
Role-based Data Management

Dissertation

zur Erlangung des akademischen Grades
Doktoringenieur (Dr.-Ing.)

vorgelegt an der

Technischen Universität Dresden
Fakultät Informatik

eingereicht von

Dipl.-Wirt.-Inf. Tobias Jäkel
geboren am 2. August 1985 in Altdöbern

Gutachter: Prof. Dr.-Ing. Wolfgang Lehner
Technische Universität Dresden
Fakultät Informatik
Institut für Systemarchitektur
Lehrstuhl für Datenbanken
01062 Dresden

Prof. Dr. rer. nat. habil. Gunter Saake
Otto-von-Guericke-Universität Magdeburg
Fakultät Informatik
Institut für Technische und Betriebliche Informationssysteme
Arbeitsgruppe Datenbanken & Software Engineering
39106 Magdeburg

Tag der Verteidigung: 24. März 2017

Dresden, im März 2017

ii

ABSTRACT

Database systems build an integral component of today’s software systems and as such they are the
central point for storing and sharing a software system’s data while ensuring global data consistency
at the same time. Introducing the primitives of roles and their accompanied metatype distinction
in modeling and programming languages, results in a novel paradigm of designing, extending, and
programming modern software systems. In detail, roles as modeling concept enable a separation of
concerns within an entity. Along with its rigid core, an entity may acquire various roles in different
contexts during its lifetime and thus, adapts its behavior and structure dynamically during runtime.

Unfortunately, database systems, as important component and global consistency provider of such sys-
tems, do not keep pace with this trend. The absence of a metatype distinction, in terms of an entity’s
separation of concerns, in the database system results in various problems for the software system in
general, for the application developers, and finally for the database system itself. In case of relational
database systems, these problems are concentrated under the term role-relational impedance mis-
match. In particular, the whole software system is designed by using different semantics on various
layers. In case of role-based software systems in combination with relational database systems this gap
in semantics between applications and the database system increases dramatically. Consequently, the
database system cannot directly represent the richer semantics of roles as well as the accompanied
consistency constraints. These constraints have to be ensured by the applications and the database
system loses its single point of truth characteristic in the software system. As the applications are
in charge of guaranteeing global consistency, their development requires more effort in data man-
agement. Moreover, the software system’s data management is distributed over several layers, which
results in an unstructured software system architecture.

To overcome the role-relational impedance mismatch and bring the database system back in its right-
ful position as single point of truth in a software system, this thesis introduces the novel and tripartite
RSQL approach. It combines a novel database model that represents the metatype distinction as first
class citizen in a database system, an adapted query language on the database model’s basis, and fi-
nally a proper result representation. Precisely, RSQL’s logical database model introduces Dynamic
Data Types, to directly represent the separation of concerns within an entity type on the schema level.
On the instance level, the database model defines the notion of a Dynamic Tuple that combines an
entity with the notion of roles and thus, allows for dynamic structure adaptations during runtime
without changing an entity’s overall type. These definitions build the main data structures on which
the database system operates. Moreover, formal operators connecting the query language statements
with the database model data structures, complete the database model. The query language, as ex-
ternal database system interface, features an individual data definition, data manipulation, and data
query language. Their statements directly represent the metatype distinction to address Dynamic
Data Types and Dynamic Tuples, respectively. As a consequence of the novel data structures, the
query processing of Dynamic Tuples is completely redesigned. As last piece for a complete database
integration of a role-based notion and its accompanied metatype distinction, we specify the RSQL
Result Net as result representation. It provides a novel result structure and features functionalities to
navigate through query results. Finally, we evaluate all three RSQL components in comparison to a
relational database system. This assessment clearly demonstrates the benefits of the roles concept’s
full database integration.

iii

iv

ACKNOWLEDGMENTS

At this prominent position, I would like to express my special thanks to my supervisor Wolfgang
Lehner, for giving me the opportunity to be part of his amazing research group. Throughout my
entire time in his group, he maintained a very special research atmosphere that greatly supported my
work and research. Moreover, he initially introduced me to the research field of database systems
and gave me the freedom to find my very individual spot in this research area. As supervisor, he
was always available for discussions and supported me with many valuable advices, especially on my
research paper drafts. I am also very thankful for giving me the opportunity to spend some time at
Brown University in the United States. This would not have been possible without his help and his
global network of researchers. Additionally, he provided me with the opportunity to attend various
interesting conferences all around the world. Thank you for your excellent support.

Special thanks go to Thomas Kissinger, who initially encouraged me to get in touch with Wolfgang
to discuss available research opportunities in his group. Without our initial discussion on computer
science research and his suggestion to get in touch with Wolfgang, I probably would not have started
my doctorate project. I also would like to thank Dirk Habich and Hannes Voigt for acting as my co-
mentors and provide me with valuable advices. Especially in the beginning, they were very patient
with me and my first steps in writing research papers. They always had time to review my work
and provided suggestions to improve it. Additionally, they reviewed this thesis and improved it by
providing comments and suggestions. I am very grateful to Gunter Saake for co-refereeing this thesis.
Special thanks go to my student Stefan Hinkel, for his significant contributions on the RSQL DB
prototype. I also thank my other students, who were involved in my research projects.

Moreover, I like to thank my past and current colleagues for providing a relaxing and entertaining re-
search atmosphere, which made my stay in the group very special. Especially, the off-topic discussions
in the coffee kitchen, the Friday afternoon projects, the group retreats, and Mario Kart challenges. In
detail, thanks to Ahmad, Alex, Annett, Benjamin, Bernd, Claudio, David, Elena, Elvis, Frank, Gun-
nar, Ines, Ismail, Johannes, Julian, Juliana, Kai, Kasun, Katrin, both Larses, Laurynas, Maik, Marcus,
Matthias, Michael, Patrick, Rihan, Robert, Steffen, Till, Tim, Tomas, both Ulrikes, and Vasileios.

As member of the RoSI research training group, I am very grateful for the fruitful discussions with
my fellow researchers. Especially, Thomas Kühn significantly contributed to my work. We had long-
lasting discussion on modeling issues, implementation alternatives, and theoretical corner cases. I
really enjoyed our fruitful collaboration. Additionally, my thanks go to Friedrich Steimann, who pro-
vided additional research material and helpful comments on my work. I thank Sebastian Götz and
Sebastian Richly for their support and advices. Furthermore, I would like to thank all RoSI members
and involved researchers for the fruitful workshops, especially the late-night discussions. In particu-
lar, thanks to İsmail , Jan, Johannes, Mariam, Markus, Martin, Max, Philipp, Steffen, and Stephan for
being great roommates as well as fellow researchers.

My special thanks go to Ugur Cetintemel, who mainly hosted me at Brown University. Additionally,
these thanks go to Tim Kraska and Carsten Binnig for being great hosts at Brown and providing me a
different perspective on my own research.

Very special thanks go to my wife Sindy, who was a great support throughout the entire doctorate
project. She always encouraged me to keep on my research topic and finish the doctoral project.
Furthermore, she patiently listened to my never-ending monologues about roles, database systems,
and roles and database systems in combination, even though computer science is not her favorite
topic. She also joined me for our stay in the United States and made it a very special experience.
Thank you for going this way with me; for making it our way.

v

I am also very thankful to my family and friends. Moreover, I would like to thank my parents and
my parents-in-law for always supporting me. Additionally, very special thanks to my brother Tommy,
who always kept my car running and for the fun moments. Thank you, Jens, Ronny, and Scott for
reviewing and improving this thesis with your comments and remarks. Finally, I would like to thank
my friends, who made stressful times less stressful. Thank you all for the fun and entertainment.

Tobias Jäkel
Dresden, January 30, 2017

vi

CONTENTS

1 INTRODUCTION 1

2 MODELING WITH ROLES 9

2.1 Way Towards Roles . 10

2.2 Zoo of Role Notions . 12

2.3 Compartment Role Object Model . 17

2.4 University Management Scenario . 20

2.4.1 Schema Model . 21

2.4.2 Instance Model . 22

2.4.3 Instance Adaption Over a Period . 23

2.5 Summary . 23

3 NEED FOR ROLE-BASED DATABASE SYSTEMS 27

3.1 Ecosystem of Database Systems . 28

3.2 Role-Relational Impedance Mismatch . 32

3.2.1 Problems for Applications and Application Developers 34

3.2.2 Problems for Database Systems . 36

3.2.3 Problems for Software Systems . 38

3.3 Requirements for Role-based Database Systems 39

3.4 Related Work . 40

3.4.1 Traditional Techniques . 40

3.4.2 Mapping Engines . 43

3.4.3 Persistent Programming Languages . 47

3.4.4 DBS Implementation . 51

3.4.5 Discussion . 53

3.5 Overview of RSQL . 54

3.6 Summary . 55

4 RSQL DATABASE MODEL 57

4.1 Requirements . 58

vii

4.2 Related Work . 59

4.2.1 The Role Concept in Data Models . 60

4.2.2 Object Role Modeling . 61

4.2.3 DOOR . 62

4.2.4 Fibonacci . 63

4.2.5 Information Networking Model . 65

4.2.6 Discussion . 67

4.3 RSQL Database Model . 68

4.3.1 Schema Level . 68

4.3.2 Instance Level . 75

4.3.3 Configuration . 81

4.4 RSQL Operators . 83

4.4.1 Operational Data Model . 85

4.4.2 Configuration Selection Σcex . 86

4.4.3 Configuration Projection Πα . 87

4.4.4 Role Matching κα . 88

4.4.5 Relationship Matching Ωrst . 92

4.4.6 Dynamic Data Type Union τ . 95

4.4.7 Dynamic Tuple Difference Without Role Difference \R− 96

4.4.8 Dynamic Tuple Difference With Role Difference \R 97

4.4.9 Dynamic Tuple Intersection ∩RTa ,RTb◦ . 98

4.4.10 Dynamic Tuple Union ∪RTa ,RTb◦ . 102

4.4.11 Attribute Selection σ
t,RToverlap
predicate . 103

4.5 Summary . 106

5 QUERY LANGUAGE AND PROCESSING 109

5.1 Requirements . 110

5.2 Related Work . 111

5.2.1 ConQuer . 112

5.2.2 Information Networking Model Query Language 113

5.2.3 Discussion . 114

5.3 RSQL Data Definition and Manipulation Language 115

5.3.1 Data Definition Language Syntax . 116

5.3.2 Creating And Extending Dynamic Data Types 118

5.3.3 Data Manipulation Language Syntax . 121

5.3.4 Creating and Extending Dynamic Tuples 124

5.4 RSQL Data Query Language . 126

5.4.1 Data Query Language Syntax . 126

5.4.2 From Syntax to Logical Operators . 128

5.4.3 Simple Config-Expression Example . 132

viii CONTENTS

5.4.4 Non-Overlapping Config-Expressions Example 133

5.4.5 Overlapping Config-Expressions Example 135

5.4.6 Relationships Example . 136

5.4.7 Dynamic Tuple Attribute Selection Example 138

5.5 RSQL Query Processing . 139

5.5.1 Invalid Intermediate Results . 140

5.5.2 Multiple Operator Executions . 142

5.5.3 Fusing Dynamic Tuple Streams . 143

5.6 RSQL Result Net . 145

5.6.1 Architecture . 145

5.6.2 Iteration and Navigation . 146

5.6.3 Example Navigation . 150

5.7 Summary . 152

6 PROOF OF CONCEPT 153

6.1 Evaluation Setup . 154

6.1.1 RSQL Prototypical Implementation . 154

6.1.2 Relational Mapping RSQL’s Database Model 157

6.2 Evaluating the Database Model . 162

6.2.1 Creating the RSQL Schema . 162

6.2.2 Creating the SQL Schema . 163

6.2.3 Comparing RSQL and SQL . 167

6.3 Evaluating the Query Language . 170

6.3.1 Writing Single Config-Expressions . 170

6.3.2 Writing Overlapping Config-Expressions 171

6.4 Evaluating the Result Representation . 173

6.4.1 Processing a RSQL Result Net . 173

6.4.2 Processing an All In One Relational Result 174

6.4.3 Processing a Multi-Query Relational Result 175

6.4.4 Comparing the Result Representations . 177

6.5 Summary . 180

7 CONCLUSIONS 181

7.1 Thesis Conclusions . 182

7.2 Future Work . 184

CONTENTS ix

x CONTENTS

1
INTRODUCTION

The digital revolution has been shaping a world in which software dominates our day-to-day life, from
tracking our exercise results on a wearable, over smart homes in which the coffee machine is customiz-
able by a smartphone application, to self-driving cars. Hence, nowadays software is ubiquitous [65],
but in different kinds of ubiquity. At first, software is physically ubiquitous in space, by running on
mobile devices that constantly move between different locations and different users. Secondly, soft-
ware runs based on the Internet which enables a logical ubiquity in space. As the Internet-based
software is available all over the globe, it exposes its end points in many countries with different ju-
risdictions, or different cultures. For instance, imagine Netflix1 as a worldwide streaming platform.
The movies you are able to watch on Netflix varies dramatically, depending on the location you are
accessing this platform. Moreover, you can access Netflix from different devices and depending on
your device, some functionalities are available and some not. Finally, today’s software is ubiquitous
in time, in terms of longevity. Applications are running for decades and face a constant change. This
may be caused by varying legal regulations, an adapted business model, or novel technology. As exam-
ple assume the Amazon online shop2, that started as online bookstore and evolved to a huge online
marketplace where you can buy almost everything.

Traditionally, software is well structured in types by embedding its behavior in methods and functions.
Once the software is compiled, its behavior is fixed for its whole lifetime. Hence, changing its behav-
ior results in a recompilation and application restart. This characteristic is inherited from the types
to the runtime objects, once instantiated it is bound to a certain type and the sets of attributes and
methods are fixed and only the values can be changed. However, such software has no explicit notion
of a context, hence, runtime objects act identically static, independent of the context [41]. That does
not mean software cannot be written to be context-sensitive, rather this means that context adapta-
tion mechanisms have to be implemented along with the regular functional behavior. For instance,
the same method call can result in different outputs, depending on an attribute value that is checked
during the method execution, but this check is performed explicitly and has to be implemented man-
ually, as shown in [6]. Such code does not explicitly distinguish between a context adaptation mech-
anism and the functional behavior. In particular, simulating contexts can be manually implemented
by conditional statements (usually stated by an if-condition) [6]. That sounds simple, but as a context
adaptation may depend on various information, this check can become very complex. For instance,
imagine a user of a huge online marketplace in Germany. Once the user is logged into his or her ac-
count, the software checks the location first. Even if the marketplace’s premium service is equal in all
countries, the website language will be set depending on the location. Next, it checks for a premium
account and maybe for a discounted premium membership. Depending on this user information, a
different front-end is displayed and maybe different discounts or special offers are available. All these
checks have to be programmed along with the functional behavior of displaying the landing page. In
the ubiquitous scenario in which changes occur very frequently, it is infeasible to manually revise the
context checks as well as recompile and restart the whole application.

From Static Types to Adaptive Structures

To cope with the challenges of ubiquitous software, researchers have proposed several approaches,
including the concept of roles that has been initially introduced by Bachman and Daya in computer
science [8]. The key idea of roles, as design principle, is to split an entity into several metatypes,
especially the entity core and the role types an entity may play over its lifetime. This idea is visualized
in Figure 1.1 and contrasted to a traditional static typing approach. On the left-hand side the tradi-
tional approach models all potential behavior in a single class to avoid entity reinstantiation. In detail,
the core entity information and the premium membership specific behavior, like orderPremium(), and

1https://www.netflix.com/
2https://www.amazon.de/

2 Chapter 1 Introduction

https://www.netflix.com/
https://www.amazon.de/

structure is included in a single type. Thus, all methods and attributes are available for the whole en-
tity lifetime and it has to be manually checked within the methods either an orderPremium() method
is callable or not. In contrast, the role-based modeling approach on the right-hand side specifies the
premium membership specific behavior in a separate role type named PremMember. Only if a role of
this type is played, the corresponding method and attributes are available within the entity.

Person_PremMember

- Name: String
- LastName: String
- Birthday: Date
- Address: String

- PremID: Int

- orderItem()

- orderPremium()
- getDiscount()

Person

- Name: String
- LastName: String
- Birthday: Date
- Address: String

- orderItem()

PremMember

- PremID: Int

- orderPremium()
- getDiscount()

C
o

re
R

o
le

C
o

re
R

o
le

Traditional Typing Role-based Typing

Figure 1.1: All In One Class Definition in Contrast to a Role-based Specification

This split from a single and static metatype to several metatypes with special semantics, enables a
separation of concerns on several levels. At first and from a software architecture perspective, the
functional behavior is separated from the context-adaptation mechanisms. For instance, assume the
order functionality on such an online retailer that varies depending on your user status. The order
process does not have to distinguish between a regular or premium user, because this is encapsulated
in roles and the method dispatch decides which method to call. Secondly, the use of roles relaxes the
situation of the statically described behavior and structure in the types. As role types may be dynam-
ically added to or removed from the system, the entities can vary their available set of behavior and
structure. Thus, entity types can evolve over time without recompiling the whole type. As example,
imagine a premium functionality launch that defines new behavior during the ordering process. This
new behavior is defined in a separate role type which is dynamically added to the system. Thirdly,
the actual behavior and structure of an entity can be varied after instantiation by start or stop playing
roles in certain contexts. For instance, a regular user signs up for a premium membership and as soon
the payment is done, the new functionality is available. This is solved by adding a new role to the
user core entity element, giving it additional functionality and structure without entity reinstantia-
tion. Moreover, this enables different lifetimes of various parts of an entity. As soon as the premium
membership ends, the additional structure and behavior is gone, but the entity itself survives.

The concept of roles is well-known in the modeling and programming language communities. For
instance, the Object Role Modeling (ORM) [34], the Information Networking Model [61], or the
HELENA approach presented in [37] are representatives for modeling languages that utilize roles as
first class citizen. On the programming language side, there exist ObjectTeams [39], SCROLL [59], or
Rumer [9].

From Adaptive Software to Database Systems

Database systems are an integral component of today’s software systems, because they provide stan-
dard data management functionalities that are used by the applications. Thus, database systems pro-
vide several guarantees on which the applications can rely without taking care of these functionali-
ties by themselves [54]. First, it encapsulates the persistent data management from the applications.

3

Moreover, as central data storage facility, it ensures global data consistency for the whole application
landscape, which gives it the characteristic as single point of truth in a software system. From this
point of view, database systems are not mainly concerned with the actual data, because storing data in
a certain format is a simple job, but with the schemata and keeping the data consistent with respect to
the schema. Hence, database systems care more about the schema and not the actual data. Addition-
ally, database systems ensure an efficient data storage and access within transactions. Furthermore,
they have to take care of data recovery and concurrent data access. Finally, database systems provide
an expressive query language.

Even in a ubiquitous software world these guarantees have to be ensured by a database system. In
detail, we assume such software world to be modeled and implemented by using roles as extension
points to entities. Moreover, a role-based metamodel is much more complex, because it encompasses
not only a single metatype, in fact there are several metatypes that are interrelated to each other by
special semantics and constraints. Unfortunately, there is no database system available that is able to
explicitly model roles as extension points of entities in certain contexts, so far. Generally, there are
two ways of coping with the absence of role semantics in the database system: (i) hiding this absence
as much as possible by implementing mapping engines or (ii) implement a database system that is
aware of the role semantics.

The first option does not lift the database model on the semantics of the applications metamodel.
Rather, mapping engines are used to hide this semantic gap from the applications and their develop-
ers. This solves the semantic gap only partially and from an application perspective. In detail, map-
ping engines pull data management tasks out of the database system and realize them closer to the
applications. Especially, the metamodel constraints, in our case the role-based metatype distinction,
their interrelations, and constraints, are managed in the mapping engine, because these constraints
are not directly representable in the database. Hence, the mapping engines or applications are in
charge to enforce the metamodel and its related constraints. This becomes a problem in case of multi-
application scenarios with multiple mapping engines. Each of the mapping engines as well as the
applications rely on their local view on the data and their own mapping of the metamodel, hence, the
consistency managed in them can only be guaranteed for this local perspective. Moreover, all map-
ping engines have to be aligned in their mapping processes to be compatible to each other and use the
same data other engines write to the database. As a consequence of the metamodel mapping in the
mapping engines, the database system loses its characteristics as single point of truth in the software
system. Worse, it is not used to take care of the schema, rather as storage engine for a certain storage
format. Moreover, is does not encapsulate the data management process, because the applications are
required to implement a separate piece of software that maps the semantics. In fact, the persistent
data management is distributed over several layers in the software system.

The second option implements the role-based semantics in a database system as a first class citizen,
so the semantics can be directly used, without a mapping involved, by the applications. This lifts the
database system’s metamodel on the same semantic level as the application’s one already is. Such an
implementation includes not only the metatype distinction, but the metatype interrelations and con-
straint. Hence, the applications are not in charge to enforce the metamodel in the mapping process,
in fact it is ensured in the database system. As the role-based semantics are directly represented in a
database system, it is capable to ensures global consistency with respect to the metamodel and with-
out the need to enforce these constraints outside the database system. The mismatch caused by the
semantic gap between different, especially role-based, semantics can be overcome by this solution.
In this thesis we investigate the options to introduce a novel logical database model that is capable
to directly represent a role-based metamodel distinction and ensures the metamodel consistency con-
straints as inherent database feature.

4 Chapter 1 Introduction

Introducing Novel Semantics in a Database System

To adapt a database system, we firstly have to look at the architecture of common database systems.
These are clearly structured in their abstraction layers. In detail, traditional database systems feature
five layers of these as depicted in Figure 1.2 [71, pp. 37–40]. Topmost, the set-oriented interface
represents the query language and represents a set-oriented access to the database system. In case of a
relational database system, this is ensured by implementing the SQL standard. This interface accesses
the data system, which is probably the most complex layer. It ensures the translation between the
set-oriented and record-oriented interface by algebraically optimizing the queries, choosing the best
access paths on the basis of statistics, and ensuring the integrity. Moreover, the logical processing
model is implemented in this layer. In relational database system, the relational algebra, the optimizer,
as well as integrity checks are implemented in the data system. Thus, the operator plan is created,
optimized, and joins are performed there. The record-oriented interface represents the navigational
access on the data access system, like indexes or table scans. The data access system is in charge
of the transformation on the internal record structure by providing efficient data access structures.
However, as it can be seen by these two example layers, the semantic richness decreases from one
layer down to another one. From relations and tables on the set-oriented interface to byte streams
that are stored as files on the file system.

Data System

Data Access System

Storage System

Buffer System

Operating System

Set-oriented Interface

Record-oriented Interface

Internal Record Interface

System Buffer Interface

File Interface

Figure 1.2: 5 Layers of a Database System Architecture; According to [71]

Consequently, introducing a novel database model with additional role-based metamodel semantics,
requires to adapt a database system’s data system as well as the set-oriented interface first. From the
data system perspective, it is required to introduce data structures that feature role-based semantics.
Additionally, novel logical operators are needed to enable a processing of these structures. Moreover,
the corresponding processing model for role-based data structures must translate them into external
records and access paths to achieve a connection to the data access layer. The set-oriented interface
is in the need to reflect the data structures in a language interface and in the query results. Precisely,
it is required to adapt the query language by introducing role-based semantics in its statements. Ad-
ditionally, the query results must reflect the implemented metamodel semantics as well and expose
them to the clients.

5

Thesis Contributions

In this thesis we argue for an integration of roles and their related semantics in a database system,
to overcome the semantic gap between role-based software and traditional non-role-based database
system. Thus, we propose an adaptation of the data system layer to a novel database model and an
adjusted processing model in combination with a redesigned set-oriented interface. In sum, these
adaptations are combined in the RSQL approach, which is the key contribution of this thesis. In
detail, this thesis provides the following contributions.

(1) At first, we investigate the problems of traditional, especially relational, database systems in com-
bination with role-based software systems in detail. These problems are concentrated under
the term role-relational impedance mismatch, which describes the problems from a database
system’s, application’s and application developers’, and software system’s perspective. On this
basis, we define several requirements to overcome this role-relational impedance mismatch
and evaluate them against four possible architecture layout solutions. These layouts range from
using relational techniques only, over mapping engines, to a full database integration. As Fig-
ure 1.3 shows, these contributions are the main concern of Chapter 3.

(2) To meet these requirements, we introduce a role-based database model as logical foundation for
an adapted data system layer. This database model is called RSQL database model and defines
logical data structures that encapsulate the role-based semantics. In detail, we define Dynamic
Data Types as data structure on the schema level and Dynamic Tuples as instance representa-
tion. These definitions feature roles as first class citizen and embed them into contexts. More-
over, we specify various logical operators that enable the processing of Dynamic Tuples while
preserving the role-based semantics. These contributions build the main body of Chapter 4.

(3) To propose a solution for an adaptation of the set-oriented interface with respect to role-based
semantics, we specify the RSQL query language and the RSQL Result Net. In detail, the
query language definitions feature formal syntax descriptions for the data definition, data ma-
nipulation, and data query language. The first creates a role-based database schema, the second
populates the corresponding database with role-based data, and the latter retrieves data from
the database. Moreover, we connect the data query language elements with the logical database
model operators to generate logical operator plans. These plans build the basis for a query pro-
cessing of Dynamic Tuples. Moreover, we propose a role-based result representation, named
RSQL Result Net, which preserves the role-based semantics in query results by returning mul-
tiple sets of Dynamic Tuples to the clients. In addition, we specify several functionalities to
navigate and iterate through the result, on the basis of Dynamic Tuples. As Figure 1.3 illus-
trates, Chapter 5 includes these contributions.

(4) To demonstrate the benefits of the logical database model, the query language specification, and
the result representation, we evaluate them in contrast to a relation representation in Chapter 6.
As the database model evaluation shows, the proposed RSQL database model requires up to 15
times less statements to set up a role-based database schema. The query language evaluation
demonstrates shorter RSQL queries that additionally do not mix mapping details with entity
information. To evaluate the result representation, we compared the processing effort of an
RSQL Result Net based result in contrast to two relational result representations of role-based
data. This shows, that the RSQL Result Net combines the positive aspects of both relational
representations, in writing lines of code, transferred data, and size of the result.

6 Chapter 1 Introduction

Thesis Structure

The remainder of this thesis is structured as visualized in Figure 1.3. The following Chapter2 intro-
duces the concept of roles as modeling primitive and provides an overview of various role notions. As
the perception of a role is very diverse, a classification of different role notions is provided on the basis
of the surveys published by Steimann [79] and Kühn et al. [58]. Moreover, this chapter introduces a
university domain that is utilized as running example throughout the thesis.

As the roles are accepted in modeling and programming languages, but not as data model in database
systems, Chapter 3 discusses the problems arising out of the role absence in the database system un-
der the term role-relational impedance mismatch. To overcome this mismatch, several requirements
for a database integration are defined. Moreover, related approaches are detailed, classified by their
targeted software system architecture, and rated by their capability to overcome the mismatch.

On these foundations and the conclusion that no related approach fully integrates the notion of roles
in a database system, the RSQL approach is introduced. At first, Chapter 4 defines the database model
on the schema and instance level by establishing the Dynamic Data Types and Dynamic Tuples along
with Relationships and formal operators. Secondly, the query language consisting of a data definition
language, data manipulation language, and a data query language is discussed in Chapter 5. Moreover,
this chapter specifies the query processing and RSQL’s result representation, the RSQL Result Net.

To evaluate RSQL, it is compared to a relational representation of itself in Chapter 6. In detail, this
evaluation comprises a database model comparison with respect to instance consistency, a comparison
of the RSQL’s query language with SQL, and an assessment of the client side costs to process the query
results. Finally, this thesis provides a conclusion, and a perspective on future works in Chapter 7.

Modeling With Roles –

T
h

e
 R

S
Q

L
 A

p
p

ro
a

c
h

RSQL Database Model

Need for Role-based Database Systems –

Schema Level

Instance Level
Operators

RSQL Query Language
and Processing

Query Language

Query Processing

Result
Representation

Proof of Concept –

Evaluating the
Database Model

Evaluating the
Query Language

Evaluating the
Result

Contribution 1

Conclusions and Future Work –

Contribution 2

Contribution 3

Contribution 4

Figure 1.3: Thesis Structure and Contributions

7

8 Chapter 1 Introduction

2
MODELING WITH ROLES

2.1 Way Towards Roles

2.2 Zoo of Role Notions

2.3 Compartment Role Object Model

2.4 University Management Scenario

2.5 Summary

Roles as modeling primitives are nothing novel, in fact this concept has been introduced by Bach-
man and Daya in 1977 [8] as extension to the network data model. However, roles provide advan-
tages compared to traditional modeling languages, like the Unified Modeling Language (UML), and
programming languages, like Java; structure and behavior can be added to an existing object during
runtime. Hence, we firstly outline design time and runtime issues of widely used traditional model-
ing approaches to make our way toward the benefits of roles and a detailed discussion of these. Over
the recent decades, a lot of role-based approaches have been proposed, all having a different notion
of roles. This zoo of role notions has been surveyed by Steimann as well as Kühn et al. resulting in
26 different features conceded to roles. Moreover, a classification of this thesis within that particular
zoo is presented. To rely on a sophisticated role notion as base for this thesis, the Compartment Role
Object Model (CROM) is introduced and explained in detail. Furthermore, a university management
scenario is introduced, presenting the advantages of roles as well as running example throughout this
thesis. Finally, the chapter is concluded in a short summary.

2.1 WAY TOWARDS ROLES

Generally, a model in computer science is an abstracted and simplified image of the real world for
a given purpose. Hence, uninteresting parts of the captured real world are omitted, objects are ab-
stracted to classes or types, and complex relations are boiled down to their essential parts with respect
to the given purpose. In computer science models are used for various purposes, for instance during
the analysis or design phase in software development. In general, Steimann identifies two main goals
for modeling in computer science [78]. At first, capturing real situations of a corresponding domain
and for communication purposes during the analysis phase. Secondly, a model can represent the de-
sign for a software system, which describes the elements of such a system in detail. This may also be
a guideline for the implementation of a piece of software. However, traditional and widely used ma-
ture modeling methodologies, like the Unified Modeling Language [70] or Entity-Relationship Mod-
eling (ERM) [18], are based on the fundamental concept of entities and relationships between these
entities. Moreover, these traditional modeling languages consider each entity to be an instance of a
fixed certain type (static typing), having a defined structure (the entity’s attributes) and a given behav-
ior (the entity’s methods). Unfortunately, changing an entity’s type is not covered by those modeling
languages and results in circuitous instance replacing, whereas the object’s identity is typically lost.
This static representation results in problems for modern software systems that act in a large variety
of environments and contexts.

While designing, and modeling a software system using these traditional modeling methodologies,
designers can run into a lot of problems, like fat types, subtype explosion, or redundant subtypes. At
first, a modeler needs to integrate every aspect of an entity in its type during design time, even if some
attributes or methods are of interest only in some situations for few entities. Such fat types give every
instance the full behavior, even when the instance is not supposed to have it. For example, imagine a
student management system and along with the students there exist student representatives and stu-
dent assistants. Including every behavior of the student representative and assistant into the student
type is unintended, because every student would get the methods and attributes of a student represen-
tative and assistant as well. To avoid such problems, designer may use inheritance for generalization
and specialization of types. This leads to the second problem occurring during design time, subtyping
does not scale and results in numerous subtypes. For example, a student may be a student represen-
tative and student assistant at the same time, i.e. the modeler needs to design each combination of
subtypes as subtype as well. In the example the subtype of student assistant and student representa-
tive is required. As you can imagine, introducing another subtype, like a student tutor, results in a
combinatorial explosion of subtypes. You may accept to spend this effort once, but maintaining and

10 Chapter 2 Modeling with Roles

18

Study Commission
Member

Faculty Council
Member

Student Professor

Figure 2.1: Specialization and Generalization Problem in Object-oriented Design; According to [79].

extending such systems becomes impracticable. Finally, designers may run into problems they cannot
decide, whether it is a specialization or generalization. For instance, envision a study commission
and faculty council as part of the university, where both, professors and students may be members
of those. Figure 2.1 illustrates this situation. On the one hand, you can model both member types as
subtypes resulting in multiple inheritance, one inheritance from student and one from professor. This
would mean that each member instance is a student and professor at the same time, which is not what
you want to express. On the other hand, you may model both member types as supertypes, whereas
professor and student are subtypes of those. This is unintended, too, because each professor would
be a member of the study commission and faculty council. To avoid such undecidable situation, mod-
elers may use patterns as workaround [23]. Such a pattern is the introduction of separate subtypes
of both, study commission member for student and professor as well as for faculty council. Applying
this pattern, you will end up with two different subtypes expressing the same. Additionally, you have
to implement the structure and behavior multiple times resulting in overhead for maintenance. On
top of the mentioned problems, there exist several other ones, designers can run into. However, the
described issues underline the need for more flexibility and dynamics to improve modeling languages.

During runtime, the static representation of entities in UML or ERM causes problems, too. Over the
whole lifetime of an entity these sets might change and usually do, so that some attributes or methods
are only valid for a certain period (i.e., being a student), other may come once and stay the whole
lifetime (parenthood). Additionally, entities of the same type may have different sets of attributes and
behavior at the same time. Most of the problems of static typing is caused by the entity’s immutable
set of attributes and methods, because it must be part of a certain type for its whole lifetime. One
workaround is recreating an entity within a different type, but at runtime, an entity is usually iden-
tified by a certain system internal ID. Thus, reinstantiation may provide an entity having the same
attribute values, but with a different internal ID. The new entity may look alike, but internally it is a
different one, thus, it is handled as a different one. Additionally, reinstantiation is only a workaround
on the instance level for missing flexibility and dynamic typing. Another problem occurs when an en-
tity is conceptually separated into multiple individual (sub)entities, for instance the student itself and
the student representative are two separate entities related by an is-a association. The adaption’s se-
mantics intended to be expressed in this scenario, that is to say the student representative and the stu-
dent is the same entity, are implied by the programmer, but not an integral part of the program itself.
This complicates code maintenance as well as vanishes the originally intended semantics. Addition-
ally, the runtime will handle both entities separately which may lead to object schizophrenia [40, 74].
That phenomenon describes the problem that occurs when conceptual entities are separated into sev-
eral parts and each part forms an individual physical entity. Consequently, caused by the missing
semantics in the code interpretation, each physically separated entity sees itself as the whole entity,
although it is only a part of a greater whole. Of course, some runtime problems may be worked around
using patterns, but the original problem of static entities and their misinterpretation remains.

In summary, modern software systems become more complex and act in various continuously chang-
ing environments resulting in problems during design time and runtime. Traditional modeling
methodologies and paradigms, like the UML, frequently fail when faced with the requirements of
such highly dynamic and complex software systems, because they assume entities to be static with

2.1 Way Towards Roles 11

respect to their type and on the meta level those approaches provide only a single metatype to de-
scribe entity types. With respect to the two goals of modeling, capturing the real world and designing
a software, the level of abstraction of those modeling methodologies is too high, which results in in-
appropriate models for today’s requirements. Moreover and in contrast to this abstraction of static
objects, real-world entities are dynamic and evolve over time.

To cope with these outlined problems and address the dynamics, flexibility, and evolution, researchers
have developed a lot of approaches, like aspect-orientation [15] or context-oriented programming [41],
during the past decades. Among these approaches, there exist the concept of roles, which is the focus
of the research training group RoSI [30] as well as this thesis. The main idea behind the concept of
roles is the separation of concerns within an entity, because several parts of an entity have different
lifetimes and may only exist during a certain period of the entity’s lifetime. This idea of separation
of concerns in general is well-known and applied in a lot of areas in computer science. Layering, for
example, is a sort of separation of concerns and helps to manage complexity within a software system.
For instance, the ANSI/SPARC Architecture, which layers a database management system into three
parts: (i) the external level defining the user’s views on the data, (ii) the conceptual level defining
logical data structures, and (iii) the internal level describing the physical data structures [52, 55].
However, the separation of concerns within an entity means, that the dynamic and flexible parts of
an object are modeled separately from the entity core. Consequently, the situations or context an
entity may be involved in, are designed in a different place. Special semantics combine the core
entity and its extensions to enable context-dependent behavior and structure adaption. Thus, an
entity’s possibilities to evolve over time becomes an integral part of the modeling methodology and is
explicitly modeled.

Generally, a role as concept or modeling primitive in our notion is the context-dependent and dynamic
part of an object capturing situation-specific behavior and structure in a separate (meta)type. In con-
trast to traditional static type description and their workarounds for enabling entity adaption and
evolution, roles explicitly model behavior adaption possibilities as first-class primitive. For instance,
let student be a role of a person in a university. At design time, the student is designed separately
from the person and related by can play semantics, giving a person entity at runtime the ability to
extend its core structure by the student role structure and behavior. For instance, imagine the person
as core type and student as well as club member as roles playable by this person. At first, there exists
the person core entity only. When joining a university, he or she starts playing the student role and
gains new structure, a student ID for instance, and new behavior like enrolling for a class. Later, the
same person becomes a member of a sports club, thus, starts playing the role club member in addition
to the student role. Hence, the entity evolves a second time without changing the type at all, but by
starting or stopping playing roles. In summary, this helps when modeling and implementing complex
and context-dependent behavior of entities.

2.2 ZOO OF ROLE NOTIONS

The term role and the underlying concepts are omnipresent in our every day’s life, in our communi-
cation and speech as well as in the way we think. Thus, it is not surprising that the term is widely used
in various research areas, too. For example, in sociology, linguistics, and computer science, of course.
However, the origins of this term may go back to the ancient world, especially to the ancient theater.
In theater, a role refers to a character or figure an actor or an actress plays in a certain play [8]. This
captures the core notion of what a role is very well. Firstly, a role is something abstract someone or
something can act like. Secondly, the role itself is defined independently of its player, because the role
does not define who or what is going to play that corresponding role. Finally, the role requires a player
to be filled with life, because there must be someone who adopts the role’s behavior and structure.

12 Chapter 2 Modeling with Roles

This idea has been adopted in computer science as well. One way to use roles is role-based user access,
which is mainly used to restrict access to any kind of information [73]. Each operating system as well
as database system has some kind of role-based access implemented to restrict access to files and ta-
bles, respectively [55]. In database systems, for example, administrator roles have different privileges
than simple users; an administrator can create tables, indexes, and promote access to tables. How-
ever, this is a special role notion from a human-computer interaction perspective. The general role
perception considered in this thesis differs from that one; we utilize roles to enable entities managed
in a software system to dynamically gain and lose behavior as well as structure during runtime. This
particular role perception has been utilized a lot, for instance in modeling [34, 8, 83, 61, 79, 37, 20]
or programming languages [39, 10, 60, 29, 68, 53]. One of the first researchers who introduced
roles as modeling primitive into computer science is Charles W. Bachman [7, 8, 80]. Back in the late
1960s and early 1970s, two novel and competing data models for database system have been proposed,
the network (CODASYL) model [81] and the relational model [19]. Bachman had one fundamental
observation on entities in the network model: entities interact with each other by using roles [7].
Unfortunately, the original network model definition cannot represent roles natively, rather they are
represented by additional records. Consequently, Bachman and Daya developed a data model that
is able to represent roles as an extension to the network data model [8]. In detail, they extend the
record construct by role-segments, which can be used for additional record characterization and spe-
cialization. This data model never became popular in the database research community, rather the
relational data model has become dominant1. However, the relational data model does not provide
the desired flexibility and dynamics of entities to overcome the aforementioned issues. For a detailed
discussion on various implemented data models, including the relational data model, of database man-
agement systems and their shortcomings in the environment of a role-based software system, we refer
to Chapter 3. In contrast to the static tuples in the relational data model, roles applied as separation
of concerns within an entity can provide these flexibilities and dynamics.

Steimann’s Role Features

The original idea of roles as primitives to dynamically extend and shrink entities is still alive and has
attracted attention in the research community from time to time. As mentioned before, there ex-
ist many approaches for modeling and programming languages that utilize roles, each with its own
interpretation of roles. Thus, there is no common notion of what a role is. In fact, there is a large va-
riety of different, sometimes even contradicting, role notions. For instance, ERM. [18] as well as the
UML [70] consider roles only as named places in relations and associations, respectively. There are
neither role-specific attributes nor behavior in such approaches. In contrast, Bachman’s and Daya’s
role data model utilizes roles as extension to entities, having a separate structure. Furthermore, pro-
gramming languages like ObjectTeams [39] or the Scala Roles Language (SCROLL) [60] use roles to
dynamically adapt the behavior of objects at runtime. However, to provide a universal formal role
modeling language, Steimann surveyed and categorized many proposed approaches until the year
2000 [79, 78]. He analyzes the advantages and shortcomings of these approaches. Based on this
knowledge, he identifies 15 different features that are related to the term role and three ways to rep-
resent them. Moreover, Steimann himself points out that some of them are contradicting, hence, no
approach will ever serve all mentioned features. Finally, he develops a formal role modeling language
called Lodwick. An overview of Steimann’s 15 features of roles and the corresponding description is
listed in Table 2.1. In his survey, Steimann uses the term role for both, types and instances, which may
be confusing. To clarify which level is addressed by a certain feature, the corresponding Meta Object
Family (MOF) level is shown in the right-hand column, which is extracted from Kühn et al. [58].

1Of course, there exists other implemented data models for database management systems, especially the NoSQL ap-
proaches like key-value stores [21], graph databases [5], and wide-column stores [16]; but the relational data model is still
the dominating one.

2.2 Zoo of Role Notions 13

Feature Description Level

1 A role comes with its own properties and behavior M0, M1
2 Roles depend on relationships M0, M1
3 An object may play different roles simultaneously M0, M1
4 An object may play the same role several times simultaneously M0
5 An object may acquire and abandon roles dynamically M0
6 The sequence in which roles may be acquired and relinquished can be subject

to restrictions
M0, M1

7 Objects of unrelated types can play the same role M1
8 Roles can play Roles M0, M1
9 A role can be transferred from one object to another M0
10 The state of an object can be role-specific M0
11 Features of an object can be role-specific M1
12 Roles restrict access M0
13 Different roles may share structure and behavior M1
14 An object and its roles share identity M0
15 An object and its role have different identities M0

Table 2.1: Overview on Steimann’s Role Features and Affected Meta Object Facility’s Layers; Extracted
from [79, 58]

Classification of Role Approaches

In a second survey, Kühn et al. look into role-based modeling and programming approaches between
the years 2000 and 2014 [58] to update Steimann’s survey and research as well as to find new trends
in role modeling. Moreover, and importantly, they classify the surveyed approaches by three different
aspects2 roles try to serve. Additionally, this classification emphasizes the broad variety of different
role notions and a missing common one. An illustration of this classification is presented in Figure 2.2.

Relational

Context-dependent

Behavioral &
Structural

1 2

4 5

6

3

7

Figure 2.2: Classification of Existing Role Notions Based on the Three Aspects: Relational, Behavioral
and Structural, and Context-dependent.

Each trend is depicted as separate ellipse having intersections to the other trends. At first, role ap-
proaches can focus on the relational perspective, which means different entities interact with each
other or are connected by using roles. Secondly, roles address structural and behavioral aspects of
entities, which refers to the flexible set of attributes as well as methods. In fact, Kühn et al. men-
tions the behavioral aspect only, but the behavioral and structural perspective aim for the same goal,
changing the fixed set of methods and attributes, respectively. Finally, roles are utilized to describe
context-dependent features of entities. Based on these three perspectives, seven classes of approaches
are possible, which are indicated and referenced by the corresponding number in Figure 2.2.

2You may also call it perspective on roles, purpose roles are used for, or trends in the notion of roles.

14 Chapter 2 Modeling with Roles

1. These languages focus on the relational aspects of roles only. They are used to connecting enti-
ties by roles, may it be in relationships or as adjunct objects. Representatives of this area are for
instance, the UML [70] or the programming language Rumer [10, 9]. Both approaches feature
roles as named places within relations; UML in associations and Rumer in relationships.

2. There exist role languages that focus on adaption of behavior and structure of an entity only. For
example, the generic role model presented in [20], the programming languages Chameleon [28]
and Rava [36].

3. So far, there are no approaches that focus on the context-dependent nature of roles only.

4. Approaches like the HELENA approach [37] combine the relational and context-dependent na-
ture of roles. Roles are utilized to express an entity’s interaction with other entities. Addition-
ally, this interaction is embedded into a context. Behavioral and structural adaption of an entity
are not considered in this class of approaches.

5. Contextual role languages mainly focus on the adaption of behavior and structure with respect
to a certain context or situation. Aspect-oriented and context-oriented programming languages
are situated in this class. Representatives are ObjectTeams [39], the metamodel presented by
Genovese [24] or Kamina and Tamai [53].

6. This class of approaches brings the relational as well as the behavioral and structural perspec-
tives on roles together. Object-Role Modeling (ORM) [35], Lodwick [78], and the Information
Networking Model (INM) [61] are representatives of this class.

7. The last category combines all three aspects in one approach. So far, the Compartment Role
Object Model [57, 56] is the only proposed metamodel combining all these aspects. Moreover,
the RSQL approach presented in this thesis belongs to this last category.

So far, the term context has been used frequently without providing a precise definition of this term.
The term context is, like the term role, very general and everyone has a different perception of what
a context is.

Context versus Compartment

To clearly understand the context-dependency of roles, there are two different notions applicable to
this nature. Firstly, context as environmental information and secondly, as objectified collaboration
containing other entities.

The first notion is the interpretation given by Abowed et al. [1]. It is more commonly used in computer
science and defines context as follows:

Context is any information that can be used to characterize the situation of an entity. An entity
is a person, place, or object that is considered relevant to the interaction between a user and an
application, including the user and applications themselves. [1, pp. 306–307]

2.2 Zoo of Role Notions 15

Consequently, a context is something that surrounds an entity and provides additional information.
Information, in the authors’ sense, may be time, place, temperature, the user’s mood, or even the state
of the application a user is running. Additionally, context is considered to be omnipresent, even no
information regarding an entity is an information. Moreover, context is always related to a certain
entity. For instance, classical context information is: it is a hot and sunny day in a certain area. This
is only context information for people who are currently present in this area, but not for persons
outside this area. In detail, this information is the air temperature, cloud formations, the date, and a
location. In our digital world such information can by inferred easily from sensor data, like GPS or the
heat sensor of a smartphone. To sum up, this context definition describes an entity’s environmental
information that has no specific identity, no intrinsic behavior and is omnipresent.

In contrast to the traditional context perceptions, there exist another notion, namely compartments;
a term introduced by Kühn et al. [58]. As motivation for using and introducing this term, they provide
the following explanation:

[W]ithin modeling languages, context represents a collaboration or container of a fixed, limited
scope. To overcome this dichotomy, researchers avoided the term context by using other terms,
i.e., Environments, Institutions, Teams and Ensembles. In turn, we use the term Compartment
as a generalization of these terms to denote an objectified collaboration with a limited number
of participating roles and a fixed scope. [58, p. 146]

Since this definition is very general, we will detail and explain it. At first, a compartment is a con-
structed entity itself containing other entities. Secondly, it carries an identity, has its own structure
and behavior. Finally, a compartment has a defined lifetime and life-cycle, respectively. For example,
imagine a university as entity as well as the roles student and professor as part of the university. The
university will be modeled as a compartment, because both roles, the student and professor, are only
valid within this university. The university itself has its own identity, for instance the name, its own
structure, and its own behavior. Regarding the definition of Kühn et al. the university acts as objecti-
fied collaboration for the roles student and professor. Consequently, these roles cannot be used out-
side of this defined collaboration. Table 2.2 compares both notions and as you can see, compartments
are the exact opponents to traditional contexts. Moreover, this thesis is based on this compartment
definition.

Characteristic Context Compartment

Nature environmental information construction containing entities
Identity no yes
Structure and Behavior no yes
Lifetime & Life-cycle no yes

Table 2.2: Characteristics of Context in Comparison to Compartment

Additional Role Features by Kühn et al.

In addition to the 15 features Steimann identifies, Kühn et al. define eleven additional features, most
of them (8) describing the contextual nature of roles with respect to compartments [57, 56]. Espe-
cially this context-dependency has been neglected by most of the role approaches before 2000 and
even by Steimann himself. An overview of these additional role features is given in Table 2.3 starting
with feature 16, because they can be seen as addition to Steimann’s features.

16 Chapter 2 Modeling with Roles

Feature Description Level

16 Relationships between roles can be constrained M1
17 There may be constraints between relationships M1
18 Roles can be grouped and constrained together M1
19 Roles depend on Compartments M0, M1
20 Compartments have properties and behavior M0, M1
21 A role can be part of several compartments M0, M1
22 Compartments may play roles like objects M0, M1
23 Compartments may play roles which are part of themselves M0, M1
24 Compartments can contain other compartments M0, M1
25 Different compartments may share structure and behavior M1
26 Compartments have their own identity M0

Table 2.3: Overview on Kühn’s Additional Role Features and the Affected Meta Object Facility’s Lay-
ers; Extracted from [58]

In the first place, Kühn et al. extend the perception of roles by direct relationship constraints and con-
straints between relationships (16 and 17). Cardinality constraints, for example, are a representative
for the first constraint specification (16) and an implication between two relationships for the second
one (17). Additionally, they introduce a grouping of roles and a collective constraining of those (18),
which simplifies modeling by constraining the group as its whole instead of defining the constrained
for each group member separately. In sum, these three features provide additional options to restrain
roles. The other features (19–26) refer to compartments and their properties. The first compartment
feature relates roles and compartments to each other (19). In this sense, roles are directly embedded
within compartments. For instance, a compartment university and a role student within this univer-
sity. Additionally, compartments are specified like objects and roles, thus, they come with their own
properties and behavior (20) and have their individual identity (26). Hence, a university can have a
name and location as properties and a behavior like enrolling students. Furthermore, compartments
are able to play roles (21), even in case the role is contained within the compartment itself (22).
Imagine a sports team as compartment containing several team members. This certain team can then
attend to a tournament as its whole by playing the attendee role for instance. Finally, Kühn et al.
provide features for hierarchically structure compartments (24) and inheritance of those (25).

2.3 COMPARTMENT ROLE OBJECT MODEL

This thesis assumes the Compartment Role Object Model (CROM) proposed by Kühn et al. as base no-
tion for roles [56]. CROM itself describes a metamodel for building role-based models and schemata,
a Compartment Role Object Instance (CROI) as instance representation, and a Constraint Model to
represent several constraints in the model and instance validity verification. To give you a deeper
understanding of CROM and the underlying concepts and semantics, it is discussed in detail here-
after. Basically, CROM provides four different metatypes: Natural Types, Compartment Types, Role
Types, and Relationship Types3. To provide developers and designers a clear specification to decide
which type to use, an ontological foundation is given. Base of this type distinction are the established
ontological properties Rigidity, Foundedness, and Identity [57]. Rigidity and Foundedness as ontologi-
cal concept have been established by Guarino [31, 32] to distinguish Natural Type and Role Type in

3For the purpose of a strict optical and orthographic distinction between CROM metamodel elements (Natural, Role
Type, or Role) and conceptual primitives (role, compartment), we refer to the former ones by writing them as proper nouns.
In contrast, the latter ones are written in a standard English way.

2.3 Compartment Role Object Model 17

particular [79]. These two properties suffice to differentiate between Natural Types and Role Types.
As soon as Compartment Types and Relationship Types enter the game, an additional property is
required. The ontological property of an Identity [64] provides further distinction options [57].

Semantic Rigidity relates to the concept that an instance has to be part of this type for its whole lifetime.
The opposite of a rigid type is an anti-rigid type. This rigidity criterion can be applied to a person, for
example, because you cannot stop being a person without losing your identity4. Foundedness describes
the fact that a type is existentially dependent from the existence of other types. In fact, founded types
cannot exist on their own, which also holds for instances of these types. This applies to Role Types for
example, which cannot exist in isolation. Finally, the Identity property characterizes whether a type’s
instance has a unique, derived, or composed identity. For example, each person will be identified by a
unique identity.

These three properties allow us to distinguish the four metatype elements of CROM. Firstly, Natural
Types (NT) are considered to be rigid, non-founded, and have a unique identity. A person, for exam-
ple, can exist on its own and each person has a unique identity. Additionally, a person cannot change
its type. Secondly, Compartment Types (CT) are semantically rigid, but found and have a unique iden-
tity. For instance, a university has its individual identity and cannot change its type, but depends on
the existence of Roles like professor or student. Thirdly, Role Types (RT) are the opposite of Natural
Types; they are anti-rigid and founded while their identity is derived from their player types. The
student Role Type is an example. It can only exist if there is a certain player type (person) and a Com-
partment Type (university) to exist in. In addition, the student identity is derived from its individual
player. Finally, Relationship Types (RST) are rigid, founded and have a composed identity. Imagine a
student taking a class, the corresponding Relationship Type will be takes class. The type of a certain
Relationship cannot be changed and each Relationship Type requires at least two Role Types to par-
ticipate in. Moreover, the Relationship identity is composed by the participating Roles. A summary
of the ontological foundation of CROM’s metatypes is presented in Table 2.4.

Concept / Property Rigidity Foundedness Identity Example

Natural Types rigid non-founded unique Person
Compartment Types rigid founded unique University
Role Types anti-rigid founded derived Student
Relationship Types rigid founded composed takes class

Table 2.4: Ontological Foundation of the Metatypes Introduced in the Compartment Role Object
Model as defined in [57]

The CROM metamodel provides the aforementioned four different metatypes Natural Type, Com-
partment Type, Role Type, and Relationship Type, but they do not exist in isolation. In fact, they are
connected by relations and functions having special semantics.

fills relation First, the fills relation connects player types with Role Types [57]. Basically, this ex-
presses which type can play Role of which Role Type, while a player type can be a Natural Type
or Compartment Type or both. Hence, the fills relation is not limited to only one player type per
Role Type, multiple player types for a single Role Type are explicitly allowed.

parts function Secondly, a parts function relates each Role Type to a certain Compartment Type,
thus, each Role Type will be located in exactly one Compartment Type [56]. Additionally, each
Compartment Type must contain at least one Role Type, hence, this function must return a
non-empty set of Role Types for a given Compartment Type. This is required, because an empty
Compartment Type would not be founded, like a Natural Type, thus, it should be modeled as
one and not as Compartment Type.

4Identity in this context refers to an entity’s identity and explicitly not to the ontological property Identity.

18 Chapter 2 Modeling with Roles

rel function Finally, there exist the rel function mapping Relationship Type to distinct Role Types in
the same Compartment Type [56]. As a result, Relationships over several Compartment Types
are prohibited, which makes sense when you see a Compartment Type as a collaboration or a
situation a certain Role is situated in. Why should Roles of different collaborations relate to
each other? If they need to do so, they obviously belong to the same collaboration and the
designer captured the domain insufficiently or made a mistake. This constraint also helps to
clearly define and model where a certain Role Type needs to be located in.

In summary, a valid CROM model is defined as:M = (NT,RT,CT,RST, fills, parts, rel) [56].

Additionally, Kühn et al. propose CROI, the instance representation of a well-formed CROM
model [56]. On this level, Natural Types, Compartment Types, and Role Types are instantiated to
Naturals (N), Compartments (C), and Roles (R), respectively. To connect and relate the instances,
they provide relations and functions, too.

type function Firstly, each instance is related to its type by the polymorphic type function. This
function basically returns for each instance the corresponding type. For instance, the object
John would return person as type.

plays relation Secondly, the plays relation connects players, Roles and Compartments. In contrast
to the type level, a single player is mandatory on the instance level. This is due to the different
semantics on both levels. On the model level, fills represents can play semantics whereas plays
on the instance level denotes an active playing of a certain Role instance. In addition, each Role
Type can be played only once per Compartment. Hence, each Role is uniquely identifiable by its
player, the corresponding Compartment, and the Role Type. Of course, one can imagine playing
a Role of the same Role Type multiple times simultaneously, which is not prohibited by CROM,
but it is not allowed within the same Compartment. For example, a person may be a student
multiple times, but in different universities. Thus, the university is the differentiation criterion
in such a situation.

links function Finally, the links function stores information about Roles participating in Relation-
ships. It is the instance representation of the Relationship Types and returns all related Roles as
tuple for a certain given input Relationship Type.

In sum, a CROI is defined as: i = (N,R,C, type, plays, links) [56].

Beside the model and instance definitions, Kühn et al. present a Constraint Model to apply several
constraints to Roles and Relationships as well as role groups [56, 57]. First, they define various intra-
Relationship constraints like being irreflexive. Secondly, Kühn et al. propose role groups featuring
role group constraints that are applied to the whole group instead of each individual Role. Moreover,
role groups can have cardinality constraints. For instance, imagine the Role Types principal investi-
gator, post-doc, and research assistant, all being mutually exclusive. Instead of applying prohibition
constraint on each Role Type, which can be very messy due to the squarish growth in prohibitions,
you just group the Role Types together and apply a cardinality constraint that at most one of the cor-
responding Role Types can be played, on the whole group.

However, CROM as role-based and context-sensitive formal model can be related and categorized by
the 26 features Steimann [79] and Kühn et al. [56] propose. A detailed classification of CROM is
presented in Table 2.5. Generally, there are four different options for each feature: yes indicating the
feature is fulfilled, no representing the feature is not fulfilled, possible referring to a feature that can
be easily added, and not applicable if the feature cannot be applied to the approach at all. In general,

2.3 Compartment Role Object Model 19

Feature Description CROM

1 A role comes with its own properties and behavior yes
2 Roles depend on Relationships yes
3 An object may play different roles simultaneously yes
4 An object may play the same role several times simultaneously yes
5 An object may acquire and abandon roles dynamically not applicable
6 The sequence in which roles may be acquired and relinquished can be

subject to restrictions
yes

7 Objects of unrelated types can play the same role yes
8 Roles can play Roles no
9 A role can be transferred from one object to another not applicable
10 The state of an object can be role-specific yes
11 Features of an object can be role-specific yes
12 Roles restrict access not applicable
13 Different roles may share structure and behavior no
14 An object and its roles share identity yes
15 An object and its role have different identities yes

16 Relationships between roles can be constrained yes
17 There may be constraints between relationships no
18 Roles can be grouped and constrained together yes
19 Roles depend on Compartments yes
20 Compartments have properties and behavior yes
21 A role can be part of several compartments no
22 Compartments may play roles like objects yes
23 Compartments may play roles which are part of themselves yes
24 Compartments can contain other compartments possible
25 Different compartments may share structure and behavior no
26 Compartments have their own identity yes

Table 2.5: Compartment Role Object Model’s Feature List; Extracted from [56]

CROM fulfills 17 out of 26 features at which three features are not applicable to the Compartment
Role Object Model. All these not applicable features refer to dynamics on the instance level that
are correlated to time. CROM only represents a model (schema) and an instance that is a snapshot
of a valid system state. There are no options to manipulate a CROI at all, because it is designed to
represent a snapshot. By the way, this circumstance is common to all modeling languages representing
snapshots and do not provide semantics for system changes. In summary, CROM and CROI build a
powerful and, most importantly, formally defined base to build on.

2.4 UNIVERSITY MANAGEMENT SCENARIO

To demonstrate the advantages and superiority of role-based modeling, especially CROM, compared
to traditional static typed modeling languages a running example is introduced. As general scenario, a
university management system is employed in combination with the sports team management. This
scenario is going to be used throughout the entire thesis and will be detailed and punctually extended
when required. At first, we define the scenario’s schema, which serves both general model goals;
capturing the real world and being a design template for a real software system. In our case, the

20 Chapter 2 Modeling with Roles

3

Tournament

- Name : String
- Location: String
- Date : Date

SportsTeam

- Name : String
- Colors : String
- Cheerleader : String

University

- Name : String
- Address : String
- Location : String

- Student_ID : Int
- Studies : String
- Year : Int

Student

- Chair : String
- ResearchBudget : Int
- Office : String

Professor

- Emp_ID : Int
- Office : String
- Telephone : String
- SalaryGroup : Byte

ResearchAssistant

- HoursPerWeek : Byte

StudentAssistant

- Level : String
- Module : String

StudiesCourse

takes

teaches

superv.

- Credits : Byte
- Date : Date

Seminar

- Credits : Byte
- Time : String
- Room : String

Lecture

- Name : String
- Last Name : String
- Birthday : Date
- Address : String

Person

- Member_ID : Int
- Registration : Date
- Position : String

TeamMember

- Position : String
- Specials : String

Coach
- Games : Int

Captain

- TeamName : String
- Group : Byte

TournamentTeam

- FinalResult : String

WinnerTeam

0..1

0..*

0..*

0..*

1..1

0..*

- Set of attributes

Natural Type
- Set of attributes

Role Type

Compartment Type

- Set of attributes
RST

Cardinality

Fills relation

Legend

Figure 2.3: Role Modeling Example of the University Domain

database back-end will be the main application target. Secondly, a valid instance of the schema is
detailed. Because the instance model can only provide a snapshot, we finally outline a small use case
that captures the adaption of an instance over a certain period. Note, we are focusing on the entity’s
structure rather than on the behavior, thus, method heads are neglected throughout the scenario
description.

Generally, a university manages students in general, students taking classes that are taught by profes-
sors, and professors supervising students. A class can either be a lecture or a seminar. Additionally,
we consider two types of assistants as part of this university scenario. Beside the traditional univer-
sity management, our scenario also encompasses a university sports teams that consist of members,
a coach, and a team captain. These teams as conceptual unit can participate in several tournaments.
Each tournament will also declare its winner team.

This university scenario is modeled based on the graphical CROM notation presented by Kühn et al.
in [57]. As you can see in the legend of Figure 2.3, Natural Types are shaped as rectangles and do
not hold any Role Types. In contrast, Compartment Types are shaped the same way, but they hold
Role Types in their inner space. A Role Type is depicted as a rectangle with round corners and a light
gray shade. Additionally, Relationship Types are represented in an ER-like manner as rhombus, but
connecting two Role Types [18]. Finally, the fills relation is illustrated as a directed arrow pointing
from a player type (either a Natural Type or Compartment Type) to the corresponding Role Type.

2.4.1 Schema Model

Figure 2.3 illustrates a possible role-based model of this scenario. The core of this scenario is a Person,
who acts in two different environments5. Hence, the Person is modeled as Natural Type. The envi-
ronments he or she is acting in are University and SportsTeam. Both are modeled as Compartment

5All types shown in Figure 2.3 are represented in bold type throughout the thesis.

2.4 University Management Scenario 21

Type, because they act as objectified context and there exist Role Types that can be played in this cer-
tain context. First, in the University Compartment Type the Person can play the Role Types Student,
StudentAssistant, ResearchAssistant, and Professor. Additionally, the University features a Stud-
iesCourse Role Type, playable by the Natural Types Seminar and Lecture. Moreover, the University
includes the Relationship Types takes to manage which Student is taking which StudiesCourse, the
Relationship Type teaches to model which Professor gives which StudiesCourse, and finally the
supervises Relationship Type to hold the information which Professors supervises which Student.
These Relationship Types all have cardinality constraints. A Student can take a StudiesCourse but
he or she does not have to (0..*) and the other way around, a StudiesCourse may have Students at-
tending (0..*). A StudiesCourse has to have a Professor who teaches (1..1), but not every Professor
needs a StudiesCourse (0..*). Finally, a Student may be supervised by exactly one Professor (0..1),
but not all Professors supervise a Student (0..*). The other Compartment Type a Person can act in
is the SportsTeam consisting of a TeamMember, a Coach, and a Captain. This SportsTeam as its
whole can participate in Tournaments filling the Role Type TournamentTeam. Additionally, in case
the SportsTeam wins, it will also act as WinnerTeam in the Tournament Compartment Type.

2.4.2 Instance Model

On the instance level Natural Types are instantiated to Naturals, Compartment Types to compart-
ments, Role Types to Roles, and Relationship Types to Relationships, respectively. As the graphical
notation in Figure 2.4 indicates, the shapes of types and instances are almost the same, only differing
in the illustration of Relationships. On the one hand, natural instances are illustrated as rectangles
without any Roles inside, whereas on the other hand compartments are shaped the same, but featur-
ing Roles. Roles are depicted as rectangles having rounded corners. Relationships are represented
by lines between the corresponding Roles and a label indicating the type. Finally, a directed arrow
represents the plays relation between a player instances and the played Role.

Figure 2.4 illustrates a possible valid instance of the university example shown in Figure 2.3. Gen-
erally, the instance model consists of five natural instances6 of the Natural Type Person. These are
John, Max, Kai, Gert, and Tim. All of them are acting in various Roles in two different compartments:
TUD of the Compartment Type University and bears of the type SportsTeam. In detail, John is a Stu-
dent s1, and StudentAssistant sa1 in the TUD compartment. Max and Tim act as Student as well,
Max as Role s2 and Tim as s3. Furthermore, Gert is a Professor p1, and Kai a ResearchAssistant ra1.
StudiesCourses Roles are also present in the example, the Seminar sem1 is the StudiesCourse sc1
whereas the Lecture l1 acts as StudiesCourse sc2. Additionally, TUD Compartment features some
Relationships. In particular, the Student Role s1, and s2 take the StudiesCourse sc1 which is taught
by the Professor p1. Moreover, p1 teaches StudiesCourse sc2 and supervises Student s1.

Adjacent to the Compartment TUD there exist the SportsTeam bears featuring two TeamMem-
ber (tm1 and tm2) Roles. John plays tm1 whereas Max acts in the Role tm2. Additionally, John is
the Captain cap1 and Max the Coach c1. Finally, there is a cc16 Tournament that features the Roles
tt1 and w1, both played by the SportsTeam bears7.

6All instance elements shown in Figure 2.4 are represented in italic type throughout the thesis.
7We are aware of Tournaments with only one participant does not make sense in reality, but for the sake of brevity and

clarity additional participants are omitted.

