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PREFACE

Today, virtually every company world-wide is connected to the Internet. This wide-spread

connectivity has given rise to sophisticated, targeted, Internet-based attacks. For example,

between 2012 and 2013 security researchers counted an average of about 74 targeted at-

tacks per day. These attacks are motivated by economical, financial, or political interests and

commonly referred to as “Advanced Persistent Threat (APT)” attacks. Unfortunately, many of

these attacks are successful and the adversaries manage to steal important data or disrupt

vital services. Victims are preferably companies from vital industries, such as banks, defense

contractors, or power plants. Given that these industries are well-protected, often employing

a team of security specialists, the question is: How can these attacks be so successful?

Researchers have identified several properties of APT attacks which make them so efficient.

First, they are adaptable. This means that they can change the way they attack and the tools

they use for this purpose at any given moment in time. Second, they conceal their actions

and communication by using encryption, for example. This renders many defense systems

useless as they assume complete access to the actual communication content. Third, their

actions are stealthy — either by keeping communication to the bare minimum or by mimicking

legitimate users. This makes them “fly below the radar” of defense systems which check for

anomalous communication. And finally, with the goal to increase their impact or monetisation

prospects, their attacks are targeted against several companies from the same industry. Since

months can pass between the first attack, its detection, and comprehensive analysis, it is often

too late to deploy appropriate counter-measures at businesses peers. Instead, it is much more

likely that they have already been attacked successfully.

This thesis tries to answer the question whether the last property (industry-wide attacks)

can be used to detect such attacks. It presents the design, implementation and evaluation of

a community-based intrusion detection system, capable of protecting businesses at industry-

scale. The contributions of this thesis are as follows. First, it presents a novel algorithm

for community detection which can detect an industry (e.g., energy, financial, or defense in-

dustries) in Internet communication. Second, it demonstrates the design, implementation,

and evaluation of a distributed graph mining engine that is able to scale with the throughput

of the input data while maintaining an end-to-end latency for updates in the range of a few

milliseconds. Third, it illustrates the usage of this engine to detect APT attacks against indus-

tries by analyzing IP flow information from an Internet service provider. Finally, it introduces

a detection algorithm- and input-agnostic intrusion detection engine which supports not only

intrusion detection on IP flow but any other intrusion detection algorithm and data-source as

well.
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Figure 1.1: Number of incidents reported to US-CERT between 2006 and 2012 [Wil13]

The Internet has become a major driving force for economies around the world. Between 2006

and 2011 alone the Internet was responsible for 21% of the gross domestic product (GDP)

growth1, creating 2.6 jobs for every single job lost (due to the rise of the Internet), as reported

by McKinsey [Rau+11]. The study also finds that 75% of Internet impact on economies arises

from traditional industries and that businesses making heavy use of web technologies grow

and export twice as much as others. Given these observations, it comes as no surprise

that today virtually every company world-wide is connected to the Internet. Unfortunately,

this connectivity also exposes the companies to a vast array of online security threats. Even

more so because running their daily business on the web requires their business data to be

accessible from the Internet. This creates a financial incentive to attack these companies —

customer credit card information, for example, can be sold on the black market or used for

blackmailing. It also creates an economical incentive — industrial espionage, while not new,

is now expanding into cyberspace. Finally, it creates a political incentive — terrorists and even

states use cyberattacks to enforce their political agenda.

A report published by the United States Government Accountability Office [Wil13], offers

a glimpse of how severe this problem has become. The authors counted the number of

incidents reported by US-based federal agencies. From 2006 to 2012 alone this number has

increased by 782%, as shown in Figure 1.1. While 37% of the incidents were still under

investigation at the time the report was published, all but 7% of the remaining incidents were

successful attacks.

Now the question is: How does such an attack work? In order to gain access to a system,

attackers must find a vulnerable part in the IT infrastructure that they can exploit. Such

vulnerabilities may be found in the software-stack as programs contain bugs or have been

misconfigured, for example. Vulnerable are, however, also the humans who operate the

software-stack for their daily business: For instance, email attachments are opened without

authenticating the sender or prior virus scans. In fact, targeting people’s carelessness has a

long and often successful tradition in human history and mythology. For example, after the

ten year siege of Troy during the Trojan War, the Greeks built a large wooden horse with a

hidden force of soldiers inside. They withdrew their remaining forces, seemingly terminating

1The study selected 13 countries which account for more than 70% of the global GDP.
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1 Introduction

the siege. But they left the large wooden horse — the perfect war trophy in the eyes of

the triumphant Trojans. The Trojans pulled the horse inside the city walls of Troy and with

it their inevitable defeat. The very same tactic is used by attackers in cyberspace today:

Since it is hard to break into a computer system from the outside, they try to make insiders

(e.g., employees of a company) their involuntary allies — for example, by tricking them into

executing malicious email attachments. Such a malicious attachment is accurately referred to

as a “Trojan” or “Trojan Horse”.

Since neither software nor humans can be guaranteed to be invulnerable, IT infrastructures

are secured by a multitude of defense mechanisms, such as firewalls to restrict the number

of open ports or credential management to restrict the accessibility of valuable assets to a

small number of users. However, all defense mechanisms are ultimately part of the software

stack and operated by humans and, therefore, suffer from the same fundamental problems.

It is hence desirable to at least detect when an attacker has compromised a part of the

infrastructure in a timely manner in order to deploy adequate countermeasures. The research

area that deals with detecting that a part of a system has been compromised is called intrusion

detection.

1.1 OVERVIEW

An Intrusion Detection System (IDS) “[. . . ] discriminates intrusion attempts and intrusion

preparation from normal system usage” [Hal95]. These systems are based on the hypothesis

that security violations can be detected by monitoring certain aspects of the system [Den87].

Such aspects range from network traffic to OS-level events (e.g., system-calls) to the data,

stored on disk, or a combination of those resulting in a manifold of different approaches.

In order to organize these different approaches into a common framework, Reilly and Still-

man [RS98] proposed the Common Intrusion Detection Framework (CIDF). Among its sug-

gestions, two have since influenced the classification of research contributions in the field of

intrusion detection. First, they suggest to distinguish IDS by where events are monitored. Re-

lated work mostly concentrates on either network events (Network-based Intrusion Detection

— or NIDS), changes to files on disk (Storage-based Intrusion Detection — or SIDS), or changes

on the host operating system itself (Host-based Intrusion Detection — or HIDS). Second, they

suggest to further distinguish by how these systems analyze such events. Here, the research

community is divided between signature-based analysis, which searches for pre-defined pat-

terns in events, and behavior-based analysis, which aims at modeling normal system behavior

(e.g., by means of machine learning).

A rough overview of this classification is given in Figure 1.2. Unsurprisingly, all design

choices come with benefits and drawbacks. Here, we give some examples. While signature-

based IDS such as Snort [Roe99] detect known vulnerabilities reliably, they fail at detecting

previously unknown attacks. Behavior-based IDS are not restricted to detecting known at-

tacks, but suffer from an inherently high false-positive rate, preventing their adoption in the

industry [SP10]. Host-based IDS can monitor a vast array of events - going as far as creating

normal usage patterns on a per-user basis [YD03]. However, as we will show, once attack-

ers gain control over a computer, they may manage to shut down a host-based IDS before

it can detect the intrusion (e.g., Stuxnet). Network-based IDS are hard to attack since they

are usually running on a different machine, but they can only act on network events. Finally,

storage-based IDS [Pen+03] can directly operate on a storage device and are therefore hard

to tamper with. However, they are restricted to storage-events only.

The remainder of this chapter is concerned with examining some recent high-impact attacks

to understand whether there are important commonalities among them that can be of use

for our analysis. These commonalities guide the selection of the security challenges which a

community-based IDS needs to solve. This is followed by a presentation of an architecture

4
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Figure 1.2: Intrusion Detection Overview

for a community-based IDS tackling those security challenges. The main contributions of this

thesis conclude this chapter.

1.2 SECURITY THREATS

Wuesst and Candid [Wue14] monitored targeted attacks worldwide in a period from July

2012 to June 2013. The study, published by Symantec, observed an average of 74 of such

attacks per day with the most common targets being the government/public sector, directly

followed by the energy sector. From their analysis, the authors conclude that cyberespionage

and sabotage attacks are becoming increasingly common. However, even more worrisome

is their statement that these attacks also become increasingly more sophisticated and that

individual campaigns vary significantly in exploited vulnerabilities and malware in use.

Such targeted and sophisticated attacks are classified as Advanced Persistent Threat (APT)

attacks [Bej10]. To understand more precisely what sets them apart from ordinary attacks, we

use the definition of an APT attack as proposed by Juels and Yen [JY12]. They divide an APT

attack into four different stages:

1. Social Engineering: Instead of directly targeting the IT infrastructure itself, attackers first

target the humans behind those systems by researching their social background and

crafting highly personalized phishing emails, so called spear phishing [Hon12]. Although

these emails are often considered trustworthy by the receiver, they contain malware -

either directly as attachment or by linking to websites containing malware. An example

is given in Figure 1.3.

2. Command-and-Control: The malware usually opens a backdoor on compromised ma-

chines which opens those machines to remote control from a command-and-control

server.

3. Lateral movement: The attacker uses the compromised infrastructure to spread the

infection further. This may be facilitated by using stolen credentials, elevated privileges,

or by exploiting software vulnerabilities.

4. Data exfiltration: Finally, the attacker downloads the desired data to the command-and-

control server. To conceal the action the data is compressed and encrypted.

5



1 Introduction

In the end, Juels and Yen summarize their definition in a single statement: “An APT isn’t a

playbook. It’s a campaign” [JY12]. This refers to the fact that APT attacks are not automated

and, therefore, need a command-and-control facility in order to complete their objective. As

we will see, many of the recent high-impact attacks classify as APT attacks. After looking

closer at some of them, we will extract commonalities among them which will guide the

design of our system.

Figure 1.3: Example for a spear-phishing email which was involved with the “Winnti” attacks.

The picture is taken from the Kaspersky Labs report [Lab13].

1.2.1 ATTACKS AGAINST THE CHEMICAL INDUSTRY [CO11]

The “nitro attacks” are a set of attacks against the chemical industry in the United States.

These attacks started in late July and continued into mid-September 2011. Their goal was

to download intellectual property. To this end, the attackers carefully crafted spear-phishing

emails in order to trick employees into opening a malicious attachment. By opening the attach-

ment, a malware was installed and this malware then opened a connection with a command-

and-control server. The connection was encrypted to conceal the attack and used port 80

since most firewalls allow traffic through this port. The information exchanged contained de-

tails about the network the infected host was connected to in order to support the lateral

movement. It was also possible to receive new instructions from the command-and-control

server over this connection. The initial attack was launched from a VPS (virtual private server)

in the US, registered with a static IP. This IP also hosted one of the command-and-control

servers.

“This attack campaign focused on the chemical sector with the goal of obtaining

sensitive documents such as proprietary designs, formulas, and manufacturing

processes.” [CO11]

1.2.2 ATTACKS AGAINST THE ENERGY INDUSTRY [Wue14]

In recent years there have been several attacks against the energy industry. Even now, as

of writing this thesis, Reuters quotes the FBI on warning government and energy agencies

about an ongoing highly sophisticated, targeted attack [Fin+14].

Researchers from Symantec have looked at the history of such attacks [Wue14]. In particular

they investigated the three most sophisticated and damaging attacks: Stuxnet, Night Dragon

and Shamoon/Disttrack.
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STUXNET

The first version of the command-and-control servers of Stuxnet were registered in November

2005 while the first appearance of the malware itself was in November 2007. Lateral move-

ment was difficult as its main target, industrial control systems, are rarely connected to the

Internet. Therefore, Stuxnet was not only able to spread through the network but also through

storage media (e.g., USB). The ultimate goal was to sabotage gas pipelines and power plants.

To this end, it employed a vast array of attack vectors, such as zero-day exploits, rootkits,

detection evasion, code injection, network infection, peer-to-peer updates, and a command-

and-control interface. In fact, Stuxnet’s activity was monitored by wiretapping the encrypted

traffic to its command-and-control servers [FMC11].

NIGHT DRAGON

Night Dragon was an attack against global oil companies, directed at finding project and fi-

nancial details about oil and gas field exploration and bids. It started in late 2009 and was

discovered in 2010. The attackers first infected public facing web servers of the companies

and then used the infected servers to contaminate internal computers in order to advance to

the lateral movement stage. The attack was carried out through a trojan on infected computers

that communicated back to a command-and-control server in order to exchange information

and commands.

SHAMOON/DISTTRACK

The goal of Shamoon/Disttrack was to take down as many computers as possible. These

attacks took place in August 2012. It is assumed that the attackers were so called “hacktivists”

who use the impact of their attacks for political reasons. The attack consisted of a dropper, a

wiper and a reporter module. The dropper installed all necessary files and made sure it was

automatically started on each reboot. For lateral movement, it tried to copy itself to as many

network shares as possible. On a hard-coded date, the wiper would wipe the system’s hard-

disk. Subsequently, the reporter used HTTP/GET to sent the domain-name, the IP address

and the number of overwritten files back to the command-and-control server.

CARETO - THE MASKED APT

Careto [Lab14] was a sophisticated attack targeted at the government and the energy/oil sector.

It used spear-fishing to make victims click on infected websites, which in turn resulted in an

automatic download of malware. The malware collected files as well as VPN configurations,

SSH keys and additional private information, necessary for further spread and espionage.

It communicated with a command-and-control server through an encrypted channel. This

connection was used for data exfiltration. Moreover, Careto executed any set of instructions

coming from the command-and-control server.

All detected command-and-control servers had statically assigned IP addresses. While the

height of the attack took place in 2012, it was still ongoing in 2013. The first verified attacks

even date back as far as 2007. The malware exists for Windows as well as Mac OS X. There

are also malware-traces of Android, iOS and Linux, but Kaspersky was unable to retrieve

samples.

1.2.3 ATTACKS AGAINST THE DEFENSE INDUSTRY [Fis12]

While it is unknown whether this attack is still active, it was reported as ongoing in summer

2012 by security researchers. Similar to previous attacks, the adversaries sent spear-phishing
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emails to employees containing a malicious PDF attachment which is actually an executable.

This program reaches to a command-and-control server for instructions. In order to remain

undetected, the attackers gained control of servers in universities that are deeply involved with

DARPA research efforts. These servers were most probably used as proxies to the central

command-and-control server as they used a tool that bounces traffic between hosts (HTran2).

The attack was targeted at US government and defense contractors.

1.2.4 ATTACKS AGAINST THE ONLINE GAMING INDUSTRY [Lab13]

Kaspersky Labs uncovered a series of attacks (called “Winnti”) against online video gaming

servers. Their attention was first drawn to this attack in autumn 2011, although its first occur-

rences date back as far as 2010. As of spring 2013 the attack was still ongoing. Kaspersky

suspects a Chinese group is behind these attacks with the goal of stealing source code,

architectural design concepts, and digital certificates.

Interestingly, the authors note that while “[. . . ] it is tempting to assume that Advanced Per-

sistent Threats (APTs) primarily target high-level institutions: government agencies, ministries,

military and political organizations, power stations, chemical plants, critical infrastructure net-

works, and so on [. . . ] any company which hosts data that can be effectively monetized is at

risk from APTs” [Lab13].

The Winnti attackers managed to install the trojan on online game servers either by using

spear-phishing emails or by exploiting previously stolen digital signatures. The malware that

was installed on the servers allowed for complete remote control access and used a special

network driver to communicate to the command-and-control server. With that, its network

connections remained invisible to tools like netstat or tcpview. In order to evade detection

while communicating with the command-and-control server, messages were compressed,

omitting the compression-header for obfuscation, and in later versions the messages were

also encrypted. Message transmission was facilitated via TCP, using ports 53 (DNS), 80

(HTTP), and 443 (HTTPS). The actual examination of infected computers was carried out in a

completely manual fashion by the attackers using the command-and-control facility.

1.2.5 CARBANAK: ATTACKS AGAINST THE FINANCIAL INDUSTRY [Lab15]

Carbanak is an ongoing attack against the financial sector, targeting banks world-wide. It

uses spear-phishing emails to make victims open malicious attachments (usually MS Word

documents). Once a computer is compromised, the attackers install Ammyy, a remote control

software, or an ssh-server. Ammyy is preferred as it is also often used by administrators and is,

therefore, often white-listed in firewalls. Most networks were compromised for 3 to 4 months

until actual action was taken. During these months the attack is in the lateral movement phase

where the attackers try to compromise services or devices that are directly involved in financial

transactions, such as ATMs. However, the attackers do not only use this time to get access

to the right critical systems and customers. During these months, they actually learn how

the employees execute their daily business. They were also able to hack video surveillance

and literally look over the employees’ shoulders to steal passwords, for example. With that

knowledge the attackers are able to mimic the employee’s actions, rendering the attack almost

invisible.

Researchers from Kaspersky assume that the attackers have extensive knowledge of the

software and networks used in banks. One of their tricks was to use regular maintenance soft-

ware for ATMs to withdraw money and have an accomplice pick the money on-site. They also

used SWIFT directly to transfer money to their account. The command-and-control servers

that could be examined so far contained secret bank documents, such as emails, manuals,

2HTran: http://www.secureworks.com/cyber-threat-intelligence/threats/htran/
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crypto keys, passwords and more. Sergey Golovanov, Principal Security Researcher at Kasper-

sky Lab’s Global Research and Analysis Team stated, that “these bank heists were surprising

because it made no difference to the criminals what software the banks were using. So, even

if its software is unique, a bank cannot get complacent. The attackers didn’t even need to

hack into the banks’ services: once they got into the network, they learned how to hide their

malicious plot behind legitimate actions. It was a very slick and professional cyber-robbery”.

1.2.6 SECURITY CHALLENGES

In retrospect it seems that the applied intrusion detection techniques have failed at protecting

the aforementioned systems. Virvilis and Gritzalis [VG13] came to a similar conclusion. They

analyzed several recent APT attacks that were targeted against vital industries. All analyzed

attacks evaded firewalls by using commonly open ports, such as ports 22, 80, and 443. All

analyzed attacks evaded intrusion detection (usually based on packet inspection) by obfuscating

or encrypting their traffic. As a consequence, all analyzed attacks were active for several years

and managed to exfiltrate high-profile data. Given what we learned so far, we derive four

essential security challenges that will guide our IDS design:

Security Challenge 1: Polymorphism APT attacks vary significantly in how they are exe-

cuted. Although there is a somewhat consistent story-line in every APT attack campaign as

detailed in this section, the actual implementation varies in the malware used, the exploited

vulnerabilities, and traffic patterns. This means that an intrusion detection system must be

able to dynamically add new rules in order to look for additional patterns.

Security Challenge 2: Encrypted, obfuscated, or compressed traffic with command-and-
control servers The in- and out-bound traffic used to control the malware and download

data employs encryption, obfuscation, compression, or any combination of these techniques

to conceal the attack. Thus, the intrusion detection system must not rely on packet inspection.

Security Challenge 3: Industry-oriented attacks APT attacks, by their very meaning, are

targeted. However, as our analysis and the analyses of others [VG13; Wue14] have shown, the

actual target may be as broad as a complete industry. This means that an effective defense

against such threats needs to operate at the industry-level as well.

Security Challenge 4: Stealthy attacks Since APT attacks act with a specific goal in mind

they remain stealthy throughout the complete attack until they have completed their agenda.

Such “below the radar” attacks are extremely hard to discriminate from the background-noise

which is inherent to large-scale communication.

This thesis therefore tries to envision and implement a system which is capable of monitoring

an entire industry for suspicious activity.

1.3 AN ARCHITECTURE FOR A COMMUNITY-BASED IDS

This section is concerned with a system design capable of handling the aforementioned se-

curity challenges. We will discuss design decisions step-by-step, starting with the choice of

input datasets and then proceeding to how these data-sources are processed. This section

will be closed by discussing the contributions, presented within this thesis.
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Figure 1.4: Architecture of a community-based intrusion detection system.

1.3.1 INPUT DATA

Figure 1.4 is an abstract depiction of an IDS, as envisioned in this thesis. Our primary

input-data is IP flow information provided by an Internet Service Provider (ISP). This choice is

guided by Security Challenge 2: Encrypted, obfuscated, or compressed traffic with command-

and-control servers, which makes packet inspection impossible, and Security Challenge 3:

Industry-oriented attacks, which calls for a cross-domain dataset. IP flow information is usually

gathered at the edge routers of ISPs in a format called netflow. Roughly speaking, it contains

information of every route established from a source IP to a destination IP, including duration,

amount of transferred bytes, used protocol, and many more properties. Another important

input-dataset are online blacklists, such as DShield3. At least in some of the aforementioned

attacks, previously hacked systems have either been used as command-and-control servers,

for the lateral movement, or for data exfiltration. Blacklists do not only offer means to detect

communication from such IP addresses early, but they have proven to be reliable predictors

of future attacks [ZPU08]. Finally, they can also be used to warn possible future victims of

detected threats. A similar argument can be made for scanning forums (both security and

hacker forums) for activity. Especially campaigns driven by hacktivists have reportedly been

deliberately initiated from forums [Den01]. Another interesting source of information could be

email traffic. For example, Wuesst and Candid [Wue14] have successfully monitored targeted

attacks worlwide by scanning email traffic for spear-phishing campaigns. Our conclusion from

these considerations is that an effective intrusion detection system must provide the ability

to monitor and cross-correlate any number of sources. This observation raises the question:

How does a processing architecture that can handle such a diverse set of input look like? Or,

more specifically, what are the challenges, imposed by the input data-sets?

Data Challenge 1: Variable throughput We expect substantial differences in the through-

put of the different information sources. For example, individual IP flows (like netflow) are

small in size, but an ISP collects millions of entries per second. In contrast, information from

distributed blacklists is updated less frequently, but individual updates are larger than individ-

ual flows. Still, a large attack may result in a sudden burst of updates as reports are coming

in. Finally, information from forums or mail servers are similarly subject to bursts. We also

assume that updates from sources, such as mail servers or forums, are significantly larger in

3https://www.dshield.org/
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size than updates from other sources, such as netflow.

Data Challenge 2: Diversity of datatypes The input data may be structured such as IP

flow and blacklists, or semi-structured such as emails and forum posts. The structure of

the input data has an impact on how such information is represented and processed — for

example, IP flows can be naturally represented as graphs which offer several well-defined

algorithms for analysis. While forum and email databases can also be represented as graphs

(e.g., with emails as vertices and edges as actions, such as reply-to, forward, and so on), the

actual content of the email is unstructured and needs to be processed differently, by using

text-mining algorithms, for example.

Data Challenge 3: Hidden community structure As APT attacks are targeted against com-

plete industries (such as the complete energy industry), intrusion detection should be a com-

munity concern as well. However, a prerequisite for cross-domain event correlation to work

is the ability to assign data-items to their respective communities. Unfortunately, this as-

signment is not explicit in any of the datasets we wish to analyze. For example, we do not

know all IP addresses which belong to the energy industry. Even a manual inspection of DNS

entries would not yield a correct result: Infrastructure-as-a-service has eliminated the need to

host every service within the company’s network (e.g., web-servers are often hosted in the

cloud). But even more importantly, such an industry does not have a sharp boundary. Rather,

specialized law-firms or supply companies should be counted as industry members as they

are often less well protected and present the perfect entrance card into an otherwise hard

to intrude business community. We expect, however, that these characteristics are reflected

in how the industry members interact with one another. Hence, we assume we are able to

detect an industry in our input data.

1.3.2 DATA PROCESSING

The processing architecture can be split into five main components where the data-stream

flows from the left to the right and may or may not generate alarms as depicted in Figure 1.4.

The filter component discards any information that is not of any use for the downstream

components. For example, it drops any IP flows where neither source- nor destination IP

address belong to a protected industry. In order to cope with Security Challenge 1: Poly-

morphism, the filter needs to be adaptable, such that filtering rules can be altered, added,

and removed on the fly. To accommodate for Data Challenge 1: Variable throughput, the

filter needs to be scalable, such that any amount of incoming data, including spikes, can be

handled. Finally, the filter must support a rich filtering language that is not tied to a specific

kind of input data in order to tackle Data Challenge 2: Diversity of datatypes.

The history component stores all incoming traffic for a given amount of time. This may

be necessary to understand exactly what actions an intruder has performed and supports the

administrators in deploying effective counter-measures.

The input is also forwarded to the clustering component, which is responsible for main-

taining an up-to-date list of IP addresses belonging to the protected industry. Protecting the

industry at large allows for statistical correlation between individual companies, which makes

it much harder for a targeted attack to pass below the radar [ZLK10] and, therefore, tackles

Security Challenge 3: Industry-oriented attacks and Security Challenge 4: Stealthy attacks.

