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Abstract
Tomographic electron holography combines tomography, the reconstruction of three-dimensionally
resolved data from multiple measurements with different specimen orientations, with electron holog-
raphy, an interferometrical method for measuring the complex wave function inside a transmission
electron microscope (TEM). Due to multiple scattering and free wave propagation conventional, ray
projection based, tomography does perform badly when approaching atomic resolution. This is reme-
died by incorporating propagation effects into the projection while maintaining linearity in the object
potential. Using the Rytov approach an approximation is derived, where the logarithm of the complex
wave is linear in the potential. The ray projection becomes a convolution with a Fresnel propagation
kernel, which is considerably more computationally expensive. A framework for such calculations has
been implemented in Python. So has a multislice electron scattering algorithm, optimised for large
fields of view and high numbers of atoms for simulations of scattering at nanoparticles. The Rytov
approximation gives a remarkable increase in resolution and signal quality over the conventional
approach in the tested system of a tungsten disulfide nanotube. The response to noise seems to be
similar as in conventional tomography, so rather benign. This comes at the downside of much longer
calculation time per iteration.

Zusammenfassung
Tomographische Elektronenholographie kombiniert Tomographie, die Rekonstruktion dreidimensional
aufgelößter Daten aus einem Satz von mehreren Messungen bei verschiedenen Objektorientierun-
gen, mit Elektronenholographie, eine interferrometrische Messung der komplexen Elektronenwelle
im Transmissionselektronenmikroskop (TEM). Wegen Mehrfachstreuung und Propagationseffekten
erzeugt konventionelle, auf einer Strahlprojektion basierende, Tomography ernste Probleme bei Hoch-
auflösung hin zu atomarer Auflösung. Diese sollen durch ein Modell, welches Fresnel-Propagation
beinhaltet, aber weiterhin linear im Potential des Objektes ist, vermindert werden. Mit dem Rytov-
Ansatz wird eine Näherung abgeleitet, wobei der Logarithmus der komplexenWelle linear im Potential
ist. Die Strahlen-Projektion ist dann eine Faltung mit dem Fresnel-Propagations-Faltungskernel welche
rechentechnisch wesentlich aufwendiger ist. Ein Programm-Paket für solche Rechnungen wurde in
Python implementiert. Weiterhin wurde ein Multislice Algorithmus für große Gesichtsfelder und
Objekte mit vielen Atomen wie Nanopartikel optimiert. Die Rytov-Näherung verbessert sowohl die
Auflösung als auch die Signalqualität immens gegenüber konventioneller Tomographie, zumindest in
dem getesteten System eines Wolframdisulfid-Nanoröhrchens. Das Rauschverhalten scheint ähnlich
der konventionallen Tomographie zu sein, also eher gutmütig. Im Gegenzug braucht die Tomographie
basierend auf der Rytov-Näherung wesentlich mehr Rechenzeit pro Iteration.
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1. Introduction

1. Introduction

The interest in the research of nanoparticles of all flavours and sources is currently on the rise. The
time may be over where finding nanoparticles themselves was a sensation in themselves but now
the true breadth and capabilities of the field are being explored. With growing ability to synthesize
nanoparticles of specified structure, shape, size and composition, in order to achieve more precisely
defined and exotic properties, comes a need for better analytical tools to determine whether or not
the set goal has been achieved. In the reverse direction do better analytical tools also lead to a
better understanding of complicated properties by revealing the underlying object more directly.
Transmission electron microscopy will play an important role in this development beacuse of its (in
optical microscopy) unparalleled spatial resolution, reaching down to the atomic level. It is, however,
currently not possible to extend the capability of atomic resolution into the three-dimensional so the
position and type of each atom in a complex nanostructure could be determined.
In this work one route towards this goal is developed and tested preliminarily. The already es-

tablished combination of electron holography and tomography12 has shown proven its ability to
reconstruct (apart from other quantities) the electric and magnetic potentials of a specimen but when
approaching high (i.e. atomic) resolution the commonly assumed model used in the tomographic re-
construction has failed. The phase grating approximation is a blunt approximation, which is incapable
to model wave propagation and, by extend, a lot of the multiple scattering effects as well. A new and
better approximation will be developed, which incorporates wave propagation but still allows the use
of linear tomography for reconstruction, because there efficient reconstruction techniques are readily
available. Nonetheless, computational complexity of this new approach will be considerably different
and higher than that of conventional tomography so a dedicated implementation of the reconstruction
will have to be developed. This will then be tested at a simulated holographic tilt series of a realistic
sample system (a tungsten disulfide multiwall nanotube).
For scattering simulation of large non-periodic samples several optimisations are added to the

established electron scattering simulation algorithm, the multislice algorithm, and implemented. This
large field-of-view multislice algorithm will provide the data for the reconstruction tests, that shall
show, whether or nor the newly developed approximation gives a real improvement in reconstruction
quality.

1.1. Electron Microscopy
For microscopy three things are needed: a source, a detector and a focussing optic. All of these things
were available at the beginning of the 20th century when the young engineer Ernst Ruska started his
work in the group of Ernst Knoll trying to develop a high-speed oscilloscope with a focussed electron
beam3. Against contrary assignments he designed a strong and thin magnetic lens which realised
the lens theory of Hans Busch and built a setup for the characterisation of the optical qualities of
his lenses. Intrigued by the passable imaging characteristics of his lens he added a second one and

1[36] Wolf et al. 2013 . “Electron holographic tomography”.
2[20] Midgley and Dunin-Borkowski. 2009 . “Electron tomography and holography in materials science”.
3this historic account is based on [ 27] Ruska. 1987 . “Das Entstehen des Elektronenmikroskops und der Elektronenmikroskopie”.
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1. Introduction

made this apparatus in 1931 the first transmission electron microscope. Slightly disheartened at the
implication of de Broglie’s work that an electron microscope is still diffraction limited he was greatly
relieved that his electrons, with 75 keV, would still allow a resolution of 2.2 Å (using his aperture of
20 mrad) many times better than any optical microscope could hope for. It took nevertheless about
40 years for this value to be reached due to the persistence of the spherical aberration (𝐶u�) which is
inherent in every rotationally symmetric, time-invariant and space-charge-free electric or magnetic
lens as Scherzer proved in 19364. This established itself as the eternal problem of TEM to the point that
the hope and funding for the development of an aberration-free microscope was lost. Only the advent
of computers made the precise control of non-rotationally symmetric lenses practical and in 19985
a working 𝐶u�-corrected microscope was demonstrated. This vastly improved both the resolution
of electron microscopes and the signal transfer to the detector. While resolution is certainly a very
important metric, TEM has developed a huge range of different optical setups (most of which are
poached from light optics) and signals, which allow the analysis of numerous specimen characteristics
(e.g. morphology, atomic structure or intrinsic fields) by their interaction with an electron beam or
by-products of that interaction (e.g. secondary electrons or X-rays).
In the scope of high-resolution microscopy the search for ever better resolution and better signal

transfer is ongoing and the frontier currently sits at the image spread, where small thermal-fluctuation-
induced currents in the liner randomly deflect the beam which accumulates to a blurring on the
detector6. All other aberrations are corrected to a sufficient degree and this includes most (isoplanatic
and non-isoplanatic) geometric aberrations as well as chromatic aberrations. There are, however,
only two achromatic TEMs in the world today so they are still a niche product while 𝐶u�-corrected
microscopes are the standard today.

1.2. Electron Holography
Holography describes any technique capable of retrieving the complex-valued wave function from one
or more detected images. This may be achieved by different methods, such as Focal-Series Holography,
where a set of images is taken at different defocus values and a method similar to Kaczmarz’ is used
for the reconstruction7. Focal-Series Holography, however, suffers from ambiguity and instability
in the reconstruction as well as poor information transfer of the lower spatial frequencies8. Similar
problems plague other iterative reconstruction techniques, like Ptychography. But these problems are
steadily explored and treated, so at some point these methods will be able to reliably reconstruct the
wave function in every scenario, maybe at the cost of a difficult to measure dataset.

Off-Axis Holography offers a different approach: an electron-optical biprism is used to overlay two
regions of the beam with a certain angle between them9. Given sufficient coherence between the two
partial beams, they produce an interference pattern of fringes whose frequency is determined by the
angle between the partial beams. Given, that one of the beams is sufficiently well known (most often
it is simply a plane wave), the other one can be reconstructed from the interference pattern. This
procedure gives the amplitude and phase exclusively by linear operations on the recorded data; the
result is therefore unique and stable, which also makes for a well-understood noise-transfer. This
method requires the addition of a biprism to the microscope, which is usually done by exchanging an
aperture holder for a special one.

4[29] Scherzer. 1936 . “Über einige Fehler von Elektronenlinsen”.
5[12] Haider et al. 1998 . “A spherical-aberration-corrected 200 kV transmission electron microscope”.
6[31] Uhlemann et al. 2013 . “Thermal Magnetic Field Noise Limits Resolution in Transmission Electron Microscopy”.
7[9] Gerchberg and Saxton. 1972 . “A practical algorithm for the determination of phase from image and diffraction plane pictures”.
8[8] Fienup and Wackerman. 1986 . “Phase-retrieval stagnation problems and solutions”.
9[21] Möllenstedt and Wahl. 1968 . “Elektronenholographie und Rekonstruktion mit Laserlicht”.
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1. Introduction

For the question of this thesis, the wave function is the starting point for the tomographic recon-
struction algorithm; the exact origin of the wave function is largely irrelevant. It has, however, some
relevance in the question how the thermal motion of the atoms appears in the averaged wave function
where we will use the mechanism from off-axis holography10 (also see Section 2.4).

1.3. Electron Tomography
Originally, tomography was a name applied to a technique, developed by G. N. Hounsfield11 and A.
M. Cormack12 in the 60s, for reconstructing the local attenuation coefficient from the attenuation of
X-rays, modelled as the integral of the local attenuation along the rays path through the sample. Over
time it has shown itself that the technique and its theoretical framework are much more extensive
and tomography now refers to a vast field of mathematical models and a multitude of signals, probes,
geometries, … for which these models are applicable. The basic principle is the reconstruction of an
object characteristic, not determinable from a single measurement, from a set of multiple measurements
13. Therefore, tomography is a so called inverse problem: the model for the mapping of the object
characteristics to the measurable signal is given but its inversion is not, or does not even exist in any
strict sense.
Many of the multitude of signals from TEM have been used for tomographic reconstruction of

object characteristics so trivial as the outer shape to the highly sophisticated complete quantum state
of the electron wave, and everything in between, such as electric and magnetic potentials, chemical
composition or the crystal structure. But, while aberration correction has made atomic resolution a
convenience, electron tomography has not yet been able to reliably retrieve the atomic structure of the
specimen. Several forays have been made but they rely heavily on the structure of the specimen, such
as it being only one atom layer thick1415 or being purely crystalline161718. Another route is to use novel
reconstruction techniques, such as compressive sensing (a representation of the specimen is defined
where it should be sparse and the reconstruction optimised for a sparsity in that representation)19 or
non-linear inversion techniques20. These forays currently linger at the proof-of-concept stage and
considering that they rely in assumptions about the specimen or on algorithms of unproven reliability
it is debatable which of these will yield an applicable method. Or rather, considering the individual
limitations, difficulties and uncertainties, which will be trustworthy for what kind of specimen.
In that scope the ansatz of this work is a rather conservative one, by replacing the ray projection

in the conventional tomography with a Fresnel propagation kernel. This is similar to diffraction
tomography in light, ultrasound and X-ray tomography with semi-transparent objects21 although
the specimen is not weakly scattering here. As this is a linear technique it will be unable to model
multiple scattering adequately which, ultimately, will give a limit to the thickness of the specimen
that can be reconstructed without significant artefacts.