22 Chapter 2 Modeling with Roles

2.4.3 Instance Adaption Over a Period

An instance of a model as illustrated in Figure 2.4 always represents a certain snapshot of the system
for a certain point in time. Especially when discussing about dynamic and evolving entities, it is
important to consider time as integral part of the discussion. Generally, an entity is considered as a
semantic unit having a set of attributes. In our case, such entities evolve over time by start or stop
playing and featuring Roles, respectively. More precisely, an entity consists of a core, a set of played
Roles, and a set of featured Roles. The dynamics and adaption comes into the game, when a core starts
playing a new Role and, thus, gains additional attributes, i.e. the structure of the entity changes. The
other way around, stop playing Roles results in a different structure, too.

Such a change of an entity’s structure is shown in Figure 2.5 on an abstract level. For a clear ar-
rangement, the concrete attributes are shown only in beginning, but are omitted in the rest of this
illustration. All attributes of each instance’s type used in this example, can be found in Figure 2.3.
The example period consists of seven points in time (t0, .. , t6) and the focused entity is John. At t0
John is just a Person who does not play any Roles. Hence, the entity consists of the Person’s attributes
only. This situation can be seen as basic set of attributes, i.e. the minimum structure an entity of the
type Person will have. Less structure is not possible. At t1 John registers at a university and becomes
a Student s1. The concrete university this particular Role is featured in does not matter with respect
to the entity John, because the university itself is a separate entity. However, the entity John grows and
contains the attributes of Students in addition to the core set of attributes. As a Student, John is now
able to take StudiesCourses, thus, the Student Role s1 goes in Relationship to a StudiesCourse (the
StudiesCourse itself is not shown in Figure 2.5) at t2. Later on at t3, John becomes a StudentAssistant
sa1. Therefore, the entity grows once more and additionally contains all attributes of StudentAssis-
tant. Beside his university life, John likes football and joins a football team as TeamMember tm1
at point t4. Again, the entity grows and changes its set of attributes. The same holds for t5, when
John starts to be the Captain cap1 of his football team. Additionally, John’s structure at this point in
time conforms to the valid schema instance example in Figure 2.4. Finally, at the point in time t6
two actions take place. At first, John graduates, hence, the Roles s1 and sa1 are dropped from this
entity. Secondly, John joins another SportsTeam as TeamMember tm2, which is added to John. Con-
sequently, the set of attributes differs from t5 to t6. Moreover, the university graduation does not
affect the Roles played in several SportsTeams.

2.5 SUMMARY

Starting from traditional modeling approaches, we examined their shortcomings for highly dynamic
and complex use cases. In particular, modeler can run into undecidable situations or produce seman-
tically incorrect models. At runtime, there exists problems caused by static typing regarding the fix set
of attributes and methods. To overcome these issues, the concept of roles, as methodology to separate
the concerns an entity may have during it whole lifetime, was introduced. In detail, dynamic runtime
adaption is provided by playing roles, which can be started or stopped dynamically during runtime
allowing entities to gain new structure and behavior, without reinstantiating the entity itself. Over
the past decades, many approaches for role-based modeling and programming have been proposed,
resulting in a large zoo of different notions. To distinguish and classify them, the 15 role features
by Steimann and the eleven additional features by Kühn et al. have been explained. Furthermore, the
term compartment was introduced and separated from the often-used term context to have a clear dis-
tinction between both terms. As result of the classification and to build on a sophisticated metamodel,
we decided to rely on the Compartment Role Object Model, which was introduced by providing an
ontological foundation and a detailed schema and instance level description. Finally, a running uni-
versity management scenario was outlined and explained on the schema and instance level, as well as
for instance adaptation over a period. This scenario is illustrated using the CROM metamodel and its
graphical notation.

2.5 Summary 23

9

-
N

a
m

e
 : „J

o
h

n
“

-
L
a
st N

a
m

e
 : „D

o
e

“
-

B
irth

d
a
y

: 12
.0

1.9
3

-
A

d
d

re
ss

: „12
3

 F
a
k
e

S
tre

e
t“

J
o

h
n

 :P
e

rso
n

T
U

D
 : U

n
iv

e
rsity

-
N

a
m

e
 : „T

e
c

h
n

isc
h

e
 U

n
iv

e
rsitä

t D
re

sd
e

n
“

-
A

d
d

re
ss

: „N
ö

th
n

itz
e

r
S

tr. 4
3

“
-

L
o

c
a
tio

n
 : „D

re
sd

e
n

“

-
S

tu
d

e
n

t_
ID

: 12
3

4
5

-
S

tu
d

ie
s : „C

o
m

p
u

te
r S

c
ie

n
c

e
“

-
Y
e

a
r : 2

0
0

9

s1 : S
tu

d
e

n
t

-
S

tu
d

e
n

t_
ID

: 13
5

7
9

-
S

tu
d

ie
s : „C

o
m

p
u

te
r S

c
ie

n
c

e
“

-
Y
e

a
r : 2

0
10

s2
 : S

tu
d

e
n

t

-
S

tu
d

e
n

t_
ID

: 12
3

5
7

-
S

tu
d

ie
s : „B

u
sin

e
ss In

fo
rm

a
tic

s“
-

Y
e

a
r : 2

0
13

s3
 : S

tu
d

e
n

t

-
N

a
m

e
 : „M

a
x
“

-
L
a
st N

a
m

e
 : „M

u
ste

rm
a
n

n
“

-
B

irth
d

a
y

: 17.0
5

.8
8

-
A

d
d

re
ss

: „19
7
 F

o
o

 W
a
y
“

M
a
x
 :P

e
rso

n

-
N

a
m

e
 : „T

im
“

-
L
a
st N

a
m

e
 : „S

c
h

m
id

t“
-

B
irth

d
a
y

: 0
2

.0
3

.8
9

-
A

d
d

re
ss

: „7
 M

a
in

 S
tre

e
t“

T
im

 :P
e

rso
n

-
H

o
u

rsP
e

rW
e

e
k

: 15

sa
1 : S

tu
d

e
n

tA
ssista

n
t

-
C

h
a
ir

: „D
a
ta

b
a
se

s“
-

R
e

se
a
rc

h
B

u
d

g
e

t
: 9

,0
0

0
-

O
ffic

e
 : „A

P
B

 3
10

8
“

p
1 : P

ro
fe

sso
r

-
N

a
m

e
 : „G

e
rt“

-
L
a
st N

a
m

e
 : „M

ü
lle

r“
-

B
irth

d
a
y

: 19
.10

.5
3

-
A

d
d

re
ss

: „8
5

 C
e

n
tra

l P
l.“

G
e

rt :P
e

rso
n

-
E

m
p

_
ID

: 5
5

5
8

7
9

-
O

ffic
e

 : „A
P

B
 3

0
4

2
“

-
T
e

le
p

h
o

n
e

: „0
3

5
1 4

6
3

 12
3

4
5

“
-

S
a
la

ry
G

ro
u

p
: 13

ra
1 : R

e
se

a
rc

h
A

ssista
n

t

-
N

a
m

e
 : „K

a
i“

-
L
a
st N

a
m

e
 : „L

e
h

m
a
n

n
“

-
B

irth
d

a
y

: 2
4

.12
.9

0
-

A
d

d
re

ss
: „3

 H
o

m
e

 A
v
e

n
u

e
“

K
a
i :P

e
rso

n

-
L
e

v
e

l : „U
n

d
e

rg
ra

d
“

-
M

o
d

u
le

 : „IN
F
-B

A
-
5

10
“

sc
1 : S

tu
d

ie
sC

o
u

rse

-
N

a
m

e
: „D

B
A

a
d

m
in

“
-

C
re

d
its

: 2
-

D
a
te

 : 2
4

.0
6

.16

se
m

1 : S
e

m
in

a
r

-
L
e

v
e

l : „G
ra

d
“

-
M

o
d

u
le

 : „IN
F
-M

A
-
3

2
0

“

sc
2

 : S
tu

d
ie

sC
o

u
rse

-
N

a
m

e
 : „A

D
B

S
“

-
C

re
d

its
: 6

-
T

im
e

 : „3
. D

S
“

-
R

o
o

m
: „A

P
B

 E
0

2
3

“

l1 : L
e

c
tu

re

b
e

a
rs

: S
p

o
rtsT

e
a
m

-
N

a
m

e
 : „D

re
sd

e
n

 B
e

a
rs“

-
C

o
lo

rs : „B
lu

e
 / W

h
ite

“
-

C
h

e
e

rle
a
d

e
r : „B

e
a
r H

u
n

te
r“

-
M

e
m

b
e

r_
ID

: 4
9

-
R

e
g

istra
tio

n
 : 0

1.10
.15

-
P

o
sitio

n
 : „S

trik
e

r“

tm
1 : T

e
a
m

M
e

m
b

e
r

-
M

e
m

b
e

r_
ID

: 8
7

-
R

e
g

istra
tio

n
 : 0

1.10
.13

-
P

o
sitio

n
 : „G

o
a
lk

e
e

p
e

r“

tm
2

 : T
e

a
m

M
e

m
b

e
r

-
P

o
sitio

n
 : „G

o
a
lk

e
e

p
e

r“
-

S
p

e
c

ia
ls : „M

o
tiv

a
tio

n
“

c
1 : C

o
a
c

h

-
G

a
m

e
s : 15

c
a
p

1 : C
a
p

ta
in

c
c

16
 : T

o
u

rn
a
m

e
n

t

-
N

a
m

e
 : „D

re
sd

e
n

 C
h

a
m

p
io

n
sh

ip
 16

“
-

L
o

c
a
tio

n
: „D

re
sd

e
n

 –
P

la
u

e
n

“
-

D
a
te

 : 15
.0

4
.16

-
T
e

a
m

N
a
m

e
: „B

e
a
rsF

T
W

“
-

G
ro

u
p

 : 1

tt1 : T
o

u
rn

a
m

e
n

tT
e

a
m

-
F
in

a
lR

e
su

lt
: „2

:0
“

w
1 : W

in
n

e
rT

e
a
m

-
S

e
t o

f
a
ttrib

u
te

s

N
a
tu

ra
l

-
S

e
t o

f
a
ttrib

u
te

s

R
o

le

C
o

m
p

a
rtm

e
n

t

-
S

e
t o

f
a
ttrib

u
te

s
p

la
y
s

re
la

tio
n

te
a
c

h
e

s

R
e

la
tio

n
sh

ip

L
e

g
e

n
d

Figure 2.4: Valid Instance of the University Scenario Schema (Figure 2.3)

24 Chapter 2 Modeling with Roles

17

…

J
o

h
n

 :P
e

rso
n

…
J
o

h
n

 :P
e

rso
n… sa

1 : S
tu

d
e

n
tA

ssista
n

t

… tm
1 : T

e
a
m

M
e

m
b

e
r

…
c

a
p

1 : C
a
p

ta
in

J
o

h
n

 a
s

P
e

rso
n

 o
n

ly
J
o

h
n

 b
e

c
o

m
e

s
a
 S

tu
d

e
n

t
J
o

h
n

 ta
k
e

s a
 c

la
ss

J
o

h
n

 b
e

c
o

m
e

s a

stu
d

e
n

t a
ssista

n
t

J
o

h
n

 jo
in

s a

sp
o

rts te
a
m

J
o

h
n

 b
e

c
o

m
e

s
a
 c

a
p

ta
in

 in
 a

sp

o
rts te

a
m

J
o

h
n

 fin
ish

e
s h

is
stu

d
ie

s a
n

d
 jo

in
s

a
n

o
th

e
r sp

o
rts te

a
m

t
0

t
1

t
2

t
3

t
4

t
5

t
6

…
s1 : S

tu
d

e
n

t

…

J
o

h
n

 :P
e

rso
n…

s1 : S
tu

d
e

n
t

… sa
1 : S

tu
d

e
n

tA
ssista

n
t

…

J
o

h
n

 :P
e

rso
n… sa

1 : S
tu

d
e

n
tA

ssista
n

t

… tm
1 : T

e
a
m

M
e

m
b

e
r

…
s1 : S

tu
d

e
n

t

…
J
o

h
n

 :P
e

rso
n

… tm
1 : T

e
a
m

M
e

m
b

e
r

… tm
2

 : T
e

a
m

M
e

m
b

e
r

-
N

a
m

e
 : „J

o
h

n
“

-
L
a
st N

a
m

e
 : „D

o
e

“
-

B
irth

d
a
y
 : 12

.0
1.9

3
-

A
d

d
re

ss : „12
3

 F
a
k
e

 S
tre

e
t“

J
o

h
n

 :P
e

rso
n

…

J
o

h
n

 :P
e

rso
n

-
S

tu
d

e
n

t_
ID

: 12
3

4
5

-
S

tu
d

ie
s : „C

o
m

p
u

te
r S

c
ie

n
c

e
“

-
Y
e

a
r : 2

0
0

9

s1 : S
tu

d
e

n
t

…
s1 : S

tu
d

e
n

t

…
c

a
p

1 : C
a
p

ta
in

Figure 2.5: Timeline for the Scenario Based on the Instance "John"

2.5 Summary 25

26 Chapter 2 Modeling with Roles

3
NEED FOR ROLE-BASED DATABASE

SYSTEMS

3.1 Ecosystem of Database Systems

3.2 Role-Relational Impedance
Mismatch

3.3 Requirements for Role-based
Database Systems

3.4 Related Work

3.5 Overview of RSQL

3.6 Summary

The concept of roles and its separation of concerns can be implemented in modeling and program-
ming languages enabling the development of role-based software systems. These systems are able to
adapt the entity’s behavior and structure dynamically at runtime, depending on the context. In par-
ticular, we assume CROM as metamodel for the conceptual models as well as for the programming
language. However, a continuous support throughout the entire software system is not guaranteed,
because traditional database systems (DBSs) are not able to represent these semantics and the corre-
sponding constraints natively. This results in a role-relational impedance mismatch. In particular, this
mismatch describes the presence of a metatype distinction on the application level, but the absence
of such a distinction on the database level. To overcome this mismatch and enables a continuous
and crosscutting role support, we argue for a database integration of roles. Generally, this argumen-
tation is focused on the usability aspects of a DBS within a software system and not on performance
issues. We firstly describe the DBS’s environment and its usual tasks within a software system, once
in a traditional setting and once in a role-based setting assuming today’s available technology. The
latter scenario includes role-based modeling languages and programming languages in combination
with a relational DBS. The setup in this latter scenario gives rise for the role-relational impedance
mismatch that causes several problems. These problems will be classified into three classes, in detail,
problems for the applications and application developers, issues for the database system, and finally
problems for the software system in general. To solve these problems and overcome the role-relational
impedance mismatch, several requirements for a role-based DBS are defined. Based on these require-
ments several related approaches are evaluated; starting from simple relational techniques like re-
lational views, over mapping engines to more sophisticated, but not fully integrated solutions like
the Information Networking Model (INM). Finally, we briefly outline the RSQL approach, which
is designed meet the requirements and tackle the problems posed by the role-relational impedance
mismatch, and conclude this chapter.

3.1 ECOSYSTEM OF DATABASE SYSTEMS

Today, software is almost everywhere and influences our modern day to day life; it runs our Smart-
TVs, it may be the backbone of businesses, or it runs the university administration. Sommerville
defines software as "not just the programs, but also all associated documentation and configuration
that is needed to make these programs operate correctly." [76]. However, software does not exist in
isolation, rather it is combined in a software system to perform a superordinate task. For instance, a
software system in a university administration may consists of distinct programs to manage the gen-
eral student information, the exams, and lectures. Usually, software systems follow a layered archi-
tecture in which each layer relies on the abstraction and functionalities the layer below provides. An
operating system, for example, provides basic functionalities to interact with a computer’s hardware
components. In contrast, a database system offers efficient data management capabilities based on
the operating system’s functionalities. Finally, client applications that require persistent data storage
often use database systems for that purpose.

In our case, we consider a heterogeneous software system, from a DBS perspective, that consists of
several applications, which manage their internal data structures transiently. That means, the data
structure lives as long as the application runs. Consequently, the application data will be lost if the
program terminates. Furthermore, we consider application servers or middleware systems in our
software system that encapsulate business logic for some clients. Thus, there exist two kinds of pos-
sible applications. At first, applications that bring their own business logic and access the database
directly, and secondly applications that rely on business logic definitions in an application server that
also manages the data access for those applications. Additionally, each application has its individual
local perspective on the data it handles. Moreover, a DBS is part of our considered software sys-
tem, to store transient application data persistently. It is also assumed, that several applications and

28 Chapter 3 Need for Role-based Database Systems

Application Application

Application Server

Application Application

Database System

Query Language Query Language

Query Language

Figure 3.1: Traditional Ecosystem of Database Systems

application servers access the same database to share data, omit redundancy, and rely on a globally
consistent data set. In regard of a clearly layered software system architecture, the DBS encapsulates
all standard functionalities and required abstractions for the persistent data management on which
the applications and application servers can rely. Hence, the DBS is an important part of a software
system; it maintains a system global perspective on the data and acts as single point of truth within
the software system. In consequence, the DBS, which is the central concern in this thesis, usually
faces several heterogeneous interaction partners. All of these partners access the database system by
a certain query language to store and restore their data as well as for analytical purposes or ad hoc
queries. A conceptual overview of our considered DBS ecosystem is illustrated in Figure 3.1.

As example for such a software system, imagine a university management system, managing general
student as well as employee information, exams taken by students, and lectures. All three applica-
tions rely on the same database that stores the personal master data, the student information as well
as exam and lecture data. At first, there is a general management application, managing all personal
master data as well as the student and employee information. For legal reasons, only authorized ad-
ministration staff members can access and manipulate the exam data of students. This is encapsulated
in an individual application. Finally, professors can set up lectures to which students can enroll. This
is captured in a separate application, too.

Today’s software is most often programmed in an object-oriented way using programming languages
like Java1 or C#2. Object-orientation (OO) abstracts entities having the same behavior and struc-
ture to classes [22]. At system runtime, classes are instantiated to runtime objects having a fixed
set of methods and variables. Usually, at the application’s runtime objects are transient and for per-
sistence purposes a DBS is employed. Today, most applications that require persistent durable data
storage, rely on a relational DBS, which manages the data in tables, the DBS abstraction of rela-
tions [55]. Unfortunately, object-orientation and the relational concept differ at important aspects of
their paradigm, like the entity identification or inheritance. This difference results in the well-known
object-relational impedance mismatch between object-oriented applications and relational DBSs [55].
However, this mismatch is manageable, because both paradigms share some features. For instance,

1https://www.java.com
2https://msdn.microsoft.com/de-de/library/kx37x362.aspx

3.1 Ecosystem of Database Systems 29

https://www.java.com
https://msdn.microsoft.com/de-de/library/kx37x362.aspx

both rely on static types only, namely classes in the case of object-orientation, and tables in the case of
a relational DBS. Furthermore, this gap can be bridged by object-relational mapping engines, like Hi-
bernate3, which act as mediator between object-oriented applications and relational DBSs. However,
the communication between object-oriented applications and the relational DBS is usually performed
by the Structured Query Language (SQL) [45, 46]. In total, we consider traditional applications to
be object-oriented and store their data in relational DBS, whereas object-relational mapping engines
bridge both worlds. An abstraction of this situation is illustrated in Figure 3.2.

Additionally, this illustration includes the traditional design process, having its source in a concep-
tual domain model, for such software systems. Generally, developing a new or extending an existing
software system is a quite complex job. It requires several stakeholders, like domain experts, soft-
ware architects, software developers, database experts as well as users, to bring a new system to life.
It is commonly practiced and well-known that a software system is best designed by conceptually
modeling the software system’s domain first. A conceptual model captures all aspects of a domain
without any implementation specific information and is usually designed by domain experts. Once
all software system stakeholders agreed on a conceptual model, this model is transformed into several
implementation target models, like an implementation model for each application or the data model
for persistent data storage. For instance, the aforementioned university management software system
is designed in a general conceptual model and subsequently transformed into three object-oriented
application specific models for the general master data management, the exam management and the
lecture management application.

From a database system perspective, the conceptual domain model is transformed into the logical
database model; in the traditional case it is a relation model [19]. For instance, relations storing the
personal master data and the student information are created. Additionally, application specific per-
spectives on the data are created as external views to provide the applications customized data access
to a subset of the whole data. These views are defined during the applications’ design phase and are
based on the logical database description as well as the data access requirements of the corresponding
applications. For example, the lecture management application defines an external view that com-
bines the master data, the student information and the lecture information, but not the exam grades.
Finally, the implementation specific models are implemented into object-oriented program code and
a relational database schema by application developers and database experts, respectively.

Roles in the Software System

As outlined in Chapter 2, role-based techniques have been invented and proposed as extension to the
object-oriented paradigm, because this paradigm causes problems when faced with the requirements
of modern ubiquitous applications and software systems, like representing context-sensitive and dy-
namically evolving entities. In detail, we consider role-based features that are built on the foundations
of the Compartment Role Object Model (CROM) [57]. The most important feature of CROM is the
distinction between several metatypes having their own semantics, to enable a separation of concerns
within an entity (see Section 2.3). These metatypes are Natural Types, Role Types, Compartment
Types, and Relationship Types. By introducing CROM to build a context-sensitive and role-based
software system, the traditional software system design process as well as the database ecosystem
remain conceptually the same, but the components change.

Today, state of the art role-based technology enables domain experts to use CROM for the concep-
tual design, application design as well as in programming languages. In detail, FRaMED4 implements

3http://hibernate.org/
4https://github.com/leondart/FRaMED

30 Chapter 3 Need for Role-based Database Systems

http://hibernate.org/
https://github.com/leondart/FRaMED

OO-Application OO-Application

Application Server

OO-Application OO-Application

SQLSQL

SQL

Conceptual
Model

View View

View

O
O

 D
es

ig
n

App Server
Design

OO Design

External View Design

External View Design

Logical DB Design

Logical DB Layer

External DB Layer

RDBS

Figure 3.2: Traditional Software System and its Design Process

the CROM metamodel for the conceptual design as well as application design. On the programming
language side, SCROLL5 provides CROM support for the Scala programming language [59]. Unfortu-
nately, for database management systems no such approach exists. As a consequence, we assume the
following technology situation for context-sensitive and role-based software systems. The database
system’s ecosystem consists of a relational DBS as persistence provider, hence, the database layer is
not changed at all and provides the same standard functionality to applications as in the traditional
scenario. On top of the DBS there are several role-based applications handling their runtime data
structures and entities by differentiating between the CROM metatypes to enable dynamic behav-
ior and structure adaptations. Additionally, there exist some middleware or application servers that
encapsulate the role-based business logic for some role-based applications. This specific situation is
depicted in Figure 3.36.

The software system design process is adjusted to the new situation as well. At the beginning, there is
role-based conceptual model that is created by the domain experts. Afterwards, this conceptual model
is transformed into role-based application designs and the traditional relational database model, the
logical database design. Finally, the logical design models are implemented. In case of applications,
those will be implemented in role-based and context-sensitive application code, whereas the relational
model is implemented in a physical relational database schema. Additionally, external views are cre-
ated to provide an application-specific perspective on the data. Those are created on the basis of the
role-based application requirements and the relational data model. This design process is illustrated
in Figure 3.3.

In sum, today we are able to conceptually model a software system’s domain in a role-based and
context-sensitive way as well as writing the corresponding application code using CROM. In contrast,
there is no way to explicitly store CROM’s role-based semantics and metatype distinction a DBS.
Hence, considering the DBS ecosystem, all software running on top of the DBS has a role-based per-
ception of the software system’s entities. In this regard, the main question is: Do we need a notion of

5https://github.com/max-leuthaeuser/SCROLL
6In the following architecture illustrations, all software system components having a notion of roles are depicted in a

gray color.

3.1 Ecosystem of Database Systems 31

Role-based
Application

Role-based
Application

Role-based Application Server

Role-based
Application

Role-based
Application

SQLSQL

SQL

Role-based
Conceptual

Model

Logical DB Layer

External DB Layer

View View

View

External View Design

Role-based
App Server

Design

Role-based Application
Design

R
o

le
-b

as
ed

A
p

p
lic

at
io

n
D

es
ig

n

Logical DB Design

External View Design

RDBS

Figure 3.3: Today’s Role-based DBS Ecosystem and its Design Process

roles, more precisely a notion of CROM and its semantics, in the DBS as well? To answer this question,
whether a CROM-based notion within the database system is required or not, we are going to outline
and discuss possible problems that arise when using role-based conceptual models and programming
languages in combination with traditional, especially relational, database systems.

3.2 ROLE-RELATIONAL IMPEDANCE MISMATCH

The main problem is the inability of these traditional database systems to explicitly represent
the metatype distinction of Natural Types, Role Types, Compartment Types, Relationship Types,
and their interrelations. Hence, the DBS cannot provide a role-based standard abstraction out of the
box, on which the applications can rely. Thus, dynamically evolving entities in applications cannot
be directly represented in the DBS and have to be encoded using available relational techniques. As
a result, the software system suffers from a role-relational impedance mismatch. In addition to the
well-known object-relational mismatch, which occurs in object-oriented systems in combination with
relational DBSs, the role-relational impedance mismatch is characterized by the role-based metatype
distinction on the application layer and a missing differentiation on the database layer. Generally,
the role-relational impedance mismatch is orthogonal to other impedance mismatches that might
occur in the system. In case of role-object-oriented programming languages, like SCROLL, the role-
relational impedance mismatch can be seen as extension to the traditional object-oriented impedance
mismatch, because traditional problems regarding the object-oriented impedance mismatch are not
affected. However, applications handle role-based objects that change their structure and behavior dy-
namically during runtime and in case of persistence these objects have to be reflected in the database
system as well. Considering the current technology situation, role-based software systems face a more
complicated impedance mismatch that is a combination of the object-relational and role-relational
impedance mismatch. In the following argumentation, we focus on the role-relational impedance
mismatch only, because the object-relational is out of scope in this thesis.

32 Chapter 3 Need for Role-based Database Systems

In consequence of the role-relational impedance mismatch, the CROM’s metatype distinction is en-
coded using the available traditional techniques, like naming conventions for relational tables, re-
sulting in a loss on semantics from the DBS perspective. Additionally, the CROM metamodel con-
straints, like each Role Type needs at least one player type and is located in exactly one Compartment
Type, cannot be checked by the DBS. As aforementioned, the DBS is referred to as single point of truth
in a software system ensuring global consistency across several applications. By losing the ability to
check the constraints properly, it loses the single point of truth criterion as well. In consequence,
invalid schemata may be implemented in the system, which are valid locally seen, but invalid from a
global perspective. For instance, imagine an application that models the Professor Role Type within
the University Compartment Type and another one having the Professor within an Employment
Compartment Type, as shown in Figure 3.4.

24

University

- Name : String
- Address : String
- Location : String

- Chair : String
- ResearchBudget : Int
- Office : String

Professor

- Name : String
- Last Name : String
- Birthday : Date
- Address : String

Person

Employment

- hPerWeek : Int
- SalaryGroup : String

- Chair : String
- ResearchBudget : Int
- Office : String

Professor

- Name : String
- Last Name : String
- Birthday : Date
- Address : String

Person

University
-
- Name : String
- Address : String
- Location : String

- Chair : String
- ResearchBudget : Int
- Office : String

Professor

Employment
-
- hPerWeek : Int
- SalaryGroup : String

- Chair : String
- ResearchBudget : Int
- Office : String

Professor

- Name : String
- Last Name : String
- Birthday : Date
- Address : String

Person

Local Perspective of Application 1 Local Perspective of Application 2

Consolidated Database Perspective

validvalid

invalid

Figure 3.4: Locally Valid Application Schemata vs. Globally Invalid Database Schema

Locally seen, both are valid schemata, but in the global perspective this is an invalid schema, because a
Role Type is defined within two different Compartment Types, which is prohibited with respect to the
CROM metamodel. This cannot be checked by a single application, there has to be an agent having
a global perspective, to ensure this constraint. However, a relational DBS cannot perform this check,
because the necessary information is not present and schema checks are executed outside of the DBS.
This fact is fatal for the DBS as main data management software, because it is downgraded to a simple
storage place without any power to ensure system-wide consistency according to the schema. With
respect to the fact that DBSs mainly do not care about the data, but schema, the situation of being
unable to explicitly represent and check for a correct role-based schema, is unacceptable from a DBS’s
perspective.

3.2 Role-Relational Impedance Mismatch 33

However, there exists a conceptual separation line between the transient application world and the
persistent DBS world. Due to the loss on semantics this line is moved into the transient world.
Basically, the persistent DBS layer cannot take care of the whole data management, including the
role-based consistency guarantees, hence, applications and users have to compensate this inability by
manually implementing some persistent data management features in the applications. In sum, the
role-relational impedance mismatch describes the inability of a DBS to represent role-based metatype
distinctions and a shift of data management functionalities towards the applications. This situation
causes issues and pains that can be classified in three categories, which we discuss in detail in the
following: (i) Issues for applications and application developers, (ii), pains for the database system
itself, and finally (iii) problems for the software system in general.

3.2.1 Problems for Applications and Application Developers

The first category comprises all problems related to role-based applications and their developers. The
main problem in this category is that applications have to take over some data management func-
tionalities, because the strict separation line between the applications and the DBS moves into the
transient world. This situation results in several subproblems.

At first, application developers have to manually program the unavailable standard functionalities for
a role-based data management by themselves, for each application. This brings them back in data man-
agement, causing additional tasks during the development process and a loss of their focus. In fact,
application developers should be concerned with the application’s functional and technical imple-
mentation and not with enforcing the correct metamodel mapping and constraints in the database. In
general, the application developer will face more tasks to implement, which results in longer project
development time, and thus, higher application development costs. Additionally, the same function-
alities, in this case data management functionalities that cannot be performed by the DBS, are imple-
mented in several applications individually. This results in code that is redundantly written for each
application.

Secondly, the database system does not provide a standard abstraction for role-based semantics; addi-
tionally there is no standard mapping from this semantics onto relational tables. On these grounds,
each developer chooses the mapping individually, resulting in possibly inconsistent mappings and
different constraint checking techniques. The decision heavily depends on the preferences and expe-
riences of the application developer with DBSs. More complicating from the application developer
perspective, CROM defines constraints on the schema level as well as the instance level that need
to be guaranteed. Especially the schema constraints, like the prohibition of empty Compartment
Types, are hard to check in the database system itself. For instance, assume each type is mapped to
an individual table and all tables representing a Role Type also reference the player types and Com-
partment Type they are played in. Such a situation is shown in Figure 3.5. In detail, this illustration
shows three tables, one for the Compartment Type SportsTeam, one for Compartment Type Tour-
nament, and one for the Role Type TournamentTeam. Additionally, the TournamentTeam table
(RT_TournamentTeam) has columns that represent a referential integrity constraint to the player type
SportsTeam (FK_ST) and one to the Compartment Type Tournament (FK_T). To check the schema
validity with respect to non-empty Compartment Types, the database catalog has to be queried for
existing foreign key constraints between a Role Type table and the corresponding Compartment Type
table, because this information is not directly inferable from the tables itself. In particular, this re-
quires each application to have access to the database catalog, which is obviously not a good idea,
according to data security and privacy.

Unfortunately, the foreign key constraint does not provide any information whether it references a
player type or Compartment Type it is played in. This can be confusing when Compartment Types

34 Chapter 3 Need for Role-based Database Systems

ID Name Lastname Birthday Address

… … … …

Person

ID Name Location Address

… … … …

University

ID Student_ID Studies Year C_ID

… … … … …

Student

ST_ID Name Colors Cheerleader

1 bears Blue / White Bear Hunter

CT_SportsTeam

T_ID Name Location Date

1 DD_CC_16 Dresden Plauen 15.04.16

CT_Tournament

TT_ID TeamName Group FK_ST FK_T

1 BearsFTW 1 1 1

RT_TournamentTeam

P_ID R_ID

… …

Person_Student

Figure 3.5: Possible Role to Relation Mapping Featuring Foreign Key Constraints

are able to play Role Types in other Compartment Types, like the SportsTeam Compartment Type
in Figure 2.3 and Figure 3.5. In such a case it is not clear, which foreign key constraint references
the player type and which the Compartment Type it is played in. In detail, a check for a referential
integrity constraint on the table SportsTeam will provide a positive result, even if it does not feature
any Role Types and only is able to play Role Types. Consequently, a check for the existence of referen-
tial constraints towards a certain table can result in false interpretations. Even naming conventions
only help conditionally, because the interpretation of referential integrity constraints is manually im-
plemented in the applications and can vary from application to application. In sum, this problem can
lead to invalid schemata with respect to the role-based metamodel.

Thirdly, applications and especially their mappings are required to be aligned and synchronized for
shared data objects. Traditionally, each application implements its mapping individually and indepen-
dently of other applications. In case of shared entities or shared parts of an entity, for example Role
Types, the different applications need to be aligned to a common mapping, at least for the intersection
points. This problem is not exclusive for role-based software systems and applications, it also common
in object-oriented software, but it becomes much harder to align, because standard mappings are un-
available. However, application developers are concerned with applications they are not responsible
for and they have not programmed, too. In particular, an application developer is required to look
into and understand other applications in the same software system, to chose the correct mapping
or query the correct tables, and to align all dependent applications properly. This can result in in-
consistent mapping schemes within an application, because different applications may have different
mapping schemes, which have to be combined in another application.

For instance, assume the lecture management application is implemented as extension to a running
university management system (see Figure 2.3) comprising the applications for general master data
management and exams. Of course, the lecture management is required to rely on the master data, es-
pecially on the Natural Type Person and Role Type Student. In consequence, the lecture management
also relies on the master data mapping of the other application. These master data are stored by a
mapping shown on the left-hand side in Figure 3.6. The information about which Person plays which
Student at which University is encoded in the relation of the Student, extending this relation by two
additional columns for the referential constraints. However, the application developer for the lecture
management decides to store the information on which Natural plays which Roles in which Compart-
ment in separate relations, resulting in a mapping illustrated on the right-hand side of Figure 3.6. To
align both applications, the lecture management application has to implement the mapping of the
already existing applications. In the example case, the mapping in the lecture applications is changed
according to the master data. As a consequence, the lecture management application implements two
different mappings for the same type of information, in particular, the information which Natural
plays which Role in which Compartment. In the worst case, there exists another application imple-
menting a totally different mapping schema that has to be adopted in the lecture management, too.
Especially the absence of a standard mapping and possible inconsistencies for mapping the same type
of information, complicates application maintenance as well as application extension.

3.2 Role-Relational Impedance Mismatch 35

Figure 3.6: Two Mappings of the Same Relation Between a Person, a Student, and the Corresponding
University

Finally, application developers have to think in two different worlds, because they are not only con-
cerned with the application’s data model, but the database data model as well. This complicates the
application development process and may result in a lost in translation phenomena. This describes
an application developer’s confusion when continuously thinking in two or more different worlds.
In particular, application developers of role-based applications code their applications in a role-based
way, but have to store the persistent data in a relational DBS that does not feature any role-based
semantics. Additionally, there exist various mapping options for the same information. Moreover,
to restore role-based data from the database, a relational result has to be parsed to reconstruct the
original semantics. Consequently, application developers will face two different metamodels during
the development process at different interaction points with the DBS, which requires them to jump
forth and back between the metamodels. This can result in more error-prone applications.

In sum, the huge semantic gap between the metamodels employed on the application layer and the
DBS complicates the application development process in terms of thinking in two different worlds
and additional tasks for the application developers. Additionally, these developers get back in the data
management game and, thus, lose the focus on their actual tasks. Moreover, the software system con-
tains redundant code in terms of concurrently existing manual mapping schemes in the applications.
All these problems are likely to result in a longer development period, higher communication effort
between the developers, worse maintainability, and finally higher development costs.

3.2.2 Problems for Database Systems

The DBS’s inability to explicitly represent the CROM metamodel, including its constraints, and the
move of data management functionalities, like checking for the correct schema according to the meta-
model constraints, toward the applications, cause problems for the DBS itself. These problems are
discussed in the following. At first, the DBS loses an important criterion within the whole software
system; to be the single point of truth facility. Usually, the DBS combines all local application per-
spectives to a system global perspective on the data and, more importantly, on the schema [72]. In
the current situation having CROM semantics on the application level, but not on the database layer,
applications are in charge of ensuring consistency with respect to the given CROM schema. These
applications can only check their very local perspective for validity, but not from a global point of view
resulting in possibly invalid schemata on the database layer. This situation has been discussed in the
beginning of this section and is illustrated in Figure 3.4. In sum, the DBS loses its single point of truth
criterion and is degraded to a simple background storage that does not ensure global data consistency.

A huge advantage of commercial relational DBMSs is their optimizer, which produces the best log-
ical and physical execution plan based on a given optimization technique using an underlying cost
model [72]. To produce such a plan, all information about the data, the schema, the data distribution,
interrelations between the data, and other statistics regarding the data, is of priceless value for the

36 Chapter 3 Need for Role-based Database Systems

20

Person_ID Name Lastname Birthday Address Student_ID Studies Year

… …. … … … … … …

1 John Doe 12.01.93 123 Fake Street 12345 Computer Science 2013

1 John Doe 12.01.93 123 Fake Street 872432 Business Administration 2014

2 Max Mustermann 17.05.88 197 Foo Way 13579 Computer Science 2013R
e

d
u

n
d

a
n

t
d

a
ta

Figure 3.7: Redundant Data in a Relational Result

optimizer. Unfortunately, knowledge, especially the role-based knowledge and corresponding con-
straints, about the data is detained from the DBS and its optimizer. Consequently, CROM specific
correlations between various tables storing CROM-based types cannot be utilized by the optimizer.
As result, optimization potentials that are based on the special role-based semantics represented in
CROM, remain unused, which finally may result in suboptimal query performance.

Furthermore, relational DBS produces a relational result. This result can explode in their number
of returned rows very quickly, which is caused by the relational encoding of complex (role-based)
objects. The same phenomenon can be observed when object-oriented runtime objects containing
lists or collections of other objects, are stored in a relational way. Basically, the relational data model
does not allow sets as value for a certain attribute [19]. Consequently, the combinations of the object
and its set members is returned resulting in a combinatorial explosion. For instance, assume a Person
who is a Student three times at three different Universities. The relational result for this data will
consist of three rows, each displaying the Person information in combination with the particular
Student data. Like in object-orientation, role-based data face the same problem, because a player type
(Natural Type or Compartment Type) can play several Roles of the same Role Type simultaneously
resulting in a combinatorial explosion in the relational result set as well. For instance, assume the
relational result set in Figure 3.7. There, the personal information of the Person John is contained
twice, because he is a student two times. Once for the combination of John and his first Student
Role, in which he studies Computer Science, and once for his second Student Role representing
the Business Administration studies. It is easy to imagine, that redundant data representation and
transmission can become a problem. In consequence of such huge or fast growing relational result
sets, the same data is redundantly transferred from the DBS to the application, producing higher
transmission costs and network load in the software system. Even intermediate results can produce
pains, especially in terms of memory and disk consumption during the result computation process,
when they suffer from the combinatorial explosion as well. Is the intermediate result too big to fit
into the available memory, parts of this result are swapped to disk, which always causes slower query
execution due to the additional I/O operations. Additionally, such result sets are hard to interpret,
which is due to the absence of a mapping from columns to a certain type, in fact the relational result
set consists of a single table representing all information at once and with no metatype distinction.

In sum, due to the shift from traditional DBMS functionalities toward the applications, the DBMS’s
standing is dramatically degraded within the software system. In consequence, the usability, from
a role-based application perspective, of the database system is much lower, because role-based data
management functionality has to be implemented by the application itself. Additionally, optimiza-
tion potentials in terms of knowledge about the metatype distinction and the metatype interrelations
remain unused, because they are not part of the cost model and DBS internal statistics. Finally, rela-
tional result sets of role-based data can become very huge very quickly and represent data redundantly,
resulting a higher data transmission volume.

3.2 Role-Relational Impedance Mismatch 37

3.2.3 Problems for Software Systems

The last class of problems comprises all issues that cannot be assigned to one of the other classes,
because they affect the software system in general. At first, the software system suffers from a role-
relational impedance mismatch, which is caused by the different semantics applied on the different
layers of the software system. The missing metatype distinction on the database layer results in to-
tally different semantic expressiveness on the various layers implemented in a software system. For
instance, conceptual domain models, application’s implementation models, and programming lan-
guages on the basis of CROM exist, which features a separation of four different metatypes to dis-
tinguish several parts of entities. In contrast, a DBMS featuring this metatype distinction does not
exist. Additionally, there are no continuous and crosscutting role semantics throughout the entire
software system. Of course, at some point in the software system, these semantics cannot be pre-
served and need to be mapped to something simpler, e.g., there is no file system supporting CROM’s
metatypes. However, the data structures handled on each layer totally differ from each other, which
complicates a direct linkage between them. For instance, a runtime object that features several Roles
of various Role Types is handled as integrated structure in SCROLL. Hence, this structure is handled
as a semantic unit. On the relational database layer such a structure might be split into its compo-
nents (see Section 3.2.1) that are stored in separate tables. For the DBS, this structural and semantic
unit information is lost, thus, it handles each tuple in a table as independent and stand-alone tuple
(which can be constrained by integrity constraints like foreign key constraints), which also causes
object schizophrenia [40]. However, the role-relational impedance mismatch causes totally different
models for the applications and database, complicated linkage between the entity’s representation in
an application and the database, as well as semantics reconstruction overhead in the system that has
to be performed by the applications.

Secondly, the role-based software system is not layered and structured very well from an architec-
tural point of view. In general, such systems are structured by outsourcing any non-application-
specific tasks and functionalities into separate layers, which can be used by every application in the
system [72]. For instance, the operating system provides functionality to access main memory and
disk, the DBMS combines functionality to efficiently store and access data, and the applications are
in charge for any client side functionality. This reduces redundant functionality implementation and
facilitates a clear structure within the software system. However, the aforementioned separation line
between the persistent DBS and transient application is moved toward the applications, because the
DBS does not feature CROM’s metatype distinction. To compensate this DBS’s inability, applications
perform tasks that are supposed to performed by the DBS. In consequence, a role-based software sys-
tem cannot be structured very well with respect to the clear separation of concerns within the system.
In particular, the absence of role-based standard functionality in the DBS forces the applications to im-
plement these data management routines by themselves, resulting in redundantly implemented map-
pings and a distribution of data management tasks over the DBS and application layer. Consequently,
software systems having a bad architecture, in the sense of unstructured layers, are harder to main-
tain and to extend than clearly structured software systems. On the ground of the RoSI goal, to enable
role-based and context-sensitive software systems that adapt and extend their behavior and structure
dynamically during runtime, this more complicated maintenance and extension is a huge blocking
factor for a successful role-based software system. As a final consequence, such a layer-mixing sys-
tem can produce more costs during the development phase, in terms of man power to implement, as
well as while running it, in terms of more complicated and longer lasting error searches or extension
implementation.

38 Chapter 3 Need for Role-based Database Systems

3.3 REQUIREMENTS FOR ROLE-BASED DATABASE SYSTEMS

To represent dynamically evolving and context-dependent entities, the concept of roles as concep-
tual primitive has been introduced in modeling and programming languages. This results in several
problems outlined in the previous sections. Mainly, these issues are based on the huge semantic
gap between the semantics utilized on the conceptual and application level, but not on the database
layer. However, these problems are concentrated under the term role-relational impedance mismatch.
Closing this semantic gap and overcoming the role-relational impedance mismatch can be achieved
by introducing the concept of roles, especially a CROM-based notion, on the database layer. To bring
the DBMS back in its rightful position as single point of truth in a software system that ensures global
consistency, we are going to define several requirements for a role-based and context-sensitive DBMS
that is able to overcome the outlined issues properly and lift the DBMS on the same semantic level as
role-based modeling and programming languages. Additionally, a role-based DBMS enables a cross-
cutting and continuous role support throughout the software system. In particular, a holistic solution
requires a role-based data model and role-based interfaces in conjunction with role-based result rep-
resentation.

Data Model At first, a holistic approach requires a proper data model in the database, to natively
represent role-specific semantics. This is the most important piece to enable layer crosscut-
ting and continuous role support in the software system. In general, the data model defines
the concepts, in which the actual data are logically and physically managed [72]. A relational
DBMS, for instance, relies on the mathematical definition of a relation and stores the data in
tables [19]. In contrast, a graph database may rely on the property graph data model and stores
data and relationships in edges and vertices [5]. However, a holistic, role-based DBMS solution
requires a metatype distinction in its data model, at least between Natural Types, Role Types,
Compartment Types, and Relationship Types. Moreover, the data model is required to represent
role-specific consistency constraints to ensure role integrity, like multiple player types for a
Role Type, or only a single player per Role. Once the data model is defined, a set of operators
is required. This set ensures which type of actions and operations can be performed on the data
model and which output they produce. Additionally, the operators build the bridge between the
data model and the query language, because the query language issues certain operators defined
on the data model. Finally, we require a mathematical closure of the data model, so that each
query on the role-based database produces an instance of the implemented data model itself.
In sum, a role-based data model for a DBMS directly addresses the role-relational impedance
mismatch and helps to avoid transformation overhead in the applications, keeps the application
developers and the applications itself out of the database management, and brings the strict
separation line between the transient and persistent world back to its traditional position.

Interface Secondly, the DBMS interface needs to be adapted to the new data model. Of course, this
requires a new query language, because it is the primary communication interface between
applications and users on the one side and the DBMS on the other side. Thus, the new query
language needs to represent the same notion of roles, compartments and relationships as the
database model does. This requires a new data definition language to describe the database
schema as well as a data manipulation language to populate the database. Additionally, the
actual query language in terms of retrieving data from the database, has to be adapted as well.
One use case for a role-based DBMS is the persistence of role-based data objects handled in
the application. A query language supporting role-based semantics and consistency constraints
can simplify this persistence significantly, because highly specified mappings become obsolete
and the query language is settled on a similar semantic level as the applications are. This also
helps writing queries to retrieve role-based data from the DBS. Furthermore, role-based systems

3.3 Requirements for Role-based Database Systems 39

have different query characteristics than non-role-based systems have, like exchanging roles on
the fly when the context is changed. Consequently, the persistence provider on the client side
needs to be adjusted to that type of queries or at least is required to provide functionality to
support these queries. Moreover, an adapted database connectivity is required to give users and
applications the role-specific semantics on the client side. Please note, there are various other
interfaces, like user defined functions (UDFs), stored procedures (SPs), or wrappers to integrate
heterogeneous data sources into the database, but those are out of scope of this thesis. Finally, a
proper result representation completes the circle for full role support in DBMS. The result itself
is required to be an instance of the database model, thus, all role-specific consistency constraints
that are ensured by the data model are also guaranteed in the result. Additionally, users and
applications need to be able to iterate or navigate through this role-based result, especially,
accessing Roles and navigating from a Role to its player or the corresponding Compartment
it is located in. However, a role-based query language in combination with a proper result
representation addresses query writing problems at design and runtime, role-based persistence
helps to ensure role semantics of runtime data objects, and an adjusted connectivity enables
seamless client side support for roles.

3.4 RELATED WORK

To address the issues caused by the role-relational impedance mismatch, there exist several ap-
proaches that can be classified into four classes. The classification is based on their target software
architecture. This means, each class implies a certain software system layout. In detail, traditional
techniques rely on a layout, in which role-based applications implement their individual mapping and
store the data into a relation DBS. These traditional techniques try to lower the negative effects of
the role-relational impedance mismatch on the software system by using only the existing relational
database techniques. Furthermore, mapping engines try to build the bridge between a traditional
relational DBS and role-based applications by abstracting the mapping into a separate layer. Depend-
ing on where the actual mapping is performed, these approaches can be subclassified into client side
mapping engines or database system side mapping engines. Persistent programming language com-
bine traditional programming language techniques with persistent data management functionalities
to merge the transient application world with the persistent database world. Thus, these approaches
tightly couple the data management with corresponding applications, but neglect the central data
management, as sharing and storage facility, by focusing on the applications only. Finally, DBS imple-
mentation approaches implement a logical database model to overcome this mismatch. The resulting
architecture of these approaches aims to crosscutting role semantics; starting from the applications,
over the query language and result representation, down to the DBS’s data model.

3.4.1 Traditional Techniques

The first class of approaches comprises traditional techniques that do not implement a new data model
or query language in a DBMS, rather existing and available techniques are used to lower the role-
relational impedance mismatch’s negative effects on software systems. From an architectural per-
spective, these approaches assume a classical software system as described in Section 3.1 consisting
of role-based applications and middlewares, but a traditional and relational DBS as database layer. As
aforementioned, this setting requires a manual and individual mapping of role-based runtime objects
onto relational tables, for each application, which finally results in manual query writing by the ap-
plication developers. Thus, the applications access the database directly by using a query language for

40 Chapter 3 Need for Role-based Database Systems

Role-based Application

SQLSQL

SQL

View View

View Logical DB Layer

External DB Layer

Manual
Mapping

Role-based
Objects

Role-based Application

Role-based
Objects

Manual
Mapping

StoreStore

Role-based Application Server

Role-based Application

Manual
Mapping

Role-based
Objects

Store

Role-based Application

Role-based
Objects

Manual
Mapping

Store

SQLSQL

Figure 3.8: Role-based Software System Layout Utilizing Traditional Techniques

relational DBS, the Structured Query Language (SQL), for instance [48]. This situation is illustrated
in Figure 3.8.

Additionally, this illustration shows the three abstraction layers of a DBS with respect to the ANSI/S-
PARC architecture [52, 72]. The first layer, in particular the physical layer, defines the physical storage
layout of the data in the computer system, for instance, the page layout, indexes, or a partitioning of
tables. Secondly, the conceptual layer defines what data is stored in the database, which means this
layer represents the database schema without defining the physical storage. Finally, the external layer
provides user-specific views on the data stored in the database. In contrast to the conceptual level, in
which the data of the whole domain is defined, the external views describe only a subset of the whole
database schema and expose this subset to the querying instance. Thus, the external views on the
external layer can be aligned to user and application-specific requirements, like masking out certain
columns of a table.

Figure 3.9: Relational Mapping of Role-based Data and a View-based Result

3.4 Related Work 41

However, manual query writing is a pain for most of the application developers and as described in
Section 3.2.1 it should not be their main task to care about the persistent data management and im-
plement the corresponding functionality. External views are an option to optimize the data access
for applications by providing an application-specific, but relational, perspective on the data. For in-
stance, assume the role-based schema of Person and Student are encoded in an individual table for
each type as illustrated in Figure 3.9. To retrieve all information about the students and their per-
sonal information, the Person and Student table have to be manually joined, like the following query
demonstrates.

1 SELECT * FROM Person p, Student s WHERE s.p_p_id = p.person_id

In contrast, a view Person_Student that brings the personal information and student data together,
can simplify data access, such that the user queries for the view instead joining manually. The corre-
sponding query could look like the following one.

1 SELECT * FROM Person_Student

Moreover, such a view does not require any logical database design knowledge from application de-
velopers and users, but beside these obvious advantages of views, there are disadvantages. In the first
place, views have to be updateable and insertable, because applications access the database by these
views only, to keep the application developers out of manual query writing and covering complex
joins. To be updateable, the SQL statement behind the view must not contain aggregations, DISTINCT,
GROUP BY, HAVING, and UNION (ALL). Additionally, the view has to address unique columns only and needs
to include the key of a base relation [55].

Secondly, the base relations that store the data have to be created as well. External views require an
existing logical schema, which hast to be created and maintained as well. For example, if there is no
Person and Student table that store the data for the individual personal and student information, a
Person_Student view cannot exist on that basis. In consequence, not only the base relations and the
corresponding constraints have to be created, but the views in addition, resulting in additional effort
when creating the database system.

This results in the next disadvantage, a possibly huge number of views has to be created and main-
tained. In general, each possible combination of a Natural Type and the playable Role Types defines
a possible view, even if there is no instance associated to this view, which means the view returns an
empty result set. For instance, assume the example of a Natural Type Person, a Role Type Student and
a Role Type StudentAssistant, both playable by Person. In fact, the DBS has to provide four external
views to the applications. In particular, a view representing the Person only, a view representing the
Person in combination with the Student, a view combining the Person and the StudentAssistant,
and finally a view that represents the Person in combination with both Role Types.

In sum, views cannot solve the role-relational impedance mismatch, in fact they only help by querying
the relationally stored role-based data from an application perspective by covering complex joins. In
contrast, database and software system problems in general are not addressed at all. This means, the
DBS has neither a notion of CROM’s metatype distinction, nor the schema constraints can be checked
inside the database system and the results are pure relational. From the software system perspective,
nothing has changed to the situation outlined in Section 3.2.3, the system remains unstructured and
suffers from a role-relational impedance mismatch. Finally, external views neither provide a separate
database model, nor a sophisticate role-based query language, nor a proper result representation.

42 Chapter 3 Need for Role-based Database Systems

3.4.2 Mapping Engines

The second class describes approaches that utilize mapping engines to store their role-based runtime
objects in a traditional DBS. In contrast to the first class, a separate software, the mapping engine,
is implemented in the software system to hide the mapping process from the application developers
and the actual mapping from the applications. In general, there exist two types of mapping engines:
(i) client side mapping engines and (ii) database system side mapping engines. Both types have in
common to outsource the mapping process from the applications into a separate software. Hence,
the actual database interface is hidden from the applications, which indirectly communicate with the
database system by using a mediator.

Client Side Mapping Engines

Relational
Database
System

SQL

Role-based Application Server

Role-based Application

Role-based Objects

Role-based Application

Role-based Objects

StoreStore

Role-based Application

Role-based Objects

Role-Relational Mapping Engine

Role-based Application

Role-based Objects

Role-Relational Mapping Engine

Role-Relational Mapping Engine

Store

SQL

SQL

Store Store

Figure 3.10: Role-based Software System Layout Utilizing Client Side Mapping Engines

Client side mapping engines are more common in a software system and usually they are employed
to overcome the object-relational impedance mismatch and provide persistence for runtime objects.
Hibernate7, for instance, is a mapping engine for object-oriented applications into relational DBSs.
Basically, client side mapping engines shift the manual mapping process into a separate software that
can be employed for each application individually or on a middleware. The software system layout
in case of client side mapping engines is depicted in Figure 3.10. On the application layer there
are role-based applications and possibly some role-based middlewares. In contrast to the traditional
techniques that implement an individual mapping for each application, this mapping is standardized
and abstracted into a separate software. This software is implemented into the role-based applications

7http://hibernate.org/

3.4 Related Work 43

http://hibernate.org/

and the middleware. However, the database system is not touched at all, hence, the software system
relies on a relational DBS. The communication between the application layer and database layer is
performed by SQL statements and queries, like in the traditional setting.

In comparison to the traditional techniques, client side mapping engines provide a role-based map-
ping abstraction to applications and keep the application developers almost out of the data manage-
ment game. Thus, mapping engines can be seen as automated and standardized transformation tech-
nology of runtime objects onto the database data model.

There exist two representatives for this class of architectural solutions. In detail, the Dresden Auto-
Managed Persistence Framework (DAMPF) [26] and ObjectTeams JPA [67], both rely on the pro-
gramming language ObjectTeams8. This programming language is a member of aspect-oriented pro-
gramming languages, but utilizes roles to extend runtime objects. Thus, it supports metatype dis-
crimination in general. Even if the distinguished metatypes do not feature Compartment Types, these
mapping engines are good to illustrate the general approach, including its disadvantages and weak-
nesses. In [27] DAMPF functionalities are explained using the example of schema evolution instead
of roles, but basically it is the same procedure and workflow.

To illustrate the operation mode of client side mapping engines, DAMPF is explained in detail. Gener-
ally, Role to relational mapping is much more complicated than object to relational mapping, because
the dynamic extension of the runtime objects has to be considered and recognized as well. Hence,
these mapping engines have to take care of value changes, like traditional mapping engines, and addi-
tionally of structure changes of the corresponding objects. In detail, DAMPF consists of five following
steps to enable role-based mapping and persistence [26]:

1. Sublimate – The domain model of the application is unfolded to reveal its internal data flow of
role bindings. This information is stored in a fact base and is used to create the database schema.
The event stream is utilized for role bindings or unbindings.

2. Compare – In this step the current application is compared to its last version stored in the fact
base. For each element of the application, a fact base counterpart is searched and in case of any
differences the schema and fact base will be adjusted accordingly.

3. Adjust – Fact base information and the database are adjusted according to the comparison step.
Additionally, DAMPF implements a no-drop policy, which means deleted attributes in the ap-
plication remain in the database, but do not show up in the queries.

4. Trace – This is an important step during runtime that traces the current state of an entity to log
value and state changes.

5. React – The final step stores or restores domain objects to the database using one out of four
different persistence strategies. The information collected during the trace phase are reflected
in the database during this step.

The architecture of DAMPF is illustrated in Figure 3.11. In detail, DAMPF provides startup utilities
and runtime utilities. The former one brings functionality to expose the original application’s domain
objects and data flow. Additionally, the database schema is created and altered, respectively. As output
of the startup this framework provides a sublimated application with an exposed data flow, a schema
as fact base and the relational database schema. The latter one enables tracing changes of entities
during runtime and react accordingly. As input, the current application state stored in a fact base,

8http://www.objectteams.org/

44 Chapter 3 Need for Role-based Database Systems

http://www.objectteams.org/

22

Original Object
Teams

Application

Startup Utilities Runtime Utilities

Extract and
Compare

Database
Adjustment

Load-Time
Weaver

Trace
Search and

Restore

Securely
Distribute

Store

Schema Runtime
Sublimated
Application

DB

Figure 3.11: DAMPF’s Detailed Architecture; According to Götz [26]

provides information when an entity needs to be stored, restored, or otherwise manipulated in the
database. As you can see, DAMPF as persistence provider is tightly coupled with the applications.

Client side mapping engines address the problem of manual mapping by providing a standard map-
ping functionality. Hence, the application developers do not have to care about the persistent storage
of their role-based runtime objects, which simplifies the development process. Moreover, traditional
database system can be employed in the software system. Unfortunately, these mapping engines focus
on the application side only and neglect the user component in the software system. However, they
neither feature a proper database model, nor a query language, nor a role-based result representa-
tion. In fact, client side mapping engines have their own internal data abstraction and may provide a
query language to query these internal data structures. The query language offered to the application
developer by such a mapping engine, like Hibernate Query Language9, does not represent the query
language utilized for the communication between the mapping engine and the DBS. In consequence
of this architectural approach, the database problems and the software system problems remain. In
sum, these mapping engines do not solve the role-relational impedance mismatch, they only lower
the negative effects for applications and their developers, in fact much more than relational views do.

Database System Side Mapping Engines

In contrast to client side mapping engines, which are implemented in the applications, database sys-
tem mapping engines pull the mapping down to the database layer which requires a DBMS adapta-
tion. This is achieved by providing a special query language as external database interface, in case
of a role-based software system, a role query language. Characteristic for such mapping engines is

9https://docs.jboss.org/hibernate/orm/3.3/reference/en/html/queryhql.html

3.4 Related Work 45

https://docs.jboss.org/hibernate/orm/3.3/reference/en/html/queryhql.html

Relational
Database
System

Relational
Database
System

Role-based Application Server

Role-based Application

Role-based Objects

Role-based Application

Role-based Objects

StoreStore

Role-based Application

Role-based Objects

Role-based Application

Role-based Objects

Role-based QL Role-based QL

SQL

Role-based QL

SQL

Figure 3.12: Role-based Software System Layout Utilizing Database System Side Mapping Engines

the background transformation of this query language into SQL inside the database system. A corre-
sponding software system architecture is depicted in Figure 3.12. The system consists of role-based
applications and possibly some role-based application servers. On the database layer an enhanced re-
lational DBS is present. In detail, the enhancement consists of an additional layer within the database
system, which transforms the role-specific query language into SQL statements. Consequently, the
communication between the applications and the DBS is performed by a role query language.

In detail, the database system has to be extended by a special layer that sits on top of each other
internal database system layer. This extension layer is responsible for parsing the role query language
statements and transform these statements into SQL. The relational core of the DBS is not touched at
all, thus, the optimizer is based on the relational algebra and statistics about data stored in relational
tables. For users and applications the actual storage engine is hidden and they get the feeling of using
a role-based DBS.

Representatives of database system side mapping engines are conceptual query languages, in general.
In case of role-based query languages, there exists ConQuer [13, 33, 14], a conceptual query language
based on the Object Role Modeling (ORM) methodology [34, 35]. Special mapping engines support-
ing Compartment Types and that are implemented in the database system in combination with a role
query language, do not exist. ORM is an attribute free fact-based modeling language, which utilizes
relationships instead of attributes. Consequently, both sides of the relationship can evolve indepen-
dently enabling flexibility in terms of data modeling. In general, the primary modeling elements are
entity types and value types. Roles are part of this language as well, but not as separation of concerns

46 Chapter 3 Need for Role-based Database Systems

within an entity. In fact, roles are named places in relationships between facts, i.e., between enti-
ties and values. Thus, the ORM data model does not provide a sophisticated notion of Role Types,
Compartment Types, or Relationship Types.

ConQuer, as ORM-based query language, is designed to transform ConQuer queries into SQL and
store the ORM data in a relational DBS [13]. Unfortunately, there is no syntax description for Con-
Quer, but it has been implemented into the query building framework InfoAssistant of Asymetrix [13].
Hence, ConQuer can be seen as graphical notation of a query language that does not feature a textual
representation. Sadly, neither this framework is available nor the company exists anymore. Addition-
ally, there is no discussion on the result representation of ConQuer queries, hence, it remains unclear
if the query language is bidirectional in terms of receiving ORM-based queries and return an instance
of the ORM metamodel, or unidirectional. In case of unidirectionality, relational result sets would be
returned to the applications.

However, the idea of bringing the mapping into the database goes into the right direction to overcome
the role-relational impedance mismatch in general. Even if ORM has a very weak notion of roles and
ConQuer has no textual syntax notation they are good representatives for database system side map-
ping engines. In sum, a DBS internal transformation addresses the pains for application developers
and applications by keeping them out of the data management and the problems of software system
in general. In fact, by hiding the transformations inside the database, the software system will be
structured more clearly. Due to the background transformation into SQL, the database system issues
are not addressed at all and the database optimizer performs the optimizations on the relational data
model, rather than on role-based data model.

3.4.3 Persistent Programming Languages

Persistent programming languages are characterized by their feature that the program’s runtime ob-
jects can outlive the program runtime [4]. Storing a computer program’s runtime objects on a persis-
tent background storage is a fundamental part of such programming languages. Hence, the transient
world and persistent world are merged into a single one, such that there is no clear separation be-
tween both worlds. To achieve persistence, programs may store snapshots of their current state on
disk that can be restore on a program restart or after a failure. This is the simplest and most basic way,
but does not provide any database system features like concurrent data access control or application-
independent data representation. Moreover, each application is in charge of managing the persistent
data individually and without any central data storage. Thus, persistent programming language fo-
cus on a single application rather than on a software system. A corresponding system architecture is
depicted in Figure 3.13.

Basically, each application is extended by a persistent data management component that provides
persistence for the application’s runtime objects. In the same way, an application server is enriched
by such a component and encapsulates the persistent data management from applications running on
this server. As it can be easily seen, there is no central data management, like a DBS, employed in such
an architecture layout, resulting in non-shareable persistent objects. Hence, there is no global domain
perspective of the software system, rather only local ones. For instance, imagine the aforementioned
lecture management application and the master data application. Both application persist their role-
based objects individually and cannot share their persisted data. This results in redundant data storage
and probably inconsistent schemata and data.

There exist two approaches that can be categorized in this class. At first, the Dynamic Object-
Oriented database programming language with Roles (DOOR) approach has been proposed by Wong

3.4 Related Work 47

Role-based Application Server

Role-based Application

Role-based Objects

Role-based Application

Role-based Objects

StoreStore

Role-based Application

Role-based Objects

Role-based Application

Role-based Objects

Persistent Data
Management

Persistent Data
Management

Persistent Data
Management

Figure 3.13: Role-based Software System Layout Utilizing Persistent Programming Languages

et al. [84, 86, 87]. Secondly, there exists Fibonacci, an object-oriented programming language pro-
viding persistence [4, 2]. DOOR as well as Fibonacci provide an extended object-oriented data model
that has roles as first class citizen. However, both approaches claim to be a role-based database pro-
gramming language, but in our perspective they are more a persistent programming language than a
database programming language.

Database programming languages focus on the integration of database abstraction mechanisms into
programming languages to avoid ad hoc queries that exchange information between the applications
and the DBS [4]. They are integrated into a database system that hosts this language. Additionally,
the database programming language operates on the same set of operators as the database system does
to create and manipulate data. There is a fundamental difference in the design between a persistent
and a database programming language. Persistent programming language are designed to provide per-
sistence for a single application that is concerned with its local perspective on its data. In contrast,
database programming languages are designed as extension to an existing database system, to provide
database abstraction mechanisms within the programming language and to execute application code
close to the data. Thus, the database system remains as single point of truth ensuring global consis-
tency for usually several applications. Hence, database programming languages provide a convenient
way to bring data intensive procedures into the database system by leveraging the database system’s
advantages of a global consistency with programming language comforts.

However, both approaches, DOOR and Fibonacci, rely on a simple serialization technique for persis-
tence and focus on a single application scenario that does not consider data sharing between several
applications [4, 84]. Moreover, they fail to present their application independent data storage, which
is important for sharing data between several applications, within their storage engine. Additionally,
there is no database system available that provides the set of operators these programming languages
rely on, for example to bind or unbind roles to an object. Thus, DOOR and Fibonacci are classified as
persistent programming languages.

