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“It is inevitable that many ideas of the young mind will later have to give way to

the hard realities of life. But these realities will make themselves felt soon enough

and while I am certainly not asking you to close your eyes to the experiences of

earlier generations, I want to advise you not to conform too soon and to resist the

pressure of practical necessity. Free imagination is the inestimable prerogative of

youth and it must be cherished and guarded as a treasure. Dream your dream and

may they come true.”

Felix Bloch (physicist who developed the Bloch

theorem to describe electrons in solid crystals)





Kurzfassung

Im Zuge dieser Doktorarbeit wurden großflächige und homogene Graphen-Mono-

lagen mittels chemischer Gasphasenabscheidung auf Kupfer- (Cu) und Silizium-

(Si) Substraten erfolgreich synthetisiert. Solche monolagigen Graphenschichten

wurden mithilfe mikroskopischer und spektrometrischer Methoden gründlich charak-

terisiert. Außerdem wurde der Wachstumsmechanismus von Graphen anhand

eines chemo-thermischen Verfahrens untersucht.

Die Bildung von homogenen Graphenschichten auf Cu erfordert eine sehr saubere

Substratoberfläche, weshalb verschiedene Substratvorbehandlungen und dessen

Einfluss auf die Substratoberfläche angestellt wurden. Vier Vorbehandlungsarten

von Cu-Substraten wurden untersucht: Abwischen mit organischen Lösungsmitteln,

Ätzen mit Eisen-(III)-Chloridlösung, Wärmebehandlung an Luft zur Erzeugung

von Cu-Oxiden und Wärmebehandlung an Luft mit anschließender Wasserstof-

freduktion. Von diesen Vorbehandlungen ist die zuletzt genannte Methode für

die anschließende Abscheidung einer großflächigen Graphen-Mono-lage am effek-

tivsten.

Die chemische Gasphasenabscheidung ist die am meisten verwendete Methode

zur Massenproduktion von Graphen. Es besteht aber auch Interesse an alter-

nativen Methoden, die Graphen direkt aus organischen, auf einem Substrat ad-

sorbierten Molekülen, synthetisieren können. Jedoch gibt es derzeit nur wenige

Studien zu derartigen alternativen Methoden. Solche Prozessrouten erfordern

mehrstufige Reaktionen, welche wiederrum die Qualität der erzeugten Graphen-

schicht limitieren, da nur kleine Korngrößen erreicht werden können. Daher wurde

in dieser Arbeit ein deutlich einfacherer Weg entwickelt. Es handelt sich dabei um

ein Verfahren, bei dem auf einer Cu-Substratoberfläche adsorbierte, organische

Lösungsmittelmoleküle in einer Wasserstoffatmosphäre geglüht werden, um eine

direkte Bildung von Graphen auf einem sauberen Cu-Substrat zu gewährleisten.



Der Einfluss von Temperatur, Druck und Gasfluss auf diesen einstufigen chemoth-

ermischen Syntheseweg wurde systematisch untersucht. Die temperaturabhängigen

Untersuchungen liefern einen Einblick in die Wachstumskinetik und thermody-

namische Größen, wie zum Beispiel die Aktivierungsenergie Ea, für die Synthese

von Graphen aus Aceton, Isopropanol oder Ethanol. Diese Studien untersuchen

außerdem die Rolle von Wasserstoffradikalen auf die Graphensynthese. Weiterhin

wurde ein verbessertes Verständnis der Rolle von Wasserstoff auf die Graphen-

synthese aus adsorbierten, organischen Lösungsmitteln erlangt (beispielsweise im

Vergleich zur konventionellen thermischen Gasphasenabscheidung).

Die direkte Graphensynthese mittels chemischer Gasphasenabscheidung auf Si-

Substraten mit einer Oxidschicht (Si/SiOx) ist extrem anspruchsvoll in Bezug

auf die großflächige und einheitliche Abscheidung (Lagenanzahl) von Graphen-

Monolagen. Das direkte Wachstum von Graphen auf Si/SiOx-Substrat ist inter-

essant, da es frei von unerwünschten Übertragungsverfahren ist und kein Metall-

substrat erfordert, welche die erzeugten Graphenschichten brechen lassen können.

Um ein homogenes Graphenwachstum zu erzielen wurde durch den Kontakt zweier

Si-Wafer, mit ihren Oxidflächen zueinander zeigend, eine lokale Umgebung im

chemischen Gleichgewicht erzeugt. Diese Konfiguration der Si-Wafer ist nötig,

um eine einheitliche Graphen-Monolage bilden zu können. Eine gründliche Un-

tersuchung des abgeschiedenen Materials zeigt, dass trotz der anfänglichen Keim-

bildung von runden Inseln facettierte Körner erzeugt werden. Aufgrund der Be-

strebung der Graphenkörner ihre (Oberflächen-) Energie zu minimieren, wird eine

Facettierung der Körner in polygonaler Form erzeugt, was darin begründet liegt,

dass das System idealerweise eine Anordnung von hexagonal geformten Körnern

erzeugen würde (niedrigster Energiezustand). Der Prozess ist vergleichbar mit der

sechseckigen Zellstruktur einer Bienenstockwabe, welche ein Minimum an Wachs

erfordert. Dieser Prozess führt auch zu einer nahezu minimalen Gesamtkorn-

grenzlänge pro Flächeneinheit. Diese Tatsache zusammen mit der hohen Qualität



der resultierenden Graphenschicht spiegelt sich auch in dessen elektrischer Leis-

tungsfähigkeit wider, die in hohem Maße mit der auf anderen Substraten gebilde-

ten Graphenschichten (inklusive Cu-Substrate) vergleichbar ist. Darüber hinaus

ist das Graphenwachstum selbstabschliessend, wodurch ein großes Parameterfen-

ster für eine einfache und kontrollierte Synthese eröffnet wird.

Dieser Ansatz zur chemischen Gasphasenabscheidung von Graphen auf Si- Sub-

straten ist leicht skalierbar und gegenüber der Abscheidung auf Metallsubstraten

konkurrenzfähig, da keine Substratübertragung nötig ist. Darüber hinaus ist dieser

Prozess auch für die direkte Synthese anderer zweidimensionalen Materialien und

deren Van-der-Waals-Heterostrukturen anwendbar.





Abstract

In the course of the PhD thesis large area homogeneous strictly monolayer graphene

films were successfully synthesized with chemical vapor deposition over both Cu

and Si (with surface oxide) substrates. These synthetic graphene films were char-

acterized with thorough microscopic and spectrometric tools and also in terms

of electrical device performance. Graphene growth with a simple chemo thermal

route was also explored for understanding the growth mechanisms.

The formation of homogeneous graphene film over Cu requires a clean sub-

strate. For this reason, a study has been conducted to determine the extent to

which various pre-treatments may be used to clean the substrate. Four type of

pre-treatments on Cu substrates are investigated, including wiping with organic

solvents, etching with ferric chloride solution, annealing in air for oxidation, and

air annealing with post hydrogen reduction. Of all the pretreatments, air oxidation

with post hydrogen annealing is found to be most efficient at cleaning surface con-

taminants and thus allowing for the formation of large area homogeneous strictly

monolayer graphene film over Cu substrate.

Chemical vapor deposition is the most generally used method for graphene mass

production and integration. There is also interest in growing graphene directly

from organic molecular adsorbents on a substrate. Few studies exist. These pro-

cedures require multiple step reactions, and the graphene quality is limited due

to small grain sizes. Therefore, a significantly simple route has been demon-

strated. This involves organic solvent molecules adsorbed on a Cu surface, which

is then annealed in a hydrogen atmosphere in order to ensure direct formation of

graphene on a clean Cu substrate. The influence of temperature, pressure and

gas flow rate on the one-step chemo thermal synthesis route has been investigated

systematically. The temperature-dependent study provides an insight into the

growth kinetics, and supplies thermodynamic information such as the activation



energy, Ea, for graphene synthesis from acetone, isopropanol and ethanol. Also,

these studies highlight the role of hydrogen radicals for graphene formation. In

addition, an improved understanding of the role of hydrogen is also provided in

terms of graphene formation from adsorbed organic solvents (e.g., in comparison

to conventional thermal chemical vapor deposition).

Graphene synthesis with chemical vapor deposition directly over Si wafer with

surface oxide (Si/SiOx) has proven challenging in terms of large area and uniform

layer number. The direct growth of graphene over Si/SiOx substrate becomes

attractive because it is free of an undesirable transfer procedure, necessity for

synthesis over metal substrate, which causes breakage, contamination and time

consumption. To obtain homogeneous graphene growth, a local equilibrium chem-

ical environment has been established with a facile confinement CVD approach, in

which two Si wafers with their oxide faces in contact to form uniform monolayer

graphene. A thorough examination of the material reveals it comprises facetted

grains despite initially nucleating as round islands. Upon clustering these grains

facet to minimize their energy, which leads to faceting in polygonal forms be-

cause the system tends to ideally form hexagons (the lowest energy form). This

is much like the hexagonal cells in a beehive honeycomb which require the mini-

mum wax. This process also results in a near minimal total grain boundary length

per unit area. This fact, along with the high quality of the resultant graphene is

reflected in its electrical performance which is highly comparable with graphene

formed over other substrates, including Cu. In addition the graphene growth is

self-terminating, which enables the wide parameter window for easy control.

This chemical vapor deposition approach is easily scalable and will make graphene

formation directly on Si wafers competitive against that from metal substrates

which suffer from transfer. Moreover, this growth path shall be applicable for di-

rect synthesis of other two dimensional materials and their Van der Waals hetero-

structures.
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Chapter 1

Aims and objectives

Graphene, a one-atom-thick pure carbon crystal with a honeycomb-like structure,

has become one of the most intensively studied materials of the 21st Century. It

remains of great interest to both the scientific and engineering communities, owing

to its range of unique properties and potential number of applications. In partic-

ular, its potential usage within the electronics industry in such elements as field

effect transistors and transparent conducting films holds great promise. However,

the mass production of graphene will only prove viable if a cost-effective route

for synthesis can be devised, and if such manufacturing techniques yield material

which is of sufficiently high quality for future applications. To date, chemical va-

por deposition (CVD) appears the most promising means of graphene synthesis,

and this method is already well-developed within both the laboratory and industry

environments.

In terms of the fabrication of a large area of graphene monolayer film, Cu

has been the most widely explored substrate, as its low carbon solubility en-

ables the formation of a homogeneous single-layer graphene sheet. However, the

graphene described within the current literatures is not strictly a monolayer, but

rather a mixture of monolayer film and second-layer flakes (cf. subsection 2.4.5).

Therefore, a principal aim of this thesis is to fabricate a strictly pure graphene

1



Chapter 1. Aims and objectives 2

monolayer (illustrated in Figure 1.1), thereby preventing the emergence of any

‘contamination’ by second layer flakes.

To obtain a homogeneous monolayer of graphene over Cu, this thesis focuses

upon tracking the origins of the observed second layer flakes in graphene full-

coverage film, i.e., investigating at which stage the second layer flakes form in

terms of their nucleation, growth or termination stages. After identifying the

stage at which flake formation occurs, this thesis will take measurements (e.g.,

oxidation treatment) to remove these flakes and any related carbon contaminants.

Next, after successfully avoiding any formation of these undesirable flakes, the

strictly monolayer graphene film is expected to be readily fabricated.

Figure 1.1: Towards the formation of strictly monolayer graphene film. (left)
Inhomogeneous monolayer graphene mixing with second layer flakes. The pre-
vious studies have such problems of inhomogeneity in graphene film. (right) Ho-
mogeneous strictly monolayer graphene. The research goal is to obtain strictly
monolayer graphene over large area. The methods for synthesis are thermal de-
position approaches, mainly chemical vapor deposition and also chemo-thermal
route. Various substrates, such as Cu and Si/SiOx will be adopted for graphene

synthesis.

Ideally, in future electronic applications, where graphene-based devices are fab-

ricated directly onto a dielectric oxide (currently Si/SiOx wafers), the graphene

monolayer film will no longer require a post-synthetic transfer onto the intended

dielectric substrate. It is beneficial that graphene grows on a dielectric substrate

directly, viz. device integration is highly compatible on the as-produced graphene

without any post-synthesis treatment.
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Presently, this strategy for graphene growth on metals and post transfer on

dielectrics not only leads to undesired damage and contamination of the trans-

ferred graphene, which degrades its electrical performance, but also greatly ex-

tends the time and cost of fabrication. Compared with its synthesis over metals,

this graphene synthesis directly over dielectrics expedite the fabrication process

and preserve its electrical performance.

Thus the direct fabrication of uniform graphene on a Si/SiOx substrate becomes

of considerable importance. However, there are challenging problems facing inves-

tigators in the direct synthesis of graphene on Si/SiOx substrates. The resulting

graphene film reported from recent reports suffers from apparent inhomogeneity

in layer numbers (shown in left of Figure 1.1), viz. the synthetic graphene con-

sists of a mixture of monolayer film and second layer flakes (cf. subsection 2.4.7).

Therefore, another principal aim of this thesis is to achieve the direct synthesis of

a homogeneous graphene film on a Si/SiOx substrate (cf. section 2.6).

To realize the direct fabrication of homogenous monolayer graphene, this the-

sis will seek to contribute knowledge towards an evaluation of the mechanisms for

achieving a precise control of the local growth environment on a specially prepared

SiOx surface to enable equilibrium growth, with new carbon atoms attaching only

at the leading edges of the graphene grains rather than on top of them. Such

desired control of the growth environment may be satisfied by a confinement of

the growth surface, with the substrate embedded within sandwich-like Si wafers,

wherein two Si wafers are stacked with their oxide faces in contact with one other.

The confinement for the sample configuration thus provides provide an equilib-

rium environment in which it is expected to be possible to fabricate a strictly

homogeneous monolayer of graphene film. The electrical and optical performance

properties of the synthetic graphene film is then examined and compared to those

of other recent studies.

The direct synthesis of graphene over a non-catalytic Si/SiOx substrate yields

a different pattern of growth behavior as compared to that found over a catalytic

Cu substrate. The thermodynamics and kinetics of graphene synthesis on both
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substrates is compared in order to obtain the activation energies for both catalytic

and non-catalytic substrates. The temperature-dependence of the formation of

graphene is determined to yield data on the growth kinetics of grain size and den-

sity. Further, thermodynamic calculations for reactive species derived from the

thermal decomposition of hydrocarbons is evaluated at the chemical equilibrium

state of gas feedstock at the used reaction temperatures.



Chapter 2

Introduction

During the course of this decade graphene has become one of the most intensively

studied materials. Its extraordinary properties, and their tremendous potential for

a wide variety of applications, have attracted much attention. Mass production

of graphene is only viable if an economical approach to synthesis can be devel-

oped, and if a supply of sufficiently high quality (according to the requirements

of the application) can be ensured. Chemical vapor deposition (CVD) is the most

promising method of graphene fabrication, as it is already a sophisticated tech-

nique used in both laboratories and industries.

This chapter begins by introducing the properties and corresponding applica-

tions of graphene, in order to explain why it attracts such a high level of interest.

CVD fabrication is then briefly reviewed, including pretreatments of substrates

and the growth mechanism. This is followed by a comparison of thermal and

plasma-enhanced CVD. The discussion also covers growth kinetics and thermody-

namics, selection of catalysts and carbon feedstock, and transfer protocol.

There are still problems which need to be tackled in this area, in terms of how to

synthesize graphene on both metals such as Cu and non-metals such as Si/SiOx in

a controllable manner and how to gain a fundamental understanding of the growth

mechanism. This work therefore aims to improve understanding of the synthesis

5



Chapter 2. Introduction 6

of high quality graphene using CVD. Accordingly, the scope of this thesis covers

both the production of a superior production and an investigation into the growth

behavior of graphene.

2.1 Carbon allotropes

Carbon materials have various allotropes. One type is crystalline, such as dia-

mond, graphite, and graphene; another is amorphous carbon materials. Of these

allotropes, it is sp2 hybridized graphene which has taken the globe by storm with

its novel properties.

2.1.1 Hybridized sp2 carbon nanomaterials

In order to discuss sp2 carbon, it is necessary first to explain atomic orbital hy-

bridization. This is the process which leads to the differences in the physical and

chemical properties between the various carbon allotropes [1, 2]. The atomic num-

ber of carbon is six, and each carbon atom consists of six electrons. Two electrons

fill the 1s2 orbital, which is the inner shell, while the other four electrons occupy

the orbitals of 2s2, 2p1x and 2p1y (cf. Figure 2.1a). The hybridization of 2s and

2p orbitals occurs for the four outer electrons. When these electrons contribute

equally to the formation of covalent bonds, sp3 hybridization leads to the forma-

tion of diamond (cf. Figure 2.1b).

The bonding energy is strong (3.6 eV) between two sp3 carbon atoms, which is

what gives diamond its great strength. When three electrons (2s2 and 2p1x) form

in-plane covalent bonds and the fourth (2p1z) forms a weak non-covalent inter-

plane π bond (cf. Figure 2.1c), sp2 hybridization occurs, leading to graphite. The
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Figure 2.1: Atomic orbital diagram of carbon atom. The four valence electrons
in the spherical 2s orbital and the dumbbell-shaped 2p orbitals contribute to
chemical bonding of the carbon element. (a) Ground state. (b) sp3 hybridized

in diamond. (c) sp2 hybridized in graphene and graphite

electrons in graphite (graphene) are delocalized, lending them good electrical con-

ductivity. Compared with the in-plane σ bond (6.4 eV), the inter-plane π bond

(31 meV) is relatively low [3]. This determines that graphite is a stacked structure

with graphene sheets, which is prone to sliding away under pressure; this easy

sliding motion allows for the fulfillment of graphical purposes as a graphite pencil.

2.1.2 Graphene

The graphite layers can be cleaved into thinner sheets, ultimately forming a mono-

layer sheet, termed graphene [1–4]. The three equivalent σ orbitals assemble in

the X-Y plane at 120◦, forming a planar honeycomb lattice.

Graphene has two other derivative allotropes. When a graphene sheet is packed

into a ball, this is known as fullerene, in which carbon pentagons are generated

amid the hexagons to form curvature, similar to a leather football. A graphene

monolayer can also be rolled into a single walled carbon nanotube. When a few

layers of graphene sheets are rolled up, multi-walled carbon nanotubes are pro-

duced. In terms of morphology, the sp2 carbon allotropes consist of 3D graphite,

2D graphene, 1D carbon nanotube, and 0D fullerene.
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According to morphology, graphene is divided into vertical and planar graphene.

The former is free-standing with anchoring over a supporting substrate; in con-

trast, the latter resides parallel to the substrate. In terms of layer numbers, planar

graphene can be classified into monolayer, bilayer, and multilayer graphene.

2.2 Properties of graphene

Two-dimensional graphene has attracted a great deal of attention for its unique

electronic properties, such as high carrier mobility [5–8], electric field effect [5], and

ballistic transport of charge carriers [5]. In the following sections, the electronic

transport properties of graphene will be discussed, along with the properties asso-

ciated with its crystalline structure. This will be followed by a description of the

properties relating to the optical transmittance of the material. Other properties

of graphene, such as mechanical, thermal, and chemical properties will also receive

a brief introduction.

2.2.1 Crystalline structure

Figure 2.2a shows the hexagonal lattice of graphene, with a zigzag and an arm-

chair edge. The unit cell has two nonequivalent carbon atoms (A and B) in the

grey rhombus. The yellow and blue circles correspond to the atomic sites of the A

and B triangular sub-lattices. Figure 2.2b shows the reciprocal lattice of graphene,

which is useful for describing the diffraction data (cf. SAED in subsection 3.5.1).

It comprises an array of points, within which each point corresponds to one set of

lattice planes in real space.

The two sets of lattice planes seen in Figure 2.2c have plane distances of

0.21 nm and 0.12 nm, respectively. The diffraction spots in the corners of the
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Figure 2.2: Hexagonal lattice structure of graphene. (a) 2D planar honeycomb
lattice of graphene in real space. The unit cell is indicated as the grey rhombus.
It contains two atom bases, A and B, and primitive vectors, ~a1 and ~a2 . (b)
The hexagonal crystal structure in reciprocal space. The first Brillouin zone
is in the grey hexagon. The primitive vectors in the reciprocal space are ~b1
and ~b2, whereas Γ, M, K, and K′ are labeled as the high-symmetry points. (c)
The lattice distances in real space are 0.21 nm and 0.12 nm for the two sets
of lattice planes, respectively. (d) The corresponding diffraction patterns in

reciprocal space are {10-10} and {11-20} as lattice planes, respectively.

inner hexagon represent the lattice plane {10-10} in real space, whereas the six

points at the outer hexagon correspond to the lattice plane {11-20} in real space.

Figure 2.2d is a schematic of the graphene diffraction pattern.

The reciprocal lattice is useful in describing the electronic band structure of a

solid-state material when plotting the band along specific directions; for example,

from Γ to M or from Γ to K in the Brillouin zone of Figure 2.2b.

For graphene, the two points (K and K′) are of crucial importance; these are

known as the Dirac points. Graphene is a zero-band gap semiconductor in which
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the conductance band and valence band are in contact with the Dirac points and

exhibit a linear dispersion along the momentum direction [1, 7]. The electron

density of states is zero at the Dirac points. The exotic topology of the graphene

band structure leads to its unique and exciting electronic transport properties.

The charge carriers are massless, having extreme intrinsic carrier mobility [7, 9].

The extraordinary electronic properties of graphene hold great promise for the

next generation of molecular electronics, with the possibility of applications such

as graphene field-effect transistors.

2.2.2 Electrical transport

Graphene has emerged as a promising material, due to its unique electronic and

electrical properties. In particular, monolayer graphene has three important prop-

erties: zero-carrier density at the Dirac points, relativistic carriers, and pseudo-

spin [1, 4]. Together, these provide a platform for novel physical experiments,

such as band-gap engineering by assembly of graphene nanoribbons [10, 11], the

quantum hall effect [12, 13], and the modulation of carrier density [14] and surface

potential [15] with tuning gate voltage. In other words, monolayer graphene is a

building block for transistors [16]. Bilayer graphene [17], particularly AB-Bernal

stacking [18–20], has a tunable band gap when applying a gate voltage [21, 22].

Few-layered graphene is more suitable in electrochemical energy systems [23–27]

as opposed to transistor fabrication. Vertical (normally, multilayered) graphene

[28–30] has a folded and curved morphology in comparison to planar graphene; it

is typically applied as an electrode in rechargeable batteries, as well as a support

for catalysts [31–39].