The clustering component must, hence, be able to infer community structure from that data

as noted in Data Challenge 3: Hidden community structure.

The rules component applies user-defined rules to the data-streams. It supports rules that

operate on meta-data, such as graphs representing IP or email communication. With that, this

component tackles Security Challenge 2: Encrypted, obfuscated, or compressed traffic with
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command-and-control servers. However, rules that operate on content are not at all obsolete.

Forum posts or blacklist entries are not encrypted or obfuscated and mining such sources is

of great help in understanding and predicting attacks. Therefore, this component requires a

flexible (see Data Challenge 2: Diversity of datatypes) and scalable (see Data Challenge 1:

Variable throughput) event stream processing architecture. The possibility for users to change,

add, and remove rules accommodates Security Challenge 1: Polymorphism and is necessary

to facilitate a feedback-loop, which connects the system and the administrators. With that,

an administrator is able to mark alarms as false positive or true positive, helping to improve

the performance of the employed algorithms.

1.4 CONTRIBUTIONS

This section presents a short overview of the major contributions of this thesis. They are

organized into sub-aspects of the architecture for a community-based IDS, described above.

1.4.1 FILTERING

Chapter 4 presents a highly scalable implementation of the filter component. However, our

implementation does not support dynamic addition and removal of filters during runtime and

is restricted to the filtering of IP flows. Chapter 5 presents a more general implementation,

based on the popular Publish/Subscribe paradigm. This implementation makes it possible to

filter any kind of information. Should new insights on the maliciousness of an IP address

require to re-evaluate input from the past, the history component can be queried for such

information. Its implementation is out of the scope of this thesis, but related work on providing

a history within Publish/Subscribe Systems exists [Cil+03; Li+07] and could be added to our

system.

1.4.2 CLUSTERING

Chapter 2 contains a novel algorithm for finding industries in IP flows. IP flows are a natural

candidate for detecting industries, since there is already a large body of related work that is

concerned with clustering entities, given how they communicate. Moreover, we decided to

base our industry detection on IP addresses because IP addresses are not only present in

IP flow data (albeit most prominently), but also in the other datasets. Distributed blacklists

refer to suspected or convicted IP addresses. Spear-phishing emails are sent to company mail

servers, hence, making it possible to identify the target company. And finally, forums also

often contain references to IP addresses, either those of possible targets or attackers.

1.4.3 RULES

Chapter 3 presents a generic, highly scalable graph-based rule-engine. This graph-based rule

engine is the basis for a prototypical community-based IDS, presented in Chapter 4, that uses

IP flow information to protect vital industries (i.e., energy, financial, and defense industries).

A general processing engine, which makes it possible apply any kind of rule-engine to its

inputs is presented in Chapter 5. Both engines are implemented on StreamMine, an event

stream processing (ESP) framework, and can be integrated seamlessly. StreamMine itself is

presented in detail in separate publications [Mar+11; Bri+11].
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2 FINDING THE NEEDLE IN THE
HAYSTACK: IDENTIFYING BUSINESS
COMMUNITIES IN INTERNET
TRAFFIC*

*The original version of this chapter appeared at WIC ’14 [WHF14].
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Figure 2.1: This chapter is concerned with the clustering component of a community-based

IDS

This thesis advocates that intrusion detection should be a community concern, given Security

Challenge 3: Industry-oriented attacks and Security Challenge 4: Stealthy attacks. However,

this community structure is not directly available in our input data (see Data Challenge 3:

Hidden community structure). Research in graph analysis has shown that at least for some

graphs, such as firewall logs [Din+12], authorship graphs [Gup+12], link graphs from web

pages [AL06; BCZ13], membership graphs [RAK07], online social networks [Leu+09; WW13],

or news networks [MS09] the inherent community structure can be made explicit by applying

community detection algorithms. This chapter tries to answer the question whether similar

mechanisms can be used to detect business communities in IP flow data.

Identifying real-world business communities, e.g., energy, finance, defense, in Internet traf-

fic is a challenging problem. Seed-based community detection identifies a community in a

graph by iteratively adding the ‘closest’ vertices to an initial set of seed-vertices which are

known to belong to the community. Previous research focused on unambiguous networks,

where edges describe a specific intention in a fixed domain (e.g., a ‘friend’ in a social network)

and tightly-knit communities whose members are better connected to each other (‘close’) than

to the rest of the network. However, looking at a complete day of raw Internet traffic, we

found that (1) the intend of a communication is ambiguous (e.g., ad-downloads are indis-

tinguishable from web-page downloads) and (2) real-world industries manifest themselves as

loosely-coupled communities, i.e., with more edges to non-community members than to com-

munity members. The quality of a community detection algorithm is measured in terms of

recall and precision. Recall is the percentage of all known community members that the al-

gorithm finds automatically. Precision is the percentage of actual community members which

are part of the detected community. The higher both values, the better. This chapter presents

a new seed-based community detection algorithm that provides higher precision and recall

in our setting than the related work. This enables the detection of loosely-knit communities,

such as the energy, defense, and financial industries. For instance, our solution detected 111

individual energy companies with only 6 false positives, starting from eight ISOs (Independent

System Operators) and RTO (Regional Transmission Operators) in the US.
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2.1 INTRODUCTION

Internet-based attacks often target a specific industry rather than random targets or a single

institution. Recent examples include attacks against the energy industry [Lab14], major U.S.

defense contractors [Fis12], and financial institutions [SE12]. Meanwhile, security research

has shown that communities of related entities, such as companies within an industry, can

be used effectively for network intrusion detection and resilience by applying anomaly detec-

tion [OKA10; McD+06], outlier detection in evolving communities [Gup+12; CJ12], classifica-

tion of malicious network traffic [Din+12; WHF11a], or behavioral analysis [Ver+06]. However,

the precondition for these methods is knowing the members of the community to be pro-

tected. Unfortunately, identifying the members of a community in the IP address space is

difficult and labor intensive. It is, for example, not enough to perform a DNS lookup of a

company’s website since websites are often hosted in the cloud and the lookup will return

the respective cloud provider. Furthermore, many companies own multiple subnets or host

their publicly accessible resources at several different sites.

It is therefore desirable to identify the member companies of such industries in Internet

traffic logs (e.g., netflow) automatically. However, Internet communication is a major challenge

for community detection since the communication intend is extremely ambiguous. As a

result, previous work detects only coarse-grained communities in Internet traffic logs (i.e.,

countries) [Eri+03]. Instead of aiming at detecting all communities, seed-based community

detection [AL06; ACL06; AP09; MS09; GS12; YL15; Bal+13] detects a community around

the seed vertices. However, we found two major obstacles in applying these results to our

network.

First, research in this domain focused on unambiguous networks with precise definitions of

what an edge between two entities represents (e.g., a ‘friend’ in a social network, a ‘link’ in a

web-graph, . . . ). However, an Internet traffic log contains web traffic to different destinations,

peer-to-peer traffic, DNS lookups, and a range of other kinds of traffic with unknown user

intentions and varying domains. For example, a bank employee may browse a social web site

at work, while also using web-based tools to monitor the stock market. Both actions appear

as traffic on port 80 (i.e., web traffic). Both will be represented by an edge from the bank

employee’s computer to the corresponding social network and stock market IP addresses.

Hence, both have an equal chance of appearing as a part of the employee’s community,

but only one is related to the industry of interest for our analysis (financial sector). Thus,

considering the social web site as part of this community would be a false positive for our

purposes. It is impossible to determine a priori which Internet traffic is important for identifying

a specific industry.

Second, the target communities in the related work exhibit a very low conductance (i.e.,

they are tightly-knit). This means that community-vertices are significantly better connected

with each other than they are with non-community vertices. However, we found that members

of industries within the Internet are better connected to the rest of the network than to each

other, that is, these communities have a large conductance. Hence, the traditional methods

will tend to select non-community members for inclusion. We argue that this is by no means

special to our communities in particular but a general property of our network as it is simply

a consequence of the ambiguity in Internet communication.

The question is whether such communities can be detected with the available information

in the network. Or more specifically, can we grow a relatively small set of loosely connected

industry members (such as the eight energy organizations in the US) into a larger community

that is still dominated by the given industry? Our contributions are as follows:

• We analyze the structural properties of three representative industry-communities in an

ISP’s Internet traffic log. Our results show that, contrary to the findings in [Les+08],

the network-community profile (NCP) suggests the existence of large low-conductance
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cuts in Internet traffic. However, the conductance of the three industry-communities is

several orders of magnitude larger than the best cuts of similar size.

• We show that personalized page-rank (PPR) and conductance optimization algorithms

perform poorly, given our seed-sets. We attribute this to the ambiguity of Internet com-

munication that makes it significantly harder to select the right members for inclusion.

• We find that using binomial probabilities [MS09] yield better results than conductance

or PPR. However, this algorithm is unnecessarily complex and impractical to implement.

• We propose a new algorithm: normalized inverse conductance. We show that it per-

forms equally to binomial probabilities in terms of recall and precision without inheriting

its practical limitations.

The remainder of this chapter is structured as follows. We analyze the structural properties

of our graph and its communities in Section 2.2. Equipped with that knowledge we present

our algorithm in Section 2.3. We evaluate our own algorithm and several other algorithms

from the related work in Section 2.4. Section 2.5 presents additional related work before

Section 2.6 concludes this chapter.

2.2 PROBLEM CHARACTERISTICS

In this section, we take a closer look at our dataset and the communities we thrive to find. This

information will guide the design of our algorithm. It will also be useful for the interpretation

of the results obtained by applying the different algorithms.

2.2.1 DATA

Netflow is a standardized format used by network routers to log each connection, including

source and destination IP address, protocol, ports, intermittent routers, etc. Our dataset

is a heavily sampled netflow log from a large Internet service provider (ISP), recorded over

a period of a complete day. Most of the fields present in netflow can be discarded since

they are of no use to solve our problem. However, two fields, namely the used port and

the transferred bytes, deserve a closer evaluation. While it would seem prudent to consider

the ports, this information is actually less useful than one might think. For example, even if

we assert for argument’s sake that port 80 is exclusively used for http connections, we are

still unable to distinguish between private browsing (e.g., social networks) and community-

related browsing (e.g., stock-market monitoring for the finance community). Furthermore,

our experiments with the amount of transferred bytes showed that this information does not

turn out to be of significance to our problem either. Therefore, we only consider source and

destination IP addresses in our analysis. Since netflow contains one flow record for each

individual connection between two IP addresses, we aggregated all flows between two IP

addresses into one flow, resulting in 227, 292, 837 unique edges. We remove any flows where

one of the endpoints is located within a reserved range, e.g., private use or cable-tv1.

1http://www.rfc-editor.org/rfc/rfc3330.txt
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Figure 2.2: Network community profile (NCP) plot for one day of netflow

2.2.2 STRUCTURAL PROPERTIES

In the following, we evaluate several structural properties of the network and the communities.

Conductance A small conductance has consistently proven to be one of the most robust

structural properties of real communities in social networks [YL15; GS12; Alv+13]. The con-

ductance of a community S in a graph is defined as the fraction of edges between the

community and the rest of the graph (cut) against all edges that have at least one endpoint

in the community (vol):

ϕ(S) =
cut(S)

vol(S)

The network community profile [Les+08] allows to analyze at which size-scale low conduc-

tance cuts can be found in a given graph. It selects for each size within a given range, a

community of that size with minimal conductance from the given network. If we look at

the ncp plot of the Internet traffic log (Figure 2.2), we can see that our graph supports low

conductance cuts of significant size. Note that while [Les+08] observed minimal conductance

only for very small clusters (e.g., 101 to 102 vertices) in social networks our network contains

small conductance clusters with significantly more vertices (e.g., 102 to 105).

Unfortunately, these low conductance communities are not the communities we hope to

detect. We plotted the conductance of our seed sets alongside the ncp plot (denoted as points

in Figure 2.2). Obviously, all three communities exhibit large conductance values—several

orders of magnitude above the optimal conductance for equally sized communities. After all,

it also seems counter intuitive to expect low conductance for industries in the Internet: Why

would energy utilities or banks be communicating with the rest of the Internet less frequently

than they do with industry peers? Even if we assume for the moment that social websites

would be inaccessible from work, search tools, ad-servers, news sites, or teleconferencing

services (just to name some examples) still make up for a large part of the traffic. All we might

expect is that there is a reasonable amount of communication between them but not that this

communication surpasses the one with the remaining Internet. This is also supported by the

conductance of the verified communities, listed in Table 2.1. The verified communities are

all true positive IP addresses that were identified by our algorithm. While the conductance

between the seed set and the verified community decreases (albeit remains at the same

order of magnitude) for the energy and the defense communities, the conductance of the

finance community increases slightly.
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Table 2.1: Structural properties of seed sets, the verified communities and the complete graph

Vertices Cut In-community Edges Conductance Edge Density Vertex degree
mn sd

Energy
Seeds 211 7000 56 0.99 1.26 × 10−3 35.6 103.5

Verified 39000 249000 80000 0.76 5.11 × 10−5 8.3 109.9

Defense
Seeds 18000 260000 8000 0.97 2.36 × 10−5 14.6 174.9

Verified 134000 698000 476000 0.60 2.65 × 10−5 8.8 139.6

Finance
Seeds 31000 447000 74000 0.86 7.57 × 10−5 16.6 348.9

Verified 78000 1600000 218000 0.88 3.61 × 10−5 23.4 356.8

Network – 39000000 – 217000000 – 1.40 × 10−7 – –

1
9
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Figure 2.3: Frequency plot of vertex degrees in netflow

Vertex Degrees Figure 2.3 shows the frequency of vertex-degrees per verified community

and for the complete network. As expected, most vertices in the network are low-degree

vertices, while some vertices reach degrees of almost a million. This is consistent with other

social networks [Mis+07b]. The degree-distribution of our target communities exhibits a similar

shape as the one for the whole network. This comes as no surprise, since the communities

are social networks themselves. It is noteworthy, however, that the degree distributions of the

communities do not reach as high vertex degrees as the degree distribution of the complete

network. We attribute this to the absence of widely used services in our communities, such

as the main DNS servers, ad-servers, social web-sites, etc. Although most vertices have a

degree of 1, Table 2.1 shows that the mean degree of each community is considerably higher.

Together with the high conductance of the seed set, this means that a breadth first search,

contrary to the assumption in [AL06], can indeed find enough candidates in the seed set’s

neighborhood to grow the community.

Edge Density In [MS09], a natural community was defined as a component of the graph

that exhibits significantly higher edge density than the network as a whole. The edge density

of a directed graph G = (V, E) is defined as the relation between the actual edges and the

number of possible edges for the given vertices:

D =
|E|

|V | * (|V | − 1)

The density of a community inside a graph is calculated simply by replacing |E| and |V | with

the numbers of the edges and vertices inside the community. As shown in Table 2.1, our

verified communities exhibit an up to two orders of magnitude higher edge density than the

complete graph.

2.2.3 DISCUSSION

A lesson we learned here is that Internet traffic, although a social network by definition, is

substantially different from what has been studied so far. While it does contain large low-

conductance cuts, the conductance of the business sector communities we aim to detect

is orders of magnitude higher. We argued that this is not an artifact of our communities in

particular but a consequence of the diverse usage of the Internet. At the same time, the

edge density proves that these communities do exist as a structure, substantially different

from the rest of the network. Hence, given the seed set one should be able to distinguish the

remaining community from the rest of the network. The degree-distribution of the vertices

is not unexpected for a social graph but also shows an interesting aspect that we will use to
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construct our solution: While low-degree vertices dominate the degree-distribution, the veri-

fied communities exhibit a significant amount of high-degree vertices which is also reflected

in the mean degrees of the communities and their seed-sets. The significance of a structural

property, defined over the edges of a vertex, is directly related to the degree of the vertex. A

high-degree vertex with 70% of its edges connected to the community is more likely a mem-

ber of that community than a low-degree vertex with 100% of its edges connected to the

community. Hence, we will explore the possibility of using the mean degree of the seed-set

and the degree of the candidate as an additional factor to drive our search.

2.3 NORMALIZED INVERSE CONDUCTANCE

Given the structural properties of our network and the communities we hope to find, we will

now construct an algorithm which can grow our seed sets into larger communities that are

still dominated by the given industry. We followed [YL15] and divided our algorithm into two

phases: candidate selection and candidate ranking. It takes the graph G, the set of seeds S,

and a size for the target community K as input, and returns a community of size K as output.

2.3.1 CANDIDATE SELECTION

The candidate selection phase in our algorithm is implemented as a breadth first search. We

excluded the option of selecting all vertices of the network as candidates [MS09] since our

network is too large. We also decided against random walks ([AL06; YL15; GS12]) for two

reasons. First, the cut of our seed sets is high enough such that we will find a sufficient num-

ber of candidates in the direct neighborhood of the seeds. Second, random walks might also

choose vertices that have no direct connection to the seed set but our ranking function only

considers direct connections. Note that we can still find members that are not directly con-

nected to the seed set by running the algorithm for several iterations where in each iteration,

we use the obtained community of the previous iteration as the seed set.

2.3.2 CANDIDATE RANKING

Conductance is one of the most robust structural properties of natural communities. However,

given such high-conductance communities as ours, simply aiming at low conductance might

select the wrong members. For example, any vertex with a single edge (a large fraction of

vertices have a degree of 1) into the community, has a conductance of 0, that is, the optimum.

On the other hand, it is unlikely that vertices with larger degrees exclusively communicate

with their community. Thus, these vertices are less likely to be chosen. The fundamental

issue with conductance is that it does not provide any measure of significance: A low-degree

vertex with minimal conductance might just be a coincidence (our data is sampled, provider

might switch IP address of customer, short connection, . . . ) but a large degree vertex is

probably not. To reduce the impact of low-degree vertices, we use a dampening factor based

on the mean degree of the seed set (M) and the vertex degree (n). We apply this dampening

factor to the inverse conductance (k/ n) which is the fraction of edges that connect to known

community members (k).

nic =
n

M + n
*

k

n

The first term of the formula is a dampening factor with values within the range of (0, 1). It’s

influence is highest for low-degree vertices, cutting the inverse conductance by more than

a half for below-the-mean vertices. For high-degree vertices, its influence vanishes. This

provides us with a measure to evaluate the significance of a vertex: A low-degree vertex with
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a high inverse conductance will rank lower than a high-degree vertex with a (possibly) smaller

inverse conductance.

2.4 EVALUATION

In this section, we will evaluate our algorithm using three sample communities, namely en-

ergy, finance, and defense companies. For each industry, we used publicly available knowledge

(Wikipedia) to identify the major members and selected those as seeds for which we could

identify one subnet - e.g. by performing a DNS lookup of their websites. For the energy indus-

try, we selected eight ISOs (Independent System Operators) and RTO (Regional Transmission

Operators) in the US2, resulting in 211 seed-vertices, as shown in Table 2.1. For the defense

industry, we selected eight defense contractors3, resulting in 18K seed-vertices. Finally, for

the finance industry, we selected 10 banks4/life insurers5, resulting in 31K seed-vertices. For

comparison, we evaluate PPR [AL06], minimal conductance [YL15; GS12], and binomial prob-

abilities [MS09] using the energy industry. Note that none of the mentioned algorithms from

related work was tested with or developed for high conductance communities in ambiguous

networks. Thus, it comes as no surprise that PPR and minimal conductance fail to identify the

members of the energy industry. However, we were able to achieve good results using bino-

mial probabilities. Unfortunately, it has severe practical limitations, which we will detail below.

First, we will discuss how we evaluate the output of the community detection algorithms. All

algorithms are implemented, using the SNAP6 library, version 2.

2.4.1 OUTPUT

All evaluated algorithms return a vector of graph vertices that are supposed to be new com-

munity members. In our case, each vertex in the graph corresponds to one IP address. We

can assign the members in the resulting community into four classes.

• True positives (TP) are the IP addresses of companies belonging to the industry in ques-

tion.

• Weak members (WM) are the IP addresses of companies closely related to the indus-

try. This could be, for example, enterprise security software companies, law firms, or

teleconferencing providers.

• Unknowns (NA) are the IP addresses that do not belong to any company. Some of them

do not even answer a ping (may be disconnected), some are used by ISPs for dynamic IP

allocation to private customers, and some are simply not running any services or provide

any useful hostname information.

• False positives (FP) are the servers of content distribution networks (CDNs), radio stream-

ing services, social websites, or other non industry-related services.

After the communities have been identified, we evaluate the community by counting the

true and false positives, weak members, and unknowns. Since each vertex corresponds to

an IP address, we can use reverse DNS lookup (i.e., whois) to determine to which subnet the

vertex belongs. The DNS lookup may directly give the name of the company to which the

IP address belongs. However, in many cases the IP address resolves to some ISP or cloud

2http://en.wikipedia.org/wiki/Regional˙transmission˙organization
3http://en.wikipedia.org/wiki/Defense˙contractor
4http://en.wikipedia.org/wiki/Big˙Four˙(banking)
5http://www.ffiec.gov/nicpubweb/nicweb/Top50Form.aspx
6https://snap.stanford.edu/snap/index.html
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2.4 Evaluation

provider. In this case, it is necessary to check further (e.g., by using nmap) to determine the

owner of the IP address. In cases where the company cannot be determined, the IP address

is classified as unknown.

Since the reverse DNS lookup provides information to which subnet and company an IP

address belongs, we can enhance the interpretation of the counts per class. In the default

case, called “IP”, the community consists exclusively of the detected IP addresses. But instead

of counting each IP individually, we can also count the distinct subnets they belong to (the

unknown IPs are still counted individually since it would be wrong to mark the entire subnet

of a cloud provider as unknown). We call this count type “subnet”. It is a useful measure

since in an extreme case, all discovered IP addresses might be contained in a single subnet.

However, for the true positives, we would rather discover IP addresses from different subnets

since some of the community members own several subnets which are difficult to identify

otherwise. Conversely, for the false positives and weak members we would rather detect few

distinct subnets since this greatly simplifies the task of excluding them from the community.

Finally, we count distinct companies (we use the name of the ISP or hosting service as the

company name for the unknown class). We call this count type “company”. This measure

is useful for a similar reason: In an extreme case all discovered subnets might belong to a

single company. However, a perfect algorithm would be good at both count types: detecting

many subnets from many distinct companies.

To determine the quality of the output of an algorithm, we use precision, recall, and f-

measure. Informally, the precision is the fraction of community members (tp) to all selected

members (fp + unknown + wm), the recall is the fraction of selected community members

(tp) to all known community members (i.e., the verified community), and the f-measure is

the geometric mean between recall and precision. Since it is not realistic to expect all the IP

addresses of a company to appear in the netflow, it is also not realistic to expect a community

detection algorithm to find all IP addresses. To this end, we only compute recall, precision,

and f-measure using the company counts. Note that our definitions of precision and recall

are very pessimistic: One could also argue that the weak members are to be counted as true

positives, because they may open less protected back-doors into an industry and, therefore,

must be part of the community. An upper bound to the precision, recall, and f-measure would

be to count all classes except the false positives as true positives. We believe, however, that

the lower bound gives a better measure of quality than the upper bound would.
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Table 2.2: Evaluation results — counts do not include the seeds

Energy Defense Finance

FP TP NA WM FP TP NA WM FP TP NA WM

Normalized Inverse Conductance
IP 7 55 31 7 10 42 10 38 4 91 1 4

Subnet 7 46 31 6 3 22 10 9 2 11 1 1

Company 5 42 18 6 2 13 9 8 2 6 1 1

Normalized Inverse Conductance
(after four iterations)

IP 22 191 141 46 54 195 61 90 28 348 10 14

Subnet 17 132 141 25 13 69 61 25 10 37 10 10

Company 6 111 49 21 5 38 38 22 9 21 5 10

Minimizing Conductance
IP 40 264 507 71 - - - - - - - -

Subnet 31 108 501 61 - - - - - - - -

Company 23 98 152 61 - - - - - - - -

Personalized PageRank
(α = 0.9)

IP 7 33 42 12 - - - - - - - -

Subnet 7 27 42 12 - - - - - - - -

Company 5 25 25 12 - - - - - - - -

Minimizing Binomial probabilities
IP 5 56 34 5 18 41 7 34 2 92 2 4

Subnet 5 43 34 5 5 26 7 9 2 16 2 2

Company 3 39 17 5 3 17 6 8 2 7 2 2

2
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2.4 Evaluation

2.4.2 COMPETING APPROACHES

In the following we will evaluate several approaches which have been applied with high suc-

cess in related work.

