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Kurzfassung

Es gibt experimentelle und theoretische Hinweise, dass das Standardmodell der Teilchen-
physik trotz seines enormen Erfolgs selbst bei Energien deutlich unterhalb der Planck-
skala keine hinreichende Beschreibung des Universums ist. Das minimale supersym-
metrische Standardmodell, eine der vielversprechendsten neuen Theorien, die bedeu-
tende offene Fragen klären soll, sagt neben anderen neuen Teilchen zusätzliche neutrale
und geladene Higgsbosonen voraus. Bei der Suche nach den neuen schweren neutralen
Bosonen sind Zerfälle in zwei hadronisch zerfallende Tauleptonen besonders interessant,
da sie in großen Teilen des Parameterraums das zweitgrößte Verzweigungsverhältnis
haben und eine deutlich bessere Untergrundunterdrückung erlauben als für den führen-
den Zerfall in b-Quark-Paare. Diese Suche, basierend auf Proton-Proton-Kollisionen die
2015 und 2016 bei einer Schwerpunktsenergie von 13TeV vom ATLAS-Detektor am
Large Hadron Collider am CERN aufgezeichnet wurden, wird in dieser Dissertation
vorgestellt. Es wurden keine signifikanten Abweichungen von der Standardmodellvorher-
sage festgestellt und daher CLs-Ausschlussgrenzen berechnet, sowohl modellunabhängig
als auch in verschiedenen MSSM-Benchmark-Szenarien. Aufgrund von Verbesserungen
der Ereignisselektion und der Methoden der Untergrundabschätzung, sowie der höheren
Kollisionsenergie, sind die MSSM-Ausschlussgrenzen deutlich stärker als in vorherigen
Suchen. Die obere Grenze auf tan β im mmod+

h MSSM-Benchmark-Szenario reicht von
10 bei mA = 300 GeV bis zu 48 bei mA = 1.2 TeV bei einem Konfidenzniveau von 95 %.

Abstract

There are experimental and theoretical indications that the Standard Model of particle
physics, although tremendously successful, is not sufficient to describe the universe,
even at energies well below the Planck scale. One of the most promising new theories to
resolve major open questions, the Minimal Supersymmetric Standard Model, predicts
additional neutral and charged Higgs bosons, among other new particles. For the search
of the new heavy neutral bosons, the decay into two hadronically decaying tau leptons
is especially interesting, as in large parts of the search parameter space it has the second
largest branching ratio while allowing for a considerably better background rejection
than the leading decay into b-quark pairs. This search, based on proton-proton collisions
recorded at

√
s = 13 TeV in 2015 and early 2016 by the ATLAS experiment at the Large

Hadron Collider at CERN, is presented in this thesis. No significant deviation from the
Standard Model expectation is observed and CLs exclusion limits are determined, both
model-independent and in various MSSM benchmark scenarios. The MSSM exclusion
limits are significantly stronger compared to previous searches, due to the increased
collision energy and improvements of the event selection and background estimation
techniques. The upper limit on tan β at 95 % confidence level in the mmod+

h MSSM
benchmark scenario ranges from 10 at mA = 300 GeV to 48 at mA = 1.2 TeV.
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1. Introduction

Chapter 1

Introduction

The field of particle physics may be on the brink of discoveries with the potential to
significantly change our understanding of the universe. By international collaboration
involving the most complex experiments, the quest to learn about the cosmos, both
at the smallest and the largest scales, has advanced far. The Standard Model (SM)
[1–13], which describes the elementary particles and their interactions, is one of the
most precisely tested models in science. It not only describes most of the experimental
observations, but also, based on basic theoretical principles, predicted several new
discoveries in the last decades. Its last elementary building block, the Higgs boson, has
been discovered only recently at CERN, after a half-century long search [14, 15].

Despite its huge success, the Standard Model is unable to answer some of the key
questions of contemporary physics, for instance about the nature of dark matter. This
unknown source of gravity has a contribution to the total energy content of the universe
over five times higher than that of baryonic matter [16]. The hierarchy problem [17],
resulting in an unnaturally large fine-tuning of the bare Higgs mass, and the conjecture
of a grand unified theory are also motivating the search for new physics. Among the
existing theories which extend the Standard Model to include new phenomena aiming
to answer these questions, perhaps the most promising is Supersymmetry (SUSY).
It predicts many more elementary particles by introducing an additional symmetry
between bosonic and fermionic states. The concept of symmetry is very important for
particle physics, as it is deeply connected to conservation laws, as stated by Noether’s
theorem. Symmetries guided the development of the best models currently available.
One very popular model implementing SUSY is the Minimal Supersymmetric Standard
Model (MSSM), which is the most economic way to introduce SUSY in terms of particle
content. Besides the superpartners for each known elementary particle, it predicts
additional neutral (A, H) and charged (H±) Higgs bosons, which are a promising
gateway to new physics beyond the SM.

These new Higgs bosons are expected to be accessible by the currently largest
particle collider, the Large Hadron Collider (LHC) [18] at CERN, which recently
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1. Introduction

increased its proton-proton collision energy to an unprecedented 13 TeV. To observe the
increasingly complex interactions occurring in the collision of the LHC proton beams,
very sophisticated detectors, as well as large computational resources are necessary. The
ATLAS detector [19], one of the main experiments at the LHC, is capable of reliably
detecting these events.

Among the numerous decay channels of the hypothetical A/H Higgs particles, the
decay to two tau leptons is particularly interesting, as it is favored in large parts of
the search parameter space. Despite its higher branching ratio, the decay to a pair
of bottom quarks is much less sensitive due to its more difficult background rejection
and higher trigger thresholds. The tau is the only lepton able to decay to hadronic
final states and it does so in the majority of the cases. These hadronic decays have
similarities to the hadronic jets formed in the detector by highly energetic quarks
or gluons, which are many orders of magnitude more common in the proton-proton
collisions, making the background estimation very challenging. It is the goal of this
thesis to search for additional heavy neutral Higgs bosons decaying to two hadronically
decaying tau leptons in proton-proton collisions recorded by the ATLAS detector during
the first year of LHC operation at a center-of-mass energy of 13 TeV. Similar searches,
based on LHC data recorded at collision energies of 7 TeV and 8 TeV as well as at other
collider experiments, did not find any evidence of new physics in this search channel
[20–27]. Although the integrated luminosity of the data used for this new search is only
about half as large as in the previous search at the LHC, a sensitivity gain is expected,
as the increase in cross section is up to about one order of magnitude, especially at high
mass (∼ 1 TeV), depending on the production process and additional model parameters.
Furthermore, significant improvements to the analysis methods are presented in this
thesis, resulting in an additional sensitivity advantage.

The document is structured as follows. After an overview of the theoretical foun-
dations and the motivation of this work in Chapter 2, the Large Hadron Collider and
ATLAS experiment are described (Chapter 3). In Chapter 4, the reconstruction of the
physics objects that are used in this search is discussed. The event selection, aiming to
increase the discovery significance, is the topic of Chapter 5. A key aspect of this data
analysis is the estimation of the background, which is detailed in Chapter 6. Chapter 7
provides details on the effect of systematic uncertainties on the analysis. The statistical
method and its results are presented in Chapter 8. Finally, a summary of the findings
and comparison to other recent results is given in Chapter 9.

In this thesis, natural units are used for mass, energy, momentum and spin, i.e. ~ = c = 1.
Details specific to ATLAS internal software are listed in Appendix D.
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2. Theoretical Foundations

Chapter 2

Theoretical Foundations

During the last decades, an enormous amount of experimental data have been collected
in the field of particle physics. These observations have been made possible by substantial
technological progress and the dedication of thousands of physicists around the world.
It is at least as important to interpret this data and a significant effort involving some
of the most famous physicists of the 20th and 21st century has brought the field a huge
step towards the ultimate goal, a model consistent with all observations – a theory
of everything. The building of this model is an iterative process. New observations
prompt the invention of new or the extension of existing models. Good models make
predictions, which the experiments are striving to confirm or reject. It is the goal of
this thesis to test such a prediction experimentally. This chapter gives a summary of
the current state of the models which motivated this work.

2.1 The Standard Model of Particle Physics

The Standard Model (SM)1 is a gauge quantum field theory with the gauge symmetry
SU(3)C × SU(2)L × U(1)Y , describing the electroweak and strong interactions. It is
a combination of quantum chromodynamics (QCD) [1–5], described by SU(3)C with
color charge C, and electroweak theory [6–8], a unification of weak and electromagnetic
interactions, described by the SU(2)L×U(1)Y symmetry with the weak isospin ~T (only
present for left-handed fermions and right-handed antifermions) and hypercharge Y .

Elementary particles arise as excitations of quantum fields. The SM has 12 fermions,
particles with half-integer spin that follow Fermi-Dirac statistics, which constitute the
known matter particles. They are further divided into leptons, which do not participate
in the strong interaction, and quarks, which have color charge and therefore undergo
strong interaction. One further distinguishes charged leptons and neutrinos. Each

1This section gives a brief overview of the SM, more detailed descriptions can be found e.g. in Refs.
[28–30].
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2.1. The Standard Model of Particle Physics

fermion has an antiparticle, which besides opposite charges has the same properties.2

The bosonic fields of the SM, adhering to Bose-Einstein statistics, give rise to gauge
bosons of spin 1 and the Higgs boson of spin 0. Gauge bosons act as mediators of
interactions. The massless photon enables electromagnetic interactions (QED U(1)Q).
The massive W+, W− and Z bosons are responsible for weak interactions. W± bosons
only couple to left-handed fermions and right-handed antifermions (parity violation).
Finally, the strong interaction is mediated by eight massless gluons, which carry different
sets of color and anticolor charges. A distinctive feature of QCD is that the coupling
strength becomes smaller with decreasing distance (or increasing momentum scale),
the asymptotic freedom. On the other hand, at low energy all quarks have to form a
color singlet, a phenomenon called color confinement. The force between quarks within
a color singlet grows as their distance increases, preventing free colored states. When
the gluon field between the separating quarks reaches a high enough energy, a new
quark-antiquark pair is created, resulting in two color singlets. In contrast to W±, Z
and gluons, photons do not self-interact at tree level (leading order of perturbation
theory), as they are uncharged. Fermions of the standard model appear in 3 generations,
which have similar properties, besides the mass. Most of the luminous matter in the
universe consists of the charged first generation particles: up and down quarks and
electrons, as the more massive second and third generation particles tend to decay to
lighter ones. An overview of the properties of all SM elementary particles is given in
Table 2.1.

The SM Lagrangian can be divided into four terms, which are summarized in the
following:

LSM = Lgauge + Lf,kin + LHiggs + Lf,mass. (2.1)

Kinetic gauge boson term Lgauge Below, there is an overview of the SM symmetry
groups, their generators and the associated gauge fields with their field strength and
couplings.

• U(1)Y : generated by hypercharge Y , coupling g′, gauge field Bµ with field strength
Bµν = ∂µBν − ∂νBµ

• SU(2)L: generated by three 2×2 matrices T a = σa/2 (σa: Pauli matrices), coupling
g, gauge fields W a

µ with field tensor F iµν = ∂µW
i
ν − ∂νW i

µ − gεijkW j
µW

k
ν (εijk:

Levi-Civita pseudotensor)

• SU(3)C : generated by eight 3× 3 matrices tC , coupling gs, gluon fields ACµ with
field strength GAµν = ∂µAAν − ∂νAAµ − gsfABCABµACν (fABC : structure constants
of SU(3))

2It is not yet clear whether neutrinos have antiparticles. Maybe they are their own antiparticles
(Majorana neutrinos) [31, 32].
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2.1. The Standard Model of Particle Physics

name mass electric
charge Q

weak isospin
TW3

color charge C

Fermions
Quarks
u up 2.2 MeV

2
3 + 1

2 r,g,bc charm 1.27 GeV
t top 173.21 GeV
d down 4.7 MeV

− 1
3 − 1

2 r,g,bs strange 96 MeV
b bottom 4.18 GeV
Leptons
νe electron neutrino unknown

0 + 1
2 —νµ muon neutrino unknown

ντ tau neutrino unknown
e electron 511 keV *

-1 − 1
2 —µ muon 105.7 MeV *

τ tau 1.777 GeV *
Bosons

γ photon 0 0 0 —
W± W bosons 80.385 GeV ±1 ±1 —
Z0 Z boson 91.19 GeV * 0 0 —
g gluons 0 0 0 8 color combinations
H Higgs boson 125.1 GeV 0 — —

Table 2.1: Elementary particles of the Standard Model [28]. Masses marked with * have
been measured to higher precision and are rounded here for brevity.

With these, the kinetic gauge term can be written as:

Lgauge = −1
4BµνB

µν − 1
4F

a
µνF

aµν − 1
4G

A
µνG

Aµν .

Kinetic fermion term Lf,kin The term describing the interaction of fermions with
the gauge fields and free fermion fields is:

Lf,kin =
∑
f

iψ̄fγ
µDµψf .

In the sum over the fermion Dirac fields, the parity violation is considered by
omitting right-handed neutrinos and expressing the right-handed charged fermions
as singlets: eR, uR, dR. Furthermore, there are left-handed doublets for quarks, qL =
(uL, dL)T, and leptons, `L = (νL, eL)T. Terms for the second and third generations are
analogous. There are significant flavor changing charged currents (interactions across
generations) in the quark sector, enabled by a mixing of the mass eigenstates of the
down-type quarks (by convention) to form the corresponding eigenstates of the weak
interaction. This mixing is implemented by the Cabibbo–Kobayashi–Maskawa matrix
[9, 10], which is unitary and has four degrees of freedom (three mixing angles and a
complex phase leading to CP violation). A similar mixing occurs in the lepton sector

5



2.1. The Standard Model of Particle Physics

with the Pontecorvo–Maki–Nakagawa–Sakata matrix [33, 34] which leads to neutrino
oscillation. This is a consequence of neutrinos having nonzero (but very small, still
unmeasured) mass.

Some of the terms of the gauge covariant derivative Dµ appear only for some of the
fields:

Dµ = ∂µ + ig′Y Bµ + igT aW a
µ︸ ︷︷ ︸

for left-handed doublets

+ igst
AAAµ︸ ︷︷ ︸

for quarks

. (2.2)

Evaluating Lf,kin for the left-handed lepton doublet `L yields:

−g2 (ν̄, ēL) γµ
[
−g
′

g
Bµ +

(
W 3
µ W 1

µ − iW 2
µ

W 1
µ + iW 2

µ −W 3
µ

)](
νL

eL

)
.

One can see that the off-diagonal terms of the matrix yield flavor-changing interactions.
These can be related to the physically observed W± bosons: W± = 1/

√
2
(
W 1
µ ∓ iW 2

µ

)
.

Similarly, the Bµ and W 3
µ fields (resulting in flavor conserving interactions) mix to

yield the photon Aµ and Z boson by rotation in the space of the left-handed doublet:

(
Aµ

Zµ

)
=
(

cos θW sin θW
− sin θW cos θW

)(
Bµ

W 3
µ

)
.

By requiring that the photon does not couple to neutrinos, one can show how the weak
mixing angle depends on the electroweak couplings:

tan θW = g′

g
.

The relationship of the electric charge to hypercharge and isospin is given by the
Gell-Mann-Nishijima equation [35, 36]:

Q = T3 + Y

2 .

The local SU(2)L × U(1)Y gauge invariance postulation is not compatible with
massive gauge bosons. In case of Aµ, this is consistent with the observation, however the
nonzero masses of the W± and Z bosons break the symmetry. Any mass terms inserted
ad hoc into the Lagrangian violate renormalizability. Also mass terms for fermions break
the symmetry due to the asymmetry between left-handed and right-handed states.

2.1.1 The Higgs Mechanism

In 1964 a solution to the mass problem was developed by Guralnik, Hagen and Kibble
[11], Brout and Englert [12], as well as Higgs [13]. By the process of spontaneous
symmetry breaking, the Lagrangian stays invariant under the gauge symmetries, while

6



2.1. The Standard Model of Particle Physics

the vacuum state does not and thus the masses for the gauge bosons are generated
while keeping the theory renormalizable. This method was implemented by Salam [8]
and Weinberg [7] into the electroweak theory proposed by Glashow [6], which is often
considered as the birth of the Standard Model. The Higgs mechanism introduces a
scalar Higgs field φ, which is an SU(2)L doublet and has no color charge. It can be
parametrized as:

φ =
(
φ+

φ0

)
,

with complex fields φ+ and φ0. The Higgs potential is

V (φ) = µ2φ†φ+ λ(φ†φ)2,

where for spontaneous symmetry breaking to occur, µ2 must be negative and λ ≥ 0.
This has nonzero minima at the vacuum expectation value (VEV) v:

v =

√
−µ2

λ
.

The potential is shown in Fig. 2.1.

v vRe(φ0) Im(φ0)

V (φ0)

Figure 2.1: Visualization of the Higgs potential.

In the unitary gauge the doublet can be written in its common parametrization:

φ = 1√
2

(
0

v + h

)
,

where three degrees of freedom are absorbed as longitudinal components of W± and Z,

7



2.1. The Standard Model of Particle Physics

effectively giving them their masses. The remaining degree of freedom h is interpreted as
the Higgs boson, an excitation of the Higgs field. After spontaneous symmetry breaking
a U(1)Q symmetry of the ground state remains, so the photon stays massless, as
observed. The kinetic and potential Higgs field terms of the Standard Model Lagrangian
(Eq. 2.1) are:

LHiggs = (Dµφ)†(Dµφ)− V (φ),

where the covariant derivative Dµ includes the coupling terms g and g′ (see Eq. 2.2).
Terms proportional to v2 in the kinetic part reveal the masses of the gauge bosons (at
tree level):

mW = gv

2 , mZ = gv

2 cos θW
, mγ = 0.

Hence, the vacuum expectation value can be measured without knowing the Higgs
mass: v = 246 GeV. The Higgs mass (from the bilinear h term) is

mh =
√

2λv.

The fermions gain mass by interaction with the Higgs field, called Yukawa interaction:

Lf,mass = −ye ¯̀
L
iφieR − ydq̄LiφidR − yuεij q̄Liφ∗juR + h.c.

Terms proportional to v are interpreted as mass terms, e.g.

Le,mass = yev(ēLeR + ēReL)√
2

= yevēe√
2

and thus the electron mass in dependence of the Yukawa coupling ye is

me = yev√
2

(and similar for the down-quark mass). For the up-quark additionally the asymmetric
tensor εij is introduced to generate the mass. It is not clear yet how the neutrino masses
are generated. A mass term via Yukawa interaction similar to up-quarks is possible
when introducing sterile neutrinos [37]. Alternatively they could have Majorana mass,
if they are their own antiparticles. Models where neutrino masses are generated by both
Dirac and Majorana mechanisms exist (Seesaw).

2.1.2 Success and Shortcomings of the Standard Model

The SM has 19 free parameters3, which have all been measured. The parameters are
the masses of the charged fermions, the gauge couplings, the CKM mixing angles and

3Parameters related to the neutrino masses and mixing are neglected here, as the corresponding
mechanism is still unclear.
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2.1. The Standard Model of Particle Physics

CP-violating phase, QCD vacuum angle4 and the Higgs vacuum expectation value and
Higgs boson mass. Some of these parameters belong to the most precisely measured
observables in science. Not only is the SM a good description of particles and their
interaction, but also it has considerable predictive power. For instance it predicted the
existence of W and Z bosons. Even their masses could be predicted based on previous
measurements of the weak mixing angle. The discovery of these bosons in 1983 at
CERN [39–42] was a huge success of the model. Also the gluon was predicted before
its 1979 discovery at DESY [43–46]. Other successful predictions include the existence
of the charm and top quarks. The most recent confirmation of a half-century old SM
prediction is the Higgs observation at ATLAS and CMS in 2012 [14, 15]. Furthermore,
the SM is tested by high precision measurements, which can also be sensitive to physics
beyond the SM. One of these very accurately tested predictions is the anomalous
magnetic moment of the electron. Its current measurement has a relative uncertainty
of the order of 10−10 and agrees well with the calculation [47].

This huge success of the SM is also a motivation to study and eliminate its short-
comings. An obvious problem is the omission of gravity. The apparent incompatibility
of QFT and general relativity means a combined theory probably has to be based on a
new theoretical framework. String theory [48], currently the best contender of a theory
of everything, still lacks falsifiability. However, at energies that are small compared to
the Planck scale gravity is negligible, making the SM a viable effective theory in that
regime.

The SM also does not describe dark matter, a form of non-baryonic matter which
does not interact significantly with electromagnetic radiation and comprises 27 % of the
total energy content of the universe, over five times more than ordinary matter [28]. Dark
matter has been indirectly observed, for instance by measuring the rotational velocity
of objects orbiting galactic centers, which is expected to be indirectly proportional
to
√
r (radius of orbit around galactic center, r). Instead, the velocity is observed to

be approximately constant at large radii, which implies the existence of an invisible
source of gravity forming a halo around the galactic center [49, 50]. Other dark matter
measurements are based on gravitational lensing and cosmic microwave background
anisotropies [16]. While the hypothesis that dark matter consists of as yet undiscovered
particles is currently most actively searched for, alternative theories exist (e.g. [51, 52]).

Another important phenomenon that the SM fails to describe in a sensible way is
dark energy, which makes up most of the energy content of the universe. Estimates of the
vacuum energy density from QFT, which is expected to contribute to the cosmological
constant, are at least 40 orders of magnitude too large compared to the observed bounds
[53].

Even more open questions exist, for instance: Why are there three fermion genera-
4The QCD vacuum angle is a parameter that allows for violation of CP-symmetry in QCD. QCD

CP-violation has not been observed and limits on the electric dipole moment of the neutron constrain
this parameter to very small values [38].

9



2.2. Monte Carlo Simulation

tions? Why is there such a large asymmetry between baryonic and antibaryonic matter
in the universe? Why are the values of the SM parameters as they are?

Indications for discrepancies between SM prediction and measurements exist as well.
One of them is the anomalous magnetic dipole moment of the muon, currently showing
a 3.6σ tension between theory and experiment [28, 54].

Finally, there is the hierarchy problem [17], which is concerned with the large
differences between the energy scales, e.g. between electroweak scale and the Planck
scale. This leads to very large quantum corrections to the Higgs mass and this results
in an amount of fine-tuning of the bare Higgs mass that is considered unnatural.

These problems necessitate new physics beyond the SM and there are good reasons
why such a new theory should be accessible at TeV scales and thus might be observable
at the LHC.

2.2 Monte Carlo Simulation

Calculations of kinematic observables based on the Lagrange density of the SM are in
most cases too complex to perform analytically, particularly for the QCD processes of
the proton-proton collision. The many possibilities of parton interactions and a high
collision energy lead to a large phase space of initial and final states. Instead, events
are modeled using Monte Carlo simulation, carried out in several steps. The structure
of the event generation is visualized in Fig. 2.2.

At first, the scattering amplitudes (related to the cross section), appearing as
elements of the S-matrix, are calculated perturbatively for the hard scattering, based
on the Feynman rules of the model. The matrix elementMab→X of partons a and b
resulting in state X, calculated up to a fixed order of αs, is connected to the hadronic
cross section σ using the factorization theorem [56]:

σ(pp→ X) =
∑
a,b

1∫
0

dxadxb
∫

dΦnf
h1
a (xa, µF )fh2

b (xb, µF ) |Mab→X |2(Φn;µFµR)
2xaxbs

.