Intrinsic graphene is a zero band-gap semiconductor or a semi-metal. Measure-

ments of field-effect transistors (FETs) [40] on mechanically exfoliated graphene

have revealed that the latter has extremely high mobility and ballistic transport
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within a sub-micrometer distance [5]. Its carrier mobility is dependent on charged

impurities on the surface of the graphene or between the graphene and substrate,

carrier scattering by various extrinsic factors (such as surface phonons) [6, 41–44],

and creases and ripples in the planar graphene.

Different factors, such as surface functionality, the concentration of defects, and

the average number of layers, are found to result in a range of behaviors, as ex-

hibited by various specimens. Indeed, experiments on mechanically exfoliated

graphene (FET) have indicated that the drain current (VD, which depends on

the gate voltage, VG) first decays to a sharp valley and then rises back to a high

current [21, 45–48], leading to an ambipolar behavior in transfer characteristics

(the VD vs. VG curve exhibits quasi-symmetry).

However, FETs with CVD graphene after transfer (grown on Cu foil) commonly

exhibit a bipolar transfer behavior [49, 50], which is a p-type doping attributed

to the trapped water or organic molecules between the graphene and Si/SiO2 sub-

strate [5, 51, 52]. Boron-doped graphene exhibits a p-type doping transfer char-

acteristic that is analogous to the intrinsic CVD-grown graphene [53]. However,

nitrogen-doped graphene exhibits an n-type doping transfer characteristic [54]. To

understand these doping transfer behaviors, high vacuum annealing is applied to

remove the chemical residue on top of or beneath the CVD-grown graphene and

to recover an ambipolar transfer characteristic [51, 55].

It is remarkable that, with the direct growth of graphene on a Si/SiO2 sub-

strate, FETs can be fabricated without post-synthesis treatments, and that they

show ambipolar behavior in the transfer curve [56]. This highlights the importance

of growing graphene directly on dielectric substrates, rather than on metal foil.

2.2.3 Optical transparency

Graphene is regarded as a next-generation transparent-conducting electrode, due

to its outstanding mechanical, chemical, and thermal stability. Monolayer graphene
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film has a transmittance of > 90% [37, 57], together with a sheet resistance of <

200 Ω per square, which is comparable to transparent conducting oxides (TCOs).

Therefore, graphene has adequate potential for use as transparent electrodes in

photo-electronic devices, such as touchscreens. Research efforts are driven by a

burgeoning interest in replacing the current TCOs, due to their resource storage

limit (such as in the rare elements In and Ga) and fabrication costs. In addition,

the high flexibility of graphene is an advantage, with the material showing no

degradation in electric mobility performance with 5% stretching deformation [58].

This constitutes a considerable advantage over TCOs of a fragile ceramic nature.

As a result, graphene has paved the way for wearable electronics. Another boon is

that the optical conductance of graphene is independent of frequency over a wide

range [59, 60].

2.2.4 Other properties

Graphene also have unique mechanical, thermal and chemical properties. Graphene

possesses the highest intrinsic strength of all known materials [61, 62], due to its

strong C-C σ bonds. Accordingly, graphene nano-platelets can blend into a poly-

mer composite to reinforce the latter’s mechanical strength and electrical conduc-

tivity [63].The thermal conductivity of graphene can be as high as 2000 W m K−1,

which is the highest of all the carbon allotropes [1].

A perfect graphene sheet comprises a flawless hexagonal honeycomb network.

However, pentagon and heptagon pairs are often observed, with defects such as

folded edges [64], grain boundaries [65, 66], and electron-irradiation-induced faults

[67, 68]. These defective pairs detract from the graphene in terms of strength

[69, 70]. They also degrade its electronic conductivity through the introduction of

electron-scattering sites [71, 72].

The functionalization of graphene can modify its chemical properties [73–78].
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The external functional radicals or molecules interact with graphene through co-

valent bonds or van der Waals forces [79, 80]. This chemical exfoliation is a means

of obtaining few-layered graphene flakes via the intercalation of molecules between

two graphene sheets. Graphene-based complex materials have a large area to vol-

ume ratio, which provides a supporting surface for the embedding of functional

particles. This has great potential for application in complex anodes for Li ion

batteries [81], humidity sensors [82], catalyzed H2 generation [83] and antibacterial

devices [84], along with biological sensors [85].

2.3 Graphene deposition methods

There are a number of deposition approaches to obtain graphene. Here a brief

comparison between them is given to assist the selection of approach to fabricate

large area high quality graphene for electronic applications.

2.3.1 Synthesis approaches

Since the first isolation of graphene [5] in year 2004, various synthesis approaches

have been developed for obtaining graphene, such as mechanical exfoliation [5,

86, 87], epitaxial growth from silicon carbide decomposition [88], chemical exfolia-

tion [79, 89–92], organic synthesis from aromatic hydrocarbon precursors [93–95],

reduced graphene oxide (rGO) [96–101], as well as chemical vapor deposition [102–

107].

Mechanical and chemical exfoliation, as well as rGO provide the graphene

flakes of hundred micrometer scale, which limits the potential for mass produc-

tion. Bottom-up organic synthesis requires complicate reaction steps [93] and the

yield of graphene is low and thus not suitable for large area graphene formation.
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Graphene epitaxy over decomposed SiC has limitation in homogeneity control of

the layer numbers over a large area [108–110]. However, CVD is the most promising

graphene synthesis technique for both mass production and homogeneity control.

Therefore, CVD is adopted as the main deposition approaches to obtain graphene

over large area in this thesis.

2.3.2 Chemical vapor deposition

CVD is a well-established synthesis route for both laboratory research and in-

dustrial production. It is an important technique in a wide range of areas, such

as thin film deposition, crystal growth, and fiber and powder production. The

method is well-developed in graphene synthesis. The principals of CVD, in terms

of graphene growth, consist of two steps, namely thermal decomposition of carbon

feedstock, and graphene assembly with reactive carbon radicals [4].

According to heating principles, CVD techniques consist of conventional ther-

mal CVD and plasma-enhanced CVD. In a thermal CVD furnace, the heat is

transferred from a resistance-heating element to the feedstock and the target sub-

strates. In a plasma CVD system, a plasma source is coupled with the thermal

process to enhance the cracking of carbon feedstock. Plasma CVD offers certain

advantages; for example, it decreases the synthesis temperature. However, while

the synthetic graphene derived from plasma CVD is good for growing vertical

few-layered graphene it has, to date, been seen to have limitations in fabricating

planar nano-crystalline graphene.

In terms of reaction pressure, CVD can be classified into low pressure CVD

and ambient pressure CVD. Ambient pressure (ca. 1 bar) is commonly adopted

during the CVD process. In general, this is the most economical approach, as it

avoids the use of a vacuum system. However, it has slower growth kinetics. In

contrast, low pressure (1 mbar - 10 mbar) CVD enables rapid growth, because the
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reactive carbon radicals have a greater probability of residing in the substrates

and assembling into graphene.

2.3.3 Substrate selection

The interaction between graphene and substrates have significant influence on the

graphene growth behavior. According to the catalytic capability, the substrates

can be classified into two types: catalyst and non-catalysts. Catalytic metals, such

as the transition metals Cu and Ni, are commonly chosen for a chemical vapor

deposition reaction to enhance the decomposition of carbon feedstock as well as to

support graphene assembly. Polycrystalline Cu has proven as an efficient substrate

to produce predominantly monolayer graphene [111]. How the weak interaction

between Cu and graphene influences the growth behavior is interpreted in greater

details next (cf. subsection 2.4.5). In contrast, on polycrystalline Ni, inhomoge-

neous few layer graphene film of is synthesized due to the difficulty in homogeneity

control [112]. The strong interaction between Ni and graphene leads to formation

few layer graphene, which is discussed thoroughly in the following introduction

(cf. subsection 2.4.6). Hence, Cu is selected as one substrate for the optimization

of monolayer graphene synthesis.

However, non-catalytic substrates, such as Si/SiO2, have advantages for graphene

synthesis in comparison to catalytic substrates. First, the graphene directly grown

on dielectric Si/SiO2 substrate is compatible with subsequent electronic device fab-

rication. This reduces time cost by avoiding a complicated transfer step, which is

necessary for graphene grown over metals. Notes that the transfer step for metal

substrates takes several days and even weeks. Second, the direct graphene growth

avoids the processing contamination and breakage introduced by the transfer step.

Last, the direct graphene growth over Si/SiO2 can save the cost of using high purity

Cu foils. Moreover, the interaction between Si/SiO2 and graphene determine the
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graphene morphology evolution is reviewed in the following (cf. subsection 2.4.7).

Therefore, Si/SiO2 is selected as another substrate for the direct fabrication of

large area homogeneous monolayer graphene.

2.3.4 Substrate pretreatments

It is vital to apply substrate pretreatment prior to graphene growth by CVD.

Substrates can be divided into two types: metals and non-metals. When selecting

metals such as Cu, pretreatments include general surface cleaning through organic

solvent soaking [113], partial removal of the Cu surface using weak acetic acid [114]

or strong nitric acid [115], liquefying the Cu surface at its melting point [116, 117]

and increasing the Cu grain with H2 annealing [4].

In the absence of pretreatment, second-layer flakes are commonly observed above

or beneath a first layer complete graphene film [118]. This is attributed to the

surface roughness of the Cu substrate and its carbon contamination. With surface-

smoothing pretreatments [119–121], the thick second-layer flakes are suppressed,

because the polished surface avoids carbon-trapping sites, such as Cu grooves and

grease contamination. In addition, oxygen is observed to promote the growth of a

graphene single crystal [85, 115], but at a very slow rate.

Ni catalysts have high carbon solubility. The thickness of Ni film on a support

(such as Mo foil or Si/SiO2 wafer) is therefore important in controlling the number

of synthetic graphene layers, as well as the homogeneity of the graphene layers,

through the adjustable diffusion of carbon into the Ni sections [122–124].

When non-metal substrates, such as silicon oxide are employed, they are initially

soak-cleaned in organic solvents [116]. Oxygen pretreatment with air sintering at

800 ◦C for one hour [50] is applied to increase the nucleation density of graphene

grains.
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2.3.5 Carbon feedstock

Carbon feedstock, typically a hydrocarbon, can be divided into gas, liquid, and

solid phases. Gaseous methane (CH4) [111, 125–127] is most frequently used in

Cu-catalyzed CVD. Additionally, acetylene (C2H2) [128, 129] and ethylene (C2H4)

[130] are successful feedstocks for growing graphene. Liquid feedstocks are com-

mon solvents [131, 132], such as methanol, ethanol, isopropanol, and acetone,

large hydrocarbons (pentane and hexane) [83, 85, 113], and aromatic hydrocar-

bons [133–136]. Liquid feedstock is generally introduced using a carrier gas, such

as Ar. Solid carbon feedstocks have been derived from amorphous carbon [137–

139], camphor [140–143], DNA [144], insect protein [145], self-assembly-monolayer

layer [146], carbon precursors to bulk metals [147, 148], PS polymers [149], PMMA

[150–154] and waste plastics [155].

2.3.6 Thermal chemical vapor deposition

Thermal CVD is commonly employed in planar graphene synthesis. In a thermal

CVD process, Cu and Ni are the two most widely used substrates for synthesizing

graphene [4], although a few processors use Ag [156], Ru [157], Co [128] and Fe

[158, 159]. Initially, the Ni foil yields multilayered graphene (layer number > 10).

When the Ni thickness is reduced by, for example, applying Ni thin film on a

support, the number of layers of graphene can be brought down (to below 10) in

both ambient pressure [103, 112] and low pressure CVD [104]. Single crystalline

Ni is good for controlling monolayer graphene growth (purity ca. 90%); however,

polycrystalline Ni has a lower yield in monolayer graphene (purity ca. 72%).

Polycrystalline Cu foil is favored over Ni substrates, because it yields monolayer

graphene at a higher purity (ca. 90%)) far more easily. In addition, the graphene

grain size is larger on Cu than that grown on Ni [4]. The former’s easy control

of monolayer graphene growth is a consequence of the low solubility of carbon in
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Cu. It is generally agreed that monolayer graphene grows in a self-limited manner

on polycrystalline Cu [111]. A further advantage of using Cu foil as a substrate

lies in the scale-up potential for mass production of graphene: A 30-inch graphene

sheet has been successfully transferred onto a flexible substrate using a roll-to-

roll method [57]. In addition, thin film Cu over a Si/SiO2 support [160] can be

employed in order to avoid having to undergo the transfer step after synthesis, be-

cause the support sublimes during the CVD so that only the graphene membrane

remains on the substrates.

Another technique employed to avoid transfer (which damages and contaminates

the synthetic graphene) is direct graphene synthesis over non-metal substrates.

Non-metallic insulators are used to grow graphene, such as MgO crystals [129],

Si/SiO2 [50], Si/Si3N4 film [56], quartz [49], sapphire [161] and hexagonal BN

[162–164]. The growth rate on such insulators is slower than on metals. However,

direct graphene growth (over Si/Si3N4) holds promise in improving the electrical

properties of graphene, (e.g., providing a higher carrier mobility than transferred

graphene (grown on Cu) [56].

2.3.7 Plasma chemical vapor deposition

Plasma CVD differs from its thermal counterpart in several respects. First, plasma-

enhanced CVD (PECVD) facilitates the growth of vertical graphene over a range of

substrates, such as Si [29, 30] and Si/SiO2 [165, 166]. In addition, planar graphene

film can be synthesized using this type of CVD. Second, it requires a much lower

synthesis temperature than thermal CVD. The typical temperature used in plasma

CVD is 600 ◦C, in order to grow good graphene film [167], while the temperature

needed for thermal CVD is as hot as 1000 ◦C or higher [49]. Third, the synthesis

time to obtain a graphene film with PECVD is 15 minutes [165], which is much

shorter than with thermal CVD (which takes as long as eight hours) [50].
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2.3.8 Transfer protocol

Graphene grown over metals requires a transfer treatment in order to fabricate a

device or carry out further characterization. First, the graphene surface is spin-

coated with a supporting polymer, such as PMMA [112, 168, 169]. Second, the

PMMA/graphene/Cu layers are floated upon an etching solvent such as ferric

chloride (FeCl3) [169] and ammonium persulfate (APS) [40, 170]. Third, the PM-

MA/graphene is cleaned with deionized water after thorough removal of Cu [40],

before being fished over a target substrate. Next, acetone is employed to dissolve

the PMMA. Finally, high vacuum annealing on the graphene/substrate completes

the transfer by thorough removal of organic residues.

It is worth noting that the graphene film on the unwanted side of the Cu foil can

be pre-etched with nitric acid [40] or APS [170], because graphene can grow on

both sides of the Cu foil. The transfer procedure and chemical choices are listed

in Table 2.1.

Alternative approaches can also be successfully employed in graphene trans-

fer. Bubbles can be used to intercalate into the graphene/substrate interface

before subsequent separation. For example, the H2 bubble, which can be gener-

ated through an electro-chemical reaction [171], can peel off the PMMA/graphene

membrane from the Cu substrate. However, such electro-chemical methods require

a conducting metallic substrate, such as Cu [172, 173].

One well-established bubble method, which does not employ an electro-chemical

unit, can be used to transfer graphene from non-metals [175]. The approach hinges

on the continuous release of O2 bubbles, which can intercalate into the graphene/-

substrate interface and act as a lift-off medium. A schematic of this method is

shown in Figure 2.3.

In contrast to the above wet chemistry methods, mechanical force can be em-

ployed to peel off sticky epoxy or graphene from the substrate [178]; similarly,

thermal release tapes can detach graphene from the substrate in a dry transfer

[57].
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Table 2.1: A review of the chemicals selected for each step in the transfer
procedure.

Etching
of bottom
graphene

Coating
polymer
support

Etching
Cu with
reactive agents

Fishing
graphene
onto substrate

Removing
polymer in
solvents

Reference

APS PMMA FeCl3/HCl Water Acetone [112,
168–170]

HNO3 PMMA APS Isopropanol Acetone [40]

No PC FeCl3 Water Chloroform [174]

No PMMA H2O2+NH3·H2O
+H2O

Water Acetone [175]

No PMMA Electrochemistry Water Acetone [171, 176]

No No APS No No [177]

Alternative polymers such as polycarbonate (PC) [174] have the advantage of

minimizing the polymer residue without the need for a high vacuum annealing

treatment. The PC polymer provides a clean transfer because it can dissolve more

thoroughly in chloroform than the PMMA/acetone pair [174].

In addition, when loading a polymer/graphene film onto a substrate, isopropanol

may be used to replace water as a medium, in order to achieve improved adhesion

over the Si/SiO2 substrate [179].

For graphene grown on In, Ga, and MgO substrates, HCl solution serves as an

etching agent [23, 117, 180]. In terms of graphene grown over Ni, the etching/peeling-

off agent can be selected from O2 bubbles [175], acetic acid [25, 26], hydrochloric

acid [112], and nitric acid [25]. A KOH base can be employed to transfer the

graphene over Si/SiO2 and quartz to other arbitrary substrates [181, 182].
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Figure 2.3: A bubble transfer protocol that applies to arbitrary substrates.
(a) TEM images of a graphene membrane transferred from Cu, Mo/Ni, Al2O3,
and SiC supports. (b) Raman spectra of the transferred graphene film. (c)
Raman spectral mapping of G/D intensity ratio of the transferred graphene
(from Cu foil). (d) Photograph of key steps of the transfer: PMMA spin-
coating, immersion inside the bubble medium, lift-off of PMMA/graphene from
Cu foil and fishing onto Si/SiO2 substrate. (e) Sketch of the complete transfer

procedure. Adapted from reference [175].

2.4 Chemical vapor deposition for graphene growth

There is a wide range of techniques for preparing graphene, including mechanical

exfoliation [5], chemical exfoliation [174, 175], reduced graphene oxide [97, 98, 183],

epitaxial growth on silicon carbide [108, 184], ribbon generation through unzip-

ping carbon nanotubes [185, 186], organic synthesis from aromatic solvents [93],

hydrogen annealing over adsorbed organic molecules[187], electron beam-driven

graphene formation [188], carbon segregation during cooling of transition metals

[122, 123, 181, 182], and chemical vapor deposition [18, 25, 111, 125]. Consid-

ering its application in electronic devices, graphene should possess the following

features: a large area, high quality, and low cost. As its setups are well-developed
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and have great scale-up potential, CVD is one of the most widely used methods

for both research into graphene and mass production of graphene film.

2.4.1 Thermodynamics

Thermodynamics is used to predict whether a reaction can possibly occur. An

energy barrier referred to as the activation energy (Ea) must be surmounted for

the initialization of a chemical reaction. Usually, the factors needed to start a re-

action include a critical temperature, together with a catalyst. Kinetics are used

to evaluate the rate of a reaction; in turn, kinetic constants are deployed to assess

kinetics. In CVD growth of graphene, the kinetic constants are determined by an

increased rate in the radius of the graphene domain, or the enhanced degree of

coverage during the formation of full film graphene. The experimental data on

growth rate can be used to derive the kinetic constants. When constructing an

Arrhenius plot (i.e., the logarithm of kinetic constant versus the reciprocal of the

temperature), the activation energy can be calculated experimentally.

2.4.2 Arrhenius plots

As in the Atkins Thermodynamics textbook [189], the Arrhenius plot and the

activation energy are well described. Here the brief concepts of these two are pre-

sented. The most reaction rate increase when the temperature is increased. For

many experimental reactions, the plot of ln k against 1/T presents a linear be-

havior, ln k = ln A - Ea
RT

, which is normally expressed as Arrhenius equation with

two Arrhenius parameters, one standing for the slope and the other the intercept.
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The parameter Ea, is obtained from the slope -Ea/R, is termed activation en-

ergy. The parameter A, represents the intercept of the straight line, termed pre-

exponential factor. Ea is determined by the slope of the plot of ln k against 1/T,

which means, the reaction rate constant is more dependent on temperature when

activation energy is higher. For example, the graphene growth over SiOx has

higher activation energy than over Cu (cf. Table 2.2 in next subsection as well as

Figure C for Ea in graphene formation over SiOx). This activation energy differ-

ence can be interpret as the energy to reach the transition state (which is crucial

to form products) from the molecular potential energy of reactants (ground state).

If the activation energy is zero, its reaction rate is independent of temperature,

viz., it occurs spontaneously without external energy input.

However, when the activation energy is negative (showing positive slope in the

Arrhenius plot), it indicates that the rate reduces when temperature is raised (cf.

Figure 5.6 in Ea for graphene formation from pre-adsorbed organic solvents). This

behavior is a symbol that this reaction presents a complicated mechanism. For this

case, graphene flakes form upon thermal annealing on the pre-deposited organic

adsorbents. However, the growth mechanism is different with the conventional

CVD, where continuous carbon feedstock is introduced. Here in this case, the

solvent adsorbents serves as non-continuous carbon feedstock, which will involve

a complex growth mechanism, viz., the competence between accelerated thermal

decomposition for providing reactive species and the enhanced desorption of these

species. The former increases the growth rate, which prefers the increase of the

grain size. In contrast, the latter decreases the nucleation rate, which reduces the

grain density. This competence between molecule absorption and desorption lead

to the complicated behavior of activation energy for both grain growth rate and

nucleation rate.

In the following section, the activation energies obtained from various growth

conditions are reviewed.
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2.4.3 Activation energy

The activation energy in this thesis refers to the total activation energy of the

graphene growth reaction. The activation energy is influenced by a number of

parameters: reaction pressure, carbon feedstock, choices of substrates/catalysts,

plasma assistance, and oxygen incorporation. First, at ambient pressure CVD,

the activation energy is 5 eV [190], whereas at low pressure CVD the activation

energy ranges from 1.5 eV to 3.7 eV [114, 190–192]. Therefore, low pressure CVD

is favored in the fabrication of large-area graphene film over Cu, because of the

lower activation energy.

Second, the effect of carbon feedstock on activation energy is investigated. When

using methane (CH4) and ethane (C2H2), the activation energies are similar, rang-

ing from 2 to 3.7 eV [185, 186]. When employing general solvents (ethanol, iso-

propanol, and acetone), Ea drops to 1.4-1.6 eV [187]. When introducing aromatic

hydrocarbons (C22H14 and C24H12), Ea decreases to 1.46 eV and 1.87 eV, respec-

tively [136]. It seems that ethanol-based CVD offers advantages in the form of

lower activation energy and no hazards. Indeed, ethanol is used to grow high

quality graphene in CVD [193], but typically requires a bubbling apparatus with

Ar as a carrier gas [193, 194]. Meanwhile, methane is most widely employed as

a carbon feedstock to grow graphene, perhaps because of its simple apparatus in

terms of gas introduction, and perhaps because sufficient resources of methane

exist.