MINIMIZING CONDUCTANCE

While [YL15] used random walks in order to find vertices around the seed set that minimize

conductance, [GS12] found that low conductance cuts can often be found in the direct neigh-

borhood of vertices. Hence, in order to evaluate conductance, we selected all direct neighbors

of the seed set with a minimal conductance (i.e., ϕ = 0). This set contains more than 800

vertices. After classifying all vertices in this set, we obtained the numbers shown in Table 2.2.

The dominant class is without a doubt the unknown class. While the total number of distinct

IP addresses in the true positive class is quite high, it only transforms to about 100 energy

companies. We have already argued that conductance will select those vertices with a zero

cut, as long as they exist. In the case of the energy community, 68% of the vertices with

ϕ = 0 have a degree of only 1 (and 20% a degree of 2). Of all one-degree vertices, 73%

belong to the unknown class while only 28% belong to the true positives.

PERSONALIZED PAGERANK

Intuitively, the PPR algorithm works as follows [AL06; ACL06]: First, it calculates for each

vertex in the neighborhood of the seed vertex the probability that a random walker visits the

given vertex. This step returns a list of vertices V , sorted (in descending order) by how likely

they are to be visited by a random walker. Second, the algorithm performs a sweep-cut: It

selects a k : 1 ≤ k ≤ |V | which minimizes the conductance of the vertices in topk (V ). These

steps are repeated for all seed vertices. Finally, the union of all sweep cuts for all seed vertices

is the community of the seed set.

The results for personalized pagerank for the energy-community are similar to those of

minimizing the conductance in that most detected IP addresses belong to the unknown class.

Given that the sweep cut also minimizes conductance, this is no surprise. Moreover, [GS12]

have found that a minimal conductance cut of the direct neighborhood of a seed vertex is

sometimes as good as a random walk. A crucial parameter of PPR is the teleport probability

(α): Intuitively, it governs how far away the random walker can travel from the seed vertex. A

high probability means that it will be “teleported” back to the seed vertex more frequently. We

evaluated the results for varying α: 0.1, 0.5 and 0.9. As expected, for lower α the algorithm

selects also vertices that are not directly connected to the seed set. Although, the recall

of the resulting community is larger in that case, it also exhibits an even lower precision.

Conversely, if we set α as high as 0.9, the returned community has a higher precision but the

recall is very small. This remains true, if we increase the size of the target community.

MINIMIZING BINOMIAL PROBABILITY

Using binomial probabilities for community detection was proposed by [MS09]. The algorithm

works as follows: Suppose, each vertex has n edges in total, k of which connect to already

known community members. The probability p of a vertex being a community member is

the fraction of seed vertices divided by the number of all vertices in the graph. Then we can

compute the binomial probability that a given vertex has at least k community edges as

Pr [n, k] =

n∑

i=k

(

n

i

)

pi (1 − p)n−i
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Intuitively, the candidates are ranked by how probable the combination of k and n is, given the

graph and the community to be found: The smaller this probability for a given candidate, the

more likely it is an actual member. This probability is computed for each vertex in the graph

and the vertex with the smallest probability is selected to become a new member. In the next

round, the probabilities of vertices in the neighborhood of the new member are updated and

the algorithm selects again the vertex with smallest probability for inclusion. Since computing

the probabilities for all vertices in a graph as big as ours is infeasible, we only compute the

probabilities for the direct neighborhood of the seed set. This is an equivalent solution, since

k = 0 for all other vertices. For our experiments we ran the algorithm until the seed set was

grown by 100 new vertices.

Results Looking at the results, we can see that the algorithm consistently returns more IPs

from the true positive class than from any other class. The IP - count of the finance community

scores best, with a true positive count one order of magnitude above the other classes. This

relation remains constant, even when counting how many different subnets and companies

are identified by these IP addresses. We note, however, that most IP addresses belong to the

same company: A large bank with many distinct subnets. Finding all these subnets manually

would be very cumbersome. While the total IP count for the energy community is lower,

these IP addresses belong to a larger set of distinct companies. Although the difference

between the true positives and the other classes is not as large as for the finance community,

the true positives are still dominating the selected candidates. Finally, the algorithm selects

a notably higher amount of weak members and false positives for the defense community

as compared to the other communities. Still, the number of false positives is less than half

of the true positive count. We attribute the good results of this algorithm to the fact that it

incorporates the degree of vertices into the ranking.

In order to get a better understanding of how well the binomial probability separates the

nearest neighbors of the seed set into the four different classes, we computed the binomial

probability on all direct neighbors of the seed set of each community. Once classified, we

can plot the observation count (the width of the violins) of the classes as a function of the

property’s value: The wider the violin for a given class at a given point on the y-axis, the more

candidates have been observed with the corresponding binomial probability in the correspond-

ing class. Figure 2.4 depicts the classification performance of the binomial probability.

Mehler [MS09] selected those candidates which had the lowest binomial probability. Thus,

when selecting candidates, the algorithm starts from the lowest end of the violins. In order

to magnify this end of the scale, we only plot the candidates with probabilities below the

10th percentile. If we plot all candidates, the violin plots are dominated by the huge count

of observations at the opposite side of the scale, making it impossible to reason about the

separation performance. We can observe that there are vertices from all classes with a

very small binomial probability: Except for the energy community all classes have binomial

probabilities in the same order of magnitude. It is, however, the observation count which is

highest for the true positives and low binomial probabilities. As expected this is most visible

for the finance community: It was also the community with the highest count of true positive

candidates. It is also apparent why the defense community had such a high count of weak

members: Many weak members are observed at a low binomial probability. Similarly, in the

energy community, unknown IP addresses are observed quite frequently at a low binomial

probability, while false positives and weak members have higher probabilities.
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Figure 2.4: Class separation performance of binomial probabilities

Practicability Computing the binomial probability that a vertex has at least k neighbors that

are part of the community has a linear runtime complexity of O(n − k). Since our communities

have a large conductance, n >> k is true for most vertices. Therefore, we can alleviate this

issue to some extend by computing the binomial probability that a vertex has at most k edges

(complexity of O(k)):

Pr [n, k] = 1 − Pr [0, k − 1] = 1 −

i<k∑

i=0

(

n

i

)

pi (1 − p)n−i

Moreover, the binomial coefficient has to be computed using its multiplicative representation

since, otherwise, the factorials quickly overflow the available data-types.

(

n

k

)

=

k∏

i=1

n − (k − i)

i

Unfortunately, once k ≈ n/ 2, this alternative provides no benefit anymore.

The linear runtime complexity is, however, not our only concern. In the original work, p

is computed as the fraction of the number of community vertices and the total number of

vertices in the graph. We had to fix p to 0.05 since otherwise either pi or (1 − p)n−i resulted

in an overflow7 for vertices with a degree larger than 500 which led to incorrect results and,

therefore, a wrong ranking of the candidates. Note, that our communities contain vertices

with degrees of more than 103 vertices. If the neighborhood of the seed-set contains such

vertices, fixing p at 0.05 may not be an appropriate solution either. We believe these issues

put a limit to the practicality of the binomial probability for large social graphs.

2.4.3 NORMALIZED INVERSE CONDUCTANCE

We evaluated the normalized inverse conductance (nic) similar to the binomial probability:

Among all candidates, we selected the 100 vertices with the highest rating. First, the distri-

bution of classes is similar to the results we achieved using the binomial probability. However,

when looking closer some points are worth mentioning. For the defense community, the un-

known class is slightly larger, while there are fewer false positives. Also, the selected vertices

belong to fewer distinct companies and subnets. For the finance community, we can observe

7On our test-machine (64 Bit) and for a value of p ≈ 5e−5 (energy community), an exponent larger than 255

resulted in an overflow of the double data-type.
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Figure 2.5: Class separation performance of normalized inverse conductance (nic)

that the binomial probability selected candidates from more distinct subnets than nic did. Fi-

nally, with nic, we detected more distinct companies from the energy community than we

did with the binomial probability while the counts for the other classes are almost the same.

As reflected in the obtained counts, the classification performance of nic is comparable to the

performance of the binomial probability.

In order to get a better understanding of how well nic separates the nearest neighbors of

the seed set into the four different classes, we computed it on all direct neighbors of the seed

set of each community. The normalized inverse conductance is defined in such a way that

most true positives are located when it reaches its maximum for a given community: Vertices

with a high degree (n) and a high count of in-community edges (k), also have a high nic value.

In order to magnify this end of the scale, we only plot the candidates with nic-values above the

90th percentile in Figure 2.5. First, the violins do not start at the same order of magnitude for

each class and community. This is because the seed set for the energy community is several

orders of magnitude smaller as compared to the other communities (see Table 2.1). Therefore,

k (and nic with it) is expected to be much smaller than for the other communities. For the

finance and defense communities, the candidates with the highest nic are also true positives.

Moreover, the violins of the true positive class are significantly wider for both communities

which means that high nic values are dominated by the true positive class. Finally, although

the candidates with the maximal nic within the energy community belong to the unknown

class, most observations for high values of nic still belong to the true positives.

2.4.4 GROWING FURTHER

To evaluate whether we can improve the our results further, we grew the communities

throughout several iterations, using our algorithm. We let it run for four iterations, grow-

ing the seed set by selecting the best 100 candidates each time. If we first look at the energy

community in Table 2.2, we see that the amount of unknown IP addresses grew faster than

the amount of true positive IP addresses albeit the true positive IP addresses still dominate

the results. The subnet count is dominated by the unknown IP addresses since each selected

candidate from this class also counts as one subnet as explained above. The company count

gives an impressive result of as many as 111 detected distinct energy companies with only 6

false positive companies. This is 2.64 as many distinct energy companies as for the first iter-

ation. The IP count of the finance community follows a similar shape as the IP count after the

first iteration. Thus, while keeping the precision high, we were able to increase the amount

of detected distinct finance companies by a factor of 3.5. Finally, the defense community also
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Table 2.3: Community quality after first and fourth iteration

Iteration Precision Recall f-measure

Defense
1 0.41 0.11 0.17

4 0.37 0.32 0.35

Finance
1 0.60 0.02 0.03

4 0.47 0.06 0.10

Energy
1 0.60 0.15 0.24

4 0.59 0.41 0.48

shows a similar shape as for the first iteration. The amount of detected distinct companies

was increased by a factor of 2.92. Table 2.3 shows precision, recall, and f-measure for our

algorithm after the first and the fourth iteration. As expected from the counts, the recall was

more than doubled for all communities. Moreover, the precision remained almost constant

for all communities, except for the finance community where the precision decreased slightly.

Still, we were able to increase the f-measure for all communities.

2.4.5 DISCUSSION

If we come back to the initial motivation for detecting these communities, including IP ad-

dresses from other classes is not as bad as it seems at first: The fact that these IP addresses

rank high for any of the ranking functions proves that there is indeed communication between

these entities. An attacker might very well use such less protected back doors into an industry.

In order to detect such attacks, it is useful to include these IP addresses as well. However,

we must be careful not to end up with a community where true positives are a minority. In

that case, determining whether an attack against a large number of community members is

in fact an attack against the industry or just an attack against one of the three other classes

becomes impossible. Figure 2.6 shows f-measure, recall, and precision for all algorithms and

communities, computed on the company count. If we first consider a single run of the algo-

rithms only, conductance optimization has the highest f-measure: This is because it’s recall is

highest (almost 100 energy companies), however it’s precision is worst since it also detected

a high number of unknowns, weak members, and false positives. We discard conductance

as unsuitable since it does not return a community that is dominated by true positives. The

same is true for personalized page rank, although its precision is higher. Binomial probabilities

and our algorithm achieve the highest precision while maintaining a high recall as well. Both

returned communities are dominated by true positives.

This opens the possibility to re-apply our algorithm on the community, obtained in the

previous iteration. Note, that this approach is only possible if the precision is not too low

as it is the case with the conductance optimization and personalized page rank. In that

case, re-running these algorithms on the obtained output community would quickly diverge

to an unrelated community. Running our algorithm four times, each time taking the output

community of the previous run as the input community of the next run, we are able to improve

the f-measure of our algorithm significantly and beat all other algorithms.

2.5 RELATED WORK

Minimal conductance [GS12; YL15] has proven to be the most robust structural property of

communities in several social networks. In many cases, the conductance of the seed set

is so small that random walks are necessary to expand the seed-set [AL06; ACL06; YL15]
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Figure 2.6: Comparison of all three ranking functions

because expansion is impossible otherwise. However, random walks are closely related to

conductance: If the conductance of the target community is high, a random walker is less likely

to remain inside this community. Finally, [Tsi+13] uses conductance to estimate congestion of

ISP network topologies. Its ultimate goal is to find low-conductance communities: The links

into those communities are most prone to congestion. Another approach that is closely related

to conductance is called (α,β) clustering [Mis+07a]: The goal is to find clusters where each

vertex inside the cluster is adjacent to at least a β-fraction of the cluster and any vertex outside

the cluster is adjacent to at most an α-fraction of the cluster with 0 ≤ α ≤ β ≤ 1. Hence,

the conductance of communities needs to be smaller than 0.5 (but not minimal as opposed

to conductance optimization or random walks). An extension of (α,β) clustering is proposed

in [Bal+13], where overlapping communities are detected using the relative affinities among

the vertices of a graph. However, they also assume that communities need to be internally

dense and externally sparse i.e., the conductance of communities needs to be smaller than

0.5. In [PPD13], attribute homogeneity of vertices is used to detect communities in authorship

and software-package content graphs. Since defining homogeneity among IP addresses is

difficult (our communities include IP ranges of any size), we did not investigate such algorithms.

Finally, [MS09] proposed to use binomial probabilities for community detection. This was

motivated by the fact that although their goal was to detect low-conductance communities

(e.g., baseball players in the US) in news-site networks, the ncp plot showed that large low-

conductance cuts did not exist in their graph. Hence, using methods like personalized page

rank or random walks was out of question.
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2.6 Summary

2.6 SUMMARY

Given an Internet traffic log, our goal was to grow a relatively small set of loosely connected

industry members into a larger community that is still dominated by the given industry. We

have shown that such industries manifest themselves as dense, high conductance clusters

in Internet traffic in contrast to the communities that have been studied so far in the field

of seed based community detection. Therefore, two of the most prominent algorithms from

related work (that is, PPR and conductance optimization) did perform poorly on our dataset and

our communities. While we were able to detect our communities using binomial probabilities,

they exhibit severe limitations in practice, such as numerical overflows and high computational

complexity. We showed that our algorithm achieves comparable results without inheriting the

practical limitations of binomial probabilities. Moreover, we were able to grow the seed set

beyond its immediate neighbors by recursively applying our algorithm on the expanded seed

set.
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3 MINING LARGE DISTRIBUTED LOG
DATA IN NEAR REAL TIME*

*The original version of this chapter appeared at SLAML ’11 (co-located with SOSP) [WHF11b].
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Figure 3.1: This chapter is concerned with deriving an efficient graph database as part of the

rule component for a community-based IDS

Now that we have an understanding of how to detect a community in communication logs

(such as IP flow), we need to gdevelop a graph processing and mining engine that is able to

monitor all data concerning such a community in real time.

All input datasets that are depicted in Figure 3.1 can be represented as a graph as they

exhibit explicit inter-dependencies. For example, emails can be represented as edges, which

connect sender and receivers. Likewise, we can connect members of discussions in a forum.

Both are just examples of how such representations could be made. A graph-based represen-

tation for blacklists has already been successfully applied to intrusion prediction in [ZPU08].

Finally, netflow data is naturally represented in graphs [ATK14]. For example, the work by Ding

et al. [Din+12] creates a projection from IP flows where two vertices are connected by an

edge if they communicated with the same target. With that, they show that intrusion can be

defined as “anti-social behavior” in that an intruder tends to select communication peers more

randomly than a normal user does. Or McDaniel et al. [McD+06] propose to capture common

communication peers of computers in an enterprise network with communities of interest

(COI) [CPV01]. They show that infection-rates of worms can be slowed down effectively, or

even contained in many cases.

While this list is by no means complete, it shows that graph-based intrusion detection has

received sustained attention from the research community. In particular, by only relying on

the meta-data of communication (e.g., no deep packet inspection, no text-mining on emails)

we can alleviate Security Challenge 2: Encrypted, obfuscated, or compressed traffic with

command-and-control servers to some extend: Whether the traffic is obfuscated, encrypted,

or compressed makes no difference as long as we can access the meta-data. Furthermore,

relying on a graph-based representation of communication patterns helps with conquering

Security Challenge 1: Polymorphism since the polymorphism is mostly found in the employed

malware, whereas the communication-patterns remain unchanged.

In order to apply graph-based intrusion detection, we need a graph processing and mining

engine. In this chapter, we design, implement, and evaluate a distributed graph mining engine,

capable of scaling with throughput of the input data, tackling Data Challenge 1: Variable

throughput. Moreover, this helps with solving Security Challenge 3: Industry-oriented attacks

as it permits to scale the IDS with the size of the industry to be protected. Its design allows

to perform any kind of input-data to graph conversion — e.g. telephony call record, netflow,

emails, blacklists or forums.

Aside from managing the high throughput in graph updates the graph can be queried con-

35



3 Mining large distributed log data in near real time

currently to other queries and to the updates. Based on that, this engine will allow us to

employ a broad range of well studied graph algorithms for intrusion detection on realtime IP

flow data. We therefore use it as our rule-engine throughout this thesis. Our graph mining

engine is able to process around 39 million log entries per second on a 50 node cluster while

providing processing latencies below 10 ms. We validate our approach by presenting two

example rules, namely telephony fraud detection and internet attack detection. A thorough

evaluation proves the scalability and near real-time properties of our system.

3.1 INTRODUCTION

The volume of log data in complex distributed systems can become very large due to the

amount of data generated by individual nodes (e.g., a network router generating netflow data)

as well as the number of nodes in a complex system (e.g., 100K+ compute nodes) each

generating log data. Processing and analyzing this data to identify events of interest or to

store the data for user initiated queries becomes a challenging task. This task is particularly

challenging if the data needs to be analyzed in real time, for example, applications such as

fraud detection require new entries in the log files to be analyzed in less than a second. Given

the volume of data, it is typically not possible to store all the required data in the memory of

one processing node.

Graphs are used in various applications to process log-data. Examples include clique analysis

[FBO09], query-log analysis for search-engines [Don10], graph databases [WHW07], pattern

matching [WY85], and fraud detection [CPV01; Ver+06]. Graphs can generally be used to

store data representing interactions between entities such as phone calls between calling and

called phone numbers, Internet communication between two end points (each defined by IP

address and port number), or interactions between software components (e.g., call graph).

In this chapter we will demonstrate that large graphs can be updated and queried in near

real time by distributing the graph onto multiple nodes (i.e., physical machines). We show

that the space complexity for the distributed graph is linear.

Our contributions can be summarized as follows:

1. We construct dynamic, distributed graphs with linear space complexity.

2. We make these graphs easily accessible for queries.

3. The system scales linearly with the number of processing nodes.

4. We avoid unnecessary data copies by using the log-generating nodes for processing.

The rest of this chapter is structured as follows. We describe the approach and architecture

in Section 3.2, followed by two example applications (telephony fraud detection and internet

attack detection) in Section 3.3. We evaluate the performance of the system with these

example applications in Section 3.4. Section 3.5 provides a survey of related work, followed

by conclusions in Section 3.6.

3.2 APPROACH AND ARCHITECTURE

In this section, we will present our graph abstraction. We show how it enables us to distribute

the graph across multiple machines with linear space overhead. Thereafter, we focus on the

processing architecture, needed to fulfill our real-time and concurrent query requirements

despite the massive amount of input.
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Figure 3.2: Distributed graph

3.2.1 DISTRIBUTED GRAPH

We propose a distributed, dynamic graph structure as depicted in Figure 3.2 as means for log

processing. The graphs are directed, potentially cyclic, and do not need to be fully connected

(i.e., there may be a vertex v1, not reachable from a distinct vertex v2). With this structure,

correlations and relationships can be expressed easily. For example, the vertices A, B, C,

and D could be physical machines, sending error messages X, Y, and Z to each other. This

information could be used to determine how an error propagated through a complex system.

The graphs consist of a set of vertices V and a set of edges E: G = (V, E) with E ⊆

{(v1, v2) | v1, v2 ∈ V }. Each edge e ∈ E has a weight w (e) ∈ R and can store any kind

of additional information (e.g., the different ports used, for every observed communication

between v1 and v2).

SUB-GRAPH CONSTRUCTION

To distribute such a graph onto multiple nodes (i.e., physical machines or separate address

spaces), we construct for each vertex v ∈ C, a sub-graph Gv = (Vv , Ev ) with:

Vv = {va ∈ V | ∃e ∈ E ∧ e = (v, va)} ∪ {v}

where the set of vertices C contains only those vertices v ∈ V which have at least one

outgoing edge. The new set of vertices Vv now contains all vertices va that are connected

with an edge from v to va, as well as v itself. To construct the set of edges Ev we add all

outgoing edges e ∈ E of v :

Ev = {e ∈ E | ∃v1 ∈ V : e = (v, v1)}

The vertex v is now called the center vertex of the sub-graph Gv . To determine on which node

to store sub-graph Gv , we apply a hash-function h to the center vertex v and compute the

modulo of h(v ) with the number of available nodes. Since each node has a unique id, which

starts at 0, the result of the modulo operation equals the unique id of the node on which to

store Gv . For example, in Figure 3.2, h(A) mod 2 = 0 matches the unique id of node 0 and

h(B) mod 2 = 1 matches the unique id of node 1.

SPACE COMPLEXITY

Because the sum of all |Ev | is equal to |E|, the space needed to store all edge information

is not changed by the sub-graph construction. The transformation does, however, increase

the space needed to store the vertices, that is, the sum of all |Vv | is greater or equal to |V |.
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3 Mining large distributed log data in near real time

This is because of the vertices that are, at the same time, center-vertices and part of other

sub-graphs, such as vertex B in Figure 3.2.

The multiset of vertices in the distributed graph V D =
⊎

v∈C Vv increases linearly with the

number of edges in each sub-graph:

|V D| =
∑

v∈C

|Vv | =
∑

v∈C

(|Ev | + 1)

If the number of outgoing edges for each vertex v ∈ C is limited by a constant K , then |Ev |+1

can be substituted with K + 1 and the overhead is constant:

|V D|

|V |
≤

∑
v∈C (K + 1)

|V |
=

|C| · (K + 1)

|V |

In the worst case, all vertices in V have outgoing edges. Hence, C is equal to V and thus

|V D|

|V |
≤

|V | · (K + 1)

|V |
= K + 1

Note, that the space complexity of the distributed graph is O(|V |), independent of how many

physical nodes are used.

Our algorithm maintains two graphs for every center vertex. One contains the information

of all the data received within a given window (e.g., the last 100 updates for each center-

vertex) and the other one stores the summary information of the complete data that has been

received so far. The latter uses a top-k algorithm and the former its window size to limit the

number of outgoing connections per vertex to K . We show an example of how to use and

merge both graphs in Section 3.3. Both graphs are bounded in size. Therefore, the amount

of data that is stored per node is bounded by the size of the two graphs times the number

of center vertices, stored on that particular node. An algorithm for reconstructing the original

graph G is given in Section 3.2.4.

3.2.2 PROCESSING ARCHITECTURE

Our design choices aim at maximizing pipeline, task, and data parallelism in order to support

high-throughput and scalability. The resulting architecture shares these design principles with

big-data processing systems such as MapReduce [DG04], and in particular with the online

models of computation on data streams that were inspired from it [Neu+10; Fou; Bri+11;

Bac+12].

STREAMMINE STREAM PROCESSING ENGINE

StreamMine uses the base construction principles illustrated by Figure 3.3. It is composed

of a set of operators, sharing the same code and supporting pipeline parallelism. Operators

are organized as a directed acyclic graph (DAG). Communication takes place in the form of

events flowing through the DAG of operators, where an event is a <key,value> pair. Each

operator can scale horizontally by using an arbitrary number of operator slices, each running

on a different server and managing an independent state. Slices scale vertically by partitioning

the received event load between all available cores on each server. There is no communication

or shared state between the slices of an operator. Event forwarding between operators can

use one three different primitives. The unicast primitive determines the id of the slice in the

next operator by using a key and a hash-function (a simple modulo by default). A specific

hash-function can be specified by the event handler function, which may implement more

sophisticated stream partitioning mechanisms. The anycast primitive sends the event to a

random slice of the next operator. The broadcast primitive sends the event to all slices
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of the next operator. All communications take place on pre-established and persistent TCP

connections: all slices of one operator are persistently connected to all slices of the next

operator(s) in the DAG.