(2.3)
This is a convolution of the squared matrix element, |M|2, with the parton distribution
functions (PDFs), f , of partons a and b in their respective hadrons h1 and h2. The
differential phase space element dΦn enforces momentum conservation and includes the
possible final state configurations. The PDFs have been measured at certain momentum
scales. Their value at different scales is obtained using the DGLAP evolution equation
[57–59]. The factorization scale µF and renormalization scale µR are arbitrary and
usually chosen as a characteristic scale of the process, e.g. the transverse momentum
of a final state particle or a resonance mass. A residual dependency on µF and µR

emerges, as the perturbative series is truncated at a certain order of αs, resulting in a
systematic uncertainty of the cross section.
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Figure 2.2: Visualization of the stages of event generation (dark red: hard scattering,
light red: parton shower, light green: hadronization, dark green: decay, yellow: QED
bremsstrahlung, purple: underlying event) [55].

Both initial and final state partons develop parton showers by successive gluon
emissions, gluon splittings and quark pair production (called initial state radiation –
ISR and final state radiation – FSR). This is modeled iteratively, where the probability
and shape of each branching is determined by the Sudakov form factor and the splitting
kernels [38]. Eventually, this process is aborted when the interaction scale evolution,
determined by the DGLAP equations, has dropped below the hadronization scale,
usually chosen at the order of 1 GeV. Initial state radiations are usually modeled using
the corresponding reverse evolution instead. Electromagnetic corrections, i.e. QED
bremsstrahlung, are usually simulated separately.

To avoid double counting of jets that might be modeled both by matrix element
and parton shower, these regimes need to be merged using dedicated algorithms, for
instance CKKW (Catani-Krauss-Kuhn-Webber [60, 61]) or MLM [62].

The partons resulting from the parton shower have to be combined to form colorless
hadronic states. As the hadronization is a non-perturbative process, it is simulated
with empirical models, which free parameters are obtained from measurements. Finally,
the decays of unstable hadrons and leptons are simulated. These are mostly well known
from calculations and measurements.

Additional hard parton-parton interactions occur due to the compositeness of the
primary protons. These multiple parton interactions (MPI) are described with dedicated
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2.3. The Minimal Supersymmetric Extension of the Standard Model

semi-empirical models.
While particle-level studies can give insight in kinematic distributions and effects

of systematic uncertainties arising from generator parameters, a simulation of the
generator response has to be performed to compare the Monte Carlo generated events
to recorded events. At ATLAS this simulation is performed using the Athena software
framework [63]. Particle propagation and interaction with the detector material is
performed by Geant4 [64]. An alternative fast simulation algorithm exists, which
is less precise but more economical with computing resources [65]. Pile-up events,
i.e. proton-proton interactions happening simultaneously to the main hard scattering,
are simulated separately as minimum-bias events and their energy depositions are
superimposed to the main event. The multiplicity distribution of pile-up events is
chosen to match the expected distribution in data. Afterwards, the expected detector
response to the energy depositions is simulated. The following event reconstruction is
the same as for recorded events and is described in Chapter 4.

2.3 The Minimal Supersymmetric Extension of the Stan-
dard Model

Symmetries are very important in particle physics and closely accompany the devel-
opment of the SM. Exploring additional symmetries consistent with current results
often leads to important insights or discoveries. Supersymmetry (SUSY) is a spacetime
symmetry relating fermionic and bosonic states.5 Such transformations can only be
implemented by spinorial operators Qa (with spin index a):

Qa |J〉 = |J ± 1/2〉 ,

which therefore carries a spin of 1/2 itself. Based on the Haag-Lopuszanski-Sohnius
extension of the Coleman-Mandula theorem [67, 68], one can construct the algebra
of these operators. The irreducible representations of the SUSY algebra are called
supermultiplets, containing the bosonic and fermionic states, which are their respective
superpartners. The SUSY generators commute with the four-momentum generator of
spacetime displacements Pµ,

[Qa, Pµ] =
[
Q†a, P

µ
]

= 0 ,

and therefore the masses of the superpartners have to be the same, if SUSY is unbroken.
Additionally the SUSY generators commute with the SM generators of the gauge
transformations, which means the superpartners have the same charges of SU(3)C ×

5The summary given in this section follows the description in Refs. [17, 66].

12



2.3. The Minimal Supersymmetric Extension of the Standard Model

SU(2)L ×U(1)Y . Furthermore, there are the following anti-commutation relations:

{Qa, Qb} =
{
Q†a, Q

†
b

}
= 0 ,{

Qa, Q
†
b

}
= σµabPµ,

where σµ are the Pauli matrices.
There are two possible supermultiplets for SM extensions. Chiral supermultiplets

contain a two-component Weyl fermion (massless) of spin 1/2 and a complex scalar
(spin 0). On the other hand, gauge supermultiplets have a Weyl fermion and a vector
boson (spin 1). Only fermions from chiral supermultiplets can have different gauge
transformations for left-handed and right-handed states and therefore all SM fermions
have to be in chiral supermultiplets. Their spin-0 superpartners are called squarks,
sleptons and sneutrinos. There are left-handed and right-handed sleptons and squarks,
where the handedness refers to their superpartners. They exhibit the same gauge
interaction properties as their SM counterparts, i.e. right-handed sfermions do not
couple to W bosons.

Due to its spin, the Higgs boson has to be part of a chiral supermultiplet as well.
However, more than one Higgs supermultiplet is necessary to avoid gauge anomalies.
Another reason is that in SUSY only Higgs with hypercharge Y = +1/2 can couple to
up-type quarks, while Y = −1/2 only couple to down-type quarks and charged leptons.
Therefore in the MSSM an additional complex Higgs doublet is introduced. The Higgs
superpartners are called higgsinos.

The SM gauge bosons are part of gauge supermultiplets and their fermionic super-
partners are called gauginos, specifically gluino, bino and winos. Analogous to the W 3

and B mixing, a wino and the bino mix to form a zino and photino.
Remarkably, if SUSY is unbroken, the hierarchy problem is solved, as the superpart-

ner loop contributions to the Higgs mass cancel each other out. However, none of the
predicted superpartners has been discovered so far, which means they can not have the
same mass as their SM counterparts and thus SUSY has to be spontaneously broken.
This means there is a vacuum state that is not invariant under SUSY transformations,
leading to higher masses of the predicted superpartners. The mechanism of SUSY
breaking is not clear, so for the time being it is implemented by explicitly symmetry
breaking terms in the Lagrangians and separating its origin from its effects. The MSSM
includes soft symmetry breaking, with a SUSY breaking scale not much larger than
1 TeV. This is the preferred method, as the residual fine-tuning of the Higgs mass
grows with the SUSY breaking scale and in this case would still be small enough for
the hierarchy problem to be commonly considered as solved. Therefore the lightest
superpartners are expected not above the TeV scale, which is a big motivation to search
for SUSY at the LHC.

Another intriguing property of the MSSM is the possibility of the unification of
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gauge couplings at some energy scale. The running of the gauge couplings, i.e. the change
of these couplings with the energy scale, is determined by the renormalization group
equations. As this evolution depends on the particles that contribute to higher order
corrections, in SUSY the running of gauge couplings changes above the SUSY breaking
scale, where superpartners contribute. In the MSSM the couplings meet almost exactly
around a scale of 1016 GeV, as shown in Fig. 2.3 with a comparison to the SM evolution.
This unification would strongly indicate the existence of a grand unified theory, i.e.
a bigger symmetry group describing a unified force with one common coupling. This
is another strong argument for SUSY and for the MSSM in particular, as the gauge
unification depends on the particle content and requires a SUSY breaking scale below
a few TeV.
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Figure 2.3: Evolution of inverse gauge couplings in the MSSM (blue and red lines, for
different sparticle masses) and SM (dashed lines) [17]. Note that if there is really a
unification and a GUT exists, at energies above the unification there is only one running
coupling.

In the MSSM an additional symmetry is introduced, which adds the multiplicatively
conserved quantum number R-parity:

R = (−1)3(B−L)+2s.

It depends on the baryon number B, the lepton number L and the spin s. It is added to
prohibit interactions that are strongly limited by experimental evidence. In particular
it forbids the decay of the proton, which mean lifetime is currently measured to be at
least 1029 years [28]. All discovered particles have R = +1, while their superpartners,
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the sparticles, have R = −1. This means only even numbers of sparticles can be
involved in an interaction. From R-parity conservation it also follows that the lightest
sparticle (LSP) must be stable and all sparticle decays have to have an odd number of
sparticle decay products (eventually LSPs). LSPs with electric charge are experimentally
disfavored [69]. For instance, charged LSPs would be likely incorporated in ocean water
and searches for heavy hydrogen-like atoms set stringent limits. Strongly interacting
LSPs are also disfavored. So there is good reason to expect the LSP to be an only
weakly interacting massive particle (WIMP) and therefore an excellent candidate for
dark matter. In the MSSM the best LSP candidate is a neutralino, which is a mixing
among bino, neutral wino and higgsinos.

2.3.1 Phenomenology of the MSSM Higgs Sector

The two Higgs doublets Hu (weak hypercharge Y = +1/2) and Hd (Y = −1/2) can be
written as:

Hu =
(
H+
u

H0
u

)
, Hd =

(
H0
d

H−d

)
.

Then the tree-level scalar potential is [17, 66]

V =
(
|µ|2 +m2

Hu

) (
|H+

u |2 + |H0
u|2
) (
|µ|2 +m2

Hd

) (
|H0

d |2 + |H−d |
2
)

+
[
b
(
H+
u H

−
d −H

0
uH

0
d

)
+ h.c.

]
+ 1

8
(
g2 + g′2

) (
|H+

u |2 + |H0
u|2 − |H0

d |2 − |H−d |
2
)2

+ 1
2g

2|H+
u H

0∗
d +H0

uH
−∗
d |

2.

Here, µ is the higgsino mass parameter and the terms proportional to mHu , mHd

and b are soft SUSY breaking contributions. The charged components H+
u and H−d

can not get VEVs. This can be seen after an SU(2)L gauge transformation such that
H+
u = 0 at the minimum of the potential (∂V/∂H+

u = 0), which implies that also H−d = 0
and thus U(1)Q remains unbroken. In order for spontaneous symmetry breaking of
SU(2)L × U(1)Y to occur, V must have a lower bound and H0

u and H0
d should have

nonzero VEVs. This is fulfilled when

2b < 2|µ|2 +m2
Hu +m2

Hd
and

b2 >
(
|µ|2 +m2

Hu

) (
|µ|2 +m2

Hd

)
,

which also means that m2
Hu
6= m2

Hd
. Often m2

Hu
= m2

Hd
is assumed at large scales (e.g.

in minimal supergravity mSUGRA [70]), but the renormalization group evolution of
mHu can make it negative around the electroweak scale.

The VEVs are then determined by ∂V/∂H0
u = ∂V/∂H0

d = 0. The resulting VEVs
vu =

〈
H0
u

〉
and vd =

〈
H0
d

〉
are restricted by experiment as they generate the W and Z
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masses:
v2
u + v2

d = v2

2 = 2m2
W

g2 ≈ (174 GeV)2.

The ratio of the VEVs is usually defined as

tan β ≡ vu
vd
.

The two complex Higgs doublets have eight degrees of freedom. Like in the SM,
three of them are the longitudinal degrees of freedom of the W and Z bosons (with
corresponding would-be Goldstone bosons G± and G0). Thus, there are 5 remaining
scalar Higgs mass eigenstates, the CP-even h and H, two charged H± and a CP-odd
A. At tree level these are related to the gauge eigenstates as:(

H+
u

H0
u

)
=
(

sin βG+ + cosβH+

vu + 1/
√

2
(
cosαh+ sinαH + i sin βG0 + i cosβA

)) ,
(
H0
d

H−d

)
=
(
vd + 1/

√
2
(
− sinαh+ cosαH − i cosβG0 + i sin βA

)
− cosβG− + sin βH−

)
.

The mixing angle α that diagonalizes the mass matrix of h and H is determined by:

sin 2α
sin 2β = m2

H +m2
h

m2
h −m2

H

and tan 2α
tan 2β = m2

A +m2
Z

m2
A −m2

Z

, (2.4)

and α is usually chosen to be −π/2 < α < 0.

Then the masses of the Higgs bosons can be written as:

m2
h,H = 1

2

(
m2
A +m2

Z ∓
√(

m2
A −m2

Z

)
+ 4m2

Zm
2
A sin2(2β)

)
, (2.5)

m2
H± = m2

A +m2
W .

Therefore at tree level the MSSM Higgs mass spectrum depends on two unknown
parameters, usually chosen as tan β and mH± or mA. By convention mh < mH and
while mA, mH , mH± can get arbitrarily large, there is an upper bound for mh (following
from Eq. 2.5):

mh < mZ |cos(2β)| .

Large quantum corrections increase that bound up to about 135 GeV, making it com-
patible with the 125 GeV Higgs discovery. These corrections are mainly driven by top
and stop loops. The largest radiative correction depends on the mixing angle α, the stop
masses and the stop mixing angle. Therefore the 125 GeV Higgs discovery indirectly
restricts these parameters, requiring a large stop mixing and/or large stop masses.

The couplings of the Higgs also depend on α and β. The running masses of the SM
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fermions are

mu,c,t = 1√
2
yu,c,tv sin β, md,s,b = 1√

2
yd,s,bv cosβ and me,µ,τ = 1√

2
ye,µ,τv cosβ.

Based on these and the requirement that the Yukawa couplings should not become
non-perturbatively large, one can set rough limits on tan β:

1.2 . tan β . 65.

An interesting special case is the decoupling limit, where mA � mZ . Then α ≈ β − π
2

and the heavy Higgs bosons become almost degenerate: mA ≈ mH ≈ mH± . It also
enhances the compatibility of the 125 GeV Higgs discovery with the MSSM h. The α
and β dependencies of the heavy neutral Higgs couplings to SM fermions are:

Hbb̄, Hτ+τ− ∝ cosα
cosβ −−−−−−→

mA�mZ
tan β,

Htt̄ ∝ sinα
sin β −−−−−−→

mA�mZ
− cotβ,

Abb̄, Aτ+τ− ∝ tan β,

Att̄ ∝ cotβ.

The heavy CP-even Higgs decouples from the SM vector bosons for heavy A:

HW+W−, HZZ ∝ cos(β − α) −−−−−−→
mA�mZ

0.

In the decoupling limit the h couples to SM particles like the SM Higgs. However,
compared to the SM Higgs, the h has additional couplings involving the additional
Higgs bosons and sparticles and therefore the production cross sections and decay width
can differ.

2.3.2 Signal Monte Carlo Event Samples

The τ+τ− decay of the heavy neutral Higgs is enhanced with tan β. In that parameter
range the coupling of H to W and Z is suppressed, unless mA is rather small. The A
can not couple to W and Z at tree level due to CP invariance. Therefore the Higgs
production via the vector boson fusion and Higgsstrahlung processes, which have some
significance for SM Higgs measurements, is negligible in this case. Gluon-gluon fusion,
the main SM Higgs production process at the LHC, is important in the MSSM as well.
However, at high tan β the top Yukawa coupling is suppressed, so the tan β-enhanced
b-quark contributions to the quark loop are more important. For the same reason,
top-associated Higgs production (tt̄H) plays a minor role and instead b-associated
production becomes the dominant Higgs production process at high tan β. Additionally,
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in the gluon-gluon fusion production of the CP-even Higgs bosons, sparticles (mainly
stop and sbottom) contribute to the loop, which lowers the cross section in the parameter
space of interest (high mA, high tan β) [71]. The study presented in this thesis considers
the two main production mechanisms – b-associated production and gluon-gluon fusion,
which Monte Carlo generation is described below. The Feynman graphs of important
production processes are shown in Fig. 2.4.

g

g

b,t h/H/A

(a) gluon-gluon fusion

g

g

b

b

h/H/A

(b) b-assoc., 4-flavor

g

b

b

b

h/H/A

(c) b-assoc., 5-flavor

Figure 2.4: Examples of important MSSM Higgs production tree level Feynman dia-
grams.

b-associated Higgs production There are two common ways to calculate high-
energy processes involving b-quarks: four-flavor and five-flavor scheme [72, 73]. In the
five-flavor scheme, the bottom quark mass is neglected and it is treated similarly to
the light partons and thus appears as initial state with its parton density function
in the factorization theorem (Eq. 2.2). In the four-flavor scheme, the b-quark mass
is not neglected, but it does not appear as initial state parton. Both methods have
computational advantages and disadvantages, depending for instance on the typical
scale of the process [73]. The two approaches yield equivalent results at high order, but
can differ significantly at (low) fixed order.

For this study, the process is generated using a process module with calculations
described in [73], embedded in the MadGraph5_aMC@NLO generator software
package (version 2.1.2) [74]. This generator calculates the hard process including next-
to-leading order (NLO) QCD corrections and employs the four-flavor scheme, which
was found to be superior in this case, as the matching to the parton shower yields better
results. The narrow-width approximation is employed, which neglects the Higgs decay
width. This is valid for the study presented here, as the reconstructed mass resolution
is generally significantly larger than the decay widths predicted by the MSSM with
the parameter sets considered in this search. The parton shower is simulated with
Pythia 8.210 [75] and the matching of matrix element and parton shower is performed
using the MC@NLO method [76].

Due to the occurrence of top-quark loops at NLO, interference terms appear in the
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four-flavor scheme cross section [73]:

σ4FS
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)
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The relative importance of σy2
b
and σybyt depends on the model hypothesis, in particular

on mA and tan β. At high tan β the ybyt contribution is small and therefore neglected
for this search. This affects only potential kinematic differences between the σy2

b
and

σybyt generation, as the total cross section is scaled to the prediction to be tested (see
Sect. 2.3.3). The analytic results of the four-flavor scheme and five-flavor scheme are
combined using Santander matching [77].

The four-flavor scheme PDF CT10nlo_nf4 [78] is utilized for the hard process
calculation. For the parton shower the NNPDF23_lo PDF [79] is used.

Due to the matching of the matrix element and parton shower, to avoid double
counting of emissions, the event samples contain negatively weighted events. The fraction
of these events in the generated samples is around 40 %, which reduces the effective
number of events by factor ∼ 5 and thus increases the relative statistical uncertainty
∼ 25-fold. Therefore a large number of generated events of the order of one million per
mass hypothesis is required, which entails a large computational cost, especially for the
simulation of the ATLAS detector response. To alleviate the computational effort, the
fast ATLAS simulation AtlFast-II [65] is utilized. One sample (mA/H = 400 GeV) was
produced additionally with full simulation and the comparison showed no statistically
significant differences in the reconstructed Higgs mass spectrum.

Gluon-gluon fusion The gluon-gluon fusion event samples are generated at NLO
using the Powheg-Box generator framework [71], which applies the POWHEG method
(acronym: positive weight hardest emission generator), and Pythia 8.186 for the parton
shower generation. The PDF for the matrix element generation is CT10 [78], while for
the parton shower CTEQ6L1 [80] is applied. The simulated Higgs decay width ranges
from 1 % at 300 GeV to 3 % at 1.2 TeV. These values were chosen to be close to the
widths predicted by the mmod+

h scenario (described in the next section) in the tan β
range of the expected sensitivity limit of the search. Their calculation was performed
with FeynHiggs [81–86].

Samples were generated separately for the τlepτhad
6 and τhadτhad Higgs decays. The

mass hypotheses and the respective event sample sizes are listed in Table 2.2. Due to
the higher signal selection efficiencies, it is possible to reduce the sample size for Higgs
masses above 0.5 TeV without significant increase in statistical uncertainty.

6The leptonic tau decay, τ → eν̄eντ or τ → µν̄µντ is denoted as τlep and τhad is the notation for all
decays with mesons in the final state.

19



2.3. The Minimal Supersymmetric Extension of the Standard Model

mass hypotheses in GeV number of events per sample [×103]
gluon-gluon fusion b-associated production

300, 350, 500 50 900
400 50 1250
600, 700, 800, 1000, 1200 40 750

Table 2.2: The Higgs mass hypotheses for which signal Monte Carlo samples were
generated and their respective sample size.

2.3.3 MSSM Benchmark Scenarios

While at leading order the MSSM Higgs sector is determined by only mA and tan β,
higher order corrections depend on a larger parameter set. A scan of the whole parameter
space is unfeasible, therefore only the mA and tan β parameters are varied within a few
well-motivated parameter sets, the so-called benchmark scenarios.

In this Higgs search CP-odd A and CP-even H are not distinguished. The sig-
nal components (i = gluon-gluon fusion, b-associated production) are scaled to the
combined cross section multiplied by the ττ branching ratios:

σi(pp→ A)× BR(A→ ττ) + σi(pp→ H)× BR(H → ττ).

The benchmark scenarios explored in this search are described in the following.
Calculations of the cross sections and branching ratios for a range of mA − tan β
points are supplied by the LHC Higgs Cross Section Working Group [87]. Besides for
the hMSSM scenario [88, 89], the Higgs masses, α mixing and branching ratios are
calculated with FeynHiggs 2.10.2 [81–86]. Based on these, the SusHi [90] software
is applied to calculate the inclusive cross sections of the gluon-gluon fusion process.
This includes supersymmetric QCD corrections up to next-to-leading order [91, 92],
NNLO QCD top quark corrections in the heavy-top limit [93, 94], as well as electroweak
contributions of light quarks [95, 96]. The cross section of the b-associated production is
calculated in the five-flavor scheme with SusHi at NNLO QCD based on [97] and in the
four-flavor scheme at NLO QCD as described in [98, 99]. Details of the technical setup
and the values of the input parameters of these tools (in particular the SM masses and
decay widths) are given in Ref. [87].

The mmax
h scenario This scenario is one of the oldest commonly used parameter

sets. It is designed to maximize the mass of the light CP-even Higgs in the decoupling
limit [100] and was already used in the MSSM Higgs searches at LEP [20]. As it was
already known by the LEP2 limits that the lightest Higgs would be relatively heavy for
the MSSM and the 125 GeV Higgs had not been discovered yet, the mmax

h scenario was
also one of the main benchmarks in LHC Run 1.7 However, portions of the mA − tan β

7LHC Run 1 is the first period of data taking, between 2009 and 2013.
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parameter space are disfavored by the 125 GeV discovery and only the relatively large
theoretical uncertainty of about 3 GeV of the MSSM mh prediction ensures that a
significant portion of the parameter space is still unexplored. The benchmark is included
here in a slightly updated version [101] for comparison with earlier results.

The mmod
h scenario This benchmark takes into account the 125 GeV discovery and

the parameters are chosen so that a large portion of the mA − tan β space (tan β & 6)
is compatible with the measured mh ± 3 GeV [101]. There are two variants, mmod+

h and
mmod−
h , where the + and − correspond to the sign of the stop mixing parameter Xt. It

is one of the most commonly used benchmarks in early LHC Run 2.8 Heavy neutral
Higgs production cross sections and ττ branching ratios for the mmod+

h are shown in
Fig. 2.5.

The light stop scenario While the mmod
h scenario achieves the radiative corrections

to mh by a relatively high stop mass (MSUSY = 1 TeV) and a moderate stop mixing
parameter, it is possible to accommodate significantly lighter stop masses MSUSY =
500 GeV by increasing the stop mixing. The experimental limits on the stop masses
depend on the mass of the lightest neutralino χ̃0

1, but even for mχ̃0
1
that maximize these

limits, the current ATLAS results [102–105] still allow for stop masses below 1 TeV. Due
to the larger stop mixing, the stop contributions to the loop in the gluon-gluon fusion
process become more important, reducing the gluon-gluon fusion cross section compared
to for instance mmod

h . The benchmark is in agreement with mh = (125± 3) GeV for
tan β & 10, but in contrast to mmod

h , a moderate reduction in theoretical uncertainty
would raise that limit significantly [101].

