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Abstract 
 

As a cutting-edge technology for photoinjectors, SRF guns are expected to provide CW 

electron beams with high bunch charge and low emittance, which is critical to the 

development of future FELs, ERLs and 4th/5th generation light sources. However, existing 

research has not explored the full potential of SRF guns as predicted by theory.  

Currently, the research activities at ELBE focus on solving technological challenges of a 

3.5 cell SRF gun as well as applying it to high-bunch-charge experiments. This thesis aims to 

optimize the ELBE SRF gun and the relevant beam transport for future high-bunch-charge 

applications at pELBE, nELBE, TELBE and CBS experimental stations. Chapter 1 describes 

the demands of these applications on the SRF gun in detail. Chapter 2 outlines the 

development of a simulation tool based on ASTRA and Elegant, followed by the optimized 

gun parameters and the beam transport for the four experimental stations. Chapter 3 

introduces beam diagnostic methods and data processing applied in this thesis. Chapter 4 

presents results of experiments, including the pulse length measurement of the UV laser for 

generating electrons from the photcathode, the commissioning of ELBE SRF Gun II, a 

verification experiment on the LSC effect conducted at PITZ and a beam transport experiment 

with the bunch charge of 200 pC.  

Simulation results have determined the effect of each SRF gun parameter on the beam 

quality and have provided optimized settings according to the requirements in Chapter 1. 

Experimentally, the LSC effect was confirmed at PITZ, in agreement with simulations which 

indicated that LSC significantly influences beam quality. The performance of ELBE SRF 

Gun II was improved and a beam with a bunch charge of 200 pC and an emittance of 7.7 µm 

from ELBE SRF Gun II has been transported through ELBE without visible beam loss. 

The development of the simulation tool and beam diagnostics will serve further research at 

ELBE. Results of both simulations and experiments enrich the understanding of the existing 

SRF gun as well as the ELBE beamline and will guide continuing improvements. Already, 

ELBE SRF Gun II can deliver twice the bunch charge and lower emittance compared to the 

thermionic injector routinely used for ELBE.  Ongoing modifications and development of the 

gun-cavity and photocathodes are expected to provide still further improvements. Progress on 

high-bunch-charge experiments at ELBE can be expected by applying the SRF gun. 
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1. Introduction 

1.1. ELBE SRF Gun 

1.1.1. History of SRF guns 

Electron beams with high brightness, low emittance and high average current are demanded 

by cutting-edge and future accelerator projects, like Free Electron Lasers (FELs) [1], Energy 

Recovery Linacs (ERLs) [2] and 4th/5th generation light sources [3,4]. In most of these 

projects, photoinjectors are applied.  

Direct Current (DC) guns, Normal Conducting Radio Frequency (NCRF) guns and 

Superconducting Radio Frequency (SRF) guns are the three most important categories of 

photoinjectors. DC guns provide electron bunches with the state-of-art performance [5, 6] in 

Continuous-Wave (CW) operation with high-average-current record [7]. But the DC voltage 

applied to short accelerator gaps is limited to several hundreds of keV, with which the quality 

of high-bunch-charge beams is limited by space charge effects. NCRF guns have performed 

the best in pulsed applications with high bunch charges [8] but their repetition rate is limited 

by ohmic wall losses in normal conducting cavities, therefore, they are usually operated in 

pulsed modes, or in CW modes but only with low frequency and low gradient [ 9]. In 

comparison, SRF guns are almost free of ohmic wall losses as their cavities are 

superconducting. Meanwhile, SRF guns can also be operated with much higher fields than DC 

guns [10]. To achieve CW beams with good quality and high bunch charge has always been 

motivating SRF gun projects. However, the development of SRF guns is still challenged by 

the processing of cavities, the performance of photocathodes and their lifetime, as well as the 

risk of cavity contamination.  

The concept of the SRF gun was proposed in 1988 at the University of Wuppertal [11] and 

then different types of SRF guns have been developed in laboratories worldwide [12] with 

different approaches. Fig. 1.1 illustrates the distribution of SRF gun related studies with 

different features. Generally, SRF guns can be categorized by the ways how they combine 

photocathode with accelerating cavity.  
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Fig. 1.1 Worldwide SRF gun projects and researches. Courtesy NPS, Wisconsin University, BNL, STFC, 

Wuppertal University, DESY, HZB, KEK and PKU. 

As the first category, a DC-SRF gun was implemented in 2004 in Peking University (PKU) 

with a Pierce structure and a 1.5 cell superconducting cavity [ 13 ]. After that, a new 

photoinjector combining a DC Pierce gun and a 3.5 cell TESLA cavity has been developed as 

the injector of Peking University Free Electron Laser (PKU-FEL) facility and achieved stable 

mA-level average current in 2014 [14]. For this category of SRF gun, the DC gun in the front 

part reduces the risk of cavity contamination, however, the relative low gradient is not enough 

to conquer the space charge effect in high-bunch-charge operations.  

The second category of SRF gun combines normal conducting cathodes directly with 

superconducting cavities. Six examples are included in this category and they are the majority 

of the SRF gun community. 

At Helmholtz-Zentrum Dresden-Rossendorf (HZDR), a cathode working at 77 K is 

installed in a 1.3 GHz cavity with 3.5 TESLA-shaped cells working at 2 K. A choke filter is 

installed between the half cell and the cathode cooler to reduce RF leak. Development of this 

gun will be presented in detail in Section 1.1.2.  

In the same way of combining cathode and cavity, a 1.4 cell 1.3 GHz TESLA cavity based 

SRF gun project is developing in Helmholtz-Zentrum Berlin (HZB) [15], which has been 

designed to provide a 100 mA beam with CsK2Sb photocathodes for a 50 MeV ERL facility, 

named bERLinPro.  
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In Brookhaven National Laboratory (BNL) a 704 MHz half-cell SRF gun has been 

constructed for the R&D ERL project. It is designed to provide 0.5 A, 2 MeV electron beams. 

In 2014 the first beam was successfully generated [16].  

The remaining three guns in this category use Quarter Wave Resonators (QWR) instead of 

elliptical cavities. All of them were manufactured by the company NIOWAVE. This structure 

has the advantage of lower frequency, which leads to a higher operation temperature up to 

4.5 k. The first SC QWR prototype gun has been developed in Naval Postgraduate School 

(NPS) for NPS FEL. It works at 500 MHz and had the first beam in 2010 [17]. The second SC 

QWR photoinjector has been developed in Brookhaven National Laboratory (BNL) for 

electron cooling purpose with the worldwide lowest frequency of 112 MHz [18]. The third 

SRF gun of this type was developed in University of Wisconsin, working at 200 MHz, for a 

2.2 GeV X-ray FEL [19]. 

The third category refers to the SRF gun in Deutsches Elektronen SYnchrotron (DESY), 

which is a 1.6 TESLA cell gun developed for the Free electron LASer in Hamburg (FLASH) 

as well as European X-ray Free Electron Laser (XFEL) [20]. This gun features the “all 

superconducting” design without a normal conducting cathode, while the back wall of the 

niobium cavity is coated with lead as the electron emitter. Such a design sacrifices high 

Quantum Efficiency (QE) but assures the cleanness of the cavity, which is ideal for CW 

applications with moderate bunch charge. 

As the fourth category, a very recent TESLA cell based SRF gun project at KEK started in 

2013 for the KEK 3 GeV ERL project, aiming to provide a 100 mA beam at 1.3 GHz for CW 

operation, with a bunch length of 3 ps and an emittance below 1 µm [21]. Besides these 

impressive parameters, an interesting design is the back illuminated cathode for shaping the 

laser profile easily with a shorter focal distance [22]. The structure of the cathode is shown in 

Fig. 1.2. LiTi2O4 is a new material featuring both transparency and superconductivity, which 

allows the laser to pass through and the RF to be reflected at the same time. The top layer of 

K2CsSb has a very high QE which is over 30% at 405 nm, while at KEK the 355 nm Ultra 

Violet (UV) laser has been applied.  
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Fig. 1.2 The structure of the back illuminated photocathode of the SRF gun at KEK [22].  

Besides the above four categories of SRF gun projects having been or being constructed, a 

conceptual design of SRF gun was made in STFC Daresbury Laboratory for Euro FEL Design 

Study, aiming to provide a strong current of 100 mA [23]. The specialty in this design is three 

separated 120°-mounted couplers with “pringle” shaped antennas minimizing the RF 

penetration into the beam pipe, shown in Fig. 1.1. This design is supposed to provide high 

level coupling (Q = 105) as well as highly asymmetric RF fields. 

1.1.2. Development of SRF guns at HZDR 

At HZDR, the research on SRF guns started in 1997. In 2002, for the first time worldwide, 

an electron beam was obtained from the SRF gun named DROSSEL [24]. A 1.3 GHz half-cell 

niobium cavity accelerated electron bunches from normal conducting photocathodes to 

900 keV kinetic energy, and then the beam was injected to a dedicated diagnostics beamline. 

DROSSEL was the first proof that the combination of a normal conducting photocathode 

inside, while isolated from a superconducting cavity can work stably. 

From 2004 to 2014, a 3.5 cell cavity based gun was developed and commissioned [25]. A 

UV laser system as well as a new diagnostics beamline was developed in collaboration with 

DESY, HZB and Max-Born-Institute (MBI). The cavity was designed in HZDR and produced 

by the company Research Instruments (RI). This gun was installed as one of the electron 

injectors of the “superconducting Electron Linac for beams with high Brilliance and 

low Emittance (ELBE)”, hence, it was named “ELBE SRF Gun I”. In 2013 it was utilized for 

the generation of an infrared FEL with a bunch charge of 20 pC and a current of 260 µA [26]. 

The ELBE SRF Gun I was designed to provide beams with the energy of 9.5 MeV, the 

maximum bunch charge of 1 nC and the emittance of 1 µm. But the cavity gradient could not 

reach the designed value due to scratches during high pressure rinsing and later its 

performance became even worse after several times of cathode changing. As the best 

performance of the cavity, this gun reached a CW gradient of 6.5 MV/m with kinetic beam 

http://ww.desy.de/
http://www.helmholtz-berlin.de/
http://www.mbi-berlin.de/
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energy of 3.3 MeV and a pulsed RF gradient of 8 MV/m with kinetic beam energy of 4 MeV. 

The maximum current extracted from the Cs2Te cathode has reached 400 µA. 

In 2014, the upgraded ELBE SRF Gun II was installed and tested with a copper 

cathode [27 ]. The gradient was enhanced to 10 MV/m by a new constructed fine grain 

niobium cavity, in which field strength near the cathode is also higher than that of the old 

cavity for the same gradient, therefore the space charge effect has less influence. Besides the 

higher gradient, ELBE SRF Gun II contains a superconducting solenoid installed inside the 

cryostat for emittance compensation [28].  

In 2015, a serious contamination happened in the process of cathode exchanging. The 

Cs2Te cathode was polluted as well as the cavity itself. The gradient limitation was reduced to 

7 MV/m and then gradually increased to 8 MV/m by RF power processing of the cavity. New 

cathode transfer chambers have been constructed to avoid the contact of the cathode and the 

vacuum tube. Meanwhile, magnesium cathodes are prepared as a safer replacement to produce 

some hundreds of pC electron bunches. The experiments presented in this thesis are all 

conducted with magnesium cathodes. 

In the following of this thesis, the value of the (average) gradient of ELBE SRF guns is 

always about twice of the possible maximum kinetic energy value of the outcome electron 

bunches, as the length of the cavity is about 0.5 m. 

1.1.3. Setup of ELBE SRF Gun II 

This section introduces the current setup of ELBE SRF Gun II [29]. Fig. 1.3 is the cutaway 

view into the cryostat.  

The core part of the SRF gun is a 3.5 cell fine grain niobium cavity, tested in Thomas 

Jefferson Laboratory [30]. The gradient at the entrance plane of the cavity is about 80 percent 

of the peak gradient. The 1.3 GHz RF is coupled from the main coupler with two RF windows 

applied to insulate the coupler. The resonance frequency can be achieved by tuning the cavity, 

realized by mechanically squeezing the niobium cells. The quality factor of the cavity is 

5 × 109. 

The cathode is located several millimeters outside of the cavity entrance plane, to generate 

a transverse focusing RF field to control the emittance growth [28]. As another applied 

method of emittance compensation, a superconducting solenoid is located 40 cm downstream 

of the cavity. The SRF cavity and the solenoid are cooled down by liquid helium to 2 K, while 

https://www.jlab.org/
https://www.jlab.org/
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the cathode nearby works at 77 K, cooled by liquid nitrogen. Twelve titanium strings fix the 

low temperature parts to the cryostat, as well as separating them from room temperature.  

 

 
Fig. 1.3 The cutaway view of ELBE SRF Gun II. 

A UV laser beam with a wavelength of 263 nm illuminates the photocathode to produce 

initial electron bunches [31]. The maximum power of the laser is 1 W, working at 13 MHz 

with the Full Width Half Maximum (FWHM) bunch length of 3 ps, or 100~500 kHz with the 

FWHM bunch length of 12~15 ps. 

The development of photocathodes with high QE, long lifetime, low thermal emittance and 

prompt time response plays an important role in photoinjectors. Copper, magnesium and 

Cs2Te cathodes are designed to be used for ELBE SRF Gun II. Copper cathodes provide a QE 

of 10-5 with the bunch charge of several pC, used only for the demonstration of the cavity and 

the first commissioning. Magnesium cathodes have a higher QE of 10-3 after laser/ion-beam 

cleaning [32~34] and provide bunch charges of some hundreds of pC. Cs2Te cathodes have 

the highest QE in the order of 10-2, but the preparation process is more complicated and the 

requirement to the vacuum is also higher.  

At HZDR, Cs2Te cathodes are prepared in a chamber with the vacuum of 10-9 mbar in a 

clean room. As shown in Fig. 1.4, up to 6 cathodes can be loaded inside the transport chamber. 

The working cathode can be exchanged using the manipulator. The highest QE up to now is 

1 × 10−2 and the longest lifetime is over 1 year, with 234 C of electrons extracted.  
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Fig. 1.4 Cathodes transport and transfer system of ELBE SRF Gun II. 

The magnesium cathodes are cleaned by the same UV laser as used for bunch generation, 

but focused to produce a higher photon density. The cleaning is operated in the transport 

chamber when it is connected to the SRF gun. The QE of the magnesium cathode reached 

, while the best QE in literature is  [33].  
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1.2. ELBE accelerator 

The ELBE accelerator is a high-power radiation sources open for users all over the world. 

The main radiation is an SRF Linac based, CW operating electron beam with the maximum 

energy of 40 MeV and the maximum current of 1.6 mA [35]. Fig. 1.5 illustrates the layout of 

ELBE. 

 
Fig. 1.5 The layout of ELBE. 

The injector routinely used in ELBE is a DC gun with a grid-pulsed thermionic 

cathode [36]. It provides a pulsed electron beam with an energy of 250 keV, a maximum 

bunch charge of 77 pC, a normalized transverse emittance of 13 µm and a bunch length of 

500 ps. Electron bunches are first compressed in the subsequent drift path by the energy 

modulation produced in a subharmonic buncher running at 260 MHz, then further compressed 

in the following 1.3 GHz fundamental buncher before entering the first superconducting 

cavity. 

The electron beam from the DC thermionic gun is accelerated by two SRF Linacs. Each 

Linac contains two 9-cell Nb TESLA cavities working with 1.3 GHz standing wave. The 

operation temperature is 2 K, cooled by superfluid helium. The designed energy gain of each 

cavity is 10 MeV and the quality factor is 1010. Two chicanes are installed for bunch 

compression. One of them is located between the two Linacs and the other is after the second 

Linac. Each chicane consists of 4 dipoles, arranged in a D-shape.  

The direct use of the electron beam includes radiobiology research and the interaction with 

ultra-intense lasers for Thomson scattering experiments. In addition, the electron bunches are 

also used to generate secondary user beams of two FELs operating in the IR/THz regime; a 

fast neutron beam; a Bremsstrahlung gamma-ray beam; a low-energy positron beam, patented 

single-electron test beams and THz radiation [35].  
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1.3. High bunch charge applications 

1.3.1. Positrons (pELBE)  

At ELBE a monoenergetic positron beam is created by pair production from the primary 

electron beam at a multi-layer tungsten target. The positron experiment station is referred to as 

pELBE. The energy of the positron beam is adjustable in the range from 0.5 to 15 keV. The 

positron flux is 106 /s and the time structure inherits that from the electron beam. 

One of the applications of the positron beam is to measure the size of defects in certain 

materials [37]. Nowadays Complementary Metal-Oxide-Semiconductor (CMOS) with low 

dielectric constant shows the potential of increasing the computer performance by faster 

response and lower heat consumption. One way of reducing the dielectric constant is to 

generate defects in the material. 

Positrons can be trapped in these defects in the form of positronium, which is a 

combination of a positron and an electron behaving like a hydrogen atom. A positronium with 

the total spin of 1 is called ortho-positronium (o-Ps), while one with the total spin of 0 is 

called para-positronium (p-Ps). The average lifetime of an o-Ps is over 1000 times of that of a 

p-Ps. The size of the defects determines how frequently positroniums collide with material 

wall, that is, how frequently a long-lifetime o-Ps has a chance to be transferred to a short-

lifetime p-Ps and annihilates immediately. Therefore, by measuring the emitted photon beam 

intensity with respect to time, the lifetime of positroniums can be measured and 

correspondingly the dimension of the defects can be calculated. 

For the measurement of average positron lifetime, a lower frequency of the electron beam 

enables a wider measurement range, while higher bunch charge leads to higher positron 

intensity, which increases the measurement accuracy. Therefore, pELBE requires the bunch 

charge of the electron beam to be as high as possible, which is one of the motivations of 

developing the SRF gun for ELBE.  

At 140 mm before the target, there is a 0.2 mm thick, 8 mm diameter beryllium window, 

isolating the vacuum of the beamline. The beryllium window scatters the beam, and by the 

theory of multiple scattering through small angles [ 38 ] the rms scattered angle can be 

estimated by:  
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 θ0 = 
13.6 MeV

vp
Z√

s

S0
[1 + 0.038 ln (

s

S0
)] (1-1) 

where v, p and Z denote the velocity, momentum and the charge number of the incident 

particle respectively, while s/S0 is the thickness of the scattering medium over the radiation 

length. For beryllium, the radiation length S0 is 35.3 cm, and θ0 is calculated to be 30 mrad 

for a typical 30 MeV beam. 

The designated transverse beam diameter on the tungsten target is 5 mm, while the overall 

target is a 10 mm × 10 mm square. In order to transport most of the scattered beam into the 

target, the phase space of the electron beam on the beryllium window is preferred to be inside 

the region of: 

 |rbe + l(rbe
′ ± θ0)| ≤ Rtar (1-2) 

where rbe  and rbe′  are the transverse position and divergence of the electron beam 

respectively, l  is the distance from the beryllium window to the target and Rtar  is the 

maximum possible radius on the target. The solution of Equation (1-2) is shown in Fig. 1.6 

where the area between two lines in the phase space accepts the beam with an angle smaller 

than θ0. If this condition cannot be satisfied, a suboptimal condition should be applied, which 

is described in Section 1.3.2 for neutron beamlines. 

 
Fig. 1.6 Geometries of the scattered electron beam on the beryllium window and the target (left). The area of 

acceptance on the beryllium window (right).  

The requirements on the electron beam for the positron generation are summarized in Table 

1.1. The requirements on the energy spread and the bunch length are satisfied in most cases. 

The total energy depends on the performance of SRF cavities. A high bunch charge and the 

transverse phase space at the window are the main challenges of beam transport.  
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Table 1.1 Requirements of pELBE & nELBE on the electron beam. 

parameter pELBE & nELBE requirement 

bunch charge as high as possible 

energy as high as possible 

energy spread ≤ 5% 

bunch length ≤ 20 ps overall 

transverse bunch size ≤ 8 mm overall 

transverse divergence required by the Be window 

transverse emittance — 

dark current as low as possible 

1.3.2. Neutrons (nELBE) 

A very compact neutron Time-of-Flight (ToF) system has been built at ELBE, named 

nELBE [39]. Electron beams are injected into a liquid-lead neutron radiator to produce 

neutrons with a continuous range of energies, together with the bremsstrahlung by the 

interaction of electrons and lead nucleus. With an electron beam of which the repetition rate is 

0.2 MHz, the measurable energy range for neutrons is from 100 keV up to 10 MeV. In this 

energy range, the measurement of the cross section for neutrons is demanded by basic 

scientific researches and technical applications. Also, the long term needs of the nuclear data 

have been formulated [40]. 

The neutrons are emitted almost isotropically from the radiator, while most of the electrons 

and the bremsstrahlung photons mainly travel in the forward direction. To obtain a higher 

neutron-to-photon rate, the 90° scattered neutrons are selected by a collimator to perform ToF 

measurements. A BaF2 scintillation detector array is built to capture neutrons. Li-glass 

scintillators and a plastic scintillator wall have been developed to detect neutrons[41]. 

The neutron intensity at the measurement position is determined by the radiator dimensions, 

the length of the neutron flight path and the power of the electron beam. Besides, with the 

same energy and the same average current, a higher bunch charge increases the Signal to 

Noise Ratio (SNR). In addition, a lower repetition rate increases the measurable flight time of 

neutrons, corresponding to a wider measureable energy range. To achieve higher bunch 

charges and lower repetition rates, the SRF gun is designed to have a 100 ~ 500 kHz laser 
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mode with the maximum current of 1.6 mA, which is limited not by the gun itself but by the 

Helium system for the whole accelerator. 

A beryllium window is also used for nELBE to separate the vacuum before the liquid-lead 

target, located 190 mm before the target. The thickness of the window is 0.2 mm and the 

diameter is 8 mm. The requirement of the transverse phase space should be the same to that 

for pELBE, however, for an energy lower than 34.2 MeV, the geometric setting of the 

window in nELBE satisfies , implying that the acceptance area in Fig. 1.6 will 

vanish. In this case, to obtain the highest electron current on the target, the phase space of the 

incident beam should be manipulated to meet: 

  (1-3) 

where , ,  are the Twiss parameters of the electron beam, and 

 defines the orientation of the phase ellipse [ 42 ], illustrated in Fig. 1.7. The 

requirements of the electron beam at nELBE are the same as for pELBE, listed in Table 1.1. 

 
Fig. 1.7 Indication of the case in which the scattered beam is larger than the target, even when the incident beam 

has zero radius and zero divergence (left). In this case, the incident beamlet at any position of the beryllium 

window should point to the center of the window, therefore the orientation of the phase space should be .  

1.3.3. THz radiation (TELBE) 

The high-field high-repetition-rate THz user facility TELBE has been built up and 

commissioned recently [43]. An undulator and a silicon mirror with a 4 mm diameter aperture 

are installed as two radiators at TELBE. The undulator generates 8 cycle radiations with the 

frequency tunable from 100 GHz to 3 THz. The silicon mirror generates single cycle of the 

Coherent Transition Radiation (CTR) or the Coherent Diffraction Radiation (CDR). 

http://www.hzdr.de/db/Cms?pNid=2609
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Radiations generated by both the undulator and the silicon mirror are intrinsically 

synchronized to each other, as they originate from the same electron beam of ELBE. 

THz radiations from short relativistic electron bunches carry information of the arrival time, 

the charge and the pulse's longitudinal profile. TELBE aims to develop the THz based Beam 

Arrival-time Monitor (BAM) and the Bunch Compression Monitor (BCM) for fs-diagnostics 

of quasi-CW electron beams. Meanwhile, with the worldwide unique repetition rates up to the 

MHz regime, the high-field THz pulses can also be used for THz driven dynamics, such as 

duty-cycle hungry spectroscopic techniques [44] and time-resolved near-field microscopy [45]. 

