be developed in the future.

My approach of combining quantitative data, mathematical models and statistical
inference is inherently an interdisciplinary one involving both, biology and mathematics.
All biological data used in this thesis are published already. Not being an experimentalist
myself, I will explain the important features of the data but I will also refer to the
published protocols and methods when describing concrete datasets. When it comes to
mathematics, I will attempt to explain the reasoning and assumptions that lead to the
equations such that it is possible to follow the line of argument without having to go
through the calculations in detail.
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2. METHODS

2.1. STATISTICAL INFERENCE

In developmental biology, as in any other natural science, we observe nature and state
hypotheses about the processes that underlie our observations. Useful hypotheses lead
to predictions that can be tested against experiments. Sometimes, it is necessary or
helpful to formalize hypotheses into mathematical models that generate quantitative
predictions. These predictions can be tested against quantitative data. Statistics is the
mathematical field that deals with these tests.

Furthermore, statistical inference can be used to deduce information about underlying
processes by data analysis. In this thesis, I am mainly confronted with two types of
situations: Either, I formulate a hypothesis in terms of a mathematical model but some
model parameters are unknown. Then, I can use parameter estimation methods to infer
unknown parameters by fitting model predictions to measured data. This allows me
to do two things: First, it is a self-consistency check. If even the best-fitting model is
inconsistent with the data, the hypothesis is rejected. Second, if the model fits the data
well, the estimated parameters give additional information about the underlying process
or can be used to summarize the data.

Or, in other situations, I formulate competing hypotheses in terms of different mathe-
matical models. Then, I can use model selection methods to decide what the best-fitting
model among the competing models is.

Below, I introduce the statistical inference methods I used in this thesis. For more
extended background see, e.g. Burnham and Anderson (2002), Olive et al. (2014), and
Press et al. (1996).

2.1.1. LIKELIHOOD

The concept of likelihood is most important for statistical inference. Given some mea-
sured data, the likelihood is a quantitative measure that tells how likely a certain hypoth-
esis is. The likelihood function is used for parameter estimation and model selection.
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Hence, I briefly explain the mathematical concept here.
Mathematical models for a biological process can either be probabilistic or determinis-

tic. However, models for measured data are always probabilistic. Even, if the biological
process is deterministic, the model for the data has to include the measurement pro-
cess which always introduces random measurement errors (Hilborn and Mangel 1997).
Hence, the model for the biological data which includes the biological process and the
measurement always is a probabilistic model.

To define the likelihood function, let us consider that we formalized a hypothesis
into a probabilistic mathematical model. This model shall be fully described with the k
parameters p1, . . . , pk . Furthermore, the obtained data shall be described by the abstract
vector x. This vector could for instance contain multiple measurements of the same
observable or the time course of an observable. Then, the probabilistic model for the
data defines a probability P(x|p1, . . . , pk ) to obtain the data x for the given parameters
p1, . . . , pk . If this probability, P(x|p1, . . . , pk ) is treated as a function of the parameters
p1, . . . , pk for given, fixed data x, then this function is called likelihood. It is often written
as

L(p1, . . . , pk ) = P(x|p1, . . . , pk ). (2.1)

It is often convenient to use the logarithm of the likelihood function in mathematical
calculations. The logarithm of the likelihood function, log L, is called log-likelihood.

Often, normally distributed measurement errors are assumed for deterministic models.
Let us write the possibly time-dependent, deterministic model as x̃(t; p1, . . . , pk ), where
t is the time. Further, the data, x, shall be given by the measurements x1, . . . , xn at times
t1, . . . , tn, respectively. Then, the log-likelihood for this deterministic model with normally
distributed measurement errors, σ1, . . . ,σn, is given by (Burnham and Anderson 2002):

ln L(p1, . . . , pk ;σ1, . . . ,σn) = −
1
2

n∑
i=1

(
x̃i (ti , p1, . . . , pk ) − xi

σi

)2

+
n∑

i=1

ln
(

1√
2πσi

)
, (2.2)

and under the assumption of uniform σ = σi it becomes

ln L(p1, . . . , pk,σ) = −
1
2

n∑
i=1

(
x̃i (ti ; p1, . . . , pk ) − xi

σ

)2

+ n ln
(

1√
2πσ

)
. (2.3)

2.1.2. PARAMETER ESTIMATION

FREQUENTIST APPROACH: MAXIMUM-LIKELIHOOD AND LEAST-SQUARES METHOD

Maximum-likelihood (ML) method: The frequentist approach to statistical inference
interprets probability as the frequency of the outcome of a repeatable experiment. A
commonly used frequentist method is the method of Maximum-likelihood (ML). In
this approach one estimates the parameters of a model by maximizing the likelihood,
eq. (2.1). Hence, this procedure gives the parameters for which the measured data
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would be most likely. The maximization of the likelihood is often done numerically. I
describe the numerical methods I used in section 2.2. I apply the ML method for the
analysis of spinal cord outgrowth data in section 3.2.2 (Figure 3.6), for the analysis of
continuous 5-bromo-2’-deoxyuridine (BrdU)-labeling data in section 3.2.4 (Figure 3.11A)
and to estimate neuron turnover rates in section 5.2.1 (Figure 5.2).

Method of Least squares: The method of Least squares (LS) is another approach for
parameter estimation. It coincides with a special case of the ML method, namely for the
case of normally distributed measurement errors and known variances of the errors, σ2

i .
Then, maximization of eq. (2.2) becomes equivalent to minimizing

SSE =
n∑

i=1

(
x̃i (ti ; p1, . . . , pk ) − xi

σi

)2

, (2.4)

where SSE is the sum of squared errors. The difference, x̃i (ti ; p1, . . . , pk ) − xi , is the
shortest distance between model and data when both are plotted. Therefore, the method
can alternatively be derived graphically. However, in this thesis, I always use it in the
sense of a special case of the ML method. I apply the LS method for the analysis of
continuous BrdU-labeling data in section 3.3.1 (Figure 3.17) and for summarizing muscle
segment shape changes with an empirical model in sections 2.2.2 and 4.2.2 (Figures 4.2
and 4.3)

Confidence intervals and profile likelihood: The maximization of the likelihood only
gives a point estimate for the parameters. However, due to the probabilistic nature of
the method this estimate may not properly reflect the true parameters of the underlying
process. Therefore, it is important to also estimate the uncertainty of the estimated
parameter values. For that purpose, the confidence intervals (CIs) are reported. The CI
of a parameter is always connected with a confidence level. The confidence level states
the probability, that the parameter is found in the corresponding CI.

Under fairly general conditions, the CIs for the fitted parameters can be inferred by
shifting the parameter of interest from the optimal value while fitting the remaining
parameters; this generates a log-likelihood profile. For instance, the 95% CI is then
given by the positions where the log-likelihood decreases by Δ ln L = 1.92 (Olive et al.
2014). I use this method to estimate parameter confidence intervals in section 3.2.2,
section 3.2.4, section 3.3.1 and section 5.2.1 (Figures 5.3 and 5.4).

BAYESIAN APPROACH

In the Bayesian approach to statistical inference, probability is not only associated with
the data but also with the value of parameters (Olive et al. 2014). In this approach, a
prior, π(p1, . . . , pk ), has to be specified before data is analyzed. This prior is a probability
distribution that reflects the so called ’degree of belief’ about what the possible values
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for these parameters are before the experiment. This ’degree of believe’ reflects prior
knowledge but a subjective choice of the analyst is always involved. Now suppose, we
measured some data, x, and we have a probabilistic model for that data, characterized
by a likelihood (Equation (2.1)). In turn, the model depends on the parameters p1, . . . , pk .
Then, the Bayes theorem allows the estimation of parameter values by means of a
posterior p(p1, . . . , pk |x). This posterior again is a probability distribution which combines
the information on the parameter values we had before the experiment (the prior) and
the information contained in the measured data (the Likelihood):

p(p1, . . . , pk |x) =
P(x|p1, . . . , pk )π(p1, . . . , pk )∫

P(x|p′
1, . . . , p′

k )π(p′
1, . . . , p′

k )dp′
1, . . . , dp′

k .
(2.5)

The full specification of the posterior, p(p1, . . . , pk |x), then allows giving point estimates
for the true parameter values, for instance by reporting the mode of the posterior. Also,
credibility intervals can be constructed. Such intervals contain the true parameter value
with a certain probability and can be used to reflect the uncertainty of a parameter
estimate, similar to CI calculated with the ML method.

Solving eq. (2.5) often is not possible analytically. Even numerical solutions can be
challenging and therefore Markov chain Monte Carlo (MCMC) methods are applied (for
instance with the numerical tool PyMC described in section 2.2.2).

As noted above, the choice of priors is a subjective choice of the analyst. However,
if the data is of sufficient quality to constrain the model parameters the result of the
parameter estimation will be insensitive to reasonable variations of the prior. This method
is applied in section 3.2.4 for the detection of a high-proliferation zone during axolotl
spinal cord regeneration (Figure 3.10).

BOOTSTRAPPING

The bootstrapping approach for parameter estimation bypasses the need for the speci-
fication of a likelihood. It’s based on the following idea: We make a point estimate for
a parameter from some data, for example by using the LS method. Now, assume that
we would repeat the experiment very often, say N times, and get a point estimate for
each experiment. Then, it is reasonable to assume that the N obtained point estimates
are scattered around the true value of the parameter. However, the repetition of the
experiment is often too expensive.

Therefore, the repetition of the experiment is simulated with the bootstrap method
(Press et al. 1996). New, synthetic data are generated by drawing from the actual data
with replacement. Then, for each synthetic data the point estimate for the parameter is
performed. This procedure is repeated very often, typically more than 1000 times. From
the set of point estimates one can report the mean and standard deviation as an estimate
of the true parameter and the associated uncertainty. I used the bootstrapping method
for estimating the confidence belt of the model prediction for spinal cord outgrowth in
section 3.2.5 (Figures S6 and 3.14) and for estimating the confidence interval of the
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model for summarizing muscle segment shape changes in section 4.2.2.

2.1.3. MODEL SELECTION: AKAIKE INFORMATION CRITERION

During my work, I was confronted with situations in which I formulated multiple hy-
potheses to explain certain experimental data. These hypotheses could be translated
to different mathematical models (see sections 3.2.2 and 5.2.1). Then, I aimed to find
the best model in the sense of which model fits the data best while not being overly
complex. To do so, I used an information theoretic approach for model selection based
on the Akaike information criterion (AIC) first formulated by Akaike (1974).

The AIC is a score for each model under consideration and is given by:

AIC = 2k − 2 ln L. (2.6)

The formula for the AIC involves the maximum-likelihood, L, of the model and the number
of parameters, k. The AIC gets smaller the bigger the maximum-likelihood, i.e. it fits
the data better. But it gets bigger the more parameters are used for that model, i.e. the
more complex a model is. Then, the model with the lowest AIC might be termed the
best model or best approximating model among the candidate models (Burnham and
Anderson 2002).

For low amount of data, Burnham and Anderson (2002) suggest to use the corrected
Akaike information criterion (AICc) instead of the AIC which is given by:

AICc = 2k − 2 ln L +
2k(k + 1)
n − k − 1

, (2.7)

where n is the number of data points.

To judge how much more likely the best model is compared to the other candidate
models, one can calculate the evidence ratio (ER). To do so, one first calculates the AICc
differences which are defined as

Δi = AICci − AICcmin, (2.8)

where AICci is the AICc of model i and AICcmin is the lowest AICc among the i models.
Then, the evidence ratio, ER, of model i is defined as

ER = e
1
2Δi . (2.9)

If the evidence ratio, ER > 100 for a pair of candidate models, then there is essentially
no empirical support for the worse model. Then it is safe to say that the model with the
lowest AICc is the best model among the candidate models. The AIC is used for model
selection in sections 3.2.2 and 5.2.1.
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2.1.4. STATISTICAL NOMENCLATURE

If not stated otherwise, measurements are reported as mean ± standard error of the
mean. In the figures * denotes p < 0.05 and ** denotes p < 0.01 for the respective test
as indicated in the figure caption.

2.2. NUMERICAL METHODS

2.2.1. MODEL SIMULATION

Most numerical model simulations were implemented with python (Millman and Aivazis
2011; Oliphant 2007) (RRID:SCR_008394).1 Where relevant, the source code is pro-
vided online in Jupyter notebooks (http://jupyter.org/). The corresponding URLs
are mentioned as footnotes throughout the thesis. For reproduction of my results the
python distribution Anaconda (https://www.continuum.io/) can be used. Along with
the source code, I provide environment.yml files that specify the python environments
that are needed for running my code in the online repositories.

For some models a first prototype was implemented in Morpheus (Quintero et al. 2012;
Starruß et al. 2014) (RRID:SCR_014975). The overdamped dynamics of the mechanical
model of chevron formation (see section B.1) were numerically solved with Wolfram
Mathematica (RRID:SCR_014448)

2.2.2. STATISTICAL INFERENCE

For the optimization of the likelihood (Equation (2.1)) or the sum of squared errors
(Equation (2.4)), I used the optimization algorithm MIGRAD from the python module
iMinuit (https://github.com/iminuit/iminuit). I always tried multiple initial values for
the fitting to confirm that the algorithm converged to a global minimum. I calculated the
CI either with MINOS from iMinuit, which implements the profile likelihood procedure
described above or approximated the CI with the parabolic approximation as implemented
in iMinuit. For Bayesian parameter estimation, I made use of the python module PyMC
(Patil et al. 2010).

PARAMETER ESTIMATION FOR EMPIRICAL MODEL OF CHEVRON ANGLE TIME
COURSE

I considered all segments for which more than 80% of the data points fulfilled αmean −

Δα ≤ 0 as non-chevron-forming segments (see fig. 4.2C). For the remaining segments
I fitted the data for each chevron-forming segment with the piecewise linear function
(Section 4.2.2). Hence, I describe the chevron formation of these segments with the
3 parameters of the piecewise linear function: Chevron formation start and end times,

1Research Resource Identifiers (RRIDs) can be looked up on https://www.scicrunch.org/resources
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tstart and tend , respectively, and a final chevron angle αend that is reached after chevron
formation ceased. I determined the fit parameters and their confidence intervals using
the bootstrap method (see section 2.1.2). For each segment, I calculated random
samples of α for each time point using the Gaussian distribution defined by αmean and
Δα. I generated N = 100 random data sets from the measured data for each segment
and fitted each data set with the piecewise linear function. Thus, for each of the 3
parameters, I get N realizations from which I can calculate the means, tstart , tend , αend ,
and the standard deviations, Δtstart , Δtend , Δαend .

Fitting was done with a grid search using each parameter triple generated from all
possible combinations of

tstart ∈ (tmin, tmin + 10 min, . . . , tmax
)

,

tend ∈ (tmin, tmin + 10 min, . . . , tmax
)

,

αend ∈ (−1.0 rad, −0.95 rad, . . . , 1.4 rad
)

=
(
−57°, −54°, . . . , 80°

)
,

where tmin is the formation time of the current segment boundary and tmax = 740 min.
Then the parameter combination with the minimal sum of squared residuals was chosen.

I considered fitting results insignificant if parameter uncertainties were too high. The
criteria I chose for significance are:

Δαend < 6°,

Δtstart < 60 min,

Δtend < 120 min.

Furthermore I also considered fits invalid if the end of chevron formation might not
have been in the observed period:

tend + 2Δtend > tmax .

I considered only segments with significant fitting results as chevron-forming seg-
ments, whereas I ignored the results for other segments and treated them as missing
data.

2.2.3. DATA ANALYSIS

Furthermore, I used the python modules Bokeh (http://bokeh.pydata.org), iMinuit
(http://github.com/iminuit/iminuit), matplotlib (Hunter 2007), ipycache (http://
github.com/rossant/ipycache), Numba (http://numba.pydata.org/), NumPy (Walt
et al. 2011), pandas (McKinney 2010), probfit (http://github.com/iminuit/probfit),
seaborn (Waskom et al. 2016), SciPy (Jones et al. 2001) and uncertainties (http:
//pythonhosted.org/uncertainties/) for data analysis. Again, the source code is

2.2. Numerical methods 17



provided online and corresponding URLs are mentioned as footnotes throughout the
thesis.

2.3. IMAGE ANALYSIS

Image analysis was performed with Fiji (RRID:SCR_002285) (Schindelin et al. 2012)
and AxioVision (RRID:SCR_002677). In particular, axolotl spinal cord outgrowth was
measured with the line tool in Fiji (see figs. S1 and 3.4). Trajectories of single cell clones
were measured with AxioVision (see fig. 3.13). The shape of muscle segments in the
developing zebrafish was quantified as described below.

2.3.1. ANGLE MEASUREMENTS TO QUANTIFY CHEVRON FORMATION

I analyzed time-lapse movies of chevron formation during zebrafish development at 28 ◦C
which were acquired in previous studies (Herrgen et al. 2009; Schröter et al. 2008) using
embryos from incrosses of free spawning heterozygous nicb107 parents (Westerfield et al.
1990) (see fig. 4.2). The movies show the period from before the 1-somite stage until
about the 30-somite stage. Frame rate was every 5 minutes. The embryos are visible in
lateral view (Movies 1,2 in supplementary material to Rost et al. (2014)). The formation
of segment 1 was not always clearly detectable in the time-lapse movies. Therefore, I
chose to set the time of the clearly detectable formation of segment 6 to 115 min for
each individual movie, such that the average time point of the formation of segment 1 is
t = 0 (Movies 1,2 in supplementary material to Rost et al. (2014)).

To quantify the shape of the chevron, I manually measured the angle between the
posterior dorsal segment boundary and the notochord, γ, for successive time points
using the angle tool in the Fiji package (Schindelin et al. 2012) (Figure 4.2A,B). Assuming
a simplified geometrical relation that neglects notochord curvature I calculated angles α,
the angles between the dorsal segment boundary and the dorso-ventral axis marked by
the dorsal boundary of the notochord (Figure 4.2B), from all measured angles γ:

α = 90° − γ.

The angles α will be used for further analysis because they are easier to compare to the
mechanical model presented in section 4.3.3. I determined averages αmean and standard
deviations Δα for a small number of segments by repeated manual evaluation of γ (data
not shown). Low contrast frames and intermittent occurrence of U-shaped contours left
some uncertainty in the measurements. To decrease the number of measurements, I
approximate the averages αmean and standard deviations Δα by only measuring the two
extreme angles γmin and γmax (Figure 4.2A). I define

α =
αmax + αmin

2
, (2.10)
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where αmax and αmin are calculated from the angles γmin and γmax , respectively (Fig-
ure 4.2A). For the tested segments, α approximates the average of repeated measure-
ments, αmean (data not shown). To estimate the measurement error, I assumed the
probability distribution for picking the true value αt to be a normal distribution around
αmean. Repeated manual evaluation of the likely angle α from the same image fell
within the interval ( αmin, αmax ) in more than 95% of cases. Therefore, following the
three-sigma rule, the standard deviation of the Gaussian is given by

σ =
1
2
Δα =

1
2
αmax − αmin

2
.
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3. REGENERATION OF SPINAL CORD
AND MUSCLE SEGMENTS IN
AXOLOTL

3.1. INTRODUCTION

The Mexican salamander (Ambystoma mexicanum), commonly known as axolotl, is
uniquely able to fully regenerate a functional spinal cord after tail amputation (Tanaka and
Ferretti 2009). Why it can do this while other vertebrates only have limited regenerative
capacity is a question of great interest (Tanaka 2003). Especially, in the context of
regenerative medicine one can hope that understanding axolotl spinal cord regeneration
will help to better treat spinal cord injuries in humans. Of course, this regeneration
process can only be fully understood taking into account the molecular, cell and tissue
scale.

Here, I will first focus on understanding which cell behaviors lead to spinal cord
outgrowth. I will show that while cell influx and neural stem cell activation play a minor
role, the acceleration of the cell cycle is the major driver of regenerative spinal cord
outgrowth in axolotls. Furthermore, I will find that the length of the zones of activated
cells are similar for spinal cord and muscle tissue. Let me start by shortly reviewing
the morphology of the axolotl spinal cord and important facts about how it regenerates.
Then, I sketch my quantitative analysis strategy before presenting Results (Sections 3.2
and 3.3), Discussion (Section 3.4) and Conclusion (Section 3.5).