All threads of all slices of a given operator support the execution of the same event handling

function. Figure 3.4 presents a detailed view of the state of the greyed slice from Figure 3.3.

Threads from a pool process incoming events from an input queue using a part of the state

determined according to the event identifiers. The state of a slice (such as a window of events

or summary information from previously processed events) is managed by StreamMine, and is

partitioned using the same keys that are used for unicast routing between operators. Hence,

there is no communication or shared state between the slices of an operator. Each thread

accesses the state corresponding to the event to process using the appropriate read-only (R)

or read-write (RW) mode. An event with key k1 can be processed in parallel with another event

with key k2 as long as k1 6= k2 or, if k1 = k2, only when both accesses are read-only.
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GRAPH PROCESSING ON STREAMMINE

Figure 3.5 depicts the architecture of the distributed graph processing. The log data can be

read from any socket. This includes disks, as well as TCP-connections and Unix-pipes. The

parse operator is used to extract and convert the necessary information from the log data.

For example, the parse operator can be used to construct a numerical representation of a

human-readable IP address, such as “141.30.2.2”.

Subsequently, the parse operator generates a new event and sends it downstream to the

graph operator using the unicast primitive. As mentioned, all communication in StreamMine

is event based and events are key-value pairs. Considering the example from Figure 3.2, if

we want to send an event to update the sub graph with the center vertex B, our event has

to have the key B. We will show how we chose the keys for our two example applications in

Section 3.3.

Since the system uses back pressure, the processing speed of each component is not only

limited by itself but also by all downstream components. For example, the parse operator

slices cannot send more events than the graph operator slices can process.

3.2.3 SIMPLE QUERIES

The graph maintained by the graph operator slices can be accessed and queried. There

is no limit on the number of queries running simultaneously. Moreover, each query itself

may be distributed using the same concepts as the distributed graph for communication and

parallelization. Since the routing scheme is static, it is straight forward to compute where the

graph of a specific item can be found.

The query interface provided by the graph operator is based on events. So called control

messages can be sent to request the graph of a given item and will be answered with a

response message. Algorithm 3.1 shows how a query is performed.

3.2.4 MULTI-LEVEL QUERIES (TRANSITIVE CLOSURES)

To obtain the transitive closure of a sub-graph or even the complete graph, the previous

algorithm has to be repeated recursively. Algorithm 3.2 shows this in pseudo-code. The

algorithm takes the initial vertex and the desired depth as inputs. Initially, the set visited and

the graph are initialized to empty sets. First, we check if the sub-graph of a vertex has already

been processed. This ensures each vertex is included only once in the output. Thereafter,

we check for each adjacent vertex in the sub-graph if it has already been processed, and if
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Algorithm 3.1: Query a single sub-graph

input : vertex

output: sub-graph

1 begin function query

2 control message m

3 m.key = vertex

// emits the event and waits for the answer

4 sub graph = unicast(m)

5 return sub graph

the remaining search depth is still greater than 0, we request the sub-graph of the current

adjacent vertex. The result is the union of all the collected subgraphs.

Algorithm 3.2: Multi-level Query (Transitive closures)

1 global visited = /0
2 global graph = /0

input : vertex, depth

output: graph

3 begin function closure

4 if vertex ∈ visited then
5 return /0

6 visited.insert(vertex)

// the query function is shown in algorithm 3.1

7 sub graph = query(vertex)

8 graph = graph ∪ sub graph

9 if depth > 0 then
10 foreach adjacent vertex ∈ sub graph do
11 if adjacent vertex ∈ visited then
12 continue

13 sub graph = closure(adjacent vertex, depth −1)

14 graph = graph ∪ sub graph

15 return graph

3.2.5 QUERY EXAMPLES

This section will present some implementations of popular graph algorithms on top of our

infrastructure. Since it is impossible to present all of them we focused on the non-trivial ones

which are actually applied in practice.

LOCAL CLUSTERING COEFFICIENT

Details The local clustering coefficient of a vertex v is the fraction of pairs of neighbor

vertices which are connected over all pairs of neighbor vertices of v . Intuitively speaking, the

local clustering coefficient is high, if the neighborhood of a vertex is well connected.
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Applications Suppose, the vertices in a graph are actual users in a social network. The

edges connecting them represent a relation of some sort – e.g. friendship, professional rela-

tionships, and so on. Now, we want to find malicious users who connect to many random

users. One reason to follow this goal is to increase their influence within the network. How-

ever, if a user connects to a random subset of other users, those random users are unlikely

to be well connected. Hence, the local clustering coefficient of the malicious user will be

small [Alv+13]. Ding et al. have shown that the local clustering coefficient can even be used

to detect intrusions [Din+12].

Algorithm 3.3: Local Clustering Coefficient (lcc)

input : vertex

output: lcc

1 begin function local clustering coefficient

// get neighbors of vertex

2 N = closure(vertex, 1)

// N contains also the neighbors of the neighbors of ”vertex” which we don’t need

3 N = N / {vj : 6 ∃evertex,j ∈ E(N)}

// The local clustering coefficient is the fraction of actual links between the

neighbors of ”vertex” over all possible links between the neighbors of ”vertex”

4 lcc = |{ejk : vj , vk ∈ V (N), ejk ∈ E(N)}| / V (N)(V (N) − 1)

5 return lcc

Algorithm Algorithm 3.3 first acquires the closure of vertex with depth 1 and stores the

returned subgraph in N. However, this will also include the vertices which are neighbors

of the neighbors of vertex. Since the local clustering coefficient only considers the direct

neighbors of ”vertex, we remove all vertices from N which are not direct neighbors of vertex

in the next step. Now, calculating the local clustering coefficient is easy. The enumerator

of the fraction in line 5 is the actual number of edges which connect the direct neighbors of

vertex. The denominator is simply the number of possible edges in the direct neighborhood

of vertex.

SEED-BASED COMMUNITY DETECTION

Details Community detection algorithms thrive to find all communities in a graph. How-

ever, Abrahao et al. [Abr+12] argued that research should focus on giving those algorithms

some guidance as to which community should be found exactly. One example is seed-based

community detection which detects communities around a given set of seed vertices. Exam-

ples are personalized page-rank [ACL06], low-conductance cuts [GS12], or binomial probabili-

ties [MS09].

Applications Applications of community detection are broad. Google’s famous pagerank

algorithm is in fact a community detection algorithm [ACL06]. Researchers have also shown

that community detection can predict future attack targets [ZPU08]. However, such algorithms

are most prominently used in social network analysis [Les+08].

Algorithm In Algorithm 3.4, we present a general framework with which all community de-

tection approaches can be implemented. It is based on the work by Yang et al. [YL15]. A

programmer only needs to supply the Select and Rank functions. The former selects a set
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Algorithm 3.4: Local Community Detection, based on the framework by Yang et

al. [YL15]

input : S, depth = 1

output: C

1 begin function local community detection

// get neighbors of vertex (can be executed in parallel)

2 foreach seed ∈ S do
3 N = N ∪ closure(seed, depth)

// In a first phase, the algorithm implements a function which selects possible

community members, i.e. canidate selection

4 N = Select(S, N)

// In a second phase, those selected candidates are ranked by how “close” they

are to the seeds

5 C = Rank(S, N)

6 return C

of good candidates from the graph. All seed-based community detection algorithms select

vertices in the neighborhood of the seeds. When using algorithms like minimal cut [GS12] or

normalized inverse conductance [WHF14] only direct neighbors of the seeds are selected. Al-

gorithms which use personalized pagerank [ACL06] for candidate selection will search deeper

into the neighborhood of the seeds, however, how deep is bounded by the jump-back proba-

bility e (i.e. the maximum depth is e−1). For such cases, an optional argument depth can be

supplied to the function. Note, that the closure function 3.2 can be executed in parallel as well

- hence, the most time and communication consuming part of the algorithm can be completely

parallelized. The latter then performs ranking on the previously selected neighbors, creating

a mapping C, which maps each selected candidate to a rank or score which determines how

well the given candidate fits into a community.

3.3 USE CASES

In the following, we will provide two use-cases that we have investigated using our approach.

The first is a fraud detection application for the telephony domain and the second is an attack

detection application for the internet domain. Both examples use community of interest

graphs (COI) [CPV01]. Algorithm 3.5 shows how the COI graph is constructed. We first add

the received entry to the window, which is the first graph we store for every center vertex. If

more than a pre-defined number of connections have already been added to the window, the

window is merged with the (potentially not yet) existing COI, which is the second graph we

store for every center vertex (topk). To this end, the application needs to define an attribute

by which to measure the weight of the connections. With that, the weight (sum of all the

attribute values) in the window, multiplied with a damping factor 1 − θ, are added to the

weight (multiplied with θ) in the COI. Since θ = 0.85 in both examples, the influence of the

new connections in the window is damped. Thereafter, the weights of all contacts in the COI

that have not been observed during the current window are decayed by multiplying them with

θ. To keep the COI at a maximum size of K , we remove the weakest link until the size of the

COI is smaller or equal to K . Finally, the window and the counter are reset.
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Algorithm 3.5: Top-k graph construction

input : (window, topk, counter, new contact, attribute)

output: None

1 begin
// Save new contact in window

2 window[new contact].weight += attribute

3 counter++

// Merge window into top-k after N events

4 if counter > N then
5 foreach contact ∈ window do

// θ has a value of 0.85 in our analysis.

6 ww = window[contact].weight

7 tw = topk[contact].weight

8 topk[contact].weight = 1 - θ * ww + θ * tw

// Decay weight of old connections

9 foreach contact ∈ topk ∧ contact /∈ window do
10 topk[contact].weight = θ * topk[contact].weight

// Copy additional information I which can be saved with the edges

// Remove the weakest links

11 while |topk| > K do
12 remove weakest link from(topk)

13 window = /0
14 counter = 0

3.3.1 TELEPHONY APPLICATION

In this application, we parse call-detail-records (CDRs) that contain various information for

each telephone call. The CDRs are stored in a text file with each line representing one CDR.

The parse operator extracts the caller, callee, and call-duration information from each CDR.

Thereafter, two events are sent to the graph operator: one with the caller’s hash as the key

and one with the callee’s hash as the key. Each event is about 24 bytes large. In the graph

operator, we construct a sub-graph for each event’s key, i.e., there is a sub-graph for each

phone number observed in the CDRs—be it the caller or the callee. This approach is similar to

[CPV01], with the exception that we dynamically update each sub-graph individually, instead

of updating the complete graph after a fixed time interval.

GRAPH

Figure 3.6 shows the top-k sub-graph of a phone number. The adjacent vertices are other

phone numbers that have either been callers or callees with respect to communication with

the center vertex. Edges are weighted by the sum of all call durations of each communication

between two vertices. The graph was obtained using the simple query function (see Algo-

rithm 3.1). All links were stored into a file and then rendered using the neato tool, contained

in the graphviz [Ell+02] package.
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Figure 3.6: Community of interest example for an anonymized phone number

SOCIAL FINGERPRINTING

One application of communities of interest is social fingerprinting. The idea is that an indi-

vidual can be identified, with a certain probability, using only its community of interest. The

probability depends highly on the size of the COI. Research has shown that a COI of size 9

is sufficient [CPV01]. This, in turn, can be used to check whether the same individual lies

behind two or more different numbers. For example, if we have a set of known fraudsters,

we can check if the COI of a suspicious customer is sufficiently similar (e.g., 90%) to one of

the stored fraudster’s COIs. This check needs to be done in real time, since action must be

taken (e.g., block a call) before the actual call is completed.

Implementing such a fingerprint query on top of our graph-mining system is straight forward

and shown in Algorithm 3.6. First, we query the COI of the number in question. Then we

construct the set intersection for the received COI with each of the stored fraudster’s COIs.

If at least one of the intersections is as large as 90% of the COIs size, a possible fraudster

has been found and a fraud analyst should further investigate the case.

Algorithm 3.6: Fingerprinting

input : suspect number

output: alarm

1 begin
2 suspect coi = query(suspect number)

3 foreach coi ∈ fraudster cois do
4 intersection = coi ∩ suspect coi

5 if |intersection| >= 0.9 * |coi| then
6 return true

7 else
8 return false

3.3.2 NETFLOW APPLICATION

In this application, we parse netflow logs, recorded by routers, which contain various informa-

tion about internet based communication connections. We describe this application in detail

in Chapter 4. However, we give a short overview here in order to motivate the usefulness of

our engine for intrusion detection. Each netflow entry is a line in a text file. We use the parse
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3 Mining large distributed log data in near real time

Figure 3.7: Community of interest example for an anonymized IP address

operator to extract the source-ip, target-ip, source-port, target-port and number of transferred

bytes from each netflow entry. Thereafter, an event, representing one netflow entry, is sent

to the filter operator. Each event is about 32 bytes.

The filter operator is a new operator, introduced for the netflow application, to discard

unimportant traffic before it reaches the graph operator. The decision to discard an event

depends on various factors, such as the ports used and source and destination IPs. A detailed

description of the filter operator is out of the scope of this chapter, but fundamentally we use

this operator to filter traffic that is not related to the community or uses trusted protocols.

Finally, if the original event was not filtered, the filter sends an event to the graph operator

slices using the source-ip’s hash as the key.

With that, we construct a sub-graph for each unfiltered IP address. We use the number

of bytes transferred to determine the weight of each edge and also store the used ports as

additional information for each edge.

GRAPH

Figure 3.7 shows a top-k sub-graph as it is used in the internet attack detection application.

The center vertex depicts an IP address that connects to various members of the community

“A” and three members of the community “B”. We omit the real community names for privacy

reasons. The edges depict communication between the two vertices and the diamond boxes

depict the weights of the connections. These weights are determined by the sum of the

transferred bytes by each communication between two vertices. While not shown in the

figure, the edges also contain every source- and destination-port combination ever used by

the two vertices. The graph in the figure was obtained using the simple query function (see

Algorithm 3.1).
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Figure 3.8: Scalability of dynamic graphs

SECURITY INCIDENT DETECTION

The netflow application is used to detect APT attacks. The basic idea of this application is to

identify IP addresses outside the community that communicate with a number of different

organizations in the community.

3.4 PERFORMANCE EVALUATION

We executed all benchmarks of the telephony application on a 50 node cluster, each equipped

with two Intel Xeon quad-core processors and 8GB of RAM. The relation of nodes for this

experiment is (n : n + 1): n parse nodes and n + 1 graph nodes.

The experiments, using the netflow application were executed on a 9-node cluster, each

equipped with 4 Intel Xeon quad-core processors and 24GB of RAM. The relation of nodes

for this experiment is (n : n : 1): n parse nodes, n filter nodes, and 1 graph node. Each node

is a physical machine.

The measurements were conducted by processing accumulated (i.e., historic) data, because

the volume of the real time data was not high enough (for example, we can process one day

of netflow data in 40 minutes on a single machine) to show how the system behaves (i.e.,

with regard to latency and throughput) at its limit. Of course, we plan to integrate our system

with real-time analysis at a later point in time.

3.4.1 TELEPHONY APPLICATION

Figure 3.8 shows the scalability of the dynamic graphs. It can be seen that the dynamic

graphs scale linearly with the number of nodes used and, more importantly, with the input

traffic. The linear characteristic is due to the fact that we use the same set of CDRs for every

setup. Thus, the number of sub-graphs per node decreases as more nodes are added. In the

largest configuration, we can process up to 39 million log-entries per second.

This is still being done in near real time: Figure 3.9 shows the mean latency from reading

a new log entry until the processing is completely finished for different configurations. It

can be observed that by adding more nodes, the overall latency declines. The reason for

this is the same as for the linear scalability in the throughput measurement. Note, however,

that the throughput also increases with larger setups (as shown in Figure 3.8). Therefore, by

increasing the number of nodes, latency can be maintained at a constant level even if the
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Figure 3.9: Latency of processing individual log entries
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Figure 3.10: CPU utilization, separated for source and graph nodes

workload increases.

One of the motivations for mining log data with a distributed system is that the computa-

tional overhead can be distributed. For example, the nodes that parse the entries from the

log files will not have to dedicate all their resources to the mining and may be used for other

purposes. This argument is supported by Figure 3.10. It shows that the CPU of the parse

operator slices is much less utilized than that of the graph operator slices. However, the

network connections of the parse operator slices are fully utilized (i.e., 115MB/s) because the

parsed entries need to be sent to the graph operator slices.

It can also be seen that larger configurations yield a higher CPU utilization on the nodes

running the graph operator slices. This is caused by the fact that we always use 1 graph

operator slice more than parse operator slices (n : n + 1), which is the setup in which the

telephony application performs optimally. Since this is constant, its influence is higher for

smaller configurations and the graph nodes in smaller configurations will be less utilized.
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3.4.2 NETFLOW APPLICATION

We executed the same set of measurements for the netflow application. However, the results

cannot be compared directly since the hardware is different1 and the netflow application uses

one additional operator (the filter).

Figure 3.11 shows that the netflow application scales almost linearly with the number of

nodes. Figure 3.12 depicts the mean latency from the time a netflow entry is read until the

graph operator finished processing it completely. As expected, the latency is significantly

higher than for the telephony application. This is due to (1) a non-optimal implementation of

the filter and (2) the network delay, introduced by the additional filter operator. The reason

that the latency decreases for larger configurations is that the filter operator slices, which

dominate the overall latency, are less loaded.

The CPU utilization (see Figure 3.13) shows that the filter operator slices have the highest

CPU utilization. The parse operator slices do not require as much CPU since they are limited

by I/O operations (reading the log entries from disk and sending events to the filter operator

slices). Again, the reason for the decrease of CPU utilization in larger configurations is mostly

due to lower load on the filters.

1 Due to legal reasons we were not able to execute all experiments on the same infrastructure.
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Figure 3.13: CPU utilization, separated for sources, filter and graph slices

Interestingly, however, the graph operator slice is much less utilized than for the telephony

application. This is true for the CPU utilization (see Figure 3.13) as well as the network traffic.

As depicted in Figure 3.14, the network throughput from the parse operator slices to the filter

operator slices (the graph on the left side) is by orders of magnitude higher than the network

throughput from the filter operator slices to the graph operator slices (the graph on the right

side). Therefore, also the CPU utilization of the graph operator slice is by orders of magnitude

lower than for the telephony application, where the graph operator slices have to process all

the traffic sent from the parse operator.

Consequently, CPU utilization can be traded for network traffic: Either the CPU usage is

lower but the network traffic is higher (as shown in Figure 3.10) or the CPU usage is higher

but the network utilization is lower (as shown in Figures 3.13 and 3.14).

3.5 RELATED WORK

The related work can be split into three distinct categories: data mining, graph mining, appli-

cations for graphs mining. The latter includes distributed graphs as well as fraud detection on

graphs.

3.5.1 DATA MINING

A system close to our mining platform is IBM’s SPC [Ami+06]. It provides a rich API for

defining operators. However, it only reaches high throughput with large event sizes (more

than 128KB) and the processing elements can only operate on fixed windows over the input

stream, while our system allows a state to be stored independently from a window (such as

the top-k graphs).

Dryad [Isa+07] is a streaming system by Microsoft. It relies on the availability of a distributed

file system and processing elements are executed in a single-threaded manner. No latency

measurements or absolute numbers on the achieved throughput are provided in [Isa+07].

SCOPE [Cha+08] is a system by Microsoft, specifically designed to parse log files. It relies,

like Dryad, on the availability of a distributed file system. Furthermore, it provides only limited

customizability of operators, i.e., operators need to be defined by means of the three con-

structs: PROCESS, REDUCE, and COMBINE. No absolute latency or throughput results are

provided in [Cha+08] and the scalability is sub-linear.

Hadoop [Fou10] is the main open-source implementation of the MapReduce paradigm
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Figure 3.14: Influence of filtering on throughput

[DG08]. It is intended for batch processing and therefore provides latencies far beyond the

seconds range. Several variations of the model have also been proposed. Hadoop Online

[Con+10] improves Hadoop’s efficiency and latency by enabling a direct communication be-

tween mappers and reducers. In the original publication, the authors consider the processing

of continuous data streams, but provide only a minimal example and no performance eval-

uation. State is incorporated into MapReduce in [Log+10]. However, the goal is to provide

better support for incremental batch jobs and, thus, it will not support applications requir-

ing low latency. Better incremental support for batch systems is also the focus of the new

Google system, named Percolator [PD10]. Unfortunately, the observed latencies in Percolator

can range up to minutes.

Borealis [TÇZ07] addresses scalability by optimizing the placement of operators, balancing

load, and applying sophisticated techniques for load shedding. However, it only supports SQL-

like operators. Moreover, it does not address the problem of parallelizing a single operation

among a large number of nodes. GSDM [IR05] addresses operations that are partitionable, like

is the case with MapReduce, but it does not consider operators that maintain state—operator

process whole windows at a time, similar to our jumping windows.

Finally, StreamMine [BFF09; Bri+08] addresses low latency, fault tolerance, and paralleliza-

tion of stateful operators, but the speculative approach does not scale horizontally (i.e., among

nodes within a cluster).

3.5.2 GRAPH MINING

The Gather - Apply - Scatter (GAS) model has become the standard programming abstraction

in distributed graph processing engines. Algorithms in this model are formulated as vertex

programs. The vertex program is then executed on each vertex individually. The algorithm

halts if no more vertex has scheduled itself or was scheduled by one of its neighbors (who is in

charge of scheduling vertices depends on the actual engine). In the gather -phase, the vertex

program collects data from its neighboring vertices. In the apply -phase, the vertex program

may perform any type of computation with these values. Finally, in the scatter -phase the

vertex program may communicate new values to its neighbors. Or, depending on the engine

51



3 Mining large distributed log data in near real time

in use, may even schedule its neighbors for execution. Distributed graph engines differ in the

way they schedule execution of vertex programs, how vertices (or edges) are distributed over

the set of computing nodes, and additional optimization techniques like caching intermediate

results.

Pregel [Mal+10] is a distributed graph processing engine, based on Apache Hadoop. It was

later released as part of the Apache project under the name “Apache Giraph”. The execution of

vertex-programs is divided into so-called “supersteps”. In each superstep, the vertex programs

run in parallel and may receive messages from their neighboring vertex which have been sent

in the previous superstep. They may also send new messages to their neighbors which they

will receive in the next superstep. Each vertex decides itself if it wants to be executed at the

next superstep. The execution of supersteps is strictly sequential, i.e. the execution of one

superstep has to be finished completely before the next superstep may be run. The exchange

of messages between the vertices is facilitated by message passing.

GraphLab [Low+12] takes a different approach in that vertex-programs can access the state

of their neighbors. In contrast to Pregel, they may also schedule the execution of neighboring

vertices. This can help with some algorithms, such as pagerank, where vertices only need

to update their rank if the rank of their neighbors changed significantly. Instead of scheduling

vertex programs in supersteps, GraphLab achieves serializability by scheduling only those

vertices in parallel which cannot share any state, i.e. have a disjoint set of neighbors. This

scheduling scheme has proven to especially efficient with algorithms that converge to a final

solution (e.g. PageRank).

GraphLab and Pregel scale well as long as inter-machine communication is limited. In

both systems, vertices are distributed over computing nodes through the application of a

hash-function on the vertex-id. This has the drawback, that vertices which are connected

by an edge may be assigned to different computing nodes. A problem which is especially

prominent with graphs whose degree distribution follows a power-law: They are hard to

partition efficiently as some of the vertices have several orders of magnitude more neighbors

than most other vertices. Since the communication complexity of vertex programs is O(n) with

n being the number of neighbors, this results in some vertex programs having to exchange

many messages with remote computing nodes in the gather and scatter phases. Therefore,

PowerGraph [Gon+12], distributes the graph using so-called vertex cuts, as it is the case with

our solution, presented in Chapter 3. As we have seen in Chapter 3, the result is that an

edge never spans different computing nodes. In addition to our solution, they minimize the

number of additional vertices which need to be stored.

Finally, instead of creating another highly specialized distributed graph processing engine,

GraphX [Gon+14] provides a GAS API on top of Apache Spark – a distributed dataflow system.

The authors show that a graph parallel computing abstraction as used by the GAS model can

be mapped onto traditional JOIN and GROUPBY SQL operations on property graphs. The

authors then propose several optimizations to how the JOIN and GROUPBY are executed,

such as caching intermittent results. With that, GraphX can reach a higher performance than

any of the aforementioned systems.

3.5.3 GRAPHS

The use of graph structures for different kinds of applications has been addressed in number

of research efforts [WY85; FBO09; Don10; Ver+06]. However, there is very little related work

on how to efficiently distribute huge graphs. The authors in [III+05] propose a distributed

graph algorithm but focus only on finding the strongly connected components. It is not clear

if the graphs can be updated and with what latencies. Taentzer [Tae99] provides a theoretical

analysis of distributed graphs, but no implementation is provided.