DOOR

Wong et al. propose an object-oriented programming language for DBMS that is enhanced by role
semantics, called DOOR [84, 86, 87]. In particular, they define object and role classes that are re-
lated by a played by or own relationship. Additionally, theses classes may form individual inheritance

48 Chapter 3 Need for Role-based Database Systems

hierarchies. Nevertheless, the data model does not feature a notion of context and relationships. The
resulting data structure is an object graph in which objects point to each other. An example for creat-
ing a schema within DOOR is presented in Figure 3.14. In detail, a class PERSON is created having
a Name, a LastName, and other attributes. Moreover, a role class STUDENT is created that can be
played by a PERSON. This role class has the attributes Student_ID, Studies, and so on.

Additionally, DOOR features statements to manipulate objects and update values. However, a dedi-
cated query language is not provided, rather path expressions are used to access roles in combination
with a value-based selection to filter objects. In detail, they use a ! between a player and the corre-
sponding roles as delimiter, e.g., Person!Student, to determine a Person who plays a Student role.

DOOR manages each object and role using a unique ID and references the objects according to the
played by and own relationship within the objects [87, 85]. Thus, objects and roles are individual
instances and roles point to their player. This pointing may result in problems, in case the player object
is deleted from the system [84]. However, the main reason for the DOOR approach is persistence of
dynamic objects. As physical layer, the DOOR authors do not utilize a standard object-oriented or
relational DBMS, in fact they implemented a simple storage system by themselves. This is based on
serialization as binary data stream of objects using the metaobject protocol in a lisp-like language [87].
Thus, DOOR can also be seen as persistent programming language focusing on databases, but not as
database programming language integrated into a database system. Unfortunately, the source code is
not available and the project in general is not maintained anymore [26].

1 (create object-class PERSON:
2 STRING Name;
3 STRING LastName; ...)
4 (create role-class STUDENT played-by PERSON:
5 INT Student_ID;
6 STRING Studies; ...)

Figure 3.14: Example Statements to Create Object and Role Classes as well as Relate them in a DOOR
Schema; According to [87]

In sum, DOOR is an approach, that extends the object-oriented paradigm by roles and implements this
in a dedicated data model in combination with persistence. It suffers from a too simple metamodel
that does not consider compartments and relationships and, thus, supports only role constraints with-
out the integration into compartments. Moreover, the application and database system build an in-
tegrated unit such that the transient and persistent world are totally merged. Thus, logical as well as
physical data independence is not ensured by the DOOR approach. Additionally, they usually focus
on a single application, rather on a set of applications that access a database.

Fibonacci

Fibonacci is similar to DOOR. It is an extended object-oriented programming language featuring per-
sistence functionalities [4]. In contrast to DOOR, the data model is different, for instance, roles of
the same type can be played multiple times in Fibonacci. The language is strongly influenced by the
Galileo language, but extends it by roles [3, 4]. In general, Fibonacci manages objects and an object
internal graph of roles. Additionally, an object has a name, an immutable ID and a mutable state,
which is inherited from the object-oriented paradigm. Moreover, objects are accessed by their roles
only, thus, the object itself is only the container for the roles. All methods of an object are defined
by the roles it is currently playing. Confusingly, each role instance can implement the correspond-
ing methods differently. Hence, role definitions provide an interface only, the actual implementation
depends on the instance. This can result in different behavior of various roles of the same type.

3.4 Related Work 49

1 Let Person0bject = NewObject;
2

3 Let Person = IsA Person0bject With
4 Name: String;
5 lastname: Int;
6 Birthday: Date;
7 Address: String;
8 End;
9

10 Let Student = IsA Person With
11 StudentNumber: Int;
12 Studies: String;
13 Year: Int;
14 End;

Figure 3.15: Example Statements to Create an Object and the Related Roles in Fibonacci; According
to [4]

Fibonacci does not provide a dedicated query language, because the design goal is to overcome the
traditional ad hoc query to result mechanism that does not require a query language in terms of select
statements. Basically, objects build the container for roles, which are associated to their player ob-
ject by an IsA relation. By the term object, the authors actually refer to classes in the object-oriented
paradigm, which is confusing on the first sight. An example of a university domain defined in Fi-
bonacci is presented in Figure 3.15.

This example firstly defines a PersonObject by NewObject, which states that a new container called
PersonObject has to be created. Next, the Person information itself is created as role, because the
container cannot have any attributes. This role is related to the PersonObject by an IsA relation.
Hence, the object internal graph of playable roles is created and populated by the person. Finally, the
Student is created as role playable by the Person. Thus, roles can play roles in Fibonacci. However, a
role can be instantiated only once per object, thus, being a student at two different universities is not
possible within the same object.

The architecture of Fibonacci consists of a compiler, a persistent hierarchical abstract machine
(PHAM), and a persistent store [4]. The first component typechecks the Fibonacci expression and
produces code for the PHAM component. That one manages the Fibonacci data structures on top of
the data structures supported by the persistent store and executes the compiled Fibonacci code, like
creating objects or storing them persistently. Finally, the persistent store manages a collection of data
items that consist of an uninterpreted byte string. The architecture of Fibonacci is designed to serve
single-user scenarios [4, p. 430]. Thus, they deploy the whole Fibonacci stack for each application
individually and data between several applications cannot be shared. Hence, Fibonacci is considered
to be persistent programming language rather than a database programming language.

In total, the role extension in Fibonacci is a bit different to that one in DOOR, but it suffers from the
same problems. The role-relational impedance mismatch is solved from an application perspective,
but not for the software system in general. Moreover, they do not present any solution on how the
database problems, like global consistency guarantees for role-based data structures, are tackled by
their approach. Thus, general problems remain, especially the fusion of the application and database
world is problematic, because it neglects the users and multi-application scenarios, rather each appli-
cation manages its data individually.

50 Chapter 3 Need for Role-based Database Systems

3.4.4 DBS Implementation

Finally, the last class of solutions comprises approaches that implement a metatype distinction as first
class citizen into a DBS, but in contrast to role-based database programming languages as separate
and application independent data model. These approaches aim for a holistic solution by providing
traditional database features like multi-user operation mode and transactions, but enhanced with role
semantics. They implement the database model directly into the DBMS by introducing a new logical
and physical data model to the database. This is the optimal case for a software system, because the
database management system has a notion of the metatype distinction and it manages the role-based
data objects independently of applications. Hence, the classical software architecture is preserved.
Moreover, the database issues are directly addressed by the introduction of the new database model,
which could not be fulfilled by other approaches. The corresponding software architecture is illus-
trated in Figure 3.16. It consists of role-based applications and application servers, as well as a role-
based DBS. The communication between applications and the DBS is ensured by a proper role query
language.

Role-based
Database
System

Role-based Application Server

Role-based Application

Role-based Objects

Role-based Application

Role-based Objects

StoreStore

Role-based Application

Role-based Objects

Role-based Application

Role-based Objects

Role-based QL Role-based QL

Role-based QL

Figure 3.16: Role-based Software System Layout utilizing a Role-based DBS

There exist only one approach that introduces roles and the associated metatype distinction as first
class citizen in a DBMS. This approach is the Information Networking Model (INM), which intro-
duces a conceptual data model that has been implemented into a database [61, 62, 17]. It has been
proposed by Liu et al. in 2009 and is designed to overcome traditional role model issues like their
inability to describe context-dependent information [61]. Basically, they assume a very simple role
model that can be categorized into the behavioral and structural class (see Section 2.2). As modeling
elements they employ classes and role-relationships. The former one is the equivalent to traditional
object-oriented classes, while the latter one represent special behavior and structure in relationship
to other classes. Additionally, classes and role relationships may form individual hierarchies[44]. In
contrast to ORM, there is no large community supporting and further developing this approach. An
example INM model is illustrated in Figure 3.17.

This scenario describes a university domain with professors, students, and classes in general. Context-
dependent information is modeled either as context-dependent relationship or context-dependent at-
tribute. The first one is used between two role relationships or between a role relationship and a class,

3.4 Related Work 51

Figure 3.17: University Domain Modeled in INM; Extracted from [61]

indicating only if this particular role relationship is active. The second one describes attributes that
are only valid in this role relationship. For example, the startYear of the VicePresident. However, based
on this model description, they induce various other elements to the model, to represent them in an
object-oriented way such that INM classes are represented as traditional classes and role-relationships
as classes in combination with an isa association [44]. Additionally, they create an inheritance hierar-
chy for the classes based on the role relationships.

A context in their terms only exists virtually depending on the direction the role relationship is con-
structed. For instance, the Univ in Figure 3.17 is seen as context for the role relationships VicePresident
and Faculty, but is modeled and implemented as class. Thus, a direct distinction between context (or
rather compartment) and classes is not provided by this data model. Additionally, there can be only
one player type per role relationship.

The INM is implemented on top of a key-value store featuring an XPath-like query language called
INM Query Language (IQL) [43, 17]. The database implementation supports schema and instance
creation based on the INM. On the physical level, the instances are stored as key-value pairs with
respect to the schema. However, because role relationships are modeled as classes, they are stored
separately in individual values resulting in a fragmented entity [17]. The query language features
sublanguages for creating the schema and instances as well as querying INM-like stored data. In
general, the IQL consists of two parts, one defining the path and hierarchical structure that has to be
queried and a construction part, stating how to represent this information in the result.

1 query person $x//worksIn:$y//title:Prof
2 construct person:$x//worksIn:$y

Figure 3.18: Example IQL Query Illustrating the Query and Construction part; According to [43]

An example query is given in Figure 3.18. This example searches for all persons $x who work in
$y as Prof. Additionally, the result displays each person $x and each university $y, $x is working
in. Unfortunately, there is no explanation about the result representation, thus, it remains unclear
whether the database provides instantiated objects to an application based on the result construction
rules or the tree-like structure.

52 Chapter 3 Need for Role-based Database Systems

To summarize, INM is the most mature approach to enable dynamic and evolving entities in a DBMS.
From the data model perspective it suffers from various weaknesses. At first, the data model does not
consider compartments explicitly, in fact the compartment notion is implied by role relationships.
Secondly, role relationships are represented as separate classes and there is no integrated structure
that brings classes and role relationships together. Additionally, they derive induced class structures
to represent the role relationships resulting in a hierarchically structured data model. Moreover, the
data model misses an operator description, so it remains unclear which operations can be performed
within the data model. Beside their query language IQL, a result representation including navigation
or iteration functionalities is completely missing. All in all, the INM approach is incomplete and the
data model does provide a Compartment Type metatype discrimination.

3.4.5 Discussion

Conceptual modeling and programming languages nowadays implement roles to separate entity infor-
mation into several metatypes for flexibility and complexity reduction reasons in a software system.
In contrast, DBSs have not been adapted to the new requirements of such systems resulting in the
role-relational impedance mismatch. To overcome this mismatch and the accompanied problems
several architectural approach can be employed. Each approach aims at different goals and solves
different problems, but in general, no approach totally complies to all requirements to overcome the
role-relational impedance mismatch. An evaluation of related approaches with respect to the require-
ments posed to a fully integrated role-based and context-sensitive DBS is presented in Table 3.1. For
the ranking three options exist: a � indicating the requirement is not fulfilled, a � referencing for a
partially fulfilled requirement, and � for a fulfilled requirement.

Requirement Database Model Query Language Result Representation

SQL Views � � �
DAMPF � � �
ConQuer � � �
DOOR / Fibonacci � � �
Information Networking Model � � �

�: yes, �: partial, �: no

Table 3.1: Evaluation of Related Approaches to Overcome the Role-relational Impedance Mismatch

This evaluation is based on related approaches’ ability to represent the metatype differentiation be-
tween Natural Types, Role Types, Compartment Types, and Relationship Types in combination with
its constraints on the schema and instance level. The focus on CROM is due to its superiority over
other role-based data models by supporting all three aspects of role-based modeling (see Section 2.3).
The first architectural approach uses traditional and existing techniques in terms of external views
in relational DBS. This class does not comply to any requirement, in fact they cover complex joins,
but the mapping and the corresponding semantics reconstruction have to be implemented by the ap-
plication developers individually. Client side mapping engines, like DAMPF, that are implemented
in the applications, try to overcome the manual mapping and reconstruction overhead by provid-
ing a standard abstraction layer that pushes all mapping related functionalities into this layer. This
simplifies the application development process, but neglects the database system issues and software
system problems, thus, the role-relational impedance mismatch remains present. Consequently, no
requirement is fulfilled. Database system side mapping engines provide an application-oriented query
language that is transformed into the database query language, like SQL, in the background. In con-
trast to their client side opponents, they provide a role-based query language and in the best case

3.4 Related Work 53

a proper result representation. The representative of this class, ConQuer, does not provide a result
discussion, thus the requirement is not fulfilled. Persistent programming languages for role-based
software systems, like DOOR and Fibonacci, integrate database abstraction mechanisms into a pro-
gramming language and couple the database system tightly to the application. The representatives of
this class feature a role-based data model, but without considering Compartment Types. A query lan-
guage and result representation is obsolete due to the tight integration of the programming language
and database, in fact results in terms of well-known relational results do not occur in such systems.
Rather, the role-based objects are directly serialized on disk for persistence purposes. Finally, the
INM is a representative for a DBMS integration of a role-based data model. INM has weaknesses in
its data model, because it is not CROM compliant, and the result representation in terms of missing
iteration or navigation options. Moreover, an integrated data structure enabling a separation of con-
cerns is missing. However, it features a sophisticated query language including a construction part to
restructure stored data structures for the client side representation.

As can be seen, there is no fully integrated approach available that overcomes the role-relational
impedance mismatch that is posed by CROM-based applications and domain models. In the ideal
situation, all requirements have to be fulfilled. This would keep the application developers out of the
data management, enable role data model optimizations on the basis of special operators, give applica-
tions the opportunity for ad hoc queries, and finally represent the results as instance of the role-based
data model.

3.5 OVERVIEW OF RSQL

To overcome the shortcomings of related approaches and provide a DBS that is able to represent a so-
phisticated metatype distinction and its corresponding constraints on the schema and instance level,
a novel approach is required. In particular, this approach has to fulfill the requirements discussed in
Section 3.3. Additionally, the aimed approach has to be independent of applications and their pro-
gramming languages to ensure DBS independence and a loose coupling between the DBS and the
applications. In detail, we aim for a traditional software architecture that has a strict separation be-
tween the transient application world and persistent database world. Consequently, the application
handles its data structures by its means and the DBS by its individual interpretation, but both rely on a
role-based notion of the entities. Thus, the goal is to keep the well-known and often applied software
architecture, but overcome the role-relational impedance mismatch by introducing a CROM-based
database model in combination with a sophisticated query language and result representation.

To achieve this goal, we are going to introduce the RSQL approach, consisting of a CROM-based
database model, a query language, and a result representation on this database model basis. RSQL
can be classified into the lastly discussed group of approaches, the group for a full DBS integration
of role-based semantics. In detail, the RSQL data model defines the basic structures the novel DBS
will handle as well as operators on this model. Thus, the RSQL database model is a logical database
model. On the schema level this data model features Dynamic Data Types (DDTs) that build the
structural integrated unit. A DDT consist of a player type and several Role Types that are separated in
two dimensions, depending on whether they are played or featured. On the instance level Dynamic
Tuples (DTs) represent the instances that can be extended or shrunk dynamically during runtime,
but only within the DDT boundaries. Furthermore, the RSQL query language is based on the RSQL
data model and extends well-known query mechanics by config-expressions. This expression acts
as schema filter for Dynamic Tuples of the same Dynamic Data Type but having different schemata.
Finally, the RSQL Result Representation (RuN) provides an RSQL data model instance to applications
and users, and defines functionalities to navigate between Dynamic Tuples of different Types as well
as iterate over ones of the same Type.

54 Chapter 3 Need for Role-based Database Systems

Thus, the RSQL approach integrates several components for a CROM-based DBS in one approach and
addresses a database system’s data system and set-oriented interface. In detail, the RSQL data model
is discussed in Chapter 4. Additionally, operators on the basis of this data model are defined. The
explanations on the RSQL query language, in particular its syntax and the relation to the database
operators, are the topic of Chapter 5. Moreover, this chapter includes a discussion on processing
RSQL queries and the result representation.

3.6 SUMMARY

In the beginning, we outline the software system we consider and the place a DBS has within such a
software system. Based on the trend of implementing role-based features to cope with complexity and
context-sensitivity issues of modern software system, we explained the shift toward role-based model-
ing and programming languages. Using role-based semantics and features on the level of applications,
but not on the database level causes the role-relational impedance mismatch that is mainly based on
the missing metatype distinction in the DBS. Problems resulting from the role-relational impedance
mismatch can be categorized into three categories. These are problems for the applications and the
application developers, pains for the DBS itself, and issues for the software system in general. Based
on this problem discussion, we defined requirements to be fulfilled by a DBS to overcome the dis-
cussed mismatch. This is followed by a related work discussion that takes these requirements into
consideration for evaluating these approaches. In general, the related approaches can be classified by
their aimed software architecture layout. We came to the conclusion that no approach provides full
role support, especially Compartment Types, as a notion of context, are always neglected. Based on
this and to overcome the shortcomings of the related approaches, we outlined the RSQL approach
consisting of a logical database model, a role-based query language and result representation support-
ing CROM metatypes and their inherent constraints on the schema and instance level.

3.6 Summary 55

56 Chapter 3 Need for Role-based Database Systems

4
RSQL DATABASE MODEL

4.1 Requirements

4.2 Related Work

4.3 RSQL Database Model

4.4 RSQL Operators

4.5 Summary

To integrate the concept of roles as first class citizen in a database system, a proper database model,
supporting the notion of roles and a metatype distinction within an entity, is inalienable. At first,
several requirements for such a database model are defined and explained in Section 4.1. These re-
quirements build the basis for evaluating related approaches, in the second place. As it will be seen
in our related work discussion, none of the related approaches provides a data model that is able to
fulfill the entire list of requirements and none has an explicit notion of a context, respectively Com-
partment. Consequently, a novel database model named RSQL database model is defined. The main
body of these definitions are based on the data model descriptions in [50, 49, 51] as well as the CROM
definitions in [57]. This features the notion of Dynamic Data Types on the type level, to express
which entity types can fill or contain which particular Role Types. On the instance layer, an entity
is represented by a Dynamic Tuple. This allows for the representation of entities having a common
core but different structure within one type definition. Additionally, it enables to change an entity’s
structure during runtime without changing its overall type. Furthermore, Dynamic Data Types and
Dynamic Tuples overlap in certain Role Types and Roles, respectively. This ensures the embedding
of actually played Roles in a Compartment. However, these definitions build the fundamental and
integrated data structure the database model operators are defined on. This builds the mathematical
foundation to process and filter the information an application is asking for in queries. These opera-
tions range from selecting Dynamic Tuples based on their structure, over the selection of overlapping
Dynamic Tuples and attribute focused filters, to intersecting and uniting sets of Dynamic Tuples. All
definitions regarding the operators are explained and discussed after the database model definitions.
A short conclusion and summary completes this chapter.

4.1 REQUIREMENTS

To overcome the problems outlined in Section 3.2 a proper data model that supports metatype dis-
tinction on the foundation of CROM is required. An overview of the requirements is presented in
Table 4.1. CROM builds this basis, because it is the only metamodel that is able to represent all three
trends in role modeling, as shown and discussed in Section 2.2 and Section 2.3. Consequently, the
first three requirements, DM.1 – DM.3, address the metatype distinction between Natural Types, Role
Types, Compartment Types and Relationship Types. An explicit notion of Natural Types is omitted as
requirement, because they build the static core of an entity type, which is shared by all approaches as
basis abstraction. Role Types required to express the core type’s ability to extend its structure dynam-
ically during runtime, without changing the type or reinstantiation. Compartment Types are required
to represent the context-dependent nature of roles. Additionally, an explicit notion of Relationship
Types is mandatory to avoid relationship mappings onto the logical data model, like it is done for
relational DBS.

Moreover, it is required that Role Types are embedded into a Compartment Type (DM.4). This en-
sures context-dependency in the way that the Compartment Types act as objectified context for each
Role Type. Thus, Role Types outside a Compartment Type have to be prohibited. In addition to the
aforementioned metatype distinction, multiple player types for one Role Type are required (DM.5).
For instance, the StudiesCourse Role Type, as shown in Figure 2.3 is playable by both Natural Types,
Lecture and Seminar. This avoids redundant Role Type definitions having the same behavior and
structure for multiple player types. Furthermore, it is required that an entity can play Roles of the
same Role Type multiple times simultaneously (DM.6). This requirement is motivated from an en-
tity’s structural point of view. Basically, it is natural that the same structure is acquired multiple times,
for instance, a Person can be a Student multiple times at different Universities, or a Person may be
a Member of various SportsTeams. Hence, the Student_ID and Member_ID attributes have to be
present multiple times as well. Allowing a player to play a role of a certain Role Type only once,

58 Chapter 4 RSQL Database Model

Requirement Description

DM.1 Explicit notion of Roles
DM.2 Explicit notion of Compartments
DM.3 Explicit notion of Relationships
DM.4 Roles are only valid in combination with a certain Compartment
DM.5 Multiple player types per Role Type
DM.6 Multiple Roles of the same Role Type simultaneously
DM.7 Integrated data structure for dynamic and schema flexible types and entities
DM.8 Operator definitions
DM.9 Mathematical closure

Table 4.1: Overview of Requirements Posed to a Role-based Data Model

avoids entities to carry the same structural information, but with probably different values, several
times. Hence, players must be able to play Role of the same Role Type multiple times simultaneously.

Furthermore, we require an integrated data structure that unites the semantics of the metatype dis-
tinction and most importantly their interrelations (DM.7). Basically, roles describe a structural exten-
sion of an entity and should be treated as such an extension. Consequently, they form an integrated
logical unit. A pure metatype distinction between Natural Types and Role Types cannot preserve this
perception of a dynamically growing and shrinking entity as integrated unit. Rather, the semantic
interrelations between the metatypes have to be integrated as well. This can be done within a higher
data structure that combines the entity’s core and its extensions within a separate higher level type.
For instance, imagine the Natural Types Person and Lecture and the Role Type Student. Based on
this information, it does not become clear which Natural Type can play which Role Type. Basically,
this integrated data structure defines on which logical data structure perception the database system
will work on. Relational database systems work on the notion of tables and in contrast to this a role-
based database system has to work based on a different but well-founded notion as well. In sum,
the integrated data structure is utilized to preserve the semantic interrelations between the different
metatypes and defines the way the database system operates on the data.

Finally, it is essential to provide formal operators that describe possible operations on the data model
(DM.8) as well as a mathematical closure (DM.9). The formal operators enable the database manage-
ment system to mathematically describe the parts of a query and to logically optimize a query plan.
Moreover, the mathematical closure ensures that query (intermediate) results are an instance of the
data model as well, and any operator does not produce an output, which is not covered by the data
model.

4.2 RELATED WORK

During the past years the research community proposed several data models to represent data and
their interrelations in a DBS. The following discussion is focused on database models only and nei-
ther discusses various conceptual or programming language role models nor their advantages and
disadvantages. For a survey on role models under certain perspectives, like conceptual modeling, and
non-persistent role-based programming languages, we refer to Steimann [79, 78] and Kühn et al. [58].

4.2 Related Work 59

4.2.1 The Role Concept in Data Models

One of the first data models featuring roles as first class citizen is proposed by Bachman and Daya as
extension to the network model [8]. Their initial observation was the "most conventional file records and
relational file n-tuples are role oriented" [8, p. 465]. Generally, their data model consists of entity types,
which represent the static aspects of an entity, and role types that describe dynamic aspects of entity
types. In detail, an entity type is characterized by its playable role types, in contrast, role types may be
playable by several entity types. For instance, the role type StudiesCourse might be playable by both,
the Lecture and Seminar. In contrast, a Person might become a Student, or StudentAssistant, or
both.

Entity types are represented in records and role types in role-segments, each having their own data
items consisting of a name and a value. Within the record description, several role-segments may
be referenced, but a role-segment may be referenced in several record descriptions. Moreover, a
record occurrence (entity) is a vehicle for one or more role-segment occurrences (roles). However, a
role-segment can appear only once within in record description and describes a single role-segment
occurrence only. Thus, in their data model a role can be played only once [80].

Role types have several attributes in this data model. First, they can be shareable or non-shareable,
indicating whether a role type may occur in several record descriptions or only in one. Secondly, role
types may be attributed with essential or non-essential. The former implies that a record occurrence
indicates a role occurrence as well, for instance, in relationships having a cardinality constraint larger
than 1. The latter one describes a role type that might occur but does not have to. A conceptual
summary of this data model is illustrated in Figure 4.1.

R
o

le-Segm
en

t Sectio
n

R
ec

o
rd

Se
ct

io
n

Record Description 1

Type Name 1
Role-Segment
References 1

Record Description 2

Type Name 2
Role-Segment
References 2

Record Description 3

Type Name 3
Role-Segment
References 3

Role-Segment 1

Role-Segment 2

Role-Segment 3

Role-Segment 4

Role-Segment 5

Entity
Type

Value
Type R

Predicate

Person

University

studies at

Student

is a

has

Name

StudentID

has

Figure 4.1: Bachman and Daya’s Role Data Model; According to Descriptions in [8]

Additionally, Bachman and Daya’s data model definition does not feature a notion of context, but
binary owner / member relationships inherited from the network model [8, p. 469]. Hence, they pro-
vide a metatype distinction between two metatypes, the entity types and roles types. However, their
description provides an integrated data structure that brings the static core component and played
roles together. Additionally, roles are acquired when an entity joins a certain relationship, hence,
roles are only present in case the entity participates to (conceptual) relationships; in fact, relationship
types are not part of their data model. Moreover, they textually define only basic operations on the
data model for manipulating record and role occurrences, but no formal operators. Consequently,
operators are undefined, but for the basic operations they defined the mathematical closure is guar-
anteed. Over recent decades, this data model has been honored to be the first proposing roles, but
further development was unfortunately not granted to it. In sum, Bachman and Daya’s data model
suffice the requirements DM.1, DM.5, and DM.7 as well as DM.8 and DM.9 partially.

60 Chapter 4 RSQL Database Model

4.2.2 Object Role Modeling

The Object Role Modeling (ORM) approach is a fact-based attribute free conceptual modeling lan-
guage1. ORM was proposed by Halpin in 1998 [34] and revised and extended in 2005 [35]. The main
difference between traditional modeling languages, like UML or ERM, is that entities are modeled at-
tribute free. In fact, attributes are modeled in a separate type and related to entity types by predicates.
Hence, ORM is strongly relationship focused providing the modeler the freedom to evolve attributes
and entities independently from each other.

R
o

le-Segm
en

t Sectio
n

R
ec

o
rd

Se
ct

io
n

Record Description 1

Type Name 1
Role-Segment
References 1

Record Description 2

Type Name 2
Role-Segment
References 2

Record Description 3

Type Name 3
Role-Segment
References 3

Role-Segment 1

Role-Segment 2

Role-Segment 3

Role-Segment 4

Role-Segment 5

Entity
Type

Value
Type R

Predicate

Person

University

studies at

Student

is a

has

Name

StudentID

has

Figure 4.2: Basic Modeling Elements of ORM; According to Definitions in [34]

The graphical notation of ORM is depicted in Figure 4.2 according to [34]. Entity types are rep-
resented as ellipses with a continuous line, value types as ellipses as well, but with dashed lines.
Additionally, n-ary predicates are depicted as compound boxes, one box per participating entity or
value type. The term predicate in Halpin’s sense is a special interpretation of a relationship. Finally,
roles are the named places in predicates and specify the role a certain entity is playing in this partic-
ular predicate. Furthermore, ORM provides a wide variety on constraints, thus, modelers are able to
design their domain very fine-grained and catch very special situations separately.

An example model of a simple university domain is illustrated in Figure 4.3. As you can see, Person,
Student, and University are modeled as entity types and the person’s Name as well as the StudentID
as value types. All types are related by predicates; between Person and Student there exists a is a
relation, between Student and University a studies at, and between the entity types and values types
a has relation.

R
o

le-Segm
en

t Sectio
n

R
ec

o
rd

Se
ct

io
n

Record Description 1

Type Name 1
Role-Segment
References 1

Record Description 2

Type Name 2
Role-Segment
References 2

Record Description 3

Type Name 3
Role-Segment
References 3

Role-Segment 1

Role-Segment 2

Role-Segment 3

Role-Segment 4

Role-Segment 5

Entity
Type

Value
Type R

Predicate

Person

University

studies at

Student

is a

has

Name

StudentID

has

Figure 4.3: Example ORM Model of a Simple University Domain

As mentioned in the ORM’s graphical notation description, roles are named places in relations only.
Moreover, there are explicitly not used to temporarily classify entities [78], like the most approaches
do. Thus, the ORM data model is very weak in terms of using roles for a separation of concerns
within an entity. In contrast, modeling each attribute individually using a value type and relate them
by predicates to entity types is somehow the most radical separation of concerns. Nevertheless, en-
tity information that originally belong together, like a person is a student at a certain university, is
distributed over several individual entity types.

As the example clearly shows, the usage of roles is very limited, because as soon as a role type needs
to be attributed with some values, the role type is modeled as entity type, since there is no option to

1We outline this approach in the data model section, because this basic knowledge is required for the understanding of
the conceptual query language ConQuer, which is discussed in Section 5.2

4.2 Related Work 61

attribute predicates. Thus, the ORM tends to model entity information as ERM [18] does, but with a
slightly different focus on relationships and attributes. Consequently, ORM provides a weak notion of
roles and an explicit perception on relationships, but any other requirement is not satisfied. Hence,
DM.3 and DM.6 are satisfied while DM.1 is partially fulfilled. All other requirements are not fulfilled
at all.

4.2.3 DOOR

The Dynamic Object-Oriented database programming language with Roles, short DOOR, is, as the
name directly implies, a programming language for databases [84, 86, 87]. Precisely, DOOR is a
role extension to the object-oriented paradigm that also features persistent data objects. In detail,
DOOR supports operations for dynamic role bindings at runtime and modeling context-dependent
behavior [86]. Basically, this approach distinguishes between object classes and role classes. The
former are equivalent to classes in traditional object-oriented languages. The latter one describes a
set of similar roles that need to be connected to a player by the played by link.

As aforementioned, the DOOR data model features objects and roles that are connected by a played-
by relation. This relation explicitly includes roles playing roles, such that played-by can also be es-
tablished between two roles. Moreover, role classes are always connected to exactly one player type,
which means shareable role types are not allowed in this data model. Hence, DOOR data structures
are always trees having an object class at their root. Thus, the transitive closure of a role class has
to end at an object class. However, the data model can exist of more than one tree, so that multiple
objects can be specified in a schema. A sample schema of a DOOR model is illustrated in Figure 4.4.

Person

Student

Student-
Assistant

Sports-
Team-

Member

Captain Coach

O
b
ject

C
lass

R
o
le
C
lasses

Figure 4.4: Example DOOR Data Structure of a Simple University Domain

This illustration contains a Person as object class as root of the tree. Furthermore, this Person can
play roles of the role class Student and SportsTeamMember, respectively. Additionally, the Student
role class can play role of the class StudentAssistant whereas SportsTeamMember roles can play
roles of the classes Captain and Coach.

On the instance level, DOOR describes objects and roles as instances of their corresponding classes.
Roles of the same class can be played several times simultaneously by the same object. Hence, multiple
roles of the role class Student may exist concurrently and are played by the same object. The resulting
data structure is a strictly hierarchical tree and each role is nested in its corresponding player.

62 Chapter 4 RSQL Database Model

The DOOR authors explicitly mention context-dependency of their data model. This statement sub-
sides to a context-dependent access of attributes and methods. In fact, roles are not situated in any
context, rather the way you can access roles is seen as context-dependency in their data model. In de-
tail, accessing roles is done by the delimitation mark !, which means Person!Student accesses the Stu-
dent roles of a Person. However, in their example illustrated in [86, p. 407] they define an attribute id
on both, the Person and the Student, implying that Person.id is different from Person!Student.id. The
context-dependency they are describing in this example is simply resolving the name of the attribute
correctly. Actually, the id attribute defined on the Student is conceptually a different one than this
one defined on the Person. The first one is the student id you will get when enrolling at a university,
whereas the second refers to the person’s id, like a social security number. Since both id attributes
refer to a different (mental) concept, they should be clearly distinguishable, for instance by naming
these attributes differently2. Instead of calling it context-dependency, we would call it class-specific
attributes, which is not a problem at all, because they access the attribute directly and not indirectly.

Caused by their data model, they run into several referencing problems when objects or roles are
deleted from the system. For instance, a Student role is discarded from the system, it is not clearly
stated what happens to the StudentAssistant roles connected to this particular role. They are aware of
such problems as [84] describes, but those were never addressed by the authors. However, DOOR has
been developed for persistent role-based dynamic objects. Hence, the objects are persistently stored,
but not in full fledged DBS. Rather, they implemented a storage engine by themselves. This is based
on serialization as binary data stream of objects using metaobject protocol in a lisp-like language [87].
Hence, real DBMS features like concurrent data access control are not guaranteed. Another problem
occurs when multiple roles of the same type are played and the data access does not access a certain
role, rather a set of roles. In such a case, the responding role is randomly chosen, resulting in a
nondeterministic result, as Baumgart describes [11, p. 25].

In sum, the DOOR approach satisfies the requirements DM.1, DM.6, DM.7, DM.8, and DM.9. How-
ever, the notions of compartments and relationships are completely missing. Additionally, role classes
can be related to one player type only, which results in circumstantial subclassing for roles and multi-
ple implementations of the same behavior and structure. Moreover, the DOOR approach is designed
as persistent programming language not guaranteeing typical DBMS specific features like concurrent
data access or fault-tolerance. Unfortunately, DOOR has not been maintained and further developed
since the late 1990s and there is no source code available on the Internet.

4.2.4 Fibonacci

Like DOOR, Fibonacci is an object-oriented database programming language featuring roles to dy-
namically change an object’s type during runtime [4, 2]. The language is strongly influenced by the
Galileo language, but extends it by roles [3, 4]. In general, Fibonacci manages objects and an object
internal graph of roles. Additionally, the object has a name, an immutable ID and a mutable state.
Moreover, objects are accessed by their roles only, thus, the object itself is only the container for
the roles. All methods of an object are defined by the roles it is currently playing. An example of
Fibonacci’s data structure is illustrated in Figure 4.5.

As you can see, the Person is specified twice, once as object type and once as role type. This is caused
by the object type definition, that does not feature any attributes or methods. These are defined in the
role types only. Thus, an object’s behavior and structure is defined by role types. Furthermore, role
types can play roles types, resulting in a hierarchical structure of object types and their playable role

2In their terms, even relational tables would be context-dependent when accessing columns by their qualifying table in
a result set (s.id vs. p.id), in case attribute names are non-unique.

4.2 Related Work 63

Person

Student

Student-
Assistant

Sports-
Team-

Member

Captain Coach

Person

O
b
ject

Typ
e

R
o
le
Typ

es

Figure 4.5: Example Fibonacci Data Structure of a Simple University Domain

types. Internally, role types are represented as acyclic graph, enabling multi-inheritance within this
hierarchy. This multi-inheritance is different to DOOR, which does not allow this feature. However,
a role type is bound to a certain hierarchy, thus, multiple player in terms of objects are not supported.
Nevertheless, the data model of Fibonacci and DOOR are very similar. A formal foundation of this
data model is presented in [25].

At runtime, an object may acquire or abandon a role of a certain role type dynamically, resulting in
additional and less behavior, respectively. A role type can be instantiated only once within a certain
object. Furthermore, role types provide only a method signature, thus, at instantiation time the actual
implementation has to be provided. This can be done manually by the application developer, or by
a constructor that implements the same behavior for each role. This approach of providing only
method signatures, also known as interfaces, is unusual, because a role is the instance of a certain
role type in a certain object. Thus, you would naturally assume that roles of the same type realize the
behavior the same way, but in Fibonacci the implementation can vary from role to role, giving you
inconsistent behavior within the same type. However, messages or methods are passed through the
object’s internal graph to find the corresponding attributes and methods. There exist two options to
search for these: (i) upward lookup and (ii) double lookup. The first searches for methods in the role
itself, if the method is not defined in this role, it continues the search in the super-roles. Due to the
static typing, it is ensured that at least one super-role implements this method. The second option
searches in the sup-roles at first. In case of a negative result, the upward lookup is performed.

The data store to persistently store the data objects of Fibonacci is very limited in its functionality.
Basically, they store all object and role information as uninterpreted byte string, and reference to
other data objects. For fault tolerance and recovery they use frozen versions, a kind of snapshots. As
the authors clearly state, the required set of operators is very minimal, to test and compare different
storage engines [4]. Thus, traditional DBMS features are not supported, rather only file-based storage
is employed. Moreover, the query language provides rudimental functionalities, like put and get, only.

In sum, Fibonacci is similar to DOOR and fulfills the requirements, DM.1, DM.6, DM.7, and DM.9.
The operators are very basic, thus, they are rated as partially fulfilled. In contrast to DOOR, roles of

64 Chapter 4 RSQL Database Model

a particular role type can be played only once per object. Additionally, the object type is designed as
container unable to represent any attributes or methods, which results in specifying the same (logical)
object twice when the core has to have attributes or behavior. Finally, it is a persistent database
programming language not featuring any usual DBMS functionalities, thus, the application and data
storage become an integrated and inseparable layer avoiding multi application scenarios and user
specific ad hoc queries.

4.2.5 Information Networking Model

Information Networking Model (INM) has been designed to overcome problems of traditional and
role modeling languages [61, p. 132]. Interestingly, they assume very basic role models that do not
have any context notion and can be categorized into the structural and behavioral category (see 2.2).
However, this approach has been proposed in 2009 by Liu et al. [61] and is based on their previ-
ous work on context-dependent relationships [62, 44]. As basic modeling elements INM uses object
classes and role relationships. An object class is equivalent to a traditional class in object-oriented
systems. It simply describes the static information about an entity. Role relationships specify an en-
tity in a certain relationship by associating a role to it and are directed from a source class to a target
class. These relationships are also utilized to represent context-dependent properties, like attributes
or behavior. Additionally, all role relationships are directed and may form inverse role relationships.
Moreover, role relationships and object classes may form individual inheritance hierarchies. A small
example INM model is presented in Figure 4.6(a).

University

Person

Student
Student
Assistant

Student_ID Hours

Studies in Works in

(a) INM Model

University

Person

Student
Student
Assistant

Student_ID Hours

Studies in Works in

Student
Student
Assistant

(b) Induced INM Model

Figure 4.6: Example INM Model of a Simple University Domain; according to [61]

This example consists of two classes, a University and a Person class. Both are connected by the two
role relationships Student and StudentAssistant. Interestingly, the role relationships are directed
from the university to the person and not the other way around, which is confusing. Naturally, the
role in a role relationship details an entity that plays this particular role, but in INM it is graphi-
cally expressed the other way around by directing the role relationship link from the university to the
student and student assistant. In fact, the person class can play roles of the type student or student
assistant and not the university class. To get the information which role can be played by a class, the
inverse context relationship has to be used. In the small example model this is indicated by the un-
derlined annotations on the role relationship links from student and student assistant to the person.

4.2 Related Work 65

1 Student, StudentAssistant John [
2 @Birthday: 12.01.93
3 StudiesIn:{
4 TUD[@StudentID: 12345],
5 TUC[@StudentID: 55874]
6 },
7 WorksIn:{
8 TUD[@Hours:15]
9 }]

10 Student Tim [...]

Figure 4.7: Example Instance Representation in INM; according to [62, p. 724]

Furthermore, this example shows context-dependent attributes connected to role relationships, espe-
cially the Student_ID for the student and the hours attribute for the student assistant. These can only
be populated, if a class participates in this role relationship.

However, the core of their models is based on object-oriented notions of entities. Classes and role
relationships form an induced object-oriented class hierarchy, in which each role relationship, con-
nected to another class, builds a subclass of the target class [61, p. 138]. Hence, each role relationship
is represented as class itself, although it is connected to another class by an is a association. An exam-
ple of such an induced model is depicted in Figure 4.6(b). As it can be seen, the role relationships for
separate role relationship classes under the class person. Additionally, the have a context-relationship
to the university. In contrast to the original model, the classes that can play a role in a role relation-
ship are denoted more naturally. However, a role relationship can be related only once, which avoids
multiple player types for a role relationship.

The resulting data structure forms a tree having a class as root. It nests all information from a class and
its subclasses into a hierarchical structure. Consequently, the instances of such a model are structured
hierarchically as well. At runtime they use a multi typing mechanism to weave all information into
an entity. Moreover, this multi typing defines which role relationship dependent attributes an entity
can have. However, all attributes of subclasses, like the student or student assistant, are combines in
the entity using object references to specify the context these attributes are valid in.

Figure 4.7 illustrates the instance John studying at two universities in detail. As it can be seen, each
instance forms a separate hierarchical structure using the class and subclass hierarchies defined on
the type level. However, this structure is directed from the class to subclasses by referencing other
objects, like TUD and TUC. These referenced instances are defined separately, but do not hold any
information on the students studying at these universities, because the subclasses are defined for the
person and not for the university. This results in distributed information about the students from a
university perspective, because each student has to be scanned to collect the information whether he
or she is a student at a particular university.

In [43] the authors present four ways of evaluating INM queries on a INM database. All options rely
on producing a graph of connected information and evaluate this graph for the query. In detail, they
describe a forward chaining search, a backward chaining search, a hybrid search, and a multi expres-
sion search. Each has its advantages for a special type of queries. Moreover, their discussions on the
INM query processing suggest an implementation specific operator definition, which is tailored to
their individual physical data representation [43, p. 532]. An implementation independent descrip-
tion on the logical level would be beneficial to define various physical operator implementations, as
known from the relational database world. However, there are no formal operators defined, in fact,
they describe their evaluation strategy textually.

66 Chapter 4 RSQL Database Model

In total, the Information Networking Model implements roles in combination with relationships and
puts both notions into one meta type, call role relationship. Those are related from one class to an-
other to represent relationship and context-dependent information. An explicit notion of context is
still missing, because it is implicitly induced by following the direction of a role relationship. These
roles are represented as subclasses of traditional classes, but instances can join and leave these sub-
classes dynamically. Hence, the requirement DM.1 is fulfilled. DM.3 is partially fulfilled, because the
notion of a relation ship is mixed with roles. DM.4 and DM.5 are not fulfilled, because there is no
explicit compartment or context notion and role relationships can be related only once. However, a
role relationship can be instantiated multiple times for one class, hence, roles are playable multiple
times and the requirement DM.6 is satisfied. Moreover, they provide a tree-based structure that com-
bines all entity relevant information within an integrated data structure, but only from one direction.
Especially for the class acting as virtual context the information which role relationships are active is
unknown. Nevertheless, they provide a data structure that combines an entity with its roles, so DM.7
is fulfilled. DM.8 and DM.9 are not fulfilled, because they describe the query processing textually and
very implementation specific and do not define formal operators.

4.2.6 Discussion

The evaluation of related approach shows a consistent lack in the explicit notion of compartments or
objectified contexts. Additionally, relationships as first class citizen are mentioned in two approaches
only. Moreover, the embedding of roles in a context, no matter what kind of context perception the
particular approach relies on, is missing in each approach. Rather, roles are used to characterize one
entity only, but not the entity it is embedded in. This avoids an actual context-dependent represen-
tation of roles. Furthermore, it can be concluded that each approach defines its notion of roles a bit
differently, which supports the statement of Section 2.2, especially the statement that there is a zoo
of role notions and the overall valid notion of a role does not exist. In one approach role types can
have multiple player types and in another one a role type can be instantiated once per entity only. An
integrated data structure that combines the entity itself and the role it plays, is provided by almost
each of the related approaches. Only the Object Role Model does not satisfy this requirement. Finally,
only one of the evaluated works provides a formal operator description, especially an implementation
independent description. Some provide partial descriptions, but these are mostly very basic opera-
tors. This situation of missing operator descriptions prohibits query optimizations on a mathematical
level. An overview of the related work evaluation in regard of the previously specified requirements
is represented in Table 4.2.

Requirement Bachman ORM DOOR Fibonacci INM

Notion of Roles � � � � �
Notion of Compartments � � � � �
Notion of Relationships � � � � �
Roles in Compartments � � � � �
Multiple Player Types � � � � �
Multiple Roles simultaneously � � � � �
Integrated Data Structure � � � � �
Formal Operators � � � � �
Mathematical Closure � � � � �

�: yes, �: partial, �: no

Table 4.2: Evaluation of Related Data Model Approaches

4.2 Related Work 67

4.3 RSQL DATABASE MODEL

As the discussion on the related work clearly shows, none of the related approaches satisfies the com-
plete list of requirements, especially the notions of a Compartment as objectified context is missing.
To overcome the shortcomings of these data models, the RSQL database model is introduced and
formally defined in this section. RSQL’s database model comprises definitions on the schema level
as well as on the instance level. An overview of the database model definitions and their interrela-
tions are presented in Figure 4.8. Precisely, the schema level consists of definitions for a Dynamic
Data Type (DDT), a Configuration and a Relationship Type. This instance level is represented by Dy-
namic Tuples (DT) and Relationships. A Dynamic Data Type combines the role-based semantics and
metatype distinction within an integrated data structure and consists of a core and two sets of Role
Types. The instance level opponent of a DDT is a Dynamic Tuple. A DT represents an entity that
can dynamically change its structure during runtime. Different instances of the same DDT can have
different schemata, depending on which Roles are currently played. Which structure can be added
to an instance, is covered in Configurations. A Configuration describes a certain valid schema of its
corresponding DDT. Hence, a DDT defines a space of valid Configurations and Dynamic Tuples can
adapt their structure by changing their Configuration. This ensures that only this structure is added to
an entity that is intended to be added. For instance, a Person can be extended by the structure defined
in the Student Role Type, but not by structure specified in the TournamentTeam, because there is no
valid Configuration covering this schema and the TournamentTeam is not part of the DDT Person.

Additionally, Relationship Types and Relationships are part of the database model definition to omit
relationship mappings onto Dynamic Data Types. A Relationship Type connects two DDTs by two
distinct Role Types. On the instance level, a Relationship connects two DT by two distinct Roles.

Dynamic Data Type Relationship Type

Configurations

Dynamic Tuple Relationship

In
st

an
ce

 o
f

In
st

an
ce

 o
fDefines

Belongs to

Connects

Connects

Sc
h

em
a

In
st

an
ce

Figure 4.8: Overview of RSQL’s Data Model Concepts

4.3.1 Schema Level

In database systems the type level defines the schema of a database and the interrelations of various
schema elements. Before defining the database schema, we have to define the schema elements, the
database system is able to represent. In general, the RSQL database model discriminates the four
metatypes that are discriminated in the CROM metamodel, too [57]. These metatypes represent
the schema elements of a role-based database system. Additionally, each metatype features a set of
attributes. The corresponding type definitions are presented in Definition 1.

68 Chapter 4 RSQL Database Model

Definition 1 (Attributes). Let nt, rt, and ct be the metatypes Natural Type, Role Type, and Compartment
Type, respectively. Then, t = {A1, . . . , An} with n ∈ N and t ∈ (nt, rt, ct). Additionally, an attribute
A is defined by a name and a domain, such thatA = (name : domain).

This definition allows representing different metatypes and the corresponding attributes as schema
elements of a database. Although, Relationship Types do not have any attributes, because attributed
Relationship Types can be modeled as separate Compartment Type. To have a clear target for each
metamodel element, attributes are prohibited for those types. The definition itself is comparable to
the relational schema definition of a relation database system, but with the difference that multiple
metatypes are distinguished in our definition. RSQL schema elements are specified by the following
pattern illustrated by the Natural Type Person (see Figure 2.3).

Person : {[Name : String, LastName : String,Birthday : Date,Address : String]}

As in the relational world and also in the standard literature, the [] specify the attributes that all
instances of corresponding type have to share [55]. For Natural Types this indicates the Natural con-
structor, for Role Types the Role constructor and so on. Additionally, the {} indicate that a set of
instances is related to this type and represent the set constructor.

So far, the database model differs from the traditional relational database model by discriminating
four, instead of only one, metatype. This changes when the database schema is defined. The database
schema definition adds role-based and metatype specific characteristics to the standard schema ele-
ment’s definitions. Please note, for a clear arrangement of the following definitions we omit attributes
in them, but detail some examples by using attributes. However, it can be expected that each type has
a certain number of attributes.

The schema definition specifies the logical schema elements in the DBMS and their interrelations. A
relational database schema consists of relational tables, a graph data store of vertexes and edges, and
a key-value store of simple key-value pairs. Consequently, a role-based database system consists of
various types of roles. Roles cannot be considered in isolation, because they extend an entity and so
the corresponding schema elements do. The following schema definition is based on the CROM type
level description presented in [56]. Moreover, it is a combination of the schema specifications given
by [51, 49].

Definition 2 (Schema). Let NT , RT , CT , and RST be mutual disjoint sets of Natural Types, Role
Types, Compartment Types, and Relationship Types, respectively. Moreover, let Card ⊂ N× (N ∪ {∞})
be the set of cardinalities represented as i..j with i ≤ j.
Then, a Schema is a tuple S = (NT,RT,CT,RST,fills, parts, rel, card) where:

• fills ⊆ (NT ∪ CT)×RT is a relation,

• parts : CT → 2RT is a function,

• rel : RST → (RT ×RT) is a function connecting two Role Types, and

• card : RST → (Card × Card) is a total function assigning cardinality constraints.

Additionally, we require the following axioms to hold for a well-formed schema.

∀rt ∈ RT ∃t ∈ (NT ∪ CT) : (t, rt) ∈ fills (4.1)

∀ct ∈ CT : parts(ct) 6= ∅ (4.2)

∀rt ∈ RT ∃!ct ∈ CT : rt ∈ parts(ct) (4.3)

∀rst ∈ RST : rel(rst) = (rt1, rt2) ∧ rt1 6= rt2 (4.4)

∀rst ∈ RST ∃ct ∈ CT : rel(rst) = (rt1, rt2) ∧ rt1, rt2 ∈ parts(ct) (4.5)

4.3 RSQL Database Model 69

In detail, the schema definition distinguishes between the four metatypes and collects the correspond-

ing types into their respective sets. Additionally, a relation and three functions are defined to repre-

sent the semantic interrelations. At first, the fills relation declares a player type (either Natural Type

or Compartment Type) able to fulfill a certain Role Type. Secondly, the parts function collects all Role

Types contained in each Compartment Type. Thirdly, the rel function maps a Relationship Type to

two Role Types, such that a Relationship Type is always binary and only exists between Role Types.

Finally, card defines the cardinality constraints for each Relationship Type.

In addition, we constrain the model to the five axioms aforementioned. In detail, it is required, that

each Role Type has at least one player type (4.1). This avoids isolated and non-playable Role Types in

the database schema. For example, the Student Role Type in our university domain example has the

player type Person. Without this player type the Student is not part of the fills relation and violates

the first axiom.

Furthermore, we require Compartment Types to contain at least one Role Type, which means empty

Compartment Types are prohibited in a valid role-based database schema (4.2). This constraint is

necessary to distinguish Natural Types from Compartment Types. Empty Compartment Types would

look like Natural Types, additionally Compartment Types are characterized as founded types that

means they depend on other types. This foundedness is provided by the Role Types included in each

Compartment Type. For instance, imagine the University Compartment Type as shown in Figure 2.3,

but without any Role Type contained in it. It looks like a standard Natural Type and the parts function

would return an empty set of contained Role Types for this Compartment Type.

The third constraint requires a Role Type to be part of exactly one Compartment Type (4.3). Conse-

quently, this avoids Role Type assignments to multiple Compartment Types and ensures the member-

ship of each Role Type in a Compartment Type. Thus, Role Types are semantical bi-founded. This

means, they are founded in two directions; on the one hand they depend on a player type and on the

other hand on a Compartment Type. For example, imagine the Student Role Type; it can neither

exist without the Person nor without the University. This also ensures the availability of the Stu-
dent-specific structure and behavior only within the corresponding University Compartment Type

and not outside of that.

The fourth and fifth axioms constrain the Relationship Types. In detail, the fourth limitation avoids

Relationship Types between the same Role Type (4.4). This constraint simplifies to determine the

instances participating in such a Relationship Type by clearly stating which Role Type is the left part of

this Relationship Type and which one is the right part. Additionally, the cardinality constrain mapping

is simplified by this constraint. Finally, both related Role Types of a certain Relationship Type have

to be part of the same Compartment Type (4.5). This ensures context-dependent Relationship Types

only. Additionally, this reflects the intended semantics in which relationships can be established

within a certain situation only and not over several Compartment Types. For instance, when two Role

Types have to be related to each other, they obviously belong to the same Compartment Type, because

the Role Types act in the same situation. To illustrate the schema definition in detail as well as the

sets it contains and the relations it stores, a small example schema based on the university domain

depicted in Figure 2.3 is created.

70 Chapter 4 RSQL Database Model

Example 1 (Schema). Let U = (NT,RT,CT,RST,fills, parts, rel, card) be the model of the uni-
versity domain (Figure 2.3), where the individual components are defined, as follows:

NT := {Person, Seminar, Lecture}
RT := {Student, Professor, StudentAssistant, ResearchAssistant, StudiesCourse, TeamMember,

Coach, Captain, TournamentTeam,WinnerTeam}
CT := {University, SportsTeam, Tournament}

RST := {takes, teaches, supervises}
fills := {(Person, Student), (Person, Professor), (Person, StudentAssistant), (Person, ResearchAssistant),

(Person, TeamMember), (Person, Coach), (Person, Captain), (Seminar, StudiesCourse),
(Lecture, StudiesCourse), (SportsTeam, TournamentTeam), (SportsTeam,WinnerTeam)}

parts := {University→ {Student, Professor, StudentAssistant, ResearchAssistant, StudiesCourse},
SportsTeam→ {TeamMember, CoachCaptain},
Tournament→ {TournamentTeam,WinnerTeam}}

rel := {takes→ (Student, StudiesCourse), teaches→ (Professor, StudiesCourse),
supervises→ (Professor, Student)}

card := {takes→ (0..∞, 0..∞), teaches→ (0..∞, 1..1), supervises→ (0..∞, 0..1)}

The example schema specifies a university domain U . At first, each entity type of the domain model is
classified for its metatype and placed it in the respective set. For instance, the domain model consists
of three Natural Types; Person, Seminar, and Lecture. These are placed in the respective set for the
Natural Types, NT . In contrast, types that contain Role Types are classified as Compartment Types,
such as University, SportsTeam, and Tournament.

Next, the fills relation is populated and describes which player types can fulfill which Role Types. For
example, Person and Student are related in this relation, stating a Person is able to play Role of the
Role Type Student. Thus, a player type can only be extended by Role Types that are part of this re-
lation and database system is in charge to ensure this. Afterwards, the parts function is populated
in accordance to the specified domain model. In detail, the University Compartment Type contains
the Role Types Student, StudentAssistant, ResearchAssistant, Professor, and StudiesCourse. Fi-
nally, the Relationship Types and their corresponding cardinality constraints are defined. Hence, the
rel function defines a take Relationship Type between the Role Types Student and StudiesCourse
whereas the card function applies the corresponding cardinality constraints that each Student Role
does not have to take a StudiesCourse and a StudiesCourse Role does not need a Student to exist.

As it can be easily seen, U fulfills the axioms (4.1) to (4.5), as each Role Type is filled and part of the
fills relation (4.1), each Compartment Type contains distinct Role Types (4.2 and 4.3), and finally
each Relationship Type relates two distinct Role Types (4.4) in a common Compartment Type (4.5).

So far, the database schema consists of loosely coupled types, which are related by relations and
functions, but no integrated data structure to bring them together. Hence, we augment the existing
database schema by the notion of a Dynamic Data Type (DDT).

4.3 RSQL Database Model 71

Dynamic Data Types

A Dynamic Data Type integrates the various metatypes into an integrated logical data structure. This
facilitates the perception of objects that can be extended and shrunk during runtime. In contrast to
the schema definition, at which the types are collected in separate sets and related by special relations
and functions, the DDT brings all these definitions and constraints together in an integrated structure.
Dynamic Data Types define how the database system structures and organizes its schema elements.
The corresponding DDT specification is defined in Definition 3. This definition is an extension of the
specification presented in [50] by introducing a second dimension Role Types can be located in.

Definition 3 (Dynamic Data Type). Let S = (NT, RT,CT,RST,fills, parts, rel, card) be a
schema and t ∈ NT ∪ CT be either a Natural or a Compartment Type. A Dynamic Data Type is de-
fined as ddt = (t, FT, PT) with FT := {rt ∈ RT | (t, rt) ∈ fills} and PT := parts(t).

As such, a DDT is considered as individual type having a Natural Type or Compartment Type in its
core. Additionally, Role Types are structured in two dimensions within the DDT, in particular the
filling and participating dimension. The former defines which Role Types are playable by the core and
the latter specifies which Role Type can participate in the core. Hence, the participating dimension
can only be populated for Compartment Type cores, because Natural Types cannot have any Role
Types in their inner. However, both dimension are represented as set of Role Types within the DDT.
Moreover, the DDT defines by which Role Types a core can be extended. Hence, it denotes the natural
limits of an entity extension. Furthermore, it integrates all axioms of the basic schema elements in
an integrated data structure and avoids object schizophrenia. This means, a Role Type will always be
considered as part of a DDT and not as separate stand-alone data structure. In sum, a Dynamic Data
Type represents the intended perception a separation of concerns within an entity type on the schema
level, especially that a core can be extended by roles dynamically without changing the type at all, but
by varying the played roles. Additionally, Role Types within a Compartment Type are considered in
a separate dimension. A DDT, including its components and dimensions, is graphically illustrated in
Figure 4.9. The notation of the various metatypes follows the CROM notation as shown and explained
in Figure 2.3.

11

Dynamic Data Type SportsTeam

Filling dimension

SportsTeam

- Name : String
- Colors : String
- Cheerleader : String

Participating dimension

- Member_ID : Int
- Registration : Date
- Position : String

TeamMember

- Position : String
- Specials : String

Coach

- Games : Int

Captain

- TeamName : String
- Group : Byte

TournamentTeam

- FinalResult : String

WinnerTeam

Dynamic Tuple bears

Playing dimension

bears : SportsTeam

- Name : „Dresden Bears“
- Colors : „Blue / White“
- Cheerleader : „Bear Hunter“

Featuring dimension

- Member_ID : 49
- Registration : 01.10.15
- Position : „Striker“

tm1 : TeamMember

- Member_ID : 87
- Registration : 01.10.13
- Position : „Goalkeeper“

tm2 : TeamMember

- Position : „Goalkeeper“
- Specials : „Motivation“

c1 : Coach

- Games : 15

cap1 : Captain

- TeamName : „BearsFTW“
- Group : 1

tt1 : TournamentTeam

- FinalResult : „2:0“

w1 : WinnerTeam

Ptm Pcap Pc

Ftt

Fw

Figure 4.9: Dynamic Data Type SportsTeam

This DDT describes the SportsTeam and features the SportsTeam Compartment Type as core type.
The filling dimension consists of the Role Types TournamentTeam and WinnerTeam. In which
Compartment Type these Role Types are integrated in, does not matter for this DDT. In contrast, the
participating dimension holds the set members TeamMember, Coach, and Captain. The player types

72 Chapter 4 RSQL Database Model

of these Role Types does not matter for this dimension. Hence, SportsTeam entities can grow their
structure into two general directions, each having possibly multiple options in terms of Role Types.

Representing the university domain model, as outlined in Section 2.4.1, using the augmented database
schema, results in the DDT specifications listed in Example 2.

Example 2 (Dynamic Data Type). Let U = (NT,RT,CT,RST,fills, parts, rel, card) be the data
model for the university domain (Example 1); then the above definition gives rise to the following DDTs within
U :

ddtPerson = (Person, {Student,StudentAssistant,ResearchAssistant,Professor ,
TeamMember ,Coach,Captain}, ∅)

ddtSeminar = (Seminar , {StudiesCourse}, ∅)
ddtLecture = (Lecture, {StudiesCourse}, ∅)

ddtUniversity = (University, ∅, {Student,StudentAssistant,ResearchAssistant,
Professor ,StudiesCourse})

ddtSportsTeam = (SportsTeam, {TournamentTeam,WinnerTeam},
{TeamMember ,Captain,Coach})

ddtTournament = (Tournament, ∅, {TournamentTeam,WinnerTeam})

Basically, the formal representation of a DDT has three components. At first, the core that is either a
Natural Type or Compartment Type. Secondly, the set of filled Role Types denoting the filling dimen-
sion. Finally, a set of contained Role Types specifying the participating dimension. Consequently,
each Natural Type and Compartment Type forms an individual DDT. However, Role Types can be
shared among several DDTs, for instance, the Role Type StudiesCourse, which is playable by the
Natural Types Lecture and Seminar. In case the core is a Natural Type, the participating dimension
will always be an empty set. The number of Dynamic Data Types is directly related to the amount
of Natural Types and Compartment Types defined in the system. Thus, the number of DDTs can be
determined by |DDT | = |NT |+ |CT |.

Each type consists of a set of attributes that can be unfolded to represent the DDT’s structure. For
instance, ddtSportsTeam can be displayed as follows:

ddtSportsTeam ={[Name : String,Colors : String,Cheerleader : String],(
{[Member_ID : Int,Registration : Date,Position : String]},

{[Position : String,Specials : String]},

{[Games : Int]}
)
,(

{[TeamName : String,Group : Byte]},

{[FinalResult : String]}
)
}

At first, the core defines the basic structure each entity of this Dynamic Data Type will have. Precisely,
the specification comprises a Name, a Color, and the Cheerleaders. Next, the structure defined in the
filled and participated Role Types is added. For instance, the TeamMember Role Type in the filling
dimension defines the attribute Member_ID, Registration, and Position. All Role Type attributes are
related by can have semantics, indicating that these attributes may be acquired during runtime or
may be not. Additionally, the multiple Roles of the same Role Type can be acquired, indicated by the
surrounding {}. Finally, the participating dimension of ddtSportsTeam is unfolded, for instance, the
Role Type TournamentTeam. This Role Type adds a TeamName and a Group to this DDT. In sum, the
Dynamic Data Type definition enables the specification of complex and dynamically evolving entities.

4.3 RSQL Database Model 73

Overlapping Dynamic Data Types

By definition, Dynamic Data Types overlap by their Role Types. Role Types are connected to at least
one core type that fills this particular Role Type and to exactly one Compartment Type this Role Type
is featured in. Thus, a Role Type in the filling dimension of a certain Dynamic Data Type has to be
part in the featuring dimension of another one. There might exist Role Types that do not result in
a DDT interconnection. This occurs in case a Compartment Type fills a Role Type that is contained
in itself. Consequently, the Role Type would be part of the filling and participating dimension of the
same DDT. However, the usual resulting data structure is a net of interconnected DDTs as shown in
Figure 4.10.

8

SportsTeam

- Name : String
- Colors : String
- Cheerleader : String

University

- Name : String
- Address : String
- Location : String

…

Student

…

StudentAssistant

- Name : String
- Last Name : String
- Birthday : Date
- Address : String

Person

- Set of attributes

Natural Type
- Set of attributes

Role Type

Compartment Type

- Set of attributes Fills relation

Legend

…

…

…

Captain

…

Coach

…

…

…

…

DDT SportsTeam

DDT Person

DDT University

Dynamic
Data Type

Figure 4.10: Net of Interconnected Dynamic Data Types

Natural Types share Role Types in the filling dimension with Compartment Types having the same
Role Type in their participating dimension. For instance, Person fills the Role Type Student in the
Compartment Type University and the Role Type Captain in the a SportsTeam. Thus, the DDT
formed around Person, namely ddtPerson overlaps with the DDT University in the Role Types
Student and Professor .

This can also be seen in the formal example represented in Example 2. The ddtPerson fills the Role
Type Student,Professor ,StudentAssistant, and ResearchAssistant. These Role Types are also
part of ddtUniversity , but in the participating dimension. Consequently, both Dynamic Data Types
overlap at these Role Types. This overlapping information will be used during query writing and
processing.

There is another option for two distinct DDTs to overlap; in case they share the same Role Type in
the filling dimension. As the fills relation is surjective, multiple player types for one Role Type may
exist. Hence, this particular Role Type is part of a DDT’s filling dimension several times. For example,
ddtSeminar and ddtLecture share the Role Type StudiesCourse. In sum, the database model’s schema
level consists of interconnected Dynamic Data Types that overlap by certain Role Types.

74 Chapter 4 RSQL Database Model

4.3.2 Instance Level

The instance level of a database represents the actual data, their structure, and interrelations. Hence,
Natural Types, Role Types, Compartment Types and Relationship Types are instantiated to Naturals,
Roles, Compartments, and links, respectively [51, 57]. With these instances context-dependent infor-
mation and dynamically extending entities can be handled and the metatype distinction is preserved.
The formal definition of an instance is given in Definition 4. Notably, this definition is a combination
of the instance specifications presented in [51, 49]. In detail, the definitions of [51] are enriched by
the relationship specific descriptions and constraints given in [49].

Definition 4 (Instance). Let S = (NT,RT,CT, RST, fills, parts, rel, card) be a schema and N ,
R, and C be mutual disjoint sets of Naturals, Roles and Compartments, respectively. Then, an Instance of
S is a tuple i = (N,R,C, type, plays, links), where:

• type : (N → NT) ∪ (R → RT) ∪ (C → CT) is a labeling function from the instances to their
corresponding type,

• plays ⊆ (N ∪ C)× C ×R a relation, and

• links : RST × C → 2Rε×Rε is a total function such thatRε := R ∪ {ε} with ε 6∈ R ∪N ∪ C .

Moreover, E := N ∪ C denotes the set of all entities in i and Ec := {e ∈ E | ∃r ∈ R : (e, c, r) ∈
plays} the set of entities that play a role in a compartment c ∈ C . Furthermore, pred(rst, c, r) := {r |
(r, r) ∈ links(rst, c) ∧ r 6= ε} and succ(rst, c, r) := {r | (r, r) ∈ links(rst, c) ∧ r 6= ε} the
predecessors respectively successors of a given role with respect to a relationship type.