Third, the type of substrate significantly influences the activation energy. When

selecting catalytic metals, such as Cu, Co, and Ru, the activation energies have

similar values (for example, from 1.4 - 2.9 eV) [195, 196]. In terms of non-catalytic

substrates, however, the activation energies are notably higher. For Si/SiO2 sub-

strates [50], Ea increases to 4.75 eV, while for the Si3N4 substrate [56], it rises to

6.75 eV. This confirms the role of the catalyst in reducing the energy barrier in a

CVD reaction.

Last but not least, surface oxygen adsorbed over a Cu substrate can suppress
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the activation energy. The surface oxygen, upon hydrogen annealing, results in

the formation of OH radicals [114]. These enhance the decomposition of carbon

precursors, which contributes to the decrease in Ea. It is also worth noting that

plasma assistance diminishes the activation energy to 1.03 eV by activating the

feedstock decomposition [197]. In addition, a so-called Ni promoter reduces the ac-

tivation energy by 2 eV. Indeed, the Ni foil is typically located in the up-streaming

of the hot reaction zone [191], which cracks the carbon precursor into activated

radicals before it arrives at the target substrates. The list of Ea values can be

found in Table 2.2, based on the above-mentioned conditions.

2.4.4 Growth kinetics

The kinetics of graphene growth can be used to predict the time cost of a CVD.

The kinetic rates can be increased by: a rise in synthesis temperature, increasing

the concentration of carbon precursors, and improving the catalyst’s capability.

First, an elevated temperature can reduce the time required to grow graphene

full film. At temperatures slightly lower than 1000 ◦C, the graphene film is com-

plete after 150 minutes of growth [192]. However, at temperatures above 1000 ◦C

(such as 1025 − 1035 ◦C), the graphene film can be grown within 10 minutes

[192, 198]. Second, the reaction rates can be upgraded by increasing the concen-

tration of reactive carbon species. For instance, an increase in the partial pressure

of the methane satisfies this need [199]. Meanwhile, the generation of reactive

carbon radicals can be enhanced at higher temperatures [200, 201]. Third, the

growth kinetics can be improved through the incorporation of catalytic metals,

such as Cu and Ni. Indeed, CVD over Cu or Ni substrates completes full-coverage

graphene film growth within one hour [104, 111, 112, 125].
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In contrast, CVD on non-metals, such as SiO2, usually requires a long growth

time (e.g., from seven hours to three days) [49, 50, 56]. In addition, metal va-

por can accelerate the graphene growth. For example, Cu vapor can be confined

and employed to enhance the carbon decomposition in an equilibrium environment

[125, 205]. With the assistance of Cu vapor, the graphene full film can form within

10 seconds [121, 125]; however, without the vapor, 15 minutes is required [125].

To evaluate the growth kinetics, in-situ imaging and spectroscopic characteriza-

tion tools are in the process of being established, such as in-situ LEEM [202, 203],

SEM [206, 207] and XPS [208].

Growth mechanisms of graphene in CVD are highly dependent on substrate

types, such as Cu, Ni, and ceramic oxides. In CVD, the growth conditions include

feedstocks, temperature, and catalysts. After the comprehensive study of the role

of these three conditions, the detailed growth mechanisms over various substrates

will be discussed.

2.4.5 Reaction mechanisms over Cu

Cu is the most frequently used substrate in the fabrication of high quality mono-

layer graphene film. Monolayer graphene accounts for 95% of the coverage [111];

however, secondary layer flakes are present in the monolayer film (cf. Figure 2.4ab)

in layers of two or three (cf. Figure 2.4c). The low carbon solubility of Cu ac-

counts for the so-called self-limiting growth mechanism [104]. When the Cu sur-

face is fully covered with graphene membrane, the catalytic reaction terminates,

and graphene synthesis ceases. This self-limiting mechanism has been observed

in a number of independent labs [119, 160, 199, 209–211]. However, this mecha-

nism cannot provide an explanation for the formation of second layer patches that

emerge in monolayer graphene full film [111].
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Indeed, second-layer flakes are present in monolayer graphene film [111, 212–

214], either individually or merged into parallel stripes [199, 215], and even occur

as full coverage growth of bilayer graphene [18, 20]. Many researchers are in-

terested in understanding why second-layer flakes form. Some propose that the

carbon atoms can diffuse through the first layer of graphene to nucleate beneath it,

ultimately assembling second-layer flakes. Others argue that these flakes can form

above the initial graphene layer. While both camps are able to cite supporting

evidence, a definitive answer is yet to emerge.

Liquid Cu substrates have advantages over solid substrates when growing sin-

gle crystal monolayer graphene [116, 117, 216]. At temperatures above 1080 ◦C,

Cu foils liquefy on a support. When this is followed with CVD, single crystalline

graphene domains form with either round or hexagonal shapes. Other liquid met-

als, such as In [117] and Ga [180], have similar merits for single crystalline graphene

growth. However, the liquid metal method usually requires high temperatures (>

1100 ◦C) from a CVD furnace.

The morphology of synthetic graphene grains has some dependence on the

interaction between graphene and the substrates. The geometric morphology of

individual graphene grains varies: they can be square, hexagonal, or four- or six-

lobed shapes in the early stages of CVD. On the one hand, the graphene shapes

probably depend on the crystalline orientation on the surface of solid Cu. On

Cu (101) and Cu (110) facets, a four-lobed graphene domain is formed [217]. In

addition, a higher growth rate is obtained on Cu (111) facets than on Cu (100)

facets [218]. On the other hand, the geometry is also affected by the gas condi-

tions. For example, square-shaped graphene grains can be obtained when gas flows

are adjusted (e.g., using larger hydrogen flow rate in comparison to methane flow

rate) [219]. However, hexagonal graphene domains are usually formed at a large

ratio of hydrogen/methane flow rate [118, 220]. The six-lobe-shaped graphene

domains are generally formed in an equilibrium growth environment (such as in-

side a half-sealed tube or a so-called Cu pocket) [126, 221–223]. A Cu pocket is

made manually by folding a Cu square into halves, then sealing the three edges
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by pressing them [126].

a b c

5 µm

Figure 2.4: Predominantly monolayer graphene film growth over Cu via CVD.
(a) SEM graph of graphene transferred onto a Si/SiOx substrate shows mono-
layer graphene film with bi- and tri-layer regions. (b) Optical micrograph of
the same region as in panel a. (c) Raman spectra from the circled or arrowed
position, presenting the mono-, bi-, and triple layers of graphene. Adapted from

reference [111].

2.4.6 Reaction mechanisms over Ni

Nickel is another important substrate for graphene growth. The growth occurs in

three stages: carbon dissolution, carbon segregation, and graphene precipitation

[104, 112, 224]. First, in the initial stages of CVD, carbon atoms dissolve and

diffuse [225] into the bulk Ni and a carbide forms [226]. Second, when cooling

begins, the carbon atoms segregate from meso-stable Ni2C [227]. Third, these

carbon species precipitate to the surface of Ni and form graphene. However, the

number of layers of graphene grown over pure Ni is varies from one to ten.

Based on this last point, Ni substrates should be tailored to obtain graphene

with a consistent number of layers. Initially, Ni thin film is employed to suppress

the diffusion of carbon atoms into bulk Ni [112, 228]. Second, Ni sub-oxide (from

mild oxidation by CO2) in the thin surface facilitates the growth of thin few-layer

graphene [224]. The NiOx surface can both increase the catalytic capability and

suppress the carbon diffusion into bulk Ni. The schematic of the CO2-enhanced

graphene growth over NiOx is shown in Figure 2.5.
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CH4 Graphene growthCO2
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Figure 2.5: Graphene synthesis over NiOx substrates with CO2 assistance.
(a) Schematic of CVD synthesis of graphene over NiOx surface. The middle
diagram shows the system energy (on both Ni and NiOx) against the reaction
pathway of hydrogen detachment from a methane molecule. (b) Raman spectra
of graphene grown at 700 oC. The D mode with CO2 enhancement is lower
than that without. (c, d) STEM image and EDX map of C, Ni, and O in
the graphene/ NiOx interface. (e) XPS of the surface elements of graphene on
NiOx. The surface oxygen is confirmed in the form of Ni sub-oxide. Adapted

from reference [224].

In addition, when using a Ni/Mo alloy [122, 123], the monolayer graphene can

be fabricated. Figure 2.6 presents the monolayer growth over a Ni/Mo substrate.

Similarly, with Cu/Ni alloys the potential exists to adjust the number of layers of

graphene in a CVD, to either monolayer film or bilayer film, by controlling the

component ratio of Cu to Ni [173].
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Figure 2.6: Monolayer graphene synthesis over binary Ni-Mo substrate. (a)
Sketch of the growth mechanism, including the decomposition of methane, car-
bon diffusion into Ni bulk, carbon suppression through the formation of sta-
ble Mo2C, and carbon precipitation for graphene assembly. (b) Photograph of
graphene film (transferred) onto a Si/SiOx substrate. (c) Optical micrograph
of the graphene film. Inset Raman spectrum confirms the monolayer feature.
(d,e) Discontinuous film and individual flakes with various cooling protocols.
Adapted from reference [122]. (f,g,h,i) TEM characterization of graphene mono-
layer membrane. (j,k,l,m,n,o) AFM height images of the graphene obtained from

different cooling steps. Adapted from reference [123].

2.4.7 Reaction mechanisms over non-metals

Graphene can be synthesized over non-metal oxides, such as MgO [129], Al2O3

[161] and SiO2 [49, 50]. This usually requires higher temperatures (1100 ◦C) than

growth over Cu (1000 ◦C) [21, 47]. Graphene growth can be enhanced with ad-

ditional measures, such as metal vapor [220, 229], plasma assistance [165] and

surface oxygen [50].

Graphene formation over MgO nanocrystals displays epitaxial growth [129].

The graphene layers are seen to be stacked parallel to the crystal lattice of MgO

in an HRTEM observation, which confirms that this type of growth occurs (cf.

Figure 2.7). Graphene growth on sapphire (Al2O3) substrate also proceeds via the

epitaxial mechanism. The facet of the resulting graphene has a relative rotation
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Graphene
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Figure 2.7: Graphene growth over MgO support. (a, b) TEM observation of
few-layer graphene on MgO crystal. (c, d) Graphene nano-crystal over MgO sur-
face formed in the early stages of CVD. (e) Magnified image from dashed square
in Panel C shows the lattice feature of graphene. (f) Cross-section TEM of
graphene over MgO support. (g) Raman spectrum of nano-crystalline graphene
after removal of MgO. (h) TEM of the purified graphene after MgO removal.
(i) Sketch of graphene growth mechanism: nucleation at lattice steps and ex-
trusion. (j) HRTEM of the graphene showing the honeycomb structure. (k)
Atomic configuration of a nano-graphene flake with a large ratio of atoms at
its edges. (l) Fast Fourier transformation from magnified region of Panel h.

Adapted from reference [129].

stacking of 30◦ in comparison to the sapphire [161]. Hence, the planar graphene

growth is driven by the van de Waals attraction between the supporting sapphire

and the incubating graphene [161]. In addition, graphene can be synthesized on

other crystalline substrates, such as SiC [108], BN [164], graphite [172, 230] and

graphene film (over a Cu substrate) [20].

Graphene synthesis over the Si/SiO2 substrate is of ultimate importance, be-

cause the direct growth enables subsequent transistor fabrication without any

post-treatments (such as transfer). In addition, the direct synthesis has the ben-

efit of avoiding foreign contamination from the transfer step (such as graphene

growth over Cu).

Two types of planar graphene can be grown directly on Si/SiO2 substrates.

One type is polycrystalline film, which is pieced together with nano-crystalline
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Figure 2.8: Graphene grown directly over Si/SiOx substrates with CVD. (a)
Incomplete graphene film with holes (uncovered substrate) and second-layer
flakes. The height between graphene film and substrate is 0.8 nm, indicative of
monolayer graphene. (b) Complete graphene film but mixing with second-layer
flakes. The height between graphene film and substrate is 2.6 nm, indicative
of few-layer graphene. (c) Raman spectra showing the features of monolayer,
bi-layer and few-layer graphene in the synthetic film. (d) Selected area elec-
tron diffraction of the graphene film (transferred on to TEM grid) showing the

rotational stacking of bilayer graphene. Adapted from reference [50].

graphene domains of, for example, 300 nm in diameter [50]. The graphene film

requires seven hours to form. However, there is a drawback in terms of a large

amount of secondary flakes as well as cracks forming in the monolayer film (cf.,

Figure 2.8). The other type of planar graphene is a single crystalline graphene

domain (e.g., 10 µm in diameter) [49]. This type of graphene grain holds promise

for electric transistor applications, but requires an extremely long growth times

(in the region of 72 hours). The graphene growth rate over the SiO2 surface is

usually low (for example, 60 - 300 nm/hour in diameter) [50], and some suggest
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that it involves a vapor-solid-solid mechanism [21, 47]. It has been posited that

graphene nucleates over one intermediate SiC phase rather than directly over the

oxide surface [231]. In short, the growth mechanisms over the SiOx substrate are

yet to become clear.

Nucleation @defects Growth @ surfaces and edges Complete vertical graphene

Vapor 

deposition

Surface 

diffusion
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Growth history

Figure 2.9: Vertical graphene growth via plasma-enhanced chemical vapor
deposition. (a) TEM overview of vertical graphene, buffer layer, and substrate.
(b) High magnification TEM of the bottom of vertical graphene. There is a
mismatch in the stacking of graphene supply to the nucleation sites, while the
amorphous carbon is the buffer layer. (c) TEM graph for graphitic onions,
from which vertical graphene has stemmed and formed. (d) High magnification
TEM of the mismatch site on the edge of the graphitic onion. (e) Schematic of
growth mechanism, including nucleation on defects and growth along surfaces
and edges. (f) HRTEM of the seamlessly folded edge at a graphene enclosure.
(g) Atomic configuration of graphene as an enclosure. (h) TEM observation
(with fake color) and atomic model of a vertical graphene sheet with curved

terraces. Adapted with permission from reference [30].
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2.4.8 Reaction mechanisms of free-standing graphene

Free-standing vertical graphene can be synthesized in a plasma CVD over non-

metal substrates such as silicon [232] and quartz glass [166] or without a substrate

[233, 234]. As is shown in Figure 2.9, initially, a buffer layer (such as amorphous

carbon) forms over the substrate [30]. Graphene then nucleates at defective sites,

and as a consequence, carbon atoms diffuse on the graphene surface and elongate

into a vertical (wall-shaped) graphene.

2.5 Summary

This chapter covers two main aspects of graphene synthesis: the fundamentals

and properties of graphene, and the related aspects of graphene CVD growth and

transfer.

The first section refers to the introduction of carbon allotropes, the sp2 hy-

bridization of carbon into graphene, and the types of graphene. Certain properties

of graphene were discussed in detail, namely crystal structure, electrical transport,

and optical transmittance. Other properties were covered in brief, such as mechan-

ical, thermal, and chemical properties.

The second section, on CVD, covers the basic concept of a CVD reaction: carbon

feedback, choices of catalysts/substrates, pretreatment of substrates, plasma/ther-

mal CVD, and the transfer protocols. The discussion then switches to a detailed

review of the thermodynamics and kinetics of CVD growth of graphene.

Last, but not least, there is a detailed review of the growth mechanisms over

various substrates (such as Cu, Ni, Si/SiOx, and other non-metals). Numerous

exciting results have emerged from the study of graphene growth over different

substrates. However, a full understanding of the graphene growth mechanisms on
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both Cu and Si/SiOx substrates is yet to be reached.

2.6 Scope of the thesis

The aim of this thesis was to fabricate a large area homogeneous high quality

graphene film via the CVD method. Growth mechanisms on Cu and Si/SiOx

substrates are as yet not well understood and it was therefore necessary to tackle

several important problems relating to CVD growth of graphene. Thus, the scope

of the thesis may be stated as follows:

• Tracking the origin of the secondary layer flakes in graphene full film over

Cu (i.e., to investigate at which stage the secondary layer flakes form:

nucleation stage, growth stage, or termination/cessation stage).

• Fabrication of large-area strict monolayer graphene full film (without any

second layer flakes) over a Cu substrate.

• Synthesis of graphene with adsorbed organic molecules over Cu (e.g., to

study the thermodynamics and extract the activation energy).

• Formation of large-area homogeneous monolayer graphene growth over

Si/SiOx.



Chapter 3

Experimental setup and

characterization techniques

This chapter introduces the experimental protocols and characterization tech-

niques used. The first section discusses synthesis of graphene. The synthesis

method of chemical vapor deposition (CVD) is described in detail. Further,

the main techniques of characterization are briefly introduced, including optical

microscopy, scanning and transmission electron microscopy, atomic force mi-

croscopy, Raman spectroscopy, ultraviolet-visible spectrophotometry, and elec-

trical transport measurements.

3.1 Experimental setup of chemical vapor de-

position

For this study, a thermal CVD technique was used for graphene synthesis over

a solid substrate (i.e., metallic Cu foil and dielectric Si/SiOx.

CVD protocols are carried out on a furnace reactor. A horizontal CVD setup

37
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is employed for this work, which is schematically depicted in Figure 3.1. The

parts of the CVD reactor are sequentially described as follows: The reaction

chamber is made from a long tube. For graphene synthesis over Cu, the tube

material is fused quartz, because graphene synthesis over a Cu substrate re-

quires temperatures up to 1025 ◦C. The inner diameter of the quartz reactor

tube is 2.2 cm and the length of the heating zone of the reactor is 10 cm for

the set temperature. However, the tube material for synthesis over Si/SiOx is

sintered alumina (also termed as corundum), which can tolerate an even higher

temperature, namely 1185 ◦C. The inner diameter of the corundum reactor tube

is 4 cm and the length of the heating zone of the reactor is 20 cm for the set

temperature. A gas inlet is connected to one side of the tube and an outlet to

the other side. The gas feedstock includes methane (CH4), hydrogen (H2), and

argon (Ar). The tube passes through a cylindrical furnace. The substrate is

located on the center zone where the temperature gradient is uniform.

The CVD experiments were conducted for nominal times. When the CVD

Figure 3.1: A horizontal CVD furnace system. A schematic is shown of the
CVD reactor for the synthesis of graphene over a substrate. The important

materials and components are labeled.

reaction was completed, the gas and the oven were switched off. The substrate

temperature decreased to room temperature, naturally. Parameters such as

substrate temperature, reaction time, gas flow rate, and gas pressure were each
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optimized in these studies.

3.2 Optical microscopy

With an optical microscope, the object is illuminated with white light from

the condenser, and the reflected light forms a magnified view of the specimen

through an objective lens. Light passing through the objective lens can be di-

verted by a beam splitter either into an eyepiece for binocular observation or

through a projection lens into a CCD camera. An optical microscope is a well-

established tool that can be used to investigate a large area of graphene film

over a substrate, due to the obvious contrast between the two. Graphene can be

distinguished from a Si/SiO2 substrate because interference occurs between the

reflection path of SiO2-to-Si and air-to-Si/SiO2 interfaces. With their interface

thickness changing, the interfering paths undergo a relative phase shift, which

finally contributes to a color (wavelength) shift for eye recognition. When the

SiO2 film thickness is 300 nm, the graphene over SiO2 allows a direct observa-

tion as well as layer determination [1, 235].

In this study, optical microscopy is used for rapid observation of large-area

continuity (i.e., to determine whether there is a crack) and homogeneity (i.e., to

determine whether the color of the graphene is the same all over) before using

more precise but time-consuming microscopy, such as scanning or transmission

electron microscopy and atomic force microscopy. The model is a Zeiss Axio

microscope equipped with a digital camera and a power-tunable light source.
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3.3 Scanning electron microscopy

Scanning electron microscopy (SEM) is frequently employed in micro-scale ma-

terial characterization due to its ease of operation, large depth of focus, wide

range of magnification, and good image resolution. Briefly, inside an SEM,

electrons are emitted from an electron gun and accelerated by cascaded anodes.

The electron beam is converged by electromagnetic condenser lenses to a specific

spot. When passing through scanning coils, the electron beam interacts with

the sample surface and the beam is deflected in the x and y axes in a raster

fashion.

The interaction of an electron beam with the sample surface generates sec-

ondary electrons (SE), which are commonly used for imaging the surface mor-

phology of a specimen. The electron detector can collect the SE signal and the

program translates into greyscale images after a full raster scan. The electron

beam-sample interaction can also generate back-scattered electrons [236]. The

BSE are emitted by elastic scattering of electrons at the sample surface. The

BSE signal is dependent on the atomic number of the elements that constitute

the specimen. Thereafter, it supplies a contrast between two regions that are

enriched in different elements. Characteristic X-rays are produced from the

specimen when the electron from the inner shell of an atom is removed by ex-

citation by an electron from the primary electron beam. These X-rays are used

to determine the type of elements that constitute the sample. Figure 3.2 shows

a sketch of the electrons and X-rays that are generated from the electron-beam

sample interaction and their related excitation volumes.

The spatial resolution of SEM is dependent on the spot size of an electron

probe and the probe′s interaction volume close to the specimen surface. The

point resolution of sub-nm can be reached on state-of-the-art SEM.

In this work, SEM is employed to determine the grain size and the layer

number of the large-area graphene film and of individual graphene flakes when
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Figure 3.2: Schematic of useful signals for sample examination in SEM. (a)
The electrons or X-rays generated from electron-specimen interaction. (b) The

excitation volume for the generation of each signal.

combined with other microscopy, such as atomic force microscopy (AFM) and

transmission electron microscopy (TEM). The SEM images presented in this

thesis are collected from a Zeiss Ultra Plus and a FEI quanta 250 microscope

with field emission gun. Both microscopes are operated with secondary electron

mode at an accelerating voltage of 5 kV.

3.4 Atomic force microscopy

AFM illustrates the topography of the sample surface at the nanoscale. Briefly,

AFM measures the forces between a sharp tip (usually Si3N4 or Si) and the

sample surface. The tip resides beneath a cantilever from which a laser beam is

reflected and collected on a photodiode detector. Through the displacement of

the laser beam by cantilever deflection, one can monitor the z deflection between

tip and specimen. The AFM in a square region can be constructed in a scanning

raster fashion. Tapping mode AFM is predominantly used in imaging graphene
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with the cantilever oscillation at its resonant frequency. The cantilever oscil-

lates when the distance between tip and sample ranges is between 0.5 and 2 nm.

A piezoelectric system mounted within the tip drives the oscillation. During

collection of an image, the oscillation amplitude is controlled at a constant to

maintain a tip-specimen interaction. Tapping mode AFM is more suitable for

high-resolution imaging when specimens are loosely held on a substrate and so

is rarely used in this study.

Within this work AFM is used, in particular, to investigate the number of

graphene layers on a Si/SiOx support, the shape of flakes, and the level of

wrinkle. The AFM images presented in this thesis are collected on an Asylum

Research Cypher instrument. The image resolution is 1024 pixels by 1024 pixels

with a line scan rate of 0.8 - 1.4 Hz.