In the field of community of interest-based fraud detection, the closest related work is
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[CPV01]. However, the authors do not consider constant updates but rather batch processing.

Moreover, the computation and the graph are not distributed.

The indexing of graph structures in databases has been investigated in [WHW07]. Never-

theless, the analysis considers only one computer (not distributed), and latencies for queries

and updates are in the range of in the seconds with larger databases.
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3.6 SUMMARY

We have demonstrated how to use graphs for many interesting log processing problems. The

evaluation showed that we can process huge amounts of log data in near real time (i.e., 10

ms). This is especially due to the very good scalability of our system. Since the index is

deterministic and easy to compute, queries are very simple to implement. Addition of new

operators, such as our filter operator, is easy and can result in significant reduction of data

transferred and processed.
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4 COMMUNITY-BASED ANALYSIS OF
NETFLOW FOR EARLY DETECTION OF
SECURITY INCIDENTS1

1The original version of this chapter appeared at LISA ’11 [WHF11a].
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4.1 Introduction
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Figure 4.1: This chapter is concerned with an efficient implementation of the filter component

and with the evaluation of a graph-based intrusion detection algorithm

In the last two chapters we have not only learned how to detect industries in IP flow data

but also how to update and process huge distributed amounts of input data. Since we now

know which IP addresses belong to a given industry and have a highly scalable and adaptable

graph-based rule-engine, we will design and implement a community based IDS in this chapter.

With that, we are finally in the position to tackle Security Challenge 4: Stealthy attacks. Given

a scalable, efficient graph-based rule engine, an efficient filter and the knowledge about the

boundary of a given industry in our input data, we can correlate events from different industry

members to lift “below the radar” attacks above the radar. To this end, we first implement an

efficient filter which drops irrelevant events. Furthermore, we implement a complex graph-

based rule, which is able to detect intrusions automatically in netflow traffic. We present

several case-studies and conclude with an outlook on how to enhance this engine to support

additional information sources.

4.1 INTRODUCTION

Detection and remediation of security incidents (e.g., attacks, compromised machines, policy

violations) is an increasingly important task of system administrators. While numerous tools

and techniques are available, novel attacks and low-grade security events may still be hard

to detect in a timely manner. Specifically, system administrators typically have to base their

actions on observing the local traffic to and from their own networks as well as global security

incident alerts from organizations such as SEI CERT1, Arbor Atlas2, or software and hardware

vendors. However, stealthy targeted attacks may slip below detection thresholds both in the

local data alone or on the global scale.

Furthermore, the nature of internet-based attacks is changing from random hacking to fi-

nancially or politically motivated attacks. For example, botnets are increasingly leased out to

highest bidders and DDoS attacks are often used as a means for blackmail. Moreover, attacks

targeting industries with financial information (e-commerce, banking, gaming, insurance) are

increasing and the threat of attacks against SCADA (supervisory control and data acquisition)

systems in electrical power generation, transmission, and distribution (among other industrial

1http://www.cert.org/
2http://atlas.arbor.net/
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4 Community-based analysis of netflow for early detection of security incidents

process control systems) is even considered a potential target for terrorism [ILW06].

Targeted attacks might not leave a large traffic footprint in the targeted organization since

one machine with access to the desired information or control system may be sufficient for

the attacker to achieve their goals. It is often difficult to detect such low-footprint attacks based

on local monitoring alone because it is often necessary to set local alerting thresholds high

enough not to generate too many false positives and overwhelm the system administrators.

But as a result, a stealthy attack or compromise may lay undetected. Therefore, it is possible

for an attacker to target many such organizations without being detected. For example, the

attacker may want to maximize profit by attacking multiple financial organizations concurrently

before the vulnerability used is detected and corrected. Similarly, terrorists may require the

control of many companies to achieve their goal of large scale damage.

In this chapter, we present a novel approach for detecting stealthy, low-grade security in-

cidents by utilizing information across a community of organizations (e.g., banking industry,

energy generation and distribution industry). We will show by using an example that we can

find possible attacks (or attempts) that only transfer very little data (e.g., a few bytes) and thus

would remain undetected by conventional approaches.

The remainder of this chapter is structured as follows. In Section 4.2, we present the tech-

nical approach based on netflow data and construction of communities of interest. Section 4.3

describes the implementation of the system, including the algorithms used for the analysis.

We evaluate the performance of our system in Section 4.4 and present selected case studies

of suspicious activity we have identified in Section 4.5 . Section 4.7 outlines related work in

the area and Section 4.8 concludes the chapter.

4.2 APPROACH

4.2.1 SERVICE VISION

Our technique is based on the concept of community, in our case defined as a collection of

(at least two) organizations. A community can be specified based on any criteria relevant for

attack detection. For example, it could consists of businesses in a particular industry (e.g.,

banking, health care, insurance, etc), organizations within a country (e.g., businesses and gov-

ernment agencies in one country), or organizations with particular type of valuable information

(e.g., industrial espionage or customer credit card information). We detect stealthy security

attacks by observing the communication to/from the member organizations of a community.

The intuition being that within each organization only very few machines may be attacked

or compromised and as a result an attack can be very hard to detect within each organiza-

tion. However, by observing the communication behavior across multiple organizations in the

community, such stealthy behavior may become visible.

Given that we analyze communication in the Internet, each organization is defined by the list

or range of IP addresses belonging to the organization. We consider Internet communication

connections (reported by netflow, for example) within the communities and between com-

munities and external IP addresses who do not belong to any community. For our analysis,

all the IP addresses within an organization can be collapsed into one identifier representing

the organization. Any communication between two IP addresses where neither belongs to

one of our communities and neither has communicated with a community in the past can

be ignored. Furthermore, communication with IP addresses belonging to commonly used

Internet services (e.g., search, news, social media) can be white listed and removed from

consideration.

We construct a communication graph for each IP address that communicates with at least

one organization in a community as illustrated in Figure 4.2. This figure shows the communi-

cation graph for an external IP address (i.e., some IP address outside any of the communities
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Figure 4.2: Communication graph for an IP address

of interest). This node has communicated with two communities, one consisting of organi-

zations 7 and 8, and the other consisting of organizations 1 through 6. A directed edge from

some node A to some other node B in the graph indicates that A has sent messages to B.

Although not depicted in the figure, each edge may contain additional information, such as

the combinations of source and destination ports used.

The weight of the edge is used to quantify the importance of the communication. The

importance can be based simply on the number of messages or bytes sent, or the number of

contacted individual members in the targeted organization. However, some communication

may be more important than others from security point of view. For example, some port

numbers are more often involved with malicious activity (e.g., based on CERT reports) and

communication using such ports can be weighted more heavily.

The weight is also used to limit the size of each graph. The size of the graph is determined by

the number of nodes it contains. If the size exceeds a given threshold, we remove the weakest

links until the threshold is reached. This is necessary because storing all communications

would require too much space even for a single day. For example, in our data set consisting

of heavily sampled netflow, a given weekday contains about 860 million entries. These 860

million recorded netflows originate in 28 million distinct IP addresses. Therefore, if we would

not filter unimportant IP addresses, we would need to store 28 million graphs. Moreover,

each of these 28 million IP addresses often connects with 1 to 2 million other IP addresses.

Thus, if we did not limit the size of each graph, we would have some graphs that are too large

to fit into memory. The situation would be even more challenging if we analyzed the data for

one month or a week instead of the current one day at a time.

As already stated, we also consider communication within a community and across commu-

nities. With that, we are able to detect already compromised computers inside an organization

when they try to attack further organizations as shown in Figure 4.3. To reduce the number

of false positives (many organizations have frequent contact with other organizations of the

same or other communities), a computer inside an organization that belongs to a community

(or is contained in the whitelist) has to show more suspicious behavior than an external IP

address before an alarm is generated. For example, we do not consider communication via

port 443 with or across communities.

Given such communication graphs, a potential security incident is suspected when an IP

address communicates with a specified number of community members. Typical examples of

security threats that can be detected using this approach include botnet controllers managing a

number of bots in the community, compromised machines downloading stolen information on

a dedicated server, an attacker targeting machines in multiple organizations, as well as many
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Figure 4.3: Communication graph for a community member

security policy violations (e.g., illegal software download sites, etc). The number of alarms can

be controlled using thresholds and the system can memorize IP addresses that have already

been reported recently. When there are false positives, the system administrators can extend

the whitelist.

An IP address may contact a large number of community members either because the

community is actually targetted or if the attacker is targetting all or most of the Internet (e.g.,

broad port scan). The system administrators may want to react differently to these alternative

scenarios. Therefore, for each IP address that has contacted a community member, our

system keeps track of how many times it has communicated with IP addresses outside our

communities of interest.

4.2.2 INPUT DATA

Our community-based alerting service uses netflow as its input data source (although other

types of information could be utilized as well). Netflow is a standard data format collected

and exported by most networking equipment, in particular, network routers. It provides sum-

mary information about each network communication passing through the network equip-

ment. Specifically, a network flow is defined as an unidirectional sequence of packets that

share source and destination IP addresses, source and destination port numbers, and protocol

(e.g., TCP or UDP). Each netflow record carries information about a network flow including

the timestamp of the first packet received, duration, total number of packets and bytes, input

and output interfaces, IP address of the next hop, source and destination IP masks, and cu-

mulative TCP flags in the case of TCP flows. Note, however, that the netflow record does not

contain any information about the contents of the communication between the source and

destination IP addresses.

The community-based alerting service requires access to netflow to/from each of the or-

ganizations in the community. Such data can be collected by each of the organizations in

the community at their edge routers and then collected at a central location for processing.

Alternatively, it can be provided by an ISP that serves a number of the organizations in the

community. Note that the netflow data may be sampled (to reduce the volume of the data)

and the actual IP addresses of the computers within each organization can be obfuscated prior

to the analysis (e.g., all IP addresses belonging to an organization can be collapsed into one

address) if desired.

Given the collected netflows and the IP address ranges belonging to each member organi-

zation in the community, our alerting service analyses the data (either real time or in daily or

hourly batches) and generates alerts to the system administrators. The analysis algorithm is
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described in Section 4.3. A whitelist can be used to eliminate any legitimate communication

destinations from consideration (e.g., search engines, CDNs, banking, on-line retailers, etc).

4.3 IMPLEMENTATION

4.3.1 ARCHITECTURE

The architecture of our system is based on StreamMine and presented in Figure 4.4. We use

three different types of operators: the parse, the filter, and the graph operators. Each operator

can be executed by any number of operator slices (e.g., L, M, N1, and N2 in the figure).

We use the unicast primitive to route events between the operator slices. Additionally we

enhanced the distributed graph processing engine of Chapter 3 to support multiple different

kinds of graph operators in one system configuration as illustrated by Graph 1 and Graph 2

in the figure. Different graph operators can be used to realize different alerting conditions as

we will describe below.
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Figure 4.4: Data processing architecture

Each network flow is processed as follows. First, the netflow data is read from a local

storage device (it could also be received in real time from a router). The parse operator trans-

forms the IP addresses from their original string representation (i.e., “AAA.BBB.CCC.DDD”)

into an integer representing the IP address3 and constructs an event with 5 fields: sourceIP,

source-port, destinationIP, destination-port, and transferred-bytes. The parse operator sends

this message to the filter operator. It uses the sourceIP field as the event’s key. The filter

operator either forwards (using the same key) or discards the received event. This decision

is based on various factors, like used ports and source and destination IPs. If the event is

forwarded, it is forwarded to one slice of every graph operator (e.g., Graph 1 and Graph 2).

Finally, the graph operator constructs a community graph for each source IP. The filtering and

community graph construction are described in detail below.

3We will continue calling this identifier an IP address to enforce the one to one connection between these

numerical IDs and the IP addresses.
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4 Community-based analysis of netflow for early detection of security incidents

4.3.2 FILTERING

The filter is an essential part of our analysis and its role is to remove irrelevant flow records

and to reduce the amount of data that needs to be processed by the graph operator. For

example, commonly used search, news, social media, and entertainment web sites are used

so frequently that they would appear with almost every community. Furthermore, any traffic

that does not involve at least one community member is not relevant for the analysis and is

filtered out. Other filtering actions can be chosen based on data volume and perceived threat

vectors. For example, HTTP-traffic may be filtered to reduce data volume, but at the risk of

missing attacks that use HTTP (port 80).

Algorithm 4.1: Example Filter algorithm

input : (src-IP, src-port, dst-IP, dst-port, transferred-bytes)

output: The same as the input, if not filtered

// collapse IP addresses

1 src-IP, dst-IP = collapse(src-IP), collapse(dst-IP)

// filter IPs of commonly used web sites

2 if src-IP ∈ whitelist then
3 return /0

// filter web-accesses to community-members

4 if dst-IP ∈ community then
5 if src-IP /∈ community then
6 if src-port = 80 then
7 return /0

// only forward if one of the IPs is in the community

8 if dst-IP ∈ community OR src-IP ∈ community then
9 return (src-IP, src-port, dst-IP, dst-port, transferred bytes)

Algorithm 4.1 shows an example filter operator that filters connections based on their ports,

and source and destination IP addresses. First, the algorithm collapses IP addresses for an

organization into one address. If, for example, an organization has the IP range from 141.1.0.0

to 141.85.255.255 and either the src-IP or dst-IP are within this range, it is set to 141.1.0.0. We

then discard every connection from IP addresses that are contained in the whitelist. Second,

accesses to a community member’s web-server are filtered. Finally, we only forward the

event message if at least one of the connection end-points is contained in the community.

4.3.3 COMMUNITY GRAPH

We build a fixed size (K ) Community of Interest (COI) graph for each IP address that is

received by the graph operator. Essentially, we use a windowed top-K algorithm, as described

in [CPV01]. However, there are two significant differences in our implementation compared

to [CPV01]. First, our window is not based on a fixed time interval, but rather on the observed

connections. This has the benefit that the COIs of IP addresses with many connections will

be updated more often than of those with very few. Second, we introduce several COI views

({V1, . . . , Vn}) that use different methods to determine the weight of a connection. We can,

for example, favor connections that transfer many bytes over those that only transfer a few by

using the transferred bytes as the edge weight. Obviously, in this case we would not be able

to detect attacks that transfer only a small set of data if these connections are dominated by

large file transfers. Therefore, we define another view that uses the port numbers involved

in security incidents to weight the edges (i.e., the more reported security incidents for a port,
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the larger the weight). Our system supports any number of such views running in parallel, as

depicted in Figure 4.4 (with Graph 1 implementing a different view than Graph 2).

Algorithm 4.2 shows how the COI is constructed in more detail. The algorithm uses two

main data structures: a window that is used to collect recent data and a COI graph that

stores the COI graph as seen from the beginning of the analysis run. We first add the

received connection to the window. If more than 1000 connections have already been added,

the window is merged with the COI graph. To this end, for each IP in the window, the weight

of each edge is calculated, multiplied with a damping factor 1 − θ and added to the weight in

the COI, which is first multiplied with θ. Since θ = 0.85, the influence of the new connections

in the window is dampened. We also merge the port-mapping per destination-IP. It maps the

source-port to the destination-port and a counter, counting how often this port-combination

was used. Thereafter, the weights of all contacts in the COI that have not been observed

during the current window are decayed by multiplying them with θ. To keep the COI at a

maximum size of K , we remove the weakest links until the size of the COI is equal to K .

Finally, the window and the counter are reset.

Algorithm 4.2: Example Community graph construction

input : (src-IP, src-port, dst-IP, dst-port, transferred-bytes), s = State[src-IP], F

output: None

// Save connection in window

1 s.window[dst-IP].transferred bytes += transferred-bytes

2 s.window[dst-IP].port map[src-port][dst-port]++

3 s.counter++

// Merge window into topK after 1000 events

4 if s.counter > 1000 then
5 foreach IP ∈ s.window do

// θ has a value of 0.85 in our analysis.

6 s.topk[IP].weight = 1 - θ * V(s.window[IP])

7 + θ * s.topk[IP].weight

// Merge the window’s port map with the top-k’s

8 foreach {source-port, dest-port} ∈ s.window[IP].port map do
9 s.topk[IP].port map[source-port][dest-port] +=

s.window[IP].port map[source-port][dest-port]

// Decay weight of old connections

10 foreach IP /∈ s.window do
11 s.topk[IP].weight = θ * s.topk[IP].weight

// Remove the weakest links

12 while size(s.topk) > K do
13 remove weakest link from(s.topk)

14 s.window = /0
15 s.counter = 0
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4.3.4 GENERATING ALARMS

We showed above how the COI graph is constructed. Here, we provide two complementary

algorithms to detect suspicious IP addresses.

The first, shown in Algorithm 4.3, is used to pre-filter all IP addresses that belong to a

community. However, if a computer inside the community is compromised, we still want it to

be checked further. To this end, we iterate over all connections in the IP’s top-K and check each

pair of ports. The pairs of ports, considered suspicious, are specified using a configuration

file.

Algorithm 4.3: Suspicious IP detection (1)

input : IP, community, s = State[IP]

output: IP, if suspicious; /0, if not

// blacklisted IPs are always suspicious

1 if IP ∈ blacklist then
2 return IP

// check if IP is in the community

3 if IP ∈ community then
// iterate over all of IP’s connections

4 foreach conn ∈ s.topk do
// iterate over all ports of one connection

5 foreach p ∈ s.topk[conn].port map do
// check if src port and dst port are suspicious

6 if is suspicious(src port, dst port) then
7 return IP

// no strange ports → skip

8 return /0

// not in community → check

9 return IP

We call Algorithm 4.4 for all IP addresses returned by Algorithm 4.3. It assures that (1) only

those IP addresses that connected to at least min cnt members of the community will be

reported and (2) that the connections to the community make at least min part percent of all

the connections of the current IP address.

Algorithm 4.4: Suspicious IP detection (2)

input : IP, community, min cnt, min part, s = State[IP]

output: Alarm

// check if top-K connections of this IP are in the community often enough

1 cnt = count community(community, s.topk)

2 part = cnt / size(s.topk)

3 if IP /∈ blacklist then
4 if cnt ≤ min cnt OR part ≤ min part then
5 return false

6 return true
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The detection algorithm can be run either for all IP addresses at once or individually for each

IP address. Therefore, it is possible to provide different detection latencies. For example, to

detect a suspicious IP address the earliest possible, the algorithm must be executed as soon

as a message is received for its source-IP’s top-K. If this is not necessary, the algorithm can

be run for all top-Ks in one graph process at any desired interval.

The generated alarms can be emailed to the system administrators in the affected organi-

zations or posted on a security dashboard. The reports contain the complete top-K for each

suspicious IP address, including the port mappings.

4.4 EVALUATION

4.4.1 INPUT DATA AND GENERAL SETUP

We currently run the experiment on a per-day basis. This means we fetch the netflow entries

of the last 24 hours and run our analysis. We do not carry any state from one daily run to the

next. In principle, we could leave the system running continuously or checkpoint the graph

operator and re-initiate its state on the next day. However, we found it useful to start with a

clean system every day since this makes it easier to reason about the impact of changes in

the community and white lists.

Moreover, we introduced the concept of different views in June 2011. Since then, we use

three different views: one that weighs the bytes transferred, another that weighs the number

of connections made, and the last one that weighs the security risk for the ports used (as

described in Section 4.3). For any measurements that were conducted before this date, we

only used the view based on the bytes transferred.

Our input data-set is heavily sampled netflow from an ISP. In the first step, we remove all

unimportant fields, leaving only the source-IP, destination-IP, source-port, destination-port, and

the number of transferred bytes. This sums up to roughly 50GB of processed netflow per

day.

The community lists define a community with the IP address ranges of all its members and

each community is stored in a separate file (the white list is simply a “special” community).

For example, if we wanted to add “TU-Dresden” to a “universities community” we would

add the following line into the corresponding file:

141.1.0.0 - 141.85.255.255 TU.DRESDEN.DE

If a company or institution has more than one IP address range assigned, we can simply

add each range as a separate entry. Moreover, an entry in one community is allowed to be a

member in other communities as well.

4.4.2 PERFORMANCE

We implemented the parse, filter, and graph operators on top of StreamMine [Mar+11], a

highly scalable stream processing system. While StreamMine supports scaling to hundreds

of physical machines, a scalability and performance evaluation involving multiple machines has

already been presented in the previous chapter. Therefore, we only used a single machine

with 24GB of RAM and 16 processing cores for the analysis. For the top-K algorithm we used

a value of 100 for K.

Figure 3.11 shows the read-throughput of the parse operator of one such run in which

we processed one day of netflow data (using only one view). The measurement was taken

every second throughout the whole run. The parse operator can read around 400,000 netflow

entries per second with this single machine. Each entry is converted into an event and sent

to the filter operator. The filter operator discards a large fraction of these messages and only
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Figure 4.5: Community and alarm sizes over time

sends around one in a hundred of the incoming events to the graph operator. Naturally, the

read throughput varies over time, since the amount of processing that needs to be done in

the system depends heavily on the content of the input data. However, it is important to note

that the mean throughput stays constant, i.e., the system performance does not decline with

time as more graphs are added.

In the experiments reported in this chapter, the filter operator uses 13 of the available cores,

since it has to filter the 400,000 netflow entries arriving every second. The graph operator

uses only one core since the amount of data it has to process is only a fraction of the data

the filter receives. Note that even if one would assign more processing resources (i.e., cores)

to the graph operator, it would still be impossible to process unfiltered traffic (i.e., system

without the filter operator)— the system would simply run out of memory. The parse operator

uses the remaining two cores for reading the input files and parsing their contents.

To avoid queuing, StreamMine uses the TCP back-pressure mechanism on the network-

connections. Hence, if an event cannot be processed by the filter operator because all its

threads are already busy processing other messages, the parse operator will eventually stop

sending new events (the TCP send blocks if events are not read fast enough on the other

side). This will eventually lead to the parse operator not reading any new netflow entries,

because all its threads are blocked trying to send messages.

Figure 4.5 shows the size of the daily alarm reports (= number of suspicious IPs commu-

nicating with the community) and community sizes (approximately the number of member

organizations) over time for several months. We split the daily report sizes into two: The “Re-

port size” shows how many alarms have been generated in total for a particular community.
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IP Address Src Port Community Dst port Occurrences

X.Y.Z.W 6000 E 1433 2

X.Y.Z.W 6000 E 1433 2

X.Y.Z.W 6000 E 1433 1

X.Y.Z.W 6000 E,C 1433 1

X.Y.Z.W 6000 B 1433 1

X.Y.Z.W 6000 E,C 1433 1

Table 4.1: Anonymized report-snippet (port-mapping) from May 13th, 2011

The “New IPs per report” shows how many of those alarms are in fact previously unseen IP

addresses. We expect that administrators deal with alarms immediately and thus, once an IP

address is classified as an attacker it would be blocked and therefore, not re-appear the next

day. The size of the alarm report is subject to a weekly pattern with larger sizes for weekdays

(for alarm reports produced from Tuesday to Saturday) and smaller for weekend traffic. The

community lists and the white list were updated manually on a daily basis. Given a fixed com-

munity, the community list would typically stay relatively fixed but in our case we occasionally

identified additional community members. For the alarm reports, we only plot the report sizes

for communities E and C. We did not generate reports for the other communities because

(1) we found E and C to be the most interesting ones and (2) because of time-constraints

as we need to scan the reports manually for attacks and new members of the community or

white lists. It is natural that the reports, especially initially, contain a number of false positives.

Some of them will be new community members that have to be added to the community list,

while others are companies and organizations that can be added to the white list. The white

list is used to filter out trusted traffic, i.e., from well known search engines, entertainment

web sites, social media, popular CDNs, banking, government services, etc.

In an actual usage of the system, the system administrators analyzing the alarm reports

would also add other known “good” IP addresses to the white list to prevent them from

being reported daily. Lacking such domain knowledge, our experiments used the white list

conservatively. The bottom plot approximates the size of the daily alarm report under real

usage scenario where suspected IP addresses are processed daily and either added to the

white list or the suspect communication is stopped (e.g., clean up infected machine, add

firewall rules). This alarm size is approximated simply by only listing the IP addresses that

have not been reported before.

4.5 CASE STUDIES

While we do not typically know the ground truth, we have observed a number of suspicious

cases in our analysis. In this section, we outline some of these examples.