My own work as presented in this chapter has contributed to the three articles Rodrigo
Albors et al. (2015), Rost et al. (2016a), and Vincent et al. (2015). Additional results which
were mainly obtained by my co-authors are not included here.
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Figure 3.1.: An idealized scheme of the tube-like structure of the spinal cord stem cells
during regeneration. The neuronal stem cells form a single layered epithelium
around the fluid-filled central canal. The density of SOX2-positive (SOX2+)
cells along the AP axis, ρ, is the ratio of the number of SOX2+ cells per cross
section (# stem cells) and the mean AP cell length, lc. The density of SOX2+

cells along the AP axis can also be understood as the proportionality constant
between the total number of stem cells in a zone along the spinal cord with
zone length, LSC .

3.1.1. MORPHOLOGY OF THE SPINAL CORD

The spinal cord of vertebrates can be thought of as a tube-like structure along the AP axis
(Figure 3.1). A fluid filled lumen, the central canal, that runs along the whole length of the
spinal cord is surrounded by the gray matter. The gray matter contains ependymal cells,
neurons and astrocytes. The gray matter is then surrounded by the white matter which
contains ascending and descending fibers and oligodendrocytes (Chernoff et al. 2003;
Rodrigo Albors 2014; Tanaka and Ferretti 2009). Different from many other vertebrates
the ependymal cells in the axolotl spinal cord retain radial glia-like features such as the
expression of the stem cell marker sex determining region Y-box 2 (SOX2) (Mchedlishvili
et al. 2012; Rodrigo Albors 2014) (Figure 3.2). Radial glia cells are stem cells of the
developing nervous system (Rodrigo Albors 2014). Hence, the ependymal cells in the
axolotl are also termed neural stem cells (Tanaka and Ferretti 2009).

3.1.2. SPINAL CORD REGENERATION

Upon tail amputation the axolotl regenerates a fully functional spinal cord. The spinal cord
starts to grow as a single-layered epithelium consisting of neural stem cells (Mchedlishvili
et al. 2007; Rodrigo Albors 2014; Rodrigo Albors and Tanaka 2015). During an early
period of growth the stem cells do not differentiate (Rodrigo Albors et al. 2015; Zhang
et al. 2003). The length of this period is in the order of at least one week and is probably
similar in axolotl (Arsanto et al. 1992; Rodrigo Albors 2014; Zhang et al. 2003). Only after
this initial growth, differentiation of the stem cells into neurons sets in (Mchedlishvili et al.
2007; Tanaka and Ferretti 2009). Furthermore, neurons do not dedifferentiate (Zhang et al.
2003). I will focus on the early period before differentiation into neurons sets in. Grafting
experiments showed that the regenerated spinal cord stems from a zone spanning at
least 500 µm adjacent to the amputation site (Mchedlishvili et al. 2007). This zone has
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Figure 3.2.: Spinal cord cross sections of an uninjured and regenerating spinal cord at
day 6 after amputation. Merge of a staining for DNA with Hoechst (blue),
SOX2 (green) and Proliferating cell nuclear antigen (PCNA) (red). Scale bar,
50 µm.a

aReprinted from A. Rodrigo Albors et al. (2015). Planar Cell Polarity-Mediated Induction of Neural Stem Cell
Expansion during Axolotl Spinal Cord Regeneration. eLife 4, e10230. DOI: 10.7554/eLife.10230, Fig. 2.

been termed progenitor zone (Figure 3.3) (Mchedlishvili et al. 2007; Rodrigo Albors 2014).
Single cell tracking experiments showed that proliferation of stem cells is involved

in spinal cord growth during regeneration (Mchedlishvili et al. 2007; Zhang et al. 2003).
Proliferation is distributed relatively homogeneous along the spinal cord (Holtzer 1956;
Mchedlishvili et al. 2007). Knock-out or knock-down of SOX2 impedes proper spinal cord
growth and also impedes the proliferation of stem cells (Fei et al. 2014). This suggested
that proliferation is necessary for proper spinal cord regeneration. As SOX2 knock-out
cells are still able to proliferate Fei et al. (2014) also suggested that an acceleration of the
cell cycle is needed for correct spinal cord growth during regeneration. However, it has not
been studied yet whether other cell behaviors like cell movements and rearrangements
are also involved in the observed tissue growth.

3.1.3. QUANTITATIVE ANALYSIS STRATEGY

In this chapter I ask, what are the underlying cell behaviors that drive the regenerative
spinal cord outgrowth during the first 8 days after tail amputation. First, I will quantify
the spinal cord outgrowth in section 3.2.1. Then, I present a first naive model that
assumes proliferation as the only driver of the outgrowth (Section 3.2.2). I’ll compare
different hypotheses for how the proliferation response is regulated in space and time
with statistical inference methods. I will find that a model involving a biphasic proliferation
response, initially slow and accelerated from about 3 days after amputation could explain
the outgrowth well. This puts forward the idea that the acceleration of the cell cycle in a
zone close to the amputation plane could be the major driver of the outgrowth.

To test this hypothesis, I first inspect which other cellular mechanisms like directed cell
migration, convergence and extension movements, cell (de-)differentiation and cell death
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Figure 3.3.: The sketch shows the definition of spatial zones along the AP axis of the
axolotl spinal cord as used in this thesis. Along the AP axis various positions
are marked, anterior is to the left. 0 µm marks the amputation plane. L(t)
marks the tip of the spinal cord, hence L(t) corresponds to the current
outgrowth. The progenitor zone spans from −500 µm to the amputation
plane. As pointed out in section 3.1.2 experimental evidence suggests that
the outgrowth stems from this zone. The high-proliferation zone spanning
from −800 µm to the tip, L(t), is found in section 3.2.4. For the mechanistic
models of spinal cord growth presented in sections 3.2.2 and 3.2.5 a source
zone spanning from a position −L0 to the amputation plane will be defined.
The position −L0 will coincide with −800 µm or −500 µm depending on the
context. The regenerating zone spanning from −L0 to the tip includes the
source zone and the outgrowth.

could also influence the observed spinal cord outgrowth (Section 3.2.3). In section 3.2.4,
I will quantify the contributions of all possibly involved cell behaviors. Particularly, I make
use of neural stem cell density measurements (Rodrigo Albors et al. 2015) to show
that convergence and extension is negligible. I make use of cell proliferation-related
measurements along the AP axis of the spinal cord (Rodrigo Albors et al. 2015) to identify
a high-proliferation zone that extends 800 µm anterior to the amputation plane, and
calculate changes in cell cycle kinetics within this zone. By measuring the displacement
of sparsely-labeled cells, I also determine the cell influx into the regenerating spinal cord.

Subsequently, I set up a mathematical model of spinal cord outgrowth that incorporates
cell proliferation, stem cell activation and cell influx (Section 3.2.5). Using this model,
I test the contribution of each of these cell behaviors to the regenerative outgrowth.
Comparing the predictions of the model with experimental data of tissue outgrowth I
show that while cell influx and quiescent stem cell activation are of minor importance,
the acceleration of the cell cycle in the high-proliferation zone indeed is the major driver of
the regenerative spinal cord outgrowth. Then, I demonstrate how the same model ideas
can be applied to understand the regulation of cell behaviors in perturbed regeneration
conditions (Section 3.2.6).

Finally, I estimate the cell cycle parameters and calculate the size of the progenitor cell
pool in the adjacent, regenerating muscle tissue (Section 3.3). I find similar cell cycle
lengths and a source zone lengths for spinal cord and muscle tissue.
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Figure 3.5.: Proliferation-driven outgrowth model of spinal cord outgrowth. Stem cells
divide in a source zone of length L0. If one assumes that the stem cell
density along the AP axis is constant then the increase in stem cell number
will lead to an outgrowth.

(Figure 3.4B). Hence, the mean growth speed in the first 8 days after amputation is

v =
(2.3 ± 0.1) mm

8 d
= (0.28 ± 0.01) mm d−1 = (11.8 ± 0.4) µm h−1 (3.1)

To illustrate this number I would like to mention that this growth speed corresponds
approximately to the growth speed of human hair (Loussouarn et al. 2005).

3.2.2. A PROLIFERATION-DRIVEN OUTGROWTH MODEL

An increase in growth speed, as observed in the spinal cord outgrowth time-course
(Figure 3.4B), is a typical feature of proliferation-driven growth. For instance, it can
be observed in the exponential growth phase of bacterial colonies. Therefore, I asked
whether the observed outgrowth time-course could be explained with a simple prolif-
eration model. In this section, I will develop 3 proliferation based candidate models
to explain the outgrowth time-course. I will fit them to the outgrowth data with a ML
approach and make use of the AICc to select the best fitting model among the candidates.
I assume that the density of stem cells along the AP axis, ρ, is constant (Figure 3.1).
Hence, in the model, the length of a spinal cord region, LSC is proportional to the stem
cell number in this region, N:

N = ρ · LSC. (3.2)

For the first model, I assume that the spinal cord grows due to constant proliferation
of cells in a source zone of length L0 (Figures 3.3 and 3.5). The time-course of the cell
number is then given by the Malthusian growth model (Murray 2002):

dN(t)
dt

= rN(t), N(0) = N0. (3.3)

Here, N(t) is the number of cells at time t and r is the proliferation rate. Substituting N(t)
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Values 68% error
Model Parameters

Malthus, 500 µm r (d−1) 0.211 ±0.003

Biphase, 500 µm r1 (d−1) 0.054 ±0.008
r2 (d−1) 0.282 ±0.009
tswitch (d) 2.3 ±0.2

Biphase r1 (d−1) 0.014 ±0.007
r2 (d−1) 0.13 ±0.05
tswitch (d) 2.7 ±0.1
L0 (µm) 2051 ±1038

Table 3.1.: Parameter values estimated by fitting proliferation models to outgrowth time-
course.

and N0 with eq. (3.2) and defining the outgrowth as L(t) = LSC (t) − L0, one gets

dL(t)
dt

= r (L(t) + L0), L(0) = 0, (3.4)

which is solved by the exponential growth

L(t) = L0(ert − 1). (3.5)

Please note that the time-course of L(t) + L0 will form a straight line in a semi-logarithmic
plot because

ln(L(t) + L0) = rt + ln L0. (3.6)

As mentioned above, Mchedlishvili et al. (2007) reported that the regenerated spinal
cord stems from a region spanning at least 500 µm. If we assume L0 = 500 µm, the
only unknown parameter in eq. (3.5) is the proliferation rate, r . I estimated r with a ML
approach using additive normally distributed noise as an error model. Using eq. (3.5) in
eq. (2.2) the corresponding log-likelihood, ln L, is

ln L(r,σday 2, . . . ,σday 8) = −
1
2

n∑
i=1

(
Li (ti , r ) − Lexp

i

σti

)2

+
n∑

i=1

ln

(
1√

2πσti

)
, (3.7)

where σday 2, . . . ,σday 8 are the error model parameters describing the standard deviation
of the noise at day 2 to day 8. Maximization of the likelihood lead to the best fit shown in
fig. 3.6, left panel.2

The estimated parameter value for the proliferation rate is r = (0.211 ± 0.003) d−1

which corresponds to a cell cycle length of about 3.3 days (Table 3.1). From fig. 3.6 it

2Source code for the numerical optimization can be found under https://nbviewer.jupyter.org/github/
fabianrost84/axolotl-calculations-phd/blob/master/proliferation_model.ipynb
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Figure 3.6.: Semi-logarithmic plots of the outgrowth time-course. Left panel: As L0 =
500 µm for the Malthus growth model and the first case of the biphase
growth model, the y-axis shows L(t) + 500 µm. Then, the model predictions
form lines in semi-logarithmic plots (Equation (3.6)). The best fit of the
Malthus model (orange, dotted line) and the ’Biphase, 500 µm’ model (blue,
solid line) are shown. Error bars show the predicted standard deviations. The
experimental measurement of the outgrowth is shown as black dots. Right
panel: Similar to the left panel, but L0 = 2051 µm. Purple line shows the best
fit of the ’Biphase’ model.
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is evident that this simple model systematically overestimates the outgrowth at early
time-points. Therefore, I asked whether a model with time-dependent proliferation rate
r (t),

dL
dt

= r (t) · (L + L0), L(0) = 0, (3.8)

could describe the outgrowth time-course better. A simple time dependent model for
the proliferation time-course is a biphase-model:

r (t) =

{
r1 for t ≤ tswitch

r2 for t > tswitch
. (3.9)

The idea behind that model would be, that the response to the amputation event is
delayed: The spinal cord initially grows slowly with rate r1 and only after a delay time,
tswitch, the rate increases to r2. The solution of this model is a biphase exponential
growth:

L(t) =

{
L0 · (er1t − 1) for t ≤ tswitch

L0 · (er1tswitch − 1) · (er2t − 1) for t > tswitch
. (3.10)

Analogous to eq. (3.6) the time-course of L(t) + L0 is a stepwise linear function in a
semi-logarithmic plot. I estimated the parameters analogous to the previous model for
2 model cases: In the first case, I call this model ’Biphase, 500 µm’, I set L0 = 500 µm
and fitted the model parameters r1, r2 and the error model parameters σday 2, . . . ,σday 8

(Figure 3.6, left panel and table 3.1). In the second case, called ’Biphase’, I did not fix
the source zone length L0 but also fitted it simultaneously (Figure 3.6), right panel and
table 3.1). It should be noted that in the latter case I only allowed for L0 ≥ 500 µm while
fitting the model. Both model variants match the data well (Figure 3.6). Hence, a purely
proliferation-driven outgrowth model is sufficient to explain the observed outgrowth
kinetics.

Next, I asked what is the best model to describe the observed outgrowth. For that
I make use of model selection with the AICc (see section 2.1.3) Please note that for
the model variant with time dependent proliferation rate, r (t), both cases correspond
to different models in the sense of model selection. Hence, together with the simple
initial approach of constant proliferation (Equation (3.4)), I used 3 different models to
describe the outgrowth time-course. To select the best model among those 3 candidates,
I calculated the AICc and the ER using eq. (2.7) and eq. (2.9), respectively (Table 3.2). The
model ’Biphase’ has the lowest AICc. With an ER of ’Biphase’ versus the second best
model ’Biphase, 500 µm’ of 24, I conclude that the model ’Biphase’ is the best model
among the 3 candidates (see section 2.1.3).

Hence, I found strong evidence that the proliferative response is time-dependent:
An initial slow growth is followed by a fast growth starting around day 3 (tswitch =
(2.7 ± 0.1) d). Furthermore, the estimate of L0 = (2 ± 1) mm indicates the zone that is
responsible for the spinal cord outgrowth might be bigger than the previously reported
500 µm zone. However, it is important to keep in mind that this initial analysis of the
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ln L k AICc ER
Models

Malthus, 500 µm 5.67 6 1.65 2.8 × 1013

Biphase, 500 µm 36.45 8 −53.90 24
Biphase 41.14 9 −60.29 1

Table 3.2.: Log-likelihood, k (number of free parameters), AICc and ER of the proliferation
models. For the number of free parameters keep in mind, that it is the sum
of the 5 error model parameters σday 2, . . . ,σday 8 and the proliferation model
parameters (Table 3.1).

outgrowth time-course was based on the hypothesis that the outgrowth is solely driven
by proliferation. Of course, other cell behaviors could be involved in driving the outgrowth.
In the next section I will review all possible cell behaviors that could drive the outgrowth.

3.2.3. CELL BEHAVIORS THAT COULD DRIVE OUTGROWTH

The spinal cord grows and extends in AP direction during early regeneration (Figure 3.4).
As stated in the introduction of this chapter, proliferation is necessary for proper out-
growth. In section 3.2.2 I showed that a proliferation mechanism could be sufficient to
explain the observed outgrowth time-course. To access whether proliferation is the only
cell behavior and to test the predictions of the proliferation-driven outgrowth model I will
quantify the contribution of different cell behaviors in the next section. But first, I want
to describe all cell behaviors that are possibly driving the outgrowth.

A tissue can extend due to two classes of mechanisms, namely volumetric growth, i.e.
mechanisms that increase the tissue’s volume or tissue convergence, i.e. mechanisms
that don’t increase tissue volume (Steventon et al. 2016). Volumetric growth can for
example be realized by an increase of the volume of single cells or by deposition of
extracellular matrix. Furthermore, the addition of cells to the tissue due to cell movements
into the tissue can also be interpreted as volumetric growth.

Tissue convergence could be accomplished by rearrangements of cells as it is seen in
convergence and extension movements during the development of embryos. Another
possible manifestation of tissue convergence could be volume conserving cell shape
changes which compress the cell in one direction but extend it in another direction.
Interestingly, cell divisions do not necessarily lead to an increase in tissue volume. This
is best exemplified in cleavages, the early embryonic cell divisions, which do not lead
to significant growth (Gilbert 2010; Kimmel et al. 1995; Wolpert et al. 2002). However,
in the case that cell size is conserved, i.e. both daughter cells grow to the size of the
mother cell, cell divisions lead to volumetric growth.

My aim is an understanding of how such cell behaviors could lead to the observed
spinal cord outgrowth during the first 8 days of axolotl tail regeneration in this chapter.
Now, I’d like to state which of the mechanisms reported above could in principle play a
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Figure 3.7.: Possible cell behaviors that could lead to spinal cord outgrowth illustrated at
an idealized scheme of the spinal cord. Left: An increase in AP cell length
of individual cells. Middle: Rearrangement of cells by convergence and
extension. Decreasing the number of cells per cross section leads to an
increase in tissue length. Right: An increase in cell number also leads to
tissue scale outgrowth if the AP cell length is constant.

role in spinal cord growth. The neural stem cells form a single-layered epithelial tissue
for which no major addition of extracellular matrix has been reported. Instead, they are
tightly packed (Rodrigo Albors et al. 2015). Of course, neural stem cells could increase
their AP length (Figure 3.7, left). Whether they would do so by increasing their volume or
by volume conserving shape changes would be irrelevant for the observed spinal cord
outgrowth.

Another possibility would be the rearrangement of stem cells by convergence and
extension movements. By decreasing the number of cells per cross section the length
of the spinal cord could be increased (Figure 3.7, middle). The third possibility would be
growth due to an increase in cell number. This increase could be achieved by recruiting
stem cells that are initially far away from the injury to move towards the injury site or the
cell number increase could also be due to cell-size conserving cell divisions (Figure 3.7,
right). As there is no evidence for neuron de-differentation or differentiation of neural
stem cells into neurons in this early period, I exclude those as possible mechanism to
change cell number (Zhang et al. 2003). Furthermore, there is no evidence of significant
amounts of apoptosis during regeneration and therefore I neglect possible cell losses
due to cell death (Rodrigo Albors et al. 2015).

In the following section I will show how we quantified the contributions of all the
mechanisms possibly involved in spinal cord outgrowth, namely cell elongation, cell
rearrangements and increase in cell number. Concerning cell number increase, I will
investigate proliferation and cell movements.
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Figure 3.8.: Stem cell length does not change during regeneration. A: Images show
single optical confocal slices through a 3D tissue section along the AP
axis of a regenerating axolotl spinal cord. DNA is labeled with Hoechst
(inverted grayscale). Scale bar, 10 µm. For a video showing all slices of
the z-stack see https://elifesciences.org/lookup/doi/10.7554/eLife.
10230.007.a B: For 3 uninjured and 3 regenerating axolotls at day 3
the AP length of SOX2+ stem cells was measured in 3D tissue sec-
tions like the one shown in (A). Each animal is denoted by a different
color. The mean cell length is not significantly different when compar-
ing the uninjured (Day 0) and the regenerating (Day 3) condition (t-test,
p = 0.06). The data for this plot can be found in a Supplementary
notebook under https://nbviewer.jupyter.org/github/fabianrost84/
axolotl-calculations-phd/blob/master/cell_length.ipynb.

aReprinted from Rodrigo Albors et al. 2015, Fig. 4A.