10[26] Rother et al. 2009 . “The statistics of the thermal motion of the atoms during imaging process in transmission electron microscopy and related techniques”.
11[14] Hounsfield. 1973 . “Computerized transverse axial scanning (tomography): Part 1. Description of system”.
12[6] Cormack. 1963 . “Representation of a Function by Its Line Integrals, with Some Radiological Applications”.
13The terminus tomography itself is defined by convention: Those techniques, which are commonly called tomographic,

are tomographic. Over the time no encompassing but sharp definition has been proposed and debated.
14[33] Van Dyck et al. 2012 . “‘Big Bang’ tomography as a new route to atomic-resolution electron tomography”.
15[1] Bar Sadan et al. 2008 . “[…] Bright-Field Electron Tomography […] of Fullerene-like Nanostructures”.
16[5] Chen et al. 2015 . “3D reconstruction of nanocrystalline particles from a single projection”.
17[11] Goris et al. 2012 . “Atomic-scale determination of surface facets in gold nanorods”.
18[32] Van Aert et al. 2011 . “Three-dimensional atomic imaging of crystalline nanoparticles”.
19[2] Broek et al. 2009 . “A model based atomic resolution tomographic algorithm”.
20such as artificial neural networks in [ 3] Broek and Koch. 2012 . “[…] Inversion of Dynamical Electron Scattering”.
21[37] Wolf. 1969 . “Three-dimensional structure determination of semi-transparent objects from holographic data”.
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2. Electron Scattering

In most applications of transmission electron microscopy (TEM) some approximations can be made for
the electrons at hand. First of which is the neglection of spin which allows the use of the Klein-Gordon
equation to describe the electrons motion and its interaction via the introduction of minimal coupling
to the electric potential (the magnetic potential shall be neglected as the atomic structure is wholly
electric). Assuming the electrons energy is large compared to the potential 𝑒𝜙 ≪ 𝐸 which holds
everywhere except at an insignificant small area at the atoms’ cores a relativistic correction term is
neglected and this perturbed Helmholtz equation 1 follows:

(Δ + 𝑘2) Ψ(r) = 2𝐸𝑒𝜙(r)
ℏ2𝑐2⏟

≕−u� (r)

Ψ(r) perturbed Helmholtz equation (2.1)

The used symbols are:

Δ = Laplace operator 𝑘 = angular wavenumber
Ψ = wave function 𝑒 = unit charge
𝐸 = total energy of electron 𝜙 = electrostatic potential
𝑉 = effective potential

Since the perturbation 𝑉 is just the potential with a constant prefactor it will be called effective
potential in spite of the fact that the physical meaning of the perturbation is an “interaction effect” on
the wave which is dimensionless and not energy per charge like a potential.

For imaging in a TEM it is usually sufficient to solve the problem in a paraxial approximation, where
the angular extension of the beam is small all along the column, therefore, angles of individual rays
or phase-gradients are small as well. The chosen axis is 𝑧 and the lateral component is called 𝜌. The
Laplace operator is split accordingly in an axial and a lateral component Δ = Δu� + 𝜕2

u� . Furthermore,
the rapidly oscillating phase is separated from the wave function Ψ(r) = 𝜓(r)𝑒u�u�u� and subsequently
eliminated (only the 𝜕2

u� -term acts on it) yielding:

(Δu� + 2𝑖𝑘𝜕u� + 𝜕2
u� ) 𝜓(r) = −𝑉 (r)𝜓(r) (2.2)

Since the scattering angles are small, the changes of the wave function along 𝑧 are very small compared
to the rapid phase oscillation: |𝜕u�𝜓(r)| ≪ 𝑘 and the 𝜕2

u� -term can be neglected:

(Δu� + 2𝑖𝑘𝜕u�) 𝜓(r) = −𝑉 (r)𝜓(r) perturbed paraxial Helmholtz equation (2.3)

The complete neglection of the lateral term in Eq. (2.3) then gives the most simple approximation
which shall be called axial approximation here.

2𝑖𝑘𝜕u�𝜓(r) = −𝑉 (r)𝜓(r) perturbed axial Helmholtz equation (2.4)

1The name is chosen to distinguish this equation from an inhomogeneous Helmholtz equation since the perturbation is
very different to an inhomogenity.
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2. Electron Scattering

These three equations (Eq. (2.1), Eq. (2.3) and Eq. (2.4)) are solved in the same manner by transferring
the problem to a Lippmann-Schwinger equation (Ψ stands for 𝜓 in the case of the paraxial and the
axial approximation):

Ψ(r) = 𝜓(r) +
ż

dr′ 𝐺(r − r′)𝑉 (r′)Ψ(r′) Lippmann-Schwinger equation (2.5)

Where 𝜓(r) solves the unperturbed equation �̂�Ψ(r) = 0 under the given boundary conditions, and
the Green’s Operator 𝐺(r − r′) solves the unperturbed problem in a distributive sense:

�̂�𝐺(r − r′) = 𝛿(r − r′) (2.6)

The Green’s operator can be used to solve this elliptical differential equation as a boundary condition
problem, where Ψ(r) = 𝑢(r) is given on the boundary 𝜕𝑀 of a connected region 𝑀 :

Ψ(r) =
ż

u�u�
dr′ 𝐺(r − r′)𝑉 (r′)𝑢(r′) (2.7)

Any standing wave solutions (those solving Ψ(r) = 0 on the boundary 𝜕𝐺) are neglected so the
solution Ψ(r) solves the boundary condition problem uniquely.

Although the Lippmann-Schwinger equation 2.0Eq. (2.5) has a solution in the strict sense, it cannot
be evaluated for all but the simplest problems. As such, it is not feasible to solve it completely for the
here relevant use-cases and it is necessary to resort to further approximations (see Section 2.1 and
Section 2.2).

The Green’s functions (also called propagators), the solutions of Eq. (2.6), for the different approxi-
mations can be expressed analytically as:

𝐺(r) = 𝑒u�u�|r|

4𝜋|r|
Huygens-Fresnel propagator (2.8)

𝐺u�(𝑧, 𝜌) = −𝑖𝑘
2𝜋𝑧

𝑒u� u�|u�|2
2u� Θ(𝑧) Fresnel propagator (2.9)

𝐺u�(𝑧, 𝜌) = −𝑖
2𝑘

𝛿(𝜌)Θ(𝑧) axial propagator (2.10)

𝑧

𝜓u� =0

𝑥

𝑦

𝜓u� =0

Figure 2.1.:The common scattering geometry, with the
incoming wave Ψu� and the outgoing wave Ψu� which
are zero outside a finite area.

The Fresnel and the axial propagator con-
tain a Heaviside Theta-function, which imposes
forward-scattering. In the reconstruction the ref-
erence plane is midway through the specimen;
below this plane the propagator is mirrored to
the purely backward-scattering one.
As the geometry of the problems is similar

throughout imaging simulations it should be
clarified beforehand. The beam travels along 𝑧
(also called height) from the given initial wave
Ψu�(𝜌) = Ψ(𝑧u�, 𝜌) at height 𝑧u� to the final wave
Ψu�(𝜌) = Ψ(𝑧u� , 𝜌) at height 𝑧u� . Laterally, the
problem is infinitely extended (as the beam is
much thinner than the inner tube of the micro-
scope, except in some special cases). For a given
problem between 𝑧u� and 𝑧u� , Ψu� is given and
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2. Electron Scattering

Ψu� searched for; the boundary conditions are
therefore Ψu�(𝜌) in the plane 𝑧 = 𝑧u� and Neu-
mann boundary conditions of ∇Ψ(𝑧, 𝜌) = 0 for
|𝜌| → ∞.

2.1. Phase-Grating or Axial Rytov Approximation
A very blunt approximation is the phase-grating approximation (PGA) which is just another name for
the axial approximation, where the propagation of the wave is neglected while travelling through
the specimen. The perturbed problem can be solved directly in the above mentioned geometry by
integration along 𝑧:

2𝑖𝑘𝜕u�𝜓(𝑧, 𝜌) = −𝑉 (𝑧, 𝜌)𝜓(𝑧, 𝜌) (2.11)

𝜓u�(𝜌) = exp ⎛⎜⎜
⎝

u�u�
ż

u�u�

d𝑧 𝑖
2𝑘

𝑉 (𝑧, 𝜌)⎞⎟⎟
⎠

𝜓u�(𝜌) (2.12)

This is the Lambert-Beer law for complex valued functions and can be transferred into an expression
for the phase by defining Λ = log(𝜓):

Λu�(𝜌) =

u�u�
ż

u�u�

d𝑧 𝑖
2𝑘

𝑉 (𝑧, 𝜌)Λu�(𝜌) (2.13)

With that, it corresponds to the Rytov approximation (Section 2.2) for the axial propagator. The same
considerations apply to the meaning of the complex-valued “phase” Λ.
It is a straightforward integration and yields an expression linear in the potential, which makes

this approximation suited for tomography. The error is the neglection of any kind of propagation

behaviour. This error is on the order of
u�u�
ş

u�u�

d𝑧 Δu�𝜓(𝑧, 𝜌) which, evaluated in lateral Fourier space,

gives an upper bound for the error of ∝ |ku�‖2|𝑧u� − 𝑧u�|. This indicates that there is a region of small
|ku�‖ and |𝑧u� − 𝑧u�| where the approximation holds. It is not said how big this region is and this simple
criterion cannot be applied in any meaningful way, since the structure of the potential (e.g. orientation
in a Bragg reflection) has dominating influence on the trust region of this approximation.
Usually the phase-grating only considers the phase of the wave function, i.e. the imaginary

component of the Rytov phase, but since this approximation is separable in both real and imaginary
component considering the real component does not affect the imaginary one. So we might as well
treat the complex problem. That is not to say that an interplay between the two components can
be introduced by the reconstruction technique via its regularisation characteristics. The common
reconstruction techniques, such as any variant of the Landweber iteration and the conjugate gradient
methods, preserve the separability of the projection model and the objective function.

2.2. Rytov Approximation
The ansatz of the, in the field of electron scattering unusual but rather practical, Rytov approximation
is to transform the problem via a logarithm into a domain where the real component equates to the
logarithm of the amplitude and the imaginary component to the phase of the original problem. Thus,
the logarithm Λ (we will call Rytov phase) of the wave function Ψ is defined Ψ = 𝑒Λ and inserted

6



2. Electron Scattering

in the perturbed paraxial Helmholtz equation Eq. (2.3) (again, the paraxial approximation can be
foregone as it only changes the form of the propagator).