The typical compressed electron bunch at ELBE has the bunch length of 1 ps, much shorter 

than the period of the THz radiation. In this case, the coherent radiation dominates the 

radiation intensity, which is proportional to the square of the longitudinal charge density. 

Therefore, the bunch charge of the electron beam is crucial for the THz generation, so is the 

bunch length.  

Other requirements are listed in Table 1.2. The requirement of the 4 mm diameter comes 

from the aperture of the silicon mirror, and the high energy influences the cutoff of the 

measured signal.  

Table 1.2 Requirements of TELBE on the electron beam. 

parameter THz requirement 

bunch charge as high as possible 

energy as high as possible 

energy spread — 

bunch length FWHM as short as possible 

transverse beam size ≤ 4 mm diameter 

transverse divergence — 

transverse emittance — 

dark current — 

1.3.4. Compton backscattering (CBS) 

Compton backscattering (CBS) is one of the most effective methods of gaining energy for 

photons [ 46 ], producing intense pulses tunable from hard X-rays to γ  rays with finite 

bandwidth [47,48]. The mechanism of Compton scattering is also referred to as Thomson 

scattering when the recoil of electrons is negligible [49], which is the case at ELBE.  
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The longest beamline of ELBE delivers the electron beam to perform the CBS experiments 

with a 150 TW laser which is the DResden lAser aCceleration sOurce (DRACO) [50,51]. The 

electric field of the laser pulse acts on electron bunches like a traditional undulator, but with a 

much smaller spatial period, which is the laser wavelength. Compared to those facilities 

operating at GeV regime with kilometers long traditional undulators such as LCLS, 

SACLA  and XFEL, Thomson scattering requires a much lower energy from the electron 

beam, for emitting photons with the same energy [49]. The development of such a compact 

laser-electron-interaction based source for ultra-short (≤ 1 ps), hard (1 keV) X-ray pulses is 

motivated by the single exposure experiments in the scientific fields like ultrafast phase 

transitions [52], structural dynamics [53] and (bio)chemical reactions [54].  

The DRACO laser spot can be expanded to a maximum FWHM diameter of 35 µm, which 

is a quite small dimension for electron beams with bunch charges over 100 pC. The number of 

electrons that can be focused into this region dominates the intensity of the generated X-ray. 

A Final Focusing System (FFS), which consists of four strong permanent magnet quadrupoles, 

has been developed to focus the electron bunch just before the interaction point. In this 

application, the challenge for the SRF gun is not only the higher bunch charge required, but 

also a small emittance for the crucial transport requirements. 

The measurement range of the current photon detector requires the energy of the electron 

bunch to be less than 25 MeV. The bunch length is preferred to be less than 1 ps. The energy 

spread and transverse emittance are important before the FFS, which will influence the 

minimum size of the focused beam. All requirements are listed in Table 1.3. 

Table 1.3 Requirements of CBS experiments on the electron beam 

parameter CBS requirement 

bunch charge as high as possible 

energy ≤ 25 MeV 

energy spread as small as possible before the FFS 

bunch length ≤ 1 ps 

transverse beam size FWHM 35 µm the best 

transverse divergence — 

transverse emittance as small as possible before the FFS 

dark current as low as possible 
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1.4. User-motivated optimization 

This PhD work is based on the current setup of ELBE SRF Gun II, aiming to optimize the 

beam quality according to the requirements of the high-bunch-charge applications. Both the 

operation of the gun and the beam transport are relevant to this purpose.  

From the aspect of the SRF gun itself, the first challenge comes from the gradient which is 

currently lower than the designed value. When an electron bunch with several hundreds of pC 

is initially generated from the cathode with its energy less than 1 eV, it is strongly space 

charge dominated and will expand in the 3D space meanwhile the emittance will also increase. 

The space charge effect declines with energy, thus, a lower gradient reduces the highest 

possible bunch charge. It is of importance for developing the SRF gun project to improve the 

beam quality in addition to increasing the gradient.  

The second challenge of the SRF gun is the dark current. For high bunch charge operation 

at 100 kHz for example, the duty factor of a typical 10 ps bunch is 1 × 10−6, while the field 

emission of the CW 1.3 GHz RF cavity produces a dark current in about 60% of the time. 

Therefore, for nELBE, pELBE and CBS experiments where detectors perform accumulation 

of measured signals, the dark current contributes to the main part of the noise.  

From the aspect of the beam transport, space-charge-relevant effects like coherent 

synchrotron radiation, wake potential and longitudinal space charge should be carefully 

considered in ELBE beamline, as the beamline is not designed for the SRF gun with a high-

bunch-charge beam in the first place. Studies in this thesis indicate that these effects influence 

the beam quality substantially.  

To optimize the gun parameter and the beam transport according to the requirement of 

experimental stations, a proper optimization procedure is necessary. Instead of scanning all 

parameters of the beamline which is almost impossible in both experiments and simulations, 

independent optimization tasks are separated and conducted in simulations, which are also 

used to guide the experiments in this thesis.  

The simulation based optimization is presented in Chapter 2. Necessary beam diagnostics 

are improved or developed as presented in Chapter 3. Experimental results are shown and 

analyzed in Chapter 4. The purpose of the entire work is not to achieve certain parameter 

records of an SRF gun, but to make the gun serve better in the ELBE center.   
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2. Theory and simulation 

2.1. Introduction 

Parallel to the hardware development of ELBE SRF guns including cavity test, cathode 

preparation, installation and commissioning, a simulation tool has been built up to study the 

dynamics of the gun and the accelerator. It is flexible to process most settings of the SRF gun 

and has been used to optimize the transport of high-bunch-charge beams to user stations. 

In this simulation tool, the emission of the electron bunch and its acceleration in the gun 

cavty are simulated with ASTRA [55], using RF field distributions calculated with Superfish 

[56]. The following beam transport is simulated with Elegant [57], with the Green’s function 

of Screen-stations calculated in CST [58] to estimate wake potentials. To execute ASTRA and 

Elegant sequentially, a LabVIEW interface is programmed, which can also be used to process 

the simulation results.  

This chapter is organized as follows: frequently used parameters in the following chapters 

are described or defined first in Section 2.2. In the next, important physical effects included in 

the simulation are generally investigated and exemplified in Section 2.3 - 2.5. Then the 

simulation tool is introduced in Section 2.6. After that, the dependence of beam quality on gun 

parameters are presented, as well as choices of optimized gun-parameter combinations for 

different purposes of beam transport in Section 2.7. With these combinations, optimization 

methods for beam transport are proposed based on the setting of ELBE, followed by 

optimization results for pELBE, nELBE, TELBE and CBS presented and analyzed in Section 

2.8. 

As mentioned, the ELBE beamline was not designed in the first place for the SRF gun. For 

the first time, this simulation study has analyzed challenges of experiments at ELBE using the 

SRF gun and has provided guidance on how to improve the beam quality. 
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2.2. Parameterization of beam quality  

This section introduces parameters used in this thesis to represent the beam quality. Some 

of the parameters are commonly used in accelerator science, while others are newly defined to 

simplify the following analysis.  

The coordinates of all particles in the 6D phase space of (x, x′, y, y′, t, E) contains the 

complete information about a bunch, where x is the horizontal coordinate, x′ is the horizontal 

angle, y is the vertical coordinate, y′ is the vertical angle, t is the temporal coordinate and E is 

the energy. The origin for x, x′, y, y′ or t is the numerical average of all particles. Statistical 

averages of parameters are used to describe the bunch instead of coordinates for all particles. 

Using u to represent x or y, the statistical average parameters for a bunch of n electrons 

used in this thesis include: 

- E̅: The average energy of all electrons. 

- σu: The rms horizontal/vertical bunch radius, σu = √1 n⁄ ∙ ∑ u2. 

- ∆u: The FWHM value of the horizontal/vertical bunch radius. 

- σu′: The rms horizontal/vertical bunch divergence, σu′ = √1 n⁄ ∙ ∑ u′2. 

- εu: normalized rms horizontal/vertical emittance. 

 εu =  βγ√σu2 ∙ σu′2 − (1 n ∙ ∑ u ∙⁄ u′)2 , whereβ  and γ are relativistic parameters of 

the bunch center.  

- σt: The rms bunch length, σt = √1 n⁄ ∙ ∑ t2. 

- ∆t: The FWHM bunch length. 

- σE: The rms energy spread, σE = √1 n⁄ ∙ ∑(dE)2, where dE = E − E̅. 

- αu: rms Twiss parameter, αu = −√(1 n ∙ ∑ u ∙⁄ u′)/ εu. 

- βu: rms Twiss parameter, βu = σu2/εu. 

- γu: rms Twiss parameter, γu = σu′2/εu. 

From the definitions above, Twiss parameters satisfy the following equation: 

 βuγu − αu
2=1 (2-1) 
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The relation between Twiss parameters and the phase ellipse in Transverse Phase Space 

(TPS) is shown in Fig. 2.1.  is the orientation angle of the phase ellipse, which will be 

introduced in the following paragraphs.  

 
Fig. 2.1 Twiss parameters in phase space. 

Electron bunches from the SRF gun are accelerated by the RF field of a 3.5 cell standing-

wave cavity. Electrons at different longitudinal positions experience different fields. It leads 

to different distributions of slices along the bunch in TPS, as a result of which the transverse 

emittance can be enlarged. This phenomenon is referred to as “slice mismatch.” To study the 

slice mismatch quantitatively, following parameters are defined: 

- : The “mismatch phase” of an individual slice in the horizontal/vertical phase space, 

, where  and  are the orientation angles of an individual slice 

and the total bunch respectively. 

- : The overlap ratio of the mismatch phase. This parameter is defined to represent 

the degree of orientation-overlap among all slices throughout the bunch. 

, where  and  are the maximum and 

minimum mismatch phases for all slices,  is the number of slices and  is the slice 

index. The intuition of this parameter will be explained in Section 2.5.1. 

- : Normalized mismatch phase, , where  is the standard 

deviation of mismatch phases for all slices. 

- : Horizontal/vertical kick of an individual slice, which is the horizontal/vertical 

distance between the slice center and the bunch center. Through dipoles, slices with 

different energy have separated positions at the exit.  



Chapter 2. Theory and simulation 

19 
 

- : The overlap ratio of the horizontal kick of slices, representing the degree of 

transverse-position-overlap among all slices throughout the bunch. 

, where  and  are the maximum and minimum 

horizontal kick for all slices. 

- : normalized kick by rms beam size,  

- : The weighting average of the horizontal/vertical slice emittance in the bunch. 

The weight is the number of particles in each slice. 

For the purpose of bunch compression, it is of interest to study the bunch distribution in 

Longitudinal Phase Space (LPS). In addition to bunch length and energy spread, the following 

two longitudinal parameters are defined: 

- : The slope of the linear fitting in the LPS of the entire bunch. 

- : This parameter is to quantify the nonlinearity of the distribution in LPS. 

, where  Is the linearly fitted energy of an individual particle. 

The above slice-based parameters are shown in the phase space in Fig. 2.2. 

 
Fig. 2.2 The slice-based parameters. 

Simulations to be presented in the following are conducted with 105 particles. For output 

bunches of ASTRA, electrons are recorded at the same time at different longitudinal positions. 

To compare simulated emittance with usual measurements at a fixed position, the “projected 

emittance” is applied such that all particles are drifted to their longitudinal center along the 

tangent of individual movement before the emittance calculation. However, for output 

bunches of Elegant, the emittance is calculated directly since electrons are recorded at the 

same longitudinal position. Moreover, “emittance” here always refers to the transverse 

normalized rms emittance, either by default for the entire bunch or as indicated for slices. All 
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numbers concerning the bunch size, the bunch length and the energy spread are rms values, 

unless indicated otherwise. 
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2.3. Initialization from cathodes 

The cavity of ELBE SRF Gun II was tested with a Cu cathode, which generates less than 1 

pC electron bunches. The Cu cathode was also used for studying dynamics of the SRF gun 

without space charge effects. For high-bunch-charge operations, Mg cathodes and Cs2Te 

cathodes were prepared and applied. In simulations the initialization of the bunch emitted 

from these three kinds of cathodes is included. 

For all cathodes, the spatial distribution of electrons is assumed to be a classic distribution 

by ASTRA, e.g., Gaussian or uniform distribution, in 3 dimensions. The momentum 

distribution, however, is different between metal and semiconductor.  

In Cs2Te, electrons are first excited by photons from the valence band to the conduction 

band, and then migrate to the solid surface. If the energy of the electron is higher than the 

threshold of the surface potential barrier, it is possible for the electron to cross the surface [59]. 

If the UV laser with the photon energy of 4.72 eV (wave length of 263 nm) hits the surface of 

Cs2Te, some electrons will be excited to an energy state lower than the photon energy value 

(tunneling is neglected). As shown in Fig. 2.3, the state density below 4.72 eV is the highest 

around the energy band of 4.05 eV, therefore most electrons will be excited to this energy 

band. After conquering the surface potential barrier of 3.5 eV, the majority of emitted 

electrons will have the kinetic energy of Ekin = 0.55 eV.  

 
Fig. 2.3 Schematic band structure of Cs2Te. Dark lines indicate the density of energy states [59]. 

The momentum directions of the emitted electrons are assumed isotropic in a half-sphere 

facing outward the cathode surface, resulting in the following thermal emittance of Cs2Te 

cathodes: 

 εu(Cs2Te) = σu⋅√
2Ekin
3E0

 (2-2) 
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where σu is the rms bunch size and E0 is the rest energy.  

The electron emission from metals (in this thesis for Cu and Mg) is calculated in Reference 

[60]. The distribution of electrons in the cathode obeys Fermi Dirac function. Photons excite 

electrons to an energy of higher than the Fermi energy, and the electrons escape the surface 

into vacuum. The spill-out electrons experience electric fields from the mirror charge, as well 

as the applied field from the cavity. The total field is called “Schottky potential” which 

influences the work function of the metal. Accordingly, the effective work function with the 

Schottky effect considered is: 

 
ϕeff = ϕw − √

eFa
4πε0

 (2-3) 

where ϕw is the work function of the metal and Fa is the applied field on the cathode. Fig. 

2.4 illustrates the emission procedure and the effective work function.  

 
Fig. 2.4 Photoelectric effect based electron emission from metal surface [60]. 

Calculations in Reference [60] solved the distribution of the 3D momentum which is 

applied here to initialize the bunch. The thermal emittance of the bunch is: 

 εu(Metal) = σu⋅√
Ep −ϕeff

3E0
 (2-4) 

where Ep is the energy of the incident photons. 
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2.4. ASTRA simulation for the gun 

2.4.1. Physics and approximations 

After the bunch generation, the coordinates of particles are tracked with the RF field of the 

gun-cavity and the DC field applied on the cathode to suppress the multipacting emission of 

secondary electrons. 1D DC and RF fields are calculated in Superfish and then called by 

ASTRA. Field data with typical parameters (DC voltage = 5 keV, gradient = 7.5 MV/m, see 

Section 2.7) for different cathode positions are shown in Fig. 2.5, which are further expanded 

to generate the 3D field distributions [55].  

 
Fig. 2.5 DC and RF fields calculated in Superfish with different distances between the cathode and the back 

plane of the cavity. The DC field is about one magnitude lower than the RFfield and decays in a few millimeters. 

Except for applied fields, the extracted bunches also experience self-induced electric field 

from the surface of the cathode. ASTRA calculates the mirror charge, assuming that the 

cathode surface is an infinite plane. However, in reality the geometric borders of the cathode 

and the back plane of the cavity are more complicated. The cathode is retreated several 

millimeters to perform an RF focusing of the generated bunch [61], resulting in new mirror 

charges from the cavity tube, through which the cathode is inserted towards the cavity. The 

complex geometries for mirror charges are simplified in ASTRA, but the RF focusing is 

included. High order terms of the expanded 3D fields are important to obtain sufficient 

accuracy in calculations of the RF focusing. 

The space charge effect is calculated in ASTRA in three steps. Firstly, space charge fields 

are calculated in grid cells based on the initial distribution of electrons. Secondly, the kicks to 

the coordinates of electrons in 6D phase space are calculated in a time step. Thirdly, the space 

charge field is scaled by the new 3D distribution of the bunch. If the scale parameter is larger 

than what the user has defined as the threshold, a new space charge field will be calculated. 
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The accuracy of the space charge calculation depends on the proper choice of the grid which 

has to be specified by the user. On one hand, if the number of grids is too small, the field is 

not smooth enough. On the other hand, too many grids result in artificial structures of the field 

[62]. The number of grids covering the bunch is set to be 35 longitudinally and 25 radially as 

the optimum. 

Another effect influencing the particle tracking is the wake potential of all geometrical 

irregularities, including the cavity, the cathode and the beam tube. The wake potential of 

ELBE SRF gun has been studied locally with CST [63] but it is not included in ASTRA 

simulations. Although ASTRA has the built-in element “Wake” to perform a local wake kick 

with an input pseudo Green’s function, the convolution of the Green’s function assumes a 

constant bunch size, which changes significantly in practice in the gun cavity.  

To summarize, in ASTRA simulations of ELBE SRF gun, the electron emission, the 

acceleration, the RF focusing and the self-space-charge forces are well considered. The mirror 

charge effect is approximated using a model of infinite-plane cathode. The wake potential is 

temporarily neglected.  
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2.5. Elegant simulation of the beam transport 

2.5.1. Slice mismatch 

One of the features of SRF guns that is different from DC guns is the acceleration in the 

standing-wave RF cavity. Longitudinal slices experience different RF fields, and as a result, 

they have different energies. Meanwhile, in TPS the slices can also be separated, resulting in a 

large emittance. In the following, “slice mismatch” will be used to describe the non-perfect 

overlap among slices in TPS. 

The beam transport in the ELBE accelerator is calculated to the third order in Elegant. 

Transverse emittance variation has been observed in the 2nd and 3rd order. The following 

analysis shows that the variation is induced by chromatic effects which change the slice 

mismatch state: when propagating through a magnetic field, slices with different energies 

evolve differently in transverse phase space. The emittance of the entire bunch is minimized 

when every slice lies within the same area of the transverse phase space. 

Fig. 2.6 illustrates an example of the emittance variation with a bunch passing through only 

one quadrupole. The incident bunch has an energy of 24.6 MeV, an energy spread of 396 keV, 

a horizontal size of 5.3 mm and a vertical size of 1.8 mm. When the strength of the 

quadrupole (marked as k) increases, the horizontal emittance is reduced by 50% and then 

increases. The two curves scaled on the secondary vertical axis, named “overlap ratio” will be 

explained in the following paragraphs. 

 
Fig. 2.6 Transverse emittance variation induced by one single quadrupole. Oφx and Oφy are the horizontal and 

vertical overlap ratio respectively. The overlap ratio shows similar trend as that of the bunch emittance. 

The strength of the quadrupole is denoted by k: 
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 k = qg/p (2-5) 

where q is the charge of the electron, g is the field gradient in the quadrupole and p is the 

momentum of the bunch. Similar emittance variations with respect to the quadrupole strength 

have also been observed and well analyzed [64], where the chromatic-induced emittance is 

estimated to be:  

 εc = (kl)
2σu

4(σE/E)
2 (2-6) 

where l  is the effective length of the quadrupole. The bunch is assumed to have the 

minimum emittance with the quadrupole strength of zero and the energy spread is assumed to 

be uncorrelated to TPS. 

From Equation (2-6), the chromatic-induced emittance is proportional to the 4th order of 

beam size. That explains why the emittance variation is much more obvious in the x direction 

than the y direction in Fig. 2.6, where the transverse beam radius is roughly three times the 

vertical radius. 

To demonstrate how emittance variation is caused by slice mismatch in detail, the bunch is 

divided into 100 slices by energy, making each slice quasi-monenergetic. Slice emittance is 

calculated for all slices with different quadrupole strengths, as shown in Fig. 2.7. The small 

slice emittance at the head and the tail of the bunch is due to low particle numbers of these 

slices. For each individual slice, the emittance variation is negligible compared to that of the 

whole bunch. 

 
Fig. 2.7 Slice emittance for different quadrupole strengths (k). The emittance of the bunch is listed in the legend. 

It shows that although the bunch emittance changes with the quadrupole strength, the slice emittance stays 

almost constant. 
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To investigate how the “slice mismatch” acts on the transverse emittance, it is necessary to 

quantify the overlap between slices. Generally, “beta mismatch” and “mismatch phase” have 

been defined to represent the proportion difference and the orientation difference of any two 

ellipses in a transverse phase space [42]. The ellipses can represent slices, bunches or even 

design optics. Similarly, a Twiss-parameter-based definition of the “mismatch parameter M” 

was used in literature [65]. As defined in Section 2.2, the concepts of the mismatch phase φu, 

the normalized mismatch phase φunor and the overlap ratio Oφu are applied in this thesis.  

φu is normalized by σφu in order to compare the mismatch phase along the beamline. As 

slices will rotate in drift spaces, the absolute value of φu depends strongly on the observation 

location. Oφu parameterizes the degree of overlap for all slices, as shown on the secondary 

vertical axis in Fig. 2.6 which exhibits the same trend as the bunch emittance. 

It is more intuitive to explain the definition of the overlap ratio Oφu in Fig. 2.8, where 

normalized mismatch phases of the 100 slices with different quadrupole strengths are 

presented. In spite of undulations on the curves, it can be seen how mismatch phase influences 

the emittance: For large and small k values (e.g., k = 0 m-2 & k = 15 m-2), the mismatch phase 

changes monotonically with slice index, implying that slices rotate in the same direction over 

the entire bunch, leading to a larger emittance. However, for moderate values of k (e.g., k = 

6.5 m-2 & k = 5.27 m-2), the rotation of slices reverses in the middle of the bunch, i.e., the tail 

of the bunch overlaps with the head in TPS therefore the emittance is smaller. 

The mathematical expression of Oφu=(φumax−φumin)/∑ |φu,i −φu,i-1|
ns−1
i=1  is proposed to 

quantitatively interpret how much the rotation reverses and thus how much slices overlap with 

others. The numerator (φumax−φumin) is the orientation range of the actual bunch and the 

denominator ∑ |φu,i −φu,i-1|
ns−1
i=1  is the orientation range possible when every slice rotates in 

the same direction in respect of its former slice. A larger Oφu indicates that the actual rotation 

of all slices is closer to the single-direction rotation which means no overlap, and thus a larger 

emittance. 
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Fig. 2.8 Mismatch phases with different quadrupole strengths (k). The emittance of the bunch is listed in the 

legend. The mismatch phase is monotonic for small and large values of k in spite of undulations on the curves, 

while for moderate values of k the trend of the mismatch phase reverses in the middle of the bunch, 

corresponding to small emittance. 

2.5.2. Coherent Synchrotron Radiation (CSR) 

In bending magnets, electron bunches emit radiation into a cone towards the tangent 

direction of the beam. The radiation propagates in the vacuum chamber and on a straight path 

at the cone edge it will catch up with front electrons in the same bunch that travelling along 

the dipole arc. In the final portion of a dipole, the radiation can also propagate further into the 

connecting drift tube.  

If the electron bunch is short enough, the radiation becomes coherent at wavelengths 

comparable to the bunch length and generates an energy modulation over the bunch. The 

energy modulation then becomes modulations of the orientation (exemplified in Fig. 2.8) or 

the transverse kick on slices, leading to different projected bunch emittance, formularized by 

Equation (2-7). Depending on the incident beam, it is not necessary for the projected bunch 

emittance to be always enlarged by this effect. The impact of the dipole-induced radiation on 

the quality of the electron beam is referred to as the Coherent Synchrotron Radiation (CSR) 

effect, illustrated in Fig. 2.9. The calculation of the CSR effect in Elegant for dipoles and 

connecting drift spaces has been presented in Reference [ 66 ]. For incident beams with 

perfectly overlapping slices, the enlarged emittance is given by [67]: 
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 εCSR  = εinc√1+
ηu2+(βuηu'2+αuηu)2

βuεinc
∙[(
σE
E̅
)CSR]2 (2-7) 

where εinc is the emittance of the incident beam, ηu is the energy dispersive function, ηu'  is 

its first derivative with respect to the curvilinear longitudinal coordinate and (σE/E̅)CSR is the 

CSR-induced rms relative energy spread. 