3.2.4. QUANTIFICATION OF CELL BEHAVIORS

CELL LENGTH

I used a dataset of AP cell lengths of randomly chosen cells in 3D confocal images from
uninjured and regenerating spinal cords, respectively (Figure 3.8) (Rodrigo Albors et al.
2015). There were 3 animals per time point. Figure 3.8B reveals, that the AP cell length
stays approximately constant, independent of the time after amputation the cells were
taken from. Therefore, I exclude a change in cell shape as a driving force of the spinal
cord outgrowth. Taking the mean over all measured cell lengths, I found that cells have a
mean length in AP direction of (13.2 ± 0.1) µm.

CELL REARRANGEMENTS

The spinal cord outgrowth could also be driven by convergence and extension-like cell
rearrangements. If that would be the case one would observe a decrease in the number
of SOX2+ stem cells per cross section during the course of regeneration.

To quantitatively investigate neural stem cell arrangement in space and time, we
counted the number of SOX2+ cells per cross section in uninjured and regenerating spinal
cords at different positions along the AP axis and at different time points (Figures 3.2
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study.
Knowing that the density is constant in space, it could still vary over time. To access

whether the density varies over time, I estimated the mean number of SOX2+ cells
per cross section averaged over all measurements along the AP axis for each axolotl
separately (Figure 3.9B). To access whether there was a significant change in this mean
number over time, I grouped the axolotls according to their time after amputation. I
performed a one-way ANOVA-test which showed no significant differences among the
groups (p = 0.08, see Supplementary notebook ’Constant Density’ from Rost et al.
(2016d) for the source code).

Taken together, I found that the number of SOX2+ cells per spinal cord cross section
is constant along the AP axis in both uninjured and regenerating samples at any time
(Figures S2 and 3.9). I also found that the number of SOX2+ cells per cross section
spatially averaged along the AP axis is constant during regeneration time (Figure 3.9B). A
mean number of 30.4 ± 0.6 SOX2+ cells is found in cross sections of the axolotl spinal
cord. Using our measurements of the AP cell length and using eq. (3.2) I find that the
mean density of cells along the AP axis is equal to (2.3 ± 0.6) cells/ µm.

These findings lead me to exclude cellular rearrangements as a driving force of the
spinal cord outgrowth in the axolotl. Instead, constant neural stem cell density implies
an increasing stem cell number during spinal cord outgrowth. This suggests that the
expansion of the regenerating stem cell pool could depend on proliferation-related
mechanisms. I therefore move forward to quantify proliferation next.

SPATIOTEMPORAL PATTERN OF PROLIFERATION

To establish spatial and temporal changes in cell proliferation during regeneration, we
calculated different cell proliferation parameters along the uninjured and regenerating
spinal cord. Therefore, we quantified the number of proliferating cells and the number of
mitotic cells using an antibody against PCNA and Hoechst DNA staining, respectively
(for the experimental method see Rodrigo Albors et al. (2015)). We used these datasets
to estimate the growth fraction, i.e. the fraction of SOX2+/PCNA-positive (PCNA+)
cells (proliferative cells), and the mitotic index, i.e. the fraction of proliferating cells
undergoing mitosis. Although both SOX2+/PCNA+ cells and mitotic cells did not show any
evident spatial pattern along the AP axis in uninjured animals (Figure 3.10A, points), they
showed a tendency of increasing posteriorly at times later than 4 days post amputation
(Figure 3.10A’, points).

To elucidate whether proliferation was patterned along the AP axis during the time of
regeneration, I tested the data with a stochastic mathematical model of two spatially
homogeneous zones characterized by their growth fraction and mitotic index and sepa-
rated by a border that we call the switchpoint (Figure 3.10B,B’). I reasoned that in the
absence of AP patterning the two zones could not be distinguished (meaning that the
two zones would collapse into a single one) while if proliferation events would be locally
upregulated the model would allow us to determine the magnitude and the location of
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the upregulated proliferation.
For a given growth fraction and mitotic index, the model predicts the expected number

of proliferating cells and mitotic cells per cross section (Figure S5). It was defined as
follows:

If the number of SOX2+ cells for a specific cross section along the AP axis, NS, was
measured it was used for this section. If the data for the specific section was missing,
NS, was imputed by assuming that there is a constant expected number of SOX2+

cells per cross section and that the deviations from the expected value follow a normal
distribution. The evidence for this assumption was presented in section 3.2.4. The mean
and standard deviation of this normal distribution were estimated by the sample mean
and standard deviation of the sample of the measured numbers of SOX2+ cells per cross
section for each animal, respectively. The number of SOX2+ cells in a cross section is
assumed to be independent from other cross sections.

The state ’Proliferative’, i.e. SOX2+/PCNA+, is independently assigned to each SOX2+

cell with probability pp or ’Quiescent’ with probability 1 − pp (Figure 3.10B). Hence, for a
given number of SOX2+ cells in a cross section, NS, the number of SOX2+/PCNA+ cells
per cross section, NP , follows a binomial distribution with Ns experiments and success
probability pp. Consequently, the expected growth fraction equals pp. As the number of
mitotic cells, NM , in 3D 50 µm tissue sections was measured previously, we estimated
the number of SOX2+/PCNA+ cells also in a 3D 50 µm section, NPS = 50 µm/ lcell · NP ,
where lcell = (13.2 ± 0.1) µm is the mean AP length of SOX2+ cells (see section 3.2.4).

Following from the assumption that the cell cycle position and hence the cell cycle
phase of each cell is independent of all other cells, the state ’Proliferative, mitotic’ is
independently assigned to each SOX2+/PCNA+ cell with probability pm or ’Proliferative,
non-mitotic’ with probability 1 − pm. Hence, the number of mitotic cells per section,
NM , follows a binomial distribution with NPS experiments and success probability pm.
Consequently, the expected mitotic index equals pm.

For given values of pp and pm the model gives a likelihood for the observed number
of SOX2+/PCNA+ cells per cross section and mitotic cells per 3D section that can be
used to fit the model parameters. To reflect the assumption of two spatial proliferation
zones, pp and pm have spatial dependencies in the form of step functions (Figure 3.10B’).
Hence, there can be different growth fractions and mitotic indices for an anterior and
a posterior zone, respectively. The spatial position of the border between the zones is
another model parameter termed switchpoint. Furthermore, variability between animals
in the switchpoint is modeled as a normal distribution with standard deviation σswitch.
Likewise, variability in growth fraction and mitotic index between animals is modeled
with a normal distribution with spatially homogeneous standard deviations σGF and σmi ,
respectively. Hence, the resulting model to describe the cell count data of all animals at
one time-point has 8 parameters: the switchpoint, growth fraction and mitotic index in
the anterior zone and in the posterior zone, respectively, and the inter-animal variabilities
σswitch, σGF and σmi .

Those parameters were estimated with Bayesian inference using uniform priors. Fitting
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was performed using a Markov chain Monte Carlo algorithm implemented in PyMC.3 To
verify the fitting procedure, test data were created by simulating our model with picked
parameter values. These "true" parameter values were then found to be included in the
95% credibility intervals of the parameter values inferred from the test data with my
fitting procedure.

Consequently, I fitted the model to the cell number datasets of uninjured and regener-
ating spinal cords at day 3, 4, 6 and 8 after amputation (Figure 3.10A,A’, figs. S3 and S4) to
determine the growth fraction, the mitotic index, and the switchpoint for each time-point
(Figure 3.10C-C”). Perhaps not surprisingly, I found that in the uninjured spinal cord the
growth fraction and the mitotic index in the two modeled zones are not significantly differ-
ent (Figure 3.10A,C,C’). Hence, the proliferation parameters are spatially homogeneous in
the uninjured spinal cord. Similarly, at day 3, there are no significant differences between
the two zones (Figure 3.10C,C’). In contrast, the growth fraction and the mitotic index are
higher in the posterior zone from day 4 onward (Figure 3.10A’,C,C’). These findings reveal
that a high-proliferation zone emerges in the regenerating spinal cord at day 4. At this
time-point, the switchpoint between the two zones is located (800 ± 100) µm anterior to
the amputation plane, but shows the tendency to shift posteriorly at later time-points as
the regenerating spinal cord grows (Figure 3.10C”).

QUANTIFICATION OF PROLIFERATION RATE TIME-COURSE

In the previous section I showed that cell proliferation increases in a high-proliferation
zone 800 µm anterior to the amputation plane in 4-days regenerates (Figures 3.3 and 3.10).
In this section, I combine the above mitotic index measurements with a cell cycle length
estimate at day 6 to establish how the proliferation rate changes in this zone during
regeneration.

We estimated the cell cycle length at day 6 using a cumulative BrdU labeling approach
(for the experimental method see Rodrigo Albors et al. (2015)). The basic idea of this
approach is to continuously treat the axolotls with BrdU injections. The thymidine
analogue BrdU will then be incorporated into the DNA of cells that synthesized new
DNA in the S-phase of the cell cycle. One can then measure the time course of the
fraction of BrdU-labeled cells lining the central canal of the spinal cord. Indeed, the
fraction of BrdU-labeled cells increased over time as cells duplicated their DNA, until all
proliferating cells were labeled (Figure 3.11A). Intuitively, one expects that the fraction
increases faster if the cells proliferate faster. This has also been formulated in quantitative
mathematical models for the time course of the fraction of BrdU-labeled cells (Lefevre
et al. 2013; Nowakowski et al. 1989). I extended the modeling framework developed by
Lefevre et al. (2013) which is, in turn, an adaptation of the model by Nowakowski et al.
(1989) to extract the cell cycle parameters from the cumulative BrdU labeling data.

3for the source code see Supplementary notebook "step_model_fixed_density_fit_per_time-point" from
Rost et al. (2016d)
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Figure 3.11.: Proliferation rate time-course. A: Labeling fraction time course and fit. B:

Proliferation rate time-course in the high-proliferation zone. C: Cell cycle
length time course, TC (t)

Under the assumptions that (i) the length of the cell cycle and the cell cycle phases are
constant for all cells, that (ii) divisions occur completely asynchronous and that (iii) all cells
are proliferating the model by Lefevre et al. (2013) predicts the fraction of BrdU-labeled
cells, R′:

R′(t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
r

TG2+M +TS
TC −r

TG2+M −t
TC

r−1 0 ≤ t < TG2+M

1 − r
TC +TG2+M −t

TC −r
TG2+M +TS

TC

r−1 TG2+M ≤ t < TC − TS

1 t ≥ TC − TS

, (3.11)

for r �= 1 and where t is the time after the start of BrdU injections, TC is the cell cycle
length, TS is the length of S-Phase, TG2+M is the combined length of G2 and M-phase
and r is the average number of daughter cells that remained proliferative progenitor cells.

As there is no evidence that neural stem cells differentiate in the early period of regen-
eration (Zhang et al. 2003), I assumed proliferative cell divisions, i.e. each cell division
produces two proliferating cells. Hence, I set r = 2. As there are also non-proliferating
cells we have to correct the labeling fraction R′ with the growth fraction GF :

R(t) = GF (t)R′(t). (3.12)

In the case of proliferative cell divisions the growth fraction will shrink over time because
the proliferating cells increase and the non-proliferating cells remain constant in number.
Hence,

GF (t) =
GF0r

t
TC

GF0r
t

TC + 1 − GF0

(3.13)

where GF0 is the initial growth fraction at t = 0.
I estimated the parameters for each cell population by the method of least squares,

that is, minimizing the SSE, SSE, calculated as follows:

SSE(TS, TC, TG2+M, GF0) =
n∑

i=1

(
Rexpi − R(ti , TS, TC, TG2+M, GF0)

)2 ,
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where n is the number of measurements and Rexpi is the measured BrdU-labeling
fraction of the i-th measurement at time ti . I minimized the SSE using the migrad
algorithm implemented in the python module iMinuit (https://github.com/iminuit/
iminuit) (James and Roos 1975). I determined the parameter errors by bootstrapping
using case resampling. The BrdU labeling data and the implementation of the parameter
estimation can be found in the Supplementary Notebook ’BrdU_bootstrapping_day6’
from Rost et al. (2016d). I found a cell cycle length of (117 ± 12) h corresponding to a
proliferation rate of (0.21 ± 0.02) d−1 at 6 days after amputation.

As the mitotic index is proportional to the proliferation rate (Smith and Dendy 1962), the
mitotic index time-course in the high-proliferation zone was rescaled with the proliferation
rate at day 6 to obtain the proliferation rate time-course:

r (t) =
mi(t)

mi(day 6)
r (day 6),

where r (t) is the proliferation rate at time t and mi(t) is the mitotic index at time t.

I found that the proliferation rate is (0.06 ± 0.02) d−1 in the uninjured spinal cord which
corresponds to a cell cycle length of (10 ± 4) days (Figure 3.11B,C). The proliferation rate
is similar at day 3. However, at day 4 the proliferation rate increases to about 0.15 d−1

corresponding to a cell cycle length of about 5 days and the proliferation rate remains
that high until day 8.

ACTIVATION OF QUIESCENT STEM CELLS

Two possible scenarios could lead to the observed increased growth fraction in the
high-proliferation zone (Figure 3.10C’): the activation of quiescent stem cells, or the
dilution of quiescent cells due to the expansion of the proliferating cell population. If
quiescent cells were activated, the total number of quiescent cells in the high-proliferation
zone would decrease. Given the mean number of SOX2+/PCNA- cells per cross section,
Nqs, the mean AP cell length, lc, and the outgrowth time-course, L(t) the total number of
quiescent cells in the high-proliferation zone, Nq, can be estimated by

Nq(t) = Nqs
L(t)
lc

. (3.14)

The resulting time course for the total number of quiescent cells in the high-proliferation
zone is shown in fig. 3.12. The number of SOX2+/PCNA- cells drops from 180 ± 30 at
day 0 to 23 ± 13 at day 6 (Figure 3.12) which means that quiescent cells get activated
and re-enter the cell cycle upon injury. The number of quiescent cells appears to increase
again at day 8.
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Figure 3.12.: Total number of SOX2+PCNA- cells in the high-proliferation zone (mean
±linearly propagated 1-σ error).

CELL INFLUX

Cell movement could also contribute to the spinal cord outgrowth. To investigate whether
anterior neural stem cells move into the high-proliferation zone, thereby producing a cell
influx, we followed individual cells during regeneration. For that, a cytoplasmic GFP and
a nuclear mCherry plasmids were co-electroporated at very low concentration to achieve
sparse labeling of cells. They were tracked daily during the first 8 days of regeneration
(Figure 3.13A, for experimental details see Rost et al. (2016a)). I measured the distance
between the amputation plane which is visible in the myotome and the anterior border
of a clone in each image using AxioVision microscopy software.

We found that labeled cells preserve their original spatial order: cells located close
to the amputation plane end up at the posterior end of the regenerated spinal cord
(Figure 3.13B). Most-anterior cells, however, almost do not change their position. From
the clone trajectories, I calculated the mean clone velocity at different positions along
the AP axis in the following way: I subdivided the space along the AP axis into 800 µm
bins. For each clone trajectory I grouped the position measurements according to these
bins. I excluded groups containing less than 2 measurements. Then, I estimated the
average clone velocity for each group with linear regression. Next, I calculated the mean
and standard deviation of the velocity of all the clones in a bin (Figure 3.13C).4 Clones
initially located 800 µm/ day anterior to the amputation plane move slowly, with a velocity
of (20 ± 9) µm/ day. In contrast, the more posterior a clone is, the faster it moves.

3.2.5. MECHANISTIC MODEL OF SPINAL CORD OUTGROWTH

Above I showed that cell density is constant along the AP axis of the regenerating spinal
cord (Figure 3.9). The spinal cord must therefore grow as a result of increasing cell
numbers. In line with this, I found a high-proliferation zone, first spanning from 800 µm
anterior to the amputation plane, and showed that the increase in cell proliferation is
due to both (i) the acceleration of cell cycle and (ii) the activation of quiescent stem

4Source code and data available under
https://nbviewer.jupyter.org/github/fabianrost84/Rost-Rodrigo-Albors-et-al.-2016/blob/
master/calculations/clone_velocities/clone_velocities.ipynb (Rost et al. 2016d)
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Figure 3.13.: Cell movements in the regenerating spinal cord. A: Selected time-lapse
images of clone (blue arrowhead) tracking during spinal cord regeneration.
Dashed line marks the amputation plane. Images of all clones available
in Rost et al. (2016c) B: Tracking of 19 clones along the AP axis during
regeneration. Clone trajectories are color coded by their initial position. C:

Clone velocities at different positions along the AP axis.
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cells (Figures 3.10 to 3.12). Based on our finding of cell movements during regeneration
(Figure 3.13), the influx of cells into the regenerating spinal cord could also contribute to
increasing the cell numbers in the regenerating spinal cord.

Hence, I propose the following mechanistic model of spinal cord growth during regen-
eration (Figure 3.14): A 800 µm source zone expands posteriorly by increasing the stem
cell number while maintaining the stem cell density along AP axis constant. It should be
noted that the model is agnostic about the mechanisms that keep the density constant.
This could happen due to oriented cell division or cell rearrangements or a combination of
both. There are 2 sources for the cell number increase, namely, cell divisions and influx
of stem cells from anterior regions. Furthermore, quiescent stem cells are activated
during regeneration. After activation, stem cells start to divide. Hence, activation of
quiescent stem cells indirectly leads to enhanced growth.

To assess the contribution of these cell behaviors to the spinal cord outgrowth time-
course, I used a quantitative mathematical modeling framework (Chara et al. 2014; Oates
et al. 2009). For the mathematical model I assumed that cells entering into the high-pro-
liferation zone at the switchpoint acquire the features of high-proliferative cells in terms
of the same growth fraction and that the activation follows linear kinetics. With that, I
formalized the influence of those cell behaviors on the total number of proliferating and
quiescent stem cells in the high-proliferation zone in the following ordinary differential
equations:

dNp(t)
dt

=

cell divisions︷ ︸︸ ︷
r (t)Np(t) +

activation︷ ︸︸ ︷
kNq(t) +

influx︷ ︸︸ ︷
Np(t)

Np(t) + Nq(t)
vρ , Np(t = 0) = N0

p , (3.15)

dNq(t)
dt

= − kNq(t) +
Nq(t)

Np(t) + Nq(t)
vρ , Nq(t = 0) = N0

q . (3.16)

where N0
p and N0

q are the initial cell numbers in this zone, r (t) is the proliferation rate
at time t, v is the velocity of cells 800 µm anterior to the amputation plane, ρ is the line
density of cells along the AP axis and k is the quiescent cell activation rate. The factors
Np/ q/ (Np +Nq) in the third term of eqs. (3.15) and (3.16) ensure that the influx of cells into
the high-proliferation zone does not alter the growth fraction. As the density is constant
one can use eq. (3.2) to write

ρ(L + L0) = Np + Nq, (3.17)

where L is the outgrowth posterior to the amputation plane and L0 = 800 µm is the
high-proliferation zone length at t = 0. Using this relation and the definition of the growth
fraction GF ,

GF =
Np

Np + Nq
, (3.18)

I reformulated the cell number model as a model for spinal cord outgrowth, L, and growth
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fraction, GF :

dL(t)
dt

=

divisions of proliferating cells︷ ︸︸ ︷
r (t)(L(t) + L0)GF (t) +

influx of cells into
the high-proliferation zone︷ ︸︸ ︷

v , L(t = 0) = 0, (3.19)

dGF (t)
dt

= (1 − GF (t))k︸ ︷︷ ︸
activation of quiescent cells

+ (1 − GF (t))r (t)GF (t)︸ ︷︷ ︸
dilution of quiescent cells

in the expanding pool
of proliferative cells

, GF (t = 0) = GF0. (3.20)

where L0 = 800 µm is the length of the high-proliferation zone, GF0 is the growth fraction
in uninjured tails, r (t) is the proliferation rate at time t, v is the velocity of cells 800 µm
anterior to the amputation plane, and k is the cell cycle entry rate. As we determined
the proliferation rate time-course r (t) (Figure 3.11B), the initial growth fraction GF0

(Figure 3.10C) and the influx velocity v (Figure 3.13C) only the cell cycle entry rate k is
unknown. Via eq. (3.20) the model predicts the growth fraction time-course which we
already measured (Figure 3.10C). Therefore I decided to estimate the cell cycle entry
rate k by fitting the model prediction to the measured growth fraction time-course. To
take into account the uncertainties of the other model parameters and to simultaneously
compute the CI of the model prediction I applied the following bootstrapping procedure.