3.5 Transmission electron microscopy

The transmission electron microscope is one of the highest resolution character-

ization tools available for the study of graphene. This section briefly introduces

the working principals of the TEM: spherical aberration correction, selected area

electron diffraction, dark field imaging, high resolution imaging and fast Fourier

transformation.

TEM makes use of the wave nature of electrons and can be used to analyze

nanomaterials at the atomic level. Briefly, inside the TEM, electrons are gen-

erated by a thermionic or field emission gun and injected into the column with

accelerating voltages between 80 kV and 300 kV. The electron beam passes

through a double or triple electromagnetic condenser lens before reaching the

specimen. The electrons are scattered after the transmission by the electrostatic
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potentials of atoms within the specimen. After passing through the object/spec-

imen, the electron beam is focused by the objective lens in an intermediate image

plane. The following projector lens projects the image (or diffraction pattern)

onto a fluorescent screen. The image (or diffraction pattern) can be collected

by the CCD camera and then digitally saved. The simplified TEM schematic is

illustrated in Figure 3.3.

With TEM measurement, the sample experiences significant damage, such as

Condenser Lens

Objective Lens

Intermediate Lens
Selected Area Aperture

Electron Gun

Condenser Aperture

Objective Aperture

Specimen Stage

Projective Lens

Projective lens

Phosphor Screen

CCD Camera

Binocular

e Beam Path

Electrode System

Figure 3.3: A schematic of transmission electron microscope with a typical
configuration such as various apertures and lenses.

radiolysis, knock-on damage, and electron-stimulated desorption due to electron-

specimen interaction. Pristine crystalline graphene is sensitive to knock-on dam-

age at voltages above 86kV [237]. Thus, it requires an acceleration voltage of

80 kV for non-destructive electron beam exposure. At low-acceleration voltage,

such as 80 kV, it is hard to obtain atomic resolution imaging in graphene so

that a spherical aberration (Cs) corrector is required to overcome the obstacle.

With this in place graphene can usually be examined with atomic resolution,

not only for imaging, but also for other analytical techniques, such as electron
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energy loss spectroscopy and energy dispersion X-ray spectroscopy.

The TEM image at low magnification can provide information on whether or

not the transfer of graphene succeeds. The graphene is transferred onto stan-

dard Cu grids coated with lacey carbon or holey carbon film.

3.5.1 Selected area electron diffraction

In addition to imaging, TEM plays an important role relating to electron diffrac-

tion in graphene research. Electron diffraction is intensively used to differentiate

monolayer graphene from AB Bernal stacked bilayer graphene. It can also be

used to study the stacking order, stacking rotation, and planar sheet roughness.

When inserting a selected-area aperture, one can obtain selected-area electron

diffraction (SAED) [238] rather than a diffraction pattern for a much larger re-

gion. The SAED allows precise determination of structural information in the

sub-200 nm region, whereas electron diffraction covers the micro-meter region.

The SAED of graphene can confirm the monolayer feature in the hundred-nano-

meter region.

In the reciprocal space for monolayer graphene lattice, there is only the zero-

order Laue zone, so the intensity of diffraction peaks does not vary much with

the tuning-in incidence angle of an electron beam. However, with different

incident angles, bilayer graphene exhibits changes in total diffraction inten-

sity. Therefore, the monotonic change in diffraction intensity observed with

changing the tilt angle is reliable for determining the presence of monolayer

graphene [239, 240]. The intensity of the electron diffraction pattern from {10-

10} and {11-20} planes is useful to determine the layer number [1, 241]. If

I{11−20}/I{10−10} is >1, it is determined as Bernal stacked bilayer graphene,

as shown in Figure 3.4cd, and if the ratio is <1, it is reported as monolayer

graphene, as shown in Figure 3.4ab.
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In Figure 3.4e, a top layer graphene sheet rotates 28◦ with respect to the

bottom layer graphene and thereby exhibits rotational stacking. The corre-

sponding SAED shows two sets of six-fold reflection symmetry. That is, the

SAED in Figure 3.4b duplicates itself, but the new set of SAED follows with a

rotational angle of 28◦. This overlapping of two sets of diffraction patterns is

shown in Figure 3.4f. The rotational angle between stacking layers is illustrated

with two arrows in dark orange and light blue.

In some samples, two monolayer graphene grains with a relative rotational
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Figure 3.4: Schematic of lattice structures of graphene and their correspond-
ing diffraction pattern. (a) Monolayer graphene has one crystalline domain in
the lattice structure. (b) In the diffraction pattern sketch, the large spots repre-
sent higher intensity in the diffraction peak than the small ones. The diffraction
intensity for {10-10} is stronger than that in {11-20}. (c) AB Bernal bilayer
graphene has two layers (yellow and black). (d) The diffraction peak {10-10}
is weaker than that in {10-20}. (e) Rotational stacking bilayer graphene has a
rotational angle of 28◦ between two graphene sheets. (f) The two sets of diffrac-
tion patterns have corresponding rotations. The rotational angle is formed by
the two arrows (dark orange and light blue). (g) Two graphene grains merge and
form a grain boundary (GB). The relative rotation angle between two grains
is 28◦. (h) The diffraction pattern is analogous to that of rotational bilayer
graphene. However, the high-resolution TEM is straightforward to differentiate
the rotational bilayer graphene from two-grain monolayer graphene by Moiré

pattern (exhibiting in rotational bilayer graphene).

angle form a grain boundary, as shown in Figure 3.4g. It is remarkable that
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SAED exhibits two rotational sets of six reflex spots in Figure 3.4h, which can

be easily mixed up with that of rotational stacking bilayer graphene. In this

case, one can use HRTEM to observe the Moiré pattern to identify rotational

bilayer graphene, because no Moiré pattern is reported in monolayer graphene.

Another method involves the use of dark field TEM [242] to distinguish these

two monolayer domains. In DF-TEM, monolayer graphene at grain boundary

(GB) is illuminated on one crystal domain but darkened on another crystal

grain. However, rotational stacking bilayer graphene will be illuminated on the

whole tested region when doing DF-TEM and selecting each set of diffraction

patterns. Thus, one can also classify the specimen with the DF TEM approach.

3.5.2 Dark field transmission electron microscopy

Dark field TEM can determine the grain size and relative rotational angle be-

tween two adjacent graphene grains. In conventional TEM, the contrast aper-

ture (e.g., objective aperture) has been adjusted concentrically to let the opti-

cal axis pass through, (i.e., only slightly scattered electrons pass the aperture).

When shifting the contrast aperture away from the axis point, the strongly scat-

tered electrons can pass the aperture, whereas the slightly scattered electrons

cannot. Therefore, an inverse contrast image is captured, which is known as

dark field imaging. When inserting the smallest objective aperture, individual

reflections can be selected within a diffraction pattern. In the following DF

TEM, these grains exhibit bright contrast, which corresponds to the selected

reflex [243]. Furthermore, one can select another reflection set to light up the

next domain area. When completing all the rotational sets of diffraction pat-

terns, grain mapping can be carried out in order to obtain the relative rotation

and size information.

With HR TEM of the rotation stacking graphene, one can get a fast Fourier
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transform (FFT) of the image. In small region FFT, one can obtain one or

more sets of six-fold reflex similar to Figure 3.4bh, in which one can extract the

rotation angle with the drawing line (ROI tools) in Digital Micrograph software.

Furthermore, FFT is useful for performing grain mapping for rotational angle

and size information [123] , which is analogous to the DF TEM approach.

3.6 Raman spectroscopy

Raman spectroscopy is a commonly used tool for characterizing graphene be-

cause it gives information regarding bonding in molecular nanostructures. In

Raman spectroscopy the observed spectrum is mostly generated by inelastic

scattering of light within molecules. It is sensitive to the specific vibrational

mode of molecules after excitation with a laser. Raman spectroscopy has been

extensively applied as a non-destructive approach to determining the electronic

and structural characteristics of graphene [1, 8, 244, 245].

A typical Raman spectrum of graphene is shown in Figure 3.5. Raman spec-

troscopy equipped with optical microscopy can facilitate the spectral mapping

in a rectangular region of the specimen.

The Raman spectrum of graphene has three major bands. The G-band,

located at approximately 1580 cm−1, corresponds to in-plane stretching vibra-

tions of the sp2 carbon atoms. The D band, residing at approximately 1350

cm−1, is attributed to a double resonant process which involves a scattering

by a defect in the graphene lattice. There is only one phonon involving in the

D band scattering process. The strongest 2D band (also known as G′ band) at

2700 cm−1 is induced by a second-order process that originates from the in-plane

breathing-like mode the carbon hexagonal rings [1, 246]. The appearance of the

2D and D bands results from the double resonance Raman scattering process
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Figure 3.5: A typical Raman spectrum of large-area graphene membrane
transferred onto Si/SiOx substrate. There are three characteristic peaks: D

band at 1350 cm−1, G band at 1580 cm−1 and 2D band at 2700 cm−1.

[246]. Because two phonons is involved for 2D band, the energy shift for the 2D

band is twice of the D band, which derives its name.

Monolayer graphene exhibits a sharp and symmetric 2D band. When increas-

ing layer number (in the case of AB Bernal stacking, such as in the mechanically

exfoliated graphene sample), the 2D band becomes broadened and shows blue

shifts [247], while the G/2D intensity ratio gets increasingly higher. However,

for rotational stacking double-layer graphene, the 2D band gets narrowed and

the 2D/G intensity ratio becomes higher than that for monolayer graphene and

Bernal bilayer graphene [248].

In this work, the graphene samples are analyzed with Raman spectroscopy

after each CVD to determine whether or not graphene has been synthesized.

It can also supply information about rotational stacking in bi-layer graphene

when complemented with TEM analysis. For Raman spectroscopy analysis, the

graphene is first transferred on to a Si/SiOx substrate. The analyses are col-

lected on a WiTec Alpha300 R and a Renishaw inVia Raman spectrometer.

Both spectrometers are equipped with a laser (514 nm excitation) and an opti-

cal microscope. Raman spectroscopy is used to determine the layer number of

graphene, the graphene quality (i.e., the presence of defective peaks), and the
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homogeneity of large area graphene (Raman spectral mapping).

3.7 Ultraviolet-Visible spectrophotometry

Ultraviolet-visible (UV-Vis) spectrophotometry is typically used in determining

the optical transmittance of a thin film on a transparent support (e.g., fused

quartz). The CVD-grown graphene film is first transferred onto a transparent

fused-quartz substrate. In this study, the optical transmittance of graphene film

is carried out using an Analytik Specord 250 instrument. The spectrophotome-

try is equipped with a double-beam within which the light splits into two beams

prior to reaching the sample. One beam passing through the pristine quartz

support is used as the reference; the other passing through quartz/graphene is

used as a sample. The transmittance of graphene is defined as the ratio of the

two beam intensities, with the beam intensity for pristine quartz set as 100%

transmittance.

3.8 Electrical transport measurements

Electrical transport measurements allow the determination of carrier mobility

of graphene in a field effect transistor (FET). The graphene (directly grown)

on Si/SiOx is fabricated in to an FET device. First, a graphene channel was

prepared with depositing PMMA electron-resist, e-beam lithography and oxy-

gen plasma cleaning. The graphene channel was formed with e-beam exposure

in a Hitachi S400 SEM with a Raith direct writer. Next, the pads and tips

for source and drain electrodes were fabricated with e-beam lithography where
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Ti(50 nm)/Au(200 nm) were formed subsequently with e-beam deposition. Fi-

nally, the graphene device was thoroughly cleaned with acetone after a lift-off

step.

The electrical transport measurement of the graphene FET devices in this

study was conducted using a Keithley 2612 source meter unit (SMU). The p-

doped Si is used as a global back gate electrode. The two Au electrodes on the

transferred graphene are used as source and drain electrodes.

With tuning gate voltage from negative bias to positive bias, one can obtain

the transfer curve of drain current (IDS) versus gate voltage (VG). With linear

fitting of drain current against gate voltage, one can obtain the slope (∂IDS

∂VG
)

and thereafter obtain the carrier mobility by multiplying with the constant fac-

tor ( L
WCOXVDS

). The graphene channel has a length (L) of 2.5 µm and width

(W ) of 15 µm. The dielectric SiOx has a constant electric capacity (COX).

Therefore, the formula to derive electrical mobility [54] is µ = L
WCOXVDS

� ∂IDS

∂VG
.

Moreover, the ON/OFF ratio for drain-source current is defined as r = IDS(max)
IDS(min)

.
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CVD growth of graphene on

oxidized Cu substrates

Chemical vapor deposition is one of the most common methods of producing

graphene. This is attributed to its capability for synthesizing large areas of

graphene, and its potential to be scaled up for mass production. In terms of

fabrication of large areas of graphene monolayer film, Cu is the most widely

explored substrate, because its low carbon solubility enables the formation of

a homogenous single-layer graphene sheet. However, the graphene described

in the recent literatures is not purely monolayer graphene, but a mixture of

monolayer and second-layer flakes. Therefore, the focus of this chapter is on

fabricating the production of pure monolayer graphene, viz., on preventing the

emergence of second layer flakes.

51
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4.1 Motivation

Applications in electrical transistors require large area, good quality, and homo-

geneous graphene films [4]. Due to these requirements, Cu is more favored than

other substrates (e.g., Ni) because the Cu substrate facilitates the growth of

predominantly monolayer graphene. Even though uniform graphene synthesis

is shown to be easier on a Cu substrate, there are still problems which need to

be tackled.

Most methods of graphene synthesis on Cu foils employ pretreatments to sup-

press organic contaminants [117, 249], tune the surface oxidation level [114, 250],

and flatten the surface with polishing [119, 121]. Prior to CVD, the Cu foil is

annealed in an H2 atmosphere so as to reduce any oxide. Recently, it has been

shown that surface oxidation can enlarge domain size via suppressive control of

the nucleation density [114]. Mechanical and chemical polishing are frequently

implemented to decrease the density of graphene nuclei by suppressing the defect

sites through the creation of a smooth Cu surface [120, 121]. Organic solvents

such as isopropanol are also commonly applied, for the general cleaning of con-

taminants on Cu surfaces, by rinsing, soaking and sonication [113]. Also, the

potential of harsh chemicals (e.g., nitric acid) has been explored; these chemi-

cals may be used to remove the surface layers and expose fresh Cu [115, 249].

In this chapter, the effect of solvents, etching and oxidation are compared

with regard to their potential for surface contaminant removal. The results

show that solvents have limited effect. Whereas oxidation of Cu foil followed

with H2 reduction is shown to be the most efficient of the three pretreatments.
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4.2 Experimental protocol

Five types of pretreatment methods were investigated in terms of their effect

on CVD growth. The protocols for these pretreatment experiments are listed

in Table 4.1. The labeling of the experiments (from a to e) in this table will

apply throughout the chapter. These pretreatment steps include wiping the Cu

foil with scientific tissue soaked in isopropanol (Alfa Aesar, 99.999% purity),

polishing the Cu surface with FeCl3 solution, annealing in air atmosphere and

finally annealing in an H2 atmosphere.

The chemical vapor deposition synthesis were conducted in a horizontal

Table 4.1: Outline of five different pre-treatments on Cu foils prior to chemical
vapor deposition. The shortest time required to trigger the initial formation of

graphene and the type of graphene produced after the synthesis.

No. IPA
Wipe

FeCl3
Polish

H2

Anneal
Air
Anneal

H2

Anneal
CVD
Growth

Graphene
Formation

Graphene
Type

a No No Yes No No Yes Yes, 10 sec Mixture∗

b Yes No Yes No No Yes Yes, 10 sec Mixture

c Yes Yes Yes No No Yes Yes, 10 sec Mixture

d Yes No Yes Yes No Yes Yes, 1 min Flake∗∗

e Yes No Yes Yes Yes Yes Yes, 1 min Film∗∗∗

(∗Mixture means that the graphene monolayer full film is mixed with second layer
flakes. ∗∗Flake means that individual graphene grains are present. ∗∗∗Film means that

a monolayer full film of graphene is produced. IPA is short for isopropanol.)

(quartz-) tube furnace which is demonstrated in Figure 3.1 (cf. chapter 3). Prior

to loading the Cu substrates, the Cu foil strip (2.5 cm by 1 cm) is mounted inside

a one-end sealed quartz test tube, a so called vapor-trapping sample configura-

tion developed in Rümmeli group [125]. After the pretreatments in Table 4.1abc,

the quartz test tube together with the Cu foil are placed at the center of the

reaction tube (as center of heating zone). The tube chamber is then evacuated

to a low pressure (0.1 mbar) with a mechanical oil pump. Figure 4.1 shows

the typical gas condition and temperature for the H2 annealing process and the
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chemical vapor deposition reaction. First H2 gas with a 16 sccm flow is intro-

duced into the work tube while the temperature of the furnace is simultaneously

increased. When the required temperature has been reached (e.g., 1025 ◦C) and

allowed to stabilize for a short time, the CH4 gas is introduced with a flow of 16

sccm while maintaining the H2 (total pressure of H2/CH4: 10 mbar). After the

CVD reaction is completed, both H2 and CH4 gases are switched off and cooling

begins.

a a ab ca
a

air

16 sccm

air
annealing

16 sccm
air

Figure 4.1: Temperature profiles and gas conditions for H2 annealing followed
by chemical vapor deposition. Panel (a) represents experiments a, b and c.

Panel (b) represents experiment d. And Panel (c) represents experiment e.

Once the graphene has formed on the Cu surface, it is transferred onto a

Si/(300nm) SiOx wafer or a TEM (lacey carbon film) grid for further character-

ization. The transfer protocol is depicted previously (cf. chapter 2).

4.3 Influence of Cu pretreatments on graphene

formation

Five types of pretreatment methods, followed by CVD growth, were investigated

in this chapter. The protocols for these experiments are listed in Table 4.1 and

the labeling for each experiment is established for the entire chapter.

The pretreatment steps include wiping the Cu foil with isopropanol saturated
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(lint free) tissue, polishing the Cu surface with FeCl3 solution, annealing in an

air atmosphere, and eventually annealing in an H2 atmosphere.

Scanning electron microscopy graphs (Figure 4.2) show the results of the five

different pretreatment experiments, a-e, with four different synthesis times (0.5

min - 10 min). Figure 4.2a, shows the results using Cu foils without any pre-

treatment. The SEM micrographs indicate full coverage growth of graphene

film (later confirmed by Raman spectroscopic mapping images and atomic force

microscopy graphs). The black lines are clearly observed as graphene wrinkles

(Figure 4.2a), which formed in a cooling step (after CVD) because the thermal

coefficients of Cu and graphene are different [1, 215]. In addition, numerous

dark islands emerge randomly in the graphene film (Figure 4.2a). Further in-

vestigation of these islands (discussed later in relation to AFM and Raman

spectroscopy) indicate that they are second layer flakes. From a visual inspec-

tion of these SEM images, the size and density of the second layer flakes do not

seem to change with increasing growth time.

Figure 4.2b shows similar results when experiment b is carried out. In this

experiment the Cu surface is wiped with isopropanol. Again, after H2 anneal-

ing and CVD reaction, the Cu foil is fully covered with graphene film, even

after a short reaction time (0.5 min). However, small graphene patches are still

found dotted throughout the sample surface. And the density of flakes increases

slightly (shown later in a statistical graph, cf. Figure 4.7), indicating that, being

a carbon source, the isopropanol itself may contribute to the flake formation.

In this case, no change in the flake size is observed when the growth time is

lengthened from 0.5 min - 10 min.

In experiment c, the Cu foil is first cleaned with isopropanol, then polished

with FeCl3 solution, and then rinsed thoroughly in deionized water and blow

dried in N2, prior to undergoing the CVD reaction. As for the other pretreat-

ments, full coverage graphene films are observed for samples produced with the

four different growth times, together with the emergence of small second layer
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islands randomly dotted on the surface (Figure 4.2c). In addition, the size of

the second layer flakes does not change with increasing growth time, and neither

does the density.

Experiment d adopts the identical synthesis to experiment b, but with an air

oxidation step before the CVD reaction. In this case, no graphene deposit is

observed for a 30 sec CVD growth, which is attributed to Cu oxide remaining

at the surface (Figure 4.2d). When the reaction time is lengthened to 1 min,

individual grains of graphene are observed on the surface and further increase

in grain size occurs at a reaction time of 3 min. This is because the gradual re-

duction of surface oxide leads to more reduced Cu surface, and correspondingly

longer growth time (when H2 remains present).

In experiment e, the pretreatment protocol is analogous to that in experi-

ment d but in this case a H2 annealing step is carried out (subsequent to air

oxidation) before final CVD growth (Table 4.1e). The major advantages of this

reduction step are highlighted in Figure 4.2e, in which the foil is deposited with

full coverage graphene after a 30 sec CVD reaction.

In this case, no bi-layer flakes emerge on the graphene film. Instead the SEM

graphs clearly indicate the presence of pure monolayer graphene film (for 3 min

and 10 min growth). Occasionally, very few elongated patches emerge at short

reaction times (0.5 min - 1 min). These are attributed to carbon segregation

from the grain boundaries of Cu foil [212, 251]. Overall though, homogeneous

large area monolayer graphene film is synthesized.

For these experiments atomic force microscopy observations are analogous to

SEM analysis. Figure 4.3abc shows full coverage of the substrate with graphene

along with typical wrinkle features. Further characterization on the thickness

of the graphene film makes it possible to identify whether it is monolayer (cf.

Figure A.1 in Appendix A), because monolayer graphene has a height of 0.7

nm from substrate [193]. The second layer islands have a height of 0.3 - 0.4

nm above the initial layer of graphene film, which is consistent with a graphitic
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Figure 4.2: Scanning electron microscopy graphs for graphene samples syn-
thesized in the pretreatment experiments, a to e, for four different growth times.

The labels of pretreatment experiments correspond to the row labels.
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sheet-sheet spacing of 0.34 nm [183, 252, 253].

Figure 4.3d indicates no growth of continuous film, instead only individual

graphene domains form. The heights of these grains, formed after 1 min and

3 min, range from 0.73 nm to 0.82 nm, which confirms the monolayer feature.

However, very little few-layer graphene (layer number >3) was observed in the

10 min sample. Again in Figure 4.3e, the height of graphene film is consistent

with the monolayer thickness. Experiment e results in clean graphene film for-

mation (i.e., without any additional layer islands).

Raman spectroscopy was employed to confirm the emergence of graphene

after the CVD reaction. The Raman spectrum can also supply specific infor-

mation about the graphene produced, such as the quality and layer number

[245, 246, 254, 255]. The three major fingerprints of graphene in the Raman

spectrum are the G band at 1580 cm−1 (a double E2g mode degenerating at

zone center), the D band at 1350 cm−1 (a ring breathing mode which is ac-

tivated near defects in the graphene lattice), and the 2D band at 2670 cm−1

(which is attributed to second order photon scattering). The peak positions,

band shapes, and relative intensity ratio of these bands, supply rich information

about graphene such as quality and layer number [256–258].

