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Chapter 1

Introduction

Description Logics (DLs) [BCM+03] are a family of logic-based knowledge repres-
entation languages used to describe the knowledge of an application domain and
reason about it in a formally well-defined way. DLs allow to describe the important
notions and classes of the knowledge domain as concepts, by stating the condi-
tions for which individual objects belong to that concept as a Boolean combination
of atomic properties, formalized by concept names, and properties that refer to
the relationship with other classes, called role restrictions. In order to encode the
conceptual knowledge, the user can then state how these concepts relate to each
other, for example by giving superconcept-subconcept relationships. Additionally,
DLs allow to express knowledge about individual objects, to which concepts they
belong and how they relate to each other.

A variety of different DLs exist, differing in the set of logical constructs one can
use to express concepts, the so-called concept constructors, as well as the types of
axioms available to describe the relations between concepts or individuals. How-
ever, all classical DLs have in common that they can only express exact knowledge,
and correspondingly only allow exact inferences. Either we can infer that some indi-
vidual belongs to a concept, or we can’t, there is no in-between. In practice though,
knowledge is rarely exact. Many definitions have exceptions or are vaguely formu-
lated in the first place, and people might not only be interested in exact answers,
but also in alternatives that are “close enough”.

This thesis is aimed at tackling the problem how to express that something is
“close enough”, and how to integrate this notion into the formalism of Description
Logics. To this end, we will use the notion of semantic similarity and dissimilarity
measures [HRJ+13] as a way to quantify how close exactly two concepts are. We
will look at how useful measures can be defined in the context of DLs, and how
they can be incorporated and used in this formal framework. In particular, we will
look closer at two applications of such measures to DLs: Relaxed instance queries
will use a similarity measure in order to not just give the exact answer to a query
concept, but all answers that are reasonably similar. Prototypical definitions on the
other hand use a measure of dissimilarity or distance between a prototypical object
and elements of an interpretation in order to allow the definition of and reasoning
with concepts that capture not just those individuals that satisfy exactly the stated
properties, but also similar ones.

1
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1.1 Description Logics

The basic building blocks of DLs are concepts names denoting sets of objects, role
names denoting relations between objects, and individuals, which point to a single
object. From these building blocks complex concepts can be build by applying the
concept constructors that the DL supplies. For example, if Bike, and DiscBrake

are concept names that denote the set of all bicycles and the set of all disc brakes,
respectively, and hasPart is a relation that connects to each object all the parts it
consists of, then the concept

Bike u ∃hasPart.DiscBrake

denotes the set of all bikes that have a disc brake. Axioms allow to formalize how
different concepts relate to each other, which allows the formulation of terminolo-
gical knowledge collected in a so-called TBox. For example, one can express that
road racing bikes always have slim tires using

RoadRacingBike v ∃hasPart.(Tire u Slim).

Assertions on the other hand can state how individuals are related to concepts and
other individuals and formulate the assertional knowledge collected in an ABox.
For example, if bike483 and andreas are two individual names, we can state that
bike483 is a trekking bike with a hub gear, and that andreas is the owner of said
bike using the following ABox:

A = {(TrekkingBike u ∃hasPart.HubGear)(bike483),
ownedBy(bike483, andreas)}.

Different DLs vary in the set of concept constructors they provide, and the set
of axioms one can use to formulate knowledge in terms of these concepts. The
smallest propositionally closed DL is ALC [SS91]; however, sub-propositional DLs
like EL [Baa03] and its extension EL++ [BBL05] are very interesting due to their
tractable reasoning procedures.

The formal semantics of DLs allow for a clean definition of inferences, which can
infer implicit knowledge from the given axioms and assertions. Classical inferences,
like consistency and entailment, which ask whether a knowledge base consisting of
a TBox and an ABox has a model and whether it entails a given axiom or assertion,
are provided by almost all DL systems. Besides those, many other non-standard
inferences have been investigated; these can aid in different tasks related to DLs,
like the maintenance of large ontologies [LBF+06].

DLs have been successfully employed in many different areas. The most im-
portant success however is certainly their adaption by the Web Ontology language
OWL [HPH03] as basis for the semantic web. As such, nowadays a huge corpus
of ontologies in all different forms and sizes exists [MBP13a] and is used in many
different fields. One notable example for the usage of ontologies based on tractable
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DLs of the EL family is in the biomedical domain, with large-scale ontologies like
the Gene Ontology [Gen00] and Snomed CT [SBS+07].

1.2 Similarity and Dissimilarity

Similarity measures are thought of as one of the fundamental concepts in psy-
chology, by which humans can form knowledge and reason. This is expressed
particularly well by Tversky:

Similarity plays a fundamental role in theories of knowledge and beha-
vior. It serves as an organizing principle by which individuals classify
objects, form concepts, and make generalizations.

— Amos Tversky [Tve77]

In principle, the more similar an object is to the thing in question, the more
relevant it will be. Grouping similar objects together into a category allows humans
to lift properties that all these objects have in common to the whole category. Then,
we can automatically make predictions about new objects, based on which category
they are most similar to. As such, there has always been a huge interested in
similarity in both philosophy and linguistics, and many applications of measures of
similarity have evolved in many different fields. However, as popular as similarity
measures seem to be, as unclear is the notion of what exactly similarity is, and how
it should be measured.

Fundamentally, a similarity measure quantifies how close two things are from
a conceptual point of view. Many different approaches have evolved on how to
measure similarity, but most rely on the same intuitions [Lin98]:

1. The similarity between two objects increases with the commonalities that
they share.

2. The similarity between two objects decreases with the differences between
them.

Additionally, many similarity measures also have a notion of a maximal and min-
imal similarity. These should comply with the following intuitions:

3. The maximal similarity between two things is reached if they are identical, i.e.,
have no differences; it does not matter how much commonality they share.

4. The minimal similarity between two things is reached when they have no
commonalities, no matter how many differences they have.

We are interested in semantic similarity measures, which compare the meanings
that the objects carry instead of just their syntax [HRJ+13]. This meaning is given
by some semantic proxy, which could be unstructured texts, dictionaries, or, in our
case, knowledge bases. Many approaches have been proposed to measure semantic
similarity. Based on the ideas and principles these measures are based on, they can
be divided into different groups:
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• Distance-based approaches assume that the objects can be represented as
points in a high-dimensional mental space. First introduced in [She62], these
approaches treat the dissimilarity between objects as a distance metric in this
mental space. The distance d between objects a and b can be converted into a
similarity value a ∼ b = ed(a,b) [She87].

• Feature-based approaches assume that an object is described by a set of fea-
tures. The similarity between two objects can then be understood as a function
of the common and distinct features between them. This approach was made
popular by the seminal work of Tversky [Tve77], but has in others forms been
used long before that [Jac01].

• Structural alignment approaches introduced in [GM97] extend the feature-
based approach by assuming that objects are not just represented by a set of
features, but by more complex structures like labeled graphs. By trying to
find the best alignment between the structures of two different objects one
can estimate the similarity between them using the correspondences that the
alignment reveals.

• Other approaches include similarity measures based on information-theoretic
ideas [Lin98], which compute the similarity based on the information-content
that both objects share; transformational approaches that estimate the simil-
arity from the number of transformation steps that are needed to convert the
first object into the second one; and hybrid approaches, that try to combine
the advantages of different approaches.

In recent years, similarity measures have been getting more popular in the area
of knowledge representation; some of the applications where similarity measures
have been successfully employed are listed below.

1. Similarity assessment: Sometimes one is interested simply in the question
whether two objects are similar, or how similar exactly they are. This can
already provide some insight. One example is the Gene Ontology [Gen00],
which represents genes and gene products across species. For this ontology,
many different similarity measures have been proposed to measure the func-
tional similarity between proteins [SSP+05].

2. Case-based reasoning: Case-based reasoning is the process of solving new
problems based on known solutions for previously encountered problems
[AP94]. In order for this to work, one needs to judge which situations are sim-
ilar to the new situation, and thus which solutions are likely to be applicable
in order to arrive at a solution for the new problem.

3. Ontology learning: Similarity measures can be used to cluster similar indi-
viduals in order to automatically derive new concepts.

4. Prototypical definitions: Definitions are not always exact. Oftentimes, instead
of giving a set of necessary and sufficient conditions, one only knows typical
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features or a typical object, and expects the defined concept to also include
objects that are similar enough to this prototype.

5. Ontology alignment: In ontology alignment, on tries to integrate two different
ontologies that speak about the same topic [SE13]. In order to do this, one
needs to match similar concepts that are likely to be talking about the same
thing.

6. Query relaxation: When one is not only interested in exact answers to a query,
but also in reasonable alternatives, then similarity measures can be used to
quantify how close these alternatives are to the query.

In the context of Description Logics, research into similarity measures has been
started by [BWH05]. For inexpressive DLs, graph-distance approaches that count
the length of the paths between two concepts and their common subsumer in the
inferred concept hierarchy are popular [RMB+89], whereas for more expressive
DLs generally an extensional measure [dFE05; Lin98] is used, where the overlap
between the extensions of concepts (usually the number of instances from the ABox)
determines the similarity value. Finally, there is a group of structural measures
[Jan06; Sun13; LT12] that compute the similarity by comparing the structure of the
concepts in normal form.

In the next two sections, we will look closer at two applications of similarity
measures: Query relaxation and prototypical definitions.

1.3 Query Relaxation

Knowledge about individuals, the concepts they belong to, and the relations between
them, is usually stored in some kind of relational database, an XML file, an RDF
triple store, a Description Logic ABox, or similar storage formats. In order to access
this data, one can formulate a query that describes which of the individuals one is
interested in, by restricting for instance the categories or the relations to other indi-
viduals. A query answering system then selects all those individuals that satisfy
the query and returns them as answers.

However, when specifying the query, one may not only be interested in the exact
answers, which satisfy every single restriction that is part of the query; alternatives
that do not completely satisfy the query, but most of it, may give interesting insights
as well; this is in particular true if the exact answer set would be empty. For example,
consider a bike shop with a DL knowledge base that contains all relevant knowledge
about the bikes that are for sale. If a customer wants to buy a new bike, one can
create a query that formalizes all of the requirements of the customer and query the
knowledge base for all bikes that are instances of this query. In this case, alternative
answers that do not completely satisfy the query could be interesting for several
reasons: the costumer might not be completely sure what exactly he wants; the
knowledge about the individual bikes in the knowledge base might not be complete;
not everything can be formalized in a knowledge base, e.g., some bikes may simply
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“feel” better than others for the customer; or the query might not have any exact
answers at all because of contradictory requirements, e.g., best possible quality for
the least possible price.

The process of broadening the set of answers to include similar alternatives is
often called query expansion or query relaxation, and has attracted a great deal of
research. Classically, query relaxation is done by rewriting the query into success-
ively more general queries using a set of rewrite rules [CDH+06; ZGB+07; HPW08;
DSW+09; HLZ08; ALP04; Lee02]. This rewriting process is repeated until enough
answers were found, i.e., the k best answers for top-k query answering, or all an-
swers above a given threshold. Furthermore, some kind of measure quantifies how
much the rewritten queries deviate from the original query in order to rank the
answers.

Classical query relaxation approaches usually only work in the presence of a
very simple background ontology, like a concept hierarchy. Also, often the process
of query relaxation can not be influenced. However, a way to specify which aspects
of the query are less important and may be relaxed further can be exceedingly
useful to control the query relaxation process based on user- or query-dependent
preferences. For example, two customers might both want light-weight, reasonably
priced road racing bicycles; however, one customer has a strict budget and places
more importance one the price, while the other strictly requires a low weight and
is willing to compromise on the price, if necessary. Then the queries for both
customers are the same, but they should be relaxed differently.

A different approach to relax queries is by using a quantitative KR formalism
that includes a way to specify the degrees inside the logic itself. This could be fuzzy
DLs [Str06b; Str06a; PSS+08], rough DLs [PTT14], or DLs extended with an internal
distance measure on elements [LWZ03]. However, if the quantitative measure is
part of the KR formalism itself, then changing the way queries should be relaxed
means that one would need to change the data as well.

In Chapter 4, we will introduce a new way to relax query concepts that is based
on similarity measures on DL concepts. By choosing a suitable similarity measure
this approach allows to direct the way in which the query is relaxed; by varying
the similarity threshold, it allows to specify how far the query is relaxed.

1.4 Prototypical Definitions

As explained before, in practical applications one often cannot define all relevant
concepts exactly by giving necessary and sufficient conditions. In fact, cognitive
psychologists [RL78] argue that humans generally recognize categories by pro-
totypes rather than concepts. As an example, taken from [Lab73], consider the
notion of a cup: we can say that cups are small, cylindrical, concave containers
with handles, whose top side is open; they can hold liquids and are used for drink-
ing; and they are made of plastic or porcelain. However, these are just typical
features, not strict conditions for being a cup: square metal cups are easily ima-
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ginable, measuring cups are not used for drinking and may hold non-liquids such
as flour, while sippy cups for toddlers are not open on the top. In order to define
the concept that contains all cups, one could try to capture all exceptional cups
by using a big disjunction of (exactly defined) concepts, but this would be rather
clumsy and with high likelihood one would overlook some exceptions. Compared
to this, prototypical definitions allow to define concepts as the set of all elements
that are similar to some prototypical object.

In order to be used within a formal knowledge representation language with
automated reasoning capabilities, such prototypes need to be equipped with a
formal semantics. For this, the ideas underlying Gärdenfors’ conceptual spaces
[Gär00] are very useful, where categories are explained in terms of convex regions,
which are defined using the distance from a focal point. To obtain a concrete rep-
resentation language, one needs to define what focal points are and how to define
the distance of an individual to such a focal point.

A different approach to formalize prototypes is by using non-monotonic logics
[Bre91]. In these logics one usually tries to maximize typicality, i.e. one assumes
that an individual stated to belong to a prototype concept has all the properties of
the prototype, unless one is forced by other knowledge to retract this assumption.
However, we think a monotonic logic where we only conclude that an individual
belongs to a prototype concept if this follows from the available knowledge would
be a better formalization, since non-monotonic logics with typicality only allow
to guess properties of objects for which we already know that they belong to the
prototypical concept, but do not allow to classify which objects might belong to the
concept in the first place.

Another approach to reason with prototypes in presented in [BBF15], where
concepts of the lightweight DL EL are used to describe prototypes. To be more
precise, the paper introduces a graded membership function which, for a given EL-
concept C and an individual d of an interpretation, returns a membership degree in
the interval [0, 1]. This is then used as “distance” to define threshold concepts and
an extension of EL by such concepts basically in the same way as sketched above.

In Chapter 5, we will introduce a new approach to represent and reason with
prototypical definitions. This approach formalizes Gärdenfors’ conceptual spaces,
and uses weighted tree automata in order to define focal points and their distance
to an individual.

1.5 Outline and Contributions of the Thesis

In the following we will give a short outline for the remainder of this thesis.
Chapter 2 will introduce the relevant notions that are needed for this thesis. We

start with the foundations of Descriptions Logics, in particular the DLs ALC and
EL. We next define some important EL-specific notions like simulations and canon-
ical models, as well as the DL EL++, that extends EL with concrete domains, role
hierarchies, nominals and other things. Finally, we formally define what we under-
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stand under similarity and dissimilarity measures, in particular concept similarity
measures (CSM), and list some properties that we may want such CSMs to satisfy.

Chapter 3 is concerned with the similarity measure ∼c, which is a parameter-
izable CSM that works w.r.t. general EL knowledge bases. In order to define ∼c,
we first introduce a similarity measure between elements of two interpretations,
∼i. We show that ∼i (and thus ∼c) is well-defined and computable in polynomial
time. We also show the formal properties of ∼i, and how they extend to the CSM
∼c. Finally, we show that ∼c can be extended to a measure between EL++ concepts
w.r.t. EL++ TBoxes. For this, we need to determine how the similarity measure
handles values from a concrete domain.

Chapter 4 investigates the problem of instance queries relaxed by CSMs. After
formally defining what relaxed instances are, we consider the case of arbitrary
CSMs on an unfoldable TBox. We show that this problem is decidable as long as the
CSM used for the relaxation has certain properties, we also show that the decision
procedure is highly inefficient: It has non-elementary complexity. Afterwards we
restrict to a single family of similarity measures, namely ∼c, but instead allow for
general EL TBoxes. In this setting we can derive an NP algorithm for both checking
whether an individual is a relaxed instance of the query concept, and for finding
all answers to the relaxed instance query. Again, we show that this procedure can
be extended to the DL EL++. Finally, we present an implementation of the relaxed
instance query answering problem; the Elastiq system. We evaluate Elastiq on
different ontologies.

This and the previous chapter are based on the following publications. In [EPT13]
we introduced instance queries relaxed by concept similarity measures for the first
time and showed how to solve them w.r.t. unfoldable TBoxes. We introduced the
CSM ∼c in [EPT14a; EPT14b; EPT15a] and showed how to extend the relaxed in-
stance query approach to general TBoxes. The extension to EL++ is content of
[Eck14]. Finally, [EPT15b] describes out implementation, Elastiq, and presents an
preliminary evaluation.

[Eck14] Andreas Ecke. “Similarity-based Relaxed Instance Queries in EL++”.
In: Proceedings of the First Workshop on Logics for Reasoning about Prefer-
ences, Uncertainty, and Vagueness. Edited by Thomas Lukasiewicz, Ra-
fael Peñaloza, and Anni-Yasmin Turhan. Volume 1205. CEUR Work-
shop Proceedings. CEUR-WS.org, 2014, pages 101–113.

[EPT13] Andreas Ecke, Rafael Peñaloza, and Anni-Yasmin Turhan. “Towards
Instance Query Answering for Concepts Relaxed by Similarity Meas-
ures”. In: Workshop on Weighted Logics for AI (in conjunction with IJ-
CAI’13). Beijing, China, 2013.

[EPT14a] Andreas Ecke, Rafael Peñaloza, and Anni-Yasmin Turhan. “Answer-
ing Instance Queries Relaxed by Concept Similarity”. In: Proceedings
of the Fourteenth International Conference on Principles of Knowledge Rep-
resentation and Reasoning (KR’14). Vienna, Austria: AAAI Press, 2014,
pages 248–257.
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[EPT14b] Andreas Ecke, Rafael Peñaloza, and Anni-Yasmin Turhan. “Mary, What’s
Like All Cats?” In: Proceedings of the 27th International Workshop on De-
scription Logics (DL-2014). (Vienna, Austria). Extended Abstract. 2014.

[EPT15a] Andreas Ecke, Rafael Peñaloza, and Anni-Yasmin Turhan. “Similarity-
based Relaxed Instance Queries”. In: Journal of Applied Logic 13.4, Part
1 (2015). Special Issue for the Workshop on Weighted Logics for AI
2013, pages 480–508. doi: http://dx.doi.org/10.1016/j.jal.2015.
01.002.

[EPT15b] Andreas Ecke, Maximilian Pensel, and Anni-Yasmin Turhan. “ELASTIQ:
Answering Similarity-threshold Instance Queries in EL”. In: Proceed-
ings of the 28th International Workshop on Description Logics (DL-2015).
(Athens, Greece). Edited by Diego Calvanese and Boris Konev. Vol-
ume 1350. CEUR Workshop Proceedings. CEUR-WS.org, 2015.

In Chapter 5, we study the problem of prototypical definitions in the DL ALC.
We show how prototype distance functions can be used to formalize the notion
of a prototype, and that weighted alternating tree automata are a useful tool to
specify such prototype distance functions. In order to show that ALCP(wapta),
the DL extended with prototypes defined via weighted alternating parity tree auto-
mata, is decidable, we first show how unweighted automata can be used to decide
concept satisfiability in ALC. Afterwards, we present a cut-point construction that
computes unweighted automata which recognize exactly the cut-point language
of a weighted alternating parity tree automaton, i.e., the language of all trees that
have a distance of at most n. Finally, we show that one can combine the automaton
used to decide concept satisfiability in ALC with the cut-point automata, in order
to decide the concept satisfiability problem in ALCP . This chapter is based on the
publication [BE16].

[BE16] Franz Baader and Andreas Ecke. “Reasoning with Prototypes in the
Description Logic ALC using Weighted Tree Automata”. In: Proceed-
ings of the 10th International Conference on Language and Automata Theory
and Applications (LATA 2016). (Prague, Czeck). Lecture Notes in Com-
puter Science. Springer-Verlag, 2016.

In Chapter 6 we summarize our results and point out directions for future work.

https://doi.org/http://dx.doi.org/10.1016/j.jal.2015.01.002
https://doi.org/http://dx.doi.org/10.1016/j.jal.2015.01.002




Chapter 2

Preliminaries

In this chapter we will introduce the theoretical foundations that the remainder of
this thesis is based on. We will start by formally introducing the basic notions of
Description Logics (DLs), the logic formalism upon which everything else will be
built; we will also discuss the notions of similarity and dissimilarity, both in general
and in the framework of DLs.

The introduction of DLs is split in two parts: First, we will establish the basic
notions of DLs that are common across all logics of the DL family. This introduction
is done in terms of the DL ALC, which forms the basis of Chapter 5. Then we will
have a closer look at the EL family of Description Logics, which is a fragment of
ALC with nicer computational properties, but for which some special notions arise.
EL will serve as the base language for Chapter 3 and 4.

Finally, we will introduce the notion of similarity and dissimilarity measures,
both in general and in the framework of DLs, and have a look at different methods
that can be employed to measure the similarity between DL concepts.

2.1 Basic Notions of Description Logics

As described in Chapter 1, DLs are a logic-based family of languages used for
knowledge representation and reasoning. This section will give a brief introduction
into the syntax and semantics of languages in the DL family, using the example of
the prototypical DL ALC. We will further define some related notions that will be
of help in later chapters. Note that this introduction is far from complete. A more
thorough look into DLs and all its aspects can be found in [BCM+03].

2.1.1 Description Logic Concepts

DL concepts are the most important building blocks of Description Logics; they
describe the categories of the application domain that one wants to model. Con-
cepts do not have to be atomic. For example, besides the category of all bikes, we
may also speak about the concept that contains all bikes with a pink frame and
disc brakes. Such complex concepts are built using concept constructors on two
countably infinite, disjoint sets of names: The set NC of concept names and the set
NR of role names.

11
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Definition 1 (Syntax of DL concepts). The set of concepts is the smallest set such
that

• > (top concept),⊥ (bottom concept), and every concept nameA ∈ NC is a concept;

• if C,D are concepts then the following are also concepts: ¬C (negation), CuD
(conjunction), and C tD (disjunction);

• ifC is a concept and r ∈ NR is a role name, then the following are also concepts:
∃r.C (existential restriction), and ∀r.C (universal restriction). ♦

For a DL L, we denote the set of all concepts of L with C(L). In particular, the
constructors above give rise to ALC concepts. Different DLs do offer different sets
of constructors, and thus may allow to create more or less expressive concepts.
Note that many more constructors exist in the literature, but are not introduced
here.

When considering the complexity of certain tasks related to Description Logics,
we commonly take the size of a concept as the input size for this task. Given a concept
C, its size |C| is inductively defined as

|C| :=


1 if C ∈ NC ∪ {>,⊥};
1 + |D| if C = ∃r.D, C = ∀r.D, or C = ¬D;

|C1|+ |C2| if C = C1 u C2 or C = C1 t C2.

The semantics of a concept is defined in a model-theoretic way by means of
interpretations.

Definition 2 (Semantics of concepts). An interpretation I = (∆I , ·I) consists of a
non-empty set ∆I , the interpretation domain, and an interpretation function ·I , which
assigns an element aI ∈ ∆I to each individual name a ∈ NI; a set AI ⊆ ∆I to
each concept name A ∈ NC; and a binary relation rI ⊆ ∆I ×∆I to each role name
r ∈ NR.

The interpretation function is extended to complex concepts as follows:

• >I := ∆I ;

• ⊥I := ∅;

• (¬C)I := ∆I \ CI ;

• (C uD)I := CI ∩DI ;

• (C tD)I := CI ∪DI ;

• (∃r.C)I := {d ∈ ∆I | ∃e ∈ ∆I .(d, e) ∈ rI ∧ e ∈ CI}; and

• (∀r.C)I := {d ∈ ∆I | ∀e ∈ ∆I .(d, e) ∈ rI ⇒ e ∈ CI}. ♦

The following example illustrates the use of concepts.
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•
Bike

•
Frame,Pink

hasPart

Figure 2.1: Interpretation I which contains an instance of the concept given in Ex-
ample 3

Example 3. Consider the domain of bicycles. If we assume that Bike, DiscBrake,
Frame, Pink, and Bell are concept names, and hasPart is a role name; we can express
the concept of pink bikes without a bell using the following concept:

Bike u ∃hasPart.(Frame u Pink) u ∀hasPart.¬Bell.

An interpretation I is given in Figure 2.1; the upper left element of this interpret-
ation belongs to the given concept since it has a hasPart-successor which belongs
to both Frame and Pink, and non of the hasPart-successors belong to Bell.

Note that one could express the property of not having a bell also by¬∃hasPart.Bell.
According to the semantics, the concepts ¬∃hasPart.Bell and ∀hasPart.¬Bell are
equivalent. ♦

Sometimes, we are not just interested in the interpretation as a whole, but in
specific elements of this interpretation. A pointed interpretation p = (I, d) consists
of an interpretation I together with an element d ∈ ∆I of its domain. We use I to
denote the set of all pointed interpretations, and for a fixed interpretation I, we
denote the set of all pointed interpretations of the form p = (I, d) with II . For a
pointed interpretation p = (I, d), we use C(p) = {C ∈ C | d ∈ CI} to denote the set
of all concepts that d is an instance of in I.

Note that the meaning of a concept is entirely dependent on an interpretation.
Any element of an interpretation may satisfy certain concepts, and not others, but
all of these are valid interpretations. However, when drawing inferences we want
to restrict to certain interpretations, namely those which respect our knowledge of
the domain. For example, we might only want to consider interpretations in which
racing bikes have thin tires. Interpretations where this is not the case (i.e., where
there exists a racing bike with thick tires) should be excluded. This is possible by
capturing these restrictions in a knowledge base.

2.1.2 Knowledge Bases

Knowledge bases consist of two parts. The TBox (terminological box) contains termin-
ological knowledge, i.e., knowledge about how different concepts are related; the
restrictions given in the TBox hold for all elements of an interpretation. The ABox
(assertional box) on the other hand contains knowledge about specific individuals,
which are given via a third countably infinite set of names: The set NI of individual
names. NI is disjoint to both NC and NR.
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Definition 4 (Syntax of TBoxes). A TBox is a finite set of TBox axioms. Axioms can
be one of the following:

• A general concept inclusion (GCI) is of the form C v D, where both C and D

are concepts.
• A concept definition is of the form A ≡ C, where C is a concept and A ∈ NC.

A TBox T containing only concept definitions is called unfoldable if it is unambigu-
ous and contains no cyclic definitions, i.e.:

• for every concept name A ∈ NC, there is at most one concept definition of the
form A ≡ C ∈ T (unambiguity); and

• there is no {A1 ≡ C1, . . . , An ≡ Cn} ⊆ T such that Ai+1 occurs in Ci for
1 ≤ i < n and A1 occurs in Cn (acyclicity).

Concept names that occur on the left-hand side of a concept definition in an unfold-
able TBox are called defined concept names. All other concept names are called
primitive concept names. Unfoldable TBoxes allow the expansion of concepts by
replacing defined concept names by their definition until only primitive concept
names remain [BCM+03]. ♦

Note that we can replace a concept definition A ≡ C by two GCIs A v C and
C v A; therefore, we often consider only GCIs when dealing with general TBoxes.

Conversely, for unfoldable TBoxes we can simulate a GCI of the form A v C

by a concept definition A ≡ A′ u C, which introduces a new concept name A′

that distinguishes the elements of A from other elements of C [BCM+03]. This
substitution preserves all standard inferences. Thus, TBoxes that contain GCIs of
the form A v C may still be considered unfoldable as long as they satisfy the other
constraints given in Definition 4.

The semantics of TBoxes is again defined using interpretations.