The assumption that the population mean parameters correctly predict the population
mean outgrowth time-course was used when simulating the model and interpreting
results. The confidence intervals of the model prediction were estimated with a Monte
Carlo approach using bootstrapping with a case resampling scheme (100,000 iterations).
In each iteration we case-resampled the cell count data, the BrdU incorporation data and
the clone trajectory data and calculated the proliferation rate time-course, clone velocity
at −800 µm and initial growth fraction, GF0, from this resampled data. Then, in each
iteration, these bootstrapped parameter values were used to estimate the activation
rate k by fitting the model prediction of the growth fraction to the data using the LS
method (Figure 3.14B). With that, I determined the value of the cell cycle entry rate as
k = (0.2 ± 0.1) d−1. The growth fraction measurement of day 8 was excluded from the fit
because its precise value would only affect the model prediction after this day. Now, as
all parameters were estimated, an outgrowth trajectory was calculated for each iteration.
The ensemble of all trajectories was used to calculate the confidence intervals of the
model prediction (Figure 3.14C). 5

Strikingly, the model predicts a time-course of spinal cord outgrowth which recapit-
ulates the experimental data (Figure 3.14C). Please note, that the outgrowth data was
not used to obtain the model prediction. The model parameters were all estimated by
the quantification of cell behaviors in section 3.2.4. The fit-free agreement between
the model prediction and the observed outgrowth time-course shows that acceleration

5The source code is available in the supplementary notebook “lg_model” under
https://nbviewer.jupyter.org/github/fabianrost84/Rost-Rodrigo-Albors-et-al.-2016/blob/
master/calculations/lg_model/lg_model.ipynb (Rost et al. 2016d).
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of the cell cycle, activation of quiescent stem cells and an influx of cells quantitatively
explain the observed time-course of spinal cord outgrowth.

To quantitatively determine the contribution of each cell behavior, we switched them
off one by one in silico. The same approach was used for the model scenarios with
individual mechanisms turned off (Figure 3.14D-G). Switching off the acceleration of
the cell cycle leads to an outgrowth of less than 1.7 mm by day 8 due to the basal
proliferation rate in the uninjured spinal cord, the influx of cells towards the amputation
plane and the activation of quiescent stem cells (Figure 3.14D). This underestimates the
experimental outgrowth which implies that the acceleration of the cell cycle is necessary
to drive spinal cord outgrowth. In contrast, switching off cell influx nearly does not impact
on the spinal cord outgrowth, implying that it is not a major driver of the regeneration
process (Figure 3.14E). Similarly, switching off the activation of quiescent stem cells has
only a small effect on regenerative spinal cord outgrowth (Figure 3.14F). Interestingly,
when both, cell influx and cell activation are switched off the experimental spinal cord
outgrowth time-course is still we predicted, implying that acceleration of the cell cycle is
sufficient to drive the regeneration process (Figure 3.14G).

Taken together, the model shows that the acceleration of the cell cycle in cells that
were already proliferating in the uninjured spinal cord is the major driver of the observed
spinal cord outgrowth.

3.2.6. APPLICATION OF THE MECHANISTIC MODEL TO PERTURBED
REGENERATION

The mechanistic, mathematical model of regenerative spinal cord outgrowth given by
eqs. (3.19) and (3.20) was set up to explain normal regeneration in terms of the underlying
cell behaviors. For that, the contribution of each relevant cell behavior was quantified in
section 3.2.4. To understand spinal cord regeneration on a molecular scale, regeneration
has been perturbed on the molecular level using drugs like cyclopamine and retinoic acid
or gene-knockouts like CRISPR-mediated knock-out of Sox2. (Fei et al. 2014; Pietsch
1993; Pietsch 1987; Schnapp et al. 2005).

One might ask whether the mechanistic model developed here, can be used to explain
such conditions of perturbed regeneration. For that, it is important to note that the
regulation of the cell behaviors are not explicitly considered in the presented modeling
framework. Perturbing the cell behaviors on the molecular scale might lead to unexpected
compensatory cell behaviors. It could even be the case that cell behaviors that were
excluded to play a role in normal regeneration, like cellular rearrangements or apoptosis
could play a role in perturbed regeneration conditions.

The rigorous strategy to understand perturbed conditions of regeneration in terms
of the contribution of cell behaviors would therefore be the following: First, one would
have to repeat the quantification of all cell behaviors like presented in section 3.2.3. In
case other cell behaviors than proliferation, activation and cell flux play a role or their
effects are spatially graded one would have to adopt the mathematical model accordingly.
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the number of neural stem cells per circumference. They found that fewer neural stem
cells make up the circumference of Sox2-knockout spinal cords. Assuming that AP cell
length is unchanged this means that cell density is decreased in this condition. Therefore,
I corrected the outgrowth for the Sox2-knockout dataset to a density corrected outgrowth
by

Lcorr =
NSox2ko

S

Ncontrol
S

L, (3.21)

where Lcorr is the density corrected outgrowth, L is the measured outgrowth in the
Sox2-knockout dataset and NSox2ko

S and Ncontrol
S are the mean number of neural stem cells

per cross section in the Sox2-knockout and control condition, respectively (Figure 3.15B).
Except for the cellular density, I assumed that Sox2-knockout only affects the acceleration
of the cell cycle but that all other cell behaviors remain unaffected (i.e. compensatory
mechanisms are not considered). If this assumption should be correct, then the ’No
acceleration’ scenario of the mechanistic outgrowth model should correctly predict the
observed, density-corrected, outgrowth in the Sox2-knockout condition. Indeed, running
our model with the acceleration of the cell cycle switched off recapitulated the shorter
outgrowth in the Sox2-knockout condition (Figure 3.15B).

3.3. RESULTS: MUSCLE SEGMENT REGENERATION

3.3.1. CELL CYCLE ANALYSIS

In the previous section, I found that the accelerated proliferation in a 800 µm zone is the
major driver of spinal cord regeneration. Similar quantitative approaches to understand
regeneration in terms of the underlying cell behaviors could be performed in other tissues.
An obvious candidate would be the surrounding muscle tissue in the axolotl tail, which
we studied in Vincent et al. (2015).

Here, I will test whether the source zone of activated cells is of a similar length in the
regenerating muscle and spinal cord tissue. For that, we performed proximal amputations
at the level of the 16th myotome posterior to the cloaca, which is similar to location
of the amputations in the previous section. Furthermore, we performed amputations
at a more distal level (4th myotome posterior to the cloaca) to study how the location
affects myotome regeneration (Figure 3.16). First, I estimate the cell cycle length and
the growth fraction using the cumulative BrdU labeling method. Then, I estimate the
size of source zone that harbors the cells that are responsible for the blastema growth.

The myotomes are formed from the mesenchymal blastema that forms adjacent to the
regenerating spinal cord. Therefore, we measured the time course of the BrdU labeling
fraction in the mesenchymal blastema (Figure 3.17A). I describe this time course with
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Figure 3.16.: Regeneration of chevron shaped muscle segments in axolotl. Photomicro-
graphs of regenerating CAGGS:GFP transgenic axolotl tails. CAGGS:GFP is
strongly expressed in muscle tissue. Amputation at 4th myotome posterior
to the cloaca (proximal cut). A: No organized muscle tissue at day 13, yet. B:

Myotome formation starts at day 15. C,D: More myotomes formed by day
17 and 19. White lines point at myotome boundaries. Scale bars: 2.5 mm.a.

aReproduced from Vincent et al. 2015, Fig. 4.
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Figure 3.17.: Cell cycle analyses of day 10 mesenchymal tail blastemas after proximal
and distal amputations in red and blue, respectively. A: Time course of
BrdU labeling fraction during cumulative BrdU treatment starting at day 10.
Each data point represents an individual animal (three to five per time point).
Solid curves show model fits (using the model proposed by Nowakowski
et al. (1989), see section 3.2.4 for an explanation of the method). B,C:

Cell cycle parameters derived from model fits to the time courses of the
BrdU labeling fraction. B: Cell cycle lengths, TC . C: Growth fraction of
proliferating mesenchymal cells, GF .
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the model developed by Nowakowski et al. (1989), which is given by

R(t) =

{
GF t+TS

TC
t < TC − TS

GF t ≥ TC − TS

, (3.22)

where R(t) is the labeling fraction at time t, TC is the cell cycle length, TS is the S-phase
length and GF is the growth fraction.

This model assumes 1) that all cycling cells within the analyzed section occur homoge-
neously distributed over the cell cycle phases and have identical cell cycle parameters, 2)
a fixed total cell number and 3) a constant fraction of quiescent cells. To estimate the cell
cycle parameters, I fitted the model using the method of least squares and determined
parameter estimates and confidence intervals by bootstrapping (Figure 3.17B,C).7

The cell cycle lengths in both conditions are very similar with TC = (103 ± 26) h for
10 day-proximal, TC = (112 ± 29) h for 10 day-distal (Figure 3.17B). Also, the S-phase
duration also was very similar for both conditions with TS = (54 ± 17) h for 10 day-proximal
and TS = (45 ± 14) h for 10 day-distal. Nearly all cells were cycling with a growth fraction
of GF = (95 ± 2) % and GF = (97 ± 3) % for proximal and distal amputations, respectively
(parameters reported as mean ± 68 % CI).

3.3.2. TOTAL NUMBER OF CELLS IN THE MESENCHYMAL BLASTEMA AND
SIZE OF SOURCE ZONE

Next, we determined the total number of cells in the mesenchymal blastema at 10 days
after amputation. We followed a similar strategy as described for the spinal cord in
sections 3.2.4 and 3.2.4. First, we measured the mean cell nucleus length in AP direction
which we found to be 22 µm. Then, we measured the mean number of mesenchymal
cells per cross section perpendicular to the AP axis. From that, we calculated the total
number of cells in the mesenchymal blastema. Because the average nucleus in the
blastema is approximately 22 µm in diameter and each section was 10 µm thick, the total
number was divided by 2.2 to account for parts of each nucleus that extend over 2 or
3 consecutive sections and generated a 22

10 higher apparent average nucleus count per
section (Table 3.3). There are about 40 thousand and 22 thousand cells in the proximal
and distal blastema, respectively.

Given the total number of cells at day 10 and the estimated cell cycle length, we can
now estimate the progenitor pool size which is the minimal number of cells that gave
rise to the blastema. To do so, I use a mathematical modeling approach. For this model,
I assume that the cell cycle length is constant and that the blastema only grows due
to cell divisions. Then, the increase in number of cells can be modeled with a Malthus

7Source code for calculations available under http://nbviewer.jupyter.org/github/fabianrost84/
axolotl-calculations-phd/blob/master/axolotl_myotome.ipynb
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Proximal Distal

Cell number in day 10 regenerate 39 982 ± 5024 22 154 ± 2862
Progenitor cell number 12 552 ± 1577 7485 ± 967
Cells at amputation plane 794 ± 88 376 ± 65
Distance from amputation plane (348 ± 82) µm (438 ± 132) µm

Table 3.3.: Progenitor cell number and spatial extent in blastema. Regenerated tails from
proximal and distal blastemas were collected on day 10 post-amputation, fixed,
cryosectioned and total mesenchymal cell numbers counted (for methods
see Vincent et al. (2015)). The table compares the total cell counts, the
calculated number of progenitor cells required to give rise to the total cell
number within 10 days, the counted cell numbers within the amputation plane
and the calculated spatial extent of the progenitor pools for both amputation
levels. Despite several individual parameters differing between amputation
levels, the distances the progenitor pools extend proximal to the amputation
plane are similar within the confidence intervals.

growth model given by the ordinary differential equation

dN(t)
dt

=
ln 2
TC

(N(t) + N0 − Nq), N(t = 0) = 0, (3.23)

where N(t) is the total number of cells in the regenerate at time t, N0 is the progenitor
pool size and Nq is the number of quiescent cells. The model eq. (3.23) is solved by

N(t) = (N0 − Nq)(2
t

TC − 1). (3.24)

The number of quiescent cells can be calculated from the growth fraction, GF , and the
total number of cells in the regenerate at day 10, Nday 10:

Nq = (1 − GF )
(
Nday 10 + N0

)
. (3.25)

Using eqs. (3.24) and (3.25), I find that the progenitor pool size can be estimated by

N0 = Nday 10

(
1 +

( 1
GF − 1

)
2

t
TC

)
2

t
TC − 1

. (3.26)

Assuming the animal-to-animal variability in N(t) to be the dominating source of uncer-
tainty, I estimated the 68 % CI by linear error propagation:

ΔN0 = N0

(
ΔN(t)
N(t)

)
. (3.27)

I found the number of cells in the progenitor pool to be about 13 thousand cells and 7
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thousand cells in the proximal and distal blastema, respectively (Table 3.3).
Finally, I calculate the length of the source zone. This is the AP length of the zone that

harbors all the cells from the progenitor pool. This length can be calculated by dividing
N0 by the nucleus density per AP length. The nuclear density per length is defined as
the mean number of cells per cross section divided by the mean cell nucleus length in
AP direction. The nucleus density per AP length differs between proximal and distal cut
locations, mostly as a consequence of the 3D tail geometry. We counted the number
of nuclei N a in single 10 µm thick sections at the amputation plane of each animal and
divided the mean (reported in table 3.3) by the correction factor of 2.2 accounting for the
same nuclei occupying multiple sections, see above. The progenitor zone length, L, is
then obtained from

L =
N0

Na/ 2.2
10 µm

. (3.28)

The error estimates were propagated by adding the relative errors of input variables,
hence

ΔL = L
(
ΔN0

N0
+
ΔNa

Na

)
, (3.29)

and an additional error may result from the estimate of cell density per length. Inter-
estingly, the minimal AP length of the source zone is similar for proximal and distal
amputations with a length of about 400 µm in both conditions (see table 3.3).

3.4. DISCUSSION

3.4.1. CELL BEHAVIORS DRIVING SPINAL CORD OUTGROWTH

Spinal cord tissue architecture is faithfully restored after tail amputation in the axolotl
(Figure 3.4A). This unique regenerative capability relies on the neural stem cells covering
the tube. Those stem cells re-activate a developmental program involving the PCP
pathway enhancing cell proliferation while maintaining the tubular shape. How this
massive and yet tightly controlled regenerative response takes place in the axolotl but
does not occur in other species remained unknown.

In principle, regenerative spinal cord outgrowth could be controlled by mechanisms
which conserve the number of stem cells. In those mechanisms, either cell size changes
(Figure 3.7, left) or cells rearrange like in the PCP-oriented cell behavior responsible for
convergence and extension (Figure 3.7, middle) (Wallingford 2012), a mechanism which
is involved in the development of tube-like structures like kidney tubules in mice (Karner
et al. 2009; Lienkamp et al. 2012) or spinal cord in the Xenopus laevis midgastrula (Keller
et al. 1992a; Keller et al. 1992b).

Alternatively, outgrowth could be controlled by cell behaviors that change the number of
stem cells (Figure 3.7, right). It was recently shown that apoptosis is negligible compared
to proliferation during the regeneration of axolotl spinal cord (Rodrigo Albors et al. 2015).
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Interestingly, this is consistent with recent quantitative results obtained in chicken spinal
cord development (Kicheva et al. 2014). In this last study terminal differentiation was
considered as a factor that determines the number of neural progenitors in a given
spinal cord domain (Kicheva et al. 2014). This is not the case for early axolotl spinal
cord regeneration since neurogenesis starts to occur not before 8 days post amputation
(Rodrigo Albors et al. 2015). Theoretically, the number of stem cells could be increased
by the dedifferentiation of neurons into neural stem cells. However, there is no evidence
that this happens. Other mechanisms that could control spinal cord outgrowth by
changing the number of stem cells in the regenerating zone are cell divisions, activation
of quiescent cells and cell movements.

Here, I combined detailed quantitative datasets with mathematical modeling to dissect
the contributions of the cell behaviors that underlie regenerative spinal cord outgrowth in
axolotls. I found that the response to injury involves (i) changes in cell proliferation rate, (ii)
activation of quiescent cells, and (iii) cell influx into the regenerating spinal cord, all while
maintaining a surprisingly organized neural stem cell-scaffold. Modeling the contribution
of each of these mechanisms to tissue outgrowth upon regeneration, I uncovered that
the acceleration of the cell cycle is the main driver of regenerative spinal cord outgrowth
in axolotls.

Increased proliferation of SOX2+ cells upon spinal cord injury is a common feature
among vertebrates (Becker and Corral 2015, e.g.). In zebrafish (Hui et al. 2010; Hui et al.
2015), Xenopus (Gaete et al. 2012), mouse (Lacroix et al. 2014) and axolotl (Holtzer 1956;
Rodrigo Albors et al. 2015) traumatic spinal cord injury triggers a long-range wave of
increased cell proliferation. It is however clear that although the potential to replace lost
cells or tissue exists in other species, they are not as efficient as axolotls at resolving
spinal cord injuries. A more comprehensive characterization of cell proliferation responses
is thus needed to understand fundamental differences between species of different
regenerative capabilities. In a previous study, we uncovered that spinal cord stem cells
speed up their cell cycle during regeneration (Rodrigo Albors et al. 2015). Performing
detailed quantifications in the axolotl, I was able to delineate a high-proliferation zone
that initially spans from the 800 μm adjacent to the amputation plane to the regenerating
tip, and later shifts posteriorly, as the spinal cord regrows. By performing experiments in
silico using my mechanistic model of spinal cord regeneration I demonstrated that the
acceleration of the cell cycle can explain the observed spinal cord outgrowth.

3.4.2. UNDERSTANDING OF PERTURBED REGENERATION

Furthermore, I applied the model to an independent experimental dataset in which
Sox2-knockout spinal cords do not regrow properly upon amputation (Fei et al. 2014).
Sox2-knockout cells express PCNA which indicates that they are able to proliferate,
but their lower incorporation of the thymidine analog 5-ethynyl-2’-deoxyuridine (EdU)
suggests that they cannot speed up the cell cycle (Fei et al. 2014). I was able to show
that the reduced outgrowth in Sox2-knockout spinal cords can be quantitatively explained
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by the lack of cell cycle acceleration (Figure 3.15). However, it is important to point out
that my model does not include the regulation of individual cell behaviors and thus it does
not consider possible compensatory mechanisms that may operate under perturbed
conditions. Hence, each cell behavior has to be quantified for each perturbed regeneration
condition to rigorously apply the presented model framework. To apply my model to the
Sox2-knockout dataset, I assumed that knocking out Sox2 only affects the acceleration
of the cell cycle. The fact that the model successfully recapitulated the experimental
outgrowth in the Sox2-knockout scenario suggests that compensatory mechanisms
might have only a small contribution in this condition.

The application of the model to the Sox2-knockout condition demonstrates how my
model of spinal cord outgrowth (Figures 3.14 and 3.15) can be used to mechanistically
understand how cell behaviors change the regenerative outgrowth in perturbed regenera-
tion conditions. To consolidate the understanding of the Sox2-knockout, the assumptions
I made for this particular analysis must be tested. This could be done by performing a
detailed quantification of the possibly involved cell behaviors as presented in this chapter
for the unperturbed regeneration.

The same strategy could also be applied to understand other perturbed regeneration
conditions. Blocking hedgehog signaling or treatment with retinoic acid have been
reported to impair regenerative outgrowth (Pietsch 1993; Pietsch 1987; Schnapp et al.
2005). How are the underlying cell behaviors affected in these conditions? For both
conditions a decrease in proliferation and outgrowth is reported. This is in qualitative
agreement with my finding that the acceleration of the cell cycle can explain the observed
spinal cord outgrowth. Unfortunately, the stem cell density has not been quantified in
neither of those conditions. This is what hindered me to also test the applicability of my
mechanistic model to these conditions here.