Raman spectra for pretreatment experiments a-c (Figure 4.4), again, con-

firms that the graphene films have predominantly monolayer features, e.g., 2D/G

intensity ratio >2, full width half maximum (FWHM) of 2D band <40 cm−1

[123, 125, 160]. The monolayer features remain regardless of CVD growth time

(Figure 4.4abc).

Specific investigation into the islands of second layer flakes shows clearly that

they are bi-layer or few-layer graphene (Figure 4.4f). Raman spectra for experi-

ment d show no graphene growth in a 0.5 min reaction, predominantly monolayer

graphene for 1 min and 3 min growth, and few layer graphene in 10 min growth

(Figure 4.4d). In experiment e, monolayer graphene is observed clearly for all

growth times (Figure 4.4e).
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Figure 4.3: Atomic force microscopy micrographs of the five experiments,
a-e, with different growth times. (a,b,c) The height profiles between second
layer flakes and the monolayer graphene full film (as labelled with short black
lines) are provided as insets. The height between second layer flake and the
monolayer graphene film ranges from 0.3 nm to 0.4 nm. (d,e) The height profiles
of individual graphene grains (above the Si/SiOx substrate) are present in insets.

The typical heights of monolayer graphene are 0.7 - 0.8 nm.
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Figure 4.4: Raman spectra of the graphene samples. (a-e) Five experiments
for four reaction durations. (f) Raman spectra of monolayer, bi-layer and few-
layer graphene samples consisting of monolayer film mixing with second layer

flakes (e.g., experiment a, b and c).

4.4 Influence of Cu oxidation on graphene growth

Raman spectral mapping of 2D band was employed to evaluate the homogeneity

of the graphene samples, as shown in Figure 4.5. Again, the monolayer feature

(FWHM of 2D band <40 cm−1) is predominant in panels a-c but bi-layer is-

lands are also observed, as indicated by the presence of randomly distributed

dots (FWHM of 2D band >40 cm−1) in the Raman mapping. These Raman

mapping images are consistent with previous observations of SEM, AFM and

Raman spectra. In particular experiment e produces clean homogeneous mono-

layer graphene over a large area, i.e., the pretreatments of air oxidation followed

by H2 reduction on Cu completely prevents the formation of second layer flakes.
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Experiment e allows clean large scale homogeneous monolayer graphene growth,

e.g., a centimeter-size graphene film synthesized and transferred on to Si/SiOx

substrate for optical imaging (cf. Figure A.2 in Appendix A).

Transmission electron microscopy is also employed to evaluate the nature

and extent of graphene growth. Figure 4.6a shows a low magnification overview

of a typical graphene membrane over a standard lacey carbon TEM grid. The

selected area electron diffraction (SAED) pattern (Figure 4.6b) confirms the

graphene feature with a six-fold symmetry.

And in Figure 4.6c the intensity ratio of the {11-20} and {10-10} re-

flexes (I{11−20}/I{10−10} < 1) [237, 259] shows clearly the presence of monolayer

graphene. Furthermore, a high resolution TEM image (Figure 4.6d) is employed

to check the number of layers. This image confirms that the graphene formed is

single layer, which is determined by a layer counting method [260]. This involves

counting the layers where holes are formed by electron beam radiation.

With the confirmation of complete graphene film growth, it is necessary

to obtain a better understanding of the formation of second layer flakes, e.g.,

do they form above or beneath the initial monolayer graphene full film which

spans the entire foil surface? For experiments a-c, statistical data of the flake

size and density are provided in Figure 4.7. No change in the average flake

density or size is observed with varying growth times. This indicates that the

second layer flakes form in the early stages and do not continue to evolve in the

CVD reaction. Hence the initial formation time and the origin of the carbon

source are key questions to address. A clue to the answers lies in the fact that

no such small islands are observed in experiment d. Neither do they grow in

pretreatment experiment e. Both experiments contain a step that involves air

oxidation of the Cu foil (which turns into black oxide after the pretreatment).

These observations lead to the deduction that organic surface contaminants may

be acting as a carbon feedstock during the early stage (e.g., H2 annealing step)

and contributing to the formation of the small flakes.
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Figure 4.5: Raman mapping data of full width at half maximum in 2D band
(2D FWHM). The bright green represents monolayer graphene (<40 cm−1).
Deviations in color (from green, yellow to red) correspond to an increase in
layer number, except for the first column in experiment d in which no graphene

formation is observed. Experiment labels correspond to row labels.
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Figure 4.7: Statistical data of the size and density of the flakes observed from
experiment a, b and c. The flake size is represented by the round markers
and the flake density is represented by the square markers. Experiment label
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4.5 Effect of oxidation pretreatment on Cu sur-

face cleaning

Further investigation was conducted on the samples after H2 annealing (before

the CVD reaction, i.e., no CH4 is introduced). Figure 4.8 shows that small

islands (in black contrast) have formed on the Cu surface, and Raman spec-

troscopy confirms the presence of graphene (cf. Figure A.3 in Appendix A).

Analogous results were observed when adopting acetone or ethanol as clean-

ing solvents (cf. Figure A.4 in Appendix A). This shows the limitation of the

solvent wiping pretreatment, which either does not remove the organic residues

(which consists of a processing grease from the Cu foil supplier), or the solvents

themselves, as surface adsorbents, provide the carbon feedstock in the H2 an-

nealing step.

In Figure 4.8de, no such islands are observed, as would be expected in ex-

c d ea b

15 µm

1 µm

Figure 4.8: Scanning electron microscopy images of the samples after H2

annealing just prior to CVD reaction (i.e., without the introduction of CH4).
Experiment labels correspond to column labels.

periment d and e. This confirms that the graphene flakes are formed during
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the H2 annealing step (i.e., before the introduction of CH4 in the process). The

large area graphene film forms subsequent to the introduction of CH4. This film

probably grows on top of the islands (formed in the H2 annealing step) because

these islands do not increase in density or size even for long CVD growth dura-

tions.

H2

1025 oC

H2

1025 oC

H2

1025 oC

O2 800 oC
CH4

H2

CH4

1025 oC

H2 annealing CVDAs received Cu

H2 annealing CVDAir oxidation

Figure 4.9: The mechanism of oxidation pretreatment in the formation of
pure monolayer graphene. (Top row) Without oxidation pretreatment, graphene
of monolayer film mixed with second layer flakes is produced. (Bottom row)
However, with oxidation pretreatment of the Cu foil, pure monolayer graphene

is produced.

The mechanism of the air oxidation pretreatment is summarized in Figure 4.9.

In brief, the Cu foil without oxidation pretreatment will grow graphene film but

with second layer flakes. Whereas with the oxidation pretreatment step the Cu

foil supports the formation of large area homogeneous monolayer graphene film

without the emergence of second layer islands.
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4.6 Summary

This chapter covers a comparative study of the five different pretreatments, such

as non-pretreatment, solvent wiping, chemical polishing, air annealing as well

as air annealing with post hydrogen annealing, to remove organic contaminants

on a Cu surface prior to graphene synthesis with CVD. The first three types of

pretreatments, which did not involve the air oxidation of Cu foil at high temper-

ature, resulted in the growth of large area single layer graphene film, but with

small graphene second layer islands forming randomly on it.

The experimental data shows that these second layer graphene islands form

during the H2 annealing step rather than in the CVD reaction. The carbon

feedstock for these flakes is supplied by the surface contaminants on the Cu

surface. However, for the experiments involving an air oxidation at 1025 ◦C,

these small flakes were absent in the resultant graphene film.

Thus, air oxidation is considered to thoroughly burn away any surface organic

contaminants. Eventually the optimum pretreatment steps (e.g., air oxidation

followed by H2 annealing) allow the formation of large area homogeneous mono-

layer graphene without any additional layer islands. This oxidation pretreat-

ment approach provides an effective strategy to produce homogeneous strictly

monolayer graphene in a large scale.



Chapter 5

Chemo-thermal synthesis of

graphene from organic

adsorbents

After concluding in the previous chapter that carbon species adsorbed on Cu

surfaces can result in graphene after thermal annealing, this chapter looks at

the synthesis of graphene in a controllable fashion, viz. introducing intention-

ally organic adsorbents on a clean Cu surface and then conduct post thermal

annealing. The so-called chemo thermal route includes a controllable deposition

of organic molecules (e.g., solvents) and post annealing in hydrogen atmosphere.

5.1 Motivation

Graphene demonstrates numerous unique electronic, optical, chemical, thermal

and mechanical properties, amongst others [1, 4, 5, 94, 261]. Thus far, there

is obvious interest in developing synthesis routes because this is the key to

67
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fully exploiting graphene’s properties. Numerous routes have been employed

for graphene fabrication. Chemical vapor deposition, where hydrocarbon feed-

stocks are decomposed on a supporting substrate, is perhaps the most popular

route because it is a sophisticated technique adopted both in semiconductor

manufacture and also in research labs.

Moreover, this route is highly successful, especially when fabricating graphene

on Cu via a surface-mediated growth mechanism [111, 114, 262]. An alternative

synthesis route involves another metal, Ni, which has high carbon solubility.

This method is based on carbon dissolving through bulk metal [145] and segre-

gating from the bulk so that graphene forms from carbon precipitation on the

Ni surface [122, 123, 173, 263]. Graphene can also be obtained via exfoliation,

either through mechanical cleavage [5, 86], chemical exfoliation with organic

molecule intercalation [79, 90–92], or with the OH functional group through

hazardous acid [97–101].

Graphene synthesis by thermal polymerization has also been explored, e.g.,

the polymerization of Quinone precursors. However this is a complicated route

which involves three-step thermal treatments. In another chemo-thermal method

graphene nanoribbons can be synthesized via different heating steps from monomer

precursors, for example 10,10′ -dibromo-9,9′- bianthryl monomer, then dehalo-

genation of these monomers to finally Cyclodehydrogenation [93]. Besides the

dry methods such as CVD and chemo-thermal routes, a bottom-up method has

also been developed via organic synthesis. It covers an approach where small

aromatic hydrocarbon precursors are pieced together to form a larger graphene

structure by coupling reactants [94, 95]. This route holds limited upscale promise

because the solubility of polycyclic graphitic products reduces significantly with

increasing graphene grains, so that further increase in grain size is negligible.

This chapter discusses a single-step path to synthesize micron-scale graphene

monolayer and bilayer flakes on Cu via a significantly simple chemo-thermal
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route where three common organic molecules absorbed on Cu foils serve as car-

bon precursors.

5.2 Experimental protocol

Pretreatments to Cu substrates : High purity Cu foil (99.999%) from Alfa

Aesar (25 µm) was adopted as the supporting substrate. Prior to the chemo-

thermal graphene synthesis, the Cu substrate was first cleaned. This included

a thermal treatment (800 ◦C for 30 min) of the Cu foil in air after which the foil

turns black. The oxidized foil was then reduced through thermal annealing in

H2 atmosphere (1025 ◦C for 30 min).

Direct formation of graphene: After this step, the Cu foil was cleaned and

underwent a dip coating in a general organic solvent, a process that allows or-

ganic solvent molecules to be adsorbed on the surface of Cu foil. Three common

solvents, acetone, isopropanol and ethanol, were investigated. These solvents

were supplied from WMR International with purity for analysis (99.8%). After

dip coating, the Cu foil was allowed to dry at ambient conditions. Prior to

loading into the reaction tube, the solvent-deposited Cu foil was mounted inside

a half-sealed small quartz test tube (inner diameter: 1.8 cm, length: 10 cm).

This small quartz test tube, which was previously built up by Rümmeli group

(cf. Ref.[125]), is intended to maintain an organic vapor rich environment when

these molecules are volatile upon high temperatures. Then, the quartz test tube

(with loaded Cu) was loaded to the reaction chamber, with the sealed side facing

the gas flow. The chemo-thermal reactions were operated at temperatures from

700 ◦C to 1050 ◦C, pressures from 2 mbar to 1000 mbar, and an H2 atmosphere

with flow rate between 1 sccm and 100 sccm. In addition, the temperature was

measured (with a thermal couple) on the outer wall of the reaction tube, which
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is not influenced by the gas flow.

Calculation of gas equilibrium: The thermodynamic calculation of the decom-

position of carbon precursors was carried out using CEA software (Chemical

Equilibrium with Applications, provided by NASA). Initially the program was

set on a constant pressure and constant temperature mode. The amount of H2

was determined by the volume that Cu foil occupied (here using 0.003 µmol

as the amount of H2). Next, the amount of organic molecules that resided on

the Cu surface were determined with an adsorption model described in refer-

ence [264, 265], i.e., one acetone molecule adsorbs on one Cu atom on the Cu

(111) surface. Therefore the surface area of a Cu surface contributes to 0.003

µmol. Take the acetone precursor for example; the initial condition (e.g., gas

condition) was set up with 3 µmol H2 and 0.003 µmol acetone. Then, the equi-

librium state was set at 10 mbar pressure and 1025 ◦C temperature. Finally, the

mole fraction of the resultant gaseous radicals (deriving from both reactants: H2

and acetone) were presented in an output file from the CEA. For the temper-

ature dependent experiments, the calculation was performed adopting 700 ◦C -

1025 ◦C but keeping pressure at 10 mbar. For the pressure dependent experi-

ments, the calculation was carried out at pressures from 2 mbar to 1000 mbar,

while maintaining a temperature of 1025 ◦C. Based on PV=nRT, the amount

of H2 input increases from 0.6 µmol to 320 µmol with increasing pressure. For

solvent variation experiments, isopropanol and ethanol were introduced at the

same amount, with other conditions (e.g., pressure and temperature) fixed.

Results are discussed in the following paragraph. In the simple chemo-thermal

route clean Cu foil is simply dipped in an organic solvent (or a few droplets are

deposited on the Cu surface). This step results in organic molecule precursors

adhering to the Cu surface. However, prior to the coating of organic precursors,

it is critical to guarantee the cleanliness of the Cu surface. This is because the

surface of as-received Cu foils are covered in residual grease which itself serves
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as a source of carbon precursors [133]. As chapter 4 demonstrates, the most effi-

cient cleaning method includes first burning the Cu foil in air (oxidization) and

then annealing it in H2 atmosphere (16 sccm H2 flow rate). Once the cleaning

procedure was completed, the clean Cu foils were treated by heating in pure Ar

or pure H2 atmosphere. No graphene or carbon species were observed, confirm-

ing that the Cu foil was free of carbon-related contaminants.

To form single crystalline graphene flakes (1 µm in diameter) the clean Cu

Air Oxidation H2 Reduction

Dip Coating Solvent Graphene Synthesis

As Received Cu

H2

Figure 5.1: The procedure of the chemo-thermal route of graphene fabrica-
tion. It includes Cu cleaning, organic precursor deposition, and chemo-thermal

reaction for graphene formation.

foil was dipped in an organic solvent (acetone, isopropanol or ethanol), followed

by drying at ambient conditions. Energy dispersive X-ray spectroscopy (EDX)

measurements of the carbon signal relative to measured Cu signal (on both clean

Cu and solvent deposited Cu) show elemental C/Cu mass ratios of 0.3, 0.4 and

0.5 (error ± 0.1) for acetone, isopropanol and ethanol, respectively. In a word,

the carbon loadings are similar for all three cases, within the acceptable error.

Once dry, the Cu foil with organic precursors was loaded in a tube furnace at

temperatures from 700 ◦C to 1050 ◦C with a H2 flow of 16 sccm. The complete

procedure is demonstrated in Figure 5.1 and the photograph of Cu surface is

shown in Figure B.1 of Appendix B. Graphene formation was only observed
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between 800 ◦C and 1025 ◦C. A variety of reaction pressures and H2 flow rates

were also studied alongside the temperature investigation. No graphene growth

was found without the pressure of H2 in the chemo-thermal treatments. After

the reaction was completed, scanning electron microscopy and atomic force mi-

croscopy demonstrated the formation of isolated individual graphene flakes on

the Cu surface (Figure B.2 and Figure B.3 in Appendix B). For most cases,

the graphene flakes had six facets, however at times 4-facet flakes were ob-

served or they were round in shape (e.g., disk-like). The average diameters of

these graphene flakes vary from 100 nm to above 1 m depending on the reac-

tion temperatures. A detailed study of the graphene flakes by both SEM and

AFM revealed the typical wrinkle features of graphene grown on Cu substrate

(Figure 5.2).

Moreover, the contrast changes in SEM can indicate the number of graphene

1.2 nm

0.34 nm

1.2 nm

0.35 nm

1.1 nm

0.33 nm

0.83 nm 0.79 nm 0.80 nm

0.82 nm
0.78 nm 0.81 nm

200 nm

400 nm

300 nm

200 nm

400 nm

300 nm

a b

c d

e f

Acetone Isopropanol Ethanol Acetone Isopropanol Ethanol

Figure 5.2: SEM (a,c,e) and AFM (b,d,f) micrographs for synthetic graphene.
Monolayer graphene (top row), monolayer graphene with secondary islands on
them (middle row), and bilayer graphene flakes (bottom row). The layer num-
bers are determined from both relative contrast in SEM and height in AFM

graphs.

layers. Indeed a closer examination (Figure B.1) suggests the graphene flakes
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are either: monolayer, bilayer, or monolayer with second layer islands. The im-

age contrast C in SEM can be determined by the equation:

C = (I0 − I)/I0 (5.1)

where I is the extracted intensity of the graphene flake and I0 is the intensity

of background substrate. The values I and I0 were extracted using Gwyddion

micrograph analysis software.

The AFM examinations allows measurements of the heights of graphene flakes,

where heights ranging from 0.76 nm to 0.82 nm indicate monolayer graphene,

while heights ranging from 1.1 nm to 1.3 nm indicate bilayer graphene (right

panel, Figure 5.2). Graphene flakes with second layer islands on them are also

found (middle row, Figure 5.2).

Raman spectroscopy was also adopted to confirm these flakes are truly
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Figure 5.3: Raman spectra for synthetic flakes from chemo thermal route. (a)
Raman spectra for synthetic flakes of monolayer graphene, AB Bernal stack-
ing bilayer graphene, and twisted bilayer graphene (rotational angle, ca. 20◦ -
30◦). (b) Evolution of Raman spectra for graphene flakes with respect to ther-
mal annealing/synthesis temperature. The graphene quality improves with a

decreasing D band as temperature increases.

graphene. The sp2 carbon such as graphene can be easily determined by Ra-

man spectrum with their fingerprint Raman shift at 1350 cm−1 (D band), 1580
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cm−1 (G band) and 2700 cm−1 (2D band). For the examined graphene flakes

(>150), all three bands are present and the typical spectra are shown in Fig-

ure 5.3a. In some cases, the intensity ratio of the 2D band and G band (2D/G)

range from 2 to 3 and the 2D band is symmetrical with a narrow (<40 cm−1)

full width half maximum (2D FWHM). These spectra are assigned as monolayer

graphene (e.g., Figure 5.3a red spectrum) [246, 266]. In some cases the intensity

ratio of 2D/G ranges from 0.5 to 0.7 while the 2D band becomes asymmetrical

with a broadening FWHM (> 60 cm−1) and upshifted by 3-5 cm−1. These spec-

tra suggest the presence of AB Bernal stacked bilayer graphene (Figure 5.3a,

black spectrum) [18]. In other cases the 2D/G ratio ranges from 5 to 6 and 2D

band with a relatively narrow FWHM (ca. 24 cm−1) and 2D position is slightly

up-shifted [125, 160, 213, 267]. These final spectra correspond to twisted stack-

ing bilayer graphene with rotational angles between 20◦ and 30◦ [268].

Similar to Raman spectroscopy, low voltage transmission electron microscopy

is a powerful tool for graphene characterizations [237]. In this chapter, numer-

ous LVTEM studies were performed on the graphene flake specimens. Selected

area electron diffraction (SAED) and Fast Fourier Transform (FFT) information

show a three-fold symmetry for graphene; and a diffraction spot spacing between

the {10-10} and {11-20} orientations corresponds to graphene (Figure 5.4ac).

High resolution TEM images show the graphene honeycomb lattice of mono-

layer graphene (Figure 5.4a) and at times the Moiré patterns are observed,

indicative of twisted stacking [268] of bi-layer flakes. The layer number of

the graphene samples is determined as only monolayer graphene and bilayer

graphene using a method [269, 270] to count layer numbers of graphene form

vacuum to graphene stacking layers. Furthermore, the intensity profile of the

line across the {10-10} and {11-20} reflex spots confirm the presence of mono-

layer (Figure 5.4d) and bilayer (Figure 5.4f) graphene.
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Figure 5.4: High resolution TEM images, SAED and FFT for graphene flakes.
(a) Monolayer graphene, (b,e) twisted bilayer graphene with Moiré patterns,
and (c) AB Bernal stacked bilayer graphene. Insets: diffraction data extracted
from SAED (a,c) or Fast Fourier Transform (b, e). Panels d and f reveal the
intensity profiles of the {10-10} and {11-20} reflexes, which are in agreement

with monolayer and Bernal stacked bilayer graphene, respectively.

5.3 Influence of reaction temperature on graphene

growth

The graphene synthesis processes were examined with respect to temperature,

reaction pressure and flow rate. First, temperature variation was explored from

700 ◦C to 1050 ◦C, whilst maintaining pressure at 10 mbar, with a H2 flow rate

of 16 sccm.

Graphene flakes were only found at temperatures between 800 ◦C and 1025 ◦C

(Figure 5.5). It can be seen from a visual inspection that the flake diameter in-

creases and the flake density falls as temperature increases.

The Raman spectra for graphene samples prepared from different tempera-

tures are shown in Figure 5.3b. The graphene quality improves with increasing



Chapter 5. Chemo-thermal synthesis of graphene from organic adsorbents 76

b c

d e f

a

1000 oC 1025 oC 1050 oC
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Figure 5.5: SEM graphs for graphene formation with respect to reaction tem-
perature. Here acetone serves as organic adsorbent to form graphene.

reaction temperature indicated by the decreasing D band in Raman spectra.

The statistics of the Raman spectroscopic band information is listed in Ap-

pendix Table B.1. This shows the homogeneity of the predominantly monolayer

graphene for these flake samples.

Two Arrhenius plots were presented in Figure 5.6. These plot both the aver-

age grain diameter and grain density with respect to the reciprocal temperature.

In these plots, changes in grain size and density are both linear so that the ac-

tivation energies, Ea, can be extracted based on the Arrhenius equation.

k = Ae
−Ea
RT (5.2)

where k is a constant of reaction rate, A is a pre-factor, Ea is activation en-

ergy, R is gas constant and T is temperature (Kelvin).