 
Fig. 2.9 The illustration of the CSR effect in dipoles and connecting drifts. 

As part of the ELBE accelerator beamline, two 4-dipole D-shape chicanes are installed to 

compress the bunch. Besides, several bending dipoles are used to guide the beam to targets. 

the CSR effect is included in simulations for all dipoles and the connecting drifts right after 

dipoles. As the bunch will be compressed to be very short in chicanes, there the CSR effect is 

of more interest compared to that in bending dipoles.  

The above influence of CSR on bunch emittance is not completely suitable for chicanes, 

since the temporal structure of the bunch is strongly changed by chicanes and hence, temporal 

slices do not stay constant. The mixing between slices results in an increase of the slice 

emittance as well as the bunch emittance. However, in spite of the energy modulation in the 

bunch, the energy distribution in general is very similar through the chicane. Therefore the 

bunch is sliced by energy, which is also consistent with the analysis of slice mismatch in 

quadrupoles, presented in Section 2.5.1. 

Simulations show that the impact of CSR on the longitudinal phase space is negligible, but 

the irreversible growth of the average slice emittance has been observed. As an example, a 

500 pC electron bunch transported through a 4-dipole D-shape chicane with an energy of 14.3 

MeV, a bunch length of 7 ps, an energy spread of 377 keV, a horizontal size of 5.8 mm and a 

vertical size of 2.6 mm, is studied for five cases: no compression (chicane turned off); 

maximum compression with/without CSR; and over compression with/without CSR. The 
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interest in the over compression cases will be further discussed in Section 2.8.1. For all of the 

five cases studied, the bunch emittance, the slice emittance and the overlap ratio are presented 

in Fig. 2.10. 

 
Fig. 2.10 The influence of the CSR effect in a chicane for maximum compression and over compression. Oφx 

and Oφy  are the horizontal and vertical overlap ratio respectively. If the CSR effect is turned off, the slice 

emittance stays the same in both maximum compression and over compression. Furthermore, it is not necessary 

to increase the emittance more for the over compression compared to maximum compression. 

The maximum compression happens at the bending angle of 11.8°, where the bunch length 

is compressed from 7 ps to 0.7 ps. When CSR is included in the simulation, the bunch energy 

is reduced by 60 keV while the energy spread remains the same. In the over compression 

cases with a bending angle of 18° and an output bunch length of 9.7 ps, CSR reduces the 

energy by 20 keV and decreases the energy spread slightly by 6 keV. As the total energy of 

electrons and the radiation should be conserved, the smaller energy-decrease in over 

compression cases indicates a weaker CSR. Although the over compression with a larger 

bending angle leads to stronger incoherent synchrotron radiation, it also increases the bunch 

length and the horizontal size. Consequently, the reduced charge density results in less 

intensity of coherent radiation. 

The weaker CSR is also evident in the simulation results of the slice emittance. When the 

CSR effect is turned off, the slice emittance becomes independent of the bending angle. In 

contrast, the slice emittance increases in those cases when the CSR effect is considered. 

Moreover, compared to the maximum compression, the over compression leads to a larger 
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bunch emittance and a larger overlap ratio, but not necessarily results in the growth of the 

slice emittance. The average slice emittance is 6.05 µm, 8.22 µm, 7.70 µm respectively in the 

cases of no compression, maximum compression and over compression. 

In addition to different orientations of the slices, their horizontal movement due to the CSR 

field is another reason for the emittance growth, especially in circular accelerators. However, 

as the main function of a chicane is to change the temporal structure of bunches, temporal 

slices become mixed. This is referred to as “phase mixing” which can explain the growth of 

the slice emittance [68]. 

2.5.3. Longitudinal Space Charge (LSC) effect 

Longitudinal space charge (LSC) has an important impact on the energy spread of the 

bunch. Generally speaking, the head of the bunch gains energy and the tail loses energy. The 

initial density modulation normally results later in energy modulation. For the ELBE 

accelerator and its analogs in the energy regime below 1 GeV, the LSC effect in long 

beamlines can damage the desired longitudinal phase space, unless transport schemes which 

compensate for this effect are applied. 

To address this, the LSC effect is included in Elegant [69]. A 47 m linear beamline from 

ELBE without cavities and chicanes is selected to determine the influence of the LSC effect. 

The input bunch has an energy of 24.5 MeV, a bunch length of 1.7 ps and an energy spread of 

394 keV, with a negative energy chirp in which the head of the bunch has a lower energy than 

the tail. The bunch charge is scanned from 0 to 500 pC and the results are shown in Fig. 2.11 

Although the bunch is quasi-relativistic with a speed of 0.9998c, the bunch length at the ps 

level is still sensitive to the velocity compression. When the bunch charge is increased, the 

LSC effect becomes stronger and the energy spread is reduced, as a resuly the velocity 

compression is weaker. 

The energy spread after the bunch compression should be carefully chosen to compensate 

the LSC effect in the following beamline, such that the energy spread of the bunch at target 

position can be minimized. From another perspective, the LSC effect reduces the energy 

spread that is needed for dispersive bunch compression schemes. 

However, the minimum energy spread is limited by the nonlinearity of LSC effect, which 

leads to a nonlinear distribution in longitudinal phase space after the long drift. Note that 
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when the bunch is 3D-ellipsoidally distributed, the LSC effect is linear and the correlated 

energy spread can be compensated completely [65]. 

 
Fig. 2.11 The influence of the LSC effect on energy spread and bunch length for a 47 m linear beamline with 

different bunch charges. Higher bunch charge results in a compensated energy spread and less velocity 

compression. 

2.5.4. Short range longitudinal wake effect 

When an electron passes through an accelerator section, a movement of electrons on inner 

surfaces of the section will be induced. Later the surface-electron movement oscillates and the 

field inside the section oscillates correspondingly. The oscillating field is normally calculated 

by introducing the mirror charge. As the field oscillation is similar to the generation of a wake 

in liquid, this field is called “wake field”. The wake field will affect the following electrons, 

resulting in an impact on beam quality, which is represented by the term of “wake effect” 

[70,71]. 

In a uniform tube, the wake effect comes from the impedance of the surface resistance, 

which vanishes in perfect conductors. While in a complicated structure, the geometry 

contributes the main part of the wake effect.  

The wake effect decays with time after the source electron passes through. For a typical 

electron beam in ELBE, the bunch length is several pico-seconds while the period of bunches 

is 77 ns at 13 MHz. Hence, it is assumed that the wake effect within the same bunch is much 
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more important compared to that between bunches. The wake effect within the same bunch is 

called “short range wake effect.” 

The longitudinal impact of wake fields is reflected in an energy reduction, as well as a 

different energy distribution. In following simulations only the short range longitudinal wake 

effect is considered and the “wake effect” is used as the abbreviation of the “short range 

longitudinal wake effect”, or indicated otherwise.  

The wake effect on a single particle comes from a large number of particles in front of it. 

To solve the energy change of a particle numerically is computationally complex, depending 

on the structure of the beamline section and the distribution of the bunch. However, 

considering that the overall energy change is the sum of that from individual particles, the 

Wakefield effect from a unit point charge can be calculated, for only once, and then applied 

for any charge distributions. 

 Assume a unit point charge passing through a fixed structure with relativistic speed, and 

set G(t) as the wake-effect-induced energy kick on another unit point charge travelling behind 

with a time lag of t, then the energy kick from a point charge Q1 on another point charge Q2 

can be written as: 

 dE(Q1,Q2,t) = Q1Q2G(t)  (2-8) 

Assuming that the source charge has a distribution of Q1(t), the total charge is still Q1, then 

the energy kick is: 

 dE(Q1(t),Q2,t)=Q1Q2∙ W(t)  (2-9) 

where  

 W(t) =∫ Q(τ)
∞

-∞

G(t − τ)dτ  (2-10) 

is called “wake potential”, which is the energy kick per charge on a following unit charge 

and has the fundamental unit of V/C. The wake potential is the convolution of the charge 

distribution and the energy kick between the two unit point charges. 

Furthermore, the energy kick on a bunch with a charge distribution Q(t), a total charge of 

Qt from the bunch itself is given by:  
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 dE(Q(t),t)= QtQ(t) W(t)=QtQ(t)∫ Q(τ)
∞

-∞

G(t − τ)dτ (2-11) 

Equation (2-9), Equation (2-10) and Equation (2-11) indicate that the complexity of the 

geometry is represented by the unit energy kick between the two unit point charges, G(t). G(t) 

is called “wake function” and also has the fundamental unit of V/C. In some simulation codes 

such as Elegant, G(t) is also called “Green’s function”, as usually it has the form of a Green’s 

function mathematically. G(t) depends only on the geometric and electric boundaries of the 

beamline section. If the Green’s function of a particular structure is calculated, then the self-

energy-kick of any charge distribution can be calculated according to Equation (2-11).  

In Elegant, the wake effect is calculated by introducing a Green’s function for a beamline 

section and convoluting it with the longitudinal charge distribution. Normally the calculation 

of the wake potential is usually performed in the frequency domain, where for a point charge 

infinite modes of wake fields are excited, making the calculation impossible. The method of 

obtaining the Green’s function applied here is to deconvolve the wake potential and the 

corresponding charge distribution. 

 In ELBE accelerator, wake effects come from the impedance of inner surfaces of beam 

pipes and the irregular geometry borders of screen-stations, cavities, couplers and bellows. 

The wake effect for screen-stations has been studied with CST and elegant, as they are the 

largest in number (e. g., 31 stations from the SRF gun to the CBS experiment station) and 

their structures have sharp edges at tube connections. 

The wake potential is calculated by Andre Arnold (HZDR) using CST, for Gaussian 

distributed bunches with different bunch lengths of 1.5 mm and 3 mm. Screen-stations are 

symbolized by a 3D cross model as shown in Fig. 2.12, with perfect conducting material as 

boundaries.  



Chapter 2. Theory and simulation 

35 
 

 
Fig. 2.12 Simplified geometries of screen-stations (left) and a typical screen-station in ELBE (right). 

The wake potential is calculated up to 100 mm from the head of the bunch, covering all 

possible bunch lengths in ELBE, as shown in Fig. 2.13. 

 
Fig. 2.13 Wake potentials and corresponding charge distributions for different bunch lengths. The wake 

potentials are simulated by Andre Arnold, with CST. 

 The deconvolution of wake potential is based on Fast Fourier Transform (FFT). Using the 

symbol “ ” to present the convolution, the following equation holds generally: 

 (2-12) 
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where  is the FFT operation,  and G(t) are the charge distribution and the Green’s 

function respectively. As a matter of fact, Equation (2-12) also holds for any two functions of 

t. From Equation (2-10) and Equation (2-12), the Green’s function can be calculated by:  

 (2-13) 

 is the inverse operation of FFT. In numerical computations, the FFT based 

deconvolution is interfered by noise. As the Fourier transform appears in the denominator of 

Equation (2-13), small errors will be amplified to tremendous values in the frequency domain 

of the Green’s function. A method of suppressing the noise by calculating the quasi-Green’s 

function has been introduced in Reference [72] which is applied here.  

 In this thesis, it is also found that the deconvolved Green’s function is sensitive to the 

interpolation number of  and , shown in Fig. 2.14. The strategy of determining the 

best interpolation number here is to convolve different Green’s functions with the bunch 

distribution of another bunch length, and then compare the convolved wake function to the 

simulated one from CST. The best quasi-Green’s function is identified by finding the 

minimum absolute difference between convolved and simulated wake functions, as shown in 

Fig. 2.14. 

 
Fig. 2.14 Green’s functions deconvolved with different interpolation numbers (left). Illustration of how to 

determine the best interpolation number (right). 

The best Green’s function deconvolved from the 1.5 mm bunch and its wake potential is 

later convolved with the 3 mm bunch and the result is compared with CST simulations. 
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Similarly, the best Green’s function from the 3mm bunch is convolved to compare with the 

wake function from the 1.5 mm bunch. Results are shown in Fig. 2.15. 

 
Fig. 2.15 Simulated and convolved wake potentials of both 1.5 mm and 3.0 mm bunches. The difference is 

negligible in the 3.0 mm case, where a Green’s function deconvolved from the 1.5 mm case is used and thus 

chosen as the quasi-Green’s function for simulations in this thesis. It is represented by the red curve in Fig. 2.14. 

After the comparison between simulated and convolved wake functions, the quasi Green’s 

function as the red curve in Fig. 2.14 is chosen to represent the real Green’s function for the 

3D cross model of screen-stations. For instance, for an 80 m transport with 31 screen-stations, 

the energy loss of a 24.5 MeV electron bunch is only some tens of keV. Nevertheless, the 

wake effect for screen-stations is still taken into account in simulation.  

2.5.5. Simplex optimization 

Elegant can optimize beamline parameters by maximizing/minimizing a function of beam 

quality parameters. One of the recommended optimization methods is the “simplex 

optimization” [73], which is applied in simulations of this thesis. 

The automatic simplex optimization has been used for finding proper strength values for 

quadrupoles and the superconducting solenoid, as well as distances between permanent 

magnet quadrupoles of FFS. Normally a beamline section including less than 6 parameters is 

selected according to calculation time, and the following function is to be minimized: 
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fop= wumax(σx,σy)+wu'∙ max(σx' ,σy') 

   +wε∙max(εx,εy)+100wu|σx − σy| 

    +100wu'|σx' − σy'|+100wε|εx − εy| 

(2-14) 

where wu , wu'  and wε  are the user-defined weighting factors of beam size, beam 

divergence and transverse emittance respectively. max ( )  is to choose the larger value in 

parentheses, realized by the following equation, but in the reverse Polish notation (rpn) format 

which is required by Elegant: 

 max(a, b)=
a

2
+
a

2
∙ (
|a − b|

a − b
)+

b

2
+
b

2
∙ (
|a − b|

a − b
) (2-15) 

where a and b represent any two values. 

Whether or not to include the last three terms in Equation (2-14) can be customized by 

users. E. g., if a round beam is desired, the term 100wu|σx − σy| should be included. fop 

satisfies most demand of transverse beam transport. Usually the optimization should be 

performed repetitively so that the weighting factors can be iteratively improved, i. e., to 

increase the weight if the optimized corresponding term (size, divergence or emittance) is still 

too large. When a chicane is included in the optimization, it usually requires large wε  to 

control the irreversible slice emittance growth. However, for magnets in FFS, only wu should 

be non-zero because the only purpose of beam transport is to generate small a beam size. 
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2.6. LabVIEW based simulation tool 

2.6.1. Functions 

A LabVIEW based simulation tool has been developed to simplify the operation of 

simulations. Fixed parameters of ELBE are set in the simulation tool, while other changeable 

parameters can be input by users. ASTRA and Elegant are executed subsequently, where the 

output data from ASTRA are automatically transferred to the input file of Elegant. Other 

functions are programed with LabVIEW, including plotting and saving results properly, 

scanning parameters and setting optimization requirements. The interface of the simulation 

tool is shown in Fig. 2.16.  

 
Fig. 2.16 The simulation tool for ELBE SRF Gun II and the ELBE accelerator. The left-upper subpanel contains 

action buttons and toggle switches. The right-upper subpanel is the sketch of the ELBE accelerator, showing 

currently the SRF gun, the dogleg and the first linac. The bottom panel presents the results including phase 

spaces, beam size/emittance profiles, sliced parameters and the parameter scanning. What is shown here is the 

sliced energy spread on the left, and the result of a 2D parameter scan in the color chart on the right. 

The simulation tool covers the beamline from the SRF gun to the four high-bunch-charge 

experimental stations introduced in Section 1.3: pELBE, nELBE, TELBE and CBS. The 

entire beamline can be visited using scroll bars as shown in Fig. 2.17. 
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Yellow buttons on the interface are screen-stations or important positions of the beamline, 

where a data file containing 6D coordinates of all particles will be created after each 

simulation. The program takes the beamline between the first two turned-on yellow buttons as 

the section to be simulated. All needed input files of ASTRA and Elegant will be created 

according to the user-input parameters of this beamline section. The incident bunch is loaded 

from the 6D coordinates file which is saved from previous simulations, or defined by 

providing all necessary statistical average parameters, e. g., emittance, beam size and energy 

spread. If the simulation starts from the beginning of the cathode, an initial bunch will be 

generated by emission models presented in Section 2.4.1. By double clicking yellow buttons, 

parameters defined in Section 2.2 for both the entire bunch and slices are calculated and 

shown altogether with the phase space histogram. The entire result panel is shown in Fig. 2.18.  

 
Fig. 2.18 The entire result panel of the simulation tool.  

Blue buttons are toggle switches, e. g. for turning on/off CSR, LSC and the wake effect. 

Red buttons are command buttons, with functions including executing a single simulation, 

optimizing a beamline section, scanning parameters, saving/loading and so on. 

The parameters of magnets used in simulation can be transferred to operational current 

values according to the individual design of those magnets. The transformation needs the 

beam energy therefore a simulation must be executed first.  
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Simulations in ASTRA run slower than those in Elegant. After every execution of ASTRA 

the outcome file of complete particle coordinates is saved with the filename containing all 

relevant parameters. If the same combination of parameters is found from saved files, ASTRA 

will not start, while instead, the saved file will be read into memory for further simulations. 

The scan function includes setting one or two parameters for scanning as well as the 

scanning range and step. In the simulation tool, every decrease/increase of a numerical 

parameter triggers the command that making this parameter the first/second to be scanned. 

The scanning is composed of multiple simulations according to the scanning range and step.  

The optimization has been introduced in Section 2.5.5. All relevant parameters in the 

selected beamline section will be optimized. If a parameter should be fixed instead of 

optimized, by double clicking, its background color will be changed to red and it will be 

ignored in the optimization.  

2.6.2. Highly adaptable design 

In addition to realizing the functions introduced in Section 2.6.1, the simulation tool has 

also been developed with the possibility of extension to various beamlines, based on case 

structures in LabVIEW.  

A beamline table is written to define the order of elements used in simulation. Names, types, 

physical lengths and positions of elements are recorded to generate necessary input files for 

ASTRA and Elegant. The names of elements are the same to buttons and numerical 

parameters in the front LabVIEW panel. In a simulation, the program will search in the 

beamline table for the first two turned-on buttons and establish the beamline section with all 

elements between these two buttons. Branches of the beamline are marked with the element 

“tree”.  

If a new section of the beamline is added to the simulation tool, its elements should be first 

inserted to the beamline table with the correct order. After that, the corresponding yellow 

screen buttons with the same names and numerical parameters representing magnets and 

cavities should be created in the front panel of the program. In addition, the newly created 

buttons and numerical parameters should be added to the defined cases in the back panel. The 

cases include “double clicking buttons”, “double clicking numerical parameters” and 

“numerical parameters value change”. As described in 2.6.1, the case of “double clicking 

buttons” triggers the presentation of the bunch at the corresponding button. The case of 

“double clicking numerical parameters” includes/excludes the numerical parameter in the 
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optimization. The case of “numerical parameters value change” triggers the selection of 

parameters for scanning. With all of the new buttons and numerical parameters added into the 

above three cases, extension of the new beamline is finished.  

In order to save or load all relevant parameters without coding for newly added elements, 

every time a numeric or button is used in simulation, its name and value are saved in two 

global arrays. Saving/ loading is realized by transferring data between these two global arrays 

and an external file. In this case, the command of “save” or “load” always affects all 

parameters used in simulation.  
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2.7. Optimization of gun parameters  

During operations of ELBE SRF Gun II, the gradient of the gun-cavity is usually set to the 

possible maximum value. The power of UV laser is also tuned to its maximum but the 

proportion transported to the cathode is changeable using a wave plate and a polarizer to 

generate the desired bunch charge. The SC solenoid should be adjusted together with 

quadrupoles to minimize beam-loss of the entire beamline.  

In addition, other parameters which should be optimized according to users’ requirements 

include DC voltage, laser spot size, laser pulse length, laser phase and cathode position, as 

illustrated in Fig. 2.19. The dependence of beam quality on these free parameters has been 

studied with ASTRA-based simulations, as well as to determine their values for high-bunch-

charge applications. 

 
Fig. 2.19 Free parameters of the ELBE SRF gun. 

2.7.1. DC voltage 

DC voltage is the voltage applied between cathode and cavity (ground level) to suppress 

multipacting [74]. Fig. 2.5 indicates that the strength of DC fields is one magnitude lower than 

that of RF fields at the surface of the cathode and decays in a few millimeters, therefore the 

influence of the DC voltage on the energy gain is negligible compared to RF fields.  

In light of a measurement described in Section 4.2 showing that a positive DC voltage 

reduces the transverse emittance, SRF gun settings with different DC voltages are simulated 

and analyzed, as shown in Fig. 2.20. The applied gradient of the cavity is 8 MV/m, the bunch 

charge is 200 pC, the cathode position is 1.4 mm, the bunch is uniformly distributed 



Chapter 2. Theory and simulation 

45 
 

transversely with an overall diameter of 4 mm and Gaussian distributed longitudinally with an 

rms bunch length of 7 ps. Different laser phases are scanned with different DC voltages. 

The laser phase for the maximum beam energy decreases with the DC voltage. This 

phenomenon can be interpreted as an accelerating field (negative DC voltage) pushing 

electrons to catch up with earlier RF fields, which is equivalent of a smaller laser phase.  

Fig. 2.20 also shows that generally the simulated electron bunch becomes longer when the 

DC voltage increases. larger bunch length reduces the space charge density, and hence, the 

space charge force. As a result, a smaller emittance with positive DC voltage is also observed 

in simulation, which is consistent with measurements.  

 
Fig. 2.20 The impact of the DC voltage on beam quality at difference laser phases. The effect of the DC voltage 

on the energy is equivalent to pushing/delaying the bunch to a different laser phase. Positive DC voltages lead to 

longer bunches (weaker space charge forces) and thus smaller emittance. Parameters used in this simulation: the 

gradient is 8MV/m, the bunch charge is 200 pC, the cathode position is 1.4 mm, the laser spot size is 4 mm of 

overall diameter and the bunch length is rms 7 ps. 

2.7.2. Laser spot size 

In simulation, the spot size of the laser is expressed by its overall diameter, which is about 

3.6 times of the rms size for a round, flattop distributed laser spot. It initializes the transverse 

size of electron bunches and directly affects the space charge density for a fixed bunch charge. 

A larger spot size corresponds to a larger thermal emittance, meanwhile the space charge 

density is reduced and induces smaller transverse emittance growth. The balance between 

thermal emittance and space-charge-induced emittance growth depends on the bunch charge, 

the gradient of the cavity, the cathode position and also the bunch length.  

Fig. 2.21 shows simulated beam quality while the laser spot size and the laser phase are 

scanned for a magnesium cathode. In the simulation, the laser pulse length is 7 ps, the cathode 
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position is 1.6 mm, the DC voltage is 5 keV, the bunch charge is 200 pC and the gradient is 

set to both 8 MV/m and 18 MV/m for comparison. 

 
Fig. 2.21 The impact of laser spot size on beam quality. Parameters used in this simulation: the bunch charge is 

200 pC, the DC voltage is 5 keV, the cathode position is 1.6 mm and the bunch length is rms 7 ps. 

The diagrams for “particle number” in Fig. 2.21 indicate areas without beam-loss in the 2D 

parameter map. Except for these areas, the bunch length decreases with laser spot size. The 

laser spot size for the best bunch size is different to that for the best emittance. At the gradient 

of 18MV/m, the laser spot size of 3.8 mm is the best for emittance and 1.2 mm is the best for 

bunch size. At the gradient of 8 MeV, the space charge effect is stronger therefore larger laser 

spot sizes with overall diameters of 5.5 mm and 2.5 mm are needed for achieving the best 

bunch size and emittance respectively. 