3.4.3. THE CELL PUSHING MECHANISM

By analyzing cell tracks during regeneration, I found that cells move along the AP axis of
the spinal cord but maintain their relative position: cells move faster the closer they are to
the amputation plane (Figure 3.13B,C). In line with earlier work (Mchedlishvili et al. 2007),
I found that cells initially located within the 500 µm anterior to the amputation plane
move fast enough to contribute to the regenerated spinal cord; while cells outside this
zone move slower, and cells at 800 µm, the border of the high-proliferation zone, almost
do not move. This is consistent with a conceptual model in which cells are passively
displaced, pushed by more anterior dividing cells. In this model, the more posterior a
cell is the more cells anterior to that cell divide and the stronger is the push, making the
cell move faster (Figure 3.18). Importantly, the proliferative response extends beyond
the 500 µm anterior to the amputation plane that gives rise to the regenerated spinal
cord (Mchedlishvili et al. 2007). In the light of this model, it is plausible that cells in
the posterior 500 µm of the high-proliferation zone produce the regenerated spinal cord
posterior to the amputation plane. Simultaneously cells from the anterior 300 µm of the
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high-proliferation zone replenish and push out the posterior 500 µm.

3.4.4. COMPARISON OF REGENERATION PARAMETERS IN SPINAL CORD AND
MUSCLE

In section 3.3, I studied the regeneration of the myotomes. There, proximal and distal
amputations were performed. The distal amputations were performed at a similar AP
location as the amputations made for the study of spinal cord regeneration. I found the
cell cycle lengths to be similar for proximal and distal amputations with a growth fraction
of nearly 1 (Figure 3.17). Interestingly, the cell cycle length is about 4 to 5 days for the
mesenchymal blastema cells and the neural stem cells at day 8 and day 10, respectively
(Figures 3.11 and 3.17).

Surprisingly, I found comparable source zone lengths of about 400 µm for proximal
and distal amputations while the involved number of progenitor cells was significantly
higher for proximal amputations (Table 3.3). Given the fact that the source zone length in
the mesenchymal blastema is of the same order as the length of the high-proliferation
zone in the spinal cord, one might speculate that similar signaling mechanisms are at
work to instruct those tissues to perform regeneration. Candidates for the identity of
such a signal are the WNT, FGF and retinoic acid pathways which are involved in paraxial
mesoderm development (Aulehla and Pourquié 2010). Inhibition of Wnt/beta-catenin
or FGF signaling stops tail regeneration in Xenopus tadpoles and Wnt/PCP signaling
is required for proper spinal cord regeneration in axolotl (Lin and Slack 2008; Rodrigo
Albors et al. 2015). On the other hand, administration of retinoic acid inhibits axolotl tail
regeneration and reduces the mitotic activity in the spinal cord (Pietsch 1993; Pietsch
1987). Whether these factors are actually involved in the specification of the progenitor
zone sizes in the regenerating spinal cord and muscle segments has to be addressed in
future studies.

Please note, that the estimate for the mesenchymal blastema source zone length was
a rather rough estimate where I ignored a number of cell behaviors. Their influence could
be estimated in future studies using a similarly detailed approach as we used for the
study of spinal cord regeneration.

3.5. CONCLUSION

In this chapter, I asked what are the underlying cell behaviors that drive the regenerative
spinal cord outgrowth during the first 8 days after tail amputation. After quantifying
the spinal cord outgrowth, I analyzed the data with a first naive model that assumed
proliferation as the only driver of the outgrowth. This initial analysis showed that a model
involving a biphasic proliferation response, initially slow and accelerated from about 3
days after amputation could explain the outgrowth well. Then, I went on to quantify
all possibly involved cell behaviors. I found a constant density of stem cells along the
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AP axis which indicated that convergence and extension movements of cells are not
important. A detailed analysis of the proliferation pattern in space and time revealed that
the predictions of the first naive model would hold true: the cell cycle is accelerated
between 3-4 days in a high proliferation zone initially spanning from 800 µm anterior
to the amputation plane. Furthermore, I also revealed contributions by the activation
of quiescent stem cells and a cell influx into the high-proliferation zone. I developed a
mathematical model of spinal cord outgrowth involving all these cell behaviors. With
the model, I could show that the involved cell behaviors can quantitatively explain the
observed outgrowth. Performing in silico experiments, I could identify the acceleration
of the cell cycle as the major driver.

I also studied the regeneration of the adjacent muscle tissue. This tissue rebuilds the
correct number of myotomes and those myotomes acquire their typical chevron-shape.
A comparison between the spinal cord and the adjacent muscle tissue showed that cell
cycle parameters and source zone lengths are similar in both tissues. The similar zone
length could be a hint to a similar underlying signaling mechanism.

The findings presented in this chapter highlight the importance and potential of careful
quantification of cell proliferation and of mathematical modeling to understand the
mechanisms of regeneration. Moreover, the careful spatial and temporal characterization
of cell proliferation helps to focus the search for key signals that might be operating in
the high-proliferation zone to speed up the cell cycle of regenerative neural stem cells.
It will be interesting to see whether the expression of AxMLP, the recently identified
regeneration-initiating factor in axolotls (Sugiura et al. 2016), correlates in time and space
with the high-proliferation zone.

Notably, the increase in cell numbers during regeneration is tightly regulated such that
the regenerating spinal cord extends with constant cell density and its proper tube-like
structure. This structure which is formed mostly of neural stem cells might be essential
to act as a basis for rebuilding the complete spinal cord tissue architecture. Previously,
we showed that the activation of PCP signaling within the source zone instructs cells
to divide along the growing axis of the spinal cord and is key for effective spinal cord
regeneration (Rodrigo Albors et al. 2015). This work highlights the importance of orderly
and directed expansion of the neural stem cell pool for efficient spinal cord regeneration.

My findings provide a quantitative, mechanistic understanding of the cell behaviors that
drive complete spinal cord regeneration in axolotl. By combining a quantitative modeling
approach with quantitative experimental data, I have established that axolotl spinal cord
outgrowth is driven by the acceleration of cell proliferation in a pool of SOX2+ neural
stem cells restricted in space and time. Whether this peculiar spatiotemporal proliferative
pattern is restricted only to the axolotl and how this correlates with amputation-induced
signaling pathway activation remain to be elucidated.
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4. DEVELOPMENT OF MUSCLE
SEGMENTS IN ZEBRAFISH

4.1. INTRODUCTION

In the previous chapter, I studied the regeneration of the axolotl spinal cord and the
adjacent muscle segments. Remarkably, those muscle segments also regenerate their
folded shape (Figure 3.16). In this chapter, I study the shaping of muscle segments
in the developing zebrafish. My quantification and model driven data analysis laid the
foundation for the understanding of the shape changes as published in Rost et al. (2014).
The folded shape of the muscle segments is termed chevron shape and it resembles the
familiar shape of fish bones (Figure 4.1). The chevron shape is thought to be optimal for
the undulating body movements of swimming (van Leeuwen 1999; van Leeuwen et al.
2008). However, the mechanism that shapes the chevron during embryogenesis is not
understood.

Here, I used time-lapse movies of developing zebrafish embryos spanning the entire
somitogenesis period to quantify the dynamics of chevron shape development. By
comparing such time courses with the start of movements in wildtype zebrafish and
analyzing immobile mutants, I show that the previously implicated body movements do
not play a role in chevron formation. Further, the monotonic increase of chevron angle
along the anteroposterior axis revealed by my data analysis constrains or rules out possi-
ble contributions by other previously proposed mechanisms. In particular, I show that
muscle pioneers are not required for chevron formation. I test the tension-and-resistance
mechanism that I proposed previously (Rost 2010). This mechanism involves interactions
between intra-segmental tension and segment boundaries. To evaluate this mechanism, I
derived and analyzed a mechanical model of a chain of contractile and resisting elements.
Here, the predictions of this model are verified by comparison with experimental data.
Altogether, my results support the notion that a simple physical mechanism suffices to
self-organize the observed spatiotemporal pattern in chevron formation.

In this chapter, I first introduce what was already known about chevron shape forma-
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tion in zebrafish and other species and continue reviewing the previously suggested
mechanistic explanations of the shape changes. In the results section, my first goal is to
quantify time-lapse light microscopy movies of chevron formation for mobile, immobile
and muscle pioneer-ablated zebrafish embryos. My second goal is to test previously
proposed mechanisms of chevron formation. I will find that the data disprove three of the
four previously hypothesized mechanisms. My third goal is to test the tension-and-resis-
tance mechanism for which chevrons form collectively. I will show that it is in qualitative
agreement with the data. I suggest further tests and extensions of my model and briefly
discuss my results in the light of evolution.

4.1.1. CHEVRON SHAPE OF MUSCLE SEGMENTS

All chordates have metameric muscle segments that are critical for locomotion. These
muscles are termed myotomes, and their characteristic shape in aquatic species is
referred to as chevron (Figure 4.1) (Bone 1978; Kimmel et al. 1995). Typically, one
observes three folds in sagital sections of adult fish like salmon and zebrafish (Agassiz
and Vogt 1845; Greene and Greene 1913; Maurer 1913; Videler 1993), but there can
be up to six (Harder 1964a; Harder 1964b). The oldest known fossils with chevrons are
Pikaia (Morris and Caron 2012) and Haikouichthys (Shu et al. 1996). They are present
in Amphioxus (Bone and Moore 2008; Hatschek 1882; Hatschek 1893; Nursall 1956),
the most basal extant chordate (Delsuc et al. 2006), the agnathan Lamprey (Langelaan
1904; Nursall 1956; Wickström 1897), the tadpole of the anuran Xenopus (Harrison 1898;
Von Seckendorff Hoff and Wassersug 1986) and in salamander larvae (Bordzilovskaya
et al. 1989; Francis 1934; Gegenbaur 1859; Mchedlishvili et al. 2007).

The myotome’s locomotory function has been conserved for at least 500 million years
(Bone and Moore 2008), suggesting that the chevron shape has been optimized for
this function (Bone 1978; Videler 1993). Chevron shape and function are used to infer
evolutionary relationships among chordates (Lacalli 2012; Mallatt and Holland 2013;
Morris and Caron 2012). The mechanics of chevron-shaped myotomes during swimming
has been studied extensively for over a century (Alexander 1969; Chevrel 1913; Nursall
1956; Rauther 1940; Van der Stelt 1968; van Leeuwen 1999; van Leeuwen et al. 2008;
Videler 1993; Willemse 1966; Wunder 1936). However, the development of the chevron
remains poorly understood.

How does the chevron pattern emerge during embryogenesis? I address this question
in the zebrafish Danio rerio. Its embryo facilitates investigation of morphological changes,
notably somitogenesis (Durbin et al. 2000; Henry et al. 2005; Holley et al. 2000; Schröter
et al. 2012; Schröter et al. 2008; van Eeden et al. 1996), myotome differentiation
(Cortés et al. 2003; Currie and Ingham 1996; Daggett et al. 2007; Devoto et al. 1996;
Henry and Amacher 2004; van Raamsdonk et al. 1978; van Raamsdonk et al. 1974a;
Yin and Solnica-Krezel 2007), and chevron formation (van Raamsdonk et al. 1979; van
Raamsdonk et al. 1977; van Raamsdonk et al. 1974a; van Raamsdonk et al. 1974b). As
early development progresses, somites sequentially bud off the unstructured paraxial
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Figure 4.1.: Trunk and segment morphology of a developing zebrafish embryo. A-C: Lat-
eral views of a developing zebrafish embryo from a representative time-lapse
movie (Movie 1 in supplementary material to Rost et al. (2014)). Anterior is to
the left. Arrowheads mark segments 1, 7 and 12. Insets show entire embryo.
Scale bar 100 µm. A: 7 cuboidal segments have formed. B: 12 segments
have formed. Segment 1 is cuboidal, segment 7 already has chevron shape,
the most recently formed segment 12 still is cuboidal. C: 18 segments have
formed. Segment 12 now is chevron shaped. D, E: Illustrations of transversal
sections of the anterior trunk at the level of segment 7. (Copyright 2000
Wiley. Modified and used with permission from Stickney et al., 2000). D:
At the time of somite formation (segment 7 as representative), the trunk
is initially flattened and medio-laterally extended, with the notochord (nc) in
the middle. E: Later, when the segment has completed the rapid morpho-
genesis of the chevron, the trunk is dorso-ventrally extended. The shaded
regions in the middle of the segment indicate the position of the muscle
pioneers. F: Sketch of C. Visible segment boundaries are shown as solid
lines and the poorly visible boundaries of the first 4 segments as dotted lines.
One chevron-shaped segment is marked in gray The notochord (dashed line)
intersects the apexes of the chevrons.a

aReproduced from Rost et al. 2014, Fig. 1.
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mesoderm (Figure 4.1A-C, Movies 1,2 in supplementary material to Rost et al. (2014)1)
and commit most of their cells to myotome formation, thereby respecting and further
enforcing tissue segmentation (Kimmel et al. 1995; Morin-Kensicki et al. 2002). I will use
the generic term segment for both, somite and myotome (Figure 4.1D,E).

In zebrafish, about 35 segments form within approximately 15 hours (Schröter et al.
2008). Initially, segments appear as cuboidal blocks (Figure 4.1A). The anterior-most
segments retain their cuboidal shape, more posterior segments deform into V-shaped
chevrons with their apex pointing anteriorly. However, reports differ as to the number of
segments that remain cuboidal (from 5-6), and the timing of chevron formation (starting
when 7 or 12 segments have formed) (van Eeden et al. 1996; van Raamsdonk et al. 1974a).
Van Raamsdonk et al. (1974a) reported that segments 5-12 deform simultaneously. Tail
segments (18-35) start to deform immediately after each somite formed (van Raamsdonk
et al. 1974a). The timing and the extent of shape changes of segments 13-17 have
not been reported. Three weeks after hatching, W-shaped myotomes emerge. (van
Raamsdonk et al. 1974a). Pioneering quantitative work measured the chevron angles
of the anal segment for different time points (van Raamsdonk et al. 1979). Together,
these findings indicate temporal and spatial heterogeneities but their quantification is
incomplete. Hence, my first of three goals is to provide a conclusive description of
chevron formation by quantifying time-lapse movies of developing zebrafish embryos.
With these quantitative data, I will test competing mechanistic hypotheses of chevron
formation which I will review in the next section.

4.1.2. SUGGESTED MECHANISTIC EXPLANATIONS FOR THE CHEVRON’S
EMERGENCE

Here, I review five previously proposed, competing hypotheses seeking to explain
chevron formation, namely body movements, templating of the chevron from the poste-
rior border of the head, relative tissue movements, differential growth or tonic muscle
tension associated to muscle pioneer cells, and self-organization by mechanical forces.

The processes driving chevron formation during embryogenesis and larval stages
were first investigated in the 1970s by van Raamsdonk and colleagues (van Raamsdonk
et al. 1979; van Raamsdonk et al. 1977; van Raamsdonk et al. 1974a; van Raamsdonk
et al. 1974b). Given the accepted importance of the chevron shape for locomotion, they
suggested that the undulating lateral movements that herald the onset of locomotion
play a role in the morphogenesis of the chevron (te Kronnié 2000; van Raamsdonk et al.
1979; van Raamsdonk et al. 1977; van Raamsdonk et al. 1974a). Van Raamsdonk and
colleagues tested this hypothesis by immobilizing young fish with developed chevrons
through removal of the brain, damage of midbody somites or fixation in agar (van
Raamsdonk et al. 1979; van Raamsdonk et al. 1977). They observed a slight straightening
of the chevron angles. The fish recovered the normal pattern when it could move again.

1http://jeb.biologists.org/content/jexbio/suppl/2014/10/23/217.21.3870.DC1/JEB102202.pdf
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Independently, and arguing against a strong role for swimming movements in chevron
development, the genetically immobile homozygous nicb107 mutant zebrafish forms
chevrons (Schröter et al. 2008; van der Meulen et al. 2005). However, this formation has
never been quantified. Thus, a contribution from movement to the dynamics of chevron
formation, or the final angle of the chevron, may yet be present.

Independent of motion, a templating hypothesis for chevron formation posits that the
posterior border of the head already possesses the chevron shape, and this pattern can be
passed to the next segment. Muscle cells may simply grow to a predefined size, so that
when the muscle cells connect to the next segment’s anterior boundary this segment
would also form a chevron (van Raamsdonk et al. 1979). Unless interrupted, this pattern
would be passed sequentially into the tail. Inconsistent with templating as the sole
determinant, chevrons develop immediately posterior to segments with experimentally
disrupted shapes (Riedel-Kruse et al. 2007; Windner et al. 2012). However, a contribution
to the final shape by templating is not ruled out.

Another hypothesis features relative movement of structures in the embryo (Turner
2007). The myosepts were proposed to attach to the notochord to be pulled into chevron
shape. This hypothesis can be tested by time-lapse microscopy.

Tonic muscle contraction and differential growth within the myotome have also been
considered as potential mechanisms (van Raamsdonk et al. 1979). The earliest developing
muscle fibers, the muscle pioneers, elongate in concert with the formation of chevrons
(Kimmel et al. 1995). Mutants that fail to differentiate muscle pioneers do not have
normal V-shaped chevrons when examined at larval stages, instead displaying a U-shaped
chevron (Halpern et al. 1993; te Kronnié 2000; van Eeden et al. 1996). It is thus now
widely believed that the muscle pioneers or the myoseptum are responsible for the
chevron shape (Dolez et al. 2011; Koumans and Akster 1995; Meyers et al. 2013), but
this has not been directly tested, and a mechanism whereby these cells would cause
the chevron shape has not been proposed.

In summary, these four hypotheses represent a range of mechanisms that are not
mutually exclusive, but for which there is currently no conclusive experimental support.
My second goal is to test these competing hypotheses. I will achieve this after I achieved
my first goal, the conclusive quantification of chevron formation. Then, I can compare
the predictions of these four competing hypotheses to the quantitative data.

Independent of which, if any, of these proposed mechanisms will be confirmed, mor-
phogenesis of the chevron is ultimately executed by mechanical forces. These might
either act (1) autonomously in each segment in a segment-specific and genetically en-
coded manner. Alternatively, by analogy to chevron patterns in abiotic systems such
as rock formations in geology (Bayly 1974) and polymers and liquid crystals in material
science (Read et al. 1999; Singer 1993), the chevron might emerge (2) collectively as a
result of force fields across the tissue with initially homogeneous properties and without
the need to invoke genetically encoded and segment-specific properties. Previously, I
hypothesized that the latter scenario is true (Rost 2010). I put forward a tension-and-re-
sistance mechanism to describe the force field in the shaping segments. I formalized
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this putative mechanism in a mathematical, mechanical model. My third goal is to test
the latter scenario by comparing the mechanical model predictions with the quantitative
data.

4.2. RESULTS

4.2.1. QUANTIFICATION OF CHEVRON FORMATION IN MOBILE EMBRYOS

I quantified chevron formation using time-lapse imaging of embryos from incrosses
of free spawning heterozygous nicb107 parents (Herrgen et al. 2009; Schröter et al.
2008). Wildtype and heterozygous nicb107 mutant zebrafish show undulatory swimming
movements (Movie 1 in supplementary material to Rost et al. (2014)) whereas the
homozygous nicb107 mutant remains still throughout the observation period (Movie 2 in
supplementary material to Rost et al. (2014)). I will refer to homozygous nicb107 mutant
embryos as “immobile”, and to both, wildtype and heterozygous nicb107 embryos, as
“mobile”. I analyzed time-lapse microscopy movies of 3 mobile and 5 immobile zebrafish
from the beginning of segmentation until the end of chevron formation. I will first focus
on mobile embryos.

The embryos were oriented laterally, affording a view of the segmenting paraxial
mesoderm in which the forming straight somite boundaries could be seen reliably
(Figure 4.1A). As the somites matured into myotomes and changed their shape from a
cuboidal block to a chevron, I could observe the deformation of segments (Figure 4.1B,C).
Through this 16 h time window, the overall shape of the embryonic axis deformed as
the segmenting mesoderm converged from a flattened medio-laterally extended cross
section (Figure 4.1D) to a dorso-ventrally extended cross section (Figure 4.1E). In each
time-lapse frame, the medially located notochord was visible as a reference line that
intersected with the apex of the forming chevron (Figure 4.1F).