The light stau scenario The presence of relatively light staus increases the diphoton
decay width of the lightest CP-even Higgs. This benchmark [101] was partially motivated
by a slightly higher h→ γγ signal strength in early Higgs results compared to the SM
prediction [14, 15]. Recent results do not show such excess [106, 107], but also do not
exclude an enhanced diphoton rate. The light stau benchmark is compatible with the
Higgs mass measurement for tan β & 5.

The tau-phobic scenario This benchmark [101] considers the effects of the mixing
between the CP-even MSSM Higgs bosons. The chosen parameter set results in relatively
light staus and significantly different couplings to down-type fermions compared to
the other benchmarks. As the name suggests, the branching ratios to tau leptons are
reduced in most of the parameter space. The parameter space at tan β & 48 is disfavored
by the 125 GeV Higgs observation.

8LHC Run 2 data taking started in 2015 and is planned to stop in 2018.
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The hMSSM scenario The hMSSM benchmark [88, 89] takes into account the
recent experimental results, especially the Higgs mass and the indication that squark
and gluino masses are probably not significantly below 1 TeV. It was shown that under
certain well-motivated assumptions [87] ignoring the radiative corrections to the Higgs
masses is a good approximation given the experimental and theoretical uncertainties.
As the hMSSM benchmark is compatible to the Higgs observation by design, also low
values of tan β, which are disfavored by most common benchmarks, can be explored
(down to tan β ≈ 1). At low mA there is an area of the mA − tan β plane where the
hMSSM is ill defined. However, this region is anyway already excluded by LHC searches
and also indirect limits from the couplings of the observed Higgs exclude low masses of
the heavy MSSM Higgs bosons. The masses and α mixing angle in the hMSSM are
simply given by Eqs. 2.5 and 2.4. The branching ratios are calculated with HDECAY [108].
Effective cross sections for the gluon-gluon fusion and b-associated Higgs production
processes in the hMSSM scenario are shown in Fig. 2.6.

Fig. 2.7 shows the ratio of the effective cross sections of gluon-gluon fusion over
the sum of b-associated production and gluon-gluon fusion in the hMSSM scenario. It
demonstrates the large importance of b-associated production at high tan β. The other
scenarios show very similar signal compositions.

2.3.4 Experimental Constraints on the MSSM Higgs Sector

The first important experimental constraints on the MSSM Higgs sector come from
searches conducted at the LEP experiments [20]. These searches are sensitive to the main
Higgs production mechanisms at the LEP electron-positron collider: Higgsstrahlung
(e+e− → HZ or hZ) and pair production (e+e− → AH or Ah). These processes are
suppressed for high tan β at heavy Higgs masses above mZ , therefore the LEP result
is sensitive to low tan β, which limits have still not been fully surpassed by the LHC
experiments. The Tevatron searches for b-associated MSSM Higgs production [21–23]
were the first to explore the high tan β region at masses above 93 GeV. These early
limits from LEP and Tevatron are shown in Fig. 2.8.9

Already with an integrated luminosity of 36 pb−1 recorded at
√
s = 7 TeV by each

ATLAS and CMS in 2010, the collaborations were able to surpass the Tevatron limits
in searches for τ+τ− resonances [24, 25], see Fig. 2.9.

A combination of the results of most search channels based on the complete LHC
Run 1 data set for each ATLAS and CMS [26, 27], displayed in Fig. 2.10, shows
significant progress in covering the mA − tan β plane, with di-tau decay channels
covering the high-tan β region up to 1 TeV and low-mA/low-tan β limits by searches
for di-boson Higgs decays.

9 For the mmax
h variant of the Tevatron limit in Fig. 2.8 the higgsino mass parameter µ is negative,

while the LEP limit plot, as well as the search presented in this thesis, use a positive µ value in mmax
h .

The difference between the limits of these mmax
h variants is generally very small.
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Figure 2.5: Heavy neutral Higgs production cross sections and ττ branching ratios for
the mmod+

h MSSM benchmark scenario. The numbers are provided by [87].
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Figure 2.6: Sum of heavy neutral Higgs production cross sections multiplied by ττ
branching ratios for the hMSSM benchmark scenario. The numbers are provided by
[87].
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Figure 2.7: Ratio of the sums of heavy neutral Higgs production cross sections multiplied
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in the mmax
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95 % CL, while the dark green area has a CL of 99.7 %. The dashed line in Subfig. (a)
is the expected upper limit at 95 % CL.
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Figure 2.9: Exclusion limits from MSSM Higgs searches at ATLAS [24] and CMS [25]
in the mmax

h benchmark scenario, based on data recorded in 2010 at a center-of-mass
energy of 7 TeV.
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Figure 2.10: Exclusion limits from MSSM Higgs searches at ATLAS [26] and CMS [27]
in the hMSSM benchmark scenario, based on data recorded in LHC Run 1.

Indirect constraints on the MSSM Higgs sector come from the measurement of the
125 GeV Higgs mass and its couplings, from search limits on sparticle masses, as well as
electroweak precision measurements and astrophysical experiments. There are efforts
to study how a combination of many of these experimental results influences the status
of the MSSM, e.g. Ref. [109].
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Chapter 3

The ATLAS Experiment

The CERN particle physics laboratory near Geneva (Switzerland) is by far the biggest of
its kind and hosts experiments responsible for important discoveries, like theW , Z (1983,
UA1/2 collaborations [39–42]) and Higgs boson (2012, ATLAS and CMS collaborations
[14, 15]). These major scientific advancements have been enabled by technological
breakthroughs, many of which have also happened at CERN (e.g. stochastical cooling,
van der Meer [110]). Currently the focus of CERN is on the proton collider physics
program at the Large Hadron Collider. The LHC and its pre-accelerators, as well as its
performance at the beginning of LHC Run 2 is described in Sects. 3.1 and 3.3. ATLAS
belongs to the most sophisticated particle physics detectors to date. An overview of its
properties is given in Sect. 3.2.

3.1 The Large Hadron Collider

The LHC [18, 111] is a synchrotron accelerator that collides protons at four interaction
points. It is located up to 175 m below the surface and crosses the Franco-Swiss border.
With a circumference of 27 km it is currently the largest particle collider. It is designed
to achieve a center-of-mass energy

√
s of 14 TeV. After the operation of the Large

Electron Positron collider (LEP) ended in 2000, the LHC installation started, reutilizing
the LEP tunnel.

The 1232 superconducting dipole magnets, cooled by liquid helium to 1.9 K, bend the
counter-rotating proton beams with magnetic fields up to 8.3 T. Quadrupole magnets
in alternating focusing and defocusing configuration (FODO cells) keep the transverse
size of the beam small. Further corrections of the beams are performed by sextupole,
octupole and decapole magnets.

Besides the center-of-mass energy, the luminosity is a key performance parameter
of any accelerator. At colliders it can be calculated as

L = nbN
2
b fγF

4πεβ∗ , (3.1)
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depending on the number of bunches per beam nb, the number of protons per bunch Nb,
the revolution frequency f , the relativistic factor of the protons γ, the beta function at
the crossing point β∗, the transverse normalized emittance ε and a geometric reduction
factor F arising due to the crossing angle. The event rate of a given process is given by
its cross section multiplied by the luminosity. Multiplying with the integrated luminosity
Lint =

∫
T Ldt gives the total number of expected events occurring in a given time T .

During Run 1 (2009-2013) the collider delivered an integrated luminosity of about
6 fb−1 at a center-of-mass energy of 7 TeV and 23 fb−1 at 8 TeV [112] to the main
experiments ATLAS [19] and CMS [113]. Furthermore, lead-lead ion and lead-proton
collisions are part of the LHC physics program. After the Long Shutdown 1, a 2 years
long maintenance period (2013-2014), the collider started to operate at a center-of-
mass energy of 13 TeV, a new accelerator record. Magnet quenches (the sudden loss of
superconductivity of a magnet, induced by a deposition of a relatively small amount
of energy ∼ mJ) result in loss of beam and potential damage [114]. When increasing
the current (and therefore the magnetic field and beam energy) after the magnets have
been warm for some time (like during the Long Shutdown 1), quenches occur more
often due to mechanical disturbances. After the magnets underwent a certain number
of quenches (training), the quench rate drops and the magnet is ready for nominal use.
As the training would take longer and reduce the integrated luminosity in the first
years of Run 2 (2015-2018), it was decided to postpone the 14 TeV operation until later
in Run 2 or Run 3 [115].

The LHC design luminosity is 1034 cm−2 s−1, which was surpassed in July 2016.
While the highest number of proton bunches per beam at that time was 2064 and
therefore smaller than the design value of 2808, the beta function β∗ at the ATLAS
interaction point was 0.4 m, significantly smaller than the anticipated value of 0.55 m
of the design report [116]. The transverse normalized emittance ε reached values as low
as 3.40 µm rad at the start of the fill (design value 3.75 µm rad). The number of protons
per bunch was within about 10 % of the planned value of 1.15× 1011. In 2015 the bunch
spacing was reduced from 50 ns to 25 ns, which is the best possible configuration.

As the LHC, like all synchrotrons, has a limited energy range, determined primarily
by the capabilities of its magnets, protons have to be injected into the ring with
a significant kinetic energy and are then further accelerated to the collision energy.
The pre-accelerator complex [117], consisting of updated older CERN accelerators, is
depicted in Fig. 3.1. As a first step, protons (extracted from H2 gas) are accelerated to
50 MeV in the linear accelerator LINAC2 [118], which has been operated since 1978
and was upgraded in 1993 to increase the intensity. It is planned to be replaced by
LINAC4 [119] in 2020, which started operation in 2013 and will enable a significant
increase of LHC luminosity after 2025 (HL-LHC [120]). The protons are then injected
into the Proton Synchrotron Booster (PSB) [121], a circular accelerator with a diameter
of 50 m, which has four beam pipes on top of each other and is in operation since 1972.
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Originally it had a final energy of 800 MeV and was upgraded to 1.4 GeV [122] to meet
the requirements of the LHC. The proton energy is further increased to 25 GeV by
the Proton Synchrotron (PS), which is 200 m in diameter. It is the oldest of CERNs
main accelerators, with first beam in 1959, but has been improved several times since
then and supplied beams of a wide range of different particles to many of the most
important accelerators and experiments at CERN [123]. Finally, the last pre-accelerator,
the Super Proton Synchrotron (SPS) brings the protons to 450 GeV and two separate
transfer lines and injectors get them into the LHC. The SPS is the second largest
accelerator at CERN with a circumference of 7 km. Its use as a collider resulted in the
discovery of W and Z bosons in 1983. Contrary to the LHC, all pre-accelerators rely on
conventional electromagnets (operated at room temperature). Significant upgrades to
all pre-accelerators are being implemented to prepare for the high luminosity operation
of the LHC [124].

Figure 3.1: Schematic overview of the current CERN accelerator complex, with year of
first operation and circumference in parentheses ([125], cropped)

3.2 The ATLAS Experiment

The ATLAS collaboration, today consisting of about 5300 members of 94 different
nationalities [126], was founded by the merge of the ASCOT and EAGLE proto-
collaborations. After the formal proposal (“Letter of Intent” 1992 [127]) and a technical
proposal in 1994 [128], it was officially approved by CERN and construction started
in 1997. The detector is situated in a cavern at “Point 1”, the LHC interaction point
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closest to the main campus. Its cylindrical form around the interaction point results in
a large angular acceptance. With a height of 25 m and length of 44 m, it is the largest
detector at the LHC [19]. An overview of the detector is shown in Fig. 3.2. The main
detector systems are reviewed in the following sections.

Figure 3.2: A schematic view of the ATLAS detector and its subsystems [129].

ATLAS is commonly described in a coordinate system with the origin at the nominal
interaction point. In Cartesian coordinates the beam pipe is located around the z-axis
and the x-axis is parallel to ground level, pointing towards the center of the LHC ring.
Usually the detector and reconstructed particles are given in polar coordinates (see
Fig. 3.3), with the azimuthal angle φ (measured from the x-axis in the transverse plane).
Instead of the polar angle θ (measured between the z-axis and the radius vector), most
of the time the pseudorapidity η, defined as

η = − ln tan
(
θ

2

)
is used, as differences in η are invariant under longitudinal boosts for particles with
large Lorentz factors.

In Fig. 3.4 it is visualized how the pseudorapidity depends on the polar angle.
The angular separation of physics objects is usually expressed as the distance in the
η–φ-plane:

∆R =
√

(∆φ)2 + (∆η)2.

30



3.2. The ATLAS Experiment

z

y

x

interaction point

θ

φ

Figure 3.3: The ATLAS coordinate system.
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Figure 3.4: Visualization of pseudorapidity η and polar angle θ [130].

3.2.1 The Inner Detector

The Inner Detector is dedicated to the measurement of charged particle trajectories
and vertices. It is installed closest to the beam pipe up to a radius of 1.15 m. A strong
magnetic field of 2 T, generated by the central solenoid, permeates the Inner Detector,
which allows for the reconstruction of charged particle momentum and charge using
the track curvature induced by the Lorentz force. The large number of particles per
event, resulting in a considerable amount of radiation, as well as the high track density
(particularly within high energy jets), place severe requirements on the design of the
Inner Detector. The three subdetectors, shown in a schematic cutaway view in Fig. 3.5
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are described in the following.

Pixel detector The innermost detector, the Pixel, has four cylindrical layers of
silicon pixel arrays (up to a radius of 12 cm) and three disks of pixel modules on each
side (15 cm outer radius). Ionizing particles are detected as they create electron-hole
pairs in the semiconductor pixels. The very fine granularity of the over 92 million
readout channels results in a very small impact parameter and vertex resolution as low
as a few µm (cf. Sect. 4.1). The innermost pixel layer is called the Insertable B-Layer
(IBL) [131] and was added as part of the detector upgrade program in Long Shutdown
1. To get the IBL as close as only 3.3 cm to the beam, also the beam pipe had to
be replaced. This additional sensory information in proximity of the beam yields a
significant improvement in secondary vertex reconstruction efficiency and resolution and
therefore positively affects b-tagging and τhad identification performance (cf. Chapter 4).
The IBL will also reduce the loss of efficiency that is expected due to radiation damage,
especially affecting the layer that was closest to the beam before the upgrade. As the
current Inner Detector is not going to be able to withstand the radiation damage and
was not designed to reconstruct the large number of tracks expected at the HL-LHC, it
is planned to be completely replaced with a new system in 2024 [132].

Semiconductor Tracker (SCT) The SCT consists of four cylindrical layers between
30 cm and 51 cm from the beam, as well as nine disks (28 cm < radius < 56 cm) on
each end-cap. The detection principle is similar to the Pixel, but the cathodes have the
form of strips, which reduces the number of readout channels, of which the SCT has
6.3 million. Charged particle trajectories usually cross eight SCT strips, corresponding
to four space points, as each strip misses position information in one dimension, which
is recovered by small-angle stereo strips (strips rotated by 40 mrad relative to the
others). The Pixel and the SCT are often called the Silicon Detectors and each have a
pseudorapidity acceptance of |η| < 2.5.

Transition Radiation Tracker (TRT) The TRT is the outermost tracking detector
and covers pseudorapidities of |η| < 2.0. It consists of long drift tubes of 4 mm diameter
and provides a track measurement in the R − φ plane. They are filled with a gas
mixture of 70 % xenon, 27 % carbon dioxide and 3 % oxygen. To reduce the cost of gas
leaks, in some regions xenon is replaced by argon [133]. The gas is ionized by charged
particles passing through the tube and the resulting free electrons drift in the electric
potential between the straw walls and the gold-plated tungsten anode wire (32 µm
in diameter) in the middle of the straw. Highly relativistic particles emit transition
radiation when crossing media with different dielectric constants. In the TRT this is
achieved by thin polypropylene fibers and foils between the tubes. These highly collinear
photons are absorbed by the xenon gas, facilitated by its high atomic number, and the
increased measured current enables the discrimination of electrons and particles with
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lower Lorentz constant γ, in particular charged pions. This information is also utilized
in the distinction of hadronically decaying tau leptons against jets initiated by hard
quarks or gluons.

Figure 3.5: Schematic view of the Inner Detector [134].

3.2.2 The Calorimeters

As shown in Fig. 3.6, ATLAS has several calorimetry systems installed around the
Inner Detector. The goal is to absorb all particles besides muons and neutrinos within
the calorimeters and measure their energy. A large pseudorapidity acceptance up
to |η| = 4.9 enables a precise measurement of the missing transverse momentum.
The energy is measured using sampling calorimeters, which have alternating layers of
absorber material and active medium. This design has a worse energy resolution due to
the passive layers, but is more cost-effective than homogeneous calorimeters.

Electromagnetic Calorimeter (ECAL) The ECAL, dedicated primarily to induce
and measure electromagnetic showers, is installed around the Inner Detector. It consists
of a barrel part (EMB) at |η| < 1.5 and an end-cap part (EMEC) at each side, covering
pseudorapidities up to |η| = 3.2. Its outer radius is 2 m. Liquid argon (LAr) is utilized
as active material with lead absorbers in an accordion geometry. There are three layers,
each segmented into cells in η − φ. Most of the energy is deposited in the second layer,
which has by far the biggest radial or longitudinal size. The granularity decreases with
the distance to the interaction point. In the high pseudorapidity regions (2.5 < |η| < 3.2)
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Figure 3.6: Schematic view of the ATLAS calorimeters [135].

there are only two layers, with coarser granularity. The energy is determined by the
ionization current measured by the copper and kapton electrodes in the middle of the
4 mm wide LAr gaps. Energy that was absorbed by material upstream of the ECAL
can be estimated by the presampler, an additional thin layer of LAr in front of the
EMB and EMEC at |η| < 1.8.

Hadronic Calorimeter (HCAL) For measurement of hadronic particle showers,
there are three systems: the Tile calorimeter, the hadronic end-cap calorimeter (HEC)
and the forward calorimeter (FCal). The Tile calorimeter is installed outside the ECAL
and has an outer radius of 4.25 m and is located at pseudorapidities up to |η| = 1.7.
It uses steel as absorber material and plastic scintillator tiles as active medium. The
scintillator tiles are read out by photomultipliers at the end of wavelength shifting
fibers. There are three layers of Tile cells, which η−φ granularity decreases towards the
outside. Additional thin modules are placed in the gap between barrel and extended
barrel part to reduce the energy loss due to this transition. The Tile calorimeter has
three in-situ calibration systems: a laser, a charge injector and a radioactive Caesium
source.

The HEC covers 1.5 < |η| < 3.2 and has four layers on each side. Its absorber
copper plates (25-50 mm) are separated by 8.5 mm LAr gaps. Each LAr gap has three
separate electrodes, allowing the measurement in four separate LAr drift zones.

The FCal is located around the beam pipe on both sides in the very forward region
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of the detector (3.1 < |η| < 4.9). It has three layers with copper as absorber in the first
one and tungsten being used in the outer two layers. The active material is LAr, which
is filled in thin tubes with coaxial electrode copper rods.

Before the start of HL-LHC it is planned to replace the LAr and Tile calorimeter
electronics, to enable the operation at high luminosities (radiation tolerance, trigger
rates) [136].

3.2.3 The Muon Spectrometer

Besides neutrinos, which very rarely interact within the detector, muons are the only
particles that are usually not absorbed in the calorimeters and are supposed to be
detected by the outermost part of the detector – the muon spectrometer (see Fig. 3.7).
It measures their momentum in |η| < 2.7 using the curvature of the trajectories induced
by the toroidal magnetic fields with a bending power up to 7.5 T m. Muons with
pT < 3 GeV are likely to be absorbed before reaching the muon spectrometer. There

Figure 3.7: Schematic view of the ATLAS muon systems [137].

are three layers of Monitored Drift Tube chambers (MDTs) in the barrel and end-caps
which provide the precision measurement of the momentum in |η| < 2.7. The MDTs
consist of an arrangement of cylindrical drift chambers of 3 cm diameter, filled with a
gas mixture of argon and carbon dioxide (97/3 %) at 3 bar. The free electrons arising
due to ionization are collected by an axial tungsten-rhenium anode. In the inner layer of
the end-cap (2.0 < |η| < 2.7) Cathode-Strip Chambers (CSCs) are installed instead of
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MDTs, due to their superior time resolution and capability to handle a higher particle
flux. The CSCs are multiwire proportional chambers with an Ar/CO2 mixture of 4:1
and a square grid of cathode strips and anode wires. Additionally, there are detector
systems dedicated to muon triggers, the Resistive Plate Chambers (RPC) in the barrel
and Thin Gap Chambers (TGC) in the end-caps. Their fast signal time makes them
well suited as a trigger system. They are also used to complement the MDT and CSC
measurements by an additional coordinate. The RPC has three layers that are in front,
in between and behind the MDT layers. It operates by measuring the avalanches that
occur due to the high voltage between two resistive plates separated by 2 mm spacers.
The four layers of TGCs are multiwire proportional chambers filled with a highly
quenching gas mixture.

3.2.4 Trigger Systems

With a collision rate of up to 40 MHz and due to limitations in data storage and detector
readout bandwidth, it is impossible to write out every event. Furthermore, the huge
majority of events is of minor interest, as they originate from processes that are either
well known or have such a huge cross section that a small subsample is sufficient to
study them. On the other hand, the events of major interest are usually very rare
and it is important to record as many of them as possible. Therefore it is essential
to have a trigger system with a fast and efficient event selection. The ATLAS trigger
system has been significantly upgraded in Long Shutdown 1 to cope with the more
demanding conditions in LHC Run 2 [138, 139] (higher beam energy and luminosity).
In a first stage, the Level 1 trigger has about 2.5 µs to send the trigger decision to the
detector buffers and has to reduce the rate by usually over two orders of magnitude
to 100 kHz (significant improvement compared to 70 kHz before the upgrade). There
are three Level 1 subsystems. One is L1Calo, which uses calorimeter information of
reduced granularity to trigger electrons, photons, hadronic tau decays, jets and (missing)
transverse energy. The other system with a direct detector interface is L1Muon, which
primarily uses TGC and RPC information to make fast decisions on muon trigger items.
In the central L1 trigger system, the information of L1Calo and L1Muon is received
and the final decision is made. For this it can also use the recently added L1Topo
that combines information from multiple L1Calo and L1Muon objects as well as their
kinematics (e.g. angular separation, invariant mass).

Events accepted by any Level 1 trigger, are further processed by the High Level
Trigger (HLT), which operates on the full event information (or in some cases on
regions of interest pre-selected by the Level 1 trigger). While the Level 1 trigger uses
custom-made electronics based on FPGAs, the HLT runs on a conventional computer
cluster and has about 0.2 s on average to decide. The target average HLT rate is 1 kHz,
a significant improvement compared to 0.6 kHz in LHC Run 1.

The set of active triggers usually changes during the data taking, as the intensity of
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the beam changes. Trigger items may be prescaled, i.e. a specified fraction of positive
trigger decisions is randomly ignored, which makes it possible to use triggers which
unprescaled rates are too high to record their events.