In practice, photocathodes for ELBE SRF Gun II are 10 mm in diameter and the 

coated/cleaned areas for Cs2Te/Mg cathodes are less than 8 mm in diameter. Considering that 

the geometric center might not be the electric center of the gun, i. e., a deviation of laser spot 

from the cathode center might be required, the diameter of the laser spot is set to 4 mm, which 

satisfies requirements of beam transport in the following simulations. 
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2.7.3. Laser pulse length 

The pulse of the UV laser is Gaussian distributed longitudinally, with the pulse length 

expressed by rms values in this section. The laser pulse length strongly affects the space 

charge density and thus longer pulses are desired. However, longer pulses increase the DoN in 

longitudinal phase space and as a result damage the compression of electron bunches. The 

balance of the above two conflicting effects varies with bunch charge. Fig. 2.22 provides 

beam parameters at the exit of the gun-cavity with the rms laser pulse length and bunch 

charge scanned.  

  
Fig. 2.22 Beam quality with different laser pulse lengths and bunch charges. Parameters used in this simulation: 

the gradient is 8 MV/m, the cathode position is 1.6 mm, the laser phase is 50°, the DC voltage is 5 keV, the laser 

spot size is 4 mm of overall diameter. 

When the laser pulse length increases from 1 ps to 10 ps, energy spread and DoN of the 

beam also increase due to the RF field in gun-cavity. Meanwhile, the bunch size decreases as 

the bunch charge density decreases in longer bunches. The left-bottom diagram shows that the 

bunch emittance slightly increases with laser pulse length, although the transverse bunch size 

is smaller. The mechanism can be revealed by examining the overlap ratio of slices which 

increases with laser pulse length. The emittance of an individual slice should be smaller as the 

space charge effect is weaker, which is verified by the right bottom diagram of Fig. 2.22 
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where the trend of the average slice emittance is opposite to that of the bunch emittance and 

the overlap ratio.  

The current rms pulse length of the UV laser is about 7 ps, which is measured in Section 

4.1 and set as the default electron bunch length in simulations. Applications of different laser 

pulse lengths experimentally by changing relevant crystals have been scheduled for future 

development of the ELBE SRF gun. 

2.7.4. Laser phase and cathode position 

The laser phase indicates the arrival time of the UV laser at the cathode, quantified by the 

RF phase. The origin of the RF phase is defined as the moment when the its strength is zero. 

The RF phase at the moment when the center of a laser pulse hits the cathode is defined as the 

“laser phase”. Laser phase at 90° generates the highest extraction field which compresses the 

space charge force and therefore benefits the beam size and emittance. But the final energy of 

electron bunches from the gun is not necessarily maximum at 90°, as electrons are not 

synchronized to the RF with low energy when just emitted from the photocathode. 

The cathode position is the distance between the cathode surface and the backplane of the 

cavity. As introduced in Section 1.1.3, the cathode is installed several millimeters outside of 

the cavity to provide an RF focusing near the cathode. 

To choose proper parameter combinations of the SRF gun, laser phase and cathode position 

are scanned and results are shown in Fig. 2.23. In this simulation, the gradient is 7.5 MV/m 

and the bunch charge is 200 pC. The overall diameter of the uniformly distributed laser spot is 

4 mm and the length of the Gaussian distributed laser pulse is 7 ps.  

Fig. 2.23a shows the area without beam loss, marked by the red frame. Fig. 2.23b presents 

the energy distribution where the red frame is based on an additional condition that the energy 

loss should be less than 10%. A third condition is proposed in Fig. 2.23c that the energy 

spread should be smaller than 50 keV so that the bunch is not dispersed to hit the dogleg wall. 

The last condition comes from the inner diameter of ELBE beam pipe which generally 

requires the rms beam radius to be less than about 5 mm, marked in Fig. 2.23d. Other beam 

quality parameters have no definite requirements. 
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Fig. 2.23 Beam quality with the laser phase and the cathode position scanned. The red/yellow frame marks the 

current/previous satisfying parameter area. A and B are two candidates for high-bunch-charge applications. 

Parameters used in this simulation: the gradient is 7.5 MV/m, the bunch charge is 200 pC, the DC voltage is 

5 kV, the laser spot size is 4 mm of overall diameter and the laser pulse length is rms 7 ps. 

In the parameter map of laser phase (LP) and cathode position (CP) in Fig. 2.23, the high-

LP-high-CP corner generates small bunch size and small divergence, however, emittance is 

the smallest at low-LP-high-CP corner. The phenomenon that low bunch size and low 

divergence do not lead to low emittance can be also found in Fig. 2.21. Here the reason is 

illustrated in Fig. 2.24, where with the same CP of 2.8 mm, three LPs of 15°, 40° and 65° are 

applied and phase spaces are shown. When LP increases, the bunch becomes positively 

chirped (shown by energy distribution along the bunch in color) and a second component 

appears at the longitudinal head and tail of the bunch. Although the statistical average bunch 

size and divergence becomes smaller at high LPs, the emittance becomes larger due to worse 

overlap of slices in TPS. This is an important reason why large LPs are not chosen for 

operating the SRF gun. 
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Low-LP-low-CP combinations in Fig. 2.23 benefit the bunch length as well as the slope and 

the DoN in LPS. If bunch compression is targeted in beam transport, the beam should be 

negatively chirped, corresponding to the area marked by  in Fig. 2.23h.  

 
Fig. 2.24 Bunches with lower bunch size and lower divergence can have larger emittance. When the laser phase 

increases, longitudinal terminals of the bunch behaves differently in TPS compared to other parts of the bunch.  

As a result, two combinations of LP and CP have been chosen as candidates for further 

applications with 200 pC bunch charge, marked as A (LP = 15°, CP = 2.8 mm) and B 

(LP = 20°, CP = 1.2 mm) in Fig. 2.23. Parameter combination A is chosen for the best 

transverse beam quality while longitudinal parameters are neglected, which is usually the 

requirements of pELBE and nELBE. Parameter combination B focuses on optimizing 

longitudinal parameters for bunch compressing, while transverse beam quality still lies within 

the satisfying area. 

2.7.5. Summary of optimized gun parameters 

Given the above studies of the five free parameters based on the current status of ELBE 

SRF gun, the preferred operation status of the gun for high-bunch-charge applications is 

summarized in Table 2.1. The phase space at the exit of gun-cavity is shown in Fig. 2.25. 

Beam quality parameters are listed in Table 2.2.  
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In Table 2.1, the chosen gradient of 7.5 MeV is close to the maximum long-term stable 

gradient of the cavity. The bunch charge of 200 pC is set as the current target for high-bunch-

charge applications which is a progress compared to the DC thermionic gun (77 pC). This 

bunch charge has not reached the limitation in simulation if the alignment of the beamline is 

assumed perfect, as shown in Section 2.8. The DC voltage of 5 keV is chosen to optimize the 

transverse beam quality. The laser spot diameter of 4 mm is a practical value currently, which 

can be larger as an enhancement in future if the effective area of the cathode becomes larger 

and the alignment of the gun is improved. The optimized value for laser pulse length depends 

on the bunch charge. The current value of 7 ps satisfies all applications of 200 pC in 

simulation, but a shorter bunch length might be better, which will be addressed in Section 2.8. 

The laser phase and cathode position in parameter combination C and D are both adjusted 

from parameter combination B for optimizing the beam transport of TELBE and CBS. The 

reason of the adjustment will be presented in detail in Section 2.8.4 and 2.8.5. 

Table 2.1 Optimized operation status of the ELBE SRF gun. 

parameter A B C D 

gradient 7.5 MV/m 

bunch charge 200 pC 

DC voltage 5 keV 

laser spot diameter 4 mm 

rms laser pulse length 7 ps 

laser phase 15°  20° 20° 20° 

cathode position 2.8 mm 1.2 mm 1.7 mm 1.8 mm 
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Fig. 2.25 Phase spaces for the four chosen parameter combinations. 

 
Table 2.2 Beam quality parameters for the four chosen parameter combinations. 

parameter A B C D 

 4.20 4.03 4.10 4.11 

 7.12 4.15 4.82 4.97 

 [keV] 8.6 35.1 30.6 29.3 

 1.48 4.41 3.50 3.30 

 1.83 5.84 4.56 4.28 

 1.48 4.02 2.89 2.75 

 [keV/ps] -1.75 -15.0 -13.0 -12.3 

DoN [keV] 6.18 2.37 3.27 3.47 
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2.8. Optimization of beam transport 

2.8.1. Longitudinal transport strategies  

The evaluation of the distribution in LPS is important for an optimal beam transport. 

Section 2.5.1 has shown that chromatic effects strongly affect the bunch distribution in TPS. 

The bunch length also plays an important role in all space-charge-related effects, including 

CSR, LSC, wake effect and so on. Furthermore, the nonlinearity of the distribution in LPS 

determines the minimum possible bunch length of bunch compression.  

In this section, two strategies for longitudinal transport are introduced based on the specific 

setting of ELBE. One is to generate a quasi-linear distribution in LPS for better bunch 

compression. The other is to utilize the LSC effect to compensate energy spread, which is 

important for beams to be bent or strongly focused in further transport. As discussed in 

Section 1.3, pELBE and nELBE do not demand strong bunch compression. Therefore, these 

two strategies will be explained only with respect to TELBE and CBS. The essential beamline 

components for the longitudinal beam transport are shown in Fig. 2.26. The SRF gun is 

connected to the ELBE accelerator via a dogleg which is composed of two edge focusing 

dipoles and a quadrupole triplet. In the accelerator after the dogleg, the following components 

are arranged sequentially: Linac 1, Chicane1, Linac 2 and Chicane 2. Each linac contains two 

9-cell TESLA cavities. The THz radiation station is located directly after Chicane 2 and it is 

followed by a 47 m long transport line to the CBS station. 

 
Fig. 2.26 Longitudinal beam transport strategies for THz and CBS stations. 

The cavities, operating at 1.3 GHz, introduce nonlinear energy chirps to the bunch at any 

practical accelerating phase. In the following, the nonlinear chirped longitudinal phase space 

is referred to as an “n-crescent” or a “u-crescent”, depending on its direction, as shown in Fig. 

2.26b and Fig. 2.26c respectively. The nonlinearity will maintain if the bunch is compressed 
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via chicanes from an n-crescent, generating a “reverse-c-crescent” (Fig. 2.26f) in which the 

correlated energy spread is transformed to the spread of time, limiting the minimum possible 

bunch length. The reverse-c-crescent can potentially be compressed even shorter if the 

nonlinearity is reduced. One technology is to use an extra cavity in the deaccelerating phase 

introducing an opposite nonlinear chirp. This cavity must provide the same degree of 

nonlinearity but smaller change of energy than the accelerating cavity does, and hence must 

be operating at higher frequency. A practical application is described in Reference [75] using 

a 3.9 GHz cavity to compensate the nonlinearity from a 1.3 GHz cavity. 

As ELBE does not include such a high-frequency cavity, another scheme to alleviate the 

nonlinearity is to over-compress the bunch with the first chicane, and thus an “n-crescent” 

from the first linac will be converted into a “u-crescent”, shown in Fig. 2.26c. Consequently 

the nonlinear chirp from the second linac will be added onto the u-crescent and a linear energy 

chirp can be achieved as shown in Fig. 2.26d.  

Based on the linear energy chirp, bunches are compressed to the possible minimum length 

by the second chicane (Fig. 2.26e) for the THz experiments. For CBS the compression should 

not be complete. Instead, a negative energy chirp (Fig. 2.26g) is required to compensate the 

LSC effect in the following beamline. The goal is to minimize the energy spread in front of 

FFS, as illustrated by Fig. 2.26h. The influence of LSC in drift spaces on energy spread has 

been experimentally verified at Photo Injector Test Facility at DESY, Location Zeuthen 

(PITZ), presented in Section 4.3.  

Although pELBE and nELBE do not require bunches to be very short, dipoles are used in 

their beamlines. If the dispersed beam becomes too large and hits the beam pipe after dipoles, 

off-crest accelerations with negative chirps can be applied to reduce the energy spread at 

dipoles.  

The discussed longitudinal transport strategies are studied numerically in simulations. An 

example of a 500 pC bunch transported in ELBE is presented in Fig. 2.27. The indexes of 

phase space diagrams in lower case letters correspond to the same positions in Fig. 2.26.  

Fig. 2.27a shows the particle distribution in LPS before Linac 1, where energy spread is 

minimized by a negative chirp from the gun-cavity, Additionally, the bunch is always 

longitudinally compressed before Linac 1 to reduce nonlinear energy chirp in the following 

cavities. In the next step, Linac 1 chirps the bunch negatively and generates the inevitable n-

crescent with DoN of 20 keV, as shown in Fig. 2.27b. After that, Chicane 1 over-compresses 

the bunch, converting its shape into u-crescent with the DoN of 42 keV (Fig. 2.27c). This u-
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crescent is then injected into Linac 2 and its DoN is alleviated to 14 keV, generating a quasi-

linear bunch (Fig. 2.27d). With the reduced nonlinearity, the bunch is longitudinally 

compressed to the minimum possible length of 0.30 ps FWHM, as shown in Fig. 2.27e where 

the reduced nonlinearity still forms the head and tail in LPS, enlarging the bunch length. Here 

the bunch length is optimized and expressed with FWHM values because the FWHM bunch 

length is more important than rms bunch length for THz.  

 
Fig. 2.27 Longitudinal phase spaces at each of the following positions: (a) before Linac 1; (b) after Linac 1, the 

n-crescent appears; (c) after Chicane 1, the bunch is over-compressed to obtain the u-crescent; (d) after Linac 2, 

quasi-linear chirp is achieved; (e) at the THz station, the bunch is compressed to a minimum FWHM bunch 

length of 0.30 ps; (f) after Chicane 2 for the case of compressing the bunch without alleviating the n-crescent; (g) 

after Chicane 2 with a proper quasi-linear negative chirp for CBS experiments; (h) at the CBS station, after 47 m 

of drifting, the influence of LSC is compensated by the negative energy chirp. 

For comparison, the bunch in Fig. 2.27a is also transported according to the bottom 

procedure line in Fig. 2.26, where both linacs provide n-crescents and the first chicane is not 

used. In this case the output bunch from Linac 2 has similar energy (about 24.5 MeV) and 

energy spread (about 400 keV) to the quasi-linear bunch in Fig. 2.26d/Fig. 2.27d, but its DoN 

is enlarged by both linacs to 36 keV. Such a bunch can be compressed to the minimum 

possible length of only 0.38 ps FWHM. Furthermore, the FWHM bunch length cannot fully 

represent the longitudinal quality of an electron bunch. Fig. 2.28 shows that the compression 

based on the quasi-linear chirp results in a better longitudinal bunch profile with a higher peak 

and a lower tail. 

When the quasi-linear bunch shall be transported to the CBS station where a smaller energy 

spread is desired, the bunch will be negatively chirped in Chicane 2 as shown in Fig. 2.27g. 



Chapter 2. Theory and simulation 

56 
 

The energy spread can be further compensated by the LSC effect during drift space and the 

compensated bunch distribution in LPS in front of the FFS is shown in Fig. 2.27h. If the 

alleviation of nonlinearity is not applied (Fig. 2.27f), it is not possible to compensate the 

energy spread utilizing the LSC effect. 

 
Fig. 2.28 Longitudinal profile of the compressed bunch based on the n-crescent or the linear chirp.  

For bunch charges lower than 200 pC, small laser phases result in bunches short enough 

that the nonlinear chirp from Linacs are negligible. In this case, another effect should be 

considered that the dogleg generates a u-crescent. The mechanism will be discussed case wise 

in Section 2.8.4.  

2.8.2. Optimization for pELBE 

In this section, the beam optimization for pELBE is presented. According to Section 2.7, 

parameter combination A in Table 2.1 is chosen for pELBE. Beam size and emittance are 

displayed along the beamline in Fig. 2.29. The energy gain of the four cavities sequentially 

along the beamline is set to the possible maximum of 12 MeV, 9 MeV, 7 MeV and 7 MeV.  

The beam is focused before entering the dogleg (beam line is shown in Fig. 2.17) and 

diverted at the exit of the dogleg. The two solenoids between the dogleg and Linac 1 are 

fabricated for beams from the thermionic gun at ELBE, the kinetic energy of which is only 

250keV. For the SRF gun these two solenoids do not have obvious effects and they are not 

used in simulation, although shown in Fig. 2.29.  
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Fig. 2.29 Beam size profile (top) and emittance profile (bottom) of pELBE beam transport using parameter 

combination A. 

The beam size becomes the largest at the entrance of Linac 1, as shown in Fig. 2.30. Linac 

1 focuses the beam while accelerating it, therefore the output beam is transversely smaller. 

From there on, the simplex optimization presented in Section 2.5.5 is applied to control 

transverse beam size and emittance.  

 
Fig. 2.30 Phase space at important positions of 200 pC beam transport for ELBE. The first row shows the largest 

beam size at the entrance of Linac 1 where the overall beam size reaches 21.2 mm but still smaller than the inner 

diameter of the beam pipe, which is 38 mm. The second row shows the chirped bunch at the exit of Linac 2, with 

an overall bunch length of 31 ps and an rms energy spread of 182 keV.  



Chapter 2. Theory and simulation 

58 
 

As longitudinal parameters are scarified by applying parameter combination A, the overall 

length of the electron bunch (31 ps) is longer than the requirement of pELBE (20 ps) in Table 

1.1. To compress the bunch, Linac 2 chirps the beam negatively, generating an energy spread 

of 182 keV as shown in Fig. 2.30. 

Based on the chirp, Chicane 2 compresses the bunch slightly to an overall bunch length of 

29 ps instead of the desired 20 ps, because of a stronger compression observed in simulation 

in the final beamline branch of pELBE. This phenomenon is shown and explained in Fig. 2.31: 

At the entrance of the first dipole the input bunch is negatively chirped (Fig. 2.31a), which is 

then dispersed horizontally by the first dipole (Fig. 2.31b). Observed along the travel direction 

of the bunch, low-energy electrons travel on the right and high-energy electrons on the left. 

The dispersed beam is focused by quadrupoles but it is not crossed horizontally and the beam 

size increases (Fig. 2.31c). Such a bunch enters the second dipole with those low-energy 

particles in the front of the bunch, travelling on the right side and passing through the second 

dipole along a longer trajectory than those high-energy particles at the rear left of the bunch. 

Therefore, the entire bunch is compressed by the second dipole.  

 
Fig. 2.31 beam compression by the pELBE branch. (a) shows the input bunch from the main beamline of ELBE, 

with a negative chirp. (b) shows that the beam is dispersed with low-energy/high-energy particles bent more/less 

and traveling on the right/left side, if observed along the travel direction. (c) shows the input bunch of the second 

dipole whose entrance angle and exit angle are both zero. (d) is the output bunch of the second dipole, where 

low-energy/high-energy particles travel a longer/shorter path and therefore the bunch is compressed.  

To illustrate this phenomenon quantitatively, two points A (-16 ps, 3 mm) and B (13 ps, -

8 mm) are chosen from Fig. 2.31c which are then transported to A’ (-13 ps, 2 mm) and B’ 
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(2 ps, -8 mm) in Fig. 2.31d. The temporal interval between them are 29 ps before the second 

dipole and 15 ps afterwards, i. e., the temporal length compressed by the dipole is about 14 ps.  

The sector angle of the second dipole is 22.5°. The entrance and exit angles are both about 

0°. In this case, the difference between two trajectories can be calculated simply as 

[3 mm-(-8 mm)]×22.5°=4.32 mm, where 3 mm and -8 mm are the transverse coordinates 

of the two points entering the second dipole and 22.5° is the sector angle of the second dipole. 

For the quasi-relativistic beam here with an energy of 36.8 MeV, this path length difference 

corresponds to a temporal difference of 14.3 ps, which is consistent with the value observed in 

simulation (14 ps). 

To achieve the above bunch compression in the pELBE beamline branch, a key operation is 

to avoid crossing the beam horizontally when focusing it after the first dipole, as well as to 

obtain a large transverse size to generate enough path length difference in the dipole. A 

relatively large size at the second dipole has another advantage that the beam will be strongly 

focused in the remaining two quadrupoles after the second dipole, to achieve the desired phase 

space on the beryllium window before pELBE target.  

The final bunch distribution in phase space at the beryllium window is shown in Fig. 2.32. 

The beam parameters at the pELBE station are listed in Table 2.3 satisfying all requirements 

of pELBE as introduced in Section 1.3.1. With an energy of 38.8 MeV, the rms scattered 

angle is 23.2 mrad according to Equation (1-1). The intercepts of the acceptance on position 

axis and divergence axis are 1.75 mm and 12.5 mrad respectively, calculated with Equation 

(1-2). The acceptance area is also drawn in Fig. 2.32, covering all electrons transported to 

pELBE. 

To conclude, using parameter combination A of ELBE SRF gun and maximum possible 

gradients of all cavities, the transverse requirements of beam transport to pELBE can be 

satisfied by automatic optimization functions of the simulation tool introduced in Section 

2.5.5 and 2.6. Longitudinally the bunch has to be compressed to satisfy the requirement of “20 

ps of overall bunch length”. The compression from the second dipole in the pELBE branch is 

applied, with the mechanism explained. Parameters used in this simulation can be found in 

Appendix II. 
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Fig. 2.32 The optimized phase space at the beryllium window of pELBE. Horizontal and vertical phase spaces 

satisfy the requirements of geometrical settings of pELBE. In the second row, transverse phase spaces are the 

same as those in the first row but with different scales to partly cover the boundary of the acceptance area. 

Table 2.3 Parameters of 200 pC bunch transported to pELBE beryllium window. 

 38.8   3.7 

 [keV] 163   [ps] 0.74 

 0.30   0.3 

 [mm] 0.40   0.49 

 0.82   0.073 

 18.4   1.42 

2.8.3. Optimization for nELBE 

This section presents the beam transport optimization for neutron production at nELBE. 

The parameter combination A of ELBE SRF gun (Table 2.1) has also been used here with the 

focus on transverse beam quality. Beam size and emittance profiles of the optimized beam 

transport for nELBE are shown in Fig. 2.33 The beam transport up to Linac 2 is the same with 

that for pELBE. After Linac 2, Chicane 2 compresses the bunches from an overall bunch 

length of 29 ps to 20 ps to satisfy the longitudinal requirements in Table 1.1. Then the beam 

enters the beamline branch of nELBE which starts with a vertical dipole bending the beam for 

4°. Next, a second dipole bends the beam horizontally for -22.5° and vertically for -4°. The 
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last dipole bends the beam horizontally for 32.5° towards the beryllium window before 

nELBE target. 

The requirements on TPS are challenging for beam transport inside the nELBE branch. As 

described in Section 1.3.2, for an energy lower than 34.2 MeV, the acceptance area vanishes. 

With the highest possible gradients of all cavities at ELBE, this simulation yields a final 

energy of 38.8 MeV in this simulation. Now the smaller scattering angle results in a narrow 

acceptance area as shown in Fig. 2.34. Strong focusing is required at the last pair of 

quadrupoles to focus most particles into the acceptance area, which is achieved by increasing 

transverse size of the input beam for these two quadrupoles.  

 
Fig. 2.33 Beam size profile (top) and emittance profile (bottom) of nELBE beam transport (200 pC) using 

parameter combination A in Table 2.1. 