4.5.1 CASE 1

Table 4.1 shows an anonymized part of the report, generated for the netflow on May 13th,

2011. The report was obtained using the view based on the number of bytes transferred. It

depicts the anonymized source-IP address (X.Y.Z.W) and the communities it was connected to,

which ports were used (to help identify the application or service used), and a measure of the

frequency of communication—the “Occurence” field indicates how often this connection was

observed in the COI. In the actual report, the IP address and the exact community member

are visible, of course.
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Figure 4.6: Screenshot of “http://isc.sans.org/port.html?port=1433” from September

8th, 2011

In the next step, we usually use the whois service, to determine to whom the IP address

belongs. This way, we may also find new members of the community by looking up the

company names, displayed in the whois information. For this particular example, the only

information we could get, was that it belongs to an Asian ISP. Since the IP address likely does

not belong to a company that the community members would typically collaborate with, we

have a closer look at the ports being used. We assume that the lower port number (1433)

belongs to the server and the higher port-number to the client (6000). Figures 4.6 and 4.7

show the output of the “SANS Internet Storm Center” web-site4 related to port 1433. The

web-site shows the services that usually run on these ports—in this example, “Microsoft-

SQL-Server”. The SANS reports indicate many potential vulnerabilities, which may be used,

for example, to steal data.

Unfortunately, this is usually everything we are able to derive from the netflow alone. While

we consider this to be a potential attack, final certainty could only be provided by the system

administrators of the individual companies, given they have deeper knowledge about legitimate

communication connections of each organization and access to lower-level logs on the targeted

machines.

4.5.2 CASE 2

Table 4.2 shows a summary of the COI of another anonymized IP address for August 8th,

2011. It shows the IP address, each community and two numbers. The report was generated

using the view based on the security risk of used ports. The first number is simply a count of

how many members of the current community had an entry in the COI of this IP address. The

second number shows how often the IP address connected to other IP addresses that are in

none of the communities. We stated in Section 4.2 that this number is a good indicator of the

severity and specificity of an attack. Here, it is relatively low, which leads to the assumption

that the connections were not driven by a brute-force or port-scan-like technique.

To verify this intuition, Table 4.3 shows the used ports for each community member indi-

vidually. In contrast to the previous example, the source port is not constant anymore but

seems to be chosen randomly. The destination port, however, is constant 445. Port 445 is

usually used by “Win2k+ Server Message Block”. Note that every connection only appeared

once in the netflow. This either means there was in fact just one connection being used or

the attempt to connect failed.

4http://isc.sans.org
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Figure 4.7: Screenshot of “http://isc.sans.org/port.html?port=1433” from September

8th, 2011

IP Address Community
# in

Top-K

# outside

Community

X.Y.Z.W A 0 42

X.Y.Z.W B 0 42

X.Y.Z.W C 1 42

X.Y.Z.W D 0 42

X.Y.Z.W E 1 42

X.Y.Z.W F 6 42

Table 4.2: Anonymized report-overview-snippet from August 8th, 2011. The last two columns

contain the following numbers: (1) Number of members of the current community

which had an entry in the COI of the current IP address and (2) number of con-

nections to non-community members after the first connection to a community-

member.
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Figure 4.8: Screenshot of “http://isc.sans.org/port.html?port=445” from September

8th, 2011

In the next step, we use again the whois service, to determine that the IP address belongs

to an European ISP. However, it is not clear if this address belongs to a community member.

An attempt to ping the address did not succeed. A query to “SANS Internet Storm Cen-

ter” (Figure 4.8) shows a long list of reports about worms using this port with the famous

“Conficker” being one of them.

As with the previous example, we cannot determine if this case is a true attack. To this end,

we would need the help of the system administrators of the various community members

who have access to the log-files of the corresponding machines. However, there are two

interesting points concerning this IP address. First, there are only a total of 69 entries in the

netflow, where this address is the source of communication. Second, all connections transfer

only a very small amount of data—around 60 bytes each. Even in total, this only sums up

to several kilo bytes. Therefore, this address only appears in the ports view and not in the

other views that consider either the number of bytes or connections. Hence, an administrator

would need to set the detection threshold very low to see an alarm concerning this address.

4.5.3 CASE 3

In contrast to the previous two cases, this case is not an attack. It occurred in all views and if

one only looks at the report (an excerpt is shown in Table 4.4), it is not immediately clear what

service is being used since the address seems to be using random ports on both ends of the
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IP Address Src Port Community Dst port Occurrences

X.Y.Z.W 4798 F 445 1

X.Y.Z.W 1238 F 445 1

X.Y.Z.W 1256 F 445 1

X.Y.Z.W 1682 F 445 1

X.Y.Z.W 3143 C,E,F 445 1

X.Y.Z.W 4243 F 445 1

Table 4.3: Anonymized report-snippet from August 8th, 2011

IP Address Src Port Community Dst port Occurrences

X.Y.Z.W 13397 B 38426 1

X.Y.Z.W 41748 F 41387 1

X.Y.Z.W 49534 C 23068 1

X.Y.Z.W 16249 C 22654 1

X.Y.Z.W 29167 C 43183 2

X.Y.Z.W 20 F 7205 4

. . . . . . . . . . . . . . .

Table 4.4: Anonymized report-snippet from August 8th, 2011

communication. The query to whois does also not reveal any useful information, except that

the address belongs to a US ISP.

However, looking at the connections with IP addresses outside of the communities provides

a hint that this is not targeted against any of our specified communities as shown in Table 4.5.

Moreover, the use of port 20 (the last line in Table 4.4) gives a hint that at least some part of

the communication involved anonymous ftp, which uses port 20 to initiate the connection but

uses random ports thereafter. Finally, using an ftp-client (i.e., a web-browser) revealed indeed

that this is simply an ftp server hosting software updates. As a result of this analysis, we

added the address to the white list.

IP Address Community
# in

Top-K

# outside

Community

X.Y.Z.W A 0 14250

X.Y.Z.W B 2 14250

X.Y.Z.W C 1 14250

X.Y.Z.W D 0 14250

X.Y.Z.W E 0 14250

X.Y.Z.W F 6 14250

Table 4.5: Anonymized report-overview-snippet from August 8th, 2011. The last two columns

contain the following numbers: (1) Number of members of the current community

which had an entry in the COI of the current IP address and (2) number of con-

nections to non-community members after the first connection to a community

member.
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Figure 4.9: Ranking of alarms

4.5.4 BUILDING COMMUNITIES

In real use of the system, the community members might be known a priori and even stay

relatively fixed. However, in our case we built the community lists incrementally by identified

new community members based on the COIs generated. Specifically, we assumed that

members of a community exchange information with one another and often the data exchange

is encrypted. Therefore, we focused on new IP addresses that used the https-port (443) for

communication. However, a certain minimal set of known members is needed before reports

can be generated. This set should be as large as possible for two reasons. First, the likelihood

that an unknown address that belongs to the community (and thus, should be added) connects

to one or more entries of a large set of members is higher than if the set contains only very

few entries. Second, if the set is large, one can set the reporting threshold higher and reduce

the amount of noise.

Building a community this way is a task that lasts for weeks, depending on how much

communication is observed between the individual members and how large the community

is initially. We start by adding the new community to the list of communities. With every

subsequent report, we scan for new members and add them to the corresponding lists.

This way, the community grows every day, and with it the likelihood of finding any missing

members. The community stabilizes eventually with fewer and fewer new members per day.

4.6 EXTENDING THE ANALYSIS

In this section we augment our analysis with further input data. We correlate the additional

information with our alarms in order to rank them by severity. Figure 4.9 shows a sample report

of our extended analysis. It is essentially an extension of the reports we used in the previous

section (e.g. Table 4.2). The first column shows the IP address which triggered the alert. The

second column shows the organization which registered this IP address. To this end, we query

DNS databases for this information for every suspected IP address. We assume that the name

of the registering organization is of some help for an administrator to assess the severity of an

incident. The third column shows whether this IP address is considered suspicious or clean by

IP Void. IP Void5 is an online blacklist which facilitates the detection of IP addresses involved

in malware incidents and spamming activities. To this end IP Void includes several external

sources, such as honeypots, multiple DNS blacklists, IP reputation engines, and so on. IP

5Visit ipvoid.com for further information.
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Figure 4.10: Extended Architecture for Alarm Ranking

addresses can be queried to obtain their status which can either be “clean” or “suspicious”.

Here, “clean” means that no report has been found in the databases. Contrary, “suspicious”

means that this IP address was involved in malicious activity in the past. The fourth column

shows the Relative Community Count (rcc). It gives a direct indication of how targeted the

suspect’s communication was. The rcc is simply the percentage of members of the current

community in the COI of the suspect. It is computed with # in Top-K * 100/ topk-size which

corresponds to the fifth and sixth column, respectively. Finally, the incidents are sorted by the

seventh and last column, other-count which corresponds to the # outside Community in the

previous Section.

Figure 4.10 shows the processing architecture of the extended analysis. For each generated

alarm, a separate module queries DNS databases, IP Void, and calculates other metric, like

rcc. From that, it generates a list of alarms with the appropriate information. This list can then

be distributed to the company administrators for further investigation.

4.7 RELATED WORK

This section presents related work in the field of intrusion detection.

4.7.1 NETFLOW

A number of tools and techniques have been developed to process and visualize netflow

data(see [SoI09] for a survey). Netflow processing tools include OSU flow-tools [Rom00],

SiLK [Gat+04], and Nfdump6. In addition to command line tools, numerous graphical user in-

terfaces exist to visualize and query network activity, including NTOP7, Nfsen [Haa05], NfSight

[Ber+10], VisFlowConnect [Yur06], FlowScan [Plo00], NetPY [Cir+09], FloVis [Tay+09], VIAs-

sist [DAm+07], and NFlowVis [Fis+08]. While visualization tools allow the users to view the

netflow data from different perspectives to locate suspicious activity, our approach analyzes

the data and produces small number of meaningful alarms each day. Also, our focus on com-

munities allows us to detect attacks and suspicious behavior that is focused on a potentially

small community, but would not show significantly on a global scale.

6http://nfdump.sourceforge.net
7http://www.ntop.org
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Detection of similar communication behavior in multiple hosts has been used previously to

raise suspicion that hosts with the correlated behavior may be members of the same botnet.

For example, [ZHS10] uses netflow data to identify sets of suspicious hosts and then uses

host level information (collected on each host by a local monitor) to confirm or reject the

suspicions. However, detection of botnets is simplified by the fact that the bots typically act

in unison (e.g., start spamming or DDoS attack against a target at the same time). Indeed,

much of the work in this area (e.g., BotMiner [Gu+08]) specifically build detection mechanisms

based on the assumptions of the communication behavior required for a botnet. Furthermore,

to our knowledge, prior work is limited to detecting similar behavior within one organization.

4.7.2 SIGNATURE-BASED IDS

Snort [Roe99] is one of the most prominent network-based intrusion detection systems. It

applies a set of pre-defined rules against the packet content. These rules are expressed as

conjunctions of predicates which may maintain state throughout flows. Predicates can be

simple string matches or even regular expressions. In order to cope with the high bandwidth

of modern network devices, Wun et al. [WCR09] proposed to run Snort an multiple cores in

parallel. To this end, each core runs a Snort instance. In order to avoid state-sharing between

those instances, Wun et al. employ flow pinning which makes sure that all packets of a given

flow are processed exclusively on one core. Dharmapurika et al. [Dha+03] improve the packet

matching speed of Snort by pre-filtering packets using bloom filters which they implement on

FPGAs.

The biggest shortcoming of Snort is that it uses exploit signatures, i.e. a signature of an

actual attack. This means that a signature can only be created once an attack has been wit-

nessed. This puts security experts in the bizarre situation that they often already know about

vulnerabilities but cannot create exploit signatures because for that, they have to wait until

the first attackers actually exploit the vulnerability. And more so, often a single vulnerability

can be exploited in several different ways rendering Snort especially vulnerable to polymorphic

attacks. Therefore, Shield [Wan+04a] and NetShield [Li+10] went into a different direction.

The signatures in both systems do not describe exploits but rather the vulnerabilities them-

selves. In contrast to snort, both systems have to be run on the protocol layer, i.e. both

systems need to have access to the actual application messages and not the mere TCP/UDP

packets. Unfortunately, Shield is much slower than Snort because its filters are much more

complex. NetShield circumvents that shortcoming by combining filters and performing com-

mon matching operations only once. Moreover, NetShield translates filters into C++ directly

to reduce matching times. Vigilante [Cos+05] is a system which instruments applications with

any sort of detection engine. The authors present two engines, one based on stack and heap

protection, the other based on dynamic dataflow analysis. If the detection engine detects a

violation, it generates an alert which can be verified by other hosts running the same soft-

ware. Since the alert contains a description of the exploited vulnerability, future attacks can

be prevented. For example, the described vulnerability may be used to generate a filter for

Shield or NetShield.

4.7.3 COMMUNITY-BASED IDS

The concept of using a community to help detect security events has been used in the past.

For example, the Ensemble [Qia+09] system detects applications that have been hijacked by

using the idea of a trusted community of users contributing system-call level local profiles of

an application to a common merging engine. The merging engine generates a global profile

that can be used to detect or prevent anomalies in application behavior at each end-host in real

time. A similar concept of collaborative learning for security [Per+09] is applied to automati-

cally generate a patch to the problematic software without affecting application functionality.
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PeerPressure [Wan+04b] automatically detects and troubleshoots misconfigurations by as-

suming that most users in the community have the correct configuration. Cooperative Bug

Isolation [Lib07] leverages the community to do statistical debugging based on the feedback

data automatically generated by community users. Vigilante [Cos+05] apply the community

concept for containment of Internet worms by community members running detection en-

gines on their machines, where the detection engines distribute attack signatures to other

community members when a machine is infected.

Collaborative intrusion detection systems (CIDS) [ZLK10; Ani+11; BDQ13] try to detect at-

tackers who may pass “below the radar” of local intrusion detection. This is often the case

as attackers manage to either obfuscate their actions or imitate legitimate users. By aggre-

gating statistics across domains of related entities, CIDS increase the detection probability.

However, so far none of these systems considers the community structure of the targeted

systems. Rather a “fake community” is built in an ad hoc fashion by whoever collaborates.

Consequently, this “fake community” does not necessarily represent an actual industry, for

example. Moreover, [Ani+11; BDQ13] do only consider port scanning. However, port-scanning

is rarely necessary in APT attacks since the adversaries make use of common ports, such as

ports 22, 80, or 443. Furthermore, they focus on attackers who coordinate their actions with

other attackers. Again, APT attacks are executed by rather small groups and, hence, there is

neither evidence nor the need for such coordination.

4.7.4 INTRUSION RESILIENCE

PeerReview [HKD07] logs incoming and outgoing messages of each node in a distributed

system. It is assumed that a protocol which runs on one node can be re-executed on any

other node. Such re-executions are preformed periodically. To this end, the previously logged

input of the original node is replayed to another node. The latter then verifies that it would

produce the same output messages as the original node if the same protocol is applied.

Byzantine faults (which include malicious attackers) can thus be detected by a correct node and

will eventually be linked to the faulty node. While PeerReview can only detect the intrusion

after the fact, Nysiad [Ho+08] aims at preventing the spread of an intrusion (or any other

byzantine fault) altogether. To this end, it assigns each node in a system a set of guard nodes.

It assumes that each node in the system executes a deterministic state machine which is

replicated onto the guard nodes in order to validate messages sent by the original node. The

guards employ a gossip protocol to prevent the original node from sending different messages

to different hosts. Levin et al. [Lev+09] show that using a trusted hardware component, the

message overhead of both, PeerReview and Nysiad can be reduced considerably. The work

by Haeberlen et al. [Hae+10] employs a similar idea to that of PeerReview for virtual machines.

The authors propose to use the virtual machine monitor to log input and output messages

of a virtual machine. By applying their approach to the virtual machine monitor directly, they

are able to observe and log non-deterministic events. These logs can then be checked by a

trusted virtual machine. If the trusted VM produces the same output, given the original inputs

and non-deterministic events, the original execution is proven correct.

4.7.5 INTRUSION PREDICTION

Using global blacklists, such as DShield 8 is a common practice in intrusion prevention. Such

blacklists are created by a community of organisations which contribute their firewall logs.

With that, DShield is able to create “global worst offender lists” containing those IP addresses

from which most attacks originated. Zhang et al. [ZPU08] went one step further. They noted

that a “global worst offender” might merely select targets at random without any specific

8www.dshield.org
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intention. However, a greater threat is posed by attackers whose target selection follows a

specific intention, such as it is the case with advanced persistent threats. Their question

was: Given past attacks, can the attackers be ranked by how relevant they will be for a given

future target? To find an answer they created weighted link between DShield contributors.

The weight determines the attacker overlap between both contributors. If it is high, a large

fraction of the attacks against those contributors can be attributed to the same attackers. For

contributors who were never attacked by the same attacker there is no link. Now given an

attacker attacks contributor A, how relevant is this attack for the other contributors connected

directly or indirectly to A? It turned out that the answer was already given 10 years ago: The

personalized pagerank algorithm [Pag+99], determines the relevance of any web-page, given

a random surfer browses through the web, always starting at a predefined start location (i.e.

the homepage). Zhang et al. [ZPU08] redefined this notion: Given an attacker always starts

at contributor A and moves along the links of the DShield contributors what is his next most

likely target. They showed that this technique improves attack prediction by 20% to 30%.

4.8 SUMMARY

In this chapter, we have presented a community-based analysis and alerting technique for de-

tecting small-footprint attacks targeting communities of interest for attackers such as financial

institutions, e-commerce web site, or the electricity generation and distribution infrastructure.

By comparing communication behavior across the member organizations in the community,

it is possible to detect suspect behavior that may fall below detection thresholds at individual

member organizations. A white list can be used to avoid repeating false positives. We have

implemented the analysis algorithm in a scaleable distributed architecture that can process

large volumes of netflow data efficiently.

*8††
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1The original version of this chapter appeared at DEBS ’13 [Bar+13].
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Figure 5.1: This chapter is concerned with a general and adaptable implementation of the filter

and rule component for a community-based IDS

So far we have built a high throughput, low latency, graph- and community-based IDS. How-

ever, there are four issues that the current architecture does not solve.

1. The filtering cannot be adapted during runtime. This is a major burden as administra-

tors who investigate the alarms and find them to be false positives may want to add

some IP addresses to the whitelist. Contrary, if an investigation proves an actual attack,

administrators may want to add the offending IP address(es) to the blacklist.

2. The rules are static. This means that we cannot add or change the definition for when

an IP address is considered suspicious during runtime. Although we already argued

that attack-polymorphism is mostly found in the applied malware, there is no reason to

assume that attackers cannot change their communication patterns as well. Moreover,

as soon as we depart from a strictly meta-data based rule-engine this issue automat-

ically becomes more prominent. Therefore, Security Challenge 1: Polymorphism will

eventually require the rules to be adapted. To give an example, Algorithm 4.1 discards

IP addresses which access community members over port 80. This was necessary to

keep the number of alarms manageable. However, web servers are often targeted by

attackers.

3. We are limited to graph-based rules. However, especially for inputs such as emails or

forums, it would be desirable to additionally be able to define rules on the content of

that input. What we need is an architecture which allows us to execute any kind of

rule-engine as dictated by Data Challenge 2: Diversity of datatypes. This will also help

with Security Challenge 4: Stealthy attacks, as it is easier to pass “below the radar” of

an IDS relying on a single input dataset than to pass “below the radar” of an IDS that

allows to correlate many different inputs.

4. We cannot route alarms. If we consider the addition of many different rules, tackling

diverse aspects of the various inputs, we must also think about how the alarms of these

rules are routed: Some should be correlated and then forwarded, some might only be of

interest to some administrators. For example, consider the attacks against web servers,

mentioned above. It would be beneficial if these alarms could be gathered within a

separate stream of alarms in order to apply some sort of post-processing. This would
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allow to correlate them with other events in order to separate the scripted attacks against

the actual APT attacks.

If we choose a high-enough abstraction, it turns out that this is a group communication

problem: We want to send a single message, be it a netflow entry or an email, to n adminis-

trators (n can be 0). Let us look at some examples to illustrate that. For many of the netflow

entries or emails the IDS receives, no alarm will be generated, hence n = 0. However, for oth-

ers, n might be as high as the number of administrators from all the domains the IDS should

protect. Even more interestingly, while some messages generate no alarms, they might do so

after they occurred a given number of times. For instance, the intrusion detection algorithm

in the previous chapter only generates an alarm after an IP address has communicated with

community members sufficiently often.

Publish/Subscribe is a group-communication paradigm which decouples sender and receiver

of messages in space and time by assuming the role of the message broker, routing the mes-

sages between sender and receiver. Content-based Publish/Subscribe allows to route mes-

sages based on their content. In this chapter we present a new Publish/Subscribe architecture

which departs from the peer-to-peer broker overlay. Instead, we base it on StreamMine to take

advantage of its scalability and adaptability. Here, publications are the events, coming from

the various input sources (IP flow updates, emails, forum entries, and so on). Subscriptions

are rules and filters at the same time since our Publish/Subscribe permits to run arbitrarily

complex matching engines.

This has several advantages. First, it allows us to define complex, content-based rules for

any of our inputs. For example, our graph-based rule engine can be easily embedded into

the Publish/Subscribe engine as yet another matching engine. Second, it is possible to post-

process (e.g. correlate) alarms from a specific set of rules: An alarm, generated by a rule is

only sent to the subscribers of that rule — this could be an administrator but it could also be

a correlation engine, such as our ranking component from Section 4.6 of the previous chapter.

5.1 INTRODUCTION

Content-based publish/subscribe (pub/sub) [Eug+03] is a strong contender for offering an

efficient, yet natural communication paradigm to developers of large-scale applications. It

supports decoupled interactions between the producers (publishers) and the consumers (sub-

scribers) of information by the means of messages (publications). Decoupling occurs both in

terms of space and time: publishers and subscribers do not need to know the existence or

identity of one another, and no particular synchronization between them is necessary. They

only communicate indirectly through a pub/sub system. It is the responsibility of this sys-

tem to route publications from the publishers to interested subscribers. Routing is based on

subscriptions registered by the subscribers to express their interest in specific content. The

operation of matching the content of the publications against the subscriptions stored in the

system is called content filtering.

A typical use of pub/sub systems is for composing a collection of independent applica-

tions running on different administrative domains or geographical locations. Communication

between these applications takes place via a common pub/sub service running on a set of

dedicated servers, typically set up in a public cloud or a cluster equipped with a public address,

interconnected through a local area network and exposing access points to client applications.

The decoupled and data-centric nature of the pub/sub communication model allows for

seamless integration and evolution of large-scale applications. A typical example is QoS Mon-

itoring as a Service [Rom+11], where an application running on a private cloud is monitored

and key performance indicators (KPIs) are generated as publications. These KPIs are propa-

gated to a third-party monitoring service, based on subscriptions generated from a service
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level agreement (SLA) in order to detect violations of this SLA. Communication takes place via

a pub/sub service deployed on a public cloud accessible by both parties. Other applications

include e-Health systems [IRC10b] that bridge several medical and healthcare institutions shar-

ing information about patients cases, or the canonical example of stock trading [Gup+04]. We

note that for all these applications, the use of a third-party infrastructure for communication

may raise concerns about privacy and data security: publications and subscriptions represent

sensitive data that should not be leaked to a third party. As a result, encrypted content filtering

schemes have gained interest in the recent years [Bar+12; CGB10; IRC10a; IRC10b; RR06]

as they support filtering of encrypted publications against encrypted subscriptions without

needing decryption. Such approaches suffer, however, from a high computational cost and

disallow some optimizations, in particular those based on containment relationships between

subscriptions (i.e., the fact that a subscription will match a subset of the publications matching

another subscription) or on the aggregation of a set of subscriptions into a single one.

Objectives. We argue that the key properties of a pub/sub system running on a public cloud

or cluster and supporting large-scale application composition should be as follows.

(1) High throughput and low, predictable delays. The raw performance of the pub/sub

service deployed on a public cloud or cluster must be sufficient to support demanding appli-

cations, such as high-frequency trading or network monitoring. This requires exploiting parallel

processing of incoming subscriptions and publications as much as possible. Since the filter-

ing operation itself is costly, the design must avoid filtering an incoming publication against

a given subscription multiple times, which typically happens in overlay brokers systems. Fur-

thermore, delays between the generation of a publication and its dispatching to interested

subscribers must remain of the same order as the delay a coupled communication between

the producer and consumer of information would take. As a corollary, there should not be

significant deviation in the notification time for all subscribers interested in a given publication.