To be a valid instance of schema S , i must satisfy the following axioms:

∀(e, c, r) ∈ plays : (type(e), type(r)) ∈ fills ∧ type(r) ∈ parts(type(c)) (4.6)

∀(e, c, r) , (e, c, r′) ∈ plays : r 6= r′ ⇒ type(r) 6= type(r′) (4.7)

∀r ∈ R ∃!e ∈ E ∃!c ∈ C : (e, c, r) ∈ plays (4.8)

∀rst ∈ RST ∀c ∈ C : (ε, ε) 6∈ links(rst, c) (4.9)

∀rst ∈ RST ∀c ∈ C ∀r ∈ R ∀e ∈ E ∃r̂ ∈ Rε : rel(rst) = (rt1, rt2) ∧((
(e, c, r) ∈ plays ∧ type(r) = rt1

)
⇔
(
(r, r̂) ∈ links(rst, c)

))
∧((

(e, c, r) ∈ plays ∧ type(r) = rt2
)
⇔
(
(r̂, r) ∈ links(rst, c)

))
(4.10)

∀rst ∈ RST ∀c ∈ C ∀(r1, r2) ∈ links(rst, c) ∩R×R : (r1, ε), (ε, r2) /∈ links(rst, c) (4.11)

∀rst ∈ RST ∀c ∈ C ∀(r1, r2) ∈ links(rst, c) : card(rst) = (i..j, k..l)∧(
r2 6= ε⇒ i ≤

∣∣pred(rst, c, r2)
∣∣ ≤ j) ∧(

r1 6= ε⇒ k ≤
∣∣succ(rst, c, r1)

∣∣ ≤ l) (4.12)

In general, an instance of a schema is a collection of entities and Roles together with their individual
interrelations. In particular, the type function is polymorphic and maps each instance to its respective
type. Moreover, the plays-relation is the instance level equivalent of the fills relation in combination
with the parts function, as it identifies those entity cores (either Natural or Compartment) playing a
role in a certain Compartment. Similarly, the links function represents the context-dependent Rela-
tionship Type, by collecting all Relationships (i.e., all linked Roles) of this type for each Compartment.

4.3 RSQL Database Model 75

On top of that, valid instances are required to be consistent to a schema, i.e., they satisfy the above

seven axioms. The first axiom ensures that the plays relation complies to fills and parts on the type level

(4.6). Precisely, this guarantees that an entity plays only Roles of Role Types, which are connected

with the entity’s core type on the schema level by the fills relation. Additionally, the Role must be

played in a Compartment it is intended to be played in, which is represented by the parts function.

The second axiom restricts an entity to play a Role of a certain Role Type only once per Compart-

ment (4.7). In general, playing multiple Roles of a certain Role Type simultaneously is possible with

respect to the instance definition, but only in distinct Compartments. For instance, the Person John
can play the Student Role within the TUD Compartment only once, giving him the ability to enroll

in StudiesCourses and gain the structure of a Student_ID, for instance. Within this TUD Compart-

ment he cannot obtain another Student Role, but within any other University Compartment he is

currently not playing a Student Role.

The third axiom enforces Roles to have exactly one player and is contained within one Compartment

only (4.8). On the schema level, Role Type can be connected to several player types, which cannot be

transferred to the instance level. Rather, a specific Role is exclusive to a certain player and within a

certain Compartment.

The next three axioms, in turn, enforce that for each Role participating in a Compartment whose Role

Type is linked by a Relationship Type, there is a tuple in the corresponding links function (4.10). To

represent zero-to-one and zero-to-many Relationships, a Role can also be linked to the empty counter

role ε. Notably, ε represents an empty counter Role, which can be replaced by a counter Role later

on. This is necessary, because each Role participating in a Relationship, i.e., its Role Type is at one

end of a Relationship Type, must be in the extended set of that Relationship. However, this leads

to problems for Relationships with at least one lower bound of zero, indicating that one side of the

Relationship is not necessarily linked to the other side. To overcome this issue, ε is introduced as an

empty placeholder for the missing counter Roles for such Relationships. This may result in Roles that

are not related to any other Role except an empty counter Role, which enables additional flexibility

in our model. However, it is required that a Role can only be linked once to ε (4.11). Additionally, an

empty counter role cannot be related to another empty counter role by the links function (4.9).

Last but not least, axiom (4.12) validates the cardinality constraints imposed by the card function.

In detail, it checks for each compartment and relationship type whether the number of predecessors
and successors are within the lower and upper bound of the corresponding cardinality constraint. The

empty counter Role ε is not counted. In conclusion, the intuitive semantics of the cardinality con-

straints can be established locally, i.e., within each Compartment, because (4.12) enforces their lower

and upper bounds and (4.8) ensures no entity plays two distinct Roles of the same Role Type in one

Compartment. In sum, these instance level definitions and consistency constraints can represent both

dynamic complex objects and context-dependent relationships. To demonstrate these specifications

and constraints, the example illustrated in Figure 2.4 is represented as formal instance in Example 3.

Example 3 (Instance). Let U = (NT,RT,CT,RST,fills, parts, rel, card) be the schema defined in
Example 1; then u = (N,R,C, type, plays, links) is an instance (Figure 2.4) of that schema (Figure 2.3),

76 Chapter 4 RSQL Database Model

where the components are defined as follows:

N := {John,Max,Tim,Gert,Kai, sem1, l1}
R := {s1, s2, s3, sa1, ra1, p1, sc1, sc2, tm1, tm2, cap1, c1, tt1,w1}
C := {TUD, bears, cc16}

type := {(John→ Person), (Max→ Person), (Tim→ Person), (Gert→ Person),
(Kai→ Person), (s1→ Student), (s2→ Student), (s3→ Student),
(sa1→ StudentAssistant), (ra1→ ResearchAssistant), (p1→ Professor),
(sc1→ StudiesCourse), (sc2→ StudiesCourse), (tm1→ TeamMember),
(tm2→ TeamMember), (cap1→ Captain), (tt1→ TournamentTeam),
(w1→WinnerTeam), (TUD→ University), (bears→ SportsTeam),
(cc16→ Tournament)}

plays := {(John,TUD, s1), (John,TUD, sa1), (John, bears, tm1),
(John, bears, cap1), (Max,TUD, s2), (Max, bears, tm2), (Max, bears, c1),
(Tim,TUD, s3), (Kai,TUD, ra1), (Gert,TUD, p1), (sem1,TUD, sc1),
(l1,TUD, sc2), (bears, cc16 , st1), (bears, cc16 ,w1)}

links(takes,TUD) := {(s1, sc1), (s2, sc1), (s3, ε), (ε, sc2)}
links(teaches,TUD) := {(p1, sc1), (p1, sc2)}

links(supervises,TUD) := {(p1, s1), (ε, s2), (ε, s3)}

The instance u of the university schema U is constructed by assigning the Naturals, Roles, and Com-
partments to their respective sets. Moreover, the type function is specified to map each instance to
its corresponding type. For instance, John is assigned to the Natural Type Person (John→ Person).
Next, the plays relation is populated for each role in Figure 2.4. Each triple denotes that the entity e
is contained within the Compartment c by playing the Role r. Additionally, these triples are unique
with respect to the entity, Compartment, and Role, because each Role has exactly one player in ex-
actly one Compartment. Moreover, for a given entity, a Compartment and the Role type, each Role
is identifiable. Finally, the links function is defined to capture the relationships between Professors
and Students, Students and StudiesCourses, and Professors and StudiesCourses. All of them are
located within the TUD Compartment. As it can be seen, Roles of Role Types connected by a Rela-
tionship Type having lower bound of zero, Student to StudiesCourse for instance, are included in this
function as well, but with an empty counter role (s3, ε). In sum, u is the formal representation of the
graphical illustration shown in Figure 2.4.

Furthermore, the instance u is consistent with respect to the schema U by fulfilling all instance’s
axioms. At first, each triple in plays complies the to schema level definition of fills and parts (4.6).
Secondly, no Natural or Compartment plays Roles of the same Role Type in the same Compartment
multiple times simultaneously (4.7, 4.8). In fact, John plays two Roles in the Compartment TUD, but
of different Role Types, which is totally allowed. Thirdly, each Role is present in the corresponding
links function, at least with an empty counter role (4.10) but at most once to this empty counter role
(4.11). Additionally, each links function does not contain the mapping of an empty counter role to
another empty counter role (4.9). Finally, the number of predecessors and successors is within the
range of the cardinality constraints for each Relationship Type (4.12).

So far, the schema instance representation contains loosely interrelated instances of Naturals, Roles,
and Compartments, but no integrated data structure that brings the role-semantics together. Hence,
the instance definitions are augmented by the notion of a Dynamic Tuple.

4.3 RSQL Database Model 77

Dynamic Tuple

A Dynamic Tuple (DT) is the instance level representation of a Dynamic Data Type. It brings an en-
tity core and the played as well as featured Roles together in an integrated data structure. A DT notion
builds the basis of handling dynamically changing instances in a DBS. The DT’s formal definition is
specified in Definition 5 and is based on the specification in [51].

Definition 5 (Dynamic Tuple). Let S = (NT,RT,CT,RST,fills, parts, rel, card) be a schema,
i = (N,R,C, type, plays, links) a valid instance of S , and e ∈ E is an entity, either a Natural or Com-
partment, of type t, i.e., type(e) = t.
A Dynamic Tuple dt = (e, F, P) is then defined with respect to the played roles and featured roles given
as:

F :={{r | (r, rt) ∈ Fe} | rt ∈ RT} with Fe := {(r, type(r)) | (e, _, r) ∈ plays}
P :={{r | (r, rt) ∈ Pe} | rt ∈ RT} with Pe := {(r, type(r)) | (_, e, r) ∈ plays}

While DDTs are defined to capture all possible configurations of a dynamic entity type, a Dynamic
Tuple is defined to exactly reflect a dynamic entity including its Roles. Hence, a DT is defined to
capture the current rigid instance, all the Roles it currently plays, and all the Roles it contains. Like
the DDT on the schema level, a Dynamic Tuple consists of Roles in two dimensions, the playing and
the featuring dimension. However, as an entity can play and contain multiple Roles of the same Role
Type multiple times, they are grouped by their corresponding Role Type into the sets F of actually
filled Role Types and P of participating Role Types, respectively. Consequently, only those Role sets
will show up in these sets F and P , if there exists at least one Role of the corresponding Role Type,
which is being played or featured by this Dynamic Tuple. Hence, empty sets are omitted in F and P .
Note, if the set of currently filled or participating Role Types is empty, i.e., no Role is actually played
or featured in a given entity. In sum, this definition captures both dimensions of dynamic complex
entities. Henceforth, components of individual instances i and Dynamic Tuples dt are referred to
with subscripts, whenever their origins would be ambiguous. An illustration of a Dynamic Tuple is
depicted in Figure 4.11.

11

Dynamic Data Type SportsTeam

Filling dimension

SportsTeam

- Name : String
- Colors : String
- Cheerleader : String

Participating dimension

- Member_ID : Int
- Registration : Date
- Position : String

TeamMember

- Position : String
- Specials : String

Coach

- Games : Int

Captain

- TeamName : String
- Group : Byte

TournamentTeam

- FinalResult : String

WinnerTeam

Dynamic Tuple bears

Playing dimension

bears : SportsTeam

- Name : „Dresden Bears“
- Colors : „Blue / White“
- Cheerleader : „Bear Hunter“

Featuring dimension

- Member_ID : 49
- Registration : 01.10.15
- Position : „Striker“

tm1 : TeamMember

- Member_ID : 87
- Registration : 01.10.13
- Position : „Goalkeeper“

tm2 : TeamMember

- Position : „Goalkeeper“
- Specials : „Motivation“

c1 : Coach

- Games : 15

cap1 : Captain

- TeamName : „BearsFTW“
- Group : 1

tt1 : TournamentTeam

- FinalResult : „2:0“

w1 : WinnerTeam

Ptm Pcap Pc

Ftt

Fw

Figure 4.11: Dynamic Tuple bears

In particular, the bears Dynamic Tuple consists of the bears Compartment in its core. Otherwise,
in case of a Natural as core, the featuring dimension will be empty. However, this Dynamic Tuple
consists of two dimensions, the playing and featuring dimension, to group the Roles that are played
and featured, respectively. The playing dimension holds all Roles that are currently played by the core,
whereas the featuring dimension stores Roles that are currently featured within this Compartment.
In detail, the playing dimension is populated with two Roles, tt1 and w1, both holding additional
structure. Additionally, the Roles are grouped into their respective sets F tt and Fw. The featuring

78 Chapter 4 RSQL Database Model

dimension holds four Roles, two TeamMember Roles, one Captain Role and one Coach Role. Again,
the Roles are grouped by their respective Role Type, for instance, the TeamMember Roles tm1 and
tm2 are grouped into the set P tm.

Applying Definition 5 on the instance u (see Figure 2.4) results in the Dynamic Tuples presented in
Example 4.

Example 4 (Dynamic Tuple). Let u = (N,R,C, type, plays, links) be the instance of the university
schema U (Example 3). This model contains the following Dynamic Tuples:

dtJohn :=(John, {{s1}, {sa1}, {tm1}, {cap1}}, ∅)
dtMax :=(Max, {{s2}, {tm2}, {c1}}, ∅)
dtTim :=(Tim, {{s3}}, ∅)
dtGert :=(Gert, {{p1}}, ∅)
dtKai :=(Kai, {{ra1}}, ∅)
dtsem1 :=(sem1 , {{sc1}}, ∅)
dtl1 :=(l1 , {{sc2}}, ∅)

dtTUD :=(TUD, ∅, {{s1, s2, s3}, {sc1, sc2}, {sa1}, {ra1}, {p1}})
dtbears :=(bears, {{tt1}, {w1}}, {{tm1, tm2}, {cap1}, {c1}})
dtcc16 :=(cc16 , ∅, {{tt1}, {w1}})

This instance comprises ten Dynamic Tuples, one per Natural and one per Compartment. Hence,
the number of Dynamic Tuples a system manages is directly determined by the number of Naturals
and Compartments in the system. Thus, the amount of Dynamic Tuples in a system is defined as:
|DT | = |N |+ |C|. As it can be seen, all Dynamic Tuples having a Natural as core do not feature any
Role (dtJohn , dtMax , dtTim , dtGert , dtKai , dtsem1 , dtl1), thus, the featuring dimension is empty. In
contrast, each Compartment features Roles (dtTUD, dtbears, dtcc16), but only dtbears plays Roles as
well.

An entity consists of a core and Role in two dimensions enabling dynamic adaptations on the entities
structure with the limits of its corresponding DDT. The core as well as the Roles can be unfolded to
represent the whole entity including its attributes. For instance, dtbears can be illustrated as:

dtbears =
(
(Name : ”bears”,Colors : ”Blue/White”,Cheerleader : ”Bear Hunter”),

{{(TeamName : ”BearsFTW”,Group : 1)},
{(FinalResult : ”2:0”)}},
{{(Member_ID : 49,Registration : 01.10.15,Position : ”Striker”),
(Member_ID : 87,Registration : 01.10.13,Position : ”Goalkeeper”)},
{(Games : 15)},

{(Position : ”Goalkeeper”,Specials : Motivation)}}
)

At first, the core is unfolded giving the entity dtbears the attributes Name, Colors, and Cheerleader .
Next, all Roles in the two dimensions are unfolded by their respective sets. The bears participated
to the cc16 Tournament as TournamentTeam and won it. Hence, these Roles are unfolded to their

4.3 RSQL Database Model 79

certain structure TeamName and Group as well as FinalResult. The interesting case is, containing
multiple Roles of the same Role Type simultaneously, like the two TeamMember Roles tm1 and
tm2. They are unfolded within the set of all TeamMembers, thus, the Member_ID, for instance,
is populated multiple times. In sum, the Dynamic Tuple definition enables the representation of
complex and dynamically evolving entities.

Overlapping Dynamic Tuples

As the Dynamic Data Types on the schema level overlap, this characteristic is inherited to Dynamic
Tuples. Each Role is required to have exactly one player and is featured within exactly one Compart-
ment. Hence, different Dynamic Tuples overlap by certain Roles. In detail, each Role has to be con-
tained in a Dynamic Tuple’s playing dimension and in another Dynamic Tuple’s featuring dimension.
In contrast to DDTs, where a Role Type could be filled and participated within the same Compartment
Type, Roles on the instance level have to be part of two distinct Dynamic Tuples. Consequently, they
cannot be played and featured by the same DT. A graphical example of overlapping Dynamic Tuples
is presented in Figure 4.12. Please note, for a clear arrangement we left out unnecessary Roles and all
Role attributes in this figure. Additionally, we shaded the Compartments in gray to provide a better
optical distinction between the several metatypes and the corresponding Dynamic Tuples.

7

TUD : University

- Name : „Technische Universität Dresden“
- Address : „Nöthnitzer Str. 43“
- Location : „Dresden“

bears : SportsTeam

- Name : „Dresden Bears“
- Colors : „Blue / White“
- Cheerleader : „Bear Hunter“

- Name : „John“
- Last Name : „Doe“
- Birthday : 12.01.93
- Address : „123 Fake Street“

John :Person
…

s1 : Student

…

sa1 : StudentAssistant

…
tm1 : TeamMember

…

cap1 : Captain

… …

DT John

DT bears DT TUD

…

- Set of attributes

Natural
- Set of attributes

Role

Compartment

- Set of attributes plays relation

Legend

Dynamic Tuple

Figure 4.12: Net of Interconnected Dynamic Tuples

In detail, Naturals or Compartments share Roles in their playing dimension with Compartments in
which the Role is present in the featuring dimension. For instance, dtJohn plays the Roles s1 within
the Compartment TUD and tm1 within bears. Because both, TUD and bears, form a Dynamic
Tuple themselves, dtJohn shares the Role s1 with dtTUD and the Role tm1 with dtbears.

The overlap can also be seen in the formal representation of this example (see Example 4). The Role
s1 is once referenced by John in the playing dimension and once by TUD in the featuring dimension.
Hence, both Dynamic Tuples share structure and values and overlap at this Role. The overlap is not
limited to a single Role, in fact, two Dynamic Tuples may share several Roles.

80 Chapter 4 RSQL Database Model

Relations Within and Between Dynamic Tuples

To conclude the definition of Dynamic Tuples, both, endogenous and exogenous relations are speci-
fied with respect to the definitions in [51]. The former allows to navigate into the played and featured
Roles of a particular Dynamic Tuple, whereas the latter allows to navigate from one Dynamic Tuple
to another by means of a particular Role.

Definition 6 (Endogenous Relations). Let i = (N,R,C, type, plays, links) be a valid instance of an
arbitrary schema S , e ∈ E an entity in i, and dt = (e, F, P) the corresponding Dynamic Tuple. Then
dt plays a role r ∈ R, iff r ∈ F i where F = (F 1, . . . , F i, . . . , Fm) and i ∈ {1, . . . ,m} or simply
(e, _, r) ∈ plays. Similarly, dt features a role r ∈ R, iff r ∈ P j where P = (P 1, . . . , P j , . . . , Pn)
and j ∈ {1, . . . , n}, in essence (_, e, r) ∈ plays.

Basically, this lifts the notion of playing and featuring roles to the level of Dynamic Tuples. Consider,
for instance, the Dynamic Tuple dtbears that currently plays tt1 as well as w1 and features the Roles
tm1, tm2, cap1 and c1. These two relations enable to access a Dynamic Tuple’s internal information
that are organized in dimensions and sets of Roles.

While these relations allow to navigate within a Dynamic Tuple, the Exogenous Relations permit navi-
gation between Dynamic Tuples.

Definition 7 (Exogenous Relations). Let i = (N,R,C, type, plays, links) be a valid instance of an
arbitrary schema S . Furthermore, let e1, e2 ∈ E be two entities in i, and a = (e1, Fa, Pa), b =
(e2, Fb, Pb) their respective Dynamic Tuples.

Then a is featured in b with r ∈ R, iff a plays r and b features r, such that r ∈ F ia ∩ P
j
b , where

Fa = (F 1
a , . . . , F

i
a, . . . , F

m
a) and Pb = (P 1

b , . . . , P
j
b , . . . , P

m
b). Similarly, its inverse is denoted as b

contains r played by a.

In addition, a is related to b using the Relationship Type rst ∈ RST , iff there is a compartment c ∈ C
and a link (r1, r2) ∈ links(rst, c) such that a plays r1 and b plays r2.

In general, featured in, played by, and related to represents the various interrelations between entities
on the instance level lifted to Dynamic Tuples. The former two relations directly utilize the overlap-
ping information of Dynamic Tuples to navigate between them. In particular, featured in and played
by search for Roles, which are included in a Dynamic Tuple’s playing dimension and in another’s fea-
turing dimension, and vice versa. For instance, the Dynamic Tuple dtJohn is featured in the University
dtTUD (with the role s1). Moreover, dtJohn is related to dtGert using the supervises Relationship
Type; within the TUD Compartment and Dynamic Tuple dtTUD. In sum, exogenous relations can be
used to navigate from one Dynamic Tuple to another one while endogenous relations can be used to
navigate to the Roles within a Dynamic Tuple.

4.3.3 Configuration

The central idea behind the abstraction of entities to types, is to determine an entity’s structure just
by its belonging to a certain type and the type description. This means, all entities of the same type
share the same structure. In terms of role-based type descriptions, especially the given definition for
a DDT, this holds partially. The DDT is designed to cover all possible schemata an entity of this type
can acquire. This opens a space of possible schemata that are assembled under this specification. On

4.3 RSQL Database Model 81

the one hand, a Dynamic Tuple is the instance of a Dynamic Data Type and this belonging cannot be
changed at all without losing its identity. On the other hand, the DDT specification opens a space of
valid schemata such that entities of the same type can have different schemata. Consequently, entities
of the same type may share some parts of their structure and some not. This results in uncertainty in
regard of an entity’s concrete structure.

To reintroduce the conventional abstraction mechanism in RSQL’s database model and provide cer-
tainty about the entity’s structure, Configurations are introduced. They act as mediator between the
space of possible valid schemata described by a single DDT specification and the Dynamic Tuples on
the instance level. The formal definition of a Configuration is given in Definition 8 and is based on
specification of a Configuration in [51].

Definition 8 (Configuration). Let S be a schema and ddt = (t, FT, PT) an arbitrary Dynamic Data
Type in S , then the set of all possible Configurations of this ddt is defined as

Cddt := {(t, F̂ T , P̂T) | F̂ T ⊆ FT ∧ P̂ T ⊆ PT}.

In particular, a given Dynamic Tuple dt = (e, F, P) with type(e) = t in a valid instance i of S is in
exactly one Configuration

cdt = (t, {rt | (_, rt) ∈ Fe}, {rt | (_, rt) ∈ Pe}).

Notably, it always holds that cdt ∈ Cddt for all instances dt of a given ddt.

In detail, a Configuration ciddt describes one valid schema in the space of possible schemata defined
by a DDT specification. Additionally, a Configuration is the missing part between a DDT and its DTs,
thus, a Configuration can be seen from the DDT perspective on the one hand and from a Dynamic
Tuple’s perspective on the other hand. At first, the DDT perspective specifies a set of Configurations
Cddt. Consequently, the Configuration definition is located on the type level, hence, it specifies a
player type and its Role Types in the corresponding dimensions.

From the Dynamic Tuple perspective, a DT belongs to exactly one Configuration, which can be
changed during runtime. This possibility to change the Configuration enables the dynamical adaption
of an entity’s structure without changing its overall type. However, a Dynamic Tuples Configuration is
specified by the Role Types of currently played and featured Roles. In particular,Fe includes all Role to
Role Type pairs of the playing dimension and is defined by Fe := {(r, type(r)) | (e, _, r) ∈ plays}.
Pe is defined by Pe := {(r, type(r)) | (_, e, r) ∈ plays} to collect all pairs of featured Roles and
Role Types. Notably, the definitions of Fe and Pe are also presented in the Dynamic Tuple’s specifica-
tion in Definition 5. However, for a Dynamic Tuple’s Configuration only the Role Types of currently
played and featured Roles is of importance. Empty Role Types will not show up in these sets.

Moreover, playing or featuring Roles of the same Role Type multiple times does not affect the Con-
figuration of a Dynamic Tuple at all, which is totally intended. The Configuration definition on the
type level basis ensures a finite set of possible Configurations. This finite set is important, to check
the validity of structure adaptations during runtime within the given space of possible schemata. In
contrast, a definition on instance level basis would create an infinite set of Configurations, because
the structure would be defined on the basis of Roles instead of Role Types. Generally, the number of
playable Roles of the same Role Type is undefined, which means there is no upper limit. Hence, an
infinite set of playable Roles would create an infinite set of Configurations.

To illustrate the Configurations and their semantics, they are explained by the ddtSportsTeam in the
following Example 5.

82 Chapter 4 RSQL Database Model

Example 5 (Configuration). Let ddtSportsTeam be a valid Dynamic Data Type of the university schema
U . This DDT opens the space CddtSportsTeam including the following Configurations:

cminSportsTeam :=(SportsTeam, ∅, ∅)
c1

SportsTeam :=(SportsTeam, {TournamentTeam}, ∅)
c2

SportsTeam :=(SportsTeam, {TournamentTeam,WinnerTeam}, ∅)
c3

SportsTeam :=(SportsTeam, ∅, {TeamMember})
c4

SportsTeam :=(SportsTeam, {TournamentTeam}, {TeamMember})
c5

SportsTeam :=(SportsTeam, {TournamentTeam,WinnerTeam}, {TeamMember})
. . .

cmaxSportsTeam :=(SportsTeam, {TournamentTeam,WinnerTeam},
{TeamMember ,Captain,Coach})

In general, the Configuration space is limited by a minimal and maximal Configuration. On the one
hand side, the minimal Configuration does not hold any Role Types in both dimensions, hence, the
entity does not play any Roles. Formally, F̂ T and P̂ T are empty sets in this case. On the other hand,
the maximal Configuration holds all possible Role Types in both dimension. Thus, at least one Role of
each possible Role Type is played and featured by this entity. From a formal perspective, F̂ T = FT

and P̂ T = PT in the maximal case. In the case, the DDT has a Natural Type as core, the maximal
Configuration is limited by all playable Role Types only, because the participating dimension is always
empty. The minimal and maximal Configuration of the example shown in Example 5 are denoted by
cminSportsTeam and cmaxSportsTeam , respectively.

Between those extrema, there are a lot of other Configurations, in particular each possible combina-
tion of Role Types in the filling and the participating dimension. For instance, c1

SportsTeam describes
instances that only play one or more Roles of the Role Type TournamentTeam, whereas c4

SportsTeam
collects all Dynamic Tuples that play a TournamentTeam Role and feature a TeamMember
Role. Dynamic Tuples are free to change their Configuration within the DDT given Configuration
space. However, each Dynamic Tuple having a Configuration within this space, is of the same
Dynamic Data Type. For instance, the Configuration of the Dynamic Tuple bears is cbears =
(SportsTeam, {TournamentTeam,WinnerTeam}, {TeamMember ,Captain,Coach}) be-
cause each Role Type has at least one Role within this DT. As it can be seen, this Configuration equals
the maximal Configuration, hence, cbears ≡ cmaxSportsTeam.

Moreover, a Dynamic Tuple’s structure can be determined by its belonging to a certain Configuration
within the Configuration space of a certain DDT. This reintroduces the traditional abstraction mech-
anism between entities and their corresponding types while preserving the role-semantics in RSQL’s
database model. By changing their Configuration, DTs are able to adapt their structure without chang-
ing their overall type at all. In sum, by allowing DT to change their Configuration, we allow entities
to adapt their structure without changing their type and to combine different DT having divers Con-
figurations being of the same overall type.

4.4 RSQL OPERATORS

A database system usually stores data produced by several applications as well as it provides a global
perspective on the data and their interrelations in a software system. Each application defines its

4.4 RSQL Operators 83

Operator Functionality

Σcex Schema-based filter

Πα Filters for Roles of queried Role Types

κα Filters for overlapping Roles

Ωrst Filters for Roles participating in a Relationship

τ Core union for Role Types that can be played by multiple core types

\R− Difference of Dynamic Tuples

\R Difference of Dynamic Tuples on the Role dimensions level

∩RTa ,RTb◦ Intersection of Dynamic Tuples and various options to unite the Role dimensions

∪RTa ,RTb◦ Union of Dynamic Tuples and various options to unite the Role dimensions

σ
t,RToverlap
preicate Attribute-based filter

Table 4.3: Overview of the Operators and Their Functionality

individual perspective on the data and do not need or is prohibited to access all data. In contrast,
the database system provides the global perspective on each entity it stores. To give an application
the information it asks for, the local perspective has to be extracted from the global one. The local
perspective is expressed by a query statement and the extraction process by database operators. In
this sense, the database operators build the bridge between a query language and the database model.
To provide this well-established abstraction mechanism for Dynamic Data Types and Dynamic Tuples,
novel operators on RSQL’s database model are required.

In general, database operators are based on the database model and describe which operations can be
performed on the data structures and these structures can be manipulated. RSQL’s main data struc-
tures are Dynamic Data Types and Dynamic Tuples, thus, the operators are defined to manipulate
those. All operators are formally defined using set theory, because the database system handles sets
of Dynamic Tuples, which consist of a core and sets of Role sets. Notably, a mathematical definition
of database operators paves the way for logical and physical query optimization, which is a large re-
search area in database systems’ research. However, the RSQL database model consists of ten formal
operators. This list is not complete and additional operators are possible, but they suffice to represent
a RSQL query statement. An overview of the formal operators and their functionalities, respectively
targeted manipulations, is presented in Table 4.3.

The operators are categorized into three classes: (i) operators on an entity’s structure level, (ii) opera-
tors to enable usual set operations on the level of Dynamic Tuples, and (iii) operators on the attribute
level. The first class filters Dynamic Tuples based on their structure, for instance, a Role of a certain
Role Type has to be played or featured by a Dynamic Tuple or Dynamic Tuples have to overlap by a
particular Role. The second category consists of operators that enable set operations like a difference
of two Dynamic Tuple sets or an intersection of such. Finally, the third class filters Dynamic Tuples
as whole data structure or Roles as parts of this structure, based on their attribute values.

However, to achieve a mathematical closure on the data model, constraints concerned with the em-
bedding of Roles in Compartments are relaxed. This enables the processing of Dynamic Tuples with-
out considering their overlap with other Dynamic Tuples. As a result, RSQL has a relaxed operational
database model, which is used during query processing. Notably, the operational database model is a
superset of the base database model.

84 Chapter 4 RSQL Database Model

4.4.1 Operational Data Model

RSQL’s base data model, as defined in Section 4.3, features some constraints, for instance, a Role
needs exactly one player and is embedded in exactly one Compartment. These constraints are valu-
able when the actual role-based data is stored, especially in terms of consistency. The resulting data
structure consists of overlapping DDT on the schema level and overlapping DT on the instance layer.
However, this overlapping of DTs (RSQL’s notion of an evolving entity) complicates manipulating and
processing the base data, because DTs cannot be considered in isolation when Roles are involved. For
example, an application queries for a Person entity and its Student Roles, but not the University these
Roles are embedded in, because the University is of no interest in the application’s scenario. Such
a query cannot be performed by using the base data model, because it would violate the overlapping
constraints of DDT and DT by providing a DT consisting of Roles, but no Compartments these Roles
are embedded in. This would also require to specify all Role dependencies, in terms of players and
Compartments, within a query, even if this information is unnecessary for the application. Moreover,
operators having only one input in terms of a set of Dynamic Tuples, for instance, Persons with all
played Roles, are not possible in this data model, because these Roles would not be embedded into a
Compartment.

To overcome this limitation, we define an operational data model that relaxes the overlapping and
relationship related constraints. Especially, the axioms in 4.6 and 4.8 to 4.12 are suspended with
respect to a Dynamic Tuple and linkages between Roles. The operational data model is focused on
the notions of Dynamic Tuples only. All operators consume Dynamic Tuples and produces sets of
those, without paying attention to some base data model constraints. Thus, during query processing
Roles may appear that are not embedded in a Compartment, because the query does not ask for this
information.

However, the operational data model is a superset of the base data model, because it suspends con-
straints only and do not add any. The relation between both data model is presented in Figure 4.13.

Operational Data Model DMop

Base Data Model

Bottom
Operators

Other
Operators

Result

DB Operators

Figure 4.13: Operational Data Model as Superset of RSQL’s Base Data Model

The database uses the base data model as described in Section 4.3 to store the actual data. Hence,
for all base data stored the constraints, like each Role needs a player and a Compartment, are en-
sured. This builds the input for the most bottom operators. In detail, Dynamic Tuples, for which the
constraints are ensured, in the base data are consumed by these operators, but without the overlap-
ping information. For example, Dynamic Tuples of Persons in combination with all played Roles are
the input for a certain operator. The overlapping information is uninteresting for a certain operator,
because it is concerned with Dynamic Tuples rather than the whole instance model. The output Dy-
namic Tuples of an operator may be the input for another operator or directly lead to the result. All
other operators do not consume base data, but an output of bottom or other upstream operators. In

4.4 RSQL Operators 85

the end, the topmost operators’ output define the result. However, a query’s output and the result is
based on the operational data model. Thus, there may be Roles with no Compartment, because the
Compartment has not been queried. Or the other way around, a Role is embedded in a Compartment
but no player is provided.

The same holds for Relationships. In the base data all cardinality constraints are guaranteed, but
for queries this information may be uninteresting. However, the base data information regarding
overlapping and linkage between Dynamic tuples is leveraged by the operators.

In sum, the operational data model enables Dynamic Tuple focused query processing with the option
to ignore overlapping and linkage information. Finally, all operators are based on the operational data
model and produce a result that is an instance of this constraint relaxed data model, too. Thus, the
operators build a mathematical closure on the operational data model.

4.4.2 Configuration Selection Σcex

Generally, a configuration selection selects all Dynamic Tuples of a certain Dynamic Data Type that are
in a proper Configuration. In detail, a configuration selection is a unary operator that has one input,
one output, and a condition. As input, it consumes a set of Dynamic Tuples that all are an instance
of the same Dynamic Data Type. The output is a set of Dynamic Tuples that suffice the condition in
terms of being in a proper Configuration. This operator can be seen as selection on the schema level,
where only these instances will pass the operator that carry a certain structure. The formal operator
definition of this operator is given in following Definition 9.

Definition 9 (Configuration Selection). Let cex = (tcex, α) be a tuple holding a core type tcex and
a propositional formula α consisting of Role Types, and the logical operations ∨, ∧, and ¬. Moreover, let
DT be the input set of Dynamic Tuples for which ∀dt = (e, F, P) ∈ DT : type(e) = tcex holds.
Additionally, A = {rt | rt ∈ RT} ∪ {rt | rt ∈ RT} is the alphabet of Role Types on which the
propositional formula is based on. Then Σα(DT) : DT → DT is a function consuming a set of Dynamic
Tuples and produces such set. Formally, it is defined as:

Σα(DT) =

{dt ∈ DT | cdt = (t, FT, PT) ∧ rt ∈ FT} for α ≡ rt ∧ rt ∈ RT
{dt ∈ DT | cdt = (t, FT, PT) ∧ rt ∈ PT} for α ≡ rt ∧ rt ∈ RT
DT \ Σα(DT) for α ≡ ¬β
Σβ(DT) ∩ Σγ(DT) for α ≡ (β ∧ γ)
Σβ(DT) ∪ Σγ(DT) for α ≡ (β ∨ γ)

(4.13)

To illustrate the configuration selection operator, we employ the following example. Imagine the
following two Dynamic Tuples as input set DTexample.

dtJohn := (John, {{s1}, {sa1}, {tm1}, {cap1}}, ∅) and

dtTim := (Tim, {{s3}}, ∅)

Additionally, cex is given with cex = (Person,Student∧StudentAssistant). Please note, the con-
crete queried Role Types are annotated with a rt or rt to express their belonging to the set of available
Role Types in the filling or participating dimension. Hence, Student and Student refer to the same
Role Type, the former to this Role Type in general and the latter the Role Type as part of A in the

86 Chapter 4 RSQL Database Model

filling dimension. However, the basis set of Role Types A = {Student,StudentAssistant, . . . } ∪
{Student,StudentAssistant, . . . }, which are basically all available Role Types.

At first, the Configuration is determined for each Dynamic Tuple resulting in:

cJohn = (Person, {Student,StudentAssistant,TeamMember ,Captain}, ∅) and

cTim = (Person, {Student}, ∅).

Next, both Dynamic Tuples have the core type t = Person, which is identical to the operator’s core
type tcex. Thus, DTexample is a valid input set.

To determine Σα(DTexample) the fourth case of 4.13 is applied, such that

Σα(DTexample) = Σβ(DTexample) ∩ Σγ(DTexample)

with β = Student and γ = StudentAssistant. Consequently, both, β and γ are atomic and rule
one is applied, because both Role Types are part of the set rt. This results in the following sets.

ΣStudent(DTexample) = {dtJohn , dtTim}
ΣStudentAssistant(DTexample) = {dtJohn}

Finally, these sets are intersected to provide the final result Σα(DTexample) = {dtJohn}, which is
the output of this simple example at the same time.

In sum, the configuration selection Σ filters all Dynamic Tuples of a given input set based on their
compliance to a certain Configuration. Invalid, in terms of not being in a valid Configuration, Dy-
namic Tuples will not pass this operator.

4.4.3 Configuration Projection Πα

A configuration projection cuts out non-queried sets of Roles of a Dynamic Tuple. It consumes a set
of Dynamic Tuples and a propositional formula α consisting of Role Types and logical operations.
Only these sets of Role will be contained in the output for which the Role Type is also part of α. If a
Dynamic Tuple’s Configuration and α do not share any Role Type, the output is the Dynamic Tuple’s
player without any Roles in both dimension. Formally, this operator is defined in Definition 10.

Definition 10 (Configuration Projection). Let cex = (tcex, α) be a tuple holding a core type tcex and
a propositional formula α consisting of Role Types, and the logical operations ∨, ∧, and ¬. Moreover, let
DT be the input set of Dynamic Tuples for which ∀dt = (e, F, P) ∈ DT : type(e) = tcex holds and F
as well as P are the sets of Role sets that are played and featured, respectively. A = {rt | rt ∈ RT} ∪
{rt | rt ∈ RT} is the alphabet for the propositional formula. Furthermore, the functions f _atoms(α)
and p_atoms(α) provide a set of all Role Types in α. f _atoms(α) for Role Types that are filled and
p_atoms(α) for those that are in the participating dimension. They are defined as:

f _atoms(α) =

{rt} ifα ≡ rt
∅ ifα ≡ rt
f _atoms(β) ∪ f _atoms(γ) ifα ≡ (β ∧ γ) or α ≡ (β ∨ γ)
f _atoms(β) ifα ≡ ¬β

(4.14)

4.4 RSQL Operators 87

p_atoms(α) =

{rt} ifα ≡ rt
∅ ifα ≡ rt
p_atoms(β) ∪ p_atoms(γ) ifα ≡ (β ∧ γ) or α ≡ (β ∨ γ)
p_atoms(β) ifα ≡ ¬β

(4.15)

Moreover, a Dynamic Tuple’s Configuration is given by cdt = (t, FT, PT).

The operator Πα : DT → DT consumes a set of Dynamic Tuples and returns such set. Formally, it is
defined as:

Πα(DT) ={dt′ = (e, F ′, P ′) | (e, F, P) ∈ DT∧
F ′ = {F i ∈ F | ∃r ∈ F i : type(r) ∈ f _atoms(α)}∧
P ′ = {P i ∈ P | ∃r ∈ P i : type(r) ∈ p_atoms(α)}} (4.16)

In detail, F ′ and P ′ hold only these sets of Roles for which a Role Type is part of α. To demon-
strate the configuration projection a small example is employed. Imagine the Dynamic Tuples
dtJohn and dtTim and cex as introduced in the previous configuration selection’s example and cex
is given with cex = (Person,Student ∧ StudentAssistant). Hence, f _atoms(α) (4.14) re-
turns {Student,StudentAssistant} and p_atoms(α) = ∅ (4.15). Furthermore, DTexample =
{dtJohn , dtTim} is a valid input set.

At first, dtJohn is processed. Applying 4.16 results in F ′ = {{s1}, {sa1}}. In detail, the Roles s1 and
sa1 remain in the newly constructed Dynamic Tuple, because their Role Type is part of f _atoms(α).
In contrast, the Roles {tm1} and {cap1} are cut out, because their respective Role Type is not in this
set. Furthermore, P is empty and so is P ′, because p_atoms(α) returns an empty set. Finally, the
resulting Dynamic Tuple is dt′John = (John, {{s1}, {sa1}}, ∅)

Next, dtTim is reconstructed to dt′Tim . The set F ′ is populated with set {s3} only, because the Stu-
dent Role Type is queried. Even if f _atoms(α) provides more or additional Role Types than FTTim
contains, the resulting F ′ will always be shrunk, but not extended. Thus, Dynamic Tuples having
a different resulting Configuration may pass this operator, as seen in this example. This is useful in
case of disjunctive combined Role Types in cex. However, dtTim does not feature any Roles in P , so
P ′ = ∅. The resulting Dynamic Tuple is dt′T im = (Tim, {{s3}}, ∅).

Finally, the example’s operator output is DT ′ = {dt′John , dt
′
Tim}. Notably, as long as DT is a valid

input set |DT | = |DT ′| holds. Each input Dynamic Tuple will pass this operator either way. Con-
sequently, Πα(DT) does not eliminate any Dynamic Tuple, in fact it shrinks the sets of played and
featured Roles of a certain Dynamic Tuple to the provided Role Types in α.

4.4.4 Role Matching κα

The Role matching operator checks if Dynamic Tuples share some Roles of a certain Role Type rt,
which is a parameter of this operator. If a Dynamic Tuple does not find a partner that shares some
Roles, it will not pass this operator. This holds for both input sets. In this sense, this operator cuts out
all Roles of a queried Role Type that do not find a partner in the opponent input set. Roles of other
Role Types than the input Role Type will be fully carried over to the output Dynamic Tuple and are
not touched at all. As result, κ provides two output sets consisting of manipulated Dynamic Tuples.
The formal definition is presented and explained in Definition 11. This is followed by a detailed
explanation using a small example.

88 Chapter 4 RSQL Database Model

Definition 11 (Role Matching). Let α be a propositional formula consisting of Role Types and logical
operation. Additionally,DTa as well asDTb are two input sets of Dynamic Tuples, where a Dynamic Tuple
dta ∈ DTa and dtb ∈ DTb. On the type level, κα is defined for:

κα : 2DT × 2DT → 2DT × 2DT

On the instance level, κrt is specified as:

κα : DTa ×DTb → DT ′a ×DT ′b

To computeDT ′a andDT ′b, the Cartesian product ofDTa andDTb is produced in the first place.

DTa×b := DTa ×DTb (4.17)

Based on this product a set of triples DTshare is defined that contains the set of Roles, which are shared in
the Dynamic Tuples dta and dtb.

DTshare :={(dta, dtb, Rshare) | (dta, dtb) ∈ DTa×b∧
dta = (ea, Fa, Pa) ∧ dtb = (eb, Fb, Pb)∧
Rshare := {r | r ∈ F ia ∧ F ia ∈ Fa ∧ r ∈ P

j
b ∧ P

j
b ∈ Pb}} (4.18)

Next, each tuple is filtered according to α to check either both Dynamic Tuples share Roles as specified in α
or not. The resulting set is a triple with both Dynamic Tuples and the shared Roles that comply to α.

DTαfilter :={(dta, dtb, Rshare) | (dta, dtb, Rshare) ∈ DTshare ∧Rshare := filterα(Rshare) (4.19)

The function filterα is specified for filterα : 2R → 2R. It consumes a set of Roles and produces another
one, such that filterα(R)→ R′. Formally, it is defined as:

filterα(Rshare) =

{r ∈ Rshare | type(r) = rt} α ≡ rt
filterβ(Rshare) ∪ filterγ(Rshare) cond1

filterβ(Rshare) ∪ filterγ(Rshare) cond2

∅ else

(4.20)

Generally, the Roles coming from the filter process of β and γ are united for one conditions. For readability
purposes they are split into two conditions and are explained individually. The first condition cond1 is
applied for:

α ≡ (β ∧ γ) ∧ filterβ(Rshare) 6= ∅ ∧ filterγ(Rshare) 6= ∅

The specifies, the formula in β and γ are conjunctive and both filter processes must not return an empty set.
The second condition cond2 is defined as:

α ≡ (β ∨ γ) ∧ (filterβ(Rshare) 6= ∅ ∨ filterγ(Rshare) 6= ∅)

This defines that β and γ are combined disjunctively and at most one sub-result can be empty.

4.4 RSQL Operators 89

DTαfilter contains all pairs of dta and dtb in combination with their shared Roles of Role Types in α. Ad-
ditionally, all pairs that do not match α have been removed from the set. However, a Dynamic Tuple dta
can find several partners it shares Roles of Role Types in α with. This information is distributed over several
tuples in DTαfilter . Next, the Roles that find a partner and are distributed over several tuples, are united in
separate setsDT all

a andDT all
b . The former is for Dynamic Tuples ofDTa and the latter for those ofDTb.

DT all
a :={(dta, Rall

share) | (dta, _, _) ∈ DTαfilter ∧

Rall
share :=

⋃
(dta,_,Rshare)∈DTαfilter

Rshare} (4.21)

DT all
b :={(dtb, Rall

share) | (_, dtb, _) ∈ DTαfilter ∧

Rall
share :=

⋃
(_,dtb,Rshare)∈DTαfilter

Rshare} (4.22)

These two sets contain all tuples of Dynamic Tuples and their respective Roles that find a partner. Next, the
output sets are created and the Roles that do not find a partner are cut out of a Dynamic Tuple.

DT ′a :={dt′a = (ea, F ′a, Pa) | (dta, Rall
share) ∈ DT all

a ∧ dta = (ea, Fa, Pa)∧
F ′a := reduce(Fa, Rall

share, rt)} (4.23)

DT ′b :={dt′b = (eb, Fb, P ′b) | (dtb, Rall
share) ∈ DT all

b ∧ dtb = (eb, Fb, Pb)∧
P ′b := reduce(Pb, Rall

share, rt)} (4.24)

The function reduce is defined for reduce : 22R × 2R → 22R , consumes a set of Role sets and a set of
Roles. It produces a new set of Role sets, such that reduce(L,R)→ L′. It is not limited to any dimension,
so it can handle both, F and P as input. Thus, the input set of Role sets is denoted as L.

reduce(L,Rall
share) ={reduce(Li, Rall

share) | Li ∈ L} (4.25)

reduce(Li, Rall
share) =

{
Li if r ∈ Li ∩Rall

share = ∅
Li ∩Rall

share else
(4.26)

The function reduce is defined for reduce : 2R × 2R → 2R and consumes two sets of Roles. As output it
produces a new set of Roles, such that reduce(Li, R)→ Lj

To explain the operator in detail, we employ an extended example. Imagine both, dtJohn and dtMax
being two Dynamic Tuples of DTPerson that are specified by:

dtJohn =(John, {{s1, s4}, {sa1}, {tm1}}, ∅)
dtMax =(Max, {{s2}}, ∅)

Additionally, there exists two Dynamic Tuples dtTUD and dtTUC as elements ofDTUniversity . These
hold the following Roles.

dtTUD =(TUD, ∅, {{s1, s3}, {sa1}})
dtTUC =(TUC , ∅, {{s4}})

90 Chapter 4 RSQL Database Model

Furthermore, let α = Student ∧ StudentAssistant be the input formula. The resulting role
matching operator is written as:

κStudent∧StudentAssistant(DTPerson , DTUniversity)

For readability reasons the Role Types in α are abbreviated as s and sa, respectively.

To determine the result, the Cartesian productDTPerson×DTUniversity is produced, resulting in the
four following tuples.

DTPerson×University{(dtJohn , dtTUD), (dtJohn , dtTUC), (dtMax , dtTUD), (dtMax , dtTUC)}

Next, DTshare is produced resulting in:

DTshare ={(dtJohn , dtTUD, {s1, sa1}), (dtJohn , dtTUC , {s4}),
(dtMax , dtTUD, ∅), (dtMax , dtTUC , ∅)}

For each tuple, the filters∧sa(Rshare) function is applied, producing the set DT s∧sa
filter .

DT s∧sa
filter = {(dtJohn , dtTUD, {s1, sa1})}

At first, (dtJohn , dtTUD, {s1, sa1}) is checked for filters({s1, sa1}) and filtersa({s1, sa1}). Both
sets are non-empty, so the Roles s1 and sa1 are added to Rshare. Next, (dtJohn , dtTUC , {s4}) is
checked, which fails, because the check on a StudentAssistant Role fails and the returned set is
empty. Both Role Types are conjunctively combined, thus, cond1 is applied. Consequently, the whole
tuple is discarded and not part this filter step’s result. Moreover, dtMax has no shared Roles, neither
with dtTUD nor dtTUC , thus, it is completely eliminated.

Based on these results, the pairs of dta and dtb in combination with their shared Roles are split into
the two distinct sets DT all

Person and DT all
University . Applying 4.21 and 4.22 on DT s∧sa

filter results in:

DT all
Person ={(dtJohn , {s1, sa1})}

DT all
University ={(dtTUD, {s1, sa1})}

As it can be seen, dtJohn is included only once, but with all Roles united that found a partner in
DTUniversity . In a final step, the output sets DT ′Person and DT ′University are generated by applying
4.23 and 4.24.

DT ′Person ={dt′John = (John, {{s1}, {sa1}, {tm1}}, ∅)}
DT ′University ={dt′TUD = (TUD, ∅, {{s1}, {sa1}})}

The output set DT ′Person only contains one Dynamic Tuple, because dtMax has been eliminated in
the filter step. Additionally, dt′John is shrunk to Roles of Role Types in α that find a partner. In
this case, one Student and StudentAssistant Role of dt′John found a partner. The Role s4 has been
eliminated, because the corresponding university does not feature a StudentAssistant Role that is
played by John.

The same holds for the universities, dt′TUD has lost the Student Role s3, because no partner could
be found that match this Role. In detail, reduce(Pb = {{s1, s3}, {sa1}}, Rall

share = {s1, sa1})
is performed for dtTUD. At first, reduce(Li = {s1, s3}, Rall

share = {s1, sa1}) is performed as

4.4 RSQL Operators 91

subfunction. In particular, the intersection is not empty, thus, the intersection itself is returned. In
this case, it is the Role s1 only, which is going to be part of the output Dynamic Tuple. The same
procedure applies to the set of StudentAssistant Roles. sa1 is returned, because the intersection is
not empty. As there are no other subsets in this Dynamic Tuple, the reduce procedure terminates.

In sum, the Role matching consumes two sets of Dynamic Tuples and produces two of them. During
the process, it manipulates the Dynamic Tuples in a way that only Roles of a queried Role Types in α
are part of the output, which find a partner in the opponent set. Dynamic Tuples that do not find a
partner in the queried format, are eliminated as result of the failing match.

4.4.5 Relationship Matching Ωrst

The Relationship matching operator checks if Dynamic Tuples are related to each other in a certain
Compartment by a certain Relationship Type. Additionally, it filters all Roles that participate in a
certain Relationship. Hence, unrelated Roles of the participating Role Types are cut out of the corre-
sponding Dynamic Tuples.

It consumes three sets of Dynamic Tuples and the links function for a certain Relationship Type. The
first two input sets provide the Dynamic Tuples that need to relate to each other and the third one
specifies the Compartment in which the relation has to take place. The fourth input provides the
information which Roles are actually related to each other by a particular Relationship. As output
is produces three manipulated sets of Dynamic Tuples and an adapted links function. The formal
definition and all construction rules for the output sets are presented in the following Definition 12.

Definition 12 (Relationship Matching). LetDTa,DTb, andDTc be three input sets of Dynamic Tuples
and links the function holding the information about connected Roles. The first two input sets provide the
Dynamic Tuples that are checked for being in relation to each other. The third one provides the Compartment
in which both, the Dynamic Tuples of DTa and DTb, are required to be related to each other. This ensures
the evaluation Compartment-dependent relationships only. Being in the same Compartment and playing
Roles of Role Type that are part of a certain Relationship Type does not mean being in relationship to each
other. This particular information in provided by the links function. However, on the type level, Ωrst is
defined for:

Ωrst : 2DT × 2DT × 2DT × links → 2DT × 2DT × 2DT × links

On the instance level ΩRST is a function that consumes two sets of Dynamic Tuples and a tuple of connected
Roles.

Ωrst : DTa ×DTb ×DTc × links → DT ′a ×DT ′b ×DT ′c × links′

To determineDT ′a,DT ′b, andDT ′b the Cartesian product of these Dynamic Tuple input sets is generated as:

DTa×b×c = DTa ×DTb ×DTc (4.27)

Based on this, all Dynamic Tuples and their respective connected Roles in a certain Compartment are identi-
fied and collected inDT rel .

DT rel :={(dta, dtb, dtc, Ra, Rb) | (dta, dtb, dtc) ∈ DTa×b×c∧
dta = (ea, Fa, Pa) ∧ dtb = (eb, Fb, Pb) ∧ dtc = (ec, Fc, Pc)∧
type(ec) ∈ C ∧Ra := linkage(dta, dtb, dtc, left)∧
Rb := linkage(dta, dtb, dtc, right) ∧Ra 6= ∅ ∧Rb 6= ∅} (4.28)

92 Chapter 4 RSQL Database Model

The linkage function is defined for DT × DT × DT × (left, right) → 2R. On the instance level it is
defined as dt × dt × dt × (left, right) → R. It consumes three Dynamic Tuples as well as a marker for
the left or right Roles of a Relationship Type. The output is a set of Roles, where each Role is part of the links
function and in the playing dimension of the first two Dynamic Tuples. Formally it is defined as:

linkage(dta, dtb, dtc, x) =

{r1 | (r1, r2) ∈ links(rst, ec)∧
r1 ∈ F ia ∧ F ia ∈ Fa ∧ r2 ∈ F jb ∧ F

j
b ∈ Fb} if x = left

{r2 | (r1, r2) ∈ links(rst, ec)∧
r1 ∈ F ia ∧ F ia ∈ Fa ∧ r2 ∈ F jb ∧ F

j
b ∈ Fb} if x = right

(4.29)

The set DT rel contains tuples of Dynamic Tuples that are connected by a certain Relationship in a certain
Dynamic Tuple that represents the Compartment, and the Roles they are connected by. Additionally, all
not connected Dynamic Tuples have been excluded by checking for non-empty sets in Ra and Rb. A single
Dynamic Tuple dta may have different Relationships to other Dynamic Tuples dtb. This information is
distributed over several tuples inDT rel . To determine all Roles of a Dynamic Tuple in a certain Relationship
the sets DT all

a and DT all
b are created. The Compartments in DTc featured both Role sets, hence, Rall

c is
computed as union of both,Rall

a andRall
b .

DT all
a :={(dta, Rall

a) | (dta, _, _, _, _) ∈ DT rel∧

Rall
a :=

⋃
(dta,_,_,Ra,_)∈DT rel

Ra} (4.30)

DT all
b :={(dtb, Rall

b) | (_, dtb, _, _, _) ∈ DT rel∧

Rall
b :=

⋃
(_,dtb,_,_,Rb)∈DT rel

Rb} (4.31)

DT all
c :={(dtc, Rall

c) | (_, _, dtc, _, _) ∈ DT rel∧

Rall
c :=

⋃
(_,_,dtc,Ra,_)∈DT rel

Ra ∪
⋃

(_,_,dtc,_,Rb)∈DT rel

Rb} (4.32)

All sets contain a tuple for each Dynamic Tuple that is linked by a certain Relationship to another Dynamic
Tuple, and the Roles it is connected by. The final Dynamic Tuple will only hold these Roles that found a
partner in a certain Relationship, hence, each Dynamic Tuple is reduced. This holds not only for the Dynamic
Tuples that play a certain Role, but also for the Compartment containing these Roles. Thus, DT ′a and DT ′b
are manipulated in Fa and Fb, respectively. In contrast,DT ′c is manipulated in Pc.

DT ′a :={dt′a = (ea, F ′a, Pa) | (dta, Rall
a) ∈ DT all

a ∧ dta = (ea, Fa, Pa)∧
F ′a := reduce(Fa, Rall

a)} (4.33)

DT ′b :={dt′b = (eb, F ′b, Pb) | (dtb, Rall
b) ∈ DT all

b ∧ dtb = (eb, Fb, Pb)∧
F ′b := reduce(Fb, Rall

b)} (4.34)

DT ′c :={dt′c = (ec, Fc, P ′c) | (dtc, Rall
c) ∈ DT all

c ∧ dtc = (ec, Fc, Pc)∧
P ′c := reduce(Pc, Rall

c)} (4.35)

Additionally, the links information has to be preserved for the result.

links′rst := {(dtc, Ra, Rb) | (_, _, dtc, Ra, Rb) ∈ DT rel} (4.36)

4.4 RSQL Operators 93

To demonstrate this operator in detail, a small example is discussed. AssumeDTPerson1 ,DTPerson2 ,
andDTUniversity be the input sets of Dynamic Tuples. Additionally, the Relationship Type supervises
between the Role Types Student and Professor is queried. Let the sets be populated as following:

DTPerson1 ={dtJohn = (John, {{s1, s4}, {sa1}}, ∅), dtMax = (Max, {{s2}}, ∅)}
DTPerson2 ={dtGert = (Gert, {{p1, p2}}, ∅), dtMarge = (Marge, {{p3}}, ∅)}

DTUniversity ={dtTUD = (TUD, ∅, {{s1, s2}, {p1, p3}{sa1}}),
dtTUC = (TUC , ∅, {{s4}{p2}})}

Additionally, the links function provides the following tuples:

links(supervises,TUD) = {(p1, s1), (p1, s3)}; links(supervises,TUC) = {(p4, s4)};

This corresponding relationship matching operator is specified by:

Ωsupervises(DTPerson1 , DTPerson2 , DTUniversity, links)

At first, the Cartesian product of DTPerson1 , DTPerson2 , and DTUniversity is created.

DTPerson1×Person2×University ={(dtJohn , dtGert , dtTUD), (dtJohn , dtGert , dtTUC),
(dtJohn , dtMarge, dtTUD), (dtJohn , dtMarge, dtTUC),
(dtMax , dtGert , dtTUD), (dtMax , dtGert , dtTUC),
(dtMax , dtMarge, dtTUD), (dtMax , dtMarge, dtTUC)}

Next DT rel is produced according to 4.28 as well as 4.29 and consists of the following tuple.

DT rel ={(dtJohn , dtGert , dtTUD, {s1}, {p1})}

At most there could be three tuples, because links features three tuples in total. In this scenario only
(p1, s1) found partner Roles, hence, all others are eliminated. (p1, s3) is eliminated because there is
no s3 Role in the input set of DTPerson1 , and (p4, s4) because there is no p4 Role in DTPerson2 .

Determining the sets DT all
Person1 , DT

all
Person2 and DT all

University is the next step. These sets are pro-
duced following the rules introduced in 4.30, 4.31, and 4.32.

DT all
Person1 ={(dtJohn , {s1})}

DT all
Person2 ={(dtGert , {p1})}

DT all
University ={(dtTUD, {s1, p1})}

DT all
Person1 contains only dtJohn with Role s1 because no other Role found a partner in a Relationship.

The same holds forDT all
Person2 . Likewise,DT all

University contains only one Dynamic Tuple as well, but
with the union the Roles of dtJohn and dtGert . Next, the output Dynamic Tuples are generated by

94 Chapter 4 RSQL Database Model

reducing the input Dynamic Tuples to the Role that found a partner. This results in the three output
sets DT ′Person1 , DT ′Person2 , and DT ′University as described in 4.33, 4.34, and 4.35.

DT ′Person1 ={dtJohn = (John, {{s1}, {sa1}}, ∅)}
DT ′Person2 ={dtGert = (Gert, {{p1}}, ∅)}

DT ′University ={dtTUD = (TUD, ∅, {{s1}, {p1}, {sa1}})}

Finally, the links information is preserved as output according to 4.36.

links′supervises = {(dtTUD, {s1}, {p1})

In sum, the Relationship matching operator filters Dynamic Tuples by their participation in a certain
Relationship. It reduces matching Dynamic Tuples to the Roles that find a partner. Moreover, it
directly leverages the links function of the instance model to filter these Dynamic Tuples. All Dynamic
Tuples that do not find a partner in a certain Relationship will be eliminated of the output sets.

4.4.6 Dynamic Data Type Union τ

To unite Dynamic Tuples of different Dynamic Data Types in a shared stream, especially if the Dy-
namic Data Types share certain Role Types in a particular dimension, the τ operator is introduced. It
consumes two sets of Dynamic Tuples and the type function. To perform the streams union, a new
union type is created, which is used to overwrite the type function for the corresponding Dynamic
Tuple cores.

Definition 13 (Dynamic Data Type Union). Let DTa and DTb two input streams of Dynamic Tuples of
different Dynamic Data Types. These Dynamic Data Types are defined by DDTa := (ta, FTa, PTa) and
DDT b := (tb, FTb, PTb). Moreover, the type of the base data is required. The operator τ is on the type
level defined for:

τ : 2DT × 2DT × type → 2DT × type
On the instance it is defined as:

τ : DT ×DT × type → DT × type

At first, the union of both input streams in a combined set, denoted asDTa∪b, is created.

DTa ∪ b := DTa ∪DTb (4.37)

This unites both streams, but with different player types as core. To align these types, the union type consisting
of attributes of both player types is created as t′.

t′ := ta ∪ tb (4.38)

Each type is defined by a name and a set of attributes. Thus, the union type represents the union of both, ta
and tb, attribute sets.

To compute the output, the t′ has to be assigned to each core of the Dynamic Tuple union set.

DT ′ :={dt | dt = (e, F, P) ∈ DTa ∪ b ∧ type(e) := t′} (4.39)

The core of a Dynamic Tuple is not manipulated, but a new type is assigned to it. Moreover, the Role Types
in both dimensions remain untouched, hence the Roles are not manipulated at all.

4.4 RSQL Operators 95

To demonstrate this operator, assume the two input sets of Dynamic Tuples DTLecture, and
DTSeminar .

DTSeminar ={dtsem1 = (sem1, {{sc1}}, ∅)}
DTLecture ={dtl1 = (l1, {{sc2}}, ∅)}

At first the union of both sets is created according to 4.37 resulting in DTSeminar∪Lecture.

DTSeminar∪Lecture = {dtsem1, dtl1}

Next, the union type t′ is created by applying rule 4.38.

Sem_L′ = {Credits : Byte,Date : Date,Time : String,Room : String}

Notably, the attribute Credits is included only, because it is shared of both player types. This union
type is now assigned to each entity core, as defined in rule 4.39. This is also the last step within the τ
operator.

DT ′ = {dtsem1, dtl1}
type(sem1) = Sem_L′

type(l1) = Sem_L′

In sum, the τ operator consumes two input sets of Dynamic Tuples, unites them in one set, and
overwrites the type function for the corresponding Dynamic Tuple cores. The new type is the union
of both player type attribute sets. Empty attributes of a core, especially those that have not been
present in the original type, are represented as NULL values.

4.4.7 Dynamic Tuple Difference Without Role Difference \R−

The difference between two sets of Dynamic Tuples, without considering the Role at all, are these
Dynamic Tuples of the first input set that do not share the core with an entity of the second input set.
The formal definition is presented in Definition 14.

Definition 14 (Dynamic Tuple Difference Without Role Difference). Let DTa and DTb be two input
sets of Dynamic Tuples. The operator \R− is defined as \R− : 2DT×2DT → 2DT on the type level. On the
instance level it consumes two sets of Dynamic Tuples and produces one set, such that \R− : DT ×DT →
DT .

The output setDT ′ is determined by the following equation.

DT ′ := {dta | dta = (ea, Fa, Pa) ∈ DTa ∧ dtb = (eb, Fb, Pb) ∈ DTb ∧ @dtb : eb = ea} (4.40)

For example, imagine the two input sets DTPerson1 and DTPerson2 that are populated as follows.

DTPerson1 ={dtJohn = (John, . . . , ∅), dtGert = (Gert, . . . , ∅), dtMax = (Max, . . . , ∅)}
DTPerson2 ={dtTim = (Tim, . . . , ∅), dtKai = (Kai, . . . , ∅), dtJohn = (John, . . . , ∅)}

96 Chapter 4 RSQL Database Model

The corresponding operator is specified as: DTPerson1 \R− DTPerson2 . The outputDT ′ consists of
two Dynamic Tuple, dtGert and dtMax . The other Dynamic Tuple ofDTPerson1 , dtJohn , is eliminated
according to 4.40, because there is a Dynamic Tuple in DTb that shares the same core. Obviously,
dtJohn is part of both sets, hence, it must be excluded from the result.

In sum, this operator follows the traditional set theory definitions of a difference, but has slightly
different semantics. In detail, the reference point in each set is the core of an entity and not the
element itself. Hence, it checks for the existence of the same core in the second input set.

4.4.8 Dynamic Tuple Difference With Role Difference \R

This operator produces the difference between two input sets of Dynamic Tuples, but also considers
the difference of Role Types. Thus, Dynamic Tuples sharing the same entity core are not completely
eliminated, rather the difference of their Roles is produced. This lifts the semantics of a difference to
the level of Roles.

Definition 15 (Dynamic Tuple Difference With Role Difference). LetDTa andDTb be two input sets of
Dynamic Tuples. The operator \R is defined as \R : 2DT ×2DT → 2DT on the type level. On the instance
level it consumes two sets of Dynamic Tuples and produces one set, such that \R : DT ×DT → DT .