Meanwhile, generating small beams before the dipoles helps to control emittance growth so 

that the narrow acceptance covers the majority of electrons. As a result, bunch compression 

from path length difference in dipoles (Section 2.8.2) is negligible, and hence the bunch 

should be compressed in chicanes to achieve the required overall length of 20 ps. For the 4-

magnet D-shape chicane at ELBE, the difference of bunch length before and after the chicane 

can be calculated by: 

 tc=
2θc

2

c

σE
E̅
(ldri+

2

3
ldip) (2-16) 
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where  is the bending angle in dipoles, c is the speed of light,  is the distance between the 

first two dipoles and  is the width of dipoles. Equation (2-16) shows that for the same 

compression strength, a larger bending angle reduces the needed energy spread. Thus the 

bunch can be chirped by a preceding cavity at a phase corresponding to larger acceleration. In 

this simulation, Chicane 2 is set to its maximum bending angle of 30° to maximize the final 

energy.  

The transverse beam quality is optimized with large values of the weighting factor of 

emittance  at the end of Chicane 2 and at the last dipole of nELBE branch, as shown in 

Fig. 2.34. The last two quadrupoles are adjusted manually to match the bunch to the 

acceptance area. However, for the current setting it is not possible for all electrons. Parameters 

of the final bunch on the beryllium window are presented in Table 2.4. 

 
Fig. 2.34 The optimized phase space at the beryllium window of nELBE. 60% of particles satisfy the 

requirements of geometrical settings of nELBE. In the second row, transverse phase spaces are the same as those 

in the first row but with different scales to partly cover the boundary of the acceptance area. 

Table 2.4 Parameters of 200 pC bunch transported to nELBE beryllium window. 

 38.8   4.6 

 [keV] 142   [ps] 1.59 

 0.13   0.04 

 [mm] 0.12   0.05 

 1.39   2.75 
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εx [μm] 14.2  εy  [μm] 8.25 
 

To sum it up, the acceptance area at the nELBE beryllium window can be very small or 

even vanish, depending on the energy of the beam. In the presented simulation, bunch 

compression in Chicane 2 is far from full compression, therefore the transverse emittance can 

be maintained after it (Fig. 2.34.). In the beamline branch of nELBE, the emittance is 

controlled but not optimized, as the main target of beam transport is to match a specific 

distribution rather than the value of emittance. By manually tuning the final quadrupoles, 

about 60% of 200pC electrons are transported into the critical acceptance. Parameters used in 

this simulation can be found in Appendix II. 

2.8.4. Optimization for TELBE 

This section presents and compares beam transport simulations of different parameter 

combinations for ELBE SRF Gun given in Table 2.1. For the TELBE beamline, the main 

objective is to obtain a short electron bunch at the THz radiator (silicon mirror). To verify the 

choice of parameter combination B, the simulation starts with the parameter combination A. 

In this case the SRF gun generates a long bunch (rms 7.1 ps). Based on the beam transport for 

nELBE up to Linac 2, full compression with the compressed bunch length of 1.32 ps is 

provided by Chicane 2, as shown in Fig. 2.35 and marked with "long bunch & nonlinear". 

With the long bunch and its nonlinearity, the shortest possible bunch has the reverse-c-

crescent shape in LPS. Chicane 2 is set to its maximum bending angle, therefore the energy at 

the silicon mirror is the maximum possible of 37.5 MeV. 

Still using the parameter combination A, the DoN of the bunch before compression can be 

alleviated from 59 keV (for "long bunch & nonlinear") to 22 keV applying the longitudinal 

transport strategy described in Section 2.8.1. Such a bunch is compressed by Chicane 2 to the 

rms bunch length of 1.2 ps with more particles in the center of the bunch, as shown in Fig. 

2.35 and marked with "long bunch & quasi-linear". In this case, Linac 1 also chirps the beam 

with an off-crest phase for the following over-compression in Chicane 1, and hence the energy 

of the bunch is reduced to 34.7 MeV.  

Beam size and emittance profiles are shown in Fig. 2.36. In the first chicane, the beam size 

is large and the beam is bent up to 400 mm from the straight beam axis. But the vacuum 

chamber of the chicane has a much larger width of 520 mm. The horizontal emittance is 

minimized at the exit of Chicane 1 by automatically optimizing preceding quadrupoles. The 
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input beam has a bunch emittance of 2.78 µm, an horizontal average slice emittance of 

1.36 µm and a horizontal overlap ratio of 0.42. The average slice emittance is increased in 

Chicane 1 to 1.60 µm, however the overlap ratio is reduced to 0.35, and as a result the 

emittance of the output bunch is even smaller, being 2.36 µm.  

 
Fig. 2.35 Distributions in phase space at the silicon mirror of TELBE with different beam transport. "Long 

bunch", "short bunch" or “medium bunch” refers to the output electron bunch from ELBE SRF Gun with 

parameter combination A, B or C respectively. "Nonlinear" means that the bunch accelerated by cavities are 

compressed directly by chicanes nonlinearly in LPS; while "quasi-linear" means that longitudinal transport 

strategies have been applied and hence the non-linearity has been alleviated. 

At the silicon mirror after Chicane 2, transverse beam size as well as bunch length is 

optimized to pass through the 4 mm diameter hole on it, where a small emittance is not a 

concern. A branch beamline after the THz experimental station serves for dumping the beam, 
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which starts with a 45° dipole. After the dipole, the dispersed beam size is usually very large. 

Consequently the beam pipe has a diameter of 100 mm. In this dumping beamline the only 

purpose of beam transport is to lower beam loss, where emittance is not of concern and 

reaches 500 µm after the dipole. 

 
Fig. 2.36 Beam size and emittance profiles of beam transport for TELBE (200 pC), with parameter combination 

A and the longitudinal transport strategy applied to alleviate DoN in longitudinal phase space.  

For the above beam transport based on the setting of "long bunch & quasi-linear", the 

distribution in LPS has a long leading part, which comes from the remaining DoN. For further 

reducing the DoN, parameter combination B of ELBE SRF gun is applied and the bunch 

produced by the gun is shorter.  

With the shorter bunch, the LSC effect becomes stronger and the beamline between the gun 

and Linac 1 provides a u-crescent in LPS, as shown in Fig. 2.37: The output bunch of the SRF 

gun is negatively chirped and has a DoN of 2.4 keV. The LSC effect and the spontaneous 

compression due to velocity difference of particles together reduce the DoN to 1.5 keV at the 

entrance of the dogleg. The designed beam transport of the dogleg is illustrated in Fig. 2.37 

where High-Energy Electrons (HEEs) and Low-Energy Electrons (LEEs) travel along longer 

trajectories compared to medium-energy electrons, and thus both HEEs and LEEs should 

move relatively to the tail of the bunch through the dogleg. However, HEEs travel faster, 

which compensates their movement to the tail, compared, those slower LEEs move even 

further to the tail. As a result, LEEs are longitudinally chirped more than HEEs, forming a 

density peak at the head of the bunch. The DoN here increased to 4.6 keV due to this 

complicated process. The density peak then leads to stronger LSC effect on LEEs such that 
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the energy gain at the head of the bunch is greater than the energy reduction at the tail, 

generating an obvious u-crescent with a DoN of 10.8 keV.   

 
Fig. 2.37 The u-crescent generated in the dogleg for short, negatively chirped bunches applying the parameter 

combination B of the ELBE SRF gun.  

The u-crescent can be alleviated by cavities which always provide n-crescents to the bunch. 

However, because of the small bunch length from parameter combination B, cavities are not 

efficient enough to remove the u-crescent. Consequently, the compressed bunch has a c-

crescent shape in LPS, as shown in Fig. 2.35 and marked with "short bunch & nonlinear". The 

final energy of the bunch is 36.7 MeV, which is higher than the "long bunch & quasi-linear" 

case as Linac 1 is set to its peak phase. But the energy is lower than that of the "long bunch & 

nonlinear" case as the shorter bunch length requires stronger chirp in Linac 2 to achieve full 

compression. The rms bunch length of the compressed bunch is 0.34 ps, which is better 

compared to cases using parameter combination A, but the c-crescent can be further improved.  

The last beam transport for TELBE is based on parameter combination C in Table 2.1. It is 

based on parameter combination B but the cathode position is increased from 1.2 mm to 1.7 

mm, which provides bunches with medium length of 4.82 ps, as shown in Fig. 2.23. Longer 

bunches reduce the LSC effect, therefore the u-crescent from the dogleg can be weaker. 

Meanwhile, cavities also provide more nonlinearity to longer bunches. Consequently, the 

bunch becomes more linear, as shown in Fig. 2.35 and marked with "medium bunch & quasi-

linear". In this case, the rms bunch length at the silicon mirror of TELBE is 0.12 ps, which is 
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the best among the above four simulation settings for TELBE. The final energy of the bunch 

is 35.8 MeV with the optimized bunch length. In this simulation, the limiting factor for the 

bunch length is no longer the nonlinearity in LPS, instead, it is the modulation due to the LSC 

effect. Fig. 2.35 also shows that in cases of long bunches, this modulation is negligible.  

The complete beam size and emittance profile for this beam transport with the best bunch 

length is shown in Fig. 2.38. The transverse size of the bunch is optimized at the silicon 

mirror and optimized beam parameters are listed in Table 2.5. Because of the small bunch 

length at the silicon mirror, the LSC effect significantly increases the energy spread from 

229 keV to 658 keV at the entrance of the TELBE beamline branch to the beam dump, as 

shown in Fig. 2.39. With such a large energy spread, the dispersed beam in the TELBE branch 

has the largest overall size of 65 mm at the last quadrupole, but it is still safe in the 100 mm 

wide beam pipe.  

 
Fig. 2.38 Beam size and emittance profile for TELBE beam transport (200 pC), using parameter combination C 

of the ELBE SRF gun, generating the shortest bunch. 

Table 2.5 Optimized parameters of 200 pC beam at the silicon mirror of TELBE. 

 35.8   0.12 

 [keV] 229   [ps] 0.24 

 0.59   0.53 

 [mm] 1.04   1.04 

 0.42   0.10 
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 10.8   3.52 

 
Fig. 2.39 The phase space at the entrance of TELBE beamline branch with large energy spread (top) and the 

largest beam in the branch (bottom).  It is still safe in the 100 mm wide beam pipe of the TELBE branch. 

To conclude, four groups of simulations have been made to gradually improve beam quality 

at TELBE: with long bunch (7.12 ps) and nonlinear LPS; long bunch and quasi-linear LPS; 

short bunch (4.15 ps) and nonlinear LPS; and medium bunch ( 4.82 ps) and quasi-linear LPS. 

For the two cases with the long bunch (parameter combination A), the nonlinearity in LPS 

dominates the compressed bunch length. The longitudinal transport strategy improves the 

bunch compression but to a very limited level. Bunch length in the case with short bunch 

(parameter combination B) is also limited by the nonlinearity in LPS - specifically by the u-

crescent from the dogleg. The last case with medium bunch length (parameter combination C) 

alleviates most of nonlinearity in LPS and the bunch length is limited by the modulation of the 

bunch due to the LSC effect.  

The rms bunch lengths for these four simulations are 1.34 ps, 1.2 ps, 0.34 ps and 0.12 ps 

respectively. One parameter is not sufficient to describe the longitudinal beam distribution. 

Additionally, it is completely presented in Fig. 2.40. The case of "long bunch & nonlinear" 

has the minimum FWHM bunch length but only 14% of electrons are in this range; the case of 

"long bunch & quasi-linear" has 44% of electrons in the FWHM bunch length of 0.15 ps; the 

case of "short bunch & nonlinear" includes 72% electrons in the FWHM bunch length but it 

has the lowest peak charge density. Compared to all other cases, the case of "medium bunch 

& quasi-linear" is the best, with the highest peak charge density as well as the highest average 

charge density. Parameters used in this simulation can be found in Appendix II. 
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Fig. 2.40 Optimized longitudinal bunch distributions for TELBE beam transport.  

2.8.5. Optimization for CBS 

The final energy for CBS beam transport is required to be below 25 MeV. In this 

simulation, the final energy is set to 23 MeV which is the value from previous experiments 

[49], i. e., cavities cannot be set to their full gradients. Lower gradients lead to smaller cavity-

induced nonlinearity for the bunch distribution in LPS, and hence the u-crescent generated in 

the dogleg cannot be completely cancelled if parameter combination C is used. Again, a 

longer bunch reducing the u-crescent from dogleg while increasing the n-crescent from 

cavities is desired. Therefore, parameter combination D with a cathode position of 1.8 mm is 

applied, generating a bunch that can be linearly distributed in LPS after Linac 2.  

Beam size and emittance profiles are shown in Fig. 2.41 with zoom-in subfigures for the 

final focusing system. The beam size is optimized inside and at the end of the dogleg, staying 

below 4 mm up to Linac 1. The focusing effect of Linac 1 increases with gradient and the 

lowest gradient to maintain the beam size is 5.3 MeV for the two cavities of Linac 1. Usually 

Linac 1 is set to its peak phase and Linac 2 is used for chirping. A lower energy gain from 

Linac 1 means higher gradient of Linac 2, which leads to larger possible energy chirp and 

smaller bending angle of Chicane 2, benefiting the emittance.  
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Fig. 2.41 Beam size and emittance profiles for CBS beam transport of a 200 pC beam. 

To optimize Linac 2 and Chicane 2, a common gradient for the two cavities in Linac 2 and 

the bending angle of Chicane 2 are scanned. The accelerating phases are correctly set to keep 

a total energy of 23 MeV. The beam is transported to the entrance of FFS with bunch length 

and energy spread displayed in Fig. 2.42.  

Between Linac 2 and FFS, the LSC effect dominates longitudinal beam quality. For a fixed 

setting of Linac 2, the bunch length at FFS first decreases with the bending angle of Chicane 2, 

while the LSC effect becomes stronger and thus the energy spread of the negatively chirped 

bunch becomes smaller. When the bunch length at FFS is small enough, strong LSC effect 

enlarges the energy spread quickly to its peak, with a positive energy chirp which expands the 

bunch longitudinally generating a peak of the bunch length after its minimum. Near this peak, 

the LSC effect becomes smaller and the energy spread is reduced again. Consequently, the 

longitudinal expansion of the bunch is also weaker and the bunch length at FSS is reduced to 

its second minimum value. After that, the chicane over-compresses the bunch and the bunch 

length increases as the LSC effect becomes weaker, reducing the energy spread to its original 

value.  

In the energy spread vs. chicane angle diagram of Fig. 2.42, parameter points are marked 

by solid markers if the bunch length at FFS is below 1 ps, which is one of the requirements for 
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CBS in Table 1.3. Among these points, the one corresponding to the lowest energy spread is 

chosen for the beam transport for CBS, which is 5.5 MeV for the gradient of cavities in Linac 

2 and 19° for the bending angle of Chicane 2.  

 
Fig. 2.42 Bunch length and energy spread at the entrance of FFS, with the gradient of Linac 2 and the bending 

angle of Chicane 1 scanned.  

Bunch distributions in LPS at different positions are presented in Fig. 2.43. The u-crescent 

from the dogleg is alleviated by cavities. After Chicane 2, the bunch length is 4.0 ps and the 

energy spread is 221 keV (1%). Then in the long distance the bunch length is reduced by 

velocity compression to 0.96 ps, and the energy spread is compensated by the LSC effect to 

33.7 keV (0.15%). 

 
Fig. 2.43 Bunch distributions in LPS at different positions of CBS beam transport. The u-crescent from the 

dogleg is alleviated to quasi-linear at the entrance of FFS.  

The transverse beam transport is performed with automatic optimizations using the 

simulation tool, keeping the beam size always smaller than the beam pipe. The transverse 

emittance is optimized at the exit of Chicane 2 as well as at the entrance of FFS. With 

minimized energy spread and minimized emittance for the input beam, FFS is optimized to 

achieve the smallest beam spot size at the CBS point where electrons will interact with laser 

pulses. The bunch distribution is shown in Fig. 2.44, while the parameters of the final bunch 

are presented in Table 2.6. 



Chapter 2. Theory and simulation 

72 
 

 
Fig. 2.44 Optimized bunch distribution (200 pC) in phase space at the CBS point. 

Table 2.6 Optimized parameters of 200 pC beam for CBS at the electron-laser interaction point. 

 23.0   1.05 

 [keV] 33.8  [ps] 0.48 

 0.016   0.015 

 [mm] 0.017   0.036 

 19.7   18.6 

 14.1   4.3 
 

As the most critical parameter, the FWHM transverse beam size of the final bunch is 17 µm 

horizontally and 36 µm vertically, although rms sizes ( and ) are very close (Table 2.6). 

The highest outcome X-ray flux of CBS experiments depends on the spatial matching of the 

interacting electron bunch and the photon pulse. Usually a symmetric distribution is desired, 

however, Fig. 2.44 shows that the focused bunch is not horizontally symmetric. By analyzing 

, the horizontal overlap ratio of slices, it is found that the asymmetry origins from the 

dogleg. With the bunch divided into 10 slices,  at the entrance and exit of dogleg is 0.28 

and 0.72 respectively. Then varies by  along the beamline and at the CBS point it is 

0.67. In addition to generating the asymmetry, the dogleg is also the main reason for 

emittance growth, as shown in Fig. 2.41. 

To summarize, a 200 pC beam has been transported from the SRF gun to CBS experimental 

station, with parameters satisfying the requirements in Table 1.3. Parameter combination D is 

used instead of C, with increased cathode position to generate a linear distribution in LPS. 

The energy spread and transverse emittance are optimized at the entrance of FFS, which 

focuses the beam strongly to the minimum possible size of rms 0.16 µm or FWHM 0.36 µm. 

Parameters used in this simulation can be found in Appendix II. 
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3. Beam diagnostic methods 

3.1. The measurement of laser pulse length 

The pulse length of the UV laser determines the initial length of the electron bunch. A well-

known method of measuring laser pulse length is “auto-correlation”. In this method the laser 

is separated to two beams and one of them is delayed. Next, a Second Harmonic Generation 

(SHG) crystal is used to generate the self-correlated signal from the two laser beams. In the 

end, the temporal profile of the self-correlated signal is obtained by measuring its intensity 

while scanning the delay time, which contains the longitudinal information of the initial laser 

pulse. The setup of this method is illustrated in Fig. 3.1.  

 
Fig. 3.1 The sketch of the auto-correlation method of measuring the laser pulse length [76]. 

For a laser pulse which is Gaussian distributed in time, the auto-correlated signal is also 

Gaussian distributed, and the length of the laser pulse can be calculated by: 

 σlaser=
√2

2
σaut (3-1) 
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where σaut is the pulse length of the auto-correlated signal.  

However, for pulse lengths below 410 nm, e. g., 263 nm of the laser used for ELBE SRF 

gun, no SHG crystal is available. As a result, the method of cross-correlation has to be applied 

instead.  

The cross-correlation mehod requires a second laser beam with a given temporal profile 

which will be crossed with the laser to be measured. A Difference Frequency Mixing (DFM) 

crystal is applied to generate the cross-correlated signal. It is required that the two laser beams 

have the same repetition rate and overlap well spatially. One of them will be scanned 

temporally to measure the pulse length of the cross-correlated signal. The pulse length of the 

unknown beam is: 

 σlaser=√σcro2 − σknown2 (3-2) 

where σcro  and σknown are the pulse length of the cross-correlated signal and that of the 

second laser beam respectively.  

The UV laser used for the ELBE SRF gun is the fourth harmonic of an infrared (IR) laser 

with a wavelength of 1053 nm. Both lasers have the same repetition rate, thus, the IR laser 

beam is a good candidate to perform the cross correlation with the UV laser.  

A commercial product of auto/cross-correlator from A.P.E Company [76] is used, which is 

capable of both auto- and cross-correlation by switching the crystal. The correlator and the 

setup is shown in Fig. 3.2.  

The pulse structure of the IR laser is measured by auto-correlation and then used to analyze 

the UV laser. The scanning range of the optical path in this correlator is 150 ps, limiting the 

maximum acceptable temporal difference of the incident IR and UV beam to 75 ps for cross 

correlation. To satisfy this requirement as well as the spatial overlap, an extra section of the 

laser beamline has been built up as shown in  Fig. 3.3. Dichroic mirrors separate different 

harmonics of the laser. A retroreflector is installed on a delay stage to control the temporal 

overlap between IR and UV laser beams. A fast diode with 300 ps rise-up time is used to 

monitor the temporal overlap. The intensity of the IR beam, which is much stronger than the 

UV beam, can be adjusted with a polarizer and a wave plate. The detector for cross-

correlation is very sensitive to the second harmonic (green) and hence the rest green beam is 

filtered by a Pellin Broca prism.  
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Fig. 3.2 The setup of the preparation beamline for auto/cross-correlator, for both 13 MHz and 500 kHz channels. 

 

 
Fig. 3.3 The auto/cross-correlator from A.P.E Company and the preparation beamline installed in the laser 

system of ELBE SRF gun. 
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3.2. Measurement of energy and energy spread  

Energy and energy spread of beams at ELBE are measured mainly by dipoles. An example 

in the diagnostics beamline of the SRF gun is introduced in this section. 

As shown in Fig. 2.17, a diagnostics beamline is connected directly behind the ELBE SRF 

gun, of which the setup is shown in Fig. 3.4. A Faraday cup is installed at 0.77 m from the SC 

solenoid to measure the total current. After the Faraday cup, three quadrupoles focus the beam 

for further transport, followed by Screen-station 2 and 3 for beam observation and slit-scan 

emittance measurement, as presented in Section 3.3.  

 
Fig. 3.4 The diagnostics beamline of ELBE SRF gun. 

A 180° horizontal dipole (C-bend) is installed following Screen-station 3 for energy 

measurement, which images the input beam reversely. The distance from its entrance to 

Screen-station 4 is the same as the distance from its exit to Screen-station 5, as shown in Fig. 

3.4. Therefore, projections of a monoenergetic beam on both screens should be the same.  

Based on the above-mentioned settings in the diagnostics beamline, energy and energy 

spread of an electron beam from the SRF gun can be measured step by step:  

Firstly, the beam should be transported through the center of both Screen-station 3 and 4, 

with the C-bend and all steering magnets turned off between the two stations. In this case, the 

beam is travelling in the center of the beam pipe, and hence injecting into the C-bend 

perpendicularly. Secondly, the beam should be focused horizontally at Screen-station 4 to 

reduce the influence from transverse phase space, as shown in Equation (3-4). Then the C-

bend can be turned on and the beam is transported to Screen-station 5.  

The energy of the beam is given by: 
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 E̅=ecBbendRbend=CE∙Ibend  (3-3) 

where e  is the charge of an electron, c  is the speed of light; Bbend  and Rbend  are the 

magnetic field and bending radius of the C-bend respectively; CE is a calibration constant with 

a value of 0.129 MeV/A delivered by magnetic field measurements and Ibend is the current of 

the C-bend.  

The energy spread is calculated from the horizontal size of the beam projection on Screen 5, 

which can be decomposed into two components: one from the transverse beam transport, 

leading to the same beam size as that on Screen 4; the other from the dispersion in the C-bend. 

Hence, the calculation of the energy spread is as follows: 

 σE=C0σx, disp=C0√σx, 05
2 − σx, 04

2 (3-4) 

where σx, 04  and σx, 05  are the horizontal beam size on Screen 4 and 5 respectively, and 

σx, disp  is the dispersed component of beam size on Screen 5. The factor C0  is given by 

C0=2 Rbend E̅⁄ . 

One error in this measurement is caused by the alignment of Screen-stations and beam-

pipes in the diagnostics beamline. In practice it is hard for the beam to drift freely from the 

center of Screen 3 to the center of Screen 4 without beam loss, and thus a random error is 

generated if the incident beam of the C-bend is not perpendicular. This error is about 5%, 

summarized from the measurements by different operators. Another error comes from the 

calibration of CE which is estimated to be 5% to 10%. Consequently, both the relative error for 

energy and energy spread are estimated to be 10%, represented by δE̅ E̅⁄  and δ(σE) σE⁄  

respectively.  

This method of energy and energy spread measurement is also applied to other 

combinations of dipole and screens in the ELBE beamline. In cases without a perfect screen 

as Screen 4 which provides the influence of the transverse beam transport, errors of energy 

spread measurements should be controlled by focusing the beam at the measurement screen 

after the dipole.  