A fast tracker trigger system (FTK) [140] that provides tracking information to the
HLT is being prepared for operation later in Run 2. Among others, this will benefit tau
and b-jet triggers. Another important pending upgrade will improve the granularity of
calorimeter information available to L1Calo [141] and therefore also benefit tau triggers.
It will be installed during Long Shutdown 2 (2018-2019).

3.3 Data Recorded at the Beginning of LHC Run 2

The data utilized for this thesis was recorded between the 16th of August 2015 and
the 10th of July 2016. ATLAS records data in runs, periods of recording where usually
most of the detector configuration is unchanged (besides trigger thresholds, which have
to be adjusted to the change of luminosity during the LHC fill). In nominal operation
there is one run per LHC fill. ATLAS runs are divided into luminosity blocks, which are
approximately two minutes long. As described in Chapter 5, some luminosity blocks
are excluded from the analysis for various reasons. The total integrated luminosity is
determined by summing the values of the considered luminosity blocks. The luminosity
measurement is mainly based on the LUCID-2 detector, which was installed in 2013 [142].
It measures Cherenkov radiation in quartz close to the beam pipe using photomultipliers.
Other means of luminosity determination exist. Currently also the Beam Conditions
Monitor (BCM) [143] and the inner detector (e.g. via counting of tracks) are able
to measure the luminosity bunch by bunch. Furthermore, the calorimeters provide
luminosity information integrated over many bunches. The ALFA detector [144] will
also provide absolute luminosity measurements.

Data recorded earlier in 2015 with 50 ns bunch spacing are not considered for this
analysis, as they correspond to a small integrated luminosity and would have to be
analyzed separately due to differences in calibration. A small fraction of the integrated
luminosity delivered by LHC (∼5-10 %) was not recorded by ATLAS, due to temporary
problems with detector components or dead time. During 2015, for technical reasons
the IBL had to be disabled during two runs. The corresponding data (0.2 fb−1) is not
considered for this search. Also, data recorded while the toroid magnet was disabled is
discarded for this analysis. Fig. 3.8a shows the evolution of the integrated luminosity
of the dataset (after filtering of “bad” luminosity blocks, see Sect. 5.1). The peak
luminosity per day, see Fig. 3.8b, increased over the period of data taking, as the LHC
operation was iteratively optimized, for instance by gradually increasing the number of
bunches per beam. With increasing luminosity also the number of interactions occurring
per bunch crossing (in-time pile-up) goes up. The distribution of the average number of
interactions per bunch crossing 〈µ〉 for this data set is shown in Fig. 3.9. Monte Carlo
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simulated events are weighted such that their 〈µ〉 distribution matches that of data.
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Figure 3.8: Growth of the recorded integrated luminosity (a) and the peak luminosity
per day (b) during the data taking from 16th of August 2015 to 10th of July 2016.
Only the data analysed for this search is considered.
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Chapter 4

Physics Object Reconstruction

The unprocessed output of the ATLAS detector or its simulation is not suitable for
most physics analyses. Instead, reconstruction and identification algorithms are applied
to combine information from multiple detector components and distinguish objects
from each other. This chapter describes these algorithms for the physics objects relevant
for the analysis presented in this thesis.

4.1 Low-Level Objects

Most high-level object reconstructions are based on tracks, primary and decay vertices,
and calorimeter clusters. To reconstruct the trajectories of charged particles, the Inner
Detector hits, caused by energy losses along the flight path of particles, are associated
to form tracks. In ATLAS, the tracks of primary charged particles are built using
inside-out track finding [145, 146]. This algorithm is seeded using information of the
innermost layers of the Pixel detector and then follows the general direction to the
outer layers of the Inner Detector to build track candidates. Afterwards, a Kalman
filter is applied iteratively to all hits associated to the track candidate and outlier
hits are rejected. The amount of misidentified trajectories and tracks with shared hits
is reduced using dedicated ambiguity solving algorithms. In a last step the track is
extended to the TRT and fitted together with the track from the silicon detectors. The
resulting track has five parameters, which consist of the location on a plane, as well as
two angles and the curvature of the trajectory. Additionally, outside-in track finding is
performed, which is seeded in the TRT and directed towards the silicon detectors. In
particular, this recovers tracks from decays of long-lived particles that decay beyond the
silicon detectors. Based on track quality criteria like the number of silicon hits, tracks
are usually filtered further for the reconstruction of higher level physics objects. The
commonly used “loose” track quality selection results in reconstruction efficiencies over
90 %, with dependencies on the pseudorapidity and track transverse momentum, pT
[147]. Important track properties are the transverse and longitudinal impact parameters
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d0 and z0, the projections of the distance between the track and a reference point at
the closest point of approach. Their resolution is typically well below 0.01 mm.

Tracks passing certain quality criteria are considered for the reconstruction of
vertices, which are points of particle interaction. In an iterative process tracks are
associated to vertex candidates and fits are performed to determine the position
[148]. The positions of the proton-proton interactions are called primary vertices. The
resolution of the Cartesian coordinates of reconstructed vertices is less than 0.35 mm
for the z-direction and less than 0.16 mm in x and y directions [149]. With increasing
number of associated tracks, the resolution improves by up to about one order of
magnitude. The reconstruction efficiency rises from 83 % for vertices with two tracks to
almost 100 % for vertices with at least five tracks. The hard scattering vertex is chosen
as the primary vertex with the highest ∑ p2

T.
To reduce the impact of electric noise and pile-up, and to facilitate further calorimeter-

based object reconstructions, the signals of adjacent calorimeter cells are condensed
to form topological clusters [150]. Starting from a cell with an energy deposition at
least four times higher than its expected noise level, topologically connected cells are
added to the cluster using a growing-volume algorithm. The cluster energy is calibrated
to compensate for losses due to the clustering, inactive detector material and non-
compensating calorimeter response. Clusters can be calibrated at the electromagnetic
scale, which is tuned to clusters in showers created by electrons (EM topo-clusters).
Another common approach, the local hadronic cell weighting, corrects for differences
between pion and electron showers by estimating the likelihood that a cluster is in an
electromagnetic or hadronic shower and weighting the contributions accordingly (LCW
topo-clusters).

4.2 Jet Reconstruction

High-energy quarks or gluons form jets consisting of typically low-energy hadrons
emitted within a narrow cone. The fragmentation of hard partons occurs due to
confinement, which leads to the creation of quark–antiquark pairs when the gluon field
energy between quarks in a color-neutral configuration surpasses the mass energy of the
new quark pair. Additionally, the transverse size and number of constituents of the jet
is increased by emission of gluons from quarks or gluons and the subsequent decays to
quark pairs. Eventually, the energy of the partons is too low to form additional particles
and only colorless hadrons remain. These hadrons deposit energy in the calorimeters
and the charged ones leave tracks in the Inner Detector.

On these objects jet algorithms are applied to identify which of the clusters and/or
tracks belong to the same jet. For the analysis presented in this thesis, jets are
reconstructed by applying the FastJet [151] implementation of the anti-kt clustering
algorithm [152] with a distance parameter R = 0.4 to EM topo-clusters. The algorithm
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adds a cluster to a pseudojet as long as their distance dij = min(k−2
ti , k

−2
tj )∆2

ij/R2 (with
transverse momentum kt and angular distance ∆ij =

√
(∆y)2 + (∆φ)2) is smaller than

k−2
ti , otherwise the cluster will form a new pseudojet . This process is repeated until all

clusters are associated with a jet.
Multiple corrections are applied to the jets. First, their direction is adjusted to

point to the hard scatter vertex instead of the center of the detector, improving the
η resolution [153–155]. Furthermore, a pile-up subtraction based on a jet area in the
η − φ plane and the median pile-up transverse momentum density is performed [156].
Residual pile-up effects on the jet pT are corrected based on the number of primary
vertices and the average number of interactions per bunch crossing [157]. Then the jets
are calibrated based on Monte Carlo simulation, where reconstructed jets are matched
geometrically to jets constructed from final state particles on Monte Carlo level. The
jet energy additionally depends on properties of the jet, like the fraction of energy
in certain calorimeter layers or the number of associated tracks. These dependencies
are resolved sequentially. Finally, an in-situ calibration is applied, which accounts for
differences between simulation and data. It is measured by comparing the ratios of the
pT of a jet and a reference object. A summary of the systematic uncertainty on the jet
energy calibration in dependence of pT and η is shown in Fig. 4.1.
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Figure 4.1: Total uncertainty of the jet energy scale in dependence of pseudorapidity
(a) and pT (b) [158].

The jet energy resolution was measured in 8 TeV data [159] and is below 15 %; the
lowest value is 3 % for high jet pT and the central pseudorapidity region (|η| < 0.8).
The uncertainty of the energy resolution is increased to cover changes of the conditions
between Run 1 and Run 2, the total uncertainty is shown in Fig. 4.2.

Even after the application of the pile-up subtraction techniques described above,
some pile-up jets remain. Most of these with a pT between 20 GeV and 60 GeV are
rejected using a likelihood discriminant called jet vertex tagger (JVT), based on the
tracks matched to each jet [156, 160]. One JVT input variable is the jet vertex fraction,
which is related to the likelihood of a jet originating from the hard scatter vertex,
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Figure 4.2: Total uncertainty of the jet energy resolution in dependence of pseudorapidity
(a) and pT (b) [153].

corrected for the number of primary vertices. The other variable used for calculating
the JVT discriminant is the ratio of the sum of pT of tracks associated to the jet (and
the hard scatter vertex) and the calibrated jet pT. For the analysis presented here, a
JVT cut is applied corresponding to an average signal jet efficiency of 92 %, resulting in
a pile-up jet efficiency of the order of only 1 % to 2 %. This dramatically decreases the
dependence of the number of hard jets on 〈µ〉, as demonstrated in Fig. 4.3a. The JVT
signal jet efficiency was calibrated using a tag-and-probe analysis in a Z(→ µµ)+jets
control region in data. A scale factor is derived to correct for small differences in JVT
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Figure 4.3: Average number of jets with pT > 20 GeV before and after the application of
a fixed cut on JVT (a) and selection efficiency of hard-scatter jets in a Z(→ µµ)+jets
region for data and Monte Carlo simulation (b) [161].

performance between data and simulation, as shown in Fig. 4.3b. It is between 97 %
and 99 % and for pT > 30 GeV it is compatible with unity within its uncertainties,
which arise from the statistical uncertainty, the difference assessed by using different
Monte Carlo generators and an uncertainty from the estimation of the residual pile-up
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jet contamination in the control region.
After the jet reconstruction, some jets that did not originate from pp interactions

remain. Sources for these background jets are beam-induced background (proton losses,
e.g. due to beam-gas scattering or proton halo interacting with collimators [162]),
particles from cosmic ray showers or electric noise in parts of the calorimeter [163].
A selection based on LAr signal pulse shapes, energy ratio variables and track-based
variables, described in [163], is applied to discriminate these backgrounds. Only jets
passing the Loose selection are kept for this analysis, with a selection efficiency of over
99.5 % for the relevant pseudorapidity range.

Jets containing b-hadrons have properties that make it possible to distinguish them
from other types of jets (b-tagging). Most importantly, the lifetime of hadrons with
b-flavor is long enough for them to travel a measurable distance before they decay.
Most b-hadrons have a mean decay length of about 0.5 mm× γ [38] (depending on the
Lorentz factor γ), so high-pT b-hadrons usually travel several millimeters. In ATLAS,
a multivariate discriminant algorithm combines the output of other algorithms based
on the impact parameter, the inclusive secondary vertex reconstruction as well as a
multi-vertex algorithm that aims to reconstruct the decay chain up to a third vertex (the
decay of a c-hadron from the b-hadron decay) [164]. A boosted decision tree algorithm
(BDT) called MV2c10 is trained on tt̄ events with a background sample consisting of
10 % c-jets and 90 % light jets. The output of that algorithm for different types of jets
in a tt̄ sample is shown in Fig. 4.4. For the analysis presented here, jets are classified
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Figure 4.4: MV2c10 b-tagging algorithm output score for b-jets, c-jets and light jets,
determined in a tt̄ simulation sample [165]. The 70 % working point chosen for the
analysis corresponds to a cut at 0.82.
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as b-jet if they pass a BDT cut such that the b-jet efficiency is 70 %, corresponding
to a misidentification rate of 8.2 % for c-jets, 1.8 % for τ -jets and 0.3 % for light jets,
as measured in tt̄ simulation [165]. The b-tagging performance improved significantly
compared to Run 1, mainly due to the IBL. Scale factors depending on jet pT to
compensate for differences in b-tagging efficiency between data and simulation are
determined by a likelihood-based analysis of events in a di-leptonic tt̄-enriched control
region [166]. The scale factors are based on data recorded in 2015. Their systematic
uncertainty is dominated by the modeling uncertainties of the tt̄ Monte Carlo event
samples. Jets that are not classified as b-jets in Monte Carlo simulation also receive a
scale factor [167].

4.3 Muons

Muons, unlike other particles detected at ATLAS, are usually not stopped in the
calorimeters and travel out of the detector, passing the muon spectrometer. Information
from all main detector systems is combined to reconstruct muons [168]. Tracks in
the muon chamber are reconstructed by applying a Hough transform to the MDT
and nearby trigger chamber hits to get an approximate trajectory. Afterwards, track
segments are reconstructed in each MDT layer separately, complemented by information
from the other muon subdetectors. Finally, a χ2 fit is performed using all hits per track
candidate. The fit is repeated after outlier hits have been removed and again in case
additional hits that could belong to the track have been added. The final reconstructed
muon uses the track from the muon spectrometer and Inner Detector (combined muon),
an Inner Detector track and one track segment in the muon system (segment-tagged
muon), the muon spectrometer track compatible to coming from the interaction point
(extrapolated muon) or an Inner Detector track and calorimeter deposits consistent
with a muon (calorimeter-tagged muon). An overlap removal between these different
muon types avoids double counting.

To distinguish prompt muons from background like light meson decays, a muon
identification is performed. For this, several quality requirements are applied, related
to the compatibility of the measurement in the Inner Detector and muon spectrometer,
the goodness of the combined track fit and the quality of the individual tracks. For
the analysis presented here, two quality classifications are relevant: loose and medium.
While the medium quality muons are required to be of combined or extrapolated type,
the loose criterion also allows segment-tagged and calorimeter-tagged muons. Quality
criteria are applied depending on the type and |η| of the muon candidate.

The muon reconstruction efficiency was measured in a Z → µµ tag-and-probe
analysis. It is shown in Fig. 4.5 for medium muons as well as for loose muons in |η| < 0.1.
Loose muons for larger pseudorapidities have a similar reconstruction efficiency as
medium muons. The reconstruction efficiency is compared between data and simulation
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to determine scale factors in dependence of η and φ. In most of the η-φ plane the scale
factor is within 1 % of unity.
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Figure 4.5: Muon reconstruction efficiency as a function of muon pseudorapidity,
measured in a Z → µµ tag-and-probe analysis for medium and loose |η| < 0.1 [168].

For the medium muons in the analysis described in this thesis, an additional isolation
criterion is applied to select geometrically isolated muons and reject muons that are
part of a jet. For this, both the calorimeter-based isolation variable Evarcone20

T (sum
of transverse energy within a ∆R = 0.2 cone around the muon, pile-up corrected,
without the muon energy) and the track-based isolation variable pvarcone30T (scalar sum
of track pT with pT > 1 GeV in a cone with pT dependent size ∆R < 0.3, excluding the
muon track) are used. These variables are combined in the gradient isolation working
point, which is 93 % (99 %) efficient for muons with pT = 25 GeV(60 GeV), as shown in
Fig. 4.6.

Despite the sophisticated simulation of the detector response, small differences in
muon pT between data and simulation remain. Therefore, the transverse momentum of
muons in simulation is scaled in dependence of η and φ and a pT smearing is applied
to match the resolution in data. The correction factors are measured for J/ψ → µµ

and Z → µµ candidate events. For most of the pseudorapidity range the pT resolution
is below 5 %. The uncertainty on the pT scale is below 0.3 %, as measured in a Z → µµ

analysis.
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Figure 4.6: Muon isolation efficiency as a function of muon pT, measured in a Z → µµ
tag-and-probe analysis [168, 169].

4.4 Electrons

The electron reconstruction in ATLAS depends on an Inner Detector track and a
corresponding energy deposition in the calorimeter [170]. A sliding window algorithm
is used to reconstruct a seed cluster in the calorimeter. To account for larger QED
bremsstrahlung for electrons, the standard track reconstruction is modified. Tracks that
fulfil certain quality criteria and that are matched to electron clusters are refit using
an electron-specific algorithm. This is repeated with tighter criteria and per electron a
primary track is chosen. The calibrated cluster energy is taken as the energy of the
reconstructed electron, while the track information is used to determine η and φ.

Additionally, the energy is corrected for non-uniformity of the detector response
and by using a multivariate regression algorithm trained on Monte Carlo simulation
to correct for loss of energy outside the calorimeter or the clusters [171]. To account
for small differences of the calibration between simulation and data, both the energy
scale (in data) and resolution (in Monte Carlo simulation) are adjusted based on
corrections measured in Z → ee events. The scaling changes the energy by less than
2 %, except at the edges of the Inner Detector acceptances (where it is about 8 %).
The resolution is depending on the pseudorapidity and energy of the electron. In the
central η < 0.5 region it ranges from 2.5 % for 25 GeV to 0.5 % for 1 TeV, for larger
η it rises up to 10 % for low energy electrons [172].1 For most of the pseudorapidity
range the reconstruction efficiency is above 97 % and increases with the energy of the
reconstructed electron, see Fig. 4.7. The reconstruction efficiency drops in the so-called

1These values have been determined for Run 1 data, but are still approximately valid, as discussed
in Ref. [171]. Only small modifications have been made to correct for changes in conditions between
Run 1 and Run 2.
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crack region (1.37 < |η| < 1.52), where barrel and end-cap calorimeters meet.
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Figure 4.7: Electron reconstruction efficiency measured in Z → ee events of 2015 data,
in dependence of the transverse energy of the electron clusters (a) and the corresponding
pseudorapidity (b) [170].

To reject misidentified electrons, mainly from hadronic jets or converted photons, a
likelihood-based identification algorithm is applied. A wide variety of input variables
describes properties of the reconstructed electron, like the shape of the electromagnetic
shower and information from separate layers of the calorimeters or tracking subsystems.
The algorithm has been trained using Z → ee and di-jet Monte Carlo simulation. A
slight mismodeling of the detector simulation of the shower shapes and a change in
conditions in the TRT in 2016, which is not yet reflected in the Monte Carlo simulation
used for the training, lead to a difference in identification efficiency between simulation
and data, seen in Fig. 4.8. The signal efficiency for the loose working point, which is
used in the analysis presented in this thesis, is above 90 % for most of the pseudorapidity
range, whereas the fraction of misidentified electrons from di-jet simulation is below
1 %.
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Figure 4.8: Electron identification efficiency measured in Z → ee events of 8.8 fb−1 2016
data, in dependence of the transverse energy (a) and pseudorapidity (b) [173].

4.5 Hadronic Tau Decays

Tau leptons decay to two neutrinos and an electron or muon in 35 % of the cases
[38] (referred to as τlep in this document). However, these decays are usually not
distinguishable from prompt muons or electrons. Due to its high mass of 1.777 GeV,
the tau is the only lepton that can also decay to final states with hadrons, which it
does in 65 % of the cases. These hadronic decays, from hereon called τhad, have one
tau neutrino and one or more light mesons in the final state. The reconstruction is
concerned with the part visible in the detector (without the neutrino, which usually
leaves the detector without detectable interaction) and is denoted as τhad-vis hereafter.
In the majority of the cases the hadronic decay contains one charged meson (1-prong)
or three charged mesons (3-prong). Additionally, often also neutral mesons and/or
photons are created. The mesons are pions most of the time, among the small fraction
of other mesons kaons are the most common.

The reconstruction of τhad-vis starts with anti-kt jets with R = 0.4, built from LCW
topo-clusters and with pT > 10 GeV and |η| < 2.5 [174, 175]. The τhad-vis candidate is
associated to the primary vertex which is matched to the highest fraction of the sum
of pT of the tracks within ∆R < 0.2 of the jet axis. This vertex choice is significantly
more efficient than using the hard scatter vertex, especially for low pT and high pile-up
conditions. The direction of the τhad-vis is recalculated using this vertex. Tracks within
∆R < 0.2 around this new axis (core region), with pT > 1 GeV and satisfying additional
track quality criteria (number of associated hits in the tracking subdetectors, impact
parameters) are selected as tau tracks. From these tracks also a secondary vertex may be
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reconstructed. The reconstruction efficiency of a τhad-vis candidate is shown in Fig. 4.9
for 1-prong and 3-prong τhad-vis, depending on the true (simulated) pT. Its relative
systematic uncertainty is between 2 % and 4.5 %, depending on pT and the number of
tracks Ntrack.
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Figure 4.9: Reconstruction efficiency of τhad-vis candidates for 1-prong and 3-prong
τhad-vis in dependence of the true pT [174].

Reconstructed τhad-vis candidates contain a large fraction of jets initiated by quarks
or gluons. To distinguish them from genuine τhad-vis, a multivariate tau identification
algorithm based on boosted decision trees is trained and applied separately for 1-prong
and 3-prong τhad-vis. Their input variables use information of the tau tracks, the tau
vertex and calorimeter cells and clusters calibrated at EM and LCW scale. A pile-
up correction is applied to all input variables, depending on the average number of
interactions per bunch crossing. Among others, the identification exploits that true
τhad-vis decay showers are more collimated, i.e. the fraction of energy deposited in the
core region compared to the whole candidate is higher than for jets initiated by quarks
or gluons. Also, tau leptons have a mean life time of 2.9× 10−13 s [28], which in many
cases is long enough to measure a secondary vertex (for 3-prong τhad-vis) or a significant
impact parameter of the leading track. The training of the BDTs is performed on Monte
Carlo simulation for Z/γ∗ → ττ and di-jet events. Three working points are defined and
the respective BDT cuts are dependent on the τhad-vis pT to reduce the pT dependence
of the combined reconstruction and identification efficiency. The working points used in
this thesis are loose and medium, corresponding to a signal efficiency of 60 % and 55 %
for 1-prong and 50 % / 40 % for 3-prong τhad-vis. The identification efficiencies as well as
combined identification and reconstruction efficiencies in dependence of the true τhad-vis

pT are shown in Fig. 4.10. The relative systematic uncertainty of the identification
efficiency is depending on η, pT and the working point. It is between 5 % and 10 % for
most of the parameter space, with peaks up to 20 %.
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Figure 4.10: τhad-vis identification efficiencies as well as combined identification and
reconstruction efficiencies in dependence of the true τhad-vis pT [174].

The energy of the τhad-vis is based on the energy of the LCW topo-clusters within
∆R < 0.2. A correction (tau energy scale, TES) is applied to estimate the true τhad-vis

energy: a pile-up subtraction and a response correction to compensate for energy
deposition outside the reconstructed clusters, the calorimeter or the core region. The
energy resolution increases with |η| and decreases with pT, as shown in Fig. 4.11. The
relative systematic uncertainty of the tau energy scale depends on pT and |η| and ranges
between 3 % and 6 %.
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Figure 4.11: τhad-vis energy resolution in dependence of calibrated energy and |η| [174].