(Δu� + 2𝑖𝑘𝜕u�) 𝑒Λ(r) = −𝑉 (r)𝑒Λ(r) (2.14)

𝑒Λ(r) (Δu�Λ(r) + (∇u�Λ(r))2 + 2𝑖𝑘𝜕u�Λ(r)) = −𝑉 (r)𝑒Λ(r) (2.15)

(Δu�Λ(r) + (∇u�Λ(r))2 + 2𝑖𝑘𝜕u�Λ(r)) = −𝑉 (r) (2.16)

This equation is surprisingly similar to the one for the wave Ψ, only deviating in the existence of the
quadratic gradient term and the fact that the perturbation is now an inhomogenity. The perturbed
linear differential equation has been transformed to an inhomogeneous quadratic equation, which
cannot be solved directly. It is difficult to assess the importance of the gradient-term but it shall
be neglected here and discussed for a specific problem in Section 6.4.1. With that, the result is an
inhomogeneous linear equation which can be solved directly with a solution Λ0 for the homogeneous
problem in the boundary conditions Λ(r) = 𝑢(r) ∶ r ∈ 𝜕𝑀 (M being a connected region) and an
explicit solution for the inhomogenity:

(Δu�Λ(r) + 2𝑖𝑘𝜕u�Λ(r)) = −𝑉 (r) (2.17)

Λu�ℎ(𝑧, 𝜌) =
ż

u�

d𝑧′ d𝜌′ 𝐺u�(𝑧 − 𝑧′, 𝜌 − 𝜌′)𝑉 (𝑧′, 𝜌′) inhomogeneous solution

(2.18)

Λℎ(𝑧, 𝜌) =
ż

u�u�

d𝑧′ d𝜌′ 𝐺u�(𝑧 − 𝑧′, 𝜌 − 𝜌′) (𝑢(𝑧′, 𝜌′) − Λu�ℎ(𝑧′, 𝜌′)) homogeneous solution

(2.19)

In the geometry of interest the forward-scattering propagator sets Λu�ℎ = 0 at 𝑧 = 𝑧u� (the only bound-
ary condition of relevance) so the homogeneous solution is independent from the inhomogeneous
one. It is furthermore unique via the exclusion of standing wave solutions (those which fulfil the zero
boundary conditions).

Λ(𝑧u� , 𝜌) =
ż

d𝜌′ 𝐺u�(𝑧u� − 𝑧u�, 𝜌 − 𝜌′)Λ(𝑧u�, 𝜌′) +

u�u�
ż

u�u�

d𝑧′
ż

d𝜌′ 𝐺u�(𝑧u� − 𝑧′, 𝜌 − 𝜌′)𝑉 (𝑧′, 𝜌′)

(2.20)

The core of this approximation is the neglection of the (∇u�Λ)2-term, apart from this it is a straight-
forward approach for a solution allowing direct evaluation. Furthermore, it can be transferred to the
non-paraxial case by exchanging the propagator (the neglected term is then (∇Λ)2).

The neglected term makes this a linear expression, which is per se a single scattering approximation:
the at one point scattered wave is not scattered again. Hence, the neglected term must contain the
multiple scattering effects in itself. This is remarkable as it only is a kind of quadratic self-interaction
of the Rytov phase and does not contain any direct reference to the object.

It should be noted that the Rytov phase Λ is not well defined as the imaginary component (which
represents the phase of the wave function) has to be contained in a 2𝜋-interval since the phase is only
defined there. However, the Rytov approximation represents the phase of the wave in the imaginary
component of Λ which is not bounded or periodical. The mapping between the wave and Λ is therefore

7



2. Electron Scattering

only surjective but not injective, this can be mended by unwrapping the phase of the wave by means
of some continuity assumption2.

2.3. Multislice Algorithm
The Multislice algorithm is a split operator method, whereby a problem is split into different sub-
problems which can be solved independently and these solutions are used to approximate a solution
to the original problem. In the paraxial approximation in Eq. (2.3) the two operators that are to
be separated are the propagation and the perturbation. This can also be done using the Huygens-
Fresnel propagator as well only the propagation operator would change. The same goes for the axial
propagator but this approach would be meaningless then.
This will be done here in the paraxial approximation but could also be done without it, only the

propagator would change.
Without the perturbation (i.e. only propagation) the Green’s function can be used to solve the

unperturbed boundary condition problem with Eq. (2.7). Here, the wave function Ψ had its rapidly
oscillating phase removed (as above in the paraxial and axial approximation).

Ψu�(𝜌) =
ż

d𝜌′ 𝐺u�(𝑧u� − 𝑧u�, 𝜌 − 𝜌′)Ψu�(𝜌′) (2.21)

= −𝑖𝑘
2𝜋(𝑧u� − 𝑧u�)

ż

d𝜌′ 𝑒
u� u�|u�−u�′|2

2(u�u�−u�u�) Ψu�(𝜌′) (2.22)

≕ ̂𝑃(𝑧u� − 𝑧u�)Ψu�(𝜌) (2.23)

Thus, the propagation operator ̂𝑃 (𝑧), which propagates a wave the distance 𝑧, is defined.
For the influence of the effective potential the axial Rytov approximation is used, which directly

yields the interaction operator ̂𝑉 (𝑧u� , 𝑧u�):

Ψu�(𝜌) = exp ⎛⎜⎜
⎝

u�u�
ż

u�u�

d𝑧 −𝑖
2𝑘

𝑉 (𝑧, 𝜌)⎞⎟⎟
⎠

Ψu�(𝜌) (2.24)

≕ ̂𝑉 (𝑧u� , 𝑧u�)Ψu�(𝜌) (2.25)

Here, the influence of thermal motion are included as per Section 2.4.
A solution can be constructed using these solutions to partial problems, such as:

Ψu� = ̂𝑉 (𝑧u� , 𝑧u�) ̂𝑃 (𝑧u� − 𝑧u�)Ψu� (2.26)

The error introduced by solving the partial problems separately scales with the distance 𝑧u� − 𝑧u�
so the 𝑧-interval is split up into a large number of subintervals. In the infinitesimal limit for the
length of those subintervals this procedure would solve the original problem and yield the exact
solution. In our case it is beneficial that the potential 𝑉 (𝑧) is sparse in 𝑧 as the atoms are essentially
point-like in 𝑧 (the propagation effect is negligible for the width of an atom’s potential). So it is
appropriate to split the interval (𝑧u�, 𝑧u�) at the heights of the atoms 𝑧u� giving a chain of subintervals
(𝑧0 = 𝑧u�, 𝑧1, ..., 𝑧u� , 𝑧u�+1 = 𝑧u�) (with 𝑁 the number of atoms). The solution can then be expressed

2[10] Ghiglia and Pritt. 1998 . Two-Dimensional Phase Unwrapping.
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2. Electron Scattering

as the interaction ̂𝑉u� = ̂𝑉u�(−∞ + ∞) of atom 𝑛 only and the propagation between the atoms:

Ψu� = ̂𝑃 (𝑧u�+1 − 𝑧u�) ̂𝑉u� ̂𝑃 (𝑧u� − 𝑧u�−1) ̂𝑉u�−1... ̂𝑉1 ̂𝑃 (𝑧1 − 𝑧0)Ψu� (2.27)

= ̂𝑃 (𝑧u�+1 − 𝑧u�)
u�∘

u�=1

̂𝑉u� ̂𝑃 (𝑧u� − 𝑧u�−1) Ψu� (2.28)

Here the iterative chaining operator∘ is introduced, which is defined akin to other iterative operators,
such as ∑ or ∏, as the iterated application of the chaining operation to the term and the previous
result.

2.4. Influence of Thermal Motion
In high-resolution microscopy the question of the influence of the thermal motion of the atoms has to
be considered. The electron itself sees the atoms as stationary due to its speed and it’s wave function
is therefore the result of a configuration of fixed atoms, i.e. of a frozen lattice. Two main approaches
are used in electron microscopy. Firstly, to simulate the scattering at many different frozen lattices
and average the resulting waves or, in case of bright field microscopy, average the image intensities.
This becomes prohibitively time-consuming for larger systems. Secondly, to smear out the potential
of the atoms by a model such as the Debye-Waller factor, which is justified if the wave functions are
averaged for the signal (as in holography).
For the motion itself a simple Einstein model is adapted and a harmonic binding potential, so

the probability distribution of an atom is a Gaussian. But not the potential is convolved with this
Gaussian distribution but the phase shift that potential exerts on the wave function. The blurred phase
shift gets an additional amplitude dampening contribution, this is however not an absorbing effect
but rather an incoherence effect which transfers intensity from the reconstructable wave function
into the incoherent background. The transmission function 𝑡 from the effective potential 𝑉 with the
Debye-Waller factor 𝐵 in lateral direction is given by

𝑡 = √4𝜋
𝐵

𝑒− 2
u� (u�2+u�2)∗

⏟⏟⏟⏟⏟⏟⏟
Thermal Diffuse Scattering

exp (−𝑖
2𝑘

𝑉 )
⏟⏟⏟⏟⏟

phase shift

(2.29)

Which can be evaluated in Fourier space:

𝑡 = ℱ−1
u�u� [𝑒− u�

8
u�2u�+u�2u�

4u�2 ℱu�u� [exp (−𝑖
2𝑘

𝑉 )]] (2.30)

The amplitude-dampening effect can be attributed to the potential by defining an thermally averaged
potential3 ̃𝑉 as the logarithm of the convolution of the probability distribution 𝑝 with the phase shift
due to the potential 𝑉 .

̃𝑉 = −𝑖 log (𝑝 ∗ 𝑒u�u� )) thermally averaged potential (2.31)

3For the purposes of brevity, the −u�
2u� -factor is pushed into the potentials here.
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3. Tomography

3. Tomography

3.1. Tomography as Linear Inverse Problem
For the purposes of this work only linear tomography shall be considered, because there is a general
framework for solving linear inverse problems, but not for non-linear problems. This framework gives
criteria for a unique solution and algorithms for finding said solution. Furthermore it gives a theory,
by the name of regularisation, which controls the “reconstruction” of contradictory data (e.g. noise)
and represents a trade-off between a better fit and the amplification of errors.
Here, the following notation will be used:

v = 𝑇u (3.1)

Where u ∈ 𝑈 is the searched for and v ∈ 𝑉 the measured quantity, which are (Hilbert space) vectors
with the capital letters their respective Hilbert spaces and the projection operator 𝑇 is a linear operator,
mapping 𝑈 into 𝑉 and therefore 𝑇 ∈ 𝑉 × 𝑈∗. More general definitions are certainly conceivable but
are not necessary here as the concept of a Hilbert space is sufficient for next to all physical formalisms.
This includes the representation of images (functions over two-dimensional space), tilt series of images
(functions over three-dimensional space, two are spatial dimensions and one is the tilt angle) or their
discrete counterparts (functions over discrete sets of coordinates).
In the continuous form the vectors v, u and the tensor 𝑇 can be projected onto position bases

yielding 𝑣 (s) , s ∈ 𝑆, 𝑢 (r) , r ∈ 𝑅 and 𝑇 (s, r) with the following product:

𝑣 (s) =
ż

u�

dr𝑇 (s, r)𝑢(r) (3.2)

In solving the problem of finding a u whose projection 𝑇u most closely matches a given v, all
tomographic reconstruction techniques correspond to solving a linear equation system in the least-
squares sense:

‖𝑇u − v‖2 → min (3.3)

In this case there is a linear solution space for u made up of the product of a singular solution and
the kernel (the space of all vectors 𝑇 maps to 0). By demanding that the solution is orthogonal to
the kernel the solution becomes unique (and is called Moore-Penrose inverse). An exact solution is
here neither possible nor wanted for, since it would include catastrophic noise induced artefacts. It
is therefore the most feasible way to only approximate the least-squares solution, which is what all
reconstruction algorithms do in the end. Here, a conjugate-gradient method is used which determines
the steepest-descent direction of the norm of the residual, restricts that to the be orthogonal to the
current intermediate solution and minimises the norm of the residual in that direction. It is optimal in
the sense of convergence speed per iteration12 for any general linear method and therefore uniquely
suited for computationally expensive problems. The regularisation behaviour is harder to predict
1p 112ff [ 19] Louis. 1989 . Inverse und schlecht gestellte Probleme.
2p 177ff [ 7] Engl et al. 1996 . Regularization of inverse problems.
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3. Tomography

(although it can be done with great effort, e.g. by calculating the singular value decomposition), in
general more iterations mean less regularisation (i.e. a higher danger of over-fitting)3.