In addition, a Browne-Buechner spectrometer [77] is installed after the entrance of nELBE 

branch. It contains a circular-edge dipole which images point sources with the same energy. 

Particles with different energies are imaged onto a plane where a screen is installed, as shown 

in Fig. 3.5. A vertical slit is used to select a narrow beamlet and thus the effect of beam size 
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on the energy spread measurement is eliminated. Using the slit, the horizontal energy 

distribution in the bunch is neglected.  

 
Fig. 3.5 The sketch of Browne-Buechner spectrometer [78]. 
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3.3. Slit scan emittance measurement 

3.3.1. Introduction 

This section introduces a well-known emittance measurement method called "slit-scan". 

The idea is to measure the intensity distribution at a number of points in transverse phase 

space, and the normalized rms emittance can be calculated according to: 

 εu=βγεug=βγ√u2ave∙u'2ave − uu'ave
2 (3-5) 

and : 

 

 u2ave=
∑[Ii(ui − uave)

2]

∑ Ii
          

 u'2ave=
∑[Ii(u'i − u'ave)

2]

∑ Ii
          

uu'ave=
∑[Ii(ui − uave)(u'i − u'ave)]

∑ Ii

 uave=
∑(Iiui)

∑ Ii
                  

 u'ave=
∑(Iiu'i)

∑ Ii
                  

 (3-6) 

where u and u' are the coordinates of the position and angle in a transverse direction (e.g., x 

or y); I is the measured intensity; the subscript i is the index of measured points; β and γ are 

the relativity parameters and εug is the geometric emittance. 

To measure Ii, particles with particular position and angle must be sampled from the beam. 

Beamlets from different positions are selected by a slit scanning transversely through the 

beam. In the sampled beamlet from each position, particles travelling with different angles are 

separated after some distance and are projected onto a downstream screen. The image on the 

screen is recorded by a CCD camera. The accumulation of pixel values generates the angle 

distribution of the beamlet. The basic setup of the slit-scan emittance measurement is shown 

in Fig. 3. 6. 
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Fig. 3. 6 The basic setup of the slit-scan emittance measurement.  

3.3.2. Setup, software and measurement procedures 

In the diagnostics beamline introduced in Fig. 3.4, a 1 mm thick slit mask is installed at the 

position of Screen-station 2. It is vertically moveable with a horizontal slit, which has the 

dimension of 10 mm  0.1 mm. Screen 3 is located 77 cm after the slit mask to record the 

sampled beamlets. The setup of Screen-station 2 and 3 is shown in Fig. 3.7. The calibration 

screen has a coordinate system for calculating the dimension of pixels.  

 
Fig. 3.7 The structure of Screen-station 2 and 3. 
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During the measurement, the beam should be first transported through the center of Screen 

2 and 3, with no steering magnets turned on between them. In this case, the beam injects into 

the slit mask perpendicularly and the sampled beamlet travels freely between the two stations 

so that its angle can be measured correctly. In the next step, the entire beam should be focused 

at Screen 2 to be smaller than the length of the slit (10 mm) for complete sampling. 

Meanwhile, on Screen 3 the beam size should also be controlled to stay within the screen size, 

so that all beamlets can be recorded by the CCD camera.  

To shorten the measurement time, the slit is usually scanned roughly in advance to decide 

the scanning range. In the meantime, the exposure time of the camera should be adjusted to 

avoid saturation for every beamlet. The scanning step is usually set to 0.1 mm, which is the 

width of the slit, and thus the entire beam is sampled.  

After the above preparation steps which are conducted manually, the following 

measurement and calculation are conducted automatically by the software.  

The control of step motors and the CCD camera are combined in one LabVIEW program to 

perform the automatic emittance measurement, as shown in Fig. 3.8. CCD cameras are 

focused in advance on screens, with their exposure time and the trigger remotely changeable 

in the program. Other important input parameters include the range and the step of scanning, 

the number of images to record at each position and the beam energy.  

 
Fig. 3.8 Emittance measurement program for the ELBE SRF gun. 
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3.3.3. Image processing 

The processing of images recorded by screens and cameras before using them for 

calculation composes an important part of this thesis. The method to be introduced in the 

following is also applied for all other screen based diagnostics at ELBE. Here, image 

processing includes choosing proper areas, subtracting the background, distinguishing 

beamlet signals and removing noise. As each measurement generates several hundreds of 

images, an automatic, universal and fast image processing algorithm is necessary.  

The first step of image processing is to choose a proper area. The number of pixels directly 

affects the calculation time, therefore a proper area should contain as few pixels as possible 

but maintain all the information of beamlets. In the early stage, fittings were applied for this 

purpose, however, fittngs are not universal for all cases as the distribution of beamlets which 

depends on the beam quality is unpredictable, even roughly. For example, sometimes several 

peaks appear in the beamlet with different travelling angles, making pre-defined fitting for 

general cases unsuitable. The image processing method should effectively cover all situations 

especially for diagnosing bad beam qualities, and thus fittings were cancelled. Instead, all 

beamlet images are integrated to rebuild the entire beam, and by displaying it, a proper area 

can be chosen manually. This area is not the smallest for an individual beamlet, but it still 

significantly reduces the number of pixels to be processed. As shown in Fig. 3.9, the button of 

"sum" displays the rebuilt beam in the left window with intensity adjustable for users to locate 

the edge of the beam. This manual operation is acceptable because it occurs only once for one 

measurement.  

 
Fig. 3.9 Data processing program for the slit-scan emittance measurement.  
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The second step is to subtract the background. Pixel values of the image taken by the CCD 

camera are not exactly zero even when the beam is off. But rms calculations in Equation (3-3) 

and (3-4) are very sensitive to noise. At the edge of measured phase space where u or u' is 

large, even small noise in intensity will influence the rms value. 

The usual way of removing the background is to subtract an image taken without beam. 

This method is kept as an option that a pre-saved background image can be selected for 

subtraction. However, when the beam intensity is strong enough, some reflections illuminate 

the entire screen, resulting in all pixel values larger than that of the background image. The 

background subtracting in this case is not adequate. 

To represent the background, 10 × 10 pixels at each corner (× 4) of the chosen area are 

selected. The average of these pixel values is subtracted from the image as background and 

then their standard deviation is used as a threshold, such that pixel values smaller than three 

times of the threshold are set to zero. As shown in Fig. 3.10, the calculated emittance for a 

single beamlet changed significantly after subtracting the background. 

The third step is to distinguish beamlet signals from noise pixels. Again, pre-defined fitting 

is not applied as the beamlet distribution is unknown. Fig. 3.10 illustrates two cases with 

different beamlet distributions. One is an ideal case with a normal Gaussian distribution and 

the other is a special case at the edge of a bad-quality beam. Here the intensity of the beamlet 

signal is lower than that of most noise pixels and several separate signal peaks appear. A 

definition of beamlet signal not including the intensity is needed to distinguish signals from 

noise. 

In Reference [79], noise with a pixel number lower than a threshold are deleted, cycling the 

pixel number. The larger the threshold the longer the processing time. In this thesis the 

definition of beamlet signals is “pixel clusters with more than 50 connected non-zero pixels”. 

The number 50 is selected by experience, as most noise occupy less than 10 pixels and most 

beamlet signals occupy more than 100 pixels. Consequently, clusters with less than 50 non-

zero pixels are deleted. For such a high threshold of 50, an algorithm for distinguishing 

beamlet signals is developed avoiding cycling the pixel number for 50 times: 

(1) Mark all pixels by 0 or 1. 1 represents any non-zero value. 

(2) Scan all pixels until the next pixel marked with 1 is found. Save its index as the "center 

index" in an array of indexes for pixels in one cluster, named S.  
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(3) Check the mark of the surrounding pixels. If any pixel is marked with 1 while its index 

is not in Array S, insert its index into the end of Array S.  

(4) Scan Array S from the beginning, set the first element to be the "center index" and 

repeat Step (3) till the end of Array S. Now all indexes saved in this array are from one 

cluster, which can be either beamlet signals or noise. 

(5) Count the size of Array S. If it is less than 50, mark 0 to all pixels saved in Array S; If 

larger than 50, mark it with 2 which represents processed.  

(6) Repeat Step (2) to (5) until all pixels are scanned. Finally, the value of all pixels marked 

with 0 should be set to zero and the rest of non-zero pixels are beamlet-signals. 

The last step of image processing is to get rid of noise overlapping with beamlet signals. 

The method applied here is to cut the image to sub-areas of 5 × 5 pixels. In each sub-area, if 

any pixel value is larger than three times of the standard deviation plus the average of all 25 

pixels, it will be replaced by the average value. This method has been tested to be suitable for 

all data, but it is time consuming. Another wavelet based approach reduces the processing 

time to a negligible level, however, it is not universally applicable.  

 
Fig. 3.10 Image processing algorithm for the slit-scan emittance measurement and all other screen-camera based 

beam diagnostics in this thesis. 

3.3.4. Error analysis of slit-scan emittance measurement 

The error of the slit-scan emittance measurement can be attributed to the error of 

dimensions δεu (dim) εu⁄ , the error of slit collimation δεu (slit) εu⁄ , the error of energy 

measurement δεu(E̅)/εu , the error of pixel-based calculation δεu(pix)/εu  and the error of 

instability δεu(inst)/εu . These five sources of errors are explained in this section. 
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- The error of dimensions 

The pixel size of beamlet images is obtained from a calibration glass screen with a 

millimeter scale at the same Screen-station. The angle of particles is calculated 

according to the distance between the slit and the measurement screen. Errors of 

pixel calibration and angle calculation are estimated to be less than 1%. By 

assigning such an error in the emittance calculation program, the value of emittance 

varies by about 1%. This value is used as the relative emittance error from 

geometric calibration, . 

- The error of slit collimation 

The width of the slit is 0.1 mm and the thickness of the slit mask is 1 mm. A part of 

the incident particles traveling with a non-zero angle will be lost. The portion of lost 

particles is given by , where  is the thickness of the slit plate,  is the 

incident angle and  is the width of the slit, as shown in Fig. 3.11. The lost portion 

can be calculated, given the values of ,  and . However, the position of the 

slit relative to the screen is unknown due to inaccuracy of their mechanical 

installation. Therefore, the actual value of  is unknown. Compared to  in 

Equation (3-6) which indicates the angle of particles with respect to the movement 

of the beam center,  is the angle with respect to the accelerator axis. By estimating 

a maximum lost portion of 5% for particles at the edge of the beam, the value of 

emittance varies by about 1.5%, depending on the specific bunch distribution. 

Therefore, the relative error of emittance from slit collimation is estimated to be 

. 

 
Fig. 3.11 An illustration of slit-collimation induced error of the slit-scan emittance measurement. 

- The error of energy measurement 

The accuracy of energy measurement affects relativity parameters,  and , which 

influence the normalization of emittance. In the calculation program, it is allowed to 
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input error of the energy measurement which will be further used to calculate the 

relative error from the normalization: 

 
δεu(E̅)

εu
=
1

β2
∙
δE̅

E̅
 (3-7) 

- The error of pixel-based calculation 

The geometric emittance is calculated from the pixel values of images recorded by a 

CCD camera. All pixel values have statistical errors. In this thesis, the standard 

deviation of pixel values for the background, σI, is used as an estimated error for all 

pixels. From Equation (3-5) and (3-6), the error from the pixel values is calculated 

automatically in the program according to: 

 

  
δεu(pix)

εu
=
±σI
εu ∑Ii

[(
u2ave
2
)

2

∑((ui − uave)
2 − u2ave)

2

+ (
u′2ave
2

)

2

∑((u′i − u
′
ave)

2 − u′2ave)
2

+ (uu′ave)
2∑((ui − uave)(u

′
i − u

′
ave) − uu

′
ave)

2]1/2 

(3-8) 

- The error of beam instability 

During the emittance measurement, the camera is usually exposed to at least 10 

pulses of the beam at one position to record a single image, and about 30 to 50 

positions are scanned in one measurement. If the beam is not stable, an error will be 

generated in the multi-pulse emittance measurement.  

To gauge the influence of the beam instability, a simulation of the slit-scan 

measurement has been conducted with 40 bunches with random distributions in 

phase space. For each bunch distribution, a white noise is added to the transverse 

beam position as an offset, with the amplitude set to 20% of the transverse beam 

size. Such a white noise is parameterized according to an instability measurement 

on Screen 2 using a CCD camera. With this white noise, a virtual sampling is 

performed to exactly imitate the slit and thus the emittance is virtually measured. 

The ratio of the virtually measured emittance to the actual emittance increases with 

βuγu of the bunch, where βu and γu  are Twiss parameters, as shown in the right 

diagram in Fig. 3.12. Meanwhile, the left diagram in Fig. 3.12 shows no obvious 

trend between the statistic error of virtually measured emittance and βuγu of the 

bunch. 
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The value of  measures how “fat” the phase ellipse is. As shown in Fig. 3.13, 

bunches with larger  are “thinner”, therefore the instability of the transverse 

offset enlarges the bunch distribution in TPS more significantly, leading to a larger 

systematic error of the emittance.  

 
Fig. 3.12 Instability-induced statistical error (left) and systematical error (right) calculated from the virtual 

measurement. 

 
Fig. 3.13 Three examples presenting the dependence of instability-induced systematic error on . The three 

distributions on top are the initial bunches and the three distributions at the bottom are the corresponding 

bunches that are virtually sampled. 

As a solution, the systematic errors are corrected by the fitting result which is shown in 

Fig. 3.12: 
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 εucor=
εu

1+0.0323e0.0635βuγu
 (3-9) 

The measured white noise on transverse beam position is assumed to come from 

vibrations of ELBE and it is potential to be reduced by soft connections of pumps. 

Meanwhile, to achieve the minimum value of βuγu by focusing the beam, i. e., to the 

beam waist, is also effective to reduce this systematic error.  

According to the left diagram in Fig. 3.12, the statistical instability induced error is 

estimated by δεu (inst) εu=10 %⁄ .  

The total error of slit-scan emittance measurement is the rms of the above five errors:  

 
δε

ε
|
ss
=[(

δε(dim)

ε
)2+(

δε(slit)

ε
)2+(

δε(E̅)

ε
)2+(

δε(pix)

ε
)2+(

δε(inst)

ε
)2]1/2 (3-10) 
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3.4. Quadrupole scan emittance measurement 

3.4.1. Introduction 

Quadrupole scan is another widely applied method for emittance measurement in 

emittance-dominated beams. The principle is to utilize the beam transport matrix to derive the 

emittance. Its setup is basically the combination of a quadrupole and a downstream screen 

with a proper drift distance. When the quadrupole strength changes for measurement, the 

beam should be completely projected on the screen. 

In a general case where a beam is transported from Position 0 to Position 1 and considering 

one transverse dimension only, the matrix in between is represented by M: 

 M=(
a b
c d

) (3-11) 

such that: 

 (
u0
u'0
)= (

a c
b d

)(
u1
u'1
) (3-12) 

where u0 and u'0 represent the position and the angle of a particle at Position 0 while u1 

and u'1 represent the position and the angle of this particle at Position 1, respectively. The 

beta function between these two positions is: 

 β1εug=a
2 β0εug − 2acα0εug+c

2 γ0εug (3-13) 

Where β1  is the Twiss parameter at Position 1, α0 ,  β0  and  γ0  are Twiss parameters at 

Position 0, εug is the geometric emittance of the beam which is assumed to be constant in the 

quadrupole-scan emittance measurement. 

Rewrite Equation (3-13) in a compact way gives: 

 f=Ax+By+Cz (3-14) 

and  
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f=β1εug=σu1
2

 A=β0εug=σu0
2 

x=a2     
B=α0εug   

y= − 2ac   
C= γ0εug    

z=c2     

 (3-15) 

where σu0 and σu1 are the rms beam size at Position 0 and Position 1 respectively.  

x , y  and z  can be calculated from the matrix M . By changing the matrix M , several 

combinations of (f, x, y, z) are available, and then the problem of deriving εug is equivalent to 

fitting the best values of A, B  and C  with the known combinations of (f, x, y, z) . 

Mathematically, the least squares method can be applied, which is to minimize the following 

objective function representing the sum squared differences of all groups between fitted and 

measured data: 

 Rest=∑[
1

σfj
(fj − Axj − Byj − Czj)

2] 

 
(3-16) 

where the subscript j is the index of data group with different values of M, σfj is the error of 

the measured fj  and 1/σfj is the weighting factor. The more accurate fj  is measured (lager 

1/σfj), the more important the corresponding group is. The optimal values for A, B and C to 

minimize Rest should satisfy the first order conditions:  

 

∂Rest

∂A
=0

∂Rest

∂B
=0

∂Rest

∂C
=0

 (3-17) 

Replacing Rest in Equation (3-17) by Equation (3-16), the solution for A,B and C is: 
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(3-18) 
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With the solved A, B and C, the emittance as well as Twiss parameters at Position 0 can be 

calculated by Equation (2-1) and (3-15),  

 

εug=√AC − B
2

 β0=
A

√AC − B2

α0=
B

√AC − B2

 γ0=
C

√AC − B2

 (3-19) 

The above deduction is not limited to quadrupole scan. Any change of the transport matrix 

influencing the downstream beam size can be used to measure the transverse emittance. 

As a special application of quadrupole scan with Position 0 being the entrance of a 

quadrupole and Position 1 being a downstream screen, the transport matrix Mqs is the product 

of the matrixes for the drift space and the quadrupole: 

 Mqs=(
1 ld
0 1

) ∙

(

 
 

cosh (√kqlq)
1

√kq
sinh(√kqlq)

−√kqsinh(√kqlq) cosh(√kqlq)
)

 
 

 

 

(3-20) 

where kq is the quadrupole strength, lq is the effective length of the quadrupole and ld is the 

length of the drift space. By setting several values of kq and measuring corresponding beam 

sizes, the emittance can be calculated by Equation (3-14) to (3-20).  

3.4.2. Error analysis of quadrupole scan emittance measurement 

The measurement of beam size at Position 1 is based on screens and cameras. Before 

calculation, the image processing procedures described in Section 3.3.3 are applied first. 

σfj is not only an error but also directly influences the value of the emittance, as it appears 

in Equation (3-18). It is calculated based on the statistical error of pixel values, σI, as in the 

following equation: 

 σfj=√∑(
∂σu12

∂Ii
∙σI)2=

σI
∑Ii

√∑(u1i
2 − fj)2 (3-21) 

The error of emittance caused by σfj can be calculated by: 
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δε(σfj)

ε
= √∑(σfj∙∂εug ∂fj⁄ )

2
 (3-22) 

However, according to Equation (3-17) and (3-18) the analytical solution of εug  as a 

function of fj is very complicated, therefore, a simplified approximation is applied instead: 

 
δε(σfj)

ε
=
1

2εug
|εug − εug, fj+σfj|+

1

2εug
|εug+εug, fj-σfj| (3-23) 

εug, fj+σfj  and εug, fj-σfj  are the emittance calculated by replacing fj  in Equation (3-16) with 

fj+σfj and fj-σfj, respectively. The idea is to estimate the influence on the emittance when all fj 

has unipolar errors. 

Other errors, including the error from the transport matrix M and the error from space 

charge effects during transport, are negligible for low bunch charge densities compared to 

δε(σfj) ε⁄ . Considering the normalization of emittance, the total error estimated for quadruple-

scan emittance measurement is given by the rms value of δε(σfj) ε⁄  and the error from energy 

measurement δε(E̅) ε⁄ : 

 
δε

ε
|
qs
=[(

δε(σfj)

ε
)2+(

δε(E̅)

ε
)2]1/2 (3-24) 

3.4.3. Slice emittance measurement 

As discussed in Section 2.5.1, to measure the emittance of temporal slices or slices with 

different energies is of interest in studying the slice mismatch problem. Quadrupole scan is 

applied to measure the slice emittance. The setup is shown in Fig. 3.14, where a dipole is used 

between the quadrupole and the screen to separate energy slices transversely. The slice 

emittance is measurable only in the transverse direction perpendicular to the bending direction 

of the dipole. 

 
Fig. 3.14 The setup of the quadrupole based slice emittance measurement. 
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The quadrupole is used to vary the beam size on the screen for further fitting of the 

transverse emittance, which is the same as the quadrupole scan measurement. The transport 

matrix Mse here is different from Mqs because of the dipole. Mse is the product of matrices of 

two drift spaces, the quadrupole, the dipole and the edges of the dipole: 

 

Mse=(
1 l2
0 1

) ∙ (

1 0

−
tanθ2
Rd

1
) ∙
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−√kq sinh (√kqlq) cosh (√kqlq)
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(3-25) 

where θ1  and θ2  are the entrance and exit edge angles of the dipole; l1  and l2  are the 

lengths of drifts shown in Fig. 3.14; ld is the length of the trajectory in the dipole and Rd is the 

radius of the trajectory.  

With this method, the emittance of energy slices can be measured. By chirping the bunch at 

zero phase of a cavity in front of the quadrupole, temporal slices are separated by energy. In 

this case, the emittance measured for energy slices also represents the emittance of temporal 

slices.  

The error of the temporal position of each slice comes from the size and the divergence of 

the incident beam of the dipole. Imagine a monoenergetic beam with the same transverse 

phase space passing through the dipole to the screen: the time duration calculated from the 

beam size on the screen (σxmono) is a good estimate of the temporal coordinate error. σxmono is 

not measurable, therefore in practice, it is replaced by the beam size on another screen on the 

straight beamline, with the closest trajectory length to the measurement screen. The error of 

the slice emittance can be estimated by Equation (3-24). 

 Using the Browne-Buechner spectrometer introduced in Section 3.2 is one of the choices 

for slice emittance measurement. The procedure of the error estimation was carefully analyzed 

in Reference [78]. 
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4. Experimental results 

4.1. Measurements of the laser pulse length 

Because of the prompt response time of the metallic photocathodes, laser pulse length 

determines the initial length of the electron bunch. In 2015, during the commissioning of 

ELBE SRF Gun II with a copper cathode, an energy modulation was observed from a 

dispersed beam after a dipole in ELBE beamline, as shown in the left diagram of Fig. 4.1. The 

energy modulation implies a longitudinal density modulation of the bunch, which reflects the 

longitudinal laser pulse profile.  

 
Fig. 4.1 Dispersed beam of ELBE SRF Gun II with a copper cathode, imaged on the screen behind a dipole 

magnet in the ELBE beamline (left). Measurement of the longitudinal profile of the UV laser pulse in the 

diagnostics beamline (right). A modulation of longitudinal density distribution can be observed. 

An electron-beam-based diagnostics of the longitudinal laser pulse profile was conducted in 

the diagnostics beamline of the SRF gun. For quasi-zero bunch charges, the energy 

distribution in the electron bunch comes only from the difference of time when electrons are 

emitted from the cathode. Therefore, the energy distribution reflects the longitudinal 

distribution of the initial electron bunch at the photocathode, which is also the longitudinal 

laser pulse profile. With this method, the longitudinal profile of the laser pulse was measured 

and the result is shown in the right diagram of Fig. 4.1. The assumed longitudinal density 

modulation is observed meanwhile the measured rms pulse length of 13.8 ps is more than 

twice the design value of 6 ps. 

This result motivates a direct measurement of the longitudinal laser pulse profile, using the 

method of auto/cross-correlation introduced in Section 3.1. The auto-correlated signal of the 
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IR laser beam and the cross-correlated signal between IR and UV laser beams were measured 

as shown in Fig. 4.2 and fitted with Gaussian functions. According to Equation (3-1) and (3-2), 

the rms pulse lengths of the IR and UV laser are 11.5 ps and 8.6 ps respectively.  