The Arrhenius plots (top row in Figure 5.6) demonstrate that the graphene

growth rate increases with increasing temperature. This reveals an increase in
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reactive carbon radicals for graphene formation, viz. organic molecule decompo-

sition and carbon species surface diffusion are increased. The activation energies

for acetone and ethanol are similar, and slightly higher for isopropanol.

The changes in density show a positive slope with respect to reciprocal

0.75 0.80 0.85 0.90 0.95

0.1

1

10

 

Temperature (
o
C)

G
ra

in
 d

e
n

s
it

y
 (


m
-2
) 

T
 -1
x 10

 3
 (K

-1
)

10501000 900 800

0.75 0.80 0.85 0.90 0.95

0.1

1

10

 

Temperature (
o
C)

G
ra

in
 d

e
n

s
it

y
 (


m
-2
) 

T
 -1

 x 10
 3

 (K
-1

)

10501000 900 800

0.75 0.80 0.85 0.90 0.95

0.1

1

10
 

Temperature (
o
C)

G
ra

in
 d

e
n

s
it

y
 (


m
-2
) 

T
 -1
x 10

 3
 (K

-1
)

10501000 900 800

0.75 0.80 0.85 0.90 0.95

0.1

1

10

 

10501000 900 800

G
ra

in
 d

ia
m

e
te

r 
(

m
) 

T
 -1
x 10

 3
 (K

-1
)

Temperature (
o
C)

0.75 0.80 0.85 0.90 0.95

0.1

1

10

 

10501000 900 800

G
ra

in
 d

ia
m

e
te

r 
(

m
) 

T
 -1
x 10

 3
 (K

-1
)

Temperature (
o
C)

0.75 0.80 0.85 0.90 0.95

0.1

1

10

 

10501000 900 800

G
ra

in
 d

ia
m

e
te

r 
(

m
) 

T
 -1
x 10

 3
 (K

-1
)

Temperature (
o
C)

Acetone Isopropanol Ethanol

a b c

d e f

Ea ~ 1.5 ± 0.1 eV Ea ~ 1.6 ± 0.2 eV Ea ~ 1.4 ± 0.2 eV

Ea ~ 2.3 ± 0.2 eV Ea ~ 2.7 ± 0.3 eV Ea ~ 2.1 ± 0.3 eV

Figure 5.6: Arrhenius plots for each solvent precursor for average grain diam-
eter (top row) and grain density (bottom row). The activation energy, Ea, is

listed in red inside each graph.

temperature, which indicates a reduction in density of graphene islands, and

therefore a reduction in early nuclei density, when temperature increases. This

positive slope indicates a complex reaction mechanism (cf. subsection 2.4.2).

This could be attributed to the fact that as temperature increases fewer sur-

face defects emerge on the Cu surface, where the defects are assumed to prefer

graphene nuclei formation [192, 218, 271–273]. Furthermore, the molar con-

centration of graphitic carbon species increases, and they then prolong their

residence on the Cu surface, which favors graphene formation. In addition, the

increase in temperature enhances carbon radical diffusion at the Cu surface and
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fewer but larger flakes are formed. The increase in surface desorption of carbon

radicals may also account for the decrease in density [118, 192, 274, 275].

The chemical equilibrium calculation (carried out using the CEA program)

reveals an increase in all four radicals with respect to temperature (Figure B.5).

Indeed experimental data of total graphene area with respect to the underlying

Cu surface shows a gradual increase from 800 ◦C to 1000 ◦C and a fall when

1025 ◦C is adopted (Figure B.6). The initial increase is attributed to enhanced

solvent precursor decomposition and surface diffusion. However above 1000 ◦C

etching by H∗ radicals and surface desorption of carbon species dominate in the

reaction, and the graphene area ratio decreases with respect to Cu surface.

The changes in the graphene flakes with respect to temperature were eval-

uated using Raman spectroscopy. At low temperatures (800 − 900 ◦C) the D

band is bigger than the G band. In addition, close to the G band, there is the

presence of an additional peak (1620 cm−1), termed the D′ band. The D′ band is

related to graphene defects [254, 276], which indicates that the graphene islands

produced at low temperatures are defective. This might be due to the fact that

at low temperatures the graphitic carbon radicals are not sufficient, as well as

due to slow surface diffusion, so that defects, such as vacancies, will form in the

graphene lattice.

5.4 Influence of reaction pressure on graphene

growth

The role of reaction pressure was investigated from 2 mbar up to 1 bar with a

16 sccm H2 flow at temperature 1025 ◦C. SEM graphs demonstrate the trend

of graphene growth as reaction pressure increases (Figure 5.7). The density of

graphene flakes increases from 2 mbar to 5 mbar, but then falls at 10 mbar,

while the grain size increases slightly with respect to pressure (Figure B.7).
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With pressure above 10 mbar, no graphene formation was observed. The rel-

ative ratio of graphene coverage area in terms of Cu area is nearly 10% for 5

mbar and 10 mbar samples, which are higher than the ratio (1 - 6%) for 2 mbar

samples (Figure B.8).

Chemical equilibrium calculations reveal different changes of reactive rad-

a b c

d e f20 mbar 30 mbar 1 bar

2 mbar 5 mbar 10 mbar

1 µm

1 µm

Figure 5.7: SEM of graphene flakes formed with different reaction pressures.
In these experiments acetone molecules adsorbed on Cu surface prior to the

chemo-thermal synthesis.

icals such as H∗, O∗, CH3 and graphitic C with respect to reaction pressure

(Figure B.9 in appendix B). H∗ radicals as well as graphitic C, C(gr), decrease

gradually with increasing pressure. CH3 radicals increase from 2 mbar to 100

mbar and then fall, while O∗ radicals show an inverse trend to CH3 radicals.

Note that the molar fraction of O∗ and CH3 are much smaller than that of H∗

and C(gr). This suggests that C(gr) and H∗ radicals are determining factors

for graphene growth. Indeed, the positive correlation of C(gr) and H∗ was ob-

served in the pressure section (Figure B.9ab). Again, in the temperature section
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(Figure B.5ab), the same positive correlation was found between these two rad-

icals. Moreover, when generalizing both temperature and pressure, a critical

mole fraction of graphitic C, C(gr), emerges as 0.001, viz. no graphene flakes

form below this value.

The combined data from the temperature and pressure investigations suggest

that H∗ aids the formation of graphitic C fragments. This could be because

H∗ serves both in assisting organic precursor decomposition and also preventing

amorphous carbon formation, which hinders graphene growth [94, 129, 277]. To

summarize, the increase in reaction pressure results in changes in chemistry that

suppress graphitic carbon generation (Figure B.9b) and matches well with the

experimental results (Figure 5.7).

5.5 Influence of reaction flow rate on graphene

growth

The effect of H2 flow rate was also investigated, with pressure of 10 mbar at

temperature 1025 ◦C. The SEM graphs of graphene flakes from the three sol-

vent precursors are shown in Figure B.10. The average size of graphene flakes

and flake density maximize at a flow rate of 50 sccm and fall at flow rates below

or above this value (Figure B.11). The relative ratio of graphene coverage area

maximize at 50 sccm (Figure B.12).

Chemical equilibrium calculations for radicals of H∗, C(gr), CH3 and O∗

demonstrate to some extent a significant change with respect to H2 flow rate

(Figure B.13). This may suggest that flow rate plays a dual role in graphene

formation in these experiments. First, at low H2 flow rate (<16 sccm), the H∗ is

low molar concentration so that thermal decomposition is very low (indicative

of low CH3 concentration), which depends on the role of hydrogen for assistance

in thermal decomposition of carbon species. Second, at high H2 flow rate (>75
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sccm), the C(gr) is decreasing due to the role of hydrogen etching effect so that

the supply of reactive carbon species are limited and the graphene formation is

not favored.

When there is no incorporation of H2 flow, i.e., using pure Ar flow in the

chemo thermal annealing, no graphene is observed (Figure B.14). This shows

the essential role of hydrogen in the chemo thermal route for graphene forma-

tion.

The Growth of Bilayer Graphene: Finally the growth mechanism of bilayer

graphene is postulated. Three key arguments have been demonstrated for the

formation of bilayer graphene. In the first, gaseous carbon fragments and aro-

matic species are transported just above a graphene surface (pre-growing on

Cu foil) and they may reside on top of graphene and assemble into a second

layer graphene flake [268]. In the second argument active carbon species are

able to diffuse (e.g., through defects sites) between the initial graphene film and

the underlying Cu substrates and form a new layer flake. In the other scenario

monolayer graphene and bilayer graphene flakes form spontaneously, (i.e., in

an inverted pyramid fashion, topmost layer having larger diameter and bottom

layer having smaller diameter) [278]. More experiments are reported to support

this scenario [218, 251, 279]. The data in this chapter suggests that the spon-

taneous growth mode is active because the mixture of monolayer and bilayer

graphene is formed spontaneously in one step.

5.6 Summary

With this facile chemo thermal route, monolayer and bilayer graphene flakes

(with diameter up to 1 m) have been produced from adsorbed solvent molecules

on a clean Cu surface. The influence of temperature, pressure and gas flow rate
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have been systematically investigated so that an optical growth window is pro-

vided: 1000 - 1025 ◦C, 16 - 50 sccm flow rate for H2 and 5 - 10 mbar for reaction

pressure, respectively.

The reaction mechanism in the synthesis route has been interpreted thor-

oughly with both experimental observation and thermodynamic calculation.

Upon thermal treatment at high temperature, the adsorbed solvent molecules

(e.g., acetone, isopropanol and ethanol) undergo decomposition which provides

active carbon species from which graphene can be formed. The H2 flow is crucial

for generating H∗ radicals for the synthesis reaction. The equilibrium calculation

data shows H∗ radicals play two important roles. On the one hand, they activate

surface bound C species, i.e. they assist the decomposition of organic adsor-

bents and remove weak carbon bonds to allow for the formation of the preferred

strong bonds in graphene. On the other hand, they work as an etchant that

can decrease the graphene diameter (with increasing H2 partial pressure) and

finally prevent graphene growth. These dual roles of H2 observed in this chemo

thermal route provide an insight into the reaction mechanism for graphene for-

mation. This finding also enriches the understanding of conventional thermal

CVD approach.

This simple graphene synthesis route, which consists of a one-step thermal

treatment, may shed light on the spatial control of graphene formation, e.g.

using a mask to pattern the targeted region for organic molecule adsorption.

Moreover this chapter provides new insights into graphene formation, e.g. the

thermal dynamics in graphene formation from small organic molecules, and the

dual roles of hydrogen with respect to organic precursors in the synthesis reac-

tion.



Chapter 6

Monolayer graphene synthesis

directly over Si/SiOx

Directly grown graphene over dielectrics have great advantages that it avoids

undesirable transfer procedures which cause breakage and contamination of the

graphene. Hence it is of interest to directly grow graphene directly over non-

catalytic Si/Si oxide substrate and thus avoid the need for transfer.

6.1 Motivation

It is well over a decade now since Andre Geim and Konstantin Novoselov first

isolated graphene and began revealing a whole myriad of graphene′s exciting

physical properties [5]. Those studies and subsequent studies by others con-

tinue to demonstrate great promise in numerous fields from electronics, coatings,

composites, bio-medical applications and beyond [280–285]. Of core importance

to realizing graphene′s success commercially is its production. Large films and

small sheets of graphene are the two major forms of graphene used for various

83
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applications [78, 286–288]. In terms of large area graphene, which holds promise

for future electronics [33, 55, 210, 285, 289], e.g., field effect transistors (FET),

touch panels, displays and photovoltaic devices, there are numerous efforts to

achieve uniform monolayer and few-layer in a controlled manner. In the micro-

electronics industry there is hope that large area graphene may offer solutions

beyond just complex devices [290] and transparent electrodes [285] but also as

efficient electrical interconnects in large scale integrated circuits (LSI) [291].

In the pursuit of the above, for large area graphene fabrication, the vast body

of work has been dedicated to the fabrication of large area graphene over met-

als using chemical vapor deposition (CVD), mostly using Cu or Ni as catalytic

substrates [103–107]. Cu with its low carbon solubility makes achieving uniform

monolayer and bi-layer graphene more likely as compared to Ni [104, 111]. Roll-

to-roll fabrication of graphene over Cu has also been achieved [57]. However,

to use such graphene within microelectronic applications where the devices are

built on dielectric substrates (mostly Si/SiOx wafers) the as-produced graphene

requires post synthesis transfer of the graphene on to a dielectric substrate.

This procedure leads to undesired damage and processing contamination of the

transferred graphene [37, 112, 169, 292].

To this end, a relatively large body of work has looked at the thermal de-

composition of SiC surfaces to yield graphene [88]. While the quality of the

obtained graphene is good, it is near impossible to achieve this in large area

and with uniform layer number [108–110]. Other dielectric substrates have also

been explored, such as quartz, sapphire, SrTiO3, Si3N4 and borosilicate glass

[49, 56, 161, 293, 294]. Indeed, recent developments of direct graphene growth

over glass are remarkable [295]. Of course, given that Si/SiOx technology is

so successful and very well established it makes sense that graphene be formed

on Si wafer material in a more direct manner. There are two approaches to

achieve this, the first is termed pseudo-direct, and this includes techniques in

which a metal catalyst upstream helps decompose the carbon feedstock enabling



Chapter 6. Monolayer graphene synthesis directly over Si/SiOx 85

graphene to form on a Si/SiOx substrate downstream [296, 297].

Alternatively, one can form a thin metallic film on a Si/SiOx substrate that

evaporates away during the synthesis process [298]. The use of liquid metal

films (which also evaporate away) on Si/SiOx for uniform graphene formation

has been particularly successful [117, 229]. The second approach is to fabri-

cate synthetic graphene directly on Si/SiOx. The team from Yunqi Liu com-

pleted a variety of pioneering works showing large graphene grain formation on

Si/SiOx [49]. They and others went on to developed film coverage over Si/SiOx

[50, 230, 299, 300].

However, homogeneous and uniform graphene layering for large area coverage

directly over Si/SiOx has remained a challenge. Moreover, the challenges facing

homogeneous and uniform graphene coverage over Si/SiOx have led to the di-

rect CVD synthesis of graphene over Si wafers being largely ignored in favor of

the far easier and more developed approaches, namely CVD fabrication over Cu

and SiC decomposition. This fact is easily seen in Figure C.1 in Appendix C in

which published articles from the different synthesis approaches are presented

in a bar chart. Clearly CVD grown graphene dominates and the number of

publications on this theme is several orders magnitude large than that for the

direct fabrication of graphene over Si/SiOx. The difference is surprising given

that the direct graphene fabrication over Si/SiOx is highly desirable due to the

potential lower cost, compatibility with current Si based technology and better

process control [301].

In this chapter, the direct fabrication of graphene over Si/SiOx is revisited.

Ideas originally developed for uniform graphene fabrication over Cu are bor-

rowed in which confinement of the substrate is implemented [125, 126]. The

synthesis of graphene directly on Si/SiOx both without and with confinement

are compared and this work demonstrates, for the first time, that large area

uniform monolayer graphene directly over Si/SiOx is feasible.

Indeed, this approach is remarkably simple and involves simply sandwiching
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two Si/SiOx wafers together (which in essence produces a uniform single layer

graphene film at each surface). The resultant graphene when characterized is

shown to have facetted grain boundaries in the form of polygons despite nu-

cleating in the form of disks. This faceting process occurs as the system aims

to minimize its energy and moves towards the ideal case of forming hexagonal

polygons, much like a beehive forming hexagonal cells to minimize wax use. In

this way, the grain boundary periphery is minimized and as such the optical

and electric performance is highly competitive when compared to monolayer

graphene produced over metals and other substrates. The work should pave the

way for large area uniform graphene production directly over Si wafers.

6.2 Experimental protocol

Graphene growth. Si/SiOx (300nm oxide) wafer after sonication in acetone

and drying in N2 was used for the synthesis experiments. The graphene grains

and films were synthesized in a horizontal (Al2O3 corundum) tube furnace. CVD

synthesis is performed at a temperature of 1185 ◦C in ambient pressure with a gas

mix of Ar/H2/CH4 with flow rates of 120/30/1.5 sccm, respectively. The growth

times varied according to the specific experiment in question. The samples were

typically heated up in an Ar/H2 flow (120 sccm/30sccm) to the synthesis tem-

perature. After the temperature stabilized (10 min), the Ar/H2/CH4 gas mix

was introduced for a nominal growth time. It was found that a post treatment

under Ar/H2 for ca. 20 min followed by cooling in an Ar atmosphere yielded

the cleanest (minimal surface contamination) graphene.

Transfer. For TEM and optical transmittance investigations the graphene was

transferred using KOH aqueous solution to detach graphene from the Si/SiOx

surface. The protocol steps are spin-coating PMMA, detaching the film in KOH
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(2M), fishing onto TEM grid in isopropanol medium [179], and then PMMA

removal using acetone. Finally, high vacuum annealing is employed to remove

any organic residues.

Characterizations. SEM measurements were performed on Zeiss Ultra plus

and FEI Quanta 250 (5kV) with secondary electron detector. AFM was per-

formed using an Asylum Research Cypher in the tapping mode (0.8 Hz for 1024

pixels by 1024 pixels). DF-TEM was performed on a Tecnai F30 (at an accel-

eration voltage of 80 kV). HR-TEM was performed on a Titan 80-300 with Cs

corrector for the primary objective lens (at an acceleration voltage of 80 kV). Ra-

man spectra and mapping were performed on a WiTec alpha 300 (514 nm laser

excitation). Optical transmittance was performed on a UV/Vis spectropho-

tometer (Analytik Jena Specord 250). The electrical transistor measurements

were conducted using a dual channel source-meter unit (Keithley 2612B). The

transistor devices were fabricated using lithography, electrode deposition and

peeling off steps.

6.3 Influence of substrate confinement config-

uration

Initially, three Si/SiOx (300 nm oxide) substrate configurations are adopted, the

schematics of which are presented in Figure 6.1. The three configurations from

left to right are; Si/SiOx with the oxide facing up (exposed), Si/SiOx with the

oxide facing down on a sintered alumina support and two Si/SiOx wafers with

their oxide faces sandwiched together.

After individually subjecting these different configurations to an atmospheric

thermal CVD reaction for nominal periods of time, the samples were cooled and

then initially examined using scanning electron microscopy (SEM) and Raman
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a b c

Figure 6.1: Schematic illustrating the substrate configurations explored for the
direct synthesis of graphene over Si/SiOx using thermal CVD. (a) SiOx facing
up, (b) SiOx facing down and (c) a sandwiched Si/SiOx - SiOx/Si configuration.
The oxide layer is desired substrate surface for graphene growth. The substrate
is commercially available Si wafer with a polished thermally-grown oxide (layer

thickness c.a. 300 nm). The supporting plate is sintered alumina.

spectroscopy. The data show full coverage on the oxide face after 4 to 5 hours.

This preparation features a short time frame when compared against full film

coverage in other works (6 – 8 hours) [50, 294].

Figure 6.2 presents representative data from the samples after a reaction time

of 5 hours in which the substrates are fully covered by a graphene film. Clear

differences between the different substrate configurations are observed. For the

upward facing oxide layer from the substrate (cf. Figure 6.1a) one sees full

or near full coverage of graphene and numerous randomly located secondary

and ternary layers. The secondary layers show up as dark contrast spots in

the SEM micrographs while Raman maps of the full width at half maximum

(FWHM) of the 2D peak, which is used to differentiate between monolayer

graphene and few layer graphene [246, 266] confirm the inhomogeneity in layer

numbers. Local Raman spectroscopy on the clear patches of the as-produced

film indicate monolayer graphene. A similar outcome is observed for the sam-

ples in which the oxide layer lies face down on an (polycrystalline) alumina base
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(cf. Figure 6.1b). However, both the SEM data and the Raman data indicate

fewer secondary layers as opposed to the face up case. For the samples in which

two Si/SiOx substrates with their oxide faces sandwiched together the graphene

layer showed homogeneous monolayer large area graphene (see Figure C.2 in

Appendix C), viz., secondary layer formation is avoided. Moreover, the Raman

spectroscopy data showed a 2D/G ratio of 2 indicating that the as-grown film

of strictly monolayer graphene directly formed on a Si/SiOx substrate is of high

quality. These data are presented in Figure 6.2.

To gain insight into why there is such a large difference between the face-
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Figure 6.2: Characterization of the synthetic graphene for the three substrate
configurations explored for the direct growth of graphene over Si/SiOx. (a,b,c)
SEM micrographs of the post-synthesis sample surfaces. (d,e,f) Raman spectral
mapping of the full width at half-maximum of 2D band. The units for the color
scale bar are cm−1. (g,h,i) Raman spectra showing representative G, 2D and D

bands for the graphene samples.

down sample on an alumina base and the sandwich (SiOx/SiOx) samples (cf.
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Figure 6.1c), atomic force microscopy (AFM) topography investigations are

conducted for the Si/SiOx faces as well as the Al2O3 support base surface

(Figure C.3). The AFM data shows the SiOx surface has a roughness of 0.18

± 0.02 nm. In contrast, the alumina has a surface roughness of 101 ± 8

nm, which is more than 500 times that of the polished SiOx surface. This

means that the confined space in the sandwiched SiOx/SiOx interface is sig-

nificantly less than that found at the SiOx/alumina interface. In short, the

space between the two polished SiOx faces confines or restricts the diffusion

of feedstock species to the SiOx surface where graphene forms. Previous re-

ports in which synthetic graphene was fabricated by CVD over Cu have also

shown that restricting the feedstock supply through space confinement in essence

controls the C supply rate and can favors homogeneous single layer graphene

formation [125, 126]. To some degree this behavior can also be achieved by

limiting the CH4/H2 ratio and flow [127, 302]. In short, in this work, con-

fining the gap space between the sandwiched Si/SiOx substrate helps limit

the carbon supply and reduces the nucleation density. In the case of the

substrate lying face down on the alumina base (Figure 6.1b) the gap is lim-

ited because of the rather large roughness of the alumina surface, while for a

Si/SiOx face down on another polished SiOx surface (Figure 6.1c) the gap is

significantly lower and so the C supply is sufficiently reduced to favor single

graphene layer formation and limit secondary layer formation. Hence, the car-

bon species limitation is demonstrated by space confinement for homogeneous

high-grade monolayer graphene can also be achieved with non-metallic Si/SiOx

substrates using a simple sandwich technique which importantly overcomes what

has been a challenge for the direct growth of large area graphene growth over

Si/SiOx, namely, homogeneous large area graphene growth directly on Si/SiOx.