At the level 1 trigger step [176], regions of interest are selected. These regions, which
are divided in low granularity calorimeter sections (trigger towers), have to have more
than a certain energy in the core region and the surrounding towers must not surpass
a certain energy depending on the core energy (isolation criterion). The high-level
trigger performs a more precise energy reconstruction based on topo-clusters and rejects
low-energy candidate objects. Afterwards, a fast track reconstruction is applied and
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between one and three core tracks as well as the absence of isolation tracks are required.
For the remaining objects, a more precise track reconstruction is performed and a
BDT is applied. The tau trigger BDT is very similar to the offline identification, which
is a significant improvement with respect to Run 1. The commonly used tau trigger
identification working point medium1_tracktwo besides the BDT applies a cut on the
number of tau tracks and has a slightly higher signal efficiency than the medium working
point for reconstructed τhad-vis. In the analysis presented here, tau triggers selecting
single τhad-vis are used. The lowest pT threshold of this trigger during the 2015 and 2016
data taking is 80 GeV and has been raised to 125 GeV and 160 GeV for periods of high
luminosity, to keep the trigger rate within technical capabilities. These pT thresholds
of the high level trigger are of the order of 10 GeV below the range of maximum trigger
efficiency. These high-level triggers are seeded by a level 1 tau trigger with a 60 GeV
pT threshold.

Tau trigger scale factors are measured for the data recorded in 2015 in a region
enriched in Z → τhadτµ events in dependence of pT and the number of tau tracks.
Their uncertainties have been slightly increased to account for changes in the Monte
Carlo simulation since then. For data recorded in 2016 no trigger scale factors have
been measured in time for this analysis. Therefore, scale factors of 1.0 with increased
uncertainties are utilized in this search.

4.6 Removal of Object Ambiguities

The reconstructions of the physics objects are independent from each other, so geometric
overlaps are common, i.e. the detector signals caused by one particle are reconstructed
as more than one object. This ambiguity is resolved by removing overlapping objects in
an order reflecting the differences in reconstruction and identification efficiencies. Two
objects are considered as overlapping if their angular separation ∆R is below a certain
value, as listed in Table 4.1.

Removed Object A Kept Objects B Angular Separation ∆R
electron muon 0.2
jet electron, muon 0.4
τhad-vis electron, muon 0.2
jet 2 leading τhad-vis 0.2

Table 4.1: To resolve physics object ambiguities, all objects A within a cone of ∆R
around particles B are removed.

4.7 Missing Transverse Momentum

Based on momentum conservation and the negligible momentum in the transverse plane,
the total transverse momentum of undetected particles can be reconstructed using
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the measured transverse momentum of all detectable particles. Undetected particles
primarily include neutrinos, which are of particular importance to reconstruct properties
of tau leptons or the resonance of their origin. Also particles that can in principle be
detected by ATLAS can contribute, in case they fail to pass the reconstruction or travel
outside the detector acceptance. The missing transverse momentum Emiss

T is defined
as the negative sum of the transverse momenta of all selected physics objects (hard
terms: electrons, photons, τhad-vis, muons, jets) and the tracks that are not associated
with these objects (the soft term) [177]. The Emiss

T is often expressed by its magnitude
Emiss
T and azimuthal angle φmiss. Another related observable is the total transverse

energy ∑ET, which is the scalar sum of the same terms. For the Emiss
T reconstruction a

dedicated object ambiguity removal is performed, which is slightly different than what
is used for the main object selection (see Sect. 4.6). For the analysis presented here,
only the two τhad-vis with the highest pT are used for the reconstruction of Emiss

T and no
photons are reconstructed. Photons and additional τhad-vis enter the calculation as jets.

Acceptance limitations, e.g. uncovered pseudorapidities at |η| > 4.9 and energy
absorbed in inactive material, result in a considerable Emiss

T resolution. It can be
measured in events with negligible genuine Emiss

T , e.g. Z → ``. Examples of resolution
measurements are shown in Fig. 4.12.
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Figure 4.12: Resolution of Emiss
T as measured in Z → `` events in dependence of the

scalar sum of transverse energy (a, 2015 data) and the number of primary vertices (b,
2016 data) [178, 179].

The systematic uncertainties of the hard term objects trivially propagate through
the Emiss

T calculation. Additional uncertainties on the scale and resolution of Emiss
T arise

from the soft term.
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Chapter 5

Event Selection

A selection in the form of a series of cuts on event observables is applied to all recorded
and simulated events, to improve the discovery significance while keeping the estimation
of the background manageable. The development of the event selection and background
estimation has been performed blindly, i.e. data was not utilized for anything in any
event subsample with a significant amount of expected signal. In a second step, a small
part of the total data corresponding to 3.2 fb−1 was used in the signal region to rule
out any obvious background mismodeling. The corresponding signal sensitivity is below
the previous exclusion limit. After the total amount of data has been looked at in the
signal region, no changes were made to the event selection or background estimation,
to avoid observer-expectancy bias.

5.1 Event Cleaning

In this first selection step all events that are not considered to be of sufficient quality
are discarded. Most importantly, in data only luminosity blocks with good data quality
conditions are selected. These conditions include quality criteria from each detector
subsystem as well as data quality checks involving the distribution of basic event
observables. For instance, luminosity blocks may be discarded when a significant
fraction of a subdetector is not recording data due to technical issues. While still
suitable for some analyses, for this search luminosity blocks with inactive toroidal
magnet or IBL are not kept. Additionally, in rare cases individual events are discarded
due to data corruption, noise bursts in the LAr calorimeter or partially missing detector
information. At least one reconstructed primary vertex is required. In a step called jet
cleaning, events which contain jets not passing the Loose quality selection (cf. Sect. 4.2)
after overlap removal (cf. Sect. 4.6) are discarded to avoid negative effects on the Emiss

T
calculation. Pile-up jets (as selected by the JVT) below 60 GeV and for |η| < 2.4 are
not considered for the jet cleaning.
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5.2 Event Pre-Selection

Trigger Events are required to be accepted by the single-tau high-level trigger (cf.
Sect. 4.5) with a 80 GeV pT threshold. When the instantaneous luminosity is too
high, approximately above 5× 1033 cm−2 s−1, the rate of this trigger becomes too large
and it is prescaled or deactivated. Instead, the 125 GeV single-tau trigger is used for
the affected luminosity blocks. The intensity was gradually increased as data taking
progressed (cf. Fig. 3.8b), so while most of the data recorded in 2015 can be triggered
by this 80 GeV trigger, the majority of the data taken in 2016 has to be triggered
with the 125 GeV trigger. As the instantaneous luminosity drops during an LHC fill,
the trigger with the lower threshold is usually utilized again towards the end of a fill.
The 80 GeV threshold was used to trigger 40.2 % of the total integrated luminosity
for this analysis. An integrated luminosity of 97 pb−1 (corresponding to only 0.7 % of
the total available integrated luminosity) could not be utilized, as the instantaneous
luminosity surpassed 1.0× 1034 cm−2 s−1, at which point the 125 GeV single-tau trigger
rate becomes too high. As the corresponding measurement is still very statistically
limited, no measurement of the 160 GeV single-tau trigger scale factor was available at
the time of the finalization of the analysis, hence that trigger could not be utilized. The
leading τhad-vis candidate has to match to the trigger object within ∆R < 0.2. In Monte
Carlo simulated events always the 80 GeV trigger emulation is applied. This is a valid
approach, as both triggers use the exact same algorithm (besides the pT threshold)
and the pT cuts applied to the triggered τhad-vis are high enough to be on the trigger
efficiency plateau. An average of the scale factors for the two triggers, weighted by the
integrated luminosity of their utilization in 2015 and 2016, is applied as event weight
in simulated events (see Eq. 5.1).

Lepton Veto To suppress backgrounds with leptonic final states and to ensure
orthogonality with the analysis of the τlep τhad final state, events with muons or
electrons are vetoed. This means all events which contain electrons with pT > 15 GeV,
|η| < 2.47 (excluding the transition region between barrel and end-cap calorimeters
1.37 < |η| < 1.52) and passing the loose likelihood-based identification or muons with
pT > 7 GeV, |η| < 2.5 and passing the loose quality criteria are discarded.

τhad-vis Pre-selection Only τhad-vis with |η| < 2.47 (excluding the “crack region” with
1.37 < |η| < 1.52) and exactly one or three tracks are considered for the analysis. At
pre-selection only events with at least two τhad-vis with pT > 50 GeV are kept.

5.3 Main Event Selection

τhad-vis Transverse Momenta If the 80 GeV tau trigger was used, the leading τhad-vis

(τ0) is required to have pT > 110 GeV. This ensures that the trigger efficiency is
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approximately independent on τhad-vis pT for all selected τhad-vis. For events triggered
by the 125 GeV tau trigger, this requirement is raised to pT(τ0) > 140 GeV. In both
cases the leading τhad-vis is required to pass the medium identification criterion. The
subleading τhad-vis (τ1) has to have a pT of at least 55 GeV and satisfy the loose tau
identification. As in Monte Carlo simulated events always the lower leading τhad-vis pT

threshold is used, the fraction of integrated luminosity triggered by the 80 GeV trigger
is used as additional event weight for events with pT(τ0) < 140 GeV. Together with the
trigger scale factors this leads to an event weight calculated as:

wtrig =

f80,2015 × s80,2015 + f80,2016 × s80,2016 if pT(τ0) < 140 GeV∑
i=80,125

∑
j=2015,2016 fi,j × si,j otherwise

, (5.1)

where s denotes the trigger scale factor for a given trigger and year of data taking and
fi,j is the fraction of integrated luminosity recorded with trigger i in year j relative to
the total luminosity in both years. These fractions are:

f80,2015 = 0.235 ,

f125,2015 = 0.009 ,

f80,2016 = 0.167 ,

f125,2016 = 0.589 .

Event Topology The two leading τhad-vis have to have opposite electric charge and
must have approximately opposite direction in the transverse plane: ∆φ > 2.7. This
increases the signal significance, especially for high mass hypotheses, as the mean ∆φ
increases with Higgs mass, as shown in Fig. 5.1.1

Categorization The existence of b-jets in many b-associated Higgs production signal
events, and the lack of those in most gluon-gluon fusion signal events, makes it beneficial
to categorize in dependence of the number of b-tagged jets in the event. This increases
the signal significance, especially for the b-associated production signal.

The b-tag category, required to have at least one b-tagged jet with pT > 20 GeV, is
specialized to the search of MSSM Higgs produced in association with b-quarks. The
subleading τhad-vis pT cut is raised to 65 GeV, as the estimation of the QCD multijet
background was found to be unreliable at low pT (cf. Sect. 6.2). The main backgrounds
in this category are the QCD multijet and tt̄ processes.

The b-veto category requires that no b-tagged jets with pT > 20 GeV are present in
the event. It provides a good sensitivity to both gluon-gluon fusion and b-associated
Higgs signals. The main backgrounds come from QCD multijet and Z/γ∗ → ττ events.

1The discrepancy between background estimation and data for low ∆φ is expected, as the QCD
multijet background prediction is only derived for back-to-back topologies of the leading τhad-vis.
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Figure 5.1: Distribution of ∆φ before the cut on that observable (a) and mean ∆φ for
signal in dependence of the mass hypothesis (b).

Distributions of important kinematic observables in these categories are shown in
Figs. 5.2 and 5.3. Additional figures can be found in App. A. Observed and predicted
background event yields at different stages of the event selection are listed in Table 5.2
with their statistical uncertainties. Table 5.3 shows these numbers for a selection of
signal event samples. Signal selection efficiencies for some mass hypotheses are listed
in Table 5.1. Due to the τhad-vis transverse momentum thresholds, the 200 GeV signal
mass event samples have selection efficiencies below 1%� and therefore this search
has very low sensitivity in this low mass range. Furthermore, these event samples are
severely statistically limited after the selection and are consequently not considered in
this analysis.

Mass Hypothesis [GeV] 200 300 600 1000 1200
b-tag category

gluon-gluon fusion 0.00 0.04 0.24 0.39 0.35
b-associated prod. 0.03 0.92 5.68 7.00 6.67

b-veto category
gluon-gluon fusion 0.08 3.17 16.08 17.31 16.12
b-associated prod. 0.06 2.53 10.12 10.03 9.39

Table 5.1: Signal selection efficiencies in percent for a selection of signal event samples.
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Figure 5.2: Variable distributions in the b-tag category signal region: (a) Leading τhad-vis
pT, (b) Subleading τhad-vis pT, (c) mtot

T , (d) Emiss
T . The light blue band in the ratio

plot at the bottom visualizes the statistical uncertainty of the combined background
estimation, while the darker blue band also includes the systematic uncertainties
described in Chapter 7.
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Figure 5.3: Variable distributions in the b-veto category signal region: (a) Leading τhad-vis
pT, (b) Subleading τhad-vis pT, (c) mtot

T , (d) Emiss
T . The light blue band in the ratio

plot at the bottom visualizes the statistical uncertainty of the combined background
estimation, while the darker blue band also includes the systematic uncertainties
described in Chapter 7.
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Chapter 6

Background Estimation

Backgrounds for this analysis are all processes predicted by the Standard Model that
significantly contribute to the signal region. The only significant background with
two genuine τhad in the final state is Z/γ∗ → ττ . It is the second most important
background in the b-veto category. Most of the backgrounds arise from jets misidentified
as τhad-vis. The QCD multijet process is of dominant importance in both categories
and its estimation is primarily based on data from regions with very little expected
signal, described in detail in Sect. 6.2. All other backgrounds are estimated based on
Monte Carlo simulation, but with a correction of the misidentification rate that is
derived from a data control region (described in Sect. 6.4). A process where in most
cases one τhad-vis is genuine and the other one is misidentified is W (→ τν)+jets (cf.
Sect. 6.3). Due to the dominant decay of top quarks to W + b, in the b-tag category
tt̄ and single-top processes play a big role. While also genuine τhad-vis appear in these
decays, the leading contribution comes from events with at least one misidentified τhad.
Other backgrounds considered for this analysis are of very minor importance. They
include Z(→ ``)+jets and W (→ `ν)+jets events, which are heavily reduced by the veto
of electrons and muons. The remaining background components come from electroweak
production of two vector bosons (WW , WZ, ZZ), which has a very limited impact on
the analysis due to its small cross section.

6.1 Background Monte Carlo Event Samples

The Z/γ∗+jets event samples [180] are generated using Powheg-Box version 2 [181–
183]. The parton shower is simulated with Pythia 8.165 [184], using the AZNLO tune
[185] and PDF CTEQ6L1 [80]. The Photos++ 3.52 software [186] is applied to model
QED emissions from charged leptons and electroweak vertices. The generation is sliced
into subsamples of different resonance mass ranges to improve statistical uncertainties
in the high-mass tail.

The W+jets event samples [180] are simulated with the Sherpa 2.2.0 generator
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6.1. Background Monte Carlo Event Samples

[55]. The matrix element calculation based on Comix [187] and OpenLoops [188] is
performed at NLO for up to 2 partons and LO for up to 4 partons. The ME+PS@NLO
technique [189] is applied to merge the matrix element calculation with the Sherpa
parton shower [190]. A dedicated generator tuning by the Sherpa authors is used
with the NNPDF30nnlo PDF [191]. To improve the speed of the event generation, a
simplified scale setting prescription in the multi-parton matrix elements was applied
and therefore a theory-based re-weighting procedure was performed in dependence of
the jet multiplicity at generator level. The W+jets samples are generated in slices of
pT(W ) to enhance the statistical uncertainties in the tail of high reconstructed Higgs
mass of the analysis.

The W/Z+jets samples are normalized to a cross section calculated analytically at
NNLO, which has a relative systematic uncertainty of 5 %.

Event samples of di-boson processes [192] with four charged leptons, three charged
leptons and a neutrino or two charged leptons and two neutrinos, as well as processes
where one of the bosons decays hadronically and the other leptonically, are simulated
with Sherpa 2.1.1. The matrix elements are calculated with Comix and OpenLoops
for up to 3 partons at LO and up to 1 parton at NLO, except for the case with three
leptons and one neutrino and processes where one boson decays hadronically and a W
is involved, in which case there are no partons generated at NLO. The four lepton final
state matrix elements contain all diagrams with four electroweak vertices. The Sherpa
parton shower is merged to the matrix element with the ME+PS@NLO method. The
CT10nlo PDF [78] is utilized. The NLO generator cross sections are scaled down by 9 %
to account for the use of a different αQED than currently recommended by the Particle
Data Group. The di-boson cross sections have a systematic uncertainty of 6 %.

Samples of tt̄, Wt and s-channel single-top background events [193] are generated
with Powheg-Box version 2 [194–196] and PDF CT10 [78]. The s-channel single-top
process is generated in the four-flavor scheme using Powheg-Box version 1 [197]
and PDF CT10f4 [78]. In this case, MadSpin [198] is applied for the top quark decay,
including spin correlation. A top quark mass of 172.5 GeV is chosen for the generation.
The parton shower simulation of all top event samples is performed with Pythia 6.428
[199] using PDF CTEQ6L1 [80] and generator tune Perugia 2012 [200].

The tt̄ cross section [193, 201] is calculated with the program Top++ 2.0 [202]
to NNLO in perturbative QCD and next-to-leading-log order soft-gluon resummation.
Cross sections for t-channel and s-channel single-top samples are calculated at NLO
QCD using the Hathor 2.1 software [203–205]. The cross section for the Wt process is
calculated at NNLO [205, 206]. For all top samples the cross section uncertainty is 6 %.

In all cases where Pythia is employed for parton shower simulation, also the
EvtGen 1.2.0 [207] program is applied to improve the modeling of heavy flavor particle
decays.
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6.2 QCD Multijet Background

The cross section of the QCD multijet background is several orders of magnitude higher
than the signal cross section in the phase space of interest. Despite the heavy suppression
by the event selection, it constitutes the leading background contribution in the signal
region. The important leading order processes are gg → qq̄, gg → gg and qq̄ → gg.
QCD multijet events contribute to the signal region by jets misidentified as τhad-vis. At
the moment it is not feasible to model this background using Monte Carlo simulation,
as the fraction of quark- and gluon-initiated jets is currently not modeled well in the
considered generators, as shown for other processes in Sect. 6.4. Furthermore, the large
cross section of QCD multijet processes at the LHC makes it difficult to cover the
relevant phase space sufficiently. Instead, the background estimation is taken from the
region where the subleading τhad-vis fails the loose identification (fail-ID region). Events
from that region are weighted by a fake factor, which corresponds to the expected
ratio of events passing the identification criterion relative to those failing it for each
event. This fake factor is measured in a region enriched in QCD multijet events with
negligible signal expectation and depends on properties of the subleading τhad-vis and
event topology. Details of the fake factor measurement are discussed in Sect. 6.2.1. The
fail-ID region also contains a small amount of processes other than QCD multijet, e.g.
tt̄ or W (→ τν)+jets. This contamination is corrected by subtracting the Monte Carlo
estimated backgrounds weighted by the fake factors. A dedicated sideband region is
used to validate the QCD multijet background estimation, as documented in Sect. 6.2.2.

6.2.1 Fake Factor Measurement

Fake factors are measured in a di-jet control region using a tag-and-probe method and
are defined as

ffake = Npass τ ID
Nfail τ ID

∣∣∣∣
di-jet

.

Events in the di-jet control region are triggered by any of the following single-jet
triggers HLT_j℘ with the trigger jet pT thresholds ℘ of 15, 25, 35, 55, 60, 85, 110, 150,
175, 200, 260, 300, 320, 360 and 380 GeV. Depending on the ATLAS run configuration,
many of these triggers have been significantly prescaled or deactivated during data
taking. The lowest unprescaled single-jet trigger during the 2015 data taking was
HLT_j360, in 2016 it was HLT_j380. The triggers with a threshold of 260 GeV and
below were effectively active for an integrated luminosity of less than 250 pb−1.

Each event is required to have at least two τhad-vis candidates with pT > 55 GeV,
|η| < 2.47 (excluding the transition region between barrel and end-cap calorimeters
1.37 < |η| < 1.52) and one or three tracks. The leading τhad-vis candidate is defined as
the tag τ and should not satisfy the medium τhad identification criterion, to prevent
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6.2. QCD Multijet Background

overlap with the signal region selection. Its pT threshold is raised to 100 GeV. The
subleading τhad-vis candidate is called the probe τ and it has to point in the opposite
direction in the transverse plane: ∆φ(tag, probe) > 2.7.

The transverse momentum of the probe τ has to be at least 30 % of the tag τ pT,
as a dependence of the fake factor for low values of the pT-balance pT(probe)/pT(tag) is
observed and in the signal region the vast majority of events is above this value, see
Fig. 6.1. The fake factor is increasing for high values of the pT-balance, most likely
due to a change in the jet flavor composition. Due to the limited number of events
in the di-jet control region, it is not possible to sensibly parameterize the fake factor
in that observable after considering the more important parameterizations discussed
below. However, most of this dependency is covered by the pT-parameterization, as it
is strongly correlated to the pT-balance (correlation factor measured in the inclusive
signal region in data: 0.77). This is demonstrated by the small dependence of the
data over background ratio on the pT-balance, as shown in Fig. 6.1b. Furthermore,
the impact of any residual dependency is reduced by the relatively small correlation
between pT-balance and mtot

T , with a correlation factor of 0.23.
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Figure 6.1: Fake factor measured in the di-jet control region depending on the ratio of
probe to tag pT for 1-prong and 3-prong probe tau candidates (a) and distribution of
the pT-balance in the inclusive signal region (b).

The fake factors are checked for significant dependencies to determine their param-
eterization and to find suitable relaxations of the control region selection to reduce
statistical uncertainties. As shown in Fig. 6.3, it is obvious that the fake factor has
to be parameterized in the number of tracks and pT of the probe tau. It is also found
that fake factors show a dependence on whether a b-tagged jet exists in the event, cf.
Fig. 6.4. The statistical uncertainty for fake factors in the b-tag category is quite high
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6.2. QCD Multijet Background

and makes it difficult to precisely measure the pT dependence. The fake factor shows no
statistically significant dependence of the tag τ pT cut. A significant dependence of the
fake factor on ∆φ is observed (see Fig. 6.5) and therefore this cut can not be relaxed.
Furthermore, an additional parameterization of the fake factor depending on the charge
product of the two τhad-vis candidates has to be introduced, as seen in Fig. 6.6. It is
found that in the b-tag category the dependence of the fake factor on the number of
tracks of the tag τ is small up to about seven tracks (cf. Fig. 6.2) and the cut is relaxed
accordingly for the measurement of the b-tag category fake factors.
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Figure 6.2: Fake factor dependence on the number of tracks of the tag τ in the b-tag
category.