To quantitate the emergence of the chevron shape, I estimated α, the angle between
the dorsal segment boundary and the dorso-ventral axis (Figure 4.2B) as described
in section 2.3.1. The chevron angle, α, is 0° for cuboidal segments and an increase
in α indicates chevron formation. I show these data for segment 1, 7, and 15 from
a representative embryo in figs. 4.2C-E. Due to high contrast of the yolk edge, the
anterior-most segments were difficult to follow leading to gaps in the time series
(Figure 4.2C). In contrast, more posterior segments yielded near-continuous time series
of chevron angle values until the start of occasional movements at (7.3 ± 0.2) h also
introduced intermittent gaps (gray regions in figs. 4.2C-E, Movie 1 in supplementary
material to Rost et al. (2014)).

The anterior-most segment did not form a chevron (Figure 4.2C). Strikingly, the chevron
angle of segments 7 and 15 changed smoothly over a time interval of about 2 hours
before reaching the final chevron shape, which remained constant until the end of
recording (Figures 4.2D,E).
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Figure 4.2.: Measurement of changing chevron angles for representative anterior and
posterior segments A: Measurement of the chevron angle. The green area
marks the posterior segment boundary and the dorsal notochord boundary
in the maximum projection from a z-stack. The light and dark orange lines
mark the measured angles γmin and γmax , respectively. B: Sketch of a bent
segment boundary showing the geometrical relation between γ and chevron
angle α. Measured angles γ were transformed into α (see section 2.3.1).
For straight boundaries α is 0; α > 0 indicates a bent boundary. C-E: Blue:
Angle measurements for segments 1, 7 and 15 of the embryo shown in
fig. 4.1 as a function of time. The error bar shows the 68% confidence
interval. Thin dotted black line shows α = 0, meaning no chevron. Grey
shaded intervals indicate lack of data due to autonomous movements of the
animal. C: Segment boundary 1 stays straight (on average α = (1 ± 11)°,
shown in orange). D, E: Segment boundaries 7 and 15 form a chevron.
Arrowheads mark segment formation time. The fit with the empirical model
of chevron angle time course (Figure 4.3) is shown in orange with the
uncertainty of the fit depicted by the transparent orange area. The 3 model
parameters are indicated by thick dotted lines. D tstart = (187 ± 33) min,
tend = (265 ± 34) min, αend = (40 ± 2)°. E tstart = (357 ± 21) min, tend =
(471 ± 24) min, αend = (44 ± 2)°.a

aReproduced from Rost et al. 2014, Fig. 2.
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Segment 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Mobile (%) 0 0 0 100 100 100 - 100 100 - 100 100 100 100 -
Immobile (%) 0 0 - 80 100 100 100 100 100 100 100 100 100 100 100

Table 4.1.: Percentage of embryos showing significant chevron formation. Only segments
for which the fitting gave significant results can be considered as significantly
chevron-forming segments (blue columns, segments 4-15), for the definition
see section 4.2.2. Segments are marked red if none of the quantified individ-
uals could be identified as significantly chevron-forming (segments 1-2). An
unambiguous classification of segment 3 could not be achieved as it would
require more individuals and more time points to be quantified. Number of
individuals n is 3 to 5. Dash indicates n < 3, result not valid.

4.2.3. QUANTITATIVE DESCRIPTION OF CHEVRON FORMATION

Here, I derive the conclusive, quantitative description of chevron formation. I use the
results derived by fitting the empirical model that I introduced in section 4.2.2 to the
chevron angle data. For all quantified time series of mobile and immobile zebrafish, I
first assessed which segments along the axis showed robust chevron formation. For
segments 1 to 2, I did not observe embryos with significantly chevron-forming boundaries,
regardless of mobility (Table 4.1).

For both mobile and immobile embryos, segment boundaries deform significantly at
segments 4-15 (Table 4.1). I conclude that the 2 anterior segments do not form chevrons
and that the transition from block-like to chevron-shaped myotomes occurs at segment
number 3.

For segments 4-15, 96% of the datasets were of sufficiently high quality so that the
result of the model fitting was accepted and these values are plotted in fig. 4.4. For mobile
embryos (green symbols), the deformation of boundaries of segments 4-7 starts nearly
simultaneously, whereas the boundary deformation of segments 8-15 starts sequentially
and with a small offset after the formation of the segment boundary (Figure 4.4A, green
symbols). Boundary deformation of all quantified segments in mobile embryos ceased
(2 ± 1) h after chevron formation start (Figure 4.4A,B, green symbols). The data for the
final chevron angle group the segments in a similar way as the chevron formation start
time: Whereas the final chevron angle monotonically increases for segments 1-7, the
more posterior segments homogeneously acquire (40 ± 3)° (Figure 4.4C, green symbols).

Complementing previous studies of chevron shape in late developmental stages with
established chevrons (van der Meulen et al. 2005; van Raamsdonk et al. 1979; van
Raamsdonk et al. 1977; van Raamsdonk et al. 1974a), the results here represent the
first quantitative measurements of the dynamics of chevron formation in any species.
Therewith, the first goal of this chapter, the conclusive quantification of chevron formation,
has been reached and I can now compare the data to the predictions of hypothetical
mechanisms for chevron formation.
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Figure 4.4.: Chevron formation for mobile and immobile embryos. A-C: Filled symbols
with error-bars depict mean and standard deviation (number of animals n
is 3 to 5) for the fit parameters (A) chevron formation start time tstart , (B)
end time tend , and (C) final chevron angle αend as a function of segment
index, respectively. In case n < 3, single measurements are plotted as open
symbols. Green circles, mobile embryos; orange squares, immobile embryos.
A, B: The solid black curve indicates somite formation times (Schröter et
al. 2008). The horizontal dash dotted line denotes the average onset of
autonomous movements. C: Additional to the fitting results, the mean
angles for non-chevron-forming segments are shown as green diamonds and
orange triangles for mobile and immobile embryos, respectivelya.

aReproduced from Rost et al. 2014, Fig. 3.
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4.2.4. ROLE OF BODY MOVEMENTS

To test whether the normal undulating body movements resulting from rhythmic muscle
contractions have an influence on early chevron formation, as has been previously
proposed (van Raamsdonk et al. 1979; van Raamsdonk et al. 1977; van Raamsdonk
et al. 1974a), I can now use the data to quantitatively relate the dynamics of chevron
formation and the start of movements. As expected (van Raamsdonk et al. 1974a),
I find that movements start after the anterior segments 4-17 have already started to
deform (Figure 4.4A, Movie 1 in supplementary material to Rost et al. (2014)). Hence,
movements are not required to start chevron formation. Segments 4-13 had finished
chevron formation already before movements start in wildtype embryos.

To what extent movements contribute to chevron formation dynamics and to setting
the final chevron angle can also be determined by comparison to non-moving embryos.
Ideally suited for this purpose, the nicb107 mutant has a lesion in the nicotinic cholinergic
receptor that prevents neurotransmitters of motor neurons from activating muscle
contraction, consequently paralyzing the embryo (Sepich et al. 1998; Sepich et al. 1994;
Westerfield et al. 1990). The data for immobile nicb107 homozygous embryos confirm
that chevrons form (Figure 4.4, orange symbols), as expected (Schröter et al. 2008;
van der Meulen et al. 2005). As then expected for segments 4-13, which ceased chevron
formation before the start of movements in mobile embryos, mobile and immobile
embryos showed very similar timing of chevron formation, tstart and tend.

Importantly, no significant difference was found between mobile and immobile em-
bryos in the values of final chevron angles αend , based on 8 hours of recording after
movements of wildtype embryos had started. Strikingly, no significant differences were
found for segments 14 and 15 which finished chevron formation after the embryo started
to move. I conclude that the movements of early rhythmic muscle contraction that
precede swimming have no effect on the formation of chevrons in the zebrafish embryo.

4.2.5. ROLE OF SIMPLE CHEVRON TEMPLATING

The data in table 4.1 and fig. 4.4C can also be used to test the previously proposed
templating mechanism for chevron formation (van Raamsdonk et al. 1979). If the chevron
shape is simply copied from a chevron-shaped surface at the back of the head, then I
expect the same chevron angle for all segments, but this is not observed at any stage of
chevron formation. Thus, the new data do not support the idea that templating alone is
responsible for the development of the chevron shape in the anterior trunk.

4.2.6. INHIBITION OF MUSCLE PIONEER DIFFERENTIATION

The data presented above rule out the body-movement, simple-templating and noto-
chord-movement hypotheses (see section 4.3.1). Muscle pioneer cells are thought to
be responsible for chevron formation (Dolez et al. 2011; Meyers et al. 2013). Muscle
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Figure 4.5.: Role of muscle pioneers in chevron maintenance, but not formation. A, B:

embryos treated with 0.2% DMSO. A: engrailed2 (en2) in situ hybridization
of 18 somite stage. Muscle pioneers are stained by en2, area between
arrowheads. The midbrain is marked with a white asterisk. B: cb1045 in situ
hybridization of 36 hours post fertilization (hpf) embryo to visualize segment
boundaries. C, D: embryos treated with 7.5 μM cyclopamine from bud stage.
C: en2 in situ hybridization. Muscle pioneers are absent. D: cb1045 in situ
hybridization of 36 hpf embryo. Boundaries are U-shaped. E-F: Lateral views
of segment 7 of an embryo treated with 7.5 μM cyclopamine from bud
stage. E: Newly formed segment is cuboidal. F: 300 min after formation
the segment has a clear chevron shape. G: At 855 min the chevron shape
relaxed into a U-shape. H: Quantification of chevron angles of the segment
shown in E-G (blue squares and error bars). The orange line shows the typical
bending of an immobile embryo (empirical model for chevron angle time
course with parameters for segment 7 from fig. 4.4, uncertainty depicted by
the transparent orange area). Experimental methods can be found in Rost
et al. (2014).a

aReproduced from Rost et al. 2014, Fig. 4.
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pioneers can be identified by engrailed2 expression (Figure 4.5A). Embryos treated with
0.2% DMSO carrier form normal chevrons, indistinguishable from wildtype embryos
grown in only E3 medium, as illustrated by cb1045 expression at segment boundaries
(Figure 4.5B). Muscle pioneer differentiation can be blocked by inhibiting Shh signaling
with cyclopamine (Barresi et al. 2001; Wolff et al. 2003) (Figure 4.5C). As expected,
segment boundaries showed a U-shape phenotype at 36 hpf (Figure 4.5D), resembling
U-mutants. I quantified time-lapse movies of these muscle pioneer-ablated embryos
(Figures 4.5E-H, Movie 3 in supplementary material to Rost et al. (2014)). Segment for-
mation progressed along the axis at the same rate as under normal conditions (data not
shown). Surprisingly, I found 12 segments in 3 fish that transiently formed chevrons with
a normal angle at around 400 min to 500 min (Figures 4.5F,H and fig. S7). Subsequently,
the chevron shape was not maintained and relaxed into a U-shape (Figure 4.5D). For the
majority of the analyzed segments, the wildtype start- and end-times of bending were in
good agreement with the transient bending of muscle pioneer-ablated embryos (orange
curve in fig. 4.5H).

4.3. DISCUSSION

4.3.1. INSUFFICIENCIES OF THREE PROPOSED MECHANISMS TO EXPLAIN
CHEVRON FORMATION

The quantitative comparison of mobile and immobile embryos rules out a role for swim-
ming motions of the embryo in both the timing and final shape of the embryonic chevrons.
This corroborates and extends the earlier evidence that immobile nicb107 mutants did
not show obvious chevron defects (Schröter et al. 2008; van der Meulen et al. 2005).
However, this finding does not impact the acknowledged importance of the chevron
shape for the locomotory function.

I quantified final chevron angles as function of segment index and found a monotonic
increase for segments 4 to 7. Also, these segments also start chevron formation
simultaneously, whereas segments 1 and 2 do not form chevrons (Figure 4.4). Instead of
segment 3, earlier reports described this transition at segment 5 or 6 (van Raamsdonk
et al. 1974a) which may reflect the lower spatial and temporal resolution of earlier
methods. However, van Raamsdonk et al. (1974a) used a slightly lower temperature
which might shift the transition. The increase in chevron angle along the anteroposterior
axis rules out simple templating hypothesis according to which each angle is just a copy
of its earlier-formed anterior neighbor. This also agrees with the results of Riedel-Kruse
et al. (2007) in which correct segmentation was transiently perturbed and then rescued.
Although segments 7 to 17 did not form correctly and thereby would be unable to pass
on a chevron pattern, the more posterior segments were shaped as chevrons again.
Windner et al. (2012) rescued defective somitogenesis in the fss mutant by transient
expression of the Fss/Tbx6 protein. They observed one or two contiguous chevrons,
for which the tissue immediately anterior was not chevron-shaped, again inconsistent
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with a simple templating mechanism for chevron formation. Nevertheless, the posterior
boundary of any segment is the anterior boundary for the next segment and can thereby
influence its shape.

The anchoring hypothesis of Turner (2007) requires an anterior-ward movement of the
notochord at the time of chevron formation. In contrast, the time-lapse movies showed a
strong posterior-ward movement of the notochord relative to the segment boundaries
(Movie 2 in supplementary material to Rost et al. (2014)), but this was observable only
after the vacuolating cells of the notochord became visible, which occurs after completion
of chevron formation. Confocal time-lapse movies revealing the posterior-ward sliding of
the notochord had been reported (Barrios et al. 2003), but these were recorded slightly
before chevron formation of the corresponding segments. Thus, there is no continuous
anterior-ward movement of the notochord that would be consistent with the anchoring
hypothesis. It remains formally possible that a wavefront of transient reversal of the
direction of notochord sliding propagates along the axis in concert with chevron formation.
However unlikely this proposal seems, time-lapse microscopy targeted to the notochord
at this time point would be required to resolve the question.

4.3.2. U-SHAPED MYOTOME MUTANTS AND THE ROLE OF MUSCLE PIONEERS

Zebrafish mutants, termed U-mutants, have been reported in which somites form
normally but the myotomes display a U-shape instead of a chevron at larval stages.
These phenotypes have been associated with the failure to form a specific cell type
in the myotome, the muscle pioneer at the apex of the chevron. The first genetic
evidence of a role for these cells in chevron patterning came from the no tail (ntl) mutant,
encoding a zebrafish Brachyury/T transcription factor, in which muscle pioneers fail to
form and myotomes take on a U-shape (Halpern et al. 1993). Most of the U-mutants
encode components of the Sonic Hedgehog signaling pathway, which is required for
the differentiation of the adaxial cells, a columnar epithelium which is apposed to the
notochord (Hatta et al. 1991; Weinberg et al. 1996), into early muscle fiber types such as
the muscle pioneer (Johnston et al. 2011; Stickney et al. 2000). In kny;tri double-mutants,
adaxial cells do take on a muscle fiber fate, but do not show proper spanning of the
segment. Even in this case the chevron shape gets weaker (Yin and Solnica-Krezel 2007).
However, the relationship between these cells and the development of the chevron has
not been explored and the surgical removal of muscle pioneer precursor cells in a few
segments did not result in obviously altered segment shapes (Honjo and Eisen 2005).
Similarly, the inhibition of muscle pioneers by Dorsalin-1 in two consecutive segments
did not lead to altered chevrons (Du et al. 1997).

The cyclopamine-treated embryos closely recapitulate the appearance of the original
U-mutants; they lack muscle pioneers in early segmentation stages and they exhibit
U-shaped myotomes at larval stages. However, the surprising observation of transient
chevron shapes that mimic the normal untreated embryo with respect to maximum
chevron angle as well as bending start- and end-time speaks against a role for muscle
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pioneers in chevron formation. High-level Shh signaling induces further cell types of the
sclerotome (Fan and Tessierlavigne 1994; Hammerschmidt et al. 1996), the dermomy-
otome (Feng et al. 2006), the spinal cord and other embryonic tissues. The cyclopamine
treatment likely also affected these Shh-dependent cell types and, hence, a requirement
for any of them in chevron formation is also unlikely. Conversely, the observed failure to
maintain the chevron shape may be due to the perturbation of any of the Shh-dependent
cell types, including muscle pioneers. My findings suggest that U-mutants may simi-
larly exhibit a failure of chevron maintenance, not formation. A potential role for other
cell-types in chevron formation remains to be investigated.

4.3.3. A MECHANICAL MODEL FOR THE SELF-ORGANIZATION OF
HETEROGENEOUS CHEVRON ANGLES

The final angle of the chevron in subsequent segments increases monotonously in the
anteroposterior direction until it reaches the maximum value of (40 ± 3)° at segment 7,
which is also reached by all posterior segments that I analyzed. Why is there such a
strong segment dependence of the chevron angles across the anterior segments? Is this
because there is a molecular or genetic heterogeneity along the axis? Is it necessary
that the pattern is pre-programmed so that each segment’s angle is individually specified
by genetic means, perhaps through a Hox gene code mechanism (Prince et al. 1998), or
could the collective behavior of segments with homogeneous properties self-organize
the observed heterogeneous angles?

To investigate this latter possibility, I previously proposed a mechanical model that was
motivated by a series of published observations about the timing of cell differentiation
and its coincidence with the timing of chevron formation (Rost 2010). The expression of
the muscle-specific markers Eng protein and myod mRNA starts simultaneously in the
anterior up to seven segments in the adaxial cells. For the more posterior segments, both
genes are expressed sequentially (Hatta et al. 1991; Weinberg et al. 1996). The muscle
pioneers differentiate from the adaxial cells and later give rise to the myoseptum (Daggett
et al. 2007; Devoto et al. 1996; Johnston et al. 2011). The cellular shape changes and cell
migration that accompany the differentiation of other muscle types also start close to
the notochord and simultaneously in the first five segments (Cortés et al. 2003; Daggett
et al. 2007; Stickney et al. 2000; van Eeden et al. 1996; Yin and Solnica-Krezel 2007) but
then proceed posteriorly with constant time lag after segment formation (Henry and
Amacher 2004). In summary, these observations group the segments in the same way
as my data analysis does: A group of anterior segments behaves differently than the
complementary posterior segments (Figure 4.6).

Although there are currently no measurements of the forces involved, it is plausible
that the reported cellular rearrangements accompanying muscle differentiation generate
tension from within the segments. Those cellular rearrangements start medially close
to the notochord and the tension would act only medially on the segment boundaries
and thereby bend them. Reinforced by extracellular matrix, these boundaries will resist
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bending to some degree. The emergent behavior induced by the tension cannot be
foreseen intuitively since all segments are coupled and interact simultaneously. It is
possible to imagine all but the first segment acquiring equal shapes, or alternatively,
multiple solutions may coexist and a fluctuation of a single initial segment shape could
set up a pattern of mirrored chevrons to either side of the initial fluctuation.

The mathematical formalization of the model is required to understand if the system
is capable of showing the emergence of the experimentally observed heterogeneous
pattern (Figure 4.7). I previously derived and solved the mathematical formalization of
the model (Rost 2010; Rost et al. 2014). Here, I sketch the main ideas but I omit the
detailed calculations which can be found in Rost (2010) and Rost et al. (2014).

Note that this model assumes that tension is generated within the segment, but it
does not attempt an explicit description of individual cellular behaviors and is agnostic
about the source of this tension. The model includes the case that the reported cellular
rearrangements cause the tension but it also encompasses other potential causes of
tension. I reduce the model to two dimensions thanks to translational symmetry in the
medio-lateral direction. It consists of n = 7 segments. Each segment has the same
anteroposterior length L and dorso-ventral height h but a variable chevron angle αi (t) of
its posterior boundary. The angle of the segment’s anterior boundary is given as the
angle αi−1(t) of the posterior boundary of the corresponding neighboring segment. I treat
the anterior-most boundary between the head and segment 1 as stiff and straight, i.e.
with a constant chevron angle of 0°. All segment boundaries are initialized as straight
(Figure 4.7A’). I then add harmonic springs (spring constant Kx , rest length L0 < L) in
each segment that model the intra-segmental tension (Figure 4.7B’). These springs
contribute part of the energy of the system (Equation fig. 4.7D, blue). The resistance of
the boundaries against bending is modeled by adding an energy penalty (strength Kα,
Equation fig. 4.7D, orange). Of course, the extension of the springs, xi , and the chevron
angles, αi , are constrained by the geometry of the system (Figure 4.7C’). Assuming
2L ≈ h (true for zebrafish segments) and small αi I express this relation in the formula
for the xi (Figure 4.7D, as derived in Rost (2010) and Rost et al. (2014)).