Definition 5 (Semantics of TBoxes). An interpretation I satisfies a GCI C v D

(denoted I |= C v D) iff CI ⊆ DI . It satisfies a concept definition A ≡ C (written
I |= A ≡ C) iff AI = CI . I is a model of a TBox T (written I |= T ), if it satisfies all
axioms in T . ♦

While TBoxes define relations between the different concepts of a knowledge
domain, ABoxes instead capture the knowledge about specific individuals, and are
defined as follows:

Definition 6 (Syntax of ABoxes). A concept assertion is of the form C(a), where C

is a concept, and a ∈ NI is an individual name. A role assertion is of the form r(a, b),
where r ∈ NR is a role name and a, b ∈ NI are individual names. Concept assertions
and role assertions are called ABox axioms. An ABox is a finite set of ABox axioms.♦

In essence, concept assertions allow to express to which categories an individual
belongs, while role assertions allow to express the relations between different in-
dividual objects. The semantics of ABoxes can be defined in a straight-forward
manner.
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Definition 7 (Semantics of ABoxes). An interpretation I satisfies a concept asser-
tion C(a) (denoted I |= C(a)), iff aI ∈ CI ; it satisfies a role assertion r(a, b) (de-
noted I |= r(a, b)), iff (aI , bI) ∈ rI . An interpretation I is a model of the ABox A,
denoted I |= A, if it satisfies all assertions in A. ♦

Together, TBox and ABox form a knowledge base (KB).

Definition 8 (Knowledge Base). A knowledge base K = (T ,A) consists of a TBox T
and an ABox A. We say that an interpretation I is a model of K, denoted I |= K, if
it is a model of T and A. ♦

We sometime want to talk about the exact set of concept, role, and individual
names that occur in a knowledge base or a concept, instead of the (infinite) sets NC,
NR, and NI. We call this the signature of a KB K or a concept C, denoted sig(K) or
sig(C), respectively. Similarly, we denote the set of all sub-concepts of a concept C
with sub(C), and the set of all sub-concepts of concepts occurring inKwith sub(K).

Formally, the signature and the set of sub-concepts of a concept C are defined
inductively as follows:

sig(C) :=



{C} if C ∈ NC;

∅ if C ∈ {>,⊥};
{r} ∪ sig(D) if C = ∃r.D or C = ∀r.D;

sig(D) if C = ¬D;

sig(C1) ∪ sig(C2) if C = C1 u C2 or C = C1 t C2.

sub(C) :=


{C} if C ∈ NC ∪ {>,⊥};
{C} ∪ sub(D) if C = ∃r.D, C = ∀r.D, or C = ¬D;

{C} ∪ sub(C1) ∪ sub(C2) if C = C1 u C2 or C = C1 t C2.

and for a KB K = (T , A) we define sig and sub as:

sig(K) :=
⋃

CvD∈T

(
sig(C) ∪ sig(D)

)
∪

⋃
A≡C∈T

(
{A} ∪ sig(C)

)
∪

⋃
C(a)∈A

(
{a} ∪ sig(C)

)
∪

⋃
r(a,b)∈A

{r, a, b}; and

sub(K) :=
⋃

CvD∈T

(
sub(C) ∪ sub(D)

)
∪

⋃
A≡C∈T

(
{A} ∪ sub(C)

)
∪

⋃
C(a)∈A

sub(C).

There exists a variety of inferences that can be drawn from a knowledge base.
Nearly all DL systems support the following standard inferences: consistency, en-
tailment, and satisfiability. Let K be a KB, and α an TBox axiom or ABox assertion.
Then K is consistent, if there exists a model of K. K entails α, written K |= α, if α is
satisfied in every model of K. A concept C is satisfiable w.r.t. a KB K, iff there exists
a model I of K with CI 6= ∅.
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In particular, for two concepts C and D and an individual a, we say that C is
subsumed by D w.r.t. K iff K |= C v D, C and D are called equivalent w.r.t. K iff
K |= C ≡ D, and a is called an instance of C w.r.t. K iff K |= C(a).

Note that inALC, if K is consistent then entailment of TBox axioms only depend
on the TBox, i.e., one gets the same result by replacing the ABox of K by the empty
ABox. In such cases we may write T |= α instead of (T , ∅) |= α.

2.1.3 Bisimulations inALC

A useful tool when talking about DL interpretations and their elements is the
concept of bisimulations. Bisimulations are equivalence relations between elements
of two interpretations that partition the elements into classes that cannot be dis-
tinguished by DL concepts. For the DL ALC bisimulations are defined as follows
[KR99].

Definition 9 (ALC bisimulation). Let I and J be interpretations. A relation S ⊆
∆I ×∆J is called a bisimulation between I and J , if the following conditions hold:

1. for all (d, e) ∈ S and A ∈ NC, d ∈ AI if and only if e ∈ AJ ,
2. for all (d, e) ∈ S, r ∈ NR and (d, d′) ∈ rI , there exists e′ ∈ ∆J with (e, e′) ∈ rJ

and (d′, e′) ∈ S, and
3. for all (d, e) ∈ S, r ∈ NR and (e, e′) ∈ rJ, there exists d′ ∈ ∆I with (d, d′) ∈ rI

and (d′, e′) ∈ S. ♦

We call two pointed interpretations bisimilar, denoted (I, d) ∼= (J , e), if there
exists a bisimulationS between I andJ with (d, e) ∈ S. Indeed, with this definition
we get the following property: if (I, d) ∼= (J , e), then for every ALC concept C we
have d ∈ CI if and only if e ∈ CJ [KR99].

2.2 The Description Logic EL

As said in the beginning, DLs encompass a whole family of different languages
which provide different sets of concept constructors and axioms, have different
expressiveness and thus also different computational properties. ALC is a pro-
positionally closed DL and therefore strictly subsumes propositional logic, which
implies that reasoning can never be tractable in ALC unless P=NP. For this reason,
less expressive DLs have been investigated for which the standard inferences are
tractable; some of the most popular of those are DLs from the EL family [BBL05].
EL is a fragment of ALC that disallows the use of negation, the bottom concept,

disjunction, and universal restrictions. Thus, the set C(EL) of EL concepts can be
defined using the syntactic rule

C ::= > | A | C u C | ∃r.C,

where A ∈ NC, and r ∈ NR.
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EL TBoxes, ABoxes and knowledges bases are defined as before, though they
may of course only contain EL concepts. Similarly, the semantics of EL concepts,
TBoxes, ABoxes, and KB are also as defined previously. Note that consistency and
satisfiability in EL are trivial to decide since EL lacks the means to express contra-
dictions or falsehood. Standard entailment inferences like concept subsumption
and instances can be computed in polynomial time [BBL05].

Since EL is less expressive thanALC, the notion of bisimulations is too strong for
EL concepts. There exist pointed interpretations that cannot be distinguished using
only EL concepts, but that are not bisimilar. Instead, one can define the weaker
notion of EL simulations:

Definition 10 (EL simulation). Let I and J be interpretations. A relation S ⊆
∆I ×∆J is a simulation between I and J , if the following two conditions hold:

1. For all (d, e) ∈ S and A ∈ NC, if d ∈ AI then e ∈ AJ .
2. For all (d, e) ∈ S, r ∈ NR and (d, d′) ∈ rI , there exists e′ ∈ ∆J with (e, e′) ∈ rJ

and (d′, e′) ∈ S. ♦

Given two pointed interpretations p = (I, d) and q = (J , e), we say that

• p simulates q (denoted by p . q), if there exists a simulation S ⊆ ∆I × ∆J

between I and J with (d, e) ∈ S, and
• p and q are equisimilar (denoted by p ' q), if p . q and q . p.

This way, the simulation relation between pointed interpretations is again con-
nected to the question whether they can be distinguished using EL concepts.

Theorem 11 (Lutz and Wolter [LW10]). Let p = (I, d), q = (J , e) be two pointed
interpretations. Then:

1. p . q iff d ∈ CI ⇒ e ∈ CJ for all EL concepts C;
2. p ' q iff d ∈ CI ⇔ e ∈ CJ for all EL concepts C.

2.2.1 Canonical Models in EL

For the DL EL, many polynomial-time reasoning procedures rely on the fact that
canonical models can be built, from which it is possible to read off entailments
directly [LW10]. These canonical models represent in a sense the most general
model one can construct for a concept C or the individuals in an ABox A, w.r.t.
some TBox T .

Definition 12. (canonical models) Let C be an EL concept and T an EL TBox. The
canonical model IC,T = (∆IC,T , ·IC,T ) of C w.r.t. T is defined as follows:

• ∆IC,T = {dC} ∪ {dD | ∃r.D ∈ sub(C) ∪ sub(T )}
• AIC,T = {dD | T |= D v A}, for all concept names A, and
• rIC,T = {(dD, dE) | T |= D v ∃r.E}, for all role names r.
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The canonical model IK = (∆IK , ·IK) of the KB K = (T ,A) is defined as follows:

• ∆IK = {da | a ∈ sig(K) ∩ NI} ∪ {dC | ∃r.C ∈ sub(K)},

• AIK = {dD | T |= D v A} ∪ {da | K |= A(a)},

• rIK = {(dD, dE) | T |= D v ∃r.E} ∪ {(da, dD) | K |= ∃r.D(a)}
∪ {(da, db) | r(a, b) ∈ A}. ♦

Note that canonical models for EL are always finite. As said before, the canonical
model IC,T is the most general model for C and T ; this means that for any other
model J of T with some d ∈ CJ , (J , d) can be simulated by dC in IC,T . Similarly
IK is the most general model of K, i.e., for any model J of K with d = aJ for an
individual a, (J , d) is simulated by da in IK.

Theorem 13 (Lutz and Wolter [LW10]). LetK = (T ,A) be an EL KB, and C,D be EL
concepts. Then:

1. for all models I of T and all elements d ∈ ∆I it holds that d ∈ CI iff (IC,T , dC) .
(I, d);

2. T |= C v D iff dC ∈ DIC,T iff (ID,T , dD) . (IC,T , dC); and

3. K |= C(a) iff da ∈ CIK iff (IC,T , dC) . (IK, da).

Since many properties of pointed interpretations that one may want to talk about
are preserved by simulations, this theorem implies that for these cases, it is enough
to only check the canonical model instead of all models.

2.2.2 Non-standard Inferences

Besides typical inference services that are implemented in most reasoner systems,
like subsumption, instance checking, and consistency, many other inferences have
been investigated for various applications. Here, we will introduce the most specific
concept [BK98], which, given an EL knowledge base K and an individual name a,
returns the most specific concept C that has a as an instance.

Definition 14 (most specific concept). Let K = (T ,A) be an KB and a an indi-
vidual name occurring in A. An concept C is the most specific concept of a w.r.t. K
(denoted mscK(a)) if it satisfies:

1. K |= C(a), and

2. for any concept D, K |= D(a) implies T |= C v D. ♦

In general, the msc does not need to exist if the ABox contains any cycles [KM01].
For example, consider the EL KB K consisting of an empty TBox and the ABox
A = {r(a, a)}. The most specific concept of a w.r.t. K would be the infinite concept
∃r.
(
∃r.
(
∃r.(∃r. . . . )

))
; since concepts must be finite, mscK(a) cannot exist.
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Instead, one can approximate the most specific concept by limiting the role-depth,
i.e., the maximal nesting of existential restrictions in the resulting concept. Formally,
the role-depth rd(C) of an EL concept C is

rd(C) :=


0 if C ∈ NC ∪ {>},
1 + rd(D) if C = ∃r.D,

max(rd(C1), rd(C2)) if C = C1 u C2.

Then, the role-depth bounded most specific concept can be defined as follows
[KM01]:

Definition 15 (role-depth bounded most specific concept). Let K = (T ,A) be a
KB and a an individual occurring A. A concept C is the role-depth bounded most
specific concept of a w.r.t. k ∈ N and K (denoted k-mscK(a)) if it satisfies:

1. rd(C) ≤ k,
2. K |= C(a), and
3. for any concept D with rd(D) ≤ k, K |= D(a) implies T |= C v D. ♦

The k-msc always exists since the role-depth bound will cut off any cycles at
depth k. Both the msc, if it exists, and the k-msc are unique up to equivalence in
EL. Algorithms for computing the k-msc in EL, and some of its extensions, have
been studied [PT11; EPT13a], and implemented [MET11].

Instead of looking at individuals, one can also look at elements in an interpret-
ation. This leads to the notion of model-based most specific concepts [Dis08]. We
will directly introduce the role-depth bounded version.

Definition 16 (role-depth bounded model-based most specific concept). Let T be
an EL TBox, I be a model of T , and (I, d) ∈ II be a pointed interpretation. A
concept C is the role-depth bounded model-based most specific concept of (I, d) w.r.t.
k ∈ N and T (denoted k-model-mscT (p)) if it satisfies:

1. rd(C) ≤ k,
2. d ∈ CI , and
3. for any concept D with rd(D) ≤ k, d ∈ DI implies T |= C v D. ♦

As for the k-msc, the k-model-msc always exists in EL, and is unique up to equi-
valence. The proof as direct adaptations of the corresponding proofs for the k-msc.

2.2.3 EL++: Extending EL with Concrete Domains, Nominals, and

more

While EL has nice computational properties, in practice the restriction to only con-
junctions and existential restrictions is often too limiting and unnecessary. There-
fore, it has been investigated which constructors could be added without sacrificing
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syntax usual semantics

concept name A AI ⊆ ∆I

top concept > >I = ∆I

bottom concept ⊥ ⊥I = ∅
nominal {o} {o}I = {oI}
conjunction C uD (C uD)I = CI ∩DI

existential restriction ∃r.C (∃r.C)I = {d ∈ ∆I | ∃e ∈ ∆I : (d, e) ∈ rI ∧ e ∈ CI}
concrete domain p(f1, . . . , fn) p(f1, . . . , fn)

I = {d ∈ ∆I | (fI
1 (d), . . . , f

I
n (d)) ∈ pD}

GCI C v D CI ⊆ DI

role inclusion r1 ◦ · · · ◦ rn v s rI1 ◦ · · · ◦ rIn ⊆ sI

domain restriction dom(r) v C rI ⊆ CI ×∆I

range restriction ran(r) v C rI ⊆ ∆I × CI

concept assertion C(a) aI ∈ CI

role assertion r(a, b) (aI , bI) ∈ rI

Table 2.1: Concept constructors, TBox axioms, and ABox assertions for EL++

tractability [BBL05; BBL08]. This has resulted in the DL EL++, which adds to EL
the bottom concept, concrete domains, nominals, domain and range restrictions,
as well as role inclusions.

The full syntax and semantics of all EL++ concept constructors as well as the TBox
and ABox axioms is given in Table 2.1. In the following, we will briefly explain the
new constructors and axioms.

• Nominals allow to incorporate individuals directly into concepts. For ex-
ample, if japan is an individual that represents the respective country, then
one can define a japanese bike by

JapaneseBike ≡ Bike u ∃madeIn.(Country u {japan}).

• Concrete domains allow to attach concrete values like strings or numbers
to elements of an interpretation via feature names, and to reason over those
values via a set of predicates. For example, using the concrete domain Q of
the rational numbers with predicates {=,≥p,=p}with the obvious meanings,
one can express that a heavy bike is a bike whose frame weights at least 8
kilogram:

HeavyBike v Bike u ∃hasPart.(Frame u ≥8(weight)),

or that the front and rear wheel of all bikes have the same size:

Bike v =(frontWheelSize, rearWheelSize).

• Domain and range restriction can restrict the context in which roles are used,
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by saying that elements connected via such a role must belong to certain
concepts. For example, we might say that any element that has an incoming
hasPart-edge must be a BikePart:

ran(hasPart) v BikePart.

• Role-inclusion axioms allow to express, among other things, role hierarchies
and transitive roles. For example, one can say that the hasPart-relation is
transitive using

hasPart ◦ hasPart v hasPart.

In order to avoid intricate interactions between role-inclusions and range restric-
tions that may lead to intractability or even undecidability, EL++ TBoxes need to
satisfy an additional syntactic restriction [BBL05]. For a TBox T and role name r,
we write T |= ran(r) v C, iff there are r1 v r2, . . . , rn−1 v rn ∈ T with r1 = r and
ran(rn) v C ∈ T , i.e., the range of r is implicitly restricted via a superrole. Then,
the syntactic restriction is as follows: If r1 ◦ r2 ◦ · · · ◦ rn v s ∈ T for n > 1 and
T |= ran(s) v C, then also T |= ran(rn) v C.

We will give a formal definition of concrete domains [BH91; BBL05].

Definition 17 (concrete domain). A concrete domain D = (∆D, PD) consists of a
set of concrete values ∆D and a set of predicates p ∈ P , each associated with an
arity n > 0 and an extension pD ⊆ (∆D)n.

A countable infinite set of feature names NF is used to connect elements of an
interpretation to concrete values. Description Logics extended with concrete do-
mains allow for the constructor p(f1, . . . , fn), where p ∈ P is an n-ary predicate,
and f1, . . . , fn ∈ NF are feature names.

An interpretation assigns to each feature name f ∈ NF a partial function fI :

∆I 9 ∆D from the interpretation domain to the concrete domain. The semantics
of the predicate constructor are as follows:

(p(f1, . . . , fn))
I := {d ∈ ∆I | (fI

1 (d), . . . , f
I
n (d)) ∈ pD} ♦

In order for the complexity of standard reasoning tasks to stay tractable, the
concrete domain needs to satisfy certain properties. Such concrete domains are
called p-admissible.

Definition 18 (p-admissible). A concrete domain D is p-admissible, if satisfiability
and entailment in D are decidable in PTime, and the concrete domain is convex,
i.e., if a set of predicated implies a disjunction of predicates, then it needs to imply
already one of its disjuncts. ♦

P-admissibility is quite a strong restriction to a concrete domains. In fact, most
non-trivial concrete domains are not p-admissible, as are all those with a finite
domain. However, there are a few examples of non-trivial p-admissible concrete
domains given in [BBL05] which allow the use of rational numbers and strings.
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Furthermore, we will later argue that even trivial concrete domains can be very
useful for use in similarity measures and for relaxing instance queries. In fact, for
any infinite set V of values, the concrete domain V = (V,=v) which consists only
of unary predicates =v for v ∈ V with (=v)

V = {v}, i.e., only allows for value
assignments, is p-admissible and can be very useful.

2.3 Similarity and Dissimilarity

As we have see in Chapter 1, a large variety of approaches to similarity exist, most
of which treat the notion of similarity slightly different. However, we have estab-
lished four principle that are commonly used to guide the construction of similarity
measures.

1. The similarity between two objects increases with the commonalities that
they share.

2. The similarity between two objects decreases with the differences between
them.

3. The maximal similarity between two things is reached if they are identical, i.e.,
have no differences; it does not matter how much commonality they share.

4. The minimal similarity between two things is reached when they have no
commonalities, no matter how many differences they have.

As we require a similarity measure to have a minimal and a maximal value, we
can actually fix the range of similarity measures. Most commonly, the value 0 is
used to denote complete dissimilarity, and the value 1 is used to denote complete
similarity. With this, we can define similarity measures formally:

Definition 19. Given a (possible infinite) set ∆ of objects. A similarity measure ∼
on ∆ is a function ∼: ∆×∆→ [0, 1] with d ∼ d = 1 for all d ∈ ∆. ♦

Dissimilarity on the other hand is much harder to define. It can either mean the
inverse of a similarity measure, which also has a minimal and maximal value, or it
can be unbounded. In the latter case, the more differences there are between two
objects, the higher the dissimilarity can grow, often even disregarding commonal-
ities between the two objects completely. Then, the dissimilarity measure is simply
a measure of the differences between the objects and thus behaves like a distance
metric. We will use this view as well.

2.3.1 Concept Similarity in DLs

In the contexts of DLs, we are usually interested in concept similarity measures
(CSMs), i.e, measures where the objects to be compared are DL concepts. Addition-
ally, when working with DL knowledge bases we always have some background
knowledge in the form of a TBox. We require CSMs to respect this background
knowledge.
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The introduction already gave an overview over general approaches to similarity
measures. For DLs, some specific CSMs have been proposed. Early measures for
DLs did usually use one of three approaches:

• for very inexpressive terminologies, graph-distance approaches that count
the length of the paths between the concepts and their common subsumer
[RMB+89] have been used. These approaches often only respect direct sub-
sumption relations between concept names, and are hard to generalize for
more expressive DLs. However, they have been used to great effect for the
Gene Ontology, where they are used to measure the functional similarity
between different genes and gene products. Graph-distances measures are
often combined with information-content approaches, as both are quite sim-
ilar.

• For more expressive Description Logics, generally an extensional measure
[dFE05; Lin98] is used, which uses the overlap between the extensions of
concepts (usually from the ABox) to compute the similarity value. These
measures require a large and well-balanced ABox in order to achieve good
similarity estimations. If the ABox is small or unbalanced, then the results can
be very counter-intuitive. One example is that extensional measures assign
similarity 1 to completely different concept names if both have an empty
extension in the ABox.

• Finally, there is a group of structural measures [Jan06; Sun13; LT12] that
compute the similarity by comparing the structure of the concepts in some
kind of normal form. However, these usually only work for unfoldable TBoxes
and for rather inexpressive DLs [Sun13; LT12]. If the presence of more more
expressive DLs, these measures can become very complex, and the normal
form might not be unique any longer, which quickly leads to problems.

Recently, a number of other measures have been defined. A transformational
dissimilarity measure for ELwas introduced in [DAB14], which works by counting
the number of tree operations it takes to transform the first concept into the second.
This measure has many nice properties; for example it fulfills the triangle-property
known from distance metrics.

A family of different CSMs has been introduced in [APS14]. These measures are
conceptually very simple, they work by extracting two sets S1, S2 of concepts from
the concepts that are compared and using the Jaccard index

J(S1, S2) =
|S1 ∩ S2|
|S1 ∪ S2|

to measure the similarity between these sets. By varying the set of concepts one
is allowed to extract, i.e., just concept names, subconcepts, or concepts generated
by some kind of grammar, one can create CSMs of different power and complexity.
They work on a large set of DLs, however they can not be parameterized and do
not allow for discounting.



24 Chapter 2. Preliminaries

2.3.2 Formal Properties of Concept Similarity Measures

A set of formal properties for CSMs was presented in [LT12]. The framework de-
vised in [LT12] allows to construct CSMs for EL concepts (possibly defined w.r.t.
unfoldable TBoxes) that satisfy most of these properties.

Here, we want to investigate CSMs for EL concepts defined w.r.t. general TBoxes.
Thus, we extend the definition of the properties of CSMs from [LT12] to the case
where general TBoxes are used.

Definition 20. Let L be a DL and T be an L TBox. Then a concept similarity meas-
ure ∼ : C(L)× C(L)→ [0, 1] w.r.t. T is called:

• symmetric, if C ∼ D = D ∼ C for all C,D ∈ C(L);

• equivalence-invariant, if for all C,C ′, D,D′ ∈ C(L) with T |= C ≡ C ′ and
T |= D ≡ D′ it holds that C ∼ D = C ′ ∼ D′;

• equivalence-closed, if T |= C ≡ D ⇐⇒ C ∼ D = 1 for all C,D ∈ C(L);

• bounded, if the existence of an L-concept E 6= > with T |= C v E and
T |= D v E implies C ∼ D > 0 for all C,D ∈ C(L); and

• dissimilar-closed, if for all C,D ∈ C(L) with C,D 6= >, the non-existence of
E 6= > with T |= C v E and T |= D v E implies that C ∼ D = 0. ♦

Many of these properties can be motivated by the intuition about similarity meas-
ures given above: Equivalence-closed means that the maximal similarity 1 should
only occur for concepts that are equivalent, i.e., have no differences (w.r.t. the given
TBox). Equivalence invariance further requires that equivalent concepts always be-
have exactly the same w.r.t. ∼. Boundedness requires that as soon as two concepts
share some commonality (in form of a common subsumer E), the similarity must
be different from the minimum similarity 0, while dissimilar-closed implies that
similarity 0 occurs exactly when two concepts have no commonalities. Symmetry
is a common property that most measures satisfy, though some authors do reject
this property [Tve77].

More properties have been defined in the literature, like the triangle property or
the weakened forms of this property called subsumption preserving and reverse
subsumption preserving [LT12]. However, while these properties are useful and
easy to explain for distance or dissimilarity measures, they may not always be in-
tuitive for similarity measures. For example, while the triangle property has an
intuitive geometric meaning on distance metrics, this meaning is lost when adapt-
ing this property to similarity measures, and the need to introduce a transformation
function to translate between distances and similarities means that different formu-
lations of the triangle property for similarity measures are possible, none of which
are natural.

We will define an additional property, which is important for the definition of
relaxed instance queries later.
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Definition 21. A CSM ∼ is called role-depth bounded, if C ∼ D = Ck ∼ Dk for any
k > min(rd(C), rd(D)), where Ck and Dk are the restrictions of C and D to role-
depth bound k, i.e., the concepts one gets by replacing all existential restrictions at
a role-depth of k with >. ♦

Basically, this property means one does not need to take into account the exact
shape of features that occur in one concept but not the other. For example, when
comparing two bikes, one with battery lights and one without any light, the simil-
arity does not depend on the type, color, or power of the lights the first bike has –
the other bike does not have any lights either way.

These defined properties make the outcome of a CSM with these properties more
predictable for ontology users. The measures described in [Sun13; LT12] fulfill most
of these properties, as will the measure that we will introduce in the next chapter.





Chapter 3

A Concept Similarity Measure for EL

In this chapter we present ∼c, a structural similarity measure for EL concepts w.r.t.
a general EL TBox. This measure is based on the measure simi introduced in [LT12],
however, there are some differences. The biggest difference is certainly that simi
only works w.r.t. unfoldable TBoxes: in the first step, it expands all concepts with
the definitions given in the TBox and then discards it; later it uses only the expanded
concepts to compute the similarity. This approach has two big problems: First, it
cannot be easily generalized to general TBoxes; and second, the expansion may
lead to an unnecessary exponential blowup of the concept descriptions.

The similarity measure∼c introduced in this chapter instead relies on a so-called
interpretation similarity measure ∼i, that assigns a similarity value to a pair of
pointed interpretations. It is then expanded to a concept similarity measure by
comparing the canonical models of the concepts w.r.t. the general TBox. This ap-
proach avoids the exponential blowup introduced by the expansion step, works
w.r.t. general TBoxes, and retains most of the formal properties of the measure simi.

3.1 Interpretation Similarity

An interpretation similarity measure (ISM) is defined as a similarity measure on finite
pointed interpretations, i.e., a function of the type I× I→ [0, 1]. It maps any pair
of pointed interpretations to a similarity value between 0 and 1.

It is possible to transfer the formal properties of CSMs to ISMs.

Definition 22. Given a DL L and suitable simulation relations . and ' (as given
in Definition 10 for EL), we call an interpretation similarity measure ∼i:

• symmetric, iff p ∼i q = q ∼i p for all p, q ∈ I;

• bounded, iff C(p) ∩ C(q) ) {>} implies p ∼i q > 0 for all p, q ∈ I;

• dissimilar closed, iff C(p) ∩ C(q) = {>} implies p ∼i q = 0 for all p, q ∈ I with
C(p) ) {>} and C(q) ) {>};

• equisimulation invariant, iff p ' q implies p ∼i u = q ∼i u for all p, q, u ∈ I;

• equisimulation closed, iff p ' q ⇐⇒ p ∼i q = 1 for all p, q ∈ I;

• simulation preserving, iff r . q . p implies p ∼i q ≥ p ∼i r for all p, q, r ∈ I;

27
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• reverse simulation preserving, iff r . q . p implies q ∼i r ≥ p ∼i r for all
p, q, r ∈ I. ♦

We will now introduce the interpretation similarity measure ∼i.

3.1.1 The Interpretation Similarity Measure ∼i

For two pointed interpretations to be perfectly similar, they need to have the same
set of concept names and have edges labeled with the same roles going to perfectly
similar successor elements. Otherwise, the most similar concept names and the
most similar direct successors are compared and a similarity value is computed
from these pairs. In essence, ∼i is a feature-based similarity measure where the
concept names and successors of an interpretation element are its features.

Before defining the interpretation similarity measure ∼i, we need to define two
auxiliary functions:

• CN : I → P(NC) with CN((I, d)) = {A ∈ NC | d ∈ AI} returns the set of
concept names that d is an instance of in I.

• SC : I→ P(NR×I) with SC((I, d)) = {(r, (I, e)) | (d, e) ∈ rI} returns the set
of successors, i.e., elements e that are connected to d via role r in I.