At first, the Cartesian product ofDTa andDTb is generated.

DTa×b := DTa ×DTb (4.41)

On this basis the set of equal entities is collected in the setDTequal .

DTequal :={(dta, dtb) | (dta, dtb) ∈ DTa×b∧
dta = (ea, Fa, Pa) ∧ dtb = (eb, Fb, Pb) ∧ ea = eb} (4.42)

This builds the foundation to determine the sets of Roles sets in both dimension, but only for Dynamic Tuples
that share the core.

DT ′equal :={dt′ = (ea, F ′, P ′) | (dta, dtb) ∈ DTa×b ∧ dta = (ea, Fa, Pa) ∧ dtb = (eb, Fb, Pb)∧
F ′ := group(flat(Fa) \ flat(Fb)) ∧ P ′ := group(flat(Pa) \ flat(Pb))} (4.43)

The function flat unpacks sets of Role sets into one set of Roles, which simplifies the intersection of both sets
of Role sets. Hence, it is defined for flat : 22R → 2R and consumes a set of Role sets and produces a set of
Roles. On the instance level it is defined as flat : 2R → R. The group function is the opposite of flat and
consumes a set of Roles and produces a set of Role sets, grouped by their Role Type. Consequently, the type of
this function is group : 2R → 22R and the instance definition group : R→ 2R. These functions work for
both dimension, thus, the input is denoted as L to avoid confusion. Formally, these functions are defined as
follows.

flat(L) :={r | r ∈ Li ∧ Li ∈ L} (4.44)

group(L) :={{r | (r, rt) ∈ L} | rt ∈ RT} with L := {(r, rt) | r ∈ L ∧ rt = type(r)} (4.45)

4.4 RSQL Operators 97

The final result DT ′ is specified as all Dynamic Tuples of DTa that do not share their core with a Dynamic
Tuple of DTb, plus all Dynamic Tuples of DTa that share the core, but manipulated in a way that only the
difference of Roles in both dimensions is returned.

DT ′ := (DTa \R− DTb) ∪DT ′equal (4.46)

As demonstration the following two input sets DTPerson1 and DTPerson2 are given.

DTPerson1 ={dtJohn = (John, {{s1, s4}{sa1}}, ∅), dtGert = (Gert, {{p1}}, ∅)}
DTPerson2 ={dtMarge = (Marge, {{p3}}, ∅), dtJohn = (John, {{s1}}, ∅), }

This example operator is specified by DTPerson1 \R DTPerson2 . At first the Cartesian product of
both input sets creates four tuples.

DTPerson1×Person2 ={(dtJohn , dtMarge), (dtJohn , dtJohn),
(dtGert , dtMarge), (dtGert , dtJohn)}

Only one tuple consists of Dynamic Tuples sharing a core. Hence, equation 4.42 producesDTequal =
{(dtJohn , dtJohn)}. For this the manipulated output Dynamic Tuple is created in DT ′equal with re-
spect to 4.43.

DT ′equal = {dt′John = (John, {{s4}{sa1}}, ∅)}

The function flat({s1, s4}{sa1}) returns F flat
a = {s1, s4, sa1} (see equation 4.44). F flat

b = {s1}
is created in the same way. The difference of both, F flat

a and F flat
b , is {s4, sa1}. These Roles are

now regrouped by their Role Types, which is processed by the group function according to 4.45.
Consequently, F ′ is populated by {{s4}{sa1}}. P ′ = ∅, because the inputs are also empty sets.

The final output set consists of the regular Dynamic Tuple difference without Roles united with
DT ′equal , as defined in 4.46.

DT ′ = {dt′John = (John, {{s4}{sa1}}, ∅), dtGert = (Gert, {{p1}}, ∅)}

The regular difference provides dtGert only. Additionally, dt′John is included in this output set. In
total, this operator provides functionality to determine a difference on the level of Roles.

4.4.9 Dynamic Tuple Intersection ∩RTa ,RTb
◦

The Dynamic Tuple intersection searches for shared Dynamic Tuples between the two input sets and
produces one output stream consisting of shared Dynamic Tuples only. These shared Dynamic Tuples
may occur in different versions, which means they have different Roles in their dimensions. To con-
struct only a single output stream, the Roles of both Dynamic Tuples have to be processed and united
in new dimensions. This processing is controlled by the three parameters this operator features. At
first, there are two parameters having a set of Role Types each, RTa and RTb. All Role having a Role
Type in RTa are directly taken from the Dynamic Tuple coming from the first input and put into
the output Dynamic Tuple. In contrast, Roles with a Role Type in RTb are directly transferred from
the second input stream’s Dynamic Tuple to the output one. These Role Type sets are used to protect
previous dimension manipulations, for instance by a Role matching operator, from being overwritten.
Secondly, all other Roles are processed according to the operation provided by the third parameter ◦,
which can be a union or intersection. The formal definition is given in the following Definition 16.

98 Chapter 4 RSQL Database Model

Definition 16 (Dynamic Tuple Intersection). Let DTa and DTb be two input sets of Dynamic Tuples.
This operator has three parameters, ◦ = {∪,∩}, RTa, and RTb. The first one specifies the operation on
the level of Roles, which becomes important in case the same Dynamic Tuple is included in both sets, but in
different versions. RTa specifies Role Types that are used to copy Roles from the Dynamic Tuple included
in DTa into the united and output Dynamic Tuples. In contrast, RTb defines those Role Types that are
utilized to transfer the Roles from the Dynamic Tuple coming from DTb. Additionally, both sets of Role
Types distinguish between Role Types in the playing and featuring dimension such that those of the playing
dimension are denoted with an overline and those of the featuring dimension with an underline.

However, this operator is defined for ∩RTa ,RTb◦ : 2DT × 2DT → 2DT . It consumes two sets of Dynamic
Tuples and produces one set of those, such that ∩RTa ,RTb◦ : DT ×DT → DT .

At first, the Cartesian product of DTa and DTb is generated to find the Dynamic Tuples included in both
sets.

DTa×b := DTa ×DTb (4.47)

On this basis the set of equal entities is determined in the set DTequal to represent the intersection on the
Dynamic Tuple level.

DTequal :={(dta, dtb) | (dta, dtb) ∈ DTa×b∧
dta = (ea, Fa, Pa) ∧ dtb = (eb, Fb, Pb) ∧ ea = eb} (4.48)

The output set DT ′ is generated on the foundation of DTequal . For each pair, a new Dynamic Tuple is
constructed with the entity of dta and the union of various sets of Roles in both dimensions. This unification
is represented in F ′ and P ′. To protect overwriting for certain Roles of certain Role Types, each dimension is
constructed of three sets of Roles. At first, these Roles that neither have a Role Type represented in RTa nor
in RTb. Secondly, the Role having a Role Type included in RTa and thirdly, all Roles being of a Role Type
contained inRTb.

DT ′ :={dt′ = (e′, F ′, P ′)|(dta, dtb) ∈ DTequal∧
dta = (ea, Fa, Pa) ∧ dtb = (eb, Fb, Pb) ∧ e′ = ea∧
F ′ := group(F− ∪ FRT

a ∪ FRT
b) ∧ P ′ := group(P− ∪ PRT

a ∪ PRT
b)} (4.49)

The corresponding subsets of Roles are determined as follows. Please note, RT describes the complete set
of available Role Types. Moreover, the flat and group function are applied as defined in 4.44 and 4.45,
respectively.

F− :={r ∈ (flat(Fa) ◦ flat(Fb)) | type(r) ∈ (RT \RTa \RTb)} (4.50)

FRT
a :={r ∈ flat(Fa) | type(r) ∈ RTa} (4.51)

FRT
b :={r ∈ flat(Fb) | type(r) ∈ RT b} (4.52)

P− :={r ∈ (flat(Pa) ◦ flat(Pb)) | type(r) ∈ (RT \RTa \RTb)} (4.53)

PRT
a :={r ∈ flat(Pa) | type(r) ∈ RTa} (4.54)

PRT
b :={r ∈ flat(Pb) | type(r) ∈ RT b} (4.55)

4.4 RSQL Operators 99

F− and P− consists of Roles that neither have a Role Type represented in RTa nor RTb. In contrast, FRT
a

and PRT
a include only Roles coming from the first input’s Dynamic Tuple and have a proper Role Type as

specified inRTa. Likewise, FRT
b and PRT

b contain only Roles of Role Types included inRTb. Additionally,
these Roles have to come from the Dynamic Tuple of the second input. Finally, these sets of Roles are united
and grouped by their Role Types to represent the output Dynamic Tuples.

To demonstrate this operator and its variety in parameter assignments as well as the consequences of
these assignments, three different examples are employed. However, all three examples are based on
the same input sets, thus, only the output DT ′ changes from example to example.

Assume two input sets DTPerson1 and DTPerson2 having the following Dynamic Tuples.

DTPerson1 ={dtJohn = (John, {{s1, s4}{sa1}}, ∅), dtMax = (Max, {{s2}}, ∅)}
DTPerson2 ={dtJohn = (John, {{s1}, {sa3}{tm1}}, ∅), dtGert = (Gert, {{p1}}, ∅)}

The Cartesian product of both input sets creates four tuples.

DTPerson1×Person2 ={(dtJohn , dtJohn), (dtJohn , dtGert),
(dtMax , dtJohn), (dtMax , dtGert)}

Next,DTequal selects all tuples of the Cartesian product that have equal cores. Hence, only one tuple
is contained in this set and all others are eliminated.

DTequal = {(dtJohn , dtJohn)}

Unrestricted Role Union

The first example represents an unrestricted Role union. Unrestricted means no Role Types are pro-
vided, neither in RTa nor in RTb. The parametrized operator is represented as

∩∅,∅∪ (DTPerson1 , DTPerson2)

Next, the three Role sets for each dimension are determined. F− contains all Roles of Role Types that
are not part ofRTa andRTb according to 4.50 In this example these Role Type sets are empty, hence,
all Role Types are qualified for this set. The parameter ◦ is populated with a ∪, thus, the Roles are
united. Consequently, F− = {s1, s4, sa1, sa3, tm1}. Because RTa and RTb are empty FRT

a and
FRT
b are empty as well (see rule 4.51 and 4.52). The featuring dimension of the example’s Dynamic

tuple is empty in both version, so the output dimension is and P−, PRT
a , and PRT

b return empty sets.

The resulting output DT ′ consists of one Dynamic Tuple.

DT ′ = {dt′John = (John, {{s1, s4}{sa1, sa3}, {tm1}}, ∅)}

100 Chapter 4 RSQL Database Model

Restricted Role Union

The second example explains this operator as restricted Role union. This means, at least one set out
of RTa and RTb is not empty. In this example, RTa = {StudentAssistant} and RTb = ∅. The
union specifies that ◦ is populated with a ∪. The parametrized operator is specified by

∩{StudentAssistant},∅
∪ (DTPerson1 , DTPerson2)

To determine dt′John , the dimension have to be computed with respect to the rules 4.50 to 4.55. At
first F− is determined and includes all Roles, except of Roles of the Role Type StudentAssistant.
Consequently, F− = {s1, s4, tm1}. Secondly, all Roles with Role Types included in RTa are col-
lected in FRT

a resulting in FRT
a = {sa1}. Finally, FRT

a and the whole featuring dimension are
empty according to rules 4.52 to 4.55.

The final outputDT ′ consists of dt′John only, which has modified dimensions. F ′ is the unification of
F−, FRT

a , and FRT
b . P ′ is calculated likewise, but with sets of the featuring dimension. This results

in the following output.

DT ′ = {dt′John = (John, {{s1, s4}{sa1}, {tm1}}, ∅)}

Restricted Role Intersection

The last example of this operator demonstrates the restricted intersection on the level of Roles. As-
sumeRTa = {StudentAssistant} andRTb = {TeamMember}. The parameter ◦ is specified with
a ∩. Thus, the operator is denoted as:

∩{StudentAssistant},{TeamMember}
∩ (DTPerson1 , DTPerson2)

At first F− is determined by intersecting all Roles that are not of a Role Type in RTa and RTb. This
applies for the Roles {s1, s4} of the dta’s version of dtJohn and {s1} for the dtb’s version. The inter-
section results in F− = {s1}. Secondly, FRT

a is calculated as FRT
a = {sa1} and FRT

b = {tm1}.
The unification of these sets results in the F ′ dimension for dt′John with F ′ = {{s1}, {sa1}, {tm1}.
As in the example discussed previously, the featuring dimension is empty, such that P ′ = ∅.

The output of this parametrized Role intersection operator is given in DT ′.

DT ′ = {dt′John = (John, {{s1}{sa1}, {tm1}}, ∅)}

In sum, this operator unites two sets of Dynamic Tuples into a single one while only shared Dynamic
Tuples are consolidated into the new one. To provide control over handling the Roles in the different
dimension, it offers three parameters. A parameter that specifies which Roles should come from the
Dynamic Tuple of the first input only and one for those coming from the second input. Finally, all
other Roles are treated as denoted in the third parameter. This fine-grained control mechanism allows
for protecting previous Role selections to be overwritten by unfiltered Roles coming from the other
input set.

4.4 RSQL Operators 101

4.4.10 Dynamic Tuple Union ∪RTa ,RTb
◦

The Dynamic Tuple union operator takes two input streams of Dynamic Tuples and unite them into a
single one. For those Dynamic Tuples that are shared between both input sets several options exist
to unite them. However, this operator is similar to the Dynamic Tuple intersection operator, but
additionally includes the Dynamic Tuples of both input streams that are not shared between these
sets. Hence, it is build on the Dynamic Tuple intersection operator. The formal definition is presented
as follows.

Definition 17 (Dynamic Tuple Union). Let DTa and DTb be two input sets of Dynamic Tuples. More-
over, there exist three parameters for this operator; ◦ = {∪,∩} that defines the operation on the Role level,
RTa to specify the Roles that come from the Dynamic Tuple in DTa, and RTb to describe the Roles that
are transfers from the Dynamic Tuple in DTb. Both Role Type sets distinguish between Role Types in the
two dimensions. Overlined Role Types specify the filling dimension and underlined ones the participating
dimension.

However, this operator is defined for ∪RTa ,RTb◦ : 2DT × 2DT → 2DT . It consumes two sets of Dynamic
Tuples and produces one set of those, such that ∪RTa ,RTb◦ : DT ×DT → DT .

The output of this operator is defined as:

DT ′ :={DT ′equal ∪ (DTa \R− DT ′equal) ∪ (DTb \R− DT ′equal)} (4.56)

withDT ′equal being the Dynamic Tuple intersection of both input streams.

DT ′equal := ∩RTa ,RTb
◦ (DTa, DTb) (4.57)

This intersection determines the shared Dynamic Tuples and manipulates the dimensions according to the
operation given by ◦. All other Dynamic Tuples are not shared between both input sets and are passed to the
output stream without any manipulation.

Two examples are discussed to show the operator’s functionality. Assume two input sets DTPerson1
and DTPerson2 having the following Dynamic Tuples.

DTPerson1 ={dtJohn = (John, {{s1, s4}{sa1}}, ∅), dtMax = (Max, {{s2}}, ∅)}
DTPerson2 ={dtJohn = (John, {{s1}, {sa3}{tm1}}, ∅), dtGert = (Gert, {{p1}}, ∅)}

These sets are the same as in the example of the Dynamic Tuple intersection operator (see 4.4.9).

Unrestricted Role Union

For the first example additionally assume ◦ = ∪ andRTa as wellRTb to be empty. The corresponding
operator is denoted as ∪∅,∅∪ (DTPerson1 , DTPerson2).

For creating the output set DT ′ three subsets are computed and united as defined in 4.56. The first
subset is DT ′equal , which is determined by using the Dynamic Tuple intersection operator according
to the rule defined in 4.57. The parameters of the Dynamic Tuple union are directly passed to the
Dynamic Tuple intersection operator, such that DT ′equal = ∩∅,∅∪ (DTPerson1 , DTPerson2). The out-
put is the same as in the first example of the intersection operator. Thus, DT ′equal = {dt′John =
(John, {{s1, s4}{sa1, sa3}, {tm1}}, ∅)}.

102 Chapter 4 RSQL Database Model

As a next step, the Dynamic Tuple difference of DTa and DT ′equal is determined as second subset.
This results in DTa \R− DT ′equal = {dtMax = (Max, {{s2}}, ∅)}. Finally, the third subset is the
Dynamic Tuple difference between DTb and the shared Dynamic Tuples collected in DT ′equal . This
results in DTa \R− DT ′equal = {dtGert = (Gert, {{p1}}, ∅)}.

These subsets are united to represent DT ′.

DT ′ ={dt′John = (John, {{s1, s4}{sa1, sa3}, {tm1}}, ∅),
dtMax = (Max, {{s2}}, ∅), dtGert = (Gert, {{p1}}, ∅)}

Restricted Role Intersection

The second example demonstrates a restricted Role intersection for the Role Type sets RTa =
{StudentAssistant} and RTb = {TeamMember}. Due to the intersection, ◦ = ∩. The result-

ing Dynamic Tuple union operator is specified as ∪StudentAssistant,TeamMember
∩ . The only difference

to example discussed previously is the Dynamic Tuple included in DT ′equal .

However,DT ′equal is the output of a Dynamic Tuple intersection operator with the same parameters as

this union operators has. Hence, DT ′equal = ∩StudentAssistant,TeamMember
∩ (DTPerson1 , DTPerson2).

This represents the same result as the third example for the Dynamic Tuple intersection operator
(see 4.4.9). Precisely, DT ′equal = {dt′John = (John, {{s1}{sa1}, {tm1}}, ∅)} The subsets for the
difference of DTa to DT ′equal as well as DTb to DT ′equal remain the same.

Consequently, this example’s output is the following.

DT ′ ={dt′John = (John, {{s1}{sa1}, {tm1}}, ∅),
dtMax = (Max, {{s2}}, ∅), dtGert = (Gert, {{p1}}, ∅)}

Concluding this operator, it provides functionality to unite two sets of Dynamic Tuples and for shared
Dynamic Tuples it falls back on the Dynamic Tuple intersection operator. The parameters provided
to this operator are directly passed to the intersection one. This guarantees a fine-grained control
mechanism for uniting the Role dimensions of shared Dynamic Tuples in this operator as well. All
non-shared input Dynamic Tuples are included in the output, too, but without any dimension manip-
ulation.

4.4.11 Attribute Selection σ
t,RToverlap
predicate

To filter entire Dynamic Tuples or only Roles of them based on their values, the attribute selection
operator is introduced. A Dynamic Tuple is filtered in case the parameter t references a core type.
In contrast, if t relates to a Role Type, Roles of this Role Type are filtered. Moreover, an arbitrary
predicate is provided, which is evaluated for the core or the Role. This predicate may be related the
type to be filtered or it may be not. This totally depends on the query. Additionally, a set ov Role Type
RToverlap has to be provided to the operator, that specifies in which Role Type different input streams
should overlap. In case of no overlap, an empty set can be provided. However, the attribute selection
operator consumes as many inputs as necessary to evaluate the predicate. For instance, in case a
address of a Person is compared to the location of a University that share the Role Type Student,
an input consisting of Dynamic Tuples with Persons and an input for University is required. The
more complex the predicate is the more inputs are required. The formal definition of this operator is
presented in 18 and explained afterwards by using an example operator.

4.4 RSQL Operators 103

Definition 18 (Attribute Selection). Let DTa be the input set of Dynamic Tuples that is going to be
manipulated and DTb . . . DTn additional sets that are required to evaluate the predicate. In case the
attribute selection predicate involves Dynamic Tuples of DTa only, no additional sets are provided. Thus,
this operator consumes a set of Dynamic Tuple sets and returns only one manipulated set of Dynamic Tuples.
As parameters, it consumes a type t that is filtered, a set of Role TypesRToverlap that specifies the overlapping
point of several input sets, and an arbitrary predicate predicate. The set of overlapping Role Types may be
empty, specifying that the input sets are not related to each other. The operator σtpredicate is on the type

level defined for σ
t,RToverlap
predicate : 2DT1 × . . . × 2DTn → 2DT . The concrete operator instance is defined as

σ
t,RToverlap
predicate : DT1 × . . .×DTn → DT .

At first, the Dynamic Tuples of all inputs are flatted and put together as n-ary Cartesian product. The flatten-
ing is described by the operator χ(DT). It is defined as follows:

χ(DT) :=

e×
n∏
i=1
Fi ×

m∏
j=1

Pj | dt = (e, F, P) ∈ DT ∧ Fi ∈ F ∧ Pj ∈ P

 (4.58)

This produces the Cartesian product of an entity with all its Roles for n = |F | andm = |P |. The Cartesian
product on the level of Roles as a regular n-ary Cartesian product, which is defined as follows.

n∏
i=1
Ri = R1 × . . .×Rn :={(r1, . . . , rn) | ri ∈ Ri} (4.59)

Using these two definitions, the Cartesian product on all Dynamic Tuple input setsB is defined as follows.

B := {χ(DTa)× . . .× χ(DTn)} (4.60)

On this B, the predicate is evaluated resulting in the set of tuples Bpred , which consists of qualified tuples
only.

Bpred :={(e, ra1 , . . . , ran) | b = (ea, ra1 , . . . , ran , . . . , eh, rh1 , . . . , rhm) ∈ B∧
overlap(b, RToverlap) ∧ pred(b, predicate)} (4.61)

The overlap function checks if a tuple inB holds the same Role of a certain Role Type twice, which indicates
an overlap. This check is required to ensure that only the overlapping Dynamic Tuples are considered as
potential predicate fulfiller. Furthermore, the function pred evaluates the predicate on the given tuple b. It
becomes true, in case the predicate is fulfilled and false otherwise.

overlap(b, RT) := ∀rti ∈ RT ∃b[rx] ∧ ∃b[ry] : rx = ry ∧ type(rx) = rti ∧ x 6= y (4.62)

The setBpred includes all entity and Role information that correspond to the input setDTa. This information
is distributed of several tuple inBpred , hence, we unite this distributed information in a new Dynamic Tuple.
This is constructed depending on the filter parameter t.

104 Chapter 4 RSQL Database Model

DTpred :=

{dt = (ea, ∅, ∅) | b ∈ Bpred} if t ≡ nt ∨ ct
{dt = (ea, F, ∅) | b ∈ Bpred ∧ F := collect(ea, Bpred , t)} if t ≡ rt
{dt = (ea, ∅, P) | b ∈ Bpred ∧ P := collect(ea, Bpred , t) if t ≡ rt

(4.63)

The collect function collects all Roles of a given Role Type rt for a given entity core e out of a setB.

collect(e,Bpred , rt) :=
⋃

(e,_,rai ,_)∈Bpred

rai ∧ type(rai) = rt (4.64)

Finally, the computed set of qualified Dynamic Tuples with respect to a given predicate is intersected with
input set DTa to filter only the valid ones in the output set DT ′a. This step depends on the input parameter
t, too. Additionally, to keep Role of unfiltered Role Types as they are, we defineRT ′ := RT ∪RT a union
of all Role Types, once in the filling and once in the participating dimension, which is denoted by the overline
and underline annotations, respectively.

DT ′a :=
{
∩RT ′,∅
∩ (DTa, DTpred) if t ≡ nt ∨ ct
∩RT ′\t,{t}
∩ (DTa, DTpred) if t ≡ rt ∨ rt

(4.65)

In detail, in case the entity is filtered as whole data structure, a Dynamic Tuple intersection by using all Roles
from the DTa input set. This excludes all Dynamic Tuples of DTa that do not match the predicate and
for the matching ones the Role dimensions remain unmodified. In case Roles are filtered, only the Roles of
the corresponding Role Type are changed. This is ensured by keeping all Role of the Dynamic Tuple in DTa
except for Roles of the filtered Role Type t, which is specified by the first Role Type parameterRTa = RT ′\t.
The Role of Role Type t will come from the Dynamic Tuple inDTpred . Thus, the Dynamic Tuple intersection
parameterRTb is set to {t}.

As example imagine the two input sets DTPerson and DTUniversity that are populated as follows

and an operator parametrized as σPerson,{Student}
length(p.address)≥(2∗length(u.location)). This predicate filters Person

Dynamic Tuples that overlap with a University Dynamic Tuple by the Role Type Student, on the
filter predicate that the Person’s address is at least 2 times longer than the location attribute of the
University. Moreover, the address of John is 123 Fake Street and has a length of 15. The address
of Max is 197 Foo Way and features a length of 11. Finally, the TUD location is Dresden, which has
a length of 7. Thus, multiple Dynamic Tuple input streams are required to evaluate the predicate,
especially Dynamic Tuples of Persons and those of Universities.

DTPerson ={dtJohn = (John, {{s1, s4}{sa1}}, ∅), dtMax = (Max, {{s2}}, ∅)}
DTUniversity ={dtTUD = (TUD, ∅, {{s1, s2}, {sa1}})}

At first,B is produced according to 4.60. Thus, each Dynamic Tuple of both input sets is flattened by
using the rules defined in 4.58 and 4.59. This results in the following two sets.

χ(DTPerson) ={(John, s1, sa1), (John, s4, sa1), (Max, s2)}
χ(DTUniversity) ={(TUD, s1, sa1), (TUD, s2, sa1)}

These sets are used two build the overall Cartesian product that represents B.

B ={(John, s1, sa1,TUD, s1, sa1), (John, s4, sa1,TUD, s1, sa1)
(Max, s2,TUD, s1, sa1), (John, s1, sa1,TUD, s2, sa1)
(John, s4, sa1,TUD, s2, sa1), (Max, s2,TUD, s2, sa1)}

4.4 RSQL Operators 105

On this basis, the overlap and pred function are applied on each tuple b in B, resulting in Bpred ,
as defined in 4.61. At first, the address of John is compared to the length of TUD′s address, which
evaluates to true, because 15 ≥ 2 ∗ 7. Moreover, the overlap on the Role Type Student evaluates to
true, because s1 is included twice and at different points in this tuple. Consequently, the first tuple
is evaluated positively and marked as qualified by adding it to the set Bpred . The second tuple also
evaluates to true in case of the predicate, but fails the overlap check. In detail, the Role s4 is included
once. This procedure continues for all tuples in B. Notably, the last tuple passes the overlap check,
but fails the predicate check, because the address of Max is not long enough. Thus, only one tuple
passed this detail check and is included in Bpred .

Bpred = {(John, s1, sa1)}

As it can be seen, all fields that do not belong to the input set DTa are deleted from the tuple in
this set. Next, the comparison Dynamic Tuples collected in DTpred are constructed as specified in
rule 4.63. As there is only one tuple in Bpred , DTpred will also consists of only one Dynamic Tuple.

DTpred = {(John, ∅, ∅)}

The filter type is specified as Person, hence the whole Dynamic Tuple is selected and the Roles in
their corresponding dimensions are of no interest. Consequently, the Dynamic Tuples inDTpred have
empty dimensions. In contrast, a selection on the Role Type Student with the same Attribute would
to the following set DT Student

pred .

DT Student
pred = {(John, {{s1}}, ∅)}

As defined, only one input set will be manipulated, in this example it is DTPerson , which is finally
intersected with DTtext by using the following operator.

∩RT ′,∅
∩ (DTPerson , DTpred)

The output set DT ′Person consists of one Dynamic Tuple, too. As defined in 4.65, the dimensions are
not modified at all, because the selection is specified on the core. Consequently, the Dynamic Tuple
dtJohn is passed to the output set and not manipulated.

DT ′Person = {dtJohn = (John, {{s1, s4}{sa1}}, ∅)}

In sum, this attribute selection operator enables the filtering of Dynamic Tuples as whole data struc-
ture or only parts of it, depending on the parameter t and for a given arbitrary predicate. More-
over, this evaluation process is performed with respect to an overlapping information that takes the
Compartment-dependent structure into account. Depending on the predicate complexity, additional
Dynamic Tuple streams are put into this operator to provide it the required data. However, only the
first Dynamic Tuple input set is filtered, all others are used as auxiliary information provider.

4.5 SUMMARY

A proper database model that represents Roles, Compartments, and Relationships as first class citi-
zen is the first step in the direction to role-based database system. In the beginning of the chapter
nine requirements for such a database model were defined and discussed. This discussion builds the
basis for the subsequent evaluation of related approaches, starting from the very first database model

106 Chapter 4 RSQL Database Model

featuring roles as concept, proposed by Bachman and Daya in the 1970s, over database models that
use roles without context to extend an entity’s structure during runtime, like DOOR and Fibonacci, to
an approach like INM that intermingles roles with relationships and induces inheritance hierarchies.
None of these approaches is able to satisfy the full list of requirements, though.

Hence, the evaluation is followed by a novel database model definition; the RSQL data model. It con-
sists of Dynamic Data Types on the type level and Dynamic Tuples on the instance level. The former
combines the notion of an entity type with its Role Types, but Role Type are required to be present in
at least two Dynamic Data Types where one is represented by a Compartment Type. Furthermore, this
definition allows to specify the structure an instance of this type may acquire during runtime, hence,
it allows combining instances having different structures, but a common core, to be of the same over-
all type, especially of the same Dynamic Data Type. The latter combines an entity with its actually
played and featured Roles in an integrated data structure. By allowing these Dynamic Tuple to change
their Configuration dynamically during runtime, the system is able to represent entities that are able
to change their structure within the boundaries set by the Dynamic Data Type, but without changing
their overall type.

Next, several formal operators on the RSQL data model are defined to describe the possible operations
on the data model. This is of importance especially for optimizations purposes. As defined, Dynamic
Tuples represent the integrated data structure on the instance level, hence, the operators are tailored
to process and manipulate such. However, there are three classes of operators available. The first class
defines operators that operate on the structural level of Dynamic Tuples, like filtering two Dynamic
Tuple sets on overlaps. The second class of operators enables usual set operations for Dynamic Tuples,
for instance intersecting two sets of Dynamic Tuples while specifying the operation performed on the
level of Roles. The last category features one operator only, which processes and manipulates Dynamic
Tuples based on the values of attributes. In total, a list of ten operators is defined. To conclude this
chapter, the database model definitions as well as the operators of this chapter are evaluated against
the requirements defined in Section 4.1. This evaluation is presented in Table 4.4.

Requirement Bachman ORM DOOR Fibonacci INM RSQL DM

Notion of Roles � � � � � �
Notion of Compartments � � � � � �
Notion of Relationships � � � � � �
Roles in Compartments � � � � � �
Multiple Player Types � � � � � �
Multiple Roles simultaneously � � � � � �
Integrated Data Structure � � � � � �
Formal Operators � � � � � �
Mathematical Closure � � � � � �

�: yes, �: partial, �: no

Table 4.4: Evaluation of Related Data Model Approaches and RSQL’s Data Model

In sum, the RSQL data model satisfies all posed requirements. It features an explicit notion of Roles,
Compartments, and Relationships, as well as it embeds each Role into a certain Compartment such
that isolated Roles are prohibited. Moreover, a Role Type can have multiple player types and a single
entity can start playing several Roles of the same Role Type simultaneously. Dynamic Data Types and
Dynamic Tuples represent the integrated data structures, the former on the type level and the latter
one on the instance level. Finally, the operators defined in Section 4.4 build the mathematical foun-
dation for query processing and Dynamic Tuple manipulations. Additionally, these operators have a
mathematical closure on the operational data model. In total, this chapter builds the mathematical
base for a role-based database system as well as a role-based query language.

4.5 Summary 107

108 Chapter 4 RSQL Database Model

5
QUERY LANGUAGE AND PROCESSING

5.1 Requirements

5.2 Related Work

5.3 RSQL Data Definition and Manipula-
tion Language

5.4 RSQL Data Query Language

5.5 RSQL Query Processing

5.6 RSQL Result Net

5.7 Summary

There exists a large variety of languages to communicate with a database system; each having a certain
purpose and functionality goal. This ranges from conceptual query language to provide implementa-
tion independent functionality like SQL/EER [42], over languages that describe relational schema
evolution, as CODEL does [38], to database programming languages like PL/SQL [69]. A query lan-
guage in the narrow sense provides statements to retrieve data from a database only. In a broader
sense, statements to define the database schema and to populate the database are associated to a
query language as well. Hence, the functionality of an external database system interface is collected
under the term query language. To provide a sophisticated database interface on the basis of RSQL’s
database model, this chapter introduces the RSQL query language including three language parts to
define, manipulate and retrieve role-based data objects. Consequently, the term query language in its
broader sense is assumed.

The main body of this chapter, especially the syntax description and result discussion, is based on the
works presented in [50, 49, 51]. At first, we define requirements posed to a query language support-
ing the notion of Roles and Compartments. These requirements are mostly non-functional, because
each query language is tailored to a certain database model and the database models are evaluated in
Section 4.2. In fact, these requirements reflect goals for a clear definition and rigid connection to the
underlying database model. Secondly, we discuss related database interface approaches and evaluate
them to the previously defined requirements. Query languages supporting a notion roles as entity in-
ternal separation of concerns are rare, only two approaches exist. Next, RSQL’s sublanguages to create
a role-based database schema, to populate and manipulate the database, and to query role-based data
are presented in the Sections 5.3, and 5.4, respectively. All parts feature a formal syntax description in
Extended Backus–Naur form (EBNF) and several examples to demonstrate the connection between
the language elements and the underlying database model and operators. Based on the syntax descrip-
tion of the query language, we discuss the query processing of Dynamic Tuples in detail. Finally, this
chapter discusses the result representation of various Dynamic Tuple sets, a typical RSQL query re-
sult, and the options to navigate and iterate between these sets. A conclusion and evaluation of RSQL
in comparison to the two related approaches completes this chapter.

5.1 REQUIREMENTS

A query language acts as external interface of a database system. Usually, it is designed to represent
the concepts of the underlying database model. Consequently, SQL [45] is designed to query relational
tables, and Cypher [82] for data stored graph-wise with vertexes and edges. In contrast to database
model tailored query language, there exist conceptual query languages, like SQL/EER [42] for the
extended entity relationship data model or CABLE [75] for the traditional entity relationship model.
This type of languages implements the concepts of a conceptual model as first class citizen in a query
language. Usually, these languages are available for users only and are not actually implemented as
database query language. Thus, conceptual query languages are transferred into a query language that
is executable in a traditional database system. By transferring the external interface characteristic of a
query language to a role-based database system, various requirements can be identified. In total, five
requirements are defined and listed in Table 5.1.

At first, query languages implemented in a DBS are tailored to the underlying logical database model.
To provide role semantics and the entity internal metatype distinction on this interface as well, the
query language has to feature this distinction, too. This metatype distinction requirement is repre-
sented in QL.1.

Secondly, a proper query language needs language statements to create schema objects and interre-
lations between these objects. These parts of the external database interface are referred to as data

110 Chapter 5 Query Language and Processing

Requirement Description

QL.1 Metatype distinction on the basis of the data model
QL.2 Data definition language to create the schema
QL.3 Data manipulation language to populate the database
QL.4 Data query language to retrieve stored data
QL.5 Syntax description to connect the operators to the query language
QL.6 Adapted Result Representation

Table 5.1: Overview of Requirements Posed to Role-based Database Query Language

definition language. This language part has to represent the metatype distinction in combination
with data model constraints, too. This might be a prohibition of Role Types to exist in isolation, or
Relationship Types can be established between Role Types of the same Compartment Type only. In
sum, these type level requirements are collected in requirement QL.2.

The instance level representation of requirements for a role-based query language are summarized
in QL.3. The database interface is required to provide statement to create and manipulate instances,
most likely in a data manipulation language. This includes the implementation of database model
constraints, like avoiding isolated Roles, too. Generally, this requirement aims for statements to pop-
ulate a role-based database.

To retrieve data from the database system, the actual query language has to be adopted to the under-
lying database model as well, which is stated in requirement QL.4. This is the most important part of
the external database interface, because it is used by applications and users to retrieve information.
In the best case, the metatype distinction is directly reflected in the statements.

Moreover, a syntax description is required as stated in the requirement QL.5. In the first place, this
defines how a query is written and secondly which expressions are part of certain statements and
where they can be applied. On the one hand side, this helps user to writer and debug their queries
more efficiently by giving them a clear definition how to write a query. On the other hand, this builds
the bridge between the expressions of the query language and the operators performed during query
processing.

Finally, a proper result representation is required to preserve the database model semantics in the
query results. This completes a fully integrated role-based database solution and is specified in the re-
quirement QL.6. Moreover and depending on the result representation, novel navigation and brows-
ing options have to be defined to provide the applications functionalities to process the result.

5.2 RELATED WORK

As aforementioned, there exist a lot of query languages, but only two among them support a notion
of roles. These approaches are ConQuer and IQL, which are discussed in the following. This discus-
sion outlines the design goals of the corresponding approach and details each language by utilizing a
small example. Moreover, these approaches are evaluated with respect to their ability to represent a
separation of concerns within a query.

5.2 Related Work 111

5.2.1 ConQuer

The first query language to be analyzed is ConQuer, an Object Role Model (ORM) based conceptual
query language. In 1996 the first version of ConQuer has been published in [13], followed by a second
version in 1997 [14]. It is characterized as conceptual query language, because it allows users to
formulate queries against a DBS on the basis of the conceptual model [33]. In the background this
type of query languages maps to the logical database model. Thus, it provides a database interface
to the users and applications, which is not based on the database model, but on the conceptual data
model. Moreover, ConQuer can be categorized into the class of mapping engines as discussed in
Section 3.4.2.

Notably, ConQuer is a query language in a narrower sense. It is a query language only and does not
feature statements to create or manipulate data stored in a DBS. In fact, it assumes the actual data to
be stored in a relational format. Generally, a ConQuer query describes facts and evaluates predicates
for these facts. Roles are not distinguished explicitly, rather they are used as named places in relations
between facts. This is caused by the ORM data model and is reflected directly in the query language.

Figure 5.1: ConQuer Example Query; Extracted From [14]

In Figure 5.1 an example ConQuer query is presented. It queries for an Academic fact that is related
to a Professor fact over an isa relationship. Additionally, this Professor fact has to be related to Chair
fact by a holds relationship. Moreover, the Academic itself must not hold a degree from a certain
University UQ.

However, there is no (formal) syntax description available for ConQuer. In each of their published
works on ConQuer, they describe the language using example queries and possible mappings [13, 14,
33]. In [13] the authors present a screenshot of a ConQuer implementation in the InfoAssistant product
of the company Asymetrix. Today, neither the product nor the company does exist anymore. However,
the implementation utilizes an exploratory approach, which presents the query writer various options
on how to complete the query. These options are extracted from the ORM-based schema descriptions
as shown in [13, Figure 1].

Unfortunately, ConQuer is a conceptual query language only. Based on the background mapping,
the database system cannot utilize the ORM specific semantics for optimization purposes. Hence,
there are no special operators that process ORM data objects, rather relational operators are used.
Moreover, the authors do not explain the storage of their metadata, especially how they represent the
interrelations between the facts and how they generate the queries. In detail, they claim for more sta-
ble ConQuer queries, which is motivated by abstraction to ORM data model. However, the SQL query
generator is required to have knowledge about the actual mapping and where it will find the meta-
data in the relational schema. Especially normalized relational schemata distribute the data object’s
attributes differently from ORM schemata. Furthermore, a discussion on the result representation is
totally missing. It is assumed that ConQuer provides a relational query result based on the background
mapping.

In sum, ConQuer provides the users an ORM abstracted view on data in a relational database. It
can be seen as additional interface along with a relational SQL interface. It features, caused by the

112 Chapter 5 Query Language and Processing

underlying data model, weak role semantics, but is a good example to show the benefits of query
languages located on the conceptual layer. ConQuer fulfills the requirement QL.4 only, because there
is the aforementioned weak notion of roles, and it does not come with a separate language to create
schema objects as well as manipulate the data in an ORM-based way. Moreover, a syntax description
and actual implementation is not available.

5.2.2 Information Networking Model Query Language

The information networking model approach provides a query language as well. In detail, the authors
describe a language that features a definition language (IDL), a manipulation language (IML), and a
query language (IQL) [43]. All language parts are based on and tailor to the information networking
model. Hence, it can be seen as full external database interface for an information networking model
database system.

The IQL is an X-Path [12] inspired query language, thus, the expressions within a query form a
tree [43]. This is reasonable, because their underlying data structure forms a tree as well (see Sec-
tion 4.2.5). In general, the IQL is separated into two parts, a query and a construction part [43].
Typically, both parts are handled within one statement, for instance in the projection clause of a SQL
select statement. The query part describes bindings of objects in the database to variables used in the
query. In contrast, the construction part defines the tree-based representation of the bindings for the
result. Figure 5.2 illustrates both, the query and construction part, of an IQL statement.

1 query TUD//Prof:$x//supervises:$y[//student_id:$z,//supervisor:$u,age:$v]
2 construct Prof:$x[supervises:$y[student_id:$z,supervisor:$u,age:$v], avgAge:avg($v)]

Figure 5.2: Example IQL Query Statement Illustrating the Query and Construction Part; According
to [43, p. 529]

This example queries for a Professor x at TUD who supervises a set of students y. Moreover, the stu-
dent_id is bound to the variable z, the supervisor to u and the age of the student to v. In addition, the
construction part defines the result representation omitting the root TUD, rather each the Professor
bound to x forms a separate root, indicated by []. Next, each Professor root has a set of supervised
students, as specified in the query part. Additionally, this query constructs an additional variable for
the average age of the supervised students.

As it can be seen in the example, a metatype distinction is not present, which is consequent with
respect to the underlying database model. In INM role relationships are represented as traditional
classes. Moreover, actual relationships, like supervises, are handled as class or objects as well. As a
consequence, it does not become clear within a query, which variable refers to a class, which to role
relationship, and which to a normal relationship. Basically, each metatype can occur in each part of
an expression. Consequently, a metatype distinction is absent in the construction part as well.

The IDL and IML are only mentioned and not explained in detail. Hence, it remains unclear which
metatypes they actually distinguish. In case of the definition language IDL, the definition statements
could be similar to the class definitions of the database model, as explained in Section 4.2.5. For the
IML, neither functionality specifications nor a syntax description is given. However, the IQL has a
formal syntax description for both, the query and construction part [77, Appendix A].

Like the IQL’s data definition and manipulation language, the result representation is not discussed
very well. The INM data structure forms a tree and so the query language implements tree structures

5.2 Related Work 113

as query concepts. It is assumed that the result is a tree as well, consisting of classes and their in-
terrelations. However, the result returned from an IQL query would hold classes instantiated on the
database side, in this situation. In which way the result can be processes by applications and which
options to navigate between the classes are available, is not mentioned at all.

In sum, the IQL is a powerful query language for the tree-based INM data structure. The separation of
a query description and result construction part is a nice feature and results in a well-structured and
organized query statement. However, a metatype distinction is absent, rather each metatype is equally
handled as class or object on the instance side. It fully satisfies the requirements QL.4, and QL.5, even
if there are no operators, but they relate their query language with the defined search strategies. QL.1
and QL.2 are partially fulfilled, because the data model provides a metatype distinction that is weakly
transformed into the query language and it is assumed that the definition language is specified as the
class specifications given in [62, 43]. The requirement QL.3 and QL.6 are not fulfilled at all, because
they claim to have defined an IML, but a syntax description is completely missing and assumption
based on their class definitions cannot be made. Moreover, the result representation is unknown and
an implemented INM database system is not available.

5.2.3 Discussion

Query languages that take advantage of roles or support a notion of flexible entities are rare. In fact,
there are two approaches only, ConQuer [14, 13] on the basis of Object Role Model [34] and IQL [43,
77] for the Information Networking Model [61, 44]. However, evaluating and rating competing or
at least related query languages is unfair. At first, these languages are based on and tailored to a
certain database model that has been designed to satisfy possibly different criteria than the approach
discussed in this thesis. Secondly, the query language is second step to take, right after defining the
database model. Weaknesses in the database model cannot be compensated by the query language. If
there is no discrimination between the desired metatypes and no explicit notion of a context in the
database model, like it is in the case of INM, the query language is not going to support this type of
distinction. For these reasons, the requirements are as general as possible. However, the evaluation
presented in Table 5.2 does not rate the general language design, rather the functionality aspects are
evaluated.

Requirement ConQuer IQL

Metatype distinction � �
Data definition language � �
Data manipulation language � �
Data query language � �
Syntax description � �
Result representation � �

�: yes, �: partial, �: no

Table 5.2: Evaluation of Related Database Interface Approaches

At first, none of the approaches provides an adequate data manipulation language. In case of ConQuer
this is by design, because they put an additional ConQuer layer over the traditional SQL layer to sim-
plify querying. This does not hold for the INM manipulation language. Basically, they do not provide
a syntax or any language example. Additionally, it does not become clear in related published works
how such a manipulation language could look like. For instance, how it is stated to which entity a role

114 Chapter 5 Query Language and Processing

relationship has to be added to or which constraints apply to an insert or update statement. Further-
more, the result representation of a query is not discussed at all by these approaches. Consequently,
the options to process the result remain unclear.

Secondly, a data definition language is not discussed very well. As aforementioned, ConQuer is a
query language in the narrow sense, hence, it is applied upon another language. Consequently, all
schema definitions and data manipulations are not covered by this approach, at all. In case of INM,
the data definition language could look like the class definitions in their discussed example [63, Ex-
ample 1, p. 299]. However, they do not explicitly state that these statements belong to their data
definition language.

Thirdly, the metatype distinction is not satisfied. The IQL is based on the INM, which actually pro-
vides a metatype distinction between classes and role relationships, but this is not consequently trans-
ferred to the query language. In case of ConQuer, the data model has a weak metatype distinction, so
the corresponding query language inherits this weakness.

Fourthly, a syntax description with respect to the query description underneath, is provided by the
IQL only. They do not define formal operators, but four search strategies which are coupled with their
query language. For the query and construction part, a syntax in Backus–Naur form is available [77,
Appendix A]. Unfortunately, ConQuer is explained by example only and does not feature an available
syntax description.

Finally, both approaches provide a proper query language for their desired purposes, but on a weak
data model, with respect to an explicit Role and Compartment notion. In total, none of the discussed
approach provides a satisfying foundation for the requirements posed to a role-based and context-
dependent query language.

5.3 RSQL DATA DEFINITION AND MANIPULATION LANGUAGE

Database systems manage their data and check their integrity with respect to a given schema. A
schema definition depends on the database model’s data structures. Nowadays, these structures are
very diverse. Relational database systems manage their data by means of tables [19], a key-value
store simply associates an arbitrary value to a certain key [66], and graph database relate vertexes by
edged [5]. A database system based upon RSQL’s database model manages its data structures by means
of Dynamic Data Types (see Section 4.3.1). At first, we explain RSQL’s data definition language syntax,
to create such schema objects, and demonstrate it by employing several statements. To populate
a database and manipulate the actual data, RSQL’s data manipulation language is introduced and
discussed. According to the database model (see Section 4.3.2), these manipulation procedures are
applied on Dynamic Tuples, the instance representation of Dynamic Data Types and the main instance
data structure. At first, we explain discuss the syntax of this language in detail. Based on this, we
create a small role-based database by using RSQL’s data manipulation language, This demonstrates
the relation between the statements, the database model, and the resulting data structures.

5.3 RSQL Data Definition and Manipulation Language 115

〈create-nt〉 ::= CREATE NATURALTYPE 〈nt-name〉 (〈attribute-definition〉 (, 〈attribute-definition〉)*)

〈create-ct〉 ::= CREATE COMPARTMENTTYPE 〈ct-name〉 (〈attribute-definition〉 (, 〈attribute-definition〉)*)

〈create-rt〉 ::= CREATE ROLETYPE 〈rt-name〉 (〈attribute-definition〉 (, 〈attribute-definition〉)*)
PLAYED BY (〈rigid-name〉 (, 〈rigid-name〉)*) PART OF 〈ct-name〉

〈create-rst〉 ::= CREATE RELATIONSHIPTYPE 〈rst-name〉
CONSISTING OF 〈rst-participating-expression〉 AND 〈rst-participating-expression〉

〈rst-participating-expression〉 ::= (〈rt-name〉 BEING (0 | 1) .. (1 | *))

〈attribute-definition〉 ::= 〈attribute-name〉 〈data-type〉 (〈constraint〉)*

〈constraint〉 ::= PRIMARY KEY | NOT NULL | UNIQUE

〈drop-nt〉 ::= DROP NATURALTYPE 〈nt-name〉

〈drop-ct〉 ::= DROP COMPARTMENTTYPE 〈ct-name〉

〈drop-rt〉 ::= DROP ROLETYPE 〈rt-name〉

〈drop-rst〉 ::= DROP RELATIONSHIPTYPE 〈rst-name〉

Figure 5.3: RSQL’s Data Definition Statements (excerpt)

5.3.1 Data Definition Language Syntax

Creating an RSQL schema focuses on defining the building blocks of Dynamic Data Types, for in-
stance, Natural Types and Role Types. Thus, the core elements, rather than the Dynamic Data Type
as logical data structure, are the focus of the data definition language statements. The syntax of this
language is represented in Figure 5.3. However, only the statements to create and drop schema ob-
jects are presented. Other statements, for example to rename attributes or change Relationship Type
participants, are omitted, because they focus on evolving a database schema rather than creating one
and this schema evolution is out of scope.

The schema definition in Section 4.3.1 specifies four different metatypes to achieve an entity internal
separation of concerns. Consequently, the data definition language features four different statements
to create these schema objects, the 〈create-nt〉, 〈create-ct〉, 〈create-rt〉, and 〈create-rst〉 statement. As
the names indicate, the first one creates a new Natural Type in the schema, the second one a new
Compartment Type, the third a new Role Type and the last one a new Relationship Type. From a
database model perspective, the specified sets, relations, and functions are populated by these state-
ments. Each of these statements starts with an initial CREATE followed by the type reference.

Creates

Afterwards, the syntax of the statements differs. In case of 〈create-nt〉 and 〈create-ct〉 the attribute
definition follows the initial phrases. An 〈attribute-definition〉 consists of an 〈attribute-name〉 and a
data type specification like INT or varchar. Moreover, 〈constraints〉 like a primary key, not null, or
uniqueness can be optionally defined for each attribute. Generally, all data types implemented in a

116 Chapter 5 Query Language and Processing

traditional relational database system are available. Hence, both statements only differ in the refer-
enced metatype.

In contrast to these two statements for specifying a rigid type, the 〈create-rt〉 statements additionally
defines its player types and the respective Compartment Type. After the attribute definition of a
Role Type, the phrase PLAYED BY indicates a list of rigid types that are able to fill this Role Type. As
both, Natural Types and Compartment Types, are able to fill Role Types, both can be referenced in
this clause. The list of these types is pointed off. Additionally, this phrase populates the schema’s
fills relation, as defined in Section 4.3.1. Moreover, each Role Type has to be part of exactly one
Compartment Type. To specify this, the PART OF phrase references a Compartment Type in which the
Role Type is contained in. This information is stored in the parts function of schema.

To create a proper Relationship Type, the name and the participating Role Types including their cardi-
nality constraints is required. A participating Role Type is specified by a 〈rst-participating-expression〉.
Since there are always two Role Types involved in a Relationship Type, two of these expressions are
required in total. A Compartment Type specification is not required, because both Role types have
to be in the same Compartment Type anyway, thus, it can be derived implicitly. However, such an
expression references a Role Type by naming it by using a 〈rt-name〉 followed by the phrase BEING and
the cardinality constraints. Furthermore, the information which Role Type is relationship to which
other one by which Relationship Type is stored in the rel function of the database model’s schema.
These constraints include a lower and an upper bound. For simplicity the lower bound is limited to
an 0 or 1 and the upper to a 1 or *. However, any combination of numbers in this cardinality specifica-
tion is possible in general, but for explaining the syntax, these options suffice. The actual cardinality
information for a Relationship Type is stored in the function card .

Drops

The drop statements for each of the metatypes is straight forward. A DROP in conjunction with the
metatype name and the corresponding type name specifies a proper drop statement. Depending on
which metatype is referenced the effects on the schema vary.

Natural Type Dropping a Natural Type results in deleting it from the set NT and a drop of all its
references from the fills relation.

Compartment Type In case a Compartment Type is dropped, the corresponding element in the set
CT is deleted. Additionally, all references in the fills relation are discarded and the parts
function is adapted.

Role Type Dropping a Role Type results in deleting the element from the set RT , deleting all refer-
ences in the fills relation, adapting the parts function for the Compartment Type the respective
Role Type is contained in, and adjusting the rel function for all affected Relationship Types.

Relationship Type If a Relationship Type is dropped from the system, the corresponding element
in the set RST is deleted, the rel function for this Relationship Type is deleted, and conse-
quently, the card function is adapted by deleting all cardinality constraints associated to this
Relationship Type.

5.3 RSQL Data Definition and Manipulation Language 117

However, dropping types may result in cascading drop sequences. For instance, dropping a Compart-
ment Type has to result in the drop of all contained Role Types as well. Generally, there are two
option to implement this: (i) dropping all related types as well or (ii) only allow to drop unrelated
types, such as empty Compartment Types. The first option may result in cascading drop sequence
and unintended drops, but allows for dropping many types with only few statements. In contrast, the
second option requires an order within the drop statements. At first Relationship Types have to be
dropped, afterwards the Role Types and finally the Compartment and Natural Types. Moreover, this
option requires an individual statement for dropping a type and denies invalid drop statements. This
gives the developer the most control over dropping types, but demands more effort. No matter which
of these options is implemented, the syntax is orthogonal to this problem, which exist in relational
database systems as well. For instance, in case there are foreign key constraints between two tables
and the referenced table should be dropped.

In sum, the data definition language syntax discriminates between the four metatypes defined in the
database model and manipulates the database model’s relations and functions as well.

5.3.2 Creating And Extending Dynamic Data Types

To demonstrate the creation and extension of a Dynamic Data Type and the underlying schema el-
ements, a small example based on the conceptual model illustrated in Figure 2.3 on page 21, is em-
ployed. This example shows the creation of two Dynamic Data Types, which share certain Role Types
and a Relationship Type, in five statements. Moreover, the population of the sets, relations and func-
tions is given for each of these steps. In particular, a conceptual representation of the model state
after each step is depicted in Figure 5.4. In the end, we model the situation depicted in step five; a
Person who can be Student and Professor within a University and a certain Professor supervises
some Students.

Next, each statement is discussed in detail by representing the actual textual statement, the population
of the database model’s schema sets, its functions, and relations. Finally, the resulting Dynamic Data
Types are explained.

Statement 1 At first, the Natural Type Person is created.

1 CREATE NATURALTYPE Person (name varChar(128) PRIMARY KEY,
2 lastname varChar(128) PRIMARY KEY, birthday date PRIMARY KEY,
3 address varChar(256));

The schema U after executing this statement has the following state.

U =(NT = {Person}, CT = ∅, RT = ∅, RST = ∅,
fills = ∅, parts = ∅, rel = ∅, card = ∅)

Moreover, the following Dynamic Data Type is generated, because a new Natural Type is cre-
ated. Creating a new Natural Type in the system always results in a new Dynamic Data Type.

ddtPerson = (Person, ∅, ∅)

Statement 2 Secondly, the Compartment Type University is created in the system.

1 CREATE COMPARTMENTTYPE University (name varcChar(128), address varChar(255),
2 location varChar(255));

118 Chapter 5 Query Language and Processing

4

- Name : String
- Last Name : String
- Birthday : Date
- Address : String

Person

- Name : String
- Last Name : String
- Birthday : Date
- Address : String

Person

University

- Name : String
- Address : String
- Location : String

- Name : String
- Last Name : String
- Birthday : Date
- Address : String

Person

University

- Name : String
- Address : String
- Location : String

- Student_ID : Int
- Studies : String
- Year : Int

Student

- Name : String
- Last Name : String
- Birthday : Date
- Address : String

Person

University

- Name : String
- Address : String
- Location : String

- Student_ID : Int
- Studies : String
- Year : Int

Student

- Chair : String
- ResearchBudget : Int
- Office : String

Professor

superv.

0..1

0..*

- Name : String
- Last Name : String
- Birthday : Date
- Address : String

Person

University

- Name : String
- Address : String
- Location : String

- Student_ID : Int
- Studies : String
- Year : Int

Student

- Chair : String
- ResearchBudget : Int
- Office : String

Professor

1 2 3

4 5

Figure 5.4: Model Evolution While Creating a Role-based Database Schema

The schema U after executing this statement has the following population. As it can be seen,
the University is added to the set CT and to the parts function, but with an empty set.

U =(NT = {Person}, CT = {University}, RT = ∅, RST = ∅,
fills = ∅, parts = {University → ∅}, rel = ∅, card = ∅)

Moreover, the creation of a Compartment Type always creates a new Dynamic Data Type.

ddtPerson = (Person, ∅, ∅)
ddtUniversity = (University, ∅, ∅)

Statement 3 As there is a Natural Type and a Compartment Type in the schema, Role Types can be
added. The first Role Type to be created in the schema is Student.

1 CREATE ROLETYPE Student (Student_ID int, Studies varChar(255), year int)
2 PLAYED BY (Person) PART OF University;

The schema U after executing this statement has the following elements.

U =(NT = {Person}, CT = {University}, RT = {Student}, RST = ∅,
fills = {(Person,Student)}, parts = {University → {Student}},
rel = ∅, card = ∅)

Inserting a new Role type into the schema always results in extending at least two Dynamic Data
Types. All referenced rigid types in the PLAYED BY phrase are extended in the filling dimension.

5.3 RSQL Data Definition and Manipulation Language 119

Additionally, the Compartment Type in the PART OF phrase is enhanced in the participating di-
mension. As it can be seen, the Student Role Type has been added to the Dynamic Data Type
Person as well as University.

ddtPerson = (Person, {Student}, ∅)
ddtUniversity = (University, ∅, {Student})

Statement 4 Next, the Role Type Professor is inserted into the schema.

1 CREATE ROLETYPE Professor (Chair varChar(256), ResearchBudget int,
2 Office varChar(128)) PLAYED BY (Person) PART OF University;

The schema U after executing this statement has the following elements.

U =(NT = {Person}, CT = {University}, RT = {Student,Professor}, RST = ∅,
fills = {(Person,Student), (Person,Professor)},
parts = {University → {Student,Professor}}, rel = ∅, card = ∅)

By creating this Role Type, the corresponding sets, relations, and functions are updated. The
Dynamic Data Types are adapted to the new Role Type, too.

ddtPerson = (Person, {Student,Professor}, ∅)
ddtUniversity = (University, ∅, {Student,Professor})

Statement 5 Finally, the Relationship Type supervises between the Professor and Student Role
Types is created.

1 CREATE RELATIONSHIPTYPE supervises CONSISTING OF
2 (Professor BEING 0 .. *) AND (Student BEING 0 .. 1);

The schema U after executing this statement has the following elements.

U =(NT = {Person}, CT = {University}, RT = {Student,Professor},
RST = {supervises},fills = {(Person,Student), (Person,Professor)},
parts = {University → {Student,Professor}},
rel = {supervises → (Professor ,Student)}, card = {supervises → (0..∞, 0..1)})

The creation of this Relationship type results in the population of the set RST and both func-
tions, rel and card . However, the Dynamic Data Types are not affected at all, because they
describe the structure of an entity only and not the relations between entities.

ddtPerson = (Person, {Student,Professor}, ∅)
ddtUniversity = (University, ∅, {Student,Professor})

These statements create and extend Dynamic Data Types and populate the schema. In contrast, all
drop statements reduce the schema and shrink Dynamic Data Types.

120 Chapter 5 Query Language and Processing

5.3.3 Data Manipulation Language Syntax

As the schema is created by the base elements and inferring Dynamic Data Types, the same approach
is applied on the instance level as well. Hence, the data manipulation language creates, updates,
and deletes Naturals, Compartments, and Roles, according to the metatype distinction defined in the
database model. The relationships are stored in the links function and do not feature an individual
instance set. Moreover, the plays relation is the instance level representation of fills in combination
with parts and connects the cores with played Roles in Compartments. In addition, the type function
stores data about the type information of each instance. The data manipulation language is presented
in Figure 5.5.

Inserts

Inserting cores into the system is as easy as creating them, because they do not have any constraints.
In general, a core can be Natural or Compartment and the insert statements 〈insert-nt〉 and 〈insert-ct〉
start with INSERT INTO NATURALTYPE and INSERT INTO COMPARTMENTTYPE, respectively. This is followed by
the respective name and a list of attributes for an explicit linkage between the attributes and values.
Afterwards, the literal VALUES initializes the value specifications by several 〈value-expressions〉. How-
ever, an insert on a Natural Type and Compartment Type populates the corresponding sets and the
type function. Moreover, for each of these statements a new Dynamic Tuple is created in the system.

Creating a new Role demands more effort in writing the statement, because the relations to other
elements have to be denoted and established. The 〈insert-rt〉 statement starts with the phrase INSERT

↪→ INTO ROLETYPE followed by a Role Type name. This specifies the Role Type of the new Roles. Next,
the explicit assignment of attributes and values is specified by using the same mechanism as the state-
ments to insert a new core. So far, this statement do not differ from statements inserting a core.
In addition to this base description, the 〈insert-rt〉 statement defines by which core it is played and
in which Compartment it is going to be featured in. The former is declared by the phrase PLAYED BY

followed by a 〈config-expression〉 and an optional 〈where-clause〉.

The idea behind a 〈config-expression〉 is to describe the schema a Dynamic Tuple has to meet. Hence, it
describes Configurations of a Dynamic Data Type. According to the database model and the Dynamic
Data Type definition, it consists of a core with a mandatory alias and Role Type descriptions in two
dimensions, the playing and featuring dimension. A dimension is indicated by its corresponding term
FEATURING and PLAYING, respectively. To specify the Role Types in the dimensions and their logical
relation to each other, the 〈log-expression〉 is used, consisting of a single Role Type definition or a Role
Type definition in logical combination with another 〈log-expression〉. Consequently, a 〈log-expression〉
is set up recursively, having the recursion breakpoint at a single Role Type definition. However, a
Role has to have exactly one player, hence, this 〈config-expression〉 has to specify exactly one Dynamic
Tuple. The same applies for the featuring Dynamic Tuple, which is specified by the phrase FEATURED BY

in combination with another 〈config-expression〉 and an optional 〈where-clause〉. Again, the second
〈config-expression〉 has to reference one Dynamic Tuple only, because a Role is featured in exactly
one Compartment. In sum, this statement adds new entries to the set of Roles R, extends the type
function, and extends two Dynamic Tuples.

The 〈insert-rst〉 has a different syntax again. It is designed to specify three Dynamic Tuples, one hold-
ing the Role of the first Role Type, one for the second Role Type participating in this Relationship
Type, and finally the last one defines the Compartment these Roles will be connected in. At first
the INSERT INTO RELATIONSHIPTYPE phrase in combination with a proper name initializes a 〈insert-rst〉

5.3 RSQL Data Definition and Manipulation Language 121

〈insert-nt〉 ::= INSERT INTO NATURALTYPE 〈nt-name〉 (〈attribute-name〉 (, 〈attribute-name〉)*)
VALUES (〈value-expression〉 (, 〈value-expression〉)*)

〈insert-ct〉 ::= INSERT INTO COMPARTMENTTYPE 〈ct-name〉 (〈attribute-name〉 (, 〈attribute-name〉)*)
VALUES (〈value-expression〉 (, 〈value-expression〉)*)

〈insert-rt〉 ::= INSERT INTO ROLETYPE 〈rt-name〉 (〈attribute-name〉 (, 〈attribute-name〉)*)
VALUES (〈value-expression〉 (, 〈value-expression〉)*)
PLAYED BY 〈config-expression〉 (WHERE 〈where-clause〉)?
FEATURED BY 〈config-expression〉 (WHERE 〈where-clause〉)?

〈insert-rst〉 ::= INSERT INTO RELATIONSHIPTYPE 〈rst-name〉
CONNECT 〈config-expression〉 (WHERE 〈where-clause〉)?
WITH 〈config-expression〉 (WHERE 〈where-clause〉)?
AT 〈config-expression〉 (WHERE 〈where-clause〉)?

〈update-nt〉 ::= UPDATE NATURALTYPE 〈nt-name〉 SET 〈assignment-expression〉 (WHERE 〈where-clause〉)?

〈update-ct〉 ::= UPDATE COMPARTMENTTYPE 〈ct-name〉 SET 〈assignment-expression〉
(WHERE 〈where-clause〉)?

〈update-rt〉 ::= UPDATE ROLETYPE 〈rtname〉 SET 〈assignment-expression〉
PLAYED BY 〈config-expression〉 (WHERE 〈where-clause〉)?
FEATURED BY 〈config-expression〉 (WHERE 〈where-clause〉)?

〈delete-nt〉 ::= DELETE NATURALTYPE FROM (〈config-expression〉) (WHERE 〈where-clause〉)?

〈delete-ct〉 ::= DELETE COMPARTMENTTYPE FROM (〈config-expression〉) (WHERE 〈where-clause〉)?

〈delete-rt〉 ::= DELETE ROLETYPE 〈rtname〉
PLAYED BY 〈config-expression〉 (WHERE 〈where-clause〉)?
FEATURED BY 〈config-expression〉 (WHERE 〈where-clause〉)?

〈delete-rst〉 ::= DELETE RELATIONSHIPTYPE 〈rstname〉
DISCONNECT 〈config-expression〉 (WHERE 〈where-clause〉)?
FROM 〈config-expression〉 (WHERE 〈where-clause〉)?
AT 〈config-expression〉 (WHERE 〈where-clause〉)?

〈config-expression〉 ::= 〈rigid-name〉 〈rigidAlias〉 (FEATURING 〈logical-expression〉)?
(PLAYING 〈logical-expression〉)?