In this work the LSQR algorithm of Paige and Saunders4 is used, which is an implementation of the
conjugate gradient method optimised for sparse and ill-conditioned problems.

3.2. Tomography inside a TEM

detector

𝑦′

𝑥′

𝑧′

𝑦

𝑥

𝑧

object

Figure 3.1.: Very general form of the ge-
ometry inside a TEM, the relation between
the object coordinate system (ex, ey, ez) and
the microscope (detector) coordinate system
(ex′ , ey′ , ez′) can be altered by the goniome-
ter of the microscope (or optically).

detector

𝑦′

𝑥′

𝑧′

𝑧 𝑦

𝑥

𝜃

object

Figure 3.2.: Single tilt axis geometry of elec-
tron tomography, whereby the unit vectors
ez and ey′ of the microscope and the spec-
imen are aligned. The remaining degree of
freedom is the angle between ex and ez′ .

The case which is here of interest is broadly similar to the
original one: A beam is shone upon a specimen and the
transmitted part is detected; this procedure is repeated for
different incident directions of the beam. The images are
then used to reconstruct the three-dimensional distribution
of a quantity. In electron tomography there are several
different object quantities, which can be reconstructed via
tomography. This only depends whether an applicable
model for the creation of the signal and a reconstruction
method for that model exist. This case (which is widely ac-
cepted to be the standard one) will be called Ray Projection
Tomography (Section 3.3).

Vectors of the object coordinate system shall be denoted
by r = (𝑥, 𝑦, 𝑧). The coordinate system of the detector shall
be transferred into the object plane, therefore compensating
the scaling of the magnification of the imaging system.
Aberrations and similar effects are not wholly neglected but
rather calculated back into the object plane rather than into
the detector plane. The exact focal plane in relation to the
object (i.e. the focus/defocus) can be set at will here since
the complex wave is available. For the wave itself only the
lateral coordinates (𝑥′, 𝑦′) ≕ e of the detector are relevant,
but here the degrees of freedom of the orientation of the
object coordinate systems in relation to the microscope
coordinate system are important as well. This relation
is given by a shift (which will be set to 0 by alignment)
and a rotation of the two coordinate systems against each
other, which would mean an element out of 𝒮𝒪(3) (the
group of orthogonal 3 × 3-matrices with determinant 1)
but considering that the in-plane rotation of the detector (i.e.
around 𝑧′) does not change the signal in any meaningful
way, the relevant part of the orientation is the direction of
𝑧′ in the object coordinate system and this is 𝜃 ∈ 𝑆3 in the
three-dimensional unit sphere.
In reality the geometry is often further simplified by

aligning an axis of the object with one of the detector, so
only one degree of freedom remains, i.e. the angle 𝜃 ∈

3p 103ff[ 19] Louis. 1989 . Inverse und schlecht gestellte Probleme.
4[23] Paige and Saunders. 1982 . “LSQR”.
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[−𝜋, 𝜋[ 5. Experimentally this equates to only using one
tilt mechanism of the goniometer; although the TEM goniometers allow a large range of tilting, it will
pose problems regarding for example shading, so it is easiest and usually sufficient to only use the tilt
around the long axis of the holder.

3.3. Ray Projection Tomography
The traditional form6 of tomography describes the signal in a pixel as the line-integral through the
specimen parallel to the beam’s direction that intersects the detector pixel in question, which is the
same as setting the initial wave to 1 in Eq. (2.13). The coordinates in the projection operator are r as
the three-dimensional position-vector inside the specimen and s as the coordinate of a pixel in the
tilt-series, where it can be decomposed into the detector coordinate 𝜌′ and the specimen orientation
𝜃 ∈ 𝑆3 relative to the beam:

𝑇 (s; r) = 𝑇 (𝜌′, 𝜃; r) 𝑣 (s) = 𝑣(𝜌′, 𝜃) (3.4)

In terms of the axial Rytov approximation Eq. (2.13) the coordinates are transformed in a lateral and
axial displacement:

e = 𝜌′ − (r − ⟨r, 𝜃⟩ 𝜃) lateral coordinate (3.5)
𝑑 = ⟨r − 𝜌′, 𝜃⟩ 𝜃 + 𝑑0 axial coordinate (3.6)

Now it is easy to formulate the tensor:

𝑇 (𝑑(𝜌′, 𝜃, r), e(𝜌′, 𝜃, r)) = 𝛿(e) (3.7)
(3.8)

Thus the application of the tensor to the object vector is just a convolution with a delta-function in the
lateral coordinates (from the perspective of the detector). The convolution kernel is however extended
in the axial coordinate 𝑑 and in the tilt coordinate 𝜃.

3.4. Fresnel Propagator Tomography
A new form of electron tomography is proposed, which instead of the ray projector uses a Fresnel
propagation convolution kernel asmodel for the signal. It is an adaptation of Diffraction Tomography78,
a method used in visible light microscopy to reconstruct the diffractive indices of semi-transparent
objects, a condition not fulfilled in electron scattering. It relies directly on the Rytov approximation
(Section 2.2, more specifically Eq. (2.20)) incorporating the Fresnel propagation of the wave (although
neglecting the multiple scattering effects). Since the spatial frequencies of TEM are small, it is justified
to use Fresnel diffraction rather than Huygens-Fresnel diffraction.

5Please note the difference between the vector u� and the angle u�, which stands for the restriction of the vector u� to a great
circle of u�3

6The name Radon is avoided because the Radon transform in its strict mathematical formulation concerns hyperplanes,
which would be planes in three dimensional space. In single tilt axis tomography the ray transform can be reduced to
the Radon transform but this is only relevant later on.

7[15] Kak et al. 1988 . Principles of Computerized Tomographic Imaging.
8[22] Müller et al. 2015 . “The Theory of Diffraction Tomography”.
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3.4.1. Rytov Approximation Tomography
In Eq. (2.20) the initial wave is set to 1 (so the initial Rytov phase becomes 0) resulting in an expression
linear in 𝑉 .

Λ(𝑧u� , 𝜌) =
ż

d𝜌′ 𝐺u�(𝑧u� − 𝑧u�, 𝜌 − 𝜌′)Λ(𝑧u�, 𝜌′)
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

=0

+

u�u�
ż

u�u�

d𝑧′
ż

d𝜌′ 𝐺u�(𝑧u� − 𝑧′, 𝜌 − 𝜌′)𝑉 (𝑧′, 𝜌′) (3.9)

Very much like Section 3.3 the problem is effectively transformed into a space where the lateral
displacement e and the axial displacement 𝑑 between a point in the reconstruction volume r and a
pixel in the tilt series s = (𝜌′, 𝜃), and the tensor, is again a convolution (although not a delta function
any more). The axial component must be normalised by the effective height 𝑑0 of the detector relative
to the specimen coordinate system, i.e. the focus plane in the specimen. In these new coordinates the
kernel is the Fresnel convolution kernel:

𝑇 (𝑑(𝜌′, 𝜃, r), e(𝜌′, 𝜃, r)) = 𝐺u�(𝑑, 𝜌) = −𝑖𝑘
2𝜋𝑑

𝑒u� u�|e|2
2u� (3.10)

Since back-propagation is allowed, as the detector is well below of the specimen but the reference
height (the focus plane) may be inside the specimen, the Heaviside Theta-function is omitted. Till
now, this may seem trivial, but the efficient numerical implementation is rather more difficult than
the ray projection.
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4. Computational Implementation

4. Computational Implementation

For the reconstruction both ray projection and Fresnel propagator tomography are implemented
as tensor products with a precomputed tensor and the multiplication operations for the tensor (or
its adjoint) mapping the reconstruction space to the tilt series space (or vice versa). The reason for
precomputing the tensors is the optimal speed of the product operations (without using Fourier space
methods (which all imply periodicity)) at the cost of large memory requirements (the tensor has the
nominal size of the number of tilt series pixels times the number of voxels in the reconstruction
volume). Since coordinate shifts are virtually free, it is desirable to use any symmetries of the tensor
to reduce its representation. But this needs to be discussed in an explicit geometry.
The detector 𝜌′ = (𝑥′, 𝑦′) and the reconstruction volume r = (𝑥, 𝑦, 𝑧) are sampled using an

equidistant grid, while the tilt angle 𝜃 is sampled at specific (not necessarily equidistant) points:

𝑥′
u� ∶ 𝛼 = 1, ..., 𝑁u�′ 𝑥u� ∶ 𝜇 = 1, ..., 𝑁u� (4.1)

𝑦′
u� ∶ 𝛽 = 1, ..., 𝑁u�′ 𝑦u� ∶ 𝜈 = 1, ..., 𝑁u� (4.2)

𝜃u� ∶ 𝛾 = 1, ..., 𝑁u� 𝑧u� ∶ 𝜉 = 1, ..., 𝑁u� (4.3)

As in Fig. 3.2 the axes 𝑦′ and 𝑧 are aligned and, crucially sampled equally 𝑦′
u� = 𝑧u�. Furthermore,

the vectors for the object 𝑢(𝑥u�, 𝑦u� , 𝑧u�) = 𝑢u�u�u� and the tilt series 𝑣(𝑥′
u�, 𝑦′

u�, 𝜃u�) = 𝑣u�u�u� are dense
(defined for all combinations of their indices).

The tensor 𝑇 (𝜌′, 𝜃; r) can be written as 𝑇 u�u�u�
u�u�u� in tensor notation (Einstein summation convention),

so the required multiplications become:

𝑣u�u�u� = 𝑇 u�u�u�
u�u�u�𝑢u�u�u� and 𝑢u�u�u� = 𝑇 +u�u�u�

u�u�u� 𝑣u�u�u� (4.4)

Since the order of the indices in 𝛼𝛽𝛾 and 𝜇𝜈𝜉 are irrelevant, they are flattened into the two indices
𝑚 = 1, ..., 𝑁u�′𝑁u�′𝑁u� and 𝑛 = 1, ..., 𝑁u�𝑁u�𝑁u�. Instead of numbering each voxel of the cube of data
by a unique combination of indices for every dimension it is simply numbered with a single index.
For reasons, which will become obvious shortly, the orginial dimensions are sorted so that the 𝑦′

u� and
the 𝑧u� axes are the outermost and 𝜃u� is the second outermost (which will be important for the way
the tensors are reduced in complexity and represented in memory):

𝑚 = 𝛽𝑁u�𝑁u�′ + 𝛾𝑁u�′ + 𝛼 (4.5)
𝑛 = 𝜉𝑁u�𝑁u� + 𝜈𝑁u� + 𝜇 (4.6)

𝑣u� = 𝑇 u�
u�𝑢u� (4.7)

The nominal size of the tensor is 𝑁u�′𝑁u�′𝑁u�𝑁u�𝑁u�𝑁u� and thereby extremely large (assuming 360 px
for every dimension, 120 tilt angles and the complex single precision datatype the resulting tensor
would be 5 PiB).
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4.1. Ray Projection
The tensor Eq. (3.7) is not extended along 𝑦′ and 𝑧 (since they are lateral and pixel-aligned), so they
can be collapsed into a delta symbol 𝛿u�u� and the tensor can be simplified:

𝑇 u�u�u�
u�u�u� = 𝑇 u�u�

u�u� 𝛿u�
u� (4.8)

Hence, it is sufficient to calculate 𝑇 and apply it to the blocks of 𝑚 and 𝑛 that correspond to equal
𝛽 and 𝜉. Geometrically this means that the problem can be separated along the tilt axis and the
slices treated independently from each other. The reduced tensor 𝑇 cannot be simplified further, even
though it is just a delta-function, since the lateral and axial coordinates and are not aligned and the
kernel needs to be interpolated. This, however, can be done analytically and reasonably fast.