With the derived energy and the initial conditions for αi and the head boundary
condition, I could calculate the final chevron angles in the steady state of the model and
simulate the dynamics. I derived the steady state of the model by minimizing the energy.
The relevant parameters are K = Kα/ (KxL2), indicating the stiffness of the boundary
relative to the stiffness of the intra-segment springs and L0/ L, the rest length of the
spring in the segment relative to the segment length. I found that only one unique steady
state exists. Independent of the chosen parameters and the number of segments, this
state possesses monotonically increasing final chevron angles. The increase in chevron
angle along the anteroposterior axis in the steady state is a robust property of the model
(Figure 4.7E). Importantly, the heterogeneous steady state pattern does not need to
be pre-determined by a complicated initial state but is found to self-organize from a
completely homogeneous initial state.

The model predicts that all segments would remain straight in the case of no in-
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Figure 4.7.: A mechanical model for the establishment of chevron angles. A-C: Rep-
resentative segment shapes (see fig. 4.1). A: The first 7 segments have
formed with cuboidal shape. B: At about 180 min chevron formation starts,
hypothetically in accordance with the onset of muscle cell differentiation
and concomitant rearrangements in the medial part of the segments that
result in a contractile force. C: At 410 min, segments 1-7 have their final
shape. A’-C’: Construction of a minimal mechanical model for chevron shape
establishment. A’: The model consists of 7 segments. The most anterior
segment (1), one intermediate (i) and the last (7) are sketched. The boundary
anterior to segment 1 is the posterior boundary of the head and treated as
stiff. I neglect the lateral dimension and assume that all segments have
the same anteroposterior length L and dorso-ventral height h. B’: To model
the hypothesized intra-segmental tension I insert springs (blue) into each
segment. The springs are identical (rest length L0, spring constant Kx ). Blue
arrows depict the forces exerted on the segment boundaries.(continued on
next page)a

aReproduced from Rost et al. 2014, Fig. 6.
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Figure 4.7.: (continued from previous page) C’: Except for the anterior boundary of
segment 1 the segment boundaries are able to bend. The amount of bending
is described by chevron angle αi . I assume the dorsal and ventral tips of
the boundaries (orange squares) to be fixed by the bulk segment tissue so
that the segment length, L, cannot change and segment boundaries can
only react to forces by bending. I assume the segment boundaries to resist
this bending which results in forces in opposite direction (orange arrows). D:

This simple mechanical model is fully defined by specifying the energy, E,
of the system. I choose the intra-segmental springs (blue in the equation)
to be harmonic and add a penalty for bending of the segment boundaries
to the energy (orange in the equation). This penalty depends harmonically
on αi and is of strength Kα. The second equation gives the geometrical
constraints for xi and αi . E: The final chevron angle of the model in the
steady state of my model as function of segment index. Parameters are
K = 1, L0 = 0.1 and 7 segments. Black lines show the analytical solution
and the exponential approximation as they were derived in Rost (2010) and
Rost et al. (2014). The colored dots are simulation results for the final angle
from panel F. F: Numerical solutions of the overdamped equations of motion
(derived in section B.1, parameters as before). For the chosen parameter
values, the segments simultaneously start to form chevrons at t = 0, the
time the intrasegmental tension is switched on. Chevron angles increase
monotonically for all segments. Segments reach their final chevron angle
approximately at dimensionless time t = 5. The most anterior segment
boundaries 1-3 remain straight and therefore are hard to distinguish in the
plot.
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tra-segmental contraction (L0/ L = 1) or nearly straight (chevron angle below 1°) for very
stiff boundaries (K > 60). For stiff segment boundaries (K
1), the monotonic angle
dependency can be approximated as an exponential function of segment index. Because
an exponential function starts to increase slowly, the most anterior segments appear to
remain straight.

To investigate the temporal dynamics of the model, I derive the over-damped equations
of motion for the chevron angles from the system’s energy (see section B.1). These
equations can be solved numerically. The simulations show that a simultaneous on-
set of chevron formation is possible (Figure 4.7F). This result is compatible with the
experimental data. The particular shape of the time course depends on parameter values.

Taken together, I reached my third goal which was to test the tension-and-resistance
mechanism that I proposed previously: The observed spatiotemporal pattern of chevron
angles could emerge from a homogeneous tissue without the need for additional genetic
or biochemical differences between the segments.

The mechanical model was motivated by stereotypical cellular rearrangements and
differentiation of muscle fibers commencing around the time of chevron formation
(Figure 4.6). Importantly, the model is agnostic about which cellular or sub-cellular
mechanisms might be at work. Direct tests of this hypothesis should seek to alter the
generation or propagation of tension through the file of segments preceding the chevron
transition. One possibility would be to ablate the first somite, thereby removing the
fixed end of the chain, just before the onset of chevron formation at the 7 somite stage.
The proposed tension-and-resistance mechanism predicts that the angles of the forming
chevrons will be altered: because segments will pull from both, anterior and posterior,
sides, reversed chevron-shapes in the anterior and a central symmetrical segment are
expected. From published material, a pattern with reversed chevrons was observed in
frogs (Yoshigai et al. 2009). Another test might be to explant a row of somites from the
embryo prior to the segment-seven transition, and ask whether a similar perturbation
of chevron angles is observed as with the ablation of somite 1. If the somites could be
separated from the file, or otherwise individually explanted (Beattie and Eisen 1997; Laale
1982), the autonomy of the chevron shape’s development could be directly addressed. If
somite 3 and somite 7, as examples, developed different chevron angles in isolation, my
hypothesis of a collective mechanism would be contradicted.

If evidences supporting the general mechanical model were found, it would make
sense to explore the cellular and molecular bases for this activity in some detail. Cellular
candidates would include the rearrangement of the adaxial cells from epithelium to
mesenchyme, or the development and migration of various muscle fiber types. Molecular
candidates would include various force-generating systems such as cortical actin-myosin
contractility, microtubule associated processes, or ion-flux regulated cellular volume
changes.

My quantitative data analysis revealed a correlation between the reported onset of
muscle differentiation and chevron formation. The mechanical model of chevron formation
provides an explanation of the position-dependent final chevron angles for the anterior
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segments. Please note that I was not able to obtain a quantitative fitting to the final angle
of these segments. I would have been able to fit the data by introducing a non-linear
saturation term in the model, but in the absence of a specific biological motivation
for this term I have avoided the unnecessary complication. Furthermore, segments 8
to 32 do not deform more than segment 7 and also appear sequentially, but both of
these properties are currently ignored by the simple model. To account for the constant
posterior segment boundary angles, I propose a model extension with time-dependent
parameters that reflect the developmental maturation of muscle differentiation.

Measurements and model are made in 2D, yet the body is 3D. A potential role for ten-
sions in the third dimension is worth considering if such tension becomes quantitatively
measurable. For future studies it is important to quantify changes of body cross section,
cell rearrangements, muscle fiber elongation, muscle fiber force as function of segment
index and time, and to correlate these new data sets to the space-time plot of chevron
formation (Figure 4.6). Any observed correlations should then facilitate the identification
of the mechanistic cause of the effective force field I have modeled. Extensions into 3D
are required to address the later changes towards the concentric series of cones in the
adult (Greene and Greene 1913; Shann 1914; Videler 1993).

4.3.4. CHEVRON PATTERNS IN OTHER SPECIES AND EVOLUTIONARY
ASPECTS

Chevron patterns exist in other species, including other fish, frogs, salamanders, lam-
preys, Amphioxus and the pre-Cambrian fossil Pikaia. Key cellular events that inspired
the tension-and-resistance model are conserved. For instance in Amphioxus, the chevron
pattern forms in concert with cell elongation and muscle differentiation is delayed for
anterior segments (Hatschek 1882; Hatschek 1893; Kästner 1892). In agreement with the
proposed collective mode of chevron formation, several species including the tadpole of
the frog Leptodactylus albilabris (Dent 1956), Pikaia (Morris and Caron 2012) and hagfish
(Müller 1836) show anterior straight segments and bent posterior segments. While most
authors only distinguish straight anterior versus bent posterior segments, those species
might actually show a monotonic increase in chevron angle. For the tadpole of the frog
Xenopus, published figures show monotonically increasing final chevron angles for at
least 10 anterior segments (Gray et al. 2009; Lee et al. 2010). It will be interesting to
quantify angle time courses in Xenopus and to compare these with the correspondingly
parameterized model.

The chevron shape itself and the shape’s function in locomotion have been used to
infer the evolutionary relationships among chordates (Lacalli 2012; Mallatt and Holland
2013; Morris and Caron 2012). However, the development of the chevron, especially the
mechanism underlying it, was largely ignored. The discussion of existing hypotheses
and the proposed mechanism, which was motivated by quantitative correlations in fish
but might be conserved across a number of other species (see above), may add to the
emerging picture of chordate evolution.
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4.4. CONCLUSION

I have quantified the time course of early chevron formation in terms of chevron formation
start time, end time and final chevron angle for segments 1-15 for mobile, immobile and
cyclopamine-treated zebrafish. To summarize the dynamic behavior of chevron formation
in a compact and informative manner, I described the change in the chevron angle over
time with an empirical model. The obtained data reject or heavily constrain the possible
contribution of a number of hypotheses. I showed that muscle pioneers are not required
for chevron formation but they or other high-level Shh signal-dependent cell types may be
involved in chevron maintenance. I tested a previously proposed tension-and-resistance
mechanism based on interactions between intra-segmental cell rearrangements and
segment boundaries that explain the early phase of chevron development. A simple
mechanical model allowed me to verify that this mechanism could account for the
observed spatiotemporal pattern. A strong aspect of the model is the minimal set of
ingredients it depends on and yet its robust prediction of the observable monotonic
increase in final chevron angles along the anteroposterior axis. An appropriate temporal
order of muscle cell differentiation (Figure 4.6) with uniform properties for all segments
appears sufficient for the chevron pattern and its spatial dependencies to self-organize
according to physical laws. Hence, evolution of segment-specific properties such as the
increasing chevron angles across the anterior segments would not be necessary.
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5. NEUROGENESIS IN THE ADULT
HUMAN BRAIN

5.1. INTRODUCTION

For a long time, it was commonly assumed that there is no neurogenesis in the adult
human brain. Evidence for this view came from studies on primates, which failed to reveal
neurogenesis in adult primate brains (Eckenhoff and Rakic 1988; Rakic 1985). However,
a later study based on the incorporation of BrdU in the adult human hippocampus
showed the existence of neurogenesis in the adult human brain (Eriksson et al. 1998).
Nonetheless, the amount of neuron turnover in the adult human brain remained an open
question of. The answer to this question is relevant to understand whether neuron
turnover is of importance for the function of the human brain as it is known to be for
rodents (Clelland et al. 2009; Nakashiba et al. 2012; Sahay et al. 2011). The outstanding
work by Spalding et al. (2013) approached this question by combining quantitative data
and mathematical modeling and found that about 1/3 of the neurons in the human
adult hippocampus undergo turnover and that about 700 neurons are born every day. In
this chapter, I will reanalyze their data using their deterministic neuron turnover model.
Spalding et al. (2013) used the method of LS to estimate the turnover parameters.
Instead, I will make use of the more general ML method to perform the statistical
inference. This way, I do not rely on possibly unjustified assumptions that Spalding et al.
(2013) had to make.

Spalding et al. (2013) exploited the increase in the atmospheric concentration of the
carbon isotope 14C due to above-ground thermonuclear bomb tests during the cold war
(Figure 5.1). This 14C forms carbon dioxide (CO2) in the atmosphere which is taken up
by plants and finally by humans via the food chain. When cells synthesize new DNA for
mitosis the current 14C concentration creates a date mark in this DNA (Spalding et al.
2005). This allows inferring neuron turnover using the following idea: If all neurons were
born during early development, the neuron genomic DNA would have the age of the
subject. Hence, the 14C concentration in the neuron genomic DNA would correspond to
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Figure 5.1.: Concentration of the carbon isotope 14C in the atmosphere and hippocampal
neuron genomic DNA in units of Δ14C. The black line shows the time course
of atmospheric 14C concentration in the last century with a peak stemming
from above-ground thermonuclear tests that were performed from 1953 until
1963 (Nydal and Lövseth 1965; Vries 1958). The black circles show 14C of
hippocampal neuron genomic DNA plotted at the date of birth of subjects.
The white triangles show the model prediction of scenario 2POP using the
new parameters from my ML estimation (Tables 5.1 and 5.2 and fig. 5.2).
Error bars depict the measurement error,σ. Inset is a zoom on the time
between 1940 and 1960.

the atmospheric 14C concentration at the date of birth. On the other hand, if all neurons
would be turned over at a very high rate, the neuron genomic DNA would be very young.
Consequently, the 14C concentration in the neuron genomic DNA would correspond to
the atmospheric 14C concentration at the date of death. If the subjects’ 14C concentration
in the neuron genomic DNA corresponds neither to the atmospheric 14C concentration
at birth nor at death, neurons are turned over at an intermediate rate.

Spalding et al. (2013) could measure the mean concentration of 14C in the DNA of
hippocampus tissue samples postmortem in subjects (n = 55) of different age using
mass spectroscopy. As expected for an intermediate turnover rate, the 14C concentration
in the neuron genomic DNA corresponded neither to the atmospheric 14C concentration
at birth nor at death. To estimate the turnover rate, Spalding et al. (2013) developed
a mathematical model of neuron turnover. The model predicts the 14C concentration
in neuron genomic DNA based on the known dynamics of 14C concentration in the
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atmosphere and the unknown turnover parameters (Bernard et al. 2010). Spalding et al.
(2013) tested several model versions, termed scenarios. In each scenario the neuron
turnover is modeled differently. While the authors also investigated many complex
scenarios, I concentrate on only two scenarios: In the simplest scenario, termed scenario
A, all neurons are turned over at a constant rate, r , throughout life. The other scenario is
termed 2POP. It was identified by Spalding et al. (2013) as the best fitting scenario. In this
scenario, only a fraction, f , of the neuron population undergoes turnover at constant rate,
r . The model equations that I used for my analysis are given in the appendix, section B.2.

Spalding et al. (2013) estimated parameters with the method of weighted LS. To
estimate the parameter uncertainties, they calculated the CIs by exploring the SSE
landscape with MCMC methods. They selected the best scenario with a particular
form of the AIC. There are two potential problems with this approach: First, the choice
of the weighted LS method inherently implies a choice of the error model (Burnham
and Anderson 2002; Hilborn and Mangel 1997; Olive et al. 2014). In particular, the
arbitrary choice of the weights implicitly leads to a possibly unjustified assumption for
the magnitude of the measurement error. However, the error model is crucial to correctly
calculate the CIs and for model selection (Kreutz et al. 2007). Second, the different and
more commonly used form of the AIC, namely the AICc (Equation (2.7)) may select a
different scenario.

To circumvent the potential problems of the method of weighted LS, I estimate the
parameters for the scenarios A and 2POP using the more general ML method and I
select the best fitting model with the AICc. I find a general agreement with the parameter
estimates reported by Spalding et al. (2013) and identify the same best fitting scenario.
However, I can determine the fraction of renewing cells with higher precision. Strikingly,
I find that for the turnover rate only a lower limit can be inferred. Hence, the neuronal
turnover might occur at even higher rates than reported previously. Furthermore, I
estimate how many additional samples would be needed to estimate the turnover rate
with high precision. I find that collecting data from as many as 100 subjects that died
recently does not guarantee substantial increase in precision. Instead, collecting data
from as few as 5 subjects that died between 1960 and 1970 would increase precision
considerably.

5.2. RESULTS

5.2.1. MAXIMUM-LIKELIHOOD ESTIMATION OF CELL TURNOVER
PARAMETERS

I used the software Engauge Digitizer 5.21 to extract the atmospheric 14C data from
Spalding et al. (2013, Fig. 2A). Furthermore, I made use of the 14C data that is provided
as a supplement to Spalding et al. (2013) (Figure 5.1). I numerically solved the neuron

1https://markummitchell.github.io/engauge-digitizer/
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Parameters Turnover rate, r Measurement error, σ
Unit (per year) (Δ14C)

Values LS 0.0066 1000‰/500‰
95% CI - -

Values ML 0.0055 54‰
95% CI [0.0041, 0.0071] [46‰, 66‰]

Table 5.1.: Comparison of parameter estimates for the LS and ML methods for scenario
A. The values for the LS method are taken from Spalding et al. (2013, Table S3).
In this case, the measurement error is not fitted but chosen by the authors in
the model as weights, wi (see section 5.3). The parameter values for the ML
method were calculated as described in this chapter.

turnover model by Spalding et al. (2013) (see eqs. (B.6) to (B.10)) with Python code.2

As stated above, the use of the method of weighted LS by Spalding et al. (2013)
implied a possibly unjustified choice of the measurement error. To overcome this
potential problem, I used the ML method to estimate the parameters. Therefor, I use an
error model of constant additive, normally-distributed noise with unknown measurement
error, σ, assuming that the measurement error is the same for all subjects. This allows
me to treat the measurement error, σ, as one additional unknown parameter which I can
fit to the data. The corresponding Log-Likelihood is given by inserting the 14C prediction
of the neuron turnover model (see eq. (B.8) in section B.2), in eq. (2.3):

ln L(r, f,σ) = −
1
2

n∑
i=1

(
C̃(tb,i , td,i ; r, f ) − Ci

σ

)2

+ n ln
(

1√
2πσ

)
, (5.1)

where L is the likelihood, C̃(tb,i , td,i ; r, f ) is the predicted 14C concentration for a subject i
that was born at tb,i and died at td,i , Ci is the measured 14C concentration of subject i
and n is the number of subjects in the dataset. Then, the values for the turnover rate, r ,
the fraction renewing, f and the measurement error, σ, that maximize the Log-Likelihood,
ln L, are the most likely parameters. I performed the search for these parameters as
described in section 2.2. The estimated parameter values are given in tables 5.1 and 5.2
and fig. 5.2. I estimated the CIs with the profile likelihood method (see section 2.1.2).

For scenario A, the turnover rate estimated with the LS method lies within the 95% CI
of the ML method (Figure 5.2, left panel). Hence, both parameter estimation methods
agree.

For scenario 2POP the fraction renewing estimated with the LS method also lies within
the 95% CI of the ML method (Figure 5.2, right panel). However, the 95% CI reported
by Spalding et al. (2013) is 7 times bigger than that estimated with the ML method.
Compared to the ML-derived 95% CI, the LS method slightly underestimates the turnover

2The code is available on GitHub under https://github.com/fabianrost84/C14
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Parameters Fraction renewing, f Turnover rate, r Measurement error, σ
Unit (per year) (Δ14C)

Values LS 0.35 0.12 1000‰/500‰
95% CI [0.12 - 0.63] -

Values ML 0.34 0.23 30‰
95% CI [0.31, 0.38] [0.14, ∼ 4] [25‰, 36‰]

Table 5.2.: Comparison of parameter estimates for the LS and ML methods for scenario
2POP. The values for the LS method are taken from Spalding et al. (2013,
Table S3). In this case, the measurement error is not fitted but chosen by the
authors in the model as weights, wi (see section 5.3). The parameter values
for the ML method were calculated as described in this chapter.

rate in scenario 2POP (Figure 5.2, middle panel). Moreover, the ML-derived 95% CI for
the turnover rate in scenario 2POP is markedly asymmetric and has a very high upper
limit (Tables 5.1 and 5.2 and fig. 5.3). This insensitivity can be understood intuitively in
the following way: A turnover rate of 1 year−1 means that the number of cells that are
replaced in one year equals the number of cells in the renewing population, i.e. almost all
cells in the renewing population are replaced. Therefore, the genomic 14C concentration
in this population will be almost equal to the atmospheric 14C concentration of this year.
If the turnover rate is increased even more, the resulting 14C concentration can only
become slightly closer to the atmospheric 14C concentration. Hence, at some point,
increasing the turnover rate parameter has nearly no effect on the model prediction and
the model becomes insensitive to this parameter.