〈logical-expression〉 ::= 〈rt-def〉 | 〈rt-def〉 〈junctor〉 〈logical-expression〉

〈rt-def〉 ::= 〈rt-name〉 〈rtAlias〉

〈assignment-expression〉 ::= 〈attribute〉 = 〈newValue〉

Figure 5.5: RSQL’s Data Manipulation Statements

statement. By denoting the Relationship Type name, the participating Role Types and the Compart-
ment Type these Role Types are located in, is uniquely identifiable. Next, three Dynamic Tuples have
to be described, which is performed by several 〈config-expressions〉. The first one is introduced by a
CONNECT, the second by a WITH and the last one by an IN. All of these expressions can be combined with
an individual 〈where-clause〉 to filter Dynamic Tuples on the attribute level. From a database mode
perspective, this statement adds entries in the links function.

122 Chapter 5 Query Language and Processing

Updates

The update statements 〈update-nt〉, 〈update-ct〉, and 〈update-rt〉 are used to change value of certain
attributes. There is no particular 〈update-rst〉 statement, because Relationship Types do not have
attributes. In detail, the former two statements differ only in the referenced metatype. They start
with UPDATE NATURALTYPE and UPDATE COMPARTMENTTYPE, respectively, followed by a proper name. Next, the
phrase SET introduces the 〈assignment-expression〉, which references an 〈attribute〉 and a new value.
Optional, the affected Dynamic Tuples can be filtered by an attribute filter in the 〈where-clause〉.

The 〈update-rt〉 statement differs from these by having two additional 〈config-expressions〉. One is
initialized by PLAYED BY and the other by FEATURED BY, to specify these Dynamic Tuples, in which the af-
fected Roles have to be played and featured by, respectively. These two expressions take the duality of a
Role into account, by specifying corresponding player and Compartment. However, this update state-
ments starts with UPDATE ROLETYPE, a Role Type name followed by a SET and an 〈assigment-expression〉.
This expression references an attribute of the Role Type and sets the new value for all Roles of the
updated Role Type. However, updates do not affect the sets and functions of the instance data model
at all, because changes of attribute values are described only.

Deletes

To discard data from the database, four different delete statements are available. One for each
metatype. The 〈delete-nt〉 and 〈delete-ct〉 statement specify Dynamic Tuples that have to be deleted
from the database. The start with the phrase DELETE NATURALTYPE FROM and DELETE COMPARTMENTTYPE FROM.
Afterwards, a 〈config-expression〉 specifies the schema of the affected Dynamic Tuples and the op-
tional 〈where-clause〉 defines an attribute filter. A dedicated name for the Natural Type or Compart-
ment Type is not required, because the 〈config-expression〉 specifies only one player type. Hence, there
will not be any ambiguity about the core. However, each Dynamic Tuple that is qualified by the
〈config-expression〉 and the attribute filter will be erased from the database. In contrast, the 〈delete-rt〉
statement discards only parts of a Dynamic Tuple, especially the Roles of the specified Role Type.
This statement starts with a DELETE ROLETYPE and a certain Role Type name. Note, three is no FROM,
because Role are part of two instead of one instances, i.e. Dynamic Tuples. Consequently, the phrases
PLAYED BY and FEATURED BY in conjunction with a 〈config-expression〉 and a 〈where-clause〉 specify the
Dynamic Tuples, a qualified Role is played in and featured by, respectively. The qualifying Roles will
be deleted from both Dynamic Tuples. This can be only one Role, or multiple Roles of the specified
Role Type. Finally, the 〈delete-rst〉 statement disconnects Roles from a certain Relationship Type. The
statement specifies three sets of Dynamic Tuples, like the contrary 〈insert-rst〉 does. It starts with
the phrase DELETE RELATIONSHIPTYPE followed by a particular Relationship Type name 〈rst-name〉. Next,
the three 〈config-expressions〉 in combination with an optional 〈where-clause〉 define the three sets
of Dynamic Tuples. The first one defines the first Role Type of the Relationship Type and second
〈config-expression〉 the second Role Type. Finally, the third 〈config-expression〉 defines the Compart-
ments the Relationships have to take place. However, the Dynamic Tuple specifications are intro-
duced with DISCONNECT, FROM, and AT, respectively. In total, these statements are the inverses of the in-
sert statements, hence, the same sets and functions are affected, but in an inverse way. Consequently,
elements are erased from the instances’ sets and functions are shrunk.

5.3 RSQL Data Definition and Manipulation Language 123

10

- Name : „John“
- Last Name : „Doe“
- Birthday : 12.01.93
- Address : „123 Fake Street“

John :Person

TUD : University

- Name : „Technische Universität Dresden“
- Address : „Nöthnitzer Str. 43“
- Location : „Dresden“

- Student_ID : 12345
- Studies : „Computer Science“
- Year : 2009

s1 : Student

- Chair : „Databases“
- ResearchBudget : 9,000
- Office : „APB 3108“

p1 : Professor

- Name : „Gert“
- Last Name : „Müller“
- Birthday : 19.10.53
- Address : „85 Central Pl.“

Gert :Person

su
p

e
rvise

s

- Name : „John“
- Last Name : „Doe“
- Birthday : 12.01.93
- Address : „123 Fake Street“

John :Person

- Name : „Gert“
- Last Name : „Müller“
- Birthday : 19.10.53
- Address : „85 Central Pl.“

Gert :Person

- Name : „John“
- Last Name : „Doe“
- Birthday : 12.01.93
- Address : „123 Fake Street“

John :Person

TUD : University

- Name : „Technische Universität Dresden“
- Address : „Nöthnitzer Str. 43“
- Location : „Dresden“

- Name : „Gert“
- Last Name : „Müller“
- Birthday : 19.10.53
- Address : „85 Central Pl.“

Gert :Person

- Name : „John“
- Last Name : „Doe“
- Birthday : 12.01.93
- Address : „123 Fake Street“

John :Person

TUD : University

- Name : „Technische Universität Dresden“
- Address : „Nöthnitzer Str. 43“
- Location : „Dresden“

- Student_ID : 12345
- Studies : „Computer Science“
- Year : 2009

s1 : Student

- Chair : „Databases“
- ResearchBudget : 9,000
- Office : „APB 3108“

p1 : Professor

- Name : „Gert“
- Last Name : „Müller“
- Birthday : 19.10.53
- Address : „85 Central Pl.“

Gert :Person

1 2

3 4

Figure 5.6: Dynamic Tuple Evolution While Creating a Role-based Database

5.3.4 Creating and Extending Dynamic Tuples

To explain the creation and extension of Dynamic Tuples in detail, a small example based on the
instance presented in Figure 2.4 is employed. This example creates three Dynamic Tuples, add Roles
to these, and connects them by a certain Relationship. In particular, four steps are required to build a
database as conceptually shown in Figure 5.6. Each of these steps is discussed in detail by presenting
the query, the effects on the data structure, and the database’s set population.

Statement 1 At first, two Naturals are inserted in the database by executing the following two state-
ments.

1 INSERT INTO NATURALTYPE Person (name, lastname, birthday, address)
2 VALUES ("John", "Doe", 12.01.93, "123 Fake Street");
3 INSERT INTO NATURALTYPE Person (name, lastname, birthday, address)
4 VALUES ("Gert", "Mueller", 19.10.53, "85 Central Pl.");

The instance u of U after executing these two statements has the following state.

u =(N = {John,Gert}, C = ∅, R = ∅,
type = {(John→ Person), (Gert→ Person)}, plays = ∅, links = ∅)

Moreover, the following Dynamic Tuples are generated, because two new Naturals are created.
Creating a new Natural in the database always results in a new Dynamic Tuple.

dtJohn = (John, ∅, ∅), dtGert = (Gert, ∅, ∅)

124 Chapter 5 Query Language and Processing

Statement 2 Secondly, the Compartment TUD is created, which builds the context for later Roles.

1 INSERT INTO COMPARTMENTTYPE University (name, address, location)
2 VALUES ("TUD", "Noethnitzer Str. 43", "Dresden");

This affects the instance u sets by adding a new Compartment to the Compartment set C and
creating a new Dynamic Tuple.

u =(N = {John,Gert}, C = {TUD}, R = ∅,
type = {(John→ Person), (Gert→ Person), (TUD→ University)},
plays = ∅, links = ∅)

As inserting Naturals creates a new Dynamic Tuple, inserting a new Compartment has the same
effect. Consequently, the database holds three Dynamic Tuples after executing the above state-
ment.

dtJohn = (John, ∅, ∅), dtGert = (Gert, ∅, ∅), dtTUD = (TUD, ∅, ∅)

Statement 3 Next, Roles are created and bound to their respective player as well as to a Compart-
ment. In detail, two Roles are inserted, a Student Role and a Professor Role by the following
statements.

1 INSERT INTO ROLETYPE Student (Student_ID, Studies, year)
2 VALUES (12345, "Computer Science", 2013)
3 PLAYED BY PERSON p WHERE p WITH p.name="John"
4 FEATURED BY University u WHERE u WITH u.name="TUD";
5 INSERT INTO ROLETYPE Professor (Chair, ResearchBudget, Office)
6 VALUES ("Databases", 9000, "APB 3108")
7 PLAYED BY PERSON p WHERE p WITH p.name="Gert"
8 FEATURED BY University u WHERE u WITH u.name="TUD";

The base data are manipulated by adding both Roles to the set of Roles, adding the correspond-
ing types function, and inserting the connection into the plays relation.

u =(N = {John,Gert}, C = {TUD}, R = {s1, p1},
type = {(John→ Person), (Gert→ Person), (TUD→ University),
(s1→ Student), (p1→ Professor)},
plays = {(John,TUD, s1), (Gert,TUD, p1)}, links = ∅)

By adding Roles to the system, two Dynamic Tuples are extended for each inserted Role. In this
example, the two Person Dynamic Tuples are extended once, and the University one twice,
resulting in the following Dynamic Tuple state. Moreover, the Dynamic Tuples start to overlap
by the newly created Roles. In detail, dtJohn overlaps with dtTUD by the Role s1 and dtGert with
dtTUD in the Role p1. In addition, each Dynamic Tuple changed its Configuration. For instance,
dtJohn changed from cmin = (Person, ∅, ∅) to c1 = (Person, {Student}, ∅). However, the
respective Dynamic Tuples have the following state.

dtJohn = (John, {{s1}}, ∅), dtGert = (Gert, {{p1}}, ∅), dtTUD = (TUD, ∅, {{s1}, {p1}})

Statement 4 The last statement establishes a relationship between the previously created Student
and Professor Roles. Consequently, the instance u is manipulated by creating a new entry in
the links function.

1 INSERT INTO RELATIONSHIPTYPE supervises
2 CONNECT Person p PLAYING Student s WHERE p WITH p.name="John"
3 WITH Person p2 PLAYING Professor prof WHERE p2 WITH p2.name="Gert"
4 AT University u WHERE u WITH u.name="TUD";

5.3 RSQL Data Definition and Manipulation Language 125

u =(N = {John,Gert}, C = {TUD}, R = {s1, p1},
type = {(John→ Person), (Gert→ Person), (TUD→ University),
(s1→ Student), (p1→ Professor)},
plays = {(John,TUD, s1), (Gert,TUD, p1)},
links(supervises,TUD) = {(p1, s1)})

Dynamic Tuples are not affected by establishing Relationships, hence, they remain the same.

dtJohn = (John, {{s1}}, ∅), dtGert = (Gert, {{p1}}, ∅), dtTUD = (TUD, ∅, {{s1}, {p1}})

5.4 RSQL DATA QUERY LANGUAGE

Generally, a query language specification defines the syntax of well-formed query statements to re-
trieve stored data objects. The concepts of the database are usually reflected in the query language
as well. For instance, SQL as declarative query language for the mathematical concept of a relation
specifies tables and tuples as instance of those. Transferring this onto a query language for RSQL’s
database model, it has to support the notion of Dynamic Data Types and Dynamic Tuples. By building
a query language on the basis of these notions, the separation of concerns within an entity is guar-
anteed, because this characteristic is inherited from the base data structure to the query language
concepts.

At first the formal syntax of RSQL’s query language is introduced and explained. To demonstrate
the connection from the query language’s expressions to the base database model data structures,
various examples are employed and detailed subsequently to the syntax explanations. Furthermore,
the linkage to the database operators is detailed by using several examples. Parts of the following
syntax description have been published in [50, 49, 51].

5.4.1 Data Query Language Syntax

The data query language of RSQL consists of one statement only, the 〈select〉 statement. It can be com-
bined with other 〈select〉 statements by using set operations. To combine several 〈select〉 statements,
the 〈query〉 element is introduced as root element. A set operation between two 〈selects〉 may be a
difference, an intersection or a union. To define which operation has to be performed on the level of
Role for these set operations, a union and an intersection are available, resulting in a two-staged set
operation design (see 4.4).

Generally, a 〈select〉 statement has three levels. The first level is called intra Dynamic Tuple level
and describes the schema a Dynamic Tuple has to have. The second one is denoted as inter Dynamic
Tuple level and relates Dynamic Tuples to others by using overlapping information or Relationship
Types. Finally, the third level is entitled as attribute level and aims at attributes of Dynamic Tuples.
The syntax description is illustrated in Figure 5.7. As it can be seen, each select statement in RSQL’s
data query language consists of three parts. A 〈projection-clause〉, a 〈from-clause〉, and an optional
〈where-clause〉.

The first one specifies several attributes among all available Dynamic Tuple attributes. Consequently,
only the specified attributes will be available in the result. If all attributes should be returned, then a
∗ simplifies the listing of all attributes. It is located on the attribute level.

126 Chapter 5 Query Language and Processing

〈query〉 ::= 〈select〉 | 〈select〉 〈query-junctor〉 〈query〉

〈select〉 ::= SELECT 〈projection-clause〉 FROM 〈from-clause〉 (WHERE 〈where-clause〉)? ;

〈from-clause〉 ::= 〈config-expression〉 (, 〈config-expression〉)* (, 〈relation-clause〉)*

〈config-expression〉 ::= 〈rigid-def〉 (FEATURING 〈logical-expression〉)?
(PLAYING 〈logical-expression〉)?

〈rigid-def〉 ::= 〈rigid-name〉 〈alias〉 | _ 〈alias〉

〈rigid-name〉 := 〈ct-name〉 | 〈nt-name〉

〈logical-expression〉 ::= 〈rt-def〉 | 〈rt-def〉 〈junctor〉 〈logical-expression〉

〈rt-def〉 ::= (〈rt-name〉)? 〈rtAlias〉

〈relation-clause〉 ::= RELATING 〈log-rel-expression〉

〈log-rel-expression〉 ::= 〈rel-def〉 | 〈rel-def〉 〈junctor〉 〈log-rel-expression〉

〈rel-def〉 ::= 〈rtAlias〉 WITH 〈rtAlias〉 IN 〈ctAlias〉 USING 〈rst-name〉

〈where-clause〉 ::= 〈where-filter〉 (, 〈where-filter〉)*

〈where-filter〉 ::= 〈alias〉 WITH 〈predicate〉

〈junctor〉 ::= AND | OR

〈query-junctor〉 ::= DIFF DT | DIFF R | 〈dt-set-op〉

〈dt-set-op〉 ::= (INTERSECT | UNION) 〈role-level-set-op〉

〈role-level-set-op〉 ::= INTERSECT | UNION

〈projection-clause〉 ::= * | 〈alias〉.〈attribute〉 (, 〈alias〉.〈attribute〉)*

Figure 5.7: RSQL’s Data Query Language Syntax Definition

The 〈from-clause〉 is the most important and complex clause in a 〈select〉 statement. It describes
the constructs of the intra and inter Dynamic Tuple level. Each 〈from-clause〉 consists of several
〈config-expression〉 and optional 〈relation-clause〉. The general syntax of a 〈config-expression〉 is dis-
cussed in Section 5.3.3. However, this expression is included in RSQL’s data query language syntax,
because there is one important difference. In the 〈rt-def〉 of a 〈logical-expression〉, the Role Type name
〈rt-name〉 is optional, to specify overlap points in a query. Skipping the Role Type name results in a
re-usage of a previously defined Role Type by re-referencing it. Such a Role Type re-usage construct
specifies an overlap over two 〈config-expression〉.

However, along with the schema specifications, there may exist 〈relation-clauses〉 to specify the Re-
lationships between Role Types. The ideas of this clause is, to specify which Roles of a certain Role
Type are in a certain Relationship to other Roles of a particular Role Type and in which Compartment
this Relationship takes place. All referenced Role Types and Compartment Types must be specified
previously, thus, only re-usages are valid in this clause. This clause is initialized by the term RELATING

followed by a 〈log-rel-expression〉. Like the 〈log-expression〉, this expression is recursive as well, to logi-
cally combine various of these expressions. The recursion’s breakpoint is a 〈rel-def〉, consisting of two

5.4 RSQL Data Query Language 127

Role Type aliases connected by the term WITH followed by the term IN and a Compartment Type alias
〈ctAlias〉. To specify the actual Relationship Type, the literal USING is stated by a subsequent Relation-
ship Type name.

Finally, each 〈select〉 statement has an optional 〈where-clause〉, initialized by the term WHERE and rep-
resents the attribute level. Generally, a 〈where-clause〉 specifies several 〈where-filter〉 consisting of an
〈alias〉 in combination with a 〈predicate〉. The alias can be any alias that has been defined previously.
The predicate can be anything, an equation, a check for a certain value, a comparison of two attributes,
or anything else. However, a predicate is applied to a certain type alias only, to distinguish the predi-
cate evaluation process between the whole data structure or only parts of it. For instance, the whole
Dynamic Tuple can be filtered on the basis of the predicate or it can be applied on the Roles only. In
the former case, the rigid is referenced and in the latter one a Role Type alias is referenced.

5.4.2 From Syntax to Logical Operators

The syntax of this data query language is defined with a strong relation to the underlying database
model concepts and operators in mind. To demonstrate this relation, all operators are discussed in
detail by explaining which parts of a 〈query〉 result in which operator and operator parametrization.
Moreover, this discussion is augmented by small query examples that focus on the operator character-
istics.

Configuration Selection A configuration selection is executed for each 〈config-expression〉 in a
〈select〉 statement. Hence, the operator plan will feature as many configuration selections as
base data inputs are in the query. This represents the base data filter for Dynamic Tuples in
suitable Configuration. As input, a set of Dynamic Tuples under a queried Dynamic Data Type
is provided to this operator. Additionally, the 〈rigid-name〉 represents tcex. α is represented
by the 〈log-expression〉, while each 〈rt-name〉 in combination with 〈junctor〉 is added to logical
proposition. Is there only an alias for the Role Type, the respective 〈rt-name〉 is added from
the 〈config-expression〉, which specifies this Role Type with a 〈rt-name〉. Depending on the di-
mension, either playing or featuring, the Role Type names are annotated with an overline and
underline, respectively. For instance, imagine the following query.

1 SELECT * FROM Person p PLAYING Student s AND StudentAssistant sa;

As input set, a set of Dynamic Tuples typed with the Dynamic Data Type Person, will be pro-
vided to the operator. The initial configuration selection will feature a tcex = Person and
α = Student ∧ StudentAssistant.

Configuration Projection A configuration projection is executed for each 〈config-expression〉 as well.
It filters the input Dynamic Tuples for queried Role Types only. Thus, α is represented by a
logical proposition consisting of all 〈rt-name〉 in logical combination with 〈junctor〉. Hence, as
many 〈log-expression〉 are under a certain 〈config-expression〉, as many Role Types will appear in
α. Moreover, the Role Types are annotated by their corresponding dimension they belong to.

For example, imagine the same query as in the configuration selection again. All Dynamic
Tuples of a Person will be provided to this operator and α is populated with Student ∧
StudentAssistant. The output is a set of Dynamic Tuples with trimmed dimensions.

128 Chapter 5 Query Language and Processing

Role Matching A role matching operator is created within the operator plan for each role matching
unit. In general, such a unit consists of 〈rt-defs〉 that do not specifying a 〈rt-name〉, but reference
an alias only. Moreover, it is established between two 〈config-expressions〉, such that each ref-
erence points to the same 〈config-expression〉. If they do not point the same 〈config-expression〉,
they form a separate role matching unit and thus, separate operators. This alias reference and
〈config-expression〉 overlap is based upon the overlap of Dynamic Data Types and Dynamic Tu-
ples.

The most basic role matching unit is a single 〈rt-def〉 that does not specify a 〈rt-name〉. In case
multiple 〈rt-def〉 point from one 〈config-expression〉 to same opponent one, the corresponding
Role Types are collected in the role matching unit and combined with the 〈junctor〉 between
them. However, such an alias only construct defines an overlap of two 〈config-expressions〉 at
the point of this alias. In case the role matching unit consists of more than one Role Type,
the two 〈config-expressions〉 overlap in multiple points. However, the parameter α is populated
with the Role Types referenced by the alias and combined with the 〈junctor〉 between them.
The affected 〈config-expressions〉 define the input sets of Dynamic Tuples for this operator. As
example, imagine the following query.

1 SELECT * FROM Person p PLAYING Student s AND StudentAssistant sa,
2 Uni u FEATURING s AND sa;

The Student and StudentAssistant Role Types are referenced twice each, once in the
〈config-expression〉 for the Dynamic Data Type Person and once for the Uni. Additionally, both
are conjunctively connected to each other. Consequently, the corresponding role matching unit
consists of Student and StudentAssistant combined with and logical conjunction. Moreover, as
it can be seen, both Role Type references are referenced once in the playing dimension and once
in the featuring dimension. Otherwise, if there would be a reference in two identical dimen-
sions, the corresponding Dynamic Tuples cannot overlap. However, the κ operator created for
this query is κStudent∧StudentAssistant(DTPerson , DTUni).

Relationship Matching A relationship matching operator is created for each 〈log-rel-expression〉 in
the query. It filters three sets of Dynamic Tuples with respect to their relationships in a certain
Compartment. The Relationship Type is specified by a 〈rst-name〉. Moreover, the Compart-
ments in which a relationship has to take place, is defined by the 〈ctAlias〉. This information
is combined to retrieve the corresponding relationship tuples in links. The first and second
〈rtAlias〉 specify Role Types previously defined in various 〈config-expressions〉. Thus, a 〈rel-def〉
reuses Role types only, but does not define new one. As input Dynamic Tuple sets, the corre-
sponding 〈config-expressions〉, in which the Role Types are defined, are used. As example query,
imagine the following statement.

1 SELECT * FROM Person p PLAYING Student s AND StudentAssistant sa,
2 Person p2 PLAYING Professor prof,
3 Uni u FEATURING s AND prof,
4 RELATING prof WITH s IN u USING supervises;

The 〈log-rel-expression〉 consists of a single 〈rel-def〉 only. It specifies the Relationship Type su-
pervises. Moreover, the Role Type p has to be in relation to s in the Compartment u. All aliases
have been previously specified in various 〈config-expressions〉, one for each Relationship Type
participant. Thus, the input sets depend on these 〈config-expressions〉. The resulting relation-
ship matching operator for this example query is Ωsupervises(DTPerson2 , DTPerson , DTUni)

5.4 RSQL Data Query Language 129

Type Union A Type union operator is triggered by a wildcard underscore in a 〈config-expression〉, in
case the listed Role Types can be filled several times. This means, a wildcard on a Role Type that
can be filled by one player type only, will not trigger a τ operator. In general, this operator com-
bines various Dynamic Data Types, that have to be specified in individual 〈config-expressions〉.
This operator merges two distinct Dynamic Data Types by combining their core type and as-
signs a new united core type to each core. Because there is no core type specified, the database
schema is utilized to find the Dynamic Data Types this Role Type is filled and contained in,
respectively. This is similar to a wildcard in the 〈projection-clause〉, but it automatically rolls out
the Dynamic Data Types instead of attributes. The output will be used as standard input for
other operators and do not need any individual management. Generally, an operator plan will
feature n − 1 τ operators, with n being the amount of occurrences of the affected Role Types
in the fills relation. As example query, imagine the following statement.

1 SELECT * FROM _ w PLAYING StudiesCourse;

This query defines a type union operator with the alias w on the Role Type StudiesCourse,
which can be filled by both Natural Types, Lecture and Seminar. The affected Dynamic Data
Types can be derived from the database schema using the fills relation. The Role Type Studi-
esCourse is included twice, hence, there will be one τ operator to combine both player types.
Consequently, the operator input sets are DTLecture and DTSeminar . Additionally, the type
function is consumed and manipulated with the new union type. The resulting operator is
τ(DTLecture, DTSeminar) The output is a single output stream of Dynamic Tuple comprising
all entities of the first and second input set and the manipulated type function.

Intersection A standard intersection on the Dynamic Tuple level and an intersection on the Role
level is triggered by each AND 〈junctor〉 that is not part of role matching unit. It intersects two
sets of Dynamic Tuples having the same core and unites them within a new set. The parameter
◦ within a 〈select〉 will always be an intersection ∩. In case a union is required at this point,
the set operations between several 〈select〉 statements has to be used. However, the Role Types
included in the setsRTa andRTb depend on the placement of this operator in the operator plan.
But, the directly connected 〈rt-names〉 will be definitely part of these. For instance, assume the
successive query.

1 SELECT * FROM Person p PLAYING Student s AND TeamMember tm,
2 Uni u FEATURING s,
3 SportTeam st FEATURING tm;

As it can be seen, the Student and TeamMember Role Types are not part of the same role
matching unit, because they have dependencies to different 〈config-expressions〉. Consequently,
the AND will result in an intersection operator. In detail, RTa contains the element Student
and RTb the TeamMember . Depending on upstream processed operators, these sets may
vary. However, in this case no such operators are assumed. Hence, the resulting operator is

∩{Student},{TeamMember}
∩ (DTPerson1 , DTPerson2). This operator will combine Dynamic Tu-

ples of the Dynamic Data Type Person that play a Role Student with Dynamic Tuples of Persons
that play a TeamMember Role. Moreover, all filtered Student Roles will come from the first
input set and all TeamMember Roles from the second one. All other Roles are intersected.

Union A standard union on the Dynamic Tuple level and a union on the Role level is created for each
OR 〈junctor〉 that is not part of a role matching unit. It unites two sets of Dynamic Tuples and for
those included in both sets it performs the action specified in ◦. Within a certain 〈select〉 this
action will always be a ∪. In case an intersection is required, set operations between several
〈select〉 statements have to be used. As in the intersection operator, the population of RTa and
RTb depends on the operator placement within the operator plan, but the directly connected
Role Type will definitely be part of these sets. As example, imagine the following query.

130 Chapter 5 Query Language and Processing

1 SELECT * FROM Person p PLAYING Student s OR TeamMember tm,
2 Uni u FEATURING s,
3 SportTeam st FEATURING tm;

The Role Types Student and TeamMember are connected by an OR and are not part of the same
role matching unit. Hence, the union operator is created having the sets RTa = {Student}
and RTb = {TeamMember}. The overlapping Dynamic Tuples will be united to a new one,
by keeping Student Roles from the Dynamic Tuple in DTa and TeamMember ones from that
one in DTb. All other Role in both dimension will be united. However, the resulting operator

for this query is ∪{Student},{TeamMember}
∪ (DTPerson1 , DTPerson2).

Set Operations A set operator is issued by a 〈query-junctor〉 that connects two 〈select〉 statements. As
input, it consumes the output of both queries and performs the desired action, either a differ-
ence on the Dynamic Tuple or Role level, an intersection, or a union. For the latter ones, the
Role level action can be chosen between an intersection or a union. The corresponding sets of
Role Types in case of an intersection or union will be empty. A query can have multiple output
sets of Dynamic Tuples and a set operator is created for each of those output sets. Moreover, it
is assumed, both queries produce the same amount of output sets. However, the first output of
the first query will be the first input of the first set operator and the first output of the second
〈select〉 the second input. As a consequence, both queries have to describe equally typed outputs.
Otherwise, the correct input assignments for the operators cannot be made. In some cases, this
assignment can be performed by analyzing the type of the output sets. For instance, an output
set containing Dynamic Tuples of Persons can be intersected with other Persons only, but in
case multiple output sets describe Persons, the assignment is ambiguous. As example, assume
the following valid query.

1 SELECT * FROM Person p PLAYING Student s OR TeamMember tm;
2 DIFF DT
3 SELECT * FROM Person p PLAYING StudentAssistant sa;

This query builds the difference between Dynamic Tuples of the Dynamic Data Type Person
playing Roles of the Role Types Student and TeamMember and those Dynamic Tuples of the
type Person that play a Role of a StudentAssistant. Rephrased this means, return all Persons
who are a Student and a TeamMember, but not a StudentAssistant. Both queries produce an
output of Persons, hence the query is valid. The resulting operator is DTPerson1 \DTPerson2 .
An invalid query in the sense of a Dynamic Tuple based set operation is present in the following.

1 SELECT * FROM Person p PLAYING Student s OR TeamMember tm,
2 Person p2 PLAYING Professor prof,
3 Uni u FEATURING s AND prof;
4 DIFF DT
5 SELECT * FROM Person p PLAYING StudentAssistant sa;

It is not clear if the difference should be performed on the first or second output of the first
〈select〉 statement, because both describe Dynamic Tuples of Persons.

Attribute Filter An attribute filter operator is created for each 〈where-filter〉. The affected Dynamic
Tuples or Roles are specified by the first 〈alias〉with a subsequent WITH. After this WITH, the predi-
cate is specified. This can be related to the Dynamic Tuple the 〈alias〉 is part of, or anything else.
In particular, there is no constraint for the predicate. Depending on the predicate complexity
and the referenced attributes, several other inputs are required along with these Dynamic Tu-
ples that have to be manipulated. As example imagine the following query that asks for Persons
that have the same name as the Professor that supervises them within a certain University.

5.4 RSQL Data Query Language 131

1 SELECT * FROM Person p PLAYING Student s,
2 Person p2 PLAYING Professor prof,
3 Uni u FEATURING s AND prof;
4 RELATING prof WITH s IN u USING supervises
5 WHERE p WITH p.name = p2.name;

The corresponding attribute selection operator is specified by

σ
Person,{Student,Professor}
p.name=p2.name (DTPerson , DTPerson2 , DTUniversity). In detail, it defines

only one 〈where-filter〉. This filters Dynamic Tuples of the first 〈config-expression〉, because the
〈alias〉 is p. Consequently, the first input set of this operator is DTPerson . The WITH defines
the predicate p.name = p2.name, which states that both Person Dynamic Tuples have to be equal
in their names. Moreover, the first and second 〈config-expression〉 are connected by a third
one and an additional Relationship. They apply the filter with respect to this overlapping
information. Thus, additional input sets are required, especially DTPerson2 and DTUniversity .
Additionally, the Dynamic Tuples have to overlap by the Role Types Student and Professor,
which is extracted from the overall statement and not explicitly stated. Finally, this statement
produces a filtered version of the Dynamic Tuples specified in the first 〈config-expression〉. All
other input sets remain unchanged.

5.4.3 Simple Config-Expression Example

Assume the following query as example for a simple and basic 〈config-expression〉.
1 SELECT * FROM Person p PLAYING Student s AND StudentAssistant sa;

This example query searches for Dynamic Tuples under the Dynamic Data Type Person that addition-
ally play Roles of the Role Type Student and StudentAssistant. This means, their Configuration has
to have both Role Types in the filling dimension. There might be more, but these are mandatory. As
it can be seen, a single 〈config-expression〉 describes Configurations of a certain Dynamic Data Type.

select

config-
expression

rigid-
definition

log-
expression

log-
expression

rt-def junctor

Student

Student-
Assistant

ANDs

sa

Person p

projection-
clause

*
PLAYINGCore

LEFT RIGHT

rt-name rt-alias

rt-name rt-alias

rigid-name rigid-alias

wildcard

projection-clause
from-clause

from-clause

Person

query

rt-def

Figure 5.8: Abstract Syntax Tree For the Simple Config-Expression Example Query

The abstract syntax tree of this query is illustrated in Figure 5.8. On the top, there is the 〈query〉
element as root. This has only one connected node, the 〈select〉, which has two nodes connected,

132 Chapter 5 Query Language and Processing

the 〈projection-clause〉 and 〈from-clause〉. In the 〈projection-clause〉 the wildcard is referenced, which
specifies all attributes will be available in the result. The 〈from-clause〉 has one 〈config-expression〉.
This is split into a 〈rigid-def〉 and a 〈log-expression〉 the playing dimension. The former defines the
〈rigid-name〉 as Person and specifies the alias p. The latter has a 〈rt-def〉 in combination with a 〈junctor〉
and another 〈log-expression〉. This Role Type definition specifies the 〈rt-name〉 as Student in combina-
tion with the alias s. Furthermore, the 〈junctor〉 is an AND and the second 〈log-expression〉 terminates
with another 〈rt-def〉, which specifies the 〈rt-name〉 StudentAssistant with an alias sa.

Gert {…} Ø
Tim {…} Ø

Person RTa RTb

John {…} Ø

Tim {…} Ø
John {…} Ø

Tim {…} Ø
John {…} Ø

Data flow

Σ𝑝, 𝑠 ∧ 𝑠𝑎

P

P‘

Π𝑠 ∧ 𝑠𝑎

P‘‘

B
as

e
d

at
a

R
SQ

L
o

p
er

at
o

rs
O

u
tp

u
t

Operator plan

Figure 5.9: Operator Plan and Data Flow Chart For the Simple Config-Expression Example Query

Based on this syntax tree an operator plan can be created, as shown in Figure 5.9. It features one in-
dividual Dynamic Tuple stream only, because the query specifies only one 〈config-expression〉. Hence,
there is neither an overlap nor a relationship involved. Moreover, it can be seen that the Dynamic Tu-
ples in the stream are not valid with respect to the base data model, but to the operational data model.
In the base one each Role has to be in two Dynamic Tuples, but in the operational one this constraint
is relaxed. However, this query results in two operators. One to select the Dynamic Tuples based on
their Configuration and one to trim these to the queried Role Types only. In detail, Σ is parametrized
with tcex = Person and α = Student ∧ StudentAssistant. All Dynamic Tuples that do not have
Roles of both of these Role Types in their playing dimension will be eliminated. The output of this
operator is denoted as P ′, which is the input for the subsequent operator. Π trims Dynamic Tuples to
the queried Role Types, thus, α is parametrized with Student ∧ StudentAssistant. It consumes P ′

and produces P ′′. Dynamic Tuples are not eliminated in the operator.

5.4.4 Non-Overlapping Config-Expressions Example

A query with non-overlapping 〈config-expressions〉 has several of these expressions, but without
any overlap. In fact, they form individual chains in the operator plan. Such non-overlapping
〈config-expressions〉 are syntactically characterized by having 〈rt-def〉with a 〈rt-name〉 and 〈alias〉 only.
This means, they do not utilize references of previously specified Role Types by having a 〈rt-def〉 with
only an 〈alias〉. For instance, imagine the following query, which queries for Persons being a Student
and StudentAssistant, and a University featuring Students. Additionally, the Student Role Types in
both 〈config-expressions〉may not share the same instance.

1 SELECT * FROM Person p PLAYING Student s AND StudentAssistant sa,
2 University u FEATURING Student s2;

5.4 RSQL Data Query Language 133

select

config-
expression

rigid-
definition

log-
expression

s2

Uni u

projection-
clause

*

FEATURINGCore

rt-alias

rigid-name rigid-alias

Wildcard

projection-clause
from-clause

config-
expression

from-clause

PLAYINGCore

…

PersonUni

Student

rt-name

query

rt-def

Figure 5.10: Abstract Syntax Tree For the Unrelated Config-Expression Example Query

The abstract syntax tree for this example is illustrated in Figure 5.10. As every RSQL query that does
take usage of set operations, the 〈query〉 root element has only one 〈select〉 child. This is split into
two subelements, the 〈projection-clause〉 and 〈from-clause〉. The former is a wildcard, which refer-
ences all available attributes. The latter specifies two individual 〈config-expressions〉. One for the core
University and one for the Person. Note, the subtree of the Person 〈config-expression〉 is the same
as illustrated in Figure 5.8, but for arrangement purposes this subtree is omitted in the unrelated
〈config-expression〉 illustration. However, no 〈rt-def〉 utilizes the opportunity to reuse a previously
specified Role Type. In the example, neither the University 〈config-expression〉 nor the Person one
does. This situation results in an independent Dynamic Tuple processing of both referenced Dynamic
Data Types as shown by the operator plan depicted in Figure 5.11.

Σ𝑝, 𝑠 ∧ 𝑠𝑎

P

P‘

Π𝑠 ∧ 𝑠𝑎

P‘‘

B
as

e
d

at
a

R
SQ

L
o

p
er

at
o

rs
O

u
tp

u
t

Operator plan

Σ𝑢, 𝑠2

U

U‘

Π𝑠2

U‘‘

Figure 5.11: Operator Plan For the Unrelated Config-Expression Example Query

This operator plan has two input sets, one for each 〈config-expression〉. As outlined in the section from
syntax to operators (see Section 5.4.2), each of these expressions issues a configuration selection and
configuration projection on all specified Role Types. Consequently, the operator plan on the Person
input set has a configuration selection with a tcex = p and an α = s ∧ sa. This produces the
output P ′, which is the input for the configuration projection. This projection is performed on the
same α and produces the Person’s operator thread output P ′′ For the university operator thread has
a configuration selection for the core type tcex = u and an α populated with s2 only. This results in
the intermediate result U ′. Moreover, this acts as input for the configuration projection on s2 . The
final output of this operator chain is U ′′. Finally, the query output consists of P ′′ and U ′′.

134 Chapter 5 Query Language and Processing

5.4.5 Overlapping Config-Expressions Example

In contrast to non-overlapping 〈config-expressions〉, the overlapping ones reuse Role Type definitions.
Additionally, such queries are characterized by featuring operators that combine two individual op-
erator chains as input into one operator. The Role Type definition explicitly states that the Roles
coming from one input stream have to included in the second one, too. In the abstract syntax tree,
such queries are identified by a 〈rt-def〉 having an 〈alias〉 only. The corresponding Role Type can be
found in another 〈config-expression〉. Moreover, an overlap from one 〈config-expression〉 to another one
builds a role matching unit (see Section 5.4.2). Pointing multiple times from one 〈config-expression〉
to the same other one results in a role matching unit that logically combines several Role Types with
each other. For instance, assume the following query asking for Persons being a Student and Stu-
dentAssistant, and the University these Roles are featured in.

1 SELECT * FROM Person p PLAYING Student s AND StudentAssistant sa,
2 University u FEATURING s AND sa;

select

config-
expression

rigid-
definition

log-
expression

log-
expression

rt-def junctor

ANDs rt-def

Uni u

projection-
clause

*

FEATURINGCore

LEFT RIGHT

rt-alias

rt-alias

rigid-name rigid-alias

Wildcard

projection-clause
from-clause

config-
expression

from-clause

PLAYINGCore
…

PersonUni

sa

query

Figure 5.12: Abstract Syntax Tree For the Overlapping Config-Expression Example Query

The respective abstract syntax tree is presented in Figure 5.12. As root element, it has a 〈query〉 with
only one 〈select〉 child element. The 〈projection-clause〉 references all available attribute by using the
star (*) wildcard. The 〈from-clause〉 features two 〈config-expressions〉, one for the Universities and one
for the Persons. Each specifies a core and a set of logically combined Role Type definitions. In case of
the University these 〈rt-defs〉 reference an 〈alias〉 only, especially s and sa. Both relate to 〈rt-defs〉 in
the Person 〈config-expression〉, which is not shown in this abstract syntax tree, but in Figure 5.8. Based
on the fact that both refer to the same opponent 〈config-expression〉, they form a role matching unit
with the 〈junctor〉 as logical operator between them. In this example, this 〈junctor〉 is a logical AND.

A possible resulting operator plan is shown in Figure 5.13. It features two distinct input sets, one for
each 〈config-expression〉. Moreover, each 〈config-expression〉 produces a configuration selection and
configuration projection operator, which is independent of the overlapping information. Hence, the
input sets for Person and University go through their respective configuration selection and config-
uration projection operators, both filter on Student and StudentAssistant combined with a logical
conjunction. These steps produce the Dynamic Tuple sets P ′′ for those of the Dynamic Data Type

5.4 RSQL Data Query Language 135

Σ𝑝,𝑠 ∧ 𝑠𝑎

P

P‘

Π𝑠 ∧ 𝑠𝑎

P‘‘

B
as

e
d

at
a

R
SQ

L
o

p
er

at
o

rs
O

u
tp

u
t

Operator Plan RSQL

Σ𝑢, 𝑠 ∧ 𝑠𝑎

U

U‘

Π𝑠 ∧ 𝑠𝑎

U‘‘

κ𝑠 ∧𝑠𝑎

P‘‘‘ U‘‘‘

P S SA U

𝑝. 𝑖𝑑 = 𝑠. 𝑝_𝑖𝑑

𝑝. 𝑖𝑑 = 𝑠𝑎. 𝑝_𝑖𝑑

u. 𝑖𝑑 = 𝑠. 𝑢_𝑖𝑑

u. 𝑖𝑑 = 𝑠𝑎. 𝑢_𝑖𝑑σ

P x S x SA x U

Operator Plan Relational

Figure 5.13: Operator Plan For the Overlapping Config-Expressions Example Query

Person and U ′′ for the University ones. These sets are the input for the overlapping operator κ that
filters both Dynamic Tuple sets for overlapping Roles of the Role Type Student and StudentAssistant.

Because both Role Types references point to the same opponent 〈config-expression〉, they are processed
as combined role matching unit. Hence, the role matching parameter for κ is s ∧ sa. Furthermore,
each input set forms a new output sets, thus, P ′′ and U ′′ are processed and transformed to P ′′′ and
U ′′′, respectively. Finally, these output sets represent the query output at the same time, because
there is no operator left.

5.4.6 Relationships Example

Relationships are part of a query in case a 〈relation-clause〉 appears as child of a 〈from-clause〉. It
requires at least two Role Type definitions, usually specified in different 〈config-expressions〉 and a
〈config-expression〉 acting having a Compartment as core. Additionally, the information held in the
links function are necessary. As example, imagine the following query, which asks for Persons being
a Student and StudentAssistant, other Persons playing the Role of a Professor, a University holding
all these Roles and the Professor has to supervise the Student within this University.

1 SELECT * FROM Person p PLAYING Student s AND StudentAssistant sa,
2 Person p2 PLAYING Professor prof,
3 University u FEATURING s AND sa AND prof,
4 RELATING prof WITH s IN u USING supervises;

An excerpt of the resulting abstract syntax tree is presented in Figure 5.14. As the previous exam-
ples, this one has a 〈query〉 element as root and a single 〈select〉 as child. The 〈projection-clause〉
references the wildcard. In contrast to the previous example, the 〈from-clause〉 in this example has
three 〈config-expressions〉 and an additional 〈relation-clause〉. These three 〈config-expressions〉 are not
fully shown in the abstract syntax tree illustration, in fact they are adumbrated. Assume, they are
constructed following the rules in the previous examples. The import path in this example is the
〈relation-clause〉, which holds one 〈log-rel-expression〉. Because there is only one Relationship involved
in this example, the 〈log-rel-expression〉 is not recursive and results in a 〈rel-def〉 only. This definition
reuses Role Type definitions by referencing a 〈rtAlias〉 only. In this scenario it is prof and s, both pre-
viously defined in their respective 〈config-expression〉. The third component is the Compartment, in
which Roles of these Role Types are located in. This is specified by a core reuse, especially a 〈ctAlias〉.

136 Chapter 5 Query Language and Processing

select

config-
expression

projection-
clause

*

FEATURINGCore

Wildcard

projection-clause
from-clause

config-
expression

from-clause

PLAYINGCore

…

PersonUni

…

config-
expression

PLAYINGCore

…

Person2
relation-

clause

log-rel-
expression

prof s u supervises

RELATING

rt-alias 1
rt-alias 2 ct-alias

rst-name

query

rel-def

Figure 5.14: Abstract Syntax Tree For the Overlapping Config-Expression Example Query

Finally, the 〈rst-name〉 specifies the Relationship Type, in this case it is supervises. Note, multiple
of these 〈log-rel-expressions〉 can be logically combined with each other. However, a possible operator
plan for this example query is shown in Figure 5.15.

This example’s operator plan has four inputs and four outputs. Three inputs are specified by the
〈config-expressions〉 and the last input is the links function. In the first place, each of these expressions
forms an individual operator path including a configuration selection and configuration selection on
the corresponding Role Types. Next, there exist two role matching units, one between p and u and
the other one between p2 and u. Consequently, there exist two κ operators. The first is applied on
the Person Dynamic Tuples coming from p and the Universities that are part of the u stream. The
respective outputs are denoted as P ′′′ and U ′′′. P ′′′ holds Dynamic Tuples with only these Student
and StudentAssistant Roles that find a partner in the University Dynamic Tuples. U ′′′ consists of Dy-
namic Tuples of Universities that find a partner Roles in the Person stream p. Moreover, the second
role matching unit includes the Professor Role Type only and is applied on U ′′ and P2′′ resulting in
U4 and P2′′′.

After these steps there exist two different sets of University Dynamic Tuples, one filtered with respect
to Student and StudentAssistant and the other one for Professor. To consolidate these two versions,
the intersection operator is executed, because both role matching units are conjunctively combined.
The resulting operator is parameterized with s, sa for RTa because the left part of this operator is
assumed to be U ′′′. Additionally, the second parameter RTb is set with prof . Thus, the second input
set is U4. This intersection operator produces U5, consisting of Dynamic Tuples that find a partner
Roles in p and p2.

Finally, the Ω operator is executed on supervises while consuming P ′′′ for the Student Roles, P2′′′
for the Professor Roles, and U5 as University Compartments. Moreover, links is put into this op-
erator. As output, it produces the query output P 4, P24, U6, and links′. The first holds Dynamic
Tuples of Persons being a Student and StudentAssistant at a certain University and supervised by
a Professor at the same University. The second consists of Persons being a Professor at a certain
University and supervising Students at this one. The output U6 holds Dynamic Tuples of Univer-
sities that have Students, StudentAssistants, Professors, and these Professors supervise certain
Students at this University. Finally, the links′ only includes these tuples of Professors and Student
Roles that are also included the sets P 4 and P24 for the Universities in U6.

5.4 RSQL Data Query Language 137

Σ𝑝, 𝑠 ∧ 𝑠𝑎

P

P‘

Π𝑠 ∧ 𝑠𝑎

P‘‘

B
as

e
d

at
a

R
SQ

L
o

p
er

at
o

rs
O

u
tp

u
t

Operator plan

Σ𝑢, 𝑠

U

U‘

Π𝑠

U‘‘

κ𝑠 ∧ 𝑠𝑎

P‘‘‘ U‘‘‘

Σ𝑝2, 𝑝𝑟𝑜𝑓

P2

P2‘

Π𝑝𝑟𝑜𝑓

P2‘‘

κ𝑝𝑟𝑜𝑓

U4 P2‘‘‘

∩∩
𝑠,𝑠𝑎 ,{𝑝𝑟𝑜𝑓}

U5

Ω𝑠𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑒𝑠

links

P4 U6 P24 links‘

Figure 5.15: Operator Plan For the Relationship Example Query

5.4.7 Dynamic Tuple Attribute Selection Example

The 〈where-clause〉 is the third possible arm underneath the 〈select〉 element and the only one that is
optional. It filters the whole Dynamic Tuple or only parts of it based on a given predicate. Generally,
it is applied on a single Dynamic Tuple stream only, but may require additional streams to evaluate
the predicate. In contrast to a traditional WHERE, like it executed in SQL, the attribute filter in RSQL
explicitly specifies on which element is evaluated. This is caused by the underlying data structure
and query execution, which does not merge several input streams into a single one, in fact the input
streams remain separated. However, the filter element is defined by an 〈alias〉, which can be an alias
of a core or a Role Type. Moreover, the filter predicate is totally independent of this alias and may not
include this. As simple example, imagine the following query. It queries for Persons playing Roles of
Student and StudentAssistant and additionally require a Student’s start year later than 1985.

1 SELECT * FROM Person p PLAYING Student s AND StudentAssistant sa,
2 WHERE p WITH s.year > 1985;

The corresponding abstract syntax tree is illustrated in Figure 5.16. As each example query, there
exists only one 〈query〉 element as root. In this example it has only one child, a 〈select〉 statement,
consisting of a 〈projection-clause〉, a 〈from-clause〉, and a 〈where-clause〉. The first references a wild-
card, while the second features a single 〈config-expression〉. This expression is not fully shown in this
example’s abstract syntax tree illustration, but it is equal to that one shown in Figure 5.8. However,
this example focuses on the 〈where-clause〉, which has only one child element, a 〈where-filter〉. This
consists of an 〈alias〉 p and a 〈predicate〉 s.year > 1985. This predicate reuses the Role Type definition
of the Student and a valid attribute. The reuse references the same 〈config-expression〉 as the 〈alias〉
does, hence, no additional information are required to evaluate the predicate.

Moreover, a Dynamic Tuple will pass this operator in case at least one of the Student Role fulfills
the predicate. The Roles itself will not be filtered, because the filter references a core. In contrast,

138 Chapter 5 Query Language and Processing

select

config-
expression

projection-
clause

*

PLAYINGCore

wildcard

projection-clause

from-clause

from-clause

Person

query

where-filter

predicatealias

where-clause

filter

where-clause

p s.year > 1985

…

Figure 5.16: Abstract Syntax Tree For the Attribute Selection on a Core

an 〈alias〉 referring to a Role Type would filter the Role of this Role Type. That means, varying the
input parameter for the filter type varies the output significantly, such that there will be a different
output set in case the whole Dynamic Tuple is filtered than in a case only the Roles are filtered. The
query’s respective operator plan is presented in Figure 5.17. It consists of one stream only, because
one 〈config-expression〉 is used. Moreover, the attribute selection operator is parametrized with p as
filter type and the corresponding predicate. Overlapping are not provided, this, the respective set is
empty.

Σ𝑝, 𝑠 ∧ 𝑠𝑎

P

P‘

Π𝑠 ∧ 𝑠𝑎

P‘‘

B
as

e
d

at
a

R
SQ

L
o

p
er

at
o

rs
O

u
tp

u
t

Operator plan

𝜎𝑠.𝑦𝑒𝑎𝑟 >1985
𝑝,Ø

P‘‘‘

Figure 5.17: Operator Plan For the Attribute Selection on a Core

5.5 RSQL QUERY PROCESSING

Operator-based query processing pursues the goal of creating the same results independent from the
individual operator placement in the query execution plan. This enables the logical optimization of
operator plans and a lot of effort has been put into the research area, especially to optimize relational
operator plans. An important prerequisite is the processing of coherent data structures. For instance,
relational query processing uses the relational algebra to compute relational query results. It uses
tables only, thus, each operator consumes one or more tables and produces one. Transferred to RSQL
this prerequisite holds, too. It consumes sets of Dynamic Tuples and produces such. However, the

5.5 RSQL Query Processing 139

query processing is quite different to the well-known relational one, because it is built upon indepen-
dent Dynamic Tuple streams and a query produces multiple output sets, instead of only one like a
relational query.

For instance, assume the operator plans illustrated in Figure 5.18. On the left-hand side an RSQL
operator plan for the overlapping config-expression example (see 5.4.5) is depicted. On the right-
hand side a relational operator plan joining four base tables and a closing selection. As it can be seen
in direct comparison, the relational query plan output consists of a single table, whereas the RSQL
output has two sets of Dynamic Tuples. However, all tuple streams in the relational operator plan are
united into a single output. In contrast, the streams remain independent of each other in the RSQL
query plan. In fact, the input sets are manipulated using other input sets, but they are not united
(except for the τ operator).

Figure 5.18: RSQL and Relational Operator Plan in Comparison

As a consequence, the relational result mixes several entity information into a single tuple and dis-
tributes a one entity over possibly multiple tuples. To restore an entity, several tuples have to be read.
Moreover, intermediate results may grow rapidly, depending on the cardinality of the base tables and
the interconnection ration of the individual tuples. However, RSQL’s query processing may produce
invalid intermediate result, caused by the independent input set processing.

5.5.1 Invalid Intermediate Results

Invalid intermediate result may be caused by each Dynamic Tuple manipulating operator, like the role
matching or relationship matching operator. This situation is caused by the independent Dynamic
Tuple input set processing and a Role’s residence in two different Dynamic Tuples. Generally, each
input set is handled independently of the other inputs, but several inputs are processed simultaneously
in a certain operator, like the role matching operator. Hence, such an operation is performed on a
certain state of the input streams and subsequently executed operators are not reflected in this state.
This may causes invalid states of Dynamic Tuples and thus, invalid intermediate results. Especially,
in case a Dynamic Tuple in combination with its Roles is eliminated in a later operator. The included
Roles are deleted from the intermediate result of the currently processed Dynamic Tuples, but not in
the Roles’ other Dynamic Tuples. As example, imagine the following query.

140 Chapter 5 Query Language and Processing

1 SELECT * FROM Person p PLAYING Student s AND TeamMember tm,
2 Uni u FEATURING s,
3 SportsTeam st FEATURING tm;

This query comprises two role matching unit resulting in two role matching operators, one between
Person and University by the overlapping Student, and one for Person and SportsTeam with the
overlapping point TeamMember. This situation causes two versions of the Person input sets, which
is united by an intersection operator. Each Dynamic Tuple that is present in one of these two versions
only, will be eliminated by the intersection. However, the overlapping opponent, for instance the
University Dynamic Tuples, will not reflect this elimination, especially the Student Roles of elim-
inated Persons will remain in the University Dynamic Tuples. As illustration assume the situation
depicted Figure 5.19, which represents a query execution on a valid operator plan.

STPU

John {{s1, s4}, {tm1}} Ø

Max {{s2}, {tm3}} Ø

TUD {{s1, s2}}Ø bears Ø {{tm1, tm2}}

κ𝑠 κ𝑡𝑚

∩∩
𝑠 ,{𝑡𝑚}

U‘

TUD {{s1, s2}}Ø

P‘

John {{s1}, {tm1}} Ø

Max {{s2}, {tm3}} Ø

P‘‘

John {{s1}, {tm1}} Ø

ST‘

bears Ø {{tm1}}

P‘‘‘

John {{s1}, {tm1}} Ø

Figure 5.19: Unreflected Dynamic Tuple Elimination

There are three inputs, one for each 〈config-expression〉 and two role matching operators. At first, the
role matching operator κs is executed producing U ′ and P ′. Moreover, the Dynamic Tuple John is
manipulated, precisely, the Role s4 is eliminated, because there is no University that features this
Role. Next, the role matching is performed on Person and SportsTeam by κtm producing the inter-
mediate results P ′′ and ST ′. The Dynamic Tuple Max is eliminated from P ′′, because there is no
SportsTeam in the input set ST that features a TeamMember Role of John. Thus, the Role tm2 is
deleted from the Dynamic Tuple bears. Finally, P ′ and P ′′ are intersected in combination with an
intersection on the Role level, producing the output P ′′′. This set contains only one Dynamic Tuple,
John, because Max does not pass the intersection operator. However, the query plan is fully com-
pleted, but the elimination of Max is not reflected in the University output set. As it can be seen,
the Role s2 is still part of TUD, although the corresponding Dynamic Tuple Max is not part of the
Person’s output.

To overcome these invalid results, two options exist. The first option implements multiple operator
executions during the query processing. Precisely, in case a Dynamic Tuple is manipulated all pre-
viously executed operators have to be validated with the new updated sets of Dynamic Tuples. The

5.5 RSQL Query Processing 141

second option requires a different set of operators to unite the Dynamic Tuple streams in a way the
relational algebra does it with tuples of different relations.

5.5.2 Multiple Operator Executions

As mentioned, the first option employs multiple operator executions to retrieve the correct result.
This option preserves the Dynamic Tuple notion as defined and encapsulates one entity within one
Dynamic Tuple. Generally, there are two options to realize multiple operator executions during run-
time. At first, each operator that manipulates a Dynamic Tuple features a feedback loop to previous
operators. Thus, the manipulating operator’s output is directly validated by the previous operators by
re-executing them with the new set of Dynamic Tuples. This process cascades the operator plan until
there is not any manipulation anymore. The second option executes the operator plan as long as there
are changes in the output sets. The output of each run is going to be the input of the next run, as long
as there are changes in the results. Hence, this option terminates in case input and output sets are
equal.

Feedback Loop

For the first option, imagine the query execution plan shown in Figure 5.20, in which the solid arrows
represent the ordinary query execution and the dashed ones the feedback loops. This is the same
RSQL operator plan as depicted in Figure 5.18 on the left-hand side, but enriched with a feedback
loop from Dynamic Tuple manipulating operators to previous ones. Moreover, assume the inputs as
depicted in Figure 5.19. Additionally, imagine the intersection operator is currently performed and
eliminates a Dynamic Tuple. Based on this manipulation, both upstream operators are re-executed
with the output of the intersection. Consequently, κs is executed on the sets U and P ′′′. As there is
no Dynamic Tuple Max , the Role s2 is eliminated. The results U ′ and P ′ are overwritten with the
validated output sets. Furthermore, the operator κtm does no produce any changes in ST ′ and P ′′.
Next, the intersection is executed once more and does not eliminate any Dynamic Tuple, thus, there
is no manipulation and the query result is correctly computed. Note, in case there are more complex
interrelations between the input sets, each manipulation and re-execution may issue a validation on
the previous operators.

U P ST

κ𝑠 κ𝑡𝑚

∩∩
𝑠 ,{𝑡𝑚}

P‘ P‘‘

P‘‘‘

U‘ ST‘

B
as

e
d

at
a

R
SQ

L
o

p
er

at
o

rs
O

u
tp

u
t

Operator plan

Figure 5.20: Feedback Loop for Manipulating Operators

142 Chapter 5 Query Language and Processing

Multiple Operator Plan Executions

The second option to re-execute the operators, is to executing the whole operator plan several times.
This option does not require individual implementations of validity checks for each operator, rather
the whole output is checked at once. Generally, the global query execution plan generation is equiva-
lent to the feedback loop mode. Instead of creating local feedback loops for each operator, the single
loop is created on the whole plan. This loop is stopped in case the input and output results are equiva-
lent to each other, which means the operators do not change anything and all Dynamic Tuples passes
these operators without being manipulated.

The query processing is adapted as shown in Figure 5.21. Note, the input and output details as well
as the query execution plan are of minor interest, rather the overall process is focused. Generally,
the whole plan execution is embedded in a loop. This loop continues as long as Dynamic Tuples are
manipulated during the query plan execution. A query execution run’s output represents the input of
the consecutive run. As mentioned, the loop is interrupted in case the input equals the execution’s
output. Then, the query execution terminates and returns the final created output.

Output

Output 1st run

Input

Input 1st run

Query Plan Execution

Output ≠ Input

Input 2nd run Output 2nd run

Output 3rd run

Figure 5.21: Process Overview of a Query Plan Re-execution

To demonstrate the multiple operator plan execution, imagine the example shown in Figure 5.19.
After the first run, the University Dynamic Tuple TUD holds too many Student Roles, especially s2
is invalid. However, there are three output sets that differ from the input ones, thus, the query result
has to be validated. In detail, the Person Dynamic Tuple Max is eliminated by the intersection. Next,
the three outputs are put into a second query execution run as input sets. This run will eliminate the
s2 Role in TUD, because there is no partner Dynamic Tuple that plays this Role. All other Dynamic
Tuples remain unchanged. However, the inputs and outputs differ in the Dynamic Tuple TUD, thus,
the query result is validated once more in a third run. The third run does not change anything in the
corresponding sets. Consequently, the query processing computed the correct query result, which is
finally sent to the querying application.

5.5.3 Fusing Dynamic Tuple Streams

The last option to avoid invalid intermediate results exploits the relational algebra idea. In detail,
the operators fuse matching Dynamic Tuples into a single one. This includes the core as well as the
dimension. As result, there will be a Dynamic Tuple that represents the union type of both input
Dynamic Tuples, which is similar to the relational join semantics. For each operator that has more
than one input set, the union type is built and the passing Dynamic Tuples are united under this type.
This eliminates independent Dynamic Tuple streams completely.

5.5 RSQL Query Processing 143

However, as result the operators produce Dynamic Tuples that include and mix information of several
entities. Moreover, each match is represented as individual Dynamic Tuple. As a consequence, a
single entity is distributed over several Dynamic Tuples and mixed with other entity information. To
create the several output sets of an RSQL query, the resulting Dynamic Tuple set has to be split into
the original Dynamic Tuples. As a single entity is distributed, it cannot be directly extracted from a
Dynamic Tuple in the result, rather it has to be built up subsequently.

STPU

John {{s1, s4}, {tm1}} Ø

Max {{s2}, {tm3}} Ø

TUD {{s1, s2}}Ø bears Ø {{tm1, tm2}}

U, P

John_TUD {{s1}, {tm1}} {{s1}}

John_TUC {{s2}, {tm1}} {{s4}}

U, P, ST

John_TUD_bears {{s1}, {tm1}} {{s1}, {tm1}}

Unpack

P‘

John {{s1, s4}, {tm1}} Ø

ST‘

bears Ø {{tm1}}

TUC {{s4}}Ø

Max_TUD {{s2}, {tm3}} {{s2}}

John_TUC_bears {{s4}, {tm1}} {{s4}, {tm1}}

U‘

TUD {{s1}}Ø

TUC {{s4}}Ø

Figure 5.22: Operator Plan for a Dynamic Tuple Fusion Including an Unpack Step

Imagine the example represented in Figure 5.22. It shows the query plan for the query in Section 5.5.1,
but with a slightly different input set. Instead of one University, there are two. In addition to the first
one, there is a University that matches the Role s4 of the Dynamic Tuple John. However, the first
operator fuses University and Person Dynamic Tuples in case they share a Student Role. Each match
is represented as new Dynamic Tuple comprising both matching ones. In this example, there are three
resulting Dynamic Tuples, John_TUD, John_TUC , and Max_TUD

The next operator takes the University and Person (represented in the set University, Person) Dy-
namic Tuples and fuses these with matching SportsTeam ones. This results in new Dynamic Tuples,
consisting of a Person, a University and a SportsTeam. Only two Dynamic Tuples are represented
in this set, John_TUD_bears and John_TUC _bears. Max_TUD is not included, because there
is no fusion partner in the SportsTeam set. This represents the query result for now. As it can be
seen, the entity information of John, for instance, is spread over two Dynamic Tuples in the result
and additionally mixed with University and SportsTeam information.

To bring this fused Dynamic Tuples into the desired output format, an unpacking step is necessary.
This step splits each union typed Dynamic Tuple into its atomic entity information. It is an iterative
process to rebuild the original Dynamic Tuples, because the entity information is spread over several

144 Chapter 5 Query Language and Processing

Dynamic Tuples in the result. For instance, imagine the Student Role of the entity John. These are
distributed over two Dynamic Tuples in the result and are required to reunited within the desired
format.

However, such Dynamic Tuple processing is against the initial intention, especially to encapsulate all
entity information, including the role-based one, within a single Dynamic Tuple. Moreover, it uses the
Dynamic Tuple notion in a wrong way. Furthermore, a separate unpacking step is required to rebuild
the original Dynamic Tuple structure. Additionally, such processing requires a totally different set of
operators, a more relational algebra flavored set of operators. In sum, a fusion of Dynamic Tuples into
a union type is contradicting to the Dynamic Tuple’s design goals and does not eliminate the entity’s
information mixing and distribution as observed in the relational data representation.

5.6 RSQL RESULT NET

To preserve the role-based contextual semantics in a query result, we introduce the RSQL Result
Net (RuN). It enables users and applications to iterate over Dynamic Tuples and navigate along the
Roles to connected Dynamic Tuples. In particular, the navigation leverages the overlapping Roles and
relationship information. The query result itself is an instance of the previously defined operative
data model. Thus, queries can be nested into each other. Moreover, the traditional view and sub-
query mechanism can be applied on this result representation. At first, the general RuN architecture
is explained. Based on this, the iteration and navigation paths within a RuN are discussed and detail in
several examples. Generally, navigation steps can be performed on the relations between and within
Dynamic Tuples, as defined in Section 4.3.2. Finally, a complex RuN example is discussed to provide
an integrated and comprehensive overview on the navigation options. Moreover, parts of this result
representation have been published in [51]

5.6.1 Architecture

The architecture of RuN is influenced by RSQL’s database model and the query language. The
database model defines Dynamic Data Types on the type level and Dynamic Tuples on the instance
level. A query, especially the 〈config-expressions〉 specify the schema a Dynamic Tuple has to match for
a certain Dynamic Data Type to pass the query operators. Thus, the query processing takes Dynamic
Tuples as input, manipulates them with respect to the query, and returns these manipulated ones.
Consequently, RSQL’s result representation handles Dynamic Tuples and focuses on providing them
to the application. However, Dynamic Tuples of different Dynamic Data Types are not merged into a
single set, in fact multiple sets of Dynamic Tuples are available. They are organized by following the
same structure as defined in the database model (see Section 4.3).

In general, a RuN consists of several result groups, one for each 〈config-expression〉 in the query. Such
a group has a header and a set of Dynamic Tuples. The header defines which rigid type the included
Dynamic Tuples have and Role Types in both dimension. This is equal to the Dynamic Data Type
definition given in Section 4.3.1. It specifies the overall type of the included Dynamic Tuples int his
result group. Moreover, each Dynamic Tuple has a core and sets of Role sets in each dimension, which
is identical to the database model definitions in Section 4.3.2.