(2) Scalability. The ability to support increasing numbers of publishers/publications, sub-

scribers/subscriptions, and notifications, as well as more computationally intensive filtering

schemes, requires several levels of scalability. Vertical scalability is required to take advantage

of additional resources available on a given node, notably multi- and many-core architectures

that can process the pub/sub traffic in parallel. Horizontal scalability allows supporting a higher

load by adding more nodes to the cluster. Ideally, a linear increase in the number of nodes

should result in a linear increase in maximum supported throughput.

(3) Filtering scheme agnosticism. The design and architecture of distributed pub/sub sys-

tems should not be dependent on a particular filtering scheme and in particular on the seman-

tics and representations of publications and subscriptions. Most existing distributed pub/sub

systems [CRW01; CJ11; Jac+09; CF08; YMJ11] support filtering schemes based on conjunc-

tive predicates (<, ≤, =, . . . ) over discrete attribute values (integers, strings, . . . ), and their

designs are closely tied to the nature of this particular representation. This applies, for in-

stance, to the construction and maintenance of routing tables between brokers that drive the

flow of publications. To minimize inter-broker traffic, these systems typically rely on the ability

to determine containment relationships between subscriptions and/or to construct aggregated

subscriptions. Yet, such features are not available with all content-based filtering schemes,

notably with encrypted approaches [Bar+12; CGB10; IRC10a; IRC10b; RR06]. As a matter of

fact, there exist no fundamental reasons why content-based routing should be restricted to

attribute- and predicate-based filtering: a pub/sub service should be able to integrate virtu-

ally any filtering scheme operating on the content of exchanged data using stored filters, as

required by the application. Examples include not only encrypted filtering for privacy preser-

vation, but also statistical methods such as Bayesian filtering [Sah+98], template matching for

digital images (for instance, for face recognition) [Bru09], or even complex graph-based filters

as presented in the previous two sections.
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The architecture of the pub/sub system should be independent of the nature of the filtering

scheme, while still allowing for specific optimizations at the level of a single node.

Contributions. In this chapter, we revisit the design of a distributed content-based pub/sub

engine for supporting high throughput, low latency, and horizontal and vertical scalability. We

propose a novel approach based on a tiered architecture and inspired by dataflow program-

ming techniques, which exploits parallelism in ways similar to MapReduce [DG04] and stream

processing engines inspired from it [Neu+10; Fou; Bri+11; Bac+12]. A set of independent op-

erators, each spanning an arbitrary number of servers and taking advantage of multiple cores

on individual servers, implement the three fundamental operations of content-based pub/sub:

subscription partitioning, publication filtering, and publication dispatching. Interactions with

the pub/sub system are managed by a set of independent data converters and connection

points (DCCP) that maintain persistent connections with clients (publishers and subscribers).

We implement our approach in StreamHub, a pub/sub engine designed for operating on

a public cluster or cloud. StreamHub leverages the runtime support of an existing stream

processing engine such as S4 [Neu+10], Storm [Fou], or StreamMine [Bri+11]. We use the

latter engine in our prototype implementation.

Our evaluation on a cluster with up to 384 cores on 48 physical machines indicates that

StreamHub is able to sustain high-throughput workloads: up to 150 K subscriptions registered

per second; and up to almost 2 K publications filtered per second with a population of 100 K

stored subscriptions, resulting in an output flow of nearly 400 K notifications per second to

interested subscribers.

We note that our contribution is not on the actual filtering scheme itself, which is sup-

ported by an independent library that can be chosen arbitrarily as long as it implements a

simple and schema-oblivious API. We demonstrate the performance of StreamHub using the

well-established counting algorithm of SIENA [CW03], and we leave the integration and com-

parison of other filtering libraries, such as those providing privacy-preserving encrypted match-

ing [Bar+12; CGB10; IRC10a; IRC10b; RR06] and in particular security-related filters, for future

work. Similarly, while StreamHub is designed with elastic scalability in mind (i.e., the ability

to dynamically adapt the number of servers associated with each operator according to the

experienced workload), we leave the implementation of elastic server provisioning for future

work and concentrate on the performance and scalability of the architecture with various static

configurations.

Outline. The remainder of this chapter is organized as follows. We present and motivate

our proposed architecture in Section 5.2. We describe the implementation of StreamHub

in Section 5.3, as well as the libraries used in our evaluation for filtering publications and

clustering subscriptions. We evaluate our approach and compare it to a broker-based pub/sub

system in Section 5.4 and survey previous work on distributed pub/sub systems in Section 5.5,

before concluding in Section 5.6.

5.2 ARCHITECTURE

Our design choices aim at maximizing pipeline, task, and data parallelism in order to support

high-throughput and scalable pub/sub. It is based on StreamMine. We use a set of three op-

erators. Each implements a different aspect of the pub/sub service: subscription partitioning,

publication filtering, and publication dispatching. Thanks to the scalability properties of opera-

tors, one can easily adapt the number of physical machines and cores to the load experienced

by each of these three operations. This load varies with the nature of the workload, such as

the number, complexity, or selectivity of subscriptions. The load also varies with the nature

of the filtering schemes. For instance, encrypted filtering requires more processing power

than non-encrypted filtering. To sustain the same publication throughput, one should allocate
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Figure 5.2: User view of StreamHub.

more slices (servers) to the publication encrypted filtering operator.

We present in this section our operators and support mechanisms. We start by describing

the endpoints used by external clients to access StreamHub. Afterwards, we present the

operators that support content-based filtering, as well as the partition of the load onto different

slices at each operator. The filtering operation itself is delegated to one or more filtering

libraries. StreamHub also provides optional support for clustering libraries, which can partition

the state of subscriptions in elaborate ways and speed up the filtering operation. As these

libraries are pluggable components whose algorithms do not represent novel contributions of

this chapter, we describe them in Section 5.3.

5.2.1 CONNECTION TO AND FROM CLIENTS

The pub/sub operators are typically deployed on a cluster or a cloud, i.e., a set of machines

with limited hardware heterogeneity. In our implementation, StreamHub, operators are im-

plemented using the same language (C++). As a result, the internal communication and se-

rialization formats between the elements forming the architecture can be selected based on

performance criteria. Our implementation uses the efficient binary format provided by Boost

libraries1 for internal propagation of events. In contrast, clients may execute on different plat-

forms and use a variety of languages. The choice of the external format is thus driven by

its hardware and language independence. Our implementation uses Google Protocol Buffers

(GPB),2 which provide efficient serialization primitives for subscriptions, unsubscriptions, and

publications while hiding language and platform heterogeneity.

Publishers and subscribers need a persistent and public connection point to the cluster or

cloud supporting the pub/sub service. Connecting to any of the nodes supporting the pub/sub

service is impractical in clouds (due to VM migrations) and often impossible in clusters (as

most nodes do not have a public IP address). Our design features components external

to the operators implementing the pub/sub service, that act as such persistent connection

points. These are also in charge of translating between the external and internal representation

format, and henceforth named Data-Converter & Connection-Points or DCCPs. Figure 5.2

presents a user-centric view of the system. Clients connect to a DCCP via a persistent TCP

connection to enable low end-to-end delay for communication with the pub/sub service and,

more importantly, to support asynchronous notifications of matching publications, as clients

may not be directly reachable (for instance, they may be located behind a NAT or firewall). We

note that this practical impossibility to reach clients directly limits the applicability of rewiring

schemes for solutions based on brokers overlays [CJ10a; Li+12; CJ10b; CJ11].

1http://www.boost.org/
2http://code.google.com/apis/protocolbuffers/
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Operator Role Description

AP
Access

Point

Subscription

partitioning

– Receives subscription events and dispatches each to a single

slice of an M operator. Optionally applies subscription clustering

using a libcluster library.

– Receives publications, forwards them to all slices of an M oper-

ator.

M
Matching

Publication

filtering

– Receives subscriptions and forwards them to the libfilter library.

The libfilter library stores the subscription and corresponding sub-

scriber identifier in the operator slice state.

– Receives publication events and forwards them to the libfilter li-

brary, which returns a set of matching subscriber identifiers. The

M operator slice forwards each publication and list of matching

subscriber identifiers to the EP operator by unicast, using the

publication identifier as key.

EP
Exit

Point

Publication

dispatching

– Receives a publication and list of matching subscriber identifiers.

When all lists are received, prepares the notifications, splits the

list of matching identifiers, and dispatches them to correspond-

ing DCCPs.

Table 5.1: Operators supporting scalable CBR.
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Figure 5.3: StreamHub processing operators (libraries and states not shown for clarity).

Several DCCPs can be used for the same StreamHub deployment, e.g., when the number

of opened connections or the necessary bandwidth becomes too high for a single machine,

when the cost of conversion creates a bottleneck, or on the same host when several network

adapters are available.

5.2.2 CONTENT-BASED ROUTING OPERATORS

In this section, we present the three operators that form the core engine of our scalable

pub/sub architecture. These three operators are organized as a pipeline. They are listed in

Table 5.1 and illustrated by Figure 5.3, together with the communication primitives used for

propagating events between them. A detailed example of the path taken by subscriptions

and publications within the StreamHub engine is shown by Figure 5.4.
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architecture.

ACCESS POINT OPERATOR

The Access Point (AP) operator plays the role of the input operator. It receives events from

any of the DCCPs. The selection of an AP operator slice by a DCCP is done at random to

guarantee good load balancing properties. The role of the AP operator is to partition incoming

subscriptions among all slices of the Matching (M) operator as follows.

Each incoming event has a key, which is a data structure that indicates the type of the

client request (i.e., a new subscription, an unsubscription, or a publication). Subscriptions

are not stored by the AP operator slices but are instead forwarded to the M operator that

implements the filtering operation as we describe next. Our architecture can simultaneously

support different filtering schemes (such as flat vs. structured data, encrypted publications

and/or subscriptions, declarative vs. executable filters). Each filtering scheme is supported

by a separate M operator. The choice of the destination operator depends on the filtering

scheme identifier embedded in subscriptions. The same applies to publications.

Only one of the slices of the M operator holds any given subscription.3 AP slices hence use

unicast communication to select the appropriate M operator slice that will be responsible for

an incoming subscription. The default mechanism relies on unicast and routes the subscription

based on the hashing of the subscription identifier specified in event keys. We note that this

selection mechanism is stateless and reproducible: an unsubscription will be routed from the

AP to the M operator using unicast and will arrive at the M operator slice that actually holds

the subscription.

Alternatively to this default mechanism, the user can decide to defer selection to a library,

denoted by libcluster in Figure 5.4, which supports more complex forms of subscription clus-

tering (see Section 5.3.1). A clustering algorithm can maintain a slice-supported state, which

allows for deciding on subscription placement based on the content of that subscription. This

incurs additional costs at the AP operator level, in return for a better performance at the M

operator level. In case the selection mechanism is not deterministic and reproducible, unsub-

scriptions need to be broadcast to all slices of the corresponding M operator.

Publications need to be matched against all subscriptions. They are thus broadcast from the

3Resilience of subscriptions in the presence of nodes faults can be handled at the level of the underlying stream

processing engine, for instance using active replication or checkpoint/replay techniques.
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AP operator to all slices in the corresponding M operator. Note that our architecture targets de-

ployments in clouds or clusters, which are typically supported by dedicated, high-performance

network infrastructures. The broadcast operation of publications in our architecture is designed

to take advantage of the availability of IP multicast in such settings for dispatching publications,

although our current evaluation does not exploit this feature.

MATCHING OPERATOR

The Matching (M) operator supports publication filtering. An M operator is associated with a

library, denoted by libfilter in Figure 5.4, operating on the independently-maintained state at

each of its slices. This library matches incoming publications against registered subscriptions.

Different filtering implementations can be used as libfilter for different M operators, but they

must comply with a simple API supporting two main operations: (1) storing/removing subscrip-

tions based on their identifiers; and (2) processing a publication and returning a list of matching

subscriber identifiers. At this stage, the content of the subscriptions and publications them-

selves is only accessed by the filtering library, making our architecture oblivious to the nature of

the matching operation. The default filtering library provided with StreamHub is based on the

SIENA counting algorithm [CW03] and is described in Section 5.3.1. Privacy-preserving filtering

can be easily implemented using asymmetric scalar-product preserving encryption [CGB10] or

other mechanisms [IRC10a; IRC10b; RR06]. Recent proposals to reduce the cost of privacy-

preserving encrypted filtering through the use of a pre-filtering stage [Bar+12] can also trivially

be integrated to libfilter libraries.

Subscriptions are stored in the state maintained for each slice. This state can be accessed

concurrently using read and read-write locks (see Section 5.3 for implementation details). As

filtering only requires reading the subscription set, and since most pub/sub workloads are

dominated by publications, this allows for vertical scaling of the filtering operation for each

slice of the M operator on multiple cores.

An M operator slice calls its libfilter for each incoming publication and generates an output

event composed by the publication p and a list of matching subscriber identifiers, s1, s2, . . . , sn.

When this list is empty, an output event indicating the lack of matching subscription is gen-

erated. The event is then sent to the next operator, the Exit Point (EP), using unicast. The

routing key for selecting the slice of the EP operator is the identifier of the publication p. As

a result, each slice of the M operator processing p will send its list of matching identifiers to

the same slice of the EP operator.4

EXIT POINT OPERATOR

The Exit Point (EP) operator acts as the output operator of the engine. It shares similarities

with the reduce phase in the MapReduce terminology [DG04]. Each incoming publication

will be filtered at all slices at the M operator level, but will be processed by a single slice

at the EP operator level. An EP operator slice receives the publication and lists of matching

subscriber identifiers from all slices of the M operator (or notifications of empty matching lists).

Once lists have been received from all M operator slices (or after a timeout to avoid slow M

operator slices to delay notifications), the EP operator proceeds with publication dispatching: it

contacts each DCCP maintaining a connection to at least one interested subscriber and sends

it a notification message together with the identifiers of matching subscribers connected to

that DCCP. The latter is then in charge of propagating the notification to the actual subscribers.

4If publications are of significant size, it is possible to have a single slice of the M operator send p and the others

sending only their lists.
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5.3 IMPLEMENTATION

We implement our architecture on top of a stream processing engine, StreamMine [Bri+11].

Other frameworks also present the features and abstractions our implementation requires,

such as S4 [Neu+10], Storm [Fou], or Continuous-MapReduce [Bac+12]. We present an

overview of the libfilter and libcluster libraries supported by our prototype StreamHub.

5.3.1 FILTERING AND CLUSTERING LIBRARIES

In the following, we present the filtering and clustering libraries (libfilter and libcluster) that

StreamHub currently supports. While these libraries are based on known algorithms and

do not represent novel contributions per se, they contribute to the overall performance of

StreamHub as studied in Section 5.4.

FILTERING LIBRARIES

StreamHub can support any filtering scheme if implemented through an appropriate libfilter

library. We listed variants of filtering schemes in Section 5.5.2. We note that our architecture

also supports filtering schemes that need to maintain a state for each of the subscription

they store, across the processing of several publications. For instance, a subscriber might

wish to receive only the nth publication that matches a given subscription, or be able to send

subscriptions on the statistical evolution of publications attributes (e.g., over a window of

publications). The corresponding state can be maintained by the libfilter in the slice-supported

state.

StreamHub currently features an attribute-based filtering scheme library (libfilter) that uses

a counting algorithm similar to that of SIENA [CW03]. It organizes predicates for received

subscriptions in a forwarding table. An incoming publication will traverse and match in this

forwarding table the predicates organized in conjunction sets. Each subscription is associated

with a counter that specifies how many of its predicates have been matched so far. When a

predicate is satisfied, the counters of all associated subscriptions are increased, and the whole

subscription is marked as matched when all predicates of a subscription have been satisfied.

Numerical predicates are indexed according to their type (=, <, >) and sorted by values in

order to speed up traversals. Therefore, typically only a small part of the graph is traversed by

publications. The algorithm generally scales sublinearly in the number of evaluated conjunction

sets.

CLUSTERING LIBRARIES

When using multiple slices in the matching operator, each of these slices holds a subset of

all subscriptions and filters publications concurrently with other matchers. By default, we

partition subscriptions in a simple and deterministic way using a hash. This splits the load

among all M operator slices. However, for many filtering schemes, filtering performance can

be improved when subscriptions are partitioned in a content-aware manner. These types of

subscription clustering are more costly than hash-based partitioning but they result in gains for

the publication filtering performance. This is the case of the attribute-based filtering scheme

described previously. As similar subscriptions are stored in the same M operator slice, the

filtering algorithm may be able to better factorize common predicates and achieve higher fil-

tering performance (this typically depends on the ability of the filtering operator to support

containment determination between subscriptions). For pub/sub systems that process more

publications than subscriptions, the relative gain can be significant as we show in our evalua-

tion.
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Figure 5.5: Workload characteristics: cumulative distribution of matching set sizes for publica-

tions (left) and matching ratios for subscriptions (right).

StreamHub supports various clustering algorithms by the means of libcluster libraries, that

can optionally maintain state about previous subscriptions. When multiple filtering schemes

are supported by multiple M operators, each slice of the AP operator supports a different

libcluster (or default hash-based unicasting) for each such M operator. Deterministic cluster-

ing allows unicasting unsubscriptions while non-deterministic clustering require broadcasting

unsubscriptions. StreamHub features the two clustering libraries described below.

K-Means [WKM00]: This clustering algorithm performs a partitioning of the subscriptions into

K groups and a repetitive re-assignment based on the distance between subscriptions and

groups until convergence. The algorithm is stateful and non-deterministic. We implement it

in an online manner (sequential K-Means) for the dynamic clustering of subscriptions.

Event Space Partitioning (ESP) [Wan+02]: The space of subscriptions is represented as a ds

dimensional space, where ds is the number of attributes. Each M operator slice is responsible

for subscriptions that fall within its portion of the space. Subscriptions that intersect multiple

domains are managed by the M operator slice that hosts the first attribute in lexicographic

order. As the value ds cannot be known in advance with content-based routing, it will increase

when encountering subscriptions with unknown attributes. This clustering mechanism is

stateful but deterministic.

5.4 EVALUATION

In this section, we present the experimental validation of StreamHub on a cluster of 48 nodes,

each with two quad-core Intel Xeon (E5405) 2 GHz processors and 8 GB of RAM (384 cores

total), interconnected with full-duplex 1 Gbps Ethernet. Our implementation uses the C++

language. We configure StreamMine to use batching between operators. Up to 16 KB of

events can be stored in output buffers for each operator, and sent in batches or after a time

limit. Batching allows increasing maximal supported throughput but has an impact on delays,

as we demonstrate at the end of this section.

We first present the characteristics of the pub/sub workload used for the evaluation, fol-

lowed by the baseline performance of the counting algorithm (libfilter). We then proceed to a

operator-by-operator evaluation of the StreamHub architecture, highlighting performance and

scalability of each of the operators. We describe the impact of subscription clustering (libclus-

ter) and evaluate how the system scales when using an increasing number of nodes. Finally,

we present a comparison of our approach with a broker overlay solution running on the same

cluster.
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Figure 5.6: Performance of the counting libfilter for filtering incoming publications with respect

to the size of the stored subscriptions set.

5.4.1 EXPERIMENTAL WORKLOAD

We constructed an experimental workload similar to the one used for the evaluation of Megh-

doot [Gup+04]. It targets an attribute-based filtering scheme. We gathered five years of

quotes for 200 randomly selected stocks from Yahoo! Finance [Yah]. This corresponds to

over 250,000 publications. We built synthetic subscriptions based on the same categories as

in [Gup+04]. These subscriptions contain a variety of ranges and equality predicates on the

attributes of stock quotes, namely the symbol, date, exchanged volume, and daily statistics

on their price (open, close, high, low). The characteristics of the workload are detailed in

Figure 5.5. They represent a moderately selective type of pub/sub workload: a publication

needs to be dispatched to a median of 0.18% of all subscriptions (with 100,000 subscriptions,

each publication generates a median of 180 notifications), while a large part of subscriptions

do not find publications of interest in the workload but yet need to be processed by the M

operator.

5.4.2 BASELINE FILTERING PERFORMANCE

We first evaluate the raw performance of the libfilter filtering library based on the SIENA-

like [CW03] counting algorithm. We compare it to a naive linear-search filtering mechanism

acting as a baseline. Figure 5.6 indicates that the filtering operation cost evolves sublin-

early and is at least an order of magnitude better than the naive algorithm above 500 stored

subscriptions. Nonetheless, the cost of filtering can grow quite high with large sets of sub-

scriptions, as can be observed on the right side of the graph. This highlights the importance

of scaling the processing of incoming publications horizontally and vertically to sustain a high

filtering throughput, and to process an incoming publication against subsets of the overall set

of subscriptions to reduce dispatching delays.

5.4.3 PERFORMANCE OF OPERATORS

We now proceed to an operator-by-operator evaluation of StreamHub. Our methodology is to

add one operator at a time, replacing the operators downstream the DAG by sink operators

that receive the events but do not process them further. We denote such sink operators as

S(AP), S(M), and S(EP). We focus our evaluation on the scalability aspects of each operator.

All experiments are based on 180-seconds runs of StreamHub, during which the system is fed

with subscriptions and/or publications as fast as possible to observe the maximal achievable

throughput. When observing the performance of the publication filtering operation, subscrip-

tions are registered before starting the measurement.

In our evaluation, the DCCPs are replaced by generators that inject the workload into the

AP operator. We first verified that these generators can provide the system with a sufficient
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Figure 5.7: Scaling of StreamHub operators: Input and output throughput for all operators

when varying the number of slices and subscriptions. Each operator is evaluated

with the downstream operator replaced by a sink. We use one physical machine

per slice.

throughput of publications and subscriptions and do not represent a bottleneck. Our results

(not shown) indicate that the generators are able to nearly saturate the input bandwidth ca-

pacity of the nodes that host the AP operator slices. This indicates they will not impair the

remainder of the evaluation.

We present the complete operator-by-operator evaluation results in Figure 5.7. We look

primarily at the throughput in terms of bandwidth and events processed.

AP OPERATOR SCALABILITY

The first column of two plots in Figure 5.7 presents the AP operator scalability. It depicts

the maximal input and output throughput of the operator with a publications-only workload.

This corresponds to the worst case scenario since publications, unlike subscriptions, need

to be broadcast by each AP operator slice to all sink S(M) operator slices. As expected,

the input throughput of the AP operator is inversely proportional to the number of sink S(M)

operator slices: a copy of each publication needs to be made for every S(M) operator slice

and the bottleneck becomes the output bandwidth of AP operators. The planned support for

IP multicast between the AP and M operators would boost performance for this operation.

We observe nonetheless that this output throughput nearly saturates the cross-bandwidth of

the connections between the AP and S(M) operator slices, and is able to saturate the input

bandwidth of the S(M) operator slices (serving 104 MB/s of publications to each of them). This

indicates that the AP operator will not hinder scalability when the S(M) sink operator slices are

replaced by real M operator slices that need to perform the computationally-intensive filtering

operation, as confirmed by our next experiment.
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M OPERATOR: SUBSCRIPTION STORAGE SCALABILITY

We start the evaluation of the M operator by assessing the scalability of the subscription

storage with a subscriptions-only workload. Figure 5.8 presents the average bandwidth that

the generators are able to push through the AP operator for storage at the M operator level.

We use a set of 8 AP operator slices so that the AP operator does not form a bottleneck.

We use 1 to 8 M operator slices. We observe that the scalability of the subscription storage

is almost linear and StreamHub is able to register a flow of 35.4 MB/s with 8 M operator

slices, which corresponds to a constant flow of 150,000 subscriptions stored per second. We

observe a slight degradation of the throughput when using 8 generators and only 2 M operator

slices. The reason was tracked down to overflows in input buffers of the M operator slices,

leading to retransmissions of messages from the AP operator and some loss of bandwidth.

M OPERATOR: PUBLICATION MATCHING SCALABILITY

We now investigate the scalability of the filtering operation at the M operator level, i.e.,

matching each publication against the set of stored subscriptions. We use a set of 8 sink

S(EP) operator slices as the downstream operator and 8 AP operator slices for the upstream

operator. The second column of three plots in Figure 5.7 presents the achieved input/output

throughput and the number of publications that the M operator filters per second, including

transmission to the downstream S(EP) operator. We clearly observe that the architecture

scales: the addition of new operator slices to the M operator results in linear increase of

its processing capacity. Note that, as expected from the workload characteristics (median

matching set of 0.18% of stored subscriptions), the bandwidth requirements are higher for

output than for input because the publications are augmented with a potentially large list of

matching identifiers.