4.2. Fresnel Propagation
Here, the kernel (Eq. (3.10)) the kernel has a lateral extension. But it is still possible to reduce the
complexity of the tensor, because it is a convolution, which only depends on 𝑦′ − 𝑧. Since they are
aligned and equidistant, this is equivalent to a dependence on 𝛽 − 𝜉 ≕ 𝜏 , so the reduced tensor is:

𝑇 u�u�u�
u�u�u� = 𝑇 u�u�u�

u�u� 𝛿u�
(u�−u�) (4.9)

The relevant range of values of 𝜏 is small (compared to the ones of 𝛽 and 𝜉) and the tensor can be
separated into smaller ones which are applied to the pairs of blocks of 𝑚 and 𝑛 fulfilling 𝜏 = 𝛽 − 𝜉.
The computation of the reduced tensor is more complicated than the one from the ray projection.
After several approaches the following implementation crystallised to be the most practical:

1. the propagator is computed in partial Fourier space on a grid equivalent to ku�, 𝑑 (from Sec-
tion 3.4)

• 𝑑 has the same (or better) sampling as 𝑥u� and 𝑦u� and the necessary extent to include all
possible values of 𝑑 (in the tilt series’ geometry)

• ku� has the extent that corresponds to the sampling of, in one direction the highest out of
𝜌u�u�, 𝑥u� and 𝑦u� , and, in the other direction the highest out of 𝜌u� and 𝑧u�. The sampling is
chosen high enough to curtail aliasing during the inverse Fourier transform

2. the band-limit is applied as a mask (circular Bessel function mask) in the plane of reciprocal 𝜌

3. the propagator is transformed into real space

4. insignificantly small values are cut off and the extent of the array is reduced where it is zero,
this determines the range of 𝜏 = 𝑁−

u� , ..., 𝑁+
u�

5. for every 𝜏 -layer the 𝜌u�u�, 𝑑 coordinates of 𝛼, 𝛾, 𝜇, 𝜈 are determined and if the propagator is not
zero there, the value is interpolated linearly

The propagator is symmetric in the sign of 𝜏 so using that symmetry the tensor could be further
simplified and only half of the tensor would have to be memorised (accounting for the 𝜏 = 0 slice
which is the one with the most non-zero values). This was not done here as the time needed for the
tensor products became the hindering factor rather than the size of the tensor in memory.
This procedure for computing the tensor takes a rather long time but certainly less than the

application of the tensor afterwards, so the precomputation of the tensor is a net gain. The step of
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4. Computational Implementation

linearly interpolating the propagator on the different tilt angles has an inherent problem of inaccuracy
as the local curvature of the kernel is high in some place. A better approximation of the kernel at
additional computational expense could be advisable.

4.3. Sparse Representation and Parallelisation
Even the reduced tensors are largely consisting of zeros, therefore it is beneficial to switch to a sparse
representation in memory, where not the values 𝑇 u�

u� are stored for every 𝑚 and 𝑛 but rather where
for every non-zero entry 𝑙 = 1, ..., 𝑁u� the triplet (𝑚u�, 𝑛u�, 𝑇u�) is stored. This makes it computationally
very expensive to select a single column or row of the array, since the entries follow no particular
order in 𝑚 or 𝑛. It is, however, possible to impose such an order, but in light of the size of the tensor
it should be already included in the computation of the tensor, reordering the tensor would take very
long. In the Fresnel case the tensor was ordered for different 𝜏 so the parts of the tensor pertaining to
a specific 𝜏 can be quickly selected, because they are a contiguous segment in memory.
The tensor product now pertains simply to initialising 𝑣u� as zero and iterating through 𝑙 adding

𝑇u�𝑢u�u�
to 𝑣u�u�

for each 𝑙. The product of the adjoint operator 𝑢 = 𝑇 +𝑣 is the same only with the
roles of 𝑢u� and 𝑣u� exchanged and the 𝑇u� entries conjugated. To save time not 𝑇u� is conjugated but
𝑢u� and 𝑣u� are (which takes only ∝ 𝑁u� + 𝑁u� time instead of ∝ 𝑁u�, which is much larger and the
proportionality factor is about the same).
segmentation of the problem along the 𝑦′ (or 𝑧 for the adjoint product) axis of the output array,

the reduced tensor is applied with different offsets into 𝑢u� and 𝑣u�, which makes for 𝑁u� completely
independent computation blocks. Since they each write exclusively into their own segment of the
output array these blocks can be computed in parallel1 yielding 𝑁u� tasks of the same required run-time
so load balancing is not a problem.
A performance concern is the near to random memory access of 𝑢u�u�

and 𝑣u�u�
(the items of the

reduced tensor are next to unordered) so the CPU cannot guess which parts of the array are needed
next and prefetch them into its cache. This may be remedied to some degree by the Hyper-threading
of the Intel CPU, where a physical core executes two threads simultaneously (or rather interleaves
their execution), the cycles normally wasted by waiting for the data from the RAM are yielded to the
other thread, the execution time does benefit but not much and not all the time this was tested, so no
qualified statement can be made here.

1Memory collisions, where two threads try to access a memory cell simultaneously are only critical when writing or doing
in-place addition (which is used here). Simple reading instructions cause no problems and are not even slowed down.
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5. A Large-Field-of-View Multislice Algorithm

Since the specimen used here are nanoparticles and by their very nature non-periodic, no periodicity
can be used in the Multislice algorithm either. Using the rule-of-thumb of a sampling of ≈10 pm this
would mean a comparatively small field-of-view of 20 nm needs to be sampled with2028 px×2048 px
wave in the simulation. Also this would only allow a nanoparticle somewhat smaller than 20 nm
as vacuum padding is necessary as long as a Fourier space propagator is used. Nonetheless, such a
nanoparticle would still include many thousands of atoms, which, together with the high number of
pixels in the wave makes, the simulation very slow.
In a conventional Multislice algorithm the atoms are numerated in ascending order of 𝑧 with

𝑛 = 1, ..., 𝑁 with ̂𝑉u� (Eq. (2.25)) being their respective transmission functions; in between the atoms
the wave is propagated by ̂𝑃 (𝑧u� − 𝑧u�−1) (Eq. (2.23)).

Ψu� = ̂𝑃 (𝑧u�+1 − 𝑧u�)
u�∘

u�=1

̂𝑉u� ̂𝑃 (𝑧u� − 𝑧u�−1)Ψu� (5.1)

It is sometimes (and certainly here) beneficial to combine several atoms into a single layer (which
means displacing them into a common height 𝑧). The propagator (as a convolution) is evaluated in
Fourier space and computationally expensive compared to the transmission function construction for
a single atom.

̂𝑃 (𝑧)Ψ(𝜌) = −𝑖𝑘
2𝜋𝑧

ż

d𝜌′ 𝑒u� u�|u�|2
2u� Ψ(𝜌′) (5.2)

= ℱ−1
u�u� [𝑒

u�u�
2u� |ku�|2 ℱu�u� [Ψ(𝜌)]] (5.3)

The transmission function is a bit more complicated as it contains the projected potential of a single
atom and the blurring by the thermal motion of the atom described with the, so called, Debye-Waller
factor (see Section 2.4). Please note that not the potential itself is blurred but its exponential since this
is the quantity effecting the electron wave.

The lateral Fourier transform of the projected potential can be calculated from the atomic potentials
calculated from parametrisations such as the one of Weickenmeier and Kohl1, which was used here.
Furthermore, the lateral shift of the atomic potential is performed in Fourier space. The potentials for
every type of atom can be precomputed for the sampling of the problem at hand so the computation
for each individual atom merely amounts to one inverse Fourier transform. The Fourier transforms
are realised as Fast Fourier Transforms (FFT).

1[34] Weickenmeier and Kohl. 1991 . “Computation of absorptive form factors for high-energy electron diffraction”.
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5. A Large-Field-of-View Multislice Algorithm

5.1. Bunching of Atoms
The first optimisation for the simulation of many-atom objects is to bunch atoms of similar height
into a common height.

̂𝑉(u�...u�) =
u�
∏
u�=u�

̂𝑉u� (5.4)

≈ ̂𝑉u� ̂𝑃 (𝑧u� − 𝑧u�−1) ̂𝑉u�−1... ̂𝑃 (𝑧u�+1 − 𝑧u�) ̂𝑉u� (5.5)

The maximum of displacement for a single atom should be chosen according to some reasonable
criterion. In this case this is:

𝛿𝑧 = 1
4

2𝑘/|ku�u�u�|2 (5.6)

This equates to a phase shift of u�
20 in the phase term of the Fresnel propagator Eq. (2.9), which was

chosen somewhat arbitrarily and yields a 𝛿𝑧 of 8 pm for a sampling of one per 10 pm and an electron
energy of 200 keV. For the specimen in question (Section 6.2) 44 000 atoms were reduced to ≈1300
slices which made the time spent on propagation low enough in comparison with the time needed to
create the transmission functions.

5.2. Patching of Transmission Function

full wave

wave patch
atom

5 nm

Figure 5.1.:The transmission function for a single atom
is calculated in the region around the atom and the
patched into the transmission function for the full wave.
The proportions are about the same as used in the simu-
lation (Section 6.2).

As the field-of-view is so large, and certainly
much larger than the range of the atom’s poten-
tial, it is not necessary to calculate transmission
functions for the whole region of the wave. The
calculation in a region of 2 nm width is certainly
sufficient and reduces the time for the calculation
of the Fourier transformed transmission function
by about the factor 100. For the case of bunched
atoms there is only one inverse FFT needed to
calculate the transmission function (the atoms of
one bunch can be added in Fourier space). Here,
one inverse FFT is needed for each atom, since
the patches do are different for each atom. So the
reduced size of the FFT is offset by the number of
FFTs needed. The pixels of the patch are aligned
with the pixels of the full wave, the subpixel shift
is then done in the Fourier space of the patch
(the subregion is large enough that the implied
periodicity causes no problems).