∼i is defined as a recursive function, where the similarity of two elements in
their respective interpretations depends on the concept names that they have in
common and in which they differ, as well as the similarity of all the elements that
are connected to them via roles. In order to control how these features influence
the similarity, ∼i depends on a number of parameters:

Primitive Measure The primitive measure∼p: NC×NC∪NR×NR → [0, 1] assigns
a similarity value to pairs of concept names or pairs of role names, such that
x ∼p x = 1 for every concept names x ∈ NC or role name x ∈ NR. We give a
default primitive measure as follows:

x ∼default y =

{
1, if x = y

0, otherwise

Weighting Function The weighting function g : NC∪NR → R>0 assigns a positive
weight to each concept and role name. These weights allow one to control the
influence that different concept names and roles have on the overall similarity.
A high weight means that the concept or role name is important and has a
great impact of the overall similarity. Again, we will give a default weighting
function gdefault that assigns the weight 1 to all concept and role names.

Discounting Factor The discounting factor 0 < w < 1 controls the discounting
of existential restrictions, i.e., how big of an impact the similarity of the suc-
cessors of an element have on the overall similarity.
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The primitive measure can be used to compute the similarity between single
concept names. Since elements are usually instance of more than a single concept
name, we need to match the concept names of both elements in order to find the
maximal correspondence w.r.t. the primitive measure. This gives rise to the follow-
ing function cm : I× I→ R:

cm(p, q) =
∑

A∈CN(p)

(
g(A) max

B∈CN(q)
A ∼p B

)
.

Essentially, this directed measure from p to q simply adds for each concept
name that p belongs to the maximal primitive similarity to the concept names of q,
weighted according to the weighting function g.

For the successors of the pointed interpretations p and q, we can define a similar
directed measure sm : I × I → R. For this, assume that we already know the
interpretation similarity p′ ∼i q

′ between the successor elements.

sm(p, q) =
∑

(r,p′)∈SC(p)

(
g(r) max

(s,q′)∈SC(q)

(
(r ∼p s)

(
(1− w) + w(p′ ∼i q

′)
)))

This function again finds for each successor of p the best successor of q, i.e., the
one where the primitive similarity between the role names multiplied with the
discounted interpretations similarity between the elements itself is maximal.

With this in place, we can define the ISM ∼i. In order to compute the similarity
between to pointed interpretations p and q, ∼i simply add the values of the meas-
ures cm and sm. Since these measures are directed, this is done in both directions;
from p to q and from q to p, to arrive at a symmetric measure. Finally, the sum is
divided by the weights of all concept names that p and q are instance of and the
weights of the role names of all successors of p and q. This normalizes the similarity
value to the interval [0, 1].

Definition 23. Given a primitive measure ∼p, a weighting function g, a discount-
ing factor w, as well as two interpretations I and J , the interpretation similarity
measure ∼i (∼p, g, w) : I × I → [0, 1] is defined as follows, for all p, q ∈ I: If
CN(p) = CN(q) = SC(p) = SC(q) = ∅, then p ∼i q = 1, otherwise

p ∼i q =
cm(p, q) + cm(q, p) + sm(p, q) + sm(q, p)∑

A∈CN(p)

g(A) +
∑

A∈CN(q)

g(A) +
∑

(r,p′)∈SC(p)

g(r) +
∑

(r,q′)∈SC(q)

g(r)
(3.1)
♦

We often speak simply of∼i instead of∼i (∼p, g, w). In this case, we assume that
∼p, g and w are either clear from the context, or arbitrary.

Note that, since sm depends again on ∼i, this definition is mutually recursive.
Simply put, the similarity of to pointed interpretations p and q will depend on the
similarity between all its successor elements, which depend on the similarities of
their successors and so on. Since interpretations can contain cycles, in order for ∼i

to be well-defined we need to show that a unique solution to equation (3.1) exists.
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d
{Bike,MountainBike}

·{Brakes,DiscBrakes} · {Amount,Medium}

· {Frame,YFrame}

·{RearSuspension}

hasPart

hasPart hasWeight

hasPart

I : e
{Bike,RaceBike}

·{Brakes} · {Amount,Low}

· {Frame,DiamondFrame}

· {Material,Carbon}

hasPart

hasPart hasWeight

madeFrom

J :

Figure 3.1: The pointed interpretations (I, d) and (J , e) from Example 24

Before proving that ∼i is well-defined, we will illustrate its definition using a
brief example.

Example 24. Consider the interpretations I andJ given in Figure 3.1. The pointed
interpretation p = (I, d) describes a medium weight mountain bike with disc
brakes and a Y-frame with rear suspension. The pointed interpretation q = (J , e)
describes a road racing bike with unspecified brakes, a carbon diamond frame and
low weight. In the following, we will use the default weighting function gdefault
that assigns weight 1 to all concept and role names, and a discounting factor of
w = 0.8. We also use a primitive measure∼p that agrees with the default primitive
measure on all pairs of concept and role names with the exception of the following:
The primitive similarity between Low and Medium as well as between Medium and
High is 0.5 instead of 0.

To compute the similarity between the two pointed interpretations p and q, we
need to find, for each concept name and each successor of any of the two elements,
the best matching concept name or successor of the other element. For this we need
the similarities of all successors of the elements d and e. Since both d and e have
three successors, we would need to compute the similarity between all nine pairs.
However, since hasPart and hasWeight have a primitive similarity of 0, and the
brakes and frame have no concept names in common, it is easy to see that the best
matching successors will be the ones that both speak about the weight, the brakes,
or the frame, respectively.

• The hasPart-successors speaking about the brakes have a similarity 0.667, as
both elements are instance of the concept name Brakes, but the successor of
e is missing the concept name DiscBrake, resulting in a similarity value of
(1+0)+1

3 = 0.667.
• The most similar concept names for the two hasWeight-successor of d and
e are (Amount,Amount) and (Medium, Low), which results in a similarity
value of (1+0.5)+(1+0.5)

4 = 0.75.
• For the two hasPart-successors of d and e speaking about the frame, both are

instance of Frame, while the concept names YFrame andDiamondFrame have
no correspondence in the other element. Similarly, the hasPart-successor in
I and the madeFrom-successor in J have no corresponding successors the
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other interpretation. Overall, this yields a similarity of (1+0)+(1+0)+0+0
2+2+1+1 =

0.333 for the two services.

Using this, we can finally compute the similarity between d and e by computing cm
and sm for both directions (p, q) and (q, p) and dividing by the sum of all weights:

cm(p, q) = cm(q, p) = 1 + 1,

sm(p, q) = sm(q, p) = (0.2 + 0.8 · 0.667) + (0.2 + 0.8 · 0.75) + (0.2 + 0.8 · 0.333)
= 2,

(I, d) ∼i (I, e) =
1 + 1 + 2 + 2

2 + 2 + 3 + 3
= 0.6.

Despite the fact that these bikes are fairly different, the similarity between them is
rather large. The main reason for this is that the general concept names like Bike,
Amount, Brakes, and Frame have the same influence on the similarity as the more
interesting subconcepts like MountainBike and RaceBike or Low and Medium. By
modifying the weighting function g such that it decreases the weight of the concepts
Bike, Amount, Brakes, and Frame to 0.1, we arrive at the following similarity values:

• The similarity between the brakes is now (0.1+0)+0.1
1.2 = 0.167.

• The similarity between the weights is now 0.1+0.5+0.1+0.5
2.2 = 0.545.

• The similarity between the frames is now 0.2
4.2 = 0.048.

• The total similarity between the bikes is p ∼i q = 0.21.

With this new weighting function, the similarity comes mainly from the fact that
both bikes have a weight that is not completely dissimilar, and that they have the
same roles (albeit with dissimilar successors), which the discounting formula hon-
ors with a factor of 0.2. ♦

3.1.2 Existence and Uniqueness of the Solution for ∼i

In order to show that a unique solution to Equation (3.1) exists even if the interpret-
ations contain cycles, we will use the Banach fixed-point theorem [Ban22]. For this,
we need the notion of a contraction mapping.

Definition 25 (contraction mapping). Given a metric space (X, d), a function f :

X → X is called a contraction mapping on X , if there exists a λ ∈ [0, 1) such that
for all x, y ∈ X we have

d(f(x), f(y)) ≤ λd(x, y). ♦

The Banach fixed-point theorem basically says that any contraction mapping on
a complete metric space has a unique fixed point.

Theorem 26 (Banach fixed-point theorem [Ban22]). Let (X, d) be a complete metric
space, and f : X → X be a contraction mapping on X . Then f admits a unique fixed-point
x∗ in X , i.e., there exists a unique x∗ ∈ X with f(x∗) = x∗. Furthermore, for any x0 ∈ X ,
the sequence xn with xn = f(xn−1) converges to x∗, i.e., x∗ = limn→∞ xn. ♦
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In order to be able to use the Banach fixed-point theorem, we need to transform
the equation system (3.1) into a (contraction) mapping. In particular, given two
pointed interpretations p = (I, d) and q = (J , e) with I and J being finite, we
need to consider the similarity values between all elements of I andJ , and thus we
transform equation system (3.1) into a mapping fsim : RII×IJ → RII×IJ (where
xp,q denote the value at index p, q of vector x):

fsim(x) = x′, (3.2)
where

x′p,q =
c(p, q) + c(q, p) + sx(p, q) + sx(q, p)∑

A∈CN(p)

g(A) +
∑

B∈CN(q)

g(B) +
∑

(r,p′)∈SC(p)

g(r) +
∑

(s,q′)∈SC(q)

g(s)
,

c(p, q) =
∑

A∈CN(p)

(
g(A) max

B∈CN(q)
(A ∼p B)

)
, and

sx(p, q) =
∑

(r,p′)∈SC(p)

(
g(r) max

(s,q′)∈SC(q)

(
(r ∼p s)((1− w) + w(xp′,q′))

))
.

Note that the fixed-points of fsim and the solutions of Equation system (3.1) are
equivalent, since for a fixed point x∗, the equation fsim(x∗) = x∗ yields exactly the
equation system (3.1).

Given the Chebyshev distance metric dmax on RII×IJ with

dmax(x,y) = max
(p,q)∈II×IJ

|xp,q − yp,q|,

we can now show that fsim is indeed a contraction mapping on the complete metric
space (RII×IJ , dmax).

Lemma 27. fsim is a contraction mapping on (RII×IJ , dmax).

Proof. We need to show that for any x,y ∈ RII×IJ , we have

dmax(fsim(x), fsim(y)) ≤ λdmax(x,y)

for some λ ∈ [0, 1). In order to show this, we need the following claim:

Claim 28. For some index set I and two vectors x,y ∈ [0, 1]I , we have

|max
i∈I

xi −max
i∈I

yi| ≤ max
i∈I
|xi − yi|.

Proof. Let maxi∈I xi = xik and maxi∈I yi = yil . Assume that xik ≥ yil ; then
|maxi∈I xi − maxi∈I yi| = |xik − yil | = xik − yil . As yil is the maximum over
all yi, we further get xik − yil ≤ xik − yik ≤ maxi∈I |xi − yi|. The case xik < yil is
analogous.

Let now x′ = fsim(x) and y′ = fsim(y). Then we have dmax(fsim(x), fsim(y)) =

max(p,q)∈II×IJ |x
′
p,q − y′p,q|. In particular, using claim 28, we have for any p, q ∈ I:



3.1 Interpretation Similarity 33

sx(p, q)− sy(p, q) =

∣∣∣∣∣∣
∑

(r,p′)∈SC(p)

g(r)

(
max

(s,q′)∈SC(q)
(r ∼p s)((1− w) + w(xp′,q′))

)

−
∑

(r,p′)∈SC(p)

g(r)

(
max

(s,q′)∈SC(q)
(r ∼p s)((1− w) + w(yp′,q′))

)∣∣∣∣∣∣
≤

∑
(r,p′)∈SC(p)

g(r) max
(s,q′)∈SC(q)

∣∣(r ∼p s)((1− w) + w(xp′,q′))

− (r ∼p s)((1− w) + w(yp′,q′))
∣∣

=
∑

(r,p′)∈SC(p)

g(r)

(
w max

(s,q′)∈SC(q)
(r ∼p s)

∣∣xp′,q′ − yp′,q′
∣∣)

≤
∑

(r,p′)∈SC(p)

g(r)

(
w max

(s,q′)∈SC(q)

∣∣xp′,q′ − yp′,q′
∣∣)

≤
∑

(r,p′)∈SC(p)

g(r) (w dmax(x,y))

This implies the following:

|x′p,q − y′p,q| =

∣∣∣∣∣∣∣
(c(p, q) + c(q, p) + sx(p, q) + sx(q, p))∑

A∈CN(p)

g(A) +
∑

B∈CN(q)

g(B) +
∑

(r,p′)∈SC(p)

g(r) +
∑

(s,q′)∈SC(q)

g(s)

− (c(p, q) + c(q, p) + sy(p, q) + sy(q, p))∑
A∈CN(p)

g(A) +
∑

B∈CN(q)

g(B) +
∑

(r,p′)∈SC(p)

g(r) +
∑

(s,q′)∈SC(q)

g(s)

∣∣∣∣∣∣∣
≤ |(sx(p, q)− sy(p, q)) + (sx(q, p)− sy(q, p))|∑

A∈CN(p)

g(A) +
∑

B∈CN(q)

g(B) +
∑

(r,p′)∈SC(p)

g(r) +
∑

(s,q′)∈SC(q)

g(s)

≤

∑
(r,p′)∈SC(p)

g(r) (w dmax(x,y)) +
∑

(s,q′)∈SC(q)

g(s) (w dmax(x,y))∑
A∈CN(p)

g(A) +
∑

B∈CN(q)

g(B) +
∑

(r,p′)∈SC(p)

g(r) +
∑

(s,q′)∈SC(q)

g(s)

≤ w dmax(x,y)

∑
(r,p′)∈SC(p)

g(r) +
∑

(s,q′)∈SC(q)

g(s)∑
A∈CN(p)

g(A) +
∑

B∈CN(q)

g(B) +
∑

(r,p′)∈SC(p)

g(r) +
∑

(s,q′)∈SC(q)

g(s)

≤ w dmax(x,y)

Since |x′p,q − y′p,q| ≤ w dmax(x,y) for any p, q ∈ I, this implies that also

dmax(fsim(x), fsim(y)) = max
(p,q)∈II×IJ

|x′p,q − y′p,q| ≤ w dmax(x,y),



34 Chapter 3. A Concept Similarity Measure for EL

and thus fsim is a contraction mapping with Lipschitz constant w.

This allows us to apply the Banach fixed-point theorem to get the following result.

Theorem 29. The similarity measure ∼i is well-defined, i.e., p ∼i q defined in Equa-
tion (3.1) has a unique solution for all finite pointed interpretations p, q.

Proof. fsim is a contraction mapping on (RII×IJ , dmax) due to Lemma 27. Thus, the
Banach fixed-point Theorem 26 implies that fsim always has a unique fixed-point
x∗. Since the fixed-point equation fsim(x∗) = x∗ yields exactly the equation system
(3.1), this also implies that equation system (3.1) always has a unique solution, and
thus the similarity measure ∼i is well-defined.

3.1.3 Polynomial Time Complexity

In this section, we want to show that∼i can be computed in polynomial time in the
size of the interpretations I and J . For this, we transform the equation system (3.1)
into a linear optimization problem Psim:

Definition 30. Let I and J be finite two interpretations. The linear optimization
problem Psim(I,J ) is defined by the following linear constraints with variables
xp,q, x(r,p′),q, and xp,(s,q′) for all p ∈ II , q ∈ IJ , (r, p′) ∈ SC(p) and (s, q′) ∈ SC(q):

xp,q =

cm(p, q) + cm(q, p) +
∑

(r,p′)∈SC(p)

x(r,p′),q +
∑

(s,q′)∈SC(q)

xp,(s,q′)∑
A∈CN(p)

g(A) +
∑

B∈CN(q)

g(B) +
∑

(r,p′)∈SC(p)

g(r) +
∑

(s,q′)∈SC(q)

g(s)

cm(p, q) =
∑

A∈CN(p)

(
g(A) max

B∈CN(q)
(A ∼p B)

)
x(r,p′),q ≥ g(r)(r ∼p s)((1− w) + w · xp′,q′) for all (s, q′) ∈ SC(q)

xq,(s,q′) ≥ g(s)(r ∼p s)((1− w) + w · xp′,q′) for all (r, p′) ∈ SC(p)

and the objective function ∑
(p,q)∈II×IJ

xp,q,

which should be minimized. ♦

In Psim(I,J ), the variables xp,q correspond to p ∼i q, while variables x(r,p′),q (and
xp,(s,q′), respectively) correspond to sm(p, q) without the outer sum. By stating
the constraints that x(r,p′),q must be greater or equal to the given expression for
all successors (s, q′) ∈ SC(q), minimizing the objective function will result in the
variables x(r,p′),q being assigned exactly the maximum of all those expressions.

In fact, the values for variables xp,q in the minimal solution to Psim(I,J ) are
exactly the similarity values p ∼i q for all p ∈ II and q ∈ IJ .
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Lemma 31. Let I and J be two finite interpretations, and p ∈ II , q ∈ IJ be pointed
interpretations. Then any minimal solution of Psim corresponds to a solution of equation
system (3.1) and vice versa.

Proof. We have to show that every solution to equation system (3.1) satisfies all
constraints of the linear optimization problem Psim(I,J ), and that this solution is
indeed minimal. Since equation system (3.1) and the feasible region of Psim(I,J )
is convex, this implies that the solution of equation system (3.1) and the minimal
solution of Psim(I,J ) coincide.

1. By setting

xp,q = p ∼i q,

x(r,p′),q = g(r) max
(s,q′)∈SC(q)

(
(r ∼p s)

(
(1− w) + w(p′ ∼i q

′)
))

, and

xp,(s,q′) = g(s) max
(r,p′)∈SC(p)

(
(r ∼p s)

(
(1− w) + w(p′ ∼i q

′)
))

for all p ∈ II , q ∈ IJ , (r, p′) ∈ SC(p) and (s, q′) ∈ SC(q) it is easy to see that
all constraints of Psim(I,J ) are satisfied.

2. Let v be a minimal solution to Psim(I,J ), that assigns to each variable xp,q,
x(r,p′),q, and xp,(s,q′) the value vp,q, v(r,p′),q, and vp,(s,q′), respectively.

Claim 32. For each of the variables x(r,p′),q (xp,(s,q′) analogously), one of the inequal-
ities

v(r,p′),q ≥ g(r)(r ∼p s)((1− w) + w · vp′,q′)

holds exactly, i.e.,

v(r,p′),q = g(r)(r ∼p s)((1− w) + w · vp′,q′)

for some (s, q′) ∈ SC(q).

Proof. Assume to the contrary that there is a variable x(r,p′),q (xp,(s,q′) analog-
ously) with v(r,p′),q > g(r)(r ∼p s)((1− w) + w · vp′,q′). But then setting

v(r,p′),q := max
(s,q′)∈SC(q)

(
g(r)(r ∼p s)((1− w) + w · vp′,q′)

)
and updating those values vp,q with (r, p′) ∈ SC(p) with

vp,q :=

cm(p, q) + cm(q, p) +
∑

(r,p′)∈SC(p)

v(r,p′),q +
∑

(s,q′)∈SC(q)

vp,(s,q′)∑
A∈CN(p)

g(A) +
∑

B∈CN(q)

g(B) +
∑

(r,p′)∈SC(p)

g(r) +
∑

(s,q′)∈SC(q)

g(s)
,

so that the equations for xp,q are satisfied again yields a smaller solution that
still satisfies all equalities and inequalities in Psim(I,J ). This is a contradic-
tion to the fact that v is a minimal solution.
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Figure 3.2: Two equisimilar interpretations I and J for which (I, a) ∼i (J , c) 6= 1.

Using this claim, we can show that each minimal solution to Psim(I,J ) also
satisfies equation system (3.1). This is easy to see, as Claim 32 implies that
for any variable x(r,p′),q, we indeed have

v(r,p′),q = max
(s,q′)∈SC(q)

(
g(r)(r ∼p s)((1− w) + w · vp′,q′)

)
(analogous for xp,(s,q′)). Since equation system (3.1) has a unique solution as
shown in Theorem 29, this solution must be exactly the same as the minimal
solution for Psim(I,J ).

This finally gives us a polynomial time computation procedure for the interpret-
ation similarity measure ∼i.

Corollary 33. Given two finite interpretations I and J , all interpretation similarities
(I, d) ∼i (J , e) for e ∈ ∆I and d ∈ ∆J can be computed simultaneously in time polyno-
mial in the size of I and J .

Proof. This follows directly from Lemma 31, the fact that the linear optimization
problem in Definition 30 is of polynomial size, and that linear optimization prob-
lems can be solved in polynomial time [Kar84].

3.1.4 Properties of ∼i

The measure ∼i is not equisimulation-closed or equisimulation-invariant. This is
easy to see for the interpretations I and J given in Figure 3.2. In this example,
(I, a) ' (J , c), but (I, a) ∼i (J , c) 6= 1, as it depends on (I, b) ∼i (J , e), which is
less than 1 since b is an instance of B, but e is not. In order to regain equisimulation-
closure and equisimulation-invariance, we will introduce a normalization proced-
ure for interpretations, which in the example above would remove the edge (c, e)

from J after which (I, a) ∼i (J , c) = 1 does hold.

Definition 34 (normal form for interpretations). An interpretation I = (∆I , ·I)
is in normal form if for all elements a, b, c ∈ ∆I , {(a, b), (a, c)} ⊆ rI and (I, b) . (I, c)
implies b = c, i.e., no node has two successor nodes for the same role name that are
in a simulation relation. ♦

Any interpretation I can be transformed into normal form as follows:
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1. For all edges (a, b0) ∈ rI , check if there are other edges (a, bi) ∈ rI , i > 0,
with (I, b0) ' (I, bi) and choose one representative bj ; then remove all other
edges (a, bi), i 6= j, from rI .

2. Remove all edges (a, b) ∈ rI in the interpretation graph, for which there exists
an edge (a, c) ∈ rI with (I, b) . (I, c).

Equisimilar pointed interpretations will always be normalized into a unique
structural normal form, i.e., both pointed interpretations will have the same number
of pairwise equisimilar successors. This is true even though the normalization steps
given above are nondeterministic.

We say that two pointed interpretations p and q are structurally equivalent) if for
any successor (r, p′) ∈ SC(p) there exists a unique successor (r, q′) ∈ SC(q) with
p′ ' q′ and vice versa.

Lemma 35. Let (I, a) and (J , b) be two pointed interpretations and let I ′ and J ′ be the
results of normalizing I and J , respectively. Then the following holds:

1. Normalization preserves simulations, i.e., if (I, a) . (J , b) then also (I ′, a) .
(J ′, b).

2. If (I, a) ' (J , b), then (I, a) ' (J , b) are structurally equivalent.

Proof.
1. Let (I, a) and (J , b) be two pointed interpretations with (I, a) . (J , b). Then

for each concept name A, we have a ∈ AI′ ⇔ a ∈ AI ⇒ b ∈ AJ ⇔ b ∈ AJ ′ .
Additionally, for each role name r, we have (a, a′) ∈ rI

′ ⇒ (a, a′) ∈ rI ⇒ ∃b′ :
(b, b′) ∈ rJ ∧ (I, a′) . (J , b′). If (b, b′) ∈ rJ

′ , we are done: (I ′, a) . (J ′, b)

follows directly.
Otherwise, we know by the construction of J ′, that there exists an element
c ∈ ∆J ′ with (b, c) ∈ rJ

′ and (J ′, b′) . (J ′, c) or (J ′, b′) ' (J ′, c). Since . is
transitive and (I ′, a′) . (I, a) . (J , c), this means that (I ′, a′) . (J ′, c) and
the claim that (I ′, a) . (J ′, b) again follows.

2. Let (I, a) and (J , b) be two pointed interpretations with (I, a) ' (J , b). Let
further (a, c) ∈ rI

′ , which implies that also (a, c) ∈ rI . Since I ′ is in normal
form, this means that there is no c′ ∈ ∆I with (a, c′) ∈ rI and (I, c) . (I, c′),
and (I, c′) 6. (I, c). Since (I, a) ' (J , b), there exists an element d ∈ ∆J

with (b, d) ∈ rJ and (I, c) . (J , d), but not necessarily (b, d) ∈ rJ
′ . By the

construction of J ′, we know that there is an element e ∈ ∆J ′ with (b, e) ∈
rJ

′ and (J , d) . (J , e). Again, (I, a) ' (J , b) implies that a must have a
successor (a, f) ∈ rI with (J , e) . (I, f); however, since with (I, c) . (J , d)
and (J , d) . (J , e), this also means (I, c) . (I, f). Since we know that there
is no c′ ∈ ∆I with (a, c′) ∈ rI and (I, c) . (I, c′), this means that f = c and
thus (I, c) ' (J , e) and by point 1. also (I ′, c) ' (J ′, e). e must be the unique
successor of this kind since J ′ is in normal form and thus there cannot be
an f ′ ∈ ∆J ′ with (b, f ′) ∈ rJ

′ and (J ′, e) ' (J ′, f ′). The other direction is
analogous.
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Since we only consider finite pointed interpretations, the normalization proced-
ure is well-defined and can be computed in polynomial time in the size of the
pointed interpretation, as simulations can also be computed in P-time.

Now, we can finally show the properties of the ISM ∼i. For the default primitive
measure, ∼i is symmetric, bounded, dissimilar-closed, equisimulation-invariant,
and equisimulation-closed for all normalized pointed interpretations. For other
primitive measures ∼p, ∼i will always be bounded and equisimulation-invariant,
but the other properties depend on the properties of ∼p, as given by the following
theorem.

Theorem 36. Let ∼i(∼p, g, w) be instantiated with a primitive measure ∼p, a weighting
function g, and discounting factor w ∈ (0, 1). Then ∼i has the following properties:

1. ∼i is symmetric, if the primitive measure ∼p is symmetric;

2. ∼i is bounded;

3. ∼i is dissimilar-closed, if the primitive measure∼p does not assign a similarity value
greater than 0 to different concept or role names.

4. ∼i is equisimulation-invariant for normalized interpretations; and

5. ∼i is equisimulation-closed for normalized interpretations, if the primitive measure
∼p does not assign the similarity value 1 to different concept or role names.

Proof.

1. symmetric: ∼i is symmetric, if the primitive measure ∼p is symmetric, as the
definition of ∼i only uses commutative operators.

2. bounded: ∼i is bounded, if C(p) ∩ C(q) ) {>} implies p ∼i q > 0 for all
p, q ∈ I. Assume that there exists a concept C 6= > in C(p) ∩ C(q). Then,
there also exists either a concept name A or an existential restriction of the
form ∃r.> in C(p) ∩ C(q) since, for all conjunctions C1 u C2 ∈ C(p) ∩ C(q) we
also have C1, C2 ∈ C(p) ∩ C(q) and for all ∃r.C ∈ C(p) ∩ C(q) we also have
∃r.> ∈ C(p) ∩ C(q).

However, for a concept name A ∈ C(p) ∩ C(q), we have that A ∼p A = 1 and
thus ∑

A∈CN(p)

(
g(A) max

B∈CN(q)
(A ∼p B)

)
> 0.

This yields p ∼i q > 0. Correspondingly, for ∃r.> ∈ C(p) ∩ C(q), we have
r ∼p r = 1 and thus (r ∼p r)((1− w) + w(p′ ∼i q

′)) > 1− w > 0 and

∑
(s,q′)∈SC(p)

(
g(r) max

(p,q)∈SC(q)
(r ∼p s)((1−w) + w(p′ ∼i q

′))

)
> 0.

Again, this yields p ∼i q > 0.
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3. dissimilar-closed: ∼i is dissimilar-closed, if C(p)∩C(q) = {>} implies p ∼i q =

0 for all p, q ∈ I with C(p) ) {>} and C(q) ) {>}; of course, ∼i can only
be dissimilarity-closed if the primitive measure does not assign a similarity
value greater than 0 to different concept or role names. Hence we only show
this property for the default primitive measure ∼default.
Let p, q ∈ I with C(p) ) {>} and C(q) ) {>}, i.e., both p and q are instance of
some concept name or have a successor. If C(p) ∩ C(q) = {>}, then A ∼default
B = 0 for all A ∈ CN(p) and B ∈ CN(q). Similarly, as there is no role name
r with (r, p′) ∈ SC(p) and (r, q′) ∈ SC(q), we have r ∼default s = 0 for all
(r, p′) ∈ S(p) and (s, q′) ∈ S(q). This then yields p ∼i q = 0.