Here samples of 2 x 2 cm2 (Figure C.2) are produced however this size can easily

be scaled up depending on the size of the CVD reactor.
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6.4 Time dependent evolution for graphene for-

mation

To understand the evolution of the graphene growth for the sandwich sub-

strate configuration, the CVD reactions are performed with growth times from

1 to 5 hours. Figure 6.3 are typical data for time dependent samples. After

1 hour round graphene islands are randomly located on the substrate surface

(Figure 6.3a). The average diameter of the flakes is 375 ± 30 nm. The formation

of round islands is in keeping with previous work [50] and occurs because the

lowest energy atomic configuration at nucleating graphene island edges favors

iso-directional (disk-like) growth for non-metal substrates [303]. With increasing

growth time (2 hours), the islands enlarge (mean diameter 670 ± 45 nm) and

start to merge (Figure 6.3b). After 4 hours a nearly complete film has formed

with only a few small open patches remaining (Figure 6.3c) and after 5 hours a

full graphene film is obtained which is free of secondary layers. Similar data to

that from SEM are found with the AFM studies. In addition, AFM allows us to

measure the height of the islands and forming film at open edges. The heights

are typically 0.80 ± 0.02 nm, which is concomitant with monolayer graphene

over Si/SiOx substrates [187, 193].

Raman spectroscopy investigations confirm the presence of monolayer graphene

through the G mode (ca. 1580 cm−1) and 2D mode (ca. 2700 cm−1) locations,

relative intensities and 2D FWHM (single Lorentzian fit of 34 cm−1) [126, 168].

The D mode (ca. 1350 cm−1) intensity relative to the G mode decreases with

increasing growth time. The D mode is associated with defects. Open graphene

edges are also defects that increase the D mode [129]. Hence, in this case as the

number of free edges reduce as the individual grains grow and merge so does the

D mode, such that once full coverage is obtained only a minute D mode remains

present.
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Figure 6.3: Time dependent growth evolution of the graphene from individual
domains, adjacent grains merging to form a continuous monolayer graphene for
the sandwich configuration. (a,b,c,d) SEM micrographs for the time-dependent
graphene formation. (e,f,g,h) AFM height images of the corresponding samples.
(i,j,k,l) Representative Raman spectra for the samples with reducing D band as

full monolayer coverage is achieved.

By forming a plot of individual grain sizes for low growth times and grain

sizes of merging flakes for longer growth times, it is shown how the grain size

depend on temperature (Figure C.4a). One can also determine the growth rate

change with respect to the growth time (Figure C.4b). The growth rate is seen

to be approximately linear initially and then rapidly slows and stops. This

behavior is attributed to the merging of the individual flakes and reduction in

free edges as the film grows to eventually encompass the entire substrate sur-

face. A comparison of grain size and growth rate in this work as compared with

other reports is listed in Table C.1. In the table, it is seen that initial growth
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rate of 375 nm/hour found in this work is the highest among similar works for

direct graphene synthesis over Si/SiOx substrates. Moreover, here this chap-

ter demonstrates, for the first time, large area homogeneous monolayer directly

formed over Si/SiOx substrates using thermal CVD and, importantly, a sand-

wich or confinement technique.

Examination is also conducted on the diameter of the individual disk shaped

islands during early growth and their temperature dependence (Figure C). SEM

evaluations show the graphene disk diameter increases with increasing temper-

ature for a given reaction time (2 hours). In addition, the density of the disks

increases with increasing temperature indicating an increase in nucleation rate

with increasing temperature. From the data, Arrhenius plots are prepared from

which the activation energies are extracted for the disk diameter and disk den-

sity (nucleation density) [189, 304]. They are 7.2 ± 1.5 eV and 4.6 ± 0.6 eV,

respectively. The activation energies for the grain/disk diameter are compa-

rable with other works for the direct formation of graphene over dielectrics

[304] and these values are much higher than found for graphene growth over

Cu [114, 192, 203]. On the one hand, the non-catalytic feature of SiOx surface

determines the larger energy barrier to overcome prior to the reaction initial-

ization than over catalytic Cu. On the other hand, the gaseous diffusion in the

micro pores (cf., Figure C.3) is suppressed in the SiOx sandwich configuration in

comparison to the open surface configuration (facing up). Therefore, the activa-

tion energy for gas diffusion is increased. This will increase the total activation

energy because in this work the activation energy are extracted from the total

reaction, viz., from carbon feedstock to the graphene (without considering the

middle transitional processes).

The increasing growth rates of the graphene disks with respect to increasing

temperature are attributed to improved thermal decomposition of the feedstock
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at higher temperatures. This finding is supported by thermodynamics calcula-

tions which show and increase in mole fraction for C with increasing tempera-

ture, as well as an increase for the two most prominent radicals, H∗ and CH3

(Figure C.6). The thermodynamic calculations also confirm that thermal CH4

decomposition occurs at the growth temperatures used in this study, viz., de-

composition occurs without a catalyst.

Now the large area homogeneous single layer graphene directly formed over

Si/SiOx with the sandwich configuration are characterized suing low voltage (80

kV) Cs corrected high resolution transmission electron microscopy (HRTEM),

selected area electron diffraction (SAED) and dark-field transmission electron

microscopy (DF-TEM). Figure 6.4a shows a low magnification micrograph of

a typical (transferred) graphene film covering over a holey carbon/Cu TEM

grid. A representative SAED pattern from this region (Figure 6.4b) shows the

three-fold diffraction symmetry of the material and the reflex spacing′s are in-

dicative of crystalline graphene. The relative intensities of the reflex spots across

the {11-20} and {10-10} directions confirm monolayer graphene [1, 237]. High

resolution micrographs (Figure 6.4c,d) present the honeycomb-like graphene lat-

tice. In areas where a hole exists (data not presented), layer counting from the

edge also confirms the presence of monolayer graphene [260].

DF-TEM allows one to determine the domain size, shape and relative rota-

tion angles of the graphene grains forming the single-layer polycrystalline film

[65, 66, 242, 305]. Examples are provided in Figure 6.4e, Figure C.7, Figure C.8

and Figure C.9 in Appendix C. False color is used to aid the eye to easily see the

grain shape and relative grain orientations in Figure 6.4e and Figure C.7. The

DF-TEM data consistently show the grains are facetted, i.e., the single-layer

graphene film comprises stitched polygonal graphene grains and this observa-

tion differs significantly to the grain shapes found in polycrystalline monolayer

graphene formed over Cu using common CVD routes [66, 305].
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Figure 6.4: TEM characterizations of the large area synthetic monolayer
graphene (from sandwich configuration). (a) Low magnification micrograph
of graphene film transferred onto a holey carbon TEM grid. (b) SAED pat-
tern of the region circled in (a). The inset profile shows the intensity profile
of the diffraction spots. (c,d) High resolution TEM images showing the honey-
comb atomic configuration of graphene. (e) False color composite micrograph
image highlighting the different domain (grain) orientations and facetted grain-
boundaries. Corresponding DF-TEM images showing how the composite image

is formed are provided in the Appendix C in Figure C.7.

6.5 Grain boundaries in graphene film

In order to better understand the grain boundaries, complementary studies are

conducted by employing atomic force microscopy (AFM), scanning electron mi-

croscopy (SEM) and low voltage HRTEM studies. Figure 6.5a shows a typical

AFM topography image of monolayer graphene film. The tomography images

show regions of lines of bright contrast (increased height) concomitant with the

faceting of the grains as shown in Figure 6.5a-c. Phase imaging (Figure C.10)

makes observation of the facets easier [306] and also allows one to determine

where grain boundaries with no height change most probably are (using WSXM

processing software). Height measurement statistics show boundary heights

varying between 0 and 1.4 nm (average 0.30.04 nm and are discussed in detail
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below. The facetted grain boundaries are mostly visible by SEM and show up

as lines of reduced intensity relative the monolayer graphene on the Si/SiOx

substrate (Figure 6.5e-f).

The reduced contrast in SEM occurs because the local curvature of a raised

graphene grain boundary provides more shielding for the secondary electron

emission (from the Si/SiOx substrate) so that the facets look darker than the

overall flat graphene film lying flush with the substrate [307, 308]. The reduction

in contrast is determined to be as much as 22 ± 4% (as extracted by Gwyddion

image analysis software). In both the AFM and SEM data the facetted grain

boundaries are analogous to those found with DF-TEM mapping, as for example

shown in Figure 6.5g in which the facetted grains are presented in false color

along with their relative rotation angles.

With HR-TEM the grain boundaries are observed at high magnification

and at this scale the boundaries do not appear straight but have a degree of

curvature and form through pentagon-heptagon pairs, much as with graphene

grain boundaries in general as this arrangement exhibits the lowest energy con-

figuration [309, 310]. The amplitude of the (in plane) undulations in the grain

boundaries ranges from 0.6 to 1.2 nm (see also Figure C.11). A fuller analysis of

the grain boundary heights and their relative rotation angles show a correlation

as presented in Figure C.12 in Appendix C in the supplementary information.

The collected statistics of the grain boundary heights do not fit a Gaussian

profile; indeed the profile seems to have three peaks (Figure C.12a). Moreover,

a statistical analysis of the relative rotation angles between grains also shows

three peaks in the distribution (Figure C.12b). These data are in excellent agree-

ment with a theoretical study by Carlsson et al. [308] which correlates grain

boundary (out of plane) heights with relative rotation angles. The theoretical

study showed that the most common rotation angle is 28◦ in agreement with

the experimental data in this work as well as that from others [65, 311]. The

relative height for relative rotations of 28◦ were predicted to be between 0 and
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Figure 6.5: Complementary microscopy investigation of faceted graphene film
for sandwich substrate configuration. (a) AFM height image showing the facets
of graphene domains, with black arrows indicating grain boundaries. (b) Out-
lining the grain boundaries. The height profile (c) across the black bar in (b)
showing the local curvature with a height of 0.3 nm. (d) SEM graph of the
graphene film showing darker contrast of the grain boundaries and (e) its out-
line and (f) the intensity profile across the black bar. (g) False color composited
TEM image indicating the facets and rotational misorientations between two
adjacent grains. (h,i) HR TEM graphs for the grain boundaries of 23◦ and 28◦,
respectively. The grain boundaries are stitched with carbon pentagon-heptagon

pairs.

0.3 nm; it is experimentally observed ca. 0.2 nm in this work. The theoretical

work also claimed heights between 0.6 to 0.8 nm and 1.0 to 2.0 nm for relative

grain rotations of around 10◦ to 20◦ and 0◦ to 10◦, respectively. Again, this

experimental data are in good agreement with the theoretical study.
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6.6 Bubble clustering of faceted graphene grains

Analysis comes to the evolution mechanism, i.e., merging of the individual disk

like islands that ultimately yield facetted grains in the large area homogeneous

monolayer graphene film. The formation of facets with merging disks occurs as

they seek to minimize their perimeter and hence minimize energy. Much like

multiple bubbles clustering, their minimal configuration is achieved when the

shape of the cluster is facetted [312–314].

This process ideally leads to the formation of hexagons. By analogy the

hexagon cells in a beehive which require the minimum possible amount of wax.

In this large area homogenous single layer graphene are for the most part hexag-

onal although at times deviations, such as 4, 5 and 7 sided polyhedral, are seen

(Figure C.13), which is attributed to the non-uniform spatial distribution of the

nucleating islands. The faceting process of clustering islands is illustrated in

Figure 6.6.

A key advantage of this approximation toward hexagonal faceting of the

grain, is that the sum length of grain boundaries per unit area
∑
LGB/πr

2 is

less than for most large-area graphene films grown over metal where grains usu-

ally complex grain shapes are obtained and so the sum length of grain boundaries

per unit area in these cases is larger.

Grain boundaries are scattering sites that can reduce electrical performance

[305], and hence, as is shown below, because of the faceting and hence mini-

mization of grain boundaries this large area homogeneous single layer graphene

competes very favorably with single crystal graphene grown over non-metals and

large-area graphene grown over Cu.

The growth mechanism is summarized in Figure 6.7. After a thermal CVD

procedure, the sandwiched two Si wafers result in strictly monolayer graphene

films on both the oxide surface.
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Figure 6.6: The growth evolution of graphene monolayer film in a bubble-
merging fashion. AFM imaging for different stages. (a) Early formation of
graphene nuclei. (b) Two adjacent graphene grains increase in size and both
their frontier edges contact initially at tangential point. (c) The graphene do-
mains continue growing and their grain boundaries become elongated. (d,e,f)
Schematics of merging disk grains. (g,h) Sketch and AFM image for clustering
of graphene disks. (i) Outline of the faceted grain boundaries of the monolayer

graphene.

Figure 6.7: The growth schematic of strictly monolayer graphene film on both
oxide surface of the Si wafers in sandwich configuration.
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6.7 Electrical and optical performance of graphene

Hence, the optical and electrical performance are examined for the large area

single layer graphene film directly fabricated over Si/SiOx. Figure 6.8a shows

the optical transmittance of the graphene films after transfer on to a transpar-

ent quartz substrate. Starting from 450 nm, a 97% transmittance is achieved

with 97.9 ± 0.5% at 550 nm, which agrees well with the published data for

monolayer graphene [37]. This further confirms the large area full coverage of

the synthetic film is single layer graphene. Figure 6.8b shows a similar result

(97.7 ± 0.4% at 550 nm) for 6-hour CVD growth. The fact that similar trans-

mittance results are obtained for both 5 and 6 hours CVD growth shows that

once a full coverage layer of graphene has formed (5 hours), continued CVD for

extended periods does not lead to additional graphene layer formation i.e., the

growth reaction is self-limiting, probably because there are no available sites for

new adatom formation due to depletion of active grain edges via stitching at

the grain boundaries [315, 316]. The self-limiting growth is further supported

by Raman spectroscopy studies on samples grown between 6 and 8 hours. All

samples shows homogeneous monolayer graphene (e.g., Figure C.14).

Figure 6.8c shows the output drain-source current characteristics of a graphene

field effect transistor from this large area graphene with a back gate for tuning.

Figure 6.8d shows the transfer characteristics (gate voltage manipulated drain

current) for a drain source voltage of 0.1 V. The ambipolar transfer curve shows

p type doping, which is attributed to adsorbents from the air [317, 318] and/or

chemical residue from the device fabrication process [40]. The carrier mobility

from 20 fabricated transistors using this monolayer graphene grown directly over

Si/SiOx ranged from 410 to 760 cm2 V−1 s−1 (extracted from the middle linear

region [54] of the transfer characteristics).

The FET mobility in this work is the best ever measured in a back-gated

transistor for direct synthetic graphene monolayer full coverage films formed
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Figure 6.8: Optical and electrical performance of large area monolayer
graphene (from the sandwich configuration, cf. Figure 6.1c). (a,b) Optical
transmittance of graphene film (transferred onto a fused quartz substrate) for
samples from 5 and 6 hours growth, respectively. (c) Output drain current
for drain voltage while tuning gate voltage. (d) Transfer characteristics of the
graphene transistor at a drain source voltage 0.1 V (p doping is observed). In-
sets are optical graph and the sketch of a graphene field effect transistor with a

global p-doped Si back gate.

over a Si/SiOx substrate. A comparative study with other works can be found

in Figure C.15a and Table C.2. Moreover, the mobility of direct synthetic

graphene in this work approaches the performance of monolayer graphene full

coverage films grown over Cu [127, 251]. To highlight the competitiveness of this

large area monolayer graphene grown directly over Si/SiOx its electrical perfor-

mance data are compared with published values, including graphene grown over

Cu and present that in a graphical format (Figure C.15b) and in tabular form

(Table C.3). Moreover, the ON/OFF ratio for drain-source current has a rela-

tively high value as 112 ± 10.
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6.8 Summary

In this chapter large scale homogeneous strictly monolayer graphene have been

successfully fabricated with CVD growth directly over Si/SiOx. The large area

uniform single-layer graphene films are fabricated by implementing a substrate

confinement approach, in which the Si wafers are simply sandwiched together.

The space confinement provides an equilibrium in local chemical environment,

in which carbon adatom preferably attaches at graphene grain edges other than

the top of them. The edge-attaching grain growth allows for formation of strictly

monolayer graphene grains which lead to strictly monolayer graphene film upon

grain merging.

The cluster faceting mechanism has been proposed for graphene film forma-

tion directly over dielectric substrate. Initially during the formation circular

or disk-like graphene islands form. As they grow and merge (cluster) facetted

grain boundaries form and this arrangement is attributed to energy minimiza-

tion, much like layers of bubbles clustering together. This behavior leads to a

near minimal total length of grain boundaries per unit area, which is reflected

in the optical and electrical characteristics of the as-produced film that is as

competitive as equivalent large area graphene fabricated over Cu. Once full

coverage of the film is obtained new graphene formation stops indicating the

process is self-terminating. This termination mechanism provides a wide pa-

rameter window for laboratory synthesis as well as mass production.

This confinement approach for strictly monolayer graphene can be scaled

up by simply stacking sandwiched Si/SiOx wafers on top of each other (Fig-

ure C.16). One should reinvigorate efforts for the direct synthesis of uniform

graphene over Si/SiOx which has the key advantage of not requiring transfer

as compared to CVD over Cu. Moreover, the technique holds promise in im-

provement for synthesis of other 2D materials and their van der Waals hetero-

structures.



Chapter 7

Conclusions

The primary aim of this thesis was to develop novel approaches for the synthe-

sis of large area homogeneous monolayer graphene films over such substrates as

Cu foils and Si wafers with an oxide surface. The graphene monolayers that

were synthesized and characterized within this body of work represent an ad-

vance for large area continuous and strictly monolayer film over both Cu and

Si/SiOx substrates, achieving a precision in control in terms of layer homogene-

ity. The optical and electrical performance of the resulting synthetic graphene

films achieve an advanced level.

The synthesis of a strictly monolayer graphene film over a Cu substrate

was successfully achieved by employing an oxidation pretreatment step prior

to graphene synthesis by means of a chemical vapor deposition reaction. This

systematic study of different pretreatments on a Cu substrate reveals that prior

oxidation is the most efficient approach in providing a clean Cu surface following

the H2 annealing step, thereby facilitating the formation of a strictly monolayer

graphene deposition within the subsequent CVD reaction. Conversely, other

pretreatments without oxidation (e.g., using organic solvent rinsing, FeCl3 pol-

ishing, or non-pretreatment of Cu), result in a mixing of monolayer films and

second layer flakes. Such second layer flakes were found to be formed during

103
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the H2 annealing step. By tracking the carbon sources for graphene flake forma-

tion, the organic contaminants were identified to have served as the precursors.

Therefore, oxidation in air at 800 ◦C has proven to be the most efficient means so

far of removing any organic contaminants which is necessary for the formation

of strictly monolayer graphene films.

For the investigation of the thermodynamic and kinetic properties of graphene

growth over a Cu substrate, a simple chemo-thermal method was established.

Using this single step synthesis path, micro-sized graphene flakes over Cu were

formed as a result of the pre-adsorption and post thermal annealing of organic

molecules. This facilitates a more detailed understanding of the temperature-

dependent growth behavior arising from three adsorbed solvents, namely ace-

tone, isopropanol and ethanol, in which reaction activation energies for size

growth and nucleation density are extracted from the Arrhenius plots as 1.4

- 1.6 eV and 2.1 - 2.7 eV, respectively. Obtaining these activation energies

has enriched our understanding of graphene growth from a variety of carbon

sources. Through a comparison of the experimental data obtained for graphene

formation, with an associated thermodynamic calculation for fractions of reac-

tive species at a chemical equilibrium state, a critical parameter window has

been observed for graphene formation (i.e. 800 - 1025 ◦C, 2 - 10 mbar and a

flow rate of 16 - 75 sccm H2. In addition, the quality of synthetic graphene

flakes was found to improve with increasing reaction temperature, as indicated

by the decreasing D band in the resultant Raman spectra. The effects of growth

pressure and gas flow were studied and the optimal growth windows for obtain-

ing larger grain sizes and densities were obtained as 1025 ◦C, 5 mbar, and a flow

rate of 50 sccm H2, respectively.

The direct formation of a large area homogeneous monolayer graphene film

was also successful over a Si/SiOx wafer substrate. A confinement approach

in which a simple ‘sandwich’ of two Si/SiOx substrates, in which their oxide

faces were in contact with each other, was developed. Within this confinement
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approach, strictly monolayer graphene films were grown over a relatively large

area (2 * 2 cm2), and a precise control was achieved in terms of monolayer

number and homogeneity. The optical transmittance of the resulting synthetic

graphene film was in good agreement with the standard monolayer graphene

film. The electrical carrier mobility of a transistor derived from the synthetic

graphene film achieved an electron mobility of 760 cm2 V−1 s−1, exceeding that

previously reported for graphene films which were directly grown on a Si/SiOx

substrate (cf. section 6.7). Such a sandwich confinement employs the advantage

of minimal roughness of the SiOx surface in comparison to the supporting plate

(alumina). This allows for the control of small gas flow, possibly providing an

equilibrium chemical environment for atom attachment at the grain edges rather

than on top of them.

A time-dependent evolution of direct graphene growth over Si/SiOx was ob-

served and interpreted as being of a faceting cluster nature. The faceting

graphene grains have a minimum length for grain boundaries (known as

scattering sites for charge carriers), which directly contribute to the improve-

ment of electrical carrier mobility owing to the resultant decrease in scattering

sites (grain boundaries).

The temperature dependence of the thermodynamic and kinetic properties of

direct graphene growth over a Si/SiOx substrate was investigated. The statisti-

cal data enables the extraction of the growth activation energies, 7.2 eV and 4.6

eV for growth size and density, respectively. This confirms the higher temper-

atures which are required for graphene formation over non-catalytic dielectrics

in comparison to catalytic metals such as Cu. These findings enrich and further

our understanding of growth energy barriers in graphene monolayer formation

and shed additional light on the exploration of the possibility of employing

more ‘gentle’ parameters, such as a decrease in reaction temperatures, in future

research.





Chapter 8

Outlook

Despite the novel insights afforded by this thesis in relation to the prospects for

growing large areas of homogeneous monolayer graphene films, many avenues

remain opportune for future investigation, and in particular the use of alternate

substrates.

Based upon the findings presented with this thesis, a number of potential

experiments are proposed for future investigation, including the:

• Early nucleation mechanism in the chemo-thermal synthesis route. It is

a newly proposed growth mechanism for one-step thermal annealing to

obtain graphene from adsorbed organic molecules (cf. Chapter 5). More

experimental data on the early stages of the growth would provide more

insights into how such graphene islands initially nucleate and how their

growth can be controlled. In addition, an even deeper investigation of

influence of other synthesis variables could be conducted to obtain more

understanding such as underlying Cu grain orientations and textures.