5.3. Porting onto the GPU
In contrast to Central Processing Units (CPUs), Graphical Processing Units (GPUs) are optimised
for massively parallel operations on data using a lot of relatively simple units rather than a CPU
which has few but complicated units. In this case the GPU has 1152 CUDA cores (which handle the
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5. A Large-Field-of-View Multislice Algorithm

low-level calculations but not the control functions, like instruction interpreting and scheduling) and
the CPU has 4 physical cores with 2 Floating Point Units per core, so 8 numerical units in total. Both,
CPU and GPU have a large instruction set with a lot of specialised instructions (for their respective
applications as well as high-performance computing) so there is little that can be said in general
about comparing the two. One can only state that the GPU handles very parallel algorithms of simple
instructions better, whereas the CPU handles sequential problems with complicated control structures
better. Also, whereas the former has a very fast connection to its onboard memory, the latter has a
faster connection to the systems working memory (RAM), which is usually larger than the GPU’s
onboard memory (here, 32 GiB vs 2 GiB). In GPUs optimised for high performance computing this
can look very different and systems of multiple GPUs or CPUs pose even more aspects that need to be
considered, e.g. connection and load balancing between the nodes.

The motivation here was that a FFT is generally faster on a GPU than a CPU (it is a simple algorithm
of simple instructions). The implementation was straightforward done in the meta-language and
on-demand compilation system Reikna (Appendix B).

5.4. Speed Measurements
To evaluate the speed of the different methods a wave of 20 nm width and height (and sampled with
≈2000 px × ≈2000 px) was scattered at the specimen of Section 6.2 (with 44 k atoms) using the above
described algorithm. This happened on a system sporting an Intel Xeon E3-1270v3 @ 3.5 GHz quad
core (with Hyper-Threading Technology enabled) with 4 × 8 GiB (running at DDR3-2400 MHz CL11)
and a Nvidia GTX-760 with 2 GiB. The bunching in 𝑧 was activated the whole time, otherwise it
would take too long.

It should be noted that most of the operations where multi-threaded at low-level, thanks to the
virtue of Numpy (linked against the Intel MKL BLAS), NumExpr (although not using Intel VML) and
PyFFT (which uses the FFTW library).

Scenario Time taken in s relative speed Time spent on FFTs in s in %
baseline 4249 1 314 7

patching only 480 9 262 55
GPU and patching 166 26 NA NA

Figure 5.2.: Performance statistics with and without certain performance measures using the above
described parameters. The baseline already includes the bunching. The profiling information for the
tasks running on the GPU is not available.

The main benefit of the patching is the time saved from calculating the transmission function
in Fourier space, the reduction in time spent on FFTs is not that high. The implementation on
the GPU is then even faster by a factor of about three. With that and the bunching of atoms, a
single simulation with the sampling (2048 px)2 and ≈44 000 atoms takes ≈4 min. Compared to the
multislice implementation of the SEMI simulation software developed at the Triebenberg this is a
speedup of ≈602. Considering that a tilt series of 120 angles takes 8 h that speedup is essential.

2To compare the speed with a previously done simulation[17] the complexity of the SEMI simulation was assumed to scale
with the number of atoms and the complexity of the FFTs (u� log u� , with u� the number of pixels).
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6. Electron Tomography with a Fresnel
Propagator Kernel

In this section, the tomographic reconstruction based on the Rytov approximation is carried out for a
number of test cases and compared to the conventional ray projection tomography based on the PGA.
While the terms Rytov approximation and PGA per se stand for approximations they shall, by extent,
stand for the thereon based reconstruction techniques as well.
First, a short note about the relevant quantities should clarify some points. In both models the

effective potential 𝑉 (see Eq. (2.1)) is connected to the Rytov phase Λ (see Section 2.2) via the tensor
𝑇 , where all of these three quantities are complex-valued. Accordingly, they all have two components
which carry specific physical meaning and will be named accordingly, although the effective Potential
𝑉 is a scaled form of the “pure” electric potential and the absorbing potential is a statistical result
of the thermal diffuse scattering (see Section 2.4). The different meaning of the components of the
potential and the Rytov phase are summarised as follows:

electric potential Re 𝑉 : phase-shifting part of the potential, in this case the electric interaction
between electron wave and atom cores

absorbing potential Im 𝑉 : absorbing part of the potential, chiefly due to thermal diffuse scattering

amplitude Re Λ: logarithm of the amplitude of the electron wave

phase Im Λ: phase of the electron wave

The potential is given in Volts but without a detailed discussion of the theoretical expected value the
absolute value cannot be vouched for. Both components of the potential are expected to be positive,
because of the inherently positive electric potential of the atoms’ cores and the amplitude dampening
nature of the imaginary part (i.e. when multiplied with 𝑖 it should being smaller than 0, as it is the
logarithm of the amplitude). As a virtual comparison object the PGA reconstruction of Fig. 6.1 is used
giving a reference value for tungsten of 𝑉 = (700 + 𝑖150)V.

6.1. Single Atom
It is at first beneficial to consider a very simple system to confirm and illustrate the effect of using a
Fresnel propagation kernel instead of a simple ray in electron holographic tomography. To that end, a
single atom (of tungsten as a strong scatterer) is simulated in a small volume of 5 nm × 5 nm × 5 nm
at the same acceleration voltage of 200 keV and with the same sampling and preparation steps as the
nanotube specimen (see Section 6.4) considered lateron. Thus, a dataset of 120 waves (using the full
tilt range @ 3° increments) with a sampling of 120 px × 120 px is obtained. The focus of these waves
is set at the centre of the volume.

6.1.1. Centred Atom
The atom is positioned exactly at the centre of the volume and therefore always in focus. Thus,
propagation should play no role in this particular simulation.
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Figure 6.1.: Components of the wave function of a single W atom specimen in focus.

The wave, shown in Fig. 6.1, corresponds to the transmission function (Eq. (2.30)) of the single atom
and is exactly the same for all tilt angles. The interaction between the electron wave and the atom core
is a purely phase-shifting one, the considerably smaller amplitude contribution is due to the thermal
diffuse scattering and weaker by about the factor 5. Since the atom is always centred and quite small,
there should be next to no influence of the propagation and henceforth no difference between the two
methods.
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Figure 6.2.: The norm of the residual (i.e. the value of the objective function) during 100 iterations
of the LSQR algorithm. The problem does not involve any propagation effects and Rytov in itself is
more ill-conditioned so the considerably faster convergence of the PGA is as expected. The ultimately
lower residual in the Rytov case stems most likely from artefacts.

The Rytov case is per se more ill-conditioned than the PGA approach because the kernel has a
lateral extension. The slower speed of convergence of the Rytov approximation is thus as expected,
The PGA case converges quickly to a near constant value, meaning, that it is very slow to overfit the
values (even numerical noise can be “reconstructed” into artefacts). The Rytov approximation reduces
the residual further and seems to settle at about half an order of magnitude below the PGA.
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Figure 6.3.: Cross section of the reconstructed potential perpendicular to the tilt after 100 iterations.
The atom is reconstructed correctly, with the Rytov approximations throwing some slight artefacts
around the peak.

As seen in Fig. 6.3,both methods reconstruct the single atom peak as sharp as it is in the tilt series
with nearly the same absolute value. The Rytov approximation causes some slight artefacts (the
negative areas in around the peak), most likely a result of overfitting.

This is the best-case scenario for the PGA, without influence of propagation, and the PGA converges
very fast to its final value. It is, however, not that much faster than the Rytov approximation and
the results are effectively identical, even though the Rytov approximation begins to produce some
artefacts.

6.1.2. Off-centre Atom
To introduce propagation effects into the problem the single atom was shifted a mere 2 nm out of the
centre, so its position and the apparent defocus change over the course of the tilt series.
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Figure 6.4.: Sinogram of the middle slice (𝑥 = 0) as the object is rotated about 𝑦 by the angle 𝜃.
The sinusoidal pattern stems from the non-central position of the atom, which is at its maximum of
underfocus for 0° and at its maximum of overfocus for −180°.

The tilt series exhibits the expected propagation effects in the amplitude and the phase. The
amplitude is affected strongly in under- and overfocus, where the phase signal is mixed via the
imaginary component of the propagator as a positive term for the over- and a negative term for the
underfocus. Because the phase is so much stronger than the amplitude modulation (Fig. 6.1). The
mixing of phase into the amplitude is much stronger than the other way around, there the phase
mainly exhibits the broadening due to the real part of the propagator).
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Figure 6.5.: Fresnel propagation convolution kernel resolution limited to the sampling rate of the
reconstruction grid. The middle of the these images corresponds to the middle of the 𝑥𝑦-plane of the
reconstruction volume. This kernel was used in the reconstruction, the simulation used the Fourier
space form of the propagation.

The real part of the propagator (see Fig. 6.5) represents, how each component of the logarithm
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of the wave is mapped to its direct pendant (real to real, imaginary to imaginary). The imaginary
part maps each component to its opposite. The former is symmetric around the focal plane, whereas
the latter is anti-symmetric. This propagator is normalised and does not include the scaling of the
reconstructed potential.
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Figure 6.6.: The norm of the residual (i.e. the value of the objective function) during 100 iterations
of the LSQR algorithm. Although the Rytov approximation leaves a larger residual when in flattens
out, the advantage over the PGA is even larger than with the centred atom.

When analysing the convergence behaviour of the two techniques (see Fig. 6.6) it can be seen that
the starting point is nearly the same as in the previous case of a centred atom but the final levels of
residual are considerably higher. The Rytov approximation performs even better against the PGA,
converging just as fast and fitting the data much closer than the PGA.
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Figure 6.7.: Cross section perpendicular to the tilt axis of the reconstructed, complex valued,
potential after 100 iterations. The Rytov approximation reconstructs the atom in a very narrow peak,
whereas the PGA exhibits an elongation perpendicular to the direction of the greatest displacement
and, therefore, the greatest propagation distances.

While the atom is reconstructed clearly in a single peak with both methods, the PGA has an
elongation perpendicular to the direction of displacement from the centre. The PGA is quite good,
considering it can not model the strong propagation effects visible in Fig. 6.4. These effects are
compensated by the full 360° tiltseries used here. The opposing projections, which the PGA treats as
identical, are effectively averaged (their contradicting part is suppressed by regularisation), which
partially compensates the propagation effects. Due to the position of the focal planes (at the centre
of the specimen) the anti-symmetric part of the propagator is compensated, so, from the view of
the PGA, only the real component remains. This component smears out the atom potential mostly
perpendicular to the direction of greatest defocus, which explains the elongation.
The Rytov approximation concentrates the information in a very sharp peak, with only a slight

elongation in horizontal direction. It is near the reference value for the peak height, with the imaginary
component surpassing this value. Whether this stems from an artefact or is the result of a stronger
concentration in a single pixel cannot be said considering the peak is narrower than in Fig. 6.4 but
there are some slight artefacts around the peak.

6.2. WS2 Nanotube
In the beginning of this work it was envisaged to produce an experimental proof of concept to whether
improved tomographic reconstruction models would allow atomic resolution in Electron Holographic

25



6. Electron Tomography with a Fresnel Propagator Kernel

Tomography. To this end, contact was made to Prof. Reshef Tenne of the Weizmann Institute, Revohot,
Israel, who contributed greatly to the field of inorganic nanotubes1. Nanotubes are very appropriate
specimen for high resolution tomography, since they are very stable (mechanically and in terms
of bonding of the individual atoms) and offer a suitable size (tens of nanometers) for a relatively
small thickness (in terms of atomic layers), furthermore they are easy to mount. When investigating
nanoparticles the problem of mounting and surface mobility of the atoms might pose considerable
challenges.