4. equisimulation-invariant: ∼i is equisimulation-invariant for normalized inter-
pretations, if p ' q implies p ∼i u = q ∼i u for all normalized pointed
interpretations p, q, u ∈ I; it is a direct consequence of the fact that if p ' q,
then the normalized pointed interpretations do not just simulate each other,
but are structurally equivalent, as stated in Point 2 in Lemma 35. Thus the
computation of p ∼i u can be modified to compute q ∼i u by simply replacing
the successors of p by the unique equisimilar successors of q and vice versa;
this will always yield the same similarity value.

5. equisimulation-closed: The direction from left to right, i.e., p ' q implies p ∼i

q = 1, follows again by Point 2 in Lemma 35. For the other direction, that
p ∼i q = 1 also implies p ' q, we need the property that the primitive
measure does not assign a similarity value of 1 to different concept or role
names. In this case, assume that p 6' q for p = (I, a) and q = (J , b). Then,
w.l.o.g., we have one of the following conditions:

a) there exists a concept name A with a ∈ AI and b 6∈ AJ , or
b) a has a successor (a, c) ∈ rI and there is no d with (b, d) ∈ rJ , or
c) a has a successor (a, c) ∈ rI and for all successors t = (J , d) of b with

(b, d) ∈ rJ we have that s = (I, c) 6' t. In this case, there must be a finite
chain of such successors si, ti starting from a, b such that condition 1 or
2 holds for sn, tn.

Now, we can prove inductively that p ∼i q < 1. In the first two cases a) and b),
Equation 3.1 directly gives a similarity value < 1, since the concept name A

in case a) or the role name r in case b) will always be matched with a different
concept or role name and∼p never assigns similarity 1 to different concept or
role names. In the third case, we assume that c ∼i d < 1 by induction for all
successors d of b. Then Equation 3.1 again yields a similarity value p ∼i q < 1.
Thus ∼i must equisimulation-closed.

Note that ∼i is dissimilar-closed only if the primitive measure always assigns
value 0 to different names, which is a huge restriction. Indeed, dissimilar-closure
is not always a desirable property, since it implies that primitive concept names
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should always be completely dissimilar (i.e., have similarity 0). In practice however,
every ontology needs a certain amount of abstraction, so concepts may appear prim-
itive in the ontology even though they could have been defined using even further
and thus may have hidden similarities. For example, one may not want to define
the exact chemical structure of ethanol and mineral oil because this is unnecessary
for the given application, but still consider both substances to be slightly similar as
they both are organic compounds. In this case dissimilar-closure is an unwanted
property that is lost by giving ethanol and mineral oil a primitive similarity larger
than 0.

With the interpretation similarity ∼i in place, we can finally define the CSM ∼c.

3.2 The Concept Similarity Measure ∼c

Given a TBox T , we can measure the similarity between concepts C and D by
applying ∼i to the normalized canonical models for the concepts w.r.t. T . We
define the concept similarity measure ∼c as follows:

Definition 37. Given a TBox T and an interpretation similarity measure ∼i (∼p

, g, w), the concept similarity measure ∼c is defined as follows:

C ∼c D = I ′C,T ∼i I ′D,T ,

where I ′C,T and I ′D,T are the normalized canonical models of C and D w.r.t. T ,
respectively. ♦

Since the canonical models can be constructed and normalized in polynomial
time, and the interpretations similarity ∼i can be computed in P-time as well, we
get the following result:

Corollary 38. The similarity C ∼c D w.r.t. T can be computed in polynomial time in the
size of C, D, and T .

Proof. Follows from the fact that canonical models can be constructed and normal-
ized in polynomial time and Corollary 33.

We will show that the concept similarity measure ∼c indeed satisfies all the
properties given in Section 2.3.2.

The concept similarity measure ∼c inherits the formal properties of the ISM ∼i,
since the properties for interpretation similarity measures were defined to corres-
pond exactly to the properties for concept similarity measures given in the prelim-
inaries.

Theorem 39 (Properties of ∼c). For a primitive measure ∼p, a weighting function g,
and a discounting factor w, the concept similarity measure ∼c(∼p, g, w) is symmetric,
bounded, dissimilar-closed, equivalence-invariant, and equivalence-closed, if ∼i(∼p, g, w)

is symmetric, bounded dissimilar-closed, equisimulation-invariant and equisimulation-
closed, respectively.
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Proof. We show that the properties of ∼i transfer to ∼c:

1. symmetry: C ∼c D = (I ′C,T , dC) ∼i (I ′D,T , dD) = (I ′D,T , dD) ∼i (I ′C,T , dC) =

D ∼c C follows from the symmetry of ∼i.
2. bounded: Assume that for two EL-concept C and D, there exists a concept

E 6= > with T |= C v E and T |= D v E. Then Theorem 13 and Lemma 35
yield E ∈ C(p) ∩ C(q) for p = (I ′C,T , dC) and q = (I ′D,T , dD). Therefore
boundedness of ∼i implies C ∼c D = p ∼i q > 0.

3. dissimilar-closed: Assume that for two EL-concept C,D 6= >, there is no
concept E 6= > with T |= C v E and T |= D v E. Then Theorem 13 and
Lemma 35 imply that C(p)∩C(q) = {>} for p = (I ′C,T , dC) and q = (I ′D,T , dD),
and thus, if we assume that ∼i is dissimilar-closed, C ∼c D = p ∼i q = 0.

4. equivalence-invariant: Assume that C ≡T D. Then by Theorem 13 and
Lemma 35 we have (I ′C,T , dC) ' (I ′D,T , dD) and thus equisimulation-invariance
of∼i implies (I ′C,T , dC) ∼i (J , e) = (I ′D,T , dD) ∼i (J , e) for any pointed inter-
pretation (J , e), in particular pointed interpretations of the form (I ′E,T , dE).
This then yields C ∼c E = D ∼c E for any EL-concept E.

5. equivalence-closed: Assume thatC ≡T D. Then by Theorem 13 and Lemma 35
we have (I ′C,T , dC) ' (I ′D,T , dD) and thus (I ′C,T , dC) ∼i (I ′D,T , dD) = 1 if ∼i

is equisimulation-closed. But then we also have C ∼c D = 1.
Similarly, assume that C ∼c D = (I ′C,T , dC) ∼i (I ′D,T , dD) = 1. Then
(I ′C,T , dC) ' (I ′D,T , dD) since ∼i is equisimulation-closed, and thus The-
orem 13 yields C ≡T D.

The following example illustrates the CSM ∼c.

Example 40. Consider the TBox T describing knowledge about bikes defined as
follows:

T = {C v Bike for C ∈ {MountainBike,RaceBike},
C v Frame for C ∈ {YFrame,DiamondFrame},
C v Material for C ∈ {Low,Medium,High}
Carbon v Material,

Bike v ∃hasPart.Brakes}
and let

C = MountainBike u ∃hasPart.(YFrame u ∃hasPart.RearSuspension)
u ∃hasPart.DiscBrakes u ∃hasWeight.Medium,

D = RaceBike u ∃hasPart.(DiamondFrame u ∃madeFrom.Carbon)

u ∃hasWeight.Low.

We assume the same primitive measure, weighting function, and discounting factor
as in Example 24. In order to compute the similarity between C and D w.r.t. T , we
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have
C ∼c D = (I ′C,T , dC) ∼i (I ′D,T , dD).

However, the normalized canonical models are exactly those given in Example 24.
Thus, C ∼c D = 0.6 or C ∼c D = 0.21, depending on which weighting function is
used. ♦

3.2.1 Comparison to Other Approaches

So far, we have only defined the CSM ∼c and showed that it is well-defined and
has nice properties. However, showing that the measure is actually useful in prac-
tice is much harder, as there does not exist a gold-standard, to which similarity
measures for DL concepts can be compared. In fact, even such a gold standard
would have limited significance, since the exact meaning of similarity, and thus the
requirements to the CSM, can vary wildly for different applications.

In this section we will compare the CSM ∼c to some measures that have been
defined in the literature. In Chapter 4, we will give a practical evaluation of ∼c in
one specific application: Answering relaxed instance queries. Between this com-
parison, the practical evaluation and the examples given in this chapter, this should
give some insights into the question when ∼c might be a useful measure.

First, we will discuss the measure simi [LT12], on which ∼c is based. While both
measures have many similarities, there are a number of differences as well:

• ∼c is defined to work w.r.t. general TBoxes, while simi only works for unfold-
able TBoxes. Additionally, [LT12] does not give any complexity bounds for
simi: A naive implementation would have an ExpTime worst case complexity
due to the unfolding, while ∼c works in polynomial time.

• The unfolding done in simi replaces all defined concept names until only
atomic concept names remain. If an unfoldable TBox is used for ∼c, then the
canonical models will still contain all the defined concept names in addition
to the atomic names. However, if the TBox contains definitions of the form
A v C, the unfolding done in simi will introduce temporary concept names
A′ (see Section 2.1.2) that act very similar to keeping the defined name A in
the canonical model when computing the similarity. For definitions of the
form A ≡ C, the difference due to keeping defined concept names in ∼c can
be minimized by simply assigning them low weights.

• simi is defined as the average of the directed similarity simid in both direc-
tions, while ∼c computes the average between both directions already inside
the recursive formula. Basically, this makes sure that both directions are
weighted by the number of features, i.e., concept names and successor, that
the corresponding elements in the canonical models contain. In our opinion
this behavior is more intuitive. For example, consider the concepts C = A

and Di = A u
d

1≤j≤iAj w.r.t. the empty TBox. simi would give those con-
cepts the similarity limi→∞ simi(C,Di) = 1 ⊗ 0 = 0.5, while for ∼c we get
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limi→∞C ∼c Di = 0. Since for i→∞ the number common features between
C and D stays one while the number of different features increases, we feel
that the similarity should tend towards 0 as well.

• simi and ∼c are both parameterizable using a primitive measure, a weighting
function, and a discounting factor. These parameters allow to adapt the CSM
to different use cases and preferences. However, simi has two additional
parameters that∼c is missing: Instead of the average to combine the directed
similarities it can use arbitrary fuzzy connectors, and instead of the maximum
to find the best matching concept name or successor it can use a t-conorm.
The t-conorm can be incorporated into ∼c as well, but might increase the
complexity. The fuzzy connector cannot be simply added to∼c. However, we
feel the default values average and maximum are the most intuitive choices.

The measure defined in [Sun13] is very similar to [LT12], with all its problems.
A different measure to compute the dissimilarity between EL concepts is given
in [DAB14]; this measure does fulfill triangle inequality of metrics, but does not
consider TBoxes.

Other CSMs have been defined for more expressive DLs, e.g. [dFE05; Jan06;
APS14]. However, these usually do not satisfy most of the formal properties given
in Definition 20. In fact, these measures are always suffering from one three prob-
lems: Either the normal form they use is not unique, which means that equivalent
concepts may be treated differently, violating equivalence invariance [Jan06; JW09];
they use the ABox to measure the similarity between complex or at least atomic
concepts, which usually violates the properties bounded and dissimilar-closed and
means the measure is only useful when applied to a KB with a rich ABox [dFE05;
dSF08; BWH05]; or the simply do not use all the information that is available in the
TBox and thus violate equivalence-closure and boundedness [APS14]. Additionally,
the structural measures that do not rely on the canonical model of the ABox usually
do not consider a TBox, and thus are only applicable w.r.t. unfoldable definitions.
A more thorough discussion of the different measures can be found in [LT12].

3.3 Extension to the Description Logic EL++

In practice, EL has very limited expressiveness. For instance, in example 24, we
could distinguish between the weights of the two bikes only using the concepts
Low, Medium, and High. By using concrete domains, one could attach the exact
weights to the bikes as rational numbers. Similarly, the other features of EL++ are
highly useful in practice: Using the bottom concept one can express the disjointness
of concepts, and many classical examples of large-scale EL ontologies, like Snomed
CT or Gene Ontology, actually use role hierarchies and transitivity constraints as
well as domain and range restrictions.

In order to extend the similarity measure ∼c to work for EL++ concepts w.r.t.
an EL++ KB, we need also extend the basic notions like simulations and canon-
ical models. However, unlike in EL without concrete domains, the definition of
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interpretations for EL++ given in the preliminaries does not admit canonical mod-
els. For example, in the concrete domain of the rational numbers Q = (Q, PQ)

introduced before, a concept like >0(f) will have infinitely many models (one for
each positive rational number) without any of them being preferable and therefore
canonical. One way to avoid this problem and ensure the existence of canonical
models is to consider pseudo-interpretations.

Normally, the interpretation function ·I maps each individual, concept, role, and
feature name to an element of, a subset of, or a binary relation on the interpreta-
tion domain, or to a partial function from domain elements to concrete elements,
respectively. However, one could easily define interpretations the other way round;
then, the interpretation function would map each element of the domain to the
set of concept names the element belongs to, the set of individual names that are
mapped to this element, a set of successors consisting of a role name and a suc-
cessor element from the domain, and a partial function from the feature names to
concrete elements. If we require that all individual names occur in the “reverse
interpretation” of exactly one element, then these two views are equivalent.

Pseudo-interpretations adapt this new view, but they differ from the usual in-
terpretations in the fourth component: Instead of assigning each element a partial
function from feature names to the concrete domain, they assign to each element
directly a subset of the set of all predicates of D over the feature names, denoted
with PredD(NF). In that way, each pseudo-interpretation corresponds to a set of
usual interpretations, namely all those whose concrete elements assigned to the
feature names of an element of the interpretation domain satisfy all the predicates
mapped to the domain element by the pseudo-interpretation.

Definition 41. A pseudo-interpretation J = (∆J , fJ
C , fJ

R , fJ
I , fJ

F ) consists of an in-
terpretation domain ∆J and the interpretation functions fJ

C : ∆J → P(NC),
fJ
R : ∆J → P(NR × ∆J ), fJ

I : ∆J → P(NI), and fJ
F : ∆J → P(PredD(NF)),

such that for each a ∈ NI there exists exactly one d ∈ ∆J with a ∈ fJ
I (d), and the

conjunction
conj((J , d)) =

∧
p(f1,...,fn)∈fJ

F (d)

p(f1, . . . , fn)

is satisfiable in D for any d ∈ ∆J . ♦

Pseudo-interpretations can be used exactly as usual interpretations, with the
exception that they do not interpret feature names itself; however, it does interpret
predicates of the concrete domain, in such a way that an element of a pseudo-
interpretation satisfies such a predicate iff the element satisfies it in all the inter-
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pretations that are contained in this pseudo-interpretation:

AJ = {d ∈ ∆J | A ∈ fJ
C (d)}

rJ = {(d, e) ∈ ∆J ×∆J | (r, e) ∈ fJ
R (d)}

aJ = d ⇐⇒ a ∈ fJ
I (d)

p(f1, . . . , fn)
J = {d ∈ ∆J | D |= conj((J , d))⇒ p(f1, . . . , fn)}

All other concept constructors, axioms, and assertions can then be interpreted as
given in Definition 2. We say that a pseudo-interpretation J is a model a KB
K, if it satisfies all axioms and assertions in K. This is the case if and only if all
corresponding usual interpretations are models of K.

We call a pair (J , d) consisting of a pseudo-interpretation J and an element
d ∈ ∆J a pointed pseudo-interpretation and denote the set of all pointed pseudo-
interpretations as P. We sometimes write fC(p) (and similarly for fR, fI and fF )
instead of fJ

C (d) for p = (J , d).

3.3.1 Pseudo-simulations and canonical models for EL++

Simulations allow the characterization of elements of interpretations w.r.t. the con-
cepts they are instance of. To extend the simulation relation between interpreta-
tions w.r.t. EL given in [LW10] to pseudo-interpretations w.r.t. EL++, we observe
the following:

• role inclusions, range and domain restrictions are not concept constructors,
and thus do not matter for the set of concepts that an element of a pseudo-
interpretation is an instance of;

• the bottom concept ⊥ cannot occur in pseudo-interpretations;

• nominals allow to use individual names in concepts, and thus pseudo-simulations
need to preserve individuals; and

• for concrete domains, simulations need to preserve the valuations that sat-
isfy the elements, which can be formalized using implications between the
predicate sets of pointed pseudo-interpretations.

Thus, we can define a pseudo-simulation relation for EL++ as follows:

Definition 42. Let I and J be pseudo-interpretations. A relation S ⊆ ∆I ×∆J is
a pseudo-simulation between I and J , if the following conditions hold:

1. For all (d, e) ∈ S and A ∈ NC, if d ∈ AI then e ∈ AJ .

2. For all (d, e) ∈ S, r ∈ NR and (d, d′) ∈ rI , there is an (e, e′) ∈ rJ with
(d′, e′) ∈ S.

3. For all (d, e) ∈ S and a ∈ NI, if d = aI then e = aJ .

4. For all (d, e) ∈ S, we have that D |= conj((J , e))⇒ conj((I, d)). ♦
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Given two pointed pseudo-interpretations p = (I, d) and q = (J , e), we say that
p simulates q (denoted p . q), if there exists a pseudo-simulation S ⊆ ∆I × ∆J

between I and J with (d, e) ∈ S. p and q are equisimilar (denoted p ' q), if p . q

and q . p.
This definition of pseudo-simulation behaves as expected since there is again the

correspondence between similar elements and the set of concepts that the elements
in the simulation are instances of. Indeed, we can extent the result from Theorem 11
to pseudo-simulations in EL++:

Theorem 43. Let p and q be pointed pseudo-interpretations, then:

1. p . q iff C(p) ⊆ C(q), and

2. p ' q iff C(p) = C(q).

Proof. Let p = (I, d) and q = (J , e).

1. Let p . q, and C ∈ C(p). We show C ∈ C(q) by induction on the structure of
C.

• If C = A ∈ NC, then we have d ∈ AI and by Definition 42 also e ∈ AJ .
Thus A ∈ C(q).

• If C = {o} for o ∈ NI, then we have d = oI and by Definition 42 also
e = oJ , thus {o} ∈ C(q).

• If C = >, then trivially > ∈ C(q)

• IfC = C1uC2, then d ∈ (C1uC2)
I , which implies d ∈ CI

1 and d ∈ CI
2 . By

induction this means that e ∈ CJ
1 and e ∈ CJ

2 , and thus e ∈ (C1 uC2)
J ,

i.e., (C1 u C2) ∈ C(q).
• If C = ∃r.D, then we know that d ∈ (∃r.D)I , i.e., there exists d′ ∈ ∆I

with (d, d′) ∈ rI and d′ ∈ DI . By Definition 42, this implies that there is
also an e′ ∈ ∆J with (e, e′) ∈ rJ and (I, e) . (J , e′), thus the induction
hypothesis yields e′ ∈ DJ . But this means that e ∈ (∃r.D)J and thus
∃r.D ∈ C(q).

• Finally, if C = p(f1, . . . , fn), then d ∈ p(f1, . . . , fn)
I and thus

D |= conj((I, d))⇒ p(f1, . . . , fn).

By Definition 42, we also have D |= conj((J , e)) ⇒ conj((I, d)), which
yields D |= conj((J , e)) ⇒ p(f1, . . . , fn), and thus e ∈ p(f1, . . . , fn)

J ,
i.e., p(f1, . . . , fn) ∈ C(q).

In the other direction, let C(p) ⊆ C(q). Then it is easy to show that the relation
S ⊆ ∆I×∆J with (d′, e′) ∈ S iff C((I, d′)) ⊆ C((J , e′)) satisfies all conditions
from Definition 42 and is thus a pseudo-simulation. This implies that p . q.

2. Follows directly from 1. and the fact that p ' q iff p . q and q . p.
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Next, we need to define canonical pseudo-models for EL++. For these, the addi-
tional axioms like role inclusions are important. However, if the concept C contains
the bottom concept⊥, it must be equivalent to⊥, and thus cannot have any element
in an interpretation as instance – in particular, ⊥ does not have a canonical model.
Thus, by requiring that C is satisfiable w.r.t. K, we do not have to worry about ⊥ at
all.

Since individuals can be part of concepts via nominals, we need to take care of
the case that two individuals are equivalent, e.g. by the GCI {a} v {b}. In this case,
we cannot create two elements in the canonical interpretation for the two concepts
{a} and {b}, since this would not yield a model of the TBox anymore. Instead,
we need to take one representative for all equivalence classes of concepts that are
subsumed by the same individual:

[C] = {D ∈ C(EL++) | ∃a ∈ NI : K |= C v {a} ∧ K |= D v {a}}

Using this equivalence relation, we can define canonical pseudo-models as follows:

Definition 44. Let K be a satisfiable EL++-KB and C ∈ C(EL++) be an EL++-
concept with C 6≡K ⊥. The canonical pseudo-model JC,K = (∆JC,K , fC , fR, fI , fF )

of C w.r.t. K is a pseudo-interpretations defined as follows:

• ∆JC,K = {d[C]} ∪ {d[{a}] | a ∈ (sig(K) ∪ sig(C)) ∩ NI} ∪ {d[D] | ∃r.D ∈
sub(C) ∪ sub(K)},

and for all d[D] in ∆JC,K :

• fC(d[D]) = {A ∈ NC | K |= D v A},
• fR(d[D]) = {(r, d[E]) ∈ NR ×∆JC,K | K |= D v ∃r.E},
• fI(d[D]) = {a ∈ NI | K |= D v {a}}, and

• fF (d[D]) = {p(f1, . . . , fn) ∈ PredD(NF) | K |= D v p(f1, . . . , fn)}. ♦

It can be shown that the canonical pseudo-model JC,K is indeed a model of the
KB K, and its elements d[D] are instances of the corresponding concept D, for all
d[D] ∈ ∆JC,K .

Lemma 45. LetK be a satisfiable EL++-KB and let C,D be EL++-concepts with C 6≡K ⊥.
Then:

1. if d[D] ∈ ∆JC,K , then d[D] ∈ DJC,K , and
2. JC,K |= K.

We will skip the proof, since it is an easy adaption of the same results for EL.
Finally, it can be shown that the canonical model is indeed ‘canonical’, i.e., it can

simulate all other models (and is thus least w.r.t. .):

Theorem 46. Let K be a satisfiable EL++-KB and C,D be EL++-concepts with C 6≡K ⊥.
Then:
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1. for all pseudo-modelsJ ofK and all elements d ∈ ∆J it holds d ∈ CJ iff (JC,K, d[C]) .
(J , d),

2. for all pseudo-models J of K, all individuals a occurring in K, and all elements
d ∈ ∆J it holds d = aJ iff (JK , d[{a}]) . (J , d), and

3. K |= C v D iff d[C] ∈ DJC,K iff (JD,K, d[D]) . (JC,K, d[C]).

Again, this is shown very similar to the corresponding result for EL [LW10].

3.3.2 Extending ∼c to EL++

Analogous to the EL case, we will define the CSM via a similarity measure on
pointed pseudo-interpretations. Compared to EL, the pseudo-interpretation sim-
ilarity for EL++ will also have as parameters a primitive measure, a weighting
function, and a discounting factor, but those need to be extended to handle the new
individual and feature names. Additionally, it will require a similarity measure
on elements of the concrete domain and a factor c to specify the influence of the
concrete domain on the similarity value. Thus, for EL++ we have the following
parameters:

• a primitive measure ∼prim: NC ×NC ∪NR ×NR ∪NI ×NI → [0, 1] that assigns
a similarity value to each pair of concept names, role names, and individual
names;

• a weighting function g : NC ∪NR ∪NI ∪NF → R>0, which assigns a weight to
each concept, role, individual an feature name;

• a similarity measure ∼D: ∆
D ×∆D → [0, 1] on the concrete domain;

• a discounting factor w ∈ (0, 1); and

• a concrete domain factor c > 0.

We will extend the concrete similarity measure ∼D to handle undefined values,
i.e., ∼D: (∆

D ∪ {⊥}) × (∆D ∪ {⊥}) → [0, 1] by setting ⊥ ∼D d = d ∼D ⊥ = 0 for
d ∈ ∆D and ⊥ ∼D ⊥ = 1. This can be further extended to a similarity measure
on valuations, i.e., partial functions u, v : NF 9 ∆D, by computing the weighted
average of the similarity values for all features:

u ∼D v =

∑
f∈dom(u)∪dom(v)

g(f)(u(f) ∼D v(f))

∑
f∈dom(u)∪dom(v)

g(f)
.

Finally, we can define the similarity of conjunctions of predicates on the concrete
domain using a similar construction to the Hausdorff metric, where the valuations
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u, v are restricted to those feature names occurring in fF (p) or fF (q):

simD(p, q) = min
{

inf
u|=conj(p)

sup
v|=conj(q)

u ∼D v, inf
u|=conj(q)

sup
v|=conj(p)

u ∼D v

}

where u |= p means that the valuation u satisfies the formula p. This Hausdorff
measure captures the following intuition. Basically, it finds the satisfying valuation
u for p that has the least similarity to any of the satisfying valuations v for q, as the
other way round. If ∼D has the property d ∼D d′ = 1 iff d = d′ for all d, d′ ∈ ∆D,
then ∼D is equivalence-closed as well, i.e., simD(p, q) = 1 iff D |= conj((J , e)) ⇔
conj((I, d)). Otherwise, there always exists a valuation that satisfies all predicates
on one side but not on the other side, which will lead to a similarity value less
than 1. Similarly, if there is a valuation satisfying the predicates of one pointed
interpretation that is completely dissimilar to all valuations satisfying the other
predicates of the other pointed interpretation, then the similarity value will be 0.

To compare how similar two pointed pseudo-interpretations are for these aspects,
we again introduce measures for the concept names, successors, and individual
names of pointed interpretations. The functions cm : P×P→ R and sm : P×P→
R are defined essentially as in the EL case, the only difference being that p and q

are now pointed pseudo-interpretations:

cm(p, q) =
∑

A∈fC(p)

(
g(A) max

B∈fC(q)
A ∼p B

)

sm(p, q) =
∑

(r,p′)∈fR(p)

(
g(r) max

(s,q′)∈fR(q)

(
(r ∼p s)

(
(1− w) + w(p′ ∼i q

′)
)))

Since EL++ concepts may also contain nominals, we need an additional measure
to compare the individual names of two pointed pseudo-interpretations. This
function, im : P × P → R, works exactly like cm, only comparing individual
names instead of concept names:

im(p, q) =
∑

a∈fI(p)

(
g(a) max

b∈fI(q)
a ∼p b

)

Finally, we define a function fm : P × P → R, that measures the similarity
between the concrete domain parts of two pointed interpretations p and q. Essen-
tially, this is a product of simD(p, q) and the concrete domain factor c; however,
when neither of the pointed interpretations p or q has any concrete feature, we set
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the weight to 0:

gF (p, q) =

{
c if fF (p) 6= ∅ ∨ fF (q) 6= ∅
0 otherwise

,

fm(p, q) = gF (p, q) · simD(p, q).

With this in place, we can now extend ∼i to EL++. This extension mainly adds
two terms to the equation from Definition 23: The measure that compares the
individual names (in both directions), and the term that estimates the similarity
between the concrete domain parts, simD(p, q):

Definition 47. Given a primitive measure ∼p, a weighting function g, a similarity
measure ∼D on the concrete domain, a discounting factor w, a concrete domain
factor c, as well as two interpretations I and J , the interpretation similarity meas-
ure ∼i (∼p,∼D, g, w, c) : P × P → [0, 1] is defined as follows, for all p, q ∈ P: If
fC(p) = fC(q) = fR(p) = fR(q) = fI(p) = fI(q) = fF (p) = fF (q) = ∅, then
p ∼i q = 1, otherwise

p ∼i q =
cm(p, q) + cm(q, p) + sm(p, q) + sm(q, p) + im(p, q) + im(q, p) + fm(p, q)

weight
where
weight =

∑
A∈fC(p)

g(A) +
∑

A∈fC(q)

g(A) +
∑

(r,p′)∈fR(p)

g(r) +
∑

(r,q′)∈fR(q)

g(r)

+
∑

a∈fI(q)

g(a) +
∑

b∈fI(q)

g(b) + gF (p, q) ♦

The proof that∼i is well-defined can be transferred from Theorem 29 in a straight-
forward way, as simD is well-defined as well. We will give this result without
repeating the proof.

Theorem 48. ∼i is well-defined, i.e., p ∼i q has a unique solution.