• Thorough study of the nucleation mechanism of graphene over a Si/SiOx

substrate. With a more detailed understanding of the nucleation sites
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and density for early nuclei formation, it may be possible to employ pre-

treatment steps to modify the substrate surface to control (decrease) the

nucleation density so that average grain diameter can be increased within

a complete graphene film.

• Further studies on the structure of the grain boundaries. The increase in

average grain size holds promise in minimizing the total grain boundary

length. Hence one can expect the improvement of electric carrier mobility

performance. Moreover, one can plot the correlation of graphene grain

boundaries (average grain sizes) with the electric transport performance.

In addition, the grain boundaries themselves can be studied in greater de-

tails, e.g., the correlation between GB height, the curvatures of graphene

lattice, as well as the TEM imaging of atomic resolution.

• Systematic investigation of the influence of gas pressure and flow ratio

(of the Ar/H2/CH4 mixture) on the growth of graphene monolayers over

Si/SiOx substrates. With an optimal parameter for large methane flow,

the growth kinetics could be enhanced so that the total growth time can

be reduced. However, the nucleation density will be expected to sponta-

neously increase, resulting in a decrease in average grain size. Therefore,

there may be an optimal balance between growth rate and grain size that

remains to be determined.

• Exploration of factors that may decrease the growth temperature. For

example, the assistance of hydrocarbon decomposition by external forces

(e.g., plasma and/or catalyst), selecting a hydrocarbon that decomposes

at lower temperatures, and the incorporation of oxygen (and other weak

oxidants CO2 and H2O) could enable the efficient synthesis of graphene

at reduced temperatures.

• Transferability of graphene synthesized over Si/SiOx to other dielectric

substrates such as sapphire and quartz, which have wider applications in
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the fabrication of transparent conducting glasses and defoggers. To con-

firm the universal validity of the growth path proposed within this thesis,

it will be important to synthesize graphene films over other substrates

and to investigate their growth behavior.





Appendix A

Graphene synthesis over Cu and

transfer to Si/SiOx substrate

The appendix A is supporting information for chapter 4.
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Figure A.1: AFM height determining the graphene thickness (starting from
the substrate surface). (a) The height profile (black curve) is plotted from a
graphene edge (labelled with black line). A typical height is 0.76 nm, indica-
tive of monolayer graphene. (b) The height profile in experiment e is plotted,
with a height of 0.78 nm, which again confirms a monolayer graphene film over
the substrate. This height from substrate surface to the graphene surface is a

straightforward way of determining the layer thickness and layer number.
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Figure A.2: Large area, clean, homogeneous monolayer graphene after transfer
on to a Si/SiOx (300 nm oxide) wafer. The graphene sample was synthesized

in experiment e.
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Figure A.3: Identification of ‘flakes’ on H2 annealed Cu without any pre-
treatment. (a) Flakes (in black) were clearly observed after transferred onto
Si/(300 nm) SiOx. Raman mapping of 2D intensity (b) and G intensity (d)
confirm that the graphene are isolated and randomly distributed on the sub-
strate. (c) Raman spectra from two flakes displays the typical graphene feature
of three bands: D band, G band and 2D band. The 2D/G intensity ratios range
from 1 to 2, indicative of a mixing of monolayer graphene and bilayer graphene.
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ba
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Figure A.4: SEM graphs of graphene flakes on H2 annealed Cu foil (before the
CVD synthesis, i.e., prior to introducing CH4). (a) Pretreatment analogous to
experiment b but wiping with acetone instead of isopropanol. (b) Pretreatment

similar to experiment b but using ethanol for wiping the Cu surface.
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Chemo-thermal synthesis of

graphene over Cu

The appendix B is supporting information for chapter 5.
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Figure B.1: The chemo thermal approach for graphene flake formation. (left)
various steps in the synthesis procedure. (right) photographs of the Cu foils at

different stages.
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Figure B.2: Typical graphene flake synthesis over Cu and transferred on to
Si/ (300 nm) SiOx. (Chemo-thermal synthesis parameters: temperature=800 ◦C

and 900 ◦C, reaction pressure =10 mbar, H2 flow rate =16 sccm).
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Figure B.3: AFM images of synthetic graphene flakes synthesis over Cu. These
flakes are transferred on to Si/SiOx substrates for characterization. (Chemo-
thermal synthesis parameters: temperature=800 ◦C) and 900 ◦C, reaction pres-

sure =10 mbar, H2 flow rate =16 sccm).
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Figure B.4: Relative contrast of graphene flakes in SEM graphs in comparison
to Si/SiOx background substrate in SEM micrographs from Figure 4.2 (using

Gwyddion analysis software) for all three studied organic solvents.
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Table B.1: Raman spectral information of graphene flakes from temperature
experiments.

Temperature
( ◦C)

Solvent
type

D/G intensity
ratio

2D/G intensity
ratio

2D position
(cm−1)

Acetone 2.9 ± 0.2 3 ± 0.1 2676 ± 3

800 Isopropanol 3.0 ± 0.2 3 ± 0.2 2683 ± 4

Ethanol 3.1 ± 0.2 3 ± 0.2 2696 ± 5

Acetone 0.9 ± 0.10 3 ± 0.1 2690 ± 5

900 Isopropanol 0.72 ± 0.14 3 ± 0.1 2687 ± 4

Ethanol 0.39 ± 0.08 3 ± 0.3 2685 ± 3

Acetone 0.49 ± 0.11 3 ± 0.4 2681 ± 4

1000 Isopropanol 0.34 ± 0.06 3 ± 0.1 2688 ± 4

Ethanol 0.26 ± 0.09 3 ± 0.2 2690 ± 5

Acetone 0.16 ± 0.2 3 ± 0.2 2688 ± 4

1025 Isopropanol 0.20 ± 0.5 3 ± 0.2 2690 ± 5

Ethanol 0.17 ± 0.3 3 ± 0.3 2686 ± 4
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Figure B.5: Relative ratio of Graphene coverage area to Cu area in tempera-
ture experiments for adsorbed solvents such as acetone, isopropanol and ethanol

(from left to right).
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Figure B.6: Thermodynamic calculation at the chemical equilibrium state
show the relative mole fractions for the four key radicals generated in the chemo-
thermal reaction (top row: H∗), (first middle row: graphitic carbon), (second

middle row: CH3) and (bottom row: O∗).
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Figure B.7: Statistical information plots of grain diameter and grain density
of the synthetic graphene flakes. Top row: average diameter and bottom row:

average density with respect to reaction pressure.
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Figure B.8: Relative ratio of graphene coverage area to Cu area (pressure
experiments) for adsorbed solvents such as acetone, isopropanol and ethanol

(from left to right) for the pressure-dependent growth experiments.
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Figure B.9: The plots of mole fraction of radicals at chemical equilibrium state
(pressure experiments) from thermal decomposition of acetone, isopropanol and
ethanol (plus H2) with respect to reaction pressure. When pressure is higher
than 50 mbar, no graphitic carbon is formed. When pressure goes above 10

mbar, only negligible mole fraction of graphitic carbon is generated.
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Figure B.10: SEM micrographs of the synthetic graphene flakes (H2 flow
dependent experiments).
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Figure B.11: Statistical information plots of average diameter and grain den-
sity of the synthetic graphene flakes (H2 flow dependent experiments). Top row:
average diameter and bottom row: average density with respect to reaction H2

flow.
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Figure B.12: Relative ratio of graphene coverage area to Cu area (H2 flow
experiments) for adsorbed solvents such as acetone, isopropanol and ethanol

(from left to right) for the H2 flow rate-dependent growth experiments.
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Figure B.13: The plots of mole fraction of radicals at chemical equilibrium
state (H2 flow experiments) from thermal decomposition of acetone, isopropanol
and ethanol (plus H2) with respect to H2 flow rate. When the H2 flow rate
increases, the mole fraction of graphitic carbon decreases. This is due to the

increasing ratio of hydrogen in comparison to the organic solvent molecules.
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Figure B.14: SEM micrographs of the synthetic graphene flakes in the pure
Ar flow (without any H2).





Appendix C

CVD graphene growth directly

over Si/SiOx substrate

The appendix C is supporting information for chapter 6. It includes: Mate-

rials and methods, publication statistics for graphene synthesis over various

substrates, AFM of the surface of Si/SiOx and alumina substrates, a photo-

graph of a large area graphene film, statistics for the growth rate, detailed dark

field TEM analysis, AFM height and phase images, HRTEM of undulation

at graphene grain boundary, statistics of the grain diameter and rotational

angle and comparison of height and rotational angles at grain boundaries.

This appendix also cover the comparison of the electrical mobility in this

work with that in the literature for metal and non-metal substrates, temperature-

dependent graphene evolution and Arrhenius plots of grain diameter and den-

sity, chemical equilibrium calculations on the gas decomposition at different

temperatures, and a schematic for the multi-stacking of the sandwich config-

uration for scale-up production.
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1

Figure C.1:

Comparison of the paper numbers of the study in graphene synthesis over

various substrates. The papers of graphene growth on Cu substrates contributes

to the highest counts. The research of graphene synthesis over SiC and Ni have

decreasing but still large paper numbers. The research of graphene over Si/SiOx

attract the least attention so the paper number is smallest. This suggests that

more research efforts should be attracted on the Si/SiOx substrates. In addition,

there are some papers on other substrates, e.g., quartz, glass, sapphire, Si3N4,

SrTiO3 and Ge. The database in Web of Science (Thomson Reuters) is adopted

to determine the paper number of graphene synthesis over various substrates.

For example, we search the key words for ‘graphene’ and ‘Cu’ (and also ‘copper’)

to determine the graphene growth over Cu substrates and so forth for other

substrates.
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1

Figure C.2:

Optical photograph of a centimeter-size large graphene film after transfer. The

graphene was originally synthesized on a Si wafer containing a 300 nm–thick

SiOx layer. This technique renders homogeneous and large area graphene.
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Figure C.3: AFM images showing a comparison of the topographic features of
sintered alumina (Al2O3) in panel a and silicon/silicon oxide (Si/SiOx) wafer in
panel b. The Si wafer has a 300 nm thick layer of SiOx (polished). The typical
height profiles of both substrates are shown in (c) and (d) below the images.
Each of the substrate has a different root mean square (RMS) roughness. The
RMS was used to characterize the surface roughness by doing the statistics of
the height of each pixel in the AFM images. The sintered alumina has a larger
surface roughness (RMS 101 ± 8 nm) than the polished SiOx layer over the Si
wafer (RMS 0.18 ± 0.02 nm). (e,f) The schematic of the cross section view of
the reaction interfaces for graphene growth on the SiOx/Al2O3. (e) SiOx/SiOx

sandwich (f), respectively. (g, h) Simplified models for the surfaces of Al2O3

and SiOx, respectively. (i, j) A cross section view of the gap between the
interfaces of SiOx/Al2O3 and SiOx/SiOx configurations, respectively. There is
larger space in SiOx/Al2O3 interface (147 nm) than a SiOx/SiOx interface (1.43
nm) from the peak-valley height difference estimation (in AFM height image).
When comparing with the relevant reactive species: C2 dimer (0.3 nm) and
C6 graphitic hexagon (0.45 nm), the gap space is much larger. Therefore, the
sandwich configuration provides sufficient gap space that allows for all reactive

species to diffuse through (the micro-pores and the macro-pores).
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Figure C.4:

Statistics for time dependent evolution (grain diameter and growth rate) in

graphene formation. (a) The grain diameter increasing with time and reaching

its saturation point after 5 hours. (b)The growth rate is the highest (350 ± 25nm

/hour) at 1 hour. After 2 hours it is lower (320 ± 20 nm/hour) than the initial

hour. After 4 hours it reaches 100 ± 15 nm/hour and after 5 hours it reaches its

minimum growth rate at 40 ± 8 nm/hour and the grain stops growth.

Table C.1: Comparison of grain diameter and growth rate from this work and
others in the literature for graphene over dielectric substrates.

No. Grain
size
(µm)

Type of
graphene

Growth
time
(hour)

Growth
rate
(nm/hour)

Substrate Temperature
( ◦C)

Reference

1 1 Monolayer
film

5 375 Si/SiOx 1185 This
work

2 0.9 Monolayer
film

6 100 Molten
glass

1000 [294]

3 0.2 Monolayer
film

8 60 - 300 Si/SiOx 1100 [50]

4 0.1 Monolayer
film

0.05 800 Sapphire 1650 [161]

5 n.a. Monolayer
film

1 n.a. Si/SiOx 1100 [299]

6 10 Individual
grain

72 14 Si/SiOx 1180 [49]
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Figure C.5:

Temperature-dependent growth evolution of graphene disks (for sandwich
configuration). (a, b) Arrhenius plots of the statistical grain diameter and grain

density for different temperatures. Insets: the activation energies, Ea, are
extracted based on the slope of the Arrhenius plots. (c) SEM graphs for graphene
formation at different temperatures. The implemented equation is k = Ae−Ea/RT ,
where k is the growth rate, A is a pre-factor, Ea is the activation energy for the
total graphene formation reaction, R is the gas constant, T is the temperature

(Kelvin). The activation energy for the grain diameter indicates the energy
consumed to add one carbon atom to a growing grain; the activation energy for

grain density represents the energy consumed to form a new nucleus. The growth
conditions for the CVD reaction were: Ar 120 sccm, H2 30 sccm, CH4 1.5 sccm,

2-hour reaction time at various temperatures from 1150 ◦C to 1185 ◦C. This
efficient temperature window has been carefully investigated and selected based
on two points: first, at higher temperature (>1200 ◦C, approaching the melting
point), the silicon sublimation was observed to contaminate the sample surface
and thus introduce more complex variables, which prevents from the evaluation

of the reaction activation energy; second, at lower temperature (<1140 ◦C),
negligible graphene formation was observed. Therefore, the fine tuning in the

temperature range (<1185 ◦C) was conducted in the selected range.
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Figure C.6:

Thermodynamic calculations of the mole fractions of the active radicals in the

chemical equilibrium state for various temperatures: (a) H∗, (b) C (graphitic),

(c) CH3 are the concentration of active radicals that contribute to the reaction

rates in the thermal decomposition process. With a temperature increase, the

mole fraction of H∗, C(graphitic) and CH3 increase rapidly. All these curves

show the importance of evaluated temperature on enhancing the growth kinetics

(e.g., increasing growth rate). The parameters used in the CEA program were 1

atm. pressure for different temperatures. The initial gases: Ar 120: H2 30: CH4

1.5 (mole ratio).
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Figure C.7:

DF-TEM determination of the relative rotation angles and grain sizes of the

grains forming monolayer graphene (sandwich configuration). (a) Homogeneous

monolayer graphene (transferred) on to a TEM grid. (b) False color composite

TEM image and (c) labelling of the relative rotation angles. (d) Intensity profile

of line crossing the SAED pattern spots. (e-h) False color composite DF-TEM

images with relative rotation angles. (i-l) Pristine DF-TEM images. (m-p)

SAED for the regions circled in (i-l), respectively.
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Figure C.8:

DF-TEM determination of monolayer graphene film for sandwich configuration

in another sample showing the same facetting features of merging grains. (a)

Homogeneous monolayer graphene (transferred) on to a TEM grid. (b) False

color composite TEM image and (c) labelling of the relative rotation angles. (d)

Intensity profile of line crossing the SAED pattern spots. (e-h) False color

composite DF-TEM images with relative rotation angles. (i-l) Pristine DF-TEM

images. (m-p) SAED for the regions circled in (i-l), respectively.



Appendix C. CVD graphene growth directly over Si/SiOx substrate 136

10 20 30
0

40

80

 

 

C
o

u
n

ts

Relative rotation angle (
o
)

0.5 1.0 1.5
0

40

80

C
o

u
n

ts

 

 

Grain diameter (µm)

a b

Figure C.9: Statistics of the measured grain diameter and relative rotation
angles as obtained from DF-TEM (as shown in Figure C.7 and Figure C.8). (a)
and (b) show the statistics of the measured grain diameter and relative rotation
angle. The size of the graphene grain is in average about 1 µm, and it varies from
about 0.25 to 1.5 µm. In terms of the relative rotation angle, the most common
angle between two neighboring grains is 28◦. Other smaller angles varying from
5◦ to 23◦ could also be observed. Typically 28◦ is the most frequently observed

relative rotation angle because it has the lowest energy configuration.
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Figure C.10: Complementary height contrast and phase contrast image from
AFM for the same region in a graphene sample using the sandwich configuration.
(a) AFM topography image showing the visible grain boundaries (black arrows)
and the white arrows depict grain boundaries that cannot be easily observed in
this AFM mode. (b) AFM phase micrograph assisting the assignment of the
grain boundaries. (c) The dashed lines labeling the grain boundaries to guide the
eyes. (d) The histogram of the height of more than 100 grain boundaries. Most
of the heights range from 0 to 0.8 nm and there are little amount of height above
1 nm. The inset of d are three typical height profiles across the grain boundaries.
They are 0 nm, 0.3 nm and 0.6 nm, respectively. Note that AFM phase imaging
(imaged simultaneously with the AFM topography) is more sensitive due to its
direct measure of changes in the cantilever oscillation (resonant frequency) and
is not affected by neighboring height differences. Therefore, the AFM phase
image enhances contrast of fine structures such as grain boundary edges, as

seen in (b).



Appendix C. CVD graphene growth directly over Si/SiOx substrate 138

1

a

0.5 nm

b

0.5 nm

b

0.5 nm

Figure C.11:

HRTEM image showing undulation of a grain boundary (a) and its outline (b),

respectively. The range of amplitude of the undulations is typically from 0.6 - 1.2

nm. Note that at a low magnification view (e.g., SEM, DF-TEM, and AFM), the

grain boundaries look straight. However at an atomic scale the grain boundaries

show undulation as exemplified in the pristine HRTEM image.
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Figure C.12:

Complementary study from AFM and DF-TEM of grain boundaries. (a)

Statistics of AFM height of the grain boundaries and (b) the relative rotation

angle between two adjacent grains determined with DF-TEM method. Each

show three peaks as aided by the fits (with coloring) for height and relative

rotational angles, respectively.
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Figure C.13:

Statistics of the grain number for graphene polygons of different edge numbers

(such as 4-8 edges).
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Figure C.14:

SEM (a, b) and Raman spectra (c,d) for monolayer graphene film after 6 and 8

hour growth. The homogeneity of synthetic monolayer graphene film are

confirmed by SEM and layer number by Raman spectra (collected at numerous

locations).
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Figure C.15:

Comparison of carrier mobility of synthetic monolayer graphene film directly

grown on Si/SiOx in this work (filled star) with other reports (a) graphene

directly grown on dielectric substrates and (b) graphene grown on Cu substrates.

This work shows the highest hole mobility in back-gated field effect transistors

for the monolayer graphene film directly grown over Si/SiOx substrates. Also,

this direct grown graphene over Si/SiOx is catching (and even exceeding) the

performance of graphene grown over Cu in other reports. The mobility data are

from Table C.2 and Table C.3, respectively.
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Table C.2: Comparison of transistor mobility for graphene of this work and
other reports over dielectrics.

No. Substrate (µm) Type of
graphene

Grain
size
(µm)

Carrier mobil-
ity (cm2 V−1

s−1)

Reference

1 Si/SiOx Monolayer
film

1 410-760 This work

2 Si/SiOx Monolayer
film

0.5 531 [50]

3 Si/SiOx Monolayer
film

0.3 70 [319]

4 Si/SiOx/Si3N4 Monolayer
film

0.5 1510 [56]

5 Quartz Monolayer
film

0.4 553-710 [295]

6 SrTiO3 Monolayer
film

0.3 870 [293]

7 Sapphire Monolayer
film

0.1 370 [320]

8 Si/SiOx Individual
grain

5 780 [49]

9 Si/SiOx/Si3N4 Individual
grain

5 5000 [49]

10 SiC
decomposition

Monolayer
ribbon

0.25 900-2700 [110]
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Table C.3: Comparison of transistor mobility from this work with graphene
grown by CVD over metal substrates.

No. Substrate Device
configuration

Grain
size

Carrier
mobility
(cm2 V−1

s−1)

Growth
time
(hour)

Type of
graphene

Reference

1 Cu Back gate 20 1000-6780 2 Monolayer
film

[251]

2 Cu Back gate 6 800-7000 0.1 Monolayer
film

[127]

3 Si/SiOx Back gate 1 410-760 5 Monolayer
film

This
work

4 Cu Back gate 5 700 0.5 Monolayer
film

[321]

5 Cu Back gate 1 265-900 0.2 Monolayer
film

[322]

6 Cu Back gate 0.95 500-1350 0.5 Monolayer
film

[323]

7 Cu Back gate 0.5 400-600 0.6 Monolayer
film

[121]

8 Cu Back gate n.a. 200-450 0.2 Monolayer
film

[54]

9 Cu Back gate 0.2 410 0.3 Monolayer
film

[324]

10 Cu Back gate 0.2 110 0.5 Monolayer
film

[325]

11 Cu Back gate 0.1 65 0.5 Monolayer
film

[325]

12 Cu Top gate 20-40 1100 0.2 Monolayer
film

[160]

13 Cu Top gate 5 4050 0.5 Monolayer
film

[111]

14 Cu Top gate 0.25,
0.47,
1.70

1000,
5300,
7300

0.5 Monolayer
film

[65]

15 Cu Top gate 7 700 0.3 Monolayer
film

[326]

16 Cu Top gate 6 260-300 0.8 Monolayer
film

[327]

17 Cu Top gate 5 203 0.5 Monolayer
film

[328]

18 Ni Back gate <20 100-2000 0.2 Monolayer
film

[112]
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Figure C.16:

Schematic of multi-stacking of sandwich configuration allowing for the scale-up

production of large area homogeneous strict monolayer graphene films in a single

CVD reaction.
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F. Börrnert, J. Kunstmann, A. Bachmatiuk, M. Pötschke, M. Shiraishi,
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Rümmeli, and L. Fu. Direct growth of ultrafast transparent single-layer

graphene defoggers. Small, 11(15):1840–1846, 2015.

[230] D. Wei, Y. Lu, C. Han, T. Niu, W. Chen, and A.T. Wee. Critical crys-

tal growth of graphene on dielectric substrates at low temperature for

electronic devices. Angew. Chem. Int. Ed., 52(52):14121–14126, 2013.
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ert and Mark H. Rümmeli. CVD growth of 1D and 2D sp2 carbon nanoma-

terials. J. Mater. Sci., 51 (2):640-667, 2016.

5. Imad Ibrahim, Jana Kalbacova, Vivienne Engemaier, Jinbo Pang, Raul

D. Rodriguez, Daniel Grimm, Thomas Gemming, Dietrich R. T. Zahn, Oliver

G. Schmidt, Jürgen Eckert and Mark H. Rümmeli. Confirming the Dual Role
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