The Weizmann Institute graciously supplied us with two powder samples of tungsten disulfide nan-
otubes. In preliminary studies, the tubes proved to be too large (diameter ≈80 nm) to fit in the field of
view of electron holography at highest resolution (≈40 nm). While smaller WS2-nanotubes have been
synthesised2, we were unable to obtain an usable sample. The WS2-nanotube shall nonetheless serve
as the test specimen for this work. For the moment, the tilt series cannot be recorded experimentally
and, therefore, has to be simulated.

6.3. Specimen
Planar tungsten disulfide forms a layer of tungsten between two sulfur layers with a hexagonal cell
structure3. These WS2-layers are then stacked together with an approximate layer distance of 6.18 Å
due to, compared to the in-layer binding, weak van-der-Waals binding. The chirality of the layer
is chosen close to the armchair-configuration. The 𝑛-𝑚-notation of carbon nanotubes will be used.
Going from a 44-44-layer (diameter: 7.7 nm), using the aforementioned layer distance of 6.18 Å, the
layers 53-49 and 65-51 (with the diameters 8.9 nm and 10.1 nm) where chosen as can be seen in Fig. 6.8.
For a given length of 15 nm this gave ≈44 000 atoms in the simulation.

Figure 6.8.: Tungsten disulfide nanotube with three layers of nearly armchair-configuration; the
outer diameter is ≈10 nm

1[24] Panchakarla et al. 2014 . “Nanotubes from Misfit Layered Compounds”.
2[4] Brüser et al. 2014 . “Single- to Triple-Wall WS2 Nanotubes by […] Plasma Ablation […]”.
3[30] Seifert et al. 2000 . “On the electronic structure of WS2 nanotubes”.
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6.4. Simulation and Preparation
This tube was embedded in a 20 nm × 20 nm field of view and the scattering of a plane wave (sampled
with 2048 px × 2048 px) was simulated using the multislice algorithm for the full tilt range of 𝜃 at 3°
intervals. The waves are focussed on the middle of the specimen so the overall extent of the Fresnel
kernel (which grows in radius with the square root of the propagation distance) is minimal.
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Figure 6.9.: Object exit wave of tungsten disulfide nanotube backpropagated to the middle of the
specimen with the full resolution of the multislice simulation. The range of the amplitude has been
cropped to exclude some outliers.

The scattering effect of the specimen is rather strong (strong phase and amplitude signal) at the
sides, where the walls are viewed edge-on and have the highest effective thickness. This is especially
strong at the inner wall, which is also imaged in a systematic direction, where the atoms form a
(curved) column. Furthermore, due to the choice of focal plane, some atoms are in-focus (as in the
left sub-pictures) and appear quite clearly in the phase. Otherwise, there are long-range variations,
especially in the amplitude, which can be attributed to a Moire pattern effect; the lattice structures of
the walls are rotated against each other (the outer wall 4° and the middle wall 1.3° against the inner
one) so there are regions where the atoms are aligned behind each other and some where they are not.
The range of the phase values is inside a 2𝜋-interval so no unwrapping was necessary.
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Figure 6.10.:Dampening envelopes for the parameters𝐶u� = 2.3 mm, 𝜎u� = 0.3 eV and𝜎u� = 20 pm.
The highlighted area covers the spatial frequencies sampled by the reduced wave.

The resolution of this wave (as implied by the sampling) of ≈10 pm, which is well below the limit of
any TEM today. The mechanisms in the TEM that limit the resolution are chiefly called aberrations and
are modelled as envelope functions for the spectrum of the wave (or the corresponding point spread
functions in real space). Today, the fundamentally limiting aberrations are image spread and the
chromatic aberration (at least for TEMs without a achromatic corrector, of which there are currently
two) and only those will be modelled here. For that, the following, rather generous, microscope
parameters are assumed: 𝐶u� = 2.3 mm, 𝜎u� = 0.3 eV4 and 𝜎u� = 20 pm5. Applying these envelopes
and selecting the centre 15 nm × 15 nm, the needed sampling (as indicated in Fig. 6.10) can be reduced
to 360 px × 360 px.
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Figure 6.11.: Simulated image wave of tungsten disulfide nanotube with reduced resolution and
field of view. No noise was simulated. The focal plane has been set to the middle of the specimen.

4These are generic values for a new aplanatic corrected TEM and for a cold field emission gun.
5as measured in [ 13] Haigh et al. 2009 . “Optimal tilt magnitude determination for […] wave function reconstruction”.
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This is the starting point for the reconstructions. But beforehand we would like to discuss the
validity of the Rytov approximation in terms of this problem.

6.4.1. Validity of the Rytov Approximation
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Figure 6.12.: Comparison of the magnitude (in Å−2) of the two relevant terms of the Rytov approx-
imation Eq. (2.16). The terms are evaluated in the image wave, which had been propagated back into
the middle of the specimen. The colour scale is cropped to the relevant region.

The rather unmotivated neglection of the quadratic gradient term from Eq. (2.16) should at least be
evaluated numerically for the given simulated wave function to give some indication whether the
Rytov approximation may be applicable. The Laplace term is overall larger than the gradient term but
at the sides, where the atoms are in focus, and especially at the inner wall, which is viewed along atom
columns there, the gradient term becomes very large. Because of this, the gradient term becomes
larger than the Laplace term for small regions of wave and it is not possible to say at this point whether
that has a significant influence. Imaging along atom columns might exacerbate the size of the gradient
term, but due to the other walls that cannot be deduced clearly from this image.

The application of the Rytov approximation is, therefore, somewhat justified but not in so far as the
presence of artefacts can be excluded categorically.
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6.5. Reconstruction
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Figure 6.13.:Residual (the value of the objective function) during 20 iterations of the LSQR algorithm.

The convergence of the residual Fig. 6.13 shows that, similar to the single atom cases, the Rytov
approximation converges in some region slightly slower than the PGA but matches the tiltseries much
closer. While he PGA flattens out after just six iterations the Rytov approximation overtakes it at that
point and has gained half an order of magnitude in the residual by iteration 20. This is, however, at
the expense of over 40 times the time needed per iteration than the PGA (27.3 min vs. 0.6 min, with
kernels of the size 21.4 GiB and 0.8 GiB).
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Figure 6.14.: Cross section (perpendicular to the tilt axis) of the real component of the reconstructed
(effective) potential of a nanotube after 5, 10, 15 and 20 iterations using the Rytov method. This
shows the appearance of the features as the algorithm converges.

In the first iterations the outer shape of the sample is reconstructed and the atomic structures begin
to emerge. The constant background is a distinct artefact, which is eliminated by the tenth iteration
and and the atoms progressively sharpen till the 20th iteration and possible further on.
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6.6. Evaluation
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Figure 6.15.: Cross section (perpendicular to the tilt axis) of the real component of the reconstructed
(effective) potential of a nanotube after 20 iterations. The Rytov approximation shows much narrower
peaks than the PGA and a much lower level of artefacts.

Both methods are capable of resolving the atoms of the tubes, not only the tungsten atoms, but also
the sulfur atoms. The Rytov approximation resolves them as near point-like peaks and the PGA as
elongated blobs and strong artefacts (especially in the outer wall, see the left and the right subpicture)
make some atoms in the PGA not discernible any more. The Rytov approximation clearly fares much
better as every single atom peak has roughly equal height (for tungsten and sulfur respectively), which
is for tungsten with ≈600 V slightly lower, than the value from the single atom simulations. The PGA
is nowhere near that value, but as the peaks are wider they may have the same integrated potential.
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Figure 6.16.: Cross section (perpendicular to the tilt axis) of the imaginary component of the
reconstructed (effective) potential of a nanotube after 20 iterations. Both methods perform nearly
equally well, apart from a slightly higher level of artefacts in the PGA and a much higher absolute
signal in the Rytov approximation.

The imaginary part of the reconstructed potential exhibits narrow tungsten atom peaks for both
methods. The PGA has a slightly higher level of artefacts and much lower signal than the Rytov,
where some peaks have higher values than the reference case Fig. 6.1 (which could bee seen at the
off-centre atom as well).
For a better (or rather a different) evaluation the reconstructed potential is interpolated onto a

cylinder surface with a certain radius so the tube is unrolled into a sheet, an azimuthal cross section
so to say.
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Figure 6.17.: Real component of the reconstructed potential (after 20 iterations) unrolled at the
tungsten layer of the inner wall (a diameter of 7.7 nm). The crosses mark the ideal atom positions in
a 2 nm wide band.

Again, the Rytov approximation delivers well condensed high peaks for the atoms, whereas the
PGA only has considerably larger and elongated peaks. The atoms are at the correct positions and the
chirality of the lattice is certainly visible in both.
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Figure 6.18.: Real component of the reconstructed potential (after 20 iterations) unrolled at the
tungsten layer of the outer wall (a diameter of 10.4 nm). The crosses mark the ideal atom positions
in a 2 nm wide band.

The PGA raises some problems in the outer wall with long range variations in the reconstructed
potential. In some regions (right subpicture) the atoms have considerably lower signal than in others
(middle subpicture) and a distorted peak shape. Nonetheless, all atoms are reconstructed at the correct
positions. The Rytov approximation has no such problems. Overall, the maximum signal levels are
comparable to the inner wall.
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Figure 6.19.: Real component of the reconstructed potential (after 20 iterations) unrolled at the
inner sulfur layer of the outer wall (a diameter of 10.1 nm).

The sulfur atoms are much harder to reconstruct than the tungsten atoms, owing to their charge
of 16 versus 74 for tungsten and the reduced height of the potential of about 2.5 (using the Wentzel
potential). Nevertheless, the Rytov approximation shows some variations in the height of the peaks
and some are a little to high compared to the tungsten atoms. The PGA is much worse, with some
atoms barely discernible from the background and some much too high compared to the tungsten
atoms. The inner layers of sulfur atoms are overall reconstructed better.

6.7. Effects of Noise
To study the reconstruction under near-to-experimental conditions some noise was added to the
simulated waves using the Lenz model67, which comes down to a Gaussian distribution centred
around the ideal value (for both the real and the imaginary component) of every pixel with a standard
deviation 𝜎 that depends on the intensity in that pixel. For these waves an electron dose was assumed
that resulted in a mean 𝜎 of ≈0.09 relative to the mean amplitude.

6[18] Lichte et al. 1987 . “Electron Noise In Off-Axis Image Plane Holography.”.
7[28] Röder et al. 2014 . “Noise estimation for off-axis electron holography”.
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Figure 6.20.: Object exit wave function, focussed on the middle of the nanotube with noise of a
mean standard deviation of ≈0.09 using the Lenz model.

The influence of the noise is more noticeable in the amplitude than in the phase. This is partially
caused by the logarithmic scaling of the amplitude but mainly because the additive noise is transferred
less in the phase and more in the amplitude of the wave function.
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Figure 6.21.: Residual (the value of the objective function) during 20 iterations of the LSQR algorithm
for the tilt series with added noise. For comparison the lines from Fig. 6.13 are included as well.

The noise causes a mere displacement of the convergence curves, considering that the distance
between the noised and the noise-free reconstructions is the same for the two methods. It can be
concluded, that for the moderate noise levels assumed here, the Rytov approximation is roughly
equally well conditioned as the PGA and, although noise amplification is always a problem, it will not
be worse than with conventional tomography.
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Figure 6.22.: Cross section (perpendicular to the tilt axis) of the real component of the reconstructed
(effective) potential of a nanotube after 20 iterations of PGA, 10 iterations and 20 iterations of Rytov.