In order to lift∼i to a CSM∼c for EL++ concepts, we again need to normalize the
canonical models. The definition and computation of normal forms is exactly the
same as in the EL case given in Definition 34, except for using pseudo-simulations
instead of simulations.

Thus, we can define the CSM∼c for EL++ concepts w.r.t. an EL++ KBK as follows:

C ∼c D = (J ′
C,K, d[C]) ∼i (J ′

D,K, d[D]),

where J ′
C,K and J ′

D,K are the normalized canonical pseudo-models of C and D

w.r.t. K. If C or D are equivalent to ⊥, they do not have a canonical model. In this
case, we set C ∼c ⊥ = ⊥ ∼c D = 0 and ⊥ ∼c ⊥ = 1. We can show that ∼c has all
of the properties given in Definition 20:
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Theorem 49. Let ∼c(∼p, g,∼D, w, c) be instantiated with a primitive measure ∼p, a
weighting function g, a concrete similarity measure ∼D, a discounting factor w ∈ (0, 1),
and a concrete domain factor c. Then ∼c has the following properties:

1. ∼c is symmetric, if the primitive measures ∼p and ∼D are symmetric;

2. ∼c is bounded;

3. ∼c is dissimilar-closed, if the primitive measure ∼p does not assign a similarity
value greater than 0 to different concept, role, or individual names, and the concrete
similarity measure ∼D does not assign a similarity value greater than 0 to different
elements of the concrete domain.

4. ∼i is equivalence-invariant for normalized interpretations; and

5. ∼i is equivalence-closed for normalized interpretations, if the primitive measure ∼p

does not assign the similarity value 1 to different concept, role, or individual names,
and the concrete similarity measure ∼D does not assign value 1 to different elements
of the concrete domain.

Again, the proof is a straight-forward adaption of the proofs of Theorem 36 and
Theorem 39, together with the properties of ∼D mentioned before.

While the addition of nominals and other features of EL++ was relatively straight-
forward, we haven’t found any CSM in the literature that can handle concrete
domains. We believe that the measure introduced here is a good starting point for
applications that handle concrete data inside the knowledge base and need a notion
of similarity. In fact, often the full power of concrete domains is not necessary: For
similarity measures, even simple value assignments (i.e., predicates of the for =d

for d ∈ ∆D) can be highly useful, as the primitive measure ∼D can compare those
values very flexibly. The next chapter will introduce one application of similarity
measures where even such simple concrete domains can be exploited to great effect.





Chapter 4

Relaxed Instance Queries

In this chapter, we want to introduce instance queries relaxed by concept similarity
measures. Recall that, given a KB K together with a concept C and an individual
name a, we call a an instance of C w.r.t. K, if aI is in the interpretation of C in all
models I ofK. Often, we are not interested only in checking whether an individual
is an instance of a concept C, but instead we want to find all such instances. This is
called the instance query problem.

Definition 50. Given a KB K and a query concept Q, we call an individual a ∈ NI

an instance of Q w.r.t. K, if K |= Q(a). The instance query problem is to compute
all instances of Q w.r.t. K. ♦

However, as said in the introduction, it is often a good idea to not just consider the
perfect matches, but also alternatives that are similar to the query. The following
motivating example shows a situation where query relaxation could be preferable
to exact query answering.

Example 51. Consider a bike shop that has created a TBox T with relevant know-
ledge about the bicycles, and an ABox A that describes all bikes the store has in
stock as individuals. If a customer wants to buy a new bike, the store can create a
query concept Q that formalizes all of the requirements of the customer, and query
the knowledge base for all bikes that are instances of Q w.r.t. the KB K = (T ,A).
The answers are all those bikes that satisfy exactly the requirements of the customer.

However, usually it makes sense for the shop and the customer to not just consider
the exact answer, but also alternatives that are similar enough to the query. Reasons
to consider reasonable alternatives can be manifold: the costumer might not be
completely sure what exactly he wants; the KB might not be complete because of
laziness or mistakes and therefore skip relevant instances; or it might be simply
because of reasons that cannot be formalized in a knowledge base, e.g., a bike may
simply “feel” better to the customer, even though it does not perfectly satisfy her
requirements.

Another reason where alternatives are useful is if no bikes satisfies all the re-
quirements perfectly. This is easily imaginable, since often desired properties are
contradictory: Customers often want the best possible quality for the least possible
price. In this case, returning alternatives to the query that can be checked out would
be much more preferable for the bike shop than telling the customer that they have
no such bike in stock. ♦

53
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QI

∆I

Figure 4.1: Relaxed instances w.r.t. two different CSMs, represented by continuous
and dashed lines, respectively. Darker colors represent the relaxed in-
stances of Q w.r.t. higher degrees t.

There are of course many different approaches how one can relax a query. We
will discuss some of them later. The approach we take in this paper is to use a
CSM∼ to find concepts that are similar to the query concept Q, and then return all
instances of these similar concepts as answers as well. A parameter t ∈ [0, 1], the
threshold, allows one to set a lower bound for how similar concepts need to be to
the query concept in order to be considered.

Definition 52 (relaxed instance). Let L be a DL, K be an L knowledge base, Q be
an L concept, ∼ a concept similarity measure over L concepts, and t ∈ [0, 1]. An
individual a ∈ NI is a relaxed instance of Q w.r.t. K, ∼ and the threshold t, denoted
a ∈∼t Q, iff

sup
X∈C(L) with K|=X(a)

Q ∼ X ≥ t.
♦

For brevity, we will denote as Relax∼t (Q) the set of all relaxed instances of the
concept Q w.r.t. K, ∼ and t. Clearly, the elements of Relax∼t (Q) depend strongly
on the value of t, but also on the similarity measure ∼ chosen; this dependency is
depicted in Figure 4.1. For a fixed concept similarity measure ∼ and thresholds
t ≤ t′, we have Relax∼t′ (Q) ⊆ Relax∼t (Q). In the figure, the central circle represents
the interpretation of the concept Q. The other lines show the interpretation of
Relax∼t (Q) with darker lines gradually representing larger thresholds t. We use
two different kinds of lines (continuous and dashed, respectively) to represent two
different similarity measures that relax the concepts based on different features.
This allows to relax the query concept into different directions, and can be used for
example to state which features are more important and should not be relaxed as
far as other features.

In the following, we will restrict our attention to a finite signature Σ which con-
tains all concept and role names occurring in the query concept Q and the KB
K. Considering other names in the concepts X is not necessary for finding the
supremum of the similarities towards the query concept Q.

Comparison to Other Approaches

Instead of relying on similarity measures to relax queries, there exist many other
approaches one could choose from. In fact, in the context of databases, the query re-
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laxation problem has been investigated by many other authors, for example for rela-
tional databases [CDH+06; ZGB+07], RDF triple stores [HPW08; DSW+09; HLZ08],
and XML data [ALP04; Lee02]. These approaches usually work by rewriting the
query into a set of more general queries, e.g., by deleting some parts of the query
or replacing relations with more general ones. This process is repeated, and the
answers to the rewritten queries are collected until a threshold is reached or a set
number of answers has been found (this case is also called top-k query answering).
Some kind of measure quantifies how much the rewritten queries deviate from the
original query in order to rank the answers.

This approach has several disadvantages. The background knowledge used to
rewrite is often rather inexpressive, usually not more then a simple concept hier-
archy. The measure used for ranking the answers is usually fixed, and can not be
adjusted in order to choose which parts of the query are more or less important
given the current context. Finally, the whole process of query relaxation depends
heavily on the set of rewrite rules that are available, which makes it hard to define
easy to understand semantics for the relaxed answers.

Instead of relying on a classical knowledge base and relax the query, one could
also use approaches where the knowledge base is already equipped with quantit-
ative information, like fuzzy or rough logics. In these logics one does not reason
about subsumption and membership, but instead about the degrees with which
those relations hold or an indiscernibility relation on the individuals. Relaxed in-
stances of the concept C would then be those with a large membership degree to
C in fuzzy, and those that are indiscernible from any certain instance of C in rough
logics. Query answering over fuzzy DLs has been studied, see for instance [Str06b;
Str06a; PSS+08], whereas for rough DLs the investigation of query answering tech-
niques is only at its beginning [PTT14]. However, in order to use fuzzy logics for
relaxed query answering, the whole KB needs to be converted into a fuzzy KB,
which may not be appropriate in many cases. Also, since the quantitative informa-
tion is now part of the KB, it is again quite hard to adapt the direction of the query
relaxation process without changing the KB itself.

One could also try to decide which individuals are similar to any of the certain
instances of C. Such a method requires a similarity measure defined over the
elements of the domain, rather than on the concepts. A DL with a similarity measure
over the domain elements was introduced in [LWZ03]. However, for this DL the
similarity measure (or more precisely, a distance metric) is part of the interpretation
and cannot be adjusted to different user needs. Also, this approach would not work
when the query has no certain instances to begin with.

In comparison to the previous alternatives, our approach using a CSM to relax
queries allows to vary the degree of relaxation, and the way how the query is relaxed
by choosing a suitable similarity measure. If the measure is parameterizable like
the one introduced in Chapter 3, then one can vary the parameters to choose which
parts of the query are more important and should be relaxed very little, and which
parts of the query are less important.
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Finally, an idea that can be used to answer relaxed queries has been introduced
in [BBF15]. It defined the Logic τEL, which extends the DL ELwith graded mem-
bership functions m that specify the degree to which elements of an interpretation
belong to a concept, and are used specify threshold concepts of the form C∼t for
∼∈ {<,>,≤,≥} and t ∈ [0, 1]. These threshold concepts are interpreted as the set
of all elements that have a matching degree to the concept C according to m. By
asking for instances to a threshold concept C≥t w.r.t. a classical TBox T , one could
achieve very similar effects as the relaxed instance queries defined here. In fact, the
graded membership function deg is defined similarly to a directed version of ∼c,
i.e., where only one direction of cm and sm is evaluated instead of both. Indeed,
[BBF15] shows that when converting an instance of the similarity measure simi
introduced in [LT12] into a graded membership function in a straight-forward way,
then the resulting graded membership function m is equivalent to deg. This im-
plies that relaxed instances of Q w.r.t. t, an unfoldable KBK, and the CSM∼i can be
computed in polynomial time by computing all instances of the threshold concept
Q≥t w.r.t. the membership degree function deg. We will discuss this approach in
more detail in Section 4.4.

In the following, we will show how to answer relaxed instance queries in the
presence of both unfoldable and general EL TBoxes.

4.1 Relaxed Instance Queries for Unfoldable EL TBoxes

The main difficulty we need to deal with when computing relaxed instances is that
for an individual a, there might be infinitely many concepts C which have a as
instance. In order to compute the degree to which a belongs to C w.r.t. the query
concept Q, we may need to compute the supremum of Q ∼ C for all these infinitely
many concepts C.

However, for unfoldable TBoxes T , we know that the query concept Q is of finite
depth, even after expanding it according to the definitions in T . Most similarity
measures will only compare concepts up to the lesser role-depth of the both con-
cepts; if one concept has an existential restriction at some point, but the other does
not, the similarity between those parts is 0 anyway and does not need to be com-
pared any further. More formally, the restriction of an EL concept C to role-depth k,
denoted Ck, is defined as

Ck :=


C if C = A ∈ NC or C = >,
Dk u Ek if C = D u E,

∃r.Dk−1 if C = ∃r.D ∧ k > 0,

> if C = ∃r.D ∧ k = 0.

We call a CSM ∼ role-depth bounded iff C ∼ D = Ck ∼ Dk for all C,D ∈ C(EL) and
k > min(rd(C), rd(D)). Note that this property only makes sense for an empty
TBox. For unfoldable TBoxes, we assume that C, D and all concept assertions in
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the ABox have been expanded and then can remove the TBox as well.
If ∼ is role-depth bounded then we only need to check concepts up to the role-

depth k = rd(Q) + 1 of the expanded query concept Q to see if an individual a is a
relaxed instance of Q w.r.t. an unfoldable TBox. If ∼ is also equivalence invariant,
then equivalent concepts will always have the same similarity to Q, and thus we
only need to check different concepts. However, it is known that in EL for a finite
signature Σ, there only exists a finite number of different concepts with a bounded
role-depth. Since we can restrict the signature to those names actually occurring in
K and Q, this immediately gives us decidability.

Theorem 53. Given an unfoldable EL KB K, an EL concept Q, an individual a ∈ NI, and
an equivalence-invariant, role-depth bounded CSM∼, it is decidable whether a ∈∼t Q w.r.t.
K.

Proof. By definition of ∈∼t we have

a ∈∼t Q iff sup
X∈C(L) with K|=X(a)

Q ∼ X ≥ t.

Let Q′ be the concept Q expanded w.r.t. K, and k = rd(Q). Since ∼ is equivalence
invariant and role-depth bounded, this implies that we can restrict our search to
concepts X that have a role-depth bound of k + 1 and which are not equivalent.
However, since the number of such concepts X is finite, simply checking each of
them gives a valid decision procedure.

One can compute all answers to a relaxed instance query by simply checking all
individuals occurring in K if they are relaxed instances or not, and returning all
those that are. Such an algorithm is given in Figure 4.2.

We previously [EPT13b; EPT14; EPT15] claimed that on can guess a general-
ized concepts of the k-msc(a) (see Definition 15) in order to compute the relaxed
instances. Such a generalized concept arises from k-msc(a) by deleting certain sub-
concepts. This algorithm would then decide whether an individual a is a relaxed
instance in NExpTime. However, we recently found out that this algorithm and the
underlying idea were indeed wrong. In fact, the size of k-msc(a) is at most expo-
nential in k, and thus there can only be 2Exp many different generalized concepts
of k-msc(a). However, the total number of different concepts with bounded role-
depth is at least non-elementary. In fact, for a given signature Σ and a role-depth
bound k one can easily construct an ABoxAwith an individual a that is an instance
of all concepts C with rd(C) ≤ k:

A = {A(a) | A ∈ Σ ∩ NC} ∪ {r(a, a) | r ∈ Σ ∩ NR}.

Due to the non-elementary lower bound of the number of such concepts C and the
2Epx upper bound of the number of generalized concepts of k-msc(a), this implies
that there are concepts with role-depth of k or less that have a as an instance, but
are not generalized concepts of k-msc(a). We will show the non-elementary lower
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Procedure: relaxed-instance?(a,Q,K,∼, t)
Input: a: individual in K; Q: EL-concept; K: EL-KB with unfoldable TBox; ∼:

equivalence-invariant and role-depth bounded CSM; t: threshold;
Output: true if a ∈∼t Q w.r.t. K; otherwise false

1: expand Q w.r.t. K into Q′

2: k ← rd(Q′)
3: Ans← ∅
4: for all a ∈ sig(K) ∩ NI do
5: for all non-equivalent X ∈ C(EL) with rd(X) ≤ k + 1 and K |= X(a) do
6: if Q ∼ X ≥ t then
7: Ans← Ans ∪ {a}
8: end if
9: end for

10: end for
11: return Ans

Figure 4.2: Algorithm to compute all relaxed instances w.r.t. unfoldable EL TBoxes.

bound to the number of different role-depth bounded EL concepts in the following
lemma.

Lemma 54. There is a non-elementary number of non-equivalent EL concepts with bounded
role-depth, even when restricting to only 2 concept names and 1 role name.

Proof. First we show that
(
2n
n

)
≥ 2n, which can be done by induction on n:

(
2
1

)
=

2 ≥ 21, and if
(
2n
n

)
≥ 2n, then

(
2n+2
n+1

)
=
(

2n
n−1

)
+ 2
(
2n
n

)
+
(

2n
n+1

)
≥ 2 · 2n = 2n+1.

We will now show that there exists a non-elementary number of EL concepts of
bounded role-depth by induction on the role-depth k, assuming that we have at
least two concept names A and B and one role name r. In particular, we will show
by induction on k that there are

2n = 2 · 22
...
2
}

k

concepts of role-depth k, such that non of these concepts subsume each other.

• For k = 0, there are 2 such concepts: A and B.
• Assume that there exist 2n concepts of role-depth k, such that none of these

concepts is subsumed by another concept. We need to show that we can
construct 2 · 2n pairwise non-subsuming EL concepts of role-depth k + 1. By
choosing exactly n of those 2n conceptsC1, C2, . . . , Cn we can create a concept
Au∃r.C1u∃r.C2u· · ·u∃r.Cn of role-depth k+1. In fact, we can create exactly(
2n
n

)
≥ 2n such concepts, for which again none subsume each other. Similarly,

by replacing concept name A with B, we can create another 2n concepts of
role-depth k + 1, for a total of 2 · 2n.
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One example where the approach based on generalized concepts fails is the
following. Given the KB K = (∅,A) consisting of the empty TBox and the ABox
A = {r(a, b), AuB(b)}, as well as the query concept Q = ∃r.Au∃r.B, we have that
msc(a) = ∃r.(A uB). It is easy to see that K |= Q(a) and thus for any equivalence
invariant CSM∼we have a ∈∼1 Q. However, ∃r.Au∃r.B is not a generalized concept
of ∃r.(A u B), since it can not be derived from the latter by deleting subconcepts.
Thus, if ∼ is also equivalence closed, then no generalized concept of msc(a) has
similarity 1 to Q and the old algorithm would falsely decide that a 6∈∼t Q.

Without further information about the similarity measure (besides being equi-
valence invariant and role-depth bounded), we were not able to create better al-
gorithms than naively checking all the different role-depth bounded concepts X

that have the individual as instance. Since in general there may be a non-elementary
number of concepts X that need to be compared to the query concept Q, this is
hardly possible in practice. Therefore, in the next section, we will restrict to a single
family of concept similarity measures in order to exploit their structure and ar-
rive at a more efficient way to compute relaxed instances. In fact, we will use the
similarity measure ∼c introduced in Chapter 3.

4.2 Relaxed Instance Queries for General EL TBoxes

using ∼c

For general TBoxes, the approach presented in Algorithm 4.2 does not work any-
more, since the expansion of the query concept Q w.r.t. a general TBox may not
terminate. However, we can exploit the fact that∼c is defined via the interpretation
similarity measure ∼i:

a ∈∼t Q iff
(

sup
X∈C(EL) with K|=X(a)

Q ∼c X

)
≤ t

iff
(

sup
X∈C(EL) with K|=X(a)

(I ′Q,T , dQ) ∼i (I ′X,T , dX)

)
≤ t.

Since we compute the supremum over all such concepts X , and those concepts
can grow arbitrarily large, instead of iterating over concepts and then using their
canonical models, we can also directly iterate over (normalized) pointed interpret-
ations since, for each pointed interpretation, the model-based msc has a canonical
model which coincides with the original pointed interpretation up to an arbitrarily
large role-depth. However, we only consider concepts X for which K |= X(a);
according to Theorem 13, we must then also restrict to pointed interpretations p

with p . (IK, da). Thus we get:

a ∈∼t Q iff
(

sup
p∈I with p.(IK,da)

(I ′Q,T , dQ) ∼i p

)
≤ t.
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Pointed interpretations p that are simulated by (IK, da) must have a certain form:
all concept names A ∈ CN(p) must also have da as an instance in IK, and for all
successors of p there must be a successor of da labeled with the same role such
that these are again in a simulation relation. Thus, instead of checking all pointed
interpretations p, we instead modify∼i so that it implicitly constructs the best such
pointed interpretation from the canonical model (IK, da). We call this the maximal
interpretation similarity ∼max

i .

Definition 55. Given a primitive measure ∼p, a weighting function g, a discount-
ing factor w, as well as two interpretations I and J , the maximal interpretation
similarity measure ∼max

i (∼p, g, w) : I × I → [0, 1] is defined as follows, for all
p, q ∈ I: If CN(p) = CN(q) = SC(p) = SC(q) = ∅, then p ∼max

i q = 1, otherwise

p ∼max
i q = max

C⊆CN(q)
S⊆SC(q)

cm(CN(p), C) + cm(C,CN(p)) + sm(SC(p), S) + sm(S, SC(p))∑
A∈CN(p)

g(A) +
∑
A∈C

g(A) +
∑

(r,p′)∈SC(p)

g(r) +
∑

(r,q′)∈S
g(r)

with

cm(S1, S2) =
∑
A∈S1

(
g(A) max

B∈S2

A ∼p B

)
, and

sm(S1, S2) =
∑

(r,p′)∈S1

(
g(r) max

(s,q′)∈S2

(
(r ∼p s)

(
(1− w) + w(p′ ∼max

i q′)
)))

. ♦

In order to show that ∼max
i indeed allows us to answer relaxed instance queries

w.r.t. general EL TBoxes, we need to show that the maximal interpretation similarity
(I ′Q,T , dQ) ∼max

i (I ′K, da) is indeed always greater or equal to (I ′Q,T , dQ) ∼i p for
any pointed interpretation p with p . (IK , da).

Lemma 56. Given the CSM ∼i (∼p, g, w), an EL KB K = (T ,A), an EL concept Q, an
individual a ∈ NI and a pointed interpretation p = (I, d), we have

(I ′Q,T , dQ) ∼i p ≤ (I ′Q,T , dQ) ∼max
i (I ′K, da).

Proof. Let p = (I, d). We assume that for all elements e ∈ ∆I , there exists an
element e′ ∈ ∆I′

K with e . e′. Otherwise, e is not reachable from d in I and can be
removed without changing the similarity (I ′Q,T , dQ) ∼i p.

We will show that for each (p1, p2, p3) ∈ II′
Q,T
× II′

K
× II with p3 . p2 we have

p1 ∼max
i p2 ≥ p1 ∼i p3:

• for any concept name A ∈ CN(p3), p3 . p2 implies that A ∈ CN(p2). Thus,
when computing p1 ∼max

i p2 we can chose the subset C = CN(p3), which
means that cm(CN(p1), C) and cm(C,CN(p1)) for (I ′Q,T , e) ∼max

i (I ′K, f) will
be at least as large as cm(p1, p3) and cm(p3, p1), respectively.

• for any successor (s, p′3) ∈ SC(p3), p3 . p2 implies that we have (s, p′2) ∈
SC(p2) with p′3 . p′2. But then for any (r, p′1) ∈ SC(p1) for any choice of
(s, p′3) ∈ SC(p3) that maximizes (r ∼p s)

(
(1 − w) + w(p′1 ∼max

i p′3)
)
, we can
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similarly add (r, p′2) ∈ SC(p2) with p′3 . p′2 to the chosen set S ⊆ SC(p2)

of successors. This is done analogously for the other direction. But then
sm(SC(p1), S) and sm(S, SC(p1)) for (I ′Q,T , e) ∼max

i (I ′K, f) will again be at
least as large as sm(p1, p3) and sm(p3, p1), respectively.

Putting everything together, we get that indeed p1 ∼max
i p2 ≥ p1 ∼i p3, in particular

(I ′Q,T , dQ) ∼max
i (I ′K, da) ≥ (I ′Q,T , dQ) ∼i p.

This means that (I ′Q,T , dQ) ∼max
i (I ′K, da) must also be greater or equal to the

supremum supp∈I with p.(IK,da)
(I ′Q,T , dQ) ∼i p. In fact, one can show that both

values are equal. But this implies that ∼max
i indeed decides the relaxed instance

answering problem:

Theorem 57. Given the CSM ∼i (∼p, g, w), an EL KB K = (T ,A), an EL concept Q,
and an individual a ∈ NI. Then a ∈∼t Q iff (I ′Q,T , dQ) ∼max

i (I ′K, da) ≥ t.

Proof. For any arbitrary pointed interpretation p, we can construct a sequence of
concepts (Xk)kby simply traversing up to role-depth k, such that

lim
k→∞

((I ′Q,T , dQ) ∼i (I ′Xk,T , dXk
)) = (I ′Q,T , dQ) ∼i p,

as (I ′Xk,T , dXk
) coincides with p up to role-depth k and ∼i is discounting. But then

sup
X∈C(EL) with K|=X(a)

(I ′Q,T , dQ) ∼i (I ′X,T , dX) = sup
p∈I with p.(IK,da)

(I ′Q,T , dQ) ∼i p,

and thus
a ∈∼t Q iff sup

p∈I with p.(IK,da)

(I ′Q,T , dQ) ∼i p ≥ t.

From Lemma 56 it follows directly that

(I ′Q,T , dQ) ∼max
i (I ′K, da) ≥ sup

p∈I with p.(IK,da)

(I ′Q,T , dQ) ∼i p.

All that is left to show is the existence of a pointed interpretation pmax with pmax .
(IK, da) and

(I ′Q,T , dQ) ∼max
i (I ′K, da) = (I ′Q,T , dQ) ∼i pmax.

We can construct such a pointed interpretation pmax by following along the
guesses of the subsets C ⊆ CN(q) and S ⊆ SC(q) that ∼max

i had to make for each
pair p, q when computing (I ′Q,T , dQ) ∼max

i (I ′K, da). We denote the set C ⊆ CN(q)

that was chosen during the computation of p ∼max
i q with Cp,q; similarly, we denote

the chosen set S ⊆ SC(q) with Sp,q. Then, we can define pmax = (Imax, (dQ, da)) as



62 Chapter 4. Relaxed Instance Queries

follows:

∆Imax = ∆I′
Q,T ×∆I′

K ,

AImax = {(p, q) | A ∈ Cp,q},
rImax = {((p, q), (p′, q′)) | (r, q′) ∈ Sp,q and (p′, q′) was

a best successor-pair in sm(SC(p), Sp,q)}

It is easy to see that (I ′Q,T , dQ) ∼max
i (I ′K, da) = (I ′Q,T , dQ) ∼i pmax. But then we

have
(I ′Q,T , dQ) ∼max

i (I ′K, da) = sup
p∈I with p.(IK,da)

(I ′Q,T , dQ) ∼i p

and thus a ∈∼t Q iff (I ′Q,T , dQ) ∼max
i (I ′K, da) ≥ t.

Similarly to∼i, computing (I, a) ∼max
i (J , b) involves collecting all the equations

for p ∼i q with p ∈ II and q ∈ IJ into an equation system and solving it. Also
similarly to ∼i, one can show that ∼max

i is well-defined, but this also follows from
the correspondence to ∼i established in the proof of Theorem 57.

However, the PTime complexity of ∼i does not carry over to ∼max
i .

4.2.1 Complexity

Recall that we could show that ∼i can be computed in PTime by transforming it
into an equivalent linear optimization problem of polynomial size. The maxima in
∼i could be eliminated by introducing new variables x(r,p′),q and xp,(s,q′) (compare
Definition 30). However, such an elimination is not possible for ∼max

i : since we
choose subsets C ⊆ CN(q) and S ⊆ SC(q), and there are exponentially many such
subsets, eliminating the maximum maxC⊆CN(q),S⊆SC(q) would require the introduc-
tion of exponentially many new variables.

However, one can simply guess all the subsets non-deterministically before cre-
ating the linear optimization problem. This yields an NP-algorithm for relaxed
instance checking.

Theorem 58. Given the CSM ∼i (∼p, g, w), an EL KB K = (T ,A), an EL concept Q,
and an individual a ∈ NI. Checking whether a ∈∼t Q can be done in non-deterministic
polynomial time.

Proof. For two interpretations I and J and each pair (p, q) ∈ II × IJ , we guess
the subsets Cp,q ⊆ CN(q) and Sp,q ⊆ SC(q). The linear optimization problem
Pmax

sim (I,J ,C,S) is defined by the following linear constraints with variables xp,q,
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x(r,p′),q, xp,(s,q′) for all p ∈ II , q ∈ IJ , (r, p′) ∈ SC(p) and (s, q′) ∈ SC(q):

xp,q =

cm(CN(p), Cp,q) + cm(Cp,q,CN(p)) +
∑

(r,p′)∈SC(p)

x(r,p′),Sp,q
+
∑

(s,q′)∈Sp,q

xSC(p),(s,q′)∑
A∈CN(p)

g(A) +
∑

B∈Cp,q

g(B) +
∑

(r,p′)∈SC(p)

g(r) +
∑

(s,q′)∈Sp,q

g(s)

(4.1)

cm(C1, C2) =
∑
A∈C1

(
g(A) max

B∈C2

(A ∼p B)

)
x(r,p′),S ≥ g(r)(r ∼p s)((1− w) + w · xp′,q′) for all (s, q′) ∈ S

xS,(s,q′) ≥ g(s)(r ∼p s)((1− w) + w · xp′,q′) for all (r, p′) ∈ S

and the objective function ∑
(p,q)∈II×IJ

xp,q,

which should be minimized.
Analogously to Lemma 31, the value of x(I,d),(J ,e) in the minimal solution to

Pmax
sim (I,J ,C,S) corresponds exactly to the value (I, d) ∼max

i (J , e), provided that
∼max

i would always choose exactly the sets Cp,q and Sp,q.
Let now I ′Q,T and I ′K be the normalized canonical models ofQ andA. If a ∈∼t (Q),

then (I ′Q,T , dQ) ∼max
i (I ′K, da) ≥ t by Theorem 57, and thus for every (p, q) ∈

II′
Q,T
× II′

K
there exist subsets Cp,q ⊆ CN(q) and Sp,q ⊆ SC(q) such that the value

ofx(I′
Q,T ,dQ),(I′

K,da) in the minimal solution ofPmax
sim (I ′Q,T , I ′K,C,S) for those choices

is greater or equal to t. Similarly, if a 6∈∼t (Q), then for any choice of C,S the value
of x(I′

Q,T ,dQ),(I′
K,da) in the minimal solution of Pmax

sim (I ′Q,T , I ′K,C,S) must be smaller
than t, since otherwise (I ′Q,T , dQ) ∼max

i (I ′K, da) could not be smaller than t either.
Thus, we can decide whether a ∈∼t (Q) in NP time.