 
Fig. 4.2 Auto-correlated signal of the IR laser beam (left) and cross-correlated signal between IR and UV laser 

beams (right). The blue curves show the experimental data while the red curves are calculated from 

deconvolution signals, which will be explained in the following paragraphs in this section. From Gaussian 

fittings, the rms pulse lengths of the IR and UV laser are 11.5 ps and 8.6 ps respectively.  

However, the Gaussian fitting does not provide any information about the modulation. 

Using the FFT based deconvolution described in Section 2.5.4, the profiles of both the IR 

beam and the UV beam were deconvolved and shown in Fig. 4.3. Calculated from the 

deconvolved profiles, the rms pulse length of IR laser is 11.2 ps and the pulse length of the 

UV laser is 8.3 ps, which are slightly smaller than those calculated from the Gaussian fitting. 

The modulation is now observed and the structure of the UV pulse agrees with the electron 

beam based measurement shown in Fig. 4.1. However, this direct measurement of the UV 

pulse length using cross-correlation is 50% lower than that of the electron-beam-based 

measurement.  

 
Fig. 4.3 Deconvolved IR pulse profile (left) and UV pulse profile (right). 
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Smoothing and interpolation have to be conducted to the measured correlation signals 

before deconvolution. The deconvolution is very sensitive to the accuracy of measurement 

results as well as to the parameters set for smoothing and interpolation. The deconvolved 

pulse distributions are further used to perform the convolution numerically and the result is 

compared with measurement, as an evaluation of the deconvolution. The results of the 

convolution based on the best solutions of deconvolution (shown in Fig. 4.3), are already 

presented in Fig. 4.2 with the red curves. It shows that the measured and calculated auto-

correlated signals agree with each other very well. For the cross-correlation, however, there is 

relative larger difference between measurement and calculation. The reason is that the cross-

correlated signal has a much weaker intensity therefore the SNR is smaller. 

As both measurements indicate an undesired modulation in the longitudinal profile of the 

laser pulse, the laser system for ELBE SRF gun was improved and after that the longitudinal 

distribution of the laser pulse was recovered to a Gaussian distribution with the rms pulse 

length of 7 ps, which is also the value used throughout this thesis. Auto-correlated and cross-

correlated signals measured for the improved laser system are shown in Fig. 4.4.  

 
Fig. 4.4 Auto-correlated signal of the IR laser beam (left) and cross-correlated signal between IR and UV laser 

beams (right) after the improvement of the laser system. From Gaussian fittings, the rms pulse lengths of the IR 

and UV laser are 10.3 ps and 7.0 ps respectively. 

This auto/cross-correlation based measurement for longitudinal laser pulse profile shows 

that the pulse length of the UV laser is about 70% of that of the IR laser. By design, the 

intensity of the UV beam is about 15% of that of the IR beam and the alignment of cross-

correlation is more challenging. As a result, the SNR of cross-correlated signal is much 

smaller than that of the auto-correlated signal. 
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4.2. Commissioning of ELBE SRF Gun II with magnesium cathode 

As described in Section 1.1.2, a contamination happened to the SRF cavity while changing 

the Cu cathode with a Cs2Te cathode, reducing its performance. After that, as an alternative 

photocathode, a magnesium cathode was installed in the gun, aiming to generate electron 

bunches with a bunch charge of several hundreds of pC. This magnesium cathode has a laser-

cleaned area of 4 mm in diameter and possessed a QE of 0.2%. For measurements in this 

section, the cathode position in operation was 1.4 mm and the laser was temporally Gaussian 

distributed with an rms pulse length of 7 ps.   

4.2.1. Energy and energy spread measurement 

Energy and energy spread were measured in the diagnostics beamline according to the 

method introduced in Section 3.2, at a gradient of 8 MV/m. The DC voltage was -5 keV, the 

bunch charge was 5 pC and the laser phase was scanned from 15° to 70°. For other laser 

phases the electron beam exceeds the measurement range of Screen 5. The laser spot was 

radially quasi-Gaussian distributed with the rms size of 0.23 mm. The SC solenoid was used 

to focus the beam at Screen 4. Measurement results are presented in Fig. 4.5, as well as results 

of simulations using the same parameters. 

 
Fig. 4.5 Energy and energy spread measurement for ELBE SRF Gun II with a magnesium cathode. Relevant 

parameters of the SRF gun during measurement: gradient is 8MV/m, cathode position is 1.4 mm, laser pulse 

length is 7 ps and DC voltage is -5 keV. 
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In Fig. 4.5, the simulation shows a similar trend as the measurement. At the laser phase of 

about 55°, the energy reaches its maximum of 4.38 MeV while the energy spread has a 

minimum of 7 keV. For all measured laser phases, the energy varies by only less than 10%. 

However, the energy spread firstly increases to 40 keV, then decreases to its minimum, and 

finally increases strongly with the laser phase.  

4.2.2. Dark current measurement 

The dark current of an SRF gun refers to the current induced by the RF field, which can be 

emitted from the surface of both the cathode and the cavity because of field emission due to 

local field enhancement or a local decrease of the work function. As discussed in Section 1.3, 

the dark current should be kept as low as possible for pELBE, nELBE and CBS experiments.  

In an experiment of changing the cathode position, a new field emitter appeared near the 

cathode and a significant increase of the dark current was observed. The energy spectrum of 

the dark current is shown in the left diagram of Fig. 4.6. It is observed that the dark current 

has a high-energy peak with the same energy as the desired electron beam, which cannot be 

eliminated by dipoles.  

 
Fig. 4.6 The spectrum of dark current after the new field emitter was generated (left) and the spectrum of dark 

current after RF power processing. The DC voltage is negative in the left diagram and positive in the right 

diagram. 

It was found that the increased dark current is sensitive to the polarity of the DC voltage. 

More dark current was produced with negative DC voltage. Therefore, positive DC voltage 

was applied and the dark current was reduced to a much lower level. Fig. 4.7 presents the 

measurement of dark current as a function of the gradient with different DC voltages, showing 

that in general the dark current increases with the gradient of the gun cavity and the positive 

DC voltage suppresses the dark current efficiently. Besides, RF power processing was 
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performed for the cavity but it could not reduce the total dark current. The spectrum of the 

dark current with +5 keV DC voltage after the RF power processing is shown in the right 

diagram of Fig. 4.6. Compared to the left diagram, which was measured with negative DC 

voltage, not only the total dark current is reduced to 17%, but the fraction of the high-energy 

peak is also remarkably reduced.  

 
Fig. 4.7 The relation between dark current and gradient of ELBE SRF Gun II with different DC voltages. Dashed 

lines are quadratic polynomial fittings of measured data. All measurements are done with the cathode position of 

1.4 mm. 

4.2.3. Emittance versus DC voltage  

A negative DC voltage is supposed to provide an extra acceleration for the initial electron 

bunch and therefore it had always been applied until the accident in which the new field 

emitter was formed during the cathode moving. However, according to Section 4.2.2, a 

positive DC voltage has to be applied to reduce the dark current of the gun. It is interesting to 

investigate how the DC voltage influences the beam quality, therefore, a measurement of the 

transverse emittance for different bunch charges was conducted with and without the positive 

DC voltage. Results are contrary to the initial expectation: the emittance is actually smaller 

with a positive DC voltage, as shown in Fig. 4.8. In this measurement the gradient was set to 8 

MV/m and the laser phase was 50°. An aperture with a diameter of 0.5 mm was installed to 

cut the laser spot to a quasi-flattop distribution. The laser spot on the cathode has an rms size 

of 0.25 mm.  
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This measurement enlightened the simulation work in Section 2.7.1. It is shown in 

simulation that a positive DC voltage leads to longer bunches. The charge density is lower in 

longer bunches which can result in smaller emittance. This explanation is supported by Fig. 

4.8, where the difference of emittance becomes larger between cases with and without the 

positive DC voltage with higher bunch charges. 

 
Fig. 4.8 Transverse emittance measured for different bunch charges with/without the DC Voltage. In general, a 

positive DC voltage leads to smaller emittance. Phase spaces for 140 pC bunches with/without the positive DC 

voltage are illustrated on the right. Relevant parameters of the SRF gun during measurement: gradient is 8 MV/m; 

laser phase is 50°; beam energy is 4.36 MeV; cathode position is 1.4 mm; laser pulse length is 7 ps; laser spot 

size is 0.25 mm. 

4.2.4. Impact of laser spot size  

 The transverse distribution of the UV laser used for the ELBE SRF gun has to be 

optimized for each operation mode depending on the bunch charge. Theoretically, a large 

laser spot reduces the space charge effect but increases the thermal emittance. The balance of 

these two aspects depends on the bunch charge, which is supported by the simulation study in 

Section 2.7.2.  

An aperture with a diameter of 0.5 mm was used to select a round, quasi-Gaussian 

distributed laser spot for the commissioning of ELBE SRF Gun II with the magnesium 

cathode. In general, the selected laser spot will be imaged on the cathode with a designed 

amplification factor of 2.5 (measured to be 2.4). To study the influence of laser spot size on 

the quality of the beam, another two apertures with diameters of 1 mm and 1.5 mm were 

applied as a replacement of the 0.5 mm aperture. In addition, a defocusing lens and a focusing 
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lens were installed sequentially in front of the aperture to enlarge the beam size and hence to 

change the distribution of the laser spot. These two lenses were applied for the 1 mm aperture 

and 1.5 mm aperture.  

For the four experimental series with 0.5 mm aperture, 1mm aperture, 1 mm aperture with 

lenses and 1.5 mm aperture with lenses, the vertical emittance was measured with slit-scan 

method at Screen 2 in the diagnostics beamline for different bunch charges. The FWHM laser 

spot sizes for the four series were 0.68 mm, 1.33 mm, 1.42 mm and 1.68 mm respectively. For 

these measurements, the gradient of the gun was 7.16 MV/m, the laser phase was 50° and the 

DC voltage was +5 keV. The measurement results are shown in Fig. 4.9 and compared to 

simulation results presented with solid lines. Generally, the measurement results have the 

same trend, but are larger than the simulation results.  

The simulation was performed for the beam transport from the cathode to Screen 2 with the 

simulation tool described in Section 2.6. The thermal emittance was calculated by ASTRA 

according to Reference [60], where it is mentioned that in general the experimental thermal 

emittance measured in an RF photocathode gun is about a factor of 2 times the theoretical 

thermal emittance. One of the reasons for this difference is supposed to be the surface 

roughness of metal cathodes which has not been taken into account in the theory. In Fig. 4.9 

the total emittance from simulation partially consists of the underestimated thermal emittance.  

 
Fig. 4.9 Measured and simulated emittance vs. bunch charge for different laser distributions. Dashed lines are 

quadratic polynomial fittings of the measured data. Relevant parameters of the SRF gun during measurement: 

gradient is 7.16 MV/m; laser phase is 50°; beam energy is 3.9MeV; cathode position is 1.4 mm; DC voltage is 

5 keV; laser pulse length is 7 ps. 

As a general trend, for bunch charges below 25 pC, the thermal emittance dominates the 

total emittance, and hence, smaller laser spot sizes lead to lower emittance. For bunch charges 
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higher than 30 pC, space-charge-induced emittance contributes the most to the total emittance 

and thus larger laser spot sizes result in lower emittance. The distributions of laser spots for 

these four experimental series are shown in Fig. 4.10, together with the corresponding phase 

space distributions for beams with bunch charges of 10 pC and 70 pC.  

 
Fig. 4.10 Laser spot distributions and phase space distributions for beams with the bunch charge of 10 pC and 

70 pC. From top to bottom, the four laser spots are selected by a 0.5 mm aperture, a 1.0 mm aperture, a 1.0 mm 

aperture & two lenses and a 1.5 mm aperture & two lenses. The FWHM laser spot sizes for the four groups are 

0.68 mm, 1.33 mm, 1.42 mm and 1.68 mm respectively. The phase space is enlarged by the size of laser spot for 

the bunch charge of 10 pC. But for the bunch charge of 70 pC, the phase space shrinks with laser spot size. The 

relevant parameters of the SRF gun during measurement: gradient is 7.16 MV/m; laser phase is 50°; beam 
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energy is 3.9 MeV; cathode position is 1.4 mm; DC voltage is 5 keV; laser pulse length is 7 ps; the current of the 

SC solenoid is 3.65 A.  

Although Fig. 4.9 shows that the emittance always increases with bunch charge, Fig. 4.10 

gives an example in the experimental series of “1.5 mm aperture with lenses” where the beam 

size can be larger for lower bunch charges at Screen 2. To investigate the reason, measured 

beam sizes for all experimental groups are shown in Fig. 4.11. Most of the measured beam 

sizes are up to 30% larger than simulations. However, both measurements and simulations 

indicate similar trends for all experimental groups. The beam size profile given by Elegant 

reveals the reason, which is exemplified in Fig. 4.12. With the same solenoid strength, a beam 

with lower bunch charge has a smaller beam size and a smaller divergence at the SC solenoid, 

which is equivalent to a smaller objective distance if the solenoid is considered as a lens. 

Therefore, the beam waist is closer to the solenoid, which later leads to a diverging beam at 

Screen 2 with a larger size than that of the beam with a higher bunch charge. 

 
Fig. 4.11 Measured and simulated beam size vs. bunch charge for difference laser distributions. The bunch size 

at Screen 2 can be larger for lower bunch charges. The reason is explained in Fig. 4.12. Relevant parameters of 

the SRF gun during measurement: gradient is 7.16 MV/m; laser phase is 50°; beam energy is 3.9MeV; cathode 

position is 1.4 mm; DC voltage is 5 keV; laser pulse length is 7 ps.  
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Fig. 4.12 The beam size profile given by Elegant from the exit of gun-cavity to Screen 2, for 10 pC and 30 pC 

bunches in the experimental group with 1.0 mm aperture and lenses. At Screen 2, the beam size for 10 pC is 

larger than that for 30 pC.   
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4.3. Longitudinal space charge experiments at PITZ 

According to simulations in Section 2.5.3 and 2.8, the longitudinal space charge (LSC) 

effect plays an important role in the transport of beams with the energy from several MeV to 

several tens of MeV. To verify this effect, a relevant experiment has been conducted at 

institute PITZ.  

The PITZ beamline and the experimental conditions are shown in Fig. 4.13. In this 

experiment, the applied bunch charge was 1 nC. Electron bunches were generated from an 

NCRF gun with an energy of 6.04 MeV, and then accelerated by a booster to the energy of 

21.4 MeV. The RF phase of the gun was chosen for minimum energy spread, which is 

negligible compared to the energy spread after the booster.  

Two quadrupoles right after the booster cavity were used to focus the beam, with its waist 

controlled in the middle of the two downstream dispersive sections, named of HEDA 1 and 

HEDA 2, respectively.  

 
Fig. 4.13 The PITZ beamline and the experimental conditions. 

The beamline section for studying the LSC effect starts from the screen HIGH1.Scr1, 

where a slit scan emittance measurement [80] was performed. Results are shown in Fig. 4.14 

with the horizontal emittance of 4.65 µm and the vertical emittance of 2.21 µm. In the 

following beam transport for 11 m, all quadrupoles were turned off. The mentioned two 

dispersive sections, HEDA 1 and HEDA 2, were used to measure the energy and energy 

spread. Between them, a Transverse Deflecting Structure (TDS) based bunch length 

measurement [81] was performed and the rms bunch length was measured to be 6 ps, as 
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shown in Fig. 4.15. The beamline from HEDA 1 to HEDA 2 is a free drift distance neglecting 

the steerers with low magnetic fields. The beam size along the beamline is shown in Fig. 4.16. 

 
Fig. 4.14 Transverse emittance measurement at PITZ for a 1 nC, 21.4 MeV beam. 

 
Fig. 4.15 TDS measurement of bunch length at PITZ and the Gaussian bunch distribution used in simulation with 

the same rms bunch length of 6 ps. 
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Fig. 4.16 Measurement and simulation of transverse beam size at PITZ. 

The LSC effect is quantified by the change in energy spread. The energy and energy spread 

were measured at both ends of the free drift space while the phase of the booster cavity was 

scanned, as shown in Fig. 4.17. The energy measured at HEDA 2 is 1% lower than that 

measured at HEDA 1, which might be caused by the calibration error of dipoles. However, 

even if there is a systematic error, the relationship between energy and booster phase is not 

influenced. Both measurements show that the crest phase of the booster for the maximum 

energy gain is -84°. The booster phase for minimum energy spread is also -84° measured at 

HEDA 1 but it shifted to -79° in the measurement at HEDA 2. In addition, for all phases, a 

variation of energy spread is observed which is much larger than the assumed systematic error 

of 1% from the energy measurement.  

Booster phases lower than the crest phase provide a positive chirp and higher phases 

provide a negative chirp. The variation of energy spread can be explained by the general 

influence of the LSC effect that the head of the bunch gains energy and the tale loses energy. 

In positively/negatively chirped beams the LSC effect enlarges/reduces the energy spread of 

the bunch. 
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Fig. 4.17 Energy and energy spread measurements at dispersive sections of the PITZ beamline.  

This experiment aimed to verify the strong LSC effect in Elegant simulations. A simulation 

was performed for a simple free drift space, where the energy change of particles only came 

from the LSC effect. The incoming beam was initialized as 3D Gaussian distributed using the 

above measured parameters of emittance, Twiss parameters and bunch length. The simulated 

transverse beam size is shown in Fig. 4.16.  

In simulation, the rms bunch length is set to 6 ps, which is the same as TDS measurement 

results. The applied longitudinal bunch distribution is shown in Fig. 4.15. The energy and 

energy spread measured in HEDA 1 is set for the initial beam. After the drift distance, the 

simulated energy spread is compared with measurement at HEDA 2, as shown in Fig. 4.18. 

The variation of simulated energy spread is about 50% smaller than that of measurements, 

which is sensitive to the bunch length. By applying smaller bunch lengths, stronger LSC 

effect was observed in simulation. The results with 4 ps bunch length match the experiments 

the best.  
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Fig. 4.18 Simulation results of the energy spread variations at different bunch lengths, compared with 

experiments. Error bars in this figure include only statistical errors. It is shown that the LSC effect is weaker in 

simulation than in actual measurements. The impact of the LSC effect in the simulations of Section 2.5.3 and 2.8 

is not over-discussed. 

As a summary of the experiments at PITZ, the impact of the LSC effect was studied by 

measuring the energy spread variation in a free drift space. The variation has also been 

simulated based on the measured parameters of the incident beam. The influence of the LSC 

effect on a 21 MeV/1 nC electron beam was confirmed by observing the shift of the 

minimum-energy-spread phase of the booster measured at both ends of a free drift distance. 

The influence from experiments is twice of that from simulations. The difference may come 

from the error of the energy spread measurement, the error of the TDS bunch length 

measurement or the error of initializing the electron bunch with the Gaussian distribution in 

simulations. Adequate attention on the LSC effect should be paid to future beam transport in 

the ELBE accelerator.  
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4.4. 200 pC beam transport in ELBE beamline  

This section presents a beam transport experiment in which a high-bunch-charge beam was 

transported from ELBE SRF Gun II to the Browne-Buechner spectrometer. The beamline is 

shown in Fig. 2.17. This beam transport experiment was designed to verify that the high-

bunch-charge beam generated by the SRF gun can be transported in the ELBE beamline 

without critical beam loss. In addition, experimental results were also used to evaluate the 

simulation tool introduced in Section 2.6. 

During the high bunch charge operation, a diagnostic mode of operation was applied to 

protect the ELBE beamline, which only allowed the SRF gun to inject a beam with an average 

current below 10 µA. For that reason, a mechanical shutter was applied to modulate the laser 

beam into macro pulses of 40 ms out of every 100 ms, reducing the average current while 

keeping the same bunch charge of 200 pC. The gradient of the gun was 7.5 MV/m, the laser 

phase was adjusted to minimize the energy spread, the cathode position was 1.4 mm, the DC 

voltage was +5 keV, the laser pulse length was 7 ps, and the laser spot size was 0.64 mm 

horizontally and 0.69 mm vertically.  

The location of each measurement is shown in Fig. 4.19: The bunch charge was measured 

by the Faraday cup in the diagnostics beamline (shown in Fig. 3.4) and an Integrating Current 

Transformer (ICT) after Linac 1. The energy and energy spread were measured by dipoles 

after both Linacs as well as by the energy spectrometer. The beam size was measured along 

the beamline on Yttrium Aluminium Garnet (YAG) screens or Optical Transition Radiation 

(OTR) screens using Charge-Coupled Device (CCD). The emittance of the SRF gun and the 

distribution in vertical phase space were measured with slit-scan method in the diagnostics 

beamline. In addition, quadrupole-scan emittance measurements were performed in the dogleg, 

after Linac 1, after Linac 2 and right before the energy spectrometer. Finally, slice emittance 

and bunch length were measured by quasi-linearly chirping the beam using Linac 2.  

A simulation of this experiment is also presented in this section. Most parameters in the 

simulation are the same as experimental parameters except for the laser spot distribution and 

the gradient of cavities: The laser is transversely imitated using a 2D Gaussian distribution 

with the rms spot size of 0.65 mm. The cavity gradients of both linacs are adjusted according 

to the measured energy at the crest phases of all cavities. The simulation is meaningful to 

analyze the measurement results, and optimized parameters in the simulation can be used as 

initial setting of experiment. Parameters used in this simulation can be found in Appendix III. 
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4.4.1. Bunch charge and beam loss measurement 

For this experiment, the bunch charge measured at the Faraday cup was 185 pC with a 10% 

error. After the dogleg and Linac 1, which are the most critical sections for beam loss 

(according to simulations in Section 2.8), the bunch charge measured by an ICT was 200 pC 

with an error of 1%.  

 After Linac 1 and the ICT, the beamline is straight and the beam transport is less 

challenging. Optimizing the beam transport, the signals of all beam loss monitors were 

minimized to a negligible level with respect to the beam cutoff threshold. Based on the 

measurement of the Faraday cup, the ICT and the beam loss monitors, the bunch charge 

transported to the energy spectrometer was about 200pC.  

4.4.2. Energy and energy spread measurement 

Each of the Linacs at ELBE includes two cavities. These four cavities are named as Cavity 

1, 2, 3 and 4 sequentially along the beamline. From Cavity 1 to Cavity 4, the gradient was set 

to 10 MV/m, 7 MV/m, 6 MV/m and 6 MV/m respectively. The length of each cavity is 

approximately 1 m. The energy and energy spread after Linac 1 were measured using the first 

dipole of Chicane 1, with different phases of Cavity 2 (shown in Fig. 4.20). Using a dipole 

after Linac 2, energy and energy spread were measured with Cavity 1 and 2 at their crest 

phases, while the phases of Cavity 3 and 4 were scanned simultaneously, as shown in Fig. 

4.21. 

In both measurements, the error of the measured energy was estimated to be 1% due to the 

alignment error of the beam, while the calibration errors of the dipoles were not included. A 

10% error for the measured energy spread was estimated from the size calculation of the 

dispersed beam. The contribution of the horizontal beam size (σx, 04 in Equation (3-4)) was 

not corrected but included in the error estimation.  
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Fig. 4.20 Energy and Energy spread measurements after Linac 1. 

 

 
Fig. 4.21 Energy and energy spread measured at a dipole after Linac 2 and at at the Browne-Buechner 

spectrometer. 
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At the end of the beam transport, energy and energy spread were measured using the 

Browne-Buechner spectrometer introduced in Section 3.2. Results are also presented in Fig. 

4.21. This spectrometer was designed specifically for energy and energy spread measurement. 

The CCD camera has less noise and the beam size contribution is corrected by selecting the 

beam with a narrow slit and imaging the selected beamlet on a screen. With all cavities set to 

their crest phases, the final beam energy was 35.4 MeV and the energy spread was 182 keV. 

 As shown in Fig. 4.21, in general the energy measured with the spectrometer is about 

1 MeV lower than that measured with the dipole right after Linac 2. The trend of the energy 

spread measured by the spectrometer is more reasonable, that the energy spread is monotonic 

after the minimum point. The discrepancy of energy from the two measurements is due to the 

calibration error of the dipole, which is beyond the scope of this thesis. 