The reconstruction is seemingly unaffected by the noise, even the height of the atoms peaks is about
the same as in the noise-free case.
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Figure 6.23.: Cross section (perpendicular to the tilt axis) of the imaginary component of the
reconstructed (effective) potential of a nanotube after 20 iterations of PGA, 10 iterations and 20
iterations of Rytov.

In the amplitude the noise transfer is noticeable with a higher level of background noise, although
there is seemingly little difference between the two methods here as well.

Conclusively, the addition of moderate noise does not affect the reconstruction in any serious way
and there is no reason, on these grounds, to expect the noise amplification behaviour of the Rytov
approximation based tomography to be much different from that of conventional tomography.
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7. Summary and Conclusion

In this work, the inclusion of Fresnel propagation into the model used for electron holography is
proposed. In combination with the Rytov ansatz to the perturbation problem for the Helmholtz
equation (which adequately describes electron scattering under some assumptions) it yields a linear
model between the electron wave and a given object potential. Or rather, it yields three approximations
for three scattering regimes: a complex-valued phase grating approximation for axial scattering,
Fresnel propagation for paraxial scattering and Huygens propagation for the non-paraxial scattering.
The Rytov approximation pertains to an unconventional manifestation of the neglection of multiple
scattering (the neglection of the gradient-term in the Rytov approximation, see Section 2.2 and
Section 6.4.1), interestingley by neglecting a purely wave-dependent term (independent from the
specimen potential). This could give insight into the trust region of the single-scattering approximation,
maybe leading to practical a priori criteria. The Rytov approximation itself is not the end for this
approach, the neglected term could be approximated further (e.g. by treatment as a perturbation),
which may lead to still better approximations.

Numerically efficient algorithms for the computation of the Fresnel convolution kernel, the con-
struction of the projection tensor and the tensor multiplication have been implemented. The size
of the tensor is optimised to its minimal size by using translation symmetries of the discrete repre-
sentation of the convolution kernel. Thus, it was possible to keep it small enough to fit the tensor
for a realistic example ((360 px)3 → (360 px)2 × 120 tilt angles) into the memory of a conventional
desktop machine (with 32 GiB of RAM). The code itself is as optimised as it can be using generic
methods and relying on the automatic optimisation routines of a modern compiler.

For the simulations of non-periodical (rather) large specimen a multislice algorithm for large fields
of view was implemented, using a number of adaptations for such problems (bunching the atoms
along 𝑧 and computing the transmission function in subregions only), and, ultimately, moving it
onto the graphics card. The focus on parallel computing and the reasonably good general comput-
ing performance of even a consumer grade graphics cards makes the speedup over the CPU quite
impressive.
For the single atom specimen the general considerations of moving towards a Fresnel kernel

for tomography are exemplified. It converges slightly slower than the conventional reconstruction
method for both cases but eventually reaches a closer fit. In the case of the centred atom this stems
from artefacts, but in the other case the atom is reconstructed very sharp, whereas the conventional
tomography only produces a wide and elongated peak.

A tungsten disulfide nanotube with three walls and a diameter of ≈10 nm is simulated and recon-
structed both with the phase grating approximation (PGA) and the paraxial Rytov approximation.
The latter converges considerably faster and minimises the residual further than the former. In the
reconstruction all atoms are appear as near point-like peaks, even the sulfur atoms (though they show
some peak-height variations in the outer layers). Thus, it performs much better than the PGA whose
atom peaks are much wider and the level of artefacts in the reconstruction is noticeably high, to the
point that some atoms can barely be distinguished from the background, especially sulfur atoms.
The noise transfer characteristics of the proposed technique seem to be the same as those of

conventional tomography, at least for the tested case of moderate Poisson noise. This bodes well for
an experimental realisation; although other problems, such as misalignment, will play a significant
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role there.
The Rytov approximation shows a remarkable capability to incorporate propagation effects into a

linear model. The step from traditional linear models, like the Born Approximation, which are linear
in the wave itself, to a model, which is linear in the logarithm of the wave, seems to be very promising
as a linear model for dynamic scattering. The Rytov approximation, particularly the neglected term,
should be investigated further to ascertain the characteristics (e.g. how multiple scattering effects
look like in the Rytov approach) and the limits of this approximation. Furthermore, the neglected
term itself can be approximated further: as a perturbation, in a linearised form or in a non-linear
tomographic reconstruction technique.
It was, regrettably not possible to obtain a suitable sample for an experimental proof-of-concept,

which would certainly give these gains more weight, so this will certainly be the next step along this
path.
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A. Programme Overview

A. Programme Overview

The program is contained as a set of interpreted scripts with a few segments of non-interpreted source
code, which is compiled on demand by NumExpr, Cython or Reikna. The main structure is provided
by Python and the whole programme or parts of it can be imported as a simple module. At the highest
level it is split into four parts Scattering, Tomography, Mathematics and Utilities.
The source code is openly available at the GitHub repository https://github.com/JKrehl/

Electrons and licensed under the MIT License.

Scattering Scattering simulation framework for multislice and multislice-like techniques.

Algorithms The three implemented techniques (multislice, projection and single scattering) are
implemented rather similar: the cloud of atoms is ordered in 𝑧 direction, a list of operators
(propagators, transmission functions, …) is created, ordered in 𝑧 and then successively
applied to the given entry wave. They are abstracted against the choice of propagator,
transmission function and atom potential parametrisation.

Operators Implementations of both propagators and transmission functions as well as basic
classes for the chaining of the operators.

Propagators Four different flavours of Fresnel propagation are implemented: three in
Fourier space (one normal, one with padding and one normal on the GPU) and one in
real space (via the convolution with a Laplace kernel).

TransferFunctions All transmission function generators model the phase shift of the
atom’s core and the thermal diffuse scattering smearing of that potential. The four
flavors are the combinations of normal and the patched transmission function compu-
tation both on CPU and GPU.

Potentials base class for an atomically sparse potential (essentially a list of atoms) and atom potential
parametrisations

WeickenmeierKohl the parametrisation proposed by A. Weickenmeier and H. Kohl1

WeickenmeierKohl_FSCATT the parametrisation implemented by A. Weickenmeier and H.
Kohl in the FSCATT2

Kirkland the parametrisation from E. Kirkland3

PengDudarev the parametrisation of L.-M. Peng, G. Ren, S.L. Dudarev and M.J. Whelan4

Tomography A framework for tomographic reconstruction using a model of (symmetry reduced)
precomputed tensors. A kernel of minimal size is computed and then inserted into a projector
object, which mimics the reduced symmetries. This can then be inserted into a solver for linear
least-squares problems.

1[34] Weickenmeier and Kohl. 1991 . “Computation of absorptive form factors for high-energy electron diffraction”.
2[35] Weickenmeier . FSCATT .
3p 203ff [ 16] Kirkland. 1998 . Advanced Computing in Electron Microscopy.
4[25] Peng et al. 1996 . “Robust Parameterization of Elastic and Absorptive Electron Atomic Scattering Factors”.
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A. Programme Overview

Kernels The kernel class implements a memory managing object which handles arrays (and
objects of any kind) in memory and on disk (and loaded on demand). Two kernels are
implemented, the normal ray kernel for conventional tomography and a Fresnel propagator
convolution kernel for more Fresnel propagator tomography. While the former is in-
plane (4-dimensional) the latter is semi-in-plane (reduced 5-dimensional) as described in
Chapter 4.

Projectors expansion of the kernels of minimal size to the full extent (in-plane or three-
dimensional) by looping over the coordinates

Solvers adapted copys of the LSQR and LSMR implementations of SciPy

Mathematics collection of mathematical functions, some of which became superfluous during
development

FourierTransforms abstraction layer to the pyFFTW package including functions for forward
and inverse transforms, both in informatics and mathematical convention concerning
centre position, calculation of inverse coordinates and centre shifting routines

CoordinateTrafos classes for 2D and 3D coordinate base transforms in many different nota-
tions (e.g. quarternions, (𝑛 + 1)-matrices, axis and angle)

LaplaceKernel creation of Laplacian convolution kernels with rotationally uniform response

VolumeTrafo volumetric coordinate transformation with linear interpolation

Interpolator2D linear interpolation of values from a regular gridded dataset

Utilities AtomsViewer simple OpenGL-based viewer for atom clouds

CompressedSparse first experimental steps towards converting the coordinate format of the
sparse matrices into a partially compressed format

Physics constants and expressions for e.g. converting between energy and wave number

SlicePlayer view 3D array as 2D slices

Magic functions of mainly programming interest

Progress jupyter widgets progress bar

Colourmap symmetric norm for diverging colourmaps

ImExport export matplotlib images with colourbar, colour limits and extent for use in PGFPlots
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B. Compendium of used Software
This shall serve as a short overview of software used in this work, to illustrate the range of necessary
components, maybe inspire the reader searching for a tool (he could not imagine existing), a problem
(he could not imagine solved) or a stroke of genius (he took for granted) and last but not least to
acknowledge the work of their developers. The following are mentionable in their own right but not
essential to this thesis: Jupyter, PyCharm, Eclipse, git, Gentoo Linux, Zotero, matplotlib, VisPy, the
Intel Math Kernel Library, LaTeX, PGF, PGFPlots.

The Coding Stack
From high-level to low-level these tools allow to write fast, what is not worth optimising (as its
complicated, abstract or run seldom) and to optimise what takes much time. This added versatility
makes it much faster to write powerful code.

Python In the field of interpreted scripting languages Python has established itself as the mainstay in
scientific and performance computing. It has an easy yet powerful syntax, easy interoperability
down to its base-layer (C) and a huge collection of available libraries.

Cython An language extension for Python including C/C++-like directives including an automated
build system (building libraries on demand). Interopability with both Python and native C/C++
makes it the perfect glue.

C/C++ De-facto standard for low-level programming (although others are persistent) very powerful
in abstract programming (templates, the Standard Template Library, compiler directives, …).
Here only needed to expose certain special capabilities to Cython.

Automatically Optimised Libraries
One main advantage of the higher calculation power of modern computers (from a scientific program-
mers perspective) is the sudden feasibility of self-optimisation. A lot of calculations can be expended
on the computer optimising libraries for itself and for each other.

NumPy An extension of Python for working with n-dimensional arrays featuring a large collection
of high-level, but highly-optimised, functions. It is a must for scientific computation, although
it is interoperable with almost any other library using arrays thanks to the abstracted array
interface of Python.

SciPy Collections of low-level-optimised functions and algorithms which where deemed to be of too
narrow an interest to be included in NumPy.

NumExpr Automatic build system for short numerical expressions, which are compiled in the
background and parallelised.

GCC The Gnu Compiler Collection includes compilers for, among others, C and C++, which are far
developed and automatically optimise code on a machine level.
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Interfaces
Interfaces to both the GPU and the data storage.

Reikna An automatic build and binding system for GPU-code as well as an abstraction layer coupled
with a templating system for meta-programming for both PyOpenCL and PyCUDA, the Python
bindings for the two big GPU computation systems OpenCL and Nvidia CUDA. While rather
inelegant it allows uncomplicated access to the capabilities of the GPU, even the full capabilities
when foregoing the interopability between PyOpenCL and PyCUDA.

h5py Interface to the hdf5-implementation of the Hierarchical Data Format, a general-purpose and
widespread file format for storing complicated structures of large data sets.

pyFFTW Python bindings for the FFTW library for self-optimising Fast Fourier Transforms.
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