Besides deciding whether an element is a relaxed instance of Q, we can also give
a non-deterministic polynomial time algorithm to compute all relaxed instances
of a query concept Q. Instead of checking each individual by itself, the linear op-
timization problem in (4.1) already contains all the elements da for each individual
a occurring in the knowledge base K. As such, it is possible to solve the linear
optimization problem only once and read of the degrees x(I′

Q,T ,dQ),(I′
K,da) for each

such individual.

Corollary 59. Given the CSM ∼i (∼p, g, w), an EL KB K = (T ,A), and an EL concept
Q. Computing all relaxed instances of Q w.r.t. K and ∼i can be done in non-deterministic
polynomial time.

Compared the case of unfoldable TBoxes, the intimate knowledge about the
used CSM allows us to reduce the complexity from non-elementary to NP, and
even handle general EL TBoxes. However, we no longer allow arbitrary similarity
measures, but require a CSM from the ∼c family.
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4.2.2 Extension to EL++

Similarly to the CSM ∼c, one can also extend relaxed instance query answering
to work w.r.t. EL++ KBs. However, for this we restrict the p-admissible concrete
domains even further; we only allow infinite data-types [OWL09], i.e., the only
predicate is an assignment. Concrete domains may therefore only have the form
V = (V,=v) consisting of an infinite set V of values and unary predicates =v for
v ∈ V with (=v)

V = {v}.
This has a couple of reasons. First of all, data-types guarantee that if the similarity

measure on the concrete domain, ∼D, can be computed in polynomial time, then
this is also true for the Hausdorff measure simD. Second, in many ontologies used
in practice data-types are only attached to individuals in the ABox as meta data.
Third, in the context of similarity measures, even simple data-type assignments
can be very useful. For this, consider the following example:

Example 60. Consider the concrete domain G to represent geographic coordinates
as a pair of latitude and longitude, with ∆G = [−90, 90] × [−180, 180] ⊆ R × R
and the unary predicates =p for p ∈ ∆G. This allows to attach a location to any
individual in the ABox using assertions like (=(51.026,13.723)(location))(a). If we
construct the concrete similarity measure ∼D used for relaxing the queries in such
a way that it assigns larger similarities to locations closer together, an instance query
which includes the predicate =l(location) for the location of the user will find the
closest individuals that also match the rest of the query. Indeed, one could also
construct a similarity measure that returns similarity 0 for locations more than a
set distance away, allowing the user to specify the maximum distance. Thus, while
the concrete domain itself is extremely inexpressive, it allows the relaxed instance
queries to include the distance between locations in its similarity evaluation. ♦

The maximal interpretation similarity measure∼max
i can again be straight-forwardly

extended to EL++. The only thing we need to be careful about for this extension
are concrete domains. As data-types have assignments as the only predicate, any
conjunction of predicates will have a simple form: It is essentially a valuation that
maps each feature name to its assigned value (or ⊥ if there is no predicate for this
feature). But then, we do not need to guess a subset of all predicates of q, but we
simply take all predicates q, for which there also exists a predicate with the same
feature name in p. It is easy to see that this will maximize the term fm of the simil-
arity measure. Thus, we can define the maximal interpretation similarity measure
for EL++ as follows:

Definition 61. Given a primitive measure ∼p, a weighting function g, a similarity
measure ∼D on the concrete domain, a discounting factor w, a concrete domain
factor c, as well as two interpretations I and J , the maximal interpretation simil-
arity measure ∼max

i (∼p,∼D, g, w, c) : P ×P → [0, 1] is defined as follows, for all
p, q ∈ P: If fC(p) = fC(q) = fR(p) = fR(q) = fI(p) = fI(q) = fF (p) = fF (q) = ∅,
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then p ∼i q = 1, otherwise

p ∼i q = max
C⊆fC(q)
S⊆fR(q)
I⊆fI(q)

(
cm(fC(p), C) + cm(C, fC(p)) + sm(fR(p), S) + sm(S, fR(p))

weight

+
im(fI(p), I) + im(I, fI(p)) + fm(p, q)

weight

)
with

weight =
∑

A∈fC(p)

g(A) +
∑

A∈fC(q)

g(A) +
∑

(r,p′)∈fR(p)

g(r) +
∑

(r,q′)∈fR(q)

g(r)

+
∑

a∈fI(q)

g(a) +
∑

b∈fI(q)

g(b) + gF (p, q),

cm(S1, S2) =
∑
A∈S1

(
g(A) max

B∈S2

A ∼p B

)
,

sm(S1, S2) =
∑

(r,p′)∈S1

(
g(r) max

(s,q′)∈S2

(
(r ∼p s)

(
(1− w) + w(p′ ∼max

i q′)
)))

,

im(S1, S2) =
∑
a∈S1

(
g(a)max

b∈S2

a ∼p b

)
,

gF (p, q) =

{
c if fF (p) 6= ∅
0 otherwise

, and

fm(p, q) = gF (p, q) ·

∑
f∈dom(u)

g(f) · simD(u(f), v(f))∑
f∈dom(u)

g(f)
,

where u and v are the unique minimal valuations satisfying fF (p) and fF (q). ♦

It is straight-forward to show that ∼max
i indeed decides the relaxed instance an-

swering problem for EL++:

Theorem 62. Given the CSM ∼i (∼p,∼D, g, w, c), an EL++ KB K = (T ,A), an EL++

concept Q, and an individual a ∈ NI. Then a ∈∼t Q iff (I ′Q,T , dQ) ∼max
i (I ′K, da) ≥ t.

Again, we will skip the proof, since it is mostly the same as the proofs to Lemma 56
and Theorem 57. Indeed, if ∼D can be computed in polynomial time, then it also
also easy to show that relaxed instances can be decided in NP for EL++ as well.

4.3 Implementation and Evaluation

In this section, we want to present a first implementation of the relaxed instance
answering problem, the Elastiq system1, and perform an evaluation of both the
usefulness of relaxed instance queries in practice, and the performance of Elastiq.

1Elastiq is open source and can be found at https://github.com/MaxPensel/ELastiq

https://github.com/MaxPensel/ELastiq
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4.3.1 The ELASTIQ System

Recall that the upper complexity bound of NP for answering relaxed instance
queries w.r.t. the CSM ∼c was shown by non-deterministically guessing subsets of
concept names and successors for the canonical model of the knowledge base, and
then translating ∼max

i into a linear optimization problem of polynomial size and
solving it. However, this approach is not practical. Instead, Elastiq implements an
iterative approach that refines the similarity values in each iteration and converges
to ∼max

i in the limit. In essence, this is very similar to the contraction mapping
defined in Eq. (3.2) for ∼i. This iterative approach is sound, as it converges to the
maximal similarity values from below, but it is not necessarily complete. However,
it allows to approximate the maximal similarity values arbitrarily close and con-
verges quite fast (application of the Banach fixed point-theorem indeed implies
linear convergence speed [Ban22]), so the incompleteness is not a huge problem in
practice.

In order to compute the answers to a relaxed instance query, Elastiq proceeds
in four main steps.

Step 1: Global preprocessing.

The canonical model IK of the ABox and the TBox is generated by the use of a
standard DL reasoner; currently Elastiq uses the Elk system [KKS14].

Step 2: Local preprocessing.

The canonical model of the query concept w.r.t. the TBox IQ,T is generated—as in
Step 1 by the use of Elk.

Elastiq distinguishes the two preprocessing steps for the sake of computing sev-
eral relaxed instance queries against the same KB faster. In such a case, IK does
not depend on the query concept and can therefore be reused for every subsequent
queries. The canonical model IQ,T however needs to be recreated for every query
concept Q. In both steps we use the Elk reasoner to compute classification and real-
ization of the ontology, and then retrieve subsumption and instance relationships
from the results. In the canonical models that are built, each domain element cor-
responds to an individual or subconcept occurring in Q or K. Elastiq only needs
to consider those domain elements that are reachable from elements representing
ABox individuals or Q and thus can be used by the main algorithm.

Similar to database theory, we assume that in practice the model IQ,T stays fairly
small (depending on the structure of the query concept), whereas the size of IK
depends on the number of individuals in the ABox, which can grow quite large.
The normal forms of the canonical models are computed on-the-fly during the
creation of the canonical models, by reusing the classification results.

Step 3: Computing the maximal interpretation similarity ∼max
i .

Recall that Elastiq implements an iterative approach, that refines the similarity
values and converges to ∼max

i in the limit. Thus the main computation yields a
sequence of matrices M0,M1,M2, . . . , each representing an iteration of the compu-
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tation. The rows of such a matrix Mj represent domain elements from I ′Q,T and
the columns domain elements from I ′K. The values inside each cell of Mj are then
identified by two domain elements d ∈ ∆IQ,T and e ∈ ∆IK , and converge towards
(I ′Q,T , d) ∼max

i (I ′K, e) for j →∞.
Instead of computing the similarity values for all pairs of elements from the

canonical models in each iteration, Elastiq restricts the entries in Mj to those ele-
ments that are reachable from pairs (dQ, dai) of the query concept and an ABox
individual ai by mutual paths in I ′Q,T in I ′K. To this end M0 is initialized with one
row (for dQ) and as many columns as there are individuals in the ABox. The set
of columns is extended with new elements (d′, e′) if there exists an element (d, e)
in M0 such that d and d′ are connected in I ′Q,T via some role r, and e and e′ are
connected in I ′K via some role s. Since the canonical models I ′QT and I ′K are finite,
the size of M0 is bounded by |∆I′

Q,T | · |∆I′
K |. Once all reachable pairs have been

added to M0, it contains values exactly for those pairs that are necessary for com-
puting similarities between the domain elements that we are interested in—namely
similarities between the query concept Q and each ABox individual: (dQ, dai).

In the beginning, each element ofM0 is initialized with the value 0. Each iteration
j+1 creates a new matrixMj+1, and computes the values by applying Equation (55)
to the values in Mj . At each point, Elastiq needs only to keep the current matrix
Mj+1 and the last matrix Mj (j ≥ 0) in memory. The iterations for the refinement
of similarity values proceeds until one of the following termination criteria is met:

• the maximal amount of iterations imax specified by the user is reached; or

• no values have changed during the last iteration by more than a relative factor
specified by the user.

Step 4: Comparison with t.

After the iteration stopped, the similarity values Mj(dQ, da) are compared to the
input threshold t and the answer set of individuals is compiled. This set is then
listed in descending order of similarity.

4.3.2 Optimizations for Computing Relaxed Instances

A naive implementation of the algorithm cannot reasonably compute relaxed in-
stances for large ontologies in acceptable time. As mentioned before, a highly
effective optimization is the reuse of IK for multiple queries. Since ABoxes are
usually much larger than query concepts, the model IK is also much more costly
to create than the models IQ,T .

Additionally, the normalization of canonical models can be done more efficiently
than by computing simulations to determine unnecessary role-successors. Before
adding a domain element dC as an r-successor to some element dD, Elastiq checks
whether there already exists an r-successor dE for dD such that E v C. In this
case normalization would eliminate dC , thus avoiding the introduction of dC (and
its role successors) improves the runtime of the canonical model generation fur-
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ther. Similarly, when adding dC as an r-successor to dD, Elastiq eliminates all
r-successors dE of dD for which C v E.

During the generation of the canonical models, Elastiq performs many subsump-
tion checks. Although Elk is currently one of the fastest reasoners for EL, caching
of sub- and superclass relations yields a great performance boost since Elastiq
needs to access these relationships for the same class several times.

The Definition for∼max
i suggests to iterate over all subsets of CN and SC in order

to find the maximal similarity. This exponential procedure can be improved by
looking at the primitive similarities between elements. Let d ∈ I ′Q,T and e ∈ I ′K.
By definition of ∼max

i we are looking for those subsets of the concept names and
successors of e that maximize the similarity. Instead of iterating over all subsets of
CN(e), it is easy to see that if B ∈ CN(e) for which there exists some A ∈ CN(d)

with A ∼p B = 1, we can always keep B in the subset of CN(e), because it can only
increase the similarity. Conversely, if B′ ∈ CN(e) such that for all A ∈ CN(d) we
have A ∼p B′ = 0, then B′ can be left out of the subset of CN(e) since it cannot
increase the maximal similarity value. Analogously, we can remove (s, q) from
SC(e) if for all (r, p) ∈ SC(d) we have r ∼p s = 0. This can dramatically reduce
the number of subsets that need to be checked. In fact, for the default primitive
measure, this means that the best subset of the concept names of e can always be
computed in linear time; it is simply CN(e) ∩ CN(d).

4.3.3 Experimental Evaluation

For the experimental evaluation of Elastiq, we use two test cases: one hand-crafted
ontology, and one set of real-world ontologies. The first test is done with a small
hand-crafted ontology that describes describes bicycles; in this ontology, it is pos-
sible to evaluate the quality of the relaxed answers, in order to see if the relaxed
instance query approach works as intended. The second test is based on the Gene
Ontology [Gen00], and compares fragments of this ontology of a different size. This
is useful in order to judge how the size of both the TBox and the ABox influence
the performance of Elastiq.

Bicycle ontology

This ontology is a small made-up example ontology used to perform some qual-
itative evaluation of relaxed instance queries. The ontology contains 58 concept
names ordered in the hierarchy given in Figure 4.3 and 15 individuals that describe
a variety of bikes (5 city bikes, 1 cyclocross bike, and 3 road races, trekking bikes
and mountain bikes each). The ontology uses the following 8 role names: hasPart,
hasWeight, hasPrice, hasColor, height, numberOfGears, madeFrom, and useCase.
Besides the concept hierarchy, the TBox also encodes some additional knowledge,
for example that mountain bikes always have treaded tires and allow the use case
Offroad.

In order to evaluate Elastiq on this ontology, we asked a sequence of 4 relaxed
instance queries (note that we abbreviated some of the concept and role names):
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>
BikePart

Accessory

Bell
Lights

BatteryLights
DynamoLights

MudGuards
PannierRack

Brakes
DiscBrakes
HubBrakes
RimBrakes

VBrakes
CantileverBrakes

Frame
DiamondFrame
StepThroughFrame

Gears
DerailleurGears
HubGear
SingleSpeed

Suspension
FrontSuspension
RearSuspension

FullSuspension

Tires
Slim
Smooth
Thick
Treated

>
Color

Red
Green
Blue
Yellow
Black
White
Grey

Material
Aluminium
Steel
Carbon

Amount
Low
Medium
High

Bike
CityBike

MountainBike
RoadRacer

CycloCross
TrekkingBike

UseCase
Streets
OffRoad
LongDistance
City

Figure 4.3: Concept hierarchy for the bicycle ontology

1. Q1 = Bikeu∃price.Lowu∃part.(Fameu∃height.High)u∃part.HubGear asks
for any cheap bikes that have a large frame and hub gear instead of derailleur
gears.

2. Q2 = MountainBu RoadRaceru ∃weight.Lowu ∃price.Medium ask for bikes
that are both mountain bikes and road racers and have a low weight, but
medium price.

3. Q3 = CycloCrossu∃price.Lowu∃part.SingleSpeed ask for a cheap cyclocross
bike without gears.

4. Q4 = TrekkingBu∃part.DynamoLightsu∃part.PannierRacku∃part.HubGearu
∃weight.Low asks for light trekking bikes with hub gear, dynamo lights and
a pannier rack.

For answering relaxed queries we use a primitive measure that coincides with
the default primitive measure for all pair except for Low ∼p Medium = 0.5 and
Medium ∼p High = 0.5. We also use a weighting function that assigns weight 0.1
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to the general concept names (all concept names that have > or BikePart as direct
superconcept), and weight 1 to all other concept names. The discounting factor
was set at w = 0.8.

When answering the queries Q1 to Q4 relaxed with a threshold of t = 0.8 we get
the following answers:

• Q1 returns 12 answers with a similarity of up to 0.92, the answers include all
bikes except the cyclocross bike, one trekking bike and one road racer.

• Q2 returns 7 answers (all mountain bikes and road racers, as well as the
cyclocross bike); the best answer is the cyclocross bike with a similarity of
0.89, since it is closest to being both a road racer and a mountain bike and has
a low weight, but high price.

• Q3 returns only a single answer, since the query is pretty unrealistic. The
answer is indeed the cyclocross bike, and has a similarity of 0.91.

• Q4 returns 5 answers; the three trekking bikes take the first three places, two
of the city bikes follow. The other types of bikes mostly have no or very few
accessories. The most similar answer is trekking bike #2 with a similarity
of 0.96; this bike indeed has all the accessories, has a hub gear, but medium
weight.

In a second test we focused on query Q1: Assume that the customer is unhappy
that the answer set includes nearly all bikes, and wants to put more emphasis on
the parts that are important, which for him are the price and the frame size. As
such, he sets the weights of height and hasPrice to 3. With just this small change,
the number of answers immediately drop to 5, and the best answer with a similarity
of 0.95 is now shared between and mountain bike and a city bike, both of which
have a low price, but a medium sized frame.

During this evaluation, we found that while the answers and the ordering are
usually quite reasonable, and the approach to relax instance queries using a sim-
ilarity measure seems indeed quite useful for this application, there are still a few
problems. For example, even after reducing the weights of the more general concept
names to 0.1 and with a high discounting factor of 0.8, the similarity values itself
are often higher than expected. This means that choosing a threshold t that returns
a reasonable number of answers is quite hard and usually involves trying out a
lower number first and looking at the similarity values of the returned answers.
An alternative to this would be to return the best k answers instead of those above
a threshold (top-k query answering). This is currently not implemented in Elastiq,
but would be easy to add, since Elastiq already computes the maximal similarity
values of all individuals.

Also, another problem is that it can be quite hard to really focus on features at a
role-depth of 2 or deeper. In the example query Q1, when we wanted to make the
height of the frame more important, we could only increase the weight of the role
height itself, but not the role hasPart for the frame, since otherwise the gear hub
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would have increased in importance as well, which is unintended. As it is now, this
query prefers bikes with a low price instead of a large frame, since the price is at
role-depth 1, the frame size at role-depth 2. This is an unintended side-effect of the
discounting and makes the relaxed query approach dependent on the modeling of
the ontology.

Gene Ontology

The second evaluation of Elastiq used different fragments of the Gene Ontology
that describe schizosaccharomyces pombe – a species of yeast that reproduces via
medial fission. We used a set of 15 different, increasingly more complex fragments
of the Gene Ontology that ranged from 9,157 concept names and 34,875 individuals
in the first version to 51,949 concept names and 289,206 individuals for the 15th
version. The sizes of canonical models I ′K ranged from 77,941 to 602,548 elements.

We obtained our test ontologies by the custom dataset generation provided by
the Manchester OWL Corpus [MBP13b]. These ontologies are some of the only
EL ontologies with an ABox and a complex TBox that suitable for testing Elastiq.
However, these Gene Ontology versions are anonymized and therefore any con-
tentual interpretation of the results is virtually impossible. Thus, this evaluation is
restricted solely to the performance of Elastiq.

We discovered that for each individual e there exists a very fragmented concept
assertion in the ABox of the form ∃is_a.Ce(e), where the qualification Ce is rarely
larger than 3 conjuncts with a role-depth of at most 2.

Our test suite contains 10 randomly generated query concepts with increasingly
complex structures. These queries were built over the common signature of ver-
sions 1–15 of the Gene Ontology (approximately 1,000 concept names and 4 roles).
The smallest query (Query 1) only contained 6 concept and role names and had a
role-depth of 2, while the Query 10 had a size of 670 and a role-depth of 5. Due
to the plain structure of the concept assertions we wrapped each query concept Qi

in an existential restriction ∃is_a.Qi in order to provoke a more complex computa-
tion. For these queries, the sizes of the canonical models I ′Q,T ranged from 2 to 236

elements.
We evaluated the queries for the default primitive measure and weighting func-

tion, and counted the number of relaxed instances for a threshold of t = 0.333. The
test system had a 1800 MHz dual core processor AMD Turion II Neo and 6 GB of
RAM. Figure 4.4 shows the runtime of Elastiq for answering all 10 relaxed instance
queries w.r.t. each ontology version. Elastiq was written in Java and uses OwlAPI
3.5.0.

The high runtimes for ontology versions 11, 12, and especially 13–15 is mainly
due to the increase of the size of the canonical model IK. Query 1 and 2 actually
had no relaxed answers in any version of the ontology, i.e., none of the individuals
was similar enough. However, most queries returned a lot more relaxed instances
for the ontologies 11–15 than for ontologies 1–10. Queries 8 and 9 returned the
largest number of relaxed instances, up to over 200,000 for Query 8 evaluated on
ontology 15.
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Figure 4.4: Elastiq’s runtime for answering relaxed instance queries in different ver-
sions of the Gene Ontology

When breaking down the times for preprocessing and the query answering fur-
ther, it shows that the preprocessing time is dominated by the flattening of the
ontology, the reasoning done by Elk, and the construction of the canonical model
IK, while the time to construct the canonical models IQ,T is negligible. However,
the overall query answering time is largely spent on Step 3, i.e., the iterations to
compute the maximal similarity.

Elastiq performs ABox realization to obtain IK and in addition a kind of relaxed
ABox realization for the query concepts in the test suite. Now, while it is clear
that Elastiq is slower than Elk for ABox realization, it showed, surprisingly, that
this does not need to be the case for other optimized DL reasoners. We compared
Elastiq’s overall reasoning times with the ABox realization times of the commonly
used FaCT++ reasoner [TH06]. Figure 4.5 shows that Elastiq mostly performed
better than FaCT++, although solving a more complex task2. Note that FaCT++
classification resulted in an error for ontologies 13–15. Of course, FaCT++ works
for much more expressive DLs than Elastiq. However, with computation times
of more than a minute for 10 relaxed queries over ABoxes with 1,000 individuals
and considering that much larger ontologies are in practical use, this still calls for
further improvement depending on the use case.

2Since Elastiq uses ELK to perform ABox realization as one of its steps, ELK would perform much
better than both FaCT++ and Elastiq in the above figure.
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Figure 4.5: Runtime of Elastiq compared to FaCT++ ABox Realization times.

4.4 Using Membership Degree Functions to Relax Queries

for General EL TBoxes

In [BBF15], the authors introduce the DL τEL, which extends EL with threshold
concepts of the form C∼t for t ∈ [0, 1] and ∼ ∈ {<,>,≤,≥}. To realize this, they
use the notion of graded membership functions:

Definition 63. A graded membership function m is a family of functions that contains
for every interpretation I a function mI : ∆I × C(EL) → [0, 1], satisfying the
following conditions (for C,D ∈ C(EL)):

• M1: d ∈ CI ⇔ mI(d,C) = 1 for all d ∈ ∆I , and
• M2: C ≡ D ⇔ for all d ∈ ∆I : mI(d,C) = mI(d,D). ♦

Using those graded membership functions, the threshold concept C∼t for ∼∈
{≤,≥, <,>,=}is interpreted as (C∼t)

I = {d ∈ ∆I | mI(d,C) ∼ t}. The authors
proceed with introducing a specific membership function degI(d,C), which is
defined as a maximal weighted partial homomorphism between the concept tree
of the concept C and the pointed interpretation (I, d).

In the context of relaxed instance query answering, the following properties are
notable:

1. deg is very similarly defined to a directed version of ∼c, i.e., where only one
direction of cm and sm is evaluated instead of both. Indeed, [BBF15] shows
that when converting an instance of the similarity measure simi introduced
in [LT12] into a graded membership function in a straight-forward way, then
the resulting graded membership function m is equivalent to deg.

2. The threshold logic τEL can be used to compute the instances of a threshold
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conceptC≥t w.r.t. a classical unfoldable EL knowledge baseK. This is possible
in polynomial time [BBF15].

3. Together, the previous points imply that relaxed instances of a query concept
Q w.r.t. t, an unfoldable KB K, and the CSM ∼i can be computed in polyno-
mial time by computing all instances of the threshold concept Q≥t w.r.t. the
membership degree function deg.

Note that, while the definitions of ∼c and the membership degree function deg
seem quite similar, and both can be used to answer relaxed instance queries, there
are some important differences. First of all, τEL was not introduced for relaxed
instance query answering, but for general reasoning in the full logic with threshold
concepts, including algorithms that check subsumption of τEL concepts. A second,
important difference concerns the measures ∼c and deg itself: ∼c is symmetric, it
compares all features of both concepts to find all commonalities and differences.
The membership degree function deg is inherently asymmetric though: It only
checks if the individual contains the features (concept names and successors) that
the threshold concept has, not the other way around. This means that membership
degree functions can be used directly to relax queries (i.e., directly compute the
membership degree of an individual to the query concept), while for similarity
measures one needs the detour of checking the similarity of all concepts that the
individual is instance of towards the query concept.

In [BBF15], the threshold logic is only introduced for unfoldable TBoxes. In the
following, we will show that the similarity between relaxed instance queries and
membership degree functions can be exploited to extend deg to work w.r.t. general
TBoxes, and show how to use this to find all instances of a threshold concept of
the form C≥t w.r.t. deg and a general EL KB. We will not extend other inferences
like subsumption and will not look at the case C≤t, since these are not relevant for
relaxing instance queries.

4.4.1 Extending the Graded Membership Function deg to General EL
TBoxes

Originally, degI(d,C) was defined as the maximal weighted partial tree-to-graph
homomorphism between the expanded concept tree C and the pointed interpreta-
tion graph (I, d). This definition generalizes the subsumption relation in EL, which
can be defined as the existence of a homomorphism between C and (I, d). We
want to define deg for general EL TBoxes in a similar way. However, expanding the
concept C w.r.t. a general TBox is not possible; instead, we use again the canonical
model of C, which will lead to graph-to-graph homomorphisms.

Before introducing the homomorphism, we need to formally define the notion of
description graphs. A description graph G is a tuple G = (VG, EG, `G) consisting
of a set of nodes VG, a set of edges EG ⊆ VG × NR × VG labeled with role names,
and a labeling function `G : VG → P(NC) that assigns to each node a set of concept
names. DL interpretations can be viewed as description graphs.
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Let G = (VG, EG, `G) be a description graph with v ∈ VG. With Path(G, v) we
denote the set of all finite paths in G starting from the node v:

Path(G, v) = {v0r1v1 . . . rnvn | v0 = v ∧ (vi−1, ri, vi) ∈ EG for 1 ≤ i ≤ n}

Then we can define partial graph-to-graph homomorphisms as follows:

Definition 64 (partial graph-to-graph homomorphism). LetG = (VG, EG, `G) and
H = (VH , EH , `H) be two description graphs with a distinguished node v0 ∈ VG

such that G is finitely branching. A partial mapping h : Path(G, v0) 9 VH is a
partial graph-to-graph homomorphism (pggh) from G to H , if the following conditions
are satisfied:

• dom(h) is prefix-closed, i.e., whenever there is a path v0r1v1 . . . vn−1rnvn ∈
dom(h), then we also have v0r1v1 . . . vn−1 ∈ dom(h);

• for each path v0 . . . vn−1rnvn ∈ dom(h) with n > 0, we have
(h(v0 . . . vn−1), rn, h(v0 . . . vn−1rnvn)) ∈ EH . ♦

Note that although the pggh h maps from paths in G to a node in H , we want
this path not to be understood as a path, but instead as the last node in addition
to the history of where we came from; this history is only important to distinguish
between nodes that we revisit later. This means that h should be understood as a
mapping from nodes of G to nodes of H , except that the same node can be mapped
to different targets depending on the history.