The resulting fake factors are shown in Figs. 6.7 and 6.8. In the b-veto category
one can afford to use more bins and the resulting pT dependence is rather smooth.
Therefore the fake factors are interpolated to improve the modeling of their shape and
reduce the impact of the choice of binning.
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Figure 6.3: Fake factor measured in the di-jet control region depending on the probe
τ pT for 1-prong and 3-prong probe τ . The selection is inclusive with respect to the
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Figure 6.6: Fake factor measured in the di-jet control region depending on the charge
product of tag and probe taus, as well as pT and Ntrack of the probe τ and for b-tag and
b-veto categories.
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Figure 6.7: Fake factors for the b-veto category measured in the di-jet control region
depending on the charge product of tag and probe taus, as well as pT and Ntrack of the
probe τ .
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Figure 6.8: Fake factors for the b-tag category measured in the di-jet control region
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6.2. QCD Multijet Background

6.2.2 Background Validation

The inversion of the charge product cut results in a region which is dominated by QCD
multijet background and which is therefore ideal to validate the fake factor method.
As shown in Fig. 6.10, the b-veto fake factors model the background well. In the b-tag
validation region a slight mismodeling is observed. Possible explanations include the
existence of kinematic differences between di-jet control region and signal region, which
can affect the misidentification behavior, e.g. by changing the jet flavor composition.
Such a difference would have to be identified and either the selection of the di-jet control
region has to be adjusted or the fake factors should get additional parameters. However,
due to the low statistics in the b-tag regions, this is not possible for the available
integrated luminosity. Instead, a correction to the fake factor is derived for 1-prong
τhad-vis in the b-tag validation region. The difference between data and uncorrected
estimated background is found to have no significant dependence on the subleading
1-prong τhad-vis pT, see Fig. 6.9. A global correction factor has been determined as
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Figure 6.9: Distribution of subleading 1-prong τhad-vis pT in the b-tag validation region
before application of the 1-prong fake factor correction derived in that region. The
light blue band in the ratio plot at the bottom visualizes the statistical uncertainty
of the combined background estimation, while the darker blue band also includes the
systematic uncertainties (see Chap. 7).

fcorr = (data−other backgrounds)/uncorr. QCD multijet = 0.79± 0.16, considering also the small
contribution from backgrounds other than QCD multijet. The uncertainty is statistical
only, the impact of systematic uncertainties of the small Monte Carlo estimated
backgrounds was found to be negligible. For 3-prong subleading τhad-vis the background
estimation and data are compatible within the large statistical uncertainty, therefore
no correction is applied. The b-tag validation region distributions after the correction
are shown in Fig. 6.11.

Furthermore, for pT(τ1) < 65 GeV in the b-tag validation region, a mismodeling
was observed, caused by the steep gradient of the fake factor at low pT, which due to

71



6.2. QCD Multijet Background

the low sample size can not be modeled sufficiently. Hence, the subleading τhad-vis pT

threshold is raised to 65 GeV in the b-tag category.
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Figure 6.10: Variable distributions in the b-veto same-sign validation region: (a) Leading
τhad-vis pT, (b) Subleading τhad-vis pT, (c)mtot

T , (d) Emiss
T . The light blue band in the ratio

plot at the bottom visualizes the statistical uncertainty of the combined background
estimation, while the darker blue band also includes the systematic uncertainties (see
Chap. 7).
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Figure 6.11: Variable distributions in the b-tag same-sign validation region: (a) Leading
τhad-vis pT, (b) Subleading τhad-vis pT, (c)mtot

T , (d) Emiss
T . The light blue band in the ratio

plot at the bottom visualizes the statistical uncertainty of the combined background
estimation, while the darker blue band also includes the systematic uncertainties (see
Chap. 7).

6.3 W+jets Background

In previous publications of this analysis [208, 209] a mismodeling of the W+jets
background, estimated using the Sherpa 2.1 Monte Carlo generator, was observed.
To determine whether previous corrections are still necessary, the new Sherpa 2.2
modeling is checked in a dedicated control region. Due to lepton universality, the
modeling can be tested for W (→ µν)+jets instead of W (→ τν)+jets, which has the
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advantage that QCD multijet background can be suppressed much better and there is
no overlap with the τhad τhad signal region.

The same data quality requirements as described in Sect. 5.1 are applied. Events are
triggered by the HLT_mu50 muon trigger, which selects muons with pT > 50 GeV. The
events have to contain exactly one muon candidate, which is required to be matched to
this trigger object, to pass the medium quality criterion and to satisfy pT > 110 GeV.
Trigger scale factors depending on η and φ of the triggered muon are applied as event
weight to Monte Carlo simulated events. Events with additional muons with pT > 7 GeV
and loose quality are vetoed. Also events involving electrons with pT > 15 GeV and
loose likelihood-based identification are rejected. Furthermore, the events must have at
least one τhad-vis candidate with pT > 55 GeV. The same pseudorapidity requirements
as in Sect. 5.2 are imposed on muons, electrons and τhad-vis. No τhad-vis identification
criterion is applied, as the misidentification rate is corrected separately, as described
in the next section, and the modeling before this correction is tested here. To reduce
contributions from QCD multijet processes, the muon has to be isolated using the
gradient criterion described in Sect. 4.3. The muon and τhad-vis candidate have to be
back-to-back (∆φ > 2.4). This results in a kinematic selection similar to the main
signal region.

Data and background prediction agree well and no significant mismodeling is
observed, as shown in Fig. 6.12.
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Figure 6.12: Variable distributions in the W (→ µν)+jets modeling validation region:
(a) τhad-vis pT, (b) Emiss

T , (c) mtot
T . The data corresponds to an integrated luminosity of

13.3 fb−1. Only statistical uncertainties are shown.

6.4 Modelling of τhad-vis Misidentification Rates in Monte
Carlo Backgrounds

A considerable fraction of the backgrounds estimated using Monte Carlo simulation
contains at least one misidentified τhad-vis. It is found that in some cases the misidenti-
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fication efficiency (fake rate) is not well modeled in Monte Carlo events, mostly due
to the difficult simulation of the shower shape. The comparison of the fake rates as
measured in data and Monte Carlo simulation is shown in Figs. 6.13 and 6.14, based
on the calculations described in the following.
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Figure 6.13: Shown is the fake rate for the loose identification working point in the
top control region in data compared to the top Monte Carlo sample. It is split into
opposite-sign (top) and same-sign (bottom), as well as 1-prong (left) and 3-prong
(right).

As the tau misidentification is sensitive to the flavor composition of the jets, with
jets initiated by quarks being more likely to be misidentified than gluon-initiated jets,
the fake rates are studied separately for tt̄ (and single-top) and W+jets. These are the
most important Monte Carlo estimated backgrounds involving a significant fraction
of misidentified τhad-vis. Other backgrounds, which have either very small fractions of
misidentified τhad-vis (like Z/γ∗ → ττ) or a small contribution to the signal region yields
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Figure 6.14: Shown is the fake rate for the loose identification working point in the
W (→ µν)+jets control region in data compared to the W (→ µν)+jets Monte Carlo
sample. It is split into opposite-sign (top) and same-sign (bottom), as well as 1-prong
(left) and 3-prong (right).

(like Z(→ ``)+jets or di-boson), have similar misidentification properties as W+jets
and are corrected like W+jets.

Events are corrected by applying a misidentification rate per τhad-vis candidate, that
is not geometrically matched to a true τhad-vis within ∆R < 0.2, as an additional event
weight. The fake rate depends on the pT and Ntrack of the τhad-vis, the charge product
of the two leading τhad-vis, as well as the identification working point. For the affected
τhad-vis in the signal region, the output of the identification BDT is ignored. In case
the leading τhad-vis is not matched to a true τhad-vis, also the trigger decision is not
considered and instead the trigger efficiency for misidentified τhad-vis is included in the
medium working point fake rate.
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The fake rates are measured in control regions with an isolated muon and a τhad-vis

candidate, with a similar base selection as described in Sect. 6.3, but with a lower muon
pT cut at 55 GeV. Additionally, a cut on the transverse mass of muon and Emiss

T is
applied: mT(µ,Emiss

T ) > 40 GeV, which heavily suppresses the amount of QCD multijet
background and removes the overlap with the τlep τhad signal region. This region is
divided into two control regions, depending on whether the event contains at least one
b-tagged jet (tt̄ CR) or not (W (→ µν)+jets CR).

The fake rate is determined using a tag-and-probe method. It is measured in a
sample of probe τhad-vis that is rich in misidentified τhad-vis and is defined as

rmis-ID(pT, Ntrack) = Npass-ID(pT, Ntrack)
Nall(pT, Ntrack) ,

where Npass-ID is the number of τhad-vis passing the desired identification working point
and Nall is the total number of candidates in the given pT and Ntrack bin. To check
the result of the trigger identification, the candidates in the numerator of the fake
rate calculation for the medium identification criterion are required to match to the
resurrected trigger decision for the 25 GeV single-tau high-level trigger. This trigger
utilizes the same identification algorithm as the 80 GeV and 125 GeV triggers used in
the analysis and by using this emulated low-pT decision the result does not depend on
the trigger threshold.

TheW (→ µν)+jets control region consists of 91.0 % W (→ µν)+jets events (relative
to the data), which almost exclusively contain misidentified probe τhad-vis. Furthermore,
there is a contribution of 2.1 % from tt̄ and single top. Of all Monte Carlo estimated
backgrounds 0.7 % have genuine probe τhad, mostly due to Z/γ∗ → ττ . The tt̄ control
region has 71.2 % tt̄ and single top events. There is also a large fraction ofW (→ µν)+jets
events, 22.6 % relative to the data. A sizable 11.2 % of the Monte Carlo estimated
backgrounds has genuine τhad, largely from tt̄. The composition of these control regions
is visualized in Figs. 6.15 and 6.16.

Both control regions have significant fractions of events with genuine τhad, which need
to be subtracted from the data. As each region also contains events of the background
that is targeted by the other region, the fake rates can not be measured independently.
The calculation of the fake rates depends on the following measurements of event yields,
where i is the τhad-vis identification criterion (pass or all) and R signifies the control
region (WCR or TopCR):
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dRi data events,

gRi Monte Carlo events with genuine τhad,

d̃Ri = dRi − gRi ,

fR tt̄ and single top Monte Carlo events

without genuine τhad, no identification requirement.

Then the fake rates F are calculated as:

FW =
d̃WCR
pass f

TopCR − d̃TopCRpass fWCR

d̃WCR
all fTopCR − d̃TopCRall fWCR

,

FTop =
d̃WCR
pass (fTopCR − d̃TopCRall ) + d̃TopCRpass (d̃WCR

all − fWCR)
d̃WCR
all fTopCR − d̃TopCRall fWCR

.

Only statistical uncertainties of these quantities are considered, as the systematical
uncertainties that arise from muon and τhad-vis reconstruction in the Monte Carlo terms
have been found to be negligible compared to the statistical uncertainty. Due to the
dependencies between some of the variables and due to non-Gaussian distributions
of some of the variables, the standard Gaussian uncertainty propagation can not be
utilized. Therefore a stochastic simulation is performed. First, random samples of dRall
are generated from Poisson distributions, where the mean is their measured value.
The selection of events according to the τhad-vis identification can be considered as a
Binomial process, so the dRpass are sampled from a Binomial distribution f(k|N, ε) =(N
k

)
εk(1− ε)(N−k), where for each random event, N is set to the randomized dRall and

the unknown ε is approximated as the measured dRpass/dRall. The gRall and fR are sampled
from a Gaussian distribution, where the mean is their measured value and the standard
deviation is their statistical uncertainty. To enforce that both of them are positive
and smaller than dRall, the Gaussians are truncated at 0 and at the randomized dRall.
The gRpass are sampled from the normal approximation of the Binomial distributions
with N = gRall and ε as the measured gRpass/gRall. In rare cases the measured gRpass is 0
and therefore a good approximation of ε is impossible, so instead in these cases the
gRpass are randomized independently from gRall, from a Gaussian around 0 with their
statistical uncertainty as standard deviation. In both cases, the probability density
distributions are truncated at 0 and the randomized gRall. The uncertainty interval is
determined between the 15.9-th and 84.1-th percentiles of the randomized fake rate
distribution. Random fake rates are generated in batches of 100 until both boundaries
of the uncertainty interval change by less than 1 permille relative to the previous values.

The measured fake rates are displayed in Fig. 6.17.
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Figure 6.15: Event observables in theW (→ µν)+jets τhad-vis fake rate control region: (a)
mtot

T , (b) τhad-vis pT, (c) muon pT, (d) Emiss
T . Only statistical uncertainties are shown.
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Figure 6.16: Event observables in the top τhad-vis fake rate control region: (a) mtot
T , (b)

τhad-vis pT, (c) muon pT, (d) Emiss
T . Only statistical uncertainties are shown.
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Figure 6.17: τhad-vis fake rates measured in the W (→ µν)+jets control region for the
loose working point (top) and medium working point including the trigger (bottom). It
is split in 1-prong (left) and 3-prong (right) and according to the charge product of the
two leading taus.
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7. Systematic Uncertainties

Chapter 7

Systematic Uncertainties

7.1 Luminosity Uncertainty

The uncertainty of the luminosity measurement affects all Monte Carlo estimated
backgrounds and signal. It was derived using a similar method as described in Refs. [210]
and [211]. The relative uncertainty was found to be 2.1 % for the 2015 data taking and
3.7 % for 2016, as measured in luminosity calibration van der Meer scans in August
2015 and May 2016. They are treated as uncorrelated in the statistical analysis.

7.2 Background Monte Carlo Modeling

Backgrounds estimated using Monte Carlo simulated event samples have cross section
uncertainties between 5 and 6 % (see Sect. 6.1).

The modeling of tt̄ backgrounds using Monte Carlo generators suffers from significant
additional uncertainties, as discussed for instance in Ref. [193]. To evaluate these
modeling uncertainties, the nominal Powheg+Pythia 6 sample (cf. Sect. 6.1) is
compared to samples with configuration differences related to the sources of these
uncertainties.

Shower generator To test the impact of a different shower model, the nominal
shower generator Pythia 6 is replaced with Herwig++ 2.7.1 [212] using the CTEQ6L1

PDF [80] and UE-EE-5-CTEQ6L1 generator tune [213].

Hard scatter generator The effect of a different hard scatter generator is deter-
mined by comparing the Powheg +Herwig++ sample to one generated with Mad-
Graph5_aMC@NLO +Herwig++. The same Herwig++ version and configuration
as above is utilized, the MadGraph5_aMC@NLO version is 2.2.1 [214]. The matrix
element is evaluated at next-to-leading order and with the CT10 PDF [78]. Factorization

and renormalization scales are set to the transverse mass
√
m2
t +

(
p2
T,t+p

2
T,t̄

)
/2.

83



7.2. Background Monte Carlo Modeling

Additional radiation and scales Samples where the factorization and renormal-
ization scales are varied by factor 2 up and down are employed to estimate the impact
of the radiation uncertainty. For these samples also the tune is varied accordingly and
the sample with higher radiation also uses a doubled resummation scale parameter
hdamp, which controls the high-pT radiation. For the default sample the factorization
and renormalization scales are chosen as

√
m2
t + p2

T.
These uncertainties are of major importance for the b-tag category, where the

top background, which consists of 89 % tt̄, constitutes a significant part of the total
background. In the statistical analysis a combination of the normalization effects of
these variations is used. For the hard scatter generator and shower generator variations
the total relative difference is utilized as uncertainty in the positive and negative
direction. The individual and combined uncertainties are listed in Table 7.1 for the
b-tag and b-veto categories.

category QCD scales Shower generator hard scatter generator combined

b-tag +24.1
−25.5 ±7.3 ±3.7 +25.5

−26.8

b-veto +3.9
−14.9 ±50.8 – +51.0

−52.9

Table 7.1: The effect on the final event yield of the total top background for the
uncertainty arising from the choice of shower generator, hard scatter generator, as well
as the variation of the additional shower radiation, given in percent.

In the b-veto category the sample with the alternative hard scatter generator is very
statistically limited and therefore not considered. An artificially increased tt̄ uncertainty
did not result in any significant difference in the result of the statistical analysis, as the
tt̄ process is a very minor background in the b-veto category. Additionally, a significant
systematic effect on the shape of mtot

T is caused by the shower generator variation, see
Fig. 7.1. A smoothing is applied to reduce statistical noise (353QH twice smoothing
[215]).
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Figure 7.1: The change of mtot
T shape due to changing the shower generator of the

nominal sample to Herwig++. A smoothing is applied to reduce statistical noise.

7.3 Signal Acceptance

An important source of systematic uncertainty arises due to the Monte Carlo modeling
of the signal. To estimate it, the nominal sample is compared to samples generated with
varied generator parameters. As it is too expensive to perform the detector simulation
and reconstruction for all configurations, this study is done at particle level with a
selection that closely resembles the selection at reconstruction level.

The kinematic cuts (η, pT) for the main objects (τhad-vis, electrons, muons and jets)
are the same as for the reconstruction level analysis and the same overlap removals are
performed. None of the reconstruction and identification effects are considered, as they
are assumed to be uncorrelated to the modeling effects. The jet flavor is determined by
geometrically matching b-hadrons, c-hadrons and τ leptons to jets (∆R < 0.3). In case
one of these objects matches to more than one jet, only the closest is tagged accordingly.
The b-tagging performance is emulated by weighting the events in the b-tag category
by an estimated probability that one of the jets would be tagged as b-jet if the MV2c10

tagging algorithm with 70 % signal efficiency was used. Misidentifications are considered
by weighting jets not matched to a b-hadron with the respective misidentification
efficiency (as given in Sect. 4.2).

The following uncertainties were considered:

Parton density function For the gluon-gluon fusion signal, the uncertainty due
to the parton density function is estimated using additional weights that are deter-
mined during the matrix element generation and stored in the LHE record [216].
These weights are generated for all PDFs in the PDF4LHC15_nlo_100 set [217]. As
the 4-flavor scheme version of the PDF4LHC set was not yet available at the time
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of this study, for the b-associated production the following PDFs are used to es-
timate the uncertainty: NNPDF30_nlo_as_0118_nf_4 [191], CT14nlo_NF4 [218] and
MSTW2008nlo68cl_nf4 [219]. It is currently not possible to store weights for these in
the LHE record for the b-associated production. To avoid generating separate samples
for all these parton density functions, the LHAPDF software package [220] is employed
to perform PDF reweighting. The reweighted sample is an approximation for how this
sample would look like if it were generated with that different PDF. The PDF weight
is the quotient of the new and the original PDF terms, depending on the Bjorken scale
variables, the momentum scales and the types of the partons involved in the hard
scattering. As an example, the considered PDF sets are shown for gluon and up-quark
at a momentum scale of 90 GeV in Fig. 7.2. The envelope of the resulting variations
was chosen as combined PDF uncertainty, as recommended in [221].
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Figure 7.2: Parton density functions for gluon and up-quark multiplied by the Bjorken
variable x and in dependence of x for a momentum scale Q = 90 GeV. The plots were
generated using the APFEL PDF evolution library [222, 223].

Generator tune Parts of the Monte Carlo simulation are based on empirical models
or approximations. These give rise to free parameters, which are optimized (tuned) based
on measurements. The uncertainties of the generator tunes are considered by evaluating
samples generated with variations of the tune parameters. These variations are related
to uncertainties arising due to the modeling of ISR, FSR and MPI (cf. Sect. 2.2). The
parameter variations for the Pythia 8 A14 tune used for the b-associated production
signal samples are described in [224]. For the gluon-gluon fusion sample the AZNLO
tune is utilized with systematic variations as discussed in [185], which cover only the ISR
uncertainty. To estimate the uncertainties due to FSR and MPI modeling for the gluon-
gluon fusion event samples, the Pythia 8 FSR scale parameters (renormalization and
factorization scale factors for final-state showers) are varied by factor 2 simultaneously
and the MPI cut-off parameter MultipartonInteractions:pT0Ref is varied by 10 %,
as recommended in [225].

86



7.3. Signal Acceptance

variation 400 GeV 700 GeV 1000 GeV

scales +19.2
−19.2

+20.3
−20.1

+22.3
−21.1

PDF +6.0
−5.5

+13.1
−15.5

+16.2
−9.5

tune ±5 ±4 ±3

total (pos.) +20.7 +24.5 +27.7

total (neg.) −20.6 −25.7 −23.3

Table 7.2: Relative signal acceptance uncertainties (in percent) for b-associated produc-
tion, b-tag category

variation 400 GeV 700 GeV 1000 GeV

scales +19.3
−18.1

+21.4
−20.3

+24.4
−21.7

PDF +6.5
−5.2

+10.5
−9.0

+15.1
−9.2

tune ±4 ±3 ±3

total (pos.) +20.8 +24.0 +28.9

total (neg.) −19.3 −22.4 −23.8

Table 7.3: Relative signal acceptance uncertainties (in percent) for b-associated produc-
tion, b-veto category

QCD Scales Renormalization and factorization scales are introduced to avoid IR
and UV divergences. In principle, the outcome of the generation should not depend
on the scales and they do not have an inherent uncertainty. A scale dependence arises,
because the perturbative calculations are only performed up to a certain order [38].
Hence, the uncertainty that arises due to the choice of scale is strongly related to the
uncertainty due to the neglected terms. These scales are varied up and down by a factor
of 2 independently and fully (anti-)correlated and the largest deviation in the positive
and negative direction is taken as scale uncertainty.1

All uncertainties are evaluated for Higgs mass hypotheses of 400, 700 and 1000 GeV.
They are combined quadratically for each mass and a linear regression is performed to
estimate the uncertainty at other masses. The resulting uncertainties on the acceptance
are listed in Tables 7.2–7.5. None of the variations were found to have a statistically
significant systematic effect on the shape of the mtot

T distribution.

1It is common practice to use factor 2, however this approach is not uncontroversial, as for instance
discussed in [226]. Nevertheless, the factor of 2 is expected to generously cover the uncertainty in most
cases.

87



7.4. Modeling of Background with Misidentified τhad-vis

variation 400 GeV 700 GeV 1000 GeV

scales +19
−15

+19
−16

+18
−15

PDF ±4.9 ±4.7 ±4.1

tune ±21.3 ±17.4 ±16.1

total (pos.) +29.0 +26.2 +24.5

total (neg.) −26.5 −24.1 −22.4

Table 7.4: Relative signal acceptance uncertainties (in percent) for gluon-gluon fusion,
b-tag category

variation 400 GeV 700 GeV 1000 GeV

scales +15
−13

+15
−14

+15
−14

PDF ±4.8 ±4.7 ±4.4

tune ±3.1 ±2.6 ±1.2

total (pos.) +16.1 +16.0 +15.7

total (neg.) −14.2 −15.0 −14.7

Table 7.5: Relative signal acceptance uncertainties (in percent) for gluon fusion produc-
tion, b-veto category

7.4 Modeling of Background with Misidentified τhad-vis

Uncertainties related to misidentified τhad-vis belong to the most important uncertainties
for this analysis. They arise from the statistical uncertainties in the di-jet control region
(for the fake factor) and in the W+jets and tt̄ control regions (for the misidentification
rate) and are shown in Figs. 6.7 and 6.8, as well as Fig. 6.17. The fake factor uncertainty
results in a relative uncertainty of ±25.9 % (±12.6 %) on the QCD multijet background
yield in the b-tag (b-veto) category. The event yield uncertainties from the misidentifi-
cation rate on the Monte Carlo estimated backgrounds and a selection of signal samples
are listed in Table 7.6. As expected, the W (→ τν)+jets and tt̄ backgrounds are most
affected by this uncertainty and the number of misidentified τhad-vis in Z/γ∗ → ττ and
high-mass signal is so small that the misidentification rate impact is negligible.
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category QC
D
Mu

ltij
et

Z/
γ
∗ →

ττ

W
(→
τν

)+
jet

s

t̄t
, s
ing
le
top

Ot
her
s

b-a
sso
c.
A
/H

(50
0G

eV
)

gg
→
A
/H

(50
0G

eV
)

b-tag −0.1
+0.0

+0.5
−0.6

+9.0
−9.9

+10.5
−8.6

+2.1
−2.3

+0.0
−0.0

+0.0
−0.0

b-veto −0.0
+0.0

+0.4
−0.4

+9.4
−10.2

+11.2
−9.2

+4.5
−4.6

+0.0
−0.0

+0.0
−0.0

Table 7.6: Relative uncertainties on the background and signal event yields arising due
to the misidentification rate uncertainties, in percent.