In agreement with Spalding et al. (2013), the best fitting scenario clearly is the scenario
2POP (evidence ratio 7 · 103, table 5.3, fig. 5.1).

Scenario ln L k AICc

A 82.2 2 −160.1
2POP 155.2 3 −224.0

Table 5.3.: Comparison of the model scenarios for 14C incorporation. For the scenarios
A and 2POP, the maximum value of the log-likelihood, ln L, the number of
parameters, k, and the AICc are shown. The sample size is n = 55 for both
scenarios. Scenario 2POP is the best fitting scenario because it has the lower
AICc.
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Figure 5.3.: Log-likelihood profile for the turnover rate, r , in scenario 2POP. The turnover
rate was varied from 0 year−1 to 10 year−1. For each fixed value of the turnover
rate, r , in this interval the fraction renewing, f , and σ were fitted. The
difference of the corresponding log-likelihoods to the maximal log-likelihood
is shown. The maximum gives the optimal parameter (r = 0.23 year−1). The
values of r where the profile crosses −1.92 (dashed line) give the 95% CI
(see section 2.1.2).

rhigh and rlow , respectively:

diff = C̃(tb, td ; rhigh, f ) − C̃(tb, td ; rlow , f ), (5.2)

where I arbitrarily chose to set rhigh = 3.83 and rlow = 0.23 to the limits of the 95% CI
(Table 5.2). Interestingly, for all subjects that died after 1990 the predicted difference
in 14C concentration is smaller than the estimated measurement error of 30‰ (Figure
5.4A). As all subjects used by Spalding et al. (2013) died after 1990, this can be viewed
as an alternative explanation for the insensitivity in the estimation of the turnover rate, r
(Figure 5.3).

On the contrary, for subjects that died between 1960 and 1970, i.e. in the period of
strong increase in atmospheric 14C concentration (Figure 5.1), a much higher difference
is predicted (light area around yellow band in Figure 5.4A). I reasoned that if only a few
samples from such subjects would be available this might allow inferring the turnover
rate with higher precision. However, it might be impossible to get samples from subjects
that died in the 1960s. Hence, I also wanted to test whether adding very many samples
from subjects that died recently might also increase the precision in the turnover rate.

To perform these tests and to assess the number of additionally needed subjects, I
decided for the following strategy: I assume that scenario 2POP with the parameters
given in table 5.2 is true. Then, I simulate predicted 14C concentrations for a number
of artificial subjects. I add this simulated data to the experimental data by Spalding
et al. (2013). Next, without using my knowledge of the parameter values I used for the
simulation, I repeat the parameter estimation method described above. I calculate the
log-likelihood profile for the turnover rate, r , to test whether it could be determined with
higher precision using the larger, artificial dataset. I created artificial subject datasets
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Figure 5.4.: Estimation of additional number of subjects needed to infer turnover rate. A:

Scenario 2POP will predict different 14C concentrations depending on the
turnover rate, r . The heat map shows the difference in 14C concentration
between the predictions for r = 0.23 and r = 3.83 (Equation (5.2)). The
fraction renewing, f , and the error model variance are set as given in table 5.2.
White crosses: Subjects used by Spalding et al. (2013), orange crosses and
purple crosses show a realization of type 1 and type 2 artificial subjects,
respectively. B: Similar plot as fig. 5.1 with the two realizations of artificial
subject datasets added. C: Similar plot as fig. 5.3. For the calculation of
the solid log-likelihood profile the artificial data 1 was added to the data by
Spalding et al. (2013). The other log-likelihood profiles were calculated using
other realizations of artificial subjects created as artificial data 1. D: Same as
(C) but artificial data 2 was used.
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of 2 types, namely type 1 datasets of subjects that died recently and type 2 datasets
of subjects that died in the 1960s. In type 1 datasets, 100 subjects are randomly born
between 1910 and 2010 and die in 2012. In type 2 datasets, 5 subjects are randomly
born between 1910 and 1960 and die randomly between 1961 and 1970. A realization of
each type of artificial data is shown in figs. 5.4A,B. I calculated the log-likelihood profile
for multiple realizations of artificial data of type 1 (Figure 5.4C). Interestingly, many of the
profiles show that the turnover rate could not be determined with high precision despite
the huge amount of added samples. On the contrary, for artificial data of type 2, all
realizations allowed a much preciser estimate of the turnover rate with only 5 additional
samples added (Figure 5.4D).

5.3. DISCUSSION

Spalding et al. (2013) fitted each scenario with the weighted LS method, i.e. by minimizing
the SSE:

SSE =
n∑

i=1

(C̃(tb,i , td,i ; r, f ) − Ci )2w2
i , (5.3)

where Ci is the measured 14C concentration in subject i which was born at tb,i and died
at td,i and wi is a weight. Depending on the mass of carbon extracted from a subject
they chose a weight of 1 perΔ14C (below 10 µg) or 2 perΔ14C (above 10 µg) to reflect
different measurement errors of the mass spectroscopy. Setting these weights to 1 and
2 arbitrarily, has consequences for the final result: To calculate CIs for the parameters,
the LS method can be interpreted as a special case of the more general ML method,
where one assumes an additive, normally-distributed noise error model (Burnham and
Anderson 2002; Hilborn and Mangel 1997; Olive et al. 2014). Importantly, for the CIs
and the AIC to be correct, the weights, wi , in eq. (5.3) have to be the inverse of the
measurement error, σ (Burnham and Anderson 2002; Olive et al. 2014).

Here, I used the data and the mathematical models from Spalding et al. (2013), but
I used the more general ML method instead of the LS method to infer cell turnover
dynamics (Burnham and Anderson 2002). I also assumed an additive, normally-distributed
noise model, which is a common assumption for biological systems (Hilborn and Mangel
1997; Kreutz et al. 2007). Please note that the source of this noise must not only be
expected to be measurement errors in mass spectroscopy. Two subjects which were
born and died at the same dates will show different 14C concentrations due to different
individual histories of the subjects, e.g. contact with radioactivity or eating habits. As
the individual histories of subjects are not explicitly modeled, they have to be taken into
account as a source of measurement error as well.

In both scenarios, the best fit values for turnover rate and fraction renewing are close
for the LS and the ML method and mostly agree within the 95% CI. However, for the
turnover rate in scenario 2POP the upper limit of the ML 95% CI is found to be very high
(Tables 5.1 and 5.2 and figs. 5.2 and 5.3). This points out that with the current data it is
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only sensible to give a lower limit for the amount of neuron turnover in the adult human
hippocampus. Hence, the turnover rate might be even higher than reported by Spalding
et al. (2013). On the contrary, the LS method shows a much larger CI for the fraction
renewing than does the ML method. The LS method might overestimate the size of the
CI as mathematically discussed below.

The weighted LS method can be interpreted as a special case of the ML method. This
can be seen in the following way: If one assumes one would know the measurement
errors, σi , in eq. (5.1), then the second term on the right hand side would be a constant
and maximizing the likelihood would be the same as minimizing the term

n∑
i=1

(
C̃i (tb,i , td,i ; r, f ) − Ci

σi

)2

. (5.4)

If one substitutes

wi =
1
σi

(5.5)

one gets eq. (5.3) for the SSE. Hence the turnover rate, r , and the fraction renewing, f ,
that minimize the SSE in eq. (5.3) are the same that maximize a likelihood with known
normally distributed noise, σi , if one substitutes the weights accordingly. One can use
relation (5.5) to transform the weights used by Spalding et al. (2013) in the LS method to
an assumed measurement error. Hence, the measurement error, σ, which is free and
fitted in the case of the ML method, is fixed to a particular value in the LS method: A
weight of 2 corresponds to σ = 1/ wi = 500‰. This is one order of magnitude higher than
the result from the ML method and is clearly outside the 95% CI for the measurement
error, σ (Tables 5.1 and 5.2). Furthermore, as the concentration of atmospheric 14C ranges
from approximately 0‰ to 800‰, noise in the order of σ = 500‰ appears unrealistically
high. If the measurement errors, σi , are assumed too high (and hence the weights,
wi , are assumed too low), the calculated CIs will be too large. This might explain the
larger 95% CI of the fraction renewing from the LS method (Table 5.2 and fig. 5.2).
Hence, using the ML method, I achieved higher precision for the estimate of the fraction
renewing by also using implicit information on the true noise level that is hidden in the
same data.

On the contrary, I could only determine a lower limit for the neuronal turnover rate
for scenario 2POP. Therefore, I estimated the additional number of subjects needed to
increase the precision in this estimate. I showed that this number highly depends on
when the subjects were born and when they died: Adding 100 subjects that died recently
does not guarantee an increase in precision (Figure 5.4C). On the contrary, as little as 5
subjects that died between 1961 and 1970 would lead to a huge increase in precision
(Figure 5.4D). However, whether samples from subjects that died more that 40 years
ago are still available, I cannot judge.

Spalding et al. (2013) reported the mass spectroscopy measurement errors to be
different for samples from different subjects. They defined small and large samples as
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those where the extracted mass of carbon was smaller or larger as 10 µg, respectively.
The authors reported the measurement errors of the mass spectroscopy to be ±4‰ and
±12‰ for large and small samples, respectively. Accordingly, they also used different
weights for large and small samples. In contrast, I used the same measurement error,
σ, for all samples, independent of the amount of carbon. I could have introduced and
fitted two different measurement errors, σsmall and σlarge, for small and large samples,
respectively. However, using the ML method I fitted σ = 30‰ for scenario 2POP
(Tables 5.1 and 5.2) which is nearly 3 times as big as the measurement error for small
samples. This can be explained, because, as noted previously, the measurement error, σ,
must not only include the mass spectroscopy measurement errors but also reflect errors
due to different individual histories of the subjects. As the fitted measurement error of
σ = 30‰ is considerably higher than the mass spectroscopy error of ±4‰ to ±12‰,
it appears unnecessary to weight small and large samples differently. Nevertheless, I
also fitted the data using an error model with two different measurement errors, σsmall

and σlarge for small and large samples, respectively.3 As expected, the measurement
errors, σsmall and σlarge, were not significantly different. Hence, the mass spectroscopy
measurement errors are of minor importance compared to other error sources.

5.4. CONCLUSION

In this chapter, I reanalyzed data by Spalding et al. (2013) of the 14C concentration in the
neuron genomic DNA of the adult human hippocampus. I used a mathematical model
of neuron turnover that was also developed by the same authors. This model can be
used to predict the 14C concentration. Contrary to Spalding et al. (2013), I used the more
general ML method and the AICc to perform the statistical inference. The ML method
allowed me to relax possibly unjustified assumptions by Spalding et al. (2013) through
using a more general error model.

Corroborating the previous results, I found that the model scenario 2POP, in which a
subpopulation of neurons undergoes constant turnover, is the best fitting model. I could
determine the fraction of renewing cells with higher precision. On the other hand, I could
show that the data do not allow to estimate an upper limit for the turnover rate. This
result implies that the number of generated neurons during adulthood might be even
higher than reported previously. I could show that adding data from only a few subjects
that died in the 1960s would increase the precision of the turnover rate estimation
substantially.

Spalding et al. (2013) investigated more model scenarios than the two scenarios I
chose to investigate here. In the future the other scenarios should also be investigated, to
test whether scenario 2POP really is the best fitting scenario. Furthermore, approaches
based on measuring and modeling the 14C concentration have been applied to other
tissues as well (Arner et al. 2010; Bergmann et al. 2009; Bergmann et al. 2012; Bhardwaj

3data not shown, available in the GitHub repository https://github.com/fabianrost84/C14
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et al. 2006; Ernst et al. 2014; Spalding et al. 2008). Similar to the results presented
here, future studies involving the 14C incorporation approach, could make use of the ML
method to perform the statistical inference.
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6. SUMMARY AND OUTLOOK

The aim of this thesis was to study how cell behaviors shape selected tissues and
let them grow during regeneration and development. This included the quantitative
measurement and description of cell behaviors, tissue shape and size changes, as well
as finding the mechanistic connection between cell behaviors, tissue shaping and growth
in terms of mathematical models. In particular, within chapters 3 to 5, I studied the
regeneration of axolotl spinal cord and muscle segments during tail regeneration, the
shape changes of muscle segments during zebrafish development, and neurogenesis in
the adult human brain.

In chapter 3 on axolotl tail regeneration, I quantified cell behaviors and tissue growth,
and developed a mechanistic model of how neural stem cell behaviors produce the
spinal cord outgrowth. In particular, I showed that while cell influx and neural stem cell
activation play a minor role, the proliferation in a zone that initially extends 800 µm anterior
to the amputation plane is the major driver of the regenerative spinal cord outgrowth.
Furthermore, I presented evidence that a similarly sized zone of mesenchymal progenitors
gives rise to the adjacent regenerating muscle segments.

In chapter 4, I quantified the shaping of muscle segments during development in
zebrafish. Motivated by previously reported cellular behaviors happening simultaneously
in the anterior segments, I had proposed the existence of a simple force-field that shapes
the muscle segments. I tested the plausibility of this hypothesis with a mechanical
model that correctly predicts the quantified segment shapes.

Chapter 5 was again concerned with the behavior of neural stem cells. There, I
refined the estimation of neuron turnover rates in a part of the adult human brain, the
hippocampus. My results mainly corroborated previous results, but I found that the rate
of neuron turnover in the adult human brain might be even higher than currently believed.

To achieve these results, I used quantitative data generated by image analysis, data-
driven mathematical models and statistical inference as the main tools. This demon-
strated the possibility to use mathematical models for a variety of purposes in develop-
ment and regeneration. These purposes include:

First, if it is not possible to measure interesting parameters directly, mathematical
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models enable the use of indirect experiments to estimate the parameters. Examples
include the estimation of cell cycle parameters from continuous BrdU labeling data as
seen in sections 3.2.4 and 3.3.1 as well as the estimation of neuron turnover from
genomic 14C concentrations in section 5.2.1.

Second, purely empirical mathematical models can be used to summarize datasets
by using only a few meaningful parameters. For instance, proliferation-related cell
number measurements in the axolotl spinal cord could be summarized using only a few
parameters that describe two spatial zones of proliferation (Section 3.2.4 and fig. 3.10).
Furthermore, an empirical model for the shaping of muscle segments during zebrafish
development allowed a short and summarized characterization of these shape changes
(Section 4.2.2 and fig. 4.6).

Third, mathematical models that formalize a mechanistic hypothesis can be used to
test the hypothesis on quantitative data. For example, in section 3.2.5, a mechanistic
outgrowth model verified that the quantified cellular behaviors are sufficient to generate
the observed spinal cord outgrowth. In section 4.3.3, I used a mechanical model to verify
that the observed spatiotemporal pattern of muscle segment shapes could be generated
by a simple mechanical force field.

Fourth, model predictions can help for experimental planning. This is exemplified by
the model-driven data analysis of spinal cord outgrowth in section 3.2.2 which predicted
an acceleration of the cell cycle. A detailed analysis of cell behaviors in section 3.2.4
verified this prediction. In section 5.2.2, I simulated and analyzed artificial data to predict
the minimal number of additional human samples needed for an improved estimation of
cell turnover parameters.

Common to all of these uses of mathematical models is that the models are designed
to understand the data: they are data-driven models. The comparison of data and model
was performed by statistical inference. Statistical inference requires us to model not only
the biological process but also the experiment, including to model the measurement
error. In chapter 5, I used published quantitative data and a mathematical model of the
underlying process and changed only the error model. This led to different results. This
highlights that we need to be very explicit and thoughtful about the statistical methods
we use when performing mathematical modeling of quantitative data in development
and regeneration. This remains an ongoing task for mathematical biologists.

In this sense also the models used in this thesis should be developed further. In
sections 3.2.4 and 3.3.1, I used a model for continuous BrdU labeling to estimate
cell cycle parameters. I assumed a normally distributed measurement error. But the
distribution of this measurement error should be modeled explicitly, taking into account
noisy cell cycle parameters and limited sample sizes. With such a model, one might
deduce not only the mean cell cycle parameters, but also their distribution across the
population. In practical experimental terms, a more explicit error model might also allow
using less data while achieving the same accuracy of estimates. The development of
such a model is a task for the future.

When Erwin Schrödinger investigated the question “What is life?” in 1943, he hardly
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used mathematics as “the subject was [. . .] too involved to be fully accessible to
mathematics” (Schrödinger 2008, p. 3). The questions tackled in this thesis treated only
one small aspect of life: Regeneration and development in terms of the underlying cell
behaviors. For this aspect, I used mathematics to gain new insights, making use of the
detailed data available nowadays. This might be a small step on the way to a quantitative,
mechanistic understanding of how cells behave to shape tissues and let them grow.
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B. SUPPLEMENTARY CALCULATIONS

B.1. OVERDAMPED DYNAMICS OF THE MECHANICAL MODEL OF
CHEVRON FORMATION

Assuming viscous damping, the overdamped equations of motion of our model system
follow from the energy equation given in fig. 4.7D as

∂αi

∂t
=

−1
cL2

∂E
∂αi

, i = 1. . .n, (B.1)

where I introduced the viscous damping coefficient c. Defining the dimensionless
energy,

Ẽ =
E

KxL2 , (B.2)

and the dimensionless time,
t̃ = t

c
Kx

, (B.3)

the dimensionless equations of motion read

∂αi

∂t
=

−∂En

∂αi
= −(2 + K )αi + αi−1 + αi+1, i = 1. . .n. (B.4)

As all segments are formed straight, the initial conditions read

αi (t = 0) = 0. (B.5)

A numerical solution of the equations of motion for 7 segments is shown in fig. 4.7F.
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B.2. MATHEMATICAL MODEL OF NEURON TURNOVER IN THE
ADULT HUMAN HIPPOCAMPUS

Here, I give the model equations that were developed by Spalding et al. (2013) and that
are needed for the statistical inference performed in chapter 5. The turnover model is
given by the transport equation

∂n(t, a)
∂t

+
∂n(t, a)

∂a
= −γ(t, a)n(t, a), (B.6)

where n(t, a) is the cell density (in units of cells/ age-interval), t is the age of the subject
(time after birth), a is the age of the cells and γ(t, a) is the cell death rate. The initial
condition n(−0.5, a) describes the cell population at 6 months prior to birth of the subject.
The boundary condition,

n(t, 0) = b(t), (B.7)

specifies the cell birth rate. After specifying the functional form of γ(t, a) and b(t) with
parameters p1, . . . , pk , eqs. (B.6) and (B.7) can be solved numerically to obtain the
predicted cell density, n(td − tb, a; p1, . . . , pk ) for a subject that was born at tb and died at
td . From that, the predicted average 14C concentration, C̃, of a subject can be calculated
by:

C̃(tb, td ; p1, . . . , pk ) =

∫ td −tb
0 Klag(td − a)n(td − tb, a; p1, . . . , pk )da∫ td −tb

0 n(td − tb, a; p1, . . . , pk )da
, (B.8)

where Klag(td − a) is the 14C concentration written in the DNA of cells with age a. As 14C
is mainly taken up via food it is reasonable to assume a delay between the atmospheric
14C concentration, K (t), and the 14C concentration written in the DNA of cells, Klag(t).
The simplest way to model this delay is to assume

Klag(t) = K (t − tlag). (B.9)

In accordance with Spalding et al. (2013), I use this form with tlag = 1 year. The authors
implemented different versions of the model, termed scenarios. Depending on the
complexity of the scenario, each scenario has a different number of parameters, k. By
fitting the scenario predictions to the measured 14C concentrations they estimated the
neuron turnover parameters and selected the best fitting scenario.

Here, I will focus on only two of the scenarios examined by Spalding et al. (2013),
namely the simplest scenario, termed A, and the scenario selected by Spalding et al.
(2013) as best fitting, termed 2POP. For both scenarios the total cell number and the cell
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death rate are assumed to be constant and hence

γ(t, a) = b(t) = r, (B.10)

where r is the turnover rate. In scenario A, all cells are replaced with a constant turnover
rate, r . Hence, r is the only model parameter in scenario A. In scenario 2POP, only
a fraction of cells, f , undergoes turnover at constant rate, r . Therefore, the model
parameters in scenario 2POP are r and f . Please note, that the special case of scenario
2POP in which f = 1 is identical to scenario A.
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