The second condition implies that all paths in G are mapped to paths in H , i.e.,
we have that h(v0)r1h(v0r1v1) . . . h(v0 . . . vn−1)rnh(v0 . . . vn−1rnvn) is a path in H

for all v0 . . . vn−1rnvn ∈ dom(h).
As in the unfoldable case, it is possible to characterize subsumption between

concepts w.r.t. a general EL TBox by the existence of a complete graph-to-graph
homomorphism (as given in Def. 68) between the description graphs of their canon-
ical models. This is basically the same result as for simulations, compare Thm. 11.
The partial graph-to-graph homomorphisms generalize this notion. They induce a
weighted homomorphism hw, which measures how close the partial homomorph-
isms are to being complete homomorphisms.

Definition 65. Let G = (VG, EG, `G) and H = (VH , EH , `H) be two description
graphs with a distinguished node v0 ∈ VG such that G is finitely branching and
let h : Path(G, v0) 9 VH be a pggh from G to H as defined above. We define the
weighted homomorphism induced by h as a function hw : Path(G, v0)→ [0, 1]:

hw(v0 . . . vn) =

1 if |`G(vn)|+ k∗(vn) = 0
|`G(vn)∩`H(h(v0...vn))|+

∑
1≤i≤k

(1−w)+w·hw(v0...vnrivi)

|`G(vn)|+k∗(vn)
otherwise

The elements used to define hw have the following meaning. For a given v ∈ VG,
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k∗(v) denotes the number of successors of v in G, i.e.,

k∗(v) = |{(r, v′) | (v, r, v′) ∈ EG}|,

and for a path v0 . . . vn ∈ dom(h), we denote with (r1, v1), . . . , (rk, vk) the exten-
sions of the path v0 . . . vn in G such that v0 . . . vnrivi ∈ dom(h). Additionally, we
have a discounting factor 0 < w < 1. ♦

This definition properly extends the weighted homomorphism for EL concepts
w.r.t. unfoldable TBoxes defined in [BBF15]. In particular, if G is a description tree
instead of a more general graph and H is a description graph, then the partial
tree-to-graph homomorphisms from [BBF15] and the partial graph-to-graph ho-
momorphism defined here coincide, as do the weighted homomorphisms induced
by them (there are notational differences, though).

However, it is not obvious that the well-definedness of weighted homomorph-
isms given in [BBF15] and its nice properties also transfer. In particular, if G is cyclic
or infinite then for any pggh h domh may contain infinite sequences of increasing
paths. As such, we need to show that the weighted homomorphism hw is indeed
well-defined. This result is very similar to Theorem 29, except now the resulting
metric space can be infinite.

Lemma 66. Let G = (VG, EG, `G) and H = (VH , EH , `H) be two description graphs
with a distinguished node v0 ∈ VG such that G is finitely branching and let further h :

Path(G, v0) 9 VH be a pggh from G to H . Then the weighted homomorphism hw induced
by h is well-defined.

Proof. If dom(h) is finite, then well-definedness of hw follows trivially from the
definition. Otherwise, let p = (p0, p1, p2, . . . ) be a fixed enumeration of all paths
pi ∈ dom(h), and let S be the set of all infinite sequences s = (s1, s2, s3, . . . ) with
values si ∈ [0, 1]. With s(v0 . . . vn) we denote the value si of the sequence with the
same index that the path v0 . . . vn has in p. We define a mapping fh : S → S as
follows:

fh((si)i≥0) = (ti)i≥0 with

ti =

1 if |`G(vn)|+ k∗(vn) = 0
|`G(vn)∩`H(h(pi))|+

∑
1≤j≤k

(1−w)+w·s(pirjvj)

|`G(vn)|+k∗(vn)
otherwise

,

where vn is the last node in the path pi

This mapping basically computes the new membership values for each path by
evaluating the right-hand side of the equations hw for the old membership values.
By definition of fh, the solutions of hw correspond exactly to the fixed points of fh.

Thus it is enough to show that fh has a unique fixed point. This follows from
the Banach fixed point theorem if we can show that fh is a contraction mapping
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on the space S of all sequences, since S together with the supremum-norm ‖s‖ =
supsi∈s si is a bounded sequence space (l∞) and thus also a complete metric space.

Let d(s, t) = supi≥0 |si−ti| be the distance between two sequences s and t, and let
s′ = fh(s) and t′ = fh(t). Then we have that for each i ≥ 0, either |`G(vn)|+k∗(vn) =

0 and thus s′i = t′i = 1, or

|s′i − t′i| =
|`G(vn) ∩ `H(h(pi))|+

∑
1≤j≤rk(pi)

(1− w) + w · s(pirjvj)

|`G(vn)|+ k∗(vn)

−
|`G(vn) ∩ `H(h(pi))|+

∑
1≤j≤rk(pi)

(1− w) + w · t(pirjvj)

|`G(vn)|+ k∗(vn)

=

∑
1≤j≤rk(pi)

w · s(pirjvj)− w · t(pirjvj)

|`G(vn)|+ k∗(vn)

= w

∑
1≤j≤rk(pi)

s(pirjvj)− t(pirjvj)

|`G(vn)|+ k∗(vn)

≤ w

∑
1≤j≤rk(pi)

d(s, t)

|`G(vn)|+ k∗(vn)
≤ w · d(s, t)

Thus we have that d(fh(s), fh(t)) ≤ w ·d(s, t) for w < 1, and thus fh is a contraction
mapping. The Banach fixed-point Theorem 26 implies that fh has a unique fixed
point and indeed for any sequence s0 ∈ S, the sequence (s0, s1, s2, . . . ) of sequences
with si+1 = fh(s

i) converges to this fixed point. The unique fixed point corresponds
exactly to the unique solution of hw, and thus hw is well-defined.

With H(G,H, d, e) we denote the set of all pgghs h from graph G to graph H

with d ∈ VG being the root of dom(h) and h(d) = e. Now we can finally define the
graded membership function deg for general EL TBoxes:

Definition 67. Let T be a general EL TBox, and I be a model of T . The membership
degree function degI is defined for all elements e ∈ ∆I and all EL concepts C as
follows:

degI(e, C, T ) = sup
h∈H(GC,T ,GI ,dC ,e)

(hw(dC)),

where GC,T is the description graph of the canonical model IC,T in normal form
(see Def. 34), and GI is the description graph of the interpretation I. ♦

For deg defined in Definition 67 to be a valid graded membership function, we
also need to show that it satisfies the properties M1 and M2 given in Definition 63.

4.4.2 Properties of deg

In order to show that deg satisfies properties M1 and M2, we will need to introduce
some notations. For some description graph G, a node v ∈ VG, and n ∈ N, we
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use Pathn(G, v) to denote the set of all paths in Path(G, v) of length at most n. We
also need to define complete homomorphisms, which basically transfer the notion of
a simulation to description graphs:

Definition 68. Let G and H be two EL description graphs with a distinguished
node v0 ∈ VG and G finitely branching. A mapping h : Path(G, v0) → VH is a
complete homomorphism iff:

• h is pggh and dom(h) = Path(G, v0), and
• for all paths p = v0 . . . vk ∈ Path(G, v0): `G(vk) ⊆ `H(h(p)). ♦

Then, we can show that weighted homomorphisms induced by the complete
homomorphisms have always value 1.

Lemma 69. Let G and H be two EL description graphs with a distinguished node v0 ∈
VG and G finitely branching. Additionally, let h : Path(G, v0) → VH be a complete
homomorphism in the sense of Definition 68. Then, hw(v0) = 1.

Proof. This is easy to see from the definition of hw, since due to `G(vk) ⊆ `H(h(p))

for all p = v0 . . . vk ∈ Path(G, v0) we have |`G(vk) ∩ `H(h(p))| = |`G(vk)|, and due
to dom(h) = Path(G, v0), we have that if hw(prjvj) = 1 for all extensions prjvj of p
in G, then also ∑

1≤i≤k

(1− w) + w · hw(v0 . . . vnrivi) = k∗(vn).

Thus, setting hw(p) = 1 for all p ∈ Path(G, v0) gives a valid solution, and since we
know that hw is well-defined, this must be the only solution. Then, in particular,
hw(v0) = 1.

Conversely, we now show some properties which are consequences of having
membership degree value of 1.

Lemma 70. Let C be an EL concept description, T a general EL TBox, I a model of T and
d ∈ ∆I . If degI(e, C, T ) = 1, then for all n ≥ 0 there exists a pggh h from Path(GC,T , dC)

to GI such that:

1. h(dC) = e,
2. Pathn(GC,T , dC) ⊆ dom(h),
3. for all paths π = dCr1d1 . . . rkdk ∈ dom(h) with k ≤ n: `G(dk) ⊆ `I(h(π)).

Proof. By definition of deg we have:

sup
h∈H(GC,T ,GI ,dC ,e)

(hw(dC)) = 1

Assume that there ism ∈ N falsifying the claim. Then, for eachh ∈ H(GC,T , GI , dC , e)

it must be the case that either:
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• Pathm(GC,T , dC) 6⊆ dom(h), or

• exists a path π = dCr1d1 . . . rkdk ∈ dom(h) (k ≤ m) such that:

`G(dk) 6⊆ `I(h(π))

In both cases, there will be a constant

c =

(
w

b · |NC ∩ (sig(T ) ∪ sig(T ))|

)m

> 0

such that hw(dC) ≤ 1− c, where b is the maximal out-degree of GC,T . This is easy
to see by the definition of hw, where at each node of a path the minimal factor is

w

b · |NC ∩ (sig(T ) ∪ sig(T ))| .

But then suph∈H(GC,T ,GI ,dC ,e)(hw(dC)) ≤ 1− c. This contradicts degI(e, C, T ) =
1. Thus, such a value m cannot exists and our claim holds.

The following corollary is a direct consequence of the previous lemma.

Corollary 71. Let C be an EL concept description, T a general EL TBox, I a model of
T and d ∈ ∆I . If degI(e, C, T ) = 1, then there exists a sequence of pggh {h0, h1, . . .} ∈
H(GC,T , GI , dC , e) such that:

• Pathi(GC,T , dC) ⊆ dom(hi),

• for all π = dCr1d1 . . . rkdk ∈ Path(GC,T , dC):

• `G(dk) ⊆ `I(hk(π)), and

• hj(π) = hk(π) for all j > k.

Proof. The proof is by contradiction. Suppose that such a sequence do not exists. Let
s = {h0, h1, . . . , hm} be the largest sequence satisfying such conditions. Lemma 70
yields a pggh hm+1 ∈ H(GC,T , GI , dC , e) such that:

• Pathm+1(GC,T , dC) ⊆ dom(hm+1), and

• π = dCr1d1 . . . rkdk≤m+1 ∈ Path(GC,T , dC) implies `G(dk) ⊆ `I(hm+1(π)).

Then, it is easy to see that hm+1 can be used to define a sequence {h0, h1, . . . , hm+1}
satisfying the same conditions as s. Hence, we have obtained a contradiction against
m being the largest possible value.

We are now ready to show that deg satisfies properties M1 and M2.

Lemma 72. deg satisfies property M1.
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Proof. Let T be an EL TBox, I be a model of T , d ∈ ∆I , and C an EL concept.
(⇒) Assume d ∈ CI . By the characterization of membership for ELw.r.t. general

TBoxes (see Theorem 13), there is a simulation S between IC,T and I such that
(dC , d) ∈ S, i.e., (IC,T , dC) . (I, d).

Then, we useS to build a mapping h from Path(GC,T , dC) to VI such that h(dC) =
d and h is a homomorphism in the sense of Definition 68. The construction is done
inductively as follows:

1. h(dC) = d,
2. let πrkdk ∈ Path(GC,T , dC) be a path of length k, such that (dk, h(πrkdk)) ∈ S.

For all (dk, r, d∗) ∈ EC,T , we choose e∗ such that (d∗, e∗) ∈ S and (h(πrkdk), r, e
∗) ∈

EI . Then, h(πrkdkrd∗) = e∗.

Note that if (dk, h(πrkdk)) ∈ S, the rest of the construction in the second step is
always possible, since S is a simulation. Therefore, as (dC , d) ∈ S the whole con-
struction is well-defined. It is then easy to see that h is a complete homomorphism
in the sense of Definition 68.

From Lemma 69 we have hw(dC) = 1. Thus, degI(d,C, T ) = 1.
(⇐) Assume that degI(d,C, T ) = 1. We use the sequence {h0, h1, . . .} from

Corollary 71 to construct a relation S ⊆ ∆IC,T ×∆I as follows: (x, y) ∈ S if, and
only if, there exists a path π = dCr1d1 . . . rkdk ∈ Path(GC,T , dC) such that dk = x

and hk(π) = y.
We now show that S is a simulation between IC,T and I . For all (x, y) ∈ S, there

is a path π = dCr1d1 . . . rkdk ∈ Path(GC,T , dC) such that dk = x and hk(π) = y.
Hence,

• the properties of {h0, h1, . . .} imply that `G(x) ⊆ `I(y).
• let (x, x′) ∈ rIC ,T . Then, πrx′ ∈ Pathk+1(GC,T , dC), and from Corollary 71

we obtain πrx′ ∈ dom(hk+1). Furthermore, it is also the case that hk(π) =

hk+1(π) = y. Hence, by definition of a pggh there must exits y′ such that
hk+1(πrx

′) = f ′ and (y, r, y′) ∈ EI . Finally, by construction of S it follows
that (x′, y′) ∈ S.

We have just shown that S is a simulation. Since (dC , d) ∈ S, the characterization
of membership gives d ∈ CI .

Lemma 73. deg satisfies property M2.

Proof. The right to left direction follows from Property M1. For the other direction
we use the characterization of subsumption w.r.t. general TBoxes. AssumeC ≡T D,
then we have (IC,T , dC) . (ID,T , dD) and (ID,T , dD) . (IC,T , dC). Using the first
simulation one can show the following: for any pggh h from Path(GC,T , dC) to GI
with h(dC) = d, there is a pggh g from Path(GD,T , dD) to GI with g(dD) = d such
that: hw(dC) ≤ gw(dD). Hence, we obtain:

degI(d,C, T ) ≤ degI(d,D, T )
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Using the same reasoning, from the second simulation it holds:

degI(d,D, T ) ≤ degI(d,C, T )

Thus, degI(d,C, T ) = degI(d,D, T ).

Therefore, deg is indeed a valid graded membership function for general EL
TBoxes. Finally, we show that the set of all instance of a threshold concept C≥t w.r.t.
some EL KB K and the deg can be computed in polynomial time.

4.4.3 Complexity

If the interpretation I is finite, it is possible to compute degI(d,C, T ). In this case,
both description graphs GC,T and GI are finite. We will introduce an equation
system with variables xv1,v2 for v1 ∈ VGC,T and v2 ∈ VGI :

xv1,v2 =


1 if |lG(v1)|+ k∗(v1) = 0

|lG(v1)∩lH(v2)|+
∑

(v1,r,v3)∈EGC,T

max
(v2,r,v4)∈EGI

(1−w)+w·xv3,v4

|lG(v1)|+k∗(v1)
otherwise

(4.2)

Note that this equation system again uses nearly the same formula as the defini-
tion of weighted homomorphisms, except now we consider all possible matches for
a successor in GI and choose the one that gives the maximal membership degree.
This equation system has again a unique solution, the proof is analog to the one
for Lemma 66. Let {xvi,vj = vvi,vj | vi ∈ VGC,T , vj ∈ VGI} be the unique solution
of the equation system (4.2). Then we can show that the local maximization in the
equation system and the global maximization over all homomorphism given in
Definition 67 yield the same result, i.e. degI(e, C, T ) = vdC ,e.

Lemma 74. Let T be an EL TBox, C be an EL concept, I be a model of T with finite
domain, and e ∈ ∆I . Then degI(e, C, T ) = vdC ,e, where vdC ,e is the value assigned to the
variable xdC ,e in the unique solution of equation system (4.2).

Proof. To show this, we will construct a pggh between GC,T and GI . The pggh h is
defined as follows:

h(dC) = e,

and for all h(dC . . . d) = e and (d, r, d′) ∈ EGC,T we have
h(dC . . . d r d′) = arg max

(e,r,e′)∈EGI

(1− w) + w · vd′,e′

For all paths dC . . . d ∈ domh with h(dC . . . d) = e, we have that hw(dC . . . d) = vd,e,
since this assignment satisfies all equations from Definition 65 (and we know that
the solution is unique). In particular, this means that hw(dC) = vdC ,e.
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It remains to be shown that for all other pgghs h′ ∈ H(GC,T , GI , dC , e) the degree
h′w(dC) can not be larger than hw(dC). This is easy to show by contradiction: If there
was such a pggh h′ with h′w(dC) > vdC ,e, then the value of xdC ,e in the solution of
the equation system (4.2) would be larger than vdC ,e as well.

Together, this implies that hw(dC , e) is the maximal homomorphism and thus
degI(e, C, T ) = suph′∈H(GC,T ,GI ,dC ,e) h

′
w(dC) = hw(dC) = vdC ,e.

The equation system (4.2) has only finitely many variables (exactly |VGC,T |·|VGI |),
and thus the membership degree can be computed for finite interpretations I. We
can show that it can actually done in polynomial time.

Lemma 75. Let T be a TBox, and I be a model of T with finite domain. Then degI(d,C, T )
is computable in time polynomial in the size |C|+ |DeltaI |.

Proof. We can reformulate equation system (4.2) as a linear optimization problem:

xv1,v2 ≥


1 if |lG(v1)|+ k∗(v1) = 0

|lG(v1)∩lH(v2)|+
∑

(v1,r,v3)∈EGC,T

yr,v3,v2

|lG(v1)|+k∗(v1)
otherwise

yr,v3,v2 ≥ (1− w) + w · xv3,v4 for all (v2, r, v4) ∈ EGI

Minimizing the objective function
∑

v1∈VGC,T ,v2∈VGI
xv1,v2 , this leads to a unique

solution, which corresponds to the solution to equation system (4.2). The argument
proceeds analogous to the proof of Lemma 31. The linear optimization problem
has polynomial size, and can be solved in PTime, so the Lemma follows.

In EL, an individual d is an instance of a concept C, if dI is an element of CI in all
models I of the KB. In order to define instance membership for threshold concepts,
we also need to check that the membership degree is larger than the threshold in
all models of the KB. Of course, there may be infinitely many models, so simply
computing the membership degrees for each of them is not possible. However, we
can show that just checking the canonical model is indeed enough, as for all other
models, the membership degree can never be smaller than in the canonical model.

Lemma 76. Let I and J be two interpretations with (I, d) . (J , e), and let C be an
EL-concept. Then degI(d,C, T ) ≤ degJ (e, C, T ).

Proof. For each pggh h : Path(GC,T , dC) → GI , we can construct a second pggh
h′ : Path(GC,T , dC)→ GJ such that hw(dC) ≤ h′w(dC). But then, this implies

sup
h∈H(GC,T ,GI ,dC ,d)

(hw(dC)) ≤ sup
h∈H(GC,T ,GJ ,dC ,e)

(hw(dC)),

and therefore degI(d,C, T ) ≤ degJ (e, C, T ).
Let h : Path(GC,T , dC) → GI be a pggh with h(dC) = d. We inductively con-

struct h′ with dom(h′) = dom(h) such that for all p ∈ dom(h) we have (I, h(p)) .
(J , h′(p)) as follows:
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• h′(dC) = e.
• Let p ∈ dom(h) with h(p) = d′ and h′(p) = e′. We know by construction of h′

that (I, d′) . (J , e′). Then for each extension pridi ∈ dom(h) and h(pridi) =

d′i the simulation implies that there is a ei ∈ ∆J with (I, d′i) . (J , ei); thus
we set h′(pridi) = ei.

We now show that hw(dC) ≤ h′w(dC). To see that, take any path p = v0 . . . vn
from dom(h) and compare the equations hw(p) and h′w(p). If hw(p) = 1 because
|lG(vn)| + k∗(vn) = 0, then also h′w(p) = 1. Otherwise, we have that lGI (h(p)) ⊆
lGJ (h

′(p)), and thus |lGC,T (vn) ∩ lGI (h(p))| ≤ |lGC,T (vn) ∩ lGJ (h(p))|; apart from
that the equations for hw(p) and h′w(p) are exactly the same. This implies that
hw(p) ≤ h′w(p) for all paths p ∈ dom(h), in particular hw(dC) ≤ h′w(dC).

Since (IK, da) . (J , e) for any model J of K with e = aJ , this implies that
degIK(da, C, T ) ≤ degJ (e, C, T ). In particular, this also leads to the following
result.

Corollary 77. Let K be an EL KB, C be an EL concept, a an individual occurring in K,
and t ∈ [0, 1]. Then K |= C≥t(a) iff degIK(da, C, T ) ≥ t. This is decidable in time
polynomial in the size of K and C.

This gives a better complexity than relaxed instance query answering w.r.t. the
CSM∼c. The main reason for this is that graded membership functions are already
asymmetric and can be applied directly, while ∼c is symmetric, and in order to
compute the relaxed instances one needs to check all subsuming concepts of the
individuals to find the maximal similarity value.

Finally, we conjecture that one could easily extend the graded membership func-
tion deg with a primitive measure and a weighting function in a similar way this is
done for ∼c. This would make the graded membership function even more useful
for answering relaxed instances.

In conclusion, graded membership functions give a nice, and less complex, al-
ternative to similarity measures for relaxing instance queries. Since graded mem-
bership functions don’t need to check all subsuming concepts of each individual,
but can be applied directly, their application in relaxed instance queries might be
more intuitive. One the other hand, similarity measures have many other uses
as well, and seem like a more natural measure in general. A practical evaluation
would be useful to compare these to approaches more in-depth.





Chapter 5

Reasoning with Prototypes using

Weighted Tree Automata

In this chapter, we present an approach that allows to make prototypical defini-
tions. Prototypical definitions, in essence, allow to define a concept by comparing
elements to a prototype or prototypical expression. Only those elements that are
close enough to this prototype are still considered to belong to the concept.

In order to be used within a formal knowledge representation language with
automated reasoning capabilities, such prototypes need to be equipped with a
formal semantics. To obtain such a semantics, we use the ideas underlying Gärden-
fors’ conceptual spaces [Gär00], where categories are explained in terms of convex
regions, which are defined using the distance from a focal point. To obtain a con-
crete representation language, we need to define what focal points are and how to
define the distance of an individual to such a focal point. Instead of employing pro-
totypical individuals or concepts as focal points, we take a more abstract approach
based on automata, which is inspired by the automata-approach for reasoning in
DLs (see Section 3.2 in [Baa09] for an introduction). Basically, in this approach, a
given concept C and a TBox T are translated into a tree automaton AC,T that ac-
cepts all the tree-shaped models of T whose root belongs to C. Testing satisfiability
of C w.r.t. T then boils down to the emptiness test for AC,T , i.e., checking whether
there is a tree accepted by AC,T .

Instead of using a classical automaton that returns 1 (accepted) or 0 (not accepted)
for an input tree, we propose to use a weighted automaton [DKV09]. Intuitively,
this automaton receives as input a tree-shaped interpretation and returns as output
a non-negative integer, which we interpret as the distance, or dissimilarity, of the
individual at the root of the tree to the prototype (focal point) described by the
automaton. This approach can be applied to non-tree-shaped models by the usual
unraveling operation. In order to integrate such prototypes into a Description Logic,
we propose to use thresholds to derive concepts from prototypes. More precisely,
the threshold concept P∼n(A) for ∼ ∈ {<,≤, >,≥} is interpreted as the set of all
elements with a distance∼n according to the weighted automatonA. The concepts
obtained this way can then be used like atomic concepts within a DL.

It might appear to be more intuitive to use concepts or individuals rather than
automata to describe prototypes. However, in these alternative settings, one then
needs to give formal definitions of the distance between two individuals or between
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an individual and a concept, whereas in our approach this comes for free by the
definition of the semantics of weighted automata. We show that these alternative
settings can actually be seen as instances of our weighted automata approach.

5.1 Prototypical Reasoning

In general, a prototype can be seen as some kind of structure that can be compared
to elements of an interpretation, distinguishing elements that are closer (more sim-
ilar or related) to the prototype from elements that are further away (dissimilar
or different). More specifically, one may view a prototype as a function that as-
signs to each element a distance value from the focal point, where small distances
correspond to similar elements, and large distances to dissimilar elements.

Definition 78. A prototype distance function (pdf) d is a function that assigns to each
element e of an interpretation I a distance value dI(e) ∈ N. The constructor P∼n(d)

for a threshold n ∈ N is interpreted in an interpretation I as the set of all ele-
ments e ∈ ∆I such that dI(e) ∼ n, for ∼ ∈ {<,≤, >,≥}. If D is a set of pdfs, we
use ALCP(D) to denote the Description Logic ALC extended with the prototype
constructor for pdfs from D. ♦

Notice that, instead of treating the focal point and the distance as separate entities,
prototype distances functions combine both notions together, and directly assign
a distance value to each element; the focal point itself is implicit in the pdf; if one
element has distance 0 w.r.t. some pdf, then this point might be considered a focal
point (though not necessarily the unique focal point). Otherwise, the focal point is
just an abstract entity and cannot be represented directly.

As explained before, we will use weighted alternating tree automata to define
pdfs. These automata can express distance functions between trees (in our case,
tree-shaped pointed interpretations) to the non-negative integers N. By unraveling
pointed interpretations we can extend this to a function from arbitrary pointed
interpretations to N, i.e., a prototype distance function.

5.1.1 Using Weighted Tree Automata for Prototype Distance

Functions

Before introducing the weighted automata model used to represent pdfs, we will
first define some basic notions and an unweighted automata model. This will make
it easier to understand the more difficult weighted case, and will also be required
to show decidability.

A tree domain is a prefix-closed, non-empty set D ⊆ N∗, i.e., for every ui ∈ D

with u ∈ N∗ and i ∈ N we also have u ∈ D. The elements of D are called nodes, the
node ε is the root of D and, for every u ∈ D, the nodes ui ∈ D are called children
of u. A node is called a leaf if it has no children. A path π in D is a subset π ⊆ D

such that ε ∈ π and for every u ∈ π, u is either a leaf or there is a unique i ∈ N
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with ui ∈ π. Given an alphabet Σ, a Σ-labeled tree is a pair (domT , T ) consisting
of a tree domain domT and a labeling function T : domT → Σ. Instead of the pair
(domT , T ) we often use only T to denote a labeled tree. With Tree(Σ) we denote the
set of all Σ-labeled trees. Note that this definition allows the existence of infinite
trees.

The automata type we introduce now is based mainly on the alternating tree
automata defined by Wilke [Wil01], which are working on P(Σ)-Trees, which are
labeled with the power set of some finite alphabet Σ. Given such a Σ and a set of
states Q, a transition condition TC(Σ, Q) is one of the following: true; false; σ or
¬σ for σ ∈ Σ; q1∧ q2 or q1∨ q2 for q1, q2 ∈ Q; or�q or ♦q for q ∈ Q. These transition
conditions allow to accept or reject the current path, check for existence or absence
of a symbol σ at the current node, and allow to split the automaton in multiple
copies for the current node or all successors, for which all copies or one of them
must be accepting, respectively.

Definition 79. An alternating parity tree automaton (apta) Aworking on P(Σ)-trees
is a tuple A = (Σ, Q, q0, δ,Ω), where

1. Σ is a finite alphabet;

2. Q is a finite set of states and q0 ∈ Q is the initial state;

3. the transition function δ : Q → TC(Σ, Q) assigns to each state a transition
condition; and

4. Ω : Q→ N is the priority function that specifies the parity acceptance condi-
tion. ♦

Given aP(Σ)-labeled tree T , a run is a (domT ×Q)-labeled tree R with ε ∈ domR,
R(ε) = (ε, q0), and that respects all the transition conditions, i.e., for all u ∈ domR

with R(u) = (v, q) we have:

• δ(q) 6= false

• if δ(q) = σ, then σ ∈ T (v); and if δ(q) = ¬σ, then σ 6∈ T (v);
• if δ(q) = q1 ∧ q2, then there exists i1, i2 ∈ N such that R(ui1) = (v, q1) and
R(ui2) = (v, q2);

• if δ(q) = q1 ∨ q2, then there exists i ∈ N such that R(ui) = (v, q1) or R(ui) =

(v, q2);
• if δ(q) = ♦q′, then there exists i, j ∈ N with R(ui) = (vj, q′); and
• if δ(q) = �q′, then for every j ∈ N with vj ∈ domT there exists i ∈ N with
R(ui) = (vj, q′).