7.5 Detector-Related Uncertainties

Among the detector-related systematic uncertainties, those involving true τhad-vis play
a major role – τhad-vis trigger, identification and reconstruction efficiencies, as well as
τhad-vis energy calibration (cf. Sect. 4.5). The uncertainties of the tau trigger scale
factor are different between 2015 and 2016, with 2015 uncertainties divided in three
components: statistics of the Monte Carlo and data event samples used for measuring
the scale factor, and a systematic component. As the default uncertainties of tau
reconstruction and identification are only valid up to a pT of the order of 100 GeV, a
separate uncertainty is considered for high-pT τhad-vis [227]. This uncertainty is based
on a comparison of data and di-jet Monte Carlo. The τhad-vis energy scale has three
uncertainty components, with the most important one arising from detector effects
(material modeling and calorimeter noise thresholds) [174]. The other τhad-vis energy
scale uncertainties come from the in-situ measurement and from model assumptions
(Geant4 hadronic shower model). Additional uncertainties on τhad-vis reconstruction,
calibration and identification due to the use of fast simulation are considered for
b-associated Higgs production event samples.

Another set of important uncertainties is related to jets: jet vertex tagging, energy
scale and resolution, and flavor tagging efficiencies. There are over 70 separate sources
of uncertainties of the jet energy scale. Given that this has only a small impact on
this analysis, such a large set of uncertainties is disproportionate. Instead, a strongly
reduced set of four uncertainties, which was determined using the method presented
in [228], was utilized. However, it was checked that the full set of uncertainties yields
the same result and hence no correlation information is lost due to the reduction. One
of these uncertainties has negligible impact and is therefore not listed in the tables.
The large number of uncertainties related to the flavor tagging is reduced by removing
negligible variations from the result of an eigenvalue decomposition on the covariance
matrix of statistical and systematic variations [229]. A set of 11 flavor tagging related
systematic uncertainties remains, two related to b-flavored, three to c-flavored and
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7.5. Detector-Related Uncertainties

four to light-flavored (gluons or light quarks) jets. Furthermore, there is a b-tagging
uncertainty for tau jets, which is extrapolated from charm jets and an extrapolation
uncertainty for high-pT jets.

The uncertainty of the pile-up reweighting (cf. Sect. 3.3) mainly affects samples
with low statistics. The impact of uncertainties of the Emiss

T calculation, electron and
muon calibration has been found to be negligible.

Tables 7.7 and 7.8 list the relevant relative uncertainties on the event yields of
background and signal processes.

Of all uncertainties described in this section only the tau energy scale uncertainties
have a statistically significant impact on the shape of the mtot

T distribution. This is
expected, as the tau energy scale variations lead to shifts in the τhad-vis pT spectra,
since they are not distributed uniformly. The systematic shift in the mtot

T distribution
due to TES variations is most notable in b-veto Z/γ∗ → ττ and signal samples, as they
almost exclusively contain genuine τhad-vis, see for instance Fig. 7.3. These distributions
of the systematic shift in mtot

T are smoothed similarly to the tt̄ shower uncertainty (cf.
Sect. 7.2).
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Figure 7.3: Impact of systematic variations of the detector uncertainties of the tau
energy scale on the mtot

T distribution of Z/γ∗ → ττ (a) and gluon-gluon fusion events
for mH = 600 GeV (b) in the b-veto category.
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+3.9
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−7.9

+2.0
−8.3

+2.5
−4.3

+5.8
−5.5

TES (model) −0.0
+0.0

+0.0
+0.8

+1.3
−1.6

+3.0
−0.8

−0.0
+0.0

+0.5
−0.6

+0.0
+0.0

pile-up reweighting +0.1
−0.0

+4.0
+2.1

+4.2
−1.2

−1.5
−0.9

−4.8
−7.8

+1.1
−0.7

−1.3
+0.4

jet vertex tagger −0.1
+0.0

+2.6
−2.6

+5.0
−4.8

+4.2
−4.0

+1.4
−1.3

+3.5
−3.4

+3.7
−3.6

jet energy scale (NP1) −0.0
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−0.7

+0.7
+0.1

−1.1
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jet energy scale (NP1) +0.0
−0.0

−0.0
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−0.0
+0.0
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−0.0

jet energy scale (NP1) +0.0
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−0.0
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+0.3

jet energy resolution +0.0
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+0.8
−0.8

+3.7
−3.7
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−0.7

+0.1
−0.1

+2.1
−2.1

+1.0
−1.0

b-tagging (b0) +0.0
−0.0

−1.8
+1.8

−3.1
+3.0

−3.0
+2.8

−0.8
+0.8

−5.0
+4.9

−3.2
+3.1

b-tagging (b1) −0.0
+0.0

+0.3
−0.3

+0.3
−0.3

+0.6
−0.6

−0.0
+0.0

+0.3
−0.3

−0.4
+0.4

b-tagging (c0) +0.0
−0.0

−4.3
+4.3

−1.9
+1.8

+0.0
−0.0

−0.8
+0.8

−0.2
+0.2

−2.8
+2.8

b-tagging (c1) −0.0
+0.0

+2.1
−2.1

+1.4
−1.4

−0.0
+0.0

+0.3
−0.3

+0.1
−0.1

+1.9
−1.9

b-tagging (c2) +0.0
−0.0

−0.6
+0.6

−0.7
+0.7

+0.0
−0.0

+0.2
−0.2

+0.0
−0.0

−0.7
+0.7

b-tagging (l0) +0.0
−0.0

−11.6
+11.7

−5.5
+5.4

−0.1
+0.1

−32.0
+32.0

−0.3
+0.3

−5.7
+5.7

b-tagging (l1) +0.0
−0.0

−11.6
+11.7

−5.5
+5.4

−0.1
+0.1

−32.0
+32.0

−0.3
+0.3

−5.7
+5.7

b-tagging (l2) +0.0
−0.0

−11.6
+11.7

−5.5
+5.4

−0.1
+0.1

−32.0
+32.0

−0.3
+0.3

−5.7
+5.7

b-tagging (l3) +0.0
−0.0

−11.6
+11.7

−5.5
+5.4

−0.1
+0.1

−32.0
+32.0

−0.3
+0.3

−5.7
+5.7

b-tagging (extrapol. c) −0.0
+0.0

+1.6
−1.6

+0.0
−0.0

+0.0
−0.0

+0.0
−0.0

−0.0
−0.0

+0.0
−0.0

b-tagging (extrapol.) −0.0
+0.0

+0.0
−0.0

+0.1
−0.1

+0.2
−0.2

+0.0
−0.0

+0.1
−0.1

+0.0
+0.0

Table 7.7: Relative uncertainty of the signal and background event yields in the b-tag
category due to systematic uncertainties related to the detector, in percent. Sources of
systematic uncertainty with less than 0.5 % shift in any event sample are omitted.
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−0.0

−0.0
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−0.0
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−0.0
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+0.1
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+0.1
−0.1
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+0.1
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+0.2
−0.2

+0.3
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−0.0

−0.0
+0.0

−0.0
+0.0

−0.0
+0.0

−0.0
+0.0

−0.0
+0.0

−0.0
+0.0
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−0.0

−0.0
+0.0

−0.0
+0.0

−0.9
+0.9

−0.0
+0.0

−0.0
+0.0

+0.0
+0.0

Table 7.8: Relative uncertainty of the signal and background event yields in the b-veto
category due to systematic uncertainties related to the detector, in percent. Sources of
systematic uncertainty with less than 0.5 % shift in any event sample are omitted.
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Chapter 8

Results

The mtot
T distribution shows a good separation of signal and background and is therefore

chosen as final mass discriminant. More sophisticated mass reconstruction algorithms
have been tested: MMC [230] and MOSAIC [231]. While they tend to have a bet-
ter mass resolution, they were found to yield a worse median discovery significance√

2 ((s+ b) ln(1 + s/b)− s) (assuming the nominal signal hypothesis, with signal yield
s and background yield b) [232]. This is a result of a shift of QCD multijet background
mass values to lower mtot

T , resulting in a better separation especially against high-mass
signal.

The data are in good agreement with the background prediction and therefore
exclusion limits are calculated, as described in the next section.

8.1 Methodology of the Statistical Analysis

The statistical analysis follows the recommendations in [232, 233] and is summarized in
the following. The parameter of interest for the statistical analysis is the signal strength
µ, which is a scale factor of the signal normalization. The goal is to test the signal-plus-
background hypothesis (µ = 1, null hypothesis) and compare to the background-only
hypothesis (µ = 0, alternative hypothesis). In the process of frequentist hypothesis
testing a p-value is calculated, which is the probability to obtain a measurement that is
equally or less compatible with a given hypothesis. As is common in searches for new
physics at the LHC, for the calculation of upper limits on the signal strength a confidence
level of 95 % is chosen, corresponding to a p-value of 0.05. In addition to the signal
strength, the statistical model has additional parameters related to the uncertainties
of the signal and background modeling. They are called nuisance parameters, as their
estimation is not of main interest.

According to the Neyman-Pearson lemma [234], the likelihood ratio test statistic
for simple hypotheses is the most powerful choice. A likelihood ratio with a maximized
likelihood in the denominator was proposed by Feldman and Cousins [235] to avoid
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problems of the previously common Neyman construction of confidence limits [236]. To
reduce the impact of the nuisance parameters on the form of the test statistic, instead
this statistical analysis is based on the profile likelihood ratio, which is considered
near-optimal. It is defined as

λ(µ) = L(µ, ˆ̂θ(µ))
L(µ̂, θ̂)

,

with the likelihood function L and vector of nuisance parameters θ. In the denominator
the likelihood is evaluated at its global maximum, in the numerator it is taken at a
given signal strength and the corresponding conditional maximum likelihood estimator
ˆ̂θ.

The likelihood function is the probability to obtain a given measurement x given
parameters (µ,θ). In this case it is the Poisson probability of observing N events given
an expectation of µs+ b events multiplied by the probabilities to obtain each measured
event e:

L(µ) = P (x|µ) = Pois(N |µs+ b)
∏
e

µsfsig(xe) + bfbkg(xe)
µs+ b

,

with the probability density functions for signal and background fsig(x) and fbkg(x)
and the Poisson distribution Pois(n|λ) = λne−λ/n! . As the measurement is binned and
with fsig(xe) = nie/s∆i with the number of events observed in bin i (corresponding to
event e) and the bin width ∆i (and similar for fbkg(x)) and ignoring a constant factor,
the likelihood is equivalent to a product of the Poisson probabilities of each bin.

Considering also the nuisance parameters and that both signal and background
have multiple components, the expected number of events in a given bin i is

〈ni(µ,θ)〉 = µ
∑
j

sij(θ) +
∑
k

bik(θ) ,

with the predicted nominal signal yield sij for the signal component j and the esti-
mated background yield bik of background component k. The nuisance parameters
are constrained by additional likelihood terms corresponding to auxiliary measure-
ments. For the analysis presented here, each nuisance parameter α corresponding to
systematic uncertainties is constrained by a standard normal distribution (a Gaussian
with standard deviation 1 and mean 0). Instead of considering statistical uncertainties
for each background component, as proposed by Beeston and Barlow [237], only the
statistical uncertainty of the combined background is taken into account (known as
Beeston-Barlow light method) [238]. The nuisance parameters related to these statistical
uncertainties are included as one nuisance parameter γi per bin and they are constrained
by Poisson terms in the likelihood.
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The background estimation is affected by these nuisance parameters as follows:

bi(α, γi) = γi
∑
k

bik
∏
m

1 + αm∆+
mik if θm ≥ 0

1 + αm∆−mik otherwise

and the signal prediction analogously without γ. This allows for asymmetric uncertainties
∆+
mik and ∆−mik. Anticorrelations between processes are included in the model, as ∆+

can increase bi in one process, while it decreases it in another. Neglecting constant
factors, this results in the likelihood

L(µ,θ = (α,γ)) =
∏
i

Pois (ni|µsi(α) + bi(α, γi))Pois′
(
γ0
i

∣∣∣γiγ0
i

)∏
m

Gaus
(
α0
m

∣∣∣αm, 1)

where α0
m = 0, γ0

i = 1
σ2
i,stat

(with the relative statistical uncertainty of the total

background σi,stat in bin i) and Gaus (x|m,σ) = (2σ2π)−1/2 exp(−(x−m)2/2σ2). Since
the Poisson terms constraining the γ nuisance parameters need to be evaluated for
non-integer values, instead the Gamma function Γ(x) =

∫∞
0 tx−1e−tdt is utilized as a

substitute of the factorial:

Pois′ (x|λ) =

exp (−λ) if x = 0

exp (x lnλ− λ− ln Γ(x+ 1)) if x > 0 .

To combine several categories, the individual likelihoods are multiplied, except the
shared α constraint terms, which are only included once.

It is convenient to use −2 lnλ(µ) as a test statistic, as it has computational advan-
tages to evaluate the sum of logarithms instead of a large product and under certain
conditions its distribution is well approximated by a χ2-distribution. Additionally, the
test statistic should reflect that the signal can only increase the expected event yield
with respect to the Standard Model, i.e. µ ≥ 0. This is implemented by evaluating
the likelihood in the denominator at µ = 0 and ˆ̂θ(µ = 0) if µ̂ < 0, which corresponds
to the closest allowed value. Nevertheless, µ̂ is allowed to take negative values and is
therefore considered an effective estimator, which allows for an easier description of the
test statistic distribution. When setting upper limits, best-fit values that are higher
than the tested signal strength should not increase the p-value and therefore the test
statistic is set to 0 if µ̂ > µ. This results in the following test statistic:

q̃µ =


−2 ln L(µ,ˆ̂θ(µ))

L(0,ˆ̂θ(0))
if µ̂ < 0

−2 ln L(µ,ˆ̂θ(µ))
L(µ̂,θ̂) if 0 ≤ µ̂ ≤ µ

0 if µ̂ > µ

.

By generating toy Monte Carlo experiments, the probability density function of

95



8.1. Methodology of the Statistical Analysis

q̃µ is determined for the signal plus background and background-only hypotheses,
f
(
q̃µ
∣∣∣µ, ˆ̂θ(µ)

)
and f

(
q̃µ
∣∣∣0, ˆ̂θ(0)

)
. For the toy generation the nuisance parameters are

fixed to the conditional estimators obtained from observed data and their auxiliary
measurements γ0

i and α0
m are randomized according to their constraint distributions.

In the test statistic evaluation the nuisance parameters are left free to fit. The classical
approach is to get the p-value from the signal plus background distribution:

pµ =
∫ ∞
q̃µ,obs

f
(
q̃µ
∣∣∣µ, ˆ̂θ(µ)

)
dq̃µ

with the observed value of the test statistic q̃µ,obs. This approach has the problem that
despite low sensitivity conditions, which appear usually in searches for new physics, a
hypothesis can be rejected due to fluctuations in the observation [239]. So instead, the
more conservative CLs method [240] is utilized, in which the p-value becomes:

p′µ = pµ
1− pb

,

with
pb = 1−

∫ ∞
q̃µ,obs

f
(
q̃µ
∣∣∣0, ˆ̂θ(0)

)
dq̃µ .

Since p′µ does not correspond to a true frequentist probability, the interpretation is not
straight-forward and usually it is considered as an approximation of confidence of the
signal-only hypothesis.

To calculate the limit, one (usually iteratively) finds the µlimit for which p′µlimit = 0.05.
The median sensitivity, known as expected limit, is obtained by taking the median
of all µlimit obtained for background-only toy experiments. Similarly, the 1σ and
2σ uncertainty bands are determined by taking the intervals in the distribution of
background-only µlimit corresponding to 68 % and 95 % integrated around the median.

The large number of toy experiments that need to be generated comes at a signifi-
cant computational cost. Luckily, there are good approximations of the test statistic
distributions in case the sample size is large enough. These are based on the finding by
Wald [241]:

−2 lnλ(µ) = (µ̂− µ)2

σ2 +O
( 1√

N

)
,

where µ̂ is assumed to follow a Gaussian distribution with mean µ′, which is the assumed
strength parameter of the data, and σ is the standard deviation of µ̂. It tends to the
noncentral χ2 distribution with one degree of freedom. If the strength parameter of
the data is the same as the one that is being tested (µ′ = µ) and for a large sample
size, −2 lnλ(µ) follows a χ2 distribution with one degree of freedom, as demonstrated
by Wilks [242]. The standard deviation can be estimated based on an Asimov dataset,
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which is the artificial set of events which parameters are equal to their expected values:

σ = µ− µ′√
−2 lnλAsimov(µ)

(with the likelihood ratio being evaluated for the Asimov data). With this, the distribu-
tion of the test statistic is:

f
(
q̃µ
∣∣µ′) = Φ

(
µ′ − µ
σ

)
δ(q̃µ) +


1

2
√

2πq̃µ
exp

[
−1

2

(√
q̃µ − µ−µ′

σ

)2
]

if 0 < q̃µ ≤ µ2

σ2

σ
2
√

2πµ exp
(
−σ2(q̃µ−(µ2−2µµ′)/σ2)2

8µ2

)
if q̃µ > µ2

σ2

,

(8.1)
where Φ is the cumulative distribution of the standard Gaussian. Then the cumulative
distribution of q̃µ is found as

F
(
q̃µ
∣∣µ′) =


Φ
(√

q̃µ − µ−µ′
σ

)
if 0 < q̃µ ≤ µ2

σ2

Φ
(
q̃µ−(µ2−2µµ′)σ−2

2µσ−1

)
if q̃µ > µ2

σ2

.

Therefore the CLs can be expressed as

p′µ = 1− F (q̃µ|µ)
F (q̃µ|0)

and µlimit is found using an iterative process. The expected limit can be obtained by
finding that limit for the Asimov dataset for µ′ = 0 and the error bands are found using
Asimov datasets corresponding to ±σ and ±2σ.

The statistical model is constructed and fitted using the software packages HistFactory

[243], RooStats [244] and RooFit [245], which are based on ROOT [246].

8.2 Results of the Statistical Analysis

To test the asymptotic approximation, toy experiments are generated following the
prescription of the previous section, for signal hypotheses at mA/H = 400 and 1200 GeV
which exclusively contain gluon-gluon fusion or b-associated Higgs production events.
For each of the four cases, 20 equidistant points of µ are scanned in a range that roughly
covers their 2-σ-band from the asymptotic calculation. For each µ 105 events were
generated, half of them with µ′ = µ and the other half with µ′ = 0 and the test statistic
q̃µ is calculated. In Fig. 8.1 the distributions of that test statistic for a µ close to the
observed limit are shown together with an overlay of the asymptotic approximation
(Eq. 8.1), where σ is determined by a fit. In all cases the CLs agrees within a few percent
between toy experiments and asymptotic fit. For the highest mass the test statistic of
the b-associated case shows small deviations at high q̃µ, probably caused by the small
number of events in the last mtot

T bin of the b-tag category. As this high-q̃µ range is
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already two orders of magnitude below the peak of the distribution, the discrepancy
has only a minor impact on CLs and hence the much more economic asymptotic
approximation is applied for the whole mass range. Table 8.1 shows a comparison of
the expected and observed limits on µ between the asymptotic approximation and toy
experiments. The statistical uncertainty of the limits from toy experiments is between
0.5 % and 2.0 %. An additional uncertainty arises due to the assumption of linearity
when interpolating the CLs between the considered µ points.
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Figure 8.1: Comparison of test statistic distribution of toy experiments and asymptotic
approximation for the signal hypotheses of mA/H = 400 GeV and 1200 GeV and purely
gluon-gluon fusion or b-associated production.

The mtot
T distributions in the b-tag and b-veto categories are shown in Fig. 8.2 for a

conditional µ = 0 fit of the combined categories. The corresponding post-fit data and
background yields with their uncertainties are listed in Table 8.2.

In Fig. 8.3 the fitted values of the 20 most important nuisance parameters are
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Cross section limit in pb
toy experiments asympt. approx.

signal hypothesis obs. exp. obs. exp.
gluon-gluon fusion mA/H = 400 GeV 0.571 0.222 0.566 0.215
b-assoc. production mA/H = 400 GeV 0.130 0.125 0.127 0.123
gluon-gluon fusion mA/H = 1200 GeV 0.0125 0.0157 0.0124 0.0155
b-assoc. production mA/H = 1200 GeV 0.0118 0.0168 0.0122 0.0162

Table 8.1: Comparison of expected and observed cross section limits for selected signal
hypotheses between limit calculations with toy experiments and using the asymptotic
approximation.
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Figure 8.2: Distribution of final mass discriminant mtot
T after a combined conditional

µ = 0 fit, with post-fit uncertainties. The signal expectation for mA = 600 GeV and
tan β = 20 (mmod+

h ) is superimposed.

shown for mA = 300 GeV and 1000 GeV at tan β values close to the limit in the mmod+
h

scenario, ordered by their impact on µ̂. The impact on µ̂ is determined by shifting
the nuisance parameter to the 1-σ boundaries of its pre-fit or post-fit uncertainty
and repeating the fit of the likelihood function while keeping that nuisance parameter
constant. None of the nuisance parameters has a best-fit value outside its standard
deviation, which suggests that the statistical model behaves well. Plots containing all
39 nuisance parameters are found in Appendix B, including also the 600 GeV mass
point. As expected, the fake factor uncertainty has the biggest impact at low mass, as it
modifies the leading background. Its importance decreases for higher mass hypotheses,
since its fraction of the total background prediction becomes smaller for high mtot

T . The
uncertainties of the shower modeling and overall normalization of the tt̄ and single
top processes plays a major role, as it affects the subleading background of the b-tag
category, which has a higher sensitivity compared to b-veto. For low mass the fractional
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b-veto
process yield uncertainty
Multijet 1510 63
Z/γ∗ → ττ 373 49
W → τν 73.9 9.3
top, tt̄ 10.9 6.8
Others 13.3 1.9
Total SM 1986 43
Data 2006

b-tag
process yield uncertainty
Multijet 46.6 4.3
Z/γ∗ → ττ 4.39 0.96
W → τν 1.31 0.21
top, tt̄ 20.0 5.6
Others 0.67 0.27
Total SM 73.0 5.9
Data 63

Table 8.2: The signal region background and data yields and uncertainties after the
conditional µ = 0 fit.

impact of the statistical uncertainties on µ̂ is of the same order as the systematical
uncertainties, e.g. +56

−43 % for the 300 GeV mmod+
h point shown in Fig. 8.3. At high mass,

the fractional impact of statistical uncertainties increases, e.g. to +57
−71 % for the 1000 GeV

mass point (mmod+
h , tan β = 35).
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Figure 8.3: Impact of the systematic uncertainties on the fitted signal strength and
variations of the nuisance parameters from their nominal values in units of their
uncertainty values for mA = 300 GeV and 1000 GeV in the mmod+

h scenario.
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8.3 Limits

Besides the different magnitude of the cross sections, the only difference between
the benchmark scenarios that is relevant for the limit calculations is the relative
magnitude of the two production modes. Therefore asymptotic limits are calculated in
the mA/H − fbbh space, where

fbbH = σ (b-assoc. A/H)
σ (b-assoc. A/H) + σ (gg → A/H)

and from this the limits in the mA− tan β parameter space of the benchmark scenarios
are determined. For each considered mass hypothesis the limits are calculated for
fbbH ∈ [0, 1] in steps of 1 %. Limit values for other masses and b-associated Higgs
production fractions are interpolated using a Delaunay triangulation [247]. The resulting
observed and expected upper limits on the total cross section are visualized in Fig. 8.4.
Tables with these limits and the ±1σ and ±2σ uncertainty intervals for a 10 % scan of
fbbH are included in App. C.
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Figure 8.4: Exclusion limits on total cross section times ττ branching ratio in dependence
of mA/H and the fraction of b-associated Higgs production fbbH.