4.4.3. Transverse beam size measurement 

In order to get the beam position information and the transverse size, movable YAG or 

OTR screens are installed in screen-stations along the beamline. With a small macro-pulse 

duration of 5 ms in 10 Hz, screens can be inserted into the beam path without initiating a 

beam cutoff by the beam loss monitor system. The screens at ELBE are installed with a 45° 

angle. The beam generates visible light on screens, which is then reflected to a CCD camera. 

The image of the light includes the information of the beam size. With the fluctuation of the 

beam and the dynamic range of screens considered, the error of beam size measurement in 

this experiment was estimated to be 10%. 

Measured beam sizes at different positions are presented in Fig. 4.22. The measurement 

results are compared with the simulation results. The difference between both sides 

accumulates with the transport distance. As a result, the simulated vertical beam size increases 

to a maximum of 16.7 mm, which is meaningless to be shown thus not covered by the scale of 

Fig. 4.20. It was found that from the screen denoted as “mismatch start”, the mismatch 

between simulated and measured beam distribution started to enlarge rapidly. As an 

improvement for the simulation, the last quadrupole before this screen (named LA1_MQ05 at 

ELBE) was corrected from -1.89 A to -2.05 A. In the new simulation, it is obvious that the 

beam envelope is very sensitive to parameter variation: by correcting the strength of only one 

quadrupole by 8.5%, the vertical beam size after this quadrupole stays below 3.5 mm. In this 

case, simulated and measured beam sizes have similar values. At locations denoted by lower-
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case letters in Fig. 4.22, the measured transverse distributions of the beam are compared with 

corrected simulation results, as shown in Fig. 4.23.  

 
Fig. 4.22 Measured and simulated beam size profiles along the beamline for a 200 pC beam. The simulated 

vertical rms beam size evaluates to the maximum of 16.7 mm which exceeds the scale of this graph. Dashed lines 

represent a second simulation with the intensity of only one quadrupole corrected by 8.5%. The simulation is 

very sensitive such that the corrected vertical beam size stays below 3.5 mm after this dipole, which also agrees 

with measurements. At location marks from “a” to “f”, the measured transverse bunch distributions are compared 

with simulations in Fig. 4.23. 

 
Fig. 4.23 Comparisons of measured (rectangular frame) and simulated (round frame) transverse bunch 

distributions. Circles surrounding the simulated bunches have the same diameter of screens of 21 mm. The edge 
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of screens can be seen from the measured bunch distributions. The position of each comparison is marked with 

the index from a to f, which can be located in Fig. 4.22. 

 In the beamline section before the quadrupole used for the correction, both the shape and 

the size of the bunch match well between simulation and experiment, as shown in Fig. 4.23a, 

b and c. After the corrected quadrupole, the discrepancy becomes larger. However, with the 

correction of this one quadrupole only, some of the measured features can also be observed in 

simulation, for instance, the large transverse beam hallow in Fig. 4.23d and the strongly 

focused beam in Fig. 4.23e. The bunch distribution at the first screen in the straight beamline 

after the spectrometer (named TL1_DV06) is shown in Fig. 4.23f, with the dipole of the 

spectrometer turned off.  

4.4.4. Emittance measurement 

At Screen 2 in the diagnostics beamline, the beam is assumed to be cylindrically symmetric 

and the transverse emittance was measured vertically with the slit-scan method. The solenoid 

was set to 3.65 A to focus the beam on Screen 2 and all quadrupoles were turned off. The 

measured emittance is , which is more than twice the simulation result of 3.7 . 

The measured and simulated phase spaces at Screen 2 are shown in Fig. 4.24. It is shown that 

the measurement and simulation give similar scales of position and angle, but the real beam 

has a large hallow which influences the rms emittance significantly.  

 
Fig. 4.24 Transverse phase space measured with slit-scan method (left) and simulated (right) for a 200 pC beam 

in the diagnostics beamline. 

 As marked in Fig. 4.19, quadrupole-scan emittance measurements were performed at 

different positions of the beamline. The measurement results are shown in Table 4.1. In the 

dogleg, the large transverse emittance of 33 ȝm is the result of dispersion, however, this large 
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value could not be observed in the simulation at the laser phase minimizing the energy spread. 

Both transverse and vertical emittance increase from the end of Linac 1 to the end point of the 

beam transport.  

Table 4.1 Results of the emittance measurement with quadrupole-scan. ld is the distance between the applied 

quadrupole and screen. The columns of “quadrupole” and “screen” show their internal names at ELBE. For the 

position of “after linac 2”, slice emittance measurement was performed with a dipole between the quadrupole 

and the screen. The dipole is 0.55 m from the quadrupole and 0.88 m from the screen. 

 

Fig. 4.25 presents the measurement results in Table 4.1 compared to the results from 

simulation. The difference between measured and simulated vertical emittance is smaller than 

that between measured and simulated transverse emittance. One possible reason is that the 

real beam was not well aligned in the dogleg and the horizontal kick between slices are larger 

than that in simulation. 

 
Fig. 4.25 Measured and simulated emittance profiles along the beamline for a 200 pC beam. Dashed lines 

represent a second simulation with the intensity of only one quadrupole corrected by 8.5%.  
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4.4.5. Slice emittance and bunch length measurement 

In a bending beamline after Linac 2, as shown in Fig. 4.19, vertical slice emittance was 

measured. The vertical emittance of the entire bunch at this position was measured to be 

6.7 μm, as presented in Table 4.1. According to the method introduced in Section 3.4.3, to 

measure the emittance of temporal slices the beam should be linearly chirped at zero phase. 

Cavity 4 was used to chirp the bunch. The applied phase of Cavity 4 was 90° from the crest 

phase and its gradient was set to 1.5 MeV, which provides a positive chirp.  

According to analysis in Section 2.5.1, it is the energy slice that causes the slice mismatch 

problem. The slice emittance for energy slices is shown in Fig. 4.26, where the error of the 

relative energy of an individual slice with respect to the bunch center was estimated to be 

about 25 keV. Therefore, the bunch was sliced to pieces with a width of about 50 keV. More 

slices provide the same energy resolution but lower accuracy of emittance measurement by 

reducing particle numbers in an individual slice. Slice emittance was measured only for the 

central part of the bunch. For slices at the head and tail of the bunch, Equation (3-18) provides 

no solution as the intensity of these slices is too low. In Fig. 4.26, the energy distribution of 

the bunch is also shown, which is wider than the range of possible slice emittance 

measurement.  

 
Fig. 4.26 Slice emittance measured after Linac 2. An individual slice has the width of 46 keV. If the chirp is 

assumed to be linear, the slice emittance of energy slices also represents that of temporal slices and the bunch 

distribution in energy is also the distribution in time, therefore the bunch length can be calculated.  
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The left diagram of Fig. 4. 27 shows the phase ellipse of three slices with the same 

numbering marked in Fig. 4.26. Slices have different orientation angles. The average slice 

emittance  is 6.2 . 

 
Fig. 4. 27 Measured phase ellipses of three slices. Slices do not have the same orientation (left). Simulated 

longitudinal phase space at the at the same position as slice emittance measurement (right). 

The measured slice emittance of energy slices should also represent that of temporal slices 

as the beam was assumed to be linearly chirped by Cavity 4. However, in this experiment the 

electron bunches were very long (about rms 10 ps) which result in severe nonlinearity in 

longitudinal phase space, and thus the bunch after Cavity 4 cannot be approximated to be 

linear as shown by the simulated LPS after Cavity 4 in the right diagram of Fig. 4. 27. In this 

case, the energy slices cannot represent temporal slices. Nevertheless, the temporal scale is 

given in Fig. 4.26, neglecting the nonlinearity.  

Neglecting the nonlinearity of the bunch after Cavity 4, the bunch distribution with respect 

to time in Fig. 4.26 can be used to calculate the rms bunch length before Cavity 4, which 

delivers 8.8 ps. In simulation, the bunch length at the same position is 9.0 ps, which only 

changes by less than 5% in the entire beam transport. Although the measured and simulated 

bunch lengths are very close, the measurement includes an ineligible systematic error due to 

the nonlinearity in LPS. The measurable temporal range shown in the right diagram of Fig. 4. 

27 is only 70% of the entire bunch. According to the above analysis, the bunch length is about 

10 ps as estimated. 
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5. Conclusion 

Parallel to the technological development of the SRF gun at ELBE, this PhD work has been 

conducted aiming to optimize the gun for high-bunch-charge applications at the ELBE 

experimental stations: pELBE, nELBE, TELBE and CBS. The SRF gun parameters and the 

beam transport have to be optimized according to the specific requirements of each 

experimental station. In this work, rigorous simulations have been conducted for this 

optimization purpose based on a specially developed simulation tool. In the experimental part, 

beam diagnostic methods have been developed and applied to verify the beam transport in 

ELBE and compare it with the predicted simulation results. This close combination of 

simulation and experimental verification represent the central part of this thesis, which has 

demonstrated that the SRF gun could be improved to the application level. As the beneficiary, 

the ELBE center is pushed an important step closer to high-bunch-charge applications. 

5.1. Summary of content 

Detailed beam parameter requirements for these four experimental stations have been 

analyzed and proposed. The main challenge for pELBE and nELBE is to match TPS to the 

calculated acceptance on the beryllium window. A small bunch length is the most significant 

demand from THz and the transverse beam size is the key parameter for CBS, which should 

match that of the interaction laser.  

In the simulation section, a powerful user-friendly simulation tool based on ASTRA and 

Elegant has been developed for the specific layout of ELBE, in a highly adaptable way for 

future modifications of the beamline. This simulation tool extends the understanding of the 

SRF gun and the beam transport through ELBE accelerator. Important physical effects 

included in the simulation are studied case-wise, including the electron emission from 

photocathodes, the slice mismatch problem, the CSR effect, the LSC effect and the Wakefield 

effect. SRF gun parameters were scanned in simulation and their effects on beam quality were 

analyzed in detail. Several optimized combinations of parameters were chosen for further 

beam transport, which was then optimized according to the requirements of high-bunch-

charge applications.  

Highlighted simulation results demonstrate that a beam with a bunch charge of 200 pC can 

satisfy all the requirements if transported properly. In the beam transport for pELBE and 
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nELBE, only the dogleg is a critical beamline section. The bunch compression for TELBE 

suffers from the nonlinearity in LPS. Methods of alleviating the nonlinearity were proposed 

and tested numerically, with which the rms bunch length was optimized to 0.12 ps (FWHM 

0.24 ps). In the beam transport for CBS experiments, the LSC effect plays an important role in 

minimizing the energy spread. The minimized rms bunch size is 0.016 mm (FWHM 

0.036 mm).  

In the experimental sections, beam diagnostic methods are applied, including auto/cross-

correlation based pulse length measurement for lasers, dipole-based energy and energy spread 

measurement, slit-scan emittance measurement, quadrupole-scan emittance measurement and 

slice emittance measurement. An important part of this PhD work consists of the development 

of an image processing algorithm, the software for slit-scan emittance measurement and the 

extra laser beamline for the auto/cross-correlator. 

Most important experimental results are summarized as follows: The direct measurement of 

the temporal distribution of the laser pulse explained the cause of the longitudinal substructure 

on the electron bunch (in 2015) and motivated the correction of the problem in the UV laser. 

The SRF Gun was commissioned and the beam quality was improved by applying positive 

DC voltage and large laser spot size. The LSC effect was verified at PITZ showing that in 

practice the measured effect is even larger than that from simulations. A beam with a bunch 

charge of 200 pC was successfully transported up to an energy spectrometer in front of the 

CBS station. Most of the experimentally measured features can be also computed from 

simulations. The beamline parameters of the dogleg were optimized by simulation. The 

emittance of the SRF gun was measured to be 7.7µm at 200 pC. 

Compared to the DC gun, the SRF Gun provides more than twice the maximum bunch 

charge and about half the transverse emittance at present. Besides, the temporal stability of the 

SRF gun is also better than that of the DC gun [82]. Both simulation and measurement results 

in this thesis serve as a starting point of utilizing the SRF gun as the injector of ELBE, for 

higher radiation flux and higher measurement accuracy. 
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5.2. Outlook 

The simulation tool developed in this thesis features an easily adaptable design and 

convenient data plotting. It is more user-friendly than directly using ASTRA and Elegant. In 

the future, it can be extended to cover the entire ELBE. Careful measurement and calibrations 

of magnet fields will be useful to enhance the accuracy of simulation, which provides better 

guidance for experiments.  

All the beam diagnostics presented in this thesis are based on screens and CCDs, which 

measure multiple bunches in one image and hence suffer from the instability of the beam. The 

work of locating and reducing vibrations of the beamline is underway and to be continued. 

The speed of image processing proposed in Section 3.3.3 can be increased by applying the 

wavelet algorithm properly. An optimization work on the laser transverse distribution has 

been conducted and will be continued [83]. 

The SRF gun at ELBE has not achieved its target parameters up to now. Limitations 

include the gradient of the cavity, the cathode position, the 3D size and distribution of the UV 

laser pulse and the preparation of Cs2Te cathode. The gradient was designed to be 18MV/m 

but in practice the operation value is 8 MV/m, which is due to the accidents that the inner 

surface of the gun-cavity was scratched during manufacture and contaminated when changing 

cathodes. The cathode position is currently unchangeable to keep the dark current low. The 

pulse length of the laser can be optimized experimentally by applying a new crystal, which is 

not included in the frame of this thesis. The laser spot should match that of the effective area 

of the cathode, which can be enlarged to an overall diameter of 8 mm. With Cs2Te cathodes, 

the maximum bunch charge can reach the nC level. 

In the commissioning of ELBE SRF Gun II, two application experiments were conducted 

as proof of principle. As the first experiment, the beam from ELBE SRF Gun II was 

transported to nELBE. The neutron ToF measurement was carried out with results shown in 

Fig.5.1. The background of the measurement caused by the dark current contributed to 17.5% 

of the total signal. The second experiment was conducted at TELBE. The measured THz 

spectrum is shown in Fig.5.2. Evaluations of these results are beyond the scope of this thesis. 

For both applications, the bunch charge was 80 pC and the SRF gun was not optimized. 
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Fig.5.1 Spectrum of the ToF measurement using a beam from ELBE SRF Gun II with a bunch charge of 80 pC. 

Courtesy Toni Kögler from HZDR. 

 
Fig.5.2 Spectrum of the THz radiation using a beam from ELBE SRF Gun II with a bunch charge of 85 pC. 

Courtesy Michael Gensch from HZDR.  

These two applications with the bunch charge of 80 pC and the beam transport experiment 

with the bunch charge of 200 pC are just the first steps of utilizing ELBE SRF Gun II at the 

ELBE center. It is expected for nELBE, pELBE, TELBE and CBS experimental stations to 

benefit from the SRF Gun as a new electron source, providing CW beams with high bunch 

charge and low emittance. 
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Appendix 

I. Table of abbreviations 

BNL Brookhaven National Laboratory 

CBS Compton Backscattering 

CCD Charge-Coupled Device 

CDR Coherent Diffraction Radiation 

CMOS Complementary Metal-Oxide-Semiconductor 

CP Cathode Position 

CSR Coherent Synchrotron Radiation 

CTR Coherent Transition Radiation 

CW Continuous-Wave 

DC Direct Current 

DESY Deutsches Elektronen SYnchrotron 

DFM Difference Frequency Mixing 

DRACO DResden lAser aCceleration sOurce 

DoN Degree of Nonlinearity 

ELBE superconducting Electron Linac for beams with high Brilliance and low Emittance 

ERL Energy Recovery Linac 

FEL Free Electron Laser 

FFS Final Focusing System 

FFT Fast Fourier Transform 

FLASH Free electron LASer in Hamburg 

FWHM Full Width Half Maximum 

HEE High-Energy Electrons 

HZB Helmholtz-Zentrum Berlin 

HZDR Helmholtz-Zentrum Dresden-Rossendorf 

ICT Integrating Current Transformer 

IR InfraRed 

KEK The High Energy Accelerator Research Organization of Japan 

LCLS Linac Coherent Light Source 
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LEEs Low-Energy Electrons 

LP Laser Phase 

LPS Longitudinal Phase Space 

LSC Longitudinal Space Charge 

MBI Max-Born-Institute 

NCRF Normal Conducting Radio Frequency 

nELBE Neutron experimental station at ELBE 

NPS Naval Postgraduate School 

OTR Optical Transition Radiation 

pELBE Positron experimental station at ELBE 

PITZ Photo Injector Test Facility at DESY, Location Zeuthen 

PKU Peking University 

QE Quantum Efficiency 

QWR Quarter Wave Resonator 

RI Research Instruments 

rms root mean square 

rpn reverse Prolish notation  

SACLA x-ray free electron laser project in Japan 

SHG Second Harmonic Generation 

SNR Signal to Noise Ratio 

SRF Superconducting Radio Frequency 

TDS Transverse Deflecting Structure 

TELBE THz radiation station at ELBE 

ToF Time-of-Flight 

TPS Transverse Phase Space 

UV Ultra Violet 

XFEL X-ray Free Electron Laser 

YAG Yttrium Aluminium Garnet 
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II. Simulation parameters for Section 2.8 

parameter unit pELBE nELBE THz CBS 

Bunch Charge  [pC] 200 200 200 200 

Bunch Length  [ps] 7 7 7 7 

Cathode Position  [mm] 2.8 2.8 1.7 1.8 

Cavity 1 Gradient  [MV/m] 12 10 12 5.3 

Cavity 1 Phase [deg] 90 90 90 85 

Cavity 2 Gradient  [MV/m] 9 7 9 5.3 

Cavity 2 Phase  [deg] 80 80 88 85 

Cavity 3 Gradient  [MV/m] 7 8 7 5.5 

Cavity 3 Phase [deg] 81 80 51 49 

Cavity 4 Gradient  [MV/m] 7 8 7 5.5 

Cavity 4 Phase [deg] 81 80 51 49 

Chicane1 [deg] 0 0 0 0 

Chicane2 [deg] 11 30 26 19 

DC Voltage [kV] 5 5 5 5 

Gun Gradient  [MV/m] 7.5 7.5 7.5 7.5 

IN2_ML_01 [T] 0.174 0.174 0.155 0.155 

IN2_MQ_01 [1/m2] -17.13 -17.13 -13.67 -13.67 

IN2_MQ_02 [1/m2] 29.493 29.493 28.746 28.746 

IN2_MQ_03 [1/m2] -19.546 -19.546 -13.161 -13.161 

IN2_MQ_04 [1/m2] 42.729 42.729 42.722 42.722 

IN2_MQ_05 [1/m2] -30.49 -30.49 -30.763 -30.763 

IN2_MQ_06 [1/m2] 42.729 42.729 42.722 42.722 

LA1_MQ_01 [1/m2] 3.877 3.877 3.877 6.597 

LA1_MQ_02 [1/m2] -6 -6 -6 -8.662 

LA1_MQ_03 [1/m2] -0.186 -0.186 -0.186 0.192 

LA1_MQ_04 [1/m2] 0.621 0.621 0.621 -6.065 

LA1_MQ_05 [1/m2] 0.089 0.089 0.089 9.499 

LA1_MQ_06 [1/m2] 0 0 0 14.366 

LA1_MQ_07 [1/m2] 0 0 0 -11.629 

LA2_MQ_01 [1/m2] 5.945 0.257 3.134 3.134 
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LA2_MQ_02 [1/m2] -3.429 0.225 0.298 0.298 

LA2_MQ_03 [1/m2] -4.291 -3.724 -1.623 -4.623 

Laser Phase [deg] 15 20 20 20 

NL1_MQ_01 [1/m2] - -12.854 - - 

NL1_MQ_02 [1/m2] - 12.306 - - 

NL1_MQ_03 [1/m2] - 12 - - 

NL1_MQ_04 [1/m2] - -7.316 - - 

NL1_MQ_05 [1/m2] - 14.902 - - 

NL1_MQ_06 [1/m2] - 30.981 - - 

NL1_MQ_07 [1/m2] - -24.024 - - 

PP_MQ_01 [1/m2] 5.254 - - - 

PP_MQ_02 [1/m2] -0.596 - - - 

PP_MQ_03 [1/m2] -4.562 - - - 

PP_MQ_04 [1/m2] -2.842 - - - 

PP_MQ_05 [1/m2] -0.216 - - - 

TH1_MQ_01 [1/m2] 3.112 2.762 -3.899 3.538 

TH1_MQ_02 [1/m2] -0.103 -0.084 0.4 -0.853 

TH1_MQ_03 [1/m2] -3.159 -3.159 7.85 2.812 

TH1_MQ_04 [1/m2] 1.405 1.405 -1.863 -5.165 

TH2_MQ_01 [1/m2] 11.828 0 17.787 9.263 

TH2_MQ_02 [1/m2] -15.074 0 -23.115 -9.623 

TH2_MQ_03 [1/m2] 6.105 0 11.446 2.104 

TH2_MQ_4 [1/m2] - - 11.521 - 

TL1_MQ_01 [1/m2] - -8.706 - 7.186 

TL1_MQ_02 [1/m2] - 8 - -6.594 

TL1_MQ_03 [1/m2] - -2.796 - -8.869 

TL1_MQ_04 [1/m2] - 1.577 - 9.3 

TL1_MQ_05 [1/m2] - - - -8.391 

TL1_MQ_06 [1/m2] - - - 8.954 

TL1_MQ_07 [1/m2] - - - 4.139 

TL1_MQ_08 [1/m2] - - - -4.94 
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III. Simulation parameters for Section 4.4 

parameter unit value 

Bunch Charge  [pC] 200 

Bunch Length  [ps] 7 

Cathode Position [mm] 1.4 

Cavity 1 Gradient  [MV/m] 11 

Cavity 1 Phase [deg] 90 

Cavity 2 Gradient  [MV/m] 7.5 

Cavity 2 Phase  [deg] 83 

Cavity 3 Gradient  [MV/m] 6.5 

Cavity 3 Phase [deg] 87 

Cavity 4 Gradient  [MV/m] 6.5 

Cavity 4 Phase [deg] 87 

DC Voltage [kV] 5 

Gun Gradient [MV/m] 7.5 

IN2_ML_01 [T] 0.176 

IN2_MQ_01 [1/m2] -16.672 

IN2_MQ_02 [1/m2] 28.301 

IN2_MQ_03 [1/m2] -5.919 

IN2_MQ_04 [1/m2] 40.63 

IN2_MQ_05 [1/m2] -32.866 

IN2_MQ_06 [1/m2] 40.644 

LA1_MQ_01 [1/m2] -2.041 

LA1_MQ_02 [1/m2] 7.798 

LA1_MQ_03 [1/m2] -3.375 

LA1_MQ_04 [1/m2] 14.02 

LA1_MQ_05 [1/m2] -13.96 

LA1_MQ_06 [1/m2] 7.418 

LA1_MQ_07 [1/m2] -4.573 

LA2_MQ_01 [1/m2] 0 

LA2_MQ_02 [1/m2] 0 

LA2_MQ_03 [1/m2] 0.345 
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Laser Phase [deg] 45 

TH1_MQ_01 [1/m2] 14.274 

TH1_MQ_02 [1/m2] -12.111 

TH1_MQ_03 [1/m2] 4.325 

TH1_MQ_04 [1/m2] -3.028 

TH2_MQ_01 [1/m2] 0 

TH2_MQ_02 [1/m2] 3.344 

TH2_MQ_03 [1/m2] -1.683 

TL1_MQ_01 [1/m2] 6.116 

TL1_MQ_02 [1/m2] -5.511 

TL1_MQ_03 [1/m2] -6.687 

TL1_MQ_04 [1/m2] -5.476 

TL1_MQ_05 [1/m2] 0 

TL1_MQ_06 [1/m2] 0 
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