EP OPERATOR SCALABILITY

We complete the operator-by-operator scalability evaluation by replacing the S(EP) sink op-

erator slices with their real counterparts that perform publication dispatching. We use 8

generators, 8 AP, and 8 M operators slices. We observe in the third column of three plots

of Figure 5.7 the input/output throughput of the EP operator and the number of publications

that are effectively dispatched. With a configuration of 8 EP operator slices, StreamHub is

already able to filter and dispatch from 3.8 K to 17 K publications per second, for respectively

100 K and 10 K stored subscriptions (corresponding to 684 K and 306 K notifications sent out

to subscribers per second, respectively).

91



5 StreamHub

 0

 0.1

 0.2

 0.3

 0.4

10k 50k 100k  150k

In
s
e
rt

io
n
 t
im

e
b
re

a
k
d
o
w

n
 (

m
s
)

Sub registration cost
(Hash/ESP/K-Means)

 0

 2

 4

 6

 8

10k 50k 100k  150k

Size of the subscriptions set

Pub filtering cost
(Hash/ESP/K-Means)

Processing (M)

Deserialization (M)

Clustering (AP)

Deserialization (AP)

Figure 5.9: Overhead of clustering for storing subscriptions (left) and impact on filtering ef-

ficiency (right). Each group of stacked bars shows the breakdowns of average

costs for one subscription or one publication matched against the corresponding

subscription set. Each group has three bars for hash-based (no clustering), ESP,

and K-Means.

DISCUSSION

The results of the operator-by-operator evaluation clearly show that the subscription regis-

tration and publication filtering operations scale by adding more slices (and thus physical

machines) to the operator that supports them. Adequately provisioning the architecture al-

lows handling an arbitrary number of publications and subscriptions. One should point out

that the specific workload considered in our evaluation is costlier for the operators that deal

with publication dispatching (EP) and matching (M) than for handling and forwarding incoming

publications (AP).

5.4.4 IMPACT OF CLUSTERING

We now investigate the impact of using a libcluster library at the AP operator level for clustering

subscriptions. Our objective is to evaluate if the additional cost for registering a subscription

in the system using content-aware clustering is compensated by the subsequent performance

gain when filtering publications against stored subscriptions. We present in Figure 5.9 the

time required to store a subscription at the M operator level (left) and process an incoming

publication against the set of stored subscriptions (right). Times are obtained by averaging

over 10,000 events. The breakdown distinguishes between the different operations at the

AP and M operators: deserializing the event at the AP operator level (for subscriptions when

using clustering) and processing it (clustering, storing, or matching) at both the AP and M

operators levels.

We observe that the cost of subscription insertion increases due to the additional dese-

rialization and treatment at the AP operator level. On the other hand, the use of clustering

yields significant performance gains when matching publications against a large set of sub-

scriptions: for 150 K subscriptions matching is 25 to 27% faster when using K-Means or ESP.

This supports our claim that using a libcluster library, when applicable to the filtering scheme

being used, may significantly increase the filtering performance or reduce the number of M

operator slices required to sustain a given publication filtering throughput requirement. At

the same time, the use of a libcluster library does not break the separation of concerns and

filtering schema agnosticism that underpins the complete architecture.
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Configuration Batching Max. Publications/s Avg. delay Std. dev.

4 AP / 4 M / 8 EP = 16
No 200 0.36s 0.17s

Yes 500 1.06s 0.28s

8 AP / 8 M / 16 EP = 32
No 500 0.22s 0.15s

Yes 1000 0.98s 0.30s

Table 5.2: End-to-end delays (settings as Figure 5.11).

5.4.5 OVERALL PERFORMANCE

Our last experiment with StreamHub relates to the overall provisioning and scaling of the

complete architecture. We consider the case where a cluster or a cloud virtual environment

needs to be scaled up to increase the throughput of the pub/sub process, with the objective

of offering a linearly increasing performance as more physical nodes are added to support the

service, and to sustain low and predictable end-to-end delays. As previously demonstrated, the

optimal assignment of slices (and thus, physical machines) to operators depends on the nature

of the workload. For the purpose of this evaluation, we determined the best configuration for

a given budget of machines based on the operator-by-operator experiments. Our architecture

is designed to easily support dynamic scaling by migrating slices between physical machines.

We leave the integration of such mechanisms and the appropriate decision-making systems

to future work.

Figure 5.11 presents the evolution of the publication throughput with clusters of 8 to 32

machines (our other machines are used for 8 generators and 16 sink DCCPs). We observe that

the scalability objectives of StreamHub are met: there is a linear gain in performance between

8 to 32 machines. The maximal supported throughput between the smaller and the larger

configuration when using the ESP partitioning is actually 4.26x higher, which is mostly due to

the reduced contention on the AP operator slices. We note that the impact of clustering is

consistent with what we observed in Figure 5.9: throughput is from 10% to 28% better with

clustering (see Figure 5.7).

Table 5.2 presents the average end-to-end delays (between the reception of a publication

and the reception of the corresponding notifications by the subscribers) observed by clients,

and their variations. In this case, we selected the throughput to be around half of the maximal

supported throughput in the 16 and 32 nodes configurations. We consider two settings,

with batching and without. Batching increases throughput but also introduces extra delays.

Disabling it divides the maximal supported throughput by approximately a factor of 2. In both

cases though, the delays are low (around a second with batching, or a fraction of a second

without it) and predictable as they show only slight variations between publications.

Figure 5.10 shows the relationship between target throughput (i.e., maximum number of

publications/s the generators are sending), the actual throughput (i.e., number of publications/s

the generators are able to emit, given TCP-backpressure from downstream operator slices),

and the end-to-end latency. The actual system throughput is depicted on the left side. The

lines and points show the mean throughput of the given experiment over time and the er-

rorbars the 10th (lower end) and 90th (upper end) percentile. As a rule of thumb: The larger

the errorbars the more the throughput fluctuates and, hence, the more likely the system is

overloaded. For that reason we selected a target throughput of 500 publications/s for the

small 16 machines configuration with batching: It is the experiment with the highest target

throughput where the actual system throughput stays constant over time. In contrast to that,

the throughput of the same configuration but without batching already varies a lot, as shown

by the errorbar. This is even more prominent on the right side of the figure which depicts

the mean latency with the errorbars again showing the 10th and 90th percentile. As one can
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Figure 5.10: System throughput and latency.

see, with 16 machines, a target throughput of 500 publications/s, and enabled batching the

latency is small and predictable. Contrary, the latency of the same configuration but without

batching is not only high (events queue up in the TCP queue) but it also becomes unpre-

dictable as it varies significantly. While the larger configuration shows the same properties,

albeit supporting higher publication throughput, there is a another property of batching which

becomes evident. If the throughput is small, batching can actually increase the latency. This

is because the batches have a fixed size and need to be full before they can be sent. Hence,

the latency actually becomes a jigsaw-like curve over time which is the reason for the larger

errorbars when batching is enabled and the target throughput is small.

5.4.6 COMPARISON WITH PADRES

For completeness, we have also performed experiments with the same set of subscriptions

and publications using the most recent version of PADRES [Jac+09] (v2.0). As detailed in our

introduction, PADRES is based on different design choices than StreamHub: it establishes

and maintains a network of brokers that collectively implement pub/sub functionality and is

specific to a particular filtering scheme, while our design dedicates different machines to each

operation and is independent from the actual filtering scheme that is used.

Our PADRES setup consists of one publisher, one subscriber, and a varying number of

brokers. We verified that neither the publisher nor the subscriber represent a bottleneck in the

experiments. The publisher and the subscriber are connected to every broker. Subscriptions

and publications are randomly partitioned among brokers. Every machine executes 4 broker

instances, which corresponds to half of its available cores. Using all cores on each machines

yielded lower performance figures, probably due to contention on resources. Results are

averaged over 100 publications, measured after an initial warm-up phase of 2,000 messages

to enable JIT optimizations.

Figure 5.12 shows the throughput achieved with the same 100,000 subscriptions as for
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workload-optimal configurations for each number of available machines. The num-
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Figure 5.12: Throughput of PADRES with 100,000 subscriptions. The number of hosts is

indicated within parentheses: a single publisher (P) and a single subscriber (S)

were sufficient to fully load the brokers (B).

Figure 5.11 and various numbers of brokers. We observe that PADRES scales well for up to 88

brokers (i.e., 22 machines, each running 4 broker processes) but seems to suffer when adding

more brokers. Actually, each publication has to be filtered by multiple brokers for propagation

to other brokers due to the use of routing tables that are constructed according to the filtering

schema that is used. This adds to the overall load and reduces the contribution of each broker

to overall throughput (Figure 5.12, right). We finally observe that the maximal raw throughput

achieved in our cluster is two orders of magnitude higher with our architecture than with

PADRES. While a part of this difference can be accounted to language and implementation

differences, the higher parallelism and independence of operations in our architecture clearly

helps improving the filtering throughputs.
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5.5 RELATED WORK

We start by reviewing related work on distributed content-based pub/sub systems. We fo-

cus on high-efficiency middleware operating on dedicated machines and do not specifically

elaborate on peer-to-peer approaches. Similarly, we do not discuss work targeting the simpler

topic-based filtering model.

5.5.1 PUBLISH/SUBSCRIBE ENGINES

Most earlier work on scalable pub/sub has relied on networks of brokers, which are dedicated

machines, each performing the whole range of operations that compose the content routing

task: (1) management of subscriptions from users and other brokers, (2) filtering of incoming

publications against stored subscriptions and dispatching to local interested subscribers, and

(3) filtering of incoming publications against routing tables for dispatching to other brokers.

Brokers are typically organized in a broker overlay, with subscriptions and publications flowing

between brokers according to its logical structure, typically a tree or a mesh.

Well-known examples of broker-based pub/sub middleware are SIENA [CRW01], Gryphon

[Agu+99], and PADRES [Jac+09]. In these systems, a client (publisher or subscriber) con-

nects to one of the brokers, which then acts as its single point of contact. Brokers forward

subscriptions registered by their clients towards neighboring brokers. These systems are

based on a filtering scheme where subscriptions are defined as conjunctions of predicates

(<, ≤, =, . . . ) on a set of discrete attributes values (integers, strings, . . . ). They rely on the

ability to (1) determine containment relationships between subscriptions, and (2) construct

aggregated subscriptions representing the interests of sets of subscriptions. Subscriptions

are aggregated along the way from consumers to producers of information, taking advantage

of containment relationships between subscriptions: a single aggregated subscription may

represent the interests of many downstream subscriptions, thus reducing the number of sub-

scriptions managed by the broker and improving filtering performance (see for instance [JE11]).

This approach works well with few publishers and with subscriptions that have certain locality

properties (e.g., subscribers with similar interests connect to the same broker). However, it

requires complex algorithms for maintaining the consistency of forwarding tables and provides

only limited benefits when information flows from many sources or when the subscription rep-

resentation does not allow for containment or aggregation [Bar+12; CGB10; IRC10a; IRC10b;

RR06; Sah+98; Bru09].

In broker overlays, under some workloads, publications may have to traverse a number of

brokers that have no local interested subscriber but still have to filter the publication against

stored subscriptions. These are called forwarder-only brokers. While techniques for rewiring

the broker overlay have been proposed to tackle this problem [KJ12], the presence of such

forwarder-only brokers is intrinsic to a design where communication flows depend on the

filtering scheme and on the current workload of stored subscriptions. Since all brokers play

all roles in the pub/sub operation, the allocation of publishers and subscribers to brokers

has a strong impact on the balance of load and on the overall filtering efficiency. A bad

placement may result in a high number of messages being propagated between brokers.

Some optimizations were proposed to address this problem by connecting subscribers with

similar subscriptions to the same brokers [CJ10a], or by linking publishers and their expected

subscribers to the same brokers [Li+12; CJ10b]. Cheung et al. [CJ11] proposed to use similar

techniques to rewire the PADRES overlay in order to reduce the environmental footprint of

the pub/sub system. Again, these mechanisms are dependent on the filtering scheme and

require the ability to determine proximity relations between subscribers and publishers. This

would not be possible, for instance, with encrypted filtering approaches.

In contrast to systems based on overlay of brokers, the logical connections between the

elements in our proposed architecture are independent of the nature of the subscription and
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publication workloads and of the nature of the filtering scheme. We support scaling each of the

pub/sub operations independently by simply adding more processors to the set of nodes that

support this operation. We do not require any specific optimization support from the filtering

scheme, though we can leverage their existence for improving single-node performance inside

filtering libraries. Note that our approach is readily applicable to architectures like Google’s

GooPS [Reu09], where pub/sub is implemented by regional data centers consisting of clusters

of brokers and interconnected by dedicated network links.

5.5.2 FILTERING MECHANISMS

Our architecture supports pluggable filtering mechanisms. As the design of new such mecha-

nisms is not the focus of this paper, we only briefly discuss below a few well-known algorithms

that can be readily used in our StreamHub implementation (see Section 5.3.1). Note that this

list is far from being exhaustive.

SIENA uses a counting algorithm [CW03] for efficiently matching publications against sub-

scriptions. Individual predicates are stored in a forwarding table and a subscription is detected

as matching when all its predicates have been encountered. We use an implementation of

this counting algorithm as the default filter in StreamHub for non-encrypted matching. Addi-

tional details on its operation are given in Section 5.3.1. Encrypted filtering can be supported

for instance by asymmetric scalar-product preserving encryption [CGB10], combined with

pre-filtering [Bar+12] for efficiency. Gryphon [Agu+99] inserts the set of subscriptions into

a matching tree: leaves contain subscriptions, non-leaf nodes contain tests, and outgoing

edges represent the results of the tests. A publication traverses down the tree by following

all matching paths and reports a matching subscription for each leaf node reached. PADRES

uses a scalable filtering engine [Far+09] that can leverage multiple cores on a shared memory

architecture. By splitting the state of subscriptions and using multiple threads synchronized

using either locks or transactional memory, the filtering throughput is significantly improved.

We also exploit all the cores available on a machine and provide synchronization mechanisms

for concurrent accesses to a shared state.

Other examples of filtering mechanisms that can be leveraged in the context of StreamHub

include, but are not limited to, the following. RAPIDMatch [Kal+05] is a tree-based filtering

mechanism that takes into account the sparseness of criteria definitions over the whole at-

tribute set in some pub/sub workloads for greater efficiency. TAMA [ZW11] trades accuracy

and space complexity for efficiency by clustering range-based subscriptions in predefined sets

based on discrete cuts of the definition range of each attribute. The use of discrete cuts leads

to the presence of false positives, while the presence of subscriptions in multiple buckets

leads to higher memory consumption, in return for faster filtering. Fabret et al. [Fab+01]

use schema-clustering to minimize the number of filtering operations performed, along with

techniques to improve cache performance of the algorithm. Filtering mechanisms also ex-

ist for boolean expressions [BH07; Fon+10], XML documents and XPath expressions [AF00;

Cha+02], and compact data representation using Bloom filters [JF08].

5.5.3 CLUSTERING SUBSCRIPTIONS

Similarly to filtering mechanisms, we support subscription clustering by the means of plug-

gable libraries. Subscription clustering, as described in Section 5.3.1, splits the whole set

of subscriptions maintained by the pub/sub system into clusters according to similarity (if a

proximity metric is available on the subscription). This typically increases the level of contain-

ment and the potential for aggregation, which in turn improves the performance of the filtering

operation. Classical clustering algorithms include K-means [WKM00], Event Space Partitioning

(ESP) [Wan+02], or R-trees [Bec+90].
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5.6 SUMMARY

We presented a novel design for high-throughput pub/sub services. We focused on the

support of large-scale applications communicating through a managed environment providing

the pub/sub service, such as a publicly available cluster or a public cloud deployment. Our

architecture is highly parallel and scalable, and can readily support arbitrary complex filtering

schemes, including encrypted or state-based filtering. We do so by departing from previous

approaches based on broker overlays and by decoupling the architecture and communication

flows of the pub/sub system from the filtering scheme(s) and the subscriptions workload. Our

implementation, StreamHub, splits the pub/sub service into fundamental operations, allocated

to horizontally and vertically scalable operators supported by a scalable stream processing

engine. The evaluation of StreamHub on a cluster with up to 384 cores indicates that it

can sustain high throughputs of subscription registrations and publication filtering: we filter

thousands of publications against hundreds of thousands of registered subscriptions, resulting

in hundreds of thousands notifications sent to clients every second.
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6.1 Conclusion

Securing large computing infrastructures is a major task for decades to come. As intrusion

detection evolves, attacks become more sophisticated as well and either side is unlikely to

ultimately win or loose. In fact, we witness an arms race on both sides since Internet con-

nectivity became wide-spread among businesses.

The most prominent example are APT attacks. Such attacks do not follow a strict playbook

and, hence, their strategy can be easily adapted if necessary. Usually, these attack campaigns

have more than one vector of attack and several pieces of malware to their availability. Some

even change their modus operandi, for instance, switching from plain-text to encrypted com-

munication with the command-and-control server. APT attacks are also specifically designed

for a carefully selected group of related targets such as banks, energy companies, or defense

contractors. Often, attackers have insider knowledge of how these target systems are op-

erated (e.g., carbanak or stuxnet). Moreover, attackers manage to evade detection by using

obfuscation, encryption, and mimicry — effectively “flying below the radar” of commonly

deployed IDS. In fact, all presented attacks and those investigated by other researchers were

running for months, sometimes years before the victims became aware of them — often by

coincidence.

In all cases they had to consult highly specialized security companies to investigate their

suspicion. These specialists then looked at a combination of sources, such as emails, forum

posts, honeypots, or IP flow information from several victims at once. Only the combination

and correlation of a multitude of such datasets made it possible to confirm or contradict the

initial suspicions.

Hence, intrusion detection must not be tied to a specific dataset or detection algorithm.

Rather, IDS must permit the addition and removal of data sources and the adaptation of

detection algorithms. At the same time their design must support scalability. First, because

different detection algorithms have different computational overhead. And second, because

additional data sources may require more computing power. Moreover, intrusion detection

must become a community concern where related entities cooperate to detect “below the

radar” attacks.

This chapter summarizes the main achievements of this thesis in the field of scalable dis-

tributed processing architectures and intrusion detection techniques. It will also provide a brief

outlook of possible future research directions.

6.1 CONCLUSION

This thesis presents a novel community detection algorithm to detect industries in IP flow

data in Chapter 2. This is necessary to understand which entities of our input data belong to

one of the business communities we want to protect. In contrast to the networks which are

commonly studied for community detection, Internet flow data exhibits some distinguishing

characteristics. First, its edges are ambiguous, for example, a communication between two

IP addresses might mean that a user accesses another machine intentionally but it may also

mean that an advertisement has been downloaded or that a click-analysis site was accessed.

It is hard to differentiate between such unintended connections and actual user-intended

connections. Second, the business communities do not manifest themselves as tightly knit

communities, as assumed by conventional community detection. Rather, they are loosely-

coupled with more connections to the rest of the Internet than to other members of the

industry. Consequently, we found that traditional community detection algorithms were unable

to detect our business communities reliably. Therefore, we propose a new algorithm, which

instead of finding a closely knit community around a seed-set, tries to expand a given set of

seeds by including those neighbors with a very strong connection to the community. And,

most important, without preferring those neighbors, which are otherwise barely connected to

the rest of the network. Our algorithm is able to detect three sample industries — energy,
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financial, and defense — reliably in IP flow data while maintaining a low number of false

positives.

In Chapter 3, we continue with the design and implementation of a distributed scalable

graph mining engine. This enables us to store and process the vast amounts of input data, such

as netflow data from distributed ISP routers and properly represent its inter-dependencies. It

supports in-memory storage and updates to the graph with high throughput and below 10ms

latency. In fact, those updates can be arbitrarily complex. For example, we show how to

construct a COI graph on the fly by performing window-based aggregation of graph-updates.

Furthermore, it is possible to query the graph — concurrent to other queries and concurrent

to the graph updates. Using these queries, we implement several important graph algorithms

like the local clustering coefficient or community detection algorithms. Finally, we use our

engine to implement fraud detection in telephony networks and intrusion detection in IP flow

data. Our engine shows excellent scalability, throughput, and latency for both applications.

A deeper evaluation of the intrusion detection application is given in Chapter 4. In order to

tune the intrusion detection for different aspects of the input data, we added different views,

all running concurrently. In the case of netflow, the chapter presents three views: A COI

graph whose weight is based on the amount of transferred bytes, a COI graph whose weight

is based on the vulnerability of the ports used, and a COI graph whose weight is based on the

number of attempted connections. We ran our engine for several months and found that we

were able to detect suspicious IP addresses which maintained an otherwise very low traffic

profile per company. Throughout this period, the daily alarm rate remained below 20 for most

of the days. We consider this to be a manageable amount of reports for a community of

security administrators. The chapter presents several example cases of possible intrusions.

Post-processing alarms is exemplified by using distributed blacklists and DNS lookup services.

This post-processing has been successfully applied for ranking the issued alarms.

The next step was to design a system on top of which we cannot only implement our

graph-based intrusion detection technique but which would also allow for adding, removing,

and adapting any arbitrarily complex detection algorithm in Chapter 5. Furthermore, the goal

was to put administrators in control of which alerts they want to receive and which not. In

theory, content-based Publish/Subscribe permits exactly that: Subscribers (the administrators)

subscribe to a given kind of event-content using a subscription language (e.g., a conjunction

of predicates). Subscribers can add, remove, or change their subscriptions at any time. Pub-

lishers (our data sources) may send publications at different throughput and new publishers

can be added during runtime. While, so far, it seemed to be the perfect solution, the state-

of-the-art content-based Publish/Subscribe systems support only a fixed kind of filter (e.g.,

stateless conjunction of predicates) and were not suited for high-throughput and low-latency

processing. Hence, we designed and implemented a new architecture for Publish/Subscribe,

called StreamHub, allowing to run any number of arbitrarily complex filters within the same

system. Our key contribution is that we implement the different stages, involved in filtering

publications, as individual operators which we can scale separately to the current workload.

Moreover, departing from the traditional peer-to-peer overlay used for Publish/Subscribe, al-

lows us to support any kind of filter - even stateful ones, such as our graph-based intrusion

detection. Our evaluation shows that StreamHub maintains low predictable latency at high

throughput and out-performs the state-of-the-art by an order of magnitude.
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6.2 FUTURE WORK

This thesis leaves several interesting open issues which are worth to be investigated in the

future.

One direction of future work is to integrate our graph-based intrusion detection as a filter in

StreamHub. While this is trivial by itself, it is interesting to think about possible combinations of

different filters: For example, combining our graph-based intrusion detection with text-mining

approaches that may be able to detect spear-phishing emails. This could be enhanced by the

blacklist-based attack prediction. With such a system, an administrator would be able to follow

an attack from the very beginning on. First, the attackers send spear-phishing emails to the

corporations. These actions can be detected by a text-mining filter in StreamHub. Once the

attackers have access to some victim computers they will start the lateral movement phase or

directly exfiltrate data. In either case these actions require communication with the command-

and-control servers and this can be detected by our graph-based intrusion detection filter in

StreamHub. Finally, next targets could be predicted with a dedicated filter in StreamHub. Such

a filter would gather information from distributed blacklists, for example, and build knowledge

about past attack spreads. It would use this knowledge to predict the spread of ongoing

attacks. Especially the attack prediction might enable victims to not only implement counter-

measures but also to deploy additional sensors. This may be of great help — first, for knowing

which exact parts of the system had been attacked (e.g., what data has been stolen) and

second, to determine the identity of the attackers.

Another direction would be to continue the research in community detection. We have

learned that IP flows are fundamentally different from the networks that community detec-

tion has been applied to traditionally. More effort is needed to further evaluate how loosely-knit

communities, such as our industries, may be detected automatically. Moreover, detecting and

updating such communities in real-time with the graph updates is a challenging and interesting

research direction. Although related work in that direction exists, they assume a slow rate

on graph-updates which is contradictory to the high update rates of IP flows, for example.

Furthermore, community detection should also be applied to other input sources. While re-

search on community detection has evaluated emails, forums, and blacklists to a large extend,

the detected communities were tightly knit. However, it is unclear whether our industries

are actually tightly coupled in such datasets. For example, it has yet to be determined if the

exchange of emails between companies is significant enough to be considered a tightly knit

community.

Finally, it would be interesting to evaluate our system using actual APT attack traces. Un-

fortunately, the only publicly available IP flow dataset which contains attacks is an artificial

dataset, created more than 15 years ago. Given its age, this dataset is in fact considered

to be irrelevant for modern intrusion detection. Another option would be to use traces from

honeypots or honeynets. Those are, however, almost exclusively attacked by coincidence.

For example, unskilled attackers often run scripted attacks and select their targets rather ran-

domly. Consequently, honeypots are used for extracting malware samples but do not help in

learning about new APT attack campaigns. Although the matter is often highly classified, a

close collaboration with security companies might open possibilities to verify the approach.
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