The individual cross section limits for gluon-gluon fusion and b-associated production,
shown in Fig. 8.5, are the limits for fbbH = 0 and fbbH = 1 respectively.

For each point in the mA − tan β parameter space of a benchmark scenario, the
b-associated Higgs production fraction is calculated as:

fbenchmark
bbH =

∑
φ=A,H σ(b-assoc. φ)BR(φ→ ττ)∑

φ=A,H (σ(b-assoc.φ) + σ(gg → φ))BR(φ→ ττ) .
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Figure 8.5: Upper limits at 95 % confidence level on cross section times ττ branching
ratio for gluon-gluon fusion (a) and b-associated Higgs production (b).

Then by comparing the limit at mA/H = mbenchmark
A and fbbH = fbenchmark

bbH to the
benchmark cross section, it is determined whether that (mA, tan β) is excluded. The
limit in the mmod+

h scenario is shown in Fig. 8.6, overlaying the expected limits of the
individually fitted b-tag and b-veto categories. Limits of the other benchmark scenarios
considered in this search are displayed in Fig. 8.8. Some scenarios show increased
sensitivity at low tan β between 300 GeV and 350 GeV, deviating from the otherwise
mostly monotonic behavior. This is due to the increase of the gluon-gluon fusion cross
section at low tan β, in particular for gg → A atmA/H ∼ 2mtop (cf. Sect. 2.3.3, Fig. 2.5).
Not only is σ(gg → A) larger than σ(gg → H) near the tt̄ threshold at tree level, but
also it receives larger NLO QCD corrections [248].1

In Fig. 8.7a the limit is compared to the ATLAS limit based on data corresponding
to an integrated luminosity of 20 fb−1 recorded at

√
s = 8 TeV in 2012 [250] in the

mmod+
h scenario.
The uncertainty of the cross section calculation in the benchmark scenarios is not

included in the statistical model. A significant part of these uncertainties is already
covered by the signal acceptance uncertainties determined by generator parameter
variations. Instead, in Fig. 8.7b the impact of the theory uncertainties of the cross
section calculation is visualized for the mmod+

h by overlaying the expected limits for a
±1σ change in the cross section of the benchmark scenario.

1The total angular momentum (J), charge (C) and parity (P ) quantum numbers, JCP , of the
quark-antiquark pair in the gluon-gluon fusion loop have the allowed configurations 0++, coupling to H,
and 0+−, coupling to A [249]. At the threshold, tt̄ pairs can not have 0++, while the 0+− configuration
results in a singular behavior, which is regularized by considering the decay width of the top quark.
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Figure 8.6: Upper limits at 95 % confidence level on tan β depending on mA for the
mmod+
h MSSM benchmark scenario.
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Figure 8.7: Upper limits at 95 % confidence level on tan β depending on mA for the
mmod+
h benchmark scenario, compared to the ATLAS result based on data corresponding

to an integrated luminosity of 20 fb−1 recorded at
√
s = 8 TeV in 2012 [250] (a) and

superimposed with the expected limits for a shift of the cross section by ±1σ theoretical
uncertainties.

103



8.3. Limits

 [GeV]Am
400 600 800 1000 1200

  
  

  
  

  
  

 
β

ta
n
 

10

20

30

40

50

60

70

 = 125.5 GeVhm

 = 126.3 GeV
hm

 = 125.0 GeVhm

 = 126.0 GeVh
m

 scenariomod-
hm

-1
 = 13 TeV, 13.2 fbs

, 95% CL
had

τ 
had

τ →A/H 

observed expected

σ 1± σ 2±

b-tag (exp.) b-veto (exp.)

 [GeV]Am
400 600 800 1000 1200

  
  

  
  

  
  

 
β

ta
n
 

10

20

30

40

50

60

70
hMSSM scenario

-1
 = 13 TeV, 13.2 fbs

, 95% CL
had

τ 
had

τ →A/H 

observed expected

σ 1± σ 2±

b-tag (exp.) b-veto (exp.)

 [GeV]Am
400 600 800 1000 1200

  
  

  
  

  
  

 
β

ta
n

 

10

20

30

40

50

60

70

 = 126.5 GeVh
m

 = 126.5 GeVh
m

 = 122.0 GeVhm

 = 125.0 GeVhm

 = 126.0 GeVh
m

 = 126.0 GeVhm

light stau scenario

-1
 = 13 TeV, 13.2 fbs

, 95% CL
had

τ 
had

τ →A/H 

observed expected

σ 1± σ 2±

b-tag (exp.) b-veto (exp.)

 [GeV]Am
400 600 800 1000 1200

  
  

  
  

  
  

 
β

ta
n

 

10

20

30

40

50

60

70

 = 126.5 GeVhm

 = 128.0 GeVhm

 = 129.0 GeVhm

 = 129.3 GeV
hm

 = 128.5 GeVhm

 scenariomax
hm

-1
 = 13 TeV, 13.2 fbs

, 95% CL
had

τ 
had

τ →A/H 

observed expected

σ 1± σ 2±

b-tag (exp.) b-veto (exp.)

 [GeV]Am
400 600 800 1000 1200

  
  

  
  

  
  

 
β

ta
n

 

10

20

30

40

50

60

 = 122.0 GeVhm

 = 122.0 GeV
hm

 = 124.0 GeVhm

 = 124.0 GeV
hm

 = 125.0 GeVhm

 = 125.0 GeV

hm

tau-phobic scenario

-1
 = 13 TeV, 13.2 fbs

, 95% CL
had

τ 
had

τ →A/H 

observed expected

σ 1± σ 2±

b-tag (exp.) b-veto (exp.)

 [GeV]Am
300 350 400 450 500 550 600 650

  
  

  
  

  
  

 
β

ta
n

 

5

10

15

20

25

30

 = 120.0 GeVhm

 = 121.0 GeVhm

 = 122.7 GeV
hm

 = 121.5 GeVhm

 = 122.5 GeVh
m

light stop scenario

-1
 = 13 TeV, 13.2 fbs

, 95% CL
had

τ 
had

τ →A/H 

observed expected

σ 1± σ 2±

b-tag (exp.) b-veto (exp.)

Figure 8.8: Upper limits at 95 % confidence level on tan β depending on mA for various
MSSM benchmark scenarios.

104



9. Summary and Outlook

Chapter 9

Summary and Outlook

A search for heavy neutral MSSM Higgs bosons decaying into two hadronically decaying
tau leptons is presented in this thesis. The MSSM is one of the most promising extensions
of the SM, with the potential to resolve several inconsistencies of the SM and answer
important open questions. In the search for this new model, the decay channel presented
here is of key importance, with a sensitivity that covers large and important parts of the
parameter space. No significant excess has been observed and thus CLs exclusion limits
have been set, both in specific benchmark scenarios as well as on the cross sections
multiplied by the ττ branching ratio. In the exclusive search for Higgs produced by
gluon-gluon fusion, these limits range from 1.1 pb at mA/H = 300 GeV to 0.012 pb at
1.2 TeV. More stringent limits are set on the b-associated Higgs production, ranging
from 0.31 pb to 0.012 pb.

Compared to the analysis of the LHC Run 1 data recorded by ATLAS, multiple
improvements have been developed and implemented, in addition to extensive reopti-
mizations of selection and background estimation. The most significant enhancement
is the categorization by the presence of b-tagged jets in the event, which is beneficial
for the sensitivity to b-associated Higgs production. Furthermore, the measurement of
τhad-vis misidentification efficiencies was expanded by fake rates dedicated to tt̄ and
single top backgrounds and the calculation is more robust to control region contami-
nations. The limit calculation has been amended by less model dependent limits, set
in the mA/H − fbbH parameter space, which make it possible to set reliable limits in
arbitrary benchmark scenarios even without access to the statistical model. Also, the
mass range has been extended up to 1.2 TeV. As demonstrated in Fig. 8.7a, the new
limit is significantly stronger for all considered mass hypotheses.

This search was combined with a similar search in the τlepτhad decay channel. Results
of this combined analysis have been published at different stages of the development.
First preliminary findings, based on data corresponding to 3.2 fb−1 integrated luminosity,
were presented in December 2015 [208]. Despite still lacking the b-tag categorization,
the limits already surpassed the earlier results at Higgs masses above 700 GeV. The
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same data set was reanalyzed with several improvements, including b-tag categorization,
resulting in limits that are stronger than the ATLAS results at

√
s = 8 TeV in the full

considered mass range. It was published in August 2016 [209]. Finally, a further refined
search with additional data was presented at the ICHEP conference in August 2016
[251], which, apart from an improvement of the fake rate method with minor impact,
reflects the state of the analysis presented in this thesis. As shown in Fig. 9.1, the
τhadτhad search channel dominates the combined sensitivity in most of the mass range,
especially at high mA.

��������

��� ��� ��� ��� ���� ����

�
��
�

��

��

��

��

��

��

��

��
�����������������

������������������������
�����������������������

�����
����

�������
��

��������

��������

���

���

���������������������

�������
���
�

���
�

�������
���
�

���
�

Figure 9.1: The 95 % CL limits on tan β in dependence of mA for the mmod+
h benchmark

scenario for a combination of the τlepτhad and τhadτhad search channels. [251]

The CMS collaboration also presented preliminary results of a similar search in
November 2016 [252]. The expected τhadτhad exclusion limits obtained by CMS, shown
in Fig. 9.2, are a bit less strong than the limits presented in this thesis, besides for the
300 GeV point for gluon-gluon fusion. However, the difference between the expected
limits is approximately within the 1σ uncertainty band. CMS provides cross section
limits up to 3.2 TeV. For the analysis presented here, no signal samples for masses above
1.2 TeV were generated, as the corresponding limits in the MSSM parameter space
would be at tan β > 60, which is disfavored [248]. Furthermore, at very high mass there
is not much gain in a cross section limit, as the signal becomes concentrated in the last
bin of the mass discriminant. As the CMS analysis uses signal event samples generated
at leading order, their production cost is smaller than for the ATLAS analysis. By
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using a different trigger strategy, the search presented by CMS manages to set limits
down to mA/H = 90 GeV.
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Figure 9.2: Expected exclusion limits at 95 % CL for gluon-gluon fusion and b-associated
Higgs production signal processes, based on data recorded at

√
s = 13 TeV by the CMS

detector corresponding to an integrated luminosity of 12.9 fb−1. [252]

The search at ATLAS is being updated with the data recorded in the second half of
2016. More improvements, including a final discriminant based on machine learning and
the estimation of backgrounds involving misidentified τhad-vis based on a multivariate
predictor of the jet flavor (initiated by a light quark or a gluon), are in development. The
currently available data amounts to less than 1 % of the expectation of the operation of
the LHC (including its planned high luminosity upgrade). An estimate of the sensitivity
in the hMSSM parameter space with an integrated luminosity of 300 fb−1 is shown
in Fig. 9.3 [89]. According to this, the ττ search channel will be able to probe the
complete tan β & 14 region for mA < 1 TeV and any tan β value below ≈ 350 GeV.
The techniques developed in this thesis will be the basis for further exploration of the
MSSM parameter space. The τ+τ− decay channel will continue to be one of the most
important options to discover additional Higgs bosons at the LHC.
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Figure 9.3: Extrapolated expected 2σ sensitivity in the hMSSM benchmark scenario
for a combination of the main search channels at the LHC, for an integrated luminosity
of 300 fb−1 recorded at

√
s = 14 TeV [89].
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Appendix A

Additional Signal Region Variable
Distributions
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Figure A.1: Distribution of the number of b-tagged jets in the b-tag category signal
region. The light blue band in the ratio plot at the bottom visualizes the statistical
uncertainty of the combined background estimation, while the darker blue band also
includes the systematic uncertainties described in Chapter 7.
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Figure A.2: Variable distributions in the b-tag category signal region: (a) Leading τhad-vis
η, (b) Subleading τhad-vis η, (c) mvis, (d) ∆φ(τ1, τ2). The light blue band in the ratio
plot at the bottom visualizes the statistical uncertainty of the combined background
estimation, while the darker blue band also includes the systematic uncertainties
described in Chapter 7.
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Figure A.3: Variable distributions in the b-tag category signal region: (a) Leading jet
pT, (b) scalar sum of transverse energy, (c) number of jets, (d) average number of
interactions per bunch crossing. The light blue band in the ratio plot at the bottom
visualizes the statistical uncertainty of the combined background estimation, while the
darker blue band also includes the systematic uncertainties described in Chapter 7.
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Figure A.4: Variable distributions in the b-veto category signal region: (a) Leading
τhad-vis η, (b) Subleading τhad-vis η, (c) mvis, (d) ∆φ(τ1, τ2). The light blue band in the
ratio plot at the bottom visualizes the statistical uncertainty of the combined background
estimation, while the darker blue band also includes the systematic uncertainties
described in Chapter 7.
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Figure A.5: Variable distributions in the b-veto category signal region: (a) Leading
jet pT, (b) scalar sum of transverse energy, (c) number of jets, (d) average number of
interactions per bunch crossing. The light blue band in the ratio plot at the bottom
visualizes the statistical uncertainty of the combined background estimation, while the
darker blue band also includes the systematic uncertainties described in Chapter 7.
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Appendix B

Nuisance Parameter Rankings
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Figure B.1: Impact of the systematic uncertainties on the fitted signal strength and
variations of the nuisance parameters from their nominal values in units of their
uncertainty values for mA/H = 300 GeV in the mmod+

h MSSM benchmark scenario.
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Figure B.2: Impact of the systematic uncertainties on the fitted signal strength and
variations of the nuisance parameters from their nominal values in units of their
uncertainty values for mA/H = 600 GeV in the mmod+

h MSSM benchmark scenario.
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Figure B.3: Impact of the systematic uncertainties on the fitted signal strength and
variations of the nuisance parameters from their nominal values in units of their
uncertainty values for mA/H = 1000 GeV in the mmod+

h MSSM benchmark scenario.
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C. Limit Tables

Appendix C

Limit Tables
mA/H [GeV] fbbH obs. exp. +2σ +1σ −1σ −2σ

300

0.0 1.1 0.83 1.8 1.2 0.59 0.44
0.1 1.0 0.87 1.9 1.3 0.63 0.47
0.2 0.95 0.86 1.8 1.2 0.62 0.46
0.3 0.84 0.80 1.7 1.2 0.58 0.43
0.4 0.72 0.73 1.6 1.1 0.53 0.39
0.5 0.62 0.66 1.5 0.98 0.48 0.35
0.6 0.53 0.59 1.4 0.88 0.43 0.32
0.7 0.46 0.53 1.2 0.80 0.38 0.28
0.8 0.40 0.48 1.1 0.72 0.34 0.26
0.9 0.35 0.43 1.0 0.65 0.31 0.23
1.0 0.31 0.39 0.95 0.59 0.28 0.21

350

0.0 0.75 0.33 0.80 0.51 0.24 0.18
0.1 0.75 0.35 0.83 0.53 0.25 0.19
0.2 0.71 0.35 0.82 0.53 0.25 0.19
0.3 0.65 0.34 0.78 0.51 0.24 0.18
0.4 0.57 0.31 0.73 0.47 0.23 0.17
0.5 0.49 0.29 0.68 0.44 0.21 0.16
0.6 0.41 0.26 0.63 0.40 0.19 0.14
0.7 0.33 0.24 0.58 0.37 0.17 0.13
0.8 0.27 0.22 0.53 0.33 0.16 0.12
0.9 0.23 0.20 0.49 0.30 0.14 0.11
1.0 0.19 0.18 0.45 0.28 0.13 0.097

400

0.0 0.57 0.22 0.53 0.33 0.16 0.12
0.1 0.55 0.22 0.54 0.34 0.16 0.12
0.2 0.51 0.22 0.54 0.34 0.16 0.12
0.3 0.46 0.22 0.52 0.33 0.16 0.12
0.4 0.41 0.20 0.49 0.31 0.15 0.11
0.5 0.34 0.19 0.46 0.29 0.14 0.10
0.6 0.28 0.18 0.43 0.27 0.13 0.094
0.7 0.22 0.16 0.40 0.25 0.12 0.086
0.8 0.18 0.15 0.37 0.23 0.11 0.079
0.9 0.15 0.13 0.34 0.21 0.097 0.072
1.0 0.13 0.12 0.31 0.19 0.089 0.066

500

0.0 0.15 0.11 0.29 0.18 0.081 0.060
0.1 0.14 0.12 0.30 0.19 0.084 0.063
0.2 0.13 0.12 0.30 0.19 0.085 0.064
0.3 0.11 0.12 0.30 0.18 0.085 0.063
0.4 0.10 0.11 0.28 0.18 0.083 0.062
0.5 0.093 0.11 0.27 0.17 0.079 0.059
0.6 0.083 0.10 0.26 0.16 0.075 0.056
0.7 0.075 0.098 0.25 0.15 0.070 0.052
0.8 0.068 0.091 0.23 0.14 0.066 0.049
0.9 0.061 0.085 0.22 0.13 0.061 0.045
1.0 0.056 0.078 0.20 0.12 0.056 0.042

Table C.1: Limit on (σ(bassoc.A/H) + σ(gg → A/H)) × BR(A/H → ττ) in pb for
Higgs masses up to 500 GeV and different fractions of b-associated production fbbH.
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mA/H [GeV] fbbH obs. exp. +2σ +1σ −1σ −2σ

600

0.0 0.051 0.070 0.18 0.11 0.051 0.038
0.1 0.050 0.072 0.19 0.11 0.052 0.038
0.2 0.047 0.071 0.18 0.11 0.051 0.038
0.3 0.045 0.069 0.18 0.11 0.050 0.037
0.4 0.042 0.066 0.17 0.10 0.048 0.036
0.5 0.039 0.063 0.16 0.096 0.045 0.034
0.6 0.037 0.059 0.15 0.090 0.042 0.032
0.7 0.034 0.055 0.14 0.083 0.039 0.029
0.8 0.032 0.051 0.13 0.077 0.037 0.027
0.9 0.030 0.047 0.12 0.071 0.034 0.025
1.0 0.028 0.043 0.11 0.066 0.031 0.023

700

0.0 0.039 0.048 0.13 0.076 0.034 0.026
0.1 0.038 0.048 0.13 0.077 0.035 0.026
0.2 0.036 0.047 0.12 0.075 0.034 0.025
0.3 0.034 0.046 0.12 0.072 0.033 0.025
0.4 0.032 0.044 0.11 0.069 0.032 0.024
0.5 0.030 0.042 0.11 0.065 0.030 0.022
0.6 0.029 0.039 0.10 0.061 0.028 0.021
0.7 0.027 0.037 0.097 0.057 0.027 0.020
0.8 0.025 0.034 0.092 0.053 0.025 0.018
0.9 0.023 0.032 0.086 0.049 0.023 0.017
1.0 0.022 0.030 0.081 0.046 0.022 0.016

800

0.0 0.026 0.032 0.085 0.051 0.023 0.017
0.1 0.026 0.032 0.085 0.051 0.023 0.017
0.2 0.025 0.032 0.083 0.051 0.023 0.017
0.3 0.024 0.031 0.081 0.049 0.022 0.017
0.4 0.023 0.030 0.078 0.048 0.022 0.016
0.5 0.022 0.029 0.076 0.046 0.021 0.016
0.6 0.021 0.028 0.073 0.044 0.020 0.015
0.7 0.020 0.027 0.071 0.042 0.019 0.014
0.8 0.019 0.026 0.068 0.040 0.018 0.014
0.9 0.018 0.024 0.066 0.038 0.017 0.013
1.0 0.017 0.023 0.063 0.036 0.017 0.012

1000

0.0 0.017 0.021 0.055 0.034 0.015 0.011
0.1 0.017 0.022 0.056 0.034 0.016 0.012
0.2 0.016 0.022 0.055 0.034 0.016 0.012
0.3 0.016 0.022 0.055 0.034 0.016 0.012
0.4 0.016 0.021 0.054 0.033 0.015 0.011
0.5 0.015 0.021 0.054 0.033 0.015 0.011
0.6 0.015 0.020 0.054 0.032 0.015 0.011
0.7 0.015 0.020 0.054 0.032 0.014 0.011
0.8 0.014 0.019 0.053 0.031 0.014 0.010
0.9 0.014 0.019 0.053 0.031 0.014 0.010
1.0 0.013 0.018 0.052 0.030 0.013 0.0098

1200

0.0 0.012 0.016 0.041 0.025 0.011 0.0083
0.1 0.012 0.016 0.041 0.025 0.011 0.0085
0.2 0.012 0.016 0.042 0.025 0.012 0.0087
0.3 0.013 0.016 0.042 0.026 0.012 0.0087
0.4 0.013 0.016 0.043 0.026 0.012 0.0088
0.5 0.012 0.016 0.043 0.026 0.012 0.0088
0.6 0.012 0.016 0.044 0.026 0.012 0.0089
0.7 0.012 0.017 0.045 0.027 0.012 0.0089
0.8 0.012 0.016 0.047 0.027 0.012 0.0088
0.9 0.012 0.016 0.048 0.027 0.012 0.0088
1.0 0.012 0.016 0.049 0.027 0.012 0.0087

Table C.2: Limit on (σ(bassoc.A/H) + σ(gg → A/H)) × BR(A/H → ττ) in pb for
Higgs masses above 500 GeV and different fractions of b-associated production fbbH.
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Appendix D

Implementation Details

This chapter contains details on the configuration of ATLAS internal software used for
the study presented in this thesis.

Good Runs Lists
data15_13TeV.periodAllYear_DetStatus-v79-repro20-02_DQDefects-00-02-02_PHYS_StandardGRL_All_Good_25ns

data16_13TeV.periodAllYear_DetStatus-v80-pro20-08_DQDefects-00-02-02_PHYS_StandardGRL_All_Good_25ns

Luminosity Tag
OflLumi-13TeV-005

Trigger Names
HLT_tau80_medium1_tracktwo_L1TAU60

HLT_tau125_medium1_tracktwo

HLT_tau25_medium1_tracktwo

Analysis Software Tags
AnalysisBase 2.4.16

Asg_Lhapdf-06-01-05-01

PMGTools-00-00-01

ATLAS Event Samples
The following pages have tables with the ATLAS event samples used for this thesis.
They are listed with their production tag, cross section, σ, filter efficiency, εfilter, the
k-factor and the number of events, nevents. The background event samples were further
processed by the ATLAS Derivation Framework, using the production tag p2666 and
the HIGG4D2 and HIGG4D4 derivations.
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D. Implementation Details

ATLAS data run number production tags
276073 – 284484 r7562_p2521_p2667
297730 f694_m1583_p2667
298595 – 298773 f698_m1594_p2667
298862 – 298967 f696_m1588_p2667
299055 – 299243 f698_m1594_p2667
299584 f703_m1600_p2667
300279 – 300571 f705_m1606_p2667
300600 – 300908 f708_m1606_p2667
301912 – 302269 f709_m1620_p2689
302300 – 302831 f711_m1620_p2689
302919 – 303266 f715_m1620_p2689
302872, 303291 – 303560 f716_m1620_p2689

Table D.9: List of ATLAS data run numbers and the production tags used for this
thesis.
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