Furthermore, various Dynamic Tuples usually overlap, but the architecture is focused on the Dynamic
Tuple itself. Thus, links between interconnected and overlapping Dynamic Tuples are established to

5.6 RSQL Result Net 145

R
SQ

L
R

es
u

lt
N

et

R
es

u
lt

G
ro

u
p

 1
Rigid1 RTa RTb

Core2 {…} {…}

Core3 {…} {…}

Core4 {…} {…}

Core1 {…} {…} R
esu

lt
G

ro
u

p
 2

Rigid2 RTc RTd

Core6 {…} {…}

Core7 {…} {…}

Core8 {…} {…}

Core5 {…} {…}

… …

…

Q
u

er
y

O
u

tp
u

t Config-Expression1 Config-Expression2

cex1‘ cex2‘ …

Header as Configuration

Dynamic Tuple

A
p

p
lic

at
io

n

Result

Query

Figure 5.23: RSQL Result Net Architecture

navigate from one Dynamic Tuple to another one by using the overlapping information, for instance.
Consequently, a navigation step usually directs from a Dynamic Tuple in a certain result group to
another Dynamic Tuple in a different result group. An illustration of RuN’s architecture is depicted
in Figure 5.23.

In detail, imagine the the following query with overlapping 〈config-expressions〉.
1 SELECT * FROM Person p PLAYING Student s AND StudentAssistant sa,
2 Uni u FEATURING s AND sa;

This will produce a query output with Persons being Students and StudentAssistants, and Univer-
sities featuring these Roles. However, there are two sets of Dynamic Tuples, one for the Persons and
one for the Universities. Consequently, the resulting RuN will have two result groups, one for each
of these sets. The header in the Person result group will have a Person as core and the Student and
StudentAssistant Role Type in the filling dimension. In contrast, the second result group has the
University as core and both Role Types in the participating dimension. Each of the query’s output
sets is assigned to its designated result group.

In sum, this architecture layout preserves the Dynamic Tuple notion, including the metatype dis-
tinction and metamodel semantics, within the result representation. Dynamic Tuples are gathered
together under a certain type and linked to other Dynamic Tuples resulting in multiple available and
interconnected sets of Dynamic Tuples.

5.6.2 Iteration and Navigation

As aforementioned, an RSQL result net consists of interconnected and overlapping sets of Dynamic
Tuples [51]. These interconnections and overlapping information are utilized to enable navigation
between several Dynamic Tuples. Additionally, the connected Dynamic Tuples may not be of the
same result group, in fact usually they are of different ones. Generally, RuN offers two ways to options
to navigate within the net of Dynamic Tuples. Firstly, there are endogenous navigation paths and
secondly exogenous ones. The former provide access to Dynamic Tuple internal information, like

146 Chapter 5 Query Language and Processing

Roles in a certain set of Roles. The latter gives access to connected Dynamic Tuples by using the
overlapping information or relationships.

However, the traditional and well-known principle of iterating over records in a query result is not
touched. For instance, a query consisting of a single 〈config-expression〉 only returns a list of Dynamic
Tuples. To jump from one Dynamic Tuple to another in this list, the well-known iteration principle is
used. Furthermore, an overview of RuN’s general functionality is presented in Table 5.3. ADT in the
functionality overview refers to a set of Dynamic Tuples, whereas a dt only to a single one. Likewise,
a R relates to a set of Roles and a r to a single Role. Moreover, a T is associated with either a set of
Dynamic Tuple, a set of Role sets, or a set of Roles. This polymorphy is used for iterations purposes
and omits specifying the same functionality multiple times. All navigation possibilities as well as the
iteration are explained in detail in the following.

Functionality Input Output

general

execute arbitrary query new Cursor(DT)
switch rigid new Cursor(DT)
next Cursor(T) Cursor(T) + 1
close Cursor(T) -

endogenous
plays

dt new Cursor({R})
dt, rt new Cursor(R)

features
dt new Cursor({R})

dt, rt new Cursor(R)

exogenous
played by r dt

featured by r dt
related to r , rst new Cursor(R)

Table 5.3: Functionality Overview of RSQL’s Result Net

Iteration

The iteration is the most basic way to browse through a RuN; it jumps from one element in a certain
list to another one. Generally, each navigation action in a RuN issues cursor operations and enables
applications to iterate over certain data structures [51]. The initial cursor on a RuN is generated when
accessing the result net the first time. It initially points to the firstly returned Dynamic Tuple of
the first result group, which holds Dynamic Tuples of the query’s first 〈config-expression〉. Hence, an
arbitrary query generates a new cursor on a certain Dynamic Tuple. In addition to iterating Dynamic
Tuples, Roles may be iterated, especially when a Dynamic Tuple’s internal information is accessed.
Moreover, the initially created cursor on the first result group can be switched between the result
group by invoking the switch functionality in combination with a rigid name. This overwrites the old
main cursors and places the new one on the first Dynamic Tuple of the targeted result group. The
corresponding result group is identified by its rigid name in the header.

However, a cursor can be moved by utilizing the next functionality. It moves the cursor from its
current position in a set to the next one. This functionality is not limited to Dynamic Tuples, because
Roles may also be iterated. Thus, this functionality consumes a cursor on either a certain Dynamic
Tuple, a set of Roles, or a Role, which is denoted as T in the functionality overview. However, there
may exist several cursors on the same set. Each cursor is handled individually and in isolation, thus,
terminating a cursor on a certain set does not affect all other cursors that may exist on the same set.
Moreover, a cursor can be closed in case the iteration process has to be terminated. As example for a
Dynamic Tuple iteration imagine the illustrations depicted in Figure 5.24 and Figure 5.25.

5.6 RSQL Result Net 147

John {{s1, s4}, {sa1}, {tm1}, {cap1}} Ø

Max {{s2}, {tm2}, {c1}} Ø

Gert {{p1}} Ø

John {{s1, s4}, {sa1}, {tm1}, {cap1}} Ø

Max {{s2}, {tm2}, {c1}} Ø

Gert {{p1}} Ø

bears {{tt1}, {w1}} {{cap1}, {c1}, {tm1, tm2}}

1

2

bears {{tt1}, {w1}} {{cap1}, {c1}, {tm1, tm2}}

4

bears {{tt1}, {w1}} {{cap1}, {c1}, {tm1, tm2}}

21

3 4

3

Figure 5.24: Initial Cursor Position at t0

John {{s1, s4}, {sa1}, {tm1}, {cap1}} Ø

Max {{s2}, {tm2}, {c1}} Ø

Gert {{p1}} Ø

John {{s1, s4}, {sa1}, {tm1}, {cap1}} Ø

Max {{s2}, {tm2}, {c1}} Ø

Gert {{p1}} Ø

bears {{tt1}, {w1}} {{cap1}, {c1}, {tm1, tm2}}

1

2

bears {{tt1}, {w1}} {{cap1}, {c1}, {tm1, tm2}}

4

bears {{tt1}, {w1}} {{cap1}, {c1}, {tm1, tm2}}

21

3 4

3

Figure 5.25: Moved Cursor Position at t1

There are three Dynamic Tuples, John, Max, and Gert. Initially at point t0, the cursor points to John.
Such situation may appear in case the RuN is accessed the first time. After executing a next on this
cursor, it is moved to Max as shown at point t1.

However, the same functionality can be applied on sets of Roles, like the Student set of the Dynamic
Tuple John, which consists of the Roles s1 and s4. A next moves the cursor from one Role to another
one, but only within the available Student Roles and never outside of its scope. Hence, the Role sa1
is not reachable by the Student Roles’ cursor. This functionality is well-known in database systems,
thus, a more detailed explanation is skipped.

Endogenous Navigation

A Dynamic Tuple by definition is a combination of a rigid type, the sets of played Roles, and sets of
featured Roles. Hence, the information carried by the Roles are embedded in the two dimensions.
To access this information special endogenous navigation paths are available on the basis of the result
functionality presented in Table 5.3.

In detail, there exist the plays and features functionality. Both are based on the endogenous data
model relations defined in Section 4.3.2 on page 81 and the work in [51]. As the name of the func-
tionality implies, the former one provides access to Roles in the playing dimension and the latter to
those in the featuring dimension. Hence, they only differ by their designated dimension.

In general, each of this Dynamic Tuple’s internal navigation paths can be used with two different
parameter sets. The first option consumes the Dynamic Tuple on which plays or features is performed
on only. It returns a new cursor on the Role sets in the corresponding dimension. The second option
additionally receives a Role Type. This provides direct access to Role of a certain Role Type in a
particular dimension by creating a new cursor on the corresponding Roles set.

John {{s1, s4}, {sa1}, {tm1}, {cap1}} Ø

Max {{s2}, {tm2}, {c1}} Ø

Gert {{p1}} Ø

John {{s1, s4}, {sa1}, {tm1}, {cap1}} Ø

Max {{s2}, {tm2}, {c1}} Ø

Gert {{p1}} Ø

bears {{tt1}, {w1}} {{cap1}, {c1}, {tm1, tm2}}

1

2

bears {{tt1}, {w1}} {{cap1}, {c1}, {tm1, tm2}}

4

bears {{tt1}, {w1}} {{cap1}, {c1}, {tm1, tm2}}

21

3 4

3

Figure 5.26: Endogenous Navigation Options. On the Left-hand Side for the Playing Dimension and
the Right-hand Side for the Featuring Dimension

For instance, imagine the Dynamic Tuple included in an arbitrary RuN as depicted in Figure 5.26.
Both sides represent the Dynamic Tuple bears as shown in Figure 2.4 with Roles in both, the playing
and featuring dimension. The arrows represent all available endogenous navigation paths. The former
for the playing dimension and the latter shows the options for the featuring dimension. There exist
two kinds of arrows; the solid arrows mark direct navigation points and dashed ones iteration options.

148 Chapter 5 Query Language and Processing

Consequently, the left-hand side represents the options within the playing dimension and the right-
hand side within the featuring dimension.

In detail, the encircled 1 on the left-hand side in Figure 5.26 points from the Dynamic Tuple to the
Role w1. This navigation can be performed by executing plays(bears, WinnerTeam). There are no
additional iteration options available, because only one Role of this Role Type is currently played. The
encircled 2 navigates from the Dynamic Tuple to Role sets, in this scenario to the set of Tournament-
Team Roles. Because there are two sets of Roles in this Dynamic Tuple’s playing dimension, there
exists an opportunity to iterate, especially to the set of WinnerTeam Roles. To access these Role sets,
the plays functionality with the parameter bears has to be called.

The right-hand illustration in Figure 5.26 shows all navigation opportunities within the featuring
dimension. Precisely, the encircled 3 gives access to all TeamMember Roles, in particular to the
Roles tm1 and tm2. Since there are two Roles available in this set, an iteration options exists on the
created cursor. Assuming the initial cursor points to tm1 a move forward would set it on the Role
tm2. To create this particular cursor, the functionality features has to be executed as features(bears,
TeamMember). Moreover, the encircled 4 describes the navigation to the sets of Roles, to manually
extract the Roles, for instance. Initially the created cursor points to the set containing Roles of the
Role Type Captain. An iteration would move this cursor toward the Coach and TeamMember sets.

Exogenous Navigation

In contrast to the endogenous navigation paths, the exogenous provide access to related Dynamic Tu-
ple by using the overlapping or relationship information [51]. This enables the application to navigate
from one Dynamic Tuple to another one while processing the result and, thus, access the information
in which Compartment a certain Role is featured in or by which Dynamic Tuple a Role is played by,
for example. Generally, there are three options available for the exogenous navigation, each based on
the exogenous relations defined in the data model (see Section 4.3.2).

At first, the played by functionality provides navigation from a certain Role to the Dynamic Tuple this
particular Role is played by. In particular, this functionality leverages the overlapping information to
direct from a Role in the featuring dimension to a Dynamic Tuple that holds the same Role in the
playing dimension. It consumes a certain Role r and returns a concrete Dynamic Tuple. There is
no cursor, because a particular Role can have one player only, thus, the Dynamic Tuple is returned
instead of a cursor.

Secondly, the featured by functionality is the inverse to the played by one. Consequently, it directs
from a certain Role to the Compartment this Role is featured in. In detail, the overlapping information
is used to navigate from a Role in a Dynamic Tuple’s playing dimension the one that holds the same
Role in the featuring dimension. It takes a certain Role as input and provides access to a Dynamic
Tuple. As a Role is featured in only one Compartment, this functionality does not use a cursor, too.

Finally, the related to functionality takes the relationship information to navigate from a certain Role
to the opposite Roles. A Role may have multiple partner Roles in a certain Relationship, hence, the
related to functionality provides a cursor on all related roles. To return the correct partner Roles, this
functionality consumes a certain Role and the Relationship Type this Role has to be connected by. The
Compartment this relationship takes place is uniquely identifiable by the Role, thus, there will not be
any ambiguity about this.

As navigation example, imagine a situation as depicted in Figure 5.27. There are three Dynamic
Tuples, John, Gert, and TUD. All have Roles in certain dimensions. The directed arrows point

5.6 RSQL Result Net 149

John {{s1, s4}, {sa1}, {tm1}, {cap1}} Ø Gert {{p1}} Ø

TUD {{s1, s2, s3}, {sa1}, {p1}, {ra1}, {sc1, sc2}}Ø

1
2

3

Figure 5.27: Exogenous Navigation Options Between Several Interconnected Dynamic Tuples

from a certain Role to the opponent, either a Dynamic Tuple or a Role. Generally, each black dot
under or over a Role indicates a navigation option. For the sake of clarity only the discussed and
explained arrows are drawn in the illustration.

Firstly, assume a cursor pointing to the Role s1 in the Dynamic Tuple John as indicated by the en-
circled 1. To get the information in which Compartment this Role is featured in, the featured by
functionality is used. As it can be seen, the Role is located in the playing dimension of John and
in the featuring dimension of TUD. Hence, the featured by functionality called on ∼1 and returns
TUD. The same holds for the StudentAssistant Role sa1 of John.

To demonstrate the played by functionality, imagine a cursor pointing to p1 in the Dynamic Tuple
TUD, as indicated by the encircled 2 in Figure 5.27. This is used in case player information about
a Role featured in a certain Compartment are required. In general, this functionality is available
for Roles situated in a featuring dimension of a particular Dynamic Tuple and in another’s playing
dimension. The played by functionality consumes a certain Role and returns the Dynamic Tuple this
particular Role is located in the playing dimension. Thus, calling played by on p1 in TUD returns
Gert as opponent.

Finally, the related to functionality can be used, especially in case relationship information has to
be utilized for navigation. Imagine a cursor pointing at p1 in the Dynamic Tuple Gert. Applying
the related to functionality in conjunction with the supervises Relationship Type, as shown by the
encircled 3, navigates to the s1 Role played by John. However, a related to works for Roles in the
playing dimension only, because in a featuring dimension listed Roles cannot be related to each other
by definition. Moreover, the related to functionality is bi-directional, which means it works in both
directions. However, this functionality returns a new cursor on a list of Roles, which can be iter-
ated. These Roles will not be part of the same Dynamic Tuple, but additional information about the
corresponding Dynamic Tuple can be collected by using the endogenous navigation paths. This char-
acteristic is indicated by the second arrow connected to p1 ind Gert.

5.6.3 Example Navigation

As complex example imagine the RuN returned by the following query and depicted in Figure 5.28.

1 SELECT * FROM Person p PLAYING (Student s OR StudentAssistant sa) AND TeamMember tm,
2 University u FEATURING s OR sa;

This query returns a RuN consisting of two result groups, one for each 〈config-expression〉. In this
scenario, the first result group contains Dynamic Tuples with a Person core. Moreover, the initial
cursor is set to John as first Dynamic Tuple of the firstly specified 〈config-expression〉. The second
result group comprises Dynamic Tuple with a University core. Each of these groups has a header,

150 Chapter 5 Query Language and Processing

RSQL Result Net

Result Group UniversityResult Group Person

John {{s1, s4}, {sa1}, {tm1}} Ø

Max {{s2}, {tm2}} Ø

Tim {{s3}, {tm3}} Ø

TUD {{s1, s2, s3}, {sa1}}Ø

TUC {{s4, s6, s7}}Ø

Person {s, sa, tm} Ø Uni {s, sa}Ø

…

…

Figure 5.28: Navigation Example for a Small RSQL Result Net

specifying the Roles of which Role Type might be included. In detail, not all Role Types defined in
the header must be filled with, especially in case of disjunctive Role Types in the 〈config-expression〉.
A navigation to empty set of Roles returns an empty cursor. However, the header in the first result
group defines the Role Types Student, StudentAssistant, and TeamMember in the filling dimension
while the participating dimension is empty. The second result group header specifies an empty filling
dimension and the Role Types Student and StudentAssistant in the participating dimension. These
headers additionally define the inputs for the endogenous navigation paths. Role Type that are not
included in the header cannot be used as navigation input.

Additionally, the arrows represent navigation paths, but not all navigation paths are illustrated in
the figure. More precisely, the solid arrows are endogenous and exogenous navigation paths and the
dashed ones represent iteration options. Moreover, the black dots indicate a possible navigation path.
Roles that do not have a black dot, cannot be used to navigate to another Dynamic Tuple or Role,
like the TeamMember Roles tm1, tm2, and tm3. The big white arrow with the black borders on the
left-hand side illustrates the main cursor and its iteration steps.

At first, the initial cursor points to John, as already mentioned. Executing a plays(John, Student)
results in new cursor within the set of Student Roles, initially pointing at s1. By using the tradi-
tional get operations, known from a relational result sets, enable access to this Role’s attributes, like
Student_ID or Studies. Next, the featured by function is invoked on this Role resulting in navigat-
ing to the TUD Dynamic Tuple in the second result group. All endogenous and exogenous navigation
paths are available for this Dynamic Tuple, too. Thus, an endogenous navigation by features(TUD,
Student) provides access to all Student Roles within this university and creates a new cursor initially
pointing to s1. A next on this cursor moves it forward to the Role s2 and provides access to all at-
tributes it holds. Furthermore, a close on this Student Role pointer finishes the iteration and jumps
back to the Dynamic Tuple TUD.

Now, lets assume the process on TUD is finished and the application handles the cursor on John’s
Student Roles again. A next on this cursor moves it on the Role s4. Once again, the university infor-
mation is required to this Role, hence, a featuredBy(John, s4) is executed. This navigation directs
to the Dynamic Tuple TUC . Again, all endogenous and exogenous navigation options are available.

5.6 RSQL Result Net 151

After processing this Dynamic Tuple and collect the necessary information the cursors are closed,
except of the main cursor, which still points at John.

Finally, a next is performed on the main cursor moving it to Max . A plays in conjunction with the
Student Role Type on this Dynamic Tuple creates a new cursor on the Role s2. From this Role the
TUD is reachable by the featured by functionality. As this navigation options was already discussed,
a detail discussion is skipped at this point. Finally, after processing Max the main cursor is moved
to the Dynamic Tuple Tim, which is processed next. This iteration and navigation process can be
continued until the last Dynamic Tuple of the result group, in which the main cursor is moved within,
is finally processed.

5.7 SUMMARY

Each database system need a sophisticated external interface to communicate with database in gen-
eral. Usually, such an interface provides a language to create schema objects, a language to create the
database instance and manipulate the data, and a certain language to retrieve data. In case of RSQL
a compound language consisting of data definition, data manipulation and data query language was
introduced. All these language parts distinguish between RSQL’s metatypes, thus, the separation of
concerns is preserved within the query language.

Requirement ConQuer IQL RSQL

Metatype distinction � � �
Data definition language � � �
Data manipulation language � � �
Data query language � � �
Syntax description � � �
Result representation � � �

�: yes, �: partial, �: no

Table 5.4: Evaluation of RSQL’s Query Language and Processing in Contrast to Related Approaches

However, for each language part we presented a concrete syntax and demonstrated this syntax by uti-
lizing several examples. In particular, the data definition language’s syntax is introduced by creating
a small database schema and associate the statements with the underlying database model and Dy-
namic Data Types. Moreover, the data manipulation language’s syntax is demonstrated by creating
a small database instance, featuring three Dynamic Tuples. Additionally, a step by step creation il-
lustrated the evolution of Dynamic Tuples and their overlap. As last language part and formal syntax
description, the actual data query language is presented and related to the formal database operators.
As connection between the database model and the query language, a discussion on processing RSQL
queries on the basis of Dynamic Tuples, including blocking factors and their solution, took place. Es-
pecially, the occurrence of invalid Dynamic Tuple states is explained. Finally, we illustrated the result
representation of RSQL queries as RSQL Result Net by giving an architectural overview and presented
iteration and navigation options. A detailed comparison of RSQL’s query language, query processing,
and result representation in contrast to the related approaches is presented in Table 5.4.

In sum, the external database interface, as introduced in this section, preserves the metatype dis-
tinction for the data definition, manipulation, querying, and result representation part. Moreover,
the formal syntax is connected to the database operators and the underlying database model. Ad-
ditionally, a result representation, built upon the basis of the database model and augmented with
navigation paths, completes the database interface design. Hence, RSQL’s query language fulfills all
requirements posed to an external role-based database interface.

152 Chapter 5 Query Language and Processing

6
PROOF OF CONCEPT

6.1 Evaluation Setup

6.2 Evaluating the Database Model

6.3 Evaluating the Query Language

6.4 Evaluating the Result Representa-
tion

6.5 Summary

RSQL is designed to directly represent role-based data in a database system to overcome the role-
relational mismatch. This mismatch causes pains for the database systems themselves and the ap-
plication developers. To evaluate RSQL’s benefits, it is compared to a relational representation of
role-based data. In detail, the evaluation focuses on the three RSQL parts, the database model, the
query language, and the result representation. Moreover, we compare both database models by using
the university scenario as presented in the Sections 2.4.1 and 2.4.2. First, we describe the evaluation
setup by outlining RSQL’s prototypical implementation and explaining the applied relational mapping
schema. Moreover, we map the complete university scenario as relational baseline. On this mapping
basis, the effort in representing the university schema in RSQL and SQL is compared to each other
by contrasting the number of statements required to set up the schema. Next, the query languages
are compared to each other by utilizing various example queries that represent different scenarios.
As final evaluation, the result representation comparison takes place. This evaluation is based on
the client-side effort to process both result representations. Finally, this chapter is summarized and
concluded.

6.1 EVALUATION SETUP

First, we assume the database system to be used within an ecosystem as described in Section 3.1. In
detail, the database system is the single point of truth with a diverse software system, consisting of
multiple applications and possibly application servers. Moreover, the concrete example employed to
compare a relational database with an RSQL database is based on the university scenario as presented
in the Sections 2.4.1 and 2.4.2.

6.1.1 RSQL Prototypical Implementation

We implemented a prototypical version of the RSQL approach by adapting a relational database sys-
tem. As this approach aims at an adapted data system and set-oriented interface, relying on an already
existing system simplifies the implementation. In detail, this prototype is based on the H2 database
engine1 in version 1.3.176, which is the latest stable version (accessed January 2017). This engine is
an open source, lightweight, and Java-based relational database management system. To describe our
system adaptations, we firstly outline the implementation of the database model by showing adapted
and additionally introduced classes. Secondly, the query processing and result generation is detailed.
Finally, the client side adaptations with respect to the changed Java Database Connectivity2 (JDBC)
interface are outlined.

Database Model

As aforementioned, the prototype relies on a persistent storage engine of H2 and only the data sys-
tem is changed. To achieve a metatype distinction, we introduce subtypes of the abstract class Table
(h2.table.Table). These class store the metatype specific information, like the player type of a Role
Type and its corresponding Compartment Type. Hence, RSQL’s types are represented as specialized
tables. This enables to rely on an existing storage system, such that an insert in a specialized table
uses the same functionality as an insert in a regular table.

1http://www.h2database.com/
2http://docs.oracle.com/javase/tutorial/jdbc/TOC.html

154 Chapter 6 Proof of Concept

http://www.h2database.com/
http://docs.oracle.com/javase/tutorial/jdbc/TOC.html

However, we do not use these table structures as main data structure and do not access them directly,
in fact they only help to add additional functionality atop the standard table functionality. Rather,
the main organizational data structure is the Dynamic Data Type (h2.table.rsql.DynamicDataType) as
shown in Figure 6.1. Each Dynamic Data Type holds a set of non-empty Configurations and each
of these holds a set of Dynamic Tuples. Dynamic Tuples as instance representation of Dynamic
Data Types hold a player consisting of a rigid type and the actual row data. Additionally, Roles
(h2.result.rsql.RoleInstance) are grouped into two dimensions, the playing and featuring dimension.
Moreover, each of these RoleInstance objects has a certain Role Type, the actual data represented as
row, and additionally references to its player and featurer Dynamic Tuple. These references enable the
exogenous navigation paths in the result representation. Moreover, the references on the actual types,
which are the specialized tables, ensure to build the RSQL role-based semantics upon the underlying
database system layers. In addition, these Dynamic Data Type and Dynamic Tuple representation
ensures to encapsulate the role-based semantics in these data structures.

Dynamic Data Type 1

Configuration 1

Configuration 2

Dynamic Tuple 1

Dynamic Tuple 2

…

…

…

Dynamic Tuple 1

Player

Playing Dimension

Rigid Type

Row Data

Role Instance 1

Role Type

Row Data

…

Featuring Dimension

…

Player DT

Featurer DT

Figure 6.1: RSQL’s Database Model Structure

Query Processing

The query processing prototypically implements the database model operators. Generally, the parser
creates statements, like a select statement or an insert statement. Such a statement holds all infor-
mation necessary to execute it. The main data structure for a statement on the basis of Dynamic
Tuples is the class DynamicDataTypeFilter (h2.table.rsql.DynamicDataDypeFilter), which represents
the Dynamic Data Type in queries. It is structured like the storage structure, but features additional
functionality to filter Dynamic Tuples, for instance on the basis of the Configuration or a selection
predicate. Thus, each statement features at least one of these Dynamic Data Type filters. For instance,
an 〈insert-rt〉 statement on a Role Type will always feature two of these filters, one to specify the player
Dynamic Tuple, and one to define the featuring Dynamic Tuple. Moreover, a 〈select〉 statement will
feature as many of such filters as there are 〈config-expressions〉.

All the Dynamic Tuple query processing is encoded in these filters, as conceptually visualized in Fig-
ure 6.2. A Dynamic Data Type filter is set up a certain Dynamic Data Type and a certain Statement. It
features cursors to iterate the Dynamic Tuples. For each Dynamic Tuple the manipulations and filters
are applied on a copy of it, except for DML statements, these are executed on the actual base data. In
case this copy passes the operators, it is added to the RSQL result (h2.result.RsqlResult). When the
evaluation of all Dynamic Tuples is finished, the result is returned to the statement. There, they might
be additionally manipulated by other operators or returned to the client as query result. However, this
processing preserves the role-based semantics throughout the entire query processing as well as in the
result.

6.1 Evaluation Setup 155

Ev
al

u
at

io
n

 P
ro

ce
ss

Dynamic Data Type Filter Dynamic Data Type 1

Configuration

Selection

Overlappings

Copy

Statement

RSQL ResultStatement Result(s)

Figure 6.2: RSQL Query Processing on Dynamic Tuples by Dynamic Data Type Filters

Client-Side Support

As RSQL is based on a different data structure than the traditional relational data model, we adapted
H2’s Java Database Connectivity3 (JDBC) implementation. To avoid a complete JDBC interface re-
definition, we added RSQL client side functionalities in separate subclasses. Hence, an explicit type
cast to these classes is necessary from the clients. A conceptual overview of the RuN implementa-
tion is presented in Figure 6.3. In detail, the class JdbcRsqlResultSet (h2.jdbc.rsql.JdbcRsqlResultSet)
is a JdbcResultSet class (h2.jdbc.JdbcResultSet) extended by RSQL functionalities, like multiple results
(h2.result.rsql.RsqlResult). A short JDBC introduction from a database application developer’s per-
spective is given in [71, pp. 421–426]. This RsqlResult class represents a result group as defined in
Section 5.6.1.

RsqlJdbcResult

RsqlResult

Configuration 1

RSQL Dynamic Tuple 1

…

…

RsqlResult

RSQL Result Net

Result Group

Figure 6.3: Conceptual Overview of RSQL’s Result Representation Implementation

Moreover, such a result group consists of a client-side Dynamic Tuples representation
(h2.result.rsql.RsqlDynamicTuple) grouped by their Configurations. It features a cursor to iterate
the Dynamic Tuples and functionalities to use the endogenous navigation paths. In particular, this
navigation paths are realized by the method getRoleInstances(RsqlDimensionTuple dim, String roleType).
A Role, represented by the class RsqlRoleInstance (h2.result.rsql.RoleInstance), holds the actual Role
data, as well as references to it playing and featuring Dynamic Tuple. These references enable the

3http://docs.oracle.com/javase/tutorial/jdbc/TOC.html

156 Chapter 6 Proof of Concept

http://docs.oracle.com/javase/tutorial/jdbc/TOC.html

exogenous navigation. In contrast to the base data representation of Dynamic Tuples, this result rep-
resentation is not required to reference both, the playing and featuring Dynamic Tuple. In fact, only
one has to be set. This is a direct effect of the operational data model, as described in Section 4.4.1.

However, the traditional getter and setter methods, to collect attribute values, of the JDBC interface
are available on the Dynamic Tuple and the Roles. In case they are execute on the Dynamic Tuple, the
core information is returned. In case of a Role, the Role data is accessed.

Additionally, we adapt the graphical user interface to be compliant to RSQL and visualize the metatype
distinction. In detail, H2 features a console server that is accessed by the web browser4. To provide
a visual distinction in combination with the interrelations, we added different symbols, as illustrated
in Figure 6.4. A Natural Type is represented by a person icon, a Compartment Type by circles to
support the collection perception of Compartment Types, a Role Type by two theatrical faces, and Re-
lationship Type by three connected instances. Moreover, Role Types show information of the players
and in which Compartment Type they are contained in. A Relationship Type directly visualizes its
participants. The rest of the graphical user interface remains unchanged.

Figure 6.4: Graphical User Interface Adapted to the Metatype Distinction

6.1.2 Relational Mapping RSQL’s Database Model

The RSQL database model can be represented in the relational data model. In detail, the structural
mapping is explained first. Afterwards, the constraint mapping of the metamodel axioms is defined.
These mappings build the foundations on which the RSQL approach is compared to its relational re-
alization. Moreover, as prerequisite we assume that the applications provide the database system a
standard relational mapping and the database system is only in charge of ensuring instance consis-
tency with respect to the given schema. Thus, it is assumed, that the relational schema represents a
valid instance of the metamodel.

4http://www.h2database.com/html/quickstart.html

6.1 Evaluation Setup 157

http://www.h2database.com/html/quickstart.html

Mapping RSQL Structures

At first, we discuss the structural transformation from RSQL’s schema objects onto relations. To have
a fair comparison the relational mapping is performed on the rules of good database design on the
basis of mapping entities onto relations [54, p. 71–83]. Recap, the database model on the schema
level is a tuple consisting of S = (NT,RT,CT,RST,fills, parts, rel, card). It distinguishes four
metatypes, Natural Types, Compartment Types, Role Types, and Relationship Types. Each of these
type of these metatypes is represented in an individual table that is named as the type itself. In a pure
automated mapping process, annotations that reference the tables belonging to a certain metatype
support the mapping process, because these annotations only help users to understand the semantics
of the tables. Thus, such annotations are omitted. Moreover, each type table receives an ID column
as surrogate, which is used to reference the corresponding table’s tuples by a single column, instead
of using the composite primary key. This ID is not part of the primary key, but required to be unique.
Next, the metatype interrelations are mapped.

fills The fills relation is surjective, but not bijective. Hence, the cardinalities of this relation are
N : M . The surjectivity is ensured by the applications, thus, the database schema needs to rep-
resent the relationship only. Such cardinalities are usually mapped by relating the correspond-
ing entities using an association table that references these entities as foreign non-nullable key
constraints. Consequently, for each entry in fills an individual association table is created that
connects the player type with the Role Type. In detail, these association tables have two columns
only, one to reference the ID of the player, denoted as P_ID, and one for the referenced Role,
named as R_ID.

parts This function stores information about the containment of Role Types in a certain Compart-
ment Type. Each Role Type is part of exactly one Compartment Type, thus, the mapping adds
the a Compartment Type reference to each Role Type table. This column is named C _ID and
is defined as referential constraint.

rel This function stores the information on participating Role Types in a certain Relationship Type.
Depending on the cardinalities of a relationship, there are separate mapping options. Usually, a
N : M relationship is mapped to an association table, a 1 : N to that part, which represents
the 1 part, and a 1 : 1 combines both entities and the relationship within one table.

card The card function stores the information on the concrete cardinalities for a certain Relationship
Type. For each lower cardinality larger than 1 a trigger has to be implemented that checks the
correct amount of occurrences. The same applies for limited upper cardinalities.

ID Name Lastname Birthday Address

… … … …

Person

ID Name Location Address

… … … …

University

ID Student_ID Studies Year C_ID

… … … … …

Student

ST_ID Name Colors Cheerleader

1 bears Blue / White Bear Hunter

CT_SportsTeam

T_ID Name Location Date

1 DD_CC_16 Dresden Plauen 15.04.16

CT_Tournament

TT_ID TeamName Group FK_ST FK_T

1 BearsFTW 1 1 1

RT_TournamentTeam

P_ID R_ID

… …

Person_Student

Figure 6.5: Example Mapping of Person, Student, and University

As example, imagine the mapping depicted in Figure 6.5. This illustrates the schematic mapping of the
Person Natural Type, the Student Role Type, and University Compartment Type. Each of these types

158 Chapter 6 Proof of Concept

is modeled in an individual table. Additional an association table Person_Student is introduced to
model the relation between the Person and Student. Moreover, the Role Type table Student features
an additional column to reference the University.

The instance structure definitions of RSQL’s database model is mapped as well. Each instance of a
type is represented as tuple in the corresponding table. The instance model relations and functions
are mapped as following.

type The belonging of an instance to a certain type is implicitly represented by a tuple’s belonging to
a certain table.

plays This relation stores information which entity plays which Role in which Compartment. As
the instances are stored as tuple in individual tables, this relation is distributed over several
tables. In particular, this includes tuples in the Natural Type tables, the Role Type tables, the
Compartment Type tables, and the association tables between the player types and Role Types.

links This function stores information which Roles participate in which Relationships. This repre-
sented as tuple in the corresponding Relationship Type table.

Mapping RSQL Constraints

These structure mapping rules ensure a correct transformation of an RSQL schema and the corre-
sponding instances to a relational model. In addition, the instance level constraints have to be en-
sured by the database system. Note, the schema level constraints are omitted, because we assume the
applications to provide a valid schema. In particular, the database system has to ensure the axioms as
defined in Definition 4 on page 75.

Correct Role playing The first axiom (4.6) ensures Roles to be played by only valid cores and in
the correct Compartment. This is automatically ensured by the associations tables between the
player type and Role Type tables, as well as the foreign key constraint on the Compartment Type
table within the Role Type representation.

Uniqueness of player, Compartment, and Role The second axiom (4.7) requires uniqueness of the
tuple player, Compartment, and Role, which ensures that a certain Role Type can be instantiated
within a particular Compartment only once per player. As the plays information is distributed
over several tables, a trigger has to be created that checks for this uniqueness. Especially, that
a certain Role is referenced only once in all association tables that are related to its Role Type
table.

Player uniqueness of a Role A certain Role has exactly one player as defined in the third axiom (4.8).
This guarantee is complex, because it possibly involves multiple tables in which the same Role
Type may be referenced. As there is no uniqueness constraint over several tables available,
this has to be ensured by triggers. In detail, this trigger has to ensure, that a certain Role is
referenced exactly once over several tables.

Compartment uniqueness of a Role Each Role is required to be located within a certain Compart-
ment (4.8). This is ensured by the parts function’s mapping that induces the Compartment
Type referential constraint in the Role Type table. Thus, only one Compartment can be refer-
enced by a Role. Moreover, the NOT NULL constraint ensures the existence within a Compartment.

6.1 Evaluation Setup 159

Relationships The axioms 4.9 – 4.11 ensure a correct representation of Relationships within the
links function. This natively guaranteed by the Relationship Type table and do not require any
additional effort in mapping.

Cardinality constraints To ensure the correct cardinalities, a trigger has to be implemented for each
cardinality constraint. This is also guaranteed by mapping the schema level card function onto
triggers. Consequently, the axiom 4.12 defines the actual limits implemented in these triggers.

In sum, the schema and instance mappings onto tables and tuples in combination with the setup of
triggers to ensure complex consistency constraints is able to represent the RSQL database model, but
without a metatype distinction.

Mapping the University Scenario

To illustrate these mapping rules, the example model shown in Figure 2.3 is transformed into a rela-
tional model. At first, the core types are directly transformed by specifying a relation for each core
type and creating a surrogate ID. Additionally, the primary keys of these relations are denoted with
underlines. The mapping process results in the following six core type relations.

Person :{[ID : Integer ,Name : String,LastName : String,
Birthday : Date,Address : String]}

Seminar :{[ID : Integer ,Name : String,Date : Date,Creadits : Integer]}
Lecture :{[ID : Integer ,Name : String,Room : String,Credits : Integer ,

Time : String]}
University :{[ID : Integer ,Name : String,Location : String,Address : String]}

SportsTeam :{[ID : Integer ,Name : String,Colors : String,Cheerleader : String]}
Tournament :{[ID : Integer ,Name : String,Date : Date,Location : String]}

Next, the Role Types are mapped by creating a relation for each of these. Additionally, a surrogate
ID is introduced to simplify referencing. Moreover, the reference to the corresponding Compartment
Type is added to each of these relations. The mapping process results in ten relations.

Student :{[ID,Student_ID : Integer ,Studies : String,Year : Integer ,
C _ID : Integer]}

Professor :{[ID : Integer ,Chair : String,Office : String,ResearchBudget : Integer ,
C _ID : Integer]}

StudentAssistant :{[ID : Integer ,Assistant_ID : Integer ,HoursPerWeek : Byte
C _ID : Integer]}

ResearchAssistant :{[ID : Integer ,Emp_ID : Integer ,Office : String,Tel : String,
SalaryGroup : Byte,C _ID : Integer]}

160 Chapter 6 Proof of Concept

StudiesCourse :{[ID : Integer ,Name : String,Module : String,Level : String
C _ID : Integer]}

Captain :{[ID : Integer ,Games : Integer ,C _ID : Integer]}
Coach :{[ID : Integer ,Position : String,Specials : String,C _ID : Integer]}

TeamMember :{[ID : Integer ,Memeber_ID : Integer ,Registration : Date,
Position : String,C _ID : Integer]}

TournamentTeam :{[ID : Integer ,TeamName : String,Group : Byte,C _ID : Integer]}
WinnerTeam :{[ID : Integer ,FinalResult : String,C _ID : Integer]}

The Relationship Types are mapped to relations as well. Each is modeled in a separate relation con-
sisting of references to the respective Role Type tables only. A surrogate ID is not introduced, because
these tables are not referenced by other ones. However, the primary key is composed of both foreign
keys. Applying this mapping procedure results in a specification of three relations.

advises :{[R1 _ID : Integer ,R2 _ID : Integer]}
teaches :{[R1 _ID : Integer ,R2 _ID : Integer]}

takes :{[R1 _ID : Integer ,R2 _ID : Integer]}

Finally, the fills relation is mapped to an individual table for each entry. The resulting tables consist of
references to the player type table and the corresponding Role Type table only. Thus, the primary keys
are composed of the corresponding two foreign keys. The resulting relations are specified as follows.

Person_Student :{[P_ID : Integer ,R_ID : Integer]}
Person_Professor :{[P_ID : Integer ,R_ID : Integer]}

Person_StudentAssistant :{[P_ID : Integer ,R_ID : Integer]}
Person_ResearchAssistant :{[P_ID : Integer ,R_ID : Integer]}

Person_Captain :{[P_ID : Integer ,R_ID : Integer]}
Person_Coach :{[P_ID : Integer ,R_ID : Integer]}

Person_TeamMember :{[P_ID : Integer ,R_ID : Integer]}
Seminar_StudiesCourse :{[P_ID : Integer ,R_ID : Integer]}

Lecture_StudiesCourse :{[P_ID : Integer ,R_ID : Integer]}
SportsTeam_TournamentTeam :{[P_ID : Integer ,R_ID : Integer]}

SportsTeam_WinnerTeam :{[P_ID : Integer ,R_ID : Integer]}

In sum, these relations build the basis to evaluate the RSQL approach in comparison to a relational
mapping of it.

6.1 Evaluation Setup 161

6.2 EVALUATING THE DATABASE MODEL

The RSQL database model is designed to overcome the role-relational impedance mismatch (see 3.2).
Moreover, we outlined that other database models cannot efficiently model the metatype discrimina-
tion and the interrelations between the metatypes on the schema as well as on the instance level. To
support the claim of efficiently creating database schemata with RSQL, we compare its schema cre-
ation process to a relational SQL-based schema creation. This comprises the creation of types in RSQL
and the definition of tables as well as triggers in SQL. Moreover, we show which actions, according
to an evolution of the conceptual model, result in which effort to adapt the corresponding database
schema.

6.2.1 Creating the RSQL Schema

At first, an RSQL database schema is created by using the data definition language statements as
shown in Section 5.3.1. There are individual statements to create the corresponding metatypes. The
fills relation and functions do not need to be created and populated manually. For instance, the
Natural Type Person is created by the following statement.

1 CREATE NATURALTYPE Person (name varChar(128) PRIMARY KEY,
2 lastname varChar(128) PRIMARY KEY, birthday date PRIMARY KEY,
3 address varChar(256));

This primary key definition ensures uniqueness for the composition of the three stated columns. Con-
sequently, there cannot be two Person Naturals in the system that have the same values for these three
attributes.

A Role Type, for instance the Student Role Type, is created by a statement like the following.

1 CREATE ROLETYPE Student (Student_ID int PRIMARY KEY,
2 studies varChar(256), year int)
3 PLAYED BY (Person) PART OF University;

The primary key is applied on the attribute Student_ID and specifies the distinguishing feature. How-
ever, this primary key is not valid globally, in fact it is ensured for each Compartment. Because Role
Types are embedded in exactly one Compartment Type, their corresponding primary key validity is
limited by it. For instance, the student identity is assigned by each university manually and may has
different patterns, depending on the university. Although, the same ID may appear several times, but
at different universities, whereas at the same university a student identity is uniquely assigned.

Finally, the Relationship Types are created. For instance, the supervises Relationship Type as follows.

1 CREATE RELATIONSHIPTYPE supervises CONSISTING OF
2 (Professor BEING 0 .. *) AND (Student BEING 0 .. 1);

In RSQL Relationship Types do not feature any attributes, because attributed ones can be modeled as
individual Compartment Types. Hence, only the participating Role Types including their cardinality
constraints are specified.

In sum, for each type in the conceptual schema as type in the database is created. Trigger or additional
statements are not required to ensure the database model constraints. Consequently, the sum of
statements can be determined by the following equation.

|SRSQL| = |NT |+ |CT |+ |RT |+ |RST | (6.1)

162 Chapter 6 Proof of Concept

6.2.2 Creating the SQL Schema

Based on the present and assumed mapping various tables and triggers have to be created. The follow-
ing statements are based on the syntax of the H2 database engine5, because the RSQL implementation
is based on this database engine 6. The concrete syntax to specify, for instance primary keys or foreign
keys, may differ from system to system, but has the same effects, the corresponding constraints are
created.

Base Tables

At first, the tables for the types are created. For instance the table that represents the Person Natural
Type.

1 CREATE TABLE Person (ID int UNIQUE, name varChar(128) PRIMARY KEY,
2 lastname varChar(128) PRIMARY KEY, birthday date PRIMARY KEY,
3 address varChar(256));

As mentioned in the mapping, each type is added a surrogate ID column, to simplify referencing. This
column is additionally set to unique. Next, Role Type tables are created, like the following Student
table.

1 CREATE TABLE Student (ID int UNIQUE, Student_ID int PRIMARY KEY,
2 studies varChar(128), year int, C_ID int,
3 FOREIGN KEY (C_ID) REFERENCES University(ID));

In addition to the regular attributes, a surrogate ID and a column holding the foreign key value is
added. Moreover, the foreign key column is set to reference the surrogate ID of the university. This
models a Role Type’s belonging to a certain Compartment Type. As final type creation, the Relation-
ship Types are created as separate tables. As example, imagine the Relationship Type supervises that
is created as follows.

1 CREATE TABLE supervises (R1_ID int PRIMARY KEY,
2 R2_ID int PRIMARY KEY UNIQUE,
3 FOREIGN KEY (R1_ID) REFERENCES Professor(ID),
4 FOREIGN KEY (R2_ID) REFERENCES Student(ID));

The create statement for a Relationship Type table consists of two columns that reference the sur-
rogate IDs of the corresponding Role Type tables. Additionally, these columns build the composed
primary key. Moreover, a Student can be supervised by only one Professor, thus, the Student’s
referencing column is set to unique.

Finally, the tables that represent the entries of the fills relation have to be created. For each element
in this relation, a separate table is added to the schema. For instance, the following association table
connecting the Natural Type table Person with the Role Type table Student.

1 CREATE TABLE Person_Student (P_ID int PRIMARY KEY,
2 R_ID int PRIMARY KEY,
3 FOREIGN KEY (P_ID) REFERENCES Person(ID),
4 FOREIGN KEY (R_ID) REFERENCES Student(ID));

This table specification is similar to a Relationship Type table, but connects a player type with a Role
Type. The primary key and foreign key constraints are defined likewise. Moreover, the Role referenc-
ing column is set to unique, because a Role can be played only once. However, this constraint has to
be ensured over several association tables, because a Role Type can be filled by possibly various player
types.

5http://www.h2database.com/html/grammar.html
6http://www.h2database.com/html/main.html

6.2 Evaluating the Database Model 163

http://www.h2database.com/html/grammar.html
http://www.h2database.com/html/main.html

Triggers

In case simple SQL consistency constraints cannot model complex RSQL consistency axioms, triggers
are used. In the mapping applied to compare SQL and RSQL several complex consistency require-
ments have to be implemented. They have to be ensured on inserts, updates, and deletes. Generally,
inserting a new Role is a complex and atomic process, that requires at least two inserts. One in the
Role Type table and one in an association table. Thus, creating a Role has to be handled in a trans-
action, especially to avoid inconsistent states of unbound Roles, for example. Several metamodel
violations may appear during the data manipulation process and most of them have to be caught by
triggers, especially in case the information is distributed over several tables. An overview of meta-
model violations that may appear during the data manipulation is given in Table 6.1.

Operation Table Violation

Insert
Role Type table Role has no player

association table
Role has multiple players
Role is played several times per player in a certain Compartment

Update

Role Type table Role is played several times per player in a certain Compartment

association table
Role is played several times per player in a certain Compartment
Role has multiple players
Role has no player

Delete
Role Type table –
association table Role has no player

Table 6.1: Inconsistent States of Role Bindings During Data Manipulation

Generally, two types of triggers are required. In the first place, triggers on a table that are fired for each
row manipulation of a statement. This is the situation triggers are usually used. To this type of trigger
we refer to as immediate trigger. Secondly, triggers that guarantee overall consistency, especially
at the end of a transaction. As aforementioned, inserting a Role is a complex process encapsulated
within a transaction. The consistency has to be checked at the end of a transaction, thus, triggers
on the level of statements or rows cannot be use for this purpose. For instance, a trigger on a Role
Type table cannot be executed right before or after an insert in the table, because the relations to its
player may be inserted afterwards. Only few database management systems provide support for such
triggers, especially the H2 database does not. For instance, PostgreSQL supports this feature by the
deferred option in the trigger declaration7. To this trigger type we refer as commit trigger. However,
in case commit trigger cannot be defined, a separate stored procedure has to be manually called that
encapsulates the consistency checks for a certain axiom. In contrast to triggers, these procedures have
to be explicitly called in the transaction and are not fired automatically.

Each of the mentioned anomaly has to be prevented by triggers in the database system. These anoma-
lies and triggers are detailedly discussed in the following.

1. No player for a Role after an insert in a Role Type table This anomaly occurs in case an insert
in a Role Type table is executed, but no mandatory reference in one of the association tables
is created. This can be checked by an insert commit trigger on the corresponding Role Type
table. For instance, a new Student Role is inserted, but no corresponding association tuple in
the Person_Student table is created within the same transaction. Such triggers have to be created
for each Role Type table separately.

7https://www.postgresql.org/docs/9.1/static/sql-createtrigger.html

164 Chapter 6 Proof of Concept

https://www.postgresql.org/docs/9.1/static/sql-createtrigger.html

2. A Role has multiple players after an insert in an association table This axiom violation may
appear by inserting tuples in an association table. To check the uniqueness of exactly one
player, a uniqueness constraint over several tables is required, because a Role Type may have
several player types and this is represented in several tables. Nevertheless, each Role must be
referenced exactly once. As there are no multiple table uniqueness constraints available, an
immediate insert trigger on each row insertion has to be created that checks if the to be in-
serted Role is already referenced by a player. For instance, a StudiesCourse Role Type is related
to a Lecture in the table Lecture_StudiesCourse and the trigger has to check the uniqueness
over all association tables of this Role Type. This comprises the check on Lecture_StudiesCourse

as well as Seminar_StudiesCourse. The tuple will only be inserted, if the check returns that this
Role is currently not referenced. The corresponding trigger is defined as follows by using the
official SQL 2006 syntax [47, pp. 107, 659]. Creating a trigger in H2 syntax is more com-
plex and requires to implement a separate Java class, which uses the Trigger interface of H28.

1 CREATE TRIGGER check_Lecture_StudiesCourse
2 BEFORE INSERT ON Lecture_Student FOR EACH ROW
3 BEGIN ATOMIC
4 {
5 IF (SELECT COUNT(*) FROM (
6 (SELECT * FROM Lecture_Student WHERE R_ID = new.R_ID)
7 UNION
8 (SELECT * FROM Seminar_Student WHERE R_ID = new.R_ID))
9) > 0

10 THEN
11 SIGNAL SQLSTATE ’45000’
12 SET MESSAGE_TEXT = ’ROLE ALREADY PLAYED’
13 END IF
14 } END

This trigger is created on the association table between the Natural Type Lecture and Role Type
StudiesCourse. In detail, an error is returned in case the Role ID is found in any of the associ-
ation tables this Role Type table is referenced in. These tables are connected united to retrieve
these tuples that also reference the Role ID to be inserted. Because the StudiesCourse can be
filled by two Natural Types, only one UNION occurs in this trigger. In case there are more player
types for a Role Type, the UNION in the corresponding trigger scale with the amount of player
types.

3. Compartment uniqueness for player and Role after an association table insert Such meta-
model violation is characterized by inserting a new tuple in an association table. Additionally,
this insert violates the constraints that a Role Type can be instantiated only once per player and
Compartment. To avoid such situation an immediate insert trigger on each association table
has to be created. This constraint could be checked within the trigger created for the second
situation, but for the sake of a clear separation of constraint checking, a separate one is created.
As example, imagine the Person_Student table and a new entry relates a Student Role to a Person.
This trigger checks, if the same Person plays another Student Role in the same Compartment
by comparing all foreign keys to a University in the corresponding Student Roles.

4. Compartment uniqueness for player and Role after a Role Type table update A metamodel vi-
olation that a Role Type is instantiated several times for the same player within the same Com-
partment, can appear in case a Role Type table is updated on the Compartment referencing
foreign key. For instance, an existing Student Role is assigned to another University and the
Person tuple that is associated to this manipulated Role already plays a Student Role in this
new University Compartment. An update immediate trigger solves this problem by checking
the uniqueness for each manipulation on the foreign key constraint.

8http://h2database.com/html/features.html#triggers

6.2 Evaluating the Database Model 165

http://h2database.com/html/features.html#triggers

5. Compartment uniqueness for player and Role after an association table update The same
anomaly can occur in case the association tables are manipulated by updates. Two sub-
situations have to be considered. At first, the player referencing column is updated to another
player such that a Role gets another player. Secondly, the Role referencing column is updated
in a way the player gets another Role. In any case, the consistency is ensured by an update
immediate trigger on each association table. For instance, assume a Student Role is bound
to another player by setting another player reference for the tuple. Consequently, the new
situation has to be checked for consistency.

6. Role has multiple players after an association table update This violation appears in case the
Role referencing column of an association table is updated to an already existing Role reference.
Because Role Types can have multiple filling player types, the existence of the Role reference
over all corresponding association tables has to be ensured. This is done by an update immedi-
ate trigger. For instance, there exist two references to distinct StudiesCourse Roles and one is
updated to be played by another player.

7. Role has no player after an association table update This metamodel violation can result in case
a Role reference is manipulated, as in the previous violation case. This indicates, the cor-
responding player now starts playing another Role and the formerly referenced Role remains
without a new player, thus, it is not deleted from the system. For instance, assume the following
situation, a new Student Role is created and is designed to substitutes the old one. The update
on the association table is performed by changing the Role association of the old to the new
one, but the old Role is not discarded from the system. This situation is handled by an update
commit trigger that checks for unbound Roles on the corresponding Role Type table after all
statements have been executed. Such a check can be performed by checking all Roles in the
corresponding Role Type table for an existing player or buffer manipulated Roles separately and
only check these Roles. The association table cannot be utilized, because the Role reference is
gone.

8. Role has no player after a delete on an association table The only metamodel violation that
corresponds to a delete, is deleting from an association tables does. Deletes on the Role Type ta-
bles are secured by the referential constraints. However, such an anomaly is solved by a delete
commit trigger. This has to be performed on the transaction level, because a trigger on the
statement or row level will block all delete operation due to the interdependence between the
Roles and their associations to a player. For example, the association between a Student Role
and the corresponding Person tuple is deleted, but the Role stays in the system. This trigger will
check, if the each affected Role has a new player or is discarded from the system.

As it can be seen, several critical situations during the Role manipulation exist and the RSQL database
model axioms require several triggers. In sum, each Role Type table needs an insert and update trigger.
Additionally, all association tables are required to have two insert triggers, three update triggers, and
one delete trigger to enforce correct Role bindings and the related constraints. Moreover, for each
operation at least one trigger has to be defined on the transaction level, to avoid mutual blocking
situations and allow inconsistent states within a transaction. The number of statements to create
a relational mapping of the RSQL database model is defined by the number of required tables and
triggers, as shown in the following equation.

|SSQL| = |Tables|+ |Triggers| (6.2)

The number of tables is defined by the overall number of types and their interrelations in the fills
relation.

|Tables| = |NT |+ |CT |+ |RT |+ |RST |+ |fills| (6.3)

166 Chapter 6 Proof of Concept

As outline, each Role Type table requires a mandatory insert and update trigger. Moreover, each
association table features two insert triggers, three update triggers and one delete trigger. In an op-
timal case, in which the different functionalities of the association table triggers are combined in a
single one, at least three triggers are required. For comparison purposes, the optimal case is assumed
resulting in the following rule to determine the number of triggers.

|Triggers| = 2 · |RT |+ 3 · |fills| (6.4)

6.2.3 Comparing RSQL and SQL

To compare RSQL and SQL with each other, we determine the number statements that are required to
set up a proper schema and to guarantee the consistency constraints for the instances in the database.
In general, the calculation rules presented in equation 6.1 and 6.2 are used to determine the number
of statements. At first, schema creation of a database with respect to the conceptual model illustrated
in Figure 2.3 is compared. An overview of the contained types is given in Table 6.2.

|NT | |CT | |RT | |RST | |fills|
3 3 10 3 11

Table 6.2: Elements Overview of the University Domain Conceptual Model

To create the corresponding database schema several CREATE statements in RSQL as well as in SQL have
to be executed. Moreover, the mapping process and the respective rules as outlined in Section 6.2.2
are applied to determine the number of SQL statements. An overview of the number of statements is
given in Table 6.3.

Statement RSQL SQL
CREATE TABLE / TYPE 19 30
CREATE TRIGGER – 53

Sum 19 83

Table 6.3: Number of Statements to Create Corresponding Database Schema in RSQL and SQL

In sum, 19 RSQL statements are required to model the conceptual domain in RSQL. In contrast,
the same domain in a relational DBS requires 83 SQL statements. Precisely, 30 statements to create
the type and association tables, and 53 create statements to ensure the consistency constraints with
triggers. Consequently, the number of statements and effort to create the same semantics in SQL is
4.3 times higher than in RSQL.

Sensitivity Analysis of the fills Relation

The actual number of SQL data definition language declarations is mainly influenced by the number
of Role Types and the population of the fills relation. This relation has a minimum and maximum
population. In the former case, all Role Types have exactly one possible player. In the latter one, each
core type can fill all available Role Types. To demonstrate the influence of the relation’s population
on the number of statements, we vary the ratio of players per Role Type.

The sensitivity analysis shown in Figure 6.6 varies the population ratio of the fills relation, starting
from a ration of 0.2 up to a ratio of 1 denoted as Max . In detail, the bottom line describes the number

6.2 Evaluating the Database Model 167

Figure 6.6: Sensitivity Analysis for the fills Relation in SQL

of statements required to create the corresponding association tables. The middle line shows the effort
in creating trigger statements while the topmost line represents the sum of both lines. Moreover,
this example assumes the same number of types as the university domain model, but connects more
Role Types with player types. In RSQL, the number of statements is independent of population ratio
of this relation, because it does not require separate types to represent it. In contrast, a relational
mapping has to model this relation explicitly, which result in effort to create and maintain the tables
and especially triggers.

Population Min 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Max
RSQL 19 19 19 19 19 19 19 19 19 19
SQL 79 87 111 135 159 183 207 231 255 279

Quotient x4.16 x4.58 x5.84 x7.11 x8.37 x9.63 x10.89 x12.16 x13.42 x14.68

Table 6.4: Additional Effort for Creating a Relational Schema by Varying the fills Relation’s Popula-
tion Ratio

Depending on the population rate of the fills relation, the additional effort in SQL compared to RSQL
varies as well. Table 6.4 comprises different population ratios of this relation and directly compares
the additional effort in SQL on the basis of the applied mapping. The results represent the total
number of statements, including types, tables, and triggers. As it can be seen, the number of RSQL
statements is independent of the population ratio, in fact only the Role Type’s create statement length
increases with a higher ratio. This is caused by the enumeration of all player types within the corre-
sponding create statements. However, by adding additional interrelations between the available Role
Types and player types, the additional varies from 4.16 in the minimum case to 14.68 more statements
in the fully connected case.

Varying the Number of Types

The university management domain as depicted in Figure 2.3 is a small example that features 19
different types only. To analyze the number of statements in more detail, the number of type is varied
by keeping the ration in the fills static. As base data assume the three scenarios as shown in Table 6.5
with a population ratio of 0.2 of the fills relation.

168 Chapter 6 Proof of Concept

Scenario |NT | |CT | |RT | |RST | |fills| |SRSQL| |SSQL| Quotient
1 1 1 1 0 1 3 9 x3
2 10 10 10 10 40 40 220 x5.5
3 10 20 50 10 300 90 1390 x15.44
4 2 10 100 10 240 122 1282 x10.51

Table 6.5: Comparison of the Number of Statements as a Function of the Number of Types

The first scenario comprises the most basic scenario, with one Natural Type, Compartment Type, and
Role Type, but no Relationship Type. In RSQL this requires 3 statements and in SQL 9 by applying
the mapping schema, which is three time more statements. Moreover, the fills relation has a fill rate
of 0.5, because the example includes only one Role Type that is filled by one of two potential player
types. Less it not possible.

The second scenario illustrates an equal amount of types for each metatype, in detail ten types each.
As result of a 0.2 population ratio of the fills relation, it holds 40 entries. The schema in RSQL
requires 40 statements contrary to 220 statements in SQL. In more detail, 80 statements are required
for creating tables and 140 for the triggers to ensure instance consistency. In sum, the 5.5 times more
SQL statements have to be built.

In the third example, the amount of Role Types is quintupled whereas the number of Compartment
Types is doubled, compared to the previous example. All other amounts remain stable. This represents
a scenario with few cores types and a lot of Role Types. As a consequence, the fills relation consists of
300 elements, which is the main reason for the 1390 SQL statements required to set up this scenario.
In contrast, such an RSQL schema is created by only 90 statements. Thus, the SQL schema uses 15.44
more statements than the RSQL one.

The final example demonstrates a situation, in which only small number of core types and a large
amount of Role Types is present. In detail, two Natural Types and ten Compartment Types on the one
hand side and 100 Role Types on the other side. This results in 240 association tables in SQL with
a total amount of 1282 statements to create such scenario. This is 10.51 time higher than in RSQL,
which requires 122 statements only.

Conclusions

In sum, the database model comparison reveals a, partially huge, difference in the amount of state-
ments needed to create the database schemata. This difference ranges from 3 times more statements
in the most basic case (see Scenario 1), over 4.3 times more statements in the running example uni-
versity domain, to a 15.44 times higher amount of statements in the discussed Scenario 3. Beside the
pure number of statements, it can be concluded that the semantics of the RSQL database model are
widely distribute over several tables. For instance, the information which player type can fill which
Role Types is distributed over several association tables. Moreover, most of the instance constraints,
like one Role per Role Type for a player in a certain Compartment, is ensured by triggers, which might
become a problem for concurrent applications and their development. Precisely, when a database
schema is investigated for existing information that can used in an additional application, the existing
tables are of major interest. In the example mapping used to compare the RSQL database model to
a relational one, most of the consistency constraints are hidden in triggers, thus, they are not visible
on the first sight. This means, the exposed types are tables and triggers work in the background. In
RSQL, the exposed types include the consistency constraints as inherent characteristic, in SQL they

6.2 Evaluating the Database Model 169

are defined in separate types. This background processes can lead to unexpected output and behavior
of the database system, from an external perspective. Especially, in case tuples cannot be inserted
or deleted from the database, because the triggers prevent that, or the insert and delete statements
are not embedded into proper transactions. In sum, the RSQL database model is cut into pieces and
spread over several tables and triggers which massively complicates the semantics reconstruction.

Beside this problem of the relational mapping, the bare number of triggers created to ensure consis-
tency produces a very fragile relational schema according to schema evolution. This results in a higher
maintenance effort for database developers and administrators.

To sum up, the RSQL database is superior to the relational in terms of modeling role-based systems
efficiently. The RSQL database model provides an out of the box role notion, which simplifies the
modeling compared to a relational mapping dramatically, because the semantics is directly included
in the database model and does not need to be constructed implicitly. Finally, the constraints for
schema as well as for the instance level are ensured without explicitly model them, which has to be
performed by a relational mapping, especially by using triggers.

6.3 EVALUATING THE QUERY LANGUAGE

To compare the role-based RSQL and relation SQL approach, we directly compare both languages
to each other. The use of a language is very subjective and strongly depends on the experience and
feeling of the language user. Moreover, there is no standard metric or best practice guide on measuring
a language’s expressiveness or complexity. Thus, we use various metrics as indicators to achieve a
comparison and derive a conclusion. In detail, we compare the amount of used words, the number
of character with spaces and the number without them. To have a fair comparison, the standard
conceptual model names are used as illustrated in Figure 2.3. Moreover, the abbreviations are as short
as possible to avoid unnecessary characters. In detail, the query language evaluation uses two example
queries. The first is a simple query that features only a single 〈config-expression〉. The second one is a
more complex query that uses overlapping 〈config-expressions〉 in combination with a condition.

6.3.1 Writing Single Config-Expressions

The first scenario comprises a simple query on a single Dynamic Data Type by using one
〈config-expression〉. Precisely, this query asks for Person Dynamic Tuples that play a Role of the Role
Types Student and StudentAssistant. In RSQL this query is formulated as follows.

1 SELECT * FROM Person p PLAYING Student s AND StudentAssistant sa;

Assuming the introduced mapping, the same query rephrased in SQL looks like the following.

1 SELECT * FROM Person p
2 INNER JOIN Person_Student ps ON p.ID = ps.P_ID
3 INNER JOIN Student s ON ps.R_ID = s.ID
4 INNER JOIN Person_StudentAssistant psa ON psa.P_ID = p.ID
5 INNER JOIN StudentAassistant sa ON psa.R_ID = sa.ID;

170 Chapter 6 Proof of Concept

Measurement |Words | | Chars | | Chars w/o spaces | | Types / Tables |
RSQL 10 65 55 1 (3)
SQL 36 219 183 5

Relative x3.6 x3.37 x3.33 x5 (x1.67)
Absolute 26 154 128 4 (2)

Table 6.6: Comparison of RSQL and SQL for a Single Config-Expression

As it can be easily seen, the SQL query is much more complex in terms of joining various tables.
Moreover, the semantics which player has to be connected to which Roles are vanished by several
joins. This is caused by the mapping itself, which implements association tables between the player
and Role Types. The original semantics have to be reconstructed by these joins. In Table 6.6 a detailed
comparison of RSQL and SQL, according to the introduced queries, is presented.

In particular, the number of words used in the query differs by the factor 3.6 between both query
languages while RSQL is shorter. The RSQL query uses only 10 word and in contrast to that, SQL
requires 36 words. Note, the * is not counted as separate word. As words vary in their length, the
number of characters with and without spaces is compared. The corresponding RSQL query requires
65 characters including the spaces and 55 excluding them. The SQL queries uses more than 3 times
more characters. In detail, the number of characters used is 219 in case the spaces are included
and 183 when they are excluded. Finally, we compare the amount of computed tables and types,
respectively. The RSQL query touches one Dynamic Data Type only and 3 types if the base elements
are counted. In contrast to this, the SQL example consumes 5 different tables.

6.3.2 Writing Overlapping Config-Expressions

As second scenario, a more complex and overlapping query is employed. In detail, this scenario asks
if good sportsmen are good students as well. To query this information, an attribute GPA is imaginary
added to the Role Type Student. In detail, a Person Dynamic Tuple has to play Role of the Role Type
Student and TeamMember. This TeamMember has to be in a certain SportsTeam that attended a
Tournament and won it. The win has to take place prior 2015. Moreover, the Student’s GPA must be
greater than 4. In RSQL such a query is specified as follows.

1 SELECT * FROM Person p PLAYING Student s AND TeamMember tm,
2 Uni u FEATURING s,
3 SportsTeam st FEATURING tm PLAYING WinnerTeam wt,
4 Tournament t FEATURING wt,
5 WHERE t WITH t.date < 01.01.2015, s WITH s.gpa > 4;

This RSQL query comprises four different 〈config-expressions〉, one for each queried Dynamic Data
Type. Moreover, the Dynamic Data Types overlap at certain points. In particular, the Person overlaps
with the University by the Role Type Student, and with the SportsTeam in the Role Type Team-
Member. Additionally, the SportsTeam shares the Role Type WinnerTeam with the Tournament
Dynamic Data Type. Furthermore, the Tournament as entire Dynamic Tuple is filtered by the date
attribute. Finally, the Student Roles are filtered by the gpa attribute, which has to be greater than 4.

To retrieve the same information from a relation database system, the following query is executed.

6.3 Evaluating the Query Language 171

1 SELECT * FROM Person p
2 INNER JOIN Person_Student ps ON p.ID = ps.P_ID
3 INNER JOIN Student s ON ps.R_ID = s.ID
4 INNER JOIN Person_TeamMember ptm ON ptm.P_ID = p.ID
5 INNER JOIN TeamMember tm ON ptm.R_ID = tm.ID
6 INNER JOIN SportsTeam st ON tm.C_ID = st.ID
7 INNER JOIN University u ON s.C_ID = u.ID
8 INNER JOIN SportsTeam_WinnerTeam stwt ON stwt.P_ID = st.ID
9 INNER JOIN WinnerTeam wt ON stwt.R_ID = wt.ID

10 INNER JOIN Tournament t ON wt.C_ID = t.ID
11 WHERE t.date < 01.01.2015 AND s.gpa > 4;

This query uses nine joins to combine the various tables, which gives the query a very homogeneous
appearance, but in a negative sense. Basically, each line looks alike with only slight differences. More-
over, the query mixes instance information and mapping information such that the query itself is
interspersed with mapping details, like association tables that are joined on entity tables. Thus, the
original semantics of this query is hard to identify. This may complicate query debugging in case of
wrong or unexpected results. In contrast, the RSQL query only includes entity and overlapping in-
formation without the need to include for mapping information. The evaluation on our metrics is
presented in Table 6.7.

Measurement |Words | | Chars | | Chars w/o spaces | | Types / Tables |
RSQL 36 207 171 4 (7)
SQL 84 489 394 10

Relative x2.33 x2.36 x2.30 x2.5 (1.43)
Absolute 48 282 223 6 (3)

Table 6.7: Comparison of RSQL and SQL for Multiple Config-Expressions

The comparison on the word count reveals a 2.33 higher amount of words in the regular and shortened
version of SQL. In particular, the RSQL query uses 36 words whereas the SQL versions require 84
words. Moreover, the number of characters including the spaces in the RSQL is 207. In contrast, the
SQL version has a character count of 489 characters with counting the spaces. Compared to RSQL,
these number are 2.36 times higher. The relative difference in the word and character counts may
shrink, but the absolute difference grows as the character count clearly shows. In the first scenario the
absolute difference is 154 and in this scenario 282. In case the space is excluded from the character
set, the number go down 171 in the RSQL query and 394 the SQL query. This is 2.30 times higher
than the RSQL character count. Finally, the number of used types respectively tables is compared.
The RSQL query uses 4 Dynamic Data Types and touches 7 base types, whereas the SQL versions
requires 10 tables. Consequently, the number of handled types is 2.5 time higher in the SQL cases by
assuming the Dynamic Data Types as reference and 1.43 times higher in case the RSQL base elements
are counted.

Conclusions

In sum, the comparison of RSQL’s query language and SQL reveals longer query statements in SQL.
This is mainly caused by the distribution of role-based entity information over several tables and the
introduction of association tables. These tables have to be manually joined in the query statement
to reconstruct the original information. Moreover, an RSQL statement is structured by Dynamic
Data Types while a SQL statements buries the playing and featuring information in joins over foreign
keys, which complicates query debugging. Furthermore, SQL statements look very homogeneous in
a negative sense, because they mix entity and mapping information in the same query. However,

172 Chapter 6 Proof of Concept

the relative difference between RSQL and SQL in count words as well as in the characters shrinks.
In contrast, the absolute difference grows. Thus, there is no clear dependency between the amount
of words used in RSQL and SQL. To conclude, the RSQL query language provides a sophisticated
external database interface to retrieve role-based data from the database.

6.4 EVALUATING THE RESULT REPRESENTATION

RSQL’s result representation RuN uses a hybrid approach, consisting of navigation and iteration, to
browse the results and collect the required information. In fact, an entity’s information, including the
Roles, is concentrated in a single Dynamic Tuple, which is processable at once. In contrast, relational
results cannot represent the dimensionality of RuN. Thus, the entity information is split into pieces
and distributed over several tuples.

There are two extremes of representing a result set of complex and role-based entities in a standard
relational result set. At first, all entity information is included in a single query and thus, in a single
result set. This introduces redundancy in the result set, because the complex entity information is
distributed over several tuples. As a consequence of the redundancy, a more complex result processing
is required to deal with this redundant data. The second option distributes the information over
several result sets. Thus, multiple queries have to be executed, especially to retrieve the information
that is not present in the other result sets. For instance, at first the core table is queried and processed.
Next, for each core the association tables are queried in a separate statement to get the information
which core is playing which Role. Finally, a query on the Role Type table is executed to collect the
concrete Role information. This basically simulates an application-implemented join. Thus, the entity
information is distributed over several queries and tuples.

To evaluate RuN’s hybrid approach, to navigate and iterate through the results, the query processing
on the client side as well as the result’s dimensionality respectively size are evaluated. As initial
scenario to demonstrate the processing models, the client queries for Persons, who play Roles of the
Role Type Student and StudentAssistant. Additionally, the corresponding attributes of an entity
have to be stringed together, such that each entity and its Roles are printed in a single line. This
simulates the restoring of an application’s runtime object. The following code examples are written
in Java9 and use a JDBC interface to communicate with the H2 database engine10.

6.4.1 Processing a RSQL Result Net

At first, the RuN result processing is elaborated and discussed. Figure 6.7 illustrates the result repre-
sentation of a RuN. In detail, the database driver is loaded and the connection to the database system is
established. On this connection a new statement is created (line 3). Next, the statement is used to ex-
ecute the query and retrieve the RuN (line 4). In fact, the RSQL query starts with a SELECT_RSQL, which
is caused by the prototypical implementation. Moreover, this helps in debugging scenarios to follow
the parsing paths in the RSQL parser. The actual result has to be casted to a JdcbRsqlResultSet in order
to get the RSQL specific behavior, like accessing the core attributes or navigate into the dimensions.
The result processing is performed between the lines 6 and 18. At first, the main cursor is iterated
in a while loop, which moves the cursor from one Dynamic Tuple to the next one. For each Dynamic

9https://www.oracle.com/de/java/index.html
10http://www.h2database.com/html/tutorial.html#connecting_using_jdbc

6.4 Evaluating the Result Representation 173

https://www.oracle.com/de/java/index.html
http://www.h2database.com/html/tutorial.html#connecting_using_jdbc

1 Class.forName("org.h2.Driver");
2 Connection conn = DriverManager.getConnection("jdbc:h2:~/RSQLExample", user, pw);
3 Statement stmt = conn.createStatement();
4 JdbcRsqlResultSet rsqlResult = (JdbcRsqlResultSet) stmt.executeQuery("SELECT * FROM Person p

↪→ PLAYING Student s AND StudentAssistant sa");
5 String out = "";
6 while (rsqlResult.next()) { //iterate Person Dynamic Tuples
7 out = "Person: " + rsqlResult.getString("p.name");
8 LinkedList<RsqlRoleInstance> students =

↪→ rsqlResult.getRoleInstances(RsqlDimensionTuple.PLAYING_DIMENSION, "Student"); //get
↪→ Student Roles

9 for (int i = 0; i < students.size(); i++){
10 out = out + " Student Role: " + students.get(i).getInt("s.Student_ID");
11 }
12 LinkedList<RsqlRoleInstance> studentAssistants =

↪→ rsqlResult.getRoleInstances(RsqlDimensionTuple.PLAYING_DIMENSION, "StudentAssistant");
↪→ //get StudentAssistant Roles

13 for (int i = 0; i < studentAssistants.size(); i++){
14 out = out + " StudentAssistant Role: " + studentAssistants.get(i).getString("sa.SA_ID");
15 }
16 System.out.println(out); //print out
17 }
18 rsqlResult.close();
19 conn.close();

Figure 6.7: Processing an RSQL RuN

Tuple the core attributes are available right away and can be accessed by using the well-known getter
methods of JDBC.

Next, the endogenous navigation is performed in line 9. The RuN returns all Roles of the particular
Dynamic Tuple in a linked list, that is capable to be iterated. This iteration process takes place in the
lines 10 to 12. Basically, for each Role the Student_ID attribute is attached to the output string. The
same procedure is applied for the StudentAssistant Roles in the lines 14 to 16. Finally, the Dynamic
Tuple is completely processed, in terms of collecting the corresponding IDs, and the output string is
printed (line 17). To complete the result processing, the result as well as the connection are closed.

6.4.2 Processing an All In One Relational Result

The first relational result processing example reflects the all in one extreme, in which a single query
execution retrieves all data, but introduces data redundancy. The corresponding code is illustrated
in Figure 6.8. In the first place, the database driver is loaded and the database connection is estab-
lished. This connection object is utilized to create a statement object on which query is executed.
The query itself is the same as presented in the relational query language example, illustrated in
the single 〈config-expression〉 example in Section 6.3, but with an additional ordering. In detail,
the result is ascending ordered by the Person.name and Person.lastName, the StudentAssistant.ID and
Students.Student_ID. This helps to implement the result processing, because it clusters the rows by
the entity core. As soon as a new Person.ID appears during the iteration process, the previous Person
entity is completely processed. To remove the redundant data from the result, we define three sets
to track already seen types, one for already seen Persons, one for the Students, and one for the Stu-
dentAssistants. These sets are used to check if the corresponding instance ID has already been seen
during result processing and to avoid a redundant representation in the output string.

However, the actual result processing step is specified between the lines 11 and 38 in a while loop.
This loop moves the row cursor and for each row it is checked if the current contains a new Person,

174 Chapter 6 Proof of Concept

1 Class.forName("org.h2.Driver");
2 Connection conn = DriverManager.getConnection("jdbc:h2:~/SQLExample1", user, pw);
3 Statement stmt = conn.createStatement();
4 ResultSet result = (ResultSet) stmt.executeQuery("SELECT * FROM Person p INNER JOIN

↪→ Person_Student ps ON p.ID=ps.P_ID"
5 + " INNER JOIN Student s ON s.ID=ps.R_ID INNER JOIN Person_StudentAssistant psa ON

↪→ psa.P_ID=p.ID"
6 + " INNER JOIN StudentAssistant sa ON sa.ID=psa.R_ID ORDER BY p.name, p.lastName, sa.SA_ID,

↪→ s.Student_ID ASC");
7 String out = "";
8 int seenPerson = 0
9 HashSet<Integer> seenStudents = new HashSet<Integer>();

10 HashSet<Integer> seenStudentAssistants = new HashSet<Integer>();
11 while (result.next()) { //iterate tuples
12 if (result.getInt("p.P_ID") != seenPerson) { //whole new entity
13 if (!out.equals("")) { //reset for new entity
14 System.out.println(out); // print out previous entity
15 out = "";
16 seenStudents.clear();
17 seenStudentAssistants.clear();
18 }
19 seenPerson = result.getInt("p.P_ID");
20 seenStudents.add(result.getInt("s.S_ID"));
21 seenStudentAssistants.add(result.getInt("sa.SA_ID"));
22 out = out + "Person: " + result.getString("p.name");
23 out = out + "Student Role: " + result.getInt("s.Student_ID");
24 out = out + "StudentAssistant Role: " + result.getInt("sa.SA_ID");
25 } else { //existing entity
26 if (!seenStudents.contains(result.getInt("s.S_ID"))) {
27 seenStudents.add(result.getInt("s.S_ID"));
28 out = out + "Student Role: " + result.getInt("s.Student_ID");
29 }
30 if (!seenStudentAssistants.contains(result.getInt("sa.SA_ID"))) {
31 seenStudentAssistants.add(result.getInt("sa.SA_ID"));
32 out = out + "StudentAssistant Role: " + result.getInt("sa.SA_ID");
33 }
34 }
35 }
36 System.out.println(out); // print out final entity
37 result.close();
38 conn.close();

Figure 6.8: Collecting Entity Information in a Single Relational Result

a new Student Role, or a new StudentAssistant Role. In case it is a new Person, the output string is
printed and reset. Moreover, the corresponding sets to keep track of seen information are cleared, as
shown in the lines 14 to 18 in Figure 6.8. Next, the new Person, the first Student Role as well as the
first StudentAssistant Role are added to the tracking sets and the output string (lines 20 to 25). In
case the Person information has been seen before, it is checked if a new Student or StudentAssistant
Role is included in this row. Depending on the check result, the information is appended to the output
string and the type is added to the particular tracking set. This loop continues until all rows have been
processed. Finally, the last entity is printed and the result as well as the connection are closed. In
total, this processing approach requires additional tracking effort to filter the redundant information
and detect which tuples contain Role information of which Role Type. Moreover, the redundant data
representation results in higher transmission costs between the database system and the applications.

6.4.3 Processing a Multi-Query Relational Result

The second relation result processing example avoids the data redundancy in the result representa-
tion, but has to load data on demand by executing a query each time. The client side code for this

6.4 Evaluating the Result Representation 175

example is depicted in Figure 6.9. After loading the H2 database driver and establishing a database
connection, the statement, on which the initial query is executed, is created (lines 1 – 3). Moreover,
four prepared statements are created and initialized, one for each table that is queried during the main
tuple processing. The use of prepared statements is beneficial and more efficiently for frequently per-
formed queries.

1 Class.forName("org.h2.Driver");
2 Connection conn = DriverManager.getConnection("jdbc:h2:~/SQLExample2", user, pw);
3 Statement stmt = conn.createStatement();
4 PreparedStatement pstmtPS = conn.prepareStatement("SELECT * FROM Person_Student ps WHERE

↪→ ps.P_ID=?");
5 PreparedStatement pstmtS = conn.prepareStatement("SELECT * FROM Student s WHERE s.ID =?");
6 PreparedStatement pstmtPSA = conn.prepareStatement("SELECT * FROM Person_StudentAssistant psa

↪→ WHERE psa.P_ID=?");
7 PreparedStatement pstmtSA = conn.prepareStatement("SELECT * FROM StudentAssistant sa WHERE

↪→ sa.SA_ID =?");
8 ResultSet result = (ResultSet) stmt.executeQuery("SELECT * FROM Person p");
9 String out = "";

10 while (result.next()) { //iterate Persons
11 pstmtPS.setInt(1, result.getInt("p.ID"));
12 ResultSet resultPS = pstmtPS.executeQuery();
13 out = "Person: " + result.getString("p.name");
14 while (resultPS.next()) { //iterate Person_Student
15 pstmtS.setInt(1, resultPS.getInt("ps.R_ID"));
16 ResultSet resultS = pstmtS.executeQuery();
17 while (resultS.next()) { //iterate Student
18 out = out + " Role Student: " + resultS.getInt("s.Student_ID");
19 }
20 resultS.close();
21 }
22 resultPS.close();
23 pstmtPSA.setInt(1, result.getInt("p.ID"));
24 ResultSet resultPSA = pstmtPSA.executeQuery();
25 while (resultPSA.next()) { //iterate Person_SAssistant
26 pstmtSA.setInt(1, resultPSA.getInt("psa.R_ID"));
27 ResultSet resultSA = pstmtSA.executeQuery();
28 while (resultSA.next()) { //iterate StudentAssistant
29 out = out + " Role StudentAssistant: " + resultSA.getInt("sa.SA_ID");
30 }
31 resultSA.close();
32 }
33 resultPSA.close();
34 System.out.println(out); //print out entity
35 }
36 result.close();
37 conn.close();

Figure 6.9: Collecting Entity Information in Multiple Relational Results

Firstly, the main cursor is moved to iterator over all Person tuples that are retrieved by the main query
execution (line 8). Secondly, the first prepared statement is parametrized with the current Person
tuple’s ID and executed afterwards (lines 9 and 10). This query’s result describes the linkage between
the current Person tuple and its related Student Roles. In case, it is related, all relations will be it-
erate in a nested while loop. For each of the result entries, the corresponding Student Role tuple is
loaded by parameterizing and executing the second prepared statement (lines 15 and 16). This result
sets represents the actual Student Role information, thus, for each element in this result, the output
string is extended by the corresponding Role information (lines 17 – 19). If this iteration process is
finished, the corresponding result set objects are closed (lines 20 – 21). The same information collec-
tion process is applied on the association table Person_StudentAssistant in combination with the Role
Type table RT_SAssistant. Therefor, the prepared statements pstmtPSA and pstmtSA are parametrized
and repeatedly executed. Finally, the results are closed and the output string is printed (lines 31 – 37).
In sum, this process requires additional effort to query the required information. Moreover, the joins
are performed on the application level and not in the database system.

176 Chapter 6 Proof of Concept

6.4.4 Comparing the Result Representations

To compare the three result processing models, several indicators are contrasted to each other in four
scenarios. Generally, the efficiency of the result representation can be measured in effort required
to process it on the client side and its dimensions in terms of elements contained or data transferred
between the database system and the applications. To assess the processing effort, two scenarios
and five metrics are applied on the three processing models. The scenarios vary by their number of
queried Role Types. Furthermore, the result dimensions are investigated by varying the number of
Roles played per Role Type and by using three metrics.

Varying the Number of Role Types

To illustrate the complexity of the client side code and its expansion with an increasing number of
queried Role Types, five different measurements are detailed for each of the scenarios. Precisely, (i)
the number of queries executed (|Q|), (ii) the size of the initial result (|RS |), (iii) the amount of lines
of code (|Loc|), (iv) the number of conditional statements (|If |), and finally (v) the number of loops
(|Loop|). The last three metrics are influenced by a programmer’s individual coding style and may
vary from person to person. For a fair comparison, all examples use the same style and apply the same
patterns, for instance, to iterate lists. To determine the expansion and metrics several rules have to be
applied.

|Q| The RSQL as well as the SQL all in one scenario require only one statement to retrieve all infor-
mation. In contrast, the separate query SQL scenario executes queries for each Natural, Role
Type, and Role combination plus 1. The additional query represents the initial one.

|RS | The RSQL as well as separate SQL query result are populated with the number of Naturals
whereas the all in one SQL scenario result holds as many rows as the combination of Naturals,
Role Types and Roles.

|Loc| The lines of code in RSQL are determined by the basic summand of 6 lines and four additional
lines for each Role Type. This is also shown in Figure 6.7. In case of SQL all in one, the skeleton
consists of 17 lines and is extended by 8 lines per Role Type, as shown in Figure 6.8. Finally,
the SQL scenario implementing separate queries has an initial effort of 6 lines of code, but is
expanded by 13 lines for each Role Type. These 13 lines are also shown in Figure 6.9.

|If | As the code examples show, RSQL as well as the separate query SQL scenario do not utilize
conditional statements at all. In contrast, the all in one SQL case uses two basic statements and
requires one more for each queried Role Type.

|Loop| An RSQL result processing demands for at least one basic loop and an additional one for each
Role Type. The first SQL example uses only one loop, especially to move the main cursor. In
contrast, the separated SQL setting needs the main loop and two more for each Role Type.

Moreover, it is assumed that all Dynamic Tuples are equally populated, which means each core plays
the same amount of Role per Role Type. This simplifies especially the computation of the result size
and number of queries. An overview of the rules is given in Table 6.8 and the two scenario evaluations
are presented in Table 6.9.

In detail, the first scenario assumes two Natural playing ten Roles each. These Roles are equally
distributed over five Role Types. By definition, RuN as well as the all in one SQL scenario have a

6.4 Evaluating the Result Representation 177

Setting Metric RuN SQL all in one SQL separate

Rules

Q	1 1 1 +	N	·	RT	·	R				
RS		N		N	·	RT	·	R		N
Loc	6 + 4 ·	RT	17 + 8 ·	RT	6 + 13 ·	RT				
If	0 2 +	RT	0							
Loop	1 +	RT	1 1 + 2 ·	RT						

Table 6.8: Rules to Determine the Five Metrics For Each Result Processing Model

Setting Metric RuN SQL all in one SQL separate Q1 Q2

2 N,
5 RT,
2 R per RT

|Q| 1 1 21 x1 x21
|RS | 2 20 2 x10 x1
|Loc| 26 57 71 x2.19 x2.73
|If | 0 7 0 – –
|Loop| 6 1 11 x0.17 x1

2 N,
50 RT,
2 R per RT

|Q| 1 1 201 x1 x201
|RS | 2 200 2 x100 x1
|Loc| 206 417 656 x2.02 x3.18
|If | 0 52 0 – –
|Loop| 51 1 101 x0.02 x1.98

Table 6.9: Comparison of the Three Result Processing Models by Two Role Type Varying Scenarios

constant number of queries, exactly 1. For this scenario the separate SQL case requires 21 executed
queries to retrieve all entity information. In contrast, the number of elements in the initial result
is 2 for the RSQL and separated SQL cases, whereas the other SQL scenario contains 20 elements.
As it can be seen, the two relational processing models feature one positive aspect, fewer queries or
less initial elements in the result, but RuN combines both aspects. However, the code expansion is
measured by the lines of code, the number of conditional statements, and the amount of loops. While
RSQL only uses 26 lines and 6 loops, the all in one SQL scenario requires 57 lines, consisting of 7
conditional statements and the main while loop. Furthermore, the split SQL setting requires 71 lines
of code with 11 embedded loops. Especially, the number of lines of code is more than two times higher
in both SQL processing models.

The second scenario implements ten times more Role Types while the number of Roles per Role Type
and the amount of entities remains stable. Thus, each entity plays 100 Roles distributed over 50 Role
Types. This increases the number of queries in the separated SQL setting to 201, whereas the SQL
and RSQL number stays at 1. In contrast, the number of elements in the initial result is stable for the
RuN and separated SQL cases, but grows for the other SQL scenario from 20 to 200. The lines of code
expand from 26 to 206 in the RSQL scenario, from 57 to 417 in the first SQL case, and from 71 to 656
in the separated SQL setting, which is more than two times more code. The number of conditional
statements grows linearly to the amount of Role Types in the all in one SQL example, thus, 52 of these
statements are required. Finally, the amount of loops increases from 6 to 51 for RSQL and from 11 to
101 in the second processing model of SQL.

Varying the Number of Roles per Role Type

To demonstrate the result dimensions and their growth, three metrics applied in two scenarios are
evaluated. Both, the number of queries and the amount of elements in the initial result, are used in

178 Chapter 6 Proof of Concept

previous evaluations. Thus, an explanation is skipped at this point. As additional metric, the amount
of data transferred between the database system and the application is introduced. In case of RSQL
and the separate query SQL scenario, this number is defined by the number of Natural in the result
multiplied with the entities Natural and Roles payloads. In detail, we assume a payload of 1KB per
Natural and per Role. Based on this, a 1 is added to the overall Role payload for each Natural. In fact,
this 1 represents the Natural’s payload. In the all in one SQL setting, this metric is determined by
the number of Role Types plus 1, multiplied with the number of elements in the result. The former
factor represents the header dimension, which consists of as many Role Types as queried plus the
Natural Type. The latter one describes the total amount of elements in the result as multiplication
of Naturals, the amount of Role Types, and the Roles per Role Type. Moreover, the amount of data
caused by the association tables is neglected in the examples. The rules to determine the metrics are
listed in Table 6.10. Moreover, Table 6.11 presents the evaluation for two scenarios.

Setting Metric RuN SQL all in one SQL separate

Rules
|Q| 1 1 1 + |N | · |RT | · |R|
|RS | |N | |N | · |RT | · |R| |N |
|Data| |RS | · (1 + |RT | · |R|) |RS | · (1 + |RT |) |RS | · (1 + |RT | · |R|)

Table 6.10: Rules to Determine the Three Metrics For Each Result Processing Model

Setting Metric RuN SQL all in one SQL separate Q1 Q2
2 N,
5 RT,
10 R per RT

|Q| 1 1 101 x1 x101
|RS | 2 100 2 x100 x1
|Data| 102 5100 102 x50 x1

2 N,
5 RT,
100 R per RT

|Q| 1 1 1001 x1 x1001
|RS | 2 1000 2 x500 x1
|Data| 1002 6000 1002 x5.99 x1

Table 6.11: Comparison of the Three Result Processing Models by Two Role Varying Scenarios

The first scenario, comprises moderately populated Role Types for each Natural. In detail, we assume
5 Role Types and each is filled with 10 Roles, which are 50 Roles per Natural. The number of queries
remains stable for RSQL and the all in one SQL example. In the second relational result processing
model, 101 queries are required, which is 101 times more queries than in RSQL. The number of ele-
ments in the main result is 2 for RSQL and the separated scenario, but 100 for the first SQL example.
The data transferred from the database to the application is 50 time higher in the all in one scenario
than in the RSQL and separated query setting.

To investigate the result dimensions in case more Roles per Role Type are played, the second example
scenario is employed. In particular, this example assumes 100 Roles per Role Type while the amount
of overall Role Types and Natural remains steady. Consequently, each Natural plays 500 Roles in this
example. The evaluation reveals, that the number of queries in the separate queries case dramatically
raises to 1001, whereas the number is constant for RSQL and the other relational result processing
approach. In contrast, the number of elements in the result is much higher in the all in one example,
in fact 500 times higher than in RSQL. Finally, the quotient of transferred data between RSQL and
the all in one setting shrinks from 50 in the first evaluation scenario to 5.99 times more transferred
data in the second one.

6.4 Evaluating the Result Representation 179

Conclusions

The evaluation on RSQL’s RuN in comparison to two different relational result processing models
shows that RuN combines the positive aspects of the relational processing models in a single one.
As the evaluation on the varying Role Type amount clearly shows, RuN requires only one statement,
fewer lines of code, and avoids a combinatorial explosion of the result. In contrast to the all in one
approach in a relational processing, which is mainly based on conditional statements, RSQL iterates
over the corresponding Roles to collect their information. Moreover, the second comparison is fo-
cused on varying the number of Roles played by a certain Natural. This rating illustrates that RuN
transfers less data from the database system to the applications than the SQL processing models. In
sum, we prove that RuN is an efficient result representation for Dynamic Tuples and combines the
positive aspects of two extreme relational processing models.

6.5 SUMMARY

In the beginning of this chapter we described a prototypical implementation of RSQL on the basis of
the H2 database engine. Moreover, we presented a relational mapping of our role-based metamodel
and applied it on the university scenario. This mapping built the basis for the evaluation of RSQL in
contrast to SQL. In detail, we evaluated the database models, the query languages as well as the result
representations. Precisely, we showed that RSQL requires fewer statements to set up a role-based
database schema than SQL. In the investigated scenarios the relative difference ranged from 3 times
more SQL than RSQL statements in the most basic scenario, up to 15 times more SQL statements.
Most important, the consistency constraints are natively ensured by RSQL, whereas they have to be
implemented manually in the relational setting. Especially, the amount of triggers required to ensure
instance consistency increases rapidly, which lowers the schema maintainability. In particular, the
relational mapping required up to 15 times more statements than RSQL in the investigated scenar-
ios. The comparison of the query language against the corresponding schemata revealed that RSQL
demands approximately 2.5 times less words and characters to express the query. Moreover, the SQL
statements look very homogeneous, in a negative sense, in their visual representation, which compli-
cates debugging. Additionally, SQL queries mix mapping details with entity information. The evalua-
tion on RuN against two relational result processing models demonstrated its adequacy as role-based
result representation. Moreover, its functionality combines the positive aspects of both relational pro-
cessing models. In total, this evaluation clearly demonstrated the benefits of fully implementing the
role notion and its accompanied metatype distinction in a database system against a relational map-
ping of it. This holds for the investigated scenarios in which the software system manages role-based
dynamically evolving entities.

180 Chapter 6 Proof of Concept

7
CONCLUSIONS

7.1 Thesis Conclusions

7.2 Future Work

Today, software has become ubiquitous. In particular, it is ubiquitous in physical space on wearables
and smartphones, ubiquitous in logical space by Internet-based applications, and finally ubiquitous in
time according to longevity. As a consequence of this ubiquity, software acts in frequently changing
contexts. Traditional modeling and programming languages, especially the object-oriented ones, do
not feature an explicit notion of context, hence, the context-awareness is simulated and manually
implemented. This simulation mixes regular entity behavior with context-adaptation procedures in
the same code.

To cope with challenges posed from ubiquitous software systems, research proposed several ap-
proaches, including the concept of roles. The idea of roles is to extract the context-dependent behavior
from the entity and model it in a separate type. This enables a separation of concerns within entities.
In particular, the core behavior and structure is defined in the entity type, and all context-dependent
and fluent parts are specified in role types. Moreover, entities are able to start and stop playing roles to
adapt their behavior and structure dynamically during runtime, without the need for reinstantiation.
This concept is established in modeling and programming languages, but not in database systems.

A database system is an integral component of today’s software system and provides standard func-
tionalities for the persistent data management to applications. Moreover, it guarantees global data
consistency with respect to a given schema. These guarantees have to be provided in a ubiquitous,
especially role-based, software environment as well. Unfortunately, there is neither a database system
nor a role-based database model available that implements roles as first class citizen. Caused by this
lack of an explicit role notion in the database system, the role-relational impedance mismatch arises.
This mismatch describes the problems of applications and their developers, the database system itself,
and the software system in general in a role-based software system setup with a relational database
system as central data storage. First, this mismatch describes the inability of a database system to
ensure global consistency, because it cannot directly reflect the consistency constraints. Thus, some
data management tasks move towards the applications, causing additional effort in programming and
maintaining the applications. Moreover, the software system does not feature a clearly layered struc-
ture, because data management activities are performed on several layers.

7.1 THESIS CONCLUSIONS

To overcome the role-relational mismatch, an integration of the entity’s separation of concerns in the
database system is required. In detail, the metatype distinction between the entity core, its playable
role types and the contexts these role types are situated in.

Firstly, we put this thesis in the context of roles, by explaining the concept of roles and its ability to
enable a separation of concerns on the level of an entity, in Chapter 2. This builds the foundation
for the discussion on the need for a role-based database system as described in Chapter 3. More-
over, we detailed the role-relational impedance mismatch and explained its consequences on the
software developers, the database system itself, and the software system in general. Based on this
knowledge, we specified several requirements to overcome it and evaluated several architecture ap-
proaches with respect to these requirements. As it turned out, only a full database system integration
of the role-based semantics helps to overcome this mismatch. To introduce such role-based semantics
in a database system, we proposed adaptations on set-oriented interface as well as on data system.
These adaptations are concentrated under the RSQL approach, which consists of the following key
contributions.

182 Chapter 7 Conclusions

RSQL Database Model We introduced and defined the RSQL database model as logical foundation
for the data system adaptation in Chapter 4. This encapsulates the role-based semantics in Dy-
namic Data Types on the scheme level and Dynamic Tuples on the instance level. Precisely,
Dynamic Data Types encompass the notion of an entity core type and Role Types in two di-
mensions, the filling dimension that includes Role Types that can be filled by a core, and the
participating dimension that describes these Role Types that are contained in a Compartment
Type. This specifies which core may acquire which additional structure during runtime. In con-
trast, Dynamic Tuples are the instance representation and consist of an entity core and Roles in
two dimensions. This explicitly states, which entity currently plays and features which Roles.
These main data structures were augmented by an explicit notion of Relationship Types and Re-
lationships, respectively. In addition, we defined several formal operators to give the database
model a processing model.

RSQL Query Language and Processing On the basis of the proposed database model, we defined a
formal syntax to create Dynamic Data Types as well as inserting and extending Dynamic Tuples
in Chapter 5. This represents the adaptation of the set-oriented interface with respect to the
novel database model, from an input perspective. As described, this language has three parts,
the data definition language to create the role-based database schema, the data manipula-
tion language to populate the database, and a data query language to retrieve data from the
database. Moreover, we connected the query language’s syntax elements to the formal opera-
tors defined in the database model. On these foundations, we discussed options for a query
processing of Dynamic Tuples.

Result Representation To adapt the set-oriented interface from an output perspective, we intro-
duced the RSQL Result Net. It encompasses the query output, consisting of various Dynamic
Tuples, in result groups, one group for each queried Dynamic Data Type. To access the Dynamic
Tuple internal information, for instance a role of a certain Role Type, RuN described several en-
dogenous navigation paths. In contrast, to navigate from a Role to the Dynamic it is played or
featured in, we discussed the exogenous navigation paths.

Finally, Chapter 6 provided a proof of concept. In detail, RSQL’s database model, the query language,
and result representation were evaluated against a relational representation of the assumed role no-
tion. It turned out, RSQL is able to ensure global consistency constraints for a role-based database
schema without the need to implement consistency constraints in triggers. Moreover, we showed
that the RSQL query language uses fewer words and characters to retrieve equivalent data from the
corresponding database. As final evaluation, we compared a RuN-based result processing with two
possible relation processing models and showed that RuN combines the positive aspects of both
relational models.

In total, the RSQL approach, as it has been defined and discussed in this thesis, overcomes the role-
relational impedance mismatch by introducing the notion of roles and its accompanied metatype
distinction within a database system. As result, the role-based semantics and constraints are directly
represented in the database model, the query language, and result representation, which brings the
database system in the position to ensure global consistency for role-based software systems. This
brings it back in its rightful position as single point of truth within such a software system. Moreover,
the software system is structured more clearly, because the persistent data management tasks are
performed by the database system only, which also takes load and implementation tasks from the
application developers.

7.1 Thesis Conclusions 183

7.2 FUTURE WORK

Software systems become more complex and so the entities do. To keep control over the data man-
agement of entities that frequently change their structure and behavior according to context switches,
it is necessary to reflect the accompanied semantics in the database system. The RSQL approach is
a first step that introduces the metatype distinction, on the basis of roles, as separation of concerns
in the database system. RSQL’s foundation is its logical database model consisting of Dynamic Data
Types and Dynamic Tuple. As every novel data model, RSQL opens a wide space for future work,
especially for its implementation and its extension.

Optimizations The proposed database model neither considers logical nor physical optimizations.
On the side of the logical optimization, it is possible to optimize the operator plans be rearrange
the operators to minimize the intermediate results between several operators. As the outlined
query processing requires multiple executions of the operator plan, as long as the results differ,
it would be an option to minimize these runs by a smart operate arrangement or by giving the
operators additional information.

On the physical side, the RSQL’s logical database model does not state anything about its phys-
ical implementation. Hence, it is possible to optimize the physical storage for several workload
scenarios, for instance, read intensive workloads on Roles or frequently traversed navigation
paths between Dynamic Tuples. Moreover, various physical implementations of an operator are
possible, like it is in relational database systems the feature several physical join-operator imple-
mentations. Depending on the query, a different physical operator could be chosen. In addition,
an indexing structure adapted to Dynamic Tuples is required to speed up the data access.

Operators RSQL features a set of various operators that enable processing, manipulation and filter-
ing of Dynamic Tuples. This set could be extended to provide functionalities like aggregation
functions. This requires to consider the effects of these function on the database model. For in-
stance, assume a count function that is applied on Roles. It is not defined whether the counting
result is represented as new Natural in a separate output stream, or as Role within a given Dy-
namic Tuple, or even as attribute of the Natural or Role. Moreover, such functionality requires a
novel construction infrastructure for Dynamic Tuples, because so far the base Dynamic Tuples
are filtered and manipulated, but newly constructed ones are not considered.

Metatypes The database model uses Roles Types as only metatype to express the fluent parts of an
entity. In contrast, the real world provides several examples for other metatypes. This could
extend the expressiveness of the database model in regard to a more exact real world modeling.
For instance, being a father is not essential to be a person, hence, it is not part of the core type,
but it is also not a Role Type because Roles may be abandoned. In contrast, once the fatherhood
starts, it never ends. This could be modeled in a separate metatype status, such that an instance
of it becomes part of the entity’s core, once it is acquired.

Additionally, several role-specific constraints are possible. For instance, mutual exclusions
(between Professor and Student), implications (when StudentAssistant then also Student), or
an order of Role acquisitions. By using ordered role acquisitions, a process modeling within the
database would be enabled by using roles. This would also add a temporal dimension to roles as
modeling concept.

184 Chapter 7 Conclusions

Client Side Support The traditional interaction schema between a database system and applications
is query to result, and this to the result processing. This model introduces an imaginary line
between both and the communication is triggered by the application at that point it executes a
query. This line could be redesigned by introducing a novel interaction schema. For instance,
the current interaction requires an application to explicitly trigger the data retrieval process to
the database by a query as well as the persistence process by updating or inserting data. In case
of Roles this could be redesigned by loading and storing roles as soon as the entity or software
changes its context. In detail, the runtime environment or any other kind of infrastructure the
application runs on, recognizes a context change and provides this context information to the
database, which provides the required Roles to the infrastructure. Additionally, this infrastruc-
ture initializes the Roles and merge them into the runtime object. This process does not require
an explicit action on the application side, in fact the information is automatically provided in
the background. Moreover, such an interaction design would remove explicit control over the
data persistence and load process from the applications, which is also performed by traditional
object-relational mapping engines.

7.2 Future Work 185

186 Chapter 7 Conclusions

BIBLIOGRAPHY

[1] Gregory Abowd, Anind Dey, Peter Brown, Nigel Davies, Mark Smith, and Pete Steggles. To-
wards a Better Understanding of Context and Context-awareness. In International Symposium on
Handheld and Ubiquitous Computing, pages 304–307. Springer, 1999.

[2] Antonio Albano, Roberto Bergamini, Giorgio Ghelli, and Renzo Orsini. An Object Data Model
With Roles. In VLDB, volume 93, pages 39–51, 1993.

[3] Antonio Albano, Luca Cardelli, and Renzo Orsini. Galileo: A strongly-typed, interactive concep-
tual language. ACM Transactions on Database Systems (TODS), 10(2):230–260, 1985.

[4] Antonio Albano, Giorgio Ghelli, and Renzo Orsini. Fibonacci: A Programming Language for
Object Databases. The VLDB Journal, 4(3):403–444, 1995.

[5] Renzo Angles and Claudio Gutierrez. Survey of Graph Database Models. ACM Computer Surveys,
40(1):1:1–1:39, February 2008.

[6] Malte Appeltauer, Robert Hirschfeld, Michael Haupt, and Hidehiko Masuhara. ContextJ:
Context-oriented Programming with Java. Information and Media Technologies, 6(2):399–419,
2011.

[7] Charles Bachman. The Programmer as Navigator. Communications of the ACM, 16(11):653–658,
1973.

[8] Charles Bachman and Manilal Daya. The Role Concept in Data Models. In VLDB, pages 464–
476. VLDB Endowment, 1977.

[9] Stephanie Balzer. Rumer: A Programming Language and Modular Verification Technique Based on
Relationships. PhD thesis, ETH Zürich, 2011.

[10] Stephanie Balzer, Thomas R Gross, and Patrick Eugster. A relational model of object collabo-
rations and its use in reasoning about relationships. In European Conference on Object-Oriented
Programming, pages 323–346. Springer, 2007.

[11] Jörg Baumgart. Analyse, Entwurf und Generierung von Rollen-und Variantenmodellen. PhD thesis,
TU Darmstadt, 2003.

[12] Margit Becher. XML: DTD, XML-Schema, XPath, XQuery, XSLT, XSL-FO, SAX, DOM. W3L-Verlag,
2009.

Bibliography 187

[13] Anthony Bloesch and Terry Halpin. ConQuer: A Conceptual Query Language. In International
Conference on Conceptual Modeling, pages 121–133. Springer, 1996.

[14] Anthony Bloesch and Terry Halpin. Conceptual Queries using ConQuer-II. In Proceedings of the
International Conference on Conceptual Modeling, pages 113–126. Springer, 1997.

[15] Oliver Böhm. Aspektorientierte Programmierung mit AspectJ 5: Einsteigen in AspectJ und AOP.
dpunkt-Verlag, 2006.

[16] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C Hsieh, Deborah A Wallach, Mike Burrows,
Tushar Chandra, Andrew Fikes, and Robert E Gruber. Bigtable: A Distributed Storage System
for Structured Data. ACM Transactions on Computer Systems, 26(2):4, 2008.

[17] Liu Chen and Ting Yu. A Semantic DBMS Prototype. In Advances in Conceptual Modeling: ER
2013 Workshops, pages 257–266. Springer International, 2014.

[18] Peter Pin-Shan Chen. The Entity-Relationship Model – Toward a Unified View of Data. ACM
Transactions on Database Systems, 1(1):9–36, March 1976.

[19] Edgar Codd. A relational model of data for large shared data banks. Communications of the ACM,
13(6):377–387, 1970.

[20] Mohamed Dahchour, Alain Pirotte, and Esteban Zimányi. A generic role model for dynamic
objects. In International Conference on Advanced Information Systems Engineering, pages 643–658.
Springer, 2002.

[21] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati, Avinash Laksh-
man, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall, and Werner Vogels. Dynamo:
Amazon’s Highly Available Key-Value Store. ACM SIGOPS Operating Systems Review, 41(6):205–
220, 2007.

[22] Suzanne Dietrich and Susan Urban. An Advanced Course in Database Systems: Beyond Relational
Databases. An Alan R. Apt book. Pearson/Prentice Hall, 2005.

[23] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison Wesley, Massachusetts, 1994.

[24] Valerio Genovese. A Meta-Model for Roles: Introducing Sessions. In Proceedings of the 2nd Work-
shop on Roles and Relationships in Object Oriented Programming, Multiagent Systems, and Ontologies,
pages 27–38, 2007.

[25] Giorgio Ghelli. Foundations for Extensible Objects With Roles. Information and Computation,
175(1):50–75, 2002.

[26] Sebastian Götz. Dampf - Dresden Auto-Managed Persistence Framework. Diploma thesis, Tech-
nische Universität Dresden, 2010.

[27] Sebastian Götz and Thomas Kühn. Models@run.time for Object-Relational Mapping Supporting
Schema Evolution. In 10th International Workshop on Models@run.time (MRT15), 2015.

[28] Kasper Graversen. Explaining the Implementation of Chameleon – A Short Overview. Techni-
cal report, Unversity of Copenhagen, 2003. http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.73.594&rep=rep1&type=pdf ; accessed 07-January-2017.

[29] Kasper Graversen and Kasper Østerbye. Implementation of a Role Language for Object-specific
Dynamic Separation of Concerns. In Workshop on Software-engineering Properties of Languages for
Aspect Technologies, 2003.

188 Bibliography

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.73.594&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.73.594&rep=rep1&type=pdf

[30] RoSI Research Training Group. Role-based software Infratructures for continious-context-
sensitive Systems. http://www.rosi-project.org, july 2016. [Online; accessed 25-July-
2016].

[31] Nicola Guarino. Concepts, Attributes and Arbitrary Relations: Some Linguistic and Ontological
Criteria for Structuring Knowledge Bases. Data & Knowledge Engineering, 8(3):249 – 261, 1992.

[32] Nicola Guarino, Massimiliano Carrara, and Pierdaniele Giaretta. An Ontology of Meta-Level
Categories. In Proceedings of the Fourth International Conference on Principles of Knowledge Repre-
sentation and Reasoning, pages 270–280. Morgan Kaufmann, 1994.

[33] Terry Halpin. Conceptual Queries. Database Newsletter, 26(2), 1998.

[34] Terry Halpin. Object-Role Modeling (ORM/NIAM). In Handbook on Architectures of Information
Systems, pages 81–103. Springer, 1998.

[35] Terry Halpin. ORM 2. In OTM Confederated International Conferences On the Move to Meaningful
Internet Systems, pages 676–687. Springer, 2005.

[36] Chengwan He, Zhijie Nie, Bifeng Li, Lianlian Cao, and Keqing He. Rava: Designing a Java
Extension With Dynamic Object Roles. In International Symposium and Workshop on Engineering
of Computer-Based Systems, pages 7–pp. IEEE, 2006.

[37] Rolf Hennicker and Annabelle Klarl. Foundations for Ensemble Modeling–The Helena Ap-
proach. In Specification, Algebra, and Software, pages 359–381. Springer, 2014.

[38] Kai Herrmann, Hannes Voigt, Andreas Behrend, and Wolfgang Lehner. CoDEL–A Relationally
Complete Language for Database Evolution. In East European Conference on Advances in Databases
and Information Systems, pages 63–76. Springer International Publishing, 2015.

[39] Stephan Herrmann. A Precise Model for Contextual Roles: The Programming Language Object-
Teams/Java. Applied Ontology, 2(2):181–207, 2007.

[40] Stephan Herrmann. Demystifying Object Schizophrenia. In Proceedings of the 4th Workshop
on MechAnisms for SPEcialization, Generalization and inHerItance, MASPEGHI ’10, pages 2:1–2:5,
New York, NY, USA, 2010. ACM.

[41] Robert Hirschfeld, Pascal Costanza, and Oscar Nierstrasz. Context-oriented Programming. Jour-
nal of Object Technology, 7(3), 2008.

[42] Uwe Hohenstein and Gregor Engels. SQL/EER — Syntax and Semantics of an Entity-
relationship-based Query Language. Information Systems, 17(3):209–242, May 1992.

[43] Jie Hu, Qingchuan Fu, and Mengchi Liu. Query Processing in INM Database System. In Web-Age
Information Management, pages 525–536. Springer, 2010.

[44] Jie Hu and Mengchi Liu. Modeling Context-dependent Information. In Proceedings of the 18th
ACM Conference on Information and Knowledge Management, CIKM ’09, pages 1669–1672, New
York, NY, USA, 2009. ACM.

[45] International Organization for Standardization. Information processing systems –
Database language – SQL. Standard, International Organization for Standardiza-
tion, 1987. http://www.iso.org/iso/iso_catalogue/catalogue_ics/catalogue_
detail_ics.htm?csnumber=16661 ; accessed 01-September-2016.

Bibliography 189

http://www.rosi-project.org
http://www.iso.org/iso/iso_catalogue/catalogue_ics/catalogue_detail_ics.htm?csnumber=16661
http://www.iso.org/iso/iso_catalogue/catalogue_ics/catalogue_detail_ics.htm?csnumber=16661

[46] International Organization for Standardization. Information technology – Database lan-
guages – SQL – Part 2: Foundation (SQL/Foundation). Standard, International Organiza-
tion for Standardization, 2011. http://www.iso.org/iso/home/store/catalogue_tc/
catalogue_detail.htm?csnumber=53682 ; accessed 01-September-2016.

[47] ISO/IEC. ISO/IEC 9075-x:200x (Information technology – Database languages – SQL), 2006.

[48] ISO/IEC. ISO/IEC 9075-2:2011 (Information technology – Database languages – SQL), 2011.

[49] Tobias Jäkel, Thomas Kühn, Stefan Hinkel, Hannes Voigt, and Wolfgang Lehner. Relationships
for Dynamic Data Types in RSQL. In Datenbanksysteme für Business, Technologie und Web (BTW),
2015.

[50] Tobias Jäkel, Thomas Kühn, Hannes Voigt, and Wolfgang Lehner. RSQL - A Query Language for
Dynamic Data Types. In Proceedings of the 18th International Database Engineering & Applications
Symposium, pages 185–194, 2014.

[51] Tobias Jäkel, Thomas Kühn, Hannes Voigt, and Wolfgang Lehner. Towards a Role-Based Contex-
tual Database. In 20th East European Conference on Advances in Databases and Information Systems,
pages 89–103. Springer International Publishing, 2016.

[52] Donald A. Jardine, editor. The ANSI/SPARC DBMS model : proceedings of the second SHARE Work-
ing Conference on Data Base Management Systems, Montreal, Canada, April 26-30, 1976, 2nd, Mon-
tréal, Québec, 1977. North-Holland Pub. Co. New York.

[53] Tetsuo Kamina and Tetsuo Tamai. Towards Safe and Flexible Object Adaptation. In International
Workshop on Context-Oriented Programming, page 4. ACM, 2009.

[54] Alfons Kemper and Andre Eickler. Datenbanksysteme: Eine Einführung. Oldenbourg, 2006.

[55] Alfons Kemper and Andre Eickler. Datenbanksysteme: Eine Einführung. De Gruyter Studium.
Gruyter, Walter de GmbH, 2015.

[56] Thomas Kühn, Stephan Böhme, Sebastian Götz, and Uwe Aßmann. A Combined Formal Model
for Relational Context-Dependent Roles (Extended). Technical report, Technische Universität
Dresden, 2015.

[57] Thomas Kühn, Stephan Böhme, Sebastian Götz, Christoph Seidl, and Uwe Aßmann. A Com-
bined Formal Model for Relational Context-Dependent Roles. In International Conference on
Software Language Engineering, pages 113–124. ACM, 2015.

[58] Thomas Kühn, Max Leuthäuser, Sebastian Götz, Christoph Seidl, and Uwe Aßmann. A Meta-
model Family for Role-based Modeling and Programming Languages. In 7th International Confer-
ence on Software Language Engineering, pages 141–160. Springer, 2014.

[59] Max Leuthäuser. SCROLL - A Scala-based library for Roles at Runtime. In Proceedings of the 3rd
Workshop on Domain-Specific Language Design and Implementation (DSLDI 2015), pages 7–8, 2015.

[60] Max Leuthäuser and Uwe Aßmann. Enabling View-based Programming with SCROLL: Using
Roles and Dynamic Dispatch for Etablishing View-based Programming. In Proceedings of the 2015
Joint MORSE/VAO Workshop on Model-Driven Robot Software Engineering and View-based Software-
Engineering, MORSE/VAO ’15, pages 25–33. ACM, 2015.

[61] Mengchi Liu and Jie Hu. Information Networking Model. In International Conference on Concep-
tual Modeling, pages 131–144. Springer, 2009.

[62] Mengchi Liu and Jie Hu. Modeling Complex Relationships. In Database and Expert Systems
Applications, volume 5690 of Lecture Notes in Computer Science, pages 719–726. Springer, 2009.

190 Bibliography

http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=53682
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=53682

[63] Mengchi Liu, Jie Hu, Liu Chen, and Xuhui Li. Representing Hierarchical Relationships in INM.
In International Conference on Conceptual Modeling, pages 297–304. Springer, 2014.

[64] Riichiro Mizoguchi, Kouji Kozaki, and Yoshinobu Kitamura. Ontological Analyses of Roles. In
Federated Conference on Computer Science and Information Systems, pages 489–496. IEEE, 2012.

[65] Eila Niemelä and Juhani Latvakoski. Survey of Requirements and Solutions for Ubiquitous Soft-
ware. In Proceedings of the 3rd international Conference on Mobile and Ubiquitous Multimedia, pages
71–78. ACM, 2004.

[66] Michael Olson, Keith Bostic, and Margo Seltzer. Berkeley DB. In USENIX Annual Technical
Conference, FREENIX Track, pages 183–191, 1999.

[67] Olaf Otto. Entwicklung einer Persistenzlösung für Object Teams auf Basis der Java Persistence
API. Diploma thesis, Technische Universität Berlin, 2009. http://objectteams.org/
publications/Diplom_Olaf_Otto.pdf ; accessed 01-September-2016.

[68] Michael Pradel and Martin Odersky. Scala Roles: Reusable Object Collaborations in a Library.
In Software and Data Technologies, pages 23–36. Springer, 2009.

[69] Benjamin Rosenzweig and Elena Rakhimov. Oracle PL/SQL by Example. Prentice Hall Profes-
sional Oracle Series. Pearson Education, 2008.

[70] James Rumbaugh, Ivar Jacobson, and Grady Booch. The Unified Modeling Language Reference
Manual. The Addison-Wesley object technology series. Addison Wesley, 2010.

[71] Gunter Saake, Andres Heuer, and Kai-Uwe Sattler. Datenbanken: Konzepte und Sprachen. mitp,
2008.

[72] Gunter Saake, Kai-Uwe Sattler, and Andres Heuer. Datenbanken: Konzepte und Sprachen. mitp,
2005.

[73] Ravi Sandhu, Edward Coynek, Hal Feinsteink, and Charles Youmank. Role-based Access Control
Models. IEEE computer, 29(2):38–47, 1996.

[74] Chandra Sekharaiah and Janaki Ram. Object Schizophrenia Problem in Object Role System De-
sign. In International Conference on Object-Oriented Information Systems, pages 494–506. Springer,
2002.

[75] Arie Shoshani. CABLE: A Language Based on the Entity-Relationship Model. Technical report,
Lawrence Berkeley Laboratory, 1979.

[76] Ian Sommerville. Software Engineering. International computer science series. Addison-Wesley,
2007.

[77] Xiaopu Song. Information Network Model Query Processing. PhD thesis, Carleton University Ot-
tawa, 2010.

[78] Friedrich Steimann. Formale Modellierung mit Rollen. Habilitation thesis, Universität Hannover,
2000.

[79] Friedrich Steimann. On the Representation of Roles in Object-oriented and Conceptual Mod-
elling. Data & Knowledge Engineering, 35(1):83–106, October 2000.

[80] Friedrich Steimann. The Role Data Model Revisited. Applied Ontology, 2:89–103, 2007.

[81] Robert Taylor and Randall Frank. CODASYL Data-Base Management Systems. ACM Computer
Surveys, 8(1):67–103, March 1976.

Bibliography 191

http://objectteams.org/publications/Diplom_Olaf_Otto.pdf
http://objectteams.org/publications/Diplom_Olaf_Otto.pdf

[82] Rik Van Bruggen. Learning Neo4j. Community Experience Distilled. Packt Publishing, 2014.

[83] Roel Wieringa, Wiebren de Jonge, and Paul Spruit. Roles and Dynamic Subclasses: A Modal Logic
Approach, pages 32–59. Springer, 1994.

[84] Raymond Wong, Lewis Chau, and Frederick Lochovsky. DOOR: A Dynamic Object-oriented
Data Model With Roles. Technical report, Hong Kong University of Science and Technology,
1996.

[85] Raymond Wong, Lewis Chau, and Frederick Lochovsky. The Roles and Views of Multimedia
Objects. Technical report, Hong Kong University of Science and Technology, 1996.

[86] Raymond Wong, Lewis Chau, and Frederick Lochovsky. A Data Model and Semantics of Objects
with Dynamic Roles. In International Conference on Data Engineering, pages 402–411. IEEE, Apr
1997.

[87] Raymond Wong, Lewis Chau, and Frederick Lochovsky. Dynamic Knowledge Representation in
DOOR. In Proceedings of Knowledge and Data Engineering Exchange Workshop, pages 89–96, Nov
1997.

192 Bibliography

List of Tables

2.1 Overview on Steimann’s Role Features and Affected Meta Object Facility’s Layers . . 14
2.2 Characteristics of Context in Comparison to Compartment 16
2.3 Overview on Kühn’s Additional Role Features and the Affected Meta Object Facility’s

Layers . 17
2.4 Ontological Foundation of the Metatypes Introduced in the Compartment Role Object

Model . 18
2.5 Compartment Role Object Model’s Feature List 20

3.1 Evaluation of Related Approaches to Overcome the Role-relational Impedance Mismatch 53

4.1 Overview of Requirements Posed to a Role-based Data Model 59
4.2 Evaluation of Related Data Model Approaches . 67
4.3 Overview of the Operators and Their Functionality 84
4.4 Evaluation of Related Data Model Approaches and RSQL’s Data Model 107

5.1 Overview of Requirements Posed to Role-based Database Query Language 111
5.2 Evaluation of Related Database Interface Approaches 114
5.3 Functionality Overview of RSQL’s Result Net . 147
5.4 Evaluation of RSQL’s Query Language and processing in Contrast to Related Approaches 152

6.1 Inconsistent States of Role Bindings During Data Manipulation 164
6.2 Elements Overview of the University Domain Conceptual Model 167
6.3 Number of Statements to Create Corresponding Database Schema in RSQL and SQL 167
6.4 Additional Effort for Creating a Relational Schema by Varying the fills Relation’s Pop-

ulation Ratio . 168
6.5 Comparison of the Number of Statements as a Function of the Number of Types . . . 169
6.6 Comparison of RSQL and SQL for a Single Config-Expression 171
6.7 Comparison of RSQL and SQL for Multiple Config-Expressions 172
6.8 Rules to Determine the Five Metrics For Each Result Processing Model 178
6.9 Comparison of the Three Result Processing Models by Two Role Type Varying Scenarios 178
6.10 Rules to Determine the Three Metrics For Each Result Processing Model 179
6.11 Comparison of the Three Result Processing Models by Two Role Varying Scenarios . 179

193

List of Figures

1.1 All In One Class Definition in Contrast to a Role-based Specification 3
1.2 5 Layers of a Database System Architecture . 5
1.3 Thesis Structure and Contributions . 7

2.1 Specialization and Generalization Problem in Object-oriented Design 11
2.2 Classification of Existing Role Notions Based on the Three Aspects: Relational, Be-

havioral and Structural, and Context-dependent. 14
2.3 Role Modeling Example of the University Domain 21
2.4 Valid Instance of the University Scenario Schema 24
2.5 Timeline for the Scenario Based on the Instance "John" 25

3.1 Traditional Ecosystem of Database Systems . 29
3.2 Traditional Software System and its Design Process 31
3.3 Today’s Role-based DBS Ecosystem and its Design Process 32
3.4 Locally Valid Application Schemata vs. Globally Invalid Database Schema 33
3.5 Possible Role to Relation Mapping Featuring Foreign Key Constraints 35
3.6 Two Mappings of the Same Relation Between a Person, a Student, and the Corre-

sponding University . 36
3.7 Redundant Data in a Relational Result . 37
3.8 Role-based Software System Layout Utilizing Traditional Techniques 41
3.9 Relational Mapping of Role-based Data and a View-based Result 41
3.10 Role-based Software System Layout Utilizing Client Side Mapping Engines 43
3.11 DAMPF’s Detailed Architecture . 45
3.12 Role-based Software System Layout Utilizing Database System Side Mapping Engines 46
3.13 Role-based Software System Layout Utilizing Persistent Programming Languages . . 48
3.14 Example Statements to Create Object and Role Classes as well as Relate them in a

DOOR Schema . 49
3.15 Example Statements to Create an Object and the Related Roles in Fibonacci 50
3.16 Role-based Software System Layout utilizing a Role-based DBS 51
3.17 University Domain Modeled in INM . 52
3.18 Example IQL Query Illustrating the Query and Construction Part 52

4.1 Bachman and Daya’s Role Data Model . 60
4.2 Basic Modeling Elements of ORM . 61
4.3 Example ORM Model of a Simple University Domain 61
4.4 Example DOOR Data Structure of a Simple University Domain 62
4.5 Example Fibonacci Data Structure of a Simple University Domain 64
4.6 Example INM Model of a Simple University Domain 65
4.7 Example Instance Representation in INM . 66
4.8 Overview of RSQL’s Data Model Concepts . 68
4.9 Dynamic Data Type SportsTeam . 72
4.10 Net of Interconnected Dynamic Data Types . 74
4.11 Dynamic Tuple bears . 78
4.12 Net of Interconnected Dynamic Tuples . 80

194

4.13 Operational Data Model as Superset of RSQL’s Base Data Model 85

5.1 ConQuer Example Query . 112
5.2 Example IQL Query Statement Illustrating the Query and Construction Part 113
5.3 RSQL’s Data Definition Statements (excerpt) . 116
5.4 Model Evolution While Creating a Role-based Database Schema 119
5.5 RSQL’s Data Manipulation Statements . 122
5.6 Dynamic Tuple Evolution While Creating a Role-based Database 124
5.7 RSQL’s Data Query Language Syntax Definition 127
5.8 Abstract Syntax Tree For the Simple Config-Expression Example Query 132
5.9 Operator Plan and Data Flow Chart For the Simple Config-Expression Example Query 133
5.10 Abstract Syntax Tree For the Unrelated Config-Expression Example Query 134
5.11 Operator Plan For the Unrelated Config-Expression Example Query 134
5.12 Abstract Syntax Tree For the Overlapping Config-Expression Example Query 135
5.13 Operator Plan For the Overlapping Config-Expressions Example Query 136
5.14 Abstract Syntax Tree For the Overlapping Config-Expression Example Query 137
5.15 Operator Plan For the Relationship Example Query 138
5.16 Abstract Syntax Tree For the Attribute Selection on a Core 139
5.17 Operator Plan For the Attribute Selection on a Core 139
5.18 RSQL and Relational Operator Plan in Comparison 140
5.19 Unreflected Dynamic Tuple Elimination . 141
5.20 Feedback Loop for Manipulating Operators . 142
5.21 Process Overview of a Query Plan Re-execution 143
5.22 Operator Plan for a Dynamic Tuple Fusion Including an Unpack Step 144
5.23 RSQL Result Net Architecture . 146
5.24 Initial Cursor Position at t0 . 148
5.25 Moved Cursor Position at t1 . 148
5.26 Endogenous Navigation Options . 148
5.27 Exogenous Navigation Options Between Several Interconnected Dynamic Tuples . . 150
5.28 Navigation Example for a Small RSQL Result Net 151

6.1 RSQL’s Database Model Structure . 155
6.2 RSQL Query Processing on Dynamic Tuples by Dynamic Data Type Filters 156
6.3 Conceptual Overview of RSQL’s Result Representation Implementation 156
6.4 Graphical User Interface Adapted to the Metatype Distinction 157
6.5 Example Mapping of Person, Student, and University 158
6.6 Sensitivity Analysis for the fills Relation in SQL 168
6.7 Processing an RSQL RuN . 174
6.8 Collecting Entity Information in a Single Relational Result 175
6.9 Collecting Entity Information in Multiple Relational Results 176

LIST OF FIGURES 195

	1 Introduction
	2 Modeling with Roles
	2.1 Way Towards Roles
	2.2 Zoo of Role Notions
	2.3 Compartment Role Object Model
	2.4 University Management Scenario
	2.4.1 Schema Model
	2.4.2 Instance Model
	2.4.3 Instance Adaption Over a Period

	2.5 Summary

	3 Need for Role-based Database Systems
	3.1 Ecosystem of Database Systems
	3.2 Role-Relational Impedance Mismatch
	3.2.1 Problems for Applications and Application Developers
	3.2.2 Problems for Database Systems
	3.2.3 Problems for Software Systems

	3.3 Requirements for Role-based Database Systems
	3.4 Related Work
	3.4.1 Traditional Techniques
	3.4.2 Mapping Engines
	3.4.3 Persistent Programming Languages
	3.4.4 DBS Implementation
	3.4.5 Discussion

	3.5 Overview of RSQL
	3.6 Summary

	4 RSQL Database Model
	4.1 Requirements
	4.2 Related Work
	4.2.1 The Role Concept in Data Models
	4.2.2 Object Role Modeling
	4.2.3 DOOR
	4.2.4 Fibonacci
	4.2.5 Information Networking Model
	4.2.6 Discussion

	4.3 RSQL Database Model
	4.3.1 Schema Level
	4.3.2 Instance Level
	4.3.3 Configuration

	4.4 RSQL Operators
	4.4.1 Operational Data Model
	4.4.2 Configuration Selection _cex
	4.4.3 Configuration Projection _
	4.4.4 Role Matching _
	4.4.5 Relationship Matching _rst
	4.4.6 Dynamic Data Type Union
	4.4.7 Dynamic Tuple Difference Without Role Difference _R-
	4.4.8 Dynamic Tuple Difference With Role Difference _R
	4.4.9 Dynamic Tuple Intersection _RT_a, RT_b
	4.4.10 Dynamic Tuple Union RT_a, RT_b_
	4.4.11 Attribute Selection t, RT_overlap_predicate

	4.5 Summary

	5 Query Language and Processing
	5.1 Requirements
	5.2 Related Work
	5.2.1 ConQuer
	5.2.2 Information Networking Model Query Language
	5.2.3 Discussion

	5.3 RSQL Data Definition and Manipulation Language
	5.3.1 Data Definition Language Syntax
	5.3.2 Creating And Extending Dynamic Data Types
	5.3.3 Data Manipulation Language Syntax
	5.3.4 Creating and Extending Dynamic Tuples

	5.4 RSQL Data Query Language
	5.4.1 Data Query Language Syntax
	5.4.2 From Syntax to Logical Operators
	5.4.3 Simple Config-Expression Example
	5.4.4 Non-Overlapping Config-Expressions Example
	5.4.5 Overlapping Config-Expressions Example
	5.4.6 Relationships Example
	5.4.7 Dynamic Tuple Attribute Selection Example

	5.5 RSQL Query Processing
	5.5.1 Invalid Intermediate Results
	5.5.2 Multiple Operator Executions
	5.5.3 Fusing Dynamic Tuple Streams

	5.6 RSQL Result Net
	5.6.1 Architecture
	5.6.2 Iteration and Navigation
	5.6.3 Example Navigation

	5.7 Summary

	6 Proof of Concept
	6.1 Evaluation Setup
	6.1.1 RSQL Prototypical Implementation
	6.1.2 Relational Mapping RSQL's Database Model

	6.2 Evaluating the Database Model
	6.2.1 Creating the RSQL Schema
	6.2.2 Creating the SQL Schema
	6.2.3 Comparing RSQL and SQL

	6.3 Evaluating the Query Language
	6.3.1 Writing Single Config-Expressions
	6.3.2 Writing Overlapping Config-Expressions

	6.4 Evaluating the Result Representation
	6.4.1 Processing a RSQL Result Net
	6.4.2 Processing an All In One Relational Result
	6.4.3 Processing a Multi-Query Relational Result
	6.4.4 Comparing the Result Representations

	6.5 Summary

	7 Conclusions
	7.1 Thesis Conclusions
	7.2 Future Work