A run is accepting, if every infinite path π in R satisfies the parity acceptance condition
specified by Ω, i.e., the largest priority Ω(u) occurring infinitely often along the
path u ∈ π is even. The language accepted by an apta A, L(A), is the set of all
P(Σ)-trees T for which there exists an accepting run R of A on T .
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Figure 5.1: Transition function δ, P(Σ)-tree T , and accepting run R of Aex on T .

Note that apta are bisimulation invariant: If there exist a bisimulation between
two trees T1

∼= T2, then we have T1 ∈ L(A) iff T2 ∈ L(A) [Wil01]. The emptiness
problem for apta, i.e., deciding whether L(A) = ∅, is in ExpTime; the comple-
ment automaton which accepts the complement language Tree(Σ) \ L(A) can be
constructed in linear time [Wil01]. Note that, instead of only the transition con-
ditions mentioned above, one could allow for complex transition conditions like
�(q1 ∧¬B)∨ q2. Automata with complex transition conditions can be transformed
into equivalent automata using only simple transition conditions by introducing
new states for each subformula of the transition condition [Wil01].

Example 80. Let Aex = (Σ, Q, q0, δ,Ω) be an apta with alphabet Σ = {A,B}, with
states Q = {q0, . . . , q6}, initial state q0, transition function δ as given in Figure 5.1,
and priority function Ω with Ω(q) = 1 for all q ∈ Q.

This automaton accepts only trees where the root label contains B (state q1), or it
is labeled with A and all of its successors (at least one) are again of this form. Since
the parity function prohibits infinite paths in the run (though not in the input tree),
Aex accepts exactly those trees where all paths start with nodes labeled with A until
eventually a node with a label containing B is encountered. Figure 5.1 shows such
a tree T and an accepting run R of Aex on T .

Now, we can introduce a weighted version of this automata model in order to
describe prototype distance functions. The main idea behind the use of weighted
automata for pdfs is that the automaton can punish a pointed interpretation by
increasing the distance value whenever a feature described by the automaton is
not as expected. For example, the automaton can require the current node to be
labeled with the concept name Cup, and increase the distance by some number if
this is not the case. Using this idea, the most natural interpretation of the transition
conditions in the weighted setting is as follows: q1 ∧ q2 will compute the sum of
the distances for q1 and q2 (both features should be present), ∨ will be interpreted
as the minimum (one of the feature should be present), ♦will also be interpreted
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as the minimum (one of the successors should have the feature, i.e., we choose the
best one); and � will be interpreted as the maximum (all successors should have
the feature; if not, we take the distance of the worst)1.

A weighted alternating parity tree automaton is nearly the same as in the un-
weighted case, with the exception that the transition function may also contain
non-negative integers. Given an alphabet Σ and a set of states Q, a weighted trans-
ition condition wTC(Σ, Q) is one of the following: n ∈ N; σ or ¬σ for σ ∈ Σ; q1 ∧ q2
or q1 ∨ q2 for q1, q2 ∈ Q; or �q or ♦q for q ∈ Q.
Definition 81. A weighted alternating parity tree automaton (wapta) A working on
P(Σ)-trees is a tuple A = (Σ, Q, q0, δ,Ω), where

1. Σ is a finite alphabet;
2. Q is a finite set of states and q0 ∈ Q is the initial state;
3. δ : Q→ wTC(Σ, Q) is the transition function; and
4. Ω : Q→ N is the priority function. ♦

Runs are defined as in the unweighted case, however nodes labeled with a state
for which the transition function yields a number do not need to satisfy any addi-
tional conditions, they can be leafs in the run. In order to interpret the�-operator as
the maximum, we need to further split runs into their�-fixations; these�-fixations
basically chooses for a �-operator a single successor node instead of all of them.
Formally, given a run R, a �-fixation is a tree R′ with domR′ ⊆ domR, which can
be obtained from R as follows: starting with the root, we keep all the successors for
nodes where the transition function does not yield a box; for nodes u labeled with
a state q for which the transition function is of the form δ(q) = �q′, the �-fixation
R′ keeps at most one successor ui ∈ domR. All nodes u ∈ domR′ have the same
label R′(u) = R(u) as in R.

Then, we can define the behavior of the automaton as a function ‖A‖ fromP(Σ))-
trees to N ∪ {∞}. The weight of a �-fixation R′ of a run R is defined as

weightA(R
′) =

∑
u∈domR′ ,R′(u)=(d,q),δ(q,T (u))=n∈N

n,

i.e., the weight of R′ is simply the sum of all numbers to which the nodes in R′ are
mapped. Note that this (possibly infinite) sum is well-defined: If infinitely many
values n > 0 occur in R′, the weight of R′ is∞; otherwise it is the finite sum of all
weights in R′. The weight of a run R on T is

weightA(R) = sup
R′ �-fixation of R

weightA(R
′),

1Another reasonable interpretation of � would be to add up the distances of all successors instead
of taking the maximum. However, it is easy to see that this interpretation would mean that the
automaton model is no longer bisimulation-invariant: Simply duplicating a successor with non-
zero weight would create a bisimilar interpretation, but would increase the total weight. Basically,
this semantics would allow the weighted automata to count. Bisimulation-invariance is helpful
later to show that reasoning with prototypes is decidable.
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and the behavior of the wapta A on a tree T is

‖A‖(T ) = min
R accepting run on T

weightA(R).

Similar to the unweighted case, wapta are equivalence invariant, i.e., if T1
∼= T2,

then we have ‖A‖(T1) = ‖A‖(T2). The main reason for this is that ♦ and � are
interpreted as idempotent operators, min and max respectively. This property will
become important later.

Notice that if one wants to let the automata run on tree-shaped interpretations,
we have a slight disparity: trees as introduced above do not have labeled edges,
while interpretations do. To overcome this, we push role names into the labels of the
children [Hla07, pp. 59–62]. Thus, in the following, the alphabet Σ always consists
of all concept and role names of C and CT , i.e., Σ = (sig(C)∪ sig(CT ))∩ (NC ∪NR).

As said before, such wapta can be used to define prototype distance functions,
in order to measure the distance from pointed interpretations to some prototype.
In the following section we give two examples of such constructions, which show
that wapta are indeed usable for this purpose.

Constructions of prototype automata

In the following we will give a concrete example of how a weighted automaton can
be constructed from an ALC-concept.

Example 82 (Constructing a wapta from an ALC concept). Recall from the begin-
ning of this chapter that a prototypical cup is a small container with handles, which
can hold liquids and is made of plastic or porcelain2. We can express this as an
ALC-concept:

Container u Small u ∀material.(Glass t Porcelain)
u ∃hasPart.Handle u ∀holds.Liquid

This concept can directly be translated into a complex transition condition for an
alternating tree automaton:

Container ∧ Small ∧�(¬material ∨ (Glass ∨ Porcelain))
∧ ♦(hasPart ∧ Handle) ∧�(¬holds ∨ Liquid)

Finally, we can add weights in order to punish those features of the transition
condition that an element might be missing:

(Container ∨ 3) ∧ (Small ∨ 1) ∧�(¬material ∨ ((Glass ∨ 1) ∨ (Porcelain ∨ 1)))

∧ (♦(hasPart ∧ Handle) ∨ 1) ∧�(¬holds ∨ (Liquid ∨ 2))

2We previously mentioned a few more properties that prototypical cups should satisfy. In order to
keep this example small, we will ignore those additional properties.
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The meaning of this weighted transition condition is as follows: If an element is not
a container, it will be punished with a weight of 3 since there cannot be a run that
uses the option Container at the root. Otherwise, there is such a run, which does
not contribute a weight. Accordingly, the absence of the feature small is punished
with weight 1. If the cup does not have a successor that is labeled with both hasPart

and Handle, then a weight of 1 is added. Finally, if there is a material-successor
that is not labeled with Glass or Porcelain, then this is punished with weight 1. If
the cup does not have any material-successors, or all of them are glass or porcelain,
no weight is added. Similarly for holding only liquids. ♦

Such a construction works for arbitrary ALC concepts. In essence, after trans-
lating the concept into a transition condition, choosing the weights appropriately
allows us to punish the absence of different features by different values.

For universal restrictions, the weights of several offending successors are not ad-
ded up, but rather the supremum is taken. As a consequence, equivalent concepts
may not yield equivalent wapta using this approach. For example, ∀r.(A u B) ≡
∀r.Au∀r.B, but the corresponding transition conditions after adding weights may
lead to different results. However, one can argue that, when viewed as prototype
descriptions, these two concept descriptions do actually encode different intentions.
While in the first case we want to make sure that all r-successors are instance of A
and B simultaneously (and pick the weight of the worst offender if there is one),
in the second case we want to enforce both features separately, and punish for the
worst offenders separately.

Besides translatingALC concepts into wapta, one can also create prototypes from
finite pointed interpretations, i.e., prototypical elements. For this, one introduces
a state for each element of the interpretation, and as transition condition for each
state one simply conjoins all the concept names the element is instance of, negations
of all concept names it is not instance of, and a ♦-transition for each successor in
the interpretation, labeled with both the role name and the state of the successor-
element. If one also introduces a �-transition with a disjunction of all possible
successor-states and adds positive weights as in the above example, this weighted
automaton will only give distance 0 to pointed interpretations that are bisimilar to
the prototypical interpretation, and otherwise punish each difference by increasing
the distance accordingly.

5.2 Reasoning with Prototypes

In this section, we will show how to reason in ALCP . Note that in DLs with nega-
tion, subsumption can be reduced to concept satisfiability. Indeed, we haveC vT D

iff C u ¬D is unsatisfiable in T . Therefore, an algorithm that decides concept satis-
fiability can also be used to decide subsumption.
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5.2.1 Deciding Concept Satisfiability using Alternating Parity Tree

Automata

Before giving an algorithm to decide concept satisfiability in ALCP , we will show
that alternating parity tree automata can be used for decide the satisfiability of
ALC concepts w.r.t. to an ALC TBox without prototypes. This result is a simple
adaptation of the approach in [SV01] to ALC.

It is well-known [BRV01] that ALC has the tree model property, i.e., every satis-
fiable ALC-concept C has a tree-shaped model in which the root of the tree is an
instance of C. Thus, to decide concept satisfiability, it is enough to consider tree-
shaped interpretations. The automaton approach to decide concept satisfiability
requires the concept and the TBox to be in negation normal form.

Definition 83 (negation normal form). An ALC-concept C is in negation normal
form if negation occurs only directly in front of concept names. A concept C can
be transformed in linear time into an equivalent concept in negation normal form
[Baa09] by applying the following rules to subconcepts of C until no more rule is
applicable:

¬> ⊥
¬⊥ >
¬¬C  C

¬(C uD) ¬C t ¬D
¬(C tD) ¬C u ¬D
¬∃r.C  ∀r.¬C
¬∀r.C  ∃r.¬C

We write nnf(C) to denote the concept C transformed into negation normal form,
and say that an TBox is in negation normal form if all concepts occurring in it are
in negation normal form. ♦

We can transform a TBox T into a single, equivalent concept CT =
d

CvD∈T ¬Ct
D; then an interpretation satisfies T iff it satisfies the GCI > v CT . We now con-
struct an automaton that decides concept satisfiability inALC. Given a TBox T and
a concept C, the idea underlying this approach is that the constructed automaton
will accept exactly the tree models of T for which the root is an instance of C. The
automaton contains a state for each subconcept of nnf(C) and nnf(CT ), which are
used to simulate the semantics ofALC. Cycles in T can enforce infinite tree models;
infinite paths are always accepting if they satisfy the axioms in T .

Definition 84. Let T be anALC-TBox of the form {> v CT } andC anALC-concept
with both C and CT in negation normal form. We define the automaton AC,T =

(Σ, Q, q0, δ,Ω) as follows:

• Σ = sig(C) ∪ sig(CT ) and Ω(q) = 0 for all q ∈ Q,
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• Q = {qD | D ∈ sub(C)∪sub(CT )}∪{qr, q¬r | r ∈ sig(C)∪sig(CT )}∪{q0, qT },

• the transition function δ is defined as follows (where σ ∈ NC ∪ NR):

δ(q0) = qC ∧ qT δ(qT ) = qCT ∧�qT
δ(qσ) = σ δ(q¬σ) = ¬σ

δ(qC1uC2) = qC1 ∧ qC2 δ(qC1tC2) = qC1 ∨ qC2

δ(q∃r.C) = ♦(qr ∧ qC) δ(q∀r.C) = �(q¬r ∨ qC) ♦

The proof of the following proposition is similar to the one in [Hla07, pp. 59–62].
It relies on the fact that any tree with accepting run can be interpreted as a model
of the TBox with the root being an instance of C, and any model of the TBox can be
unraveled into a tree for which an accepting run can be inductively constructed.

Proposition 85. Given an ALC-TBox T and an ALC-concept C, the concept C is satis-
fiable w.r.t. T iff L(AC,T ) 6= ∅.

Proof. We have to show both directions.

“⇐” Let L(AC,T ) 6= ∅, i.e., there is a tree T and an accepting run R of AC,T on T .
We define the interpretation IT as follows:

∆IT = domT ,

AIT = {u ∈ domT | A ∈ T (u)},
rIT = {(u, ui) ∈ domT × domT | r ∈ T (ui)}.

Claim 86. For any u ∈ ∆IT and E ∈ sub(C) ∪ sub(CT ), if (u, qE) occurs as a
label of a node in R then u ∈ EIT .

This claim can be shown by induction on the structure of E. For example,
if E = ∃r.F , then by definition of AC,T we have δ(qE) = ♦(qr ∧ qF ). If
R(v) = (u, qE) occurs in R at some node v, then there are i, j, k, l ∈ N with
R(vi) = (ul, (qr ∧ qF )), R(vij) = (ul, qr), and R(vik) = (ul, qF ). By induction
hypothesis we then have ul ∈ F IT and (u, ul) ∈ rIT , and hence u ∈ (∃r.F )IT .
The other cases are similar.

Since δ(q0) = qC ∧ qT and R(ε) = q0, the claim yields ε ∈ CIT . It remains
to show that IT is a model of T . However, since (ε, qT ) occurs in R and
δ(qT ) = qCT ∧ �qT , the claim yields that for every node u ∈ ∆IT we have
u ∈ CIT

T and thus all GCIs are satisfied by IT .

“⇒” Assume that C is satisfiable w.r.t. T , i.e., there exists a finitely branching
interpretation I and an element d0 ∈ ∆I such that I is a model of T and
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d0 ∈ CI . We will inductively construct a Σ-tree T and a mapping L : T → ∆I

as follows:

ε ∈ domT ,

L(ε) = d0,

T (ε) = {A ∈ NC | d0 ∈ AI}

Let u ∈ domT , with L(u) = d. Let S = {(r, d′) ∈ NR ×∆I | (d, d′) ∈ rI} be
the set of successors, i.e., elements that are connected to d via a role r, and let
(r1, d1), (r2, d2), . . . , (rn, dn) be an arbitrary enumeration of those successors.
For 1 ≤ i ≤ n we define:

ui ∈ domT ,

L(ui) = di,

T (ui) = {A ∈ NC | di ∈ AI} ∪ {ri}

For this tree, one can inductively construct a run R starting from R(ε) =

(ε, q0), and just following the transition function δ, such that whenever we
have a node v ∈ R with R(v) = (u, qE), then L(u) ∈ EI . In fact, it is easy to
show that this is an accepting run of AC,T on T . Consequently, T ∈ L(AC,T )

and thus L(AC,T ) 6= ∅.

Since the automatonAC,T is polynomial in the size of the TBox T and the concept
C, this approach yields an ExpTime algorithm for concept satisfiability, which is
worst-case optimal [Sch91].

To reason inALCwith prototypes, we now have to achieve two more things: First,
for each prototype constructor P≤n(A), we have to transform the wapta A into an
unweighted automaton that accept exactly those trees T for which ‖A‖(T ) ≤ n.
Then we need to combine the alternating tree automaton AC,T defined just now
with the unweighted automata for the prototypes such that the resulting automaton
accepts exactly the tree models of C w.r.t. T . An emptiness test can then be used to
decide (un-)satisfiability for ALCP .

5.2.2 Cut-point Automata

Given a weighted alternating parity tree automatonA and a threshold value n ∈ N,
we want to construct an unweighted apta A≤n that accepts exactly the cut-point
language, i.e. L(A≤n) = {T ∈ Tree(P(Σ)) | ‖A‖(T ) ≤ n}. In this cut-point auto-
maton, each state needs to keep track of both the weight and the current state of
the corresponding weighted automaton. However, instead of tracking the weight
that has already been accumulated, it needs to track the weight that the automaton
is still allowed to spend. The reason for this is that, for trees, each state can have
multiple successors, and thus we have to budget the allowed weight for each of the
successors so that the sum is not greater than the threshold.
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Definition 87. Given a wapta A = (Σ, Q, q0, δ,Ω), the cut-point automaton A≤n =

(Σ, Q′, q′0, δ
′,Ω′) for the threshold n ∈ N is an apta defined as follows:

• Q′ = {(q, i) ∈ Q× N | i ≤ n} ∪ {q′0},

• Ω′((q, i)) = Ω(q), and

• the transition function δ′ with

δ′(q′0) =
∨

0≤i≤n

(q0, i)

δ′((q, i)) = δ(q) if δ(q) = σ,¬σ
δ′((q, i)) = true if δ(q) = j ≤ i

δ′((q, i)) = false if δ(q) = j > i

δ′((q, i)) = ♦(q′, i) if δ(q) = ♦q′

δ′((q, i)) = �(q′, i) if δ(q) = �q′

δ′((q, i)) = (q1, i) ∨ (q2, i) if δ(q) = q1 ∨ q2

δ′((q, i)) =
∨

0≤j≤i

(q1, j) ∧ (q2, i− j) if δ(q) = q1 ∧ q2. ♦

This automaton A≤n accepts exactly the cut-point language of A w.r.t. n.

Proposition 88. Let A be a wapta and A≤n the cut-point automaton derived from A
using the threshold n ∈ N. Then A≤n accepts the cut-point language, i.e., L(A≤n) =

{T ∈ Tree(P(Σ)) | ‖A‖(T ) ≤ n}.

Proof. We have to prove both directions. Given a tree T ∈ L(A≤n), and an accepting
run R of A≤n on T , we can construct a run R′ of A on T by removing all weights
from the labels of R. By induction on the weight i, we can then show that whenever
we have R(u) = (v, (q, i)) for some node u ∈ domR, all �-fixations of R′ starting
from u will have a weight at most i. This follows from the claim that the sum of the
weights of the children of a node v is never larger than the weight of v itself for all�-
fixations. Since the first successor of the root of R is labeled with R(0) = (ε, (q0, n)),
this means that weightA(R

′) ≤ n.
Similarly, if we have a tree T ∈ Tree(P(Σ)) with ‖A‖(T ) ≤ n, and a run R of

A on T with weightA(R) ≤ n, we can construct a run R′ of A≤n on T by setting
R′(u) = (v, (q, i)) where R(u) = (v, q) and i is the weight assigned by A to the
subtree of R rooted at u, starting in state q. It can then be shown that the run R′

obtained this way is an accepting run of A≤n on T , i.e., it satisfies all transition
conditions and all infinite paths are accepting.

The cut-point automatonA≤n has O(n · q) states, where q is the number of states
of the weighted automaton A. Thus, if n is encoded in unary, this construction is
polynomial, otherwise it is exponential.
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5.2.3 Reasoning in ALC with Prototypes

We want to combine the cut-point automata constructed from prototype concepts
with the automaton from Definition 84 in order to decide the concept satisfiability
problem in ALCP(wapta); more specifically, we want to construct an automaton
A that accepts all those (tree-shaped) pointed interpretations that are instances of
an ALCP(wapta)-concept w.r.t. an ALCP(wapta)-TBox.

For ALCP(wapta)-concepts, one can again define a normal form. This extends
the negation normal form from Definition 83 by requiring that prototype construct-
ors occur only in the form P≤n(A), possibly negated. For example, one can trans-
form P≥n(A) for n ≥ 1 into negation normal form by replacing it with ¬P≤n−1(A);
P≥0(A) can be replaced by >. The set of subconcepts now contains such prototype
concepts as well.

In case a prototype constructor occurs negated, the complement automaton Ā
for a cut-point automaton A can be constructed in linear time, by exchanging true

and false, ∨ and ∧, � and ♦, and σ and ¬σ for all σ ∈ Σ in all transition conditions,
as well as adding one to the priority of all states [Wil01].

Then, we can define the apta AP,C,T as follows:

Definition 89. Let T be an ALCP(wapta)-TBox of the form {> v CT } and C an
ALCP(wapta)-concept, with both C and CT in negation normal form, and letAi,≤n

be the cut-point automaton of the waptaAi for each prototype constructor P≤n(Ai)

occurring in C or CT .
The apta AP,C,T is the disjoint union of AC,T from Definition 84, all automata
Ai,≤n for prototypes P≤n(Ai) occurring positively in C or CT , and all automata
Āi,≤n for negated prototypes ¬P≤n(Ai) occurring in C or CT , such that the trans-
ition function of AC,T additionally is defined for subconcepts of the form P≤n(Ai)

and ¬P≤n(Ai) as follows:

δ(qP≤n(Ai)) = qi where qi is the initial state of Ai,≤n

δ(q¬P≤n(Ai)) = qi where qi is the initial state of Āi,≤n ♦

The following theorem is an easy consequence of Proposition 85 and Proposi-
tion 88.

Theorem 90. Given an ALCP(wapta)-TBox T and an ALCP(wapta)-concept C, the
concept C is satisfiable w.r.t. T iff L(AP,C,T ) 6= ∅.

Because of the size of the cut-point automata and the ExpTime-emptiness test for
alternating tree automata, concept satisfiability can thus be deciding in ExpTime
if the numbers are given in unary. This is worst-case optimal. If the numbers are
given in binary, the complexity of the algorithm increases to 2ExpTime. It is an open
problem whether this second exponential blowup can be avoided.

In conclusion, the automatonAP,C,T will accept all tree models of anALCP TBox
T where the root is an element of the ALCP concept C. In example 82, we showed
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how to construct a waptaAcup that measures the distance of objects to prototypical
cups. This prototype can be integrated into T or C via a concept P≤t(Acup). For
example, the concept

C = P≤2(Acup) u ∃filledWith.(GreenTea u ∃temperature.Hot)

can be used to describe all objects that are similar to prototypical cups (with a dis-
tance of of at most 2) and are currently filled with hot green tea. This concept is
satisfiable w.r.t. an ALCP TBox T (which may also contain Acup or other proto-
types), if AP,C,T accepts a non-empty language.

So far, we only considered one semantics for the weighted automata used to
define prototypes. As mentioned before, other semantics might be interesting as
well, in particular the semantics that interprets� as a sum instead of the supremum,
and thus add the distances of all successors. However, this would mean that the
wapta is no longer bisimulation-invariant, and thus its cut-point language cannot
be recognized by a (bisimulation-invariant) apta. However, we conjecture that
a stronger automaton model like graded alternating parity automata defined in
[KSV02] are expressive enough to describe the cut-point language if wapta with
this new semantics, although the construction will be much more involved.





Chapter 6

Conclusions

In this chapter we will provide a brief summary of achieved results, and mention
points of future work.

6.1 Main Results

The main results of this work can be split in two parts. In the first part, spanning
Chapter 3 and Chapter 4, we have been concerned with concept similarity measures
and their application to relax instance queries.

In Chapter 3, we introduced a new similarity measure ∼c, that works for general
EL TBoxes and fulfills all formal properties stated in Definition 20. To our know-
ledge, this is the only CSM of this kind. The measure∼c is parameterizable using a
primitive measure ∼p, a weighting function g, and a discounting factor w. As such,
it can be tweaked to different use cases, and for example encode preferences of
which features are more or less important for the overall similarity value. Despite
being used for relaxed instance queries, we believe that ∼c can be very useful in
other applications as well.

We extended this similarity measure to EL++, meaning that it can handle concrete
domains, role inclusions and nominals. While concrete domains in EL++ must
be p-admissible and have therefore very limited expressiveness, even just value
assignments can be useful when computing concept similarity values by choosing
an appropriate primitive concrete measure ∼D.

Chapter 4 is concerned with a new reasoning service for DLs that allows to relax
instance queries by means of concept similarity measures. By choosing appro-
priate similarity measures and parameters, this allows for domain- and context-
dependent relaxations of the query in order to not just get certain instances of the
query concept, but also similar alternatives. We have explored two methods for
computing relaxed instances in the description logic EL. The first method works for
arbitrary CSMs, as long as they are equivalence invariant and role-depth bounded,
but only w.r.t. unfoldable EL-TBoxes. Since we have no further knowledge about
the CSM employed for relaxing the query concept, we were only able to give a very
inefficient approach, which needs to check a non-elementary number of concepts in
the worst case. A second approach for answering relaxed instance queries restricts
to the∼c family of CSMs, but can handle general EL-TBoxes. We were able to show
that in this case, relaxed instance queries can be answered in NP.
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In Section 4.3 we presented the Elastiq system, an implementation of the relaxed
instance answering approach for general ELTBoxes, and evaluated the system using
two ontologies, one hand-crafted, and one real-world ontology. This evaluation
allowed us to conclude that the definition of relaxed instances is useful, but has its
quirks. Additionally, the performance of Elastiq was decent, but not great.

Finally, in the last section of Chapter 4, we have discussed the connection of
relaxed instance queries to the DL τEL defined in [BBF15]. We showed that graded
membership functions, which form the basis of τEL, can be defined for general EL
TBoxes using similar methods as for∼c, and yield an alternative approach towards
relaxing instance queries with better computational properties.

In Chapter 5 we introduced an extension to Description Logics that allows to
define and reason over prototypes. In particular, we introduced the prototype con-
structor P∼n(d) that is interpreted as the set of all elements of the interpretations
that have a distance ∼ n according to a prototype distance functions d. We gave ex-
amples of pdfs encoded as weighted alternating parity tree automata, and showed
that reasoning in ALCP(wapta) w.r.t. general TBoxes is ExpTime-complete, if the
numbers are coded in unary.

6.2 Future Work

There are many directions in which future investigations would be interesting.
For once, we have no lower bounds on the complexity of relaxed instance query
answering, neither in case of unfoldable, nor general TBoxes, and thus don’t know
if the derived complexities are worst-case optimal or not. On the other hand, these
approaches could always be extended to look at more expressive DLs, especially
more expressive Horn-DLs that also induce finite canonical models, or to work
with other kinds of similarity measures.

Similarly, it would be interesting to extend the query language, for example to
relax conjunctive queries instead of instance queries. However, the similarity meas-
ure itself is only defined for (essentially tree-shaped and rooted) concepts and not
for arbitrary query graphs. Therefore, an extension to conjunctive queries would
also require to extent the notion of similarity measures to queries. On the other
hand, we conjecture that the approach based on graded membership functions
can quite easily be extended to relax conjunctive queries. A practical evaluation of
the approach based on graded membership functions would be very interesting as
well, in particular in comparison with Elastiq.

As for prototypical definitions, the semantics of weighted alternating tree auto-
mata currently only allows weights to be combined using the the operations +, min,
and max. One can easily imagine other useful semantics, e.g. in order to allow for
discounting of weights with increasing depth; however, those semantics would
usually not admit regular cut-points anymore. The same is true if one wants to
interpret the �-operator by a sum instead of max, which would add the distances
of all successors instead of choosing the worst one, which makes the wapta no
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more bisimulation-invariant. Investigating more expressive automata models like
graded automata [KSV02] might be one way to solve this problem.

Two very useful extensions to prototypical definitions on the DL side would
certainly be nominals and quantified number restrictions. With those, it would
be possible to also reason over individual objects given in an ABox, and allow
prototypes to count. For example, this would allow to specify that a prototypical
cup has exactly one handle, and increase the distance for each additional handle.
We believe the approach can be extended by using fully enriched automata as
proposed in [BLM+06], which extend apta, amongst other things, with graded
modalities and